# Additional Subsurface Investigation

# **Commissioned by:**

WFGP LLC C/O Ben Weinstein 425 15<sup>th</sup> Street Oakland, CA 94612



# **Subject Site:**

Commercial Property 964 A Street, Hayward, CA 94541 Alameda County

# **Project Number:**

7371A

# **Date of Engagement:**

September 11, 2017

# **Date of Report:**

October 23, 2017

eScreenLogic

Dallas - Fort Worth - Sacramento

www.escreenlogic.com

Additional Subsurface Investigation (LSI) - Project #7371A Commercial Property 964 A Street, Hayward CA October 23, 2017



WFGP LLC C/O Ben Weinstein 425 15<sup>th</sup> Street Oakland, CA 94612

**SUBJECT:** 

Additional Subsurface Investigation (SI) - Project #7371A

**PROPERTY:** 

964 A Street,

Hayward, CA 94541 Alameda County

(Herein after referred to as "subject site")

Dear Ben Weinstein,

eScreenLogic was contracted to perform an additional Subsurface Investigation (SI) at the above referenced subject site. The assessment was performed in general accordance with eScreenLogic's proposal #7371A.

#### **PURPOSE:**

This SI was intended to further define the potential extent of Chemicals of Concern (herein referred to as COCs) which were initially identified at the subject site by an Limited Subsurface Investigation (LSI) conducted in August 2017 by eScreenLogic. This SI is limited in scope and is intended to further the understanding of the extent of COCs in the subsurface at the site and help develop a site conceptual model for this site.

#### BACKGROUND

A previous All Appropriate Inquiry (AAI) report was conducted for the subject site by Basics Environmental on August 2,2017, the subject site consists of a rectangular-shaped tract of land with an area totaling approximately +/- 18,807-square feet, improved with approximately 9,642-square feet of business unit space across two subject buildings. At the time of the AAI, the subject site had one building on the western edge (964 A Street) and the second building on the eastern edge (974 to 980 A Street). The remaining portion of the subject site property consisted of asphalt parking.

During the AAI investigation (by Basics), the historical research identified a past land use of the subject site (964 A Street) as 'Salvatore Campo Auto Repair' and 'Comet Auto Supply' through a city directory search. On October 1, 1997, a permit was filed to close an abandoned underground storage tank (UST) in place by back filling with sand cement slurry. The permit was filed by Aqua Science Engineers, Inc. Subsequent inspections and testing did not list violations or a release. According to the associated site plan, the UST was located in the northwest corner of the parking lot at 964 A Street. According to ASE, in a letter to the City of Hayward dated September 30, 1997, "the UST was located approximately three-feet from the western edge of the subject building and foundation, approximately six feet underground, and removal would have threatened the structural integrity of the subject building."

"As part of previous auto repair business activities, various quantities of paints/lacquers/thinners, petroleum-based products including oils/lubricants/greases, potentially antifreeze/coolant, and potentially halogenated/chlorinated solvents were likely utilized in this region of the site."

These Recognized Environmental Conditions (RECs) identified within the AAI resulted in the completion of the initial LSI by eScreenLogic dated September 6, 2017 (eScreenLogic Project No. 7371). The LSI consisted of a sub-slab soil vapor investigation conducted in the western building (964 A Street). Four sub-slab soil vapor samples were collected as shown on Figure 1. The borings were placed as follows:



Additional Subsurface Investigation (LSI) – Project #7371A Commercial Property 964 A Street, Hayward CA October 23, 2017



- SSV1 was located along the sanitary sewer alignment and representative of the display area in the western portion of the investigation area.
- SSV2 was located near the abandoned in-place UST as well as sewer alignment.
- SSV3 was located near a floor drain which ties into the main sewer alignment.
- SSV4 was located within the "back room" of the northeast portion of the investigation area. This "back room" had evidence of a wall vent, three ceiling vents, a 220volt ACV outlet, and significant oil staining on the wall; however, no floor drains.

Results of the LSI identified perchloroethylene (PCE), a halogenated volatile organic compound (VOC) in the sub-slab soil vapor sample collected from SSV4 (see Table 1). This was the only sample location where PCE was identified. Sample SSV4 was collected from the back northeastern corner "back room" of the building at 964 A St. The sole detection of PCE ( $2,400 \, \mu g/m3$ ) was at a concentration slightly exceeding the Regional Water Quality Control Board (RWQCB), Environmental Screening Levels (ESLs) for vapor migration consideration into interior air of a commercial land use ( $2,100 \, \mu g/m3$ ). Analysis of the other three subs-slab soil vapor samples did not detect the presence of VOCs; however, leak check chemical (isopropanol) was detected.

#### **GEOLOGIC SETTING**

The subject site is located in the San Francisco Bay Region, near the margin of the Pacific and North American crustal plates. Several major northwest-trending fault zones are located in the immediate vicinity including the San Andreas Fault Zone (the dominant fault zone in California), and a number of smaller fault zones. The active trace of the San Andreas fault zone is located about 20-miles west of the site. The active trace of the Calaveras/Hayward fault zone is located approximately at or adjacent to the southwest of the subject site beneath Mission Boulevard alignment to the west.

Geology beneath the site consists of alluvial fan and fluvial deposits, otherwise known as Qhaf. Qhaf deposits are assigned to the Holocene Santa Clara Formation, an unconsolidated, moderately sorted, permeable fine-grained sand and silt with gravel becoming more abundant toward fan heads. During this SI, lithology was identified during the installation of the soil borings to groundwater (see boring logs B1 & B2 in Appendix A). In general, the lithology consists of silts and clays derived from weathered marine sediments (silts and sand stones). Difficult drilling and augering conditions were encountered within the upper 5 feet of borings as weather bedrock was shallowly encountered. The occurrence of weathered bedrock at the hand auger locations within the building limited the depth of these borings to no more than 2.5 feet until auger refusal prevented deeper sampling. An outcrop of silt stone bedrock was observed along the immediate northern exterior of the building.

#### HYDROGEOLOGIC SETTING

Information regarding first depth to groundwater and flow direction were researched at the California Water Resources Control Board's website at https://geotracker.waterboards.ca.gov. Regionally, shallow groundwater flow direction is to the west-southwest in the direction of the San Francisco Bay. Locally, topography slopes southwesterly, generally corresponding to the direction of the onsite and local shallow groundwater flow direction. Based on sites investigated for groundwater within the general vicinity of the subject site, shallow groundwater is encountered between 15 to 30 feet below ground surface (BGS).

During this SI, the two exterior soil borings (B1 and B2) were drilled to a total depth of 22 feet BGS. Dry to moist lithology was observed to a depth of about 17 feet BGS, where soil samples began to show signs of wet to saturated conditions. Groundwater depth in B1 was about 19 feet BGS while it was about 21 feet BGS in the in B2. Boring B2 is in the general down gradient location from the "back room" (Figure 2)



Additional Subsurface Investigation (LSI) -- Project #7371A Commercial Property 964 A Street, Hayward CA October 23, 2017



#### **UTILITY CLEARANCE AND PERMITTING**

Prior to conducting the additional SI, Underground Service Alert (USA-north) was contacted and the site was marked for tentative boring locations (USA Ticket No. X726901298-00X). USA-North representatives did not identify any buried utilities within the general investigation area. In addition to the USA clearance, eScreenLogic submitted and received a boring permit (Permit No. W2017-0736) from Alameda County Public Works Agency. Copies of the boring permit and USA ticket are included in the Appendix A.

#### **HEALTH AND SAFETY PLAN**

A site-specific Health and Safety Plan was not required as part of this SI; however, eScreenLogic utilizes Occupational Health and Safety protocol under Hazardous Waste Operations & Emergency Response 29 CFR 1910.120 when performing LSIs. This protocol is designed to reduce the risk of physical or chemical exposures that may affect on-site workers within the work area. The Health and Safety protocols include information about anticipated COCs on the subject property, health and safety procedures for working on-site, and emergency response procedures. A tailgate H&S meeting was conducted prior to the additional SI on October 5, 2017. The work was conducted in Level D personal protection, with ambient air monitoring conducted in the breathing zone of the workers using a Photo Ionization Detector (PID) to screen for volatile organic compounds.

#### **WORK PLAN**

Due to the limited nature of this SI, a work plan was not required; however, a brief scope of services was presented to the Alameda County Public Works Agency as part of the regulatory boring permit required for this SI. The Scope of Work was conducted pursuant to the eScreenLogic's proposal #7371a and was primarily conducted as follows:

- Determine subsurface lithology and depth to groundwater at the site;
- Collect shallow soil samples within the area where PCE had been identified in sub-slab soil vapor;
- Collect additional sub-slab soil vapor samples to determine the lateral extent of PCE; and
- Obtain groundwater samples at the site to assess the potential impact from PCE.

#### PREVIOUS SUBSURFACE INVESTIGATION

#### August 17, 2017

- eScreenLogic mobilized to the subject site to install four (4) sub-slab soil vapor points (SSV1 to SSV4) beneath existing asphalt parking lot (Figure 1).
- The sample locations were chosen to give adequate coverage across the site, to target suspected areas, as well as avoiding poor concrete conditions which could reduce sample recovery;
- SSV1 was located along the sanitary sewer alignment and representative of the display area in the
  western portion of the investigation area. SSV2 was located near the abandoned in-place UST as well
  as sewer alignment. SSV3 was located near a floor drain which ties into the main sewer alignment.
  SSV4 was located within the back room of the northeast portion of the investigation area. This "back
  room" had evidence of a wall vent, three ceiling vents, a 220-volt ACV outlet and significant oil residue
  on the walls.
- At each sample location, a roto-hammer drill was used to drill through the concrete slab and just into the aggregate base beneath this surface. The concrete thickness varied, but averaged about 6 inches;
- A screened soil vapor port was installed through each hole into the aggregate base, and was bedded with a clean sand. Hydrated bentonite was used at the surface as an air-tight seal with the slab;
- Once the sample point was installed and bentonite seal completed, the sample point was allowed to equilibrate for approximately 30 to 60-minutes prior to sample collection;



Additional Subsurface Investigation (LSI) – Project #7371A Commercial Property 964 A Street, Hayward CA October 23, 2017



- A vacuum hand pump was used to purge the sample line and evaluate subsurface flow conditions. Good flow conditions was observed in all the samples;
- The vacuum hand pump was also used to perform a vacuum leak check of the sample train (flow regulator and tubbing connected to the suma canister) prior to connection of the sample point;
- The samples (SSV1 to SSV4) were collected within a leak-check shroud using isopropyl alcohol (2-propanol) as the leak-check chemical; and,
- Upon completion of the sample collection, the hydrated bentonite was used to plug the hole at each test location.





Figure 1 - Sub-Slab Soil Vapor Sample Location Map (Initial LSI September 2017)



Note: Not to scale.

#### **ADDITIONAL SUBSURFACE INVESTIGATION**

#### October 5, 2017

- eScreenLogic mobilized to the subject site with Cascade Drilling to install two (2) direct push borings B1 and B2 on the exterior of the building and in the general downgradient location of the northeast "back room" and three (3) hand auger samples from within the "back room" boring B3 through B5 (Figure 2);
- Boring B1 was continuous cored with a truck mounted GeoProbe and was able to obtain a total depth of 22 feet below ground surface (BGS). Soil samples (for chemical analysis) were collected from 12 and





21 feet BGS (B1-12 and B1-21). Groundwater developed within the boring and groundwater sample B1GW was collected from an approximate depth of 19 feet BGS. No PID hits were detected in the soil logged within this boring (see boring log, Appendix A);

- Boring B2 (the most downgradient positioned boring) was continuous cored with a truck mounted GeoProbe and was able to obtain a total depth of 22 feet below ground surface (BGS). Soil samples (for chemical analysis) were collected from 12 and 21 feet BGS (B2-12 and B2-21). Groundwater developed within the boring and groundwater sample B2GW was collected from an approximate depth of 21 feet BGS. No PID hits were detected in the soil logged within this boring (see Appendix A);
- Within borings B1 and B2, groundwater conditions were encountered and new 0.01 slotted 1-inch OD PVC well casing were installed in each boring to allow water to come into the hole and create a more stable sampling environment. Groundwater samples were collected from each boring B1 and B2.
- Within the interior of the building the driller (Cascade) cored the concrete at three locations within the "back shop" area. at each cored location hand auger tools were used to sample the shallow soil beneath the slab in boring B3 through B5 (Figure 2).
- At hand auger boring location B3, a soil sample was collected at 1.5 feet BGS. Boring B3 had the only PID reading of all the borings at a concentration of 45 ppm.
- At boring B4 soil samples were collected at 1 and 2.5 feet BGS.
- At boring B5 a soil sample was collected a 1.5 feet BGS.
- On completion of Borings B3 through B5, a screened vapor implant was installed in each of the borings at depths 2 feet, 1.5 feet and 1.5 feet, respectively. The implants were bedded in a clean sand and backfilled with hydrated bentonite chips. These "vapor probes" were then allowed to rest.

#### October 6, 2017

- eScreenLogic returned to the site to sample the installed soil vapor probes (B3-SV-2.0, B4-SV-1.5, and B5-SV-1.5) as well as to install three additional subslab soil vapor probes (SSV5 through SSV7). These vapor probes and subslab soil vapor sample points were located to aid in the lateral delineation of shallow PCE soil vapor detected beneath the "back room" in the previous subslab soil vapor sample SSV4.
- At each subslab soil vapor location, each sample point was prepared as previously explained for the August 17, 2017 sampling event;
- The vapor samples (B3-SV-2.0, B4-SV-1.5, B5-SV-1.5, and SSV5 through SSV7) were collected within a leak-check shroud using isopropyl alcohol (2-propanol) as the leak-check chemical;
- Each sample point was purged using a vacuum hand pump. Every point was observed to have "good" vapor flow conditions;
- Vapor samples were collected within 1-liter suma canisters from each point.
- Upon completion of the sample collection, the hydrated bentonite was used to plug the hole at each test location.





Figure 2 – Additional Subsurface Investigation Sample Locations



Note: Shallow soil borings B3 to B5 were converted to soil vapor samples points B3-SV-2.0, B4-SV-1.5, B5-SV-1.5 as indicated by the cross hatches

#### **SAMPLING AND ANALYTICAL METHODS**

#### Soil Samples

Soil samples collected from the GeoProbe (from boring B1 and B2) were retained within the acetate liners placed within the probes. Select depths were kept for chemical analysis. These samples were cut to approximate 4-inch lengths, capped with Teflon tape and then capped with plastic endcaps. Soil samples collected from the hand auger (from boring B3 to B5) were transfer quickly from the auger directly into 4-oz wide-mouth jars which were equipped with Teflon screw lids. The samples were collected to ensure that little to no air gaps were present. The soil samples were labeled, logged onto chain of custody, placed on ice, and were transferred to CLS Analytical Laboratory of Rancho Cordova, CA for chemicals analysis of VOCs using EPA method 8260B.



Additional Subsurface Investigation (LSI) - Project #7371A Commercial Property 964 A Street, Hayward CA October 23, 2017



#### **Groundwater Samples**

Within the soil borings (B1 and B2), groundwater was reached. New 0.01 screen, 1-inch OD PVC well casing was installed within in each boring. Water was grabbed from each boring using a cleaned stainless steel "pencil" bailer. Groundwater samples were carefully transferred into hydrochloric acid preserved 40 ml VOA vials (three each for each sample). The groundwater samples were labeled, logged onto chain of custody, placed on ice, and were transferred to CLS Analytical Laboratory of Rancho Cordova, CA for chemicals analysis of VOCs using EPA method 8260B.

#### Soil Vapor Samples

The soil vapor samples were collected from beneath the subject site to aid in the lateral characterization of sub-slab soil vapor PCE concentrations. The samples were collected within evacuated 1-Liter summa canisters provided by the analytical laboratory (Eurofins, Air Toxics of Folsom, CA). Flow controllers were used to meter the flow in to each evacuated canister and prevent stripping of COCs from the sub-slab media. Isopropyl alcohol (2-propanol) was used as the leak-check chemical. Upon sample collection, the samples were logged onto chain of custody and shipped to the laboratory for analysis by Method TO-15 (for COCs).

The soil vapor samples were collected per industry standards and in general accordance with established State of California, Environmental Protection Agency (EPA) and/or ASTM standards. Soil vapor samples were collected generally following a methodology based on the Department of Toxic Substances Control (DTSC) Advisory for Active Soil Gas investigations (DTSC, 2012, updated and finalized July 2015).

#### **ANALYTICAL RESULTS**

The following analytical results are based on the sampling and analysis conducted as part of the SI performed at the subject site in accordance with eScreenLogic's proposal #7371a engaged on September 11, 2017. The purpose of this SI was to further investigate the possible presence of COCs in the "back room" area of the subject site, and was performed in general conformance with ASTM and DTSC standards. Sampling procedures and analytical methods are based on State of California standard practices and regulatory guidelines; and, were intended provide additional site characterization and better the understanding of the extent of contamination in the various subsurface media (soil, vapor, and groundwater).

The analytical results were compared against the relatively conservative Tier 1 Environmental Screening Levels (ESL) established by the San Francisco Bay Regional Water Quality Control Board (RWQCB) and are summarized in Tables 1 through 3. The established ESLs referenced in this SI are for screening purposes and do not constitute cleanup levels; however, they are helpful in evaluating potential risk the ESLs provide conservative estimates of potential risk to human health as compared against the current commercial standard.

#### **Analytical Soil Results**

A copy of the analytical laboratory report which includes soil and groundwater results is provided in Appendix B. The soil samples were analyzed for VOC using EPA Method 8260B. No VOCs were reported above the analytical reporting limits.

#### **Analytical Groundwater Results**

Table 2 provides a summary of the analytical results associated with the two grab groundwater samples (B1GW and B2GW) which were collected as well as the Trip Blank. Trace detections of benzene and xylenes were detected in B1GW. Trace detections of benzene, toluene, naphthalene, PCE and xylene were reported in the sample of B1GW. No VOCs were reported above analytical reporting limits in the Trip Blank. The analytical report with groundwater results is found in Appendix B.



Additional Subsurface Investigation (LSI) – Project #7371A Commercial Property 964 A Street, Hayward CA October 23, 2017



#### Soil Vapor Results

The analytical soil vapor results from the LSI and SI are summarized in Tables 1 and 3, respectively. Perchloroethylene (PCE) and TPH as gasoline ranged organics (TPH-GRO) were reported in sample SSV4 (Table 1). During the additional SI, PCE was the predominant VOC detected; however, sporadic detections of chloroform, 1,1,1-TCA, and trichloroethylene, and naphthalene were also detected (Table 3). None of the chemicals identified during the additional SI were at concentrations exceeding ESLs (Table 3). The leak check chemical (2-Propanol) was identified in soil vapor samples and at greater concentrations in the sub-slab soil vapor samples than in the soil vapor samples collected from the converted soil boring locations.

As mentioned, detection of 2-propanol (leak check chemical) was reported in soil vapor samples. The leak check is performed to evaluate if there are "gross" leaks within the sample train of the sampling apparatus during the vapor collection process. Due to the sensitivity of air and soil vapor sampling and analysis, it is not unexpected to see detections of the leak check compound in the vapor samples. In a worst-case scenario, if the concentration of the leak check exceeds 0.005 % volume (50 parts per million volume or PPMV) the sample integrity is considered compromised and sample results should be considered qualitative. 50 PPMV of 2-propanol equates to a vapor concentration of 122,883  $\mu$ g/m3 which is about 3.8 times above the greatest concentration reported (32,000  $\mu$ g/m3) which was observed in SSV7. The presence of higher concentrations of the leak check compound resulted in elevated reporting limits of COCs in the vapor samples.

Table 1 - Previous Sub-Slab Soil Vapor Results (August 17, 20917)

|                                    | Soil \                     | Vapor (µg/m3) |         |         |         |
|------------------------------------|----------------------------|---------------|---------|---------|---------|
| ANALYTE                            | SFBRWQCB ESL<br>Soil Vapor | SSV1          | SSV2    | SSV3    | SSV4    |
| Acetone                            | 140,000,000                | 730           | 320     | 1,000   | 1,100   |
| Ethanol                            | NE                         | <180          | <180    | <180    | <180    |
| Benzene <sup>1</sup>               | 420                        | <76           | <75     | <75     | <76     |
| Toluene <sup>1</sup>               | 1,300,000                  | <89           | <89     | <88     | <90     |
| Naphthalene <sup>1</sup>           | 360                        | <500          | . <490  | <490    | <500    |
| TPH-Gasoline Range <sup>1</sup>    | 2,500,000                  | <3900         | <3900   | <3800   | 26,000  |
| Trichloroethene (TCE) <sup>2</sup> | 3,000                      | <130          | <130    | <120    | <130    |
| Perchloroethene (PCE) <sup>2</sup> | 2,100                      | <160          | <160    | <160    | 2,400   |
| 2-Propanol (isopropyl alcohol) *   | NE                         | 64,000        | 68,000  | 75,000  | 64,000  |
| Sample Date                        |                            | 8/17/17       | 8/17/17 | 8/17/17 | 8/17/17 |

**ESL** – Environmental Screening Levels (SFBRWQCB) Commercial land use standard.

<sup>\*</sup>Note: Leak check chemical (2-propanol) was detected (reporting limits raised). If 2-Propanol concentrations exceed 122,883 µg/m3, the sample result should be considered qualitative in nature and used with caution.



<sup>1 -</sup> Petroleum-Related COC 2 - Degreasing-Related Chemicals COC NE = No ESL Established

PCE slightly exceeded the commercial Environmental Screening Level (ESLs) in sample SSV4. The reporting levels for naphthalene slightly exceed the ESL for this compound in the soil vapor samples.



Table 2 – Groundwater Sample Results

|                                    | Groundwater    | r (µg/L) |         |            |
|------------------------------------|----------------|----------|---------|------------|
| ANALYTE                            | ESL Shallow GW | B1GW     | B2GW    | TRIP BLANK |
| Benzene <sup>1</sup>               | 9.7            | 0.59     | 1.1     | <0.5       |
| Toluene <sup>1</sup>               | 30,000         | <0.5     | 0.61    | <0.5       |
| Naphthalene <sup>1</sup>           | 170            | <0.5     | 2.0     | <0.5       |
| Perchloroethene (PCE) <sup>2</sup> | 26             | <0.5     | 3.5     | <0.5       |
| Xylenes                            | 10,000         | 2.3      | 1.7     | <1.0       |
| Sample Date                        |                | 10/5/17  | 10/5/17 | 10/5/17    |

**ESL** — Environmental Screening Levels (SFBRWQCB), Non-drinking water, shallow (Vapor intrusion to commercial land use standard).

1 = Petroleum-Related COC: 2 = Degreasing-Related COC

Note: Trip Blank prepared in field and used a QA/QC for evaluation of possible cross contamination during field sampling.

#### Table 3 - Additional Soil Vapor Results

| Soil Vapor (µg/m3)                  |                   |           |           |           |         |         |        |
|-------------------------------------|-------------------|-----------|-----------|-----------|---------|---------|--------|
| ANALYTE                             | ESL Soil<br>Vapor | B3-SV-2.0 | B4-SV-1.5 | B5-SV-1.5 | SSV5    | SSV6    | SSV7   |
| Acetone                             | 140,000,000       | 79        | 150       | BRL       | 610     | 590     | 650    |
| Ethanol                             | NE                | 11        | BRL .     | BRL       | BRL     | BRL     | BRL    |
| Benzene <sup>1</sup>                | 420               | ND        | BRL       | BRL       | BRL     | BRL     | BRL    |
| Toluene <sup>1</sup>                | 1,300,000         | 6.8       | BRL       | BRL       | BRL     | BRL     | BRL    |
| Naphthalene <sup>1</sup>            | 360               | ND        | 17        | BRL       | BRL     | BRL     | BRL    |
| TPH-Gasoline Range <sup>1</sup>     | 2,500,000         | 24,000    | 1,100     | BRL       | BRL     | BRL     | BRL    |
| Cyclohexane <sup>1</sup>            | NE                | 4.5       | 9.8       | BRL       | BRL     | BRL     | BRL    |
| Chloroform <sup>2</sup>             | 530               | 25        | 8         | 7.4       | BRL     | BRL     | BRL    |
| Trichloroethene (TCE) <sup>2</sup>  | 3,000             | 10        | 178       | BRL       | BRL     | BRL     | BRL    |
| Perchloroethene (PCE) <sup>2</sup>  | 2,100             | 280       | 1500      | 130       | 610     | 1,000   | 220    |
| 1,1,1-Trichloroethane               | 4,400,000         | BRL       | 8.2       | BRL       | BRL     | BRL     | BRL    |
| 2-Propanol<br>(isopropyl alcohol) * | NE                | 68        | 120       | BRL       | 20,000  | 22,000  | 32,000 |
| Sample Date                         |                   | 10/6/17   | 10/6/17   | 10/6/17   | 10/6/17 | 10/6/17 | 10/6/1 |

**ESL** — Environmental Screening Levels (SFBRWQCB) Commercial land use standard.

1 = Petroleum-Related COC: 2 = Degreasing-Related Chemicals COC: BRL = Below Reporting limit (see analytical report)

PCE slightly exceeded the commercial Environmental Screening Level (ESLs) in sample SSV4. The reporting levels for naphthalene slightly exceed the ESL for this compound in the soil vapor samples.

\*Note: Leak check chemical (2-propanol) was detected (reporting limits raised). If 2-Propanol concentrations exceed 122,883 μg/m3, the sample result should be considered qualitative in nature and used with caution.





The results of the PCE in the subslab and shallow soil vapor samples were plotted on the investigation map and are presented below.



#### CONCLUSIONS

The following conclusions are based on the two subsurface investigations conducted at the subject site in August 2017 (eScreenLogic Project No. 7173) and in October 2017 (eScreenLogic Project No. 7173A):

#### Progression of Work Performed

- Initial LSI (August 2017) identified PCE in the soil vapor I the northeast room of 964 A St which slightly exceeded ESLs for commercial land use;
- Additional investigation was recommended to focus on the "back room". This "back room" had three
  ceiling vents, two wall vents and a 220 Volt power outlet. Significant oil staining appeared on the wall
  of this room. From all appearances, this room may have been used for some form of automobile parts
  washing/cleaning; however, there was no historical record of this in the previous AAI (Basics
  Environmental, 2017).
- The additional SI focused on the "back room" and field work was completed on October 5-6, 2017.



Additional Subsurface Investigation (LSI) – Project #7371A Commercial Property 964 A Street, Hayward CA October 23, 2017



- Two deep soil borings (B1 and B2) were installed in general downgradient location of the "back room".
   Temporary wells were set and groundwater was collected at each boring (19 feet BGS and 21 feet BGS, respectively for B1 and B2);
- Three hand auger soil borings (B3-B5) were attempted in the "back room". The presence of bedrock in this area prevented sampling any deeper than about 2.5 feet; however, shallow soil samples from these boring were collected for chemical analysis;
- The shallow soil borings were converted to soil vapor sample points and three additional subslab soil vapor samples were also added to aid in the definition of the lateral extent of PCE in shallow soil vapor/subslab soil vapor.

#### Extent of Chemicals Identified

- Shallow soil sampling and analysis did not identify VOCs above analytical reporting limits in the samples analyzed in the suspected source area. This tends to indicate that soil contamination is minimal and is not representative of "gross" contamination within the areas sampled;
- The additional soil vapor sampling identified the approximate lateral extent of PCE above and below acceptable ESL for commercial land use. The highest soil vapor concentration of PCE was found in during the original sub-slab soil vapor sampling event conducted in August 2017 at SSV4 at a concentration of 2,400 µg/m3). The more recent soil vapor sampling the "high" concentration and are at concentrations which are less than the commercial ESL (2,100 µg/m3).
- The results of the soil vapor sampling tend to indicate that the VOC (PCE) contamination is fairly localized to the "back room" area and seems to fit the theory that some former VOC use in this back room likely occurred.
- Groundwater from B1GW detected a trace concentrations of benzene and xylene (both well below ESLs for groundwater). The groundwater sample from B2GW (this is the most downgradient sample point from the "back room") detected trace concentrations of benzene, naphthalene, PCE, toluene, and xylenes. These were all detected at concentrations below ESL risk levels (shallow groundwater for vapor intrusion consideration into commercial air).
- The presence of naphthalene and TPH-ranged organics in the soil vapor, as well as naphthalene, benzene, toluene and xylenes in the groundwater, appear to indicate the historic automotive-related land use impact to these media.
- The results of the three different media sampling (soil, spoil vapor, and groundwater) and chemical analysis of those samples, have shown that contamination appears fairly localized to the "back room" area. Shallow soil vapor media and groundwater have been impacted by the historic activities at the subject site, but do not appear to be at levels that would warrant a costly remediation.



Additional Subsurface Investigation (LSI) - Project #7371A Commercial Property 964 A Street, Hayward CA October 23, 2017



#### RECOMMENDATIONS

Based on these results of the initial LSI and the additional SI, it appears that the subsurface beneath the "back room" has been impacted by historic automotive use at the subject site. The extent of this impact appears limited and not" grossly" impacted. The following recommendations are made.

- No additional assessment is recommended now until regulatory oversight is sought.
- The results of the investigation should be submitted to the following regulatory entity:

Alameda County Department of Environmental Health

Local Oversight Program (LOP)

1131 Harbor Bay Parkway

Alameda, CA 94502-6577

Deh.loptoxic@acgov.org

eScreenLogic discussed procedures for reporting with Alameda County, who indicated that the report can be submitted electronically to the above email address.

Prior to demolition and replacement of concrete flooring in the location of the "back room" a soils
management plan and worker health and safety plan is recommended to be developed in concert with
any requirements established by appropriate regulatory oversight.

#### STANDARD OF CARE AND LIMITATIONS

This SI investigation was performed in general accordance with eScreenLogic's proposal #7371a. No other warranties, either expressed or implied, apply to the services herein.

To accurately represent the services performed, eScreenLogic notes that it does not and cannot represent that the subject site contains no hazardous material, products, underground storage tanks (USTs), and/or other latent conditions beyond the Scope of Work for this SI.

eScreenLogic cannot warrant the accuracy of prior reports and/or services performed by other firms at the subject site. Findings and Conclusions conveyed herein are based upon the limited and included data obtained on a specific date; such conditions are subject to change.

The clauses of eScreenLogic's General Terms & Conditions (T&C) are incorporated herein by reference in this proposal with the same force and effect as though set forth in full text. A copy of the T&C is available upon written request. ESCREENLOGIC'S LIABILITY, IF ANY, FOR ANY CLAIM, COSTS, LOSS OR DAMAGE RESULTING FROM ESCREENLOGIC'S NEGLIGENCE, IF ANY, RELATING TO THIS AGREEMENT OR THE WORK PERFORMED PURSUANT HERETO SHALL NOT EXCEED THE AMOUNT OF THE PAYMENT(S) ACTUALLY RECEIVED BY ESCREENLOGIC HEREUNDER; PROVIDED, HOWEVER, ESCREENLOGIC'S LIABILITY, IF ANY, FOR CLAIMS INVOLVING ACTS, ERRORS, OR OMISSIONS IN THE RENDERING OF PROFESSIONAL SERVICES ("PROFESSIONAL LIABILITY") SHALL NOT EXCEED THE AMOUNT OF INSURANCE MAINTAINED BY ESCREENLOGIC. I/WE HAVE BEEN ADVISED THAT ESCREENLOGIC **CURRENTLY MAINTAINS PROFESSIONAL LIABILITY INSURANCE IN THE AMOUNT OF \$2,000,000.** This agreement shall be governed by and construed in accordance with the laws of the State of Texas (without regard to its conflicts of laws provisions). The parties hereto hereby agree that venue of any action under this agreement shall be exclusively in Tarrant County, Texas, and that this agreement is performable in part in Tarrant County, Texas. Information, estimates and opinions furnished to EScreenLogic during the course of the assessment, and contained in the report, will be obtained from sources considered reliable and believed to be true and correct. However, eScreenLogic makes no independent investigation as to such matters and undertakes no responsibility for the accuracy of such items. All facsimile transmissions, accompanying documents, and signatures shall be treated as original documents and shall bind and inure the parties involved in this agreement. The Parties agree to make good-faith efforts to settle any dispute or claim that arises under this Agreement or the work



Additional Subsurface Investigation (LSI) - Project #7371A Commercial Property 964 A Street, Hayward CA October 23, 2017



performed pursuant hereto through discussion and negotiation. The dispute resolution process will be initiated by either party giving the other party written notice that a dispute exists ("Notice of Dispute"), setting forth the facts and circumstances surrounding the dispute. Within fifteen (15) days of the delivery of the Notice of Dispute, the Parties shall meet at a mutually acceptable date, time and place, attempting to informally resolve the dispute. If the dispute has not been resolved through negotiations, the Parties agree that any claim or action relating in any way to this Agreement or the work performed pursuant hereto, shall be resolved through binding arbitration pursuant to the rules of the American Arbitration Association. The site of any arbitration proceedings shall be Tarrant County, Texas, unless otherwise agreed to by the Parties.

#### **RELIANCE**

This LSI report has been prepared for the exclusive use and reliance of the Client. Use or reliance by any other party is prohibited without the written authorization of eScreenLogic. Reliance on the LSI by the Client shall be subject to the engagement agreement/scope of work executed by the Client.

If you have any questions about the report, or if we can be of any further service to you please do not hesitate to contact us at (916) 288-8177 or <a href="https://www.escreenlogic.com">www.escreenlogic.com</a>.

W2935

Chad Cadenhead, P.G. (Lic #11462), CAPM (Lic #0000553), CESCO (Cert #356667150)

Principal & Senior Geologist

Robert S. Fagerness, PE (Lic #C053220)

Senior Engineer





# APPENDIX A PERMIT, USA TICKET, MISC. FIELD NOTES



## Alameda County Public Works Agency - Water Resources Well Permit



399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 09/26/2017 By jamesy

Permit Numbers: W2017-0736

Permits Valid from 10/05/2017 to 10/06/2017

Application Id:

1505325306947

City of Project Site: Hayward

Site Location: **Project Start Date:**  964 A St. Hayward, CA 94541, USA 10/05/2017

Completion Date: 10/06/2017

Assigned Inspector:

Contact Eneyew Amberber at (510) 670-5759 or eneyew@acpwa.org

Applicant:

eScreenLogic - Robert Fagerness

Phone: 916-288-8176

**Property Owner:** 

11294 Gold Country Blvd., Suite 165, Gold River, CA 95670 WFGP LLC

Phone: 510-763-3066

Client:

425 15th Street, Oakland, CA 94612 Robert Fagerness

Phone: 916-288-8176

Contact:

11249 Gold Country Blvd., Ste 165, Gold River, CA 95670 Robert Fagerness

Phone: 916-288-8176

Cell: 916-296-5138

**Total Due:** 

Receipt Number: WR2017-0443

**Total Amount Paid:** 

\$265.00 <u>\$265.00</u>

PAID IN FULL

Payer Name: Robert S Fagerness Paid By: VISA

#### **Works Requesting Permits:**

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 5 Boreholes

Driller: Cascade Drilling, LP - Lic #: 938110 - Method: DPcpt

Work Total: \$265.00

#### **Specifications**

Hole Diam Max Depth Permit Issued Dt **Expire Dt Boreholes** 

Number

W2017-09/26/2017 01/03/2018 5 2.50 in. 45.00 ft

0736

#### **Specific Work Permit Conditions**

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no

## Alameda County Public Works Agency - Water Resources Well Permit

case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

#### 7. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

- 8. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.



Your ticket number is X726901298-00X. and will be active until 10/24/2017 11:59 PM. If your work is going to continue past that date, contact USA North 811 to extend your ticket. If at any time you need your dig site remarked, it is your responsibility to contact USA North 811 and request your site to be remarked.

After our members have responded to your request, it is your responsibility to notify USA North if you need the members to remark their facilties.

If you excavate and damage facilities prior to our Member' response to mark their facilities, you may be liable for those damages.

You can also get a copy of your ticket by going to: www.usanorth811.org and selecting Ticket Copy

#### **Contact Information**

| Service Area              | Day Phone    | Emergency<br>Phone | Vacuum<br>Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | After<br>Hours   |
|---------------------------|--------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| AT&T TRANSMISSION         | 800-241-3624 | 800-241-3624       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800-241-<br>3624 |
| COMCAST-HAYWARD           | 510-266-3360 | 888-824-8399       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 888-824-<br>8399 |
| CITY HAYWARD              | 510-881-7970 | 510-881-7933       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 510-385-<br>1078 |
| CITY HAYWARD              | 510-881-7970 | 510-881-7933       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 510-385-<br>1078 |
| LAVWMA                    | 925-846-4565 | 925-570-7878       | 925-570-<br>4161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 925-519-<br>0557 |
| MCI WORLDCOM              | 469-866-4224 | 800-624-9675       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800-624-<br>9675 |
| ORO LOMA<br>SANITARY DIST | 510-481-6999 | 510-276-4700       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 510-276-<br>4700 |
| PACIFIC BELL              |              | 510-645-2929       | 510-645-<br>2929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800-332-<br>1321 |
| PGE DISTR<br>HAYWARD      | 510-784-2158 | 800-743-5000       | 800-743-<br>5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800-743-<br>5000 |
| TELEPORT COMM<br>SFO      | 650-280-6648 | 800-241-3624       | and the second s | 800-241-<br>3624 |

| BORING LOCATION                                                                       | Project: 1 AYWAR Project No: 7371A  Date Drilled: 10/5 Date Completed: 10/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Boring ID: B Easting: Easting:                                                                                     |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                                                                       | Logged By: 255  Water Elevation (th): 19 7365  Date Measured: 10/5/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ground Surface Elevation (ft.):  Measuring Point (MP) Elevation (ft.):  MP is Top of PVC Casing Datum: NGVD (1929) |
|                                                                                       | Total Depth (ft.): 27 Diameter (in.) 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drilling Contractor: CACADE Drilling Method: DIRECT PUSH                                                           |
| Ē                                                                                     | Sand Bentonite Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Type                                                                                                               |
| DEPTH (FEET) % GRAVEL BB % SAND STAND % FINES BB MAX. PID READING (ppm) BLOWS (6 IN.) | CLASS OF THE COLOR SECOND COLOR | ITHOLOGIC DESCRIPTION ze and angularity of each component or plasticity; moisture content; additional facts)       |
|                                                                                       | 4M ASPHALT/ANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SILT, DON 3E                                                                                                       |
| 4 0                                                                                   | ML 10 4R/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N4 -                                                                                                               |
|                                                                                       | SILT/SLOVIN-S<br>ML Brokin SILT STO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117 DRY, DINSE<br>ONE, HALO ORILLING                                                                               |
|                                                                                       | LIMITED RECOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SLY SILA STONE DRY                                                                                                 |
| 12 0                                                                                  | DOWSE, HARD,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DRY SILT, NO DODAL (POA) (NOIS, MOIST                                                                              |
| 14                                                                                    | MINIMAL RECE<br>CEMONTED SILT<br>ANG. DEA. GRAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HARD DRY SOME SMALL                                                                                                |
| 16                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOIST @ 17                                                                                                         |
| /8]                                                                                   | - G.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 9-20'                                                                                                            |

PAGE 1 OF

PROJECT NO. 72

Cuttings

Elevation of ground water

| DEPTH<br>(FEET) | GRAVEL BAR | SAND | E FINES             | MAX, PID<br>READING (ppm) | LOWS (6 IN.) | AMPLE TYPE* | SAMPLE RECOVERY | USCS/ASTM<br>CLASSIFICAT. | GRAPHIC LOG | Project: Project No: 7371 A  Boring ID.: LITHOLOGIC DESCRIPTION  (USCS name; color; size and angularity of each component or plasticity; density; moisture content, additional facts) | ELEVATION             |
|-----------------|------------|------|---------------------|---------------------------|--------------|-------------|-----------------|---------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 20-             | *          | 34   | 85                  | 0                         |              | S)          | S E             | <b>5</b> 0                | ML          | WEATIGHTO SILT STONE, CRUMBLES                                                                                                                                                        | -                     |
| 27              |            |      |                     |                           |              |             |                 |                           |             | SCREEN SET TO ALLOW HED                                                                                                                                                               | -                     |
|                 |            |      |                     |                           |              |             |                 |                           |             | TI COME INTO HOLE                                                                                                                                                                     | -                     |
| 21-             |            |      | dament ( à del  - d |                           |              |             |                 |                           |             | BOTTOM OF HOLE 22/                                                                                                                                                                    | -                     |
| 26-             |            |      | -                   |                           |              |             |                 |                           |             | GROUNDWATER 2 19-20                                                                                                                                                                   |                       |
|                 |            |      |                     |                           |              |             |                 |                           |             |                                                                                                                                                                                       | -<br>-<br>-<br>-      |
| 78-             |            |      | 1                   |                           | r            |             |                 |                           |             |                                                                                                                                                                                       |                       |
| 30-             |            |      |                     |                           |              |             |                 |                           |             |                                                                                                                                                                                       |                       |
|                 |            | 1    |                     |                           |              |             |                 |                           |             |                                                                                                                                                                                       |                       |
| 32-             |            |      |                     |                           |              |             |                 |                           |             |                                                                                                                                                                                       |                       |
| 37-             |            |      |                     |                           |              |             |                 |                           | :           |                                                                                                                                                                                       | -<br>-<br>-<br>-<br>- |
| , , , , , ,     |            |      |                     |                           |              |             |                 |                           |             |                                                                                                                                                                                       |                       |
| 36-             |            |      | -                   |                           |              | House to    | ,               |                           |             |                                                                                                                                                                                       | -<br>-<br>-<br>-      |
| 36-             |            |      |                     |                           |              |             |                 |                           |             |                                                                                                                                                                                       |                       |
|                 |            |      |                     |                           |              |             |                 |                           |             |                                                                                                                                                                                       | -                     |
|                 |            |      |                     |                           |              |             |                 |                           |             |                                                                                                                                                                                       | _                     |

PAGE 2 OF 2

MONITORING WELL LOG FORM

B7

# MONITORING WELL LOG FORM

|                 |          |      |       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۷            | Vater E<br>ate Me  | levati<br>easure    | on (ft.):<br>ed:/ | Date Completed: 10/5 Northing: Easting:  Ground Surface Elevation (ft.):  Measuring Point (MP) Elevation (ft.):  MP is Top of PVC Casing Datum: NGVD (1929)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|-----------------|----------|------|-------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|---------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                 |          |      |       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 0          | otal De<br>Diamete | epth (f<br>er (in.) | 1.):              | Drilling Contractor: CASCAGE Drilling Method: DIPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
|                 |          |      |       |                           | AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S            | Screen:<br>Casing: | Dian                | neter             | Depth Slot Size Length Type Bentonite Seal Cement Grout Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| DEPTH<br>(FEET) | GRAVEL B | SAND | FINES | MAX. PID<br>READING (ppm) | Contract MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE TYPE' | SAMPLE<br>RECOVERY | ASSIFICATION        | GRAPHIC LOG       | LITHOLOGIC DESCRIPTION  (USCS name; color; size and angularity of each component or plasticity;  density; moisture content; additional facts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ELEVATION             |
| -               | *        | *°   | %     | RE                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S            | AS E               | 5 G                 | ce                | ASOHALT / GMOUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                     |
| 2               |          |      |       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1                  |                     | MC                | 5/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                     |
| 4-              |          |      |       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | S.                 |                     | 3/N               | FINE SANDY/SILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| 6               |          |      |       |                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                    |                     | <b>M</b> _        | Contract States Services Services States Sta | -                     |
| 69              |          |      |       |                           | and the second s |              | 15/11              |                     |                   | SICT W/BROKEN PIECES OF SICT STONE<br>DRY/DOMSO, NO ODDIL SUG<br>SOME CETHIONSATION NOTION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ****                  |
| /3 -            |          |      |       |                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                    |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-           |
| 7 4 -           |          |      |       |                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                    | •                   |                   | DEFICULT PLODING. SILT STONE SITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| /1              |          |      |       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | F                  |                     |                   | WACRO-COLF USED, WEATHORED SILTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ove                   |
| 14 -            |          |      |       |                           | Э                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                    |                     |                   | MOILT IN SECTS DONSE, CRUMECES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| 16-             |          |      |       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                    |                     | ML                | CEMENTED SIT W/BLOKERS PIECES  DE SIT STONE, SOME CALCIFICATION  NOTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —<br>-<br>-           |
| 13              |          |      |       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                    |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>-<br>- |
|                 | Я        |      |       |                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _            |                    |                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |

945

|    | C  |
|----|----|
|    | Ã  |
| حا |    |
|    | -4 |

Project No: \_ Project: ELEVATION (FEET) SAMPLE RECOVERY USCS/ASTM CLASSIFICAT. SAMPLE TYPE GRAPHIC LOG % SAND % FINES RAX. PID HEADING (PPT BLOWG-(6-IN. Boring ID.: 72 DEPTH (FEET) % GRAVEL LITHOLOGIC DESCRIPTION (USCS name; color; size and angularity of each component or plasticity; density; moisture content; additional facts) WEATHORN / BLOKEN SICE STONE ENET, HARD. ML 1010 Boston @ 22'- Prope VERK DIFFICULT. SET GEREONS COCCECT BZGW 2 21/ PGS 1050 レンターエチンシャン PROJECT NO.



|            | BC              | RING         | LO     | CATI            | ON                        | 4                  | L           | ate Dr<br>ogged<br>Vater f | illed:<br>By:<br>Elevati    | 75.         | Project No: 7371 A Date Completed: 10/5 | Boring ID: B3 Northing: Easting:  Ground Surface Elevation (ft.): Measuring Point (MP) Elevation (ft.): MP is Top of PVC Casing Datum: NGVD (1929)  Drilling Contractor: CASCA Drilling Method: MAND ANGLE |                     |
|------------|-----------------|--------------|--------|-----------------|---------------------------|--------------------|-------------|----------------------------|-----------------------------|-------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|            |                 |              |        |                 | 616                       | )                  | S           | creen                      | Dian                        | neter       | Depth                                   | Slot Size Type Cement Grout Seal                                                                                                                                                                           |                     |
|            | DEPTH<br>(FEET) | % GRAVEL B   | % SAND | % FINES         | MAX. PID<br>READING (ppm) | BLOWS (6 IN.)      | SAMPLE TYPE | SAMPLE                     | USCS/ASTM<br>CLASSIFICATION | GRAPHIC LOG | (USCS name; color; s<br>density         | LITHOLOGIC DESCRIPTION size and angularity of each component or plasticity; y; moisture content; additional facts)                                                                                         | ELEVATION<br>(FEET) |
|            | -               |              |        |                 |                           |                    |             |                            | =                           | GM          | CONCRETE/1                              |                                                                                                                                                                                                            | <br><br>            |
| 133-1.5    |                 |              |        |                 | 45                        |                    |             |                            |                             | ML.         |                                         | DKCU SILT STONE                                                                                                                                                                                            | -<br>-<br>-         |
|            | 2-              |              |        |                 |                           |                    |             |                            |                             |             |                                         | 10 2 45 ppm                                                                                                                                                                                                | -                   |
|            | 3               |              |        |                 | na // Marana () i // ma   |                    | -           |                            |                             |             | IN THIS                                 |                                                                                                                                                                                                            |                     |
| 0          | 4-              |              |        |                 | :                         | , ma m. same r, mr |             |                            |                             |             |                                         |                                                                                                                                                                                                            | -                   |
| WARE       | 5               |              |        |                 |                           | -                  |             |                            |                             |             | NOTE: VI                                | FULLRING. SAMPLES                                                                                                                                                                                          |                     |
| 3          |                 |              |        |                 |                           |                    |             |                            |                             |             | Course                                  | TO SU COLLETIN                                                                                                                                                                                             |                     |
| 茎          | 6               |              |        |                 |                           |                    |             |                            |                             |             | B3-5V                                   |                                                                                                                                                                                                            | -                   |
| +          | -               |              |        |                 |                           |                    |             |                            |                             |             |                                         |                                                                                                                                                                                                            | -                   |
| M          | -               | -            |        |                 |                           |                    |             |                            |                             |             |                                         |                                                                                                                                                                                                            | -                   |
| 7/7        |                 |              |        |                 |                           |                    |             |                            |                             |             |                                         |                                                                                                                                                                                                            |                     |
| Ö          |                 |              |        |                 |                           |                    |             |                            |                             |             |                                         |                                                                                                                                                                                                            |                     |
| PROJECT NO |                 | °C<br>S<br>c | S      | tand:<br>utting | ard pe                    | netra              | tion        | test sa                    |                             | .5" (.D.)   | PAGE 1 OF                               | B3                                                                                                                                                                                                         |                     |

|            | BC           | PIN          | 3 LO      | CAT             | ION                       | 4             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Date D<br>Logged<br>Vater<br>Date M | rilled:<br>i By:<br>Elevati<br>leasur | R<br>ion (fl.):<br>ed: | Project No: 7371 Boring ID: 134  Date Completed: 10/5 Ground Surface Elevation (ft.):  Measuring Point (MP) Elevation (ft.): MP is Top of PVC Casing Datum: NGVD (1929)  Drilling Contractor: CASCADE Drilling Method: 14700 Aug (7) |                     |
|------------|--------------|--------------|-----------|-----------------|---------------------------|---------------|---------------------------------------|-------------------------------------|---------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|            |              |              |           |                 | 7                         |               |                                       | creen<br>Casing<br>Cand             | : Dian                                | neter                  | Dopth Slot Size Length Type Bentonite Seal Cement Grout Seal                                                                                                                                                                         | 7                   |
|            | DEPTH (FEET) | % GRAVEL B   | SAND SAND | % FINES         | MAX. PID<br>READING (ppm) | BLOWS (6 IN.) | SAMPLE TYPE"                          | SAMPLE                              | USCS/ASTW<br>CLASSIFICATION           | GRAPHIC LOG            | LITHOLOGIC DESCRIPTION  (USCS name; color; size and angularity of each component or plasticity; density; moisture content; additional facts)                                                                                         | ELEVATION<br>(FEET) |
|            | 0-           |              |           |                 | 0                         |               |                                       |                                     |                                       | ML                     | CONCRETE/AB 6" SILT/GRAVER                                                                                                                                                                                                           |                     |
| 1240       |              |              |           |                 | D                         |               |                                       |                                     |                                       |                        | WEATHERED SILT STONE W/SILF, DONSE, MOUST, NO ODOR                                                                                                                                                                                   |                     |
| BY-25      | -            |              |           |                 | 0                         |               |                                       |                                     | we                                    | V                      | AUGEN REFUSAL 7.51                                                                                                                                                                                                                   |                     |
| 5          |              |              |           |                 |                           |               |                                       |                                     |                                       |                        |                                                                                                                                                                                                                                      |                     |
| RO         | -            |              |           |                 |                           |               |                                       |                                     |                                       |                        | HAND AUGEOLING. SOLL                                                                                                                                                                                                                 |                     |
| Q          | -            |              |           |                 |                           |               |                                       |                                     |                                       |                        | HOLE TO SU COLLECTION                                                                                                                                                                                                                | ,                   |
| of war     | -            |              |           |                 |                           |               |                                       |                                     |                                       |                        | B4-SU-1.5                                                                                                                                                                                                                            | -                   |
| Hotel      | -            |              |           |                 |                           |               |                                       |                                     |                                       |                        |                                                                                                                                                                                                                                      |                     |
| 74         |              |              |           |                 |                           |               |                                       |                                     |                                       |                        |                                                                                                                                                                                                                                      | -                   |
|            |              |              |           |                 |                           |               |                                       |                                     |                                       |                        | -                                                                                                                                                                                                                                    |                     |
| ROJECT NO. |              | °C<br>S<br>c | St        | tanda<br>utting | ard per                   | netrat        | ion i                                 | test sa                             |                                       | 5* I.D.)               | PAGE 1 OF L                                                                                                                                                                                                                          |                     |

B5

| BORING LOCATION    Project   Depth Case   De |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Wase Elevation (II: AA Measured Port (Me) Elevation (II: Me) Me a Too Of Orderson Outside Outs |             | BORING LOCATION Project: Project No: 7371A Boring ID: 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )        |
| Water Elevation (B.):  Date Measured  Total Depth (B.):  Darente (III):  Daren |             | Date Drilled: Date Completed:/Q/5 Northing: Casting:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Total Depth (1): /1 5 Deling Commentor: CHSCADLE Demonster (1) Service Demonster (1) Depth Sister HAND AUGUST HAND |             | Loggeo By: Ground Surface Elevation (ft.):  Measuring Point (MP) Flevation (ft.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 11     |
| Total Depth (1): 15 Demotor (n) Deling Connector CASCADUC Demotor (n) Demotor  |             | Water Elevation (it.):  MP is Top of PVC Casing Datum: NGVD (1929)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| Diameter (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | COLO TITOLOGICA COLO TITOLogic | - 11     |
| Screen: Diameter Depth Stor Size Size Size Size Size Size Size Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Total Depth (ft.):  Diameter (in.)  Drilling Method:   ###################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| Casing: Dimenter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Bothonile Seal Cement Grout Seal  Comman Size   Comman Grout Seal  Lithologic Description  (USCS name: color; size and singularly of each component or plasticity; destrictly; moleture content, additional facts)  Conscription   Cons |             | Screen: Diameter Depth Slot Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| BS-1.5    Concentration of the state of the  |             | Sand Bentonite Seal Cement Grout Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  IM GRAWLLY SHT WEMHERD SILT STONE  WEMHERD SILT STONE  MOTE: HAND ANIMALING VERY DIFFICULT. SAMPLE  COLLECTED. CONKET  HOLE TO SU COLLECTION  BS-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| BS-1.5  1  BS-1.5  1  BO  CONCRETE/AB 61' SET  WEMHERED SILT STONE  WEMHERED SILT STONE  NOTE: HAND ANICALING VERY  DIFFICULT. SAMPLE  COLLECTED. CONKET  HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | TE GRAIN SIZE E S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E        |
| BS-1.5  1  BS-1.5  1  BO  CONCRETE/AB 61' SET  WEMHERED SILT STONE  WEMHERED SILT STONE  NOTE: HAND ANICALING VERY  DIFFICULT. SAMPLE  COLLECTED. CONKET  HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  IM GRAWLLY SHT WEMHERD SILT STONE  WEMHERD SILT STONE  MOTE: HAND ANIMALING VERY DIFFICULT. SAMPLE  COLLECTED. CONKET  HOLE TO SU COLLECTION  BS-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | (USCS name: color; size and angularity of each component or plasticity;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,        |
| BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  1  BS-1.5  IM GRAWLLY SHT WEMHERD SILT STONE  WEMHERD SILT STONE  MOTE: HAND ANIMALING VERY DIFFICULT. SAMPLE  COLLECTED. CONKET  HOLE TO SU COLLECTION  BS-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | density; moisture content; additional facts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| BS-1.5  1300  NOTE: HAND AMERINA VERY DIFFICULT. SAMPLE COLLECTED. CONVENT HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 1300  AMERICAL TO SILT STONE  NOTE: HAND AMERINA VERY  DIFFICULT. SAMPLE  COLECTED. CONVENT  HOVE TO SU COLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
| NOTE: HAND ANICATIVE VERY DIFFICULT. SAMPLE COLLECTED. CONCERT HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| NOTE: HAND ANICATIVE VERY DIFFICULT. SAMPLE COLLECTED. CONCERT HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           | 1 1 CM - GRAINCLLY SHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| NOTE: HAND ANICATIVE VERY DIFFICULT. SAMPLE COLLECTED. CONCERT HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BK-1.5      | WEMHERED SILT STONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        |
| NOTE! HAND AMERING VERY  DIFFICULT. SAMPLE  COLLECTED. CONVENT  HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| NOTE! HAND AMENING VERY DIFFICULT. SAMPLE COLLECTED. CONVENT HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1300        | The state of the s |          |
| DIFFICULT. SAMPLE  COLLECTED. CONVENT  HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| DIFFICULT. SAMPLE  COLLECTED. CONVENT  HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| DIFFICULT. SAMPLE  COLLECTED. CONVENT  HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
| DIFFICULT. SAMPLE  COLLECTED. CONVENT  HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| DIFFICULT. SAMPLE  COLLECTED. CONVENT  HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1      |
| DIFFICULT. SAMPLE  COLLECTED. CONVENT  HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | NOTE! HAND AMERING VERT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| COLLECTED CONKERT HOLE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| HOVE TO SU COLLECTION  B5-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | Wiffically Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 85-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 85-SV-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | HOLE TO SU COLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| 7371 <del>X</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1      |
| *C California Split Spoon Sampler (2.5* I.D.) S Standard penetration test sampler c Cuttings Elevation of ground water PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1      |
| *C California Split Spoon Sampler (2.5* I.D.)  *S Standard penetration test sampler  *C Cuttings  *Elevation of ground water  *PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5*1.D.)  \$ Standard penetration test sampler  \$ C Cuttings  \$ Elevation of ground water  PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5* I.D.)  *S Standard penetration test sampler  *C Cuttings  *Elevation of ground water  *PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5° 1.0.)  S Standard penetration test sampler  C Cuttings  Elevation of ground water  PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
| *C California Split Spoon Sampler (2.5* I.D.)  S Standard penetration test sampler  c Cuttings  Elevation of ground water  PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5* I.D.)  S Standard penetration test sampler  C Cuttings  Elevation of ground water  PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5*1.D.)  *S Standard penetration test sampler  *C Cuttings  *Elevation of ground water  *PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| C California Split Spoon Sampler (2.5° I.D.) S Standard penetration test sampler C Cuttings Elevation of ground water  PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5* I.D.)  *S Standard penetration test sampler  *C Cuttings  *Elevation of ground water  *PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5* I.D.)  *S Standard penetration test sampler  *C Cuttings  *Elevation of ground water  *PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5* I.D.)  *S Standard penetration test sampler  *C Cuttings  *Elevation of ground water  *PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\prec$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5* I.D.)  *S Standard penetration test sampler  *C Cuttings  *Elevation of ground water PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5" I.D.)  *S Standard penetration test sampler  *C Cuttings  *Elevation of ground water  *PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5" I.D.)  S Standard penetration test sampler  C Cuttings  Elevation of ground water  PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\tilde{u}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
| *C California Split Spoon Sampler (2.5" I.D.)  *S Standard penetration test sampler  *C Cuttings  *Elevation of ground water  *PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| *C California Split Spoon Sampler (2.5* I.D.)  S Standard penetration test sampler  C Cuttings  Elevation of ground water  PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _/       |
| *C California Split Spoon Sampler (2.5* I.D.)  S Standard penetration test sampler  C Cuttings  Elevation of ground water  PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ò           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| S Standard penetration test sampler c Cuttings Elevation of ground water PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br>-      | *C California Split Spoon Sampler (2.5*1.D.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| Elevation of ground water PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ö           | s Standard penetration test sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5           | Elevation of ground water PAGE 1 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |



Client Signature\_

# **CASCADE DAILY WORK REPORT**

120 S 23RD ST RICHMOND, CA 94804 P. 510.748.0858 # CASCADL91508

|                                                                                                          | IT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LAN.                   |            |                                                                                                                       |                                                                                         | ECT #:           |                                                                                                                                                                    | _        |      | 100     | Y:4 MUYS/30 V                                                                                                                                                                    | DAT         | <u> </u>                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                     |       |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------|
| JOB L                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TION:                  | 6415       | g. Us                                                                                                                 | SAV LOSG                                                                                | -1 21 -21        | DIG ALE                                                                                                                                                            | RT       | #:   | V 3 2   | 3101584                                                                                                                                                                          | JOB         | #:                                                       | 1091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 8                                                     | 52    |
| Well#                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                                                                                                                       |                                                                                         | SCRIPTIO         |                                                                                                                                                                    |          |      |         |                                                                                                                                                                                  | Н           | Ol                                                       | JRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total                                                   | Charg |
| Bore #                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Please     | explain re                                                                                                            |                                                                                         | or Down Tin      |                                                                                                                                                                    |          |      | and S   | Shop Time                                                                                                                                                                        | Star        | rt                                                       | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hrs                                                     | Hour  |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AM Shop                |            | Le tel                                                                                                                | 0                                                                                       | COLO             | 10.                                                                                                                                                                |          |      |         |                                                                                                                                                                                  | 1000        | 3                                                        | 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tü                                                      | . 50  |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Travel to              |            | CO LONG COL                                                                                                           | 14                                                                                      |                  | 1112                                                                                                                                                               |          |      |         |                                                                                                                                                                                  | 1.36        |                                                          | 0.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | 1     |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Traverto               | Site       | -/ 15                                                                                                                 | 4                                                                                       |                  |                                                                                                                                                                    |          |      |         |                                                                                                                                                                                  | 17          |                                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 800                                                     | 00    |
| 78                                                                                                       | no.f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 _ ()( ) <sub>(</sub> | 44/1       | LOCAL N                                                                                                               |                                                                                         | V -149           |                                                                                                                                                                    |          | 1    |         |                                                                                                                                                                                  | 4 16<br>0 a |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                      | 11    |
| 11/2                                                                                                     | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13-1 73                |            | 1500 440                                                                                                              | W.                                                                                      | 10 72            | 1.011.0                                                                                                                                                            | MC       | 1    | MA      | CHAN LANGES                                                                                                                                                                      | 500         |                                                          | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                      | 101   |
| 2                                                                                                        | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Time &                 | 73         | Year                                                                                                                  | 1000                                                                                    | 7-10 m -         | -                                                                                                                                                                  |          |      |         |                                                                                                                                                                                  |             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
| 3                                                                                                        | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tables                 | 0 0        | 1734                                                                                                                  | 3 - 1                                                                                   | and tor          | 15 40                                                                                                                                                              | 3        | -    | 10      | LECON.                                                                                                                                                                           | 1700        | 9                                                        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                       | 2     |
| (4)                                                                                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | man ord                | 1.01       | LOH TUR                                                                                                               | 21 8                                                                                    | Frek V           | 0 100                                                                                                                                                              | · V      |      | IV.     | 14/1 3                                                                                                                                                                           | 260         | 3                                                        | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         | 1     |
| 47                                                                                                       | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - A Da 2               | 201        |                                                                                                                       | 3 1                                                                                     | To she           | La 4 1.                                                                                                                                                            | 13       | 2    | -       | di all                                                                                                                                                                           |             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
|                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3000                   | 3134       |                                                                                                                       | 14. 3                                                                                   | - 41             | 7                                                                                                                                                                  |          | 10.0 | S. V. I |                                                                                                                                                                                  | Brie        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | un al                  | 2 171      | 7/54XT +                                                                                                              | 0                                                                                       | ICIC himos       | na vo                                                                                                                                                              | 101      |      |         |                                                                                                                                                                                  | 200         |                                                          | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |       |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cola to la             | 000        | 39/                                                                                                                   | 774                                                                                     | 2,363            | Yes                                                                                                                                                                | +1       | 10   |         | 115511182                                                                                                                                                                        |             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                                                                                                                       |                                                                                         |                  |                                                                                                                                                                    |          |      |         |                                                                                                                                                                                  |             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                                                                                                                       |                                                                                         |                  |                                                                                                                                                                    |          |      |         |                                                                                                                                                                                  |             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
| 1- 1                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                                                                                                                       |                                                                                         |                  |                                                                                                                                                                    |          |      |         |                                                                                                                                                                                  |             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                                                                                                                       |                                                                                         |                  |                                                                                                                                                                    |          |      | 12-11   |                                                                                                                                                                                  |             |                                                          | 7 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |       |
| 1                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                                                                                                                       |                                                                                         |                  |                                                                                                                                                                    |          | -    | -       |                                                                                                                                                                                  |             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                                                                                                                       |                                                                                         |                  |                                                                                                                                                                    |          |      |         |                                                                                                                                                                                  |             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |                                                                                                                       |                                                                                         |                  |                                                                                                                                                                    |          |      |         |                                                                                                                                                                                  |             | -                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Travel to              | Shop       |                                                                                                                       |                                                                                         |                  |                                                                                                                                                                    |          |      |         |                                                                                                                                                                                  |             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
|                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Travel to              |            |                                                                                                                       |                                                                                         |                  |                                                                                                                                                                    | -4       |      |         |                                                                                                                                                                                  |             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
| Fotal Ft.                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            | TOTA                                                                                                                  | L CHA                                                                                   | ARGEABLI         | E RIG HOL                                                                                                                                                          | JRS      | 5    |         |                                                                                                                                                                                  |             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
|                                                                                                          | 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |            | TOTA                                                                                                                  | L CHA                                                                                   | ARGEABLI<br>STOP | E RIG HOU                                                                                                                                                          | JRS      | 5    |         |                                                                                                                                                                                  |             |                                                          | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |       |
|                                                                                                          | 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PM Shop                | Time       |                                                                                                                       | L CHA                                                                                   |                  |                                                                                                                                                                    |          |      |         |                                                                                                                                                                                  | MATI        | ER                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |       |
|                                                                                                          | 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PM Shop                | Time       | TOTA                                                                                                                  | L CHA                                                                                   |                  | E RIG HOU                                                                                                                                                          |          |      |         | ITEM                                                                                                                                                                             | MATI        | ER                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | ату   |
| RIG EN                                                                                                   | IGNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PM Shop                | Time       |                                                                                                                       |                                                                                         | STOP             |                                                                                                                                                                    |          |      |         | SAND                                                                                                                                                                             | 1           |                                                          | IALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 8 <sup>n</sup>                                        | QTY   |
| RIG EN                                                                                                   | IGNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PM Shop                | START EQU  | COMPRESSOR/                                                                                                           | JACKHAMI<br>RENTAL                                                                      | STOP             | CA TYPE_SLOT_ 20' SCREEN                                                                                                                                           | SIN      | G    |         | SAND<br>READYMIX                                                                                                                                                                 | 1           | W                                                        | IALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                     | QTY   |
| RIG EN                                                                                                   | NGINE<br>G#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PM Shop HOURS:         | START EQU  | COMPRESSOR/<br>SNOW FENCE<br>CONTINUOUS                                                                               | JACKHAMI<br>RENTAL<br>SAMPLER                                                           | STOP             | TYPE SLOT 20' SCREEN                                                                                                                                               | SIN      | G    |         | SAND<br>READYMIX<br>QUICKSET                                                                                                                                                     | 1           | WI                                                       | IALS ITEM ELL COVER ELL COVER DNUMENT C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12"                                                     | QTY   |
| DRILL RI<br>SUPPOR<br>SUPPOR                                                                             | G# T TRUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PM Shop HOURS:         | START EQU  | COMPRESSOR/<br>SNOW FENCE<br>CONTINUOUS<br>CONTINUOUS SA                                                              | JACKHAMI<br>RENTAL<br>SAMPLER                                                           | STOP             | TYPESLOT_<br>20' SCREEN<br>10' SCREEN<br>5' SCREEN                                                                                                                 | SIN      | G    |         | SAND<br>READYMIX<br>QUICKSET<br>PORTLAND                                                                                                                                         | 1           | WI<br>MC<br>BC                                           | IALS ITEM ELL COVER ELL COVER DINUMENT CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12"                                                     | QTY   |
| DRILL RI<br>SUPPOR<br>SUPPOR<br>TRAILER                                                                  | G# T TRUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PM Shop HOURS:         | START EQU  | COMPRESSOR/<br>SNOW FENCE<br>CONTINUOUS<br>CONTINUOUS SA<br>FOOTAGE<br># OF CORE CU                                   | JACKHAMI<br>RENTAL<br>SAMPLER<br>MPLER                                                  | STOP             | TYPE SLOT 20' SCREEN 10' SCREEN 5' SCREEN 20' BLANK                                                                                                                | SIN      | G    | 4       | SAND READYMIX QUICKSET PORTLAND ASPHALT                                                                                                                                          | 1           | WI<br>MC<br>BC<br>SC<br>DE                               | IALS ITEM ELL COVER ELL COVER DILLARDS DILLARDS DILLARDS VELOPMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ASING                                                   | QTY   |
| DRILL RI<br>SUPPOR<br>SUPPOR<br>TRAILER                                                                  | G#<br>T TRUC<br>T TRUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PM Shop HOURS:         | START EQU  | COMPRESSOR/<br>SNOW FENCE<br>CONTINUOUS<br>CONTINUOUS SA<br>FOOTAGE<br># OF CORE CL<br># OF BULLDO                    | JACKHAMI<br>RENTAL<br>SAMPLER<br>IMPLER<br>JTS<br>G CUTS                                | STOP             | TYPE SLOT 20' SCREEN 10' SCREEN 5' SCREEN 20' BLANK 10' BLANK                                                                                                      | SIN<br>2 | G    | 4       | SAND READYMIX QUICKSET PORTLAND ASPHALT BENTONITE GROUT                                                                                                                          | 1           | WI<br>MC<br>BC<br>SC<br>DE<br>DR                         | IALS ITEM ELL COVER ELL COVER ELL COVER DILLARDS DILLARDS DILLARDS VELOPMEN UMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASING                                                   | ату   |
| DRILL RI<br>SUPPOR<br>SUPPOR<br>TRAILER<br>BOBCAT                                                        | G# T TRUC T TRUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PM Shop HOURS:         | START EQU  | COMPRESSOR/<br>SNOW FENCE<br>CONTINUOUS<br>CONTINUOUS SA<br>FOOTAGE<br># OF CORE CU<br># OF BULLDO<br># OF SERVICE    | JACKHAMI<br>RENTAL<br>SAMPLER<br>MPLER<br>JTS<br>G CUTS                                 | STOP             | TYPE SLOT 20' SCREEN 10' SCREEN 5' SCREEN 20' BLANK 10' BLANK 5' BLANK                                                                                             | SIN      | G    | 4       | SAND READYMIX QUICKSET PORTLAND ASPHALT BENTONITE GROUT BENTONITE CHIPS                                                                                                          | 1           | WI<br>WI<br>MC<br>BC<br>SC<br>DE<br>DE                   | ITEM  ITEM  ELL COVER  ELL COVER  DILLARDS  DILLARDS  ILL DRUMS  VELOPMEN  UMS  CON DRUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASING<br>NT                                             | QTY   |
| DRILL RI SUPPOR TRAILER BOBCAT AUTO HA GROUT F                                                           | G# T TRUC  T TRUC  **  AMMER  MIXER  PUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PM Shop HOURS:         | START EQU  | COMPRESSOR/ SNOW FENCE CONTINUOUS SAFEOUTAGE # OF CORE CL # OF BULLDO # OF SERVICE # OF SAW CU                        | JACKHAMM<br>RENTAL<br>SAMPLER<br>MPLER<br>JTS<br>G CUTS<br>RUNS                         | STOP             | TYPE SLOT 20' SCREEN 10' SCREEN 5' SCREEN 20' BLANK 10' BLANK 5' BLANK 5' PP SCREEN                                                                                | SIN<br>2 | G    | 4       | SAND READYMIX QUICKSET PORTLAND ASPHALT BENTONITE GROUT BENTONITE CHIPS BENTONITE POWDER                                                                                         | 1           | WI WI MC BC SC DE DR                                     | ITEM  ITEM  ELL COVER  ELL COVER  DILLARDS  DILLARDS  DILLARDS  DILLARDS  EVELOPMEN  LUMS  CON DRUM  DLE COVER F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ASING NT NS                                             | QTY   |
| DRILL RI SUPPOR SUPPOR TRAILER BOBCAT AUTO HA GROUT F                                                    | G# T TRUC T TRUC  **  AMMER MIXER PUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOURS:                 | START EQU  | COMPRESSOR/ SNOW FENCE CONTINUOUS SAFOOTAGE # OF CORE CU # OF SERVICE # OF SAW CU PORTABLE RE                         | JACKHAMP<br>RENTAL<br>SAMPLER<br>MPLER<br>JTS<br>G CUTS<br>RUNS<br>TS                   | STOP             | TYPE SLOT 20' SCREEN 10' SCREEN 5' SCREEN 20' BLANK 10' BLANK 5' BLANK 5' PP SCREEN 10' PP SCREEN                                                                  | SIN<br>2 | G    | ч.      | SAND READYMIX QUICKSET PORTLAND ASPHALT BENTONITE GROUT BENTONITE CHIPS BENTONITE POWDER BENTONITE PELLETS                                                                       | 1           | WI WI MC BC SC DE DR DE HO PL                            | IALS ITEM ELL COVER ELL COVER DILLARDS DILLARDS DILLARDS VELOPMEN UMS CON DRUM DILE COVER F ASTIC SHEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ASING NT MS PLATES ETING                                | ОТУ   |
| DRILL RI<br>SUPPOR<br>SUPPOR<br>TRAILER<br>BOBCAT<br>AUTO HA                                             | G# T TRUC T TRUC  **  AMMER MIXER PUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOURS:                 | START EQU  | COMPRESSOR/ SNOW FENCE CONTINUOUS SAFOOTAGE # OF CORE CU # OF SERVICE # OF SAW CU PORTABLE RE EXHAUST DUC             | JACKHAMP<br>RENTAL<br>SAMPLER<br>MPLER<br>JTS<br>G CUTS<br>RUNS<br>TS                   | STOP             | TYPE SLOT 20' SCREEN 10' SCREEN 5' SCREEN 20' BLANK 10' BLANK 5' BLANK 5' PP SCREEN 10' PP SCREEN SLIP CAP                                                         | SIN<br>2 | G    | 4       | SAND READYMIX QUICKSET PORTLAND ASPHALT BENTONITE GROUT BENTONITE CHIPS BENTONITE POWDER BENTONITE PELLETS BENTONITE GRANULAR                                                    | 1           | WI WI MC SC DE DR DE HO PL                               | IALS ITEM ELL COVER ELL COVER ELL COVER DNUMENT CO DLLARDS DIL DRUMS ECON DRUM DLE COVER F ASTIC SHEIL AFFIC CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ASING  NT  MS  PLATES  ETING                            | QTY   |
| DRILL RI SUPPOR TRAILER BOBCAT AUTO HA GROUT F GROUT F PERISTA FORKLIF                                   | G# T TRUC T TRUC  * #  AMMER MIXER PUMP LITIC PU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HOURS:                 | START EQU  | COMPRESSOR/ SNOW FENCE CONTINUOUS SAFOOTAGE # OF CORE CL # OF BULLDO # OF SERVICE # OF SAW CU PORTABLE RE EXHAUST DUC | JACKHAMI<br>RENTAL<br>SAMPLER<br>MPLER<br>JTS<br>G CUTS<br>RUNS<br>TS<br>STROOM<br>TING | STOP AMER        | TYPE SLOT  20' SCREEN  10' SCREEN  20' BLANK  10' BLANK  5' BLANK  5' PP SCREEN  10' PP SCREEN  5' PP SCREEN  5' PP SCREEN  10' PP SCREEN  5LIP CAP  THREADED CAPS | SIN<br>2 | G    | 4       | SAND READYMIX GUICKSET PORTLAND ASPHALT BENTONITE GROUT BENTONITE CHIPS BENTONITE POWDER BENTONITE PELLETS BENTONITE GRANULAR SAMPLER TUBES                                      | 1           | WI WI MC BC SC DE BC | IALS ITEM ELL COVER ELL COVER DILLARDS DILLARDS DILLARDS VELOPMEN UMS CON DRUM DILE COVER F ASTIC SHEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ASING  NT  MS  PLATES  ETING                            | QTY   |
| DRILL RI SUPPOR TRAILER BOBCAT AUTO HA GROUT F GROUT F FORKLIF                                           | G# T TRUC T TRUC  **  AMMER MIXER PUMP LTIC PU NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HOURS:                 | START EQU  | COMPRESSOR/ SNOW FENCE CONTINUOUS SAFOOTAGE # OF CORE CU # OF SERVICE # OF SAW CU PORTABLE RE EXHAUST DUC             | JACKHAMP<br>RENTAL<br>SAMPLER<br>MPLER<br>JTS<br>G CUTS<br>RUNS<br>TS                   | STOP             | TYPE SLOT  20' SCREEN  10' SCREEN  20' BLANK  10' BLANK  5' BLANK  5' PP SCREEN  10' PP SCREEN  5' PP SCREEN  5' PP SCREEN  10' PP SCREEN  5LIP CAP  THREADED CAPS | SIN<br>2 | G    | ч.      | SAND READYMIX QUICKSET PORTLAND ASPHALT BENTONITE GROUT BENTONITE CHIPS BENTONITE POWDER BENTONITE PELLETS BENTONITE GRANULAR SAMPLER TUBES SHELBY TUBES                         | 1           | WI WI MC BC DE DR DE HO PL TR CC                         | IALS ITEM ELL COVER EL AFFIC CON ERE BOXES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ASING NT AS PLATES ETING                                | GTY   |
| DRILL RI<br>SUPPOR<br>SUPPOR<br>TRAILER<br>BOBCAT<br>AUTO HA<br>GROUT I<br>GROUT I<br>PERISTA<br>FORKLIF | G# T TRUC | PM Shop HOURS:  K#  K# | START EQU  | COMPRESSOR/ SNOW FENCE CONTINUOUS SAFEOUTAGE # OF CORE CU # OF SERVICE # OF SAW CU PORTABLE RE EXHAUST DUCK BOR       | JACKHAMI<br>RENTAL<br>SAMPLER<br>MPLER<br>JTS<br>G CUTS<br>RUNS<br>TS<br>STROOM<br>TING | STOP AMER        | TYPE SLOT 20' SCREEN 10' SCREEN 20' BLANK 10' BLANK 5' BLANK 5' PP SCREEN 10' PP SCREEN 5LIP CAP THREADED CAPS LOCKING CAPS                                        | SIN<br>2 | G    | , i     | SAND READYMIX GUICKSET PORTLAND ASPHALT BENTONITE GROUT BENTONITE CHIPS BENTONITE POWDER BENTONITE PELLETS BENTONITE GRANULAR SAMPLER TUBES                                      | 1           | WI WI MC BC SC DE BC DE HC PL TR CC PL 500               | ITEM ITEM ELL COVER ELL CO | ASING  NT  15  PLATES ETING  ITROL                      | QTY   |
| DRILL RI<br>SUPPOR<br>SUPPOR<br>TRAILER<br>BOBCAT<br>AUTO HA<br>GROUT I<br>GROUT I<br>PERISTA<br>FORKLIF | G# T TRUC T TRUC  **  AMMER MIXER PUMP LTIC PU NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PM Shop HOURS:  K#  K# | START EQU  | COMPRESSOR/ SNOW FENCE CONTINUOUS SAFOOTAGE # OF CORE CL # OF BULLDO # OF SERVICE # OF SAW CU PORTABLE RE EXHAUST DUC | JACKHAMI<br>RENTAL<br>SAMPLER<br>MPLER<br>JTS<br>G CUTS<br>RUNS<br>TS<br>STROOM<br>TING | STOP AMER        | TYPE SLOT 20' SCREEN 10' SCREEN 20' BLANK 10' BLANK 5' BLANK 5' PP SCREEN 10' PP SCREEN 5LIP CAP THREADED CAPS LOCKING CAPS DRIVE SHOE                             | SIN<br>2 | G    | Ь.      | READYMIX QUICKSET PORTLAND ASPHALT BENTONITE GROUT BENTONITE CHIPS BENTONITE POWDER BENTONITE POWDER BENTONITE GRANULAR SAMPLER TUBES SHELBY TUBES PROBE POINTS                  | 1           | WI WI MC SCO DE SCO DE HO PL TR CCO PL SCO W/            | ITEM  ELL COVER  ELL C | ASING  NT  MS  PLATES  ETING  ITROL  S  PLES            |       |
| DRILL RI<br>SUPPOR<br>SUPPOR<br>TRAILER<br>BOBCAT<br>AUTO HA<br>GROUT I<br>GROUT I<br>PERISTA<br>FORKLIF | G# T TRUC | PM Shop HOURS:  K#  K# | START EQU  | COMPRESSOR/ SNOW FENCE CONTINUOUS SAFEOUTAGE # OF CORE CU # OF SERVICE # OF SAW CU PORTABLE RE EXHAUST DUCK BOR       | JACKHAMI<br>RENTAL<br>SAMPLER<br>MPLER<br>JTS<br>G CUTS<br>RUNS<br>TS<br>STROOM<br>TING | STOP AMER        | TYPE SLOT 20' SCREEN 10' SCREEN 20' BLANK 10' BLANK 5' BLANK 5' PP SCREEN 10' PP SCREEN 5' PP SCREEN LIP CAP THREADED CAPS LOCKING CAPS DRIVE SHOE CENTRALIZERS    | SIN<br>2 | G    | 6       | READYMIX QUICKSET PORTLAND ASPHALT BENTONITE GROUT BENTONITE CHIPS BENTONITE POWDER BENTONITE PELLETS BENTONITE GRANULAR SAMPLER TUBES SHELBY TUBES PROBE POINTS GW PROBE POINTS | 1           | WI WI MC SCO DE DR DE HC CC PL SCO W/                    | IALS ITEM ELL COVER ELL CO | ASING  ASING  IT  IS  PLATES  ETING  ITROL  S  PLES  RS | 1     |
| DRILL RI<br>SUPPOR<br>SUPPOR<br>TRAILER<br>BOBCAT<br>AUTO HA<br>GROUT I<br>GROUT I<br>PERISTA<br>FORKLIF | G# T TRUCE T T | PM Shop HOURS:         | START EQUI | COMPRESSOR/ SNOW FENCE CONTINUOUS SAFEOUTAGE # OF CORE CU # OF SERVICE # OF SAW CU PORTABLE RE EXHAUST DUCK BOR       | JACKHAMI<br>RENTAL<br>SAMPLER<br>MPLER<br>JTS<br>G CUTS<br>RUNS<br>TS<br>STROOM<br>TING | STOP AMER        | TYPE SLOT 20' SCREEN 10' SCREEN 20' BLANK 10' BLANK 5' BLANK 5' PP SCREEN 10' PP SCREEN 5' PP SCREEN LIP CAP THREADED CAPS LOCKING CAPS DRIVE SHOE CENTRALIZERS    | 2        | G    | 6       | READYMIX QUICKSET PORTLAND ASPHALT BENTONITE GROUT BENTONITE CHIPS BENTONITE POWDER BENTONITE GRANULAR SAMPLER TUBES PROBE POINTS GW PROBE POINTS EXP POINTS SAMPLER SHOE        | 1           | WI WI MC BC SC DE DE HO PL TR CC PL SC W/ AU             | ITEM  ELL COVER  EVELOPMEN  EVELO | ASING  ASING  NT  ASING  ITROL  S  PLES  RS             | 1     |

Operator Signature



Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being snipped in compliance with all applicable local. State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnity Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B (916) 985-1000 FAX (916) 985-1020 FOLSOM, CA 95630-4719

ō

Page

| Project Ma | Project Manager Moderal FAGETWESS      |                          | Projec           | Project Info: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turn Around<br>Time:  | Lab Use Only<br>Pressurized by: | oy:       |
|------------|----------------------------------------|--------------------------|------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------|-----------|
| Collected  | (Print and Sign)                       | 0                        | P.O.#            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | □ Normal              | Date:                           | 1 3 1 1 1 |
| Company    | Company Email Address State            | Z                        | Project #        | # 717         | 2 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A Rush                | Pressurization Gas              | n Gas:    |
| Phone      | 16-285-8176 Fax                        |                          | Project Name     | Name          | WWARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | specify               | Z                               | Те        |
|            |                                        |                          | Date             | Time          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Canis                 | Canister Pressure/Vacuum        | acuum,    |
| Lab I.D.   | Field Sample I.D. (Location)           | Can #                    | ion              | of            | Analyses Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sted Initial          | Final Receipt                   | ot Final  |
|            | K3-5V-2.0                              | 5081711                  | 13/4/17          |               | 70-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                    | A                               |           |
|            | 124-SV-1.5                             | 11,928                   | 1/9/6            | 026           | 51-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -30                   |                                 |           |
|            | B5-5V-1.5                              | 1360                     | 13/4/17          | 1034          | 70-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                     | 9-                              |           |
|            | < < V <                                | 0.00%                    | 13/6/17          | 77.01         | 10/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 582                   | 15                              |           |
|            | Z Z Z Z Z                              | 8038                     | 10/8/17          | 108)          | 10-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02.                   |                                 |           |
|            | CC 07                                  | N2003                    | 13/6/17          | 101           | 70-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                     | 1                               |           |
|            |                                        |                          |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |           |
|            |                                        |                          |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |           |
|            |                                        |                          |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |           |
| Pelinquis  | Felinquished by: (signature) Date/Time | Received by: (signature) | Date/T           | me Tale       | Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                 |           |
| Relinquis  | Relinquished by: (signature) Date/Time | Received by: (signature) | ature) Date/Time | Je            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |           |
| Relinquis  | Relinquished by: (signature) Date/Time | Received by: (signature) | ature) Date/Time | ne            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 |           |
| £          | Shipper Name Air Bill #                |                          | Temp (°C)        | Condition     | The same of the sa | Custody Seals Intact? | Work Order #                    | **        |
| Use        | 全                                      | May 1                    |                  | Greet         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No None               |                                 |           |
| À D        |                                        |                          |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                 | Pinaling. |

Form 1293 rev. 11



#### **PACKING SLIP**

Air Toxics

Page 1 of 1

Ship Date: 10/03/17

Prepared For: eScreenLogic. Inc.

Ship ID: KCB115336

| Item ID Code | Quantity | Description                          | QC Control |
|--------------|----------|--------------------------------------|------------|
| 1L1809       | 1        | 1 Liter Summa Canister 3-50-20       | 123        |
| 1L1928       | 1        | 1 Liter Summa Canister By - 5U - 1-5 |            |
| 1360         | 1        | 1 Liter Summa Canister B5 - SU - 1.5 | 14         |
| O1056        | 1        | 1 Liter Summa Canister SSV5          |            |
| 8038         | 1        | 1 Liter Summa Canister 5506          |            |
| = N2003      | 1        | 1 Liter Summa Canister 55 V 7        |            |
|              | 1        | Candy Bar                            | Ш          |
|              | 1        | Gauge-Vacuum                         |            |
|              | 6        | Fitting w/ Pink Ferrule              |            |
|              | 1        | Chain of Custody                     | 11         |
| FC00647      | 1        | Blue Body Flow Controller            | 1          |
| FC00358      | 1        | Blue Body Flow Controller            | 1_1_1      |
| FC00266      | 1        | Blue Body Flow Controller            |            |
| 0000006668   | 1        | Blue Body Flow Controller            |            |
| FC00852      | 1        | Blue Body Flow Controller            |            |
| FC00708      | 1        | Blue Body Flow Controller            | H          |

IMPORTANT! The preparation and certification charges for the above equipment will be billed upon return to the laboratory for analysis. This equipment is part of an analytical service and must not be transferred to any other party unless approved by Air Toxics Ltd. Any equipment not returned within 30 days will be billed as indicated above. We appreciate your doing business with Air Toxics Ltd.

Air Toxics Limited will ensure that any substances and/or containers shipped to Client for purposes of sampling, are shipped in compliance with all applicable local, State and Federal regulations. Client bears sole responsibility for determining the applicability of and compliance with all regulations applicable to the shipment of samples back to the laboratory. Air Toxics Limited assumes no liability with respect to the collection, handling, or shipping of samples. Client agrees to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action of any kind related to the collection, handling, or shipping of samples. D.O.T. HAZMAT Hotline (800) 467-4922

9 V SPECIAL INSTRUCTIONS 181979 E PRINT NAME / COMPANY ë OR YES ALT. F06 N (5) = H,3O, (6) = Me,S,O, INVOICE TO QUOTE # NAKK PO d GEOTRACKER EDF REPORT YAG TURN AROUND TIME G GLOBAL ID: FIELD CONDITIONS: YAG CONDITIONS / COMMENTS. AIR BILL # 2447 (3) = COLD (4) = NeOH COMPOSITE AVO 5 RECEIVED BY (SIGN) YAG ANALYSIS REQUESTED CLS ID No.; PREBERVATIVES: W -59/ DATE / TIME OTHER. 19/5/12 **PRESERVATIVES** CHAIN OF CUSTODY CLS (916) 638-7301 3248 FIZGERALD RD. RANCHO CORDOVA, CA. 95742 \$ JOA TYPE M DESTINATION LABORATORY CONTAINER CLIENT JOB NUMBER Rosert Humanes/68 Š W bu pl. PRINT NAME / COMPANY OTHER DATE / TIME MATRIX UPS V A Z 5670 ファイトイヤイ SAMPLE PHONE REPORT TO: FEDX N KIDE N RELINQUISHED BY (SIGN) Q/ 88 K WARO CLS - Labs 1200 SUSPECTED CONSTITUENTS 300 TIME 1036 SHIPPED BY: PROJECT MANAGER NAME AND ADDRESS JOB DESCRIPTION REC'D AT LAB BY: STIE LOCATION SAMPLED BY DATE

# Certificate of Calibration



1-916-852-8856

www.envirotechonline.com

| Instrument:    | MiniRAE 3000     | s/n:# 3827          |  |
|----------------|------------------|---------------------|--|
| THEFT WHITCHT. | 1 11M1 K/(C 3000 | D/ 111 + 17 - 7 - 7 |  |

# Span Value / Reading

| • | H2S//                                                        |
|---|--------------------------------------------------------------|
| • | CO                                                           |
| • | LEL                                                          |
| • | Isobutylene: 100 ppm 199.9 ppm                               |
| • | Other:                                                       |
|   |                                                              |
| N | otes:                                                        |
|   |                                                              |
| C | alibrated by: Patrick Nagel Jakin Vagel Print Name Signature |

Date: 10-4-17

Additional Subsurface Investigation (LSI) – Project #7371A Commercial Property 964 A Street, Hayward CA October 23, 2017



# APPENDIX B ACCREDITED LABORATORY RESULTS

Additional appendices vary by scope and purpose- but include and are not limited to: accredited laboratory certifications, full analytical details, supporting documentation and evidence of insurance.



# CALIFORNIA LABORATORY SERVICES

3249 Fitzgerald Road Rancho Cordova, CA 95742

October 16, 2017

CLS Work Order #: 17J0311 COC #: 181979

Robert F.
eScreen Logic
11249 Gold Country Blvd Ste 165
Gold River, CA 95670

Project Name: Hayward #7371A

Enclosed are the results of analyses for samples received by the laboratory on 10/05/17 16:52. Samples were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies. I certify that the results are in compliance both technically and for completeness.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

CA SWRCB ELAP Accreditation/Registration number 1233

| CLS - Labs                   | CHAIN O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F CUSTO                                                 | ΣY          | CLS           | ID No.;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OG NE                        | 181979      |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|--|
| REPORT TO                    | CLEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FI JOB NUMBER                                           |             | ANALYSIS      | REQUESTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GEOTRACKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rg.                          |             |  |
| WHENDADORESS COLLE PROB FACE | DESTINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TION LABORATORY                                         | *[0         |               | Personal value of the party of | EDF REPORT DYES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |             |  |
| COUD FINER CA 976            | 7 X CLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (916) 638-730<br>TZGERALD RD.<br>HO CORDOVA, CA<br>9574 | ES          | J O Z         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GLOBAL ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |  |
| Descention 11 - Commercial   | FLPC OTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ER                                                      | VATIN       | 1 3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLEAR IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLUTR/WARM 75-80%            |             |  |
| Litter SSLIT                 | 5, 12, 17, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         | E           | GOB<br>Wash   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TURN AROUND TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPECIAL                      | NSTRUCTIONS |  |
| SAMPLE ST. 1/17 - 12         | The first control of the second of the secon | CONTAINER                                               |             | 12.00         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OAY CAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | ЭЯ          |  |
| DATE TIME IDENTIFICATION     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO LABE                                                 | $\exists V$ | 0,1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALT,                         | TO          |  |
| 11/11/0845 D1-12             | 150 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 furth                                                 | 3           | XX            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 510                          | TATI        |  |
| 15/17 0900 Bi - ZI           | Sal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 1                                                     | 13          | x Y           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                            | -/-         |  |
| 3/17 0950 02-12-             | Suc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 4                                                     | 3           | XY            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |  |
| 13/17 1000 B2 - 21           | Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                       | B           | ××            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |  |
| 12/11 1035 BIGW              | H201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 NUA                                                   | 13          | ×             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |  |
| 13/17/050 137 9 11           | HEO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 00.                                                   | 41/3        | 7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |  |
| /3/17/100 TRIDBUTUR          | A20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 004                                                   | E 1/9       | X             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |  |
| 10/11 1235 133-1.5           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                                      | 3           | XX            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |  |
| 13/17/1250 134-1             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                      |             | x y           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PANOISE 10                   | RUS         |  |
| 12/17 1255 B4-2.5            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2.                                                    | - 5         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |  |
| 13/11 1300 85-15             | <.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 4                                                     | -2          | a Y           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 1           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO #                         |             |  |
|                              | de C. C. change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ODETE IS                     |             |  |
| USPECTED CONSTITUENTS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | 1           | PRESERVATIVES | {15 H/NO <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3) ± GOUTS<br>(4) = NaOPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (5) = H_SO,<br>(8) = Ns,S,O, | (7) =       |  |
| RELINQUISHED BY (SIGN)       | PRINT NAME / COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |             | E / TIME      | RECEIVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BY (SIGN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRINT NAME /                 | COMPANY     |  |
| m/ K                         | incre Facione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15/6-56.19                                              | 15/17       | 1652          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |  |
| ECDATUABLEY (). (1)          | C C DATE TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ie /                                                    | , 3         | ***           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CONDITIONS - COMMEN'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |             |  |
| Chronite 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |             | TUES.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C. State of the st | 5 4                          |             |  |
| SHIPPED BY FED X             | UPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                                                       | OTHER       | a Deep si     | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AIR BILL #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |  |

# CALIFORNIA LABORATORY SERVICES

Page 2 of 59

10/16/17 08:57

eScreen Logic

Gold River, CA 95670

11249 Gold Country Blvd Ste 165

Project: Hayward #7371A

Project Number: [none] Project Manager: Robert F. CLS Work Order #: 17J0311

COC #: 181979

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                  |                         | Result       | Reporting<br>Limit | Units | Dilution | Batch   | Prepared | Analyzed | Method   | Notes    |
|--------------------------|-------------------------|--------------|--------------------|-------|----------|---------|----------|----------|----------|----------|
| B1-12 (17J0311-01) Soil  | Sampled: 10/05/17 08:25 | Received: 1  | 0/05/17 16:52      |       |          |         |          |          |          |          |
| % Moisture               |                         | 12           | 1.0                | %     | 1        | 1707597 | 10/06/17 | 10/06/17 | SM 2540G |          |
| Solids, %                |                         | 88.0         | 1.00               | 0     | М        | "       | H        | #        | u        |          |
| B1-21 (17J0311-02) Soil  | Sampled: 10/05/17 09:00 | Received: 1  | 0/05/17 16:52      |       |          |         |          |          |          |          |
| % Moisture               |                         | 9.2          | 1.0                | %     | 1        | 1707597 | 10/06/17 | 10/06/17 | SM 2540G |          |
| Solids, %                |                         | 90.8         | 1.00               | p     | н        | **      | н        | 11       | P        |          |
| B2-12 (17J0311-03) Soil  | Sampled: 10/05/17 09:50 | Received: 1  | 0/05/17 16:52      |       |          |         |          |          |          |          |
| % Moisture               |                         | 10           | 1.0                | %     | 1        | 1707597 | 10/06/17 | 10/06/17 | SM 2540G |          |
| Solids, %                |                         | 90.0         | 1.00               | 19    | 0        | It.     | н        | 11       | "        |          |
| B2-21 (17J0311-04) Soil  | Sampled: 10/05/17 10:00 | Received: 1  | 0/05/17 16:52      |       |          |         |          |          |          |          |
| % Moisture               |                         | 11           | 1.0                | %     | 1        | 1707597 | 10/06/17 | 10/06/17 | SM 2540G |          |
| Solids, %                |                         | 89.4         | 1.00               | п     | P        | "       | n        | 19       | "        |          |
| B3-1.5 (17J0311-08) Soil | Sampled: 10/05/17 12:35 | Received:    | 10/05/17 16:52     |       |          |         |          |          |          |          |
| % Moisture               |                         | 7.9          | 1.0                | %     | 1        | 1707597 | 10/06/17 | 10/06/17 | SM 2540G |          |
| Solids, %                |                         | 92.1         | 1.00               | n     | "        | **      | ti.      | n        | 17       |          |
| B4-1 (17J0311-09) Soil   | Sampled: 10/05/17 12:50 | Received: 10 | /05/17 16:52       |       |          |         |          |          |          |          |
| % Moisture               |                         | 11           | 1.0                | %     | 1        | 1707597 | 10/06/17 | 10/06/17 | SM 2540G |          |
| Solids, %                |                         | 89.4         | 1.00               | u.    | "        | н       | "        | **       | п        |          |
| B4-2.5 (17J0311-10) Soil | Sampled: 10/05/17 12:55 | Received: 1  | 10/05/17 16:52     |       |          |         |          |          |          | <u> </u> |
| % Moisture               |                         | 12           | 1.0                | %     | I        | 1707597 | 10/06/17 | 10/06/17 | SM 2540G |          |
| Solids, %                |                         | 87.7         | 1.00               | "     | "        | n       | "        | 11       | 11       |          |

# California Laboratory Services

Page 3 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

#### Conventional Chemistry Parameters by APHA/EPA Methods

| Analyte                  |                         | Result    | Reporting<br>Limit | Units | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------|-------------------------|-----------|--------------------|-------|----------|---------|----------|----------|----------|-------|
| B5-1.5 (17J0311-11) Soil | Sampled: 10/05/17 13:00 | Received: | 10/05/17 16:52     |       |          |         |          |          |          |       |
| % Moisture               |                         | 13        | 1.0                | %     | 1        | 1707597 | 10/06/17 | 10/06/17 | SM 2540G |       |
| Solids, %                |                         | 86.6      | 1.00               | u     | **       | 0       | "        |          | n        |       |

Page 4 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

CLS Work Order #: 17J0311

Project Manager: Robert F.

COC#: 181979

| Analyte                                        |                        | Result      | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|------------------------------------------------|------------------------|-------------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| B1-12 (17J0311-01) Soil Sa                     | ampled: 10/05/17 08:25 | Received: 1 | 0/05/17 16:52      | 2.                 | -        |         |          |          |           |       |
| 1,1,1,2-Tetrachloroethane                      |                        | ND          | 5.0                | μg/kg              | 1        | 1707631 | 10/06/17 | 10/06/17 | EPA 8260B |       |
| 1,1,1,2-Tetrachloroethane                      |                        | ND          | 5.7                | μg/kg dry          | n        | 11      | n.       | 11       | и         |       |
| 1,1,1-Trichloroethane                          |                        | ND          | 5.0                | μg/kg              | ***      | "       | m        | "        | н         |       |
| 1,1,1-Trichlorocthane                          |                        | ND          | 5.7                | μg/kg dry          | . "      | 19      | н        | N        | "         |       |
| 1,1,2,2-Tetrachloroethane                      |                        | ND          | 5.0                | μg/kg              | 199      | #       | ū        | **       |           |       |
| 1,1,2,2-Tetrachloroethane                      |                        | ND          | 5.7                | μg/kg dry          |          | **      | "        | "        | 60        |       |
| 1,1,2-Trichloro-1,2,2-trifluoro<br>(Freon 113) |                        | ND          | 5.0                | μg/kg              | 144      | Ħ       | н        | n        | #         |       |
| 1,1,2-Trichloro-1,2,2-trifluoro<br>(Freon 113) | pethane                | ND          | 5.7                | μ <b>g</b> /kg dry |          | п       | 39       | N        | "         |       |
| 1,1,2-Trichloroethane                          |                        | ND          | 5.0                | μg/kg              | 100      | "       |          | ıı       | 11        |       |
| 1,1,2-Trichloroethane                          |                        | ND          | 5.7                | μ <b>g</b> /kg dry |          | n       | Sin .    | l*       | н         |       |
| 1,1-Dichloroethane                             |                        | ND          | 5.7                | ii                 | ***      | 10      | 0        | н        | н         |       |
| 1,1-Dichloroethane                             |                        | ND          | 5.0                | μg/kg              | н        | 11      | v        | "        | *1        |       |
| 1,1-Dichloroethene                             |                        | ND          | 5.0                | 100                | .11      | **      | lt.      | "        | 11        |       |
| 1,1-Dichloroethene                             |                        | ND          | 5.7                | μg/kg dry          | ч        | 10      | н        | М        | 11        |       |
| 1,1-Dichloropropene                            |                        | ND          | 5.7                | (4)                | ж        | ж       | P        | 31       | D         |       |
| 1,1-Dichloropropene                            |                        | ND          | 5.0                | μg/kg              | "        |         | n        | **       | н         |       |
| 1,2,3-Trichlorobenzene                         |                        | ND          | 5.7                | μg/kg dry          | n        | "       | H        | **       | В         |       |
| 1,2,3-Trichlorobenzene                         |                        | ND          | 5.0                | μg/kg              | 17       | М       | •        | n        | P.        |       |
| 1,2,3-Trichloropropane                         |                        | ND          | 5.7                | μ <b>g</b> /kg dry | u        | π       | "        | 71       | n         |       |
| 1,2,3-Trichloropropane                         |                        | ND          | 5.0                | μg/kg              | U        | n       | Ħ        | "        | **        |       |
| 1,2,4-Trichlorobenzene                         |                        | ND          | 5.7                | μ <b>g</b> /kg dry |          | "       | н        | "        | "         |       |
| 1,2,4-Trichlorobenzene                         |                        | ND          | 5.0                | μg/kg              | P        | **      | 11       | н        |           |       |
| 1,2,4-Trimethylbenzene                         |                        | ND          | 5.7                | μ <b>g</b> /kg dry | P        | tı      | "        | 19       |           |       |
| 1,2,4-Trimethylbenzene                         |                        | ND          | 5.0                | μg/kg              | .40      | **      | 11       | 11       |           |       |
| 1,2-Dibromo-3-chloropropane                    | e                      | ND          | 11                 | μg/kg dry          | н        | **      | н        | D        | > 100 ()  |       |
| 1,2-Dibromo-3-chloropropan                     | е                      | ND          | 10                 | μg/kg              | R        | "       | u u      | IF       | desir     |       |
| 1,2-Dibromoethane (EDB)                        |                        | ND          | 5.7                | μ <b>g</b> /kg dry | ×        | н       | U        | #        | 44        |       |
| 1,2-Dibromoethane (EDB)                        |                        | ND          | 5.0                | μg/kg              | **       |         | .99      | **       | "         |       |
| 1,2-Dichlorobenzene                            |                        | ND          | 5.7                | μg/kg dry          | *        | "       | ж        | "        | u ,       |       |
| 1,2-Dichlorobenzene                            |                        | ND          | 5.0                | μg/kg              | »:       | Ħ       | н        | "        | ***       |       |
|                                                |                        |             |                    |                    |          |         |          |          |           |       |

Page 5 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none] Project Manager: Robert F. CLS Work Order #: 17J0311

COC #: 181979

| Analyte                 |                         | Result      | Reporting<br>Limit | Units     | Dilution   | Batch    | Prepared | Analyzed | Method    | Notes |
|-------------------------|-------------------------|-------------|--------------------|-----------|------------|----------|----------|----------|-----------|-------|
| B1-12 (17J0311-01) Soil | Sampled: 10/05/17 08:25 | Received: 1 | 0/05/17 16:52      | 2.        |            |          |          |          |           |       |
| 1,2-Dichloroethane      |                         | ND          | 5.7                | μg/kg dry | , 1        | 1707631  | e        | 10/06/17 | EPA 8260B |       |
| 1,2-Dichloroethane      |                         | ND          | 5.0                | μg/kg     | v          | "        | **       | п        |           |       |
| 1,2-Dichloropropane     |                         | ND          | 5.7                | μg/kg dry | , "        | "        | •        | "        | n         |       |
| 1,2-Dichloropropane     |                         | ND          | 5.0                | μg/kg     | v          | u u      | 91       | n        | 90        |       |
| 1,3,5-Trimethylbenzene  |                         | ND          | 5.7                | μg/kg dry | , <u>"</u> | l†       | **       | n        | 17        |       |
| 1,3,5-Trimethylbenzene  |                         | ND          | 5.0                | μg/kg     | "          | v        | *        | 2.4      | 11        |       |
| 1,3-Dichlorobenzene     |                         | ND          | 5.7                | μg/kg dry | , "        | 9        | Ŧ.       | #        | 4         |       |
| 1,3-Dichlorobenzene     |                         | ND          | 5.0                | μg/kg     | н          | "        | 25.      | n        | **        |       |
| 1,3-Dichloropropane     |                         | ND          | 5.7                | μg/kg dry | <i>,</i> " | 0        | **       | n        | n         |       |
| 1,3-Dichloropropane     |                         | ND          | 5.0                | μg/kg     | н          | 0        | ¥        | "        | n         |       |
| 1,4-Dichlorobenzene     |                         | ND          | 5.7                | μg/kg dry | / "        | v.       | #        | "        | н         |       |
| 1,4-Dichlorobenzene     |                         | ND          | 5.0                | μg/kg     | н          | ti.      |          | "        | r         |       |
| 2,2-Dichloropropane     |                         | ND          | 5.7                | μg/kg dry | 7 "        | u        | 25       | "        | н         |       |
| 2,2-Dichloropropane     |                         | ND          | 5.0                | μg/kg     |            | 11       | н        | "        | n         |       |
| 2-Butanone              |                         | ND          | 110                | μg/kg dry | <i>,</i> " | "        | ¥        | "        | P         |       |
| 2-Butanone              |                         | ND          | 100                | μg/kg     | e.         | 11       | #        | ų        | r.        |       |
| 2-Hexanone              |                         | ND          | 57                 | μg/kg dry | , "        | 11       | Ж.       | "        |           |       |
| 2-Hexanone              |                         | ND          | 50                 | μg/kg     | e.         | **       | a.       | 11       | ۳         |       |
| 4-Methyl-2-pentanone    |                         | ND          | 57                 | μg/kg dry | / "        | **       | 11       | 11       | н         |       |
| 4-Methyl-2-pentanone    |                         | ND          | 50                 | μg/kg     | N          | u        | *        | "        | и         |       |
| Acetone                 |                         | ND          | 110                | μg/kg dry | / "        | n.       | *        | "        | н         |       |
| Acetone                 |                         | ND          | 100                | μg/kg     | "          | ti       | 7        | **       | н         |       |
| Benzene                 |                         | ND          | 5.7                | μg/kg dry | , "        | н        |          | **       | ±M        |       |
| Benzene                 |                         | ND          | 5.0                | μg/kg     | и          | н        |          | 11       | н         |       |
| Bromobenzene            |                         | ND          | 5.7                | μg/kg dry | , "        | P        | *        | 11       | н         |       |
| Bromobenzene            |                         | ND          | 5.0                | μg/kg     | **         | n        | 7        | "        | н         |       |
| Bromochloromethane      |                         | ND          | 5.7                | μg/kg dry | , "        | n        |          | "        | н         |       |
| Bromochloromethane      |                         | ND          | 5.0                | μg/kg     | п          | "        |          | "        | "         |       |
| Bromodichloromethane    |                         | ND          | 5.7                | μg/kg dry | , "        | <u>n</u> |          | "        | 11        |       |
| Bromodichloromethane    |                         | ND          | 5.0                | μg/kg     | "          | "        | H        | "        | 11        |       |
| Bromoform               |                         | ND          | 5.7                | μg/kg dry | 7 "        | n        | *        | "        | "         |       |

Page 6 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                        |                      | Result      | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared             | Analyzed | Method    | Notes |
|--------------------------------|----------------------|-------------|--------------------|--------------------|----------|---------|----------------------|----------|-----------|-------|
| B1-12 (17J0311-01) Soil Samp   | oled: 10/05/17 08:25 | Received: 1 | 0/05/17 16:52      | 2                  |          |         |                      |          |           |       |
| Bromoform                      |                      | ND          | 5.0                | μg/kg              | 1        | 1707631 | 10.                  | 10/06/17 | EPA 8260B |       |
| Bromomethane                   |                      | ND          | 11                 | μ <b>g</b> /kg dry | . "      | **      |                      | π        | 11        |       |
| Bromomethane                   |                      | ND          | 10                 | μg/kg              | "        | H       | Ji#iL                |          | 11        |       |
| Carbon tetrachloride           |                      | ND          | 5.7                | μg/kg dry          | , "      | 197     | ((#))                | "        | O         |       |
| Carbon tetrachloride           |                      | ND          | 5.0                | μg/kg              | **       | н       | /(#E)                | **       | u         |       |
| Chlorobenzene                  |                      | ND          | 5.7                | μg/kg dry          | , "      | н       | in .                 | **       | n         |       |
| Chlorobenzene                  |                      | ND          | 5.0                | μg/kg              | n        | Ħ       | 77                   | 19       | n         |       |
| Chloroethane                   |                      | ND          | 5.7                | μg/kg dry          | . 11     | *1      | )(##. <sup>1</sup> ) | **       | u.        |       |
| Chloroethane                   |                      | ND          | 5.0                | μg/kg              | *1       | 11      | 00                   | 1.00     | ņ         |       |
| Chloroform                     |                      | ND          | 5.0                | 11                 | 11       | Ħ       | **                   | **       | 0         |       |
| Chloroform                     |                      | ND          | 5.7                | μg/kg dry          | . 0      | *1      | "                    | н        | ū         |       |
| Chloromethane                  |                      | ND          | 11                 | u.                 | w        | 19      |                      | 199      | n         |       |
| Chloromethane                  |                      | ND          | 10                 | μg/kg              | 11       | *1      | "                    | *        | u         |       |
| cis-1,2-Dichloroethene         |                      | ND          | 5.7                | μg/kg dry          | . 11     | n       | "                    | 177      | II .      |       |
| cis-1,2-Dichloroethene         |                      | ND          | 5.0                | μg/kg              | 11       | Ħ       | u                    | 91       | н         |       |
| cis-1,3-Dichloropropene        |                      | ND          | 5.7                | μg/kg dry          | . 0      | H       | "                    | #1       | n         |       |
| cis-1,3-Dichloropropenc        |                      | ND          | 5.0                | μg/kg              | 0        | н       | "                    | 71       | II        |       |
| Dibromochloromethane           |                      | ND          | 5.7                | μg/kg dry          | U        | "       | "                    | Ħ        | H         |       |
| Dibromochloromethane           |                      | ND          | 5.0                | μg/kg              | D        | **      | n                    | *1       | н         |       |
| Dibromomethane                 |                      | ND          | 5.7                | μg/kg dry          |          | н       | 11                   | - 27     | и         |       |
| Dibromomethane                 |                      | ND          | 5.0                | μg/kg              | U        | **      | n                    | 199      | H         |       |
| Dichlorodifluoromethane (Freon | 12)                  | ND          | 11                 | μg/kg dry          | , D      | "       | ıı                   | *1       | н         |       |
| Dichlorodifluoromethane (Freon | 12)                  | ND          | 10                 | μg/kg              | lt.      | **      | n                    | 11       | н         |       |
| Di-isopropyl ether             |                      | ND          | 5.0                | .10                | . 44     | 19      | н                    | "        | "         |       |
| Ethyl tert-butyl ether         |                      | ND          | 5.0                |                    | 244      | и       | "                    | 41       | п         |       |
| Ethylbenzene                   |                      | ND          | 5.7                | μg/kg dry          |          | 194     | "                    | **       | II        |       |
| Ethylbenzene                   |                      | ND          | 5.0                | μg/kg              | 19       |         | n                    | 11       | II        |       |
| Hexachlorobutadiene            |                      | ND          | 5.7                | μg/kg dry          | 19       |         | "                    | 11       | II        |       |
| Hexachlorobutadiene            |                      | ND          | 5.0                | μg/kg              | 19       | tr.     | ***                  | 41       | II.       |       |
| Isopropylbenzene               |                      | ND          | 5.7                | μg/kg dry          | 2.00     | 11      | 11                   | 91       | U         |       |
| Isopropylbenzene               |                      | ND          | 5.0                | μg/kg              | 199      | *       | 10                   | 199      | u         |       |

Page 7 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                  |                         | Result      | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|--------------------------|-------------------------|-------------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| B1-12 (17J0311-01) Soil  | Sampled: 10/05/17 08:25 | Received: 1 | 0/05/17 16:52      |           |          |         |          |          |           |       |
| Methyl tert-butyl ether  |                         | ND          | 5.7                | μg/kg dry | 1        | 1707631 | м        | 10/06/17 | EPA 8260B |       |
| Methyl tert-butyl ether  |                         | ND          | 5.0                | μg/kg     | 17       | п       | ж        | n        |           |       |
| Methylene chloride       |                         | ND          | 23                 | μg/kg dry | . "      | n       | **       | II.      | "         |       |
| Methylene chloride       |                         | ND          | 20                 | μg/kg     | 79       | н       | *        | 9        | и         |       |
| Naphthalene              |                         | ND          | 5.7                | μg/kg dry | , 11     | If      | 7        | n        | Gi.       |       |
| Naphthalene              |                         | ND          | 5.0                | μg/kg     | **       | н       | .#1      | II.      | н         |       |
| n-Butylbenzene           |                         | ND          | 5.7                | μg/kg dry | , 11     | **      | 346      | **       | н         |       |
| n-Butylbenzene           |                         | ND          | 5.0                | μg/kg     | н        | **      | **       | "        | **        |       |
| n-Propylbenzene          |                         | ND          | 5.7                | μg/kg dry | . "      | n       | *        | u        | 10        |       |
| n-Propylbenzene          |                         | ND          | 5.0                | μg/kg     | *        |         | 7        | "        | n n       |       |
| o-Chlorotoluene          |                         | ND          | 5.7                | μg/kg dry | **       |         |          | 11       |           |       |
| o-Chlorotoluene          |                         | ND          | 5.0                | μg/kg     | *        | #       | ж        | 11       | ,,        |       |
| -Chlorotoluene           |                         | ND          | 5.7                | µg/kg dry |          | et .    | W        | 9        | n         |       |
| o-Chlorotoluene          |                         | ND          | 5.0                | μg/kg     | 98       | н       | *        | u        |           |       |
| o-Isopropyltoluene       |                         | ND          | 5.7                | μg/kg dry | . "      | •       | ¥        | 11"      | ,,        |       |
| o-Isopropyltoluene       |                         | ND          | 5.0                | μg/kg     | *        | п       | н.       | 11       |           |       |
| ec-Butylbenzene          |                         | ND          | 5.7                | μg/kg dry |          | n       | 10       | n        | ıı.       |       |
| sec-Butylbenzene         |                         | ND          | 5.0                | μg/kg     | "        | r       | ¥        |          | n         |       |
| Styrene                  |                         | ND          | 5.7                | μg/kg dry | . "      | Ħ       | *        | n        | "         |       |
| Styrene                  |                         | ND          | 5.0                | μg/kg     | "        | n       | *        | n        | 9         |       |
| ert-Amyl methyl ether    |                         | ND          | 5.0                | **        | "        | п       | **       | •        | n         |       |
| ert-Butyl alcohol        |                         | ND          | 50                 |           | **       | н       | *        | r        | ,         |       |
| ert-Butylbenzene         |                         | ND          | 5.7                | μg/kg dry |          | *1      | *        | н        | "         |       |
| ert-Butylbenzene         |                         | ND          | 5.0                | μg/kg     | "        | 11      | *        | *        | ,         |       |
| Tetrachloroethene        |                         | ND          | 5.7                | μg/kg dry |          | 11      |          | *        | ,,        |       |
| Tetrachloroethene        |                         | ND          | 5.0                | μg/kg     | н        | 93      |          | 2        | **        |       |
| Toluene                  |                         | ND          | 5.7                | μg/kg dry |          | "       | *        |          | "         |       |
| Toluene                  |                         | ND          | 5.0                | μg/kg     | **       | **      | w        | 9,       | **        |       |
| rans-1,2-Dichloroethene  |                         | ND          | 5.7                | μg/kg dry |          | **      | 11       | и        | **        |       |
| rans-1,2-Dichloroethene  |                         | ND          | 5.0                | μg/kg     | **       | n       | **       | 11       |           |       |
| rans-1,3-Dichloropropene |                         | ND          | 5.7                | μg/kg dry | . "      | н       | v        | н        | n         |       |

Page 8 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                              | Result               | Reporting<br>Limit | Units              | Dilution | Batch           | Prepared | Analyzed         | Method    | Notes |
|------------------------------------------------------|----------------------|--------------------|--------------------|----------|-----------------|----------|------------------|-----------|-------|
| B1-12 (17J0311-01) Soil Sampled: 10/05/17            | 7 08:25 Received: 10 | )/05/17 16:5       | 2                  |          | -               |          |                  |           |       |
| trans-1,3-Dichloropropene                            | ND                   | 5.0                | μg/kg              | 1        | <b>170763</b> 1 | II.      | <b>10/06</b> /17 | EPA 8260B |       |
| Trichloroethene                                      | ND                   | 5.7                | μg/kg dry          |          | W               | n        | n                |           |       |
| Trichloroethene                                      | ND                   | 5.0                | μg/kg              | (14)     | Ħ               | н        | 11               | 11        |       |
| Trichlorofluoromethane                               | ND                   | 5.7                | μg/kg dry          | -        | n               | "        | II.              | u u       |       |
| Trichlorofluoromethane                               | ND                   | 5.0                | μg/kg              | 11       | 11              | "        | **               | U         |       |
| Vinyl chloride                                       | ND                   | 11                 | µg/kg dry          |          | н               | H        | 19               | w         |       |
| Vinyl chloride                                       | ND                   | 10                 | μg/kg              | Ū        | н               | я        | 19               | A         |       |
| Xylenes (total)                                      | ND                   | 11                 | μg/kg dry          | , 19     | D               |          | 11               | 24.       |       |
| Xylenes (total)                                      | ND                   | 10                 | μg/kg              | 11       | (*)             | u        | **               | Ħ         |       |
| Surrogate: 1,2-Dichloroethane-d4                     |                      | 162 %              | 50-                | 125      | "               | · o      | "                | "         | QS-4  |
| Surrogate: 1,2-Dichloroethane-d4                     |                      | 162 %              | 50-                | 125      | n               | "        | Tie              | "         | QS-4  |
| Surrogate: 4-Bromofluorobenzene                      |                      | 111 %              | 50-                | 128      | n               | 11       | "                | "         | _     |
| Surrogate: 4-Bromofluorobenzene                      |                      | 111 %              | 50-                | 128      | n               | p        | н                | "         |       |
| Surrogate: Toluene-d8                                |                      | 111 %              | 62-                | 125      | n               | 296      | n                | "         |       |
| Surrogate: Toluene-d8                                |                      | 111 %              | 62-                | 125      | "               | 40       | n                | "         |       |
| B1-21 (17J0311-02) Soil Sampled: 10/05/17            | 7 09:00 Received: 10 | /05/17 16:52       | 2                  |          |                 |          |                  |           |       |
| 1,1,1,2-Tetrachloroethane                            | ND ·                 | 5.0                | μg/kg              | 1        | <b>17076</b> 31 | 10/06/17 | 10/06/17         | EPA 8260B |       |
| 1,1,1,2-Tetrachloroethane                            | ND                   | 5.5                | μ <b>g</b> /kg dry | 0        |                 | 11       | н                | l#        |       |
| 1,1,1-Trichloroethane                                | ND                   | 5.0                | μg/kg              | 194      | P               | н        | "                | "         |       |
| 1,1,1-Trichloroethane                                | ND                   | 5.5                | μg/kg dry          | *        | и               | н        | **               | **        |       |
| 1,1,2,2-Tetrachloroethane                            | ND                   | 5.5                | p                  |          | п               | •        | n                |           |       |
| 1,1,2,2-Tetrachloroethane                            | ND                   | 5.0                | μg/kg              | *        | "               | U        | п                | #/        |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane<br>(Freon 113) | ND                   | 5.0                | н                  |          | 89              | u        | 11               | 200       |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane<br>(Freon 113) | ND                   | 5.5                | μg/kg dry          | "        | W               | 11       | н                | П         |       |
| 1,1,2-Trichloroethane                                | ND                   | 5.0                | μg/kg              |          | n               | p        | 19               | н         |       |
| 1,1,2-Trichloroethane                                | ND                   | 5.5                | μg/kg dry          | 11       | н               | m        | D                | n         |       |
| 1,1-Dichloroethane                                   | ND                   | 5.5                | 41                 | "        | *               | ,,       | II.              | u         |       |
| -,                                                   |                      |                    |                    |          |                 |          |                  |           |       |

Page 9 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                         | Result      | Reporting<br>Limit | Units     | Dilution   | Batch   | Prepared | Analyzed | Method    | Notes |
|-------------------------------------------------|-------------|--------------------|-----------|------------|---------|----------|----------|-----------|-------|
| B1-21 (17J0311-02) Soil Sampled: 10/05/17 09:00 | Received: 1 | 0/05/17 16:52      | 2         |            |         |          |          |           |       |
| 1,1-Dichloroethene                              | ND          | 5.5                | μg/kg dry | 1          | 1707631 | r.       | 10/06/17 | EPA 8260B |       |
| 1,1-Dichloroethene                              | ND          | 5.0                | μg/kg     | н          | U       | P        | U        | "         |       |
| 1,1-Dichloropropene                             | ND          | 5.5                | μg/kg dry | , "        | u       | "        | n        | Ħ         |       |
| 1,1-Dichloropropene                             | ND          | 5.0                | μg/kg     | u          | u       | "        | *1       | H         |       |
| 1,2,3-Trichlorobenzene                          | ND          | 5.5                | μg/kg dry | , <u>*</u> | "       | U        | •        | n         |       |
| 1,2,3-Trichlorobenzene                          | ND          | 5.0                | μg/kg     | "          | n n     | U        | "        | 11        |       |
| 1,2,3-Trichloropropane                          | ND          | 5.5                | μg/kg dry | , "        | ñ       | **       | u        | ,,        |       |
| 1,2,3-Trichloropropane                          | ND          | 5.0                | μg/kg     | **         | 11      | v        | u,       | н         |       |
| 1,2,4-Trichlorobenzene                          | ND          | 5.5                | μg/kg dry | , "        | **      | 9        | n        | н         |       |
| 1,2,4-Trichlorobenzene                          | ND          | 5.0                | μg/kg     | "          | **      | ×        | т.       | P.        |       |
| 1,2,4-Trimethylbenzene                          | ND          | 5.5                | μg/kg dry | , "        | н       | 36.      | n        | u         |       |
| 1,2,4-Trimethylbenzene                          | ND          | 5.0                | μg/kg     | a          | •       | *        | "        | U         |       |
| 1,2-Dibromo-3-chloropropane                     | ND          | 11                 | μg/kg dry | , "        | n       |          | "        | u ·       |       |
| 1,2-Dibromo-3-chloropropane                     | ND          | 10                 | μg/kg     | *          | н       | ¥        | "        | U         |       |
| 1,2-Dibromocthane (EDB)                         | ND          | 5.5                | μg/kg dry | , "        | "       | H        | "        | 9         |       |
| 1,2-Dibromoethane (EDB)                         | ND          | 5.0                | μg/kg     | 60         | "       |          | "        | 0         |       |
| 1,2-Dichlorobenzenc                             | ND          | 5.5                | μg/kg dry | , W        | "       | H        | "        | 10        |       |
| 1,2-Dichlorobenzene                             | ND          | 5.0                | μg/kg     | *          | n       | .17.     | п        | u         |       |
| 1,2-Dichloroethane                              | ND          | 5.5                | μg/kg dry | 2.         | **      |          | **       | **        |       |
| 1,2-Dichloroethane                              | ND          | 5.0                | μg/kg     | n          | "       | ¥        | Ħ        | 0         |       |
| 1,2-Dichloropropane                             | ND          | 5.5                | μg/kg dry | *          | "       | ×        | **       | ••        |       |
| 1,2-Dichloropropane                             | ND          | 5.0                | μg/kg     | W          | "       | <b>H</b> | H        | *1        |       |
| 1,3,5-Trimethylbenzene                          | ND          | 5.5                | μg/kg dry |            |         | ."       | #        | H         |       |
| 1,3,5-Trimethylbenzene                          | ND          | 5.0                | μg/kg     |            | "       | .**      | **       | n         |       |
| 1,3-Dichlorobenzene                             | ND          | 5.5                | μg/kg dry |            | "       | W        | ,        |           |       |
| 1,3-Dichlorobenzene                             | ND          | 5.0                | μg/kg     | H          | 11      | Ħ        | a        | "         |       |
| 1,3-Dichloropropane                             | ND          | 5.5                | μg/kg dry | *          | "       | n        | n        | ii        |       |
| 1,3-Dichloropropane                             | ND          | 5.0                | μg/kg     |            | **      | *        | ,,       | "         |       |
| 1,4-Dichlorobenzene                             | ND          | 5.5                | μg/kg dry |            | **      | **       | •        | п         |       |
| 1,4-Dichlorobenzene                             | ND          | 5.0                | μg/kg     | 2          | #       | **       | 11       | 1, 0      |       |
| 2,2-Dichloropropane                             | ND          | 5.5                | μg/kg dry | , "        | *       | "        | "        | н         |       |

Page 10 of 59

10/16/17 08:57

eScreen Logic

Project: Hayward #7371A

11249 Gold Country Blvd Ste 165 Gold River, CA 95670

Project Number: [none]

CLS Work Order #: 17J0311

Project Manager: Robert F.

COC #: 181979

| Analyte                 |                         | Result      | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-------------------------|-------------------------|-------------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| B1-21 (17J0311-02) Soil | Sampled: 10/05/17 09:00 | Received: 1 | 0/05/17 16:52      |                    |          |         | _        | ·        |           |       |
| 2,2-Dichloropropane     |                         | ND          | 5.0                | μg/kg              | 1        | 1707631 | 11       | 10/06/17 | EPA 8260B |       |
| 2-Butanone              |                         | ND          | 110                | μg/kg dry          | . 11     | н       | 11       | 11       |           |       |
| 2-Butanone              |                         | ND          | 100                | μg/kg              | 184      |         | **       | 10       | 0         |       |
| 2-Hexanone              |                         | ND          | 55                 | μg/kg dry          |          | D       | 0        | *        | u u       |       |
| 2-Hexanone              |                         | ND          | 50                 | μg/kg              | n        | 19      | O.       | 580      | M         |       |
| 4-Methyl-2-pentanone    |                         | ND          | 55                 | μg/kg dry          | v        | "       | 11       | "        | ж         |       |
| 4-Methyl-2-pentanone    |                         | ND          | 50                 | μg/kg              | U        | "       | н        | **       | **        |       |
| Acetone                 |                         | ND          | 110                | μg/kg dry          | 11       | "       | 11       | n        | *         |       |
| Acetone                 |                         | ND          | 100                | μg/kg              | "        | н       | n        | И        | 7         |       |
| Benzene                 |                         | ND          | 5.5                | μg/kg dry          | "        | n       | 44       | 11       | 11        |       |
| Benzene                 |                         | ND          | 5.0                | μg/kg              | n        | **      | 7(41)    | n        | **        |       |
| Bromobenzene            |                         | ND          | 5.5                | μg/kg dry          | (4)      | 546.0   | 7        | Sac      |           |       |
| Bromobenzene            |                         | ND          | 5.0                | μg/kg              | "        | 4       | 125      |          | н         |       |
| Bromochloromethane      |                         | ND          | 5.5                | μ <b>g</b> /kg dry | "        | 11      | Ħ        | 10       | **        |       |
| Bromochloromethane      |                         | ND          | 5.0                | μg/kg              | "        | 11      | и        | D        | 11        |       |
| Bromodichloromethane    |                         | ND          | 5.5                | μg/kg dry          | "        | **      | п        | n        | "         |       |
| Bromodichloromethane    |                         | ND          | 5.0                | μg/kg              | n        | "       | н        | и        | n .       |       |
| Bromoform               |                         | ND          | 5.5                | μg/kg dry          | .,       |         | u        | 19       | 0         |       |
| Bromoform               |                         | ND          | 5.0                | μg/kg              | "        |         | 11       | **       | 0         |       |
| Bromomethane            |                         | ND          | 11                 | μg/kg dry          | н        | "       | o        | н        | H         |       |
| Bromomethane            |                         | ND          | 10                 | μg/kg              | "        | и       | D        | 19       | И         |       |
| Carbon tetrachloride    |                         | ND          | 5.5                | μg/kg dry          | **       | **      | "        | H        | H         |       |
| Carbon tetrachloride    |                         | ND          | 5.0                | μg/kg              | **       | **      | "        | H        | n         |       |
| Chlorobenzene           |                         | ND          | 5.5                | μg/kg dry          | 0        | "       | "        | 39       | 22        |       |
| Chlorobenzene           |                         | ND          | 5.0                | μg/kg              | **       | **      | n        |          | 40        |       |
| Chloroethane            |                         | ND          | 5.0                | .00                | (4)      | **      | "        | /A       | 40        |       |
| Chloroethane            |                         | ND          | 5.5                | μg/kg dry          |          | **      | u        | 11       | #         |       |
| Chloroform              |                         | ND          | 5.5                | (0)                | 1        | 11      | u        | 11       | #         |       |
| Chloroform              |                         | ND          | 5.0                | μg/kg              | 377      | Ħ       | "        |          | **        |       |
| Chloromethane           |                         | ND          | 11                 | μg/kg dry          | 99       | n       |          | ti .     |           |       |
| Chloromethane           |                         | ND          | 10                 | μg/kg              | (#       | Ħ       | 39       | 19       | *1        |       |

Page 11 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC#: 181979

| Analyte                                 | Result                | Reporting<br>Limit | Units     | Dilution | Batch      | Prepared | Analyzed | Method    | Notes |
|-----------------------------------------|-----------------------|--------------------|-----------|----------|------------|----------|----------|-----------|-------|
| B1-21 (17J0311-02) Soil Sampled: 10/05/ | 17 09:00 Received: 10 | /05/17 16:52       |           |          |            |          |          |           |       |
| cis-1,2-Dichloroethene                  | ND                    | 5.5                | μg/kg dry | 1        | 1707631    | v        | 10/06/17 | EPA 8260B |       |
| cis-1,2-Dichloroethene                  | ND                    | 5.0                | μg/kg     | "        | v          | 11       | 40       | P         |       |
| cis-1,3-Dichloropropene                 | ND                    | 5.5                | μg/kg dry |          | v          | n        |          | u         |       |
| cis-1,3-Dichloropropene                 | ND                    | 5.0                | μg/kg     | 395      | 11         |          | 197      | 81        |       |
| Dibromochloromethane                    | ND                    | 5.5                | μg/kg dry | ( H)     | 11         | 11       |          | .,        |       |
| Dibromochloromethane                    | ND                    | 5.0                | μg/kg     |          | н          | **       |          | v         |       |
| Dibromomethane                          | ND                    | 5.5                | μg/kg dry |          | n n        | **       | 90       | v         |       |
| Dibromomethane                          | ND                    | 5.0                | μg/kg     | 12       | n.         | н        |          | 11        |       |
| Dichlorodifluoromethane (Freon 12)      | ND                    | 11                 | μg/kg dry | #6       | "          | H        | #1       | U         |       |
| Dichlorodifluoromethane (Freon 12)      | ND                    | 10                 | μg/kg     |          | **         | н        | 60       | 99        |       |
| Di-isopropyl ether                      | ND                    | 5.0                | 100       | n        | n          | **       | II .     |           |       |
| Ethyl tert-butyl ether                  | ND                    | 5.0                |           | n        | н          |          | 0        | %-        |       |
| Ethylbenzene                            | ND                    | 5.5                | μg/kg dry | , 11     |            | "        | 0        | 77        |       |
| Ethylbenzene                            | ND                    | 5.0                | μg/kg     | 11       | 3.86       | ŋ        | •        | 39        |       |
| Hexachlorobutadiene                     | ND                    | 5.5                | μg/kg dry |          | 100        | "        | 9        | 194       |       |
| Hexachlorobutadiene                     | ND                    | 5.0                | μg/kg     | 31       |            | 11       | ii .     | iii       |       |
| Isopropylbenzene                        | ND                    | 5.5                | μg/kg dry |          | н          | n        | n        | *         |       |
| Isopropylbenzene                        | ND                    | 5.0                | μg/kg     | "        |            | n        | 11       |           |       |
| Methyl tert-butyl ether                 | ND                    | 5.5                | μg/kg dry | , "      | ,,         | н        | 11       | 199       |       |
| Methyl tert-butyl ether                 | ND                    | 5.0                | μg/kg     |          | н.         | н        | n        | in .      |       |
| Methylene chloride                      | ND                    | 22                 | μg/kg dry | , "      | ė.         | н        | "        | Ĥ         |       |
| Methylene chloride                      | ND                    | 20                 | μg/kg     | 11       | *          | 11       | п        | (#        |       |
| Naphthalene                             | ND                    | 5.5                | μg/kg dry | , 11     | 7.1        | 11       | п        |           |       |
| Naphthalene                             | ND                    | 5.0                | μg/kg     | D        |            | 'n       | u        | 1.0       |       |
| n-Butylbenzene                          | ND                    | 5.5                | μg/kg dry | , 0      | 60         | JI.      | п        | 500       |       |
| n-Butylbenzene                          | ND                    | 5.0                | μg/kg     | o        | e e        | 11       | п        | H         |       |
| n-Propylbenzene                         | ND                    | 5.5                | μg/kg dry | , 0      | **         | H        | ii       | *         |       |
| n-Propylbenzene                         | ND                    | 5.0                | μg/kg     | U        |            | "        | п п      |           |       |
| o-Chlorotoluene                         | ND                    | 5.5                | μg/kg dry | , 0      | 91         | ,,       | · u      | (#        |       |
| o-Chlorotoluene                         | ND                    | 5.0                | μg/kg     | •        | <b>H</b> ) | 17       | и        | *         |       |
| p-Chlorotoluene                         | ND                    | 5.5                | μg/kg dry |          | #1         | 11       | u        | *         |       |

Page 12 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                   | Result            | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-------------------------------------------|-------------------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| B1-21 (17J0311-02) Soil Sampled: 10/05/17 | 09:00 Received: 1 | 0/05/17 16:5       | 2         |          |         |          |          |           |       |
| p-Chlorotoluene                           | ND                | 5.0                | μg/kg     | 1        | 1707631 | "        | 10/06/17 | EPA 8260B |       |
| p-Isopropyltoluene                        | ND                | 5.5                | μg/kg dry | Ħ        | **      | 11       | IT       | 78        |       |
| p-Isopropyltoluene                        | ND                | 5.0                | μg/kg     |          | (100)   | n n      | и        | н         |       |
| sec-Butylbenzene                          | ND                | 5.5                | μg/kg dry |          | 240     | n        | 11       | 11        |       |
| sec-Butylbenzene                          | ND                | 5.0                | μg/kg     | 44       | 11      | **       | "        | #1        |       |
| Styrene                                   | ND                | 5.5                | μg/kg dry | **       | "       | 9        | **       | "         |       |
| Styrene                                   | ND                | 5.0                | μg/kg     | (#)      | 11      | 11       | 11       | u         |       |
| tert-Amyl methyl ether                    | ND                | 5.0                | *1        | (100)    | H       | 11       | **       | u         |       |
| tert-Butyl alcohol                        | ND                | 50                 | *1        | (144)    | "       | **       | *        | и         |       |
| tert-Butylbenzene                         | ND                | 5.5                | μg/kg dry | - 4      | "       | н        | "        | · ·       |       |
| tert-Butylbenzene                         | ND                | 5.0                | μg/kg     | 5.00     | н       | н        | "        |           |       |
| Tetrachloroethene                         | ND                | 5.5                | μg/kg dry | 1        | н       | H        | "        | "         |       |
| Tetrachloroethene                         | ND                | 5.0                | μg/kg     | ((##))   | н       | ü        | ((**))   | u         |       |
| Toluene                                   | ND                | 5.5                | μg/kg dry | (44)     | "       | n        | (14)     | n         |       |
| Toluene                                   | ND                | 5.0                | μg/kg     | +        | 10      | n        | 44       | "         |       |
| trans-1,2-Dichloroethene                  | ND                | 5.5                | μg/kg dry | "        | "       | 10       | π.       | u         |       |
| trans-1,2-Dichloroethene                  | ND                | 5.0                | μg/kg     | 10       | u,      | ū        | (H).     | n         |       |
| trans-1,3-Dichloropropene                 | ND                | 5.5                | μg/kg dry | 0        | "       | n        | n        | n         |       |
| trans-1,3-Dichloropropene                 | ND                | 5.0                | μg/kg     | 0        | II.     | U        | 7/45     |           |       |
| Trichloroethene                           | ND                | 5.5                | μg/kg dry | 0        | II.     | 0        | "        | n         |       |
| Trichloroethene                           | ND                | 5.0                | μg/kg     | 0        | 11      | n n      | "        | 11        |       |
| Trichlorofluoromethane                    | ND                | 5.5                | μg/kg dry | 0        | II .    | 11       | Ħ        | ti        |       |
| Trichlorofluoromethane                    | ND                | 5.0                | μg/kg     | 0        | и       | n        | "        | •         |       |
| Vinyl chloride                            | ND                | 11                 | μg/kg dry | 11       | н       | "        | "        | ti :::    |       |
| Vinyl chloride                            | ND                | 10                 | μg/kg     | o        | и       | "        | "        | <u>.</u>  |       |
| Xylenes (total)                           | ND                | 11                 | μg/kg dry | U        | (19)    | , i      | "        | U         |       |
| Xylenes (total)                           | ND                | 10                 | μg/kg     | u        | ((0.)   | В        | 5,40     |           |       |
| Surrogate: 1,2-Dichloroethane-d4          |                   | 160 %              | 50-1      | 125      | n       | n        | n        | "         | QS-4  |
| Surrogate: 1,2-Dichloroethane-d4          |                   | 160 %              | 50-1      | 125      | n       | "        | "        | n         | QS-4  |
| Surrogate: 4-Bromofluorobenzene           |                   | 116%               | 50-       | 128      | п       | <b>"</b> | #        | (49)      |       |

Page 13 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                           | Result      | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|---------------------------------------------------|-------------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| B1-21 (17J0311-02) Soil Sampled: 10/05/17 09:0    | 0 Received: | 10/05/17 16:52     | 2         |          |         |          |          |           |       |
| Surrogate: 4-Bromofluorobenzene                   |             | 116 %              | 50-1      | 128      | 1707631 | "        | 10/06/17 | EPA 8260B |       |
| Surrogate: Toluene-d8                             |             | 91 %               | 62-1      | 125      | "       | **       | "        | #         |       |
| Surrogate: Toluene-d8                             |             | 91 %               | 62-1      | 125      |         | и        | 10       | **        |       |
| B2-12 (17J0311-03) Soil Sampled: 10/05/17 09:5    | 0 Received: | 10/05/17 16:5      | 2         |          |         |          |          |           |       |
| 1,1,1,2-Tetrachloroethane                         | ND          | 5.6                | μg/kg dry | 1        | 1707631 | 10/06/17 | 10/06/17 | EPA 8260B |       |
| 1,1,1,2-Tetrachloroethane                         | ND          | 5.0                | μg/kg     | **       | n       | 11       | 0        | 11        |       |
| 1,1,1-Trichloroethane                             | ND          | 5.6                | μg/kg dry |          | n       | 11       | 0        | "         |       |
| 1,1,1-Trichloroethane                             | ND          | 5.0                | μg/kg     | н        | *       | "        | 0        | н         |       |
| 1,1,2,2-Tetrachloroethane                         | ND          | 5.0                | 11        | II.      | **      | "        | 9        | •         |       |
| 1,1,2,2-Tetrachloroethane                         | ND          | 5.6                | μg/kg dry | n        | #       | n        | U        |           |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND          | 5.6                | u         | n        | 7       | "        | 11       | н         |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND          | 5.0                | μg/kg     | 19       |         | u        | 11       | Ħ         |       |
| 1,1,2-Trichlorocthane                             | ND          | 5.6                | μg/kg dry | · ·      | W.      | n        | Ū        | н         |       |
| 1,1,2-Trichloroethane                             | ND          | 5.0                | μg/kg     | 0        |         | u        |          | *         |       |
| 1,1-Dichloroethane                                | ND          | 5.6                | μg/kg dry | u u      |         | n        | v        | 72        |       |
| 1,1-Dichloroethane                                | ND          | 5.0                | μg/kg     | U        |         | н        | v        | 4         |       |
| 1,1-Dichloroethene                                | ND          | 5.6                | μg/kg dry | u        | **      |          | **       | 11        |       |
| 1,1-Dichloroethene                                | ND          | 5.0                | μg/kg     |          | b       |          | ū        | 14        |       |
| 1,1-Dichloropropene                               | ND          | 5.6                | μg/kg dry | u        | **      | ų        | ū        | **        |       |
| 1,1-Dichloropropene                               | ND          | 5.0                | μg/kg     | U        | 9       | 10       | ų.       | 4         |       |
| 1,2,3-Trichlorobenzene                            | ND          | 5.6                | μg/kg dry | 9        |         | "        | 0        | ₩ #       |       |
| 1,2,3-Trichlorobenzene                            | ND          | 5.0                | μg/kg     | 0        |         | "        | O.       | #         |       |
| 1,2,3-Trichloropropane                            | ND          | 5.6                | μg/kg dry | o o      | n       | n        | 0        | 4         |       |
| 1,2,3-Trichloropropane                            | ND          | 5.0                | μg/kg     | o.       |         | "        | 0        | **        |       |
| 1,2,4-Trichlorobenzene                            | ND          | 5.6                | μg/kg dry | 0        | *       |          | 17       | 11        |       |
| 1,2,4-Trichlorobenzene                            | ND          | 5.0                | μg/kg     | "        | .0.     | n.       | tr.      | и         |       |
| 1,2,4-Trimethylbenzene                            | ND          | 5.6                | μg/kg dry |          |         | ,        | 0        | **        |       |
| 1,2,4-Trimethylbenzene                            | ND          | 5.0                | μg/kg     | **       | 0.      | **       | v        | "         |       |
| 1,2-Dibromo-3-chloropropane                       | ND          | 11                 | μg/kg dry | o        |         | п        | tr.      | u         |       |

Page 14 of 59

10/16/17 08:57

eScreen Logic

Project: Hayward #7371A

11249 Gold Country Blvd Ste 165 Gold River, CA 95670

Project Number: [none] Project Manager: Robert F. CLS Work Order #: 17J0311

COC#: 181979

| Analyte                                        | Result      | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|------------------------------------------------|-------------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| B2-12 (17J0311-03) Soil Sampled: 10/05/17 09:5 | D Received: | 10/05/17 16:52     | 2                  |          |         |          |          |           |       |
| 1,2-Dibromo-3-chloropropane                    | ND          | 10                 | μg/kg              | 1        | 1707631 | н        | 10/06/17 | EPA 8260B |       |
| 1,2-Dibromoethane (EDB)                        | ND          | 5.6                | μg/kg dry          | , 11     | "       | ii       | "        | "         |       |
| 1,2-Dibromoethane (EDB)                        | ND          | 5.0                | μg/kg              | "        | "       | **       | 11       | *         |       |
| 1,2-Dichlorobenzene                            | ND          | 5.6                | μg/kg dry          | , "      | **      | *1       | "        | "         |       |
| 1,2-Dichlorobenzene                            | ND          | 5.0                | μg/kg              | н        | "       | ti       | **       | "         |       |
| 1,2-Dichloroethane                             | ND          | 5.6                | μg/kg dry          | , "      | II.     | н        | n        | 11        |       |
| 1,2-Dichloroethane                             | ND          | 5.0                | μg/kg              | ıı       | "       | *1       | ¥i       | и         |       |
| 1,2-Dichloropropane                            | ND          | 5.6                | μg/kg dry          | , "      | 11      | **       | *1       | 11        |       |
| 1,2-Dichloropropane                            | ND          | 5.0                | μg/kg              | "        | 111     | n n      | 11       | n         |       |
| 1,3,5-Trimethylbenzene                         | ND          | 5.6                | μg/kg dry          | , "      | 11      | ī        | 11       | n         |       |
| 1,3,5-Trimethylbenzene                         | ND          | 5.0                | μg/kg              | "        | и       | ű        | "        | 11        |       |
| 1,3-Dichlorobenzene                            | ND          | 5.6                | μg/kg dry          | , н      |         | u        | н        | 0         |       |
| 1,3-Dichlorobenzene                            | ND          | 5.0                | μg/kg              | "        |         | 11       | H        | u         |       |
| 1,3-Dichloropropane                            | ND          | 5.6                | μg/kg dry          | , н      | 11      | 11       | н        | Ü         |       |
| 1,3-Dichloropropane                            | ND          | 5.0                | μg/kg              | **       | "       | "        | 11       | 9         |       |
| 1,4-Dichlorobenzenc                            | ND          | 5.6                | μ <b>g</b> /kg dry | , "      | "       | n        | 11       | n         |       |
| 1,4-Dichlorobenzene                            | ND          | 5.0                | μg/kg              | **       | "       | n        | "        | Ü         |       |
| 2,2-Dichloropropane                            | ND          | 5.6                | μ <b>g</b> /kg dry | , = ,,   | **      | n        | (*)      |           |       |
| 2,2-Dichloropropane                            | ND          | 5.0                | μg/kg              |          | 11      | n        | 11       | U         |       |
| 2-Butanone                                     | ND          | 110                | μ <b>g</b> /kg dry | , "      | м       | n        | 10       | u u       |       |
| 2-Butanone                                     | ND          | 100                | μg/kg              | n        | **      | 81       | IF       | 17        |       |
| 2-Hexanone                                     | ND          | 56                 | μg/kg dry          | , н      | 91      | ***      | 10       | II        |       |
| 2-Hexanone                                     | ND          | 50                 | μg/kg              | н        |         | 9#8      |          | н         |       |
| 4-Methyl-2-pentanone                           | ND          | 56                 | μ <b>g</b> /kg dry | н        | (25)    | ((+1))   | н        | H         |       |
| 4-Methyl-2-pentanone                           | ND          | 50                 | μg/kg              | n        | **      | (141)    | и        | n         |       |
| Acetone                                        | ND          | 110                | μ <b>g</b> /kg dry | , n      | 11      | 1(66)    | "        | 11        |       |
| Acetone                                        | ND          | 100                | μg/kg              |          |         | π.       | я        | H         |       |
| Benzene                                        | ND          | 5.6                | μg/kg dry          | . "      | R       | Atti     | "        | P         |       |
| Benzene                                        | ND          | 5.0                | μg/kg              | "        | 1993    | 100      | "        | n         |       |
| Bromobenzene                                   | ND          | 5.6                | μg/kg dry          |          | н       | 1746.2   | *        | 11        |       |
| Bromobenzene                                   | ND          | 5.0                | μg/kg              | и        | Ħ       | 10.      | "        | "         |       |

Page 15 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                 |                         | Result      | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-------------------------|-------------------------|-------------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| B2-12 (17J0311-03) Soil | Sampled: 10/05/17 09:50 | Received: 1 | 0/05/17 16:52      | !         |          |         |          |          |           |       |
| Bromochloromethane      |                         | ND          | 5.6                | μg/kg dry | 1        | 1707631 | n        | 10/06/17 | EPA 8260B |       |
| Bromochloromethane      |                         | ND          | 5.0                | μg/kg     | #        | 17      | n        | 11       | 17        |       |
| Bromodichloromethane    |                         | ND          | 5.6                | μg/kg dry | , "      | v       | 11       | 11       | n         |       |
| Bromodichloromethane    |                         | ND          | 5.0                | μg/kg     | n        | u.      | 11       | "        | n         |       |
| Bromoform               |                         | ND          | 5.6                | μg/kg dry | , "      | **      |          | ıı       | H         |       |
| Bromoform               |                         | ND          | 5.0                | μg/kg     | н        | **      | r.       | u        | H         |       |
| Bromomethane            |                         | ND          | 11                 | μg/kg dry | , "      | "       | и        | n n      | . н       |       |
| Bromomethane            |                         | ND          | 10                 | μg/kg     | D        | и       | **       | и        | p         |       |
| Carbon tetrachloride    |                         | ND          | 5.6                | μg/kg dry | , "      | н       | P.       | n n      | n         |       |
| Carbon tetrachloride    |                         | ND          | 5.0                | μg/kg     | **       | "       | "        | u        | 11        |       |
| Chlorobenzene           |                         | ND          | 5.6                | μg/kg dry | , "      |         | ı,       | "        | H         |       |
| Chlorobenzene           |                         | ND          | 5.0                | μg/kg     | *        | "       | **       | n        | ,,        |       |
| Chloroethane            |                         | ND          | 5.6                | μg/kg dry | , "      |         | **       | н        | n         |       |
| Chloroethane            |                         | ND          | 5.0                | μg/kg     | "        | "       | n        |          | "         |       |
| Chloroform              |                         | ND          | 5.6                | μg/kg dry | , "      | "       | 19       | te .     | r         |       |
| Chloroform              |                         | ND          | 5.0                | μg/kg     | "        | "       | 11       | "        | "         |       |
| Chloromethane           |                         | ND          | 11                 | μg/kg dry | , "      | "       | н        | и        | n         |       |
| Chloromethane           |                         | ND          | 10                 | μg/kg     | 20       | u       | n        | N        | н         |       |
| cis-1,2-Dichloroethene  |                         | ND          | 5.6                | μg/kg dry | , "      | n       |          | n        | H         |       |
| cis-1,2-Dichloroethene  |                         | ND          | 5.0                | μg/kg     | "        |         | н        | н        | н         |       |
| cis-1,3-Dichloropropene |                         | ND          | 5.6                | μg/kg dry | , "      | **      | μ        | ,        | н         |       |
| cis-1,3-Dichloropropene |                         | ND          | 5.0                | μg/kg     | *        | 11      | n        | н        | н         |       |
| Dibromochloromethane    |                         | ND          | 5.6                | μg/kg dry | , "      | "       | <u>e</u> | 2        | н         |       |
| Dibromochloromethane    |                         | ND          | 5.0                | μg/kg     | *        | 9       | "        | 9        | н         |       |
| Dibromomethane          |                         | ND          | 5.6                | μg/kg dry | , "      | **      | n        | **       | **        |       |
| Dibromomethane          |                         | ND          | 5.0                | μg/kg     | "        | 10      | n        | n        | 44        |       |
| Dichlorodifluoromethane | (Freon 12)              | ND          | 11                 | μg/kg dry | , н      | n       | ,,       | "        | ,         |       |
| Dichlorodifluoromethane | (Freon 12)              | ND          | 10                 | μg/kg     | **       | 11      | n        | 11       | ,         |       |
| Di-isopropyl ether      |                         | ND          | 5.0                | (19)      | **       |         | "        | 10       | "         |       |
| Ethyl tert-butyl ether  |                         | ND          | 5.0                | 1000      | ч        | "       |          | u        | 9         |       |
| Ethylbenzene            |                         | ND          | 5.6                | μg/kg dry | , ,      | v       | и        | "        | н         |       |

Page 16 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none] Project Manager: Robert F. CLS Work Order #: 17J0311

COC #: 181979

| Analyte                 |                         | Result      | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-------------------------|-------------------------|-------------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| B2-12 (17J0311-03) Soil | Sampled: 10/05/17 09:50 | Received: 1 | 0/05/17 16:52      |                    |          |         |          |          |           |       |
| Ethylbenzene            |                         | ND          | 5.0                | μg/kg              | 1        | 1707631 | "        | 10/06/17 | EPA 8260B |       |
| Hexachlorobutadiene     |                         | ND          | 5.6                | μg/kg dry          | 16       | 11      | н        | н        | "         |       |
| Hexachlorobutadiene     |                         | ND          | 5.0                | μg/kg              |          | 11      | Ħ        | Ħ        | н         |       |
| sopropylbenzene         |                         | ND          | 5.6                | μg/kg dry          | **       | n       | 2        | 19       | **        |       |
| sopropylbenzene         |                         | ND          | 5.0                | μg/kg              | 580      | н       |          | 19       | 11        |       |
| Methyl tert-butyl ether |                         | ND          | 5.0                | (90-)              | 7(0)     | 0000    | 0        | "        | **        |       |
| Methyl tert-butyl ether |                         | ND          | 5.6                | μg/kg dry          | ".       | IP.     | U        | H        | н         |       |
| Methylene chloride      |                         | ND          | 22                 | I7                 | **       | "       | н        | #1       | н         |       |
| Methylene chloride      |                         | ND          | 20                 | μg/kg              | 11       | 17      | н        | **       | "         |       |
| Naphthalene             |                         | ND          | 5.6                | μg/kg dry          | 0        | И       | 44       | "        | 11        |       |
| Naphthalene             |                         | ND          | 5.0                | μg/kg              | 0        | 19      | "        | "        | v         |       |
| -Butylbenzene           |                         | ND          | 5.6                | μg/kg dry          | 0        | **      |          | "        | TI .      |       |
| -Butylbenzene           |                         | ND          | 5.0                | μg/kg              | "        | **      |          | 19       | U         |       |
| -Propylbenzene          |                         | ND          | 5.6                | μg/kg dry          | 11       | **      | e        | Ħ        | I)        |       |
| -Propylbenzene          |                         | ND          | 5.0                | μg/kg              | 11       | **      | Ħ        | **       | #         |       |
| o-Chlorotoluene         |                         | ND          | 5.6                | μg/kg dry          | "        | н       | v        | (000)    | **        |       |
| o-Chlorotoluene         |                         | ND          | 5.0                | μg/kg              | 11       | н       | u        | 11       | **        |       |
| o-Chlorotoluene         |                         | ND          | 5.6                | μg/kg dry          | "        | *       | 0        | **       | *         |       |
| o-Chlorotoluene         |                         | ND          | 5.0                | μg/kg              | "        | 17      | u        | "        |           |       |
| o-Isopropyltoluene      |                         | ND          | 5.6                | μg/kg dry          | n        | W       |          | "        | H         |       |
| o-Isopropyltoluene      |                         | ND          | 5.0                | μg/kg              | "        | W       | ıı       | N        | н         |       |
| ec-Butylbenzene         |                         | ND          | 5.6                | μg/kg dry          | "        | **      | 11       | Ħ        | "         |       |
| sec-Butylbenzene        |                         | ND          | 5.0                | μg/kg              | **       | H       | R        | fi .     | **        |       |
| Styrene                 |                         | ND          | 5.6                | μg/kg dry          | "        | н       | n        | п        | "         |       |
| Styrene                 |                         | ND          | 5.0                | μg/kg              | "        | *1      | n        | "        | "         |       |
| ert-Amyl methyl ether   |                         | ND          | 5.0                | :20                | "        | н       | 40       | "        | "         |       |
| ert-Butyl alcohol       |                         | ND          | 50                 | 34                 | n        | н       | •        | н        | H         |       |
| ert-Butylbenzene        |                         | ND          | 5.6                | μ <b>g</b> /kg dry | н        | *1      | 1000     | **       | **        |       |
| ert-Butylbenzene        |                         | ND          | 5.0                | $\mu g/kg$         | Ħ        | **      | (90)     | н        | **        |       |
| Tetrachloroethene       |                         | ND          | 5.6                | μg/kg dry          | н        | **      | 040      | н        | Ħ         |       |
| Tetrachloroethene       |                         | ND          | 5.0                | μg/kg              | 11       | n       | (44)     | 19       | 11        |       |

Page 17 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                           | Result              | Reporting<br>Limit | Units I   | Dilution | Batch   | Prepared | Analyzed        | Method    | Notes |
|---------------------------------------------------|---------------------|--------------------|-----------|----------|---------|----------|-----------------|-----------|-------|
| B2-12 (17J0311-03) Soil Sampled: 10/05/1          | 7 09:50 Received: 1 | 0/05/17 16:52      | 2         |          |         |          |                 |           |       |
| Toluene                                           | ND                  | 5.6                | μg/kg dry | 1        | 1707631 | m)       | 10/06/17        | EPA 8260B |       |
| Toluene                                           | ND                  | 5.0                | μg/kg     | 71       | II.     | **:      | u               | "         |       |
| trans-1,2-Dichloroethene                          | ND                  | 5.6                | μg/kg dry |          | n.      | **       | ų               | *         |       |
| trans-1,2-Dichloroethene                          | ND                  | 5.0                | μg/kg     | я        | II.     | #3       | "               | ,         |       |
| trans-1,3-Dichloropropene                         | ND                  | 5.6                | μg/kg dry | "        | U       | *        | u               | r         |       |
| trans-1,3-Dichloropropene                         | ND                  | 5.0                | μg/kg     | 21       | O       | 4        | п               | n         |       |
| Trichloroethene                                   | ND                  | 5.6                | μg/kg dry | *1       | 12      | 9        | n               | 11        |       |
| Trichloroethene                                   | ND                  | 5.0                | μg/kg     | CRS      | 9       | €        | #               | 31        |       |
| Trichlorofluoromethane                            | ND                  | 5.6                | µg/kg dry | : #6     | 9       |          | н               | 11        |       |
| Trichlorofluoromethane                            | ND                  | 5.0                | μg/kg     | 167      | "       | v        | н               | n         |       |
| Vinyl chloride                                    | ND                  | 11                 | μg/kg dry | 100      | "       | 11       | H               | n         |       |
| Vinyl chloride                                    | ND                  | 10                 | μg/kg     |          | "       | 90       | "               | P.        |       |
| Xylenes (total)                                   | ND                  | 11                 | μg/kg dry | 77.      | n       | 10       | 420             | n         |       |
| Xylenes (total)                                   | ND                  | 10                 | µg/kg     | H        | U       | n        | "               | n         |       |
| Surrogate: 1,2-Dichloroethane-d4                  |                     | 160 %              | 50-1      | 25       | ,,      | н        | "               | n         | QS-4  |
| Surrogate: 1,2-Dichloroethane-d4                  |                     | 160 %              | 50-1      | 25       | "       | **       | "               | "         | QS-4  |
| Surrogate: 4-Bromofluorobenzene                   |                     | 102 %              | 50-1      | 28       |         | "        | "               | "         |       |
| Surrogate: 4-Bromofluorobenzene                   |                     | 102 %              | 50-1      | 28       | е =     | "        | ( <b>9</b> )(0) | 2.40      |       |
| Surrogate: Toluene-d8                             |                     | 90 %               | 62-1      | 25       | 0       | ч        | "               | "         |       |
| Surrogate: Toluene-d8                             |                     | 90 %               | 62-1      | 25       | e<br>-  | "        | н               | "         |       |
| B2-21 (17J0311-04) Soil Sampled: 10/05/1          | 7 10:00 Received: 1 | 10/05/17 16:52     | 2         |          |         |          |                 |           |       |
| 1,1,1,2-Tetrachloroethane                         | ND                  | 5.6                | μg/kg dry | 1        | 1707631 | 10/06/17 | 10/06/17        | EPA 8260B |       |
| 1,1,1,2-Tetrachloroethane                         | ND                  | 5,0                | μg/kg     | ,        | ч       | я        | ·               | 10        |       |
| 1,1,1-Trichloroethane                             | ND                  | 5.6                | μg/kg dry | n        | 11      | q        | . ••            | 9         |       |
| 1,1,1-Trichloroethane                             | ND                  | 5.0                | μg/kg     | n        | **      | g        | 0.00            | 9         |       |
| 1,1,2,2-Tetrachloroethane                         | ND                  | 5.6                | μg/kg dry | ,        | 11      | 11       | 1066            | 39        |       |
| 1,1,2,2-Tetrachloroethane                         | ND                  | 5.0                | μg/kg     | r        | 11      | "        | n               | ō         |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND                  | 5.6                | μg/kg dry | •        | н       | п        | **              | п         |       |

Page 18 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| <b>Anal</b> yte              |                         | Result      | Reporting<br>Limit | Units                       | Dilution | Batch           | Prepared | Analyzed | Method    | Notes |
|------------------------------|-------------------------|-------------|--------------------|-----------------------------|----------|-----------------|----------|----------|-----------|-------|
| B2-21 (17J0311-04) Soil      | Sampled: 10/05/17 10:00 | Received: 1 | 0/05/17 16:52      |                             |          |                 | 9.       |          |           |       |
| 1,1,2-Trichloro-1,2,2-triflu | oroethane               | ND          | 5.0                | μg/kg                       | 1        | <b>17076</b> 31 | 10       | 10/06/17 | EPA 8260B |       |
| (Freon 113)                  |                         | . III       |                    |                             | , "      | ,,              |          | 11       | n         |       |
| 1,1,2-Trichloroethane        |                         | ND          | 5.6                | μg/kg dry                   | ,<br>.n  |                 | " "      | п        | 11        |       |
| 1,1,2-Trichloroethane        |                         | ND          | 5.0                | μg/kg                       |          | 100             | ,,       |          | R         |       |
| 1,1-Dichloroethane           |                         | ND          | 5.6                | μg/kg dry                   |          | 19              |          | ti       | p.        |       |
| 1,1-Dichloroethane           |                         | ND          | 5.0                | μg/kg                       |          | 4               | n        | 11       | II        |       |
| 1,1-Dichloroethene           |                         | ND          | 5.6<br>5.0         | μg/kg dry                   | 11       |                 | ,,       | 77       | n         |       |
| 1,1-Dichloroethene           |                         | ND          |                    | μg/kg                       |          | 100             |          |          | n         |       |
| 1,1-Dichloropropene          |                         | ND<br>ND    | 5.6<br>5.0         | μg/kg dry                   | 0        |                 |          |          | 11        |       |
| 1,1-Dichloropropene          |                         |             |                    | μg/kg                       |          | 19              |          | SW       | n         |       |
| 1,2,3-Trichlorobenzene       |                         | ND          | 5.6                | μg/kg dry                   | ,        |                 | ,,       | "        | н         |       |
| 1,2,3-Trichlorobenzene       |                         | ND          | 5.0                | μg/kg                       |          | D.              |          | "        | H         |       |
| 1,2,3-Trichloropropane       |                         | ND<br>ND    | 5.6                | μg/kg dry                   | ,        | n               | ,,       | "        | н         |       |
| 1,2,3-Trichloropropane       |                         | ND          | 5.0                | μg/kg                       |          | ii ii           |          | Sec. 2   | D         |       |
| 1,2,4-Trichlorobenzene       |                         | ND<br>ND    | 5.6<br>5.0         | μg/kg dry<br>μg/kg          | ,<br>II  | lt.             |          | **       | U         |       |
| 1,2,4-Trichlorobenzene       |                         | ND          | 5.6                |                             |          | D.              |          | "        | n l       |       |
| 1,2,4-Trimethylbenzene       |                         | ND<br>ND    | 5.0                | μg/kg dry                   | , ,      | .,              |          | "        |           |       |
| 1,2,4-Trimethylbenzene       |                         |             |                    | μg/kg                       |          |                 |          | "        | n.        |       |
| 1,2-Dibromo-3-chloroprop     |                         | ND<br>ND    | 11                 | μg/kg dry                   | , ,      | D.              | 0        | n        | n         |       |
| 1,2-Dibromo-3-chloroprop     |                         | ND<br>ND    | 10<br>5.6          | μg/kg                       |          | ,,              | 0        | **       | n         |       |
| 1,2-Dibromoethane (EDB)      |                         | ND<br>ND    | 5.0                | μ <b>g</b> /kg dry<br>μg/kg | "        | 11              |          | #        | H         |       |
| 1,2-Dibromoethane (EDB)      |                         | ND<br>ND    | 5.6                |                             |          | **              | 0        | н        | o l       |       |
| 1,2-Dichlorobenzene          |                         |             |                    | μg/kg dry                   | , ,,     |                 |          | n        | n         |       |
| 1,2-Dichlorobenzene          |                         | ND          | 5.0                | μg/kg                       |          | н               |          | 17       | 11        |       |
| 1,2-Dichloroethane           |                         | ND          | 5.6                | μg/kg dry                   | ,        | ti              |          | P        | n         |       |
| 1,2-Dichloroethane           |                         | ND          | 5.0                | μg/kg                       |          |                 | "        |          | "         |       |
| 1,2-Dichloropropane          |                         | ND          | 5.6                | μg/kg dry                   | / "      | 11              | " "      |          | "         |       |
| 1,2-Dichloropropane          |                         | ND          | 5.0                | μg/kg                       |          | "               | "        |          |           |       |
| 1,3,5-Trimethylbenzene       |                         | ND          | 5.6                | μg/kg dry                   | ,<br>,   | 11              | " "      | 91       |           |       |
| 1,3,5-Trimethylbenzene       |                         | ND          | 5.0                | μg/kg                       |          |                 |          | "        |           |       |
| 1,3-Dichlorobenzene          |                         | ND          | 5.6                | μ <b>g</b> /kg dry          | ′ "      | •               | "        |          |           |       |

Page 19 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165 Gold River, CA 95670 Project: Hayward #7371A

Project Number: [none]
Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                 |                         | Result      | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed      | Method    | Notes |
|-------------------------|-------------------------|-------------|--------------------|-----------|----------|---------|----------|---------------|-----------|-------|
| B2-21 (17J0311-04) Soil | Sampled: 10/05/17 10:00 | Received: 1 | 0/05/17 16:52      | :         |          |         |          | _             |           |       |
| 1,3-Dichlorobenzene     |                         | ND          | 5.0                | μg/kg     | 1        | 1707631 | "        | 10/06/17      | EPA 8260B |       |
| 1,3-Dichloropropane     |                         | ND          | 5.6                | μg/kg dry | , "      | R       | **       | H.            | •         |       |
| 1,3-Dichloropropane     |                         | ND          | 5.0                | μg/kg     | P .1     | п       | 3.96     | "             | v         |       |
| 1,4-Dichlorobenzene     |                         | ND          | 5.6                | μg/kg dry | , ,,     | "       | 0.00     |               | 0         |       |
| 1,4-Dichlorobenzene     |                         | ND          | 5.0                | μg/kg     | : 29     | u       | . #      | B             | 4         |       |
| 2,2-Dichloropropane     |                         | ND          | 5.6                | μg/kg dry | , "      | ∵ n     | v        | н             | **        |       |
| 2,2-Dichloropropane     |                         | ND          | 5.0                | μg/kg     | 37       | "       |          | и             | "         |       |
| 2-Butanone              |                         | ND          | 110                | μg/kg dry | , "      | "       |          | 11            | e.        |       |
| 2-Butanone              |                         | ND          | 100                | μg/kg     | 139      | **      |          | **            | **        |       |
| 2-Hexanone              |                         | ND          | 56                 | μg/kg dry | * **     | "       | Wi       | O             | "         |       |
| 2-Hexanone              |                         | ND          | 50                 | μg/kg     | 11       | **      | w        | •             | 11        |       |
| 4-Methyl-2-pentanone    |                         | ND          | 56                 | μg/kg dry | , II     | **      | n        | **            | **        |       |
| 4-Methyl-2-pentanone    |                         | ND          | 50                 | μg/kg     | 1.0      | 11      | . 1957   |               |           |       |
| Acetone                 |                         | ND          | 110                | μg/kg dry | , ,      | **      |          | n             | **        |       |
| Acetone                 |                         | ND          | 100                | μg/kg     | 11       | "       | 1 80     | n             | "         |       |
| Benzene                 |                         | ND          | 5.6                | μg/kg dry | , "      | "       | w.       | 11            | v.        |       |
| Benzene                 |                         | ND          | 5.0                | μg/kg     | P        | **      | -0       | 21            | •         |       |
| Bromobenzene            |                         | ND          | 5.6                | μg/kg dry | , n      | 92      | 1.90     |               | •         |       |
| Bromobenzene            |                         | ND          | 5.0                | μg/kg     | e        | 11      | 0.00     | μ             | 9         |       |
| Bromochloromethane      |                         | ND          | 5.6                | μg/kg dry | , "      | H       | 187      | D             | 12        |       |
| Bromochloromethane      |                         | ND          | 5.0                | μg/kg     | н        | H       | н        | H             | u         |       |
| Bromodichloromethane    |                         | ND          | 5.6                | μg/kg dry | , н      | **      | · m      | n             |           |       |
| Bromodichloromethane    |                         | ND          | 5.0                | μg/kg     | н        | e j     | 7.00     | i in          | U         |       |
| Bromoform               |                         | ND          | 5,6                | μg/kg dry | , н      | 380     | 0.01     | n             | tr.       |       |
| Bromoform .             | 8                       | ND          | 5.0                | μg/kg     | ч.       | (10)    |          | "             | *         |       |
| Bromomethane            |                         | ND          | 11                 | μg/kg dry | , н      | 1963    | ,,       |               | ¥         |       |
| Bromomethane            |                         | ND          | 10                 | μg/kg     | •        |         | "        | n             | *         |       |
| Carbon tetrachloride    |                         | ND          | 5.6                | μg/kg dry | , "      | 4       |          | "             | H         |       |
| Carbon tetrachloride    |                         | ND          | 5.0                | μg/kg     | 1.0      | 5251    | "        | n             |           |       |
| Chlorobenzene           |                         | ND          | 5.6                | μg/kg dry | , "      | ((#0)   | "        | ( <b>96</b> ) | *         |       |
| Chlorobenzene           |                         | ND          | 5.0                | μg/kg     | 31       | **      | **       | 1961          | W.        |       |

Page 20 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

CLS Work Order #: 17J0311 COC#: 181979

Project Manager: Robert F.

| Analyte                                         | Result      | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-------------------------------------------------|-------------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| B2-21 (17J0311-04) Soil Sampled: 10/05/17 10:00 | Received: 1 | 0/05/17 16:52      | ž.                 |          |         |          | B 34     |           |       |
| Chloroethane                                    | ND          | 5.6                | μ <b>g</b> /kg dry | , 1      | 1707631 |          | 10/06/17 | EPA 8260B |       |
| Chloroethane                                    | ND          | 5.0                | μg/kg              | n        | n       | 19       | "        | н         |       |
| Chloroform                                      | ND          | 5.6                | μg/kg dry          | , ,      | n       | 75       | #        | He .      |       |
| Chloroform                                      | ND          | 5.0                | μg/kg              | 0        | #1      | 39       | **       | "         |       |
| Chloromethane                                   | ND          | 11                 | μg/kg dry          | , "      | #1      | "        | н        | и         |       |
| Chloromethane                                   | ND          | 10                 | μg/kg              | н        | 11      | in the   | 11       | н         |       |
| cis-1,2-Dichloroethene                          | ND          | 5.6                | μ <b>g</b> /kg dry | , 11     | н       | 9        | 41       | н         |       |
| cis-1,2-Dichloroethene                          | ND          | 5.0                | μg/kg              | P        |         | U        | 11       | **        |       |
| cis-1,3-Dichloropropene                         | ND          | 5.6                | μg/kg dry          | , "      |         | U        | **       |           |       |
| cis-1,3-Dichloropropene                         | ND          | 5.0                | μg/kg              | "        | **      | U        | **       | **        |       |
| Dibromochloromethane                            | ND          | 5.6                | μg/kg dry          | , "      | н       | н        |          | **        |       |
| Dibromochloromethane                            | ND          | 5.0                | μg/kg              |          | "       | 10       | "        | **        |       |
| Dibromomethane                                  | ND          | 5.6                | μ <b>g</b> /kg dry | #        | D       | n        | 11       | (*)       |       |
| Dibromomethane                                  | ND          | 5.0                | μg/kg              | M        | n       |          | .85      | (197)     |       |
| Dichlorodifluoromethane (Freon 12)              | ND          | 11                 | μ <b>g</b> /kg dry | ж        | D       | H        | IP.      | (99)      |       |
| Dichlorodifluoromethane (Freon 12)              | ND          | 10                 | μg/kg              | Ħ        | n       | p        | IF       | (100)     |       |
| Di-isopropyl ether                              | ND          | 5.0                | (4)                | *        |         | Ir       | IF       |           |       |
| Ethyl tert-butyl ether                          | ND          | 5.0                | 10                 | *        | **      | n        | D .      | . 44      |       |
| Ethylbenzene                                    | ND          | 5.6                | μ <b>g</b> /kg dry | М.       | **      | H        | н        | 1000      |       |
| Ethylbenzene                                    | ND          | 5.0                | μg/kg              | н        | 36      | н        | н        | (200)     |       |
| Hexachlorobutadiene                             | ND          | 5.6                | μ <b>g</b> /kg dry | , н      |         | В        | n        | (940)     |       |
| Hexachlorobutadiene                             | ND          | 5.0                | μg/kg              | н        | "       | 11       | 11       | 200       |       |
| Isopropylbenzene                                | ND          | 5.6                | μg/kg dry          | , "      | "       | **       | "        | -         |       |
| Isopropylbenzene                                | ND          | 5.0                | μg/kg              | Ħ        | **      | **       | **       | (947)     |       |
| Methyl tert-butyl ether                         | ND          | 5.6                | μ <b>g</b> /kg dry | , "      | *       | **       | "        | 1000      |       |
| Methyl tert-butyl ether                         | ND          | 5.0                | μg/kg              | 11       | ¥       | 11       | **       | 11411     |       |
| Methylene chloride                              | ND          | 22                 | μg/kg dry          | , 11     | H       |          | "        | TF        |       |
| Methylene chloride                              | ND          | 20                 | μg/kg              | ч        | #       | "        | n        | 11        |       |
| Naphthalene                                     | ND          | 5.6                | μg/kg dry          | , н      | **      | n        | 19       | w         |       |
| Naphthalene                                     | ND          | 5.0                | µg/kg              | ęı.      | **      | n        | •        | tr.       |       |
| n-Butylbenzene                                  | ND          | 5.6                | μg/kg dry          | , "      | ¥       | н        | м        | 0         |       |

Page 21 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                   |                         | Result      | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared   | Analyzed | Method    | Notes |
|---------------------------|-------------------------|-------------|--------------------|-----------|----------|---------|------------|----------|-----------|-------|
| B2-21 (17J0311-04) Soil   | Sampled: 10/05/17 10:00 | Received: 1 | 0/05/17 16:52      |           |          |         |            |          |           |       |
| n-Butylbenzene            |                         | ND          | 5.0                | μg/kg     | 11       | 1707631 | и          | 10/06/17 | EPA 8260B |       |
| n-Propylbenzene           |                         | ND          | 5.6                | μg/kg dry | , "      | н       | ıı         | 11       | **        |       |
| n-Propylbenzene           |                         | ND          | 5.0                | μg/kg     | **       | 11      | и          | **       | 11        |       |
| o-Chlorotoluene           |                         | ND          | 5.6                | μg/kg dry | . "      | 11      | 11         | n        | **        |       |
| o-Chlorotoluene           |                         | ND          | 5.0                | μg/kg     | •        | n n     | II         | 11       | **        |       |
| p-Chlorotoluene           |                         | ND          | 5.6                | μg/kg dry | , "      | tr      | lt.        | n        | **        |       |
| p-Chlorotoluene           |                         | ND          | 5.0                | μg/kg     | "        | u       | u          | n n      | **        |       |
| p-Isopropyltoluene        |                         | ND          | 5.6                | μg/kg dry | , "      | u       | II.        | и.       |           |       |
| p-Isopropyltoluene        |                         | ND          | 5.0                | μg/kg     | Ħ        | U       | **         | н        | 51        |       |
| sec-Butylbenzene          |                         | ND          | 5.6                | μg/kg dry | . "      | u       | 11         | n        | **        |       |
| sec-Butylbenzene          |                         | ND          | 5.0                | μg/kg     | **       | 0       | **:        | n        | 51        |       |
| Styrene                   |                         | ND          | 5.6                | μg/kg dry | , "      | 0       | n          | "        | **        |       |
| Styrene                   |                         | ND          | 5.0                | μg/kg     | **       | 0       |            | н        | 11        |       |
| tert-Amyl methyl ether    |                         | ND          | 5.0                | 9.00      | **       | R       |            | *1       | 31        |       |
| tert-Butyl alcohol        |                         | ND          | 50                 | 200       | "        | n       | #          | 11       | 11        |       |
| tert-Butylbenzene         |                         | ND          | 5.6                | μg/kg dry | , "      | 25      | 21         | 11       |           |       |
| tert-Butylbenzene         |                         | ND          | 5.0                | μg/kg     | 0.       | ėį.     |            | 0        | **        |       |
| Tetrachloroethene         |                         | ND          | 5.6                | μg/kg dry |          | 11      | H          | (9)      | n         |       |
| Tetrachloroethene         |                         | ND          | 5.0                | μg/kg     | 0        | В.      |            | 17       |           |       |
| Toluene                   |                         | ND          | 5.6                | μg/kg dry | , 0      | 31      | 0          | 0        | н         |       |
| Toluene                   |                         | ND          | 5.0                | μg/kg     | •        | . "     | . 10       | v        | н         |       |
| trans-1,2-Dichloroethene  |                         | ND          | 5.6                | μg/kg dry | , "      | **      | <b>H</b> E | v        | n         |       |
| trans-1,2-Dichloroethene  |                         | ND          | 5.0                | μg/kg     | u        | 11      | 74         | U        | *1        |       |
| trans-1,3-Dichloropropene | :                       | ND          | 5.6                | μg/kg dry | , u      | р       |            | P        | **        |       |
| trans-1,3-Dichloropropene | <b>;</b>                | ND          | 5.0                | μg/kg     | l†       | n       | #)         | ,,       | "         |       |
| Trichloroethene           |                         | ND          | 5.6                | μg/kg dry | , "      | Þ       | 0.00       | **       | "         |       |
| Trichloroethene           |                         | ND          | 5.0                | μg/kg     | 11       | 11      | n          | н        | **        |       |
| Trichlorofluoromethane    |                         | ND          | 5.6                | μg/kg dry | , "      | н       | **         | **       | **        |       |
| Trichlorofluoromethane    |                         | ND          | 5.0                | μg/kg     | n        | н       | n          | ,,       | n         |       |
| Vinyl chloride            |                         | ND          | 11                 | μg/kg dry | n        | n       | #          | H        | 11        |       |
| Vinyl chloride            |                         | ND          | 10                 | μg/kg     | ,,       | **      | "          | (*)      |           |       |

Page 22 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]
Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                   | Result            | Reporting<br>Limit | Units    | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-------------------------------------------|-------------------|--------------------|----------|----------|---------|----------|----------|-----------|-------|
| B2-21 (17J0311-04) Soil Sampled: 10/05/17 | 7 10:00 Received: | 10/05/17 16:5      | 2        |          |         |          |          |           |       |
| Xylenes (total)                           | ND                | 11                 | μg/kg dr | y 1      | 1707631 | 0        | 10/06/17 | EPA 8260B |       |
| Xylenes (total)                           | ND                | 10                 | μg/kg    |          | n       | 19       | "        | н         |       |
| Surrogate: 1,2-Dichloroethane-d4          |                   | 161 %              | 50       | -125     | "       | IE.      | "        | "         | QS-4  |
| Surrogate: 1,2-Dichloroethane-d4          |                   | 161 %              | 50       | -125     | 11      | n        | "        |           | QS-4  |
| Surrogate: 4-Bromofluorobenzene           |                   | 124 %              | 50       | -128     | "       | n        | "        | ***       |       |
| Surrogate: 4-Bromofluorobenzene           |                   | 125 %              | 50       | -128     | "       | ļi       | "        | 11        |       |
| Surrogate: Toluene-d8                     |                   | 90 %               | 62-      | -125     | #       | H        | "        |           |       |
| Surrogate: Toluene-d8                     |                   | 90 %               | 62       | -125     | **      | n        | "        | n         |       |
| B1 GW (17J0311-05) Water Sampled: 10/0    | 5/17 10:35 Receiv | ed: 10/05/17       | 16:52    |          |         |          |          |           |       |
| 1,1,1,2-Tetrachloroethane                 | ND                | 0.50               | μg/L     | 1        | 1707627 | 10/06/17 | 10/06/17 | EPA 8260B |       |
| 1,1,1-Trichloroethane                     | ND                | 0.50               | v        | "        | н       | "        | н        | ū         |       |
| 1,1,2,2-Tetrachloroethane                 | ND                | 0.50               | u.       | n        | 91      | н        | 11       | If        |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane     | ND                | 0.50               | O.       | 10       | 19      | н        | "        | н         |       |
| (Freon 113)                               |                   | 5                  |          | 0        | **      |          | 25       | и         |       |
| 1,1,2-Trichloroethane                     | ND                | 0.50               |          | "        |         | Ħ        |          | "<br>h    |       |
| 1,1-Dichloroethane                        | ND                | 0.50               |          |          | "       | "        |          | ,         |       |
| 1,1-Dichloroethene                        | ND                | 0.50               | .,       | "        | (6)     | "        | **       |           |       |
| 1,1-Dichloropropene                       | ND                | 0.50               | "        | U        | н       | "        | 101      | "         |       |
| 1,2,3-Trichlorobenzene                    | ND                | 0.50               | "        | u        | n       | н        | н :=:    | n         |       |
| 1,2,3-Trichloropropane                    | ND                | 0.50               |          | н        | #       | n        | W        | н         |       |
| 1,2,4-Trichlorobenzene                    | ND                | 0.50               | 11       | B        | 11      | "        |          | "         |       |
| 1,2,4-Trimethylbenzene                    | ND                | 0.50               | R        |          | 60      | 0        | *        | "         |       |
| 1,2-Dibromo-3-chloropropane               | ND                | 1.0                | **       | 11       | **      | 11       | 11       | "         |       |
| 1,2-Dibromoethane (EDB)                   | ND                | 0.50               | "        | n        | **      | 11       | •        | "         |       |
| 1,2-Dichlorobenzene                       | ND                | 0.50               | n        | н        | **      | U        | **       | n         |       |
| 1,2-Dichloroethane                        | ND                | 0.50               | **       | 11       | **/     | u ·      | н        | n         |       |
| 1,2-Dichloropropane                       | ND                | 0.50               | н        | p        | 60      | ₩.       | н        | н         |       |
| 1,3,5-Trimethylbenzene                    | ND                | 0.50               | **       | Ħ        | *1      | Ħ        | н        | н         |       |
| 1,3-Dichlorobenzene                       | ND                | 0.50               | 11       | r        | 11      | *        | 11       | n         |       |
| 1,3-Dichloropropane                       | ND                | 0.50               | 11       | н        | W       | 25       | 11       |           |       |

Page 23 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC#: 181979

| Analyte                                        | Result     | Reporting<br>Limit | Units | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|------------------------------------------------|------------|--------------------|-------|----------|---------|----------|----------|-----------|-------|
| B1 GW (17J0311-05) Water Sampled: 10/05/17 10: | 35 Receive | ed: 10/05/17 1     | 6:52  |          |         |          |          |           |       |
| 1,4-Dichlorobenzene                            | ND         | 0.50               | μg/L  | 1        | 1707627 | n        | 10/06/17 | EPA 8260B |       |
| 2,2-Dichloropropane                            | ND         | 0.50               | **    | **       | n       | 11       | "        | 11        |       |
| 2-Butanone                                     | ND         | 10                 | H1.   | **       | н       | 11       | A        | н         |       |
| 2-Hexanone                                     | ND         | 10                 |       | 17       | n       |          | H        | 11        |       |
| 4-Methyl-2-pentanone                           | ND         | 10                 | H     | 11       | н       | +        | н        | O C       |       |
| Acetone                                        | ND         | 10                 | **    | **       | н       | 75       | đ        | 17        |       |
| Benzene                                        | 0.59       | 0.50               |       | 8.       | H       | .75      | ,        | v         |       |
| Bromobenzene                                   | ND         | 0.50               | 100   | n        | "       | H        | "        | v         |       |
| Bromochloromethane                             | ND         | 0.50               | "     | "        | "       | Ä        | n        | U         |       |
| Bromodichloromethane                           | ND         | 0.50               | **    | "        | "       | H        | n        | 11        |       |
| Bromoform                                      | ND         | 0.50               | 6     | "        | "       |          |          | 0         |       |
| Bromomethane                                   | ND         | 1.0                |       | **       | "       | w        | н        | 9         |       |
| Carbon tetrachloride                           | ND         | 0.50               | ec.   | **       | п       | W        | н        | u u       |       |
| Chlorobenzene                                  | ND         | 0.50               | 100   | 17       | н       | ii ii    | н        | n .       |       |
| Chloroethane                                   | ND         | 0.50               | 14    | **       | н       | *        | *        | D.        |       |
| Chloroform                                     | ND         | 0.50               | *     |          | H       |          | **       | **        |       |
| Chloromethane                                  | ND         | 1.0                | **    | •        | н       | 25       | =_       | **        |       |
| cis-1,2-Dichloroethene                         | ND         | 0.50               | 100   | **       | n       | W        | "        | 11        |       |
| cis-1,3-Dichloropropene                        | ND         | 0.50               | **    | 11       | e.      | 11       | н        | 93        |       |
| Dibromochloromethane                           | ND         | 0.50               | 147   | **       | n       |          | **       | 11        |       |
| Dibromomethane                                 | ND         | 0.50               |       | **       | н       | 9        | ч        | **        |       |
| Dichlorodifluoromethane (Freon 12)             | ND         | 1.0                |       | **       | n       | n        | ч        | п         |       |
| Di-isopropyl ether                             | ND         | 0.50               | . 141 | **       | ů       | **       | ч        |           |       |
| Ethyl tert-butyl ether                         | ND         | 0.50               |       |          | 11      | Ü        | u        | n.        |       |
| Ethylbenzene                                   | ND         | 0.50               | 165   | "        | n       | 11       | N 11     | 21        |       |
| Hexachlorobutadiene                            | ND         | 0.50               | н     | n        | 0       | 0        |          | "         |       |
| Isopropylbenzene                               | ND         | 0.50               | **    | H        | n       | tr       | "        | "         |       |
| Methyl tert-butyl ether                        | ND         | 0.50               | 19    | "        | n       | u        | 11       | •         |       |
| Methylene chloride                             | ND         | 0.50               | 9     | **       | n.      | **       | n        | n         |       |
| Naphthalene                                    | ND         | 0.50               | ű     | **       | n       | v        | н        | н         |       |
| n-Butylbenzene                                 | ND         | 0.50               | ч     | "        | n       | u        | 9        | н         |       |

Page 24 of 59

10/16/17 08:57

eScreen Logic

Gold River, CA 95670

11249 Gold Country Blvd Ste 165

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                              | Result              | Reporting<br>Limit | Units | Dilution | Batch   | Prepared | Analyzed | Method             | Notes |
|------------------------------------------------------|---------------------|--------------------|-------|----------|---------|----------|----------|--------------------|-------|
| B1 GW (17J0311-05) Water Sampled: 10/0               | 5/17 10:35 Received | l: 10/05/17 1      | 6:52  |          |         |          |          |                    |       |
| n-Propylbenzene                                      | ND                  | 0.50               | μg/L  | 1        | 1707627 | n        | 10/06/17 | EPA 8260B          |       |
| o-Chlorotoluene                                      | ND                  | 0.50               | **    | n        | D       | "        | 19       | o o                |       |
| p-Chlorotoluene                                      | ND                  | 0.50               | 0     | "        | D       | U        | 25       | O.                 |       |
| p-Isopropyltolucne                                   | ND                  | 0.50               | u     | "        | 390     | u        | н        | "                  |       |
| sec-Butylbenzene                                     | ND                  | 0.50               | v     | n        | **      | ū        | n        | н                  |       |
| Styrene                                              | ND                  | 0.50               | 0     | "        | n       | u        | "        |                    |       |
| tert-Amyl methyl ether                               | ND                  | 0.50               | D     | n        | 17      | н        | **       | n                  |       |
| tert-Butyl alcohol                                   | ND                  | 5.0                | **    | н        | **      | 11       | **       | H.                 |       |
| tert-Butylbenzene                                    | ND                  | 0.50               | н     | п        | **      | и        | **       | и                  |       |
| Tetrachloroethene                                    | ND                  | 0.50               | н     | u        | ¥       | 11       | H        | H.                 |       |
| Toluene                                              | ND                  | 0.50               | и     | 11       | H       | "        | н        | н                  |       |
| trans-1,2-Dichloroethene                             | ND                  | 0.50               | 11    | 11       |         | "        | н        | n                  |       |
| trans-1,3-Dichloropropene                            | ND                  | 0.50               | ,,    | **       | 25      | n        | *1       | #                  |       |
| Trichloroethene                                      | ND                  | 0.50               | *     | · ·      | ×       | n        | 41       | **                 |       |
| Trichlorofluoromethane                               | ND                  | 0.50               | 11    | 17       | 14      | н        | 41       | 11                 |       |
| Vinyl chloride                                       | ND                  | 1.0                | ,,    | v        | #       | ,        | 11       | **                 |       |
| Xylenes (total)                                      | 2.3                 | 1.0                | н     | p        | P       | n        | н -      | v                  |       |
| Surrogate: 1,2-Dichloroethane-d4                     |                     | 123 %              | 66    | -135     | n       | **       | и        | 7 "                |       |
| Surrogate: 4-Bromofluorobenzene                      |                     | 100 %              | 73    | -125     | "       | "        | "        | n                  |       |
| Surrogate: Toluene-d8                                |                     | 96 %               | 72    | -125     | **      |          | "        | "                  |       |
| B2 GW (17J0311-06) Water Sampled: 10/0               | 5/17 10:50 Received | : 10/05/17 1       | 6:52  |          |         |          |          |                    |       |
| 1,1,1,2-Tetrachloroethane                            | ND                  | 0.50               | μg/L  | 1        | 1707627 | 10/06/17 | 10/06/17 | EPA 8260B          |       |
| 1,1,1-Trichloroethane                                | ND                  | 0.50               | **    | п        | "       | н        | "        | -                  |       |
| 1,1,2,2-Tetrachloroethane                            | ND                  | 0.50               | "     | n        | 11      | н        | u        | 3170               |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane<br>(Freon 113) | ND                  | 0.50               | "     | "        | n       | н        | 10       | ((44))             |       |
| 1,1,2-Trichloroethane                                | ND                  | 0.50               | "     | R        | *1      | **       | W.       | 1944               |       |
| 1,1-Dichloroethane                                   | ND                  | 0.50               | "     | H        | 41      | **       | II.      | Mr.                |       |
| 1,1-Dichloroethene                                   | ND                  | 0.50               | ,,    |          | 11      | "        | U        | **                 |       |
| 1,1-Dichloropropene                                  | ND                  | 0.50               | •     | 25       | *1      | TI .     | *        | ( <del>(*)</del> ) |       |

Page 25 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                              | Result               | Reporting<br>Limit | Units | Dilution | Batch   | Prepared | Analyzed | Method         | Notes |
|--------------------------------------|----------------------|--------------------|-------|----------|---------|----------|----------|----------------|-------|
| B2 GW (17J0311-06) Water Sampled: 10 | /05/17 10:50 Receive | d: 10/05/17 1      | 6:52  |          |         |          |          |                |       |
| 1,2,3-Trichlorobenzene               | ND                   | 0.50               | μg/L  | 1        | 1707627 | 11       | 10/06/17 | EPA 8260B      |       |
| 1,2,3-Trichloropropane               | ND                   | 0.50               | **    | n        | 11      | 0        | "        |                |       |
| 1,2,4-Trichlorobenzene               | ND                   | 0.50               | 81    | **       | 11      | 9        | 11       | 0              |       |
| 1,2,4-Trimethylbenzene               | ND                   | 0.50               | #1    | M        | H       | U        | **       | Ħ              |       |
| 1,2-Dibromo-3-chloropropane          | ND                   | 1.0                |       | **       | n       | u        | 11       | *              |       |
| 1,2-Dibromoethane (EDB)              | ND                   | 0.50               | *)    | **       | н       | v        | "        | н              |       |
| 1,2-Dichlorobenzene                  | ND                   | 0.50               |       | *        | н       | 11       | ,,       | н              |       |
| 1,2-Dichloroethane                   | ND                   | 0.50               | 165   | н        | n       | **       | ,,       | н              |       |
| 1,2-Dichloropropane                  | ND                   | 0.50               | 60    |          | n       | 11       | ,,       | n              |       |
| 1,3,5-Trimethylbenzene               | ND                   | 0.50               | **    | n        | н       | **       | "        | н              |       |
| 1,3-Dichlorobenzene                  | ND                   | 0.50               | 97    | **       | "       | n        | 71       | н              |       |
| 1,3-Dichloropropane                  | ND                   | 0.50               |       | **       | ,,      | 11       | "        | н              |       |
| 1,4-Dichlorobenzene                  | ND                   | 0.50               |       |          | n       | W        | **       | н              |       |
| 2,2-Dichloropropane                  | ND                   | 0.50               | 67    | "        | 11      | 9        | ,,       | n              |       |
| 2-Butanone                           | ND                   | 10                 |       | н        | p       | **       | "        | **             |       |
| 2-Hexanone                           | ND                   | 10                 | #/    | **       | n       | Ū        | "        | **             |       |
| 4-Mcthyl-2-pentanone                 | ND                   | 10                 |       | 11       | n       | 0        | "        | **             |       |
| Acctone                              | ND                   | 10                 |       | 31       | n       | 0        | 11       |                |       |
| Benzene                              | 1.1                  | 0.50               | 1.    | 0        | ü.      | *        | н        | n              |       |
| Bromobenzene                         | ND                   | 0.50               | н     | 11       | D       | "        | "        | 11             |       |
| Bromochloromethane                   | ND                   | 0.50               | 11    | H        | *       | v        | "        | o .            |       |
| Bromodichloromethane                 | ND                   | 0.50               | 0.90  | **       | *       | ŷ.       | н        | **             |       |
| Bromoform                            | ND                   | 0.50               | *     | 11       |         | e        | r.       |                |       |
| Bromomethane                         | ND                   | 1.0                | 96    | н        | rt      | •        | n        |                |       |
| Carbon tetrachloride                 | ND                   | 0.50               | "     | **       | -       |          | п        | н              |       |
| Chlorobenzene                        | ND                   | 0.50               | **    | •        | **      | Р        |          | n              |       |
| Chloroethane                         | ND                   | 0.50               | "     | "        | *:      |          | 9        | 3.95           |       |
| Chloroform                           | ND                   | 0.50               |       | "        | *       |          | a        | 90.0           |       |
| Chloromethane                        | ND                   | 1.0                | "     | n        | #1      | ,,       | 11       | i <del>n</del> |       |
| cis-1,2-Dichloroethene               | ND                   | 0.50               | "     | U        | **      | ,,       | 11       | 19             |       |
| cis-1,3-Dichloropropene              | ND                   | 0.50               |       | 0        |         | P        | u        | 99             |       |

Page 26 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

#### Volatile Organic Compounds by EPA Method 8260B

| Analyte                               | Result              | Reporting<br>Limit | Units | Dilution | Batch   | Prepared | Analyzed   | Method    | Notes |
|---------------------------------------|---------------------|--------------------|-------|----------|---------|----------|------------|-----------|-------|
| B2 GW (17J0311-06) Water Sampled: 10/ | 05/17 10:50 Receive | d: 10/05/17 1      | 6:52  |          |         |          |            |           |       |
| Dibromochloromethane                  | ND                  | 0.50               | μg/L  | 1        | 1707627 | 2.400    | 10/06/17   | EPA 8260B |       |
| Dibromomethane                        | ND                  | 0.50               | н     | n        | n       | 18       | <b>H</b> 1 | *1        |       |
| Dichlorodifluoromethane (Freon 12)    | ND                  | 1.0                | н     | n        | ŧ       | 41       | 1461       | **        |       |
| Di-isopropyl ether                    | ND                  | 0.50               | n     | n        | н       | 5.9%     | 44         | **        |       |
| Ethyl tert-butyl ether                | ND                  | 0.50               |       | н        | 190     | (100)    | **         | 11        |       |
| Ethylbenzene                          | ND                  | 0.50               |       | п        | U       | (141)    | **         | "         |       |
| Hexachlorobutadiene                   | ND                  | 0.50               | н     | н        | н       | 44.      | 9          | 11        |       |
| Isopropylbenzene                      | ND                  | 0.50               | н     | n        | n       | 71       | **         | и         |       |
| Methyl tert-butyl ether               | ND                  | 0.50               | н     | n        | **      | (#)      | **         | 11        |       |
| Methylene chloride                    | ND                  | 0.50               | н     | n        | п       | (40)(    | **         | "         |       |
| Naphthalene                           | 2.0                 | 0.50               | н     | и        | н       | (44)     | II.        | N         |       |
| n-Butylbenzene                        | ND                  | 0.50               | н     | n        | ŧ       | (40)     | n          | **        |       |
| n-Propylbenzene                       | ND                  | 0.50               | n     | n        | *1      | w        | \$1        | ų         |       |
| o-Chlorotoluene                       | ND                  | 0.50               | **    | n        | n       | (#)      | 91         | Ħ         |       |
| p-Chlorotoluene                       | ND                  | 0.50               | 11    | n        | *11     | (40)     | n          | **        |       |
| p-Isopropyltoluene                    | ND                  | 0.50               | "     | n        | *1      | 100      | n          | "         |       |
| sec-Butylbenzene                      | ND                  | 0.50               | "     | ***      | 11      | 44       | н          | **        |       |
| Styrene                               | ND                  | 0.50               | 11    | "        | **      | 111      | **         | "         |       |
| tert-Amyl methyl ether                | ND                  | 0.50               | "     | "        | *1      | (#)      | n          | **        |       |
| tert-Butyl alcohol                    | ND                  | 5.0                | 41    |          | **      | (44)     | н          | **        |       |
| tert-Butylbenzene                     | ND                  | 0.50               | "     | "        | **      | **       | н          | "         |       |
| Tetrachloroethene                     | 3.5                 | 0.50               | n     | *        | **      | *        | н          | "         |       |
| Toluene                               | 0.61                | 0.50               | 11    | H        | **      | **       | н          | **        |       |
| trans-1,2-Dichloroethene              | ND                  | 0.50               | H     | **       | *1      | 1.993    | IT         | "         |       |
| trans-1,3-Dichloropropene             | ND                  | 0.50               |       | **       | #1      | "        | II.        | "         |       |
| Trichloroethene                       | ND                  | 0.50               | 'n    | ***      | н       | n        | 39937      | T .       |       |
| Trichlorofluoromethane                | ND                  | 0.50               | rt    | "        | н       | n        | 19         | "         |       |
| Vinyl chloride                        | ND                  | 1.0                |       | H        | н       | H        | D          | "         |       |
| Xylenes (total)                       | 1.7                 | 1.0                | 17    | "        |         | "        | "          | "         |       |
| Surrogate: 1,2-Dichloroethane-d4      |                     | 123 %              | 66    | 5-135    | n       | 11       | н          | "         |       |

Page 27 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165 Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none] Project Manager: Robert F. CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                  | Result            | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method         | Notes |
|------------------------------------------|-------------------|--------------------|-----------|----------|---------|----------|----------|----------------|-------|
| B2 GW (17J0311-06) Water Sampled: 10/05  | 5/17 10:50 Receiv | ed: 10/05/17 1     | 6:52      |          |         |          |          |                |       |
| Surrogate: 4-Bromofluorobenzene          |                   | 101 %              | 73        | 125      | 1707627 | 4        | 10/06/17 | EPA 8260B      |       |
| Surrogate: Toluene-d8                    |                   | 95 %               | <b>72</b> | 125      | "       | 11       | "        | н              |       |
| Trip Blank (17J0311-07) Water Sampled: 1 | 0/05/17 11:00 Rec | eived: 10/05/1     | 7 16:52   |          | .95     |          | 5        |                |       |
| 1,1,1,2-Tetrachloroethane                | ND                | 0.50               | μg/L      | 1        | 1707627 | 10/06/17 | 10/06/17 | EPA 8260B      |       |
| 1,1,1-Trichloroethane                    | ND                | 0.50               | н         | "        | u       | 0        | Ħ        | н              |       |
| 1,1,2,2-Tetrachloroethane                | ND                | 0.50               | a.        | **       | v       | **       |          | 31 <b>*</b> 53 |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane    | ND                | 0.50               | **        | **       | u       | · ·      | *        | (100)          |       |
| (Freon 113)                              |                   |                    |           |          |         |          |          |                |       |
| 1,1,2-Trichloroethane                    | ND                | 0.50               | "         | n        | 21      | v        | a a      | (144)          |       |
| 1,1-Dichloroethane                       | ND                | 0.50               | "         | 77       | 8 -     | "        | ***      |                |       |
| 1,1-Dichloroethene                       | ND                | 0.50               | "         | u        |         |          | U        |                |       |
| 1,1-Dichloropropene                      | ND                | 0.50               | e.        | u        | 25.     |          | n        | X <b>4</b> C   |       |
| 1,2,3-Trichlorobenzene                   | ND                | 0.50               | **        | u        | **      | "        | **       | н              |       |
| 1,2,3-Trichloropropane                   | ND                | 0.50               | 17        | ж        | 10      | R        | н        | "              |       |
| 1,2,4-Trichlorobenzene                   | ND                | 0.50               | 17        | *        | н       | "        | **       | н              |       |
| 1,2,4-Trimethylbenzene                   | ND                | 0.50               | 17        | *        | **      | P        | "        | н              |       |
| 1,2-Dibromo-3-chloropropane              | ND                | 1.0                | 91        |          | **      |          | H        | 21             |       |
| 1,2-Dibromoethane (EDB)                  | ND                | 0.50               | **        | **       | **      | 11       | n        | 11             |       |
| 1,2-Dichlorobenzene                      | ND                | 0.50               | n         | **       | **      | **       | "        | 0              |       |
| 1,2-Dichloroethane                       | ND                | 0.50               | n         | **       | **      | n        | "        | 11             |       |
| 1,2-Dichloropropane                      | ND                | 0.50               | #)        |          | 11      |          | n        | n .            |       |
| 1,3,5-Trimethylbenzene                   | ND                | 0.50               | 7         | "        |         | W        | H        | п              |       |
| 1,3-Dichlorobenzene                      | ND                | 0.50               | 47        | **       | "       | N.       | •        | 91             |       |
| 1,3-Dichloropropane                      | ND                | 0.50               | H.        | •        | n       | ¥        | п        | n              |       |
| 1,4-Dichlorobenzene                      | ND                | 0.50               |           | "        | u       |          | n        | P              |       |
| 2,2-Dichloropropane                      | ND                | 0.50               | (4)       | n        | 0       | *        | "        | н              |       |
| 2-Butanone                               | ND                | 10                 | "         | 11       | U       | 9        | ••       | n              |       |
| 2-Hexanone                               | ND                | 10                 | и         | **       | 10      | 17       | 0        | "              |       |
| 4-Methyl-2-pentanone                     | ND                | 10                 |           | v.       | 10      | 17       | u.       | **             |       |
| Acetone                                  | ND                | 10                 | u         | U        | n       |          | ,        | 74             |       |
| Benzene                                  | ND                | 0.50               |           |          | "       |          |          |                |       |

Page 28 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                            | Result                    | Reporting<br>Limit | Units   | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|------------------------------------|---------------------------|--------------------|---------|----------|---------|----------|----------|-----------|-------|
| Trip Blank (17J0311-07) Water S    | Sampled: 10/05/17 11:00 R | Received: 10/05/1  | 7 16:52 |          |         |          |          |           |       |
| Bromobenzene                       | ND                        | 0.50               | μg/L    | 1        | 1707627 | н        | 10/06/17 | EPA 8260B |       |
| Bromochloromethane                 | ND                        | 0.50               | 0       | п        | *1      | "        |          | "         |       |
| Bromodichloromethane               | ND                        | 0.50               | 0       | 11       | **      |          | 11       | n         |       |
| Bromoform                          | ND                        | 0.50               | 3.46    | u        | **      | н        | n        | n         |       |
| Bromomethane                       | ND                        | 1.0                |         | O        |         | "        | **       | U         |       |
| Carbon tetrachloride               | ND                        | 0.50               | 39      | o ·      | 11      | п        | 100      | n         |       |
| Chlorobenzene                      | ND                        | 0.50               | h       | "        | II .    | п        | π        | #         |       |
| Chloroethane                       | ND                        | 0.50               | •       | II.      | 19      | *1       | 11       |           |       |
| Chloroform                         | ND                        | 0.50               | "       | "        | **      | 11       | **       | **        |       |
| Chloromethane                      | ND                        | 1.0                |         | n        | **      | 0        | n        | *         |       |
| cis-1,2-Dichloroethene             | ND                        | 0.50               |         | H        | н       | 11       | 0440     | n         |       |
| cis-1,3-Dichloropropene            | ND                        | 0.50               | 11      | "        | H       |          | *1       | "         |       |
| Dibromochloromethane               | ND                        | 0.50               | **      | "        |         | p        | H        | •         |       |
| Dibromomethane                     | ND                        | 0.50               | 11      | n        | 10      | n        | н        | n         |       |
| Dichlorodifluoromethane (Freon 12) | ) ND                      | 1.0                | 0       | н        | н       | 190      | 10       | u         |       |
| Di-isopropyl ether                 | ND                        | 0.50               | **      | **       | 11      |          | 11       | n         |       |
| Ethyl tert-butyl ether             | ND                        | 0.50               | u       | "        | "1      | 1990     | **       | "         |       |
| Ethylbenzene                       | ND                        | 0.50               | u       | n        |         | (10)     | н        | U         |       |
| Hexachlorobutadiene                | ND                        | 0.50               | U       | n        | n       | 2.0      | **       | U         |       |
| Isopropylbenzene                   | ND                        | 0.50               | 11      | 11       | н       | "        | **       | H         |       |
| Methyl tert-butyl ether            | ND                        | 0.50               | и       | 11       | 10      | 11       | n        | н         |       |
| Methylene chloride                 | ND                        | 0.50               | 11      | D        | D       | 77       | н        | U         |       |
| Naphthalene                        | ND                        | 0.50               | n       |          | 27      | 11       | **       | n         |       |
| n-Butylbenzene                     | ND                        | 0.50               | H       | 199      | 19      | v        | **       | 60        |       |
| n-Propylbenzene                    | ND                        | 0.50               | .00     | 194      | **      | 11       | M        | iii.      |       |
| o-Chlorotoluene                    | ND                        | 0.50               | **      | 16       | "       | 11       | **       |           |       |
| p-Chlorotoluene                    | ND                        | 0.50               | (#)     | н        | н       | 11       | 11       | +         |       |
| p-Isopropyltoluene                 | ND                        | 0.50               |         | **       | m       | n        | 11       | **        |       |
| sec-Butylbenzene                   | ND                        | 0.50               | W       | "        | "       | н        | н        | "         |       |
| Styrene                            | ND                        | 0.50               | Ħ       | n        | "       | **       | н        | н         |       |
| tert-Amyl methyl ether             | ND                        | 0.50               | 91      | н        | н       | "        | 10       | ti        |       |

Page 29 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                      | Result                              | Reporting<br>Limit                                                              | Units                                                                                    | Dilution                   | Batch   | Prepared | Analyzed                      | Method         | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|---------|----------|-------------------------------|----------------|-------|
| Trip Blank (17J0311-07) Water Sampled: 10                                                                                                                                                                                                                                                                                                                                                                    | 0/05/17 11:00 Rec                   | eived: 10/05/                                                                   | 17 16:52                                                                                 |                            |         |          |                               |                |       |
| tert-Butyl alcohol                                                                                                                                                                                                                                                                                                                                                                                           | ND                                  | 5.0                                                                             | μg/L                                                                                     | 1                          | 1707627 |          | 10/06/17                      | EPA 8260B      |       |
| tert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                            | ND                                  | 0.50                                                                            |                                                                                          | **                         | п       | 20.      | #                             | 12             |       |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                            | ND                                  | 0.50                                                                            | 91                                                                                       | n                          | н       | *        | n                             | 17             |       |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                  | 0.50                                                                            | **                                                                                       | w                          | и       | W        | n                             | U              |       |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                     | ND                                  | 0.50                                                                            | #                                                                                        | **                         | я       |          | n.                            | U              |       |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                    | ND                                  | 0.50                                                                            | #                                                                                        | <b>*</b>                   | 11      |          | u                             | 9              |       |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                              | ND                                  | 0.50                                                                            | #                                                                                        | #                          | *       | rt       | 9                             |                |       |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                       | ND                                  | 0.50                                                                            | n.                                                                                       |                            | *       | Ж        | n                             | n              |       |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                               | ND                                  | 1.0                                                                             | н                                                                                        | *                          | M       | **       | ,                             | 9              |       |
| Xylenes (total)                                                                                                                                                                                                                                                                                                                                                                                              | ND                                  | 1.0                                                                             | н                                                                                        | W                          | "       | n        | 'n                            | e e            |       |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                             |                                     | 124 %                                                                           | 66                                                                                       | 135                        | #       | "        | u                             | n              |       |
| Surrogate: 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                              |                                     | 100 %                                                                           | 73-                                                                                      | 125                        | "       | **       | n                             | "              |       |
| Surroguie. 4-Bromojiuorovenzene                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                                                                 |                                                                                          |                            |         |          |                               |                |       |
| Surrogate: Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                        |                                     | 96 %                                                                            | 72-                                                                                      | 125                        | "       | **       | "                             | "              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                              | 12:35 Received:                     | 96 %                                                                            |                                                                                          | 125                        | #       | "        | "                             | "              |       |
| Surrogate: Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                        | 12:35 Received:                     | 96 %                                                                            |                                                                                          | 125                        | 1707631 | 10/06/17 | 10/06/17                      | "<br>EPA 8260B | ····  |
| Surrogate: Toluene-d8  B3-1.5 (17J0311-08) Soil Sampled: 10/05/17                                                                                                                                                                                                                                                                                                                                            |                                     | 96 %<br>10/05/17 16:5                                                           | 52                                                                                       | 1                          |         |          |                               |                |       |
| Surrogate: Toluene-d8 B3-1.5 (17J0311-08) Soil Sampled: 10/05/17 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                         | ND                                  | 96 %<br>10/05/17 16:5<br>5.0                                                    | 5 <b>2</b><br>μg/kg                                                                      | 1                          | 1707631 | 10/06/17 | 10/06/17                      | EPA 8260B      |       |
| Surrogate: Toluene-d8 B3-1.5 (17J0311-08) Soil Sampled: 10/05/17 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                   | ND<br>ND                            | 96 %<br>10/05/17 16:5<br>5.0<br>5.4                                             | i2<br>μg/kg<br>μg/kg dry                                                                 | 1                          | 1707631 | 10/06/17 | 10/06/17                      | EPA 8260B      |       |
| Surrogate: Toluene-d8  B3-1.5 (17J0311-08) Soil Sampled: 10/05/17  1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                     | ND<br>ND<br>ND                      | 96 %<br>10/05/17 16:5<br>5.0<br>5.4<br>5.4                                      | μg/kg<br>μg/kg dry<br>"                                                                  | 1<br>n<br>e                | 1707631 | 10/06/17 | 10/06/17                      | EPA 8260B      |       |
| Surrogate: Toluene-d8  B3-1.5 (17J0311-08) Soil Sampled: 10/05/17  1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                   | ND<br>ND<br>ND                      | 96 % 10/05/17 16:5 5.0 5.4 5.4 5.0                                              | μg/kg<br>μg/kg dry<br>"<br>μg/kg                                                         | 1<br>n<br>e                | 1707631 | 10/06/17 | 10/06/17                      | EPA 8260B      |       |
| Surrogate: Toluene-d8  B3-1.5 (17J0311-08) Soil Sampled: 10/05/17  1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                 | ND<br>ND<br>ND<br>ND                | 96 % 10/05/17 16:5 5.0 5.4 5.4 5.0 5.4                                          | μg/kg<br>μg/kg dry<br>"<br>μg/kg<br>μg/kg                                                | 1<br>0<br>0                | 1707631 | 10/06/17 | 10/06/17                      | EPA 8260B      |       |
| Surrogate: Toluene-d8  B3-1.5 (17J0311-08) Soil Sampled: 10/05/17  1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)                                                                                                                                        | ND ND ND ND ND ND ND ND             | 96 %  10/05/17 16:5  5.0  5.4  5.4  5.0  5.4  5.0  5.4                          | μg/kg<br>μg/kg dry<br>"<br>μg/kg<br>μg/kg dry<br>μg/kg                                   | 1<br>0<br>0<br>0<br>0      | 1707631 | 10/06/17 | 10/06/17                      | EPA 8260B      |       |
| Surrogate: Toluene-d8  B3-1.5 (17J0311-08) Soil Sampled: 10/05/17  1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloro-1,2,2-trifluoroethane                                                                                                                         | ND<br>ND<br>ND<br>ND<br>ND          | 96 %  10/05/17 16:5  5.0 5.4 5.4 5.0 5.4 5.0                                    | μg/kg<br>μg/kg dry<br>"<br>μg/kg<br>μg/kg dry<br>μg/kg                                   | 1<br>0<br>0                | 1707631 | 10/06/17 | 10/06/17                      | EPA 8260B      |       |
| Surrogate: Toluene-d8  B3-1.5 (17J0311-08) Soil Sampled: 10/05/17  1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)                                                                               | ND ND ND ND ND ND ND ND ND          | 96 %  10/05/17 16:5  5.0  5.4  5.4  5.0  5.4  5.0  5.4  5.0                     | μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry                              | 1<br>0<br>0<br>0           | 1707631 | 10/06/17 | 10/06/17                      | EPA 8260B      |       |
| Surrogate: Toluene-d8  B3-1.5 (17J0311-08) Soil Sampled: 10/05/17  1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane                                                             | ND       | 96 %  10/05/17 16:5  5.0 5.4 5.4 5.0 5.4 5.0 5.4 5.0 5.4                        | μg/kg dry  μg/kg dry  μg/kg dry  μg/kg dry  μg/kg dry  μg/kg dry                         | 1<br>0<br>0<br>0           | 1707631 | 10/06/17 | 10/06/17  " " " " " " " " " " | EPA 8260B      |       |
| Surrogate: Toluene-d8  B3-1.5 (17J0311-08) Soil Sampled: 10/05/17  1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane                 | ND | 96 %  10/05/17 16:5  5.0  5.4  5.4  5.0  5.4  5.0  5.4  5.0  5.4  5.0  5.4      | μg/kg μg/kg dry  μg/kg μg/kg dry  μg/kg μg/kg dry  μg/kg μg/kg dry  μg/kg dry  μg/kg dry | 1<br>0<br>0<br>0<br>0      | 1707631 | 10/06/17 | 10/06/17                      | EPA 8260B      |       |
| Surrogate: Toluene-d8  B3-1.5 (17J0311-08) Soil Sampled: 10/05/17  1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane | ND       | 96 %  10/05/17 16:5  5.0  5.4  5.0  5.4  5.0  5.4  5.0  5.4  5.0  5.4  5.0  5.4 | μg/kg μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg dry μg/kg μg/kg dry        | 1<br>0<br>0<br>0<br>0      | 1707631 | 10/06/17 | 10/06/17                      | EPA 8260B      |       |
| Surrogate: Toluene-d8  B3-1.5 (17J0311-08) Soil Sampled: 10/05/17  1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane                 | ND | 96 %  10/05/17 16:5  5.0  5.4  5.4  5.0  5.4  5.0  5.4  5.0  5.4  5.0  5.4      | μg/kg μg/kg dry  μg/kg μg/kg dry  μg/kg μg/kg dry  μg/kg μg/kg dry  μg/kg dry  μg/kg dry | 1<br>0<br>0<br>0<br>0<br>0 | 1707631 | 10/06/37 | 10/06/17                      | EPA 8260B      |       |

Page 30 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]
Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                   |                         | Result    | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|---------------------------|-------------------------|-----------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| B3-1.5 (17J0311-08) Soil  | Sampled: 10/05/17 12:35 | Received: | 10/05/17 16:5      | 12                 |          |         |          |          |           |       |
| 1,1-Dichloropropene       |                         | ND        | 5.4                | μg/kg dry          | 1        | 1707631 |          | 10/06/17 | EPA 8260B |       |
| 1,1-Dichloropropene       |                         | ND        | 5.0                | μg/kg              | Ħ        | п       | n        | 11       | **        |       |
| 1,2,3-Trichlorobenzene    |                         | ND        | 5.4                | μg/kg dry          | , n      | n       | n        | 41       | н         |       |
| 1,2,3-Trichlorobenzene    |                         | ND        | 5.0                | μg/kg              | **       | n       | 11       | *1       | #         |       |
| 1,2,3-Trichloropropane    |                         | ND        | 5.4                | μg/kg dry          | , "      | **      | n        | "        | **        |       |
| 1,2,3-Trichloropropane    |                         | ND        | 5.0                | μg/kg              | **       | 200     | 5000     | "        | **        |       |
| 1,2,4-Trichlorobenzene    |                         | ND        | 5.4                | μg/kg dry          | . "      | W       | **       | п        | u         |       |
| 1,2,4-Trichlorobenzene    |                         | ND        | 5.0                | μg/kg              | "        | **      |          | н        | п         |       |
| 1,2,4-Trimethylbenzene    |                         | ND        | 5.4                | μg/kg dry          |          |         | **       | н        | п         |       |
| 1,2,4-Trimethylbenzene    |                         | ND        | 5.0                | μg/kg              | "        | *       | 1199     |          | н         |       |
| 1,2-Dibromo-3-chloropropa | ne                      | ND        | 11                 | μg/kg dry          | , n      | er      | ((90))   | 1.75     | н         |       |
| 1,2-Dibromo-3-chloropropa | ne                      | ND        | 10                 | μg/kg              | n        | .0      | 1940     | U        | н         |       |
| 1,2-Dibromoethane (EDB)   |                         | ND        | 5.4                | μg/kg dry          | . н      | н       | 44       | 10       | п         |       |
| 1,2-Dibromoethane (EDB)   |                         | ND        | 5.0                | μg/kg              | н        | п       |          | 19       | **        |       |
| 1,2-Dichlorobenzene       |                         | ND        | 5.4                | μ <b>g</b> /kg dry | , н      | н       | 500      | II       | 11        |       |
| 1,2-Dichlorobenzene       |                         | ND        | 5.0                | μg/kg              | #        | н       | 1000     | 170      | **        |       |
| 1,2-Dichloroethane        |                         | ND        | 5.4                | μ <b>g</b> /kg dry |          | 11      | 96       | P        | II.       |       |
| 1,2-Dichloroethane        |                         | ND        | 5.0                | μg/kg              | 11       | *1      | *        | D        | ű.        |       |
| 1,2-Dichloropropane       |                         | ND        | 5.4                | μg/kg dry          | . "      | 11      |          |          | o         |       |
| 1,2-Dichloropropane       |                         | ND        | 5.0                | μg/kg              | "        | 11      | н        | H        | O.        |       |
| 1,3,5-Trimethylbenzene    |                         | ND        | 5.4                | μg/kg dry          | . "      | 41      | п        | 19       | u u       |       |
| 1,3,5-Trimethylbenzene    |                         | ND        | 5.0                | μg/kg              | ш        | *1      | **       | ji       | n         |       |
| 1,3-Dichlorobenzene       |                         | ND        | 5.4                | μg/kg dry          | . "      | **      | **       | If       |           |       |
| 1,3-Dichlorobenzene       |                         | ND        | 5.0                | μg/kg              | "        | "       | **       | **       | O.        |       |
| 1,3-Dichloropropane       |                         | ND        | 5.4                | μg/kg dry          | . "      | u       | "        | я        | U         |       |
| 1,3-Dichloropropane       |                         | ND        | 5.0                | μg/kg              | "        | n       | "        | п        | u .       |       |
| 1,4-Dichlorobenzene       |                         | ND        | 5.4                | μ <b>g</b> /kg dry | u        | *1      | "        | 31       | U         |       |
| 1,4-Dichlorobenzene       |                         | ND        | 5.0                | μg/kg              | н        | n       | **       | 91       | II.       |       |
| 2,2-Dichloropropane       |                         | ND        | 5.4                | μ <b>g</b> /kg dry |          | n       | nī.      | #        | n n       |       |
| 2,2-Dichloropropane       |                         | ND        | 5.0                | μg/kg              | n n      | *1      | **       | я        | u         |       |
| 2-Butanone                |                         | ND        | 110                | μ <b>g</b> /kg dry | п        | ii      | п        | **       | U         |       |

Page 31 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                  |                         | Result    | Reporting<br>Limit | Units     | Dilution   | Batch   | Prepared | Analyzed | Method         | Notes |
|--------------------------|-------------------------|-----------|--------------------|-----------|------------|---------|----------|----------|----------------|-------|
| B3-1.5 (17J0311-08) Soil | Sampled: 10/05/17 12:35 | Received: | 10/05/17 16:5      | 52        |            |         |          |          |                |       |
| 2-Butanone               |                         | ND        | 100                | μg/kg     | 1          | 1707631 |          | 10/06/17 | EPA 8260B      |       |
| 2-Hexanone               |                         | ND        | 54                 | μg/kg dry | 7          | **      | .**      | U        | e              |       |
| 2-Hexanone               |                         | ND        | 50                 | μg/kg     | #:         | и       | W        | D        | n ·            |       |
| 4-Methyl-2-pentanone     |                         | ND        | 54                 | μg/kg dry | )×         | •       | iii      | O        |                |       |
| 4-Methyl-2-pentanone     |                         | ND        | 50                 | μg/kg     | **         | **      | *        | u        | и.             |       |
| Acetone                  |                         | ND        | 110                | μg/kg dry | / #        | n       |          | o        | в              |       |
| Acetone                  |                         | ND        | 100                | μg/kg     |            | "       | æ        | v        | в              |       |
| Benzene                  |                         | ND        | 5.4                | μg/kg dry | , "        | **      | **       | v        | rı .           |       |
| Benzene                  |                         | ND        | 5.0                | μg/kg     | <b>»</b> : | **      | **       | U        | n              |       |
| Bromobenzene             |                         | ND        | 5.4                | μg/kg dry | r **       | **      | *        | U        | (ii)           |       |
| Bromobenzene             |                         | ND        | 5.0                | μg/kg     | *          | "       |          | U        | n              |       |
| Bromochloromethane       |                         | ND        | 5.4                | μg/kg dry | / 8        | ч       | 311      | II.      |                |       |
| Bromochloromethane       |                         | ND        | 5.0                | μg/kg     | *          | **      | ¥        | "        | **             |       |
| Bromodichloromethane     |                         | ND        | 5.4                | μg/kg dry | 7 "        | ч       | M        | n        | 0              |       |
| Bromodichloromethane     |                         | ND        | 5.0                | μg/kg     | **         | **      | Ü        | 9        | 0              |       |
| Bromoform                |                         | ND        | 5.4                | μg/kg dry | 7          | in      | **       | "        | 11             |       |
| Bromoform                |                         | ND        | 5.0                | μg/kg     | n          |         | **       | **       | U              |       |
| Bromomethane             |                         | ND        | 11                 | μg/kg dry | 7 "        | n       | M        | n        | n              |       |
| Bromomethane             |                         | ND        | 10                 | μg/kg     | *          | **      | H        | "        | U              |       |
| Carbon tetrachloride     |                         | ND        | 5.4                | μg/kg dry | , <u>.</u> | п       | *        | p        | n              |       |
| Carbon tetrachloride     |                         | ND        | 5.0                | μg/kg     | "          | Ħ       | 77       | II       | II             |       |
| Chlorobenzene            |                         | ND        | 5.4                | μg/kg dry | ř "        | н       | w        | n        | H <sub>2</sub> |       |
| Chlorobenzene            |                         | ND        | 5.0                | μg/kg     | p          | **      | ĬĤ.      | n        | E_i            |       |
| Chloroethane             |                         | ND        | 5.4                | μg/kg dry | , "        | **      | 11       | P        | "              |       |
| Chloroethane             |                         | ND        | 5.0                | μg/kg     | п          | vi.     | <b>#</b> | į,       | II.            |       |
| Chloroform               |                         | ND        | 5.4                | μg/kg dry | / "        | ñ.      | 2.       | "        | , n            |       |
| Chloroform               |                         | ND        | 5.0                | μg/kg     | n          | u.      | 9        | 11       | H              |       |
| Chloromethane            |                         | ND        | 11                 | μg/kg dry | , "        | n       | •        | 11       | н              |       |
| Chloromethane            |                         | ND        | 10                 | μg/kg     | 11         | n.      | 11 "     | 11       | н              |       |
| cis-1,2-Dichloroethene   |                         | ND        | 5,4                | μg/kg dry | 7 "        | 11      | •        | 11       | н              |       |
| cis-1,2-Dichloroethene   |                         | ND        | 5.0                | μg/kg     | п          | 11      | .,       | н        | "              |       |
|                          |                         |           |                    |           |            |         |          |          |                |       |

Page 32 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                      | Result         | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|----------------------------------------------|----------------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| B3-1.5 (17J0311-08) Soil Sampled: 10/05/17 1 | 2:35 Received: | 10/05/17 16:5      | 2                  |          |         |          |          |           |       |
| cis-1,3-Dichloropropene                      | ND             | 5.4                | μ <b>g</b> /kg dry | 1        | 1707631 | n        | 10/06/17 | EPA 8260B |       |
| cis-1,3-Dichloropropene                      | ND             | 5.0                | μg/kg              | "        | **      | n        | "        | "         |       |
| Dibromochloromethane                         | ND             | 5.4                | μg/kg dry          | , "      | **      | n        | н        | "         |       |
| Dibromochloromethane                         | ND             | 5.0                | μg/kg              | "        | H       | "        | н        | "         |       |
| Dibromomethane                               | ND             | 5.4                | μg/kg dry          | , "      | н       | 1[00];   | 19       | "         |       |
| Dibromomethane                               | ND             | 5.0                | μg/kg              | n        | н       | (140)    |          | n         |       |
| Dichlorodifluoromethane (Freon 12)           | ND             | 11                 | μ <b>g</b> /kg dry | , н      | #       | 4        | "        | "         |       |
| Dichlorodifluoromethane (Freon 12)           | ND             | 10                 | μg/kg              | n        | #       | (19)     | D        | **        |       |
| Di-isopropyl ether                           | ND             | 5.0                | .77                | "        | π       | SHIT     | P        | н         |       |
| Ethyl tert-butyl ether                       | ND             | 5.0                | 46                 | ,,       | 11      | 1000     | (95)     | "         |       |
| Ethylbenzene                                 | ND             | 5.4                | µg/kg đry          | . "      | e       |          |          | **        |       |
| Ethylbenzene                                 | ND             | 5.0                | μg/kg              | "        | н       | *        | n        | **        |       |
| Hexachlorobutadiene                          | ND             | 5.4                | μg/kg dry          | , "      | н       | M.       | 77       | "         |       |
| Hexachlorobutadiene                          | ND             | 5.0                | μg/kg              | "        | Ħ       | и        | "        | н         |       |
| Isopropylbenzene                             | ND             | 5.0                | n                  | n        | н       | и        | **       | "         |       |
| Isopropylbenzene                             | ND             | 5.4                | μ <b>g</b> /kg dry | , н      | 11      | "        |          | н         |       |
| Methyl tert-butyl ether                      | ND             | 5.4                | 0                  | 11       | **      | "        | **       | н         |       |
| Methyl tert-butyl ether                      | ND             | 5.0                | μg/kg              |          | 11      | 11       | **       | н         |       |
| Methylene chloride                           | ND             | 22                 | μg/kg dry          | , 11     | ·       | n        | 19       | Ħ         |       |
| Methylene chloride                           | ND             | 20                 | μg/kg              |          | **      | 11       | н        | a.        |       |
| Naphthalene                                  | ND             | 5.4                | μg/kg dry          | . "      | "       | 0        | н        | u         |       |
| Naphthalene                                  | ND             | 5.0                | μg/kg              | "        | H       | •        | н        | u         |       |
| n-Butylbenzene                               | ND             | 5.4                | μ <b>g</b> /kg dry | . "      | н       | 0        | P        | 0         |       |
| n-Butylbenzene                               | ND             | 5.0                | μg/kg              | н        | *       | 0        | н        | u         |       |
| n-Propylbenzene                              | ND             | 5.4                | μg/kg dry          |          |         | **       | 11       | u         |       |
| n-Propylbenzene                              | ND             | 5.0                | μg/kg              | 11       | 10      | **       | 11       | U         |       |
| o-Chlorotoluene                              | ND             | 5.4                | μg/kg dry          | , 11     | 11      | 17       | "        | U         |       |
| o-Chlorotoluene                              | ND             | 5.0                | μg/kg              | 11       | *       | 17       | **       | n .       |       |
| p-Chlorotoluene                              | ND             | 5.4                | μg/kg dry          | . 11     | 19      |          | **       | D.        |       |
| p-Chlorotoluene                              | ND             | 5.0                | μg/kg              | 1)       | 11      | 11       | **       | 11        |       |
| p-Isopropyltoluene                           | ND             | 5.4                | μg/kg dry          | . 11     | 39      | "        | u        | 11        |       |

Page 33 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165 Gold River, CA 95670 Project: Hayward #7371A

Project Number: [none]
Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                   | Result            | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-------------------------------------------|-------------------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| B3-1.5 (17J0311-08) Soil Sampled: 10/05/1 | 7 12:35 Received: | 10/05/17 16:5      | 52        |          |         |          |          |           |       |
| p-Isopropyltoluene                        | ND                | 5.0                | μg/kg     | 1        | 1707631 | н        | 10/06/17 | EPA 8260B |       |
| sec-Butylbenzene                          | ND                | 5.4                | μg/kg dry | "        | *       | н        | •        | 19        |       |
| sec-Butylbenzene                          | ND                | 5.0                | μg/kg     | "        | 1991    | н        | 1100     |           |       |
| Styrene                                   | ND                | 5.4                | μg/kg dry | **       | 3100    | н        | (10)     | *         |       |
| Styrene                                   | ND                | 5.0                | μg/kg     | "        | 11441   | н        | (44)     | *         |       |
| tert-Amyl methyl ether                    | ND                | 5.0                | 100       |          |         | н        |          | *         |       |
| tert-Butyl alcohol                        | ND                | 50                 | . 11      | a        | 100     | H        |          | H         |       |
| tert-Butylbenzene                         | ND                | 5.4                | μg/kg dry | "        | 889     | n        | "        | 27.       |       |
| tert-Butylbenzene                         | ND                | 5.0                | μg/kg     |          | (190)   | 12       | )(**)(   | **        |       |
| Tetrachloroethene                         | ND                | 5.4                | μg/kg dry |          | (#)     | п        | (#)      | *         |       |
| Tetrachloroethene                         | ND                | 5.0                | μg/kg     | - 11     |         | 11       |          | ř.        |       |
| Toluene                                   | ND                | 5.4                | μg/kg dry |          | *       | 3.6      |          | **        |       |
| Toluene                                   | ND                | 5.0                | μg/kg     | 0750     | 1990    | 4        | 120      | **        |       |
| trans-1,2-Dichloroethene                  | ND                | 5.4                | μg/kg dry | ((99))   | (00)    | п        | (90.7    |           |       |
| trans-1,2-Dichloroethene                  | ND                | 5.0                | μg/kg     | (940)    | 2943    | n        | (40      | #1        |       |
| trans-1,3-Dichloropropene                 | ND                | 5.4                | μg/kg dry |          | (44)    | "        | **       | n         |       |
| trans-1,3-Dichloropropene                 | ND                | 5.0                | μg/kg     | w        | 11      | n        | **       |           |       |
| Trichloroethene                           | ND                | 5.4                | μg/kg dry | 1273     | u       | n        | **       | 9.        |       |
| Trichloroethene                           | ND                | 5.0                | μg/kg     | *1       | 11      | b        | ч        | **        |       |
| Trichlorofluoromethane                    | ND                | 5.4                | μg/kg dry | *1       | v       | 0        | 4        | "         |       |
| Trichlorofluoromethane                    | ND                | 5.0                | μg/kg     | **       | U       | tr       |          | *         |       |
| Vinyl chloride                            | ND                | 11                 | μg/kg dry | •        | Đ       | u        | *        | **        |       |
| Vinyl chloride                            | ND                | 10                 | μg/kg     | 0        | 15      | o        | **       | **        |       |
| Xylenes (total)                           | ND                | 11                 | μg/kg dry | "        | н       | u.       | 9        | **        |       |
| Xylenes (total)                           | ND                | 10                 | μg/kg     | и        |         | .,       | 0        | "         |       |
| Surrogate: 1,2-Dichloroethane-d4          |                   | 162 %              | 50-1      | 125      | и       | 11       | n        | ,,        | QS-   |
| Surrogate: 1,2-Dichloroethane-d4          |                   | 162 %              | 50-1      | 25       | "       | 146      | n        | "         | QS-   |
| Surrogate: 4-Bromofluorobenzene           |                   | 95 %               | 50-1      | 28       | "       |          | H        | "         | _     |
| Surrogate: 4-Bromofluorobenzene           |                   | 95 %               | 50-1      | 28       | "       | -        | н        | "         |       |
| Surrogate: Toluene-d8                     |                   | 92 %               | 62-1      | 25       | "       |          | **       | n         |       |

Page 34 of 59

10/16/17 08:57

eScreen Logic

Project: Hayward #7371A

11249 Gold Country Blvd Ste 165 Gold River, CA 95670

Project Number: [none]

CLS Work Order #: 17J0311

Project Manager: Robert F.

COC #: 181979

| Analyte                                                       | Result          | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|---------------------------------------------------------------|-----------------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| B3-1.5 (17J0311-08) Soil Sampled: 10/05/17 12                 | 2:35 Received:  | 10/05/17 16:5      | 2                  |          |         |          |          |           |       |
| Surrogate: Toluene-d8                                         |                 | 92 %               | 62-                | -125     | 1707631 | н        | 10/06/17 | EPA 8260B |       |
| B4-1 (17J0311-09) Soil Sampled: 10/05/17 12::                 | 50 Received: 10 | 0/05/17 16:52      |                    |          |         |          |          |           |       |
| 1,1,1,2-Tetrachloroethane                                     | ND              | 5.6                | μ <b>g</b> /kg dry | 1        | 1707631 | 10/06/17 | 10/06/17 | EPA 8260B |       |
| 1,1,1,2-Tetrachloroethane                                     | ND              | 5.0                | μg/kg              | n        | 104(1)  | n.       | "        | 10        |       |
| 1,1,1-Trichloroethane                                         | ND              | 5.6                | μg/kg dry          | , н      | **      | **       | **       | n.        |       |
| 1,1,1-Trichloroethane                                         | ND              | 5.0                | μg/kg              | н        | н       | **       | 19       | 11        |       |
| 1,1,2,2-Tetrachloroethane                                     | ND              | 5.6                | μ <b>g</b> /kg dry | , 11     | н       | 181      | 10       | н         |       |
| 1,1,2,2-Tetrachloroethane                                     | ND              | 5.0                | μg/kg              | 11       | 91      | ((++))   | н        | н         |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane                         | ND              | 5.6                | μg/kg dry          | , "      | 11      | 191      | п        | 00        |       |
| (Freon 113) 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND              | 5.0                | μg/kg              | 11       | **      | н        | "        | n         |       |
| 1,1,2-Trichloroethane                                         | ND              | 5.6                | μg/kg dry          | , 11     | "       |          | n        | **        |       |
| 1,1,2-Trichloroethane                                         | ND              | 5.0                | μg/kg              | v        | n       | "        |          | 9         |       |
| 1,1-Dichloroethane                                            | ND              | 5.6                | μg/kg dry          | , 11     |         | н        | .00      | ec        |       |
| 1,1-Dichloroethane                                            | ND              | 5.0                | μg/kg              | U        | 56      | "        | 11       | 60.       |       |
| 1,1-Dichloroethene                                            | ND              | 5.6                | μg/kg dry          |          | -11     | 11       | я        |           |       |
| 1,1-Dichloroethene                                            | ND              | 5.0                | μg/kg              | 9        | 71      | u        | **       | #         |       |
| 1,1-Dichloropropene                                           | ND              | 5.6                | μg/kg dry          |          | 211     | u        | н        |           |       |
| 1,1-Dichloropropene                                           | ND              | 5.0                | μg/kg              | ,        | 311     | IT       | (8)      | и         |       |
| 1,2,3-Trichlorobenzene                                        | ND              | 5,6                | μg/kg dry          | 186      | **      | н        | **       | и         |       |
| 1,2,3-Trichlorobenzene                                        | ND              | 5.0                | μg/kg              | 16       | **      | н        | 0        | п         |       |
| 1,2,3-Trichloropropane                                        | ND              | 5.6                | μg/kg dry          | 77       | п       | "        | n        | "         |       |
| 1,2,3-Trichloropropane                                        | ND              | 5.0                | μg/kg              | n        | и       | n        | п        | н         |       |
| 1,2,4-Trichlorobenzene                                        | ND              | 5.6                | μ <b>g</b> /kg dry | . "      | 11      | n        | n        | n         |       |
| 1,2,4-Trichlorobenzene                                        | ND              | 5.0                | μg/kg              | "        | **      | н        | н        | п         |       |
| 1,2,4-Trimethylbenzene                                        | ND              | 5.6                | μ <b>g</b> /kg dry | , u      | 19      | **       | н        | п         |       |
| 1,2,4-Trimethylbenzene                                        | ND              | 5.0                | μg/kg              | "        | **      | "        | и        | u         |       |
| 1,2-Dibromo-3-chloropropane                                   | ND              | 11                 | μ <b>g</b> /kg dry | . "      | 19      |          | n        | O         |       |
| 1,2-Dibromo-3-chloropropane                                   | ND              | 10                 | μg/kg              | н        | н       | "        | **       | u         |       |
| 1,2-Dibromoethane (EDB)                                       | ND              | 5.6                | μg/kg dry          | н        | #1      | **       | 99       | u l       |       |

Page 35 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                        | Result       | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed       | Method       | Notes |
|------------------------------------------------|--------------|--------------------|-----------|----------|---------|----------|----------------|--------------|-------|
| B4-1 (17J0311-09) Soil Sampled: 10/05/17 12:50 | Received: 10 | 0/05/17 16:52      |           |          |         |          |                |              |       |
| 1,2-Dibromoethane (EDB)                        | ND           | 5.0                | μg/kg     | 1        | 1707631 | н        | 10/06/17       | EPA 8260B    |       |
| 1,2-Dichlorobenzene                            | ND           | 5.6                | μg/kg dry | , н      | н       | н        |                | O.           |       |
| 1,2-Dichlorobenzene                            | ND           | 5.0                | μg/kg     | *        | n       | e        | (100)          | 0            |       |
| 1,2-Dichloroethane                             | ND           | 5.6                | μg/kg dry | , "      | R       | н        | (00%)          | 11           |       |
| 1,2-Dichloroethane                             | ND           | 5.0                | μg/kg     | н        | n       | н        | 1947           | D.           |       |
| 1,2-Dichloropropane                            | ND           | 5.6                | μg/kg dry | , н      | н       | н        |                | 0            |       |
| 1,2-Dichloropropane                            | ND           | 5.0                | μg/kg     | н        | n       | н        |                | W.           |       |
| 1,3,5-Trimethylbenzene                         | ND           | 5.6                | μg/kg dry | , н      | . 0     | н        | 1,497          | ,            |       |
| 1,3,5-Trimethylbenzene                         | ND           | 5.0                | μg/kg     | н        | н       | н        | (100)          | 0            |       |
| 1,3-Dichlorobenzene                            | ND           | 5.6                | μg/kg dry | , н      | н       | н        | ( <del> </del> | v            |       |
| 1,3-Dichlorobenzene                            | ND           | 5.0                | μg/kg     | *        |         | н        |                | u            |       |
| 1,3-Dichloropropane                            | ND           | 5.6                | μg/kg dry | , "      | H       | н        |                | U            |       |
| 1,3-Dichloropropane                            | ND           | 5.0                | μg/kg     | **       |         | *1       |                | tr.          |       |
| 1,4-Dichlorobenzene                            | ND           | 5.6                | μg/kg dry | . "      | 1961    | q        | (96)           | "            |       |
| 1,4-Dichlorobenzene                            | ND           | 5.0                | μg/kg     | **       | (4)     | 10       | 144            | *            |       |
| 2,2-Dichloropropane                            | ND           | 5.6                | μg/kg dry | . "      | 140     | я        | , All          | **           |       |
| 2,2-Dichloropropane                            | ND           | 5.0                | μg/kg     | n        | 77      | 4        | *              | **           |       |
| 2-Butanone                                     | ND           | 110                | μg/kg dry | . 11     | 589     |          | n              | 20           |       |
| 2-Butanone                                     | ND           | 100                | μg/kg     | - H -    | 300     | n        | **             | *            |       |
| 2-Hexanone                                     | ND           | 56                 | μg/kg dry | . IR     | п       |          | **             | W.           |       |
| 2-Hexanone                                     | ND           | 50                 | μg/kg     |          | "       | e        | 9              |              |       |
| 4-Methyl-2-pentanone                           | ND           | 56                 | μg/kg dry | 7        | н       | 11       | **             | <del>H</del> |       |
| 4-Methyl-2-pentanone                           | ND           | 50                 | μg/kg     | 187      | 1251    | Ü        | **             | **           |       |
| Acetone                                        | ND           | 110                | μg/kg dry | (10)     | *1      | 1.0      | п              | **           |       |
| Acetone                                        | ND           | 100                | μg/kg     | 747      | t)      | u u      | n              | 77           |       |
| Benzene                                        | ND           | 5.6                | μg/kg dry | (4)      | 0       | U        | "              | 11           |       |
| Benzene                                        | ND           | 5.0                | μg/kg     | **       | 17      | ti-      | 9              | n            |       |
| Bromobenzene                                   | ND           | 5.6                | μg/kg dry | n        | u       | 11       | w              |              |       |
| Bromobenzene                                   | ND           | 5.0                | μg/kg     | **       | 47      | 11       | 11             | n            |       |
| Bromochloromethane                             | ND           | 5.6                | μg/kg dry | . 11     | 12      | II       | u              | **           |       |
| Bromochloromethane                             | ND           | 5.0                | μg/kg     | ij       | ı,      | n        | O.             | **           |       |

Page 36 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                       | Result         | Reporting<br>Limit | Units              | Dilution | Batch            | Prepared | Analyzed | Method    | Notes |
|-----------------------------------------------|----------------|--------------------|--------------------|----------|------------------|----------|----------|-----------|-------|
| B4-1 (17J0311-09) Soil Sampled: 10/05/17 12:5 | 0 Received: 10 | 0/05/17 16:52      |                    |          |                  |          |          |           |       |
| Bromodichloromethane                          | ND             | 5.6                | μg/kg dry          | 1        | 1 <b>7076</b> 31 | 0        | 10/06/17 | EPA 8260B |       |
| Bromodichloromethane                          | ND             | 5.0                | μg/kg              | "        | 11               | U        | и        | D         |       |
| Bromoform                                     | ND             | 5.6                | μg/kg dry          | u u      | 11               | .0       | и        | 11        |       |
| Bromoform                                     | ND             | 5.0                | μg/kg              | 11       | Ħ                | U        | "        | n         |       |
| Bromomethane                                  | ND             | 11                 | μg/kg dry          |          | **               |          | *        | n         |       |
| Bromomethane                                  | ND             | 10                 | μg/kg              |          | **               | n        | **       | n         |       |
| Carbon tetrachloride                          | ND             | 5.6                | μg/kg dry          | P        | 10               | n        | н        | n         |       |
| Carbon tetrachloride                          | ND             | 5.0                | μg/kg              | Ħ        | **               | "        | N        | n         |       |
| Chlorobenzene                                 | ND             | 5,6                | μg/kg dry          | p        | "                | 'n       | н        | **        |       |
| Chlorobenzene                                 | ND             | 5.0                | μg/kg              | 34       | п                | н        | 11       | 11        |       |
| Chloroethane                                  | ND             | 5.6                | μ <b>g</b> /kg dry |          | п                | н        | n        | **        |       |
| Chloroethane                                  | ND             | 5.0                | μg/kg              | +        | "                |          | **       | **        |       |
| Chloroform                                    | ND             | 5.6                | μ <b>g</b> /kg dry |          | "                | **       | 11       | 1.90      |       |
| Chloroform                                    | ND             | 5.0                | μg/kg              |          | "                | **       | **       | Ħ         |       |
| Chloromethane                                 | ND             | 11                 | μ <b>g</b> /kg dry | ¥        | n                | "        | H        | ( mar)    |       |
| Chloromethane                                 | ND             | 10                 | μg/kg              |          | ŧŧ               | н        | н        | **        |       |
| cis-1,2-Dichloroethene                        | ND             | 5.6                | μg/kg dry          | Ħ        | 11               | н        |          | *         |       |
| cis-1,2-Dichloroethene                        | ND             | 5.0                | μg/kg              | н        | 11               | н        |          | 100       |       |
| cis-1,3-Dichloropropene                       | ND             | 5.6                | μ <b>g</b> /kg dry | 90       | 11               | 11       | 0        | (199)     |       |
| cis-1,3-Dichloropropene                       | ND             | 5.0                | μg/kg              | н        | "                | 11       | D        | п         |       |
| Dibromochloromethane                          | ND             | 5.6                | μ <b>g</b> /kg dry | я        | "                | н        | *        | 11        |       |
| Dibromochloromethane                          | ND             | 5.0                | μg/kg              | **       | n                | н        | *        | **        |       |
| Dibromomethane                                | ND             | 5.6                | μ <b>g</b> /kg dry | "        | n                | н        |          | 11        |       |
| Dibromomethane                                | ND             | 5.0                | μg/kg              | "        | 91               | **       | ж        | .0        |       |
| Dichlorodifluoromethane (Freon 12)            | ND             | 11                 | μ <b>g</b> /kg dry | **       | 19               | u        | H        | 11        |       |
| Dichlorodifluoromethane (Freon 12)            | ND             | 10                 | μg/kg              | н        | 11               | n        | 11       | 11        |       |
| Di-isopropyl ether                            | ND             | 5.0                | D                  | п        | 11               | n        | 11       | U         |       |
| Ethyl tert-butyl ether                        | ND             | 5.0                | ••                 | n        | 98               | o        | 11       | n         |       |
| Ethylbenzene                                  | ND             | 5.6                | μg/kg dry          | 11       | lt.              | #        | 11       | и         |       |
| Ethylbenzene                                  | ND             | 5.0                | μg/kg              | 0        | 44               | +        | 11       | н         |       |
| Hexachlorobutadiene                           | ND             | 5.6                | μg/kg dry          | O        | 91               | *        | **       | n         |       |

Page 37 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                 |                         | Result       | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-------------------------|-------------------------|--------------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| B4-1 (17J0311-09) Soil  | Sampled: 10/05/17 12:50 | Received: 10 | /05/17 16:52       |           |          | -       | ×        |          |           |       |
| Hexachlorobutadiene     |                         | ND           | 5.0                | μg/kg     | 1        | 1707631 | "        | 10/06/17 | EPA 8260B |       |
| Isopropylbenzene        |                         | ND           | 5.6                | μg/kg dry | , "      | u       | n.       | •        | II.       |       |
| Isopropylbenzene        |                         | ND           | 5.0                | μg/kg     | n        |         | н        | (40)     | 11        |       |
| Methyl tert-butyl ether |                         | ND           | 5.6                | μg/kg dry | , 11     | u       | "        | 14       | 11        |       |
| Methyl tert-butyl ether |                         | ND           | 5.0                | μg/kg     | 11       | v       | п        | w        | 11        |       |
| Methylene chloride      |                         | ND           | 22                 | μg/kg dry | , "      | **      | n        | 100      | U         |       |
| Methylene chloride      |                         | ND           | 20                 | μg/kg     | ,,       | #       | 11       | . 103    | 11        |       |
| Naphthalene             |                         | ND           | 5.6                | μg/kg dry | , 11     | (0)     | 4        | н.       | "         |       |
| Naphthalene             |                         | ND           | 5.0                | μg/kg     | "        | **      | •        | H        | 11        |       |
| n-Butylbenzene          |                         | ND           | 5.6                | μg/kg dry | , "      | 5:      | **       | *        | 9         |       |
| n-Butylbenzene          |                         | ND           | 5.0                | μg/kg     | n        | **      | н        |          | tt        |       |
| n-Propylbenzene         |                         | ND           | 5.6                | μg/kg dry | r "      | **      | *        | .00      | e         |       |
| n-Propylbenzene         |                         | ND           | 5.0                | μg/kg     | "        | 11      | н        | H)       | **        |       |
| o-Chlorotoluene         |                         | ND           | 5.6                | μg/kg dry | , "      | •       | ,,       | H*       | **        |       |
| o-Chlorotoluene         |                         | ND           | 5.0                | μg/kg     | н        | **      | n        | **       | o.        |       |
| p-Chlorotoluene         |                         | ND           | 5.6                | μg/kg dry | , "      | 19      | r:       |          | 0         |       |
| p-Chlorotoluene         |                         | ND           | 5.0                | μg/kg     |          | **      | п        |          | 19        |       |
| p-Isopropyltoluene      |                         | ND           | 5.6                | μg/kg dry | r "      | *1      | п        |          | "         |       |
| p-Isopropyltoluene      |                         | ND           | 5.0                | μg/kg     |          | •       | п        | H        | 0         |       |
| sec-Butylbenzene        |                         | ND           | 5.6                | μg/kg dry | , "      | **      | ĸ        | *        | **        |       |
| sec-Butylbenzene        |                         | ND           | 5.0                | μg/kg     | **       | **      | и        |          | 0         |       |
| Styrene                 |                         | ND           | 5.6                | μg/kg dry | , "      | 4       | **       |          | u         |       |
| Styrene                 |                         | ND           | 5.0                | μg/kg     |          | н       | ä        | (10)     | 10        |       |
| tert-Amyl methyl ether  |                         | ND           | 5.0                | U         | ,,       |         | н        | w        | v         |       |
| tert-Butyl alcohol      |                         | ND           | 50                 |           | "        | n       | u        | 467      | v         |       |
| tert-Butylbenzene       |                         | ND           | 5.6                | μg/kg dry | , "      | ч       | 9        | (0)      | tr        |       |
| tert-Butylbenzene       |                         | ND           | 5.0                | μg/kg     | ,,       | 11      |          | 1.993    | 11        |       |
| Tetrachloroethene       |                         | ND           | 5.6                | μg/kg dry | , p      | n       | 11       | 1000     | н         |       |
| Tetrachloroethene       |                         | ND           | 5.0                | μg/kg     | P        | п       | 11       | 140      | 11        |       |
| Toluene                 |                         | ND           | 5.6                | μg/kg dry | , "      | 11      | 11       | · u      | и         |       |
| Toluene                 |                         | ND           | 5.0                | μg/kg     | n        | и 🕮     | "        | **       | <u>u</u>  |       |

Page 38 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

CLS Work Order #: 17J0311 Project Manager: Robert F.

COC#: 181979

| Trichloroethene   ND   S.6   μg/kg dry   " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte                                   | Result             | Reporting<br>Limit | Units              | Dilution | Batch     | Prepared | Analyzed | Method    | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|--------------------|--------------------|----------|-----------|----------|----------|-----------|-------|
| trans-1,2-Dichloroethene         ND         5.0         μg/kg dry         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                                  | B4-1 (17J0311-09) Soil Sampled: 10/05/17  | 12:50 Received: 10 | /05/17 16:52       |                    |          |           |          |          |           |       |
| Trichloroptopene   ND   5.6   μg/kg dry   " " " " " " " " " "   "   Trichloroptopene   ND   5.6   μg/kg dry   " " " " " " " "   "   Trichloroptopene   ND   5.6   μg/kg dry   " " " " " " " "   "   Trichloroptopene   ND   5.6   μg/kg dry   " " " " " " "   "   "   Trichloroptopene   ND   5.6   μg/kg dry   " " " " " "   "   "   Trichloroptopene   ND   5.0   μg/kg dry   " " " " " "   "   "   "   Trichloroptopene   ND   5.0   μg/kg dry   " " " " "   "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trans-1,2-Dichloroethene                  | ND                 | 5.6                | μg/kg dry          | , 1      | 1707631   | II       | 10/06/17 | EPA 8260B |       |
| Trichloroptopene   ND   5.0   μg/kg   " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trans-1,2-Dichloroethene                  | ND                 | 5.0                | μg/kg              | "        | "         | n        | **       | H         |       |
| ND   S.6   μg/kg dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trans-1,3-Dichloropropene                 | ND                 | 5.6                | μg/kg dry          | , "      | II.       | n        | n        | н         |       |
| Trichlorochene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | trans-1,3-Dichloropropene                 | ND                 | 5.0                | μg/kg              | U        | "         | ir       | **       | и         |       |
| Trichlorofuloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trichloroethene                           | ND                 | 5.6                | μ <b>g</b> /kg dry | , "      | P         | н        | n        | н         |       |
| Inchlorofiluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trichloroethene                           | ND                 | 5.0                | μg/kg              |          | n         | н        | n        | н         |       |
| ND   11   μg/kg dry   " " " " " " "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trichlorofluoromethane                    | ND                 | 5.6                | μg/kg dry          | , 0      | 14        | н        | 11       | 11        |       |
| ND   10   μg/kg   " " " " " " " "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trichlorofluoromethane                    | ND                 | 5.0                | μg/kg              | U        | 11        | и        | 19       | n         |       |
| Xylenes (total)   ND   11   µg/kg dry   " " " " " " " "   "   "   "   "   Xylenes (total)   ND   10   µg/kg   " " " " " "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vinyl chloride                            | ND                 | 11                 | μg/kg dry          | , ,,     | <b>51</b> | 11       | 11       | n         |       |
| Xylenes (total)   ND   10   μg/kg   " " " " " "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vinyl chloride                            | ND                 | 10                 | μg/kg              | 11       | 22        | "        | 19       | п         |       |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Xylenes (total)                           | ND                 | 11                 | μg/kg dry          | , "      | 36        | "        | It       | μ         |       |
| Surrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Xylenes (total)                           | ND                 | 10                 | μg/kg              |          | 11        | n        |          |           |       |
| Surrogate: 1,2-picnioroetinane-a4         14 %         30-123         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "                                                                                                                                                            | Surrogate: 1,2-Dichloroethane-d4          |                    | 147 %              | 50-                | 125      | п         | н        | "        | "         | QS    |
| Surrogate: 4-Bromofluorobenzene         113 % 50-128         " " " "           Surrogate: Toluene-d8         93 % 62-125         " " " "           Surrogate: Toluene-d8         93 % 62-125         " " " "           B4-2.5 (17J0311-10) Soil Sampled: 10/05/17 12:55         Received: 10/05/17 16:52           B4-2.5 (17J0311-10) Soil Sampled: 10/05/17 12:55         Received: 10/05/17 16:52           I,1,1,2-Tetrachloroethane         ND 5.0 μg/kg dry " " " " " " "           1,1,1-Trichloroethane         ND 5.0 μg/kg dry " " " " " " "           1,1,1-Trichloroethane         ND 5.7 μg/kg dry " " " " " " "           1,1,2-Tetrachloroethane         ND 5.0 μg/kg " " " " " " "           1,1,2-Tetrachloroethane         ND 5.0 μg/kg " " " " " " "           1,1,2-Tetrachloroethane         ND 5.0 μg/kg " " " " " " "           1,1,2-Trichloro-1,2,2-trifluoroethane         ND 5.0 μg/kg " " " " " " " "           1,1,2-Trichloro-1,2,2-trifluoroethane         ND 5.0 μg/kg " " " " " " " " "           1,1,2-Trichloro-1,2,2-trifluoroethane         ND 5.7 μg/kg dry " " " " " " " " " " " " " "           (Freon 113)         ND 5.7 μg/kg dry " " " " " " " " " " " " " " " " " " "                                                                   | Surrogate: 1,2-Dichloroethane-d4          |                    | 147 %              | 50-                | 125      | n         | н        | "        | "         | QS-   |
| Surrogate: Toluene-d8 93 % 62-125 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surrogate: 4-Bromofluorobenzene           |                    | 113 %              | 50-                | 128      | n         | "        | *        | "         |       |
| Surrogate: Toluene-48 93 % 62-125 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surrogate: 4-Bromofluorobenzene           |                    | 113 %              | 50-                | 128      | a         | n        | "        | "         |       |
| Surrogate: 10/tubene-do         95 % 02-123           B4-2.5 (17J0311-10) Soil Sampled: 10/05/17 12:55         Received: 10/05/17 16:52           1,1,1,2-Tetrachloroethane         ND         5.0         μg/kg dry         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         "         " <td< td=""><td>Surrogate: Toluene-d8</td><td></td><td>93 %</td><td>62-</td><td>125</td><td>"</td><td>**</td><td>"</td><td>"</td><td></td></td<> | Surrogate: Toluene-d8                     |                    | 93 %               | 62-                | 125      | "         | **       | "        | "         |       |
| 1,1,1,2-Tetrachloroethane  ND  5.0 µg/kg 1 1707631 10/06/17 10/06/17 EPA 8260B  1,1,1,2-Tetrachloroethane  ND  5.7 µg/kg dry " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Surrogate: Toluene-d8                     |                    | 93 %               | 62-                | 125      | n         | п        | n        | u         |       |
| 1,1,1,2-Tetrachloroethane  ND  5.7 µg/kg dry  """""""""""""""""""""""""""""""""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B4-2.5 (17J0311-10) Soil Sampled: 10/05/1 | 7 12:55 Received:  | 10/05/17 16:5      | 2                  |          |           |          |          |           |       |
| 1,1,1-Trichloroethane  ND  S.7 µg/kg dry  " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,1,2-Tetrachloroethane                 | ND                 | 5.0                | μg/kg              | 1        | 1707631   | 10/06/17 | 10/06/17 | EPA 8260B |       |
| 1,1,1-Trichloroethane  ND  S.0 µg/kg dry  1,1,1-Trichloroethane  ND  S.7 µg/kg dry  """""""""""""""""""""""""""""""""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1,1,2-Tetrachloroethane                 | ND                 | 5.7                | μ <b>g</b> /kg dry | , "      | **        | 11       | $\Theta$ | н         |       |
| 1,1,2,2-Tetrachloroethane  ND  5.0 μg/kg " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1,1-Trichloroethane                     | ND                 | 5.0                | μg/kg              | H        | **        | "        | #        | #         |       |
| 1,1,2,2-Tetrachloroethane  ND 5.7 µg/kg dry " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1,1-Trichloroethane                     | ND                 | 5.7                | μ <b>g</b> /kg dry | , n      | ."        | n        | ж        | н         |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane ND 5.0 µg/kg " " " " " " (Freon 113) 1,1,2-Trichloro-1,2,2-trifluoroethane ND 5.7 µg/kg dry " " " " " (Freon 113)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1,2,2-Tetrachloroethane                 | ND                 | 5.0                | μg/kg              | **       | *         | **       | Ħ        | n         |       |
| 1,1,2-1 richloro-1,2,2-trifluoroethane ND 5.0 μg/kg (Freon 113) 1,1,2-Trichloro-1,2,2-trifluoroethane ND 5.7 μg/kg dry " " " " (Freon 113)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1,2,2-Tetrachloroethane                 | ND                 | 5.7                | μ <b>g</b> /kg dry |          | *         | n        | *        | н         |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane ND 5.7 μg/kg dry " " " " " " (Freon 113)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | ND                 | 5.0                | μg/kg              |          | "         | H        | 11       | н         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1,2-Trichloro-1,2,2-trifluoroethane     | ND                 | 5.7                | μ <b>g</b> /kg dry | ж        | "         | n        | и        | *1        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1,2-Trichloroethane                     | ND                 | 5.0                | μg/kg              | #        |           | "        | ж        | n         |       |

Page 39 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                  |                         | Result    | Reporting<br>Limit | Units     | Dilution   | Batch   | Prepared | Analyzed | Method         | Notes |
|--------------------------|-------------------------|-----------|--------------------|-----------|------------|---------|----------|----------|----------------|-------|
| B4-2.5 (17J0311-10) Soil | Sampled: 10/05/17 12:55 | Received: | 10/05/17 16:5      | 2         |            |         |          |          |                |       |
| 1,1,2-Trichloroethane    |                         | ND        | 5.7                | μg/kg dry | , 1        | 1707631 | "        | 10/06/17 | EPA 8260B      |       |
| 1,1-Dichloroethane       |                         | ND        | 5.0                | μg/kg     | 11         | H       | 11       | "        | n              |       |
| 1,1-Dichloroethane       |                         | ND        | 5.7                | μg/kg dry | , "        | н       | 11       | u        | D              |       |
| 1,1-Dichloroethene       |                         | ND        | 5.0                | μg/kg     | "          | H       | 11       | 9        | n              |       |
| 1,1-Dichloroethene       |                         | ND        | 5.7                | μg/kg dry | 7 "        | н       | **       | "        | H              |       |
| 1,1-Dichloropropene      |                         | ND        | 5.7                | 6         | "          | н       | **       | "        | H              |       |
| 1,1-Dichloropropene      |                         | ND        | 5.0                | μg/kg     | "          | **      | 97       | 9        | n              |       |
| 1,2,3-Trichlorobenzene   |                         | ND        | 5.0                |           | **         | н       | "        | •        | P              |       |
| 1,2,3-Trichlorobenzene   |                         | ND        | 5.7                | μg/kg dry | / "        | н       | н (      | "        | "              |       |
| 1,2,3-Trichloropropane   |                         | ND        | 5.0                | μg/kg     | n.         | и       | п        | "        | "              |       |
| 1,2,3-Trichloropropane   |                         | ND        | 5.7                | μg/kg dry | 7 "        | **      | ,,       | н        | ,,             |       |
| 1,2,4-Trichlorobenzene   |                         | ND        | 5.0                | μg/kg     | н          | н       | 25       | n        | u              |       |
| 1,2,4-Trichlorobenzene   |                         | ND        | 5.7                | μg/kg dry | / <u>*</u> | 11      | **       | n        |                |       |
| 1,2,4-Trimethylbenzene   |                         | ND        | 5.0                | μg/kg     | "          | n       | H        | n        | n              |       |
| 1,2,4-Trimethylbenzene   |                         | ND        | 5.7                | μg/kg dry | , "        | n       | *        | 9        | н              |       |
| 1,2-Dibromo-3-chloroprop | ane                     | ND        | 10                 | μg/kg     | "          | 11      | *        | 11       | *              |       |
| 1,2-Dibromo-3-chloroprop | ane                     | ND        | 11                 | μg/kg dry | , "        | e!      |          | n        |                |       |
| 1,2-Dibromoethane (EDB)  |                         | ND        | 5.0                | μg/kg     | u          | Ħ       | *        | 11       | 199            |       |
| 1,2-Dibromoethane (EDB)  |                         | ND        | 5.7                | μg/kg dry | , "        | 0       | н        | HC.      | 10             |       |
| 1,2-Dichlorobenzene      |                         | ND        | 5.0                | μg/kg     | н          | u       | ,,       | n        | 29             |       |
| 1,2-Dichlorobenzene      |                         | ND        | 5.7                | μg/kg dry | , ,        | n       | "        | 9        | ( <del>)</del> |       |
| 1,2-Dichloroethane       |                         | ND        | 5.0                | μg/kg     | O          |         | 25.      | 11       |                |       |
| 1,2-Dichloroethane       |                         | ND        | 5.7                | μg/kg dry | , "        | 11      | 11       | 11       | 99             |       |
| 1,2-Dichloropropane      |                         | ND        | 5.0                | μg/kg     | 11         | n       | v        | 11       | 36             |       |
| 1,2-Dichloropropanc      |                         | ND        | 5.7                | μg/kg dry | , "        | "       | v        | v        | tt             |       |
| 1,3,5-Trimethylbenzene   |                         | ND        | 5.0                | μg/kg     | n          | 11      | v        | tt .     | O              |       |
| 1,3,5-Trimethylbenzene   |                         | ND        | 5.7                | μg/kg dry | , "        | "       |          | *)       | U              |       |
| 1,3-Dichlorobenzene      |                         | ND        | 5.0                | μg/kg     | ,,         | 77      | μ        | 95       | 11             |       |
| 1,3-Dichlorobenzene      |                         | ND        | 5.7                | μg/kg dry | , "        | 16      |          | "        | e .            |       |
| 1,3-Dichloropropane      |                         | ND        | 5.0                | μg/kg     | н          | Ĥ.º     | v        | W        | μ              |       |
| 1,3-Dichloropropane      |                         | ND        | 5.7                | μg/kg dry |            | 10.     |          | **       | u              |       |

Page 40 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                  |                         | Result    | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|--------------------------|-------------------------|-----------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| B4-2.5 (17J0311-10) Soil | Sampled: 10/05/17 12:55 | Received: | 10/05/17 16:5      | 2                  |          |         |          |          |           |       |
| 1,4-Dichlorobenzene      |                         | ND        | 5.0                | μg/kg              | 1        | 1707631 | v        | 10/06/17 | EPA 8260B |       |
| 1,4-Dichlorobenzene      |                         | ND        | 5.7                | μg/kg dry          | , "      | 19      | н        | 41       | II        |       |
| 2,2-Dichloropropane      |                         | ND        | 5.0                | μg/kg              | ır       | "       | B        | 11       | н         |       |
| 2,2-Dichloropropane      |                         | ND        | 5.7                | μ <b>g</b> /kg dry | , "      | "       | 11       | "        | n         |       |
| 2-Butanone               |                         | ND        | 100                | μg/kg              | *        | **      | p        | "        | 11        |       |
| 2-Butanone               |                         | ND        | 110                | μ <b>g</b> /kg dry | , "      | **      | U        | Ħ        | #6        |       |
| 2-Hexanone               |                         | ND        | 50                 | μg/kg              | 11       | м       | If       | н        | "         |       |
| 2-Hexanone               |                         | ND        | 57                 | μ <b>g</b> /kg dry | , "      | н       | P        | 10       | **        |       |
| 4-Methyl-2-pentanone     |                         | ND        | 50                 | μg/kg              | •        | н       | и        | II.      | *         |       |
| 4-Methyl-2-pentanone     |                         | ND        | 57                 | μg/kg dry          | , "      | 99      | н        | 11       | 60        |       |
| Acetone                  |                         | ND        | 100                | μg/kg              | "        | **      | "        | II.      | H         |       |
| Acetone                  |                         | ND        | 110                | μg/kg dry          | , "      | Ħ       | n        | II .     | **        |       |
| Benzene                  |                         | ND        | 5.0                | μg/kg              | н        | 177.    | •        | 17       | 75        |       |
| Benzene                  |                         | ND        | 5.7                | μg/kg dry          | , "      | **      | v        | и        | 9)        |       |
| Bromobenzene             |                         | ND        | 5.0                | μg/kg              | М        | н       | "        | п        | #0        |       |
| Bromobenzene             |                         | ND        | 5.7                | μ <b>g</b> /kg dry | , "      | н       | "        | n        | н         |       |
| Bromochloromethane       |                         | ND        | 5.7                | **                 | и        | "       | **       | ,,       | #1        |       |
| Bromochloromethane       |                         | ND        | 5.0                | μg/kg              | 9        | н       | (0)      | **       |           |       |
| Bromodichloromethane     |                         | ND        | 5.0                | **                 | п        | **      |          | **       | 96        |       |
| Bromodichloromethane     |                         | ND        | 5.7                | μg/kg dry          | , "      | 11      |          | **       | н         |       |
| Bromoform                |                         | ND        | 5.0                | μg/kg              | 11       | 11      |          | 9        | н         |       |
| Bromoform                |                         | ND        | 5.7                | μg/kg dry          | , n      | 11      | . M.     | **       | **        |       |
| Bromomethane             |                         | ND        | 10                 | μg/kg              | n        | 79      | 30       | 177      | **        |       |
| Bromomethane             |                         | ND        | 11                 | μg/kg dry          | , н      | 39      | 144      | н        | 11        |       |
| Carbon tetrachloride     |                         | ND        | 5.0                | μg/kg              | 11       | ŧı      | *        | п        | и         |       |
| Carbon tetrachloride     |                         | ND        | 5.7                | μg/kg dry          | , "      | n       | 77       | п        | п         |       |
| Chlorobenzene            |                         | ND        | 5.0                | μg/kg              | **       | н       | 18       | п        | 11        |       |
| Chlorobenzene            |                         | ND        | 5.7                | μg/kg dry          |          | н       | 39       | **       | п         |       |
| Chloroethane             |                         | ND        | 5.0                | μg/kg              | 0        | н       | 194      | "        | "         |       |
| Chloroethane             |                         | ND        | 5.7                | μg/kg dry          | . 0      | n       | U        | **       | п         |       |
| Chloroform               |                         | ND        | 5.0                | μg/kg              | o        | 11      | 7        | **       | н         |       |

Page 41 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                   |                         | Result    | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|---------------------------|-------------------------|-----------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| B4-2.5 (17J0311-10) Soil  | Sampled: 10/05/17 12:55 | Received: | 10/05/17 16:5      | 2         |          |         |          |          |           |       |
| Chloroform                |                         | ND        | 5.7                | μg/kg dry | 1        | 1707631 | и        | 10/06/17 | EPA 8260B |       |
| Chloromethane             |                         | ND        | 10                 | μg/kg     | 11       |         | r.       | "        |           |       |
| Chloromethane             |                         | ND        | 11                 | μg/kg dry | , tr     | **      | H        | r.       |           |       |
| cis-1,2-Dichloroethene    |                         | ND        | 5.0                | μg/kg     | 11       | 11      | Ē        | If       | 50 C      |       |
| cis-1,2-Dichloroethene    |                         | ND        | 5.7                | μg/kg dry | . 17     | "       | n        | U        |           |       |
| cis-1,3-Dichloropropene   |                         | ND        | 5.0                | μg/kg     | u        | P.      | n        | ı        | n         |       |
| cis-1,3-Dichloropropene   |                         | ND        | 5.7                | μg/kg dry | , u      | II.     |          | e e      |           |       |
| Dibromochloromethane      |                         | ND        | 5.0                | μg/kg     | v        | It      | "        | 0        | 200       |       |
| Dibromochloromethane      |                         | ND        | 5.7                | μg/kg dry | , 0      | 14      |          | 11       | 100       |       |
| Dibromomethane            |                         | ND        | 5.0                | μg/kg     | p        | 11      | ,        | O        | ě.        |       |
| Dibromomethane            |                         | ND        | 5.7                | μg/kg dry | , "      | 14      | ų        | 0        | . "       |       |
| Dichlorodifluoromethane ( | Freon 12)               | ND        | 10                 | μg/kg     | u        | 19      | "        | е        | 79        |       |
| Dichlorodifluoromethane ( | Freon 12)               | ND        | 11                 | μg/kg dry | , "      | н       | "        | D.       |           |       |
| Di-isopropyl ether        |                         | ND        | 5.0                | μg/kg     | 11       | 16.     | n        | te.      | 141       |       |
| Ethyl tert-butyl ether    |                         | ND        | 5.0                | 11        | 17       | ,,      | III      | P        | ü         |       |
| Ethylbenzene              |                         | ND        | 5.0                | **        | <u>.</u> | ۳       | P        | .,       |           |       |
| Ethylbenzene              |                         | ND        | 5.7                | μg/kg dry | , ,,     | "       | н        | 110      | (8)       |       |
| Hexachlorobutadiene       |                         | ND        | 5.0                | μg/kg     | 11       | "       | H        | и        | 71        |       |
| Hexachlorobutadiene       |                         | ND        | 5.7                | μg/kg dry | , 19     | 11      | н        | 11       | 14        |       |
| Isopropylbenzene          |                         | ND        | 5.0                | μg/kg     | 27       | P       | r        | ,,       | **        |       |
| Isopropylbenzene          |                         | ND        | 5.7                | μg/kg dry | , n      | II.     | и        | (0)      |           |       |
| Methyl tert-butyl ether   |                         | ND        | 5.0                | μg/kg     | Р        | I.      | n        |          |           |       |
| Methyl tert-butyl ether   |                         | ND        | 5.7                | μg/kg dry | , 11     | IF      | н        | 36       | 199       |       |
| Methylene chloride        |                         | ND        | 20                 | μg/kg     | 11       | H       | n        | 1 97     | 594       |       |
| Methylene chloride        |                         | ND        | 23                 | μg/kg dry | . 31     | 12      | ,        |          |           |       |
| Naphthalene               |                         | ND        | 5.0                | μg/kg     | P        | **      | 11       | 60       | 72        |       |
| Naphthalene               |                         | ND        | 5.7                | μg/kg dry | , 11     | H       | 11       | 186      | 99        |       |
| n-Butylbenzene            |                         | ND        | 5.0                | μg/kg     | H        | m:      | "        | ₹#6      | tt        |       |
| n-Butylbenzene            |                         | ND        | 5.7                | μg/kg dry | . в      | W)      | **       | 0.000    | er .      |       |
| n-Propylbenzene           |                         | ND        | 5.0                | μg/kg     | 19       |         | "        | 0        | n         |       |
| n-Propylbenzene           |                         | ND        | 5.7                | μg/kg dry | **       |         | "        | **       | 17        |       |

# California Laboratory Services

Page 42 of 59

10/16/17 08:57

cScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                   |                         | Result    | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|---------------------------|-------------------------|-----------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| B4-2.5 (17J0311-10) Soil  | Sampled: 10/05/17 12:55 | Received: | 10/05/17 16:5      | 2                  |          |         |          |          |           |       |
| o-Chlorotoluene           |                         | ND        | 5.0                | μg/kg              | 1        | 1707631 | "        | 10/06/17 | EPA 8260B |       |
| o-Chlorotoluene           |                         | ND.       | 5.7                | μ <b>g</b> /kg dry | , "      | **      | 11       |          | н         |       |
| p-Chlorotoluene           |                         | ND        | 5.0                | μg/kg              | u        | 11      | "        | H        | - 11      |       |
| p-Chlorotoluene           |                         | ND        | 5.7                | μg/kg dry          | , "      | **      | 11       | **       | "         |       |
| p-Isopropyltoluene        |                         | ND        | 5.0                | μg/kg              | n        | **      | "        | .94      | 11        |       |
| p-Isopropyltoluene        |                         | ND        | 5.7                | μg/kg dry          | , 11     | *       | n        | 71       | 11        |       |
| sec-Butylbenzene          |                         | ND        | 5.0                | μg/kg              | н        | **      | "        | *1       | u         |       |
| sec-Butylbenzene          |                         | ND        | 5.7                | μg/kg dry          | , "      | 19      | "        | *1       | ii.       |       |
| Styrene                   |                         | ND        | 5.0                | μg/kg              | H        | 99      |          | *1       | н         |       |
| Styrene                   |                         | ND        | 5.7                | μg/kg dry          | , "      | **      | н        | 11       | "         |       |
| tert-Amyl methyl ether    |                         | ND        | 5.0                | μg/kg              | н        | n       | "        | *1       | "         |       |
| tert-Butyl alcohol        |                         | ND        | 50                 | 75.                | н        |         | n        | 11       | n n       |       |
| tert-Butylbenzene         |                         | ND        | 5.0                | "                  | "        | 11      | #        | **       | п         |       |
| tert-Butylbenzene         |                         | ND        | 5.7                | μg/kg dry          | , "      | н       | "        | **       | п         |       |
| Tetrachloroethene         |                         | ND        | 5.0                | μg/kg              | п        | н       | **       | #1       | н         |       |
| Tetrachloroethene         |                         | ND        | 5.7                | μg/kg đry          | , "      | н       | **       | *1       | н         |       |
| Toluene                   |                         | ND        | 5.0                | μg/kg              | н        | н       | **       | **       | н         |       |
| Toluene                   |                         | ND        | 5.7                | μg/kg dry          | , 34     | н       | **       | **       | n         |       |
| trans-1,2-Dichloroethene  |                         | ND        | 5.0                | μg/kg              | **       | н       | "        | **       | н         |       |
| trans-1,2-Dichloroethene  |                         | ND        | 5.7                | μg/kg dry          | , "      | н       | **       | **       | n         |       |
| trans-1,3-Dichloropropene |                         | ND        | 5.0                | μg/kg              | а        | Ħ       | **       | **       | н         |       |
| trans-1,3-Dichloropropene |                         | ND        | 5.7                | μg/kg dry          | , 11     | Ħ       | "        | *1       | n         |       |
| Trichloroethene           |                         | ND        | 5.0                | μg/kg              | n        | *1      | "        | *1       | n         |       |
| Trichloroethene           |                         | ND        | 5.7                | μg/kg dry          | , "      | *1      | "        | *1       | н         |       |
| Trichlorofluoromethane    |                         | ND        | 5.0                | μg/kg              | п        | n       | 11       | 41       | н         |       |
| Trichlorofluoromethane    |                         | ND        | 5.7                | μg/kg dry          | , "      | Ħ       | . "      | (4)      | н         |       |
| Vinyl chloride            |                         | ND        | 11                 | п                  | М        | 11      | "        | 11       | 11        |       |
| Vinyl chloride            |                         | ND        | 10                 | μg/kg              | "        | Ħ       | 0        | 41       | н         |       |
| Xylenes (total)           |                         | ND        | 11                 | μg/kg dry          | , "      | **      | **       | 41       | н         |       |
| Xylenes (total)           |                         | ND        | 10                 | μg/kg              | М        | #1      | "        | 11       | н         |       |

Page 43 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                           | Result         | Reporting<br>Limit | Units I   | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|---------------------------------------------------|----------------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| B4-2.5 (17J0311-10) Soil Sampled: 10/05/17 12     | 2:55 Received: | 10/05/17 16:5      | 2         |          |         |          |          |           |       |
| Surrogate: 1,2-Dichloroethane-d4                  |                | 157 %              | 50-1.     | 25       | 1707631 | 11       | 10/06/17 | EPA 8260B | QS    |
| Surrogate: 1,2-Dichloroethane-d4                  |                | 157 %              | 50-1.     | 25       | "       | n        | n        | n         | QS-   |
| Surrogate: 4-Bromofluorobenzene                   |                | 113 %              | 50-1.     | 28       | "       | И        | n        | n         |       |
| Surrogate: 4-Bromofluorobenzene                   |                | 113 %              | 50-1.     | 28       | o       | н        | "        | н         |       |
| Surrogate: Toluene-d8                             |                | 90 %               | 62-1.     | 25       | n       | H        | n        | n         |       |
| Surrogate: Toluene-d8                             |                | 90 %               | 62-1.     | 25       | "       | n        | n        | "         |       |
| B5-1.5 (17J0311-11) Soil Sampled: 10/05/17 13     | :00 Received:  | 10/05/17 16:5      | 2         |          |         |          |          |           |       |
| 1,1,1,2-Tetrachloroethane                         | ND             | 5.0                | μg/kg     | 1        | 1707631 | 10/06/17 | 10/06/17 | EPA 8260B |       |
| 1,1,1,2-Tetrachloroethane                         | ND             | 5.8                | μg/kg dry |          | 60      | н        | 45       | U         |       |
| 1,1,1-Trichloroethane                             | ND             | 5.0                | μg/kg     | ij       | **      | н        |          | n         |       |
| 1,1,1-Trichloroethane                             | ND             | 5.8                | μg/kg dry | "        | *       | H.       | #7       | n         |       |
| 1,1,2,2-Tetrachloroethane                         | ND             | 5.0                | μg/kg     | II       | 77      | н        | 100      | "         |       |
| 1,1,2,2-Tetrachloroethane                         | ND             | 5.8                | μg/kg dry | 11       | PE.     | n        | 9%       | u         |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND             | 5.0                | μg/kg     | "        | 667     | н        | W.       | 9         |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND             | 5.8                | μg/kg dry | "        | #3      | п        | •        | 17        |       |
| 1,1,2-Trichloroethane                             | ND             | 5.0                | μg/kg     |          | 70      | n        |          | v         |       |
| 1,1,2-Trichloroethane                             | ND             | 5.8                | μg/kg dry | n        | 222     | r        | 90       | u u       |       |
| 1,1-Dichloroethane                                | ND             | 5.0                | μg/kg     | , "      | (19)    | н        | - m      | e         |       |
| 1,1-Dichloroethane                                | ND             | 5.8                | μg/kg dry | 10.      |         | 11       | n        | U         |       |
| 1,1-Dichloroethene                                | ND             | 5.0                | μg/kg     | p        | *       | н        | *        | e e       |       |
| 1,1-Dichloroethene                                | ND             | 5.8                | μg/kg dry | n        |         | 11       |          | 11        |       |
| 1,1-Dichloropropene                               | ND             | 5.0                | μg/kg     | II       | 195     | ū        | 2.91     | II .      |       |
| 1,1-Dichloropropene                               | ND             | 5.8                | μg/kg dry | 27       | ñ       | ч        | 0.00     | II .      |       |
| 1,2,3-Trichlorobenzene                            | ND             | 5.0                | μg/kg     | ,        | n       | 4        | **       | 9         |       |
| 1,2,3-Trichlorobenzene                            | ND             | 5.8                | μg/kg dry | P        | **      | n        | *1       | H         |       |
| 1,2,3-Trichloropropane                            | ND             | 5.0                | μg/kg     | •        | я       | 11       | **       | n         |       |
| 1,2,3-Trichloropropane                            | ND             | 5.8                | μg/kg dry | #6       | 11      | u        | "        | n         |       |
| 1,2,4-Trichlorobenzene                            | ND             | 5.0                | μg/kg     |          | 91      | v        | 1.91     | "         |       |
| 1,2,4-Trichlorobenzene                            | ND             | 5.8                | μg/kg dry | Ĥŝ       | **      | u        | "        | "         |       |

Page 44 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]
Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                                         | Result      | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared      | Analyzed | Method    | Notes |
|-------------------------------------------------|-------------|--------------------|--------------------|----------|---------|---------------|----------|-----------|-------|
| 35-1.5 (17J0311-11) Soil Sampled: 10/05/17 13:0 | 0 Received: | 10/05/17 16:5      | 2                  |          |         |               |          |           |       |
| ,2,4-Trimethylbenzene                           | ND          | 5.0                | μg/kg              | 1        | 1707631 | н             | 10/06/17 | EPA 8260B |       |
| ,2,4-Trimethylbenzene                           | ND          | 5.8                | μg/kg dry          | , "      | n       | 0             | 11       | "         |       |
| ,2-Dibromo-3-chloropropane                      | ND          | 10                 | μg/kg              | n        | 99      | "             | IT       | п         |       |
| ,2-Dibromo-3-chloropropane                      | ND          | 12                 | μg/kg dry          | , н      | п       | **            | 11       | п         |       |
| ,2-Dibromoethane (EDB)                          | ND          | 5.0                | μg/kg              | "        | 11      | "             | **       | ш         |       |
| ,2-Dibromoethane (EDB)                          | ND          | 5.8                | μ <b>g</b> /kg dry | , н      | *1      | "             | N        | n         |       |
| ,2-Dichlorobenzene                              | ND          | 5.0                | μg/kg              | н        | н       | **            | н        | H         |       |
| ,2-Dichlorobenzene                              | ND          | 5.8                | μg/kg dry          | , 11     | н       | 0.            | (46)     | 0         |       |
| ,2-Dichloroethane                               | ND          | 5.0                | μg/kg              | "        | 10      | 17            | 30       | и         |       |
| ,2-Dichloroethane                               | ND          | 5.8                | μg/kg dry          | , n      | ñ       | "             | **       | n         |       |
| ,2-Dichloropropane                              | ND          | 5.0                | μg/kg              | 10       | 7       | n             | 9        |           |       |
| ,2-Dichloropropane                              | ND          | 5.8                | μ <b>g</b> /kg dry | · v      | "       | n             | **       | n         |       |
| ,3,5-Trimethylbenzene                           | ND          | 5.0                | μg/kg              | 19       | н       | **            | "        | 90        |       |
| ,3,5-Trimethylbenzene                           | ND          | 5.8                | μ <b>g</b> /kg dry | 2.0      | 11      | "             | Ü        | 60        |       |
| ,3-Dichlorobenzene                              | ND          | 5.0                | μg/kg              | in       | **      | n             | IF       | ř.        |       |
| ,3-Dichlorobenzene                              | ND          | 5.8                | μ <b>g</b> /kg dry | **       | п       |               | н        | #         |       |
| ,3-Dichloropropane                              | ND          | 5.0                | μg/kg              | .,,      | 11      | H.            | 99       | и         |       |
| ,3-Dichloropropane                              | ND          | 5.8                | μ <b>g</b> /kg dry | "        | 11      | 79            |          | и         |       |
| ,4-Dichlorobenzene                              | ND          | 5.0                | μg/kg              |          | н       | in the second | h        | •         |       |
| ,4-Dichlorobenzene                              | ND          | 5.8                | μg/kg dry          | н        | н       | 0             | н        | "         |       |
| ,2-Dichloropropane                              | ND          | 5.0                | μg/kg              | н        | "       | u             | **       | 0         |       |
| ,2-Dichloropropane                              | ND          | 5.8                | μg/kg dry          | u        | 11      | 11            | **       | 0         |       |
| -Butanone                                       | ND          | 100                | μg/kg              | n        | 19      | 11            | n        | **        |       |
| -Butanone                                       | ND          | 120                | μg/kg dry          | n        | **      | 11            | n        | "         |       |
| -Hexanone                                       | ND          | 50                 | μg/kg              |          | "       | n             | 11       |           |       |
| -Hexanone                                       | ND          | 58                 | μg/kg dry          | 11       | "       | н             | 11       | D         |       |
| -Methyl-2-pentanone                             | ND          | 50                 | μg/kg              | 11       | "       | 11            | и        | н         |       |
| -Methyl-2-pentanone                             | ND          | 58                 | μ <b>g</b> /kg dry |          | **      | **            | н        | н         |       |
| Acetone                                         | ND          | 100                | μg/kg              |          | **      | *             |          | n         |       |
| Acetone                                         | ND          | 120                | μ <b>g</b> /kg dry | 11       | н       | **            | D        | **        |       |
| Benzene                                         | ND          | 5.0                | μg/kg              | H        | 41      | п             | D        |           |       |

Page 45 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                   |                         | Result    | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|---------------------------|-------------------------|-----------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| B5-1.5 (17J0311-11) Soil  | Sampled: 10/05/17 13:00 | Received: | 10/05/17 16:5      | 2         |          |         |          |          |           |       |
| Benzene                   |                         | ND        | 5.8                | μg/kg dry | 1        | 1707631 | н        | 10/06/17 | EPA 8260B |       |
| Bromobenzene              |                         | ND        | 5.0                | μg/kg     | H        | н.      | **       | 11       | n —       |       |
| Bromobenzene              |                         | ND        | 5.8                | μg/kg dry | n        | **      | ч        | 11       | 11        |       |
| Bromochloromethane        |                         | ND        | 5.0                | μg/kg     | "        |         | *        | 91       | 11        |       |
| Bromochloromethane        |                         | ND        | 5.8                | μg/kg dry | · u      | 11      | "        | в        | 11        |       |
| Bromodichloromethane      |                         | ND        | 5.0                | μg/kg     | "        | "       | "        | n        | **        |       |
| Bromodichloromethane      |                         | ND        | 5.8                | μg/kg dry |          | 4       | "        | H        | **        |       |
| Bromoform                 |                         | ND        | 5.8                | μ         | "        | H.      | "        | ı        | u u       |       |
| Bromoform                 |                         | ND        | 5.0                | μg/kg     | "        | a.      | **       | e        | **        |       |
| Bromomethane              |                         | ND        | 10                 | (4)       | n        | "       | "        | II       | n_        |       |
| Bromomethane              |                         | ND        | 12                 | μg/kg dry | п        | "       | **       | v        |           |       |
| Carbon tetrachloride      |                         | ND        | 5.8                | #1        | n        | н       | "        | II.      | n         |       |
| Carbon tetrachloride      |                         | ND        | 5.0                | μg/kg     | ,,       | ,       | "        | U        | **        |       |
| Chlorobenzene             |                         | ND        | 5.0                | ¥6        | "        | **      | "        | n        | "         |       |
| Chlorobenzene             |                         | ND        | 5.8                | μg/kg dry | н        | н       | .9       | υ        | u         |       |
| Chloroethane              |                         | ND        | 5.0                | μg/kg     |          |         | "        | o o      | n         |       |
| Chloroethane              |                         | ND        | 5.8                | μg/kg dry |          | н       | "        | n        | **        |       |
| Chloroform                |                         | ND        | 5.0                | μg/kg     | •        | *       | "        | II.      |           |       |
| Chloroform                |                         | ND        | 5.8                | μg/kg dry | Ä        | *       | "        | n        | e i       |       |
| Chloromethane             |                         | ND        | 10                 | μg/kg     | **       | н       | "        | D        | 11        |       |
| Chloromethane             |                         | ND        | 12                 | μg/kg dry | n        | н       | "        | *        | -4        |       |
| cis-1,2-Dichlorocthene    |                         | ND        | 5.0                | μg/kg     | ,,       | н       | 11       | U        | **        |       |
| cis-1,2-Dichloroethene    |                         | ND        | 5.8                | μg/kg dry |          | и       | **       | ıı       | •         |       |
| cis-1,3-Dichloropropene   |                         | ND        | 5.0                | μg/kg     | *        | и       | "        | e.       | **        |       |
| cis-1,3-Dichloropropene   |                         | ND        | 5.8                | μg/kg dry | , ,      | п       | **       | n        | ti        |       |
| Dibromochloromethane      |                         | ND        | 5.0                | μg/kg     | . "      | n       | "        | n        | 11        |       |
| Dibromochloromethane      |                         | ND        | 5.8                | μg/kg dry | ,        | :: n    | "        | ıı       | u         |       |
| Dibromomethane            |                         | ND        | 5.0                | μg/kg     | "        | и       | "        | ıı       | u         |       |
| Dibromomethane            |                         | ND        | 5.8                | μg/kg dry | "        | 11      | ,,       |          | 11        |       |
| Dichlorodifluoromethane ( | Freon 12)               | ND        | 10                 | μg/kg     | "        | я       | **       | μ        | U         |       |
| Dichlorodifluoromethane ( | *                       | ND        | 12                 | μg/kg dry |          | м       | ,,       | 11       | 10        |       |

Page 46 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]
Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                  |                         | Result      | Reporting<br>Limit | Units              | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|--------------------------|-------------------------|-------------|--------------------|--------------------|----------|---------|----------|----------|-----------|-------|
| B5-1.5 (17J0311-11) Soil | Sampled: 10/05/17 13:00 | Received: 1 | 10/05/17 16:5      | 2                  |          |         |          |          |           |       |
| Di-isopropyl ether       |                         | ND          | 5.0                | μg/kg              | 1        | 1707631 | 11       | 10/06/17 | EPA 8260B |       |
| Ethyl tert-butyl ether   |                         | ND          | 5.0                | ***                | "        | n       | n        | 11       | 11        |       |
| Ethylbenzene             |                         | ND          | 5.0                | *                  | 44.      |         | и        | 10       | "         |       |
| Ethylbenzene             |                         | ND          | 5.8                | μ <b>g</b> /kg dry | . "      | n       | n        |          | *         |       |
| Hexachlorobutadiene      |                         | ND          | 5.0                | μg/kg              | "        | н       | .0       | н        | **        |       |
| Hexachlorobutadiene      |                         | ND          | 5.8                | μ <b>g</b> /kg dry | п        | п       | . 11     | н        | n         |       |
| Isopropylbenzene         |                         | ND          | 5.0                | μg/kg              | n        | и       | *        | 11       | Ħ         |       |
| Isopropylbenzene         |                         | ND          | 5.8                | μ <b>g</b> /kg dry | . 11     | **      | 77       | "        | "         |       |
| Methyl tert-butyl ether  |                         | ND          | 5.0                | μg/kg              | "        | 19      | 11#71    | **       | **        |       |
| Methyl tert-butyl ether  |                         | ND          | 5.8                | μ <b>g</b> /kg dry |          | **      | (140)    | **       | "         |       |
| Methylene chloride       |                         | ND          | 20                 | μg/kg              | ū        | 99      | 1985     | **       | M.        |       |
| Methylene chloride       |                         | ND          | 23                 | μg/kg dry          | п        | **      |          | "        | n.        |       |
| Naphthalene              |                         | ND          | 5.0                | μg/kg              | n        |         | 1.77     | и        | н         |       |
| Naphthalene              |                         | ND          | 5.8                | μg/kg dry          | п        | н       | ((#))    | 10       | н         |       |
| n-Butylbenzene           |                         | ND          | 5.0                | μg/kg              | и        | н       | 1(#6);   | М        | н         |       |
| n-Butylbenzene           |                         | ND          | 5.8                | μg/kg dry          | п        | н       | 10       | 10001    | н         |       |
| n-Propylbenzene          |                         | ND          | 5.0                | μg/kg              | n        | п       | **       |          | H         |       |
| n-Propylbenzene          |                         | ND          | 5.8                | μg/kg dry          | n n      | M.      | **       | 19       | **        |       |
| o-Chlorotoluene          |                         | ND          | 5.0                | μg/kg              | n        | Ħ       | 0        | **       | 0"        |       |
| o-Chlorotoluene          |                         | ND          | 5.8                | μg/kg dry          | n        | 11      | "        | **       | 0         |       |
| p-Chlorotoluene          |                         | ND          | 5.0                | μg/kg              | 11       | 11      | n        | **       | 11        |       |
| p-Chlorotoluene          |                         | ND          | 5.8                | μ <b>g</b> /kg dry | - 11     | 11      | "        | **       | n         |       |
| p-Isopropyltoluene       |                         | ND          | 5.0                | μg/kg              | 11       | 11      | 11       | **       | 11        |       |
| p-Isopropyltoluene       |                         | ND          | 5.8                | μg/kg dry          | n        | 11      | 11       | **       | D D       |       |
| sec-Butylbenzene         |                         | ND          | 5.0                | μg/kg              | 11       | 11      | "        | **       | 0         |       |
| sec-Butylbenzene         |                         | ND          | 5.8                | μg/kg dry          | u        | 11      | "        | 0        | n         |       |
| Styrene                  |                         | ND          | 5.0                | μg/kg              | 0        | 11      | "        | n        | n         |       |
| Styrene                  |                         | ND          | 5.8                | μg/kg dry          | u        | •       | "        |          | U         |       |
| tert-Amyl methyl ether   |                         | ND          | 5.0                | μg/kg              | u        | **      | п        |          | D         |       |
| tert-Butyl alcohol       |                         | ND          | 50                 | "                  | u        | 11      | n        | 100      | 10        |       |
| tert-Butylbenzene        |                         | ND          | 5.0                | "                  | u        | (A)     | n        | 100      | H         |       |

Page 47 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                       |                        | Result    | Reporting<br>Limit | Units     | Dilution | Batch   | Prepared | Analyzed | Method    | Notes |
|-------------------------------|------------------------|-----------|--------------------|-----------|----------|---------|----------|----------|-----------|-------|
| B5-1.5 (17J0311-11) Soil Sa   | ampled: 10/05/17 13:00 | Received: | 10/05/17 16:52     | 2         |          |         |          |          |           |       |
| tert-Butylbenzene             |                        | ND        | 5.8                | μg/kg dry | 1        | 1707631 |          | 10/06/17 | EPA 8260B |       |
| Tetrachloroethene             |                        | ND        | 5.0                | μg/kg     | "        | н       | 39       | 11       | н         |       |
| Tetrachloroethene             |                        | ND        | 5.8                | μg/kg dry | "        | Ħ       | Ħ        | 11       | "         |       |
| Toluene                       |                        | ND        | 5.0                | μg/kg     | **       | **      | ×        | n        | u         |       |
| Toluene                       |                        | ND        | 5.8                | μg/kg dry | "        | **      | *        | **       | п         |       |
| trans-1,2-Dichloroethene      |                        | ND        | 5.0                | μg/kg     | **       | **      | ,-       | u        | n         |       |
| trans-1,2-Dichloroethene      |                        | ND        | 5.8                | μg/kg dry | **       | "       |          | 11       | "         |       |
| trans-1,3-Dichloropropene     |                        | ND        | 5.0                | μg/kg     | **       | "       | ×        | "        | D         |       |
| trans-1,3-Dichloropropene     |                        | ND        | 5.8                | μg/kg dry | #        | "       | *        | *        | p         |       |
| Trichloroethene               |                        | ND        | 5.8                | *         | "        | r       | #        | н        | n         |       |
| Trichloroethene               |                        | ND        | 5.0                | μg/kg     | п        | н       | 77       | н        | n         |       |
| Trichlorofluoromethane        |                        | ND        | 5.0                |           | n        | U       | m        | н        | н         |       |
| Trichlorofluoromethane        |                        | ND        | 5.8                | μg/kg dry | "        | н       | Ĥ        | н        | н         |       |
| Vinyl chloride                |                        | ND        | 12                 | "         | n        | 0       | iii.     | и        | 11        |       |
| Vinyl chloride                |                        | ND        | 10                 | μg/kg     | 11       | н       |          | ч        | 11        |       |
| Xylenes (total)               |                        | ND        | 10                 | •         | ч        | e       | 0        | п        | n         |       |
| Xylenes (total)               |                        | ND        | 12                 | μg/kg dry | u        | 11      | v        | t.       | 16        |       |
| Surrogate: 1,2-Dichloroethand | e-d4                   |           | 161 %              | 50-       | 125      | n       | 1)       | "        | "         | QS-4  |
| Surrogate: 1,2-Dichloroethand | e-d4                   |           | 161 %              | 50-       | 125      | н       | U        | "        | u         | QS-4  |
| Surrogate: 4-Bromofluorobens  | zene                   |           | 114 %              | 50-       | 128      | "       | U        | "        | "         |       |
| Surrogate: 4-Bromofluoroben:  | zene                   |           | 114 %              | 50-       | 128      | "       | U        | "        | Mb)       |       |
| Surrogate: Toluene-d8         |                        |           | 90 %               | 62-       | 125      | "       | В        | "        | er:       |       |
| Surrogate: Toluene-d8         |                        |           | 90 %               | 62-       | 125      | n       |          | "        | "         |       |

Page 48 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

CLS Work Order #: 17J0311

Project Manager: Robert F.

COC #: 181979

#### Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

| Analyte                             | Result | Reporting<br>Limit | Ųnits | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------------|--------|--------------------|-------|----------------|------------------|----------|----------------|-----|--------------|-------|
| Batch 1707597 - General Preparation | _      |                    |       |                |                  |          |                |     |              |       |
| Blank (1707597-BLK1)                |        |                    |       | Prepared &     | Analyzed:        | 10/06/17 |                |     |              |       |
| % Moisture                          | ND     | 1.0                | %     |                |                  |          |                |     |              |       |
| Solids, %                           | ND     | 1.00               | 50    |                |                  |          |                |     |              |       |

Page 49 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none] Project Manager: Robert F. CLS Work Order #: 17J0311

COC #: 181979

| Analyte                            | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result                      | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|------------------------------------|--------|--------------------|-------|----------------|---------------------------------------|----------|----------------|-----|--------------|-------|
| Batch 1707627 - EPA 5030 Water MS  |        |                    |       |                |                                       |          |                |     |              |       |
| Blank (1707627-BLK1)               |        |                    |       | Prepared &     | Analyzed:                             | 10/06/17 |                |     |              |       |
| Acetone                            | ND     | 10                 | μg/L  | 1100000        | , , , , , , , , , , , , , , , , , , , | 10,00,11 |                |     |              |       |
| Benzene                            | ND     | 0.50               | "     |                |                                       |          |                |     |              |       |
| Bromobenzene                       | ND     | 0.50               |       |                |                                       |          |                |     |              |       |
| Bromochloromethane                 | ND     | 0.50               | **    |                |                                       |          |                |     |              |       |
| Bromodichioromethane               | ND     | 0.50               | . 2   |                |                                       |          |                |     |              |       |
| Bromoform                          | ND     | 0.50               | e :   |                |                                       |          |                |     |              |       |
| Bromomethane                       | ND     | 1.0                | 0     |                |                                       |          |                |     |              |       |
| 2-Butanone                         | ND     | 10                 | 27    |                |                                       |          |                |     |              |       |
| n-Butylbenzene                     | ND     | 0.50               | 12    |                |                                       |          |                |     |              |       |
| sec-Butylbenzene                   | ND     | 0.50               | n     |                |                                       |          |                |     |              |       |
| tert-Butylbenzene                  | ND     | 0.50               | н     |                |                                       |          |                |     |              |       |
| Carbon tetracinloride              | ND     | 0.50               | #1    |                |                                       |          |                |     |              |       |
| Chlorobenzene                      | ND     | 0.50               | **    |                |                                       |          |                |     |              |       |
| Chloroethane                       | ND     | 0.50               | 4     |                |                                       |          |                |     |              |       |
| Chloroform                         | ND     | 0.50               | **    |                |                                       |          |                |     |              |       |
| Chloromethane                      | ND     | 1.0                | **    |                |                                       |          |                |     |              |       |
| o-Chlorotoluene                    | ND     | 0.50               | 19    |                |                                       |          |                |     |              |       |
| p-Chlorotoluene                    | ND     | 0.50               | **    |                |                                       |          |                |     |              |       |
| Dibromochloromethane               | ND     | 0.50               | н     |                |                                       |          |                |     |              |       |
| 1,2-Dibromo-3-chloropropane        | ND     | 1.0                |       |                |                                       |          |                |     |              |       |
| 1,2-Dibromoethane (EDB)            | ND     | 0.50               | .0    |                |                                       |          |                |     |              |       |
| Dibromomethane                     | ND     | 0.50               | 9     |                |                                       |          |                |     |              |       |
| 1,2-Dichlorobenzene                | ND     | 0.50               | n     |                |                                       |          |                |     |              |       |
| 1,3-Dichlorobenzene                | ND     | 0.50               | P.    |                |                                       |          |                |     |              |       |
| 1,4-Dichlorobenzene                | ND     | 0.50               |       |                |                                       |          |                |     |              |       |
| Dichlorodifluoromethane (Freon 12) | ND     | 1.0                | 122   |                |                                       |          |                |     |              |       |
| 1,1-Dichloroethane                 | ND     | 0.50               | 122.1 |                |                                       |          |                |     |              |       |
| 1,2-Dichloroethane                 | ND     | 0.50               | 1.20  |                |                                       |          |                |     |              |       |
| 1,1-Dichloroethene                 | ND     | 0.50               | (25)  |                |                                       |          |                |     |              |       |
| cis-1,2-Dichloroethene             | ND     | 0.50               | 22.5  |                |                                       |          |                |     |              |       |
| trans-1,2-Dichloroethene           | ND     | 0.50               | (9)   |                |                                       |          |                |     |              |       |

Page 50 of 59

10/16/17 08:57

eScreen Logic

Gold River, CA 95670

11249 Gold Country Blvd Ste 165

Project: Hayward #7371A

Project Number: [none]

CLS Work Order #: 17J0311

Project Manager: Robert F.

COC#: 181979

| Analyte                                           | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------------------------------|--------|--------------------|-------|----------------|------------------|----------|----------------|-----|--------------|-------|
| Batch 1707627 - EPA 5030 Water MS                 |        |                    |       |                |                  |          |                |     |              |       |
| Blank (1707627-BLK1)                              |        |                    |       | Prepared &     | : Analyzed:      | 10/06/17 |                |     |              |       |
| 1,2-Dichloropropane                               | ND     | 0.50               | μg/L  |                |                  |          |                |     |              |       |
| 1,3-Dichloropropane                               | ND     | 0.50               | **    |                |                  |          |                |     |              |       |
| 2,2-Dichloropropane                               | ND     | 0.50               | 0     |                |                  |          |                |     |              |       |
| 1,1-Dichloropropene                               | ND     | 0.50               | v     |                |                  |          |                |     |              |       |
| cis-1,3-Dichloropropene                           | ND     | 0.50               | "     |                |                  |          |                |     |              |       |
| trans-1,3-Dichloropropene                         | ND     | 0.50               |       |                |                  |          |                |     |              |       |
| Ethylbenzene                                      | ND     | 0.50               |       |                |                  |          |                |     |              |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND     | 0.50               | n     |                |                  |          |                |     |              |       |
| Hexachlorobutadiene                               | ND     | 0.50               | "     |                |                  |          |                |     |              |       |
| 2-Hexanone                                        | ND     | 10                 | н     |                |                  |          |                |     |              |       |
| Isopropylbenzene                                  | ND     | 0.50               | **    |                |                  |          |                |     |              |       |
| p-Isopropyltoluene                                | ND     | 0.50               | ū     |                |                  |          |                |     |              |       |
| Methylene chloride                                | ND     | 0.50               | "     |                |                  |          |                |     |              |       |
| 4-Methyl-2-pentanone                              | ND     | 10                 | *1    |                |                  |          |                |     |              |       |
| Methyl tert-butyl ether                           | ND     | 0.50               | н     |                |                  |          |                |     |              |       |
| Naphthalene                                       | ND     | 0.50               |       |                |                  |          |                |     |              |       |
| n-Propylbenzene                                   | ND     | 0.50               | **    |                |                  |          |                |     |              |       |
| Styrene                                           | ND     | 0.50               | **    |                |                  |          |                |     |              |       |
| 1,1,1,2-Tetrachloroethane                         | ND     | 0.50               | n     |                |                  |          |                |     |              |       |
| 1,1,2,2-Tetrachloroethane                         | ND     | 0.50               | n     |                |                  |          |                |     |              |       |
| Tetrachloroethene                                 | ND     | 0.50               | н     |                |                  |          |                |     |              |       |
| Toluene                                           | ND     | 0.50               | 11.   |                |                  |          |                |     |              |       |
| 1,2,3-Trichlorobenzene                            | ND     | 0.50               | 17    |                |                  |          |                |     |              |       |
| 1,2,4-Trichlorobenzene                            | ND     | 0.50               | 17    |                |                  |          |                |     |              |       |
| 1,1,1-Trichloroethane                             | ND     | 0.50               | v     |                |                  |          |                |     |              |       |
| 1,1,2-Trichloroethane                             | ND     | 0.50               | **    |                |                  |          |                |     |              |       |
| Trichloroethene                                   | ND     | 0.50               | В     |                |                  |          |                |     |              |       |
| Trichlorofluoromethane                            | ND     | 0.50               | н     |                |                  |          |                |     |              |       |
| 1,2,3-Trichloropropane                            | ND     | 0.50               | P     |                |                  |          |                |     |              |       |
| 1,2,4-Trimethylbenzene                            | ND     | 0.50               | H.    |                |                  |          |                |     |              |       |
| 1,3,5-Trimethylbenzene                            | ND     | 0.50               | 11    |                |                  |          |                |     |              |       |

# California Laboratory Services

Page 51 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                           | Result | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-----------------------------------|--------|--------------------|-------|----------------|------------------|----------|----------------|-----|--------------|-------|
| Batch 1707627 - EPA 5030 Water MS |        |                    |       |                |                  |          |                |     |              |       |
| Blank (1707627-BLK1)              |        |                    |       | Prepared &     | k Analyzed:      | 10/06/17 |                |     |              |       |
| Vinyl chloride                    | ND     | 1.0                | μg/L  |                |                  |          |                |     |              |       |
| Xylenes (total)                   | ND     | 1.0                |       |                |                  |          |                |     |              |       |
| Di-isopropyl ether                | ND     | 0.50               | "     |                |                  |          |                |     |              |       |
| Ethyl tert-butyl ether            | ND     | 0.50               | "     |                |                  |          |                |     |              |       |
| tert-Amyl methyl ether            | ND     | 0.50               | 4     |                |                  |          |                |     |              |       |
| tert-Butyl alcohol                | ND     | 5.0                | "     |                |                  |          |                |     |              |       |
| Surrogate: 1,2-Dichloroethane-d4  | 11.8   |                    | #     | 10.0           |                  | 118      | 66-135         |     |              |       |
| Surrogate: Toluene-d8             | 9.46   |                    | "     | 10.0           |                  | 95       | 72-125         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 10.2   |                    | n     | 10.0           |                  | 102      | 73-125         |     |              |       |
| LCS (1707627-BS1)                 |        |                    |       | Prepared &     | k Analyzed:      | 10/06/17 |                |     |              |       |
| Benzene                           | 18.7   | 0.50               | μg/L  | 20.0           |                  | 93       | 60-135         |     |              |       |
| Chlorobenzene                     | 20.9   | 0.50               | n     | 20.0           |                  | 105      | 60-133         |     |              |       |
| 1,1-Dichloroethene                | 20.7   | 0.50               | P.    | 20.0           |                  | 104      | 42-150         |     |              |       |
| Toluene                           | 21.7   | 0.50               | "     | 20.0           |                  | 109      | 60-137         |     |              |       |
| Trichloroethene                   | 19.6   | 0.50               | "     | 20.0           |                  | 98       | 62-140         |     |              |       |
| Surrogate: 1,2-Dichloroethane-d4  | 10.1   | · -                | "     | 10.0           |                  | 101      | 66-135         |     |              |       |
| Surrogate: Toluene-d8             | 10.1   |                    | "     | 10.0           |                  | 101      | 72-125         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 10.3   |                    | "     | 10.0           |                  | 103      | 73-125         |     |              |       |
| LCS Dup (1707627-BSD1)            |        |                    |       | Prepared &     | k Analyzed:      | 10/06/17 |                |     |              |       |
| Benzene                           | 17.2   | 0.50               | μg/L  | 20.0           |                  | 86       | 60-135         | 8   | 25           |       |
| Chlorobenzene                     | 19.3   | 0.50               | *     | 20.0           |                  | 97       | 60-133         | 8   | 25           |       |
| 1,1-Dichloroethene                | 18.8   | 0.50               | н     | 20.0           |                  | 94       | 42-150         | 10  | 25           |       |
| Toluene                           | 20.0   | 0.50               | H     | 20.0           |                  | 100      | 60-137         | 8   | 25           |       |
| Trichloroethene                   | 17.9   | 0.50               | н     | 20.0           |                  | 89       | 62-140         | 9   | 25           |       |
| Surrogate: 1,2-Dichloroethane-d4  | 10.2   |                    | "     | 10.0           |                  | 102      | 66-135         |     |              |       |
| Surrogate: Toluene-d8             | 10.0   |                    | "     | 10.0           |                  | 100      | 72-125         |     |              |       |
| Surrogate: 4-Bromofluorobenzene   | 9.98   |                    | "     | 10.0           |                  | 100      | 73-125         |     |              |       |

Page 52 of 59

10/16/17 08:57

eSéreen Logic

Gold River, CA 95670

Project: Hayward #7371A

11249 Gold Country Blvd Ste 165

Project Number: [none] Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                          | Result | Reporting<br>Limit | Units          | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | R <b>PD</b><br>Limit | Notes |
|----------------------------------|--------|--------------------|----------------|----------------|------------------|----------|----------------|-----|----------------------|-------|
| Batch 1707631 - EPA 5030 Soil MS |        |                    |                |                |                  |          |                |     |                      |       |
| Blank (1707631-BLK1)             |        |                    |                | Prepared &     | : Analyzed:      | 10/06/17 |                |     |                      |       |
| Acetone                          | ND     | 100                | μg/kg          |                |                  |          |                |     |                      |       |
| Acetone                          | ND     | 100                | μg/kg wet      |                |                  |          |                |     |                      |       |
| Benzene                          | ND     | 5.0                | μg/kg          |                |                  |          |                |     |                      |       |
| Benzene                          | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| Bromobenzene                     | ND     | 5.0                | μ <b>g</b> /kg |                |                  |          |                |     |                      |       |
| Bromobenzene                     | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| Bromochloromethane               | ND     | 5.0                | μg/kg          |                |                  |          |                |     |                      |       |
| Bromochloromethane               | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| Bromodichloromethane             | ND     | 5.0                | μg/kg          |                |                  |          |                |     |                      |       |
| Bromodichloromethane             | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| Bromoform                        | ND     | 5.0                | μg/kg          |                |                  |          |                |     |                      |       |
| Bromoform                        | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| Bromomethane                     | ND     | 10                 | μg/kg          |                |                  |          |                |     |                      |       |
| Bromomethane                     | ND     | 10                 | μg/kg wet      |                |                  |          |                |     |                      |       |
| 2-Butanone                       | ND     | 100                | p              |                |                  |          |                |     |                      |       |
| Butanone                         | ND     | 100                | μg/kg          |                |                  |          |                |     |                      |       |
| n-Butylbenzene                   | ND     | 5.0                | "              |                |                  |          |                |     |                      |       |
| Butylbenzene                     | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| ec-Butylbenzene                  | ND     | 5.0                | μg/kg          |                |                  |          |                |     |                      |       |
| ec-Butylbenzene                  | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| ert-Butylbenzene                 | ND     | 5.0                | μ <b>g</b> /kg |                |                  |          |                |     |                      |       |
| ert-Butylbenzene                 | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| Carbon tetrachloride             | ND     | 5.0                | μg/kg          |                |                  |          |                |     |                      |       |
| Carbon tetrachloride             | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| Chlorobenzene                    | ND     | 5.0                | μ <b>g</b> /kg |                |                  |          |                |     |                      |       |
| Chlorobenzene                    | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| Chloroethane                     | ND     | 5.0                | μg/kg          |                |                  |          |                |     |                      |       |
| Chloroethane                     | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| Chloroform                       | ND     | 5.0                | μg/kg          |                |                  |          |                |     |                      |       |
| Chloroform                       | ND     | 5.0                | μg/kg wet      |                |                  |          |                |     |                      |       |
| Chloromethane                    | ND     | 10                 | μ <b>g</b> /kg |                |                  |          |                |     |                      |       |

# California Laboratory Services

Page 53 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

COC #: 181979

CLS Work Order #: 17J0311

| Analyte                            | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|------------------------------------|--------|--------------------|-----------|----------------|------------------|----------|----------------|-----|--------------|-------|
| Analyte                            | Result | Limit              | Ones      | Level          | Result           | 70KEC    | Limis          | KFD | - Dillit     | Notes |
| Batch 1707631 - EPA 5030 Soil MS   |        |                    |           |                |                  |          |                |     |              |       |
| Blank (1707631-BLK1)               |        |                    |           | Prepared &     | k Analyzed:      | 10/06/17 |                |     |              |       |
| Chloromethane                      | ND     | 10                 | μg/kg wet |                |                  |          |                |     |              |       |
| o-Chlorotoluene                    | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| o-Chlorotoluene                    | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| p-Chlorotoluene                    | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| p-Chlorotoluene                    | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| Dibromochloromethane               | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| Dibromochloromethane               | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| 1,2-Dibromo-3-chloropropanc        | ND     | 10                 | μg/kg     |                |                  |          |                |     |              |       |
| 1,2-Dibromo-3-chloropropane        | ND     | 10                 | μg/kg wet |                |                  |          |                |     |              |       |
| 1,2-Dibromoethane (EDB)            | ND     | 5.0                | "         |                |                  |          |                |     |              |       |
| 1,2-Dibromoethane (EDB)            | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| Dibromomethane                     | ND     | 5.0                | "         |                |                  |          |                |     |              |       |
| Dibromomethane                     | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| 1,2-Dichlorobenzene                | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| 1,2-Dichlorobenzene                | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| 1,3-Dichlorobenzene                | ND     | 5.0                | *1        |                |                  |          |                |     |              |       |
| 1,3-Dichlorobenzene                | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| 1,4-Dichlorobenzene                | ND     | 5.0                | h         |                |                  |          |                |     |              |       |
| 1,4-Dichlorobenzene                | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| Dichlorodifluoromethane (Freon 12) | ND     | 10                 | μg/kg     |                |                  |          |                |     |              |       |
| Dichlorodifluoromethane (Freon 12) | ND     | 10                 | μg/kg wet |                |                  |          |                |     |              |       |
| 1,1-Dichloroethane                 | ND     | 5.0                | n         |                |                  |          |                |     |              |       |
| 1,1-Dichloroethane                 | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| 1,2-Dichlorocthane                 | ND     | 5.0                | "         |                |                  |          |                |     |              |       |
| 1,2-Dichloroethane                 | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| 1,1-Dichloroethene                 | ND     | 5.0                | "         |                |                  |          |                |     |              |       |
| 1,1-Dichloroethene                 | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| cis-1,2-Dichloroethene             | ND     | 5.0                | 11        |                |                  |          |                |     |              |       |
| cis-1,2-Dichloroethene             | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| trans-1,2-Dichloroethene           | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| trans-1,2-Dichloroethene           | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |

Page 54 of 59

10/16/17 08:57

eScreen Logic

Gold River, CA 95670

11249 Gold Country Blvd Ste 165

Project: Hayward #7371A

Project Number: [none]

CLS Work Order #: 17J0311

Project Manager: Robert F.

COC #: 181979

| Analyte                                           | Result | Reporting<br>Limit | Units              | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------------------------------|--------|--------------------|--------------------|----------------|------------------|----------|----------------|-----|--------------|-------|
| Batch 1707631 - EPA 5030 Soil MS                  |        |                    |                    |                |                  |          |                |     |              |       |
| Blank (1707631-BLK1)                              |        |                    |                    | Prepared &     | k Analyzed:      | 10/06/17 |                |     |              |       |
| 1,2-Dichloropropane                               | ND     | 5.0                | μg/kg wet          |                |                  |          |                |     |              |       |
| 1,2-Dichloropropane                               | ND     | 5.0                | μg/kg              |                |                  |          |                |     |              |       |
| 1,3-Dichloropropane                               | ND     | 5.0                | 0                  |                |                  |          |                |     |              |       |
| 1,3-Dichloropropane                               | ND     | 5.0                | μg/kg wet          |                |                  |          |                |     |              |       |
| 2,2-Dichloropropane                               | ND     | 5.0                | μg/kg              |                |                  |          |                |     |              |       |
| 2,2-Dichloropropane                               | ND     | 5,0                | μg/kg wet          |                |                  |          |                |     |              |       |
| 1,1-Dichloropropene                               | ND     | 5.0                | tr.                |                |                  |          |                |     |              |       |
| 1,1-Dichloropropene                               | ND     | 5.0                | μg/kg              |                |                  |          |                |     |              |       |
| cis-1,3-Dichloropropene                           | ND     | 5.0                | 11                 |                |                  |          |                |     |              |       |
| cis-1,3-Dichloropropene                           | ND     | 5.0                | μg/kg wet          |                |                  |          |                |     |              |       |
| trans-1,3-Dichloropropene                         | ND     | 5.0                | μg/kg              |                |                  |          |                |     |              |       |
| trans-1,3-Dichloropropene                         | ND     | 5.0                | μg/kg wet          |                |                  |          |                |     |              |       |
| Ethylbenzene                                      | ND     | 5.0                | μg/kg              |                |                  |          |                |     |              |       |
| Ethylbenzene                                      | ND     | 5.0                | μg/kg wet          |                |                  |          |                |     |              |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon      | ND     | 5.0                | μg/kg              |                |                  |          |                |     |              |       |
| 113)                                              |        |                    |                    |                |                  |          |                |     |              |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) | ND     | 5.0                | μ <b>g/k</b> g wet |                |                  |          |                |     |              |       |
| Hexachlorobutadiene                               | ND     | 5.0                | μg/kg              |                |                  |          |                |     |              |       |
| Hexachlorobutadiene                               | ND     | 5.0                | μg/kg wet          |                |                  |          |                |     |              |       |
| 2-Hexanone                                        | ND     | 50                 | U                  |                |                  |          |                |     |              |       |
| 2-Hexanone                                        | ND     | 50                 | μg/kg              |                |                  |          |                |     |              |       |
| Isopropylbenzene                                  | ND     | 5.0                | 17                 |                |                  |          |                |     |              |       |
| Isopropylbenzene                                  | ND     | 5.0                | μg/kg wet          |                |                  |          |                |     |              |       |
| p-lsopropyltoluene                                | ND     | 5.0                | μg/kg              |                |                  |          |                |     |              |       |
| p-Isopropyltoluene                                | ND     | 5.0                | μg/kg wet          |                |                  |          |                |     |              |       |
| Methylene chloride                                | ND     | 20                 | μg/kg              |                |                  |          |                |     |              |       |
| Methylene chloride                                | ND     | 20                 | μg/kg wet          |                |                  |          |                |     |              |       |
| 4-Methyl-2-pentanone                              | ND     | 50                 | μg/kg              |                |                  |          |                |     |              |       |
| 4-Methyl-2-pentanone                              | ND     | 50                 | μg/kg wet          |                |                  |          |                |     |              |       |
| Methyl tert-butyl ether                           | ND     | 5.0                | μg/kg              |                |                  |          |                |     |              |       |
| Methyl tert-butyl ether                           | ND     | 5.0                | μg/kg wet          |                |                  |          |                |     |              |       |

Page 55 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                          | Result | Reporting<br>Limit | Units     | Spikc<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Mar.  |
|----------------------------------|--------|--------------------|-----------|----------------|------------------|----------|----------------|-----|--------------|-------|
| Analyte                          | Result | Limit              | Units     | Level          | Result           | %REC     | Limits         | KPD | Limii        | Notes |
| Batch 1707631 - EPA 5030 Soil MS |        |                    |           |                |                  |          |                |     |              |       |
| Blank (1707631-BLK1)             |        |                    |           | Prepared &     | Analyzed:        | 10/06/17 |                |     |              |       |
| Naphthalene                      | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| Naphthalene                      | ND     | 5.0                | μg/kg wct |                |                  |          |                |     |              |       |
| n-Propylbenzene                  | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| a-Propylbenzene                  | ND     | 5.0                | μg/kg wct |                |                  |          |                |     |              |       |
| Styrene                          | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| Styrene                          | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| ,1,2,2-Tetrachloroethane         | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| 1,1,2,2-Tetrachloroethane        | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| 1,1,1,2-Tetrachloroethane        | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| ,1,1,2-Tetrachloroethane         | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| Tetrachloroethene                | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| etrachloroethene                 | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| oluene                           | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| Coluene                          | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| ,2,3-Trichlorobenzene            | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| ,2,3-Trichlorobenzene            | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| ,2,4-Trichlorobenzene            | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| ,2,4-Trichlorobenzene            | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| ,1,2-Trichloroethane             | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| ,1,2-Trichloroethane             | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| ,1,1-Trichloroethane             | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| ,1,1-Trichloroethane             | ND     | 5.0                | μg/kg wct |                |                  |          |                |     |              |       |
| Trichloroethene                  | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| Trichloroethene                  | ND     | 5.0                | μg/kg wet |                |                  |          |                |     |              |       |
| richlorofluoromethane            | ND     | 5.0                | "         |                |                  |          |                |     |              |       |
| Trichlorofluoromethane           | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| ,2,3-Trichloropropane            | ND     | 5.0                | *         |                |                  |          |                |     |              |       |
| ,2,3-Trichloropropane            | ND     | 5.0                | μg/kg wct |                |                  |          | 98             |     |              |       |
| ,3,5-Trimethylbenzene            | ND     | 5.0                | r!        |                |                  |          |                |     |              |       |
| ,3,5-Trimethylbenzene            | ND     | 5.0                | μg/kg     |                |                  |          |                |     |              |       |
| ,2,4-Trimethylbenzene            | ND     | 5.0                | *         |                |                  |          |                |     |              |       |

Page 56 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                          | Result | Reporting<br>Limit | Units              | Spike<br>Level                          | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|----------------------------------|--------|--------------------|--------------------|-----------------------------------------|------------------|----------|----------------|-----|--------------|-------|
| Batch 1707631 - EPA 5030 Soil MS |        |                    |                    |                                         |                  |          |                |     |              |       |
| Blank (1707631-BLK1)             |        |                    |                    | Prepared &                              | Ł Analyzed:      | 10/06/17 |                |     |              |       |
| 1,2,4-Trimethylbenzene           | ND     | 5.0                | μg/kg wet          | *************************************** |                  |          |                |     |              |       |
| Vinyl chloride                   | ND     | 10                 | U                  |                                         |                  |          |                |     |              |       |
| Vinyl chloride                   | ND     | 10                 | μg/kg              |                                         |                  |          |                |     |              |       |
| Xylenes (total)                  | ND     | 10                 | μg/kg wet          |                                         |                  |          |                |     |              |       |
| Xylenes (total)                  | ND     | 10                 | μg/kg              |                                         |                  |          |                |     |              |       |
| Di-isopropyl ether               | ND     | 5.0                | n                  |                                         |                  |          |                |     |              |       |
| Ethyl tert-butyl ether           | ND     | 5.0                | "                  |                                         |                  |          |                |     |              |       |
| tert-Amyl methyl other           | ND     | 5:0                | п                  |                                         |                  |          |                |     |              |       |
| tert-Butyl alcohol               | ND     | 50                 | n                  |                                         |                  |          |                |     |              |       |
| Surrogate: 1,2-Dichloroethane-d4 | 41.0   |                    | μ <b>g/k</b> g wet | 30.0                                    |                  | 137      | 50-125         |     |              | QS-H  |
| Surrogate: 1,2-Dichloroethane-d4 | 41.0   |                    | μg/kg              | 30.0                                    |                  | 137      | 50-125         |     |              | QS-H  |
| Surrogate: Toluene-d8            | 25.9   |                    | "                  | 30.0                                    |                  | 86       | 62-125         |     |              |       |
| Surrogate: Toluene-d8            | 25.9   |                    | μ <b>g/kg</b> wet  | 30.0                                    |                  | 86       | 62-125         |     |              |       |
| Surrogate: 4-Bromofluorobenzene  | 33.6   |                    | "                  | 30.0                                    |                  | 112      | 50-128         |     |              |       |
| Surrogate: 4-Bromofluorobenzene  | 33.6   |                    | μg/kg              | 30.0                                    |                  | 112      | 50-128         |     |              |       |
| LCS (1707631-BS1)                |        |                    |                    | Prepared &                              | Analyzed:        | 10/06/17 |                |     |              |       |
| Benzene                          | 17.5   | 5.0                | μg/kg wet          | 20.0                                    |                  | 87       | 64-135         |     |              |       |
| Benzene                          | 17.5   | 5.0                | μ <b>g</b> /kg     | 20.0                                    |                  | 87       | 64-135         |     |              |       |
| Chlorobenzene                    | 19.2   | 5.0                | μ <b>g/k</b> g wet | 20.0                                    |                  | 96       | 67-133         |     |              |       |
| Chlorobenzene                    | 19.2   | 5.0                | μ <b>g</b> /kg     | 20.0                                    |                  | 96       | 67-133         |     |              |       |
| 1,1-Dichloroethene               | 20.8   | 5.0                | μg/kg wet          | 20.0                                    |                  | 104      | 53-137         |     |              |       |
| 1,1-Dichloroethene               | 20.8   | 5.0                | μ <b>g</b> /kg     | 20.0                                    |                  | 104      | 53-137         |     |              |       |
| Toluene                          | 18.2   | 5.0                | (0)                | 20.0                                    |                  | 91       | 61-138         |     |              |       |
| Toluene                          | 18.2   | 5.0                | μg/kg wet          | 20.0                                    |                  | 91       | 61-138         |     |              |       |
| Trichloroethene                  | 17.3   | 5.0                | μg/kg              | 20.0                                    |                  | 87       | 64-130         |     |              |       |
| Trichloroethene                  | 17.3   | 5.0                | μg/kg wet          | 20.0                                    |                  | 87       | 64-130         |     |              |       |
| Surrogate: 1,2-Dichloroethane-d4 | 33.6   |                    | μg/kg              | 30.0                                    |                  | 112      | 50-125         |     |              |       |
| Surrogate: 1,2-Dichloroethane-d4 | 33.6   |                    | µg/kg wet          | 30.0                                    |                  | 112      | 50-125         |     |              |       |
| Surrogate: Toluene-d8            | 31.1   |                    | μg/kg              | 30.0                                    |                  | 104      | 62-125         |     |              |       |
| Surrogate: Toluene-d8            | 31.1   |                    | µg/kg wet          | 30.0                                    |                  | 104      | 62-125         |     |              |       |

Page 57 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

## COC#: 181979

| Analyte                          | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD  | RPD<br>Limit | Notes  |
|----------------------------------|--------|--------------------|-----------|----------------|------------------|-------------|----------------|------|--------------|--------|
| Analyte                          | Result | Limi               | Cints     | Level          | Kesuit           | /BREC       | Limis          | KI D | Limit        | 140108 |
| Batch 1707631 - EPA 5030 Soil MS |        |                    |           |                |                  |             |                |      |              |        |
| LCS (1707631-BS1)                |        |                    |           | Prepared &     | Analyzed:        | 10/06/17    |                |      |              |        |
| Surrogate: 4-Bromofluorobenzene  | 35.0   |                    | μg/kg     | 30.0           |                  | . 117       | 50-128         |      |              |        |
| Surrogate: 4-Bromofluorobenzene  | 35.0   |                    | μg/kg wet | 30.0           |                  | 117         | 50-128         |      |              |        |
| LCS Dup (1707631-BSD1)           |        |                    |           | Prepared 8     | Analyzed:        | 10/06/17    |                |      |              |        |
| Benzene                          | 18.4   | 5.0                | μg/kg wet | 20.0           |                  | 92          | 64-135         | 5    | 30           |        |
| Benzene                          | 18.4   | 5.0                | μg/kg     | 20.0           |                  | 92          | 64-135         | 5    | 30           |        |
| Chlorobenzene                    | 19.7   | 5.0                | μg/kg wet | 20.0           |                  | 98          | 67-133         | 3    | 30           |        |
| Chlorobenzene                    | 19.7   | 5.0                | μg/kg     | 20.0           |                  | 98          | 67-133         | 3    | 30           |        |
| 1,1-Dichloroethene               | 21.8   | 5.0                | μg/kg wet | 20.0           |                  | 109         | 53-137         | 5    | 30           |        |
| 1,1-Dichloroethene               | 21.8   | 5.0                | μg/kg     | 20.0           |                  | 109         | 53-137         | 5    | 30           |        |
| Toluene                          | 18.6   | 5.0                | μg/kg wet | 20.0           |                  | 93          | 61-138         | 2    | 30           |        |
| Toluene                          | 18.6   | 5.0                | μg/kg     | 20.0           |                  | 93          | 61-138         | 2    | 30           |        |
| Trichloroethene                  | 18.0   | 5.0                | μg/kg wet | 20.0           |                  | 90          | 64-130         | 4    | 30           |        |
| Trichloroethene                  | 18.0   | 5.0                | μg/kg     | 20.0           |                  | 90          | 64-130         | 4    | 30           |        |
| Surrogate: 1,2-Dichloroethane-d4 | 33.8   |                    | н         | 30.0           |                  | 113         | 50-125         |      |              |        |
| Surrogate: 1,2-Dichloroethane-d4 | 33.8   |                    | μg/kg wet | 30.0           |                  | 113         | 50-125         |      |              |        |
| Surrogate: Toluene-d8            | 30.9   |                    | μg/kg     | 30.0           |                  | 103         | 62-125         |      |              |        |
| Surrogate: Toluene-d8            | 30.9   |                    | μg/kg wet | 30.0           |                  | 103         | 62-125         |      |              |        |
| Surrogate: 4-Bromofluorobenzene  | 31.9   |                    | . "       | 30.0           |                  | 106         | 50-128         |      |              |        |
| Surrogate: 4-Bromofluorobenzene  | 31.9   |                    | μg/kg     | 30.0           |                  | 106         | 50-128         |      |              |        |
| Matrix Spike (1707631-MS1)       | Sour   | ce: 17J0181        | -07       | Prepared:      | 10/06/17 A       | nalyzed: 10 | /07/17         |      |              |        |
| Benzene                          | 11.1   | 5.0                | μg/kg     | 20.0           | ND               | 55          | 58-139         |      |              | QM-    |
| Benzene                          | 11.1   | 5.0                | μg/kg wct | 20.0           | ND               | 55          | 58-139         |      |              | QM-    |
| Chlorobenzene                    | 9.06   | 5.0                | AR        | 20.0           | ND               | 45          | 62-134         |      |              | QM-    |
| Chlorobenzene                    | 9.06   | 5.0                | μg/kg     | 20.0           | ND               | 45          | 62-134         |      |              | QM-    |
| 1,1-Dichloroethene               | 15.1   | 5.0                | μg/kg wet | 20.0           | ND               | 76          | 53-152         |      |              |        |
| 1,1-Dichloroethene               | 15.1   | 5.0                | μg/kg     | 20.0           | ND               | 76          | 53-152         |      |              |        |
| Toluene                          | 9.76   | 5.0                | μg/kg wet | 20.0           | ND               | 49          | 58-139         |      |              | QM-    |
| Toluene                          | 9.76   | 5.0                | μg/kg     | 20.0           | ND               | 49          | 58-139         |      |              | QM-    |
| Trichloroethene                  | 9.58   | 5.0                | μg/kg wct | 20.0           | ND               | 48          | 55-138         |      |              | QM-    |
| Trichloroethene                  | 9.58   | 5.0                | μg/kg     | 20.0           | ND               | 48          | 55-138         |      |              | QM-    |

# California Laboratory Services

Page 58 of 59

10/16/17 08:57

eScreen Logic

11249 Gold Country Blvd Ste 165

Gold River, CA 95670

Project: Hayward #7371A

Project Number: [none]

Project Manager: Robert F.

CLS Work Order #: 17J0311

COC #: 181979

| Analyte                          | Result | Reporting<br>Limit | Thita              | Spike       | Source     | %REC        | %REC   | DDD | RPD   | Mates |
|----------------------------------|--------|--------------------|--------------------|-------------|------------|-------------|--------|-----|-------|-------|
| Maryte                           | Kesuit | Limit              | Units              | Level       | Result     | %KEC        | Limits | RPD | Limit | Notes |
| Batch 1707631 - EPA 5030 Soil MS |        |                    |                    |             |            |             |        |     |       |       |
| Matrix Spike (1707631-MS1)       | Sour   | ce: 17J0181        | -07                | Prepared:   | 10/06/17 A | nalyzed: 10 | /07/17 |     |       |       |
| Surrogate: 1,2-Dichloroethane-d4 | 37.8   |                    | μg/kg wet          | 30.0        |            | 126         | 50-125 |     |       | QM-   |
| Surrogate: 1,2-Dichloroethane-d4 | 37.8   |                    | µg/kg              | 30.0        |            | 126         | 50-125 |     |       | QM-   |
| Surrogate: Toluene-d8            | 30.0   |                    | "                  | 30.0        |            | 100         | 62-125 |     |       |       |
| Surrogate: Toluene-d8            | 30.0   |                    | μg/kg wet          | 30.0        |            | 100         | 62-125 |     |       |       |
| Surrogate: 4-Bromofluorobenzene  | 34.4   |                    | μg/kg              | 30.0        |            | 115         | 50-128 |     |       |       |
| Surrogate: 4-Bromofluorobenzene  | 34.4   |                    | μg/kg wet          | 30.0        |            | 115         | 50-128 |     |       |       |
| Matrix Spike Dup (1707631-MSD1)  | Sour   | ce: 17J0181        | -07                | Prepared: 1 | 10/06/17 A | nalyzed: 10 | /07/17 |     |       |       |
| Benzene                          | 10,2   | 5.0                | μg/kg wet          | 20.0        | ND         | 51          | 58-139 | 9   | 30    | QM-   |
| Benzene                          | 10.2   | 5.0                | μg/kg              | 20.0        | ND         | 51          | 58-139 | 9   | 30    | QM-   |
| Chlorobenzene                    | 8.93   | 5.0                |                    | 20.0        | ND         | 45          | 62-134 | 1   | 30    | QM-   |
| Chlorobenzene                    | 8.93   | 5.0                | μg/kg wct          | 20.0        | ND         | 45          | 62-134 | 1   | 30    | QM-   |
| 1,1-Dichloroethene               | 13.6   | 5.0                | **                 | 20.0        | ND         | 68          | 53-152 | 11  | 30    |       |
| 1,1-Dichloroethene               | 13.6   | 5.0                | μ <b>g</b> /kg     | 20.0        | ND         | 68          | 53-152 | 11  | 30    |       |
| Toluene                          | 8.96   | 5,0                | μg/kg wet          | 20.0        | ND         | 45          | 58-139 | 9   | 30    | QM-   |
| Toluene                          | 8.96   | 5.0                | μ <b>g</b> /kg     | 20.0        | ND         | 45          | 58-139 | 9   | 30    | QM-   |
| Trichloroethene                  | 8.77   | 5.0                | 95                 | 20.0        | ND         | 44          | 55-138 | 9   | 30    | QM-   |
| Trichloroethene                  | 8.77   | 5.0                | μ <b>g/</b> kg wet | 20.0        | ND         | 44          | 55-138 | 9   | 30    | QM-   |
| Surrogate: 1,2-Dichloroethane-d4 | 38.6   |                    | "                  | 30.0        |            | 129         | 50-125 |     |       | QM    |
| Surrogate: 1,2-Dichloroethane-d4 | 38.6   |                    | µg∕kg              | 30.0        |            | 129         | 50-125 |     |       | QM-   |
| Surrogate: Toluene-d8            | 30.3   |                    | n                  | 30.0        |            | 101         | 62-125 |     |       |       |
| Surrogate: Toluene-d8            | 30.3   |                    | µg/kg wet          | 30.0        |            | 101         | 62-125 |     |       |       |
| Surrogate: 4-Bromofluorobenzene  | 34.4   |                    | "                  | 30.0        |            | 115         | 50-128 |     |       |       |
| Surrogate: 4-Bromofluorobenzene  | 34.4   |                    | μ <b>g</b> /kg     | 30.0        |            | 115         | 50-128 |     |       |       |

# California Laboratory Services

Page 59 of 59

10/16/17 08:57

| eScreen Logic                   | Project: Hayward #7371A    |                           |
|---------------------------------|----------------------------|---------------------------|
| 11249 Gold Country Blvd Ste 165 | Project Number: [none]     | CLS Work Order #: 17J0311 |
| Gold River, CA 95670            | Project Manager: Robert F. | COC #: 181979             |

#### **Notes and Definitions**

|       | 11000 Ella Dollations                                                                                                                                                                                                      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QS-HI | Surrogate recovery was greater than the upper control limit. A reanalysis was not performed since the analytes associated with the surrogate were not detected.                                                            |
| QS-4  | The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.                                                                                                             |
| QM-5  | The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable. |
| DET   | Analyte DETECTED                                                                                                                                                                                                           |
| ND    | Analyte NOT DETECTED at or above the reporting limit (or method detection limit when specified)                                                                                                                            |
| NR    | Not Reported                                                                                                                                                                                                               |
| dry   | Sample results reported on a dry weight basis                                                                                                                                                                              |
| RPD   | Relative Percent Difference                                                                                                                                                                                                |



10/16/2017 Mr. Rob Fagerness eScreenLogic, Inc. 11249 Gold Country Blvd Suite 165 Gold River CA 95670

Project Name: HAYWARD

Project #: 7371A Workorder #: 1710128

Dear Mr. Rob Fagerness

The following report includes the data for the above referenced project for sample(s) received on 10/6/2017 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

**Project Manager** 

Helly Butte



#### WORK ORDER #: 1710128

#### Work Order Summary

**CLIENT:** 

Mr. Rob Fagerness

BILL TO: M1

Mr. Rob Fagerness

eScreenLogic, Inc.

eScreenLogic, Inc.

11249 Gold Country Blvd

11249 Gold Country Blvd

Suite 165

Suite 165

Gold River, CA 95670

Gold River, CA 95670

PHONE:

(916) 288-8176

P.O. #

FAX:

PROJECT #

7371A HAYWARD

DATE RECEIVED: DATE COMPLETED: 10/06/2017 10/16/2017

CONTACT:

Kelly Buettner

| FRACTION # | NAME      |  |
|------------|-----------|--|
| 01A        | B3-SV-2.0 |  |
| 02A        | B4-SV-1.5 |  |
| 03A        | B5-SV-1.5 |  |
| 04A        | SSV5      |  |
| 05A        | SSV6      |  |
| 06A        | SSV7      |  |
| 07A        | Lab Blank |  |
| 08A        | CCV       |  |
| 09A        | LCS       |  |
| 09AA       | LCSD      |  |

|             | RECEIPT    | FINAL           |
|-------------|------------|-----------------|
| <b>TEST</b> | VAC./PRES. | <b>PRESSURE</b> |
| TO-15       | 4.1 "Hg    | 15 psi          |
| TO-15       | 4.3 "Hg    | 14.9 psi        |
| TO-15       | 4.9 "Hg    | 15 psi          |
| TO-15       | 4.7 "Hg    | 14.9 psi        |
| TO-15       | 3.9 "Hg    | 14.8 psi        |
| TO-15       | 4.7 "Hg    | 14.9 psi        |
| TO-15       | NA         | NA              |

CERTIFIED BY:

Meide Mayo

DATE: 10/16/17

**Technical Director** 

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-16-11, UT NELAP CA0093332016-7, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2016, Expiration date: 10/17/2017. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards



#### LABORATORY NARRATIVE EPA Method TO-15 eScreenLogic, Inc.

Workorder# 1710128

Six 1 Liter Summa Canister samples were received on October 06, 2017. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

#### **Receiving Notes**

There were no receiving discrepancies.

#### **Analytical Notes**

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

Dilution was performed on samples SSV5, SSV6 and SSV7 due to the presence of high level target species.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

#### **Definition of Data Qualifying Flags**

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
  - J Estimated value.
  - E Exceeds instrument calibration range.
  - S Saturated peak.
  - O Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
  - UJ- Non-detected compound associated with low bias in the CCV
  - N The identification is based on presumptive evidence.
  - M Reported value may be biased due to apparent matrix interferences.
  - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector



r1-File was requantified for the purpose of reissue



# **Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN**

Client Sample ID: B3-SV-2.0

Lab ID#: 1710128-01A

| Compound                      | Rpt. Limit<br>(ppbv) | Amount (ppbv) | Rpt. Limit<br>(ug/m3) | Amount (ug/m3) |
|-------------------------------|----------------------|---------------|-----------------------|----------------|
| Ethanol                       | 4.7                  | 5.6           | 8.8                   | 11             |
| Acetone                       | 12                   | 33            | 28                    | 79             |
| 2-Propanol                    | 4.7                  | 28            | 12                    | 68             |
| Chloroform                    | 1.2                  | 5.1           | 5.7                   | 25             |
| Cyclohexane                   | 1.2                  | 1.3           | 4.0                   | 4.5            |
| Trichloroethene               | 1.2                  | 1.8           | 6.3                   | 10             |
| Toluene                       | 1.2                  | 1.8           | 4.4                   | 6.8            |
| Tetrachloroethene             | 1.2                  | 41            | 7.9                   | 280            |
| TPH ref. to Gasoline (MW=100) | 120                  | 5900          | 480                   | 24000          |

Client Sample ID: B4-SV-1.5

Lab ID#: 1710128-02A

| Compound                      | Rpt. Limit<br>(ppbv) | Amount (ppbv) | Rpt. Limit<br>(ug/m3) | Amount (ug/m3) |
|-------------------------------|----------------------|---------------|-----------------------|----------------|
| Acetone                       | 12                   | 63            | 28                    | 150            |
| 2-Propanol                    | 4.7                  | 50            | 12                    | 120            |
| Chloroform                    | 1.2                  | 1.6           | 5.7                   | 8.0            |
| 1,1,1-Trichloroethane         | 1.2                  | 1.5           | 6.4                   | 8.2            |
| Cyclohexane                   | 1.2                  | 2.8           | 4.0                   | 9.8            |
| Trichloroethene               | 1.2                  | 3.2           | 6.3                   | 17             |
| 4-Methyi-2-pentanone          | 1.2                  | 1.8           | 4.8                   | 7.5            |
| Tetrachloroethene             | 1.2                  | 220           | 8.0                   | 1500           |
| Naphthalene                   | 2.4                  | 3.3           | 12                    | 17             |
| TPH ref. to Gasoline (MW=100) | 120                  | 260           | 480                   | 1100           |

Client Sample ID: B5-SV-1.5

Lab ID#: 1710128-03A

| Compound          | Rpt. Limit<br>(ppbv) | Amount (ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|-------------------|----------------------|---------------|-----------------------|-------------------|
| Chloroform        | 1.2                  | 1.5           | 5.9                   | 7.4               |
| Tetrachloroethene | 1.2                  | 19            | 8.2                   | 130               |



# **Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN**

Client Sample ID: SSV5 Lab ID#: 1710128-04A

| Compound          | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|-------------------|----------------------|------------------|-----------------------|-------------------|
| Acetone           | 160                  | 260              | 380                   | 610               |
| 2-Propanol        | 64                   | 8100 E           | 160                   | 20000 E           |
| Tetrachloroethene | 16                   | 90               | 110                   | 610               |

Client Sample ID: SSV6

Lab ID#: 1710128-05A

| Compound          | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|-------------------|----------------------|------------------|-----------------------|-------------------|
| Acetone           | 120                  | 250              | 270                   | 590               |
| 2-Propanol        | 46                   | 8800 E           | 110                   | 22000 E           |
| Tetrachloroethene | 12                   | 150              | 78                    | 1000              |

Client Sample ID: SSV7

Lab ID#: 1710128-06A

| Compound          | Rpt. Limit<br>(ppbv) | Amount (ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|-------------------|----------------------|---------------|-----------------------|-------------------|
| Acetone           | 240                  | 270           | 570                   | 650               |
| 2-Propanol        | 96                   | 13000 E       | 230                   | 32000 E           |
| Tetrachloroethene | 24                   | 33            | 160                   | 220               |



## Air Toxics

## Client Sample ID: B3-SV-2.0 Lab ID#: 1710128-01A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor:       | 17100919<br>2.34 |              | of Collection: 10/9 of Analysis: 10/9 |              |  |
|----------------------------------|------------------|--------------|---------------------------------------|--------------|--|
| Camanad                          | Rpt. Limit       | Amount       | Rpt. Limit                            | Amount       |  |
| Compound                         | (ppbv)           | (ppbv)       | (ug/m3)                               | (ug/m3)      |  |
| Freon 12                         | 1.2              | Not Detected | 5.8                                   | Not Detected |  |
| Freon 114                        | 1.2              | Not Detected | 8.2                                   | Not Detected |  |
| Chloromethane                    | 12               | Not Detected | 24                                    | Not Detected |  |
| Vinyl Chloride                   | 1.2              | Not Detected | 3.0                                   | Not Detected |  |
| 1,3-Butadiene                    | 1.2              | Not Detected | 2.6                                   | Not Detected |  |
| 3romomethane                     | 12               | Not Detected | 45                                    | Not Detected |  |
| Chloroethane                     | 4.7              | Not Detected | 12                                    | Not Detected |  |
| Freon 11                         | 1.2              | Not Detected | 6.6                                   | Not Detected |  |
| Ethanol                          | 4.7              | 5.6          | 8.8                                   | 11           |  |
| Freon 113                        | 1.2              | Not Detected | 9.0                                   | Not Detected |  |
| 1,1-Dichloroethene               | 1.2              | Not Detected | 4.6                                   | Not Detected |  |
| Acetone                          | 12               | 33           | 28                                    | 79           |  |
| 2-Propanol                       | 4.7              | 28           | 12                                    | 68           |  |
| Carbon Disulfide                 | 4.7              | Not Detected | 14                                    | Not Detected |  |
| 3-Chloropropene                  | 4.7              | Not Detected | 15                                    | Not Detecte  |  |
| Methylene Chloride               | 12               | Not Detected | 41                                    | Not Detected |  |
| Methyl tert-butyl ether          | 4,7              | Not Detected | 17                                    | Not Detected |  |
| rans-1,2-Dichloroethene          | 1.2              | Not Detected | 4.6                                   | Not Detected |  |
| Hexane                           | 1.2              | Not Detected | 4.1                                   | Not Detecte  |  |
|                                  | 1.2              | Not Detected | 4.7                                   | Not Detected |  |
| 1,1-Dichloroethane               |                  |              |                                       |              |  |
| 2-Butanone (Methyl Ethyl Ketone) | 4.7              | Not Detected | 14                                    | Not Detected |  |
| cis-1,2-Dichloroethene           | 1.2              | Not Detected | 4.6                                   | Not Detected |  |
| Tetrahydrofuran                  | 1.2              | Not Detected | 3.4                                   | Not Detected |  |
| Chloroform                       | 1.2              | 5.1          | 5.7                                   | 25           |  |
| 1,1,1-Trichloroethane            | 1.2              | Not Detected | 6.4                                   | Not Detected |  |
| Cyclohexane                      | 1.2              | 1.3          | 4.0                                   | 4.5          |  |
| Carbon Tetrachloride             | 1.2              | Not Detected | 7.4                                   | Not Detected |  |
| 2,2,4-Trimethylpentane           | 1.2              | Not Detected | 5.5                                   | Not Detected |  |
| Benzene                          | 1.2              | Not Detected | 3.7                                   | Not Detected |  |
| ,2-Dichloroethane                | 1.2              | Not Detected | 4.7                                   | Not Detected |  |
| Heptane                          | 1.2              | Not Detected | 4.8                                   | Not Detected |  |
| Frichloroethene                  | 1.2              | 1.8          | 6.3                                   | 10           |  |
| 1,2-Dichloropropane              | 1.2              | Not Detected | 5.4                                   | Not Detected |  |
| 1,4-Dioxane                      | 4.7              | Not Detected | 17                                    | Not Detected |  |
| Bromodichloromethane             | 1.2              | Not Detected | 7.8                                   | Not Detected |  |
| cis-1,3-Dichloropropene          | 1.2              | Not Detected | 5.3                                   | Not Detected |  |
| l-Methyl-2-pentanone             | 1.2              | Not Detected | 4.8                                   | Not Detected |  |
| Foluene                          | 1.2              | 1.8          | 4.4                                   | 6.8          |  |
| rans-1,3-Dichloropropene         | 1.2              | Not Detected | 5.3                                   | Not Detected |  |
| 1,1,2-Trichloroethane            | 1.2              | Not Detected | 6.4                                   | Not Detected |  |
| <u> </u>                         |                  |              |                                       | 280          |  |
| Tetrachloroethene                | 1.2              | 41           | 7.9                                   |              |  |
| 2-Hexanone                       | 4.7              | Not Detected | 19                                    | Not Detected |  |



## Client Sample ID: B3-SV-2.0 Lab ID#: 1710128-01A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:   | 17100919 | Date of Collection: 10/6/17 10:17:00 AM |
|--------------|----------|-----------------------------------------|
| Dil. Factor: | 2.34     | Date of Analysis: 10/9/17 08:02 PM      |

| Compound                      | Rpt. Limit<br>(ppbv) | Amount (ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|-------------------------------|----------------------|---------------|-----------------------|-------------------|
| Dibromochloromethane          | 1.2                  | Not Detected  | 10                    | Not Detected      |
| 1,2-Dibromoethane (EDB)       | 1.2                  | Not Detected  | 9.0                   | Not Detected      |
| Chlorobenzene                 | 1.2                  | Not Detected  | 5.4                   | Not Detected      |
| Ethyl Benzene                 | 1.2                  | Not Detected  | 5.1                   | Not Detected      |
| m,p-Xylene                    | 1.2                  | Not Detected  | 5.1                   | Not Detected      |
| o-Xylene                      | 1.2                  | Not Detected  | 5.1                   | Not Detected      |
| Styrene                       | 1.2                  | Not Detected  | 5.0                   | Not Detected      |
| Bromoform                     | 1.2                  | Not Detected  | 12                    | Not Detected      |
| Cumene                        | 1.2                  | Not Detected  | 5.8                   | Not Detected      |
| 1,1,2,2-Tetrachloroethane     | 1.2                  | Not Detected  | 8.0                   | Not Detected      |
| Propylbenzene                 | 1.2                  | Not Detected  | 5.8                   | Not Detected      |
| 4-Ethyltoluene                | 1.2                  | Not Detected  | 5.8                   | Not Detected      |
| 1,3,5-Trimethylbenzene        | 1.2                  | Not Detected  | 5.8                   | Not Detected      |
| 1,2,4-Trimethylbenzene        | 1.2                  | Not Detected  | 5.8                   | Not Detected      |
| 1,3-Dichlorobenzene           | 1.2                  | Not Detected  | 7.0                   | Not Detected      |
| 1,4-Dichlorobenzene           | 1.2                  | Not Detected  | 7.0                   | Not Detected      |
| alpha-Chlorotoluene           | 1.2                  | Not Detected  | 6.0                   | Not Detected      |
| 1,2-Dichlorobenzene           | 1.2                  | Not Detected  | 7.0                   | Not Detected      |
| 1,2,4-Trichlorobenzene        | 4.7                  | Not Detected  | 35                    | Not Detected      |
| Hexachlorobutadiene           | 4.7                  | Not Detected  | 50                    | Not Detected      |
| Naphthalene                   | 2.3                  | Not Detected  | 12                    | Not Detected      |
| TPH ref. to Gasoline (MW=100) | 120                  | 5900          | 480                   | 24000             |

#### Container Type: 1 Liter Summa Canister

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| Toluene-d8            | 105       | 70-130 |  |
| 1,2-Dichloroethane-d4 | 116       | 70-130 |  |
| 4-Bromofluorobenzene  | 92        | 70-130 |  |



## Client Sample ID: B4-SV-1.5 Lab ID#: 1710128-02A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor:       | 17100907<br>2.35 |              | of Collection: 10<br>of Analysis: 10/9 |              |
|----------------------------------|------------------|--------------|----------------------------------------|--------------|
|                                  | Rpt. Limit       | Amount       | Rpt. Limit                             | Amount       |
| Compound                         | (ppbv)           | (ppbv)       | (ug/m3)                                | (ug/m3)      |
| Freon 12                         | 1.2              | Not Detected | 5.8                                    | Not Detected |
| Freon 114                        | 1.2              | Not Detected | 8.2                                    | Not Detected |
| Chloromethane                    | 12               | Not Detected | 24                                     | Not Detected |
| Vinyl Chloride                   | 1.2              | Not Detected | 3.0                                    | Not Detected |
| 1,3-Butadiene                    | 1.2              | Not Detected | 2.6                                    | Not Detected |
| Bromomethane                     | 12               | Not Detected | 46                                     | Not Detected |
| Chloroethane                     | 4.7              | Not Detected | 12                                     | Not Detected |
| Freon 11                         | 1.2              | Not Detected | 6.6                                    | Not Detected |
| Ethanol                          | 4.7              | Not Detected | 8.8                                    | Not Detected |
| Freon 113                        | 1.2              | Not Detected | 9.0                                    | Not Detected |
| 1,1-Dichloroethene               | 1.2              | Not Detected | 4.6                                    | Not Detected |
| Acetone                          | 12               | 63           | 28                                     | 150          |
| 2-Propanol                       | 4.7              | 50           | 12                                     | 120          |
| Carbon Disulfide                 | 4.7              | Not Detected | 15                                     | Not Detected |
| 3-Chloropropene                  | 4.7              | Not Detected | 15                                     | Not Detected |
| Methylene Chloride               | 12               | Not Detected | 41                                     | Not Detected |
| Methyl tert-butyl ether          | 4.7              | Not Detected | 17                                     | Not Detected |
| trans-1,2-Dichloroethene         | 1.2              | Not Detected | 4.6                                    | Not Detected |
| Hexane                           | 1.2              | Not Detected | 4.1                                    | Not Detected |
| 1,1-Dichloroethane               | 1.2              | Not Detected | 4.8                                    | Not Detected |
| 2-Butanone (Methyl Ethyl Ketone) | 4.7              | Not Detected | 14                                     | Not Detected |
| cis-1,2-Dichloroethene           | 1.2              | Not Detected | 4.6                                    | Not Detected |
| Tetrahydrofuran                  | 1.2              | Not Detected | 3.5                                    | Not Detected |
| Chloroform                       | 1.2              | 1.6          | 5.7                                    | 8.0          |
| 1,1,1-Trichloroethane            | 1.2              | 1.5          | 6.4                                    | 8.2          |
| Cyclohexane                      | 1.2              | 2.8          | 4.0                                    | 9.8          |
| Carbon Tetrachloride             | 1.2              | Not Detected | 7.4                                    | Not Detected |
| 2,2,4-Trimethylpentane           | 1.2              | Not Detected | 5.5                                    | Not Detected |
| Benzene                          | 1.2              | Not Detected | 3.8                                    | Not Detected |
| 1,2-Dichloroethane               | 1.2              | Not Detected | 4.8                                    | Not Detected |
| Heptane                          | 1.2              | Not Detected | 4.8                                    | Not Detected |
| Trichloroethene                  | 1.2              | 3.2          | 6.3                                    | 17           |
| 1,2-Dichloropropane              | 1.2              | Not Detected | 5.4                                    | Not Detected |
| 1,4-Dioxane                      | 4.7              | Not Detected | 17                                     | Not Detected |
| Bromodichloromethane             | 1.2              | Not Detected | 7.9                                    | Not Detected |
| cis-1,3-Dichloropropene          | 1.2              | Not Detected | 5.3                                    | Not Detected |
| 4-Methyl-2-pentanone             | 1.2              | 1.8          | 4.8                                    | 7.5          |
| Toluene                          | 1.2              | Not Detected | 4.4                                    | Not Detected |
| trans-1,3-Dichloropropene        | 1.2              | Not Detected | 5.3                                    | Not Detected |
| 1,1,2-Trichloroethane            | 1.2              | Not Detected | 6.4                                    | Not Detected |
| Tetrachloroethene                | 1.2              | 220          | 8.0                                    | 1500         |
| O Havenana                       | 4.7              | Not Detected | 40                                     | N-4 D-444    |

Not Detected

19

Not Detected

4.7

2-Hexanone



## Client Sample ID: B4-SV-1.5 Lab ID#: 1710128-02A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:   | 17100907 | Date of Collection: 10/6/17 10:26:00 AM |
|--------------|----------|-----------------------------------------|
| Dil. Factor: | 2.35     | Date of Analysis: 10/9/17 02:00 PM      |

| Compound                      | Rpt. Limit<br>(ppbv) | Amount (ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|-------------------------------|----------------------|---------------|-----------------------|-------------------|
| Dibromochloromethane          | 1.2                  | Not Detected  | 10                    | Not Detected      |
| 1,2-Dibromoethane (EDB)       | 1.2                  | Not Detected  | 9.0                   | Not Detected      |
| Chlorobenzene                 | 1.2                  | Not Detected  | 5.4                   | Not Detected      |
| Ethyl Benzene                 | 1.2                  | Not Detected  | 5.1                   | Not Detected      |
| m,p-Xylene                    | 1.2                  | Not Detected  | 5.1                   | Not Detected      |
| o-Xylene                      | 1.2                  | Not Detected  | 5.1                   | Not Detected      |
| Styrene                       | 1.2                  | Not Detected  | 5.0                   | Not Detected      |
| Bromoform                     | 1.2                  | Not Detected  | 12                    | Not Detected      |
| Cumene                        | 1.2                  | Not Detected  | 5.8                   | Not Detected      |
| 1,1,2,2-Tetrachloroethane     | 1.2                  | Not Detected  | 8.1                   | Not Detected      |
| Propylbenzene                 | 1.2                  | Not Detected  | 5.8                   | Not Detected      |
| 4-Ethyltoluene                | 1.2                  | Not Detected  | 5.8                   | Not Detected      |
| 1,3,5-Trimethylbenzene        | 1.2                  | Not Detected  | 5.8                   | Not Detected      |
| 1,2,4-Trimethylbenzene        | 1.2                  | Not Detected  | 5.8                   | Not Detected      |
| 1,3-Dichlorobenzene           | 1.2                  | Not Detected  | 7.1                   | Not Detected      |
| 1,4-Dichlorobenzene           | 1.2                  | Not Detected  | 7.1                   | Not Detected      |
| alpha-Chlorotoluene           | 1.2                  | Not Detected  | 6.1                   | Not Detected      |
| 1,2-Dichlorobenzene           | 1.2                  | Not Detected  | 7.1                   | Not Detected      |
| 1,2,4-Trichlorobenzene        | 4.7                  | Not Detected  | 35                    | Not Detected      |
| Hexachlorobutadiene           | 4.7                  | Not Detected  | 50                    | Not Detected      |
| Naphthalene                   | 2.4                  | 3.3           | 12                    | 17                |
| TPH ref. to Gasoline (MW=100) | 120                  | 260           | 480                   | 1100              |
|                               |                      |               |                       |                   |

#### Container Type: 1 Liter Summa Canister

|                       |           | Method<br>Limits |  |
|-----------------------|-----------|------------------|--|
| Surrogates            | %Recovery |                  |  |
| Toluene-d8            | 103       | 70-130           |  |
| 1,2-Dichloroethane-d4 | 114       | 70-130           |  |
| 4-Bromofluorobenzene  | 90        | 70-130           |  |



## Client Sample ID: B5-SV-1.5 Lab ID#: 1710128-03A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:   | 17100908 | Date of Collection: 10/6/17 10:34:00 AM |
|--------------|----------|-----------------------------------------|
| Dil. Factor: | 2.41     | Date of Analysis: 10/9/17 02:28 PM      |

| Dil. Factor:                     | 2.41 Date of Analysis: 10/9/17 02:28 PM |                  |                       | /17 02:28 PM   |
|----------------------------------|-----------------------------------------|------------------|-----------------------|----------------|
| Compound                         | Rpt. Limit<br>(ppbv)                    | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount (ug/m3) |
| Freon 12                         | 1.2                                     | Not Detected     | 6.0                   | Not Detected   |
| Freon 114                        | 1.2                                     | Not Detected     | 8.4                   | Not Detected   |
| Chloromethane                    | 12                                      | Not Detected     | 25                    | Not Detected   |
| Vinyl Chloride                   | 1.2                                     | Not Detected     | 3.1                   | Not Detected   |
| 1,3-Butadiene                    | 1.2                                     | Not Detected     | 2.7                   | Not Detected   |
| Bromomethane                     | 12                                      | Not Detected     | 47                    | Not Detected   |
| Chloroethane                     | 4.8                                     | Not Detected     | 13                    | Not Detected   |
| Freon 11                         | 1.2                                     | Not Detected     | 6.8                   | Not Detected   |
| Ethanol                          | 4.8                                     | Not Detected     | 9.1                   | Not Detected   |
| Freon 113                        | 1.2                                     | Not Detected     | 9.2                   | Not Detected   |
| 1,1-Dichloroethene               | 1.2                                     | Not Detected     | 4.8                   | Not Detected   |
| Acetone                          | 12                                      | Not Detected     | 29                    | Not Detected   |
| 2-Propanol                       | 4.8                                     | Not Detected     | 12                    | Not Detected   |
| Carbon Disulfide                 | 4.8                                     | Not Detected     | 15                    | Not Detected   |
| 3-Chloropropene                  | 4.8                                     | Not Detected     | 15                    | Not Detected   |
| Methylene Chloride               | 12                                      | Not Detected     | 42                    | Not Detected   |
| Methyl tert-butyl ether          | 4.8                                     | Not Detected     | 17                    | Not Detected   |
| rans-1,2-Dichloroethene          | 1.2                                     | Not Detected     | 4.8                   | Not Detected   |
| Hexane                           | 1.2                                     | Not Detected     | 4.2                   | Not Detected   |
| 1,1-Dichloroethane               | 1.2                                     | Not Detected     | 4.9                   | Not Detected   |
| 2-Butanone (Methyl Ethyl Ketone) | 4.8                                     | Not Detected     | 14                    | Not Detected   |
| cis-1,2-Dichloroethene           | 1.2                                     | Not Detected     | 4.8                   | Not Detected   |
| Tetrahydrofuran                  | 1.2                                     | Not Detected     | 3.6                   | Not Detected   |
| Chloroform                       | 1.2                                     | 1.5              | 5.9                   | 7.4            |
| 1,1,1-Trichloroethane            | 1.2                                     | Not Detected     | 6.6                   | Not Detected   |
| Cyclohexane                      | 1.2                                     | Not Detected     | 4.1                   | Not Detected   |
| Carbon Tetrachloride             | 1.2                                     | Not Detected     | 7.6                   | Not Detected   |
| 2,2,4-Trimethylpentane           | 1.2                                     | Not Detected     | 5.6                   | Not Detected   |
| Benzene                          | 1.2                                     | Not Detected     | 3.8                   | Not Detected   |
| 1,2-Dichloroethane               | 1.2                                     | Not Detected     | 4.9                   | Not Detected   |
| -leptane                         | 1.2                                     | Not Detected     | 4.9                   | Not Detected   |
| Frichloroethene                  | 1.2                                     | Not Detected     | 6.5                   | Not Detected   |
| 1,2-Dichloropropane              | 1.2                                     | Not Detected     | 5.6                   | Not Detected   |
| 1,4-Dioxane                      | 4.8                                     | Not Detected     | 17                    | Not Detected   |
| Bromodichloromethane             | 1.2                                     | Not Detected     | 8.1                   | Not Detected   |
| cis-1,3-Dichloropropene          | 1.2                                     | Not Detected     | 5.5                   | Not Detected   |
| 4-Methyl-2-pentanone             | 1.2                                     | Not Detected     | 4.9                   | Not Detected   |
| Toluene                          | 1.2                                     | Not Detected     | 4.5                   | Not Detected   |
| rans-1,3-Dichloropropene         | 1.2                                     | Not Detected     | 5.5                   | Not Detected   |
| 1,1,2-Trichloroethane            | 1.2                                     | Not Detected     | 6.6                   | Not Detected   |
| Tetrachloroethene                | 1.2                                     | 19               | 8.2                   | 130            |
| 2-Hexanone                       | 4.8                                     | Not Detected     | 20                    | Not Detected   |



4-Bromofluorobenzene

#### Air Toxics

## Client Sample ID: B5-SV-1.5 Lab ID#: 1710128-03A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:                      | 17100908   |                                 | of Collection: 10/ |              |
|---------------------------------|------------|---------------------------------|--------------------|--------------|
| Dil. Factor:                    | 2.41       | Date of Analysis: 10/9/17 02:28 |                    |              |
| _                               | Rpt. Limit | Amount                          | Rpt. Limit         | Amount       |
| Compound                        | (ppbv)     | (ppbv)                          | (ug/m3)            | (ug/m3)      |
| Dibromochloromethane            | 1.2        | Not Detected                    | 10                 | Not Detected |
| 1,2-Dibromoethane (EDB)         | 1.2        | Not Detected                    | 9.2                | Not Detected |
| Chlorobenzene                   | 1.2        | Not Detected                    | 5.5                | Not Detected |
| Ethyl Benzene                   | 1.2        | Not Detected                    | 5.2                | Not Detected |
| m,p-Xylene                      | 1.2        | Not Detected                    | 5.2                | Not Detected |
| o-Xylene                        | 1.2        | Not Detected                    | 5.2                | Not Detected |
| Styrene                         | 1.2        | Not Detected                    | 5.1                | Not Detected |
| Bromoform                       | 1.2        | Not Detected                    | 12                 | Not Detected |
| Cumene                          | 1.2        | Not Detected                    | 5.9                | Not Detected |
| 1,1,2,2-Tetrachloroethane       | 1.2        | Not Detected                    | 8.3                | Not Detected |
| Propylbenzene                   | 1.2        | Not Detected                    | 5.9                | Not Detected |
| 4-Ethyltoluene                  | 1.2        | Not Detected                    | 5.9                | Not Detected |
| 1,3,5-Trimethylbenzene          | 1.2        | Not Detected                    | 5.9                | Not Detected |
| 1,2,4-Trimethylbenzene          | 1.2        | Not Detected                    | 5.9                | Not Detected |
| 1,3-Dichlorobenzene             | 1.2        | Not Detected                    | 7.2                | Not Detected |
| 1,4-Dichlorobenzene             | 1.2        | Not Detected                    | 7.2                | Not Detected |
| alpha-Chlorotoluene             | 1.2        | Not Detected                    | 6.2                | Not Detected |
| 1,2-Dichlorobenzene             | 1.2        | Not Detected                    | 7.2                | Not Detected |
| 1,2,4-Trichlorobenzene          | 4.8        | Not Detected                    | 36                 | Not Detected |
| Hexachlorobutadiene             | 4.8        | Not Detected                    | 51                 | Not Detected |
| Naphthalene                     | 2.4        | Not Detected                    | 13                 | Not Detected |
| TPH ref. to Gasoline (MW=100)   | 120        | Not Detected                    | 490                | Not Detected |
| Container Type: 1 Liter Summa C | anister    |                                 |                    |              |
|                                 |            |                                 |                    | Method       |
| Surrogates                      |            | %Recovery                       |                    | Limits       |
| Toluene-d8                      |            | 104                             |                    | 70-130       |
| 1,2-Dichloroethane-d4           |            | 118                             | ii a               | 70-130       |

88

70-130



# Air Toxics

## Client Sample ID: SSV5 Lab ID#: 1710128-04A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor:       | 17100910<br>31.8  |                  | of Collection: 10/9 of Analysis: 10/9 |                   |
|----------------------------------|-------------------|------------------|---------------------------------------|-------------------|
| Compound                         | Rpt. Limit (ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3)                 | Amount<br>(ug/m3) |
| Freon 12                         | 16                | Not Detected     | 79                                    | Not Detected      |
| Freon 114                        | 16                | Not Detected     | 110                                   | Not Detecte       |
| Chloromethane                    | 160               | Not Detected     | 330                                   | Not Detecte       |
| Vinyl Chloride                   | 16                | Not Detected     | 41                                    | Not Detecte       |
| 1,3-Butadiene                    | 16                | Not Detected     | 35                                    | Not Detecte       |
| Bromomethane                     | 160               | Not Detected     | 620                                   | Not Detecte       |
| Chloroethane                     | 64                | Not Detected     | 170                                   | Not Detecte       |
| Freon 11                         | 16                | Not Detected     | 89                                    | Not Detecte       |
| Ethanol                          | 64                | Not Detected     | 120                                   | Not Detecte       |
| Freon 113                        | 16                | Not Detected     | 120                                   | Not Detecte       |
| 1,1-Dichloroethene               | 16                | Not Detected     | 63                                    | Not Detecte       |
| Acetone                          | 160               | 260              | 380                                   | 610               |
| 2-Propanol                       | 64                | 8100 E           | 160                                   | 20000 E           |
| Z-Propanor<br>Carbon Disulfide   | 64                | Not Detected     | 200                                   | Not Detecte       |
| 3-Chloropropene                  | 64                | Not Detected     | 200                                   | Not Detecte       |
|                                  | 160               | Not Detected     | 550                                   | Not Detecte       |
| Methylene Chloride               | 64                | Not Detected     | 230                                   | Not Detecte       |
| Methyl tert-butyl ether          | 16                | Not Detected     | 63                                    | Not Detecte       |
| trans-1,2-Dichloroethene         |                   |                  |                                       |                   |
| Hexane                           | 16<br>16          | Not Detected     | 56<br>64                              | Not Detecte       |
| 1,1-Dichloroethane               |                   | Not Detected     |                                       | Not Detecte       |
| 2-Butanone (Methyl Ethyl Ketone) | 64                | Not Detected     | 190                                   | Not Detecte       |
| cis-1,2-Dichloroethene           | 16                | Not Detected     | 63                                    | Not Detecte       |
| Tetrahydrofuran                  | 16                | Not Detected     | 47                                    | Not Detecte       |
| Chloroform                       | 16                | Not Detected     | 78                                    | Not Detecte       |
| 1,1,1-Trichloroethane            | 16                | Not Detected     | 87                                    | Not Detecte       |
| Cyclohexane                      | 16                | Not Detected     | 55                                    | Not Detecte       |
| Carbon Tetrachloride             | 16                | Not Detected     | 100                                   | Not Detecte       |
| 2,2,4-Trimethylpentane           | 16                | Not Detected     | 74                                    | Not Detecte       |
| Benzene                          | 16                | Not Detected     | 51                                    | Not Detecte       |
| 1,2-Dichloroethane               | 16                | Not Detected     | 64                                    | Not Detecte       |
| Heptane                          | 16                | Not Detected     | 65                                    | Not Detecte       |
| Trichloroethene                  | 16                | Not Detected     | 85                                    | Not Detecte       |
| 1,2-Dichloropropane              | 16                | Not Detected     | 73                                    | Not Detecte       |
| 1,4-Dioxane                      | 64                | Not Detected     | 230                                   | Not Detecte       |
| Bromodichloromethane             | 16                | Not Detected     | 110                                   | Not Detecte       |
| cis-1,3-Dichloropropene          | 16                | Not Detected     | 72                                    | Not Detected      |
| 4-Methyl-2-pentanone             | 16                | Not Detected     | 65                                    | Not Detected      |
| Toluene                          | 16                | Not Detected     | 60                                    | Not Detecte       |
| trans-1,3-Dichloropropene        | 16                | Not Detected     | 72                                    | Not Detecte       |
| 1,1,2-Trichloroethane            | 16                | Not Detected     | 87                                    | Not Detecte       |
| Tetrachloroethene                | 16                | 90               | 110                                   | 610               |
| 2-Hexanone                       | 64                | Not Detected     | 260                                   | Not Detecte       |



## Client Sample ID: SSV5 Lab ID#: 1710128-04A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:   | 17100910 | Date of Collection: 10/6/17 10:44:00 AM |
|--------------|----------|-----------------------------------------|
| Dil. Factor: | 31.8     | Date of Analysis: 10/9/17 03:21 PM      |

| Compound                      | Rpt. Limit (ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|-------------------------------|-------------------|------------------|-----------------------|-------------------|
| Dibromochloromethane          | 16                | Not Detected     | 140                   | Not Detected      |
| 1,2-Dibromoethane (EDB)       | 16                | Not Detected     | 120                   | Not Detected      |
| Chlorobenzene                 | 16                | Not Detected     | 73                    | Not Detected      |
| Ethyl Benzene                 | 16                | Not Detected     | 69                    | Not Detected      |
| m,p-Xylene                    | 16                | Not Detected     | 69                    | Not Detected      |
| o-Xylene                      | 16                | Not Detected     | 69                    | Not Detected      |
| Styrene                       | 16                | Not Detected     | 68                    | Not Detected      |
| Bromoform                     | 16                | Not Detected     | 160                   | Not Detected      |
| Cumene                        | 16                | Not Detected     | 78                    | Not Detected      |
| 1,1,2,2-Tetrachloroethane     | 16                | Not Detected     | 110                   | Not Detected      |
| Propylbenzene                 | 16                | Not Detected     | 78                    | Not Detected      |
| 4-Ethyltoluene                | 16                | Not Detected     | 78                    | Not Detected      |
| 1,3,5-Trimethylbenzene        | 16                | Not Detected     | 78                    | Not Detected      |
| 1,2,4-Trimethylbenzene        | 16                | Not Detected     | 78                    | Not Detected      |
| 1,3-Dichlorobenzene           | 16                | Not Detected     | 96                    | Not Detected      |
| 1,4-Dichlorobenzene           | 16                | Not Detected     | 96                    | Not Detected      |
| alpha-Chiorotoluene           | 16                | Not Detected     | 82                    | Not Detected      |
| 1,2-Dichlorobenzene           | 16                | Not Detected     | 96                    | Not Detected      |
| 1,2,4-Trichlorobenzene        | 64                | Not Detected     | 470                   | Not Detected      |
| Hexachlorobutadiene           | 64                | Not Detected     | 680                   | Not Detected      |
| Naphthalene                   | 32                | Not Detected     | 170                   | Not Detected      |
| TPH ref. to Gasoline (MW=100) | 1600              | Not Detected     | 6500                  | Not Detected      |

E = Exceeds instrument calibration range.

**Container Type: 1 Liter Summa Canister** 

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| Toluene-d8            | 106       | 70-130 |  |
| 1,2-Dichloroethane-d4 | 116       | 70-130 |  |
| 4-Bromofluorobenzene  | 88        | 70-130 |  |



# Air Toxics

## Client Sample ID: SSV6 Lab ID#: 1710128-05A

## EPA METHOD TO-15 GC/MS FULL SCAN

|              | Dot Limit | Amount Pot Limit Amount                 |
|--------------|-----------|-----------------------------------------|
| Dil. Factor: | 23.1      | Date of Analysis: 10/9/17 03:47 PM      |
| File Name:   | 17100911  | Date of Collection: 10/6/17 10:51:00 AM |
|              |           |                                         |

| Dil. Factor:                     | 23.1 Date of Analysis: 10/9/1 |               | /17 03:47 PM          |                   |
|----------------------------------|-------------------------------|---------------|-----------------------|-------------------|
| Compound                         | Rpt. Limit<br>(ppbv)          | Amount (ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Freon 12                         | 12                            | Not Detected  | 57                    | Not Detected      |
| Freon 114                        | 12                            | Not Detected  | 81                    | Not Detected      |
| Chloromethane                    | 120                           | Not Detected  | 240                   | Not Detected      |
| Vinyl Chloride                   | 12                            | Not Detected  | 30                    | Not Detected      |
| 1,3-Butadiene                    | 12                            | Not Detected  | 26                    | Not Detected      |
| Bromomethane                     | 120                           | Not Detected  | 450                   | Not Detected      |
| Chloroethane                     | 46                            | Not Detected  | 120                   | Not Detected      |
| Freon 11                         | 12                            | Not Detected  | 65                    | Not Detected      |
| Ethanol                          | 46                            | Not Detected  | 87                    | Not Detected      |
| Freon 113                        | 12                            | Not Detected  | 88                    | Not Detected      |
| 1,1-Dichloroethene               | 12                            | Not Detected  | 46                    | Not Detected      |
| Acetone                          | 120                           | 250           | 270                   | 590               |
| 2-Propanol                       | 46                            | 8800 E        | 110                   | 22000 E           |
| Carbon Disulfide                 | 46                            | Not Detected  | 140                   | Not Detected      |
| 3-Chloropropene                  | 46                            | Not Detected  | 140                   | Not Detected      |
| Methylene Chloride               | 120                           | Not Detected  | 400                   | Not Detected      |
| Methyl tert-butyl ether          | 46                            | Not Detected  | 170                   | Not Detected      |
| rans-1,2-Dichloroethene          | 12                            | Not Detected  | 46                    | Not Detected      |
| Hexane                           | 12                            | Not Detected  | 41                    | Not Detected      |
| 1,1-Dichloroethane               | 12                            | Not Detected  | 47                    | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 46                            | Not Detected  | 140                   | Not Detected      |
| cis-1,2-Dichloroethene           | 12                            | Not Detected  | 46                    | Not Detected      |
| Tetrahydrofuran                  | 12                            | Not Detected  | 34                    | Not Detected      |
| Chloroform                       | 12                            | Not Detected  | 56                    | Not Detected      |
| 1,1,1-Trichloroethane            | 12                            | Not Detected  | 63                    | Not Detected      |
| Cyclohexane                      | 12                            | Not Detected  | 40                    | Not Detected      |
| Carbon Tetrachloride             | 12                            | Not Detected  | 73                    | Not Detected      |
| 2,2,4-Trimethylpentane           | 12                            | Not Detected  | 54                    | Not Detected      |
| Benzene                          | 12                            | Not Detected  | 37                    | Not Detected      |
| 1,2-Dichloroethane               | 12                            | Not Detected  | 47                    | Not Detected      |
| -leptane                         | 12                            | Not Detected  | 47                    | Not Detected      |
| Trichloroethene                  | 12                            | Not Detected  | 62                    | Not Detected      |
| 1,2-Dichloropropane              | 12                            | Not Detected  | 53                    | Not Detected      |
| 1,4-Dioxane                      | 46                            | Not Detected  | 170                   | Not Detected      |
| Bromodichloromethane             | 12                            | Not Detected  | 77                    | Not Detected      |
| cis-1,3-Dichloropropene          | 12                            | Not Detected  | 52                    | Not Detected      |
| 4-Methyl-2-pentanone             | 12                            | Not Detected  | 47                    | Not Detected      |
| Toluene                          | 12                            | Not Detected  | 44                    | Not Detected      |
| trans-1,3-Dichloropropene        | 12                            | Not Detected  | 52                    | Not Detected      |
| 1,1,2-Trichloroethane            | 12                            | Not Detected  | 63                    | Not Detected      |
| Tetrachloroethene                | 12                            | 150           | 78                    | 1000              |
| 2-Hexanone                       | 46                            | Not Detected  | 190                   | Not Detected      |



## Client Sample ID: SSV6 Lab ID#: 1710128-05A

#### EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17100911 Date of Collection: 10/6/17 10:51:00 AM
Dil. Factor: 23.1 Date of Analysis: 10/9/17 03:47 PM

| 0                             | Rpt. Limit | Amount       | Rpt. Limit | Amount       |
|-------------------------------|------------|--------------|------------|--------------|
| Compound                      | (ppbv)     | (ppbv)       | (ug/m3)    | (ug/m3)      |
| Dibromochloromethane          | 12         | Not Detected | 98         | Not Detected |
| 1,2-Dibromoethane (EDB)       | 12         | Not Detected | 89         | Not Detected |
| Chlorobenzene                 | 12         | Not Detected | 53         | Not Detected |
| Ethyl Benzene                 | 12         | Not Detected | 50         | Not Detected |
| m,p-Xylene                    | 12         | Not Detected | 50         | Not Detected |
| o-Xylene                      | 12         | Not Detected | 50         | Not Detected |
| Styrene                       | 12         | Not Detected | 49         | Not Detected |
| Bromoform                     | 12         | Not Detected | 120        | Not Detected |
| Cumene                        | 12         | Not Detected | 57         | Not Detected |
| 1,1,2,2-Tetrachloroethane     | 12         | Not Detected | 79         | Not Detected |
| Propylbenzene                 | 12         | Not Detected | 57         | Not Detected |
| 4-Ethyltoluene                | 12         | Not Detected | 57         | Not Detected |
| 1,3,5-Trimethylbenzene        | 12         | Not Detected | 57         | Not Detected |
| 1,2,4-Trimethylbenzene        | 12         | Not Detected | 57         | Not Detected |
| 1,3-Dichlorobenzene           | 12         | Not Detected | 69         | Not Detected |
| 1,4-Dichlorobenzene           | 12         | Not Detected | 69         | Not Detected |
| alpha-Chlorotoluene           | 12         | Not Detected | 60         | Not Detected |
| 1,2-Dichlorobenzene           | 12         | Not Detected | 69         | Not Detected |
| 1,2,4-Trichlorobenzene        | 46         | Not Detected | 340        | Not Detected |
| Hexachlorobutadiene           | 46         | Not Detected | 490        | Not Detected |
| Naphthalene                   | 23         | Not Detected | 120        | Not Detected |
| TPH ref. to Gasoline (MW=100) | 1200       | Not Detected | 4700       | Not Detected |

E = Exceeds instrument calibration range.

Container Type: 1 Liter Summa Canister

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| Toluene-d8            | 104       | 70-130 |  |
| 1,2-Dichloroethane-d4 | 116       | 70-130 |  |
| 4-Bromofluorobenzene  | 88        | 70-130 |  |



## Air Toxics

**Client Sample ID: SSV7** Lab ID#: 1710128-06A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor:       | 17100912<br>47.8     |                                  | of Collection: 10/9/ |              |  |
|----------------------------------|----------------------|----------------------------------|----------------------|--------------|--|
| Compound                         | Rpt. Limit<br>(ppbv) | Amount Rpt. Limit (ppbv) (ug/m3) |                      | •            |  |
| Freon 12                         | 24                   | Not Detected                     | 120                  | Not Detected |  |
| Freon 114                        | 24                   | Not Detected                     | 170                  | Not Detected |  |
| Chloromethane                    | 240                  | Not Detected                     | 490                  | Not Detected |  |
| Vinyl Chloride                   | 24                   | Not Detected                     | 61                   | Not Detected |  |
| 1,3-Butadiene                    | 24                   | Not Detected                     | 53                   | Not Detected |  |
| Bromomethane                     | 240                  |                                  |                      |              |  |
|                                  |                      | Not Detected                     | 930                  | Not Detected |  |
| Chloroethane                     | 96                   | Not Detected                     | 250                  | Not Detected |  |
| Freon 11                         | 24                   | Not Detected                     | 130                  | Not Detected |  |
| Ethanol                          | 96                   | Not Detected                     | 180                  | Not Detected |  |
| Freon 113                        | 24                   | Not Detected                     | 180                  | Not Detected |  |
| 1,1-Dichloroethene               | 24                   | Not Detected                     | 95                   | Not Detected |  |
| Acetone                          | 240                  | 270                              | 570                  | 650          |  |
| 2-Propa <b>nol</b>               | 96                   | 13000 E                          | 230                  | 32000 E      |  |
| Carbon Disulfide                 | 96                   | Not Detected                     | 300                  | Not Detected |  |
| 3-Chloropropene                  | 96                   | Not Detected                     | 300                  | Not Detected |  |
| Methylene Chloride               | 240                  | Not Detected                     | 830                  | Not Detected |  |
| Methyl tert-butyl ether          | 96                   | Not Detected                     | 340                  | Not Detected |  |
| trans-1,2-Dichloroethene         | 24                   | Not Detected                     | 95                   | Not Detected |  |
| Hexane                           | 24                   | Not Detected                     | 84                   | Not Detected |  |
| 1,1-Dichloroethane               | 24                   | Not Detected                     | 97                   | Not Detected |  |
| 2-Butanone (Methyl Ethyl Ketone) | 96                   | Not Detected                     | 280                  | Not Detected |  |
| cis-1,2-Dichloroethene           | 24                   | Not Detected                     | 95                   | Not Detected |  |
| Tetrahydrofuran                  | 24                   | Not Detected                     | 70                   | Not Detected |  |
| Chloroform                       | 24                   | Not Detected                     | 120                  | Not Detected |  |
| 1,1,1-Trichloroethane            | 24                   | Not Detected                     | 130                  | Not Detected |  |
| Cyclohexane                      | 24                   | Not Detected                     | 82                   | Not Detected |  |
| ,                                | 24                   |                                  |                      |              |  |
| Carbon Tetrachloride             |                      | Not Detected                     | 150                  | Not Detected |  |
| 2,2,4-Trimethylpentane           | 24                   | Not Detected                     | 110                  | Not Detected |  |
| Benzene                          | 24                   | Not Detected                     | 76                   | Not Detected |  |
| 1,2-Dichloroethane               | 24                   | Not Detected                     | 97                   | Not Detected |  |
| Heptane                          | 24                   | Not Detected                     | 98                   | Not Detected |  |
| Trichloroethene                  | 24                   | Not Detected                     | 130                  | Not Detected |  |
| 1,2-Dichloropropane              | 24                   | Not Detected                     | 110                  | Not Detected |  |
| 1,4-Dioxane                      | 96                   | Not Detected                     | 340                  | Not Detected |  |
| Bromodi <b>chlorom</b> ethane    | 24                   | Not Detected                     | 160                  | Not Detected |  |
| cis-1,3-Dichloropropene          | 24                   | Not Detected                     | 110                  | Not Detected |  |
| 4-Methyl-2-pentanone             | 24                   | Not Detected                     | 98                   | Not Detected |  |
| Toluene                          | 24                   | Not Detected                     | 90                   | Not Detected |  |
| rans-1,3-Dichloropropene         | 24                   | Not Detected                     | 110                  | Not Detected |  |
| 1,1,2-Trichloroethane            | 24                   | Not Detected                     | 130                  | Not Detected |  |
| Tetrachloroethene                | 24                   | 33                               | 160                  | 220          |  |
| 2-Hexanone                       | 96                   | Not Detected                     | 390                  | Not Detected |  |



## Client Sample ID: SSV7 Lab ID#: 1710128-06A

#### EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17100912 Date of Collection: 10/6/17 11:07:00 AM
Dil. Factor: 47.8 Date of Analysis: 10/9/17 04:13 PM

| Compound                      | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|-------------------------------|----------------------|------------------|-----------------------|-------------------|
| Dibromochloromethane          | 24                   | Not Detected     | 200                   | Not Detected      |
| 1,2-Dibromoethane (EDB)       | 24                   | Not Detected     | 180                   | Not Detected      |
| Chlorobenzene                 | 24                   | Not Detected     | 110                   | Not Detected      |
| Ethyl Benzene                 | 24                   | Not Detected     | 100                   | Not Detected      |
| m,p-Xylene                    | 24                   | Not Detected     | 100                   | Not Detected      |
| o-Xylene                      | 24                   | Not Detected     | 100                   | Not Detected      |
| Styrene                       | 24                   | Not Detected     | 100                   | Not Detected      |
| Bromoform                     | 24                   | Not Detected     | 250                   | Not Detected      |
| Cumene                        | 24                   | Not Detected     | 120                   | Not Detected      |
| 1,1,2,2-Tetrachloroethane     | 24                   | Not Detected     | 160                   | Not Detected      |
| Propylbenzene                 | 24                   | Not Detected     | 120                   | Not Detected      |
| 4-Ethyltoluene                | 24                   | Not Detected     | 120                   | Not Detected      |
| 1,3,5-Trimethylbenzene        | 24                   | Not Detected     | 120                   | Not Detected      |
| 1,2,4-Trimethylbenzene        | 24                   | Not Detected     | 120                   | Not Detected      |
| 1,3-Dichlorobenzene           | 24                   | Not Detected     | 140                   | Not Detected      |
| 1,4-Dichlorobenzene           | 24                   | Not Detected     | 140                   | Not Detected      |
| alpha-Chlorotoluene           | 24                   | Not Detected     | 120                   | Not Detected      |
| 1,2-Dichlorobenzene           | 24                   | Not Detected     | 140                   | Not Detected      |
| 1,2,4-Trichlorobenzene        | 96                   | Not Detected     | 710                   | Not Detected      |
| Hexachlorobutadiene           | 96                   | Not Detected     | 1000                  | Not Detected      |
| Naphthalene                   | 48                   | Not Detected     | 250                   | Not Detected      |
| TPH ref. to Gasoline (MW=100) | 2400                 | Not Detected     | 9800                  | Not Detected      |

E = Exceeds instrument calibration range.

Container Type: 1 Liter Summa Canister

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| Toluene-d8            | 106       | 70-130 |  |
| 1,2-Dichloroethane-d4 | 118       | 70-130 |  |
| 4-Bromofluorobenzene  | 90        | 70-130 |  |



## Air Toxics

## Client Sample ID: Lab Blank Lab ID#: 1710128-07A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor:       | 17100906<br>1.00     |                                  | of Collection: NA of Analysis: 10/9 | /17 10:57 AM                 |
|----------------------------------|----------------------|----------------------------------|-------------------------------------|------------------------------|
| Compound                         | Rpt. Limit<br>(ppbv) | Amount Rpt. Limit (ppbv) (ug/m3) |                                     | Amount<br>(ug/m3)            |
| Freon 12                         | 0.50                 | Not Detected                     | 2.5                                 | Not Detected                 |
| Freon 114                        | 0.50                 | Not Detected                     | 3.5                                 | Not Detected                 |
| Chloromethane                    | 5.0                  | Not Detected                     | 10                                  | Not Detected                 |
| Vinyl Chloride                   | 0.50                 | Not Detected                     | 1.3                                 | Not Detected                 |
| 1,3-Butadiene                    | 0.50                 | Not Detected                     | 1.1                                 | Not Detected                 |
| Bromomethane                     | 5.0                  | Not Detected                     | 19                                  | Not Detected                 |
| Chloroethane                     | 2.0                  | Not Detected                     | 5.3                                 | Not Detected                 |
| Freon 11                         | 0.50                 | Not Detected                     | 2.8                                 | Not Detected                 |
| Ethanol                          | 2.0                  | Not Detected                     |                                     |                              |
| Freon 113                        | 0.50                 | Not Detected                     | 3.8<br>3.8                          | Not Detected<br>Not Detected |
|                                  |                      |                                  |                                     |                              |
| 1,1-Dichloroethene               | 0.50                 | Not Detected                     | 2.0                                 | Not Detected                 |
| Acetone                          | 5.0                  | Not Detected                     | 12                                  | Not Detected                 |
| 2-Propanol                       | 2.0                  | Not Detected                     | 4.9                                 | Not Detected                 |
| Carbon Disulfide                 | 2.0                  | Not Detected                     | 6.2                                 | Not Detected                 |
| 3-Chloropropene                  | 2.0                  | Not Detected                     | 6.3                                 | Not Detected                 |
| Methylene Chloride               | 5.0                  | Not Detected                     | 17                                  | Not Detected                 |
| Methyl tert-butyl ether          | 2.0                  | Not Detected                     | 7.2                                 | Not Detected                 |
| rans-1,2-Dichloroethene          | 0.50                 | Not Detected                     | 2.0                                 | Not Detected                 |
| Hexane                           | 0.50                 | Not Detected                     | 1.8                                 | Not Detected                 |
| 1,1-Dichloroethane               | 0.50                 | Not Detected                     | 2.0                                 | Not Detected                 |
| 2-Butanone (Methyl Ethyl Ketone) | 2.0                  | Not Detected                     | 5.9                                 | Not Detected                 |
| cis-1,2-Dichloroethene           | 0.50                 | Not Detected                     | 2.0                                 | Not Detected                 |
| Tetrahydrofuran                  | 0.50                 | Not Detected                     | 1.5                                 | Not Detected                 |
| Chloroform                       | 0.50                 | Not Detected                     | 2.4                                 | Not Detected                 |
| 1,1,1-Trichloroethane            | 0.50                 | Not Detected                     | 2.7                                 | Not Detected                 |
| Cyclohexane                      | 0.50                 | Not Detected                     | 1.7                                 | Not Detected                 |
| Carbon Tetrachloride             | 0.50                 | Not Detected                     | 3.1                                 | Not Detected                 |
| 2,2,4-Trimethylpentane           | 0.50                 | Not Detected                     | 2.3                                 | Not Detected                 |
| Benzene                          | 0.50                 | Not Detected                     | 1.6                                 | Not Detected                 |
| 1,2-Dichloroethane               | 0.50                 | Not Detected                     | 2.0                                 | Not Detected                 |
| Heptane                          | 0.50                 | Not Detected                     | 2.0                                 |                              |
| •                                |                      |                                  |                                     | Not Detected                 |
| Trichloroethene                  | 0.50                 | Not Detected                     | 2.7                                 | Not Detected                 |
| 1,2-Dichloropropane              | 0.50                 | Not Detected                     | 2.3                                 | Not Detected                 |
| 1,4-Dioxane                      | 2.0                  | Not Detected                     | 7.2                                 | Not Detected                 |
| 3romodichloromethane             | 0.50                 | Not Detected                     | 3.4                                 | Not Detected                 |
| cis-1,3-Dichloropropene          | 0.50                 | Not Detected                     | 2.3                                 | Not Detected                 |
| 4-Methyl-2-pentanone             | 0.50                 | Not Detected                     | 2.0                                 | Not Detected                 |
| Toluene                          | 0.50                 | Not Detected                     | 1.9                                 | Not Detected                 |
| rans-1,3-Dichloropropene         | 0.50                 | Not Detected                     | 2.3                                 | Not Detected                 |
| 1,1,2-Trichloroethane            | 0.50                 | Not Detected                     | 2.7                                 | Not Detected                 |
| Tetrachloroethene                | 0.50                 | Not Detected                     | 3.4                                 | Not Detected                 |
| 2-Hexanone                       | 2.0                  | Not Detected                     | 8.2                                 | Not Detected                 |



## Client Sample ID: Lab Blank Lab ID#: 1710128-07A

#### **EPA METHOD TO-15 GC/MS FULL SCAN**

| File Name:   | 17100906 | Date of Collection: NA             |
|--------------|----------|------------------------------------|
| Dil. Factor: | 1.00     | Date of Analysis: 10/9/17 10:57 AM |

| Compound                      | Rpt. Limit<br>(ppbv) | Amount (ppbv) | Rpt. Limit<br>(ug/m3) | Amount (ug/m3) |
|-------------------------------|----------------------|---------------|-----------------------|----------------|
| Dibromochloromethane          | 0.50                 | Not Detected  | 4.2                   | Not Detected   |
| 1,2-Dibromoethane (EDB)       | 0.50                 | Not Detected  | 3.8                   | Not Detected   |
| Chlorobenzene                 | 0.50                 | Not Detected  | 2.3                   | Not Detected   |
| Ethyl Benzene                 | 0.50                 | Not Detected  | 2.2                   | Not Detected   |
| m,p-Xylene                    | 0.50                 | Not Detected  | 2.2                   | Not Detected   |
| o-Xylene                      | 0.50                 | Not Detected  | 2.2                   | Not Detected   |
| Styrene                       | 0.50                 | Not Detected  | 2.1                   | Not Detected   |
| Bromoform                     | 0.50                 | Not Detected  | 5.2                   | Not Detected   |
| Cumene                        | 0.50                 | Not Detected  | 2.4                   | Not Detected   |
| 1,1,2,2-Tetrachloroethane     | 0.50                 | Not Detected  | 3.4                   | Not Detected   |
| Propylbenzene                 | 0.50                 | Not Detected  | 2.4                   | Not Detected   |
| 4-Ethyltoluene                | 0.50                 | Not Detected  | 2.4                   | Not Detected   |
| 1,3,5-Trimethylbenzene        | 0.50                 | Not Detected  | 2.4                   | Not Detected   |
| 1,2,4-Trimethylbenzene        | 0.50                 | Not Detected  | 2.4                   | Not Detected   |
| 1,3-Dichlorobenzene           | 0.50                 | Not Detected  | 3.0                   | Not Detected   |
| 1,4-Dichlorobenzene           | 0.50                 | Not Detected  | 3.0                   | Not Detected   |
| alpha-Chlorotoluene           | 0.50                 | Not Detected  | 2.6                   | Not Detected   |
| 1,2-Dichlorobenzene           | 0.50                 | Not Detected  | 3.0                   | Not Detected   |
| 1,2,4-Trichlorobenzene        | 2.0                  | Not Detected  | 15                    | Not Detected   |
| Hexachlorobutadiene           | 2.0                  | Not Detected  | 21                    | Not Detected   |
| Naphthalene                   | 1.0                  | Not Detected  | 5.2                   | Not Detected   |
| TPH ref. to Gasoline (MW=100) | 50                   | Not Detected  | 200                   | Not Detected   |

#### Container Type: NA - Not Applicable

|                       |            | Method |
|-----------------------|------------|--------|
| Surrogates            | %Recovery  | Limits |
| Toluene-d8            | .104       | 70-130 |
| 1,2-Dichloroethane-d4 | <b>114</b> | 70-130 |
| 4-Bromofluorobenzene  | 86         | 70-130 |



## Client Sample ID: CCV Lab ID#: 1710128-08A

#### EPA METHOD TO-15 GC/MS FULL SCAN

|              | *        |                                    |
|--------------|----------|------------------------------------|
| File Name:   | 17100902 | Date of Collection: NA             |
| Dil. Factor: | 1.00     | Date of Analysis: 10/9/17 08:06 AM |

| Compound                         | %Recovery |  |
|----------------------------------|-----------|--|
| Freon 12                         | 110       |  |
| Freon 114                        | 96        |  |
| Chloromethane                    | 129       |  |
| Vinyl Chloride                   | 124       |  |
| 1,3-Butadiene                    | 121       |  |
| Bromomethane                     | 115       |  |
| Chloroethane                     | 122       |  |
| Freon 11                         | 102       |  |
| Ethanol                          | 122       |  |
| Freon 113                        | 91        |  |
| 1,1-Dichloroethene               | 103       |  |
| Acetone                          | 108       |  |
| 2-Propanol                       | 119       |  |
| Carbon Disulfide                 | 119       |  |
| 3-Chloropropene                  | 111       |  |
| Methylene Chloride               | 132 Q     |  |
| Methyl tert-butyl ether          | 109       |  |
| trans-1,2-Dichloroethene         | 113       |  |
| Hexane                           | 118       |  |
| 1,1-Dichloroethane               | 128       |  |
| 2-Butanone (Methyl Ethyl Ketone) | 118       |  |
| cis-1,2-Dichloroethene           | 111       |  |
| Tetrahydrofuran                  | 124       |  |
| Chloroform                       | 116       |  |
| 1,1,1-Trichloroethane            | 106       |  |
| Cyclohexane                      | 112       |  |
| Carbon Tetrachloride             | 97        |  |
| 2,2,4-Trimethylpentane           | 126       |  |
| Benzene                          | 121       |  |
| 1,2-Dichloroethane               | 125       |  |
| Heptane                          | 122       |  |
| Trichloroethene                  | 110       |  |
| 1,2-Dichloropropane              | 131 Q     |  |
| 1,4-Dioxane                      | 106       |  |
| Bromodichloromethane             | 116       |  |
| cis-1,3-Dichloropropene          | 116       |  |
| 4-Methyl-2-pentanone             | 118       |  |
| Toluene                          | 113       |  |
| trans-1,3-Dichloropropene        | 122       |  |
| 1,1,2-Trichloroethane            | 116       |  |
| Tetrachloroethene                | 98        |  |
| 2-Hexanone                       | 123       |  |



## Client Sample ID: CCV Lab ID#: 1710128-08A

#### **EPA METHOD TO-15 GC/MS FULL SCAN**

 File Name:
 17100902
 Date of Collection: NA

 Dil. Factor:
 1.00
 Date of Analysis: 10/9/17 08:06 AM

| Compound                      | %Recovery |  |
|-------------------------------|-----------|--|
| Dibromochloromethane          | 104       |  |
| 1,2-Dibromoethane (EDB)       | 109       |  |
| Chlorobenzene                 | 104       |  |
| Ethyl Benzene                 | 105       |  |
| m,p-Xylene                    | 107       |  |
| o-Xylene                      | 105       |  |
| Styrene                       | 123       |  |
| Bromoform                     | 101       |  |
| Cumene                        | 107       |  |
| 1,1,2,2-Tetrachloroethane     | 122       |  |
| Propylbenzene                 | 112       |  |
| 4-Ethyltoluene                | 106       |  |
| 1,3,5-Trimethylbenzene        | 108       |  |
| 1,2,4-Trimethylbenzene        | 102       |  |
| 1,3-Dichlorobenzene           | 100       |  |
| 1,4-Dichlorobenzene           | 99        |  |
| alpha-Chlorotoluene           | 118       |  |
| 1,2-Dichlorobenzene           | 101       |  |
| 1,2,4-Trichlorobenzene        | 98        |  |
| Hexachlorobutadiene           | 100       |  |
| Naphthalene                   | 75        |  |
| TPH ref. to Gasoline (MW=100) | 100       |  |

#### Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 107       | 70-130 |
| 1,2-Dichloroethane-d4 | 116       | 70-130 |
| 4-Bromofluorobenzene  | 94        | 70-130 |



2-Hexanone

# Air Toxics

## Client Sample ID: LCS Lab ID#: 1710128-09A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor:       | 17100903<br>1.00                        | Date of Collec |                                 |
|----------------------------------|-----------------------------------------|----------------|---------------------------------|
| Z.II. 1 40101.                   | Date of Analysis                        |                | sis: 10/9/17 08:33 AM<br>Method |
| Compound                         | %R                                      | ecovery        | Limits                          |
| Freon 12                         |                                         | 113            | 70-130                          |
| Freon 114                        |                                         | 101            | 70-130                          |
| Chloromethane                    |                                         | 129            | 70-130                          |
| Vinyl Chloride                   |                                         | 126            | 70-130                          |
| 1,3-Butadiene                    |                                         | 123            | 70-130                          |
| Bromomethane                     |                                         | 118            | 70-130                          |
| Chloroethane                     |                                         | 128            | 70-130                          |
| Freon 11                         |                                         | 106            | 70-130                          |
| Ethanol                          |                                         | 130            | 70-130                          |
| Freon 113                        |                                         | 91             | 70-130                          |
| 1,1-Dichloroethene               |                                         | 106            | 70-130                          |
| Acetone                          |                                         | 110            | 70-130                          |
| 2-Propanol                       |                                         | 129            | 70-130                          |
| Carbon Disulfide                 |                                         | 106            | 70-130                          |
| 3-Chloropropene                  |                                         | 108            | 70-130                          |
| Methylene Chloride               | 1                                       | 31 Q           | 70-130                          |
| Methyl tert-butyl ether          |                                         | 109            | 70-130                          |
| trans-1,2-Dichloroethene         |                                         | 97             | 70-130                          |
| Hexane                           |                                         | 122            | 70-130                          |
| 1,1-Dichloroethane               |                                         | 126            | 70-130                          |
| 2-Butanone (Methyl Ethyl Ketone) |                                         | 115            | 70-130                          |
| cis-1,2-Dichloroethene           |                                         | 124            | 70-130                          |
| Tetrahydrofuran                  |                                         | 125            | 70-130                          |
| Chloroform                       |                                         | 117            | 70-130                          |
| 1,1,1-Trichloroethane            |                                         | 108            | 70-130                          |
| Cyclohexane                      |                                         | 115            | 70-130                          |
| Carbon Tetrachloride             |                                         | 97             | 70-130                          |
| 2,2,4-Trimethylpentane           |                                         | 127            | 70-130                          |
| Benzene                          |                                         | 123            | 70-130                          |
| 1,2-Dichloroethane               |                                         | 128            | 70-130                          |
| Heptane                          |                                         | 122            | 70-130                          |
| Trichloroethene                  |                                         | 110            | 70-130                          |
| 1,2-Dichloropropane              | = = = = = = = = = = = = = = = = = = = = | 34 Q           | 70-130                          |
| 1,4-Dioxane                      |                                         | 107            | 70-130                          |
| Bromodi <b>chlorom</b> ethane    |                                         | 121            | 70-130                          |
| cis-1,3-Dichloropropene          |                                         | 110            | 70-130                          |
| 4-Methyl-2-pentanone             |                                         | 122            | 70-130                          |
| Toluene                          |                                         | 113            | 70-130                          |
| trans-1,3-Dichloropropene        |                                         | 123            | 70-130                          |
| 1,1,2-Trichloroethane            |                                         | 118            | 70-130                          |
| Tetrachloroethene                |                                         | 99             | 70-130                          |
|                                  |                                         |                |                                 |

128

70-130



## Client Sample ID: LCS Lab ID#: 1710128-09A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:   | 17100903 | Date of Collection: NA             |
|--------------|----------|------------------------------------|
| Dil. Factor: | 1.00     | Date of Analysis: 10/9/17 08:33 AM |

|                               |            | Method |  |
|-------------------------------|------------|--------|--|
| Compound                      | %Recovery  | Limits |  |
| Dibromochloromethane          | 107        | 70-130 |  |
| 1,2-Dibromoethane (EDB)       | 111        | 70-130 |  |
| Chlorobenzene                 | 105        | 70-130 |  |
| Ethyl Benzene                 | 108        | 70-130 |  |
| m,p-Xylene                    | 108        | 70-130 |  |
| o-Xylene                      | 111        | 70-130 |  |
| Styrene                       | 126        | 70-130 |  |
| Bromoform                     | 104        | 70-130 |  |
| Cumene                        | 109        | 70-130 |  |
| 1,1,2,2-Tetrachloroethane     | 127        | 70-130 |  |
| Propylbenzene                 | 116        | 70-130 |  |
| 4-Ethyltoluene                | 109        | 70-130 |  |
| 1,3,5-Trimethylbenzene        | 110        | 70-130 |  |
| 1,2,4-Trimethylbenzene        | 106        | 70-130 |  |
| 1,3-Dichlorobenzene           | 104        | 70-130 |  |
| 1,4-Dichlorobenzene           | 102        | 70-130 |  |
| alpha-Chlorotoluene           | 126        | 70-130 |  |
| 1,2-Dichlorobenzene           | 105        | 70-130 |  |
| 1,2,4-Trichlorobenzene        | 107        | 70-130 |  |
| Hexachlorobutadiene           | 108        | 70-130 |  |
| Naphthalene                   | 140        | 60-140 |  |
| TPH ref. to Gasoline (MW=100) | Not Spiked |        |  |

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

|                       |           | Method<br>Limits |  |
|-----------------------|-----------|------------------|--|
| Surrogates            | %Recovery |                  |  |
| Toluene-d8            | 106       | 70-130           |  |
| 1,2-Dichloroethane-d4 | 120       | 70-130           |  |
| 4-Bromofluorobenzene  | 95        | 70-130           |  |



#### Air Toxics

## Client Sample ID: LCSD Lab ID#: 1710128-09AA

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:<br>Dil. Factor:       | 17100904<br>1.00 | Date of Applysics 40/0/47 00:00 AM         |  |
|----------------------------------|------------------|--------------------------------------------|--|
| DII. I GUUI.                     | 1.00             | Date of Analysis: 10/9/17 09:00 AM  Method |  |
| Compound                         | %Recovery        |                                            |  |
| Freon 12                         | 116              | 70-130                                     |  |
| Freon 114                        | 104              | 70-130                                     |  |
| Chloromethane                    | 133 Q            | 70-130                                     |  |
| Vinyl Chloride                   | 130              | 70-130                                     |  |
| 1,3-Butadiene                    | 126              | 70-130                                     |  |
| Bromomethane                     | 119              | 70-130                                     |  |
| Chloroethane                     | 131 Q            | 70-130                                     |  |
| Freon 11                         | 107              | 70-130                                     |  |
| Ethanol                          | 133 Q            | 70-130                                     |  |
| Freon 113                        | 92               | 70-130                                     |  |
| 1,1-Dichloroethene               | 107              | 70-130                                     |  |
| Acetone                          | 110              | 70-130                                     |  |
| 2-Propanol                       | 133 Q            | 70-130                                     |  |
| Carbon Disulfide                 | 108              | 70-130                                     |  |
| 3-Chloropropene                  | 109              | 70-130                                     |  |
| Methylene Chloride               | 132 Q            | 70-130                                     |  |
| Methyl tert-butyl ether          | 112              | 70-130                                     |  |
| trans-1,2-Dichloroethene         | 100              | 70-130                                     |  |
| Hexane                           | 123              | 70-130                                     |  |
| 1,1-Dichloroethane               | 131 Q            | 70-130                                     |  |
| 2-Butanone (Methyl Ethyl Ketone) | 117              | 70-130                                     |  |
| cis-1,2-Dichloroethene           | 126              | 70-130                                     |  |
| Tetrahydrofuran                  | 128              | 70-130                                     |  |
| Chloroform                       | 118              | 70-130                                     |  |
| 1,1,1-Trichloroethane            | 110              | 70-130                                     |  |
| Cyclohexane                      | 118              | 70-130                                     |  |
| Carbon Tetrachloride             | 99               | 70-130                                     |  |
| 2,2,4-Trimethylpentane           | 130              | 70-130                                     |  |
| Benzene                          | 124              | 70-130                                     |  |
| 1,2-Dichloroethane               | 125              | 70-130                                     |  |
| Heptane                          | 122              | 70-130                                     |  |
| Trichloroethene                  | 110              | 70-130                                     |  |
| 1,2-Dichloropropane              | 135 Q            | 70-130                                     |  |
| 1,4-Dioxane                      | 107              | 70-130                                     |  |
| Bromodi <b>chlorom</b> ethane    | 120              | 70-130                                     |  |
| cis-1,3-Dichloropropene          | 111              | 70-130                                     |  |
| 4-Methyl-2-pentanone             | 123              | 70-130                                     |  |
| Toluene                          | = 114            | 70-130                                     |  |
| trans-1,3-Dichloropropene        | 123              | 70-130                                     |  |
| 1,1,2-Trichloroethane            | 118              | 70-130                                     |  |
| Tetrachloroethene                | 99               | 70-130                                     |  |
| 2-Hexanone                       | 128              | 70-130                                     |  |



## Client Sample ID: LCSD Lab ID#: 1710128-09AA

#### EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 17100904
 Date of Collection: NA

 Dil. Factor:
 1.00
 Date of Analysis: 10/9/17 09:00 AM

|                               |            | Method |
|-------------------------------|------------|--------|
| Compound                      | %Recovery  | Limits |
| Dibromochloromethane          | 107        | 70-130 |
| 1,2-Dibromoethane (EDB)       | 112        | 70-130 |
| Chlorobenzene                 | 106        | 70-130 |
| Ethyl Benzene                 | 108        | 70-130 |
| m,p-Xylene                    | 109        | 70-130 |
| o-Xylene                      | 111        | 70-130 |
| Styrene                       | 128        | 70-130 |
| Bromoform                     | 103        | 70-130 |
| Cumene                        | 109        | 70-130 |
| 1,1,2,2-Tetrachloroethane     | 128        | 70-130 |
| Propylbenzene                 | 117        | 70-130 |
| 4-Ethyltoluene                | 110        | 70-130 |
| 1,3,5-Trimethylbenzene        | 111        | 70-130 |
| 1,2,4-Trimethylbenzene        | 106        | 70-130 |
| 1,3-Dichlorobenzene           | 103        | 70-130 |
| 1,4-Dichlorobenzene           | 102        | 70-130 |
| alpha-Chlorotoluene           | 125        | 70-130 |
| 1,2-Dichlorobenzene           | 105        | 70-130 |
| 1,2,4-Trichlorobenzene        | 108        | 70-130 |
| Hexachlorobutadiene           | 111        | 70-130 |
| Naphthalene                   | 143 Q      | 60-140 |
| TPH ref. to Gasoline (MW=100) | Not Spiked |        |

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

|                       | \$.'      | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| Toluene-d8            | 105       | 70-130 |  |
| 1,2-Dichloroethane-d4 | 121       | 70-130 |  |
| 4-Bromofluorobenzene  | 92        | 70-130 |  |