RECEIVED

July 26, 2017

By Alameda County Environmental Health 1:40 pm, Aug 01, 2017

Ms. Dilan Roe Chief – Land Water Division Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94501-6577

Subject: Site Management Plan

Aster Apartments

6775 Golden Gate Drive

Dublin, California

Assessor's Parcel No. 941-1500-015-09

Post-Closure O&M Document Repository No. RO0003252

Dear Ms. Roe:

Enclosed please find the *Site Management Plan* for the Aster Apartments site at 6775 Golden Gate Drive, in Dublin, California (Post-Closure O&M Document Repository No. RO0003252, GeoTracker Global ID T10000010517). This document was prepared by Amec Foster Wheeler Environment & Infrastructure, Inc. ("Amec Foster Wheeler"), on behalf of Dublin Apartment Properties, LLC.

I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the State Water Quality Control Board's GeoTracker website.

Please contact me at (408) 680-4938 or Avery Whitmarsh of Amec Foster Wheeler at (510) 663-4154 if you have any questions regarding this document.

Sincerely yours.

Pete Beritzhoff

Dublin Apartment Properties, LLC

Attachment: Site Management Plan

cc: Colleen Winey, Zone 7 Water Agency (electronic)

Gregory Shreeve, City of Dublin (electronic)

SITE MANAGEMENT PLAN

Aster Apartments 6775 Golden Gate Drive Dublin, California

Prepared for:

Dublin Apartment Properties, LLCDublin, California

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 180 Grand Avenue, Suite 1100 Oakland, California 94612

July 2017

Project No. 8617170810.1.5

SITE MANAGEMENT PLAN

Aster Apartments 6775 Golden Gate Drive Dublin, California

July 26, 2017 Project 8617170810.1.5

This document was prepared by the staff of Amec Foster Wheeler under the supervision of the Engineer whose seal and signature appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering practice. No warranty is expressed or implied.

buglos C. Bablitch

TE OF CALIFO

Douglas C. Bablitch, PE Senior Associate Engineer

TABLE OF CONTENTS

			Page
1.0	INTRO	ODUCTION	1
	1.1	OBJECTIVES	1
	1.2	Background	2
		1.2.1 Site Setting and Historical Uses	2
		1.2.2 Previous Environmental Investigations	2
		1.2.3 Constituents of Concern	2
		1.2.4 Source Removal	3
		1.2.5 Corrective Actions	3
		1.2.5.1 Permeable Reactive Barrier	
		1.2.5.2 Vapor Mitigation System	
		1.2.6 Nature and Extent of Impacted Media	4
		1.2.6.1 Soil	
		1.2.6.2 Groundwater	
		1.2.6.3 Soil Vapor	
	1.3	DEED RESTRICTION AREA	6
2.0	REGL	JLATORY STATUS AND GENERAL REQUIREMENTS	7
	2.1	REGULATORY REQUIREMENTS	
	2.2	NOTIFICATIONS	7
	2.3	SITE INSPECTIONS AND REPORTING	8
		2.3.1 PRB and Groundwater Monitoring	8
		2.3.2 VMS Monitoring	8
		2.3.3 General Site Inspections	
3.0	GUID	ELINES FOR HEALTH AND SAFETY DURING INTRUSIVE ACTIVITIES	q
0.0	3.1	PERSONAL PROTECTIVE EQUIPMENT	
	3.2	DECONTAMINATION PROCEDURES	
	3.3	SPILL RESPONSE PROCEDURES	
	3.4	EMERGENCY CONTACTS	
4.0			
4.0	501L 4.1	AND WATER MANAGEMENT PROCEDURES	
	4.1 4.2	SOIL HANDLINGSOIL HANDLING	
	4.2	SOIL STOCKPILING	
	4.3 4.4	On-Site Reuse of Soil	
	4. 4 4.5	OFF-SITE SOIL DISPOSAL	
	4.6	DUST MANAGEMENT MEASURES	
	4.0	4.6.1 Dust Control	
		4.6.1.1 Minimum Requirements for Dust Control	
		4.6.1.2 Contingency Requirements for Dust Control	
		4.6.1.3 Excessive Watering	15
		4.6.2 Dust Monitoring	
	4.7	CONSTRUCTION DEWATERING/LIQUIDS MANAGEMENT	
	4.8	STORM WATER MANAGEMENT	
	4.9	SITE ACCESS AND SECURITY	
	4.10	UNANTICIPATED SUBSURFACE CONDITIONS	17

5.0	5.1	IISTRATION OF THE SITE MANAGEMENT PLANRESPONSIBILITIES	17
	5.2 5.3	MODIFICATIONS OR TERMINATION OF SITE MANAGEMENT PLAN	
6.0	SCOP	E, REPRESENTATIONS, AND LIMITATIONS	19
7.0	REFE	RENCES	19
		FIGURES	
		HOOKEO	
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5		Site Location Map Site Plan and Deed Restriction Area Former Buildings and Features Permeable Reactive Barrier and Vapor Mitigation System Sub-Slab Venting System	
		APPENDICES	
Append Append Append Append	dix B dix C	Deed Restriction Soil Profiling Reports Historical Groundwater, Soil, and Soil Vapor Sample Results Example Site Inspection Form	

ACRONYMS AND ABBREVIATIONS

ACDEH Alameda County Department of Environmental Health

AMEC Environment & Infrastructure, Inc. (now Amec Foster Wheeler)

BAAQMD Bay Area Air Quality Management District

BMPs best management practices

Cal-OSHA California Occupational Safety and Health Administration

CB&G Carlson, Barbee & Gibson, Inc. CCR California Code of Regulations

COCs constituents of concern

ESLs Environmental Screening Levels

HASP health and safety plan

NPDES National Pollution Discharge Elimination System OSHA Occupational Safety and Health Administration

PPE personal protective equipment PRB permeable reactive barrier QSD qualified SWPPP developer

CSMP Construction Site Management Plan SWPPP Storm Water Pollution Prevention Plan

VMS vapor mitigation system VOCs volatile organic compounds

Water Board San Francisco Bay Regional Water Quality Control Board

SITE MANAGEMENT PLAN

Aster Apartments 6775 Golden Gate Drive Dublin, California

1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. ("Amec Foster Wheeler"; formerly AMEC Environment & Infrastructure, Inc.), has prepared this *Site Management Plan* (SMP) on behalf of Dublin Apartment Properties, LLC ("Dublin Apartments") for the Aster Apartments site, located at 6775 Golden Gate Drive in Dublin, California ("Site"; Figure 1).¹ This SMP provides guidelines for the protection of human health and the environment during potential future handling of and exposure to site soil, soil vapor, and groundwater. The geographic scope of this SMP is the site's deed restriction area (Figure 2 and Appendix A), as well as the permeable reactive barrier (PRB) footprint and the surrounding area (Figure 2). This SMP was developed to meet the requirements set forth in the August 16, 2013, and August 7, 2015, letters from Alameda County Department of Environmental Health (ACDEH, 2013 and 2015).

Terms used in this SMP include the following:

- Owner Current property owner or their agent responsible for managing the property at any given time. The site is currently owned and operated by Dublin Apartment Properties, LLC.
- Tenant Current party holding a commercial or residential lease or otherwise occuping the site under agreement with the Owner.
- Contractor Party conducting on-site activities as engaged by the Owner or other parties.
- Engineer/Consultant Current engineer/consultant engaged by the Owner to assist in implementing this SMP.

Owner's workers and/or Contractor(s) are responsible for adhering to this SMP and maintaining job and site safety. Each Contractor is also responsible for providing a copy of this SMP to its subcontractors.

1.1 OBJECTIVES

The objectives of this SMP are as follows:

 Communicate information to future site construction and maintenance workers about site environmental conditions and the presence and location of site mitgation systems.

¹ The site was formerly known as the Crown Chevrolet North Parcel, with an address at 7544 Dublin Boulevard, Dublin California. The site was previously associated with Site Cleanup Program Case No. RO0003014 and GeoTracker Site ID T10000001616.

- Present guidelines for appropriate health and safety precautions for on-site workers who may access soil, soil vapor, and groundwater that could contain residual chemicals.
- Provide a plan for management of site soil and groundwater disturbed during operations, maintenance, or development activities in a manner that protects human health and the environment.
- Present procedures for long-term management (i.e. during ongoing site operations or maintenance activities) of the residual chemicals present in soil, soil vapor, and groundwater at the site.

1.2 BACKGROUND

This section provides information regarding the current and past site setting, as well as environmental investigation activities that have been conducted at the site.

1.2.1 Site Setting and Historical Uses

The site is currently owned and operated by Dublin Apartment Properties, LLC as Aster Apartments. Site redevelopment was conducted from 2015 through 2017. There are currently mixed residential/commercial buildings at the site, comprising 313 apartments (a total of approximately 323,000 gross square feet in multi-unit structures) and 17,000 square feet of retail space at ground level along Dublin Boulevard with apartments located above (Figure 2). A 230,000-square-foot parking garage is located in the eastern central portion of the site.

Prior to redevelopment, the site was operated as Crown Chevrolet, a car dealership, repair shop, and auto body shop, beginning in 1968 (Figure 3); all operations ceased in 2013. The property was sold in the fall of 2014, and the demolition and removal of existing parking areas, buildings, sumps, and hydraulic lifts was performed by Dublin Apartment Properties in 2014 and 2015 in preparation for redevelopment (Amec Foster Wheeler, 2015c).

1.2.2 Previous Environmental Investigations

Multiple investigations were conducted at the site from 2009 to 2014 and are summarized in the *Final Feasibility Study and Corrective Action Plan* ("FS/CAP"; AMEC, 2014). In addition, the 2015 *Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report* ("2015 BoD Report"; Amec Foster Wheeler, 2015b) presented the results of a PRB pre-design investigation, as well as an update to the site conceptual model presented in the FS/CAP. These investigations were performed to address regulatory concerns, as well as in support of transactional and potential redevelopment activities, and included collection of soil, groundwater, and soil vapor samples throughout the site.

1.2.3 Constituents of Concern

Two main areas of soil, groundwater, and/or soil vapor impacts have been identified. A summary of the constituents of concern (COCs) for the site, as well as their distribution in affected media and suspected origin, is as follows:

- Volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and trichloroethene (TCE), are present in shallow groundwater throughout the northern portion of the site. The PCE and TCE are attributed to an off-site source; the specific source has not been identified. Soil vapor impacts (PCE, TCE, and some breakdown products) have been identified in the vicinity of the groundwater plume, extending approximately 200 to 240 feet south from the northern property boundary, as summarized in the FS/CAP (AMEC, 2014). Groundwater monitoring at the site has indicated that concentrations of VOCs in groundwater are generally stable or declining (Amec Foster Wheeler, 2015a).
- Past releases at the site impacted soil with chlorobenzene and related compounds at a former front-end alignment pit ("former F.E. Pit") and former sump within former Building B. Limited groundwater and soil vapor impacts have also been identified at the former sump (AMEC, 2014).

As noted in the following section, remediation has been conducted in the vicinity for the former F.E. Pit and sump.

1.2.4 Source Removal

Remedial activities were performed to address the chlorobenzenes and petroleum hydrocarbons at the former F.E. Pit and sump, beneath the historical site buildings. These included excavation of historical sumps and surrounding soil in 2011 and removal of other subsurface features and impacted soils in 2015 as summarized in the *Remediation Report* (AMEC, 2011) and *Post-Demolition Investigation and Soil Removal Completion Report* ("2015 Completion Report"; Amec Foster Wheeler, 2015c). Additionally, a former underground storage tank was removed in 2012 (ENGEO, 2012). The remedial activities successfully addressed the soil impacts to concentrations consistent with protection of human health.

Additionally, during the post-demolition sampling performed in late 2014 and early 2015, Amec Foster Wheeler identified six areas with limited impacts to soil from total petroleum hydrocarbons, polychlorinated biphenyls, VOCs, semivolatile organic compounds (SVOCs), and/or metals. The soil in these areas that contained concentrations of COCs above relevant Environmental Screening Levels (ESLs)² in effect at the time was removed and disposed of off-site, as documented in the 2015 Completion Report (Amec Foster Wheeler, 2015c).

1.2.5 Corrective Actions

Corrective actions were implemented to mitigate the risk of exposure of future site occupants and workers to COCs. As outlined in the *Dublin Apartments Permeable Reactive Barrier Construction Completion Certification* (Amec Foster Wheeler, 2016) and the *Vapor Mitigation System Construction Completion Certification* (Amec Foster Wheeler, 2017a), this risk is mitigated by a PRB at the upgradient site boundary and a vapor mitigation system (VMS)

² San Francisco Bay Regional Water Quality Control Board (Water Board) Environmental Screening Levels (ESLs) for shallow soil in commercial/industrial areas where groundwater is considered a drinking water source.

beneath the site buildings in areas where elevated VOC concentrations were measured in soil vapor.

The following sections include descriptions of the two corrective actions, as well as their corresponding monitoring, operation, and maintenance requirements.

1.2.5.1 Permeable Reactive Barrier

The PRB was installed October 2015 near the northwest corner of the site, where the impacted groundwater is entering the site (Figure 4). It was designed to passively treat the impacted groundwater as it moves beneath the site. The PRB consists of a 24-inch wide, 146-foot-long continuous trench that is backfilled with ZVI/sand treatment media. The PRB extends to approximately 29 feet below ground surface (bgs), including a 1-foot key into an existing clay layer observed from approximately 28-30 feet bgs. The upper 7-8 feet of was completed with controlled-density fill (CDF) to existing grade. The PRB does not require regular maintenance.

A total of 11 monitoring wells (six PRB performance monitoring wells and five on-site monitoring wells) make up the groundwater monitoring well network at the site (Figure 4).

1.2.5.2 Vapor Mitigation System

The VMS was installed from December 2015 through February 2017 during the building construction activities, following the structural excavation and placement of base rock beneath each building footprint. The VMS includes a vapor mitigation membrane, and a passive subslab venting system installed beneath the vapor mitigation membrane, within the footprint of the site buildings where elevated concentrations of VOCs were detected in soil vapor (Figure 5).

As part of, and supplemental to the VMS, utility trench plugs along the building foundations where utilities entered the building footprints to establish an impermeable collar (Figure 4). The trench plugs were installed to prevent preferential flow of potentially contaminated soil vapor from areas outside the building footprint to the sub-slab area, as well as a geotechnical measure (Rockridge Geotechnical, 2015) to prevent water from entering the sub-slab area. The plugs consist of a concrete sand slurry backfill material that is installed at each location over a length of 3 feet along the trench axis.

The venting system is generally maintenance free, but requires inspections of the 15 roof-mounted wind-driven turbine fans and replacement of any potential worn/damaged equipment as necessary. The trench plugs and vapor membrane do not require regular maintenance.

1.2.6 Nature and Extent of Impacted Media

The nature and extents of groundwater, soil, and soil vapor impacts at the site are discussed in the following subsections, and the analytical data are summarized in Appendix C. In addition

to the data provided Appendix C, Contractors and other interested parties should refer to the more recent annual groundwater monitoring report for the most current groundwater analytical results.³

It is each Contractor's responsibility to determine potential exposure risks for their workers related to residual impacts in groundwater, soil, and/or soil vapor. Contractors and other interested parties may refer to the most current and applicable ESLs as a screening tool.⁴

1.2.6.1 Soil

No COCs have been detected above their respective Tier 1 ESLs in shallow, unsaturated soil, with the exception of arsenic, which is interpreted to be naturally occurring and consistent with regional background concentrations. However, it should be noted that saturated soil would likely contain the chemicals known to be present in groundwater. Please refer to Section 1.2.5.2 below for information regarding chemical concentrations in groundwater. Soil-disturbing activities that occur below 7 feet or within saturated soil must be performed under the requirements included in this SMP.

Soil removal activities conducted in 2011 and 2015 removed unsaturated, impacted soil at concentrations greater than ESLs (AMEC, 2011, and Amec Foster Wheeler, 2015c).⁵

Additionally, Stellar Environmental Solutions, Inc. ("Stellar") conducted post-demolition soil profiling during site clearing and grubbing activities to characterize the soil for both off-site disposal or reuse options and to identify and evaluate any potential site worker exposure issues that could be present during redevelopment construction activities. The results of the soil profiling are included in Appendix B and indicate that residual concentrations of COCs in unsaturated soil are below commercial/industrial and construction/trench worker ESLs.

Although not a COC, naturally-occurring arsenic was observed in composite waste characterization soil samples at levels above commercial/industrial and construction worker direct exposure ESLs. These sample levels were within the range of common background concentrations of arsenic in Bay Area soil (Duvergé, Dylan Jacques, 2011). Nonetheless, Stellar indicated that exceeding the ESL warrants dermal, inhalation protection, and dust mitigation measures during critical earthwork activities (Stellar, 2015a,b).

Supplemental to the Stellar soil profiling results in Appendix B, Tables C-1 through C-10 in Appendix C provide a summary of the laboratory analytical results for soil samples collected at

Amec Foster Wheeler

³ The most recent groundwater monitoring report can be downloaded from the Geotracker page for the site: http://geotracker.waterboards.ca.gov/profile_report?global_id=T10000001616.

Current ESLs can be downloaded from the following page: http://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/esl.shtml.

The 2015 Completion Report (Amec Foster Wheeler, 2015c) noted that there were limited areas where soil impacts were greater than the 2013 ESLs they were compared to at the time; however, these concentrations are less than the 2016 ESLs (i.e., those in effect at the time of publication of this document).

the site from 2009 through 2015. The soil sample locations are shown on Figures C-1 through C-3.

1.2.6.2 Groundwater

Groundwater is impacted by VOCs in the northern portion of the site. For reference, Figure 4 shows the extent of impacted groundwater as of 2012; refer to the most recent groundwater monitoring report for current data.

Impacted groundwater is expected to be encountered at depths ranging from approximately 9 to 16 feet bgs in the northern portion of the site (refer to the most recent groundwater monitoring report for recent depths to groundwater and corresponding groundwater elevations). Intrusive activities during which workers have the potential to contact impacted groundwater must be performed under the requirements included in this SMP.

Tables C-11 through C-15 in Appendix C provide a summary of the laboratory analytical results for groundwater samples collected at the site from 2009 through 2015. Figure C-1 shows the groundwater sample locations.

1.2.6.3 Soil Vapor

Benzene, PCE, TCE, and vinyl chloride were detected in soil vapor at concentrations greater than ESLs during sampling performed from 2010 through 2012. For reference, Figure 5 shows the extent of impacted soil vapor as of 2012 (however, the extent of soil vapor impacts may have changed).

Intrusive activities during which workers have the potential to contact impacted groundwater must be performed under the requirements included in this SMP. Although VOC concentrations in outdoor air emanating from soil vapor would be diluted significantly with atmospheric air (DTSC, 2013), the potential risk to workers should be evaluated by a qualified professional prior to beginning the work. Calculation of site-specific screening levels for workers and/or personal air monitoring may be considered.

Tables C-16 in Appendix C provides a summary of the laboratory analytical results for soil vapor samples collected at the site in 2012. The soil vapor sample locations are shown on Figure C-1.

1.3 DEED RESTRICTION AREA

Appendix A contains a copy of the deed restriction placed on the property that prevents the use of groundwater underlying the site and requires adherence to this SMP for all intrusive work. The extents of the deed restriction within the site are shown on Figure 2; the extents of groundwater and soil vapor impacts are limited to the northern portion of the deed restriction area, as shown on Figures 4 and 5.

As described in more detail in Section 2.2 below, the Owner must notify ACDEH of planned intrusive work within the boundaries of the deed restriction area prior to activity commencement. The deed restriction also requires that the Owner provide reasonable access to the property for the purpose of inspection, surveillance, maintenance, or monitoring. The access agreement will cover ACDEH, other regulatory personnel, and any persons conducting corrective action performance monitoring in accordance with the *Operations, Maintenance, and Monitoring Plan for Permeable Reactive Barrier* (PRB OMM Plan; Amec Foster Wheeler, 2017b), and the *Operations, Maintenance, and Monitoring Plan for Vapor Mitigation System* (VMS OMM Plan; Amec Foster Wheeler, 2017c).

This SMP also addresses the required site management activities pertaining to the PRB and the area in the vicinity of the PRB, which is adjacent to, but beyond, the property boundary and the deed restriction area (Figure 4).

2.0 REGULATORY STATUS AND GENERAL REQUIREMENTS

ACDEH is the designated lead agency for site remediation. The additional stakeholder agencies include the City of Dublin and Zone 7 Water Agency.

2.1 REGULATORY REQUIREMENTS

Operations, maintenance, monitoring, and earthwork activities may be subject to federal, state, and local laws and regulations, including those promulgated by U.S. Environmental Protection Agency (U.S. EPA), California Environmental Protection Agency ("Cal-EPA"), California Department of Toxic Substances, the Bay Area Air Quality Management District (BAAQMD), and the Occupational Safety and Health Administration (OSHA). These laws address issues such as dust generation, hazardous waste, storm water, health and safety, Proposition 65 notifications, and community right-to-know. While some of these issues are discussed in this SMP, it is the responsibility of the Owner or Contractor performing work that may involve contact with potentially impacted site soil, groundwater, and soil vapor to ensure worker safety and to comply with currently applicable laws and regulations.

2.2 NOTIFICATIONS

ACDEH and the Owner must be contacted prior to any intrusive work. The Tenant will also obtain approval in writing from the Owner prior to commencing such work. Intrusive work includes, but is not limited to the following:

- Grading, drilling, and/or excavation within the building footprint (inclusive of utility trench plugs) or at planned depths below 7 feet within the boundaries of the deed restriction area, or any work in the vicinity of the PRB; and
- Cutting or drilling through the floor slab, walls, and/or ceiling (including anchoring).

Regular site maintenance activities outside of the site buildings that would not encounter soil below 7 feet bgs or saturated soil (e.g., landscaping, paving, utility repairs) would not require the notifications described in this section.

ACDEH and the Owner must also be contacted in the event that the PRB, vapor barrier, or associated systems are damaged. Repairs must be conducted under the oversight of ACDEH and overseen by the appropriate Contractor, as outlined in the PRM OMM Plan and VMS OMM Plan (Amec Foster Wheeler, 2017b,c).

The following ACDEH and Owner's personnel are the primary points of contact regarding environmental conditions:

Contact	Telephone No.	
ACDEH	Dilan Roe	
Land Use and Local Oversight Program Manager	510-567-6767	
Dublin Apartment Properties	Pete Beritzhoff	
Project Manager	408-680-4938	
Dublin Apartment Properties	Adam Lambert	
Construction Manager	415-509-1441	

2.3 SITE INSPECTIONS AND REPORTING

Below is a summary of the inspections, sampling, and reporting associated with monitoring the performance of the corrective actions at the site. The contents of this section may be subject to change based on regulatory review and updates.

2.3.1 PRB and Groundwater Monitoring

An above-ground visual inspection of the PRB, groundwater sampling of the 11 wells in the groundwater monitoring system, and corresponding reporting will be conducted on a quarterly basis for the 2 years following the PRB installation (through 1Q2019). The monitoring events will be carried out annually for years 3 through 5. Data collected during the monitoring program will be evaluated relative to development of final functional objectives for an O&M phase for the site.

Further details on required groundwater monitoring well sampling protocols, along with other operation and maintenance requirements, can be found in the PRB OMM Plan (Amec Foster Wheeler, 2017b). The Owner and Contractors must adhere to all applicable operation, maintenance, monitoring, and contingency requirements described in the PRB OMM Plan.

2.3.2 VMS Monitoring

Routine piping and turbine inspections, vent riser sampling, and corresponding reporting will be performed monthly for the first year, through April 2018, then quarterly for years 2-5. During the vent riser monitoring, vented soil vapor is collected from sampling ports installed at each of the vent risers. Data collected during the initial monitoring period will be used toward development of final functional objectives for an O&M phase for the site.

Further details on required VMS monitoring protocols, as well as other operation and maintenance requirements, can be found in the VMS OMM Plan (Amec Foster Wheeler, 2017c). The Owner and Contractors must adhere to all applicable operation, maintenance, monitoring, and contingency requirements described in the VMS OMM Plan.

2.3.3 General Site Inspections

Site inspections will be arranged by the Owner and will be conducted to observe and document the integrity and maintenance of the corrective actions, including observation of roof turbines, auditing of on-site maintenance and monitoring records, and confirming that required on-site documentation is available and up-to-date (e.g., copies of the OMM Plans and this SMP). The site inspections will be conducted until such time that all ICs are terminated with approval of ACDEH.

During each site inspection, an inspection form will be completed (Appendix D). Following each site inspection, the Owner (or designated inspection entity) will provide ACDEH with a site inspection report and IC compliance certificate indicating that all IC objectives have been maintained.

The site inspections and reporting will occur with the following frequency:

- Semiannually for years 1 and 2,
- Annually for years 3 and 4, and
- Every 5 years for years 5 through 20.

Should any action inconsistent with IC restrictions be identified during the site inspection, the Owner and/or designated inspection entity will notify ACDEH. A written explanation will be submitted to the ACDEH that describes the nature of the specific, inconsistent action, and the efforts or measures that have been or will be taken to correct the action. The associated time frame to correct the inconsistent action also will be provided.

3.0 GUIDELINES FOR HEALTH AND SAFETY DURING INTRUSIVE ACTIVITIES

The Owner is responsible for the health and safety of its employees during activities that could encounter site soil, groundwater, or soil vapor. Contractors are responsible for the health and safety of their employees engaged in work at the site. Preparation of a site-specific Health and Safety Plan (HASP) covering applicable activities is the responsibility of the Owner's project manager and/or Contractor at the site and must be prepared by an appropriately trained person (e.g., certified industrial hygienist or other qualified professional). Such HASPs must meet the requirements of Title 8 in California Code of Regulations (CCR), Section 5192, at a minimum, and must cover all activities to be performed by Contractor or subcontractors' personnel. All applicable federal, state, and local regulations and codes relating to health and safety must be adhered to, including all sections of California Occupational Safety and Health

Administration ("Cal-OSHA") regulations contained in CCR Title 8 as they apply to site activities.

Guidelines provided in this SMP apply only to the classes of chemicals previously detected and characterized at the site and do NOT address health and safety issues related to any other hazards or activities at the site (including, but not limited to, activities related to electrical work, trenching and shoring, and weather-related hazards). These guidelines represent minimum health and safety measures related to the chemical impacts addressed herein. Additional measures may be implemented at the discretion of the Owner and/or Contractor, based on the specific construction tasks to be performed.

The depth intervals of intrusive construction activities are relevant to worker health and safety monitoring and protection, and should be considered in the development of HASPs and protocols, as described above, in Section 1.2.6.

3.1 Personal Protective Equipment

Site workers who have the potential to be in contact with soil, soil vapor, and/or groundwater at the site will use appropriate protective equipment (PPE) to minimize potential exposures. The PPE required may be upgraded (e.g., use of a respirator may be required) in the event that site conditions change. Potential events that may require an upgrade of PPE may include the following:

- Identification of additional chemicals or an increase in chemical concentrations in soil, groundwater, and/or soil vapor during any future sampling conducted by Owner and/or Contractor;
- Exposure monitoring indicating the need to upgrade PPE; and/or
- Temperature or individual medical conditions limiting the effectiveness of PPE.

3.2 DECONTAMINATION PROCEDURES

Contractors engaged in soil-disturbing activities in areas with potentially contaminated soil will provide an area for personnel decontamination adjacent to the work area in accordance with the contractors HASP. This area will include boot washing and hand washing facilities, toilet facilities, and receptacles for used protective clothing. Decontamination procedures for site workers wearing PPE may include:

- Wash boots and gloves (if washable);
- Remove protective gloves and place in plastic bags for disposal (if disposable);
- Wash hands and face with soap and water before eating, drinking, using tobacco, or leaving the work area; and
- Clean respirators, if used, and dry as needed, and place in sealed plastic bags with individual identification.

Equipment contacting potentially impacted saturated soil or groundwater within the known area of impacts (i.e., the deed restriction area and PRB) will require decontamination prior to leaving the active area due to the possible presence of VOCs and other potential contaminants. Decontamination requirements will vary depending on the type of equipment and nature and condition of subsurface material encountered. For dry soils, dry removal of dirt from tires and bucket or blade using brooms should be performed, at a minimum (see 4.1.5 for additional discussion on soil/dust management measures). For equipment encountering saturated soils or groundwater, cleaning with a steam cleaner or pressure washer should be performed on the portions of the equipment in contact with the saturated soil or groundwater. Equipment decontamination will be performed in a contained area with the means to contain and collect decontamination rinsate. Decontamination water, if generated, will be containerized, sampled, and properly recycled/disposed.

3.3 SPILL RESPONSE PROCEDURES

In the event of a release of hazardous material or waste to the surface during maintenance or intrusive activities, such as a fuel release associated with construction equipment, the following spill response procedures will be implemented:

- 1. Evacuate all on-site personnel to a designated assembly area in an upwind direction until the site safety officer determines that it is safe for work to resume.
- 2. Contain the spill, if it is possible and it can be performed safely.
- 3. Immediately notify the appropriate emergency contacts (the current contacts are shown below). The Owner's emergency contact will subsequently notify the appropriate regulatory agency(ies).

3.4 EMERGENCY CONTACTS

Current emergency contacts for the site are shown below:

Contact	Telephone No.
Police, Fire, Ambulance	911
(Land line or mobile phone)	
Emergency Contact, Dublin Apartment	Pete Beritzhoff
Properties after hours	408-680-4938
Certified Unified Program Agency (CUPA)	Rob Weston
	510-567-6781
Alameda County Department of	Dilan Roe
Environmental Health (ACDEH)	510-567-6767

4.0 SOIL AND WATER MANAGEMENT PROCEDURES

Soil and groundwater handling procedures to be followed during future intrusive activities are summarized in the following sections.

4.1 Performing Intrusive Work in the Vicinity of the PRB or VMS

The Owner/Tenant may not take any action that would interfere with the integrity or operation of the VMS or PRB. In addition to the notification requirements described in Section 2.2, the precautions described in this section should be taken when performing intrusive work in the vicinity of the PRB or VMS. The information presented below is also included in each Tenant's lease.

The Owner must submit a work plan to ACDEH for prior approval of all intrusive work, with the exception of regular maintenance activities (e.g., landscaping, paving, utility repairs) outside of the site buildings that would a) not have the potential to impact the VMS (including the utility trench plugs) or PRB, and b) not encounter soil below 7 feet bgs or saturated soil.

If the Tenant plans to perform intrusive work, the Tenant must submit to the Owner a full and complete work plan approved in writing by an engineer that is reasonably acceptable to the Owner, which will then be approved by ACDEH. The work described in the plan must be in accordance with the requirements outlined in this SMP. The plan must include without limitation all applicable plans, specifications, reports and drawings in connection with such proposed work in form and substance suitable for the Owner to submit to the ACDEH for prior approval of such work.

If the Owner/Tenant's work plans include cutting or drilling through the floor slab, walls, and/or ceiling, the Owner/Tenant must take all necessary measures to avoid damaging, disrupting, or impairing the function of any VMS components (including, but not limited to vapor barrier membrane, horizontal and/or vertical piping, and utility trench plugs). If portions of the VMS piping require relocation, then procedures should be implemented to properly repair cut or damaged sections of horizontal and/or vertical piping or to appropriately relocate, as needed, specific sections of piping, as approved by the Owner. Damaged sections of the horizontal and/or vertical piping will be removed, and replacement sections will be connected to existing segments in accordance with manufacturer-approved procedures and in conformance with the VMS record drawings. If such improvements include cutting or drilling holes through the main floor slab to allow passage of conduit, piping, or other systems, the vapor barrier must be repaired in accordance with manufacturer requirements and specifications.

All intrusive work at the site that includes cutting or drilling through the floor slab, walls, and/or ceiling must comply with the OMM Plans (Amec Foster Wheeler, 2017b,c). Intrusive work performed by the Tenant must be overseen by a professional engineer appointed and compensated by the Owner to ensure compliance with the OMM Plans. All sub-slab membrane repairs will be performed by an applicator certified by Land Science®, a division of REGENESIS® and will conform to manufacturer's repair procedures current at the time the repairs are performed, such that the manufacturer's warranty remains in full force and effect. For any such work, the responsible party (e.g., general contractor) will prepare a HASP, which

will be reviewed and approved by a Certified Industrial Hygienist acceptable to the Owner. The SSHSP may, if appropriate, include provisions for monitoring of indoor air for vapors and for adequate ventilation of the work area, as well as any other necessary safety measures.

The Tenant must immediately notify the Owner of any observed damage to the PRB or VMS components, including, but not limited to: the monitoring wells, PRB (if work includes off-site activities that could affect the PRB), vapor barrier, horizontal and vertical pipes, vent equipment, utility trench plugs, and any alterations, repairs, improvements or other changes made to the VMS in connection with any tenant work. Upon completion of any work, the Tenant must provide to the Owner as-built drawings documenting the work that was completed and the final configuration of the PRB, VMS and monitoring equipment. Any and all intrusive work performed by the Tenant will be subject to the prior written consent, and requirements, of ACDEH.

4.2 SOIL HANDLING

During any excavation, when handling soil, health and safety protocols will be followed, including all applicable federal, state, and local regulations and codes relating to health and safety and all sections of Cal-OSHA regulations contained in CCR Title 8 (see Section 3.0). Additionally, dust control and monitoring measures will be followed in accordance with Cal-OSHA and BAAQMD requirements (see Section 4.5).

If any soil is encountered that exhibits physical evidence of environmental impacts (e.g., staining, sheen, or odors), it will be segregated for characterization and off-site disposal. If off-site removal of stockpiled material is required, the procedures described in Section 4.5 will be implemented.

4.3 SOIL STOCKPILING

Excavated soil will be temporarily stockpiled and protected as necessary from the adverse effects of rainfall (runoff) and/or wind (dust). All soil stockpiles will be watered, as needed, and securely covered with a suitable tarp to prevent wind erosion and dust generation. To limit public access to stockpiled soil, stockpiled soil areas will be fenced or otherwise protected and will be located in a contained area with no direct connection to storm drains. Soil and stockpile management will be performed in accordance with dust control and storm water management practices and will be consistent with all applicable rules and regulations, as described in Sections 4.6 and 4.8.

4.4 ON-SITE REUSE OF SOIL

To the extent possible, soil excavated during intrusive activities will be reused so that removal and disposal of soil to other locations will not be necessary or will be limited. If there is a need to import soil to the site, the soil will be tested in accordance with California Department of Toxic Substances Control (DTSC) guidelines.

Shallow soils from 0 to 7 feet below grade (e.g., unsaturated soils above the water table) were previously profiled (Stellar, 2015a,b) and the data indicated that the soil did not contain COCs at concentrations above the commercial/industrial and construction worker ESLs in effect at that time. As noted in Section 1.2.6.1, although not a site COC, arsenic was found above ESLs but within the range of background concentrations in the Bay Area. These soils are considered suitable for regrading or reuse on other portions of the property (Stellar, 2015a,b). The results of the soil profiling are presented in the reports included in Appendix A.

Deeper unsaturated or saturated soil that may be excavated during intrusive activities will be stockpiled and evaluated for potential reuse on the site. This evaluation may require additional chemical testing of the material based on the proposed area or depth interval the soil came from or will be placed within. The need for additional testing, and the specific testing requirements, such as sampling frequency and chemical analyses, will be determined by the Engineer/Consultant.

4.5 OFF-SITE SOIL DISPOSAL

If soil generated during construction activities is to be removed from the site, the soil will be characterized (i.e., tested for the presence of chemical constituents) before disposal, as required by the receiving facility. Appendix A presents the reports that summarize the profiling completed on shallow soil for off-site disposal; however, the receiving facility may have additional testing requirements.

Saturated and/or deeper soils will require separate waste characterization and profiling. Based on previously collected soil data, it is not anticipated that saturated, deeper soils will require management as hazardous waste.

4.6 DUST MANAGEMENT MEASURES

Workers at the site may need to disturb soil in areas where residual chemicals (i.e., VOCs) or naturally occurring metals (e.g., arsenic) that may pose a potential exposure risk to workers may be present. The dust management measures provided herein are designed to minimize potential exposures to residual chemicals and/or naturally occurring metals in dust.

4.6.1 Dust Control

Chemicals identified in soil at the site include VOCs, petroleum hydrocarbons, and naturally occurring arsenic. When earthwork activities occur, dust control measures must be implemented to minimize dust generation, as recommended by the BAAQMD, and other recommended practices may be undertaken. Engineering controls are the preferred methods of controlling on-site and off-site exposures to dust generated through intrusive activities. Additional dust control measures may be required by the project specifications.

4.6.1.1 Minimum Requirements for Dust Control

The generation of dust during intrusive activities will be minimized and controlled through implementation of the following requirements based on BAAQMD Regulation 8 Rule 40 Section 306 (BAAQMD 8-40-306), at a minimum, so that no visible dust will be generated during the intrusive activities that disturb soil at the site:

- Have a water supply available on-site at all times to mist or spray water while excavating, stockpiling, and/or loading soil onto transportation vehicles;
- Control excavation activities to minimize dust generation;
- Keep drop heights to a minimum while loading transportation vehicles; and
- Cover soil stockpiles and/or soil bins when not actively adding to or subtracting from the pile and at the end of each day.

4.6.1.2 Contingency Requirements for Dust Control

No visible dust will be permitted during site preparation, soil excavation, or excavated soil stockpiling or loading. If visible dust is observed during intrusive activities, the Contractor will be required to immediately cease all dust generating activities until alternative dust control measures acceptable to Owner are implemented. If visible dust is observed, the following additional dust-control measures will be performed:

- Increase the magnitude of dust control measures;
- Increase the frequency of implementation of dust control measures; and/or
- Use Engineer-approved dust suppressant additives in the water.

4.6.1.3 Excessive Watering

Except where specifically approved by the Engineer/Consultant, the dust control methods which result in ponded water or surface erosion will not be performed.

4.6.2 Dust Monitoring

Dust monitoring may be implemented, along with the specific health and safety requirements of the Contractor, based on the scope of the specific intrusive activities to be conducted. If dust monitoring is implemented, the results of the monitoring should be used to evaluate the effectiveness of the dust control measures and determine the need for additional dust control procedures.

4.7 CONSTRUCTION DEWATERING/LIQUIDS MANAGEMENT

In addition to soil stockpile requirements discussed above, Contractor will implement procedures to limit the dermal contact with site groundwater by workers during excavations that extend into the saturated zone, due to the presence of VOCs in groundwater as well as water that has come in contact with potential contaminated soils (contact water). Preparations will be made to remove, store, characterize, and properly dispose of standing water from

excavations and/or contract water during intrusive activities such as excavation and soil stockpiling activities. All Best Management Practices (BMPs) will be installed and in place to control and collect soils/liquids and prevent them from migrating outside of the designated areas.

Appropriate precautions may include having a storage tank (e.g., frac tank) on site to temporarily contain decontamination water or groundwater that may be removed from the excavation. Contained water or groundwater may be disposed off-site at an appropriate facility or through other arrangements, such as on-site following a prearranged disposal agreement (e.g., with the City of Dublin Publically Owned Treatment Works). Prior to disposal, the water must be tested in accordance with requirements of the receiving facility. In the event that the dewatering effluent is to be disposed to the storm system, a permit (e.g., National Pollution Discharge Elimination System [NPDES]) from the Water Board will likely be required. Specific testing requirements and sampling frequency will be designated in the permit to discharge water.

4.8 STORM WATER MANAGEMENT

Under the General Permit for Discharges of Storm Water Associated with Construction Activity (currently 2009-0009-DWQ as Modified by 2010-0014-DWQ; "General Permit"), storm water pollution controls are required at construction sites where the surface area of construction activities is greater than 1 acre in size, or for projects that disturb less than 1 acre but are part of a larger common plan of development that in total disturbs 1 or more acres. The Construction General Permit requires that a Storm Water Pollution Prevention Plan (SWPPP) be developed by Qualified SWPPP Developers and that implementation of the plan be performed by Qualified SWPPP Practitioners. If future intrusive work at the site falls within these categories, the Contractor(s) must file a Notice of Intent (NOI) to comply with the General Permit for earthwork activities disturbing greater than 1 acre of the site. Prior to mobilization, the Contractors must develop SWPPPs in accordance with the General Permit.

Under those circumstances, storm water pollution controls will be implemented by the Contractor(s) and will be based on BMPs. Specific practices that may be implemented to reduce the sediment load of storm water runoff from the site include grading the site, installing storm water control devices (earth berms, silt fences, or other barriers) around the perimeter of unpaved portions of the site until construction is completed, and protecting existing catch basins with silt fences or gravel bags. In addition, all contractors will store fuel and chemicals in such a manner that prevents accidental spills from impacting storm water (e.g., within secondary containment).

4.9 SITE ACCESS AND SECURITY

Vehicle and personnel access will be controlled in areas where soil will be disturbed. Caution tape, cones, fencing, steel plates, or other measures will be used to clearly designate the

active work area and to prevent access by the public. Stockpiles of excavated soil will be protected as described in Section 5.1.2 and secured by temporary fences or other means to prevent unauthorized access.

4.10 UNANTICIPATED SUBSURFACE CONDITIONS

It is unlikely, but possible, that unknown, historical subsurface features and structures may remain at the site. If present, these structures or features may be encountered during intrusive activities. Unanticipated subsurface conditions may include, but are not limited to, the following items:

- Slabs and piping associated with former aboveground storage tanks;
- Underground storage tank(s) (USTs);
- Concrete vault(s);
- Underground piping; or
- Chemically impacted soil (e.g., with staining, sheen, or odor).

Whenever unanticipated conditions are encountered, Owner and/or Contractor(s) will stop work in that area, secure the work area, and evaluate the situation before any further action is taken. The Owner's workers and/or Contractor will notify the Owner if unanticipated surface conditions are encountered; the Project Manager will be responsible for notifying the appropriate agency, as necessary (see Section 2.2). If any subsurface structures are encountered, the CUPA must be immediately notified; if any chemically impacted soil is encountered, ACDEH must be immediately notified.

If visually impacted soil is encountered, following communication with ACDEH, it will be removed from the excavation and segregated from other site soil under the oversight of the Engineer/Consultant. The removal and segregation of visually impacted soil will be conducted as not to limit the progress of excavation activities or work flow at the site, if possible. It may be necessary to notify BAAQMD regarding excavation of contaminated soil as required in accordance with Regulation 8, Rule 40, and exemption Regulation 2 Rule 5-110.

If significant odors are encountered, work will stop immediately and the work area will be covered and secured. A log will be maintained of any complaints received by the public, and ACDEH will be immediately notified if any odor complaints are logged.

5.0 ADMINISTRATION OF THE SITE MANAGEMENT PLAN

This section discusses responsibilities for managing this SMP and the circumstances under which this SMP may be modified.

5.1 RESPONSIBILITIES

The Owner will oversee implementation of this SMP at the site. The Owner's workers and Contractor(s) will be responsible for adhering to this SMP, following project specifications, and

maintaining job and site safety. Each Contractor is also responsible for providing a copy of the SMP to its subcontractors. The Owner and/or its representative may observe intrusive activities, but are not responsible for directing/supervising the Contractor's operations/work.

5.2 MODIFICATIONS OR TERMINATION OF SITE MANAGEMENT PLAN

This SMP is based on current conditions at the property. It may be necessary to modify this SMP from time to time for any of several reasons, including:

- Reduction of concentrations of site COCs below applicable screening levels;
- Change in property use;
- Change in understanding of environmental conditions (e.g., newly identified chemicals);
- Intrusive activity that is not addressed by this SMP; or
- New legal or regulatory requirements.

In the event a modification to the SMP is required, an SMP Addendum will be prepared by the Owner and submitted to ACDEH. Following ACDEH approval of the Addendum, the site SMP will then be implemented per the requirements of the SMP and SMP Addendum. Site Management and OMM activities will continue as scheduled while changes to the SMP are coordinated and approved.

The SMP may be terminated following written concurrence by ACDEH that it is no longer required to protect human health and the environment from site contaminants. The Owner may apply to ACDEH to terminate one or more of the provisions outlined in the SMP.

In the event that the Owner wishes to perform further investigation or remediation activities at the site in order support termination of part or all of the SMP, the Owner will submit a work plan detailing the proposed activities for ACDEH review and approval.

5.3 DOCUMENTATION

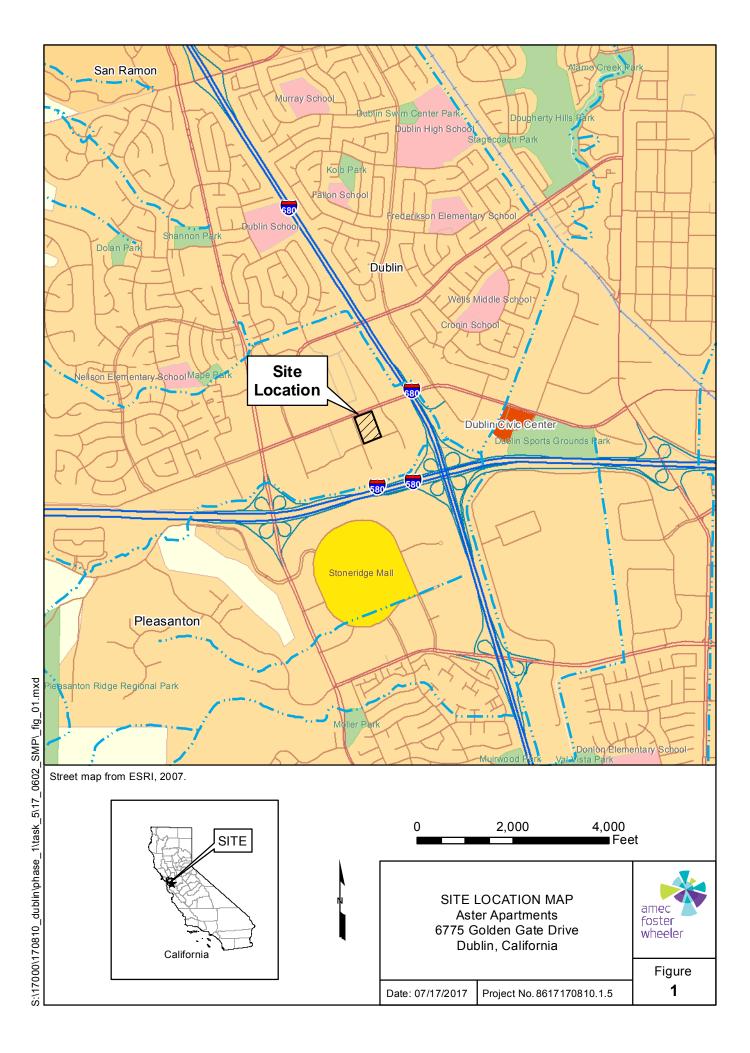
Records will be kept on-site to document any off-site removal of soil during intrusive activities. Additionally, any previously unidentified subsurface conditions encountered during intrusive activities will be documented. Copies will be kept of any exposure assessments performed and their supporting analyses to support similar future work activities. A log will be maintained of any complaints received by the public and, as noted above, ACDEH will be immediately notified if any odor complaints are logged.

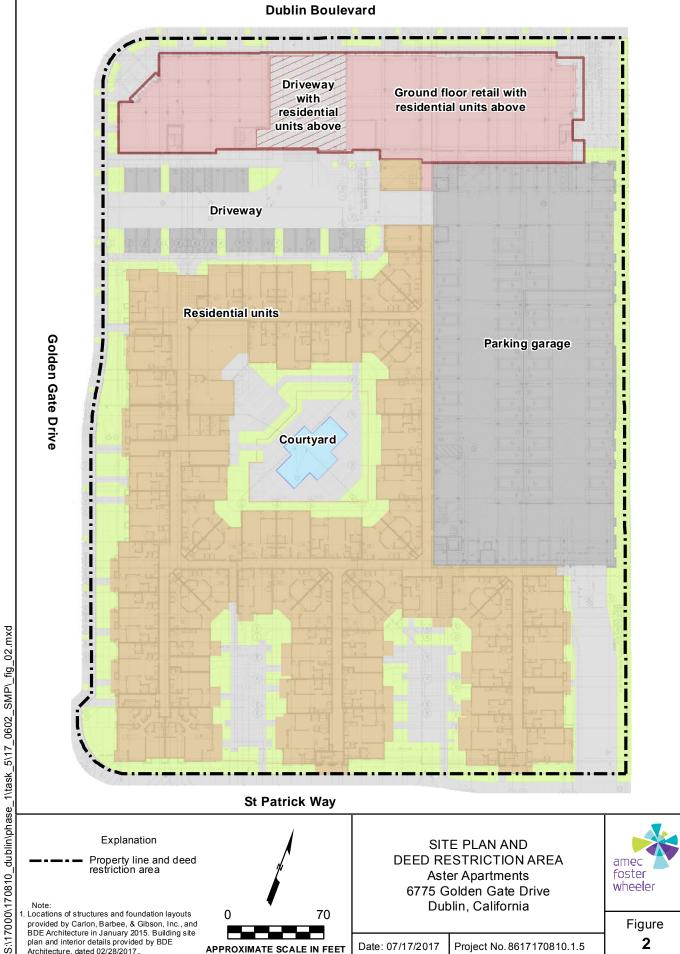
A copy of this SMP will be present at the site at all times. The on-site storage area for this plan and other environmental records is located within the leasing office. Additionally, all relevant environmental documents for the site will be retained in ACDEH's Post-Closure O&M Document Repository No. RO0003252.

6.0 SCOPE, REPRESENTATIONS, AND LIMITATIONS

This SMP was developed exclusively to manage worker exposure to residual chemicals (i.e., VOCs) in soil, soil vapor, and groundwater at the site during intrusive activities. This SMP does not address issues related to other chemicals or media that may be encountered during construction or other activities including, but not limited to, demolition and construction debris, asphalt, concrete, asbestos-containing building materials, lead-based paint, or any chemicals brought on-site by workers. If such materials are encountered during a project, each Contractor is responsible for complying with all applicable laws pertaining to the handling and disposal of these materials.

This SMP is based on current known site conditions and current laws, policies, and regulations as of publication in Jun 2017. No representation is made to any present or future developer or Owner of the site or portions of the site with respect to future site conditions, other than those specifically identified within this report.


7.0 REFERENCES


- ACDEH (Alameda County Health Care Services Agency), 2013. Fuel Leak Case No. RO0003014 and GeoTracker Global ID T00000001616, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, 94568, August 16.
- ACDEH, 2015. Voluntary Remedial Action Case No. RO0003014 and GeoTracker Global ID T00000001616, Crown Chevrolet North Parcel, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, 94568, August 7.
- AMEC Environment & Infrastructure, Inc. (AMEC), 2014. Final Feasibility Study and Corrective Action Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, Fuel Leak Case No. RO003014, May 1.
- Amec Foster Wheeler Environment & Infrastructure, Inc., 2015a. Third and Fourth Quarter 2014 Groundwater Monitoring Report, Former Crown Chevrolet North Parcel, 7544 Dublin Boulevard, Dublin, California, April 21.
- Amec Foster Wheeler, 2015b. Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report, Former Crown Chevrolet North Parcel, 7544 Dublin Boulevard, Dublin, California, June 11.
- Amec Foster Wheeler, 2015c. Post-Demolition Investigation and Soil Removal Completion Report, Former Crown Chevrolet North Parcel, 7544 Dublin Boulevard, Dublin, California, June 27.
- Amec Foster Wheeler Environment & Infrastructure, Inc., 2016. Dublin Apartments Permeable Reactive Barrier Construction Completion Certification, Former Crown Chevrolet North Parcel, 7544 Dublin Boulevard, Dublin, California, January 28.
- Amec Foster Wheeler Environment & Infrastructure, Inc., 2017a. Vapor Mitigation System Construction Completion Certification, Former Crown Chevrolet North Parcel, 7544 Dublin Boulevard, Dublin, California, July 17.

- Amec Foster Wheeler Environment & Infrastructure, Inc., 2017b. Operations, Maintenance and Monitoring Plan for Permeable Reactive Barrier, Former Crown Chevrolet North Parcel, 7544 Dublin Boulevard, Dublin, California, July.
- Amec Foster Wheeler Environment & Infrastructure, Inc., 2017c. Operations, Maintenance and Monitoring Plan for Vapor Mitigation System, Former Crown Chevrolet North Parcel, 7544 Dublin Boulevard, Dublin, California, July.
- AMEC Geomatrix, Inc. (AMEC), 2011. Remediation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, Fuel Leak Case No. RO003014, December 21.
- California Department of Toxic Substances Control (DTSC), 2013. Preliminary Endangerment Assessment Guidance Manual, January 1994, Interim Final Revised October 2013.
- Duvergé, Dylan Jacques, 2011. Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region; a thesis submitted to the faculty of San Francisco State University In partial fulfillment of the requirements for the degree, December.
- ENGEO, Inc. (ENGEO), 2012. Underground Storage Tank Removal Report, UST Closure Permit #SR0021261, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive Fuel Leak Case No. RO0003014, Dublin, California, December 20.
- Rockridge Geotechnical, 2015. Geotechnical Investigation Proposed Mixed-Use Development, 7544 Dublin Boulevard, Dublin, California. March 17.
- Stellar Environmental Solutions, Inc. (Stellar), 2015a. Results of Soil Profiling for Health and Safety Evaluation and Off-Site Disposal in Support of Redevelopment Activity at 7544 Dublin Blvd, Dublin, California, May 5.
- Stellar, 2015b. Results of Soil Profiling for Health and Safety Evaluation and Off-Site Disposal in Support of Redevelopment Activity at 7544 Dublin Blvd, Dublin, California, June 17.

FIGURES

provided by Carlon, Barbee, & Gibson, Inc., and BDE Architecture in January 2015. Building site plan and interior details provided by BDE Architecture, dated 02/28/2017..

Date: 07/17/2017

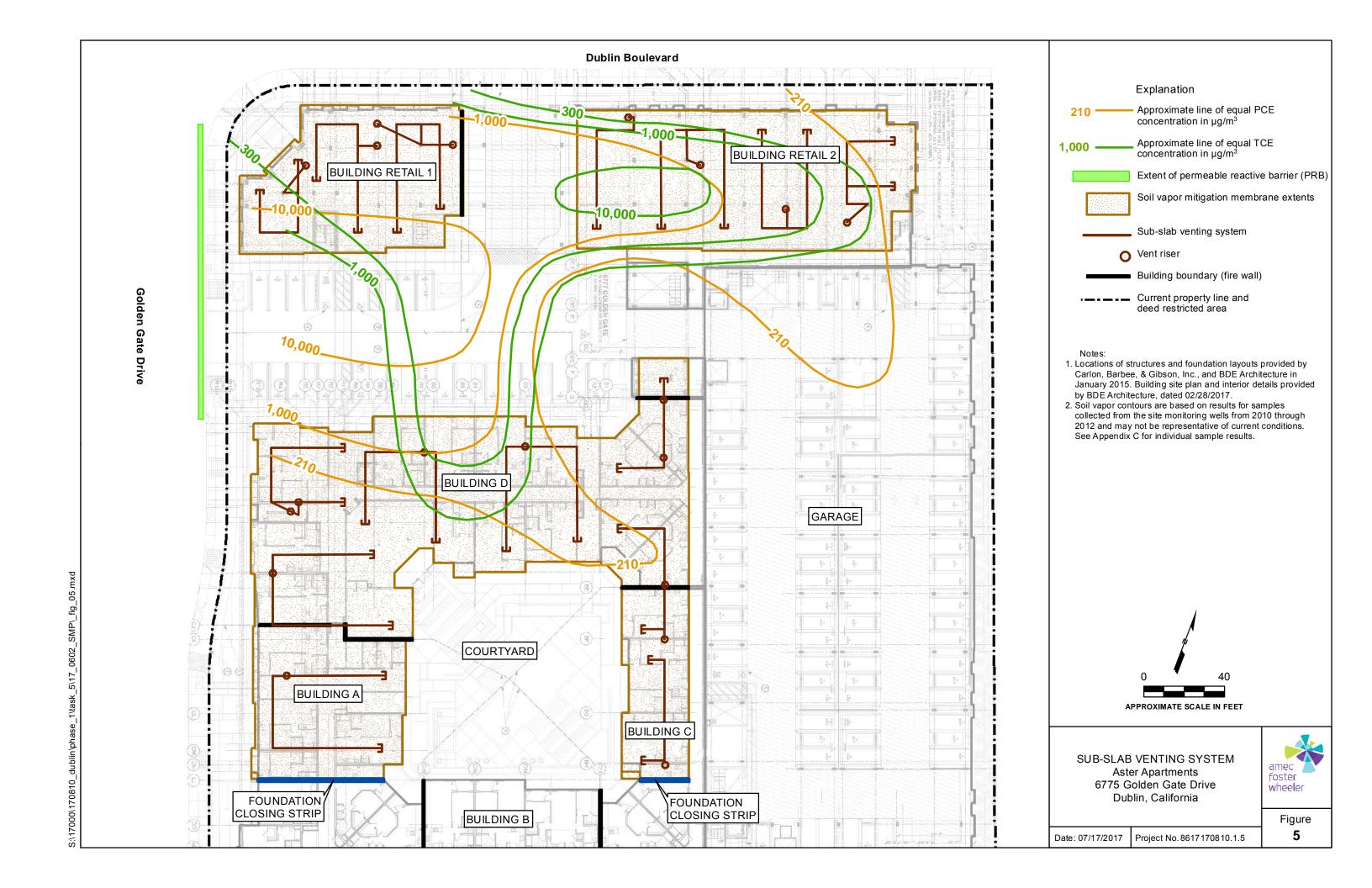
70

APPROXIMATE SCALE IN FEET

Project No. 8617170810.1.5

Figure 2

plugs are provided on the figure relative to the North American Datum of 1983, Zone 3.


Date: 07/25/2017

Project No. 8617170810.1.5

Concrete utility trench plug

Figure

4

APPENDIX A

Deed Restriction

Recording Requested By: Dublin Apartment Properties LLC 6775 Golden Gate Drive Dublin, California 94568

When Recorded, Mail To:

Ms. Dilan Roe
Chief – Land Water Division
Alameda County Department of Environmental Health
1131 Harbor Bay Parkway
Alameda, California 94502

COVENANT AND ENVIRONMENTAL RESTRICTION ON PROPERTY

Aster Apartments 6775 Golden Gate Drive Dublin, California

This Covenant and Environmental Restriction on Property (this "Covenant") is made as of the 17 day of July , 2011 by Dublin Apartment Properties, LLC ("Covenantor") who is the Owner of record of that certain property situated at 6775 Golden Gate Drive, Assessor's Parcel Number (APN) 941-1500-015-09, in the City of Dublin, County of Alameda, State of California, which is more particularly described in Exhibit A attached hereto and incorporated herein by this reference (such portion hereinafter referred to as the "Burdened Property"), for the benefit of the Alameda County Department of Environmental Health (the "County"), with reference to the following facts:

- A. The Burdened Property and groundwater and soil vapor underlying the property contains hazardous materials.
- B. <u>Contamination of the Burdened Property</u>. The approximately 4.73-acre Burdened Property was formerly operated as an auto dealership and auto body and service center. Groundwater and soil vapor at the Burdened Property were contaminated by both historic site uses and an unidentified off-site source west of the Burdened Property. The groundwater and soil vapor are contaminated with volatile organic chemicals, primarily tetrachloroethene and trichloroethene, above their respective Environmental Screening Levels. A full description of volatile organic chemicals in groundwater and soil vapor can be found in the 2012 Soil,

California Regional Water Quality Control Board, San Francisco Bay Region, 2016. Environmental Screening Level Workbook, February, http://www.waterboards.ca.gov/rwqcb2/water_issues/programs/esl.shtml

Groundwater, and Soil Vapor Investigation Report.2

Corrective actions have been implemented to mitigate the risk of exposure of future Occupants, maintenance workers, and construction workers to contamination: soil excavation was conducted in areas impacted by releases of chemicals from former sumps, underground storage tanks and piping, and hydraulic lifts beneath the former building slabs; a vapor mitigation system ("VMS") was installed beneath the site buildings and concrete plugs were installed in utility trenches where they enter the building in areas where groundwater and related soil vapor organic chemical concentrations exceed Environmental Screening Levels; and a permeable reactive barrier ("PRB") was installed at the northwest boundary of the Burdened Property (Exhibit B).

The VMS consists of a vapor membrane and a passive sub-slab venting system beneath the vapor membrane within the footprint of selected buildings on the Property, as described above. The VMS and concrete utility plugs are designed to mitigate the potential for soil vapor originating from contaminated groundwater beneath the Burdened Property to contribute to unacceptable human health risk in indoor air.

The PRB is located off-property, near the northwest corner of the Burdened Property within the City of Dublin right-of-way for Golden Gate Drive, where contaminated groundwater enters the Burdened Property. The PRB is designed to passively treat groundwater contamination as it moves beneath the Burdened Property and provide supplemental protection to human health in addition to that provided by the VMS.

Additionally, remediation was conducted in 2015 under County oversight to address soil that was primarily impacted by petroleum compounds related to historical site operations as an auto body and service center. The remediation successfully removed the impacted soil to levels consistent with protection of human health.³

The operations and maintenance of the vapor mitigation system, permeable reactive barrier, and concrete plugs is pursuant to the Operations, Maintenance, and Monitoring Plan for Vapor Mitigation System⁴; the Operations, Maintenance, and Monitoring Plan for Permeable Reactive Barrier⁵; and the Site Management Plan⁶. The Covenantor shall hire a qualified environmental consultant/contractor to inspect and maintain the integrity of the remedial measures described

² AMEC, 2012. Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, October 19.

³ Amec Foster Wheeler, 2015. Post-Demolition Investigation and Soil Removal Completion Report, Former Crown Chevrolet North Parcel, 7544 Dublin Boulevard, Dublin, California, June 26.

⁴ Amec Foster Wheeler Environment & Infrastructure, Inc., 2017. Operations, Maintenance, and Monitoring Plan for Vapor Mitigation System, Aster Apartments, 6775 Golden Gate Drive, Dublin, California, July.

above at the burdened property, as specified in the above referenced plans and submit a report annually to the County (Record ID: RO0003252) and the State Water Board's GeoTracker website (GeoTracker Global ID: T10000010517) for the life of the improvements at the burdened property.

Covenantor accepts on going annual County fees for oversight and review of Operations and Maintenance Reports by the County, as provided by Health and Safety Code §101480 and establish a deposit/refund account as authorized in Alameda County Ordinance Code § 6.92.040L.

- C. Exposure Pathways. The contaminants addressed in this Covenant are present in groundwater and soil vapor on the Burdened Property. Without the remedial and mitigation measures which have been performed on the Burdened Property, exposure to these contaminants could take place via in place contact or vapor intrusion resulting in inhalation, dermal contact, or ingestion by humans. The risk of public exposure to the contaminants has been substantially lessened by the remediation and controls described herein.
- D. <u>Adjacent Land Uses and Population Potentially Affected</u>. The Burdened Property is used for residential and commercial land uses and is adjacent to residential and commercial land uses.
- E. Full and voluntary disclosure to the County of the presence of hazardous materials on the Burdened Property has been made and extensive sampling of the Burdened Property has been conducted.
- F. Covenantor desires and intends that in order to benefit the County, and to protect the present and future public health and safety, the Burdened Property shall be used in such a manner as to avoid potential harm to persons or property that may result from hazardous materials that may have been deposited on portions of the Burdened Property.

ARTICLE I GENERAL PROVISIONS

1.1 <u>Provisions to Run with the Land</u>. This Covenant sets forth protective provisions, covenants, conditions and restrictions (collectively referred to as "Restrictions") upon and subject to which the Burdened Property and every portion thereof shall be improved, held, used, occupied, leased, sold, hypothecated, encumbered, and/or conveyed. The restrictions set forth in

⁵ Amec Foster Wheeler Environment & Infrastructure, Inc., 2017. Operations, Maintenance, and Monitoring Plan for Permeable Reactive Barrier, Aster Apartments, 6775 Golden Gate Drive, Dublin, California, July.

⁶ Amec Foster Wheeler Environment & Infrastructure, Inc., 2017. Site Management Plan, Aster Apartments, 6775 Golden Gate Drive, Dublin, California, July.

Each and all of the Restrictions shall run with the land, and pass with each and every portion of the Burdened Property, and shall apply to, inure to the benefit of, and bind the respective successors in interest thereof, for the benefit of the County and all Owners and Occupants. Each and all of the Restrictions are imposed upon the entire Burdened Property unless expressly stated as applicable to a specific portion of the Burdened Property. Each and all of the Restrictions run with the land pursuant to section 1471 of the Civil Code. Each and all of the Restrictions are enforceable by the County.

- 1.2 Concurrence of Owners and Lessees Presumed. All purchasers, lessees, or possessors of any portion of the Burdened Property shall be deemed by their purchase, leasing, or possession of such Burdened Property, to be in accord with the foregoing and to agree for and among themselves, their heirs, successors, and assignees, and the agents, employees, and lessees of such owners, heirs, successors, and assignees, that the Restrictions as herein established must be adhered to for the benefit of the County and the Owners and Occupants of the Burdened Property and that the interest of the Owners and Occupants of the Burdened Property shall be subject to the Restrictions contained herein.
- 1.3 <u>Incorporation into Deeds and Leases</u>. Covenantor desires and covenants that the Restrictions set out herein shall be incorporated in and attached to each and all deeds and leases of any portion of the Burdened Property. Recordation of this Covenant shall be deemed binding on all successors, assigns, and lessees, regardless of whether a copy of this Covenant has been attached to or incorporated into any given deed or lease.
- 1.4 <u>Purpose</u>. It is the purpose of this instrument to convey to the County real property rights, which will run with the land, to facilitate the continuing remediation of past environmental contamination, and to protect human health and the environment by reducing the risk of exposure to residual hazardous materials.

ARTICLE II DEFINITIONS

- 2.1 <u>Burdened Property</u>. "Burdened Property" shall mean that certain property situated at 6775 Golden Gate Drive in Dublin, California, which is more particularly described in Exhibit A attached hereto.
- 2.2 <u>County</u>. "County" shall mean the Alameda County Department of Environmental Health and shall include its successor agencies, if any.
- 2.3 <u>Improvements</u>. "Improvements" shall mean all buildings, roads, driveways, regradings, paved parking areas, wells, and plantings constructed or placed upon any portion of the Burdened Property.
- 2.4 Occupants. "Occupants" shall mean Owners and those persons entitled by ownership, leasehold, or other legal relationship to the exclusive right to use and/or occupy all or any portion of the Burdened Property.

2.5 Owner or Owners. "Owner" or "Owners" shall mean the Covenantor and its corporate successors in interest, and/or its successors in interest title to all or any portion of the Burdened Property.

ARTICLE III DEVELOPMENT, USE AND CONVEYANCE OF THE BURDENED PROPERTY

- 3.1 <u>Restrictions on Development and Use</u>. Covenantor promises to restrict the use of the Burdened Property as follows:
 - a. No hospitals shall be permitted on the Burdened Property;
- b. No schools for persons under 21 years of age shall be permitted on the Burdened Property;
- No day care centers for children or day care centers for Senior Citizens shall be permitted on the Burdened Property;
- d. No Owners or Occupants of the Property or any portion thereof shall conduct any excavation work on the Property, with the exception of routine maintenance activities outside of the site buildings that would not encounter soil below 7 feet below ground surface or saturated soil (e.g., landscaping, paving, utility repairs), unless approval is first sought and then expressly permitted in writing by the County. Any disturbance of the concrete utility plugs during utility repair or contaminated soils brought to the surface by grading, excavation, trenching, or backfilling shall be managed by Covenantor or his agent in accordance with the Site Management Plan and all applicable provisions of local, state and federal law;
- e. All uses and development of the Burdened Property shall be consistent with any applicable site documents, including the Site Management Plan, which is hereby incorporated by reference including future amendments thereto. All uses and development shall preserve the integrity of any remedial measures taken or remedial equipment installed, mitigation measures, and any groundwater monitoring network installed on the Burdened Property pursuant to the requirements of the County, specifically including the VMS installed under specified buildings and the PRB, unless otherwise expressly permitted in writing by the County.
- f. No Owners or Occupants of the Property or any portion thereof shall drill, bore, otherwise construct, or use a well for the purpose of extracting water for any use, including but not limited to, domestic, potable, or industrial uses, unless expressly permitted in writing by the County.
- g. The Owner shall notify the County of each of the following: (1) The type, cause, location and date of any disturbance to any remedial measures taken or remedial equipment installed, including the VMS, PRB, concrete utility trench plugs, and/or monitoring well network which could affect the ability of such VMS, PRB or other remedial measures to perform their respective functions and (2) the type and date of repair of such disturbance, which shall be Owner's obligation to have performed. Notification to the County shall be made by registered mail within

ten (10) working days of both the discovery of such disturbance and the completion of repairs;

- h. The Covenantor agrees that the County, and/or any persons acting pursuant to County cleanup orders or responsible for implementing operations and maintenance activities with respect to the VMS, PRB, concrete utility trench plugs, and/or monitoring well network, shall have reasonable access to the Burdened Property, including but not limited to the VMS, PRB, concrete utility trench plugs, and monitoring well network, for the purposes of inspection, surveillance, maintenance, monitoring, repair, and related activities as provided for in Division 7 of the Water Code.
- i. No Owner or Occupant of the Burdened Property shall act in any manner that will aggravate or contribute to the existing environmental conditions of the Burdened Property resulting from the residual hazardous materials. All use and development of the Burdened Property shall preserve the integrity of: (1) the VMS, and (2) the PRB, and (3) the concrete utility trench plugs.
- j. No Owner or Occupant of the Burdened Property shall grow fruits or vegetables for consumption using site soils. Gardening on the Burdened Property shall only be permitted using imported soil within raised beds that do not allow direct contact between tree or plant roots and the underlying site soil.
- 3.2 <u>Enforcement</u>. Failure of an Owner or Occupant to comply with any of the restrictions, as set forth in paragraph 3.1, shall be grounds for the County, by reason of this Covenant, to have the authority to require that the Owner modify or remove any Improvements constructed in violation of that paragraph. Violation of the Covenant shall be grounds for the County to file civil actions against the Owner as provided by law.
- 3.3 <u>Notice in Agreements</u>. After the date of recordation hereof, all Owners and Occupants shall execute a written instrument which shall accompany all purchase agreements or leases relating to the property. Any such instrument shall contain the following statement:

The land described herein contains hazardous materials in soil vapor and in the groundwater under the property, and is subject to a deed restriction dated as of July 18th, 2017, and recorded on July 18th, 2017, in the Official Records of Alameda County, California, as Document No.
______, which Covenant and Environmental Restriction imposes certain covenants, conditions, and restrictions on usage of the property described herein. This statement is not a declaration that a hazard exists.

ARTICLE IV VARIANCE AND TERMINATION

4.1 <u>Variance</u>. Any Owner or, with the Owner's consent, any Occupant of the Burdened Property or any portion thereof may apply to the County for a written variance from the provisions of this Covenant.

- 4.2 <u>Termination</u>. Any Owner or, with the Owner's consent, any Occupant of the Burdened Property or a portion thereof may apply to the County for a termination of the Restrictions as they apply to all or any portion of the Burdened Property.
- 4.3 <u>Term</u>. Unless terminated in accordance with paragraph 4.2 above, by law or otherwise, this Covenant shall continue in effect in perpetuity.

ARTICLE V MISCELLANEOUS

- 5.1 No Dedication Intended. Nothing set forth herein shall be construed to be a gift or dedication, or offer of a gift or dedication, of the Burdened Property or any portion thereof to the general public.
- 5.2 Notices. Whenever any person gives or serves any notice, demand, or other communication with respect to this Covenant, each such notice, demand, or other communication shall be in writing and shall be deemed effective (1) when delivered, if personally delivered to the person being served or official of a government agency being served, or (2) three (3) business days after deposit in the mail if mailed by United States mail, postage paid certified, return receipt requested:

If To: "Covenantor"
Dublin Apartment Properties, LLC
6775 Golden Gate Drive
Dublin, California

If To: "County"

Alameda County Department of Environmental Health
Attention: Director
1131 Harbor Bay Parkway
Alameda, California 94502

- 5.3 <u>Partial Invalidity</u>. If any portion of the Restrictions or terms set forth herein is determined to be invalid for any reason, the remaining portion shall remain in full force and effect as if such portion had not been included herein.
- 5.4 <u>Article Headings</u>. Headings at the beginning of each numbered article of this Covenant are solely for the convenience of the parties and are not a part of the Covenant.
- 5.5 <u>Recordation</u>. This instrument shall be executed by the Covenantor and by the Director of the Alameda County Department of Environmental Health. This instrument shall be recorded by the Covenantor in the County of Alameda within ten (10) days of the date of execution.
 - 5.6 <u>References</u>. All references to Code sections include successor provisions.

5.7 <u>Construction</u>. Any general rule of construction to the contrary notwithstanding, this instrument shall be liberally construed in favor of the Covenant to effect the purpose of this instrument and the policy and purpose of the Water Code. If any provision of this instrument is found to be ambiguous, an interpretation consistent with the purpose of this instrument that would render the provision valid shall be favored over any interpretation that would render it invalid.

IN WITNESS WHEREOF, the parties execute this Coven	ant as of the date set forth abo
Covenantor: Dublin Apadmont Properties	lic
By: Mysbel Bill R. Poland	
Title: Managen	
Date: 3/14/19/2017	
STATE OF CALIFORNIA, COUNTY OF San Fra	visco
on July 17, 2017, before me Delavan fox	, Notary Public,
personally appeared Bull Poland	
-h	
who proved to me on the basis of satisfactory evidence to are subscribed to the within instrument and acknowledged the same in his/her/their authorized capacity(ies), and that instrument the person(s), or the entity upon behalf of which instrument.	d to me that he/she/they execut by his/her/their signature(s) or
are subscribed to the within instrument and acknowledged the same in his/her/their authorized capacity(ies), and that instrument the person(s), or the entity upon behalf of whice	d to me that he/she/they execut by his/her/their signature(s) or h the person(s) acted, executed
are subscribed to the within instrument and acknowledged the same in his/her/their authorized capacity(ies), and that instrument the person(s), or the entity upon behalf of which instrument. I certify under PENALTY OF PERJURY under the laws of the contraction	by his/her/their signature(s) on the person(s) acted, executed of the State of California that the DEBORAH FOX Notary Public - California San Francisco County Commission # 2190140
are subscribed to the within instrument and acknowledged the same in his/her/their authorized capacity(ies), and that instrument the person(s), or the entity upon behalf of which instrument. I certify under PENALTY OF PERJURY under the laws of foregoing paragraph is true and correct.	by his/her/their signature(s) on the person(s) acted, executed of the State of California that the DEBORAH FOX Notary Public - California San Francisco County

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

Agend	y: Alameda County Department	of Environmental Health
By:	ey: Alameda County Department	Ronald Browder
Title:	Director	
Date:_	07-18-2017	

	STATE OF CALIFORNIA, COUNTY OF Alame da	
	on 7/18/2017 before me Emi Johnston . Notary Public.	
	personally appeared Ronald Browder	
2	who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) are subscribed to the within instrument and acknowledged to me that he/she/they execute the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the	ed e

I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.

WITNESS my hand and official seal.

Notary Public in and for said

County and State

instrument.

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

ACKNOWLEDGMENT

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

State of California County of
on July 18, 2017 before me, Deborah Fox, Notary Public (insert name and title of the officer)
personally appeared — Bill R. Poland————
who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) are subscribed to the within instrument and acknowledged to me that he her/their authorized capacity(ies), and that by his her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.
I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.
WITNESS my hand and official seal. DEBORAH FOX Notary Public - California San Francisco County Commission # 2190140 My Comm. Expires Apr 14, 2021
Signature (Seal)

CALIFORNIA CERTIFICATE OF ACKNOWLEDGMENT

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

State of California)	
County of Alameda)	
on 7/18/2017 before me, Emi Jo personally appeared Ronald Browder	hinston, Notary Public.
personally appeared Ronald Browder	(never insert name and (ittle or the dincer)
who proved to me on the basis of satisfactory evidence to be the the within instrument and acknowledged to me that he/she authorized capacity(ies), and that by his/ber/their signature(s) or upon behalf of which the person(s) acted, executed the instrument	n the instrument the person(s), or the entity
I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct	COMM. #2174068
WITNESS my hand and official seal.	Notery Public - California & Alameda County tely Comm. Expires Dec. 1, 2020
Signature Chi Jahron	
Signature	/6 - D
Optional Informat	(Seal)
hough the information in this section is not required by law it could prevent fraudulent rem	tion
though the information in this section is not required by law, it could prevent fraudulent remains authorized document and may prove useful to persons relying on the attached document. escription of Attached Document	tion noval and reattachment of this acknowledgment to an Additional Information
though the information in this section is not required by law, it could prevent fraudulent remauthorized document and may prove useful to persons relying on the attached document. escription of Attached Document ne preceding Certificate of Acknowledgment is attached to a document	Additional Information Method of Signer Identification
hough the information in this section is not required by law, it could prevent fraudulent remains authorized document and may prove useful to persons relying on the attached document. escription of Attached Document be preceding Certificate of Acknowledgment is attached to a document ledger the purpose of Coverage Francisco	Additional Information Method of Signer Identification
escription of Attached Document e preceding Certificate of Acknowledgment is attached to a document edge or the purpose of Coverant Fervironment Coverant Fervironment Coverant Fervironment Coverant Fervironment	Additional Information Method of Signer Identification Proved to me on the basis of satisfactory evidence:
escription of Attached Document represented by law, it could prevent fraudulent remains authorized document and may prove useful to persons relying on the attached document. rescription of Attached Document represented by law, it could prevent fraudulent remains authorized document authorized document is attached to a document ledger the purpose of Coverant of Environment and purpose of Coverant of Environment authorized by Linguistic Coverant of Environment authorized b	Additional Information Method of Signer Identification Proved to me on the basis of satisfactory evidence: fgrm(s) of identification
rescription of Attached Document rescri	Additional Information Method of Signer Identification Proved to me on the basis of satisfactory evidence: form(s) of identification
escription of Attached Document represented by law, it could prevent fraudulent remains authorized document and may prove useful to persons relying on the attached document. rescription of Attached Document represented by law, it could prevent fraudulent remains authorized document authorized document is attached to a document for the purpose of Coverant of Environment Dublin, CA antaining pages, and dated 7/18/2017 re signer(s) capacity or authority is/are as:	Additional Information Method of Signer Identification Proved to me on the basis of satisfactory evidence: form(s) of identification
escription of Attached Document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate	Additional Information Method of Signer Identification Proved to me on the basis of satisfactory evidence: form(s) of identification
escription of Attached Document represented by law, it could prevent fraudulent remains authorized document and may prove useful to persons relying on the attached document. rescription of Attached Document represented by law, it could prevent fraudulent remains authorized document authorized document is attached to a document for the purpose of Coverant of Environment Dublin, CA antaining pages, and dated 7/18/2017 re signer(s) capacity or authority is/are as:	Additional Information Method of Signer Identification Proved to me on the basis of satisfactory evidence; Form(s) of identification
though the information in this section is not required by law, it could prevent fraudulent remarkable document and may prove useful to persons relying on the attached document. Description of Attached Document The preceding Certificate of Acknowledgment is attached to a document of Environment The preceding Certificate of Acknowledgment is attached to a document of Environment The preceding Certificate of Acknowledgment is attached to a document of Environment The preceding Certificate of Acknowledgment is attached to a document of Environment The preceding Certificate of Acknowledgment is attached to a document of Environment The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached to a document The preceding Certificate of Acknowledgment is attached	Additional Information Method of Signer Identification Proved to me on the basis of satisfactory evidence: Form(s) of identification
though the information in this section is not required by law, it could prevent fraudulent remarks authorized document and may prove useful to persons relying on the attached document. escription of Attached Document the preceding Certificate of Acknowledgment is attached to a document of the purpose of Coverant of Environment of En	Additional Information Method of Signer Identification Proved to me on the basis of satisfactory evidence; Form(s) of identification
though the information in this section is not required by law, it could prevent fraudulent remarks authorized document and may prove useful to persons relying on the attached document. escription of Attached Document the preceding Certificate of Acknowledgment is attached to a document electron the purpose of Coverant Fuvirement Publin, CA containing pages, and dated 7/18/2017 the signer(s) capacity or authority is/are as: Andividual(s) Attorney-in-Fact Corporate Officer(s) Guardian/Conservator Partner - Limited/General Trustee(s)	Additional Information Method of Signer Identification Proved to me on the basis of satisfactory evidence; Form(s) of identification
though the information in this section is not required by law, it could prevent fraudulent remarks authorized document and may prove useful to persons relying on the attached document. escription of Attached Document the preceding Certificate of Acknowledgment is attached to a document of Environment of	Additional Information Method of Signer Identification Proved to me on the basis of satisfactory evidence: Figm(s) of identification
though the information in this section is not required by law, it could prevent fraudulent remauthorized document and may prove useful to persons relying on the attached document. Description of Attached Document The preceding Certificate of Acknowledgment is attached to a document the purpose of Coverant Fuvirement Particles of Acknowledgment is attached to a document the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvirement The preceding Certificate of Acknowledgment is attached to a document for the purpose of Coverant Fuvir	Additional Information Method of Signer Identification Proved to me on the basis of satisfactory evidence: Figm(s) of identification

© Copyright 2007-2016 Notary, Inc. PO Box 41400, Des Moines, IA 50311-0507. All Rights Reserved. Item Number 101772. Please contact your Authorized Reseller to purchase copies of this form.

EXHIBIT A

LEGAL DESCRIPTION OF BURDENED PROPERTY

DESCRIPTION DUBLIN APARTMENT PROPERTIES LLC DUBLIN, CALIFORNIA

REAL PROPERTY, SITUATE IN THE INCORPORATED TERRITORY OF THE CITY OF DUBLIN, COUNTY OF ALAMEDA, STATE OF CALIFORNIA, DESCRIBED AS FOLLOWS:

BEING ALL THAT CERTAIN PARCEL OF LAND DESCRIBED IN THAT CERTAIN GRANT DEED RECORDED ON DECEMBER 31, 2014, AS DOCUMENT NO. 2014-319374 OF OFFICIAL RECORDS, IN THE OFFICE OF THE COUNTY RECORDER OF ALAMEDA COUNTY,

EXCEPTING THEREFROM:

BEING A PORTION OF SAID PARCEL OF LAND DESCRIBED IN SAID GRANT DEED RECORDED ON DECEMBER 31, 2014, AS DOCUMENT NO. 2014-319374 OF OFFICIAL RECORDS, IN THE OFFICE OF THE COUNTY RECORDER OF ALAMEDA COUNTY, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT THE NORTHEASTERN CORNER OF SAID PARCEL OF LAND (2014-319374), SAID POINT ALSO BEING THE SOUTHEASTERN CORNER OF THAT CERTAIN PARCEL OF LAND DESCRIBED IN THAT CERTAIN FINAL ORDER OF CONDEMNATION RECORDED APRIL 8, 1997 AS DOCUMENT NO. 97090524 OF OFFICIAL RECORDS, IN SAID OFFICE OF THE COUNTY RECORDER OF ALAMEDA COUNTY;

THENCE, FROM SAID POINT OF COMMENCEMENT, ALONG THE NORTHERN LINE OF SAID PARCEL OF LAND (2014-319374), SOUTH 69°08'15" WEST 343.97 FEET TO THE TRUE POINT OF BEGINNING FOR THIS DESCRIPTION;

THENCE, LEAVING SAID NORTHERN LINE, ALONG THE ARC OF A TANGENT 35.00 FOOT RADIUS CURVE TO THE LEFT, THROUGH A CENTRAL ANGLE OF 90°00'00", AN ARC DISTANCE OF 54.98 FEET;

THENCE, SOUTH 20°51'45" EAST 176.60 FEET;

THENCE, ALONG THE ARC OF A TANGENT 210.00 FOOT RADIUS CURVE TO THE RIGHT, THROUGH A CENTRAL ANGLE OF 12°05'44", AN ARC DISTANCE OF 44.33 FEET, TO A POINT OF REVERSE CURVATURE TO WHICH A RADIAL BEARS NORTH 81°13'59" EAST;

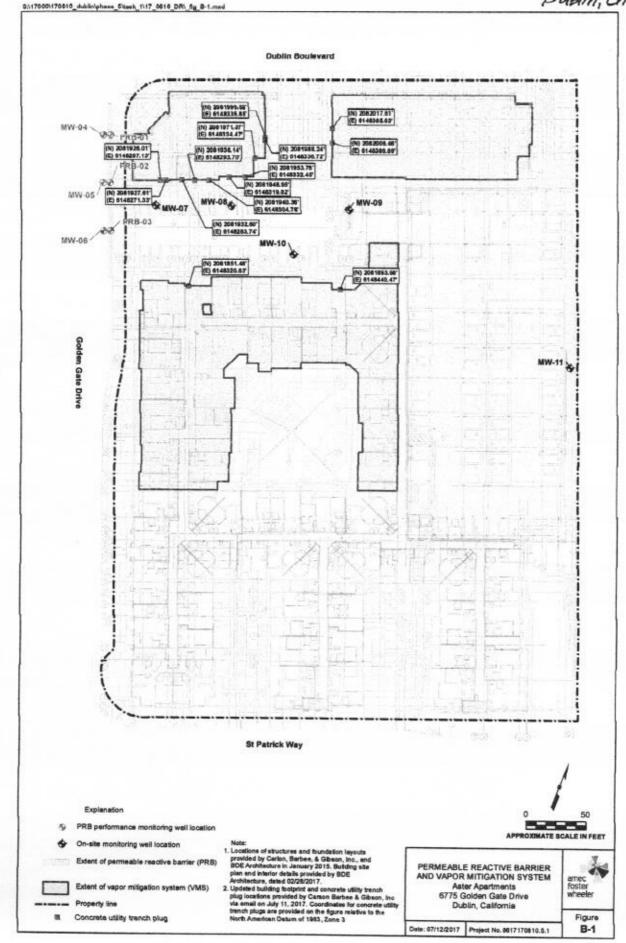
THENCE, ALONG THE ARC OF A 190.00 FOOT RADIUS CURVE TO THE LEFT, THROUGH A CENTRAL ANGLE OF 12°05'44", AN ARC DISTANCE OF 40.11 FEET;

THENCE, SOUTH 20°51'45" EAST 183.30 FEET;

THENCE, SOUTH 24°08'15" WEST 14.14 FEET TO A POINT ON THE WESTERN LINE OF SAID PARCEL OF LAND (2014-319374);

MAY 12, 2017 JOB NO.: 2019-020

THENCE, ALONG SAID WESTERN LINE AND SAID NORTHERN LINE, THE FOLLOWING THREE (3) COURSES:


- 1) NORTH 20°51'45" WEST 446.72 FEET,
- 2) ALONG THE ARC OF A TANGENT 42.00 FOOT RADIUS CURVE TO THE RIGHT, THROUGH A CENTRAL ANGLE OF 90°00'00", AN ARC DISTANCE OF 65.97 FEET, AND
- NORTH 69°08'15" EAST 11.88 FEET TO SAID TRUE POINT OF BEGINNING.

END OF DESCRIPTION

MARK WEHBER, P.L.S.

L.S. NO. 7960

APPENDIX B

Soil Profiling Reports

GEOSCIENCE & ENGINEERING CONSULTING

May 5, 2015

Mr. Pete Beritzhoff Bay West Development 2 Henry Adams Street Suite #450 San Francisco, CA 94103

Subject: Results of Soil Profiling for Health and Safety Evaluation and Off-Site Disposal in

Support of Redevelopment Activity at 7544 Dublin Blvd, Dublin, California.

INTRODUCTION

Dear Mr. Beritzhoff

Stellar Environmental Solutions, Inc. (Stellar Environmental) is pleased to provide Bay West Development with this technical documentation report presenting the findings of the pre-grubbing excavation soil sampling investigation in the area of the planned redevelopment. The development area required demolition of existing parking areas and buildings including a former fuel tank and waste oil tank area. According to the grading plans provided by CBG the project area is approximately 337,500 square feet (sf) which includes 42,330 sf of existing building areas that will be demolished. The existing buildings, concrete and asphalt had been demolished and removed from the site prior to the time of the profile sampling discussed in this report.

The principal objective of this sampling work was conducted to characterize the soil for both offsite disposal options and to identify and evaluate any potential site worker exposure issues that may be present during upcoming construction/excavation activities.

Figure 1 is a site location map. The boring locations are shown on Figure 2.

PRE-FIELD WORK ELEMENTS

This task encompasses the pre-field work elements of the project. Pre-fieldwork subtasks included:

- Schedule the analytical laboratory subcontractor;
- Preparation of project Health and Safety Plan in conformance with CalOSHA regulation including identifying route to the nearest hospital.

The specific project objectives for this project included:

Mr. Pete Beritzhoff Bay West Development May 5, 2015 Page 2 of 8

- Collect two 4-point composite samples sets from 0-1 foot below ground surface (bgs);
- Evaluate the data against regulatory consideration for exposure and offsite disposal;
- Identify potential site worker exposure that may be present during upcoming construction/excavation activities; and
- Prepare this letter documentation report of the analytical results of the soil sampling, with conclusions and recommendations based on the findings.

SOIL SAMPLING PROTOCOL

Based upon a total estimated export volume of 380 CYs (570 tons using a 1 to 1.5 multiplier for CY to tons), two 4-point composite samples were required (a minimum of one 4-point sample per 500 tons) to adequately profile the soil soils for offsite disposal to a California Class II landfill facility and make an assessment of the potential health risk concerns to site construction workers. This sampling provides sufficient density and representative coverage of the current soil conditions to characterize the site. Because the shallow upper foot of soil to be grubbed and graded likely contains some debris (asphalt, concrete, roots, etc.) making it less undesirable for beneficial re-use, the soil material is assumed to be required to be disposed of to a Class II landfill facility.

The soil samples were collected by Henry Pietropaoli, P.G, of Stellar Environmental, on April 20, 2015. The weather was clear and sunny. The samples were collected using a stainless–steel shovel/trowel to dig a 1 foot deep pothole from which a representative section of soil was collected from the surface to 1 foot deep. The shovel was decontaminated between potholes with a clean water rinse. Following sampling, each pothole was backfilled with the removed soil. Four potholes were dug to collect soil from which the 4-point composite sample was made.

Compositing entailed removal of any larger obvious rocks and organic debris from the retained soil sections and homogenizing the mix in a clean plastic bag. The mix was then placed into a 16-ounce laboratory-supplied glass jar, labeled and transferred to a cooler chilled with ice for transport to the analytical laboratory.

Site Soil Observations

The site surface soils in the north and eastern portion of the area were observed to consist primarily of gravel baserock in a light brown fine sandy matrix that extended to a depth of 3-6 inches that was underlain by black clay. Soil in the southwestern quadrant consisted of gravel baserock in light brown fine sandy matrix that extended to a depth of 6-8 inches that was underlain by light brown silty sand. The footprint areas of the former buildings were slightly mounded, 6-8 inches higher than the surrounding site area.

Mr. Pete Beritzhoff Bay West Development May 5, 2015 Page 3 of 8

Attachment A contains photodocumentation of the field activity. The locations of the sample points are shown on Figure 2.

ANALYTICAL METHODS

Laboratory Analyses

The analytical suite below is based on the general site history and typical regulated California landfill facility requirements.

The two composite samples collected were analyzed by the following the analytical method:

- Total extractable hydrocarbons diesel and motor oil and hydraulic oil ranges (TEH-d/mo/ho) by EPA Method 8015M;
- Total volatile hydrocarbons gasoline range (TVHg) by EPA Method 8020;
- Volatile Organic Compounds (VOCs) by EPA Method 8260 (includes benzene, toluene, ethylbenzene and xylenes);
- Semi Volatile Organic Compounds (SVOCs) by EPA Method 8270;
- Title 22 (17 listed metals) by EPA Method 6000 or 7000 series;
- Organochlorine Pesticides by EPA Method 8081;
- Polychlorinated Biphenyls (PCBs) by EPA Method 8082; and
- California Waste Extraction Test (WET) analyses for the metal chromium (Cr).

Upon collection, soil samples were labeled and immediately placed in an ice chest with ice at approximately 4°C and transported by courier under chain-of-custody to McCampbell Analytical Laboratory of Pittsburg, California, a California Environmental Laboratory Accreditation Program (ELAP) certified laboratory.

Re-analysis by the CA Waste Extraction Test (CA-WET) of both samples for soluble Cr was required to make the hazardous vs. non-hazardous waste classification, pertaining to offsite disposal, because the total concentration exceeded the non-hazardous landfill screening criteria, (i.e., 10 times the Soluble Threshold Limit Concentrations [STLC]), or 50 mg/kg.

ANALYTICAL RESULTS OF SOIL SAMPLING

The following is a brief summary of the sample analytical results discussed in the context of comparative regulatory criteria published by the California Regional Water Quality Control Board

Mr. Pete Beritzhoff Bay West Development May 5, 2015 Page 4 of 8

(Water Board) commercial and construction/trench worker direct exposure Environmental Screening Limits (ESLs) and California landfill disposal guidelines:

Total Petroleum Hydrocarbons as Gasoline, Diesel and Motor Oil-Hydraulic Oil

Both samples contained trace concentrations of TEHd and only sample C1 contained low concentrations of TEHmo-ho but was below the most conservative Water Board residential ESL exposure criteria and the direct exposure construction/trench worker ESL criteria. No TPH as gasoline was detected in either sample.

Volatile Organic Compounds (VOCs)

No VOCs, including those associated with petroleum hydrocarbons (benzene, toluene, ethylbenzene, xylenes and methyl-tert butyl ether (MTBE)] were detected at concentrations above the laboratory detection limits in either of the samples.

Title 22 List Metals

The soils showed elevated chromium (Cr) in both samples that required additional analysis by the CA Waste Extraction Test (WET) method to determine whether there were offsite landfill disposal constraints.

The sampling results showed concentrations of the metal arsenic (As) in both samples to be above the Water Board ESL criteria pertaining to risk of direct exposure to construction/trench workers.

CA Waste Extraction Test Results

The results the CA WET analysis of both sample showed no Cr solute at or exceeding the 5 mg/L, hazardous waste threshold for soluble chromium. Therefore the soil may be disposed to a regulated or non-hazardous, at a California landfill facility and/or any acceptable unregulated/unclassified receiving facility that would like to use the soil.

Polychlorinated Biphenols (PCBs)

No PCBs were detected at concentrations above the laboratory detection limits.

Semi-Volatile Organic Hydrocarbons (SVOCs)

No SVOCs were detected at concentrations above the laboratory detection limits.

Mr. Pete Beritzhoff Bay West Development May 5, 2015 Page 5 of 8

Organochlorine Pesticides

Only a trace concentration of the pesticide dichlorodiphenyldichloroethylene (p,p-DDE) was detected at a concentration above the laboratory detection limits but is below the Water Board residential and direct exposure ESLs

LABORATORY QUALITY ASSURANCE

Laboratory internal quality control (QC) procedures included analysis of method blanks, control spikes, and surrogate spiked samples. The certified analytical laboratory reports and chain of custody records are contained in Attachment B.

REGULATORY CONSIDERATIONS

Stellar Environmental compared the soil data to the relevant Regional Water Quality Control Board (Water Board) Environmental Screening level (ESL) criteria for shallow soil in commercial /industrial areas where groundwater is considered a drinking water source (Water Board 2013). The analytical results of this soil evaluation showed no significant contaminant concentrations of regulatory concern pertaining to risks to human health and the environmental, although the metal arsenic was, as is commonly the case, above its ESL. The relevant regulatory criteria are discussed here for information purposes. The landfill and regulatory considerations regarding detected contaminant of concern identified in soil that pertain to this site project include:

- Hazardous concentration thresholds defining the lead as hazardous (California Administrative Code Title 22) and offsite disposal and analytical considerations;
- Regional Water Quality Control Board (Water Board) guidance related to whether additional investigations should be considered ESLs; and
- Health and Safety consideration established by the Occupational Safety and Health Administration (OSHA).

Hazardous Concentration Thresholds: Soil sample analytical results are also compared to both total and soluble concentration-based criteria (Total Threshold Limit Concentrations [TTLCs] and Soluble Threshold Limit Concentrations [STLCs]). A soil that exceeds the TTLC is by definition a hazardous waste. STLC is used to define the "soluble fraction" that classifies a "waste" as California hazardous waste. This is only applied to waste soil that is being considered for offsite disposal to a landfill. Non-hazardous disposal facilities utilize a rule-of-thumb guideline to interpret total contaminant concentrations relative to the STLC hazardous waste criteria. Soils or waste with total contaminant concentrations in excess of 10 times the STLC have the potential to be classified as hazardous are required to be analyzed by the California Waste Extraction Test (WET) and if the

Mr. Pete Beritzhoff Bay West Development May 5, 2015 Page 6 of 8

subsequent solute analysis results exceeds 5 mg/L, (the STLC for Cr), the soil or waste must then be disposed of to a California Class I hazardous waste facility. The Class I landfill would then also require an additional Toxic Characteristic Leaching Procedure (TCLP) test to determine whether stabilization of the waste will be required. In this case, chromium in both samples exceeded 10x the STLC, having a concentration greater than 50 mg/kg and therefore the WET was required, however both samples passed the WET and the soil can therefore be disposed to a non-hazardous landfill facility or even to an unclassified reuse facility if a recipient site can be found.

Water Board Considerations: The Water Board established ESLs as conservative numerical standards for evaluating the likelihood of environmental impact, specifically to groundwater. ESLs are screening-level criteria for soil and groundwater, designed to be generally protective of drinking water resources and aquatic environments. There are also ESLs for soil gas to address the potential for indoor air intrusion from volatile organic compounds off-gassing from soil or groundwater but those are not relevant here. ESLs are not cleanup criteria (i.e., health-based numerical values or disposal-based values). The ESLs are conservative criteria used to evaluate if remediation and/or additional investigation are needed to determine potential impacts to human health or the environment, particularly groundwater, which the Water Board has a mandate to protect.

In the most preliminary stage (Tier 1, as utilized in this assessment), direct "look-up" tables provide numerical criteria, below which contamination is generally determined to have little or no significant risk to human receptors or the environment. The Tier 1 ESL values for soil are used depending on various site factors (land use: commercial/industrial versus residential), soil depth, lithology, and groundwater usage) and various risk pathways (direct exposure, groundwater protection, indoor air impacts, etc.). Exceedance of ESLs may warrant additional actions, such as more extensive sampling events, and/or remediation is warranted.

For the construction/trench worker direct exposure scenario, only arsenic was detected above the ESL of 10 mg/kg in sample C2 (at 15 mg/kg). The naturally-occurring (background) concentrations of arsenic in soil throughout the San Francisco Bay Area commonly ramges from10 mg/kg to 20 mg/kg, with 11 mg/kg arsenic currently designated by the Water Board as the California background concentration. Exceeding the ESL for arsenic in sample C2 warrants dermal, inhalation protection and dust mitigation measures during critical earthwork activities. Demal exposure is easy to mitgate by standard practices of hand washing, etc. Inhalation expousre is only a risk when significant fugative dust allows particulates into the breathing zone. Futurive dust can be controlled by standard construction phase wetting practices.

OSHA Considerations: There were no contaminants detected in the site soils at concentrations in excess of California Occupational Safety and Health Administration (Cal-OSHA) Title 8 published "threshold criterion" that dictate whether air (particulates, dusts, fumes, mists, vapors, and gases)

Mr. Pete Beritzhoff Bay West Development May 5, 2015 Page 7 of 8

monitoring is necessary to document adherence to site occupant and worker safety and health standards during redevelopment including construction, excavations and demolition activities.

When standard industry Best Management Practices (BMPs) are implemented (to minimize fugitive dust emissions), during development activities, the potential is very low for worker or bystander exposure to airborne dust, even during construction activity. Worker exposure limits for various contaminants by dermal, ingestion or inhalation are set by the U.S.OSHA, as well as the State OSHA (Cal-OSHA). The most stringent criterion for dust inhalation is the OSHA Permissible Exposure Level (PEL) = 8-hour time-weighted average per cubic meter air (mg/m³).

SUMMARY AND CONCLUSIONS

Stellar Environmental compared the analytical concentrations to the applicable Water Board ESL and criterion for applicable exposure risk scenario and for offsite landfill disposal and have arrived at the following conclusions:

- There were no petroleum hydrocarbons, volatile organochlorine pesticides, PCBs, or metals detected in excess of any regulatory screening levels pertaining to risks to human health or the environment.
- All of the analyzed compounds were documented at concentrations below hazardous levels for all compounds. All compunds were beow ESLs except the metal except arsenic (As) which exceeded the Water Board ESL as it pertains to construction/trench worker direct exposure risk. Exceedance of the ESL for As in sample C2 may warrant a fugative dust abartment plan with best management practices to mitigate the dermal and inhalation worker expousre scenario. This dust mitigation monitoring measures during earthwork activities could be established at the onset of the excavation phase to demonstate that the BMP are mitigating the fugative dust. Other than best management practices to minimize dust and dermal contact, discussed below, no additional health and safety precautions should be required during the earth moving operations.
- Both soil samples Cr concentrations above the 50 mg/kg that stipulates the samples be reanalyzed by the CA WET method to determine the waste classification. The WET solute did not meet or exceed the concentration of 5 mg/l which would classify it as hazardous Class I disposal and thus the soil is classified as non-hazardous and may be disposed to a regulated Class II facility or any acceptable unregulated/unclassified or receiving facility that would like to use the soil.
- Standard construction phase Best Management practices to mitigate fugitive dust should be employed during redevelopment activities.

RECOMMENDATIONS

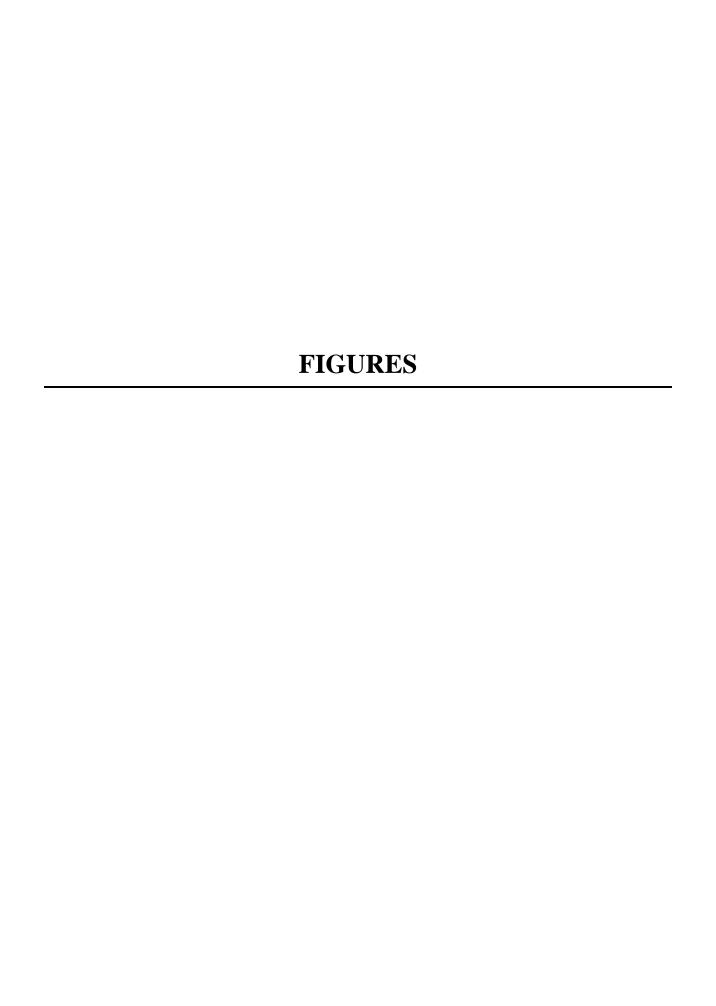
The following are recomendations made to ensure the health and safety to both site occupants and construction workers during redevelopment activities include:

- Best Management Practices such as gloves and water spray for dust control should always be employed during earthwork to minimize the potential risk of exposure via dermal, ingestion or inhalation routes to the one identified contaminant of concern, arsenic (in soil).
- Particulate air sampling could be conducted during earth moving activities as part of health and safety monitoring to document usage of proper dust control measures to mitigate potential exposure risk.
- Work upwind of soils being excavated (or plan the work on a non-windy day) with active dust controls in effect (water spray suppression on-hand).
- During soil excavation and grading open areas, ground and soil stockpiles should be wetted or covered if fugitive dust emissions are observed.
- Soil stockpiles must be protected against the possibility of children or other non-construction persons contacting the soil and to prevent fugitive dust emissions. This can be achieved by secure site fencing and securing (adequately weighted down) stockpiled soil beneath heavy plastic (Visqueen) sheeting cover (6-mil nominal).
- Construction vehicle wheels leaving the site should be inspected and brushed/cleaned as necessary to ensure that soils are not incidentally tracked offsite.

Stellar Environmental appreciates the opportunity to provide Bay West Development with the requested technical services. If you have any questions, please feel free to call us at 510-644-3123.

Sincerely.

Henry Pietropaoli, P.G.


Henry Retysoli

Project Manager

Richard Makdisi, P.G.

Principal Geochemist/President

June S. Wilding

2015-28-02

Analytical Results of Four Point Composite Soil Profile Sampling Redevelopment Activity at 7544 Dublin Blvd, Dublin, California

Title 22 Meta (mg/kg)			Chromium	TPH motor oil -	TPH-diesel	TPH-gas	Pesticides and	SVOCs	
Sample ID	Depth (inches bg)	Arsenic	Chromium	CA-WET Result (mg/L)	hydraulic oil (mg/kg)	(mg/kg)	MBTEX (mg/kg)	PCBs * (mg/kg)	
C1	0-12	7.2	<u>56</u>	0.43	280	1.1	All ND	DDE = 0.017	All ND
C2	0-12	15	<u>65</u>	0.11	<5.0	< 5.0	All ND	All ND	All ND
ESL (commer designati	cial/industrial on)	1.6	2,500	NA	100,000	1,100	various	DDE = 7.0	various
ESL (construction worker e	ction/trench xposure)	10	2,500	NA	28,000	900	various	DDE = 50	various

Notes: TPH = total petroleum hydrocarbons; MBTEX = methyl tert-butyl ether, benzene, toluene, ethylbenzene, and total xylenes; SVOCs = semi-volatile organic compounds; STLC = Soluble Threshold Limit Concentration; ND = no detection above laboratory reporting limit; NA = not analyzed or not applicable; mg/kg = milligrams per kilogram; mg/L = milligrams per liter; bg = below grade; ESL = Environmental Screening Level for shallow soil in commercial /industrial areas where groundwater is considered a drinking water source (Water Board 2013); Results in **bold-face** type exceed applicable ESL; Results <u>underlined</u> show cncentration at or_exceeds 50 mg/kg (>10x the Cr STLC of 5 mg/kg) and required additional analysis by CA WET; CA-WET = California waste extraction test (> 5 mg/L Cr elevates material to hazardous waste in California); NLP = No level published; * = only the pesticide dichlorodiphenyldichloroethylene (p,p-DDE) was detected

ATTACHMENT A **Photo-Documentation**

Subject: Recently graded site

Site: 7544 Dublin Blvd, Dublin, California

Date Taken: April 20, 2015 Project No.: SES 2015-28

Photographer: H. Pietropaoli Photo No.: 01

Subject: Location of composite sample point

Site: 7544 Dublin Blvd, Dublin, California

Date Taken: April 20, 2015 Project No.: SES 2015-28

Photographer: H. Pietropaoli Photo No.: 02

ATTACHMENT B

Certified Analytical Lab Report and Chain-of-Custody Documentation

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1504840

Report Created for: Stellar Environmental Solutions

2198 Sixth St. #201 Berkeley, CA 94710

Project Contact: Richard Makdisi

Project P.O.:

Project Name: #2015-28; Soil Profile

Project Received: 04/21/2015

Analytical Report reviewed & approved for release on 04/28/2015 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: Stellar Environmental Solutions

Project: #2015-28; Soil Profile

WorkOrder: 1504840

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a3 sample diluted due to high organic content.

a4 reporting limits raised due to the sample's matrix prohibiting a full volume extraction.

e2 diesel range compounds are significant; no recognizable pattern

e7 oil range compounds are significant

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD was out of acceptance criteria; LCS validated the prep batch.

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW3550B

Date Received: 4/21/15 15:07 **Analytical Method:** SW8081A/8082

Date Prepared: 4/21/15 **Unit:** mg/kg

Organochlorine Pesticides (Basic Target List) + PCBs

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
C1	1504840-001A	Soil	04/20/2015 11:30) GC23	103903
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
Aldrin	ND		0.020 20		04/24/2015 07:44
a-BHC	ND		0.020 20		04/24/2015 07:44
b-BHC	ND		0.020 20		04/24/2015 07:44
d-BHC	ND		0.020 20		04/24/2015 07:44
g-BHC	ND		0.020 20		04/24/2015 07:44
Chlordane (Technical)	ND		0.50 20		04/24/2015 07:44
a-Chlordane	ND		0.020 20		04/24/2015 07:44
g-Chlordane	ND		0.020 20		04/24/2015 07:44
p,p-DDD	ND		0.020 20		04/24/2015 07:44
p,p-DDE	ND		0.020 20		04/24/2015 07:44
p,p-DDT	ND		0.020 20		04/24/2015 07:44
Dieldrin	ND		0.020 20		04/24/2015 07:44
Endosulfan I	ND		0.020 20		04/24/2015 07:44
Endosulfan II	ND		0.020 20		04/24/2015 07:44
Endosulfan sulfate	ND		0.020 20		04/24/2015 07:44
Endrin	ND		0.020 20		04/24/2015 07:44
Endrin aldehyde	ND		0.020 20		04/24/2015 07:44
Endrin ketone	ND		0.020 20		04/24/2015 07:44
Heptachlor	ND		0.020 20		04/24/2015 07:44
Heptachlor epoxide	ND		0.020 20		04/24/2015 07:44
Hexachlorobenzene	ND		0.20 20		04/24/2015 07:44
Hexachlorocyclopentadiene	ND		0.40 20		04/24/2015 07:44
Methoxychlor	ND		0.020 20		04/24/2015 07:44
Toxaphene	ND		1.0 20		04/24/2015 07:44
Aroclor1016	ND		1.0 20		04/24/2015 07:44
Aroclor1221	ND		1.0 20		04/24/2015 07:44
Aroclor1232	ND		1.0 20		04/24/2015 07:44
Aroclor1242	ND		1.0 20		04/24/2015 07:44
Aroclor1248	ND		1.0 20		04/24/2015 07:44
Aroclor1254	ND		1.0 20		04/24/2015 07:44
Aroclor1260	ND		1.0 20		04/24/2015 07:44
PCBs, total	ND		1.0 20		04/24/2015 07:44
Surrogates	REC (%)		<u>Limits</u>		
Decachlorobiphenyl	112		70-130		04/24/2015 07:44
Analyst(s): SS		<u>Anal</u>	ytical Comments:	а3	

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW3550B

Date Received: 4/21/15 15:07 **Analytical Method:** SW8081A/8082

Date Prepared: 4/21/15 **Unit:** mg/kg

Organochlorine Pesticides (Basic Target List) + PCBs

Analytes Aldrin a-BHC					Instrument	Batch ID
Aldrin a-BHC	1504840-002A	Soil	04/20/201	5 12:30	GC23	103903
a-BHC	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
	ND		0.0010	1		04/24/2015 06:30
F DITO	ND		0.0010	1		04/24/2015 06:30
b-BHC	ND		0.0010	1		04/24/2015 06:30
d-BHC	ND		0.0010	1		04/24/2015 06:30
g-BHC	ND		0.0010	1		04/24/2015 06:30
Chlordane (Technical)	ND		0.025	1		04/24/2015 06:30
a-Chlordane	ND		0.0010	1		04/24/2015 06:30
g-Chlordane	ND		0.0010	1		04/24/2015 06:30
p,p-DDD	ND		0.0010	1		04/24/2015 06:30
p,p-DDE	0.0017		0.0010	1		04/24/2015 06:30
p,p-DDT	ND		0.0010	1		04/24/2015 06:30
Dieldrin	ND		0.0010	1		04/24/2015 06:30
Endosulfan I	ND		0.0010	1		04/24/2015 06:30
Endosulfan II	ND		0.0010	1		04/24/2015 06:30
Endosulfan sulfate	ND		0.0010	1		04/24/2015 06:30
Endrin	ND		0.0010	1		04/24/2015 06:30
Endrin aldehyde	ND		0.0010	1		04/24/2015 06:30
Endrin ketone	ND		0.0010	1		04/24/2015 06:30
Heptachlor	ND		0.0010	1		04/24/2015 06:30
Heptachlor epoxide	ND		0.0010	1		04/24/2015 06:30
Hexachlorobenzene	ND		0.010	1		04/24/2015 06:30
Hexachlorocyclopentadiene	ND		0.020	1		04/24/2015 06:30
Methoxychlor	ND		0.0010	1		04/24/2015 06:30
Toxaphene	ND		0.050	1		04/24/2015 06:30
Aroclor1016	ND		0.050	1		04/24/2015 06:30
Aroclor1221	ND		0.050	1		04/24/2015 06:30
Aroclor1232	ND		0.050	1		04/24/2015 06:30
Aroclor1242	ND		0.050	1		04/24/2015 06:30
Aroclor1248	ND		0.050	1		04/24/2015 06:30
Aroclor1254	ND		0.050	1		04/24/2015 06:30
Aroclor1260	ND		0.050	1		04/24/2015 06:30
PCBs, total	ND		0.050	1		04/24/2015 06:30
Surrogates	REC (%)		<u>Limits</u>			
Decachlorobiphenyl	90		70-130			04/24/2015 06:30
Analyst(s): SS						

Analytical Method: SW8260B

Date Received: 4/21/15 15:07

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW5030B

Date Prepared: 4/21/15 **Unit:** mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	t ID Lab ID Matrix/ExtType Date Collected		Instrument	Batch ID		
C1	1504840-001A	Soil	04/20/2015	11:30	GC28	103881
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acetone	ND		0.10	1		04/28/2015 12:44
tert-Amyl methyl ether (TAME)	ND		0.0050	1		04/28/2015 12:44
Benzene	ND		0.0050	1		04/28/2015 12:44
Bromobenzene	ND		0.0050	1		04/28/2015 12:44
Bromochloromethane	ND		0.0050	1		04/28/2015 12:44
Bromodichloromethane	ND		0.0050	1		04/28/2015 12:44
Bromoform	ND		0.0050	1		04/28/2015 12:44
Bromomethane	ND		0.0050	1		04/28/2015 12:44
2-Butanone (MEK)	ND		0.020	1		04/28/2015 12:44
t-Butyl alcohol (TBA)	ND		0.050	1		04/28/2015 12:44
n-Butyl benzene	ND		0.0050	1		04/28/2015 12:44
sec-Butyl benzene	ND		0.0050	1		04/28/2015 12:44
tert-Butyl benzene	ND		0.0050	1		04/28/2015 12:44
Carbon Disulfide	ND		0.0050	1		04/28/2015 12:44
Carbon Tetrachloride	ND		0.0050	1		04/28/2015 12:44
Chlorobenzene	ND		0.0050	1		04/28/2015 12:44
Chloroethane	ND		0.0050	1		04/28/2015 12:44
Chloroform	ND		0.0050	1		04/28/2015 12:44
Chloromethane	ND		0.0050	1		04/28/2015 12:44
2-Chlorotoluene	ND		0.0050	1		04/28/2015 12:44
4-Chlorotoluene	ND		0.0050	1		04/28/2015 12:44
Dibromochloromethane	ND		0.0050	1		04/28/2015 12:44
1,2-Dibromo-3-chloropropane	ND		0.0040	1		04/28/2015 12:44
1,2-Dibromoethane (EDB)	ND		0.0040	1		04/28/2015 12:44
Dibromomethane	ND		0.0050	1		04/28/2015 12:44
1,2-Dichlorobenzene	ND		0.0050	1		04/28/2015 12:44
1,3-Dichlorobenzene	ND		0.0050	1		04/28/2015 12:44
1,4-Dichlorobenzene	ND		0.0050	1		04/28/2015 12:44
Dichlorodifluoromethane	ND		0.0050	1		04/28/2015 12:44
1,1-Dichloroethane	ND		0.0050	1		04/28/2015 12:44
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		04/28/2015 12:44
1,1-Dichloroethene	ND		0.0050	1		04/28/2015 12:44
cis-1,2-Dichloroethene	ND		0.0050	1		04/28/2015 12:44
trans-1,2-Dichloroethene	ND		0.0050	1		04/28/2015 12:44
1,2-Dichloropropane	ND		0.0050	1		04/28/2015 12:44
1,3-Dichloropropane	ND		0.0050	1		04/28/2015 12:44
2,2-Dichloropropane	ND		0.0050	1		04/28/2015 12:44
1,1-Dichloropropene	ND		0.0050	1		04/28/2015 12:44

(Cont.)

Analytical Report

Client: Stellar Environmental Solutions

Project: #2015-28; Soil Profile

Date Received: 4/21/15 15:07 **Date Prepared:** 4/21/15

WorkOrder: 1504840 Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Coll	lected	Instrument	Batch ID
C1	1504840-001A	Soil	04/20/2015	11:30	GC28	103881
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1		04/28/2015 12:44
trans-1,3-Dichloropropene	ND		0.0050	1		04/28/2015 12:44
Diisopropyl ether (DIPE)	ND		0.0050	1		04/28/2015 12:44
Ethylbenzene	ND		0.0050	1		04/28/2015 12:44
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		04/28/2015 12:44
Freon 113	ND		0.0050	1		04/28/2015 12:44
Hexachlorobutadiene	ND		0.0050	1		04/28/2015 12:44
Hexachloroethane	ND		0.0050	1		04/28/2015 12:44
2-Hexanone	ND		0.0050	1		04/28/2015 12:44
Isopropylbenzene	ND		0.0050	1		04/28/2015 12:44
4-Isopropyl toluene	ND		0.0050	1		04/28/2015 12:44
Methyl-t-butyl ether (MTBE)	ND		0.0050	1		04/28/2015 12:44
Methylene chloride	ND		0.0050	1		04/28/2015 12:44
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1		04/28/2015 12:44
Naphthalene	ND		0.0050	1		04/28/2015 12:44
n-Propyl benzene	ND		0.0050	1		04/28/2015 12:44
Styrene	ND		0.0050	1		04/28/2015 12:44
1,1,1,2-Tetrachloroethane	ND		0.0050	1		04/28/2015 12:44
1,1,2,2-Tetrachloroethane	ND		0.0050	1		04/28/2015 12:44
Tetrachloroethene	ND		0.0050	1		04/28/2015 12:44
Toluene	ND		0.0050	1		04/28/2015 12:44
1,2,3-Trichlorobenzene	ND		0.0050	1		04/28/2015 12:44
1,2,4-Trichlorobenzene	ND		0.0050	1		04/28/2015 12:44
1,1,1-Trichloroethane	ND		0.0050	1		04/28/2015 12:44
1,1,2-Trichloroethane	ND		0.0050	1		04/28/2015 12:44
Trichloroethene	ND		0.0050	1		04/28/2015 12:44
Trichlorofluoromethane	ND		0.0050	1		04/28/2015 12:44
1,2,3-Trichloropropane	ND		0.0050	1		04/28/2015 12:44
1,2,4-Trimethylbenzene	ND		0.0050	1		04/28/2015 12:44
1,3,5-Trimethylbenzene	ND		0.0050	1		04/28/2015 12:44
Vinyl Chloride	ND		0.0050	1		04/28/2015 12:44
Xylenes, Total	ND		0.0050	1		04/28/2015 12:44

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW5030BDate Received:4/21/15 15:07Analytical Method:SW8260B

Date Prepared: 4/21/15 **Unit:** mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
C1	1504840-001A	Soil	04/20/20	15 11:30 GC28	103881
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
Dibromofluoromethane	106		70-130		04/28/2015 12:44
Toluene-d8	122		70-130		04/28/2015 12:44
4-BFB	115		70-130		04/28/2015 12:44

Analytical Method: SW8260B

Date Received: 4/21/15 15:07

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW5030B

Date Prepared: 4/21/15 **Unit:** mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Colle	cted	Instrument	Batch ID
C2	1504840-002A	Soil	04/20/2015	12:30	GC28	103881
<u>Analytes</u>	Result		<u>RL</u> <u>[</u>	<u>DF</u>		Date Analyzed
Acetone	ND		0.10	1		04/28/2015 12:06
tert-Amyl methyl ether (TAME)	ND		0.0050	1		04/28/2015 12:06
Benzene	ND		0.0050	1		04/28/2015 12:06
Bromobenzene	ND		0.0050	1		04/28/2015 12:06
Bromochloromethane	ND		0.0050	1		04/28/2015 12:06
Bromodichloromethane	ND		0.0050	1		04/28/2015 12:06
Bromoform	ND		0.0050	1		04/28/2015 12:06
Bromomethane	ND		0.0050	1		04/28/2015 12:06
2-Butanone (MEK)	ND		0.020	1		04/28/2015 12:06
t-Butyl alcohol (TBA)	ND		0.050	1		04/28/2015 12:06
n-Butyl benzene	ND		0.0050	1		04/28/2015 12:06
sec-Butyl benzene	ND		0.0050	1		04/28/2015 12:06
tert-Butyl benzene	ND		0.0050	1		04/28/2015 12:06
Carbon Disulfide	ND		0.0050	1		04/28/2015 12:06
Carbon Tetrachloride	ND		0.0050	1		04/28/2015 12:06
Chlorobenzene	ND		0.0050	1		04/28/2015 12:06
Chloroethane	ND		0.0050	1		04/28/2015 12:06
Chloroform	ND		0.0050	1		04/28/2015 12:06
Chloromethane	ND		0.0050	1		04/28/2015 12:06
2-Chlorotoluene	ND		0.0050	1		04/28/2015 12:06
4-Chlorotoluene	ND		0.0050	1		04/28/2015 12:06
Dibromochloromethane	ND		0.0050	1		04/28/2015 12:06
1,2-Dibromo-3-chloropropane	ND		0.0040	1		04/28/2015 12:06
1,2-Dibromoethane (EDB)	ND		0.0040	1		04/28/2015 12:06
Dibromomethane	ND		0.0050	1		04/28/2015 12:06
1,2-Dichlorobenzene	ND		0.0050	1		04/28/2015 12:06
1,3-Dichlorobenzene	ND		0.0050	1		04/28/2015 12:06
1,4-Dichlorobenzene	ND		0.0050	1		04/28/2015 12:06
Dichlorodifluoromethane	ND		0.0050	1		04/28/2015 12:06
1,1-Dichloroethane	ND		0.0050	1		04/28/2015 12:06
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		04/28/2015 12:06
1,1-Dichloroethene	ND		0.0050	1		04/28/2015 12:06
cis-1,2-Dichloroethene	ND		0.0050	1		04/28/2015 12:06
trans-1,2-Dichloroethene	ND		0.0050	1		04/28/2015 12:06
1,2-Dichloropropane	ND		0.0050	1		04/28/2015 12:06
1,3-Dichloropropane	ND		0.0050	1		04/28/2015 12:06
2,2-Dichloropropane	ND		0.0050	1		04/28/2015 12:06
1,1-Dichloropropene	ND		0.0050	1		04/28/2015 12:06

(Cont.)

1504840

Analytical Report

Client: Stellar Environmental Solutions WorkOrder:

Project:#2015-28; Soil ProfileExtraction Method:SW5030BDate Received:4/21/15 15:07Analytical Method:SW8260BDate Prepared:4/21/15Unit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Colle	ected	Instrument	Batch ID
C2	1504840-002A	Soil	04/20/2015	12:30	GC28	103881
<u>Analytes</u>	<u>Result</u>		<u>RL</u> !	<u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1		04/28/2015 12:06
trans-1,3-Dichloropropene	ND		0.0050	1		04/28/2015 12:06
Diisopropyl ether (DIPE)	ND		0.0050	1		04/28/2015 12:06
Ethylbenzene	ND		0.0050	1		04/28/2015 12:06
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		04/28/2015 12:06
Freon 113	ND		0.0050	1		04/28/2015 12:06
Hexachlorobutadiene	ND		0.0050	1		04/28/2015 12:06
Hexachloroethane	ND		0.0050	1		04/28/2015 12:06
2-Hexanone	ND		0.0050	1		04/28/2015 12:06
Isopropylbenzene	ND		0.0050	1		04/28/2015 12:06
4-Isopropyl toluene	ND		0.0050	1		04/28/2015 12:06
Methyl-t-butyl ether (MTBE)	ND		0.0050	1		04/28/2015 12:06
Methylene chloride	ND		0.0050	1		04/28/2015 12:06
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1		04/28/2015 12:06
Naphthalene	ND		0.0050	1		04/28/2015 12:06
n-Propyl benzene	ND		0.0050	1		04/28/2015 12:06
Styrene	ND		0.0050	1		04/28/2015 12:06
1,1,1,2-Tetrachloroethane	ND		0.0050	1		04/28/2015 12:06
1,1,2,2-Tetrachloroethane	ND		0.0050	1		04/28/2015 12:06
Tetrachloroethene	ND		0.0050	1		04/28/2015 12:06
Toluene	ND		0.0050	1		04/28/2015 12:06
1,2,3-Trichlorobenzene	ND		0.0050	1		04/28/2015 12:06
1,2,4-Trichlorobenzene	ND		0.0050	1		04/28/2015 12:06
1,1,1-Trichloroethane	ND		0.0050	1		04/28/2015 12:06
1,1,2-Trichloroethane	ND		0.0050	1		04/28/2015 12:06
Trichloroethene	ND		0.0050	1		04/28/2015 12:06
Trichlorofluoromethane	ND		0.0050	1		04/28/2015 12:06
1,2,3-Trichloropropane	ND		0.0050	1		04/28/2015 12:06
1,2,4-Trimethylbenzene	ND		0.0050	1		04/28/2015 12:06
1,3,5-Trimethylbenzene	ND		0.0050	1		04/28/2015 12:06
Vinyl Chloride	ND		0.0050	1		04/28/2015 12:06
Xylenes, Total	ND		0.0050	1		04/28/2015 12:06

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW5030BDate Received:4/21/15 15:07Analytical Method:SW8260B

Date Prepared: 4/21/15 **Unit:** mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
C2	1504840-002A	Soil	04/20/20	15 12:30 GC28	103881
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	106		70-130		04/28/2015 12:06
Toluene-d8	119		70-130		04/28/2015 12:06
4-BFB	113		70-130		04/28/2015 12:06
Analyst(s): AK					

Analytical Report

Client: Stellar Environmental Solutions WorkOrder: 1504840

Project: #2015-28; Soil Profile Extraction Method: SW3550B

Date Received:4/21/15 15:07Analytical Method:SW8270CDate Prepared:4/21/15Unit:mg/Kg

Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collect	ed Instrument	Batch ID
C1	1504840-001A	Soil	04/20/2015 11	30 GC21	103879
<u>Analytes</u>	Result		RL DF		Date Analyzed
Acenaphthene	ND		10 5		04/21/2015 22:40
Acenaphthylene	ND		10 5		04/21/2015 22:40
Acetochlor	ND		10 5		04/21/2015 22:40
Anthracene	ND		10 5		04/21/2015 22:40
Benzidine	ND		52 5		04/21/2015 22:40
Benzo (a) anthracene	ND		10 5		04/21/2015 22:40
Benzo (b) fluoranthene	ND		10 5		04/21/2015 22:40
Benzo (k) fluoranthene	ND		10 5		04/21/2015 22:40
Benzo (g,h,i) perylene	ND		10 5		04/21/2015 22:40
Benzo (a) pyrene	ND		10 5		04/21/2015 22:40
Benzyl Alcohol	ND		52 5		04/21/2015 22:40
1,1-Biphenyl	ND		10 5		04/21/2015 22:40
Bis (2-chloroethoxy) Methane	ND		10 5		04/21/2015 22:40
Bis (2-chloroethyl) Ether	ND		10 5		04/21/2015 22:40
Bis (2-chloroisopropyl) Ether	ND		10 5		04/21/2015 22:40
Bis (2-ethylhexyl) Adipate	ND		10 5		04/21/2015 22:40
Bis (2-ethylhexyl) Phthalate	ND		10 5		04/21/2015 22:40
4-Bromophenyl Phenyl Ether	ND		10 5		04/21/2015 22:40
Butylbenzyl Phthalate	ND		10 5		04/21/2015 22:40
4-Chloroaniline	ND		20 5		04/21/2015 22:40
4-Chloro-3-methylphenol	ND		10 5		04/21/2015 22:40
2-Chloronaphthalene	ND		10 5		04/21/2015 22:40
2-Chlorophenol	ND		10 5		04/21/2015 22:40
4-Chlorophenyl Phenyl Ether	ND		10 5		04/21/2015 22:40
Chrysene	ND		10 5		04/21/2015 22:40
Dibenzo (a,h) anthracene	ND		10 5		04/21/2015 22:40
Dibenzofuran	ND		10 5		04/21/2015 22:40
Di-n-butyl Phthalate	ND		10 5		04/21/2015 22:40
1,2-Dichlorobenzene	ND		10 5		04/21/2015 22:40
1,3-Dichlorobenzene	ND		10 5		04/21/2015 22:40
1,4-Dichlorobenzene	ND		10 5		04/21/2015 22:40
3,3-Dichlorobenzidine	ND		20 5		04/21/2015 22:40
2,4-Dichlorophenol	ND		10 5		04/21/2015 22:40
Diethyl Phthalate	ND		10 5		04/21/2015 22:40
2,4-Dimethylphenol	ND		10 5		04/21/2015 22:40
Dimethyl Phthalate	ND		10 5		04/21/2015 22:40
4,6-Dinitro-2-methylphenol	ND		52 5		04/21/2015 22:40
2,4-Dinitrophenol	ND		250 5		04/21/2015 22:40
	·		-		·

(Cont.)

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW3550BDate Received:4/21/15 15:07Analytical Method:SW8270C

Date Prepared: 4/21/15 **Unit:** mg/K₈

Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collecte	d Instrument	Batch ID
C1	1504840-001A	Soil	04/20/2015 11:	30 GC21	103879
<u>Analytes</u>	Result		RL DF		Date Analyzed
2,4-Dinitrotoluene	ND		10 5		04/21/2015 22:40
2,6-Dinitrotoluene	ND		10 5		04/21/2015 22:40
Di-n-octyl Phthalate	ND		20 5		04/21/2015 22:40
1,2-Diphenylhydrazine	ND		10 5		04/21/2015 22:40
Fluoranthene	ND		10 5		04/21/2015 22:40
Fluorene	ND		10 5		04/21/2015 22:40
Hexachlorobenzene	ND		10 5		04/21/2015 22:40
Hexachlorobutadiene	ND		10 5		04/21/2015 22:40
Hexachlorocyclopentadiene	ND		52 5		04/21/2015 22:40
Hexachloroethane	ND		10 5		04/21/2015 22:40
Indeno (1,2,3-cd) pyrene	ND		10 5		04/21/2015 22:40
Isophorone	ND		10 5		04/21/2015 22:40
2-Methylnaphthalene	ND		10 5		04/21/2015 22:40
2-Methylphenol (o-Cresol)	ND		10 5		04/21/2015 22:40
3 & 4-Methylphenol (m,p-Cresol)	ND		10 5		04/21/2015 22:40
Naphthalene	ND		10 5		04/21/2015 22:40
2-Nitroaniline	ND		52 5		04/21/2015 22:40
3-Nitroaniline	ND		52 5		04/21/2015 22:40
4-Nitroaniline	ND		52 5		04/21/2015 22:40
Nitrobenzene	ND		10 5		04/21/2015 22:40
2-Nitrophenol	ND		52 5		04/21/2015 22:40
4-Nitrophenol	ND		52 5		04/21/2015 22:40
N-Nitrosodiphenylamine	ND		10 5		04/21/2015 22:40
N-Nitrosodi-n-propylamine	ND		10 5		04/21/2015 22:40
Pentachlorophenol	ND		52 5		04/21/2015 22:40
Phenanthrene	ND		10 5		04/21/2015 22:40
Phenol	ND		10 5		04/21/2015 22:40
Pyrene	ND		10 5		04/21/2015 22:40
1,2,4-Trichlorobenzene	ND		10 5		04/21/2015 22:40
2,4,5-Trichlorophenol	ND		10 5		04/21/2015 22:40
2,4,6-Trichlorophenol	ND		10 5		04/21/2015 22:40

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW3550BDate Received:4/21/15 15:07Analytical Method:SW8270CDate Prepared:4/21/15Unit:mg/Kg

Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
C1	1504840-001A	Soil	04/20/2	015 11:30 GC21	103879
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Surrogates	REC (%)		<u>Limits</u>		
2-Fluorophenol	114		30-130		04/21/2015 22:40
Phenol-d5	75		30-130		04/21/2015 22:40
Nitrobenzene-d5	89		30-130		04/21/2015 22:40
2-Fluorobiphenyl	86		30-130		04/21/2015 22:40
2,4,6-Tribromophenol	62		16-130		04/21/2015 22:40
4-Terphenyl-d14	83		30-130		04/21/2015 22:40
Analyst(s): HD		<u>Anal</u>	ytical Com	nments: a4,a3	

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW3550B

Date Received:4/21/15 15:07Analytical Method:SW8270CDate Prepared:4/21/15Unit:mg/Kg

Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
C2	1504840-002A	Soil	04/20/20	15 12:30	GC21	103879
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acenaphthene	ND		0.25	1		04/22/2015 17:27
Acenaphthylene	ND		0.25	1		04/22/2015 17:27
Acetochlor	ND		0.25	1		04/22/2015 17:27
Anthracene	ND		0.25	1		04/22/2015 17:27
Benzidine	ND		1.3	1		04/22/2015 17:27
Benzo (a) anthracene	ND		0.25	1		04/22/2015 17:27
Benzo (b) fluoranthene	ND		0.25	1		04/22/2015 17:27
Benzo (k) fluoranthene	ND		0.25	1		04/22/2015 17:27
Benzo (g,h,i) perylene	ND		0.25	1		04/22/2015 17:27
Benzo (a) pyrene	ND		0.25	1		04/22/2015 17:27
Benzyl Alcohol	ND		1.3	1		04/22/2015 17:27
1,1-Biphenyl	ND		0.25	1		04/22/2015 17:27
Bis (2-chloroethoxy) Methane	ND		0.25	1		04/22/2015 17:27
Bis (2-chloroethyl) Ether	ND		0.25	1		04/22/2015 17:27
Bis (2-chloroisopropyl) Ether	ND		0.25	1		04/22/2015 17:27
Bis (2-ethylhexyl) Adipate	ND		0.25	1		04/22/2015 17:27
Bis (2-ethylhexyl) Phthalate	ND		0.25	1		04/22/2015 17:27
4-Bromophenyl Phenyl Ether	ND		0.25	1		04/22/2015 17:27
Butylbenzyl Phthalate	ND		0.25	1		04/22/2015 17:27
4-Chloroaniline	ND		0.50	1		04/22/2015 17:27
4-Chloro-3-methylphenol	ND		0.25	1		04/22/2015 17:27
2-Chloronaphthalene	ND		0.25	1		04/22/2015 17:27
2-Chlorophenol	ND		0.25	1		04/22/2015 17:27
4-Chlorophenyl Phenyl Ether	ND		0.25	1		04/22/2015 17:27
Chrysene	ND		0.25	1		04/22/2015 17:27
Dibenzo (a,h) anthracene	ND		0.25	1		04/22/2015 17:27
Dibenzofuran	ND		0.25	1		04/22/2015 17:27
Di-n-butyl Phthalate	ND		0.25	1		04/22/2015 17:27
1,2-Dichlorobenzene	ND		0.25	1		04/22/2015 17:27
1,3-Dichlorobenzene	ND		0.25	1		04/22/2015 17:27
1,4-Dichlorobenzene	ND		0.25	1		04/22/2015 17:27
3,3-Dichlorobenzidine	ND		0.50	1		04/22/2015 17:27
2,4-Dichlorophenol	ND		0.25	1		04/22/2015 17:27
Diethyl Phthalate	ND		0.25	1		04/22/2015 17:27
2,4-Dimethylphenol	ND		0.25	1		04/22/2015 17:27
Dimethyl Phthalate	ND		0.25	1		04/22/2015 17:27
4,6-Dinitro-2-methylphenol	ND		1.3	1		04/22/2015 17:27
2,4-Dinitrophenol	ND		6.3	1		04/22/2015 17:27

(Cont.)

Analytical Report

Client: Stellar Environmental Solutions WorkOrder: 1504840

Project: #2015-28; Soil Profile Extraction Method: SW3550B

Data Proping to 4/21/15 15:07

Date Received:4/21/15 15:07Analytical Method:SW8270CDate Prepared:4/21/15Unit:mg/Kg

Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
C2	1504840-002A	Soil	04/20/20	015 12:30	GC21	103879
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
2,4-Dinitrotoluene	ND		0.25	1		04/22/2015 17:27
2,6-Dinitrotoluene	ND		0.25	1		04/22/2015 17:27
Di-n-octyl Phthalate	ND		0.50	1		04/22/2015 17:27
1,2-Diphenylhydrazine	ND		0.25	1		04/22/2015 17:27
Fluoranthene	ND		0.25	1		04/22/2015 17:27
Fluorene	ND		0.25	1		04/22/2015 17:27
Hexachlorobenzene	ND		0.25	1		04/22/2015 17:27
Hexachlorobutadiene	ND		0.25	1		04/22/2015 17:27
Hexachlorocyclopentadiene	ND		1.3	1		04/22/2015 17:27
Hexachloroethane	ND		0.25	1		04/22/2015 17:27
Indeno (1,2,3-cd) pyrene	ND		0.25	1		04/22/2015 17:27
Isophorone	ND		0.25	1		04/22/2015 17:27
2-Methylnaphthalene	ND		0.25	1		04/22/2015 17:27
2-Methylphenol (o-Cresol)	ND		0.25	1		04/22/2015 17:27
3 & 4-Methylphenol (m,p-Cresol)	ND		0.25	1		04/22/2015 17:27
Naphthalene	ND		0.25	1		04/22/2015 17:27
2-Nitroaniline	ND		1.3	1		04/22/2015 17:27
3-Nitroaniline	ND		1.3	1		04/22/2015 17:27
4-Nitroaniline	ND		1.3	1		04/22/2015 17:27
Nitrobenzene	ND		0.25	1		04/22/2015 17:27
2-Nitrophenol	ND		1.3	1		04/22/2015 17:27
4-Nitrophenol	ND		1.3	1		04/22/2015 17:27
N-Nitrosodiphenylamine	ND		0.25	1		04/22/2015 17:27
N-Nitrosodi-n-propylamine	ND		0.25	1		04/22/2015 17:27
Pentachlorophenol	ND		1.3	1		04/22/2015 17:27
Phenanthrene	ND		0.25	1		04/22/2015 17:27
Phenol	ND		0.25	1		04/22/2015 17:27
Pyrene	ND		0.25	1		04/22/2015 17:27
1,2,4-Trichlorobenzene	ND		0.25	1		04/22/2015 17:27
2,4,5-Trichlorophenol	ND		0.25	1		04/22/2015 17:27
2,4,6-Trichlorophenol	ND		0.25	1		04/22/2015 17:27

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW3550BDate Received:4/21/15 15:07Analytical Method:SW8270CDate Prepared:4/21/15Unit:mg/Kg

Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collected Instrument	Batch ID
C2	1504840-002A	Soil	04/20/2015 12:30 GC21	103879
<u>Analytes</u>	Result		RL DF	Date Analyzed
Surrogates	REC (%)		<u>Limits</u>	
2-Fluorophenol	96		30-130	04/22/2015 17:27
Phenol-d5	87		30-130	04/22/2015 17:27
Nitrobenzene-d5	85		30-130	04/22/2015 17:27
2-Fluorobiphenyl	78		30-130	04/22/2015 17:27
2,4,6-Tribromophenol	70		16-130	04/22/2015 17:27
4-Terphenyl-d14	90		30-130	04/22/2015 17:27

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW3050BDate Received:4/21/15 15:07Analytical Method:SW6020

Date Prepared: 4/21/15 **Unit:** mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
C1	1504840-001A	Soil	04/20/20	15 11:30	ICP-MS2	103916
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Antimony	ND		0.50	1		04/22/2015 20:03
Arsenic	7.2		0.50	1		04/22/2015 20:03
Barium	140		5.0	1		04/22/2015 20:03
Beryllium	0.67		0.50	1		04/22/2015 20:03
Cadmium	0.26		0.25	1		04/22/2015 20:03
Chromium	56		0.50	1		04/22/2015 20:03
Cobalt	9.8		0.50	1		04/22/2015 20:03
Copper	26		0.50	1		04/22/2015 20:03
Lead	10		0.50	1		04/22/2015 20:03
Mercury	0.094		0.050	1		04/22/2015 20:03
Molybdenum	0.92		0.50	1		04/22/2015 20:03
Nickel	49		0.50	1		04/22/2015 20:03
Selenium	ND		0.50	1		04/22/2015 20:03
Silver	ND		0.50	1		04/22/2015 20:03
Thallium	ND		0.50	1		04/22/2015 20:03
Vanadium	52		0.50	1		04/22/2015 20:03
Zinc	71		5.0	1		04/22/2015 20:03
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Tb 350.917	122		70-130			04/22/2015 20:03
Analyst(s): DB						

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW3050B

Date Received:4/21/15 15:07Analytical Method:SW6020Date Prepared:4/21/15Unit:mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
C2	1504840-002A	Soil	04/20/20	15 12:30	ICP-MS2	103916
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Antimony	ND		0.50	1		04/22/2015 20:09
Arsenic	15		0.50	1		04/22/2015 20:09
Barium	140		5.0	1		04/22/2015 20:09
Beryllium	0.71		0.50	1		04/22/2015 20:09
Cadmium	0.41		0.25	1		04/22/2015 20:09
Chromium	65		0.50	1		04/22/2015 20:09
Cobalt	9.5		0.50	1		04/22/2015 20:09
Copper	26		0.50	1		04/22/2015 20:09
Lead	10		0.50	1		04/22/2015 20:09
Mercury	0.088		0.050	1		04/22/2015 20:09
Molybdenum	2.2		0.50	1		04/22/2015 20:09
Nickel	61		0.50	1		04/22/2015 20:09
Selenium	ND		0.50	1		04/22/2015 20:09
Silver	ND		0.50	1		04/22/2015 20:09
Thallium	ND		0.50	1		04/22/2015 20:09
Vanadium	53		0.50	1		04/22/2015 20:09
Zinc	74		5.0	1		04/22/2015 20:09
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Tb 350.917	127		70-130			04/22/2015 20:09
Analyst(s): DB						

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW5030B

Date Received: 4/21/15 15:07 **Analytical Method:** SW8021B/8015Bm

Date Prepared: 4/21/15 **Unit:** mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
C1	1504840-001A	Soil	04/20/20	15 11:30 GC7	103880
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	04/22/2015 23:32
MTBE			0.050	1	04/22/2015 23:32
Benzene			0.0050	1	04/22/2015 23:32
Toluene			0.0050	1	04/22/2015 23:32
Ethylbenzene			0.0050	1	04/22/2015 23:32
Xylenes			0.0050	1	04/22/2015 23:32
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	109		70-130		04/22/2015 23:32
Analyst(s): IA					

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
C2	1504840-002A	Soil	04/20/20	15 12:30 GC7	103880
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	04/23/2015 00:02
MTBE			0.050	1	04/23/2015 00:02
Benzene			0.0050	1	04/23/2015 00:02
Toluene			0.0050	1	04/23/2015 00:02
Ethylbenzene			0.0050	1	04/23/2015 00:02
Xylenes			0.0050	1	04/23/2015 00:02
<u>Surrogates</u>	REC (%)		<u>Limits</u>		

 Surrogates
 REC (%)
 Limits

 2-Fluorotoluene
 108
 70-130
 04/23/2015 00:02

 Analyst(s):
 IA

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Project:#2015-28; Soil ProfileExtraction Method:SW3550BDate Received:4/21/15 15:07Analytical Method:SW8015B

Date Prepared: 4/21/15

Unit: mg/Kg

Total Extractable Petroleum Hydrocarbons

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrum	ent Batch ID
C1	1504840-001A	Soil	04/20/2	015 11:30 GC6B	103904
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	20		20	20	04/25/2015 03:37
TPH-Motor Oil (C18-C36)	280		100	20	04/25/2015 03:37
TPH-Hydraulic Oil (C18-C36)	280		100	20	04/25/2015 03:37
Surrogates	REC (%)		<u>Limits</u>		
C9	92		70-130		04/25/2015 03:37
Analyst(s): TK		<u>Anal</u>	ytical Com	nments: e7,e2	

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Ir	nstrument	Batch ID
C2	1504840-002A	Soil	04/20/20	015 12:30 G	C6A	103904
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	1.1		1.0	1		04/28/2015 03:37
TPH-Motor Oil (C18-C36)	ND		5.0	1		04/28/2015 03:37
TPH-Hydraulic Oil (C18-C36)	ND		5.0	1		04/28/2015 03:37
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
C9	74		70-130			04/28/2015 03:37
Analyst(s): TK		<u>Analy</u>	ytical Com	ments: e2		

Client: Stellar Environmental Solutions

Date Prepared: 4/20/15 **Date Analyzed:** 4/21/15 **Instrument:** GC10, GC16

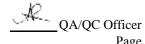
Matrix: Soil

Project: #2015-28; Soil Profile

WorkOrder: 1504840 **BatchID:** 103881

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/Kg


Sample ID: MB/LCS-103881

1504815-003AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.0501	0.0050	0.050	-	100	53-116
Benzene	ND	0.0626	0.0050	0.050	-	125	63-137
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	0.258	0.050	0.20	-	129	41-135
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0535	0.0050	0.050	-	107	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0510	0.0040	0.050	-	102	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0570	0.0040	0.050	-	114	58-135
1,1-Dichloroethene	ND	0.0575	0.0050	0.050	-	115	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	_	-	-	-
1,1-Dichloropropene	ND	-	0.0050	_	-	-	-
cis-1,3-Dichloropropene	ND	_	0.0050	_	-	_	_
trans-1,3-Dichloropropene	ND		0.0050	_	_		

(Cont.)

Client: Stellar Environmental Solutions

Date Prepared: 4/20/15 **Date Analyzed:** 4/21/15 **Instrument:** GC10, GC16

Matrix: Soil

Project: #2015-28; Soil Profile

WorkOrder: 1504840 **BatchID:** 103881

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/Kg

Sample ID: MB/LCS-103881

1504815-003AMS/MSD

OC Summary	Report for SW8260	В

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	0.0583	0.0050	0.050	-	117	52-129
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0538	0.0050	0.050	-	108	53-125
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0541	0.0050	0.050	-	108	58-122
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0575	0.0050	0.050	-	115	76-130
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0552	0.0050	0.050	-	110	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	0.114	0.120		0.12	91	96	72-126
Toluene-d8	0.129	0.122		0.12	103	98	81-115
4-BFB	0.0147	0.0114		0.012	117	91	55-127

Client: Stellar Environmental Solutions

Date Prepared: 4/20/15 **Date Analyzed:** 4/21/15 **Instrument:** GC10, GC16

Matrix: Soil

Project: #2015-28; Soil Profile

WorkOrder: 1504840 **BatchID:** 103881

Extraction Method: SW5030B

Analytical Method: SW8260B **Unit:** mg/Kg

Sample ID: MB/LCS-103881

1504815-003AMS/MSD

OC Summary Report for SW8260B

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0387	0.0397	0.050	ND	77	79	70-130	2.54	20
Benzene	0.0439	0.0440	0.050	ND	88	88	70-130	0	20
t-Butyl alcohol (TBA)	0.132	0.137	0.20	ND	66,F1	69,F1	70-130	3.67	20
Chlorobenzene	0.0409	0.0410	0.050	ND	82	82	70-130	0	20
1,2-Dibromoethane (EDB)	0.0394	0.0405	0.050	ND	79	81	70-130	2.75	20
1,2-Dichloroethane (1,2-DCA)	0.0410	0.0419	0.050	ND	82	84	70-130	2.35	20
1,1-Dichloroethene	0.0430	0.0433	0.050	ND	86	87	70-130	0.874	20
Diisopropyl ether (DIPE)	0.0407	0.0418	0.050	ND	81	84	70-130	2.69	20
Ethyl tert-butyl ether (ETBE)	0.0404	0.0418	0.050	ND	81	83	70-130	3.35	20
Methyl-t-butyl ether (MTBE)	0.0396	0.0407	0.050	ND	79	81	70-130	2.70	20
Toluene	0.0422	0.0420	0.050	ND	84	84	70-130	0	20
Trichloroethene	0.0440	0.0442	0.050	ND	88	88	70-130	0	20
Surrogate Recovery									
Dibromofluoromethane	0.119	0.124	0.12		95	99	70-130	4.31	20
Toluene-d8	0.120	0.120	0.12		96	96	70-130	0	20
4-BFB	0.0132	0.0133	0.012		106	106	70-130	0	20

Client: Stellar Environmental Solutions

Date Prepared: 4/21/15 **Date Analyzed:** 4/24/15 **Instrument:** GC23

Matrix: Soil

Project: #2015-28; Soil Profile

WorkOrder: 1504840 **BatchID:** 103903

Extraction Method: SW3550B

Analytical Method: SW8081A/8082

Unit: mg/kg

Sample ID: MB/LCS-103903

1504830-001AMS/MSD

OC Summary	Report f	for SW80	R1A/8082
VV Dummary	IXCDUILL	, , , , , , , , ,) 1 /3/ () () () <i>4</i>

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Aldrin	ND	0.0559	0.0010	0.050	-	112	70-130
a-BHC	ND	-	0.0010	-	-	-	-
b-BHC	ND	-	0.0010	-	-	-	-
d-BHC	ND	-	0.0010	-	-	-	-
g-BHC	ND	0.0549	0.0010	0.050	-	110	70-130
Chlordane (Technical)	ND	-	0.025	-	-	-	-
a-Chlordane	ND	-	0.0010	-	-	-	-
g-Chlordane	ND	-	0.0010	-	-	-	-
p,p-DDD	ND	-	0.0010	-	-	-	-
p,p-DDE	ND	-	0.0010	-	-	-	-
p,p-DDT	ND	0.0453	0.0010	0.050	-	91	70-130
Dieldrin	ND	0.0554	0.0010	0.050	-	111	70-130
Endosulfan I	ND	-	0.0010	-	-	-	-
Endosulfan II	ND	-	0.0010	-	-	-	-
Endosulfan sulfate	ND	-	0.0010	-	-	-	-
Endrin	ND	0.0620	0.0010	0.050	-	124	70-130
Endrin aldehyde	ND	-	0.0010	-	-	-	-
Endrin ketone	ND	-	0.0010	-	-	-	-
Heptachlor	ND	0.0549	0.0010	0.050	-	110	70-130
Heptachlor epoxide	ND	-	0.0010	-	-	-	-
Hexachlorobenzene	ND	-	0.010	-	-	-	-
Hexachlorocyclopentadiene	ND	-	0.020	-	-	-	-
Methoxychlor	ND	-	0.0010	-	-	-	-
Toxaphene	ND	-	0.050	-	-	-	-
Aroclor1016	ND	-	0.050	-	-	-	-
Aroclor1221	ND	-	0.050	-	-	-	-
Aroclor1232	ND	-	0.050	-	-	-	-
Aroclor1242	ND	-	0.050	-	-	-	-
Aroclor1248	ND	-	0.050	-	-	-	-
Aroclor1254	ND	-	0.050	-	-	-	-
Aroclor1260	ND	-	0.050	-	-	-	-
PCBs, total	ND	-	0.050	-	-	-	-
Surrogate Recovery							
December 1 to 1 t	0.0470	0.0407		0.050	00	00	70.400

Decachlorobiphenyl 0.0479 0.0497 0.050 96 99 70-130

Quality Control Report

Client: Stellar Environmental Solutions

Date Prepared: 4/21/15 **Date Analyzed:** 4/24/15

Instrument: GC23

Matrix: Soil

Project: #2015-28; Soil Profile

WorkOrder: 1504840

BatchID: 103903

Extraction Method: SW3550B

Analytical Method: SW8081A/8082

Unit: mg/kg

Sample ID: MB/LCS-103903

1504830-001AMS/MSD

QC Summary Report for SW8081A/8082

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Aldrin	0.0572	0.0562	0.050	ND	114	112	70-130	1.65	30
g-BHC	0.0554	0.0551	0.050	ND	111	110	70-130	0.403	30
p,p-DDT	0.0570	0.0550	0.050	0.009189	100	96	70-130	3.48	30
Dieldrin	0.0745	0.0717	0.050	0.003238	142,F1	137,F1	70-130	3.83	30
Endrin	0.0677	0.0640	0.050	ND	135,F1	128	70-130	5.63	30
Heptachlor	0.0568	0.0555	0.050	ND	113	110	70-130	2.36	30
Surrogate Recovery									
Decachlorobiphenyl	0.0454	0.0455	0.050		91	91	70-130	0	30

Quality Control Report

Client: Stellar Environmental Solutions

Date Prepared:4/20/15Date Analyzed:4/20/15Instrument:GC21

Matrix: Soil

Project: #2015-28; Soil Profile

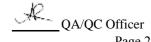
WorkOrder: 1504840 **BatchID:** 103879

BatchID: 103879 **Extraction Method:** SW3550B

Analytical Method: SW8270C

Sample ID: MB/LCS-103879

mg/Kg


1504813-002AMS/MSD

OC Summary Report for SW8270C

Unit:

Analyte MB Result LCS Result RL SPK Val MB SS %REC Acenaphthene ND 4.78 0.25 5 - Acenaphthylene ND - 0.25 - - Acetochlor ND - 0.25 - - Anthracene ND - 0.25 - - Benzidine ND - 0.25 -	LCS %REC	LCS
Acenaphthylene ND - 0.25 - - Acetochlor ND - 0.25 - - Anthracene ND - 0.25 - - Benzo (a) anthracene ND - 0.25 - - Benzo (b) fluoranthene ND - 0.25 - - Benzo (k) fluoranthene ND - 0.25 - - Benzo (g,h,i) perylene ND - 0.25 - - Benzo (a) pyrene ND - 0.25 - - Benzyl Alcohol ND - 0.25 - - Benzyl Alcohol ND - 0.25 - - Bis (2-chloroethoxy) Methane ND - 0.25 - - Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroisopropyl) Ether ND - 0.25 - - Bis (2-et	/orec	Limits
Acetochlor ND - 0.25 - - Anthracene ND - 0.25 - - Benzo (a) anthracene ND - 0.25 - - Benzo (b) fluoranthene ND - 0.25 - - Benzo (k) fluoranthene ND - 0.25 - - Benzo (g,h,i) perylene ND - 0.25 - - Benzo (a) pyrene ND - 0.25 - - Benzyl Alcohol ND - 0.25 - - Benzyl Alcohol ND - 0.25 - - Bis (2-chloroethoxy) Methane ND - 0.25 - - Bis (2-chloroethoxy) Methane ND - 0.25 - - Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroisopropyl) Ether ND - 0.25 - -	96	30-130
Anthracene ND - 0.25 - - Benzidine ND - 1.3 - - Benzo (a) anthracene ND - 0.25 - - Benzo (b) fluoranthene ND - 0.25 - - Benzo (k) fluoranthene ND - 0.25 - - Benzo (g,h,i) perylene ND - 0.25 - - Benzo (a) pyrene ND - 0.25 - - Benzyl Alcohol ND - 0.25 - - Benzyl Alcohol ND - 0.25 - - 1,1-Biphenyl ND - 0.25 - - Bis (2-chloroethoxy) Methane ND - 0.25 - - Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroethy	-	-
Benzidine ND - 1.3 - - Benzo (a) anthracene ND - 0.25 - - Benzo (b) fluoranthene ND - 0.25 - - Benzo (k) fluoranthene ND - 0.25 - - Benzo (g,h,i) perylene ND - 0.25 - - Benzo (a) pyrene ND - 0.25 - - Benzyl Alcohol ND - 0.25 - - Benzyl Alcohol ND - 0.25 - - 1,1-Biphenyl ND - 0.25 - - Bis (2-chloroethoxy) Methane ND - 0.25 - - Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroethyl) Adipate ND - 0.25 - - Bis (2-ethylhexyl) Phthalate ND - 0.25 - - <	-	-
Benzo (a) anthracene ND - 0.25 - - Benzo (b) fluoranthene ND - 0.25 - - Benzo (k) fluoranthene ND - 0.25 - - Benzo (g,h,i) perylene ND - 0.25 - - Benzo (a) pyrene ND - 0.25 - - Benzyl Alcohol ND - 0.25 - - Bis (2-chlorothoxyl) Methane ND - 0.25 - - Bis (2-chloroethoxyl) Bether ND - 0.25 - - Bis (2-chlorostopropyl) Ether ND - 0.25 - - Bis (2-cthylhexyl) Adipate ND - 0.25 - - Bis (2-cthylhexyl) Phthalate ND - 0.25 - - 4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 -	-	-
Benzo (b) fluoranthene ND - 0.25 - - Benzo (k) fluoranthene ND - 0.25 - - Benzo (g,h,i) perylene ND - 0.25 - - Benzo (a) pyrene ND - 0.25 - - Benzyl Alcohol ND - 1.3 - - 1,1-Biphenyl ND - 0.25 - - Bis (2-chloroethoxy) Methane ND - 0.25 - - Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroisopropyl) Ether ND - 0.25 - - Bis (2-ethylhexyl) Adipate ND - 0.25 - - Bis (2-ethylhexyl) Phthalate ND - 0.25 - - 4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 - - </td <td>-</td> <td>-</td>	-	-
Benzo (k) fluoranthene ND - 0.25 - - Benzo (g,h,i) perylene ND - 0.25 - - Benzo (a) pyrene ND - 0.25 - - Benzyl Alcohol ND - 1.3 - - 1,1-Biphenyl ND - 0.25 - - Bis (2-chloroethoxy) Methane ND - 0.25 - - Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroisopropyl) Ether ND - 0.25 - - Bis (2-ethylhexyl) Adipate ND - 0.25 - - Bis (2-ethylhexyl) Phthalate ND - 0.25 - - 4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 - -	-	-
Benzo (g,h,i) perylene ND - 0.25 - - Benzo (a) pyrene ND - 0.25 - - Benzyl Alcohol ND - 1.3 - - 1,1-Biphenyl ND - 0.25 - - Bis (2-chloroethoxy) Methane ND - 0.25 - - Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroisopropyl) Ether ND - 0.25 - - Bis (2-ethylhexyl) Adipate ND - 0.25 - - Bis (2-ethylhexyl) Phthalate ND - 0.25 - - 4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 - -	-	-
Benzo (a) pyrene ND	-	-
Benzyl Alcohol ND - 1.3 - - 1,1-Biphenyl ND - 0.25 - - Bis (2-chloroethoxy) Methane ND - 0.25 - - Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroisopropyl) Ether ND - 0.25 - - Bis (2-ethylhexyl) Adipate ND - 0.25 - - Bis (2-ethylhexyl) Phthalate ND - 0.25 - - 4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 - -	-	-
1,1-Biphenyl ND - 0.25 - - Bis (2-chloroethoxy) Methane ND - 0.25 - - Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroisopropyl) Ether ND - 0.25 - - Bis (2-ethylhexyl) Adipate ND - 0.25 - - Bis (2-ethylhexyl) Phthalate ND - 0.25 - - 4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 - -	-	-
Bis (2-chloroethoxy) Methane ND - 0.25 - - Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroisopropyl) Ether ND - 0.25 - - Bis (2-ethylhexyl) Adipate ND - 0.25 - - Bis (2-ethylhexyl) Phthalate ND - 0.25 - - 4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 - -	-	-
Bis (2-chloroethyl) Ether ND - 0.25 - - Bis (2-chloroisopropyl) Ether ND - 0.25 - - Bis (2-ethylhexyl) Adipate ND - 0.25 - - Bis (2-ethylhexyl) Phthalate ND - 0.25 - - 4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 - -	-	-
Bis (2-chloroisopropyl) Ether ND - 0.25 - - Bis (2-ethylhexyl) Adipate ND - 0.25 - - Bis (2-ethylhexyl) Phthalate ND - 0.25 - - 4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 - -	-	-
Bis (2-ethylhexyl) Adipate ND - 0.25 - - Bis (2-ethylhexyl) Phthalate ND - 0.25 - - 4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 - -	-	-
Bis (2-ethylhexyl) Phthalate ND - 0.25 - - 4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 - -	-	-
4-Bromophenyl Phenyl Ether ND - 0.25 - - Butylbenzyl Phthalate ND - 0.25 - -	-	-
Butylbenzyl Phthalate ND - 0.25	-	-
	-	-
4-Chloroaniline ND - 0.50	-	-
	-	-
4-Chloro-3-methylphenol ND 4.74 0.25 5 -	95	30-130
2-Chloronaphthalene ND - 0.25	-	-
2-Chlorophenol ND 4.76 0.25 5 -	95	30-130
4-Chlorophenyl Phenyl Ether ND - 0.25	-	-
Chrysene ND - 0.25	-	-
Dibenzo (a,h) anthracene ND - 0.25	-	-
Dibenzofuran ND - 0.25	-	-
Di-n-butyl Phthalate ND - 0.25	-	-
1,2-Dichlorobenzene ND - 0.25	-	-
1,3-Dichlorobenzene ND - 0.25	-	-
1,4-Dichlorobenzene ND 4.38 0.25 5 -	88	30-130
3,3-Dichlorobenzidine ND - 0.50	-	-
2,4-Dichlorophenol ND - 0.25	-	-
Diethyl Phthalate ND - 0.25	-	-
2,4-Dimethylphenol ND - 0.25	-	-
Dimethyl Phthalate ND - 0.25	-	-
4,6-Dinitro-2-methylphenol ND - 1.3	-	-
2,4-Dinitrophenol ND - 6.3	-	-
2,4-Dinitrotoluene ND 4.93 0.25 5 -	99	30-130
2,6-Dinitrotoluene ND - 0.25		

(Cont.)

Quality Control Report

Client: Stellar Environmental Solutions

Date Prepared: 4/20/15 **Date Analyzed:** 4/20/15 **Instrument:** GC21

Matrix: Soil

Project: #2015-28; Soil Profile

WorkOrder: 1504840

BatchID: 103879 **Extraction Method:** SW3550B

Analytical Method: SW8270C

Unit: mg/Kg

Sample ID: MB/LCS-103879

1504813-002AMS/MSD

OC Summary	Report fo	r SW8270C
VV Dullillar v	IXCDUI L IU	1 17 11 ()4/()

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Di-n-octyl Phthalate	ND	-	0.50	-	-	-	-
1,2-Diphenylhydrazine	ND	-	0.25	-	-	-	-
Fluoranthene	ND	-	0.25	-	-	-	-
Fluorene	ND	-	0.25	-	-	-	-
Hexachlorobenzene	ND	-	0.25	-	-	-	-
Hexachlorobutadiene	ND	-	0.25	-	-	-	-
Hexachlorocyclopentadiene	ND	-	1.3	-	-	-	-
Hexachloroethane	ND	-	0.25	-	-	-	-
Indeno (1,2,3-cd) pyrene	ND	-	0.25	-	-	-	-
Isophorone	ND	-	0.25	-	-	-	-
2-Methylnaphthalene	ND	-	0.25	-	-	-	-
2-Methylphenol (o-Cresol)	ND	-	0.25	-	-	-	-
3 & 4-Methylphenol (m,p-Cresol)	ND	-	0.25	-	-	-	-
Naphthalene	ND	-	0.25	-	-	-	-
2-Nitroaniline	ND	-	1.3	-	-	-	-
3-Nitroaniline	ND	-	1.3	-	-	-	-
4-Nitroaniline	ND	-	1.3	-	-	-	-
Nitrobenzene	ND	-	0.25	-	-	-	-
2-Nitrophenol	ND	-	1.3	-	-	-	-
4-Nitrophenol	ND	4.10	1.3	5	-	82	30-130
N-Nitrosodiphenylamine	ND	-	0.25	-	-	-	-
N-Nitrosodi-n-propylamine	ND	4.30	0.25	5	-	86	30-130
Pentachlorophenol	ND	3.14	1.3	5	-	63	30-130
Phenanthrene	ND	-	0.25	-	-	-	-
Phenol	ND	4.35	0.25	5	-	87	30-130
Pyrene	ND	5.09	0.25	5	-	102	30-130
1,2,4-Trichlorobenzene	ND	4.77	0.25	5	-	95	30-130
2,4,5-Trichlorophenol	ND	-	0.25	-	-	-	-
2,4,6-Trichlorophenol	ND	-	0.25	-	-	-	-
Surrogate Recovery							
2-Fluorophenol	3.62	4.58		5	72	92	30-130
Phenol-d5	3.51	4.31		5	70	86	30-130
Nitrobenzene-d5	3.45	4.33		5	69	87	30-130
2-Fluorobiphenyl	3.14	4.07		5	63	81	30-130
2,4,6-Tribromophenol	2.12	3.55		5	43	71	16-130
4-Terphenyl-d14	3.77	4.56		5	75	91	30-130

Quality Control Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Date Prepared:4/20/15BatchID:103879Date Analyzed:4/20/15Extraction Method:SW3550BInstrument:GC21Analytical Method:SW8270C

Matrix: Soil Unit: mg/Kg

Project: #2015-28; Soil Profile Sample ID: MB/LCS-103879

1504813-002AMS/MSD

QC Summary Report for SW8270C MS MSD SPK **SPKRef** MS MSD MS/MSD **RPD RPD** Analyte Result Result Val Val %REC %REC Limits Limit Acenaphthene NR NR ND<4 NR NR NR 4-Chloro-3-methylphenol NR NR ND<4 NR NR NR NR NR ND<4 NR NR NR 2-Chlorophenol _ NR ND<4 NR NR 1,4-Dichlorobenzene NR NR 2,4-Dinitrotoluene NR NR ND<4 NR NR NR 4-Nitrophenol NR NR ND<21 NR NR NR NR ND<4 NR N-Nitrosodi-n-propylamine NR NR NR _ Pentachlorophenol NR NR ND<21 NR NR NR Phenol NR NR ND<4 NR NR NR NR NR NR NR Pyrene ND<4 NR -1,2,4-Trichlorobenzene NR NR ND<4 NR NR NR **Surrogate Recovery** NR NR NR NR 2-Fluorophenol NR Phenol-d5 NR NR NR NR NR Nitrobenzene-d5 NR NR NR NR NR _ 2-Fluorobiphenyl NR NR NR NR NR 2,4,6-Tribromophenol NR NR NR NR NR 4-Terphenyl-d14 NR NR NR NR NR

Quality Control Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Date Prepared:4/21/15BatchID:103916Date Analyzed:4/22/15Extraction Method:SW3050B

Instrument: ICP-MS2 Analytical Method: SW6020
Matrix: Soil Unit: mg/Kg

Project: #2015-28; Soil Profile **Sample ID:** MB/LCS-103916

1504831-001AMS/MSD

	QC Sun	ımary Report	for Metals									
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits					
Antimony	ND	48.2	0.50	50	-	96	75-125					
Arsenic	ND	48.2	0.50	50	-	96	75-125					
Barium	ND	457	5.0	500	-	91	75-125					
Beryllium	ND	48.8	0.50	50	-	98	75-125					
Cadmium	ND	47.5	0.25	50	-	95	75-125					
Chromium	ND	47.8	0.50	50	-	96	75-125					
Cobalt	ND	46.7	0.50	50	-	93	75-125					
Copper	ND	48.6	0.50	50	-	97	75-125					
Lead	ND	48.9	0.50	50	-	98	75-125					
Mercury	ND	1.09	0.050	1.25	-	88	75-125					
Molybdenum	ND	46.7	0.50	50	-	93	75-125					
Nickel	ND	48.1	0.50	50	-	96	75-125					
Selenium	ND	48.8	0.50	50	-	98	75-125					
Silver	ND	48.7	0.50	50	-	97	75-125					
Thallium	ND	48.3	0.50	50	-	97	75-125					
Vanadium	ND	48.2	0.50	50	-	96	75-125					
Zinc	ND	498	5.0	500	-	100	75-125					
Surrogate Recovery	Surrogate Recovery											
Tb 350.917	566	480		500	113	96	70-130					

Quality Control Report

Client:Stellar Environmental SolutionsWorkOrder:1504840Date Prepared:4/21/15BatchID:103916

Date Analyzed:4/22/15Extraction Method:SW3050BInstrument:ICP-MS2Analytical Method:SW6020Matrix:SoilUnit:mg/Kg

Project: #2015-28; Soil Profile **Sample ID:** MB/LCS-103916

1504831-001AMS/MSD

	QC Sui	nmary R	eport fo	or Metals					
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Antimony	56.0	54.5	50	ND	111	108	75-125	2.68	20
Arsenic	54.8	53.9	50	4.443	101	99	75-125	1.77	20
Barium	780	817	500	441.6	68,F1	75	75-125	4.64	20
Beryllium	51.9	50.5	50	0.8156	102	99	75-125	2.79	20
Cadmium	54.5	53.9	50	ND	109	108	75-125	1.09	20
Chromium	75.4	70.5	50	17.61	116	106	75-125	6.65	20
Cobalt	60.6	62.6	50	11.73	98	102	75-125	3.28	20
Copper	67.9	63.6	50	14.94	106	97	75-125	6.45	20
Lead	64.9	60.8	50	5.657	119	110	75-125	6.52	20
Mercury	NR	NR	1.25	4.229	NR	NR	75-125	NR	20
Molybdenum	55.3	53.3	50	0.5511	110	105	75-125	3.78	20
Nickel	80.2	76.7	50	23.03	114	107	75-125	4.51	20
Selenium	50.6	49.1	50	0.5882	100	97	75-125	3.05	20
Silver	54.4	53.8	50	ND	109	107	75-125	1.15	20
Thallium	55.1	54.3	50	ND	110	108	75-125	1.52	20
Vanadium	96.3	89.0	50	31.47	130,F1	115	75-125	7.83	20
Zinc	574	550	500	46.69	105	101	75-125	4.29	20
Surrogate Recovery									
Tb 350.917	564	551	500		113	110	70-130	2.31	20

1504840

Quality Control Report

WorkOrder:

Client: Stellar Environmental Solutions

Date Prepared: 4/20/15 **BatchID:** 103880 **Date Analyzed:** 4/21/15 **Extraction Method: SW5030B**

Instrument: GC7 **Analytical Method:** SW8021B/8015Bm

Matrix: Soil **Unit:** mg/Kg

Sample ID: Project: #2015-28; Soil Profile MB/LCS-103880

1504815-003AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.664	0.40	0.60	-	111	70-130
MTBE	ND	0.104	0.050	0.10	-	104	70-130
Benzene	ND	0.123	0.0050	0.10	-	123	70-130
Toluene	ND	0.121	0.0050	0.10	-	121	70-130
Ethylbenzene	ND	0.124	0.0050	0.10	-	124	70-130
Xylenes	ND	0.382	0.0050	0.30	-	127	70-130

0.114 0.121 0.10 2-Fluorotoluene 114 121 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	0.676	0.604	0.60	ND	113	101	70-130	11.3	20
MTBE	0.0731	0.0785	0.10	ND	73	79	70-130	7.19	20
Benzene	0.0821	0.0868	0.10	ND	82	87	70-130	5.52	20
Toluene	0.0852	0.0880	0.10	ND	85	88	70-130	3.22	20
Ethylbenzene	0.0846	0.0877	0.10	ND	85	88	70-130	3.63	20
Xylenes	0.251	0.262	0.30	ND	84	87	70-130	4.09	20
Surrogate Recovery									
2-Fluorotoluene	0.0755	0.0767	0.10		75	77	70-130	1.54	20

Quality Control Report

Client: Stellar Environmental Solutions

Date Prepared: 4/21/15 **Date Analyzed:** 4/21/15 **Instrument:** GC11A

Matrix: Soil

Project: #2015-28; Soil Profile

WorkOrder: 1504840

BatchID: 103904

Extraction Method: SW3550B **Analytical Method:** SW8015B

Unit: mg/Kg

Sample ID: MB/LCS-103904

1504830-001AMS/MSD

	QC Sum	mary Rep	ort for	· SW80151	В				
Analyte	MB Result	LCS Result		RL	SPK Val			.CS %REC	LCS Limits
TPH-Diesel (C10-C23)	ND	37.5		1.0	40	_	ç)4	70-130
TPH-Motor Oil (C18-C36)	ND	-		5.0	-	-	-		-
Surrogate Recovery									
C9	23.9	24.0			25	96	; 9	06	70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MS Limits	D RPD	RPD Limit
TPH-Diesel (C10-C23)	37.9	37.1	40	ND	95	93	70-130	2.11	30
Surrogate Recovery									
C9	24.2	24.2	25		97	97	70-130	0	30

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of

15: Pit (92

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1504840 ClientCode: SESB

	WriteOn	EDF	Excel	■ EQuIS	✓ Email	HardCopy	ThirdParty	☐ J-flag
--	---------	-----	-------	---------	----------------	----------	------------	----------

Report to: Bill to: Requested TAT: 5 days

Richard Makdisi Email: rmakdisi@stellar-environmental.com;sbittm Accounts Payable

Stellar Environmental Solutions cc/3rd Party: Stellar Environmental Solutions

2198 Sixth St. #201 PO: 2198 Sixth St. #201 Date Received: 04/21/2015
Berkeley, CA 94710 ProjectNo: #2015-28; Soil Profile Berkeley, CA 94710 Date Printed: 04/21/2015

(510) 644-3123 FAX: (510) 644-3859 lwheeler@stellar-environmental.com

								Re	quested	Tests (See lege	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1504840-001	C1	Soil	4/20/2015 11:30		Α	Α	Α	Α	Α	Α						
1504840-002	C2	Soil	4/20/2015 12:30		Α	Α	Α	Α	Α	Α						

Test Legend:

1	8081PCB_S	2 8260B_S	3 8270_S	4 CAM17MS_S	5 G-MBTEX_S
6	TPH_S	7	8	9	10
11		12			

The following SampIDs: 001A, 002A contain testgroup.

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

Client Name: STELLAR ENVIRONMENTAL SOLUTIONS

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

QC Level: LEVEL 2

Project:	#2015-28; Soil I	Profile	le Client Contact: Richard Makdisi							Date Received:	4/21/2015
Comments:				Cont	tact's Email:		stellar- ntal.com;sbittm	an@stellar-			
		☐ WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardC	opyThirdPar	tyJ-flag	
Lab ID	Client ID	Matrix	Test Name		Containe /Composi		& Preservative	De- chlorinated	Collection Date & Time	TAT Sedimer Conter	nt Hold SubOu nt
1504840-001A	C1	Soil	Multi-Range T	PH(g,d,mo)	1		16OZ GJ		4/20/2015 11:30	5 days	
			SW6020 (CAM	I 17)						5 days	
			SW8270C (SV	OCs)						5 days	
			SW8260B (VC	Cs)						5 days	
			SW8081A/808	2 (OC Pesticides+PCI	Bs)					5 days	
1504840-002A	C2	Soil	Multi-Range T	PH(g,d,mo)	1		16OZ GJ		4/20/2015 12:30	5 days	
			SW6020 (CAM	I 17)						5 days	
			SW8270C (SV	OCs)						5 days	
			SW8260B (VC	Cs)						5 days	
			SW8081A/808	2 (OC Pesticides+PCI	Bs)					5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Work Order: 1504840

(504840)	Chain of Cus	tody Record		L	ab job no.
Laboratory McCampbell Analytical Inc	Method of Shipment Hand Deliv				Date
Address1534 Willow Pass Road Pittsburg, CA 94565-1701	Shipment No.			- W	/
877-252-9262	Airbill No.			Analysis Required	
Project Owner BayWest Dev	Cooler No	/ /		2 N N V	/ /
Site Address7544 Dublin Blvd, Dublin CA	Project Manager Richard Makdisi	of Comission			/ /
Project Name Soil Profile	Telephone No. (510) 644-3123 (510) 644-3859	100 of Control	2 Ja/	7x/.7 'Y / /	Remarks
Project Name So / Worke	Fax No. (510) 644-3859 Samplers: (Signature)				
Field Sample Number Location/ Date Time Sar	mple //pe Type/Size of Container Cooler	Servation Chemical	17 00 by o	14/1/	
C/ 0-11/20/130 So	or 160z alex yes	no 1 x	XXXX		
C2 0-1' 1 1230 1	L V V	1 1 x	ズメメメ	XX	
Relinquished by: Signature Date Received by: Signature		Relinquished by:	Date	Received by:	n 26 Hall
Henry Pietronaoli	(1-21-	1 Comment	4-21-1	Printed Maria Ve	1/2/10
122	Time	Printed	Time	30 PV 00 CD	Time
Company Stellar Environmental /320 Company	132	Company		Company MAI	1450
Turnaround Time: Samples on ice		Relinquished by: Signature	Date	Received by: Signature	Date
Comments: Standard A	7			reserve on the control of the contro	
Save soil Faces la	a Aled Lesta	Printed J. 2	Time	Printed	Time
700 7033176	e name (- 175	GOOD CONDITION COMPANY SPACE ABSENT DECHLORINATED IN LA	APPROPRIA CONTAINE	00	
* Stellar Environmental Solutions		PRESERVATION VOAS	PRESERVE O&G METALS	DINAMO CLASH CARE MOOA	, Berkeley, CA 94710

Sample Receipt Checklist

Client Name:	Stellar Environme	ntal Solutions			Date and T	ime Received:	4/21/2015 3:07:18 PM
Project Name:	#2015-28; Soil Pr	ofile			LogIn Revi	ewed by:	Maria Venegas
WorkOrder №:	1504840	Matrix: Soil			Carrier:	Bernie Cummii	ns (MAI Courier)
		Chain of C	ustod [*]	y (COC)	<u>Information</u>		
Chain of custody	present?		Yes	✓	No 🗆		
Chain of custody	signed when relinq	uished and received?	Yes	•	No 🗆		
Chain of custody	agrees with sample	e labels?	Yes	•	No 🗌		
Sample IDs note	d by Client on COC	?	Yes	•	No 🗌		
Date and Time of	f collection noted by	Client on COC?	Yes	•	No 🗌		
Sampler's name	noted on COC?		Yes	•	No 🗆		
		<u>Sampl</u>	e Rece	eipt Infor	mation		
Custody seals int	tact on shipping cor	-	Yes		No 🗌		NA 🗸
Shipping contain	Yes	•	No 🗆				
Samples in proper containers/bottles?				•	No 🗆		
Sample containers intact?				•	No 🗌		
Sufficient sample	e volume for indicate	ed test?	Yes	•	No 🗌		
		Sample Preservation	on and	Hold Ti	me (HT) Info	rmation	
All samples recei	ived within holding t	ime?	Yes	✓	No 🗌		
Sample/Temp Bl	ank temperature			Temp	: 3.2°C		NA 🗌
Water - VOA vial	s have zero headsp	ace / no bubbles?	Yes		No \square		NA 🗸
Sample labels ch	necked for correct p	reservation?	Yes	✓	No 🗌		
pH acceptable up	oon receipt (Metal:	<2; 522: <4; 218.7: >8)?	Yes		No \square		NA 🗸
Samples Receive	ed on Ice?		Yes	•	No \square		
		(Ice Type	∋: WE	TICE)		
UCMR3 Samples		ala uman massint for EDA 5000	V		No 🗌		NA 🗸
		ble upon receipt for EPA 522?					
Free Chlorine t 300.1, 537, 539		lle upon receipt for EPA 218.7,	Yes		No 🗌		NA 🗹
* NOTE: If the "N	lo" box is checked,	see comments below.					
Comments:							========

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1504840 A

Report Created for: Stellar Environmental Solutions

2198 Sixth St. #201 Berkeley, CA 94710

Project Contact: Richard Makdisi

Project P.O.:

Project Name: #2015-28; Soil Profile

Project Received: 04/21/2015

Analytical Report reviewed & approved for release on 05/04/2015 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Stellar Environmental Solutions

Project: #2015-28; Soil Profile

WorkOrder: 1504840

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a3 sample diluted due to high organic content.

a4 reporting limits raised due to the sample's matrix prohibiting a full volume extraction.

e2 diesel range compounds are significant; no recognizable pattern

e7 oil range compounds are significant

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD was out of acceptance criteria; LCS validated the prep batch.

1504840

Analytical Report

Client: Stellar Environmental Solutions WorkOrder: **Project:** #2015-28; Soil Profile **Extraction Method:** CA Title 22

Date Received: 4/21/15 15:07 **Analytical Method: SW6010B**

Unit: **Date Prepared:** 4/28/15 mg/L

STLC Metals

		8120112000			
Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
C1	1504840-001A	Soil	04/20/20	15 11:30 ICP-JY	104205
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Chromium	0.43		0.050	1	05/01/2015 18:33

Analyst(s): DB

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
C2	1504840-002A	Soil	04/20/20	15 12:30 ICP-JY	104205
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Chromium	0.11		0.050	1	05/01/2015 14:55

Analyst(s): DB

1504840

Quality Control Report

Client: Stellar Environmental Solutions WorkOrder:

Date Prepared: 4/28/15 BatchID:

Date Prepared:4/28/15BatchID:104205Date Analyzed:5/1/15Extraction Method:CA Title 22Instrument:ICP-JYAnalytical Method:SW6010B

Matrix: Soil Unit: mg/L

Project: #2015-28; Soil Profile **Sample ID:** MB/LCS-104205

1504840-002AMS/MSD

QC Summary Report for Metals (STLC)

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Chromium	ND	0.990	0.050	1	-	99	75-125

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Chromium	1.09	1.09	1	0.1119	98	98	70-130	0	30

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1504840 A ClientCode: SESB

	WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	J-flag
eport to:				i i	Bill to:		Re	equested TAT:	5 days
Richard Makdisi Stellar Environmental Solutions 2198 Sixth St. #201	Email: rma cc/3rd Party: PO:	kdisi@stellar-e	environmental	.com;sbittm	Accounts Paya Stellar Enviorr 2198 Sixth St.	nental Solutions		ate Received: ate Add-On:	04/21/2015 04/28/2015
Berkeley, CA 94710 (510) 644-3123 FAX: (510) 644-3859	ProjectNo: #20	15-28; Soil Pro	ofile		Berkeley, CA solution likeling	94710 lar-environmental		ate Printed:	04/28/2015

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
								1		1						
1504840-001	C1	Soil	4/20/2015 11:30		Α											
1504840-002	C2	Soil	4/20/2015 12:30		Α											

Test Legend:

1 STLC_METALS_S	2	3	4	5
6	7	8	9	10
11	12			
				Prepared by: Maria Venegas

Add-On Prepared By: Jena Alfaro

Comments: STLC Cr added 4/28/15 5D TAT

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Comments:

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: STELLAR ENVIRONMENTAL SOLUTIONS

QC Level: LEVEL 2

Work Order: 1504840

Project: #2015-28; Soil Profile

Client Contact: Richard Makdisi

Date Received: 4/21/2015

STLC Cr added 4/28/15 5D TAT

Contact's Email: rmakdisi@stellar-

Date Add-On: 4/28/2015

environmental.com;sbittman@stellar-

Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Collection Date & Time	TAT	Sediment Hold SubOut Content
1504840-001A	C1	Soil	SW6010B (Metals) (STLC) <chromium></chromium>	1	16OZ GJ	4/20/2015 11:30	5 days*	
1504840-002A	C2	Soil	SW6010B (Metals) (STLC) <chromium></chromium>	1	16OZ GJ	4/20/2015 12:30	5 days*	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

1504840	Chain of Cus	tody Record		Lab job no.
Laboratory McCampbell Analytical Inc Address 1534 Willow Pass Road Pittsburg, CA 94565-1701	Method of Shipment Hand Deli Shipment No.	/	,	Date 1 of I
877-252-9262	Airbill No.	/ / /	Analysis Required	8 /
Project Owner BayWest Dev Site Address 7544 Dublin Blvd, Dublin CA	Cooler No Richard Makdisi	No. or Contains		
Sile Address	Telephone No. (510) 644-3123	Tillered (Somital)	1/3/4/4/4/4/	/ / /
Project Name Soil Profile	Fax No(510) 644-3859		000/ W 5 5 5 1 1 1 1	Remarks
Project Number2015-28	_ Samplers: (Signature)			/ /
	Type/Size of Container	servation	2000	
1 //20/1101/	Type Cooler Cooler Ves	no (x)	1 x x x x x	
02 0-1' 1230	L L Jes yes	L IXXX	* X X X	+
01 00	<i>Y V V</i>			
				-
				1
Relinquished by: Signature Date Received by Signature		Relinquished by:	Date Received by:	1/2//15
Printed Henry Pietropaoli	(1-21)	10,44410	Signature Maria	10.00000
120	Time	Printed C C C C C C C C C C C C C C C C C C C	7	Time
Company Stellar Environmental /320 Compan	1 3 C	Company	Company Company	4I 1450
Turnaround Time: Samples on ice		Relinquished by: Signature	Date Received by: Signature	Date
Comments: Standard Th	+7	- Signature	Gignature	
Save son C	Il all land	Printed 3.2	Time Printed	Time
- 10 to for 18551/	re award tens	GOOD CONDITION Coffinany SPACE ABSENT	APPROPRIATE Company	
* Stellar Environmental Solutions		DECHLORINATED IN LAB	PRESERVED IN 2108 Sixth Street	#201. Berkelev. CA 94710
		PRESERVATION VOAS 066	METALS OTHER OTHER	, 20,, 0

June 17, 2015

Mr. Pete Beritzhoff Bay West Development 2 Henry Adams Street Suite #450 San Francisco, CA 94103

Subject: Results of Soil Profiling for Health and Safety Evaluation and Off-Site Disposal in

Support of Redevelopment Activity at 7544 Dublin Blvd, Dublin, California.

INTRODUCTION

Dear Mr. Beritzhoff

This Stellar Environmental Solutions, Inc. (Stellar Environmental) provides Bay West Development with the findings of the soil profiling of approximately 6,600 Cubic Yards (CY) of soil to be off-hauled as non-hazardous landfill disposal. The six additional samples collected recently augments the original two composite samples collected last month when the extent of net export was considered to be substantially smaller. The preliminary soil samples was analyzed for a wide range of contaminants not expected by site history but required by truckers considering off haul as non-classified (reuse) soil.

Although there were no contaminants of concern (COCs) associate with the initial two composite samples the decision was made to pursue disposal to a classified landfill in order to expedite the soil transfer. The six additional composite sample sets were submitted for analyses based on the historical use and informed by the result from the previous broad analytical suite completed, as well as the Republic Services density of sampling per analytical suite type.

The development area required demolition of existing parking areas and buildings (completed) including a former fuel tank area. According to the grading plans provided by the project geotechnical engineer (CBG) the project area is approximately 337,500 square feet (sf) which includes 42,330 sf of existing building areas that were demolished. The existing buildings, concrete and asphalt had been demolished and removed from the site prior to the time of the profile sampling discussed in this report.

Mr. Pete Beritzhoff Bay West Development June 17, 2015 Page 2 of 9

The planned development involves no excavation as such but with an approximately 6 -inch deep grading/grubbing which will produce an estimated 6,000 CY for net export. The geotechnical engineer for the project estimates the next export is likely on the order of half that due to "an average difference of only 3" over the site with the new topographic survey, so the export volume may be lower.

Because the shallow upper foot of soil to be grubbed and graded likely contains some debris (asphalt, concrete, roots, etc.) making it less undesirable for beneficial re-use, the soil material is assumed to be required to be disposed of to a Class II landfill facility.

The principal objective of this sampling work has been conducted to characterize the soil for both offsite disposal options and to identify and evaluate any potential site worker exposure issues that may be present during upcoming construction/excavation activities.

Figure 1 is a site location map. The boring locations are shown on Figure 2.

PRE-FIELD WORK ELEMENTS

This task encompasses the pre-field work elements of the project. Pre-fieldwork subtasks included:

- Schedule the analytical laboratory subcontractor; and
- Preparation of project Health and Safety Plan.

The specific project objectives for this project included:

- Collect eight 4-point composite samples sets from 0-8 inches below ground surface (bgs);
- Evaluate the data against regulatory consideration for exposure and offsite disposal;
- Identify potential site worker exposure that may be present during upcoming construction/excavation activities; and
- Prepare this letter documentation report of the analytical results of the soil sampling, with conclusions and recommendations based on the findings.

SOIL SAMPLING PROTOCOL

Based upon a total estimated export volume of 6,000 CYs, a total of eight 4-point composite samples were required to adequately profile the soil for offsite disposal to a California Class II landfill facility and make an assessment of the potential health risk concerns to site construction workers. This sampling provides sufficient density and representative coverage of the current soil conditions to characterize the site. The number of composite samples and analytical methods used to profile this volume of soil is based upon the acceptance criteria used by Republic Services for disposal to their

Mr. Pete Beritzhoff Bay West Development June 17, 2015 Page 3 of 9

Ox Mountain Landfill (Half Moon Bay), Newby Island Landfill (Milpitas), Forward Landfill (Manteca) and Keller Canyon Landfill (Pittsburgh) facilities.

Two composite soil samples (C1 and C2) were collected on April 20, 2015 and an additional six soil samples (C3 thru C8) were collected on June 3, 2015, by Henry Pietropaoli, P.G, of Stellar Environmental. The samples were collected using a stainless–steel shovel/trowel to dig an 8-inch deep pothole from which a representative section of soil was collected from the surface to 8 inches deep. The shovel was decontaminated between potholes with a clean water rinse. Following sampling, each pothole was backfilled with the removed soil. Four potholes were dug to collect soil from which each 4-point composite sample was made.

Compositing entailed removal of any larger obvious rocks and organic debris from the retained soil sections and homogenizing the mix in a clean plastic bag. The mix was then placed into a 16-ounce laboratory-supplied glass jar, labeled and transferred to a cooler chilled with ice for transport to the analytical laboratory.

Attachment A contains photo-documentation of the field activity. The locations of the sample collection points are shown on Figure 2.

ANALYTICAL METHODS

Laboratory Analyses

The analytical suite below is based on the general site history and typical regulated California landfill facility requirements. The number of recommended analyses by each analytical method used for profiling this soil volume is shown in parentheses after each analytical method listed.

The eight composite samples collected were analyzed by the following the analytical method:

- Total extractable hydrocarbons diesel and motor oil and hydraulic oil ranges (TEH-d/mo) by EPA Method 8015M (six 4-point composite samples);
- Total volatile hydrocarbons gasoline range (TVHg) and benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Methods 8020 and 8260 (eight 4-point composite samples);
- Volatile Organic Compounds (VOCs) by EPA Method 8260 (three 4-point composite samples);
- Semi Volatile Organic Compounds (SVOCs) by EPA Method 82708260 (three 4-point composite samples);
- Title 22 (17 listed metals) by EPA Method 6000 or 7000 series 8260 (three 4-point composite samples for all metals except 6 that are required for lead);

Mr. Pete Beritzhoff Bay West Development June 17, 2015 Page 4 of 9

- Organochlorine Pesticides by EPA Method 80818260 (three 4-point composite samples);
- Polychlorinated Biphenyls (PCBs) by EPA Method 80828260 (three 4-point composite samples); and
- California Waste Extraction Test (CA-WET) analysis was required based on the result of the initial analyses as explained below for the metal chromium (Cr) on two samples (C1, C2)

Upon collection, the soil samples were labeled and immediately placed in an ice chest with ice at approximately 4°C and transported by courier under chain-of-custody to McCampbell Analytical Laboratory of Pittsburg, California, a California Environmental Laboratory Accreditation Program (ELAP) certified laboratory.

Re-analysis by the CA Waste Extraction Test (CA-WET) of samples C1 and C2 for soluble Cr was required to make the hazardous vs. non-hazardous waste classification, pertaining to offsite disposal, because the total concentration exceeded the non-hazardous landfill screening criteria, (i.e., 10 times the Soluble Threshold Limit Concentrations [STLC]), or 50 mg/kg.

ANALYTICAL RESULTS OF SOIL SAMPLING

The following is a brief summary of the sample analytical results discussed in the context of comparative regulatory criteria published by the California Regional Water Quality Control Board (Water Board) commercial and construction/trench worker direct exposure Environmental Screening Limits (ESLs) and California landfill disposal guidelines. Table 1, attached at the end of this report summarized the analytical findings.

Total Petroleum Hydrocarbons as Gasoline, Diesel and Motor Oil-Hydraulic Oil

All of the samples contained low to trace concentrations of TEHd and TEHmo-ho except sample C2 that showed no detection above the laboratory reporting limit but all were below the most conservative Water Board commercial ESL exposure criteria and the direct exposure construction/trench worker ESL criteria. No TPH as gasoline was detected in any sample.

Volatile Organic Compounds (VOCs)

No VOCs, including those associated with petroleum hydrocarbons (benzene, toluene, ethylbenzene, xylenes and methyl-tert butyl ether (MTBE)] were detected at concentrations above the laboratory detection limits in any of the samples.

Mr. Pete Beritzhoff Bay West Development June 17, 2015 Page 5 of 9

Title 22 List Metals

The soils showed slightly elevated (at 56 and 65 mg/kg) chromium (Cr) in samples C1 and C2 above the 50 mg/kg that required additional analysis by the CA Waste Extraction Test (WET) method to determine whether there were offsite landfill disposal constraints.

The sampling results showed concentrations of the metal arsenic (As) in all samples in which it was analyzed to be above the Water Board ESL criteria pertaining to risk of direct exposure to construction/trench workers.

CA Waste Extraction Test Results

The results the CA WET analysis of the two samples showed no Cr solute at or exceeding the 5 mg/L, hazardous waste threshold for soluble chromium. The results ranged between 0.11 and 0.43 mg/L chromium. Therefore the soil may be disposed to a regulated or non-hazardous, at a California landfill facility and/or any acceptable unregulated/unclassified receiving facility that would like to use the soil.

Polychlorinated Biphenols (PCBs)

No PCBs were detected at concentrations above the laboratory detection limits in any sample..

Semi-Volatile Organic Hydrocarbons (SVOCs)

Butylbenzyl phthalate (BBP) was the only SVOC detected above the laboratory detection limits. It was detected in sample C7 at 1.0 mg/kg, however there is no publishedWater Board Environmental Screening level (ESL) criteria to evaluate this compound.

Organochlorine Pesticides

Only a trace concentration of the pesticide dichlorodiphenyldichloroethylene (p,p-DDE) was detected in sample C1at a concentration above the laboratory detection limits but is below the Water Board residential and direct exposure ESLs

LABORATORY QUALITY ASSURANCE

Laboratory internal quality control (QC) procedures included analysis of method blanks, control spikes, and surrogate spiked samples. The certified analytical laboratory reports and chain of custody records are contained in Attachment B.

REGULATORY CONSIDERATIONS

Stellar Environmental compared the soil data to the relevant Regional Water Quality Control Board (Water Board) Environmental Screening level (ESL) criteria for shallow soil in commercial /industrial areas where groundwater is considered a drinking water source (Water Board 2013). The analytical results of this soil evaluation showed no significant contaminant concentrations of regulatory concern pertaining to risks to human health and the environmental, although the metal arsenic was, as is commonly the case, above its ESL. The relevant regulatory criteria are discussed here for information purposes. The landfill and regulatory considerations regarding detected contaminant of concern identified in soil that pertain to this site project include:

- Hazardous concentration thresholds defining the lead as hazardous (California Administrative Code Title 22) and offsite disposal and analytical considerations;
- Regional Water Quality Control Board (Water Board) guidance related to whether additional investigations should be considered ESLs; and
- Health and Safety consideration established by the Occupational Safety and Health Administration (OSHA).

Hazardous Concentration Thresholds: Soil sample analytical results are also compared to both total and soluble concentration-based criteria (Total Threshold Limit Concentrations [TTLCs] and Soluble Threshold Limit Concentrations [STLCs]). A soil that exceeds the TTLC is by definition a hazardous waste. STLC is used to define the "soluble fraction" that classifies a "waste" as California hazardous waste. This is only applied to waste soil that is being considered for offsite disposal to a landfill. Non-hazardous disposal facilities utilize a rule-of-thumb guideline to interpret total contaminant concentrations relative to the STLC hazardous waste criteria. Soils or waste with total contaminant concentrations in excess of 10 times the STLC have the potential to be classified as hazardous are required to be analyzed by the California Waste Extraction Test (WET) and if the subsequent solute analysis results exceeds 5 mg/L, (the STLC for Cr), the soil or waste must then be disposed of to a California Class I hazardous waste facility. The Class I landfill would then also require an additional Toxic Characteristic Leaching Procedure (TCLP) test to determine whether stabilization of the waste will be required. In this case, chromium in both samples exceeded 10x the STLC, having a concentration greater than 50 mg/kg and therefore the WET was required, however both samples passed the WET and the soil can therefore be disposed to a non-hazardous landfill facility or even to an unclassified reuse facility if a recipient site can be found.

Water Board Considerations: The Water Board established the ESLs as conservative numerical guidance for evaluating the likelihood of environmental impact, specifically to groundwater. ESLs are screening-level criteria for soil and groundwater, designed to be generally protective of drinking water resources and aquatic environments. There are also ESLs for soil gas to address the potential

Mr. Pete Beritzhoff Bay West Development June 17, 2015 Page 7 of 9

for indoor air intrusion from volatile organic compounds off-gassing from soil or groundwater but those are not relevant here. ESLs are not cleanup criteria (i.e., health-based numerical values or disposal-based values). The ESLs are conservative criteria used to evaluate if remediation and/or additional investigation are needed to determine potential impacts to human health or the environment, particularly groundwater, which the Water Board has a mandate to protect.

In the most preliminary stage (Tier 1, as utilized in this assessment), direct "look-up" tables provide numerical criteria, below which contamination is generally determined to have little or no significant risk to human receptors or the environment. The Tier 1 ESL values for soil are used depending on various site factors (land use: commercial/industrial versus residential), soil depth, lithology, and groundwater usage) and various risk pathways (direct exposure, groundwater protection, indoor air impacts, etc.). Exceedance of ESLs may warrant additional actions, such as more extensive sampling events, and/or remediation is warranted.

The naturally-occurring (background) concentrations of arsenic in soil throughout the San Francisco Bay Area commonly ramges from 10 mg/kg to 20 mg/kg, with 11 mg/kg arsenic currently designated by the Water Board as the California background concentration. For the construction/trench worker direct exposure scenario, only arsenic was detected above the ESL of 10 mg/kg in sample C2 (at 15 mg/kg). Exceeding the ESL for arsenic in sample C2 warrants dermal, and inhalation protection and dust mitigation measures during critical earthwork activities. Demal exposure is easy to mitgate by standard practices of hand washing, etc. Inhalation expousre is only a risk when significant fugative dust allows particulates into the breathing zone. Futurive dust can be controlled by standard construction phase wetting practices.

OSHA and Construction Phase Exposure Considerations: There were no contaminants detected in the site soils at concentrations in excess of California Occupational Safety and Health Administration (Cal-OSHA) Title 8 published "threshold criterion" that dictate whether air (particulates, dusts, fumes, mists, vapors, and gases) monitoring is necessary to document adherence to site occupant and worker safety and health standards during redevelopment including construction, excavations and demolition activities.

When standard industry Best Management Practices (BMPs) are implemented (to minimize fugitive dust emissions), during development activities, the potential is very low for worker or bystander exposure to airborne dust, even during construction activity. Worker exposure limits for various contaminants by dermal, ingestion or inhalation are set by the U.S.OSHA, as well as the State OSHA (Cal-OSHA). The most stringent criterion for dust inhalation is the OSHA Permissible Exposure Level (PEL) = 8-hour time-weighted average per cubic meter air (mg/m³).

SUMMARY AND CONCLUSIONS

Stellar Environmental compared the analytical concentrations to the applicable Water Board ESL and criterion for applicable exposure risk scenario and for offsite landfill disposal and have arrived at the following conclusions:

- There were no petroleum hydrocarbons, volatile organic compounds, organochlorine pesticides, PCBs, or metals detected in excess of any regulatory screening levels pertaining to risks to human health or the environment.
- All of the analyzed compounds were documented at concentrations below hazardous levels for all compounds. All compunds were below ESLs except the metal except arsenic (As) which exceeded the Water Board ESL as it pertains to construction/trench worker direct exposure risk. Exceedance of the direct exposure ESL for As in sample C2 may warrant a fugitive dust abartment plan with best management practices to mitigate the dermal and inhalation worker expousre scenario. This dust mitigation monitoring measures during earthwork activities could be established at the onset of the excavation phase to demonstate that the BMP are mitigating the fugative dust. Other than best management practices to minimize dust and related inhallation and dermal exposure, discussed below, no additional health and safety precautions should be required during the earth moving operations.
- Butylbenzyl phthalate was the only SVOC detected above the laboratory detection limits. It may a toxin but is not at a level of regulatory concern to have regulatory exposure criteria or published ESLs by the Water Board.
- Two soil samples (C1 and C2) contained Cr concentrations above the 50 mg/kg that stipulates the samples be re-analyzed by the CA WET method to determine the waste classification. The WET solute was significantly less than the 5 mg/l STLC value and therefore the soil is classified as non-hazardous and may be disposed to a regulated Class II facility or any acceptable unregulated/unclassified receiving facility that would like to use the soil.
- Standard construction phase Best Management practices to mitigate fugitive dust should be employed during redevelopment activities.

RECOMMENDATIONS AND CONSIDERATIONS

The following are recomendations and/or considerations made with respect to the health and safety to both site occupants and construction workers during redevelopment activities include:

■ Best Management Practices such as gloves and water spray for dust control should always be employed during earthwork to minimize the potential risk of exposure via dermal, ingestion or inhalation routes to the one identified contaminant of concern, arsenic (in soil).

Mr. Pete Beritzhoff Bay West Development June 17, 2015 Page 9 of 9

- Work upwind of soils being excavated (or plan the work on a non-windy day) with active dust controls in effect (water spray suppression on-hand).
- During soil excavation and grading open areas, ground and soil stockpiles should be wetted or covered if fugitive dust emissions are observed.
- Soil stockpiles must be protected against the possibility of children or other non-construction persons contacting the soil and to prevent fugitive dust emissions. This can be achieved by secure site fencing and securing (adequately weighted down) stockpiled soil beneath heavy plastic (Visqueen) sheeting cover (6-mil nominal).
- Construction vehicle wheels leaving the site should be inspected and brushed/cleaned as necessary to ensure that soils are not incidentally tracked offsite.
- Particulate air sampling could be considered during earth moving activities as part of health and safety monitoring to document usage of proper dust control measures to mitigate potential exposure risk, but is not a requirment given the soil data findings.

Stellar Environmental appreciates the opportunity to provide Bay West Development with the requested technical services. If you have any questions, please feel free to call us at 510-644-3123.

Sincerely,

Henry Pietropaoli, P.G.

Henry Kelysoli

Senior Geologist/Project Manager

Richard Makdisi, P.G.

Principal Geochemist/President

Januar S. Mildin

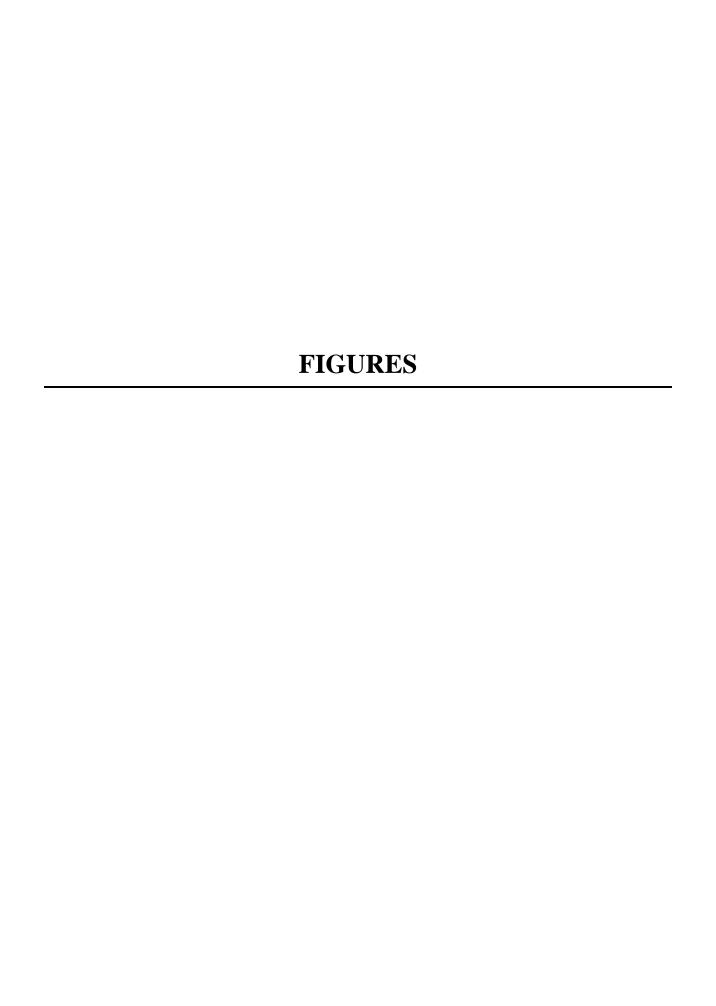


Table 1: Analytical Results of Four Point Composite Soil Profile Sampling Redevelopment Activity at 7544 Dublin Blvd, Dublin, California

		Tit	le 22 M (mg/kg		Chromium CA-WET	TPH motor oil - hydraulic oil	TPH- diesel	TPH-gas MBTEX	VOCs (mg/kg)	Pesticides and PCBs	SVOCs (mg/kg)
Sample ID	Depth (inches bg)	As	Pb	Cr	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	
C1	0-12	7.2	10	<u>56</u>	0.43	280	1.1	All ND	All ND	* DDE = 0.017	All ND
C2	0-12	15	10	<u>65</u>	0.11	< 5.0	< 5.0	All ND	All ND	All ND	All ND
C3	0-8	7.5	11	<u>49</u>	NR	NA	NA	All ND	All ND	NA	NA
C4	0-8	NA	8.1	NA	NR	13	1.1	All ND	All ND	All ND***	NA
C5	0-8	NA	7.7	NA	NR	80	10	All ND	All ND	All ND	NA
C6	0-8	5.1	7.7	35	NR	17	2.3	All ND	All ND	NA	NA
C7	0-8	NA	27	NA	NR	11	1.6	All ND	All ND	All ND***	**BBP =1.0
C8	0-8	NA	ND	NA	NR	NA	NA	All ND	All ND	NA	NA
ESL (commercial designation	al/industrial 1)	1.6	320	1,000	NA	100,000	1,100	various	various	DDE = 7.0	various **
ESL (const worker exp	ruction/trench osure)	10	320	1,000	NA	28,000	900	various	various	DDE = 50	various

Notes:

TPH = total petroleum hydrocarbons; MBTEX = methyl tert-butyl ether, benzene, toluene, ethylbenzene, and total xylenes; VOCs = volatile organic compounds; SVOCs = semi-volatile organic compounds; ;ND = no detection above laboratory reporting limit; NA = not analyzed or not applicable; mg/kg = milligrams per kilogram; mg/L = milligrams per liter; bg = below grade;

ESL = Environmental Screening Level for shallow soil in commercial /industrial areas where groundwater is considered a drinking water source (Water Board 2013); Concentration; Results in **bold-face** type exceed applicable ESL; Results <u>underlined</u> show cncentration at or_exceeds 50 mg/kg (>10x the Cr STLC of 5 mg/kg) and required additional analysis by CA WET; CA-WET = California waste extraction test (> 5 mg/L STLC = Soluble Threshold Limit;

^{* =} only the pesticide dichlorodiphenyldichloroethylene (p,p-DDE) was detected; ** = only the SVOC, butylbenzyl phthalate (BBP) was detected, however it has no published ESL;

^{*** =} sample not analyzed for PCBs

ATTACHMENT A **Photo-Documentation**

Subject: Recently graded site

Site: 7544 Dublin Blvd, Dublin, California

Date Taken: April 20, 2015 Project No.: SES 2015-28

Photographer: H. Pietropaoli Photo No.: 01

Subject: Location of composite sample point

Site: 7544 Dublin Blvd, Dublin, California

Date Taken: June 3, 2015 Project No.: SES 2015-28

Photographer: H. Pietropaoli Photo No.: 02

ATTACHMENT B

Certified Analytical Lab Report and Chain-of-Custody Documentation

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1506294

Report Created for: Stellar Environmental Solutions

2198 Sixth St. #201 Berkeley, CA 94710

Project Contact: Ri

Richard Makdisi

Project P.O.:

Project Name: #2015-28; Soil Profiling

Project Received: 06/05/2015

Analytical Report reviewed & approved for release on 06/12/2015 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Stellar Environmental Solutions

Project: #2015-28; Soil Profiling

WorkOrder: 1506294

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a3 sample diluted due to high organic content.

e2 diesel range compounds are significant; no recognizable pattern

e7 oil range compounds are significant

h4 sulfuric acid permanganate (EPA 3665) cleanup

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD was out of acceptance criteria; LCS validated the prep batch.

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW3550BDate Received:6/5/15 17:55Analytical Method:SW8081A

Date Prepared: 6/5/15

Unit: mg/kg

Organochlorine Pesticides (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
C4	1506294-002A	Soil	06/03/2015 11:55	GC40	105921
<u>Analytes</u>	Result		RL DF		Date Analyzed
Aldrin	ND		0.0010 1		06/09/2015 18:29
a-BHC	ND		0.0010 1		06/09/2015 18:29
b-BHC	ND		0.0010 1		06/09/2015 18:29
d-BHC	ND		0.0010 1		06/09/2015 18:29
g-BHC	ND		0.0010 1		06/09/2015 18:29
Chlordane (Technical)	ND		0.025 1		06/09/2015 18:29
a-Chlordane	ND		0.0010 1		06/09/2015 18:29
g-Chlordane	ND		0.0010 1		06/09/2015 18:29
p,p-DDD	ND		0.0010 1		06/09/2015 18:29
p,p-DDE	ND		0.0010 1		06/09/2015 18:29
p,p-DDT	ND		0.0010 1		06/09/2015 18:29
Dieldrin	ND		0.0010 1		06/09/2015 18:29
Endosulfan I	ND		0.0010 1		06/09/2015 18:29
Endosulfan II	ND		0.0010 1		06/09/2015 18:29
Endosulfan sulfate	ND		0.0010 1		06/09/2015 18:29
Endrin	ND		0.0010 1		06/09/2015 18:29
Endrin aldehyde	ND		0.0010 1		06/09/2015 18:29
Endrin ketone	ND		0.0010 1		06/09/2015 18:29
Heptachlor	ND		0.0010 1		06/09/2015 18:29
Heptachlor epoxide	ND		0.0010 1		06/09/2015 18:29
Hexachlorobenzene	ND		0.010 1		06/09/2015 18:29
Hexachlorocyclopentadiene	ND		0.020 1		06/09/2015 18:29
Methoxychlor	ND		0.0010 1		06/09/2015 18:29
Toxaphene	ND		0.050 1		06/09/2015 18:29
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
Decachlorobiphenyl	104		70-130		06/09/2015 18:29
Analyst(s): SS					

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW3550BDate Received:6/5/15 17:55Analytical Method:SW8081A

Date Prepared: 6/5/15

Unit: mg/kg

Organochlorine Pesticides (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collected	d Instrument	Batch ID
C7	1506294-005A	Soil	06/03/2015 13:2	5 GC40	105921
<u>Analytes</u>	Result		RL DF		Date Analyzed
Aldrin	ND		0.0050 5		06/09/2015 19:05
a-BHC	ND		0.0050 5		06/09/2015 19:05
b-BHC	ND		0.0050 5		06/09/2015 19:05
d-BHC	ND		0.0050 5		06/09/2015 19:05
g-BHC	ND		0.0050 5		06/09/2015 19:05
Chlordane (Technical)	ND		0.12 5		06/09/2015 19:05
a-Chlordane	ND		0.0050 5		06/09/2015 19:05
g-Chlordane	ND		0.0050 5		06/09/2015 19:05
p,p-DDD	ND		0.0050 5		06/09/2015 19:05
p,p-DDE	ND		0.0050 5		06/09/2015 19:05
p,p-DDT	ND		0.0050 5		06/09/2015 19:05
Dieldrin	ND		0.0050 5		06/09/2015 19:05
Endosulfan I	ND		0.0050 5		06/09/2015 19:05
Endosulfan II	ND		0.0050 5		06/09/2015 19:05
Endosulfan sulfate	ND		0.0050 5		06/09/2015 19:05
Endrin	ND		0.0050 5		06/09/2015 19:05
Endrin aldehyde	ND		0.0050 5		06/09/2015 19:05
Endrin ketone	ND		0.0050 5		06/09/2015 19:05
Heptachlor	ND		0.0050 5		06/09/2015 19:05
Heptachlor epoxide	ND		0.0050 5		06/09/2015 19:05
Hexachlorobenzene	ND		0.050 5		06/09/2015 19:05
Hexachlorocyclopentadiene	ND		0.10 5		06/09/2015 19:05
Methoxychlor	ND		0.0050 5		06/09/2015 19:05
Toxaphene	ND		0.25 5		06/09/2015 19:05
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Decachlorobiphenyl	105		70-130		06/09/2015 19:05
Analyst(s): SS		Analy	vtical Comments:	a3	

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW3550BDate Received:6/5/15 17:55Analytical Method:SW8082

Date Prepared: 6/5/15 **Unit:** mg/kg

Polychlorinated Biphenyls (PCBs) Aroclors

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
C5	1506294-003A	Soil	06/03/20	015 12:25 GC5A	105946
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Aroclor1016	ND		0.050	1	06/12/2015 11:05
Aroclor1221	ND		0.050	1	06/12/2015 11:05
Aroclor1232	ND		0.050	1	06/12/2015 11:05
Aroclor1242	ND		0.050	1	06/12/2015 11:05
Aroclor1248	ND		0.050	1	06/12/2015 11:05
Aroclor1254	ND		0.050	1	06/12/2015 11:05
Aroclor1260	ND		0.050	1	06/12/2015 11:05
PCBs, total	ND		0.050	1	06/12/2015 11:05
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
Decachlorobiphenyl	76		70-130		06/12/2015 11:05
Analyst(s): SS		<u>Anal</u>	ytical Com	ments: h4	

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW5030B

Date Received:6/5/15 17:55Analytical Method:SW8260BDate Prepared:6/5/15Unit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

C6 1506294-003A Soil 06/03/2015 12:25 CC16 105924 Analytes Result RI DE Date Analyzed Acetone ND 0.10 1 06/11/2015 01:55 Bernzene ND 0.0050 1 06/11/2015 01:55 Bernzene ND 0.0050 1 06/11/2015 01:55 Bromoebnozene ND 0.0050 1 06/11/2015 01:55 Bromoedichromethane ND 0.0050 1 06/11/2015 01:55 Bromofichromethane ND 0.0050 1 06/11/2015 01:55 Bromoform ND 0.0050 1 06/11/2015 01:55 Bromonethane ND 0.0050 1 06/11/2015 01:55 Bromophilane ND 0.0050 1 06/11/2015 01:55	Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
Acetone ND 0.10 1 06/11/2015 01:55 tert-Amyl methyl ether (TAME) ND 0.0050 1 06/11/2015 01:55 Bernzene ND 0.0050 1 06/11/2015 01:55 Bromobenzene ND 0.0050 1 06/11/2015 01:55 Bromochbromethane ND 0.0050 1 06/11/2015 01:55 Bromoform ND 0.0050 1 06/11/2015 01:55 Bromoform ND 0.0050 1 06/11/2015 01:55 Bromomethane ND 0.0050 1 06/11/2015 01:55 L-Butyl alcohol (TBA) ND 0.0050 1 06/11/2015 01:55 L-Butyl benzene ND 0.0050 1 06/11/2015 01:5	C5	1506294-003A	Soil	06/03/201	15 12:25	GC16	105924
tert-Amyl methyl ether (TAME) ND 0.0050 1 06/11/2015 01:55 Benzene ND 0.0050 1 06/11/2015 01:55 Bromobenzene ND 0.0050 1 06/11/2015 01:55 Bromochloromethane ND 0.0050 1 06/11/2015 01:55 Bromochloromethane ND 0.0050 1 06/11/2015 01:55 Bromoderin ND 0.0050 1 06/11/2015 01:55 Bromoderin ND 0.0050 1 06/11/2015 01:55 Bromomethane ND 0.0050 1 06/11/2015 01:55 Brown German ND 0.0050 1 06/11/2015 01:55 Brown German ND 0.0050 1 06/11/2015 01:55 Carbon Disuffice ND 0.0050 1 06/11/20	<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene ND 0.0050 1 06/11/2015 01:55 Bromoebenzene ND 0.0050 1 06/11/2015 01:55 Bromoeblromethane ND 0.0050 1 06/11/2015 01:55 Bromoeldromethane ND 0.0050 1 06/11/2015 01:55 Bromoform ND 0.0050 1 06/11/2015 01:55 Bromoethane ND 0.0050 1 06/11/2015 01:55 2-Budanone (MEK) ND 0.0050 1 06/11/2015 01:55 2-Budanone (MEK) ND 0.050 1 06/11/2015 01:55 1-Butyl senzene ND 0.050 1 06/11/2015 01:55 1-Butyl benzene ND 0.0050 1 06/11/2015 01:55 Carbon Disulfide ND 0.0050 1 06/11	Acetone	ND		0.10	1		06/11/2015 01:55
Bromobenzene ND 0.0050 1 06/11/2015 01:55 Bromochloromethane ND 0.0050 1 06/11/2015 01:55 Bromochloromethane ND 0.0050 1 06/11/2015 01:55 Bromomethane ND 0.0050 1 06/11/2015 01:55 Bromomethane ND 0.0050 1 06/11/2015 01:55 2-Butanone (MEK) ND 0.020 1 06/11/2015 01:55 1-Butyl elocation (TBA) ND 0.050 1 06/11/2015 01:55 1-Butyl benzene ND 0.0050 1 <td>tert-Amyl methyl ether (TAME)</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td></td> <td>06/11/2015 01:55</td>	tert-Amyl methyl ether (TAME)	ND		0.0050	1		06/11/2015 01:55
Bromochloromethane ND 0.0050 1 06/11/2015 01:55 Bromodichloromethane ND 0.0050 1 06/11/2015 01:55 Bromoform ND 0.0050 1 06/11/2015 01:55 Bromomethane ND 0.0050 1 06/11/2015 01:55 2-Butanone (MEK) ND 0.0050 1 06/11/2015 01:55 1-Butyl alcohol (TBA) ND 0.0050 1 06/11/2015 01:55 1-Butyl benzene ND 0.0050 1 </td <td>Benzene</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td></td> <td>06/11/2015 01:55</td>	Benzene	ND		0.0050	1		06/11/2015 01:55
Bromodichloromethane ND 0.0050 1 06/11/2015 01:55 Bromoform ND 0.0050 1 06/11/2015 01:55 Bromomethane ND 0.0050 1 06/11/2015 01:55 2-Butanone (MEK) ND 0.020 1 06/11/2015 01:55 1-Butyl alcohol (TBA) ND 0.050 1 06/11/2015 01:55 1-Butyl benzene ND 0.0050 1 06/11/2015 01:55 1cer-Butyl benzene ND 0.0050 1 06/11/2015 01:55 1chlorotherene ND 0.0050 1 06/11/2015 01:55 1chlorotherene ND 0.0050	Bromobenzene	ND		0.0050	1		06/11/2015 01:55
Bromoform ND 0.0050 1 06/11/2015 01:55 Bromomethane ND 0.0050 1 06/11/2015 01:55 2-Butanone (MEK) ND 0.020 1 06/11/2015 01:55 1-Butyl alonol (TBA) ND 0.050 1 06/11/2015 01:55 1-Butyl benzene ND 0.0050 1 06/11/2015 01:55 sec-Butyl benzene ND 0.0050 1 06/11/2015 01:55 Carbon Disulfide ND 0.0050 1 06/11/2015 01:55 Carbon Disulfide ND 0.0050 1 06/11/2015 01:55 Carbon Disulfide ND 0.0050 1 06/11/2015 01:55 Carbon Tetrachloride ND 0.0050 1 06/11/2015 01:55 Carbon Tetrachloride ND 0.0050 1 06/11/2015 01:55 Chloroform ND 0.0050 1 06/11/2015 01:55 Chloroform ND 0.0050 1 06/11/2015 01:55 Chloroformethane ND 0.0050 1	Bromochloromethane	ND		0.0050	1		06/11/2015 01:55
Bromomethane ND 0.0050 1 06/11/2015 01:55 2-Butanone (MEK) ND 0.020 1 06/11/2015 01:55 1-Butyl alcohol (TBA) ND 0.050 1 06/11/2015 01:55 n-Butyl benzene ND 0.0050 1 06/11/2015 01:55 sec-Butyl benzene ND 0.0050 1 06/11/2015 01:55 tert-Butyl benzene ND 0.0050 1 06/11/2015 01:55 Carbon Disulfide ND 0.0050 1 06/11/2015 01:55 Carbon Tetrachloride ND 0.0050 1 06/11/2015 01:55 Chlorobenzene ND 0.0050 1 06/11/2015 01:55 Chlorothane ND 0.0050 1 <td< td=""><td>Bromodichloromethane</td><td>ND</td><td></td><td>0.0050</td><td>1</td><td></td><td>06/11/2015 01:55</td></td<>	Bromodichloromethane	ND		0.0050	1		06/11/2015 01:55
2-Butanone (MEK) ND 0.020 1 06/11/2015 01:55 L-Butyl alcohol (TBA) ND 0.050 1 06/11/2015 01:55 n-Butyl benzene ND 0.0050 1 06/11/2015 01:55 sec-Butyl benzene ND 0.0050 1 06/11/2015 01:55 tert-Butyl benzene ND 0.0050 1 06/11/2015 01:55 Carbon Disulfide ND 0.0050 1 06/11/2015 01:55 Carbon Tetrachloride ND 0.0050 1 06/11/2015 01:55 Chloroethane ND 0.0050 1	Bromoform	ND		0.0050	1		06/11/2015 01:55
t-Butyl alcohol (TBA) ND 0.050 1 06/11/2015 01:55 n-Butyl benzene ND 0.0050 1 06/11/2015 01:55 sec-Butyl benzene ND 0.0050 1 06/11/2015 01:55 sec-Butyl benzene ND 0.0050 1 06/11/2015 01:55 Carbon Disulfide ND 0.0050 1 06/11/2015 01:55 Carbon Tetrachloride ND 0.0050 1 06/11/2015 01:55 Chlorobenzene ND 0.0050 1 06/11/2015 01:55 Chlorofethane ND 0.0050 1 06/11/2015 01:55 Chloroform ND 0.0050 1 06/11/2015 01:55 Chloroform ND 0.0050 1 06/11/2015 01:55 Chlorodoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 1,2-Dibromo-3-chloropropane ND 0.0050 1 06/11/2015 01:55 1,2-Dibromo-4-chloropropane ND 0.0040 <td>Bromomethane</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td></td> <td>06/11/2015 01:55</td>	Bromomethane	ND		0.0050	1		06/11/2015 01:55
n-Butyl benzene ND 0.0050 1 06/11/2015 01:55 sec-Butyl benzene ND 0.0050 1 06/11/2015 01:55 sec-Butyl benzene ND 0.0050 1 06/11/2015 01:55 Carbon Disulfide ND 0.0050 1 06/11/2015 01:55 Carbon Tetrachloride ND 0.0050 1 06/11/2015 01:55 Chlorobenzene ND 0.0050 1 06/11/2015 01:55 Chlorobethane ND 0.0050 1 06/11/2015 01:55 Chloromethane ND 0.0050 1 06/11/2015 01:55 Chloromethane ND 0.0050 1 06/11/2015 01:55 Chloromethane ND 0.0050 1 06/11/2015 01:55 2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 Dibromochloromethane ND 0.0050 1 06/11/2015 01:55 1,2-Dibromos-3-chloropropane ND 0.0050	2-Butanone (MEK)	ND		0.020	1		06/11/2015 01:55
sec-Butyl benzene ND 0.0050 1 06/11/2015 01:55 tert-Butyl benzene ND 0.0050 1 06/11/2015 01:55 Carbon Disulfide ND 0.0050 1 06/11/2015 01:55 Carbon Tetrachloride ND 0.0050 1 06/11/2015 01:55 Chlorobenzene ND 0.0050 1 06/11/2015 01:55 Chlorothane ND 0.0050 1 06/11/2015 01:55 Chlorothane ND 0.0050 1 06/11/2015 01:55 Chlorothane ND 0.0050 1 06/11/2015 01:55 Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 Dibromochloromethane ND 0.0050 1 06/11/2015 01:55 1,2-Dibromochloromethane ND 0.0040 1 06/11/2015 01:55 1,2-Dichlorobenzene ND 0.0050	t-Butyl alcohol (TBA)	ND		0.050	1		06/11/2015 01:55
tert-Butyl benzene ND 0.0050 1 06/11/2015 01:55 Carbon Disulfide ND 0.0050 1 06/11/2015 01:55 Carbon Tetrachloride ND 0.0050 1 06/11/2015 01:55 Chlorobenzene ND 0.0050 1 06/11/2015 01:55 Chloroftane ND 0.0050 1 06/11/2015 01:55 Chloroform ND 0.0050 1 06/11/2015 01:55 Chloroform ND 0.0050 1 06/11/2015 01:55 Chloroformethane ND 0.0050 1 06/11/2015 01:55 C-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 1-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 1-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 1-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 1-2-Dibromoethane ND 0.0040 1	n-Butyl benzene	ND		0.0050	1		06/11/2015 01:55
Carbon Disulfide ND 0.0050 1 06/11/2015 01:55 Carbon Tetrachloride ND 0.0050 1 06/11/2015 01:55 Chlorobenzene ND 0.0050 1 06/11/2015 01:55 Chlorobenzene ND 0.0050 1 06/11/2015 01:55 Chloroform ND 0.0050 1 06/11/2015 01:55 Chloromethane ND 0.0050 1 06/11/2015 01:55 2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 1/2-Dibromo-3-chloropropane ND 0.0050 1 06/11/2015 01:55 1/2-Dibromo-3-chloropropane ND 0.0040 1 06/11/2015 01:55 1/2-Dibromo-4-chloropropane ND 0.	sec-Butyl benzene	ND		0.0050	1		06/11/2015 01:55
Carbon Tetrachloride ND 0.0050 1 06/11/2015 01:55 Chlorobenzene ND 0.0050 1 06/11/2015 01:55 Chloroethane ND 0.0050 1 06/11/2015 01:55 Chloroform ND 0.0050 1 06/11/2015 01:55 Chloromethane ND 0.0050 1 06/11/2015 01:55 2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 Dibromochloromethane ND 0.0050 1 06/11/2015 01:55 1,2-Dibromo-3-chloropropane ND 0.0040 1 06/11/2015 01:55 1,2-Dibromoethane (EDB) ND 0.0040 1 06/11/2015 01:55 1,2-Dibromoethane (EDB) ND 0.0050 1 06/11/2015 01:55 1,3-Dichlorobenzene ND 0.0	tert-Butyl benzene	ND		0.0050	1		06/11/2015 01:55
Chlorobenzene ND 0.0050 1 06/11/2015 01:55 Chloroethane ND 0.0050 1 06/11/2015 01:55 Chloroform ND 0.0050 1 06/11/2015 01:55 Chloromethane ND 0.0050 1 06/11/2015 01:55 2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 Dibromochloromethane ND 0.0050 1 06/11/2015 01:55 Dibromochloromethane ND 0.0050 1 06/11/2015 01:55 1,2-Dibromo-3-chloropropane ND 0.0040 1 06/11/2015 01:55 1,2-Dibromo-3-chloropropane ND 0.0040 1 06/11/2015 01:55 1,2-Dibromoethane (EDB) ND 0.0040 1 06/11/2015 01:55 1,2-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichloroethane ND	Carbon Disulfide	ND		0.0050	1		06/11/2015 01:55
Chloroethane ND 0.0050 1 06/11/2015 01:55 Chloroform ND 0.0050 1 06/11/2015 01:55 Chloromethane ND 0.0050 1 06/11/2015 01:55 2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 Dibromochloromethane ND 0.0050 1 06/11/2015 01:55 1,2-Dibromo-3-chloropropane ND 0.0040 1 06/11/2015 01:55 1,2-Dibromoethane (EDB) ND 0.0040 1 06/11/2015 01:55 1,2-Dibromoethane (EDB) ND 0.0050 1 06/11/2015 01:55 1,2-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,3-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND	Carbon Tetrachloride	ND		0.0050	1		06/11/2015 01:55
Chloroform ND 0.0050 1 06/11/2015 01:55 Chloromethane ND 0.0050 1 06/11/2015 01:55 2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 1/2-Dibromochloromethane ND 0.0050 1 06/11/2015 01:55 1/2-Dibromo-3-chloropropane ND 0.0040 1 06/11/2015 01:55 1/2-Dibromoethane (EDB) ND 0.0040 1 06/11/2015 01:55 1/2-Dibromoethane (EDB) ND 0.0050 1 06/11/2015 01:55 1/2-Dibromoethane (EDB) ND 0.0050 1 06/11/2015 01:55 1/2-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1/3-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1/4-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1/2-Dichloroethane N	Chlorobenzene	ND		0.0050	1		06/11/2015 01:55
Chloromethane ND 0.0050 1 06/11/2015 01:55 2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 Dibromochloromethane ND 0.0050 1 06/11/2015 01:55 1,2-Dibromo-3-chloropropane ND 0.0040 1 06/11/2015 01:55 1,2-Dibromoethane (EDB) ND 0.0040 1 06/11/2015 01:55 1,2-Dibromomethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,3-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 Dichlorodifluoromethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethene <t< td=""><td>Chloroethane</td><td>ND</td><td></td><td>0.0050</td><td>1</td><td></td><td>06/11/2015 01:55</td></t<>	Chloroethane	ND		0.0050	1		06/11/2015 01:55
2-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 Dibromochloromethane ND 0.0050 1 06/11/2015 01:55 1,2-Dibromo-3-chloropropane ND 0.0040 1 06/11/2015 01:55 1,2-Dibromoethane (EDB) ND 0.0040 1 06/11/2015 01:55 Dibromomethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,3-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane ND 0.0040 1 06/11/2015 01:55 1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethene N	Chloroform	ND		0.0050	1		06/11/2015 01:55
4-Chlorotoluene ND 0.0050 1 06/11/2015 01:55 Dibromochloromethane ND 0.0050 1 06/11/2015 01:55 1,2-Dibromo-3-chloropropane ND 0.0040 1 06/11/2015 01:55 1,2-Dibromoethane (EDB) ND 0.0040 1 06/11/2015 01:55 Dibromomethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,3-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane (1,2-DCA) ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene	Chloromethane	ND		0.0050	1		06/11/2015 01:55
Dibromochloromethane ND 0.0050 1 06/11/2015 01:55 1,2-Dibromo-3-chloropropane ND 0.0040 1 06/11/2015 01:55 1,2-Dibromoethane (EDB) ND 0.0040 1 06/11/2015 01:55 Dibromomethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,3-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 Dichlorodifluoromethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichlor	2-Chlorotoluene	ND		0.0050	1		06/11/2015 01:55
1,2-Dibromo-3-chloropropane ND 0.0040 1 06/11/2015 01:55 1,2-Dibromoethane (EDB) ND 0.0040 1 06/11/2015 01:55 Dibromomethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,3-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 Dichlorodifluoromethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Di	4-Chlorotoluene	ND		0.0050	1		06/11/2015 01:55
1,2-Dibromoethane (EDB) ND 0.0040 1 06/11/2015 01:55 Dibromomethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,3-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 Dichlorodifluoromethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 cis-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloroprop	Dibromochloromethane	ND		0.0050	1		06/11/2015 01:55
Dibromomethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,3-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 Dichlorodifluoromethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 06/11/2015 01:55 1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 cis-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	1,2-Dibromo-3-chloropropane	ND		0.0040	1		06/11/2015 01:55
1,2-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,3-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 Dichlorodifluoromethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 06/11/2015 01:55 1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 cis-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	1,2-Dibromoethane (EDB)	ND		0.0040	1		06/11/2015 01:55
1,3-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 Dichlorodifluoromethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 06/11/2015 01:55 1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 cis-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	Dibromomethane	ND		0.0050	1		06/11/2015 01:55
1,4-Dichlorobenzene ND 0.0050 1 06/11/2015 01:55 Dichlorodifluoromethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 06/11/2015 01:55 1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 cis-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	1,2-Dichlorobenzene	ND		0.0050	1		06/11/2015 01:55
Dichlorodifluoromethane ND 0.0050 1 06/11/2015 01:55 1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 06/11/2015 01:55 1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 cis-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	1,3-Dichlorobenzene	ND		0.0050	1		06/11/2015 01:55
1,1-Dichloroethane ND 0.0050 1 06/11/2015 01:55 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 06/11/2015 01:55 1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 cis-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	1,4-Dichlorobenzene	ND		0.0050	1		06/11/2015 01:55
1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 06/11/2015 01:55 1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 cis-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	Dichlorodifluoromethane	ND		0.0050	1		06/11/2015 01:55
1,1-Dichloroethene ND 0.0050 1 06/11/2015 01:55 cis-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	1,1-Dichloroethane	ND		0.0050	1		06/11/2015 01:55
cis-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		06/11/2015 01:55
trans-1,2-Dichloroethene ND 0.0050 1 06/11/2015 01:55 1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	1,1-Dichloroethene	ND		0.0050	1		06/11/2015 01:55
1,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55 1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	cis-1,2-Dichloroethene	ND		0.0050	1		
1,3-Dichloropropane ND 0.0050 1 06/11/2015 01:55 2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	trans-1,2-Dichloroethene	ND		0.0050	1		06/11/2015 01:55
2,2-Dichloropropane ND 0.0050 1 06/11/2015 01:55	1,2-Dichloropropane	ND		0.0050	1		06/11/2015 01:55
· · · · · · · · · · · · · · · · · · ·	1,3-Dichloropropane	ND		0.0050	1		06/11/2015 01:55
1,1-Dichloropropene ND 0.0050 1 06/11/2015 01:55	2,2-Dichloropropane	ND		0.0050	1		06/11/2015 01:55
	1,1-Dichloropropene	ND		0.0050	1		06/11/2015 01:55

(Cont.)

1506294

Analytical Report

Client: Stellar Environmental Solutions WorkOrder:

Project: #2015-28; Soil Profiling Extraction M

Project:#2015-28; Soil ProfilingExtraction Method:SW5030BDate Received:6/5/15 17:55Analytical Method:SW8260BDate Prepared:6/5/15Unit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Col	lected	Instrument	Batch ID
C5	1506294-003A	Soil	06/03/201	5 12:25	GC16	105924
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1		06/11/2015 01:55
trans-1,3-Dichloropropene	ND		0.0050	1		06/11/2015 01:55
Diisopropyl ether (DIPE)	ND		0.0050	1		06/11/2015 01:55
Ethylbenzene	ND		0.0050	1		06/11/2015 01:55
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		06/11/2015 01:55
Freon 113	ND		0.0050	1		06/11/2015 01:55
Hexachlorobutadiene	ND		0.0050	1		06/11/2015 01:55
Hexachloroethane	ND		0.0050	1		06/11/2015 01:55
2-Hexanone	ND		0.0050	1		06/11/2015 01:55
Isopropylbenzene	ND		0.0050	1		06/11/2015 01:55
4-Isopropyl toluene	ND		0.0050	1		06/11/2015 01:55
Methyl-t-butyl ether (MTBE)	ND		0.0050	1		06/11/2015 01:55
Methylene chloride	ND		0.0050	1		06/11/2015 01:55
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1		06/11/2015 01:55
Naphthalene	ND		0.0050	1		06/11/2015 01:55
n-Propyl benzene	ND		0.0050	1		06/11/2015 01:55
Styrene	ND		0.0050	1		06/11/2015 01:55
1,1,1,2-Tetrachloroethane	ND		0.0050	1		06/11/2015 01:55
1,1,2,2-Tetrachloroethane	ND		0.0050	1		06/11/2015 01:55
Tetrachloroethene	ND		0.0050	1		06/11/2015 01:55
Toluene	ND		0.0050	1		06/11/2015 01:55
1,2,3-Trichlorobenzene	ND		0.0050	1		06/11/2015 01:55
1,2,4-Trichlorobenzene	ND		0.0050	1		06/11/2015 01:55
1,1,1-Trichloroethane	ND		0.0050	1		06/11/2015 01:55
1,1,2-Trichloroethane	ND		0.0050	1		06/11/2015 01:55
Trichloroethene	ND		0.0050	1		06/11/2015 01:55
Trichlorofluoromethane	ND		0.0050	1		06/11/2015 01:55
1,2,3-Trichloropropane	ND		0.0050	1		06/11/2015 01:55
1,2,4-Trimethylbenzene	ND		0.0050	1		06/11/2015 01:55
1,3,5-Trimethylbenzene	ND		0.0050	1		06/11/2015 01:55
Vinyl Chloride	ND		0.0050	1		06/11/2015 01:55
Xylenes, Total	ND		0.0050	1		06/11/2015 01:55

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW5030BDate Received:6/5/15 17:55Analytical Method:SW8260BDate Prepared:6/5/15Unit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
C5	1506294-003A	Soil	06/03/201	5 12:25 GC16	105924
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
Dibromofluoromethane	104		70-130		06/11/2015 01:55
Toluene-d8	94		70-130		06/11/2015 01:55
4-BFB	93		70-130		06/11/2015 01:55
Benzene-d6	74		60-140		06/11/2015 01:55
Ethylbenzene-d10	81		60-140		06/11/2015 01:55
1,2-DCB-d4	83		60-140		06/11/2015 01:55

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW5030B

Date Received:6/5/15 17:55Analytical Method:SW8260BDate Prepared:6/5/15Unit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Col	llected	Instrument	Batch ID
C7	1506294-005A	Soil	06/03/201	5 13:25	GC16	105924
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acetone	ND		0.10	1		06/11/2015 02:37
tert-Amyl methyl ether (TAME)	ND		0.0050	1		06/11/2015 02:37
Benzene	ND		0.0050	1		06/11/2015 02:37
Bromobenzene	ND		0.0050	1		06/11/2015 02:37
Bromochloromethane	ND		0.0050	1		06/11/2015 02:37
Bromodichloromethane	ND		0.0050	1		06/11/2015 02:37
Bromoform	ND		0.0050	1		06/11/2015 02:37
Bromomethane	ND		0.0050	1		06/11/2015 02:37
2-Butanone (MEK)	ND		0.020	1		06/11/2015 02:37
t-Butyl alcohol (TBA)	ND		0.050	1		06/11/2015 02:37
n-Butyl benzene	ND		0.0050	1		06/11/2015 02:37
sec-Butyl benzene	ND		0.0050	1		06/11/2015 02:37
tert-Butyl benzene	ND		0.0050	1		06/11/2015 02:37
Carbon Disulfide	ND		0.0050	1		06/11/2015 02:37
Carbon Tetrachloride	ND		0.0050	1		06/11/2015 02:37
Chlorobenzene	ND		0.0050	1		06/11/2015 02:37
Chloroethane	ND		0.0050	1		06/11/2015 02:37
Chloroform	ND		0.0050	1		06/11/2015 02:37
Chloromethane	ND		0.0050	1		06/11/2015 02:37
2-Chlorotoluene	ND		0.0050	1		06/11/2015 02:37
4-Chlorotoluene	ND		0.0050	1		06/11/2015 02:37
Dibromochloromethane	ND		0.0050	1		06/11/2015 02:37
1,2-Dibromo-3-chloropropane	ND		0.0040	1		06/11/2015 02:37
1,2-Dibromoethane (EDB)	ND		0.0040	1		06/11/2015 02:37
Dibromomethane	ND		0.0050	1		06/11/2015 02:37
1,2-Dichlorobenzene	ND		0.0050	1		06/11/2015 02:37
1,3-Dichlorobenzene	ND		0.0050	1		06/11/2015 02:37
1,4-Dichlorobenzene	ND		0.0050	1		06/11/2015 02:37
Dichlorodifluoromethane	ND		0.0050	1		06/11/2015 02:37
1,1-Dichloroethane	ND		0.0050	1		06/11/2015 02:37
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		06/11/2015 02:37
1,1-Dichloroethene	ND		0.0050	1		06/11/2015 02:37
cis-1,2-Dichloroethene	ND		0.0050	1		06/11/2015 02:37
trans-1,2-Dichloroethene	ND		0.0050	1		06/11/2015 02:37
1,2-Dichloropropane	ND		0.0050	1		06/11/2015 02:37
1,3-Dichloropropane	ND		0.0050	1		06/11/2015 02:37
2,2-Dichloropropane	ND		0.0050	1		06/11/2015 02:37
1,1-Dichloropropene	ND		0.0050	1	·	06/11/2015 02:37

(Cont.)

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW5030B

Date Received:6/5/15 17:55Analytical Method:SW8260BDate Prepared:6/5/15Unit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Col	llected	Instrument	Batch ID
C7	1506294-005A	Soil	06/03/201	5 13:25	GC16	105924
<u>Analytes</u>	Result		<u>RL</u>	DF		Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1		06/11/2015 02:37
trans-1,3-Dichloropropene	ND		0.0050	1		06/11/2015 02:37
Diisopropyl ether (DIPE)	ND		0.0050	1		06/11/2015 02:37
Ethylbenzene	ND		0.0050	1		06/11/2015 02:37
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		06/11/2015 02:37
Freon 113	ND		0.0050	1		06/11/2015 02:37
Hexachlorobutadiene	ND		0.0050	1		06/11/2015 02:37
Hexachloroethane	ND		0.0050	1		06/11/2015 02:37
2-Hexanone	ND		0.0050	1		06/11/2015 02:37
Isopropylbenzene	ND		0.0050	1		06/11/2015 02:37
4-Isopropyl toluene	ND		0.0050	1		06/11/2015 02:37
Methyl-t-butyl ether (MTBE)	ND		0.0050	1		06/11/2015 02:37
Methylene chloride	ND		0.0050	1		06/11/2015 02:37
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1		06/11/2015 02:37
Naphthalene	ND		0.0050	1		06/11/2015 02:37
n-Propyl benzene	ND		0.0050	1		06/11/2015 02:37
Styrene	ND		0.0050	1		06/11/2015 02:37
1,1,1,2-Tetrachloroethane	ND		0.0050	1		06/11/2015 02:37
1,1,2,2-Tetrachloroethane	ND		0.0050	1		06/11/2015 02:37
Tetrachloroethene	ND		0.0050	1		06/11/2015 02:37
Toluene	ND		0.0050	1		06/11/2015 02:37
1,2,3-Trichlorobenzene	ND		0.0050	1		06/11/2015 02:37
1,2,4-Trichlorobenzene	ND		0.0050	1		06/11/2015 02:37
1,1,1-Trichloroethane	ND		0.0050	1		06/11/2015 02:37
1,1,2-Trichloroethane	ND		0.0050	1		06/11/2015 02:37
Trichloroethene	ND		0.0050	1		06/11/2015 02:37
Trichlorofluoromethane	ND		0.0050	1		06/11/2015 02:37
1,2,3-Trichloropropane	ND		0.0050	1		06/11/2015 02:37
1,2,4-Trimethylbenzene	ND		0.0050	1		06/11/2015 02:37
1,3,5-Trimethylbenzene	ND		0.0050	1		06/11/2015 02:37
Vinyl Chloride	ND		0.0050	1		06/11/2015 02:37
Xylenes, Total	ND		0.0050	1		06/11/2015 02:37

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW5030BDate Received:6/5/15 17:55Analytical Method:SW8260B

Date Prepared: 6/5/15 **Unit:** mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
C7	1506294-005A	Soil	06/03/201	15 13:25 GC16	105924
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	103		70-130		06/11/2015 02:37
Toluene-d8	97		70-130		06/11/2015 02:37
4-BFB	93		70-130		06/11/2015 02:37
Benzene-d6	77		60-140		06/11/2015 02:37
Ethylbenzene-d10	84		60-140		06/11/2015 02:37
1,2-DCB-d4	86		60-140		06/11/2015 02:37

Analytical Report

Client: Stellar Environmental Solutions WorkOrder: 1506294

Project: #2015-28; Soil Profiling Extraction Method: SW3550B

Date Received:6/5/15 17:55Analytical Method:SW8270CDate Prepared:6/8/15Unit:mg/Kg

Semi-Volatile Organics by GC/MS (Basic Target List)

Acetaphthylene ND 0.25 1 06/08/2015 21:20 Acetochlor ND 0.25 1 06/08/2015 21:20 Anthracene ND 0.25 1 06/08/2015 21:20 Benzidine ND 1.3 1 06/08/2015 21:20 Benzo (a) anthracene ND 0.25 1 06/08/2015 21:20 Benzo (k) fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (k) fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (k) fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (a) pyrene ND 0.25 1 06/08/2015 21:20 Benzo (a) pyrene ND 0.25 1 06/08/2015 21:20 Benzyl Alcohol ND 0.25 1 06/08/2015 21:20 Benzyl Alcohol ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethynyl Methane ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethynyl Ether ND 0.25 1 <th>Client ID</th> <th>Lab ID</th> <th>Matrix/ExtType</th> <th>Date C</th> <th>ollected</th> <th>Instrument</th> <th>Batch ID</th>	Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
Acenaphthene ND 0.25 1 06/08/2015 21:20 Acenaphthylene ND 0.25 1 06/08/2015 21:20 Acetochlor ND 0.25 1 06/08/2015 21:20 Anthracene ND 0.25 1 06/08/2015 21:20 Benzu (a) anthracene ND 0.25 1 06/08/2015 21:20 Benzo (a) fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (b) fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (b) fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (a) Juyrene ND 0.25 1 06/08/2015 21:20 Benzo (a) Juyrene ND 0.25 1 06/08/2015 21:20 Benzyl Alcohol ND 0.25 1 06/08/	С7	1506294-005A	Soil	06/03/20)15 13:25	GC17	106005
Acetaphthylene ND 0.25 1 06/08/2015 21:20 Acetochlor ND 0.25 1 06/08/2015 21:20 Anthracene ND 0.25 1 06/08/2015 21:20 Benzidine ND 1.3 1 06/08/2015 21:20 Benzo (a) anthracene ND 0.25 1 06/08/2015 21:20 Benzo (b) fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (g), fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (g), fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (a) pyrene ND 0.25 1 06/08/2015 21:20 Benzo (a) pyrene ND 0.25 1 06/08/2015 21:20 Benzy (Alcohol ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethy) Methane ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethy) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethy) Ether ND 0.25 <	<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Acetochlor ND 0.25 1 06/08/2015 21:20 Anthracene ND 0.25 1 06/08/2015 21:20 Benzo (a) anthracene ND 1.3 1 06/08/2015 21:20 Benzo (a) anthracene ND 0.25 1 06/08/2015 21:20 Benzo (b) fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (k) fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (g), hi) perylene ND 0.25 1 06/08/2015 21:20 Benzo (g), hi) perylene ND 0.25 1 06/08/2015 21:20 Benzo (a) pyrene ND 0.25 1 06/08/2015 21:20 Benzo (a) pyrene ND 0.25 1 06/08/2015 21:20 Benzyl Alcohol ND 1.3 1 06/08/2015 21:20 Benzyl Alcohol ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethoxy) Methane ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethy) Ether ND 0.25	Acenaphthene	ND		0.25	1		06/08/2015 21:20
Anthracene	Acenaphthylene	ND		0.25	1		06/08/2015 21:20
Benzidine	Acetochlor	ND		0.25	1		06/08/2015 21:20
Benzo (a) anthracene	Anthracene	ND		0.25	1		06/08/2015 21:20
Benzo (b) fluoranthene	Benzidine	ND		1.3	1		06/08/2015 21:20
Benzo (k) fluoranthene ND 0.25 1 06/08/2015 21:20 Benzo (g,h.i) perylene ND 0.25 1 06/08/2015 21:20 Benzo (a) pyrene ND 0.25 1 06/08/2015 21:20 Benzyl Alcohol ND 1.3 1 06/08/2015 21:20 1,1-Biphenyl ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethoxy) Methane ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethoxy) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethoxy) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethoxy) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-chlylhexyl) Adipate ND 0.25 1 06/08/2015 21:20 Bis (2-chlylhexyl) Phthalate ND 0.25 1 06/08/2015 21:20 Bis (2-chlylhexyl) Phthalate ND 0.25 1 06/08/2015 21:20 Bis (2-chlylhexyl) Phthalate ND 0.25 1 06/08/2015 21:20 Butylb	Benzo (a) anthracene	ND		0.25	1		06/08/2015 21:20
Benzo (g,h.i) perylene ND 0.25 1 06/08/2015 21:20 Benzo (a) pyrene ND 0.25 1 06/08/2015 21:20 Benzyl Alcohol ND 1.3 1 06/08/2015 21:20 Benzyl Alcohol ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethoxy) Methane ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethyl) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-chloroisopropyl) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-ethylnexyl) Adipate ND 0.25 1 06/08/2015 21:20 Bis (2-ethylnexyl) Phthalate ND 0.25 1 06/08/2015 21:20 Bis (2-ethylnexyl) Phthalate ND 0.25 1 06/08/2015 21:20 4-Bromophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.50 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.25 1 06/08/2015 21:20 2-Chlo	Benzo (b) fluoranthene	ND		0.25	1		06/08/2015 21:20
Benzo (a) pyrene	Benzo (k) fluoranthene	ND		0.25	1		06/08/2015 21:20
Benzyl Alcohol	Benzo (g,h,i) perylene	ND		0.25	1		06/08/2015 21:20
1,1-Biphenyl ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethoxy) Methane ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethyl) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-chloroisopropyl) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-ethylhexyl) Adipate ND 0.25 1 06/08/2015 21:20 Bis (2-ethylhexyl) Phthalate ND 0.25 1 06/08/2015 21:20 Bis (2-ethylhexyl) Phthalate ND 0.25 1 06/08/2015 21:20 4-Bromophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 4-Chloroaniline ND 0.25 1 06/08/2015 21:20 4-Chloroa-3-methylphenol ND 0.25 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 Chrysene	Benzo (a) pyrene	ND		0.25	1		06/08/2015 21:20
Bis (2-chloroethoxy) Methane ND 0.25 1 06/08/2015 21:20 Bis (2-chloroethyl) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-chloroisopropyl) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-ethylhexyl) Adipate ND 0.25 1 06/08/2015 21:20 Bis (2-ethylhexyl) Phthalate ND 0.25 1 06/08/2015 21:20 Bis (2-ethylexyl) Phthalate ND 0.25 1 06/08/2015 21:20 4-Bromophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 4-Chloroaniline ND 0.50 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.50 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 2-Chlorophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 2-Chlorophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 <t< td=""><td>Benzyl Alcohol</td><td>ND</td><td></td><td>1.3</td><td>1</td><td></td><td>06/08/2015 21:20</td></t<>	Benzyl Alcohol	ND		1.3	1		06/08/2015 21:20
Bis (2-chloroethyl) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-chloroisopropyl) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-ethylhexyl) Adipate ND 0.25 1 06/08/2015 21:20 Bis (2-ethylhexyl) Phthalate ND 0.25 1 06/08/2015 21:20 4-Bromophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 4-Bromophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 4-Chloroanlline ND 0.50 1 06/08/2015 21:20 4-Chloroa-3-methylphenol ND 0.50 1 06/08/2015 21:20 2-Chloroaphthalene ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 2-Chlorophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Dibenzofuran ND 0.25 1 06/08/2015 21:20 Dibenzofuran <th< td=""><td>1,1-Biphenyl</td><td>ND</td><td></td><td>0.25</td><td>1</td><td></td><td>06/08/2015 21:20</td></th<>	1,1-Biphenyl	ND		0.25	1		06/08/2015 21:20
Bis (2-chloroisopropyl) Ether ND 0.25 1 06/08/2015 21:20 Bis (2-ethylhexyl) Adipate ND 0.25 1 06/08/2015 21:20 Bis (2-ethylhexyl) Phthalate ND 0.25 1 06/08/2015 21:20 4-Bromophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 4-Bromophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 4-Chloro-alline ND 0.50 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.25 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Dibenzofuran ND <	Bis (2-chloroethoxy) Methane	ND		0.25	1		06/08/2015 21:20
Bis (2-ethylhexyl) Adipate ND 0.25 1 06/08/2015 21:20 Bis (2-ethylhexyl) Phthalate ND 0.25 1 06/08/2015 21:20 4-Bromophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 Butylbenzyl Phthalate 1.0 0.25 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.50 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.25 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 4-Chlorophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Dibenzo (a,h) anthracene ND 0.25 1 06/08/2015 21:20 Dibenzofuran ND 0.25 1 06/08/2015 21:20 Di-n-butyl Phthalate <th< td=""><td>Bis (2-chloroethyl) Ether</td><td>ND</td><td></td><td>0.25</td><td>1</td><td></td><td>06/08/2015 21:20</td></th<>	Bis (2-chloroethyl) Ether	ND		0.25	1		06/08/2015 21:20
Bis (2-ethylhexyl) Phthalate	Bis (2-chloroisopropyl) Ether	ND		0.25	1		06/08/2015 21:20
4-Bromophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 Butylbenzyl Phthalate 1.0 0.25 1 06/08/2015 21:20 4-Chloroaniline ND 0.50 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 4-Chlorophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Dibenzo (a,h) anthracene ND 0.25 1 06/08/2015 21:20 Dibenzo (a,h) Phthalate ND 0.25 1 06/08/2015 21:20 Di-n-butyl Phthalate ND 0.25 1 06/08/2015 21:20 Di-n-butyl Phthalate ND 0.25 1 06/08/2015 21:20 1,3-Dichlorobenzene ND 0.25 </td <td>Bis (2-ethylhexyl) Adipate</td> <td>ND</td> <td></td> <td>0.25</td> <td>1</td> <td></td> <td>06/08/2015 21:20</td>	Bis (2-ethylhexyl) Adipate	ND		0.25	1		06/08/2015 21:20
Butylbenzyl Phthalate 1.0 0.25 1 06/08/2015 21:20 4-Chloroaniline ND 0.50 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.25 1 06/08/2015 21:20 2-Chloronaphthalene ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 4-Chlorophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Dibenzo (a,h) anthracene ND 0.25 1 06/08/2015 21:20 Dibenzofuran ND 0.25 1 06/08/2015 21:20 Dibenzofuran ND 0.25 1 06/08/2015 21:20 Di-n-butyl Phthalate ND 0.25 1 06/08/2015 21:20 1,2-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,3-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,4-Dichlorobenzene ND 0.25	Bis (2-ethylhexyl) Phthalate	ND		0.25	1		06/08/2015 21:20
4-Chloroaniline ND 0.50 1 06/08/2015 21:20 4-Chloro-3-methylphenol ND 0.25 1 06/08/2015 21:20 2-Chloronaphthalene ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 4-Chlorophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Dibenzo (a,h) anthracene ND	4-Bromophenyl Phenyl Ether	ND		0.25	1		06/08/2015 21:20
4-Chloro-3-methylphenol ND 0.25 1 06/08/2015 21:20 2-Chloronaphthalene ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 4-Chlorophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Dibenzo (a,h) anthracene ND 0.25 1 06/08/2015 21:20 Dibenzofuran ND 0.25 1 06/08/2015 21:20 Di-n-butyl Phthalate ND 0.25 1 06/08/2015 21:20 1,2-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,3-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,4-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 <td>Butylbenzyl Phthalate</td> <td>1.0</td> <td></td> <td>0.25</td> <td>1</td> <td></td> <td>06/08/2015 21:20</td>	Butylbenzyl Phthalate	1.0		0.25	1		06/08/2015 21:20
2-Chloronaphthalene ND 0.25 1 06/08/2015 21:20 2-Chlorophenol ND 0.25 1 06/08/2015 21:20 4-Chlorophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Dibenzo (a,h) anthracene ND 0.25 1 06/08/2015 21:20 Dibenzo furan ND 0.25 1 06/08/2015 21:20 Di-n-butyl Phthalate ND 0.25 1 06/08/2015 21:20 1,2-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,3-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,4-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 2,4-Dimethyl Phthalate ND 0.25 <td>4-Chloroaniline</td> <td>ND</td> <td></td> <td>0.50</td> <td>1</td> <td></td> <td>06/08/2015 21:20</td>	4-Chloroaniline	ND		0.50	1		06/08/2015 21:20
2-Chlorophenol ND 0.25 1 06/08/2015 21:20 4-Chlorophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Dibenzo (a,h) anthracene ND 0.25 1 06/08/2015 21:20 Dibenzofuran ND 0.25 1 06/08/2015 21:20 Di-n-butyl Phthalate ND 0.25 1 06/08/2015 21:20 1,2-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,3-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,4-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 2,4-Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	4-Chloro-3-methylphenol	ND		0.25	1		06/08/2015 21:20
4-Chlorophenyl Phenyl Ether ND 0.25 1 06/08/2015 21:20 Chrysene ND 0.25 1 06/08/2015 21:20 Dibenzo (a,h) anthracene ND 0.25 1 06/08/2015 21:20 Dibenzofuran ND 0.25 1 06/08/2015 21:20 Di-n-butyl Phthalate ND 0.25 1 06/08/2015 21:20 1,2-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,3-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,4-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	2-Chloronaphthalene	ND		0.25	1		06/08/2015 21:20
Chrysene ND 0.25 1 06/08/2015 21:20 Dibenzo (a,h) anthracene ND 0.25 1 06/08/2015 21:20 Dibenzofuran ND 0.25 1 06/08/2015 21:20 Di-n-butyl Phthalate ND 0.25 1 06/08/2015 21:20 1,2-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,3-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,4-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	2-Chlorophenol	ND		0.25	1		06/08/2015 21:20
Dibenzo (a,h) anthracene ND 0.25 1 06/08/2015 21:20 Dibenzofuran ND 0.25 1 06/08/2015 21:20 Di-n-butyl Phthalate ND 0.25 1 06/08/2015 21:20 1,2-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,3-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,4-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	4-Chlorophenyl Phenyl Ether	ND		0.25	1		06/08/2015 21:20
Dibenzofuran ND 0.25 1 06/08/2015 21:20 Di-n-butyl Phthalate ND 0.25 1 06/08/2015 21:20 1,2-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,3-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,4-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	Chrysene	ND		0.25	1		06/08/2015 21:20
Di-n-butyl Phthalate ND 0.25 1 06/08/2015 21:20 1,2-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,3-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,4-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	Dibenzo (a,h) anthracene	ND		0.25	1		06/08/2015 21:20
1,2-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,3-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,4-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	Dibenzofuran	ND		0.25	1		06/08/2015 21:20
1,3-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 1,4-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	Di-n-butyl Phthalate	ND		0.25	1		06/08/2015 21:20
1,4-Dichlorobenzene ND 0.25 1 06/08/2015 21:20 3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	1,2-Dichlorobenzene	ND		0.25	1		06/08/2015 21:20
3,3-Dichlorobenzidine ND 0.50 1 06/08/2015 21:20 2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	1,3-Dichlorobenzene	ND		0.25	1		06/08/2015 21:20
2,4-Dichlorophenol ND 0.25 1 06/08/2015 21:20 Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	1,4-Dichlorobenzene	ND		0.25	1		06/08/2015 21:20
Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	3,3-Dichlorobenzidine	ND		0.50	1		06/08/2015 21:20
Diethyl Phthalate ND 0.25 1 06/08/2015 21:20 2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	2,4-Dichlorophenol				1		06/08/2015 21:20
2,4-Dimethylphenol ND 0.25 1 06/08/2015 21:20 Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20	Diethyl Phthalate	ND			1		06/08/2015 21:20
Dimethyl Phthalate ND 0.25 1 06/08/2015 21:20					1		06/08/2015 21:20
		ND			1		06/08/2015 21:20
4,6-Dinitro-2-metnyipnenoi ND 1.3 1 06/08/2015 21:20	4,6-Dinitro-2-methylphenol	ND		1.3	1		06/08/2015 21:20
		ND		6.3	1		06/08/2015 21:20

(Cont.)

1506294

Analytical Report

Client: Stellar Environmental Solutions WorkOrder:

Project: #2015-28; Soil Profiling Extraction M

Project:#2015-28; Soil ProfilingExtraction Method:SW3550BDate Received:6/5/15 17:55Analytical Method:SW8270CDate Prepared:6/8/15Unit:mg/Kg

Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
C7	1506294-005A	Soil	06/03/20	15 13:25	GC17	106005
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
2,4-Dinitrotoluene	ND		0.25	1		06/08/2015 21:20
2,6-Dinitrotoluene	ND		0.25	1		06/08/2015 21:20
Di-n-octyl Phthalate	ND		0.50	1		06/08/2015 21:20
1,2-Diphenylhydrazine	ND		0.25	1		06/08/2015 21:20
Fluoranthene	ND		0.25	1		06/08/2015 21:20
Fluorene	ND		0.25	1		06/08/2015 21:20
Hexachlorobenzene	ND		0.25	1		06/08/2015 21:20
Hexachlorobutadiene	ND		0.25	1		06/08/2015 21:20
Hexachlorocyclopentadiene	ND		1.3	1		06/08/2015 21:20
Hexachloroethane	ND		0.25	1		06/08/2015 21:20
Indeno (1,2,3-cd) pyrene	ND		0.25	1		06/08/2015 21:20
Isophorone	ND		0.25	1		06/08/2015 21:20
2-Methylnaphthalene	ND		0.25	1		06/08/2015 21:20
2-Methylphenol (o-Cresol)	ND		0.25	1		06/08/2015 21:20
3 & 4-Methylphenol (m,p-Cresol)	ND		0.25	1		06/08/2015 21:20
Naphthalene	ND		0.25	1		06/08/2015 21:20
2-Nitroaniline	ND		1.3	1		06/08/2015 21:20
3-Nitroaniline	ND		1.3	1		06/08/2015 21:20
4-Nitroaniline	ND		1.3	1		06/08/2015 21:20
Nitrobenzene	ND		0.25	1		06/08/2015 21:20
2-Nitrophenol	ND		1.3	1		06/08/2015 21:20
4-Nitrophenol	ND		1.3	1		06/08/2015 21:20
N-Nitrosodiphenylamine	ND		0.25	1		06/08/2015 21:20
N-Nitrosodi-n-propylamine	ND		0.25	1		06/08/2015 21:20
Pentachlorophenol	ND		1.3	1		06/08/2015 21:20
Phenanthrene	ND		0.25	1		06/08/2015 21:20
Phenol	ND		0.25	1		06/08/2015 21:20
Pyrene	ND		0.25	1		06/08/2015 21:20
1,2,4-Trichlorobenzene	ND		0.25	1		06/08/2015 21:20
2,4,5-Trichlorophenol	ND		0.25	1		06/08/2015 21:20
2,4,6-Trichlorophenol	ND		0.25	1		06/08/2015 21:20

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW3550BDate Received:6/5/15 17:55Analytical Method:SW8270C

Date Prepared: 6/8/15 **Unit:** mg/Kg

Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collected Instrument	Batch ID
C7	1506294-005A	Soil	06/03/2015 13:25 GC17	106005
<u>Analytes</u>	Result		RL DF	Date Analyzed
Surrogates	REC (%)		<u>Limits</u>	
2-Fluorophenol	95		30-130	06/08/2015 21:20
Phenol-d5	97		30-130	06/08/2015 21:20
Nitrobenzene-d5	79		30-130	06/08/2015 21:20
2-Fluorobiphenyl	81		30-130	06/08/2015 21:20
2,4,6-Tribromophenol	53		16-130	06/08/2015 21:20
4-Terphenyl-d14	88		30-130	06/08/2015 21:20

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW3050BDate Received:6/5/15 17:55Analytical Method:SW6020

Date Prepared: 6/5/15 **Unit:** mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
СЗ	1506294-001A	Soil	06/03/20	15 11:25 ICP-MS1	105932
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Antimony	ND		0.50	1	06/09/2015 09:06
Arsenic	7.5		0.50	1	06/09/2015 09:06
Barium	120		5.0	1	06/09/2015 09:06
Beryllium	0.51		0.50	1	06/09/2015 09:06
Cadmium	ND		0.25	1	06/09/2015 09:06
Chromium	49		0.50	1	06/09/2015 09:06
Cobalt	10		0.50	1	06/09/2015 09:06
Copper	29		0.50	1	06/09/2015 09:06
Lead	11		0.50	1	06/09/2015 09:06
Mercury	ND		0.050	1	06/09/2015 09:06
Molybdenum	0.63		0.50	1	06/09/2015 09:06
Nickel	46		0.50	1	06/09/2015 09:06
Selenium	ND		0.50	1	06/09/2015 09:06
Silver	ND		0.50	1	06/09/2015 09:06
Thallium	ND		0.50	1	06/09/2015 09:06
Vanadium	50		0.50	1	06/09/2015 09:06
Zinc	83		5.0	1	06/09/2015 09:06
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Terbium	94		70-130		06/09/2015 09:06
Analyst(s): DB					

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW3050BDate Received:6/5/15 17:55Analytical Method:SW6020

Date Prepared: 6/5/15

Unit: mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
C6	1506294-004A	Soil	06/03/20	15 12:55	ICP-MS1	105932
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Antimony	ND		0.50	1		06/09/2015 18:10
Arsenic	5.1		0.50	1		06/09/2015 18:10
Barium	93		5.0	1		06/09/2015 18:10
Beryllium	ND		0.50	1		06/09/2015 18:10
Cadmium	ND		0.25	1		06/09/2015 18:10
Chromium	35		0.50	1		06/09/2015 18:10
Cobalt	6.9		0.50	1		06/09/2015 18:10
Copper	20		0.50	1		06/09/2015 18:10
Lead	7.7		0.50	1		06/09/2015 18:10
Mercury	ND		0.050	1		06/09/2015 18:10
Molybdenum	ND		0.50	1		06/09/2015 18:10
Nickel	36		0.50	1		06/09/2015 18:10
Selenium	ND		0.50	1		06/09/2015 18:10
Silver	ND		0.50	1		06/09/2015 18:10
Thallium	ND		0.50	1		06/09/2015 18:10
Vanadium	32		0.50	1		06/09/2015 18:10
Zinc	43		5.0	1		06/09/2015 18:10
Surrogates	REC (%)		<u>Limits</u>			
Terbium	94		70-130			06/09/2015 18:10
Analyst(s): DVH						

Analytical Report

Client: Stellar Environmental Solutions WorkOrder: 1506294 **Project:** #2015-28; Soil Profiling **Extraction Method: SW5030B**

Date Received: 6/5/15 17:55 **Analytical Method:** SW8021B/8015Bm

Date Prepared: 6/5/15 Unit: mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
C3	1506294-001A	Soil	06/03/201	15 11:25 GC7	105944
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	06/09/2015 00:51
MTBE			0.050	1	06/09/2015 00:51
Benzene	ND		0.0050	1	06/09/2015 00:51
Toluene	ND		0.0050	1	06/09/2015 00:51
Ethylbenzene	ND		0.0050	1	06/09/2015 00:51
Xylenes	ND		0.0050	1	06/09/2015 00:51
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	100		70-130		06/09/2015 00:51
Analyst(s): HD					

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
C4	1506294-002A	Soil	06/03/20 ⁻	15 11:55 GC7	105944
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	06/09/2015 01:54
MTBE			0.050	1	06/09/2015 01:54
Benzene	ND		0.0050	1	06/09/2015 01:54
Toluene	ND		0.0050	1	06/09/2015 01:54
Ethylbenzene	ND		0.0050	1	06/09/2015 01:54
Xylenes	ND		0.0050	1	06/09/2015 01:54
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	97		70-130		06/09/2015 01:54
Analyst(s): HD					

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW5030B

Date Received: 6/5/15 17:55 **Analytical Method:** SW8021B/8015Bm

Date Prepared: 6/5/15 **Unit:** mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
C5	1506294-003A	Soil	06/03/201	I5 12:25 GC19	105944
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	06/09/2015 22:30
MTBE			0.050	1	06/09/2015 22:30
Benzene	ND		0.0050	1	06/09/2015 22:30
Toluene	ND		0.0050	1	06/09/2015 22:30
Ethylbenzene	ND		0.0050	1	06/09/2015 22:30
Xylenes	ND		0.0050	1	06/09/2015 22:30
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	109		70-130		06/09/2015 22:30
Analyst(s): HD					

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
C6	1506294-004A	Soil	06/03/201	15 12:55 GC19	105944
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	06/09/2015 22:00
MTBE			0.050	1	06/09/2015 22:00
Benzene	ND		0.0050	1	06/09/2015 22:00
Toluene	ND		0.0050	1	06/09/2015 22:00
Ethylbenzene	ND		0.0050	1	06/09/2015 22:00
Xylenes	ND		0.0050	1	06/09/2015 22:00
Surrogates	REC (%)		<u>Limits</u>		
2-Fluorotoluene	84		70-130		06/09/2015 22:00
Analyst(s): HD					

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW5030B

Date Received: 6/5/15 17:55 **Analytical Method:** SW8021B/8015Bm

Date Prepared: 6/5/15 **Unit:** mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
C7	1506294-005A	Soil	06/03/20	15 13:25 GC19	105944
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	06/10/2015 04:34
MTBE			0.050	1	06/10/2015 04:34
Benzene	ND		0.0050	1	06/10/2015 04:34
Toluene	ND		0.0050	1	06/10/2015 04:34
Ethylbenzene	ND		0.0050	1	06/10/2015 04:34
Xylenes	ND		0.0050	1	06/10/2015 04:34
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
2-Fluorotoluene	105		70-130		06/10/2015 04:34
Analyst(s): HD					

Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
C8	1506294-006A	Soil	06/03/201	5 13:55	GC19	105944
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH(g)	ND		1.0	1		06/10/2015 05:05
MTBE			0.050	1		06/10/2015 05:05
Benzene	ND		0.0050	1		06/10/2015 05:05
Toluene	ND		0.0050	1		06/10/2015 05:05
Ethylbenzene	ND		0.0050	1		06/10/2015 05:05
Xylenes	ND		0.0050	1		06/10/2015 05:05
Surrogates	REC (%)		<u>Limits</u>			
2-Fluorotoluene	94		70-130			06/10/2015 05:05
Analyst(s): HD						

Analytical Report

Client: Stellar Environmental Solutions

#2015-28; Soil Profiling

Date Received: 6/5/15 17:55 **Date Prepared:** 6/5/15-6/8/15

Project:

WorkOrder: 1506294

Extraction Method: SW3050B **Analytical Method:** SW6010B

Unit: mg/Kg

1		
	еяа	

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
C4	1506294-002A	Soil	06/03/20	015 11:55 ICP-JY	105945
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Lead	8.1		5.0	1	06/08/2015 15:27
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Tb 350.917	106		70-130		06/08/2015 15:27
Analyst(s): DVH					

Client ID	Lab ID	Matrix/ExtType	Date (Collected Instrument	Batch ID
C5	1506294-003A	Soil	06/03/2	015 12:25 ICP-JY	105949
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Lead	7.7		5.0	1	06/09/2015 13:06
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Tb 350.917	95		70-130		06/09/2015 13:06

Analyst(s): DVH

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID		
C7	1506294-005A	Soil	06/03/2015 13:25 ICP-JY		06/03/2015 13:25 ICP-JY		105949
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed		
Lead	27		5.0	1	06/09/2015 13:09		
<u>Surrogates</u>	REC (%)		<u>Limits</u>				
Tb 350.917	96		70-130		06/09/2015 13:09		
Analyst(s): DVH							

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID		
C8	1506294-006A	Soil	06/03/2015 13:55 ICP-JY		06/03/2015 13:55 ICP-JY		105996
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed		
Lead	ND		5.0	1	06/09/2015 13:11		
Surrogates	<u>REC (%)</u>		<u>Limits</u>				
Tb 350.917	96		70-130		06/09/2015 13:11		
Analyst(s): DVH							

Analytical Report

Client: Stellar Environmental Solutions

#2015-28; Soil Profiling

Date Received: 6/5/15 17:55 **Date Prepared:** 6/5/15

Project:

WorkOrder: 1506294

Extraction Method: SW3550B **Analytical Method:** SW8015B

Unit: mg/Kg

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix/ExtType	Date Collected Instrumen	t Batch ID
C4	1506294-002A	Soil	06/03/2015 11:55 GC2B	105926
<u>Analytes</u>	<u>Result</u>		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	1.1		1.0 1	06/07/2015 06:06
TPH-Motor Oil (C18-C36)	13		5.0 1	06/07/2015 06:06
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>	
C9	94		70-130	06/07/2015 06:06
Analyst(s): TK		Analy	vtical Comments: e7,e2	

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
C5	1506294-003A	Soil	06/03/20	015 12:25 GC31B	105926
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	10		10	1	06/09/2015 16:26
TPH-Motor Oil (C18-C36)	80		50	1	06/09/2015 16:26
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
C9	90		70-130		06/09/2015 16:26
Analyst(s): TK		<u>Anal</u>	ytical Com	ments: e7,e2	

Client ID	Lab ID	Matrix/ExtType	Date C	Collected Instrument	Batch ID
C6	1506294-004A	Soil	06/03/20	015 12:55 GC2A	105926
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	2.3		2.0	2	06/11/2015 13:08
TPH-Motor Oil (C18-C36)	17		10	2	06/11/2015 13:08
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
C9	102		70-130		06/11/2015 13:08
Analyst(s): TK		<u>Anal</u>	ytical Com	ments: e7,e2	

Analytical Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Project:#2015-28; Soil ProfilingExtraction Method:SW3550BDate Received:6/5/15 17:55Analytical Method:SW8015BDate Prepared:6/5/15Unit:mg/Kg

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
C7	1506294-005A	Soil	06/03/20	015 13:25 GC2A	105926
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	1.6		1.0	1	06/09/2015 09:33
TPH-Motor Oil (C18-C36)	11		5.0	1	06/09/2015 09:33
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
C9	106		70-130		06/09/2015 09:33
Analyst(s): TK		Analy	ytical Com	ments: e7,e2	

Client: Stellar Environmental Solutions Wor

Date Prepared: 6/5/15

Date Analyzed: 6/6/15

Instrument: GC23

Matrix: Soil

Project: #2015-28; Soil Profiling

WorkOrder: 1506294 **BatchID:** 105921

Extraction Method: SW3550B

Analytical Method: SW8081A **Unit:** mg/kg

Sample ID: MB/LCS-105921

1506276-022AMS/MSD

QC Summary	Report for	SW8081A
	IXCDOL 1 TOL	DITOUDIA

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Aldrin	ND	0.0576	0.0010	0.050	-	114	70-130
a-BHC	ND	-	0.0010	-	-	-	-
b-BHC	ND	-	0.0010	-	-	-	-
d-BHC	ND	-	0.0010	-	-	-	-
g-BHC	ND	0.0530	0.0010	0.050	-	106	70-130
Chlordane (Technical)	ND	-	0.025	-	-	-	-
a-Chlordane	ND	-	0.0010	-	-	-	-
g-Chlordane	ND	-	0.0010	-	-	-	-
p,p-DDD	ND	-	0.0010	-	-	-	-
p,p-DDE	ND	-	0.0010	-	-	-	-
p,p-DDT	ND	0.0442	0.0010	0.050	-	88	70-130
Dieldrin	ND	0.0648	0.0010	0.050	-	130	70-130
Endosulfan I	ND	-	0.0010	-	-	-	-
Endosulfan II	ND	-	0.0010	-	-	-	-
Endosulfan sulfate	ND	-	0.0010	-	-	-	-
Endrin	ND	0.0570	0.0010	0.050	-	114	70-130
Endrin aldehyde	ND	-	0.0010	-	-	-	-
Endrin ketone	ND	-	0.0010	-	-	-	-
Heptachlor	ND	0.0495	0.0010	0.050	-	99	70-130
Heptachlor epoxide	ND	-	0.0010	-	-	-	-
Hexachlorobenzene	ND	-	0.010	-	-	-	-
Hexachlorocyclopentadiene	ND	-	0.020	-	-	-	-
Methoxychlor	ND	-	0.0010	-	-	-	-
Toxaphene	ND	-	0.050	-	-	-	-
Aroclor1016	ND	-	0.050	-	-	-	-
Aroclor1221	ND	-	0.050	-	-	-	-
Aroclor1232	ND	-	0.050	-	-	-	-
Aroclor1242	ND	-	0.050	-	-	-	-
Aroclor1248	ND	-	0.050	-	-	-	-
Aroclor1254	ND	-	0.050	-	-	-	-
Aroclor1260	ND	-	0.050	-	-	-	-
PCBs, total	ND	-	0.050	-	-	-	-
Surrogate Recovery							

Decachlorobiphenyl 0.0474 0.0439 0.050 95 88 70-130

Quality Control Report

Client: Stellar Environmental Solutions WorkOrder: 1506294

Date Prepared: 6/5/15 BatchID: 105921

Date Analyzed:6/6/15Extraction Method:SW3550BInstrument:GC23Analytical Method:SW8081AMatrix:SoilUnit:mg/kg

Project: #2015-28; Soil Profiling **Sample ID:** MB/LCS-105921

1506276-022AMS/MSD

QC Summary Report for SW8081A

QC Summary Report for Swooding										
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit	
Aldrin	0.0559	0.0568	0.050	ND	112	114	70-130	1.62	30	
g-BHC	0.0538	0.0559	0.050	ND	108	112	70-130	3.80	30	
p,p-DDT	0.0315	0.0313	0.050	ND	63,F1	63,F1	70-130	0	30	
Dieldrin	0.0618	0.0618	0.050	ND	124	124	70-130	0	30	
Endrin	0.0566	0.0577	0.050	ND	113	115	70-130	2.01	30	
Heptachlor	0.0516	0.0529	0.050	ND	103	106	70-130	2.43	30	
Surrogate Recovery										
Decachlorobiphenyl	0.0407	0.0393	0.050		81	79	70-130	3.36	30	

Quality Control Report

Client: Stellar Environmental Solutions

Date Prepared: 6/5/15
Date Analyzed: 6/6/15
Instrument: GC5A
Matrix: Soil

Project: #2015-28; Soil Profiling

WorkOrder: 1506294

BatchID: 105946 **Extraction Method:** SW3550B

Analytical Method: SW8082

Unit: mg/kg

Sample ID: MB/LCS-105946

1506294-003AMS/MSD

OC Summary	Report fo	r SW8082
		1 0 11 0004

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Aroclor1016	ND	-	0.050	-	-	-	-
Aroclor1221	ND	-	0.050	-	-	-	-
Aroclor1232	ND	-	0.050	-	-	-	-
Aroclor1242	ND	-	0.050	-	-	-	-
Aroclor1248	ND	-	0.050	-	-	-	-
Aroclor1254	ND	-	0.050	-	-	-	-
Aroclor1260	ND	0.149	0.050	0.15	-	100	70-130
PCBs, total	ND	-	0.050	-	-	-	-

Surrogate Recovery

Decachlorobiphenyl 0.0421 0.0431 0.050 84 86 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Aroclor1260	0.144	0.142	0.15	ND	96	95	70-130	1.28	30
Surrogate Recovery									
Decachlorobiphenyl	0.0398	0.0375	0.050		80	75	70-130	6.00	30

Client: Stellar Environmental Solutions

Date Prepared: 6/5/15

Date Analyzed: 6/6/15 - 6/8/15 **Instrument:** GC16, GC18

Matrix: Soil

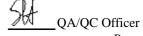
Project: #2015-28; Soil Profiling

WorkOrder: 1506294

BatchID: 105924 **Extraction Method:** SW5030B

Analytical Method: SW8260B

Unit: mg/Kg


Sample ID: MB/LCS-105924

1506270-002AMS/MSD

OC Summary Report for SW8260B

tert-Amyl methyl ether (TAME) ND 0.0516 0.0050 0.050 - 103 63-116 Benzene ND 0.0491 0.0050 0.050 - 98 63-137 Bromochloromethane ND - 0.0050 - - - Ebutyl elocation (TBA) ND - 0.0050 - - - Ebutyl benzene ND - 0.0050 - - - Ether Butyl benzene		QC Sumr	nary Report f	or SW8260B				
tert-Amyl methyl ether (TAME) ND 0.0516 0.0050 0.050 - 103 53-116 Benzene ND 0.0491 0.0050 0.050 - 98 63-137 Bromochloromethane ND - 0.0050 - - - Bromochloromethane ND - 0.0050 - - - - Bromochloromethane ND - 0.0050 - - - - Eathyl benzene ND - 0.0050 - - - - <th>Analyte</th> <th></th> <th></th> <th>RL</th> <th>_</th> <th></th> <th></th> <th></th>	Analyte			RL	_			
Benzene ND 0.0491 0.0050 0.050 98 63-137 Bromobelozene ND - 0.0050 - - - Bromochloromethane ND - 0.020 - - - Bromochloromethane ND - 0.0050 0.20 - - - In-Bulyl benzene ND - 0.0050 - - - - In-Bulyl benzene ND -	Acetone	ND	-	0.10	-	-	-	-
Bromobenzene ND - 0.0050 - - - Bromochloromethane ND - 0.0050 - - - Bromochloromethane ND - 0.0050 - - - Bromomethane ND - 0.0050 - - - Bromomethane ND - 0.0050 - - - Ebuthone (MEK) ND - 0.0050 - - - - LeButyl alcohol (TBA) ND 0.239 0.050 0.20 - 120 41-135 n-Butyl benzene ND - 0.0050 - - - - see-Butyl benzene ND - 0.0050 - - - - carbon Tetrachloride ND - 0.0050 - - - - Chlorobenzene ND - 0.0050 - - - - <	tert-Amyl methyl ether (TAME)	ND	0.0516	0.0050	0.050	-	103	53-116
Bromochloromethane ND - 0.0050 - - - Bromochloromethane ND - 0.0050 - - - Bromoform ND - 0.0050 - - - Bromomethane ND - 0.0050 - - - 2-Butanone (MEK) ND - 0.020 - - - - Ebutyl alcohol (TBA) ND - 0.0050 - - - - - Brusyl benzene ND - 0.0050 -	Benzene	ND	0.0491	0.0050	0.050	-	98	63-137
Bromodichloromethane ND - 0.0050 - </td <td>Bromobenzene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Bromobenzene	ND	-	0.0050	-	-	-	-
Bromoform ND - 0.0050 - - - - Bromomethane ND - 0.0050 - - - - 2-Butanone (MEK) ND - 0.020 - - 1 1-Butyl alcohol (TBA) ND 0.2399 0.050 0.20 - 120 41-135 n-Butyl benzene ND - 0.0050 -	Bromochloromethane	ND	-	0.0050	-	-	-	-
Promomethane ND	Bromodichloromethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK) ND - 0.020 - 1 2 - 1	Bromoform	ND	-	0.0050	-	-	-	-
Fauly alcohol (TBA)	Bromomethane	ND	-	0.0050	-	-	-	-
February alcohol (TBA) ND 0.239 0.050 0.20 - 120 41-135	2-Butanone (MEK)	ND	-	0.020	-	-	-	-
n-Butyl benzene ND - 0.0050	t-Butyl alcohol (TBA)	ND	0.239	0.050	0.20	-	120	41-135
sec-Butyl benzene ND - 0.0050	n-Butyl benzene	ND		0.0050	-	-	-	-
Internative ND	sec-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide ND - 0.0050 - - - - Carbon Tetrachloride ND - 0.0050 -	_	ND	-	0.0050	-	-	_	-
ND	Carbon Disulfide		-	0.0050	-	-	_	-
Chloroethane ND - 0.0050 - - - - Chloroform ND - 0.0050 - - - - Chloromethane ND - 0.0050 - - - - 2-Chlorotoluene ND - 0.0050 - - - - 4-Chlorotoluene ND - 0.0050 - - - - Dibromochloromethane ND - 0.0050 - - - - 1,2-Dibromo-3-chloropropane ND - 0.0040 - - - - 1,2-Dibromoethane (EDB) ND 0.0513 0.0040 0.050 - 103 67-119 Dibromoethane (EDB) ND 0.0513 0.0040 0.050 - - - - - - - - - - - - - - - - - -	Carbon Tetrachloride	ND	-	0.0050	-	-	_	-
Chloroethane ND - 0.0050 - - - - Chloroform ND - 0.0050 - - - - Chloromethane ND - 0.0050 - - - - 2-Chlorotoluene ND - 0.0050 - - - - 4-Chlorotoluene ND - 0.0050 - - - - Dibromochloromethane ND - 0.0050 - - - - 1,2-Dibromo-3-chloropropane ND - 0.0040 - - - - 1,2-Dibromoethane (EDB) ND 0.0513 0.0040 0.050 - 103 67-119 Dibromoethane (EDB) ND 0.0513 0.0040 0.050 - - - - - - - - - - - - - - - - - -	Chlorobenzene	ND	0.0459	0.0050	0.050	-	92	77-121
Chloromethane	Chloroethane		-	0.0050	-	-	_	-
2-Chlorotoluene	Chloroform	ND	-	0.0050	-	-	-	-
A-Chlorotoluene	Chloromethane	ND	-	0.0050	-	-	-	-
Dibromochloromethane ND - 0.0050 - - - - 1,2-Dibromo-3-chloropropane ND - 0.0040 - - - - - 1,2-Dibromoethane (EDB) ND 0.0513 0.0040 0.050 - 103 67-119 Dibromomethane ND - 0.0050 - - - - 1,2-Dichlorobenzene ND - 0.0050 - - - - 1,3-Dichlorobenzene ND - 0.0050 - - - - 1,4-Dichlorobenzene ND - 0.0050 - - - - Dichlorodifluoromethane ND - 0.0050 - - - - 1,1-Dichloroethane ND - 0.0050 - - - - 1,2-Dichloroethane (1,2-DCA) ND 0.0433 0.0050 - - 87 42-145 cis-1,2	2-Chlorotoluene	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane ND - 0.0040 - - - - 1,2-Dibromoethane (EDB) ND 0.0513 0.0040 0.050 - 103 67-119 Dibromomethane ND - 0.0050 - - - - 1,2-Dichlorobenzene ND - 0.0050 - - - - 1,3-Dichlorobenzene ND - 0.0050 - - - - 1,4-Dichlorobenzene ND - 0.0050 - - - - 1,4-Dichlorobenzene ND - 0.0050 - - - - 1,4-Dichlorobenzene ND - 0.0050 - - - - 1,1-Dichlorobethane ND - 0.0050 - - - - 1,2-Dichlorobethane ND 0.0433 0.0050 0.050 - 87 42-145 cis-1,2-Dichlorobethene	4-Chlorotoluene	ND	-	0.0050	-	-	-	-
1,2-Dibromoethane (EDB) ND 0.0513 0.0040 0.050 - 103 67-119 Dibromomethane ND - 0.0050 - - - - - 1,2-Dichlorobenzene ND - 0.0050 - - - - - 1,4-Dichlorobenzene ND - 0.0050 -	Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromoethane (EDB) ND 0.0513 0.0040 0.050 - 103 67-119 Dibromomethane ND - 0.0050 - - - - - 1,2-Dichlorobenzene ND - 0.0050 - - - - - 1,4-Dichlorobenzene ND - 0.0050 -	1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
Dibromomethane ND - 0.0050 - - - - 1,2-Dichlorobenzene ND - 0.0050 - - - - - 1,3-Dichlorobenzene ND - 0.0050 - - - - - - Dichlorodifluoromethane ND - 0.0050 -	1,2-Dibromoethane (EDB)	ND	0.0513	0.0040	0.050	-	103	67-119
1,3-Dichlorobenzene ND - 0.0050 - - - - 1,4-Dichlorobenzene ND - 0.0050 - - - - - Dichlorodifluoromethane ND - 0.0050 -	Dibromomethane	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene ND - 0.0050 - <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane ND - 0.0050 - - - - 1,1-Dichloroethane ND - 0.0050 - - - - 1,2-Dichloroethane (1,2-DCA) ND 0.0499 0.0040 0.050 - 100 58-135 1,1-Dichloroethene ND 0.0433 0.0050 0.050 - 87 42-145 cis-1,2-Dichloroethene ND - 0.0050 - - - - trans-1,2-Dichloroethene ND - 0.0050 - - - - 1,2-Dichloropropane ND - 0.0050 - - - - 1,3-Dichloropropane ND - 0.0050 - - - - 2,2-Dichloropropane ND - 0.0050 - - - - 1,1-Dichloropropene ND - 0.0050 - - - - cis-1,3-Dichloropropene	1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane ND - 0.0050 - <td>1,4-Dichlorobenzene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA) ND 0.0499 0.0040 0.050 - 100 58-135 1,1-Dichloroethene ND 0.0433 0.0050 0.050 - 87 42-145 cis-1,2-Dichloroethene ND - 0.0050 - - - - trans-1,2-Dichloroethene ND - 0.0050 - - - - - 1,2-Dichloropropane ND - 0.0050 - - - - - 1,3-Dichloropropane ND - 0.0050 -	Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethene ND 0.0433 0.0050 0.050 - 87 42-145 cis-1,2-Dichloroethene ND - 0.0050 - - - - - trans-1,2-Dichloroethene ND - 0.0050 - - - - - - 1,2-Dichloropropane ND - 0.0050 - <td>1,1-Dichloroethane</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethene ND 0.0433 0.0050 0.050 - 87 42-145 cis-1,2-Dichloroethene ND - 0.0050 - - - - - trans-1,2-Dichloroethene ND - 0.0050 - - - - - - 1,2-Dichloropropane ND - 0.0050 - <td>1,2-Dichloroethane (1,2-DCA)</td> <td>ND</td> <td>0.0499</td> <td>0.0040</td> <td>0.050</td> <td>-</td> <td>100</td> <td>58-135</td>	1,2-Dichloroethane (1,2-DCA)	ND	0.0499	0.0040	0.050	-	100	58-135
cis-1,2-Dichloroethene ND - 0.0050 - - - - trans-1,2-Dichloroethene ND - 0.0050 - - - - - 1,2-Dichloropropane ND - 0.0050 - - - - - 1,3-Dichloropropane ND - 0.0050 - - - - - 2,2-Dichloropropane ND - 0.0050 - - - - - 1,1-Dichloropropene ND - 0.0050 - - - - - cis-1,3-Dichloropropene ND - 0.0050 - - - - -	1,1-Dichloroethene	ND	0.0433	0.0050	0.050	-	87	42-145
1,2-Dichloropropane ND - 0.0050 - - - - 1,3-Dichloropropane ND - 0.0050 - - - - 2,2-Dichloropropane ND - 0.0050 - - - - 1,1-Dichloropropene ND - 0.0050 - - - - cis-1,3-Dichloropropene ND - 0.0050 - - - -	cis-1,2-Dichloroethene	ND		0.0050		-		
1,2-Dichloropropane ND - 0.0050 - - - - 1,3-Dichloropropane ND - 0.0050 - - - - 2,2-Dichloropropane ND - 0.0050 - - - - 1,1-Dichloropropene ND - 0.0050 - - - - cis-1,3-Dichloropropene ND - 0.0050 - - - -	trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane ND - 0.0050 - - - - 2,2-Dichloropropane ND - 0.0050 - - - - - 1,1-Dichloropropene ND - 0.0050 - - - - - cis-1,3-Dichloropropene ND - 0.0050 - - - - -	1,2-Dichloropropane		-		-	-	-	-
2,2-Dichloropropane ND - 0.0050 - - - - 1,1-Dichloropropene ND - 0.0050 - - - - cis-1,3-Dichloropropene ND - 0.0050 - - - -	1,3-Dichloropropane		-		-	-	-	-
1,1-Dichloropropene ND - 0.0050 - - - - cis-1,3-Dichloropropene ND - 0.0050 - - - - -			-			-	-	-
cis-1,3-Dichloropropene ND - 0.0050			-				-	-
			-				-	-
	trans-1,3-Dichloropropene	ND	-	0.0050			-	-

(Cont.)

Client: Stellar Environmental Solutions

Date Prepared: 6/5/15

Date Analyzed: 6/6/15 - 6/8/15 **Instrument:** GC16, GC18

Matrix: Soil

Project: #2015-28; Soil Profiling

WorkOrder: 1506294

BatchID: 105924

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/Kg

Sample ID: MB/LCS-105924

1506270-002AMS/MSD

OC Summary	Report t	for SV	V8260R
	IZCDOL (IUI SY	∀ 0200D

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	0.0485	0.0050	0.050	-	97	52-129
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0512	0.0050	0.050	-	103	53-125
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0523	0.0050	0.050	-	105	58-122
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0455	0.0050	0.050	-	91	76-130
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0472	0.0050	0.050	-	94	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	0.126	0.132		0.12	101	106	70-130
Toluene-d8	0.124	0.118		0.12	100	94	70-130
4-BFB	0.0126	0.0116		0.012	101	92	70-130
Benzene-d6	0.140	0.0853		0.10	140	85	60-140
Ethylbenzene-d10	0.128	0.0927		0.10	128	93	60-140
1,2-DCB-d4	0.101	0.0938		0.10	101	94	60-140

Quality Control Report

Client: Stellar Environmental Solutions

Date Prepared: 6/5/15

Date Analyzed: 6/6/15 - 6/8/15 **Instrument:** GC16, GC18

Matrix: Soil

Project: #2015-28; Soil Profiling

WorkOrder: 1506294

BatchID: 105924

Extraction Method: SW5030B

Analytical Method: SW8260B **Unit:** mg/Kg

Sample ID: MB/LCS-105924

1506270-002AMS/MSD

OC Summary	Report	for	SW8260R
	IXCDULU.	LUL	S W OZUUD

	QC Build	inur y rec	7017101	5110200	_				
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0501	0.0480	0.050	ND	100	96	70-130	4.26	20
Benzene	0.0450	0.0428	0.050	ND	90	86	70-130	5.01	20
t-Butyl alcohol (TBA)	0.238	0.235	0.20	ND	119	118	70-130	1.26	20
Chlorobenzene	0.0512	0.0486	0.050	ND	102	97	70-130	5.17	20
1,2-Dibromoethane (EDB)	0.0564	0.0536	0.050	ND	113	107	70-130	5.09	20
1,2-Dichloroethane (1,2-DCA)	0.0531	0.0512	0.050	ND	106	102	70-130	3.71	20
1,1-Dichloroethene	0.0443	0.0423	0.050	ND	89	85	70-130	4.79	20
Diisopropyl ether (DIPE)	0.0482	0.0460	0.050	ND	96	92	70-130	4.74	20
Ethyl tert-butyl ether (ETBE)	0.0545	0.0520	0.050	ND	109	104	70-130	4.74	20
Methyl-t-butyl ether (MTBE)	0.0554	0.0534	0.050	ND	111	107	70-130	3.64	20
Toluene	0.0467	0.0446	0.050	ND	93	89	70-130	4.59	20
Trichloroethene	0.0493	0.0470	0.050	ND	99	94	70-130	4.68	20
Surrogate Recovery									
Dibromofluoromethane	0.128	0.129	0.12		103	103	70-130	0	20
Toluene-d8	0.123	0.123	0.12		98	98	70-130	0	20
4-BFB	0.0127	0.0127	0.012		102	101	70-130	0.268	20
Benzene-d6	0.131	0.125	0.10		131	125	60-140	4.21	20
Ethylbenzene-d10	0.122	0.116	0.10		122	116	60-140	4.66	20
1,2-DCB-d4	0.104	0.100	0.10		104	100	60-140	3.76	20

Client: Stellar Environmental Solutions

Date Prepared:6/8/15Date Analyzed:6/8/15Instrument:GC17Matrix:Soil

Project: #2015-28; Soil Profiling

WorkOrder: 1506294 **BatchID:** 106005

Extraction Method: SW3550B

Analytical Method: SW8270C

Unit: mg/Kg

Sample ID: MB/LCS-106005

1506294-005AMS/MSD

QC Summary Report for SW8270C

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acenaphthene	ND	3.84	0.25	5	-	77	30-130
Acenaphthylene	ND	-	0.25	-	-	-	-
Acetochlor	ND	-	0.25	-	-	-	-
Anthracene	ND	-	0.25	-	-	-	-
Benzidine	ND	-	1.3	-	-	-	-
Benzo (a) anthracene	ND	-	0.25	-	-	-	-
Benzo (b) fluoranthene	ND	-	0.25	-	-	-	-
Benzo (k) fluoranthene	ND	-	0.25	-	-	-	-
Benzo (g,h,i) perylene	ND	-	0.25	-	-	-	-
Benzo (a) pyrene	ND	-	0.25	-	-	-	-
Benzyl Alcohol	ND	-	1.3	-	-	-	-
1,1-Biphenyl	ND	-	0.25	-	-	-	-
Bis (2-chloroethoxy) Methane	ND	-	0.25	-	-	-	-
Bis (2-chloroethyl) Ether	ND	-	0.25	-	-	-	-
Bis (2-chloroisopropyl) Ether	ND	-	0.25	-	-	-	-
Bis (2-ethylhexyl) Adipate	ND	-	0.25	-	-	-	-
Bis (2-ethylhexyl) Phthalate	ND	-	0.25	-	-	-	-
4-Bromophenyl Phenyl Ether	ND	-	0.25	-	-	-	-
Butylbenzyl Phthalate	ND	-	0.25	-	-	-	-
4-Chloroaniline	ND	-	0.50	-	-	-	-
4-Chloro-3-methylphenol	ND	4.30	0.25	5	-	86	30-130
2-Chloronaphthalene	ND	-	0.25	-	-	-	-
2-Chlorophenol	ND	4.35	0.25	5	-	87	30-130
4-Chlorophenyl Phenyl Ether	ND	-	0.25	-	-	-	-
Chrysene	ND	-	0.25	-	-	-	-
Dibenzo (a,h) anthracene	ND	-	0.25	-	-	-	-
Dibenzofuran	ND	-	0.25	-	-	-	-
Di-n-butyl Phthalate	ND	-	0.25	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.25	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.25	-	-	-	-
1,4-Dichlorobenzene	ND	3.70	0.25	5	-	74	30-130
3,3-Dichlorobenzidine	ND	-	0.50	-	-	-	-
2,4-Dichlorophenol	ND	-	0.25	-	-	-	-
Diethyl Phthalate	ND	-	0.25	-	-	-	-
2,4-Dimethylphenol	ND	-	0.25	-	-	-	-
Dimethyl Phthalate	ND	-	0.25	-	-	-	-
4,6-Dinitro-2-methylphenol	ND	-	1.3	-	-	-	-
2,4-Dinitrophenol	ND	-	6.3	-	-	-	-
2,4-Dinitrotoluene	ND	4.13	0.25	5	-	83	30-130
2,6-Dinitrotoluene	ND	****	0.25	-	_		

Client: Stellar Environmental Solutions

Date Prepared: 6/8/15 **Date Analyzed:** 6/8/15 **Instrument:** GC17

Matrix:

Analyte

Project: #2015-28; Soil Profiling

Soil

WorkOrder: 1506294 **BatchID:** 106005

Extraction Method: SW3550B

Analytical Method: SW8270C

Unit: mg/Kg

Sample ID: MB/LCS-106005

SPK

1506294-005AMS/MSD

MB SS

LCS

LCS

QC Sumn	nary Report	for SW8270C
MB Result	LCS Result	RL

Analyte	MB Result	Result	KL	Val	MB SS %REC	%REC	LCS
Di-n-octyl Phthalate	ND	-	0.50	-	-	-	-
1,2-Diphenylhydrazine	ND	-	0.25	-	-	-	-
Fluoranthene	ND	-	0.25	-	-	-	-
Fluorene	ND	-	0.25	-	-	-	-
Hexachlorobenzene	ND	-	0.25	-	-	-	-
Hexachlorobutadiene	ND	-	0.25	-	-	-	-
Hexachlorocyclopentadiene	ND	-	1.3	-	-	-	-
Hexachloroethane	ND	-	0.25	-	-	-	-
Indeno (1,2,3-cd) pyrene	ND	-	0.25	-	-	-	-
Isophorone	ND	-	0.25	-	-	-	-
2-Methylnaphthalene	ND	-	0.25	-	-	-	-
2-Methylphenol (o-Cresol)	ND	-	0.25	-	-	-	-
3 & 4-Methylphenol (m,p-Cresol)	ND	-	0.25	-	-	-	-
Naphthalene	ND	-	0.25	-	-	-	-
2-Nitroaniline	ND	-	1.3	-	-	-	-
3-Nitroaniline	ND	-	1.3	-	-	-	-
4-Nitroaniline	ND	-	1.3	-	-	-	-
Nitrobenzene	ND	-	0.25	-	-	-	-
2-Nitrophenol	ND	-	1.3	-	-	-	-
4-Nitrophenol	ND	3.14	1.3	5	-	63	30-130
N-Nitrosodiphenylamine	ND	-	0.25	-	-	-	-
N-Nitrosodi-n-propylamine	ND	3.40	0.25	5	-	68	30-130
Pentachlorophenol	ND	3.00	1.3	5	-	60	30-130
Phenanthrene	ND	-	0.25	-	-	-	-
Phenol	ND	3.92	0.25	5	-	78	30-130
Pyrene	ND	4.08	0.25	5	-	82	30-130
1,2,4-Trichlorobenzene	ND	4.12	0.25	5	-	82	30-130
2,4,5-Trichlorophenol	ND	-	0.25	-	-	-	-
2,4,6-Trichlorophenol	ND	-	0.25	-	-	-	-
Surrogate Recovery							
2-Fluorophenol	4.37	4.19		5	87	84	30-130
Phenol-d5	4.81	4.47		5	96	89	30-130
Nitrobenzene-d5	4.16	4.00		5	83	80	30-130
2-Fluorobiphenyl	4.15	3.87		5	83	77	30-130
2,4,6-Tribromophenol	1.98	2.67		5	40	53	16-130
4-Terphenyl-d14	4.36	4.15		5	87	83	30-130

2-Fluorophenol	4.37	4.19	5	87	84	30-130
Phenol-d5	4.81	4.47	5	96	89	30-130
Nitrobenzene-d5	4.16	4.00	5	83	80	30-130
2-Fluorobiphenyl	4.15	3.87	5	83	77	30-130
2,4,6-Tribromophenol	1.98	2.67	5	40	53	16-130
4-Terphenyl-d14	4.36	4.15	5	87	83	30-130

Quality Control Report

Client: Stellar Environmental Solutions

Date Prepared:6/8/15Date Analyzed:6/8/15Instrument:GC17

Matrix:

Project: #2015-28; Soil Profiling

Soil

WorkOrder: 1506294 **BatchID:** 106005

Extraction Method: SW3550B

Analytical Method: SW8270C **Unit:** mg/Kg

Sample ID: MB/LCS-106005

1506294-005AMS/MSD

OC Summary Report for SW8270C

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Acenaphthene	4.04	4.24	5	ND	81	85	30-130	4.82	30
4-Chloro-3-methylphenol	4.47	4.68	5	ND	89	94	30-130	4.54	30
2-Chlorophenol	4.47	4.75	5	ND	89	95	30-130	6.21	30
1,4-Dichlorobenzene	3.66	3.86	5	ND	73	77	30-130	5.26	30
2,4-Dinitrotoluene	4.34	4.51	5	ND	87	90	30-130	3.68	30
4-Nitrophenol	3.96	4.10	5	ND	79	82	30-130	3.47	30
N-Nitrosodi-n-propylamine	3.50	3.72	5	ND	70	74	30-130	5.97	30
Pentachlorophenol	5.63	5.83	5	ND	113	117	30-130	3.48	30
Phenol	3.97	4.23	5	ND	79	85	30-130	6.30	30
Pyrene	4.30	4.60	5	ND	86	92	30-130	6.84	30
1,2,4-Trichlorobenzene	4.15	4.41	5	ND	83	88	30-130	6.12	30
Surrogate Recovery									
2-Fluorophenol	4.16	4.46	5		83	89	30-130	6.79	30
Phenol-d5	4.43	4.59	5		89	92	30-130	3.73	30
Nitrobenzene-d5	3.87	4.03	5		77	81	30-130	4.08	30
2-Fluorobiphenyl	3.92	4.16	5		78	83	30-130	5.92	30
2,4,6-Tribromophenol	2.95	3.07	5		59	61	16-130	3.99	30
4-Terphenyl-d14	4.12	4.40	5		82	88	30-130	6.48	30

Client: Stellar Environmental Solutions

Date Prepared: 6/5/15 **Date Analyzed:** 6/8/15 **Instrument:** ICP-MS2

Matrix: Soil

Project: #2015-28; Soil Profiling

WorkOrder: 1506294 **BatchID:** 105932

Extraction Method: SW3050B

Analytical Method: SW6020 **Unit:** mg/Kg

Sample ID: MB/LCS-105932

1506276-024AMS/MSD

QC Summary Report for Metals											
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits				
Antimony	ND	53.4	0.50	50	-	107	75-125				
Arsenic	ND	57.6	0.50	50	-	115	75-125				
Barium	ND	570	5.0	500	-	114	75-125				
Beryllium	ND	58.0	0.50	50	-	116	75-125				
Cadmium	ND	55.6	0.25	50	-	111	75-125				
Chromium	ND	56.4	0.50	50	-	113	75-125				
Cobalt	ND	56.4	0.50	50	-	113	75-125				
Copper	ND	59.3	0.50	50	-	119	75-125				
Lead	ND	55.2	0.50	50	-	110	75-125				
Mercury	ND	1.25	0.050	1.25	-	100	75-125				
Molybdenum	ND	52.0	0.50	50	-	104	75-125				
Nickel	ND	58.4	0.50	50	-	117	75-125				
Selenium	ND	57.4	0.50	50	-	115	75-125				
Silver	ND	54.0	0.50	50	-	108	75-125				
Thallium	ND	52.7	0.50	50	-	105	75-125				
Vanadium	ND	56.2	0.50	50	-	112	75-125				
Zinc	ND	591	5.0	500	-	118	75-125				
Surrogate Recovery											
Terbium	483	522		500	97	104	70-130				

Quality Control Report

Client: Stellar Environmental Solutions

Date Prepared: 6/5/15 **Date Analyzed:** 6/8/15 **Instrument:** ICP-MS2

Matrix: Soil

Project: #2015-28; Soil Profiling

WorkOrder: 1506294

BatchID: 105932 **Extraction Method:** SW3050B

Analytical Method: SW6020

Unit: mg/Kg

Sample ID: MB/LCS-105932

1506276-024AMS/MSD

QC Summary Report for Metals												
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit			
Antimony	48.3	51.0	50	ND	96	101	75-125	5.32	20			
Arsenic	51.3	55.7	50	5.241	92	101	75-125	8.16	20			
Barium	1050	926	500	400	129,F1	105	75-125	12.3	20			
Beryllium	42.4	43.3	50	0.70	83	85	75-125	2.03	20			
Cadmium	49.2	52.0	50	ND	98	104	75-125	5.41	20			
Chromium	77.0	87.6	50	33	87	108	75-125	12.9	20			
Cobalt	55.7	61.5	50	9.2	93	105	75-125	9.95	20			
Copper	69.2	79.0	50	24	89	109	75-125	13.2	20			
Lead	56.1	61.5	50	8.6	95	106	75-125	9.24	20			
Mercury	1.13	1.22	1.25	ND	89	96	75-125	7.80	20			
Molybdenum	45.4	48.2	50	ND	90	96	75-125	5.99	20			
Nickel	68.9	78.8	50	22	94	114	75-125	13.5	20			
Selenium	48.2	52.0	50	ND	96	103	75-125	7.46	20			
Silver	42.7	45.4	50	ND	85	91	75-125	6.04	20			
Thallium	44.8	47.9	50	ND	89	95	75-125	6.73	20			
Vanadium	NR	NR	50	70	NR	NR	75-125	NR	20			
Zinc	553	602	500	58	99	109	75-125	8.64	20			
Surrogate Recovery												
Terbium	469	498	500		94	100	70-130	6.06	20			

1506294

Quality Control Report

Client: Stellar Environmental Solutions WorkOrder:

Date Prepared:6/5/15BatchID:105944Date Analyzed:6/8/15Extraction Method:SW5030B

Instrument: GC7 **Analytical Method:** SW8021B/8015Bm

Matrix: Soil Unit: mg/Kg

Project: #2015-28; Soil Profiling Sample ID: MB/LCS-105944

1506283-001AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.574	0.40	0.60	-	96	70-130
MTBE	ND	0.104	0.050	0.10	-	104	70-130
Benzene	ND	0.0955	0.0050	0.10	-	95	70-130
Toluene	ND	0.0922	0.0050	0.10	-	91	70-130
Ethylbenzene	ND	0.0984	0.0050	0.10	-	98	70-130
Xylenes	ND	0.308	0.0050	0.30	-	102	70-130

2-Fluorotoluene 0.106 0.102 0.10 106 102 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	0.508	0.509	0.60	ND	85	85	70-130	0	20
MTBE	0.0984	0.107	0.10	ND	98	107	70-130	8.29	20
Benzene	0.0819	0.0844	0.10	ND	82	84	70-130	3.00	20
Toluene	0.0800	0.0836	0.10	ND	80	84	70-130	4.36	20
Ethylbenzene	0.0865	0.0886	0.10	ND	86	89	70-130	2.46	20
Xylenes	0.269	0.276	0.30	ND	90	92	70-130	2.52	20
Surrogate Recovery									
2-Fluorotoluene	0.0893	0.0897	0.10		89	90	70-130	0.470	20

Client: Stellar Environmental Solutions

Date Prepared: 6/5/15 **Date Analyzed:** 6/8/15 **Instrument:** ICP-JY

Matrix: Soil

Project: #2015-28; Soil Profiling

WorkOrder: 1506294

BatchID: 105945

Extraction Method: SW3050B **Analytical Method:** SW6010B

Unit: mg/Kg

Sample ID: MB/LCS-105945

1506294-002AMS/MSD

	QC Su	mmary I	Report 1	for Lead						
Analyte	MB Result	LCS Result		RL	SPK Val		B SS REC	LCS %REC		LCS Limits
Lead	ND	50.2		5.0	50	-		100		75-125
Surrogate Recovery										
Tb 350.917	507	504			500	10	1	101		70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/N Limit	_	RPD	RPD Limit
Lead	60.1	56.9	50	8.138	104	98	75-12	25	5.51	25
Surrogate Recovery										
Tb 350.917	502	464	500		100	93	70-13	80	7.76	20

Client: Stellar Environmental Solutions

Date Prepared: 6/5/15 **Date Analyzed:** 6/8/15 **Instrument:** ICP-JY

Matrix:

Tb 350.917

Soil **Project:** #2015-28; Soil Profiling WorkOrder: 1506294

BatchID: 105949 **Extraction Method: SW3050B**

Analytical Method: SW6010B

Unit: mg/Kg

Sample ID: MB/LCS-105949

101

1506294-006AMS/MSD

70-130

5.98

20

	QC Su	mmary I	Report 1	for Lead						
Analyte	MB Result	LCS Result		RL	SPK Val		B SS REC	LCS %REC		LCS Limits
Lead	ND	53.4		5.0	50	-		107		75-125
Surrogate Recovery										
Tb 350.917	508	521			500	10)2	104		70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/I Limi	_	RPD	RPD Limit
Lead	58.8	60.4	50	ND	113	116	75-1	25	2.77	25
Surrogate Recovery										

500

503

534

Quality Control Report

Client:Stellar Environmental SolutionsWorkOrder:1506294Date Prepared:6/8/15BatchID:105996Date Analyzed:6/9/15Extraction Method:SW3050B

Instrument: ICP-JY Analytical Method: SW6010B Matrix: Soil Unit: mg/Kg

Project: #2015-28; Soil Profiling **Sample ID:** MB/LCS-105996

QC Summary Report for Lead											
MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits					
ND	50.6	5.0	50	-	101	75-125					
536	577		500	107	115	70-130					
	MB Result ND	MB LCS Result Result	MB LCS RL Result ND 50.6 5.0	MB LCS RL SPK Result Result Val	MB LCS Result Result SPK WB SS Wal %REC	MB Result LCS Result RL Val SPK Val MB SS WREC LCS WREC ND 50.6 5.0 50 - 101					

Quality Control Report

Client: Stellar Environmental Solutions

Date Prepared: 6/5/15 **Date Analyzed:** 6/5/15

Instrument: GC6A, GC6B

Matrix: Soil

Project: #2015-28; Soil Profiling

WorkOrder: 1506294

BatchID: 105926

Extraction Method: SW3550B

Analytical Method: SW8015B

Unit: mg/Kg

Sample ID: MB/LCS-105926

1506272-002AMS/MSD

	QC Report fo	r SW801:	5B w/ou	ut SG Cle	an-Up					
Analyte	MB Result	LCS Result		RL	SPK Val		B SS REC	LCS %REC		LCS Limits
TPH-Diesel (C10-C23)	ND	46.2		1.0	40	-		115		70-130
TPH-Motor Oil (C18-C36)	ND	-		5.0	-	-		-		-
Surrogate Recovery										
C9	26.3	24.9			25	10)5	100		70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/N Limi	_	RPD	RPD Limit
TPH-Diesel (C10-C23)	74.6	77.6	40	31.91	107	114	70-1	30	3.95	30
Surrogate Recovery										
C9	24.2	24.7	25		97	99	70-1	30	2.04	30

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1506294 ClientCode: SESB

WaterTrax	WriteOn	□ EDF	Excel	■ EQuIS	🗾 Email	HardCopy	ThirdParty	J-flag
-----------	---------	-------	-------	---------	---------	----------	------------	--------

Report to: Bill to: Requested TAT: 5 days

Richard Makdisi Email: rmakdisi@stellar-environmental.com;sbittm Accounts Payable

Stellar Environmental Solutions cc/3rd Party: Stellar Environmental Solutions

2198 Sixth St. #201 PO: 2198 Sixth St. #201 Date Received: 06/05/2015
Berkeley, CA 94710 ProjectNo: #2015-28; Soil Profiling Berkeley, CA 94710 Date Printed: 06/05/2015

(510) 644-3123 FAX: (510) 644-3859 Iwheeler@stellar-environmental.com

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
4500004 004	02	Call	0/0/0045 44.05							Α						
1506294-001	C3	Soil	6/3/2015 11:25		^				А	A	_					
1506294-002	C4	Soil	6/3/2015 11:55		Α					A	A	A				
1506294-003	C5	Soil	6/3/2015 12:25			Α	А			A	А	A				-
1506294-004	C6	Soil	6/3/2015 12:55				-		Α	A		A				<u> </u>
1506294-005	C7	Soil	6/3/2015 13:25		Α		Α	Α		Α	Α	Α				<u> </u>
1506294-006	C8	Soil	6/3/2015 13:55							Α	Α					

Test Legend:

1	8081_S	2	8082_PCB_S	3	8260B_S	4	8270_S	5	CAM17MS_S
6	G-MBTEX_S	7	PB_S	8	TPH(DMO)_S	9		10	
11		12							

Prepared by: Agustina Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	STELLAR ENVIRONMENTAL SOLUTIONS	QC Level: LEVEL 2	Work Order: 1506294
Project:	#2015-28; Soil Profiling	Client Contact: Richard Makdisi	Date Received: 6/5/2015

Comments: Contact's Email: rmakdisi@stellar-

environmental.com;sbittman@stellar-

		☐ WaterTrax	WriteOn EDF	Excel]Fax ☑ Email	HardC	opyThirdPart	tyJ	l-flag
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1506294-001A	C3	Soil	SW8021B/8015Bm (G/MBTEX)	1	16OZ GJ		6/3/2015 11:25	5 days	
			SW6020 (CAM 17)					5 days	
1506294-002A	C4	Soil	SW8015B (Diesel & Motor Oil)	1	16OZ GJ		6/3/2015 11:55	5 days	
			SW6010B (Lead)					5 days	
			SW8021B/8015Bm (G/MBTEX)					5 days	
			SW8081A (OC Pesticides)					5 days	
1506294-003A	C5	Soil	SW8015B (Diesel & Motor Oil)	1	16OZ GJ		6/3/2015 12:25	5 days	
			SW6010B (Lead)					5 days	
			SW8021B/8015Bm (G/MBTEX)					5 days	
			SW8260B (VOCs)					5 days	
			SW8082 (PCBs Only)					5 days	
1506294-004A	C6	Soil	SW8015B (Diesel & Motor Oil)	1	16OZ GJ		6/3/2015 12:55	5 days	
			SW8021B/8015Bm (G/MBTEX)					5 days	
			SW6020 (CAM 17)					5 days	
1506294-005A	C7	Soil	SW8015B (Diesel & Motor Oil)	1	16OZ GJ		6/3/2015 13:25	5 days	
			SW6010B (Lead)					5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	: STELLAR I	ENVIRONMENTAL S	SOLUTIONS		QC Level:	LEVEL 2			Worl	der:	1506294
Project:	#2015-28; S	Soil Profiling		(Client Contact:	Richard Makdisi			Date R	eceived:	6/5/2015
Comments:				Co		rmakdisi@stellar- environmental.com	ı;sbittman@stellar-				
		☐ WaterTrax	WriteOn	EDF	Excel	☐Fax ✓E	mail Hard0	CopyThirdPar	tyJ	-flag	
Lab ID	Client ID	Matrix	Test Name		Container /Composit		vative De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1506294-005A	C7	Soil	SW8021B/801	5Bm (G/MBTEX)	1	16OZ GJ		6/3/2015 13:25	5 days		
			SW8270C (SV	OCs)					5 days		
			SW8260B (VC	OCs)					5 days		
			SW8081A (OC	Pesticides)					5 days		
1506294-006A	C8	Soil	SW6010B (Le	ad)	1	16OZ GJ		6/3/2015 13:55	5 days		
			SW8021B/801	5Bm (G/MBTEX)					5 days		

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

506294 Chain of Custody Record

Laboratory McCampbell A	nalytical Inc			Me	ethod of Shipment	and Del	very 2	UG	VI	e	~									Date	f	
Address1534 Willow Pa	ass Road				nipment No			Y						7			1	n		Page	of	_
Pittsburg, CA 9 877-252-9262	4565-1701				rbill No						/	7	7	A		N Ar	alys R	equired	Λ	0	/	1
				_	poler No			7					/	X.	7	5 /		76	6/1	× /	/	
Project Owner BayWest D		lin CA			oject Manager Richard	l Makdis	i			/	/ /	1 8		/ /	a.V	1	4	Van	1/2	/ /-/		
Site Address	. Biva, Dub	IIII CA			lephone No. (510) 644	-3123				Fille	000	untain/	n		X	JA	1		49	//		
Sol	POL	1			(510) 011					1	No. of Con.	0	$\sqrt{}$	/.	/1		21	W. 1		// .	Remarks	
Project Name	44011	1170	} —		X 110.	1	1/	7	/	/ /	/ ×/	14	/ -	()/	XV	18/x	y C	14	/ /	′ / '	Telliaiks	
Project Number 2015-28				Sa	amplers: (Signature)	1	3/				/15	Va	Ø S	0	W;	(A)	YOU'	2				
Field Sample Number	Location/ Depth	Date	Time	Sample Type	Type/Size of Container	Cooler	servation Chemi	cal /				/*	7	X 8	7/	N	Yu	<u>/</u>		/		
<i>C</i> 3	0-8"	73/5	1125	Svil	16 02 glass	yes	no) /	10	1	X				X							
C4	Λ	j	1155	1	10	1	1		١	1	<	X		X		X						
C5			1225							1	1	χ	X			XX						
CG			1255				\neg		T	1	X				X	X						
<u>C</u> 7			1325						1	1	X)	X	X	X		X	Y	1				
18	V	/	1355	. /	/	V	8/		1	1	1	X	/ :				1					
<i></i>	•	· ·	درر،												\dashv					100		
										-	+		-	+	7	-						-
						-					-	-	ICE	/t ·		DITIO	211		Δ₽	PROPRI	ATE	-
			-								_		HE	AD S	SPA	CEIA	BSE	IT.		CONTA	INERS	
				!									DE	CHL	OR	NATE	DIN	LA	3		RVED II	LAB
							-						DD		DV	TION		108	GIM	ETALS OT	HER	
1 0	,												FR									1
Relinquished by:	71	Date	Received Signat		Dur /	Date 5-/	Relinqu	ished by:	/	2		-/	1	2	Date	Receiv	ed by:	1	W	Stim	/. Date	115
Printed Henry Pietropaoli		Time	Printed	1	MMUN/	130	Print	ed /	/	40	чч	12	/	9	S/	Prin	ted /	HATK	sti	va V.	Time	
	ontol	(%)			A AA I	- Julie			_		11	1		-	111110	· ····	, , , , , , , , , , , , , , , , , , ,	JA	in	1	161	5
Company Stellar Environm	entai		Compa	iny	OF!	-	Com	pany		1	N	1		16	15	Con	pany _	10	177		_ 101	
Turnaround Time: Sample	es on ice						100	ished by:							Date	Receiv	0.50				Date	
Comments:	in dara	_	12				Sign	ature						_		Sign	ature _					
5+0	14 00 A 0						Print	ed							Time	Prin	ed				Time	1
					,T		Com	pany								Com	pany _					
																						1

Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

Lab job no. _

Sample Receipt Checklist

Client Name:	Stellar Environment	al Solutions			Date and T	ime Received:	6/5/2015 5:55:43 PM
Project Name:	#2015-28; Soil Prof	iling			LogIn Revie	ewed by:	Agustina Venegas
WorkOrder №:	1506294	Matrix: Soil			Carrier:	Bernie Cummii	ns (MAI Courier)
		Chain of C	ustod	v (COC)	<u>Information</u>		
Chain of custody p	present?		Yes	✓	No 🗆		
Chain of custody s	signed when relinquis	shed and received?	Yes	•	No \square		
Chain of custody a	agrees with sample la	abels?	Yes	•	No \square		
Sample IDs noted	by Client on COC?		Yes	•	No 🗌		
Date and Time of o	collection noted by C	Client on COC?	Yes	•	No 🗌		
Sampler's name no	oted on COC?		Yes	✓	No 🗆		
		<u>Sampl</u>	e Rece	eipt Info	<u>rmation</u>		
Custody seals inta	ct on shipping conta	iner/cooler?	Yes		No \square		NA 🗹
Shipping container	r/cooler in good cond	dition?	Yes	✓	No 🗌		
Samples in proper	containers/bottles?		Yes	✓	No 🗌		
Sample containers	s intact?		Yes	✓	No 🗆		
Sufficient sample v	volume for indicated	test?	Yes	•	No 🗆		
		Sample Preservation	on and	Hold T	ime (HT) Infor	mation	
All samples receive	ed within holding tim	ne?	Yes	✓	No 🗆		
Sample/Temp Blar	nk temperature			Temp): 2.5°C		NA 🗌
Water - VOA vials	have zero headspace	ce / no bubbles?	Yes		No 🗆		NA 🗸
Sample labels che	cked for correct pres	servation?	Yes	✓	No 🗌		
pH acceptable upo	on receipt (Metal: <2	; 522: <4; 218.7: >8)?	Yes		No 🗆		NA 🗸
Samples Received	d on Ice?		Yes	✓	No 🗆		
		(Ісе Туре	e: WE	T ICE)		
<u>UCMR3 Samples:</u> Total Chlorine te	ested and acceptable	e upon receipt for EPA 522?	Yes		No 🗆		NA 🗸
Free Chlorine tes 300.1, 537, 539?		upon receipt for EPA 218.7,	Yes		No 🗆		NA 🗹
* NOTE: If the "No	o" box is checked, se	ee comments below.					
Comments:			==				

APPENDIX C

Historical Groundwater, Soil, and Soil Vapor Sample Results

APPENDIX C

Tables

VOLATILE ORGANIC COMPOUNDS IN SOIL1

Aster Apartments 6775 Golden Gate Drive Dublin, California

									еропеч птп		l gran	(µ.g, v.g)								
		Sample					2-	1,2-	1,3-	1,4-			n-				1,2,4-	1,3,5-		All
	Date	Depth		Bromo-	n-Butyl-	Chloro-	Chloro-	Dichloro-	Dichloro-	Dichloro-	Ethyl-		Propyl-	Tetrachloro-		Trichloro-	Trimethyl-	Trimethyl-	Xylenes,	Other
Sample ID	Collected	(feet bgs)	Acetone	benzene	benzene	benzene	toluene	benzene	benzene	benzene	benzene	Naphthalene	benzene	ethene	Toluene	ethene	benzene	benzene	Total	VOCs ²
Samples Collecte	d within Footp	rint of Forn	ner Buildi	ng B	•	•	•	•			•		•	•	•	•	•	•	•	
SSB1-1.0	12/16/2014	1.0	75	<4.4 ³	<4.4	<4.4	<4.4	36	<4.4	<4.4	<4.4	<8.7	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<8.7	ND
SSB2-1.0	12/16/2014	1.0	<37	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<7.3	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<7.3	ND
SSB3-1.0	12/16/2014	1.0	<41	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	ND
SSB4-1.0	12/17/2014	1.0	59	<4	<4	<4	<4	<4	<4	<4	<4	<8	<4	<4	<4	<4	<4	<4	<8	ND
SSB5-1.5	12/17/2014	1.5	<41	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.3	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.3	ND
SSB6-1.0	12/22/2014	1.0	<51	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<10	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<10	ND
SSB7-1.0	12/22/2014	1.0	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.8	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.8	ND
SSB8-2.5	12/30/2014	2.5	<40	<4	<4	<4	<4	<4	<4	<4	<4	<7.9	<4	<4	<4	<4	<4	<4	<7.9	ND
HL-2-8.0	12/29/2014	8.0	<37	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<7.4	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<7.4	ND
HL3-W-8.0	2/16/2015	8.0	<37	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<7.4	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<7.4	ND
HL3-E-8.0	2/16/2015	8.0	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	ND
HL3-SW-10.0	2/20/2015	10.0	<43	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<8.6	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<8.6	ND
HL3-N-8.0	2/16/2015	8.0	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	ND
HL3-12.8	2/20/2015	12.8	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	<4.2	4.4	<4.2	<4.2	<4.2	<4.2	<8.4	ND
HL3-15.0	2/20/2015	15.0	<40	<4	<4	<4	<4	<4	<4	<4	<4	<8	<4	<4	<4	<4	<4	<4	<8	ND
HL-4-8.0	12/29/2014	8.0	<47	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<9.3	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<9.3	ND
HL-5-8.0	12/29/2014	8.0	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	ND
HL-7-8.0	12/29/2014	8.0	<36	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<7.2	<3.6	6.8 J	<3.6	<3.6	<3.6	<3.6	<7.2	ND
HL-9-8.0	12/29/2014	8.0	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	<3.9	11 J	<3.9	<3.9	<3.9	<3.9	<7.7	ND
HL-10-8.0	12/29/2014	8.0	61	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	<3.9	5.5 J	<3.9	<3.9	<3.9	<3.9	<7.7	ND
HL-11-8.0	12/29/2014	8.0	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	ND
HL-12-8.0	12/29/2014	8.0	<40	<4	<4	<4	<4	<4	<4	<4	<4	<8	<4	<4	<4	<4	<4	<4	<8	ND
HL-13-8.0	12/29/2014	8.0	<39	<3.9	<3.9	20	<3.9	18	<3.9	<3.9	<3.9	<7.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	ND
HL-14-8.0	12/29/2014	8.0	<40	<4	<4	<4	<4	<4	<4	<4	<4	<7.9	<4	<4	<4	<4	<4	<4	<7.9	ND
DL-2-2.5	12/30/2014	2.3	<43	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<8.5	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<8.5	ND
DL-3-2.75	12/30/2014	2.8	<51	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<10	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<10	ND
DL-4-3.0	12/30/2014	3.0	<50	<5	<5	<5	<5	<5	<5	<5	<5	<9.9	<5	<5	<5	<5	<5	<5	<9.9	ND
DL-5-3.25	12/30/2014	3.3	<46	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<9.1	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<9.1	ND
DL-6-3.5	12/30/2014	3.5	<43	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<8.5	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<8.5	ND
DL-7-3.75	12/30/2014	3.8	110	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<9.4	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<9.4	ND
DL-8-4.0	12/30/2014	4.0	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	ND
DL9-5.0	3/30/2015	5.0	<40	<4	<4	<4	<4	<4	<4	<4	<4	<8.1	<4	<4	<4	<4	<4	<4	<8.1	ND
BBFS1-2.5	1/6/2015	2.5	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	ND
Confirmation San		at the For	mer Front	End Align	ment Pit ir	Building	В													
FEPIT-EXS-11	2/17/2015	6.0	<50	<5	<5	<5	<5	<5	< 5	<5	<5	<10	<5	<5	<5	<5	<5	<5	<10	ND
FEPIT-EXB-12	2/17/2015	12.0	<50	<5	<5	<5	<5	<5	<5	<5	<5	<10	<5	<5	<5	<5	<5	<5	<10	ND
FEPIT-EXS-13	2/17/2015	6.0	<44	5.4	<4.4	4.7	20	250	36	170	<4.4	<8.8>	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<8.8	ND
FEPIT-EXB-14	2/17/2015	12.0	<41	<4.1	<4.1	6.3	<4.1	45	5	26	<4.1	<8.2	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	ND

VOLATILE ORGANIC COMPOUNDS IN SOIL¹

Aster Apartments 6775 Golden Gate Drive Dublin, California

		Sample					2-	1,2-	1,3-	1,4-		\\ \(\text{O} \\ \text{O}\'\)	n-				1,2,4-	1,3,5-		AII
	Date	Depth		Bromo-	n-Butyl-	Chloro-	Chloro-	Dichloro-	Dichloro-	Dichloro-	Ethyl-		Propyl-	Tetrachloro-		Trichloro-	Trimethyl-	Trimethyl-	Xylenes,	Other
Sample ID	Collected	(feet bgs)	Acetone	benzene	benzene	benzene	toluene	benzene	benzene	benzene	benzene	Naphthalene	benzene	ethene	Toluene	ethene	benzene	benzene	Total	VOCs ²
Confirmation San	nples Collected	at the For	mer Front	End Align	ment Pit in	Building	B (cont'd)	•		•	•		•	•	•	-	•		
FEPIT-EXS-15	2/17/2015	6.0	<41	<4.1	<4.1	<4.1	<4.1	5.4	<4.1	<4.1	<4.1	<8.2	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	ND
FEPIT-EXB-16	2/17/2015	12.0	70	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.8	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.8	ND
Confirmation San	nples Collected	at the For	mer Sum	in Buildin	ig B															
SUMP-EXS-10	2/18/2015	8.0	<40	<4	<4	<4	<4	8.9	<4	<4	<4	<8	<4	<4	<4	<4	<4	<4	<8	ND
SUMP-EXB-11	2/18/2015	14.0	<42	<4.2	<4.2	240	<4.2	1,200	<4.2	9.1	<4.2	<8.4	<4.2	56	<4.2	<4.2	<4.2	<4.2	<8.4	ND
SUMP-EXS-13	2/18/2015	10.0	<42	<4.2	<4.2	140	<4.2	240	<4.2	<4.2	<4.2	<8.3	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.3	ND
SUMP-EXB-14	2/18/2015	15.5	<45	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<8.9	<4.5	49	<4.5	<4.5	<4.5	<4.5	<8.9	ND
SUMP-EXB-15	2/18/2015	15.0	<47	<4.7	<4.7	10	<4.7	9.1	<4.7	<4.7	<4.7	<9.3	<4.7	48	<4.7	<4.7	<4.7	<4.7	<9.3	ND
SUMP-EXS-17	2/20/2015	8.0	<40	<4	<4	97	<4	170	<4	4.3	<4	<8.1	<4	<4	<4	<4	<4	<4	<8.1	ND
SUMP-EXS-18	2/20/2015	4.0	<40	<3.9	<3.9	36	<3.9	50	<3.9	<3.9	<3.9	<7.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	ND
Samples Collecte	d within Footp	rint of Forn	ner Buildi	ng C																
SSC1-1.0	12/19/2014	1.0	<47	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<9.4	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<9.4	ND
SSC2-1.0	12/19/2014	1.0	<46	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<9.1	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<9.1	ND
SSC3-1.0	12/19/2014	1.0	<44	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<8.9	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<8.9	ND
SSC4-1.0	12/23/2014	1.0	<46	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<9.2	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<9.2	ND
SSC5-1.0	12/23/2014	1.0	50	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<8.8	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<8.8	ND
SSC6-1.0	12/23/2014	1.0	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	ND
BCFS2-2.5	1/6/2015	2.5	<40	<4	<4	<4	<4	<4	<4	<4	<4	<8.1	<4	<4	<4	<4	<4	<4	<8.1	ND
BCDL1-1.0	12/30/2014	1.0	<45	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<8.9	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<8.9	ND
BCDL2-1.0	12/30/2014	1.0	<48	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<9.7	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<9.7	ND
BCDL3-1.0	12/30/2014	1.0	95	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	ND
BCDL4-2.5	3/30/2015	2.5	<38	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<7.5	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<7.5	ND
BCDL5-2.8	3/30/2015	2.8	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.8	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.8	ND
Samples Collecte	d within Footp	rint of Forn	ner Buildi														-			
SSD1-1.5	12/15/2014	1.5	<38	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<7.6	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<7.6	ND
Samples Collecte		1			1						1						_			
CW-S-3.5	12/16/2014	3.5	54	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<7.2	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<7.2	ND
WOTP2-2.5	12/30/2014	2.5	<44	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<8.9	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<8.9	ND
WOTP3-4.0	12/30/2014	4.0	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	ND
Sanitary Sewer Li					1						1	,			1	_	•			
SL1-6.2	3/25/2015	6.2	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	ND
SL2-5.8	3/25/2015	5.8	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	ND
SL3-6.2	3/25/2015	6.2	<38	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<7.6	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<7.6	ND
SL4-6.2	3/25/2015	6.2	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	ND
SL5-6.1	3/25/2015	6.1	<44	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<8.8>	<4.4	8.4	<4.4	<4.4	<4.4	<4.4	<8.8	ND
SL6-6.0	3/25/2015	6.0	<43	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<8.6	<4.3	6.9	<4.3	<4.3	<4.3	<4.3	<8.6	ND
SL7-6.5	3/25/2015	6.5	<43	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<8.6	<4.3	19	<4.3	<4.3	<4.3	<4.3	<8.6	ND

VOLATILE ORGANIC COMPOUNDS IN SOIL¹

Aster Apartments 6775 Golden Gate Drive Dublin, California

Results reported in micrograms per kilogram (µg/kg)

Sample ID	Date Collected	Sample Depth (feet bgs)	Acetone	Bromo- benzene	n-Butyl- benzene	Chloro- benzene				1,4- Dichloro- benzene	Ethyl- benzene	Naphthalene	n- Propyl- benzene	Tetrachloro- ethene	Toluene	Trichloro- ethene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Xylenes, Total	All Other VOCs ²
Sanitary Sewer Li	ne Samples (c	ont'd)																		
SL8-6.4	3/25/2015	6.4	<36	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<7.2	<3.6	9.2	<3.6	4.1	<3.6	<3.6	<7.2	ND
SL9-6.5	3/25/2015	6.5	<51	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<5.1	<10	<5.1	6.6	<5.1	7	<5.1	<5.1	<10	ND
SL10-6.8	3/25/2015	6.8	<47	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<9.5	<4.7	<4.7	<4.7	7.2	<4.7	<4.7	<9.5	ND
SL11-6.5	3/25/2015	6.5	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.3	<4.2	4.4	<4.2	<4.2	<4.2	<4.2	<8.3	ND
SL12-6.3	3/25/2015	6.3	<41	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	ND
SL13-5.5	3/30/2015	5.5	<41	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.1	ND
SL14-5.3	3/30/2015	5.3	<48	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<9.6	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<9.6	ND
SL15-5.3	3/30/2015	5.3	<36	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<7.2	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<7.2	ND
SL16-4.7	3/30/2015	4.7	<60	<6	<6	<6	<6	<6	<6	<6	<6	<12	<6	<6	<6	<6	<6	<6	<12	ND
SL17-4.8	3/30/2015	4.8	<49	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<9.7	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<9.7	ND
SL18-4.8	3/30/2015	4.8	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	ND
SL19-4.2	3/30/2015	4.2	<41	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	ND
SL20-3.7	3/30/2015	3.7	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	ND
SL21-3.0	3/30/2015	3.0	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	ND
Overburden Soil S	Samples						_													
OB1-1-4	2/25/2015		<50	<5	<5	<5	<5	<5	<5	<5	<5	<10	<5	<5	<5	<5	<5	<5	<10	ND
OB2-1-4	2/25/2015		<47	<4.7	<4.7	5.4	<4.7	<4.7	<4.7	<4.7	<4.7	<9.5	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<9.5	ND

Notes

- 1. Samples were analyzed for VOCs using U.S. EPA Method 8260B.
- 2. No other VOCs were detected. The other VOCs analyzed include benzene, bromochloromethane, bromodichloromethane, bromoform, bromomethane, 2-butanone, sec-butylbenzene, tert-butylbenzene, carbon disulfide,
- 3. "<" indicates the compound was not detected at a concentration at or greater than the laboratory reporting limit shown.
- 4. "J" indicates the analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

Abbreviations

-- = not applicable

μg/kg = micrograms per kilogram

bgs = below ground surface

ND = not detected above laboratory reporting limit

U.S. EPA = United States Environmental Protection Agency

VOCs = volatile organic compounds

TOTAL PETROLEUM HYDROCARBONS IN SOIL¹

Aster Apartments 6775 Golden Gate Drive Dublin, California

	l	Samula Danth	<u>. </u>	<u>. </u>	
Sample ID	Date	Sample Depth	TDU	TPHd	TDUme
Sample ID	Collected	(feet bgs)	TPHg	ТРПО	TPHmo
Samples Collected with		Former Building		1	
SSB1-1.0	12/16/2014	1.0	<0.220 ²	23	<50
SSB2-1.0	12/16/2014	1.0	<0.180	2.2	<50
SSB3-1.0	12/16/2014	1.0	<0.210	<0.98	<49
SSB4-1.0	12/17/2014	1.0	<0.200	4.8	<49
SSB5-1.5	12/17/2014	1.0	<0.210	2.4	<50
SSB6-1.0	12/22/2014	1.0	<0.260	<1.0	<49
SSB7-1.0	12/22/2014	1.0	<0.190	2.1	<50
SSB8-2.5	12/30/2014	2.5	< 0.200	10	<49
HL1-W-8.0	2/16/2015	8.0	NA	< 0.99	<50
HL1-E-8.0	2/16/2015	8.0	NA	< 0.99	<49
HL1-S-8.0	2/16/2015	8.0	NA	<1	<50
HL1-N-8.0	2/16/2015	8.0	NA	< 0.99	<50
HL1-10	2/16/2015	10.0	NA	< 0.99	<50
HL-2-8.0	12/29/2014	8.0	<0.180	< 0.99	<49
HL3-W-8.0	2/16/2015	8.0	NA	< 0.99	<50
HL3-E-8.0	2/16/2015	8.0	NA	<0.99	<50
HL3-SW-10.0	2/19/2015	10.0	<0.210	< 0.99	<49
HL3-N-8.0	2/16/2015	8.0	NA	3.2	<50
HL3-12.8	2/19/2015	12.8	<0.210	<0.99	<50
HL3-15.0	2/19/2015	15.0	<0.200	< 0.99	<50
HL-4-8.0	12/29/2014	8.0	<0.230	1.7	<50
HL-5-8.0	12/29/2014	8.0	<0.190	<1.0	<50
HL6-W-8.0	2/16/2015	8.0	NA	4.8	<50
HL6-E-8.0	2/16/2015	8.0	NA	<1	<50
HL6-S-8.0	2/16/2015	8.0	NA	11	<50
HL6-N1-8.0	2/19/2015	8.0	NA	1.9	<50
HL6-10-8.0	2/16/2015	10.0	NA	<1	<50
HL-7-8.0	12/29/2014	8.0	<0.180	58	77
HL8-W1-8.0	2/19/2015	8.0	NA	< 0.99	<50
HL8-E-8.0	2/16/2015	8.0	NA	1.1	<50
HL8-S-4.0	2/16/2015	4.0	NA	4.4	<50
HL8-S-8.0	2/16/2015	8.0	NA	<1	<50
HL8-N-8.0	2/16/2015	8.0	NA	<1	<50
HL8-10	2/16/2015	10.0	NA	2.5	<50
HL-9-8.0	12/29/2014	8.0	<0.190	<1.0	<50
HL-10-8.0	12/29/2014	8.0	<0.190	<1.0	<50
HL-11-8.0	12/29/2014	8.0	<0.200	<1.0	<50
HL-12-8.0	12/29/2014	8.0	<0.200	< 0.99	<49

TOTAL PETROLEUM HYDROCARBONS IN SOIL¹

Aster Apartments 6775 Golden Gate Drive Dublin, California

				<u>. </u>	
	Date	Sample Depth			
Sample ID	Collected	(feet bgs)	TPHg	TPHd	TPHmo
Samples Collected with					
HL-13-8.0	12/29/2014	8.0	<0.200	<1.0	<50
HL-14-8.0	12/29/2014	8.0	<0.200	< 0.99	<49
DL-2-2.5	12/30/2014	2.5	<0.210	2.6	<49
DL-3-2.75	12/30/2014	2.8	< 0.260	<1.0	<50
DL-4-3.0	12/30/2014	3.0	<0.250	1.4	<50
DL-5-3.25	12/30/2014	3.3	<0.230	4.0	<49
DL-6-3.5	12/30/2014	3.5	<0.210	5.4	<50
DL-7-3.75	12/30/2014	3.8	< 0.230	4.5	<50
DL-8-4.0	12/30/2014	4.0	<0.200	1.3	<50
DL9-5.0	3/30/2015	5.0	<0.200	< 0.99	<50
BBFS1-2.5	1/6/2015	2.5	<0.210	16	<50
Confirmation Samples	Collected at the	Former Front E	nd Alignment F	Pit in Building B	
FEPIT-EXS-11	2/17/2015	6.0	< 0.250	<1	<50
FEPIT-EXB-12	2/17/2015	12.0	<0.250	<0.99	<50
FEPIT-EXS-13	2/17/2015	6.0	<0.220	1.5	<50
FEPIT-EXB-14	2/17/2015	12.0	<0.210	160	300
FEPIT-EXS-15	2/17/2015	6.0	<0.200	2.5	<49
FEPIT-EXB-16	2/17/2015	12.0	<0.190	<1	<50
Confirmation Samples	Collected at the	e Former Sump i	n Building B		
SUMP-EXS-10	2/18/2015	8.0	<0.200	1.2	<50
SUMP-EXB-11	2/18/2015	14.0	<0.210	<1	<50
SUMP-EXS-13	2/18/2015	10.0	<0.210	<1	<50
SUMP-EXB-14	2/18/2015	15.5	<0.220	<0.99	<50
SUMP-EXB-15	2/18/2015	15.0	<0.230	<0.99	<49
SUMP-EXS-17	2/18/2015	8.0	<0.200	<1	<50
SUMP-EXS-18	2/18/2015	4.0	<0.200	<1	<50
Samples Collected with	nin Footprint of	Former Building			
SSC1-1.0	12/19/2014	1.0	<0.230	< 0.99	<50
SSC2-1.0	12/19/2014	1.0	<0.230	< 0.99	<50
SSC3-1.0	12/19/2014	1.0	<0.220	1.1	<49
SSC4-1.0	12/23/2014	1.0	<0.230	2.5	<50
SSC5-1.0	12/23/2014	1.0	<0.220	2.0	<50
SSC6-1.0	12/23/2014	1.0	<0.190	< 0.99	<49
BCFS1-W-2.5	2/16/2015	2.5	NA	<0.99	<49
BCFS1-S-2.5	2/16/2015	2.5	NA	5	<50
BCFS1-N-2.5	2/16/2015	2.5	NA	<0.99	<49
BCFS1-4.5	2/16/2015	4.5	NA	<0.99	<50

TOTAL PETROLEUM HYDROCARBONS IN SOIL¹

Aster Apartments 6775 Golden Gate Drive Dublin, California

	D-1-	OI- DII			
0	Date	Sample Depth	TDU.	TDU	TDU
Sample ID	Collected	(feet bgs)	TPHg	TPHd	TPHmo
Samples Collected with					
BCFS2-2.5	1/6/2015	2.5	<0.200	1.1	<50
BCDL1-1.0	12/30/2014	1.0	<0.220	1.8	<50
BCDL2-1.0	12/30/2014	1.0	<0.240	2.3	<49
BCDL3-1.0	12/30/2014	1.0	<0.210	2.8	<49
BCDL4-2.5	3/30/2015	2.5	<0.190	2.1	<49
BCDL5-2.8	3/30/2015	2.8	<0.190	<1	<50
Samples Collected with					
SSD1-1.5	12/15/2014	1.5	<0.190	1.3	<50
Samples Collected at O	ther Areas of the	he Site			
CW-S-3.5	12/16/2014	3.5	<0.180	21	74
WOTP1-W-1.25	2/16/2015	1.25	NA	NA	<50
WOTP1-E1-1.25	2/19/2015	1.25	NA	4.7	<49
WOTP1-S-1.25	2/16/2015	1.25	NA	NA	<49
WOTP1-N-1.25	2/16/2015	1.25	NA	NA	<49
WOTP1-3.25	2/16/2015	3.25	NA	NA	<50
WOTP2-2.5	12/30/2014	2.5	<0.220	2.5	<50
WOTP3-4.0	12/30/2014	4.0	<0.210	1.3	<50
Sanitary Sewer Line Sa	mples				
SL1-6.2	3/25/2015	6.2	<0.190	<0.99	<49
SL2-5.8	3/25/2015	5.8	<0.210	<1	<50
SL3-6.2	3/25/2015	6.2	<0.190	< 0.99	<50
SL4-6.2	3/25/2015	6.2	<0.190	<1	<50
SL5-6.1	3/25/2015	6.1	<0.220	< 0.99	<49
SL6-6.0	3/25/2015	6.0	<0.210	< 0.99	<49
SL7-6.5	3/25/2015	6.5	<0.220	1.3	<50
SL8-6.4	3/25/2015	6.4	<0.180	<1	<50
SL9-6.5	3/25/2015	6.5	< 0.250	<1	<50
SL10-6.8	3/25/2015	6.8	<0.240	<1	<50
SL11-6.5	3/25/2015	6.5	<0.210	<1	<50
SL12-6.3	3/25/2015	6.3	<0.200	<1	<50
SL13-5.5	3/30/2015	5.5	<0.200	<1	<50
SL14-5.3	3/30/2015	5.3	<0.240	<0.98	<49
SL15-5.3	3/30/2015	5.3	<0.180	<0.99	<50
SL16-4.7	3/30/2015	4.7	<0.300	<0.99	<50
SL17-4.8	3/30/2015	4.8	<0.240	<1	<50
SL18-4.8	3/30/2015	4.8	<0.210	<0.99	<49
SL19-4.2	3/30/2015	4.2	<0.200	<0.99	<50
SL20-3.7	3/30/2015	3.7	<0.210	<0.98	<49
SL21-3.0	3/30/2015	3.0	<0.210	<1	<50

TOTAL PETROLEUM HYDROCARBONS IN SOIL1

Aster Apartments 6775 Golden Gate Drive Dublin, California

Results reported in milligrams per kilogram (mg/kg)

Sample ID	Date Collected	Sample Depth (feet bgs)	TPHg	TPHd	TPHmo
Overburden Soil Sampl	es				
OB1-1-4	2/25/2015		<0.250	75	97
OB2-1-4	2/25/2015		<0.240	24	64

Notes

- Samples analyzed for TPHd and TPHmo using U.S. EPA Method 8015B, following a silica gel preparation procedure in accordance with U.S. EPA Method 3630B and for TPHg using U.S. EPA Method 8260B.
- 2. "<" indicates the compound was not detected at a concentration at or greater than the laboratory reporting limit shown.

Abbreviations

-- = not applicable

bgs = below ground surface

NA = not analyzed

TPHd = total petroleum hydrocarbons quantified as diesel

TPHg = total petroleum hydrocarbons quantified as gasoline

TPHmo = total petroleum hydrocarbons quantified as motor oil

U.S. EPA = United States Environmental Protection Agency

SEMIVOLATILE ORGANIC COMPOUNDS IN SOIL¹

Aster Apartments 6775 Golden Gate Drive Dublin, California

				Tresums :	eported in milligra		Bis(2-	Butyl-	Hexachloro-	3- and 4-	
	Date	Sample Depth	Benzo[b]-	Benzo[g,h,i]-		2-Methyl-	ethylhexyl)-	benzyl-	cyclo-	Methyl-	All Other
Sample ID	Collected	(feet bgs)	fluoranthene	perylene	Naphthalene	naphthalene	phthalate	phthalate	pentadiene	phenol	SVOCs ²
-				peryiene	Napritrialerie	парпинають	primatate	pritrialate	peritadierie	priction	01003
Samples Collecte SSB1-1.0			<0.066 ³	0.000	0.000	0.000	0.00	0.47	0.47	0.000	ND
	12/16/2014	1.0		<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
SSB2-1.0	12/16/2014	1.0	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
SSB3-1.0	12/16/2014	1.0	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
SSB4-1.0	12/17/2014	1.0	<0.067	<0.067	<0.067	<0.067	<0.33 UJ ⁴	<0.17 UJ	<0.17 R ⁵	<0.067	ND
SSB5-1.5	12/17/2014	1.5	< 0.067	<0.067	< 0.067	<0.067	<0.33 UJ	<0.17 UJ	<0.17 R	<0.067	ND
SSB6-1.0	12/22/2014	1.0	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
SSB7-1.0	12/22/2014	1.0	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
SSB8-2.5	12/30/2014	2.5	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
HL-2-8.0	12/29/2014	8.0	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
HL3-W-8.0	2/16/2015	8.0	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
HL3-E-8.0	2/16/2015	8.0	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
HL3-SW-10.0	2/19/2015	10.0	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
HL3-N-8.0	2/16/2015	8.0	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
HL3-12.8 ⁶	2/19/2015	12.8	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
HL3-15.0 ⁶	2/19/2015	15.0	<0.066	<0.066	<0.066	<0.066	< 0.33	< 0.17	<0.17	< 0.066	ND
HL-4-8.0	12/29/2014	8.0	< 0.067	<0.067	< 0.067	< 0.067	< 0.33	<0.17	<0.17	<0.067	ND
HL-5-8.0	12/29/2014	8.0	<0.066	<0.066	<0.066	<0.066	< 0.33	<0.17	<0.17	<0.066	ND
HL-7-8.0	12/29/2014	8.0	< 0.067	< 0.067	< 0.067	< 0.067	< 0.33	<0.17	<0.17	<0.067	ND
HL-9-8.0	12/29/2014	8.0	<0.067	<0.067	<0.067	<0.067	< 0.33	<0.17	<0.17	<0.067	ND
HL-10-8.0	12/29/2014	8.0	<0.067	<0.067	<0.067	<0.067	< 0.33	<0.17	<0.17	<0.067	ND
HL-11-8.0	12/29/2014	8.0	<0.067	<0.067	<0.067	<0.067	< 0.33	<0.17	<0.17	<0.067	ND
HL-12-8.0	12/29/2014	8.0	<0.067	<0.067	<0.067	<0.067	< 0.33	<0.17	<0.17	<0.067	ND
HL-13-8.0	12/29/2014	8.0	<0.067	<0.067	<0.067	<0.067	< 0.33	<0.17	<0.17	<0.067	ND
HL-14-8.0	12/29/2014	8.0	<0.066	<0.066	<0.066	<0.066	< 0.33	<0.17	<0.17	<0.066	ND
DL-2-2.25	12/30/2014	2.3	< 0.067	< 0.067	< 0.067	< 0.067	< 0.33	<0.17	<0.17	<0.067	ND
DL-3-2.75	12/30/2014	2.8	<0.066	<0.066	<0.066	<0.066	<0.32	<0.17	<0.17	<0.066	ND
DL-4-3.0	12/30/2014	3.0	<0.067	< 0.067	<0.067	< 0.067	< 0.33	<0.17	<0.17	<0.067	ND
DL-5-3.25	12/30/2014	3.3	<0.067	< 0.067	<0.067	< 0.067	< 0.33	<0.17	<0.17	<0.067	ND
DL-6-3.5	12/30/2014	3.5	<0.067	< 0.067	<0.067	< 0.067	<0.33	<0.17	<0.17	<0.067	ND
DL-7-3.75	12/30/2014	3.75	< 0.067	< 0.067	<0.067	< 0.067	<0.33	<0.17	<0.17	0.067	ND
DL-8-4.0	12/30/2014	4.0	<0.066	<0.066	<0.066	<0.066	<0.32	<0.17	<0.17	<0.066	ND
DL9-5.0	3/30/2015	5.0	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
BBFS1-2.5	1/6/2015	2.5	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
Samples Collecte	ed within Footpri	int of Former Bui									
SSC1-1.0	12/19/2014	1.0	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
SSC2-1.0	12/19/2014	1.0	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
SSC3-1.0	12/19/2014	1.0	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
SSC4-1.0	12/23/2014	1.0	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND

SEMIVOLATILE ORGANIC COMPOUNDS IN SOIL¹

Aster Apartments 6775 Golden Gate Drive Dublin, California

Results reported in milligrams per kilogram (mg/kg)											
							Bis(2-	Butyl-	Hexachloro-	3- and 4-	
	Date	Sample Depth	Benzo[b]-	Benzo[g,h,i]-		2-Methyl-	ethylhexyl)-	benzyl-	cyclo-	Methyl-	All Other
Sample ID	Collected	(feet bgs)	fluoranthene	perylene	Naphthalene	naphthalene	phthalate	phthalate	pentadiene	phenol	SVOCs ²
Samples Collected within Footprint of Former Building C (cont'd)											
SSC5-1.0	12/23/2014	1.0	<0.067	<0.067	< 0.067	<0.067	< 0.33	<0.17	<0.17	< 0.067	ND
SSC6-1.0	12/23/2014	1.0	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
BCFS1-W-2.5	2/16/2015	2.5	<0.066	<0.066	<0.066	<0.066	< 0.33	<0.17	<0.17	<0.066	ND
BCFS1-E1-2.5	2/25/2015	2.5	0.094	0.13	<0.067	<0.067	1.8	<0.17	<0.17	<0.067	ND
BCFS1-S-2.5	2/16/2015	2.5	<0.067	<0.067	<0.067	0.12	< 0.33	<0.17	<0.17	< 0.067	ND
BCFS1-N-2.5	2/16/2015	2.5	< 0.067	<0.067	< 0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
BCFS1-4.5 ⁶	2/16/2015	4.5	<0.066	<0.066	<0.066	<0.066	< 0.33	<0.17	<0.17	< 0.066	ND
BCFS2-2.5	1/6/2015	2.5	<0.067	<0.067	<0.067	< 0.067	< 0.33	<0.17	<0.17	< 0.067	ND
BCDL1-1.0	12/30/2014	1.0	<0.066	<0.066	<0.066	<0.066	< 0.33	<0.17	<0.17	<0.066	ND
BCDL2-1.0	12/30/2014	1.0	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
BCDL3-1.0	12/30/2014	1.0	< 0.067	<0.067	< 0.067	< 0.067	< 0.33	<0.17	<0.17	0.19	ND
BCDL4-2.5	3/30/2015	2.5	<0.066	<0.066	<0.066	<0.066	< 0.33	<0.17	<0.17	<0.066	ND
BCDL5-2.8	3/30/2015	2.8	<0.067	<0.067	<0.067	<0.067	< 0.33	<0.17	<0.17	< 0.067	ND
Samples Collected		1									
SSD1-1.5	12/15/2014	1.5	< 0.067	<0.067	< 0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
	Samples Collected at Other Areas of the Site										
CW-S-3.5	12/16/2014	3.5	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
WOTP2-2.5	12/30/2014	2.5	<0.066	<0.066	<0.066	<0.066	<0.32	<0.17	<0.17	<0.066	ND
WOTP3-4.0	12/30/2014	4.0	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
Sanitary Sewer Li		1									
SL1-6.2	3/25/2015	6.2	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
SL2-5.8	3/25/2015	5.8	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
SL3-6.2	3/25/2015	6.2	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
SL4-6.2	3/25/2015	6.2	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17	<0.066	ND
SL5-6.1	3/25/2015	6.1	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
SL6-6.0	3/25/2015	6.0	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
SL7-6.5	3/25/2015	6.5	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
SL8-6.4	3/25/2015	6.4	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
SL9-6.5	3/25/2015	6.5	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
SL10-6.8	3/25/2015	6.8	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND ND
SL11-6.5	3/25/2015	6.5	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND ND
SL12-6.3	3/25/2015	6.3	<0.067	<0.067	<0.067 <0.066	<0.067	<0.33	<0.17	<0.17	<0.067	ND
SL13-5.5	3/30/2015	5.5	<0.066	<0.066		<0.066	<0.33	<0.17	<0.17	<0.066	ND ND
SL14-5.3	3/30/2015	5.3	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17 <0.17	<0.066	ND ND
SL15-5.3	3/30/2015	5.3	<0.066	<0.066	<0.066	<0.066	<0.33	<0.17		<0.066	ND
SL16-4.7	3/30/2015	4.7	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND
SL17-4.8	3/30/2015	4.8 4.8	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND ND
SL18-4.8 SL19-4.2	3/30/2015		<0.066	<0.066	<0.066	<0.066	<0.33	<0.17	<0.17 <0.17	<0.066	
SL19-4.2	3/30/2015	4.2	<0.067	<0.067	<0.067	<0.067	<0.33	<0.17	<0.17	<0.067	ND

SEMIVOLATILE ORGANIC COMPOUNDS IN SOIL¹

Aster Apartments 6775 Golden Gate Drive Dublin, California

Results reported in milligrams per kilogram (mg/kg)

Sample ID Sanitary Sewer Li	Date Collected	Sample Depth (feet bgs)	Benzo[b]- fluoranthene	Benzo[g,h,i]- perylene	Naphthalene	2-Methyl- naphthalene	Bis(2- ethylhexyl)- phthalate	Butyl- benzyl- phthalate	Hexachloro- cyclo- pentadiene	3- and 4- Methyl- phenol	All Other SVOCs ²
			0.000	0.000	0.000	0.000	0.00	0.47	0.47	0.000	ND
SL20-3.7	3/30/2015	3.7	<0.066	<0.066	<0.066	<0.066	< 0.33	<0.17	<0.17	<0.066	ND
SL21-3.0	3/30/2015	3.0	<0.066	<0.066	<0.066	<0.066	< 0.33	<0.17	<0.17	<0.066	ND
Overburden Soil Samples											
OB1-1-4	2/25/2015		<0.066	<0.066	<0.066	<0.066	< 0.33	<0.17	<0.17	<0.066	ND
OB2-1-4	2/25/2015		<0.13	<0.13	<0.13	<0.13	<0.66	<0.34	< 0.34	<0.13	ND

Notes

- 1. Samples were analyzed for SVOCs using U.S. EPA Method 8270C.
- 2. No other SVOCs were detected. The other SVOCs analyzed include acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[k]fluoranthene,
- 3. "<" indicates the compound was not detected at a concentration at or greater than the laboratory reporting limit shown.
- 4. "UJ" indicates the analyte was not detected at a level greater than or equal to the adjusted quantitation limit. The reported adjusted quantitation limit is approximate and
- 5. "R" indicates the result for the analyte is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may be present in
- 6. Sample analyzed using both U.S. EPA Method 8270C and U.S. EPA Method 8270C with SIM; results shown were analyzed by U.S. EPA Method 8270C with SIM.

Abbreviations

-- = not applicable

bgs = below ground surface

ND = not detected above laboratory reporting limit

SIM = selective ion monitoring

SVOCs = semivolatile organic compounds

U.S. EPA = United States Environmental Protection Agency

METALS IN SOIL 1

Aster Apartments 6775 Golden Gate Drive Dublin, California

Results reported in milligrams per kilogram (mg/kg)

		Sample					
	Date	Depth					
Sample ID	Collected	(feet bgs)	Cadmium	Chromium	Nickel	Lead	Zinc
Samples Collected	within Footpri	nt of Former	Building B				
SSB1-1.0	12/16/2014	1.0	0.27	33	31	8.9	48
SSB2-1.0	12/16/2014	1.0	0.21	27	35	4.8	30
SSB3-1.0	12/16/2014	1.0	<0.39 ²	51	85	7.6	69
SSB4-1.0	12/17/2014	1.0	<0.41	40	42	15	63
SSB5-1.5	12/17/2014	1.0	0.28	28	39	5.1	36
SSB6-1.0	12/22/2014	1.0	0.13	26	36	4.2	27
SSB7-1.0	12/22/2014	1.0	0.91	34	47	6.2	42
SSB8-2.5	12/30/2014	2.5	<0.42	41	43	7.7	49
HL-2-8.0	12/29/2014	8.0	0.40	36	37	6.6	54
HL-4-8.0	12/29/2014	8.0	<0.46	41	55	10	59
HL-5-8.0	12/29/2014	8.0	< 0.36	33	30	5.4	41
HL-7-8.0	12/29/2014	8.0	0.41	34	39	7.3	56
HL-9-8.0	12/29/2014	8.0	< 0.35	30	28	5.2	39
HL-10-8.0	12/29/2014	8.0	<0.41	33	28	5.3	41
HL-11-8.0	12/29/2014	8.0	0.40	37	40	6.7	54
HL-12-8.0	12/29/2014	8.0	<0.37	41	38	6.8	51
HL-13-8.0	12/29/2014	8.0	0.35	40	41	7.4	57
HL-14-8.0	12/29/2014	8.0	<0.40	34	34	5.5	45
DL-2-2.5	12/30/2014	2.5	0.16	33	46	7.9	45
DL-3-2.75	12/30/2014	2.8	0.56	32	45	6.4	49
DL-4-3.0	12/30/2014	3.0	<0.11	33	49	7.1	46
DL-5-3.25	12/30/2014	3.3	<0.11	34	45	6.3	44
DL-6-3.5	12/30/2014	3.5	0.29	34	49	7.0	47
DL-7-3.75	12/30/2014	3.8	<0.50	43	38	13	72
DL-8-4.0	12/30/2014	4.0	<0.45	51	44	8.8	72
DL9-5.0	3/30/2015	5.0	<0.31	41	7.8	39	54
BBFS1-2.5	1/6/2015	2.5	<0.11	46 J- ⁴	37	5.2	34
Samples Collected							
SSC1-1.0	12/19/2014	1.0	<0.45 UJ ⁵	44	45	12 J+ ⁶	74 J+
SSC2-1.0	12/19/2014	1.0	<0.50 UJ	44	45	12 J+	74 J+
SSC3-1.0	12/19/2014	1.0	0.25 J ⁷	26	38	4.9 J+	33 J+
SSC4-1.0	12/23/2014	1.0	<0.42	32	44	6.6	42
SSC5-1.0	12/23/2014	1.0	0.32	34	36	11	55
SSC6-1.0	12/23/2014	1.0	0.48	37	37	10	65
BCFS1-W-2.5	2/16/2015	2.5	NA	NA	NA	8.0	NA
BCFS1-S-2.5	2/16/2015	2.5	NA	NA	NA	7.5	NA
BCFS1-N-2.5	2/16/2015	2.5	NA	NA	NA	7.9	NA

METALS IN SOIL 1

Aster Apartments 6775 Golden Gate Drive Dublin, California

Results reported in milligrams per kilogram (mg/kg)

		<u> </u>		Kilogram (mg	<u> </u>		
	Data	Sample					
	Date	Depth				l	- .
Sample ID	Collected	(feet bgs)	Cadmium	Chromium	Nickel	Lead	Zinc
Samples Collected v				cont'd)			
BCFS1-4.5	2/16/2015	4.5	NA	NA	NA	7.3	NA
BCFS2-2.5	1/6/2015	2.5	< 0.43	40 J-	39	6.8	60
BCDL1-1.0	12/30/2014	1.0	<0.46	29	40	6.8	41
BCDL2-1.0	12/30/2014	1.0	< 0.50	42	41	12	70
BCDL3-1.0	12/30/2014	1.0	< 0.49	55	47	14	78
BCDL4-2.5	3/30/2015	2.5	< 0.49	48	13	45	68
BCDL5-2.8	3/30/2015	2.8	<0.41	48	8.0	42	55
Samples Collected v	within Footpri	nt of Former	Building D				
SSD1-1.5	12/15/2014	1.5	0.19	34	36	4.8	30
Samples Collected a	at Other Areas						
CW-S-3.5	12/16/2014	3.5	0.27	28	25	9.6	46
WOTP2-2.5	12/30/2014	2.5	<0.44	36	46	6.6	42
WOTP3-4.0	12/30/2014	4.0	<0.47	47	45	8.1	70
Sanitary Sewer Line)						
SL1-6.2	3/25/2015	6.2	0.20	30	6.4	28	42
SL2-5.8	3/25/2015	5.8	0.34	33	7.1	42	48
SL3-6.2	3/25/2015	6.2	< 0.33	30	6.0	33	42
SL4-6.2	3/25/2015	6.2	< 0.34	32	5.5	31	44
SL5-6.1	3/25/2015	6.1	<0.38	34	5.9	31	48
SL6-6.0	3/25/2015	6.0	<0.29	31	5.8	30	42
SL7-6.5	3/25/2015	6.5	< 0.34	30	5.5	30	41
SL8-6.4	3/25/2015	6.4	<0.36	44	7.2	44	60
SL9-6.5	3/25/2015	6.5	<0.41	35	5.6	36	45
SL10-6.8	3/25/2015	6.8	< 0.37	34	6.0	31	45
SL11-6.5	3/25/2015	6.5	<0.50	47	6.2	41	58
SL12-6.3	3/25/2015	6.3	< 0.35	44	6.1	33	49
SL13-5.5	3/30/2015	5.5	<0.49	39	8.6	45	50
SL14-5.3	3/30/2015	5.3	<0.44	45	6.9	45	59
SL15-5.3	3/30/2015	5.3	< 0.32	37	6.7	35	45
SL16-4.7	3/30/2015	4.7	<0.28	44	7.8	45	58
SL17-4.8	3/30/2015	4.8	< 0.39	43	9.0	44	49
SL18-4.8	3/30/2015	4.8	<0.47	43	7.8	42	51
SL19-4.2	3/30/2015	4.2	<0.38	45	8.3	44	53
SL20-3.7	3/30/2015	3.7	<0.41	46	8.3	45	54
SL21-3.0	3/30/2015	3.0	<0.43	47	7.7	44	58

METALS IN SOIL 1

Aster Apartments 6775 Golden Gate Drive Dublin, California

Notes

- Samples analyzed for CA LUFT-5 Metals (cadmium, chromium, lead, nickel, and zinc) by U.S. EPA Method 6010B.
- 2. "< " indicates the compound was not detected at a concentration at or greater than the laboratory reporting limit shown.
- 3. "J-" indicates the result is an estimated quantity, but the result may be biased low.
- 4. "UJ" indicates the analyte was not detected at a level greater than or equal to the adjusted quantitation limit.
- 5. "J+" indicates the result is an estimated quantity, but the result may be biased high.
- 6. "J" indicates the analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

Abbreviations

bgs = below ground surface

NA = not analyzed

U.S. EPA = United States Environmental Protection Agency

METALS IN OVERBURDEN SOIL 1

Aster Apartments 6775 Golden Gate Drive Dublin, California

Results reported in milligrams per kilogram (mg/kg)

							110	saits reported	i iii iiiiiiigia	ilio per kilo	grann (mg/k	9)							
Sample ID	Date Collected	Sample Depth	Antimony	Arsenic	Rarium	Beryllium	Cadmium	Chromium	Cohalt	Conner	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Campic ib	Ooncotca	(icci bgs)	Antimony	Aiscillo	Darram	Berymann	Oddillidill	Officialia	OODUIT	Copper	LCuu	Microary	Molybachani	MONCI	ocicinani	Olivei	mamam	Vandalani	
OB1-1-4	2/25/2015		<1.3 UJ ^{2,3}	6	75	<0.26	0.41	32	8.2	15	5.6	0.057	<1.3	41	<2.6	<0.65	<1.3	20	45
OB2-1-4	2/25/2015		0.54 J- ⁴	4.1	75	< 0.095	0.27	47	6.6	17	7.2	0.061	0.61	42	< 0.95	<0.24	<0.48	23	59

<u>Notes</u>

- 1. Samples analyzed for California Title 22 Metals by U.S. EPA Method 6010B and for Mercury by U.S. EPA Method 7470/7471.
- 2. "< " indicates the compound was not detected at a concentration at or greater than the laboratory reporting limit shown.
- 3. "UJ" indicates the analyte was not detected at a level greater than or equal to the adjusted quantitation limit. The reported adjusted quantitation limit is approximate and may be inaccurate or imprecise.
- 4. "J-" indicates the result is an estimated quantity, but the result may be biased low.

Abbreviations

-- = not applicable

bgs = below ground surface

POLYCHLORINATED BIPHENYLS IN SOIL 1

Aster Apartments 6775 Golden Gate Drive Dublin, California

Results reported in micrograms per kilogram (µg/kg)

			uits reported ii		F (F-3/3/			
		Sample							
	Date	Depth						_	
Sample ID	Collected	(feet bgs)	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260
Building B									
HL1-W-8.0	2/16/2015	8.0	<49	<49	<49	<49	<49	<49	<49
HL1-E-8.0	2/16/2015	8.0	<48	<48	<48	<48	<48	<48	<48
HL1-S-8.0	2/16/2015	8.0	<49	<49	<49	<49	<49	<49	<49
HL1-N-8.0	2/16/2015	8.0	<50	<50	<50	<50	<50	<50	<50
HL-1-10	2/16/2015	10.0	<49	<49	<49	<49	<49	<49	<49
HL-2-8.0	12/29/2014	8.0	<49	<49	<49	<49	<49	<49	<49
HL3-W-8.0	2/16/2015	8.0	<49	<49	<49	<49	<49	<49	<49
HL3-E-8.0	2/16/2015	8.0	<48	<48	<48	<48	<48	<48	<48
HL3-SW-10.0	2/19/2015	10.0	<48	<48	<48	<48	<48	<48	<48
HL3-N-8.0	2/16/2015	8.0	<49	<49	<49	<49	<49	<49	<49
HL3-12.8	2/19/2015	12.8	<50	<50	<50	<50	<50	<50	<50
HL3-15.0	2/19/2015	15.0	<49	<49	<49	<49	<49	<49	<49
HL-4-8.0	12/29/2014	8.0	<50	<50	<50	<50	<50	<50	<50
HL-5-8.0	12/29/2014	8.0	<50	<50	<50	<50	<50	<50	<50
HL-7-8.0	12/29/2014	8.0	<50	<50	<50	<50	<50	<50	<50
HL-9-8.0	12/29/2014	8.0	<50	<50	<50	<50	<50	<50	<50
HL-10-8.0	12/29/2014	8.0	<49	<49	<49	<49	<49	<49	<49
HL-11-8.0	12/29/2014	8.0	<50	<50	<50	<50	<50	<50	<50
HL-12-8.0	12/29/2014	8.0	<49	<49	<49	<49	<49	<49	<49
HL-13-8.0	12/29/2014	8.0	<50	<50	<50	<50	<50	<50	<50
HL-14-8.0	12/29/2014	8.0	<49	<49	<49	<49	<49	<49	<49
Overburden Soils									
OB1-1-4	2/25/2015		<49	<49	<49	<49	<49	<49	<49
OB2-1-4	2/25/2015	-	<49	<49	<49	<49	<49	<49	<49

Notes

- 1. Samples were analyzed for PCBs using U.S. EPA Method 8082.
- 2. "<" indicates the compound was not detected at a concentration at or greater than the laboratory reporting limit shown.

Abbreviations

-- = not applicable

bgs = below ground surface

PCBs = polychlorinated biphenyls

U.S. EPA = United States Environmental Protection Agency

SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SOIL

Aster Apartments 6775 Golden Gate Drive Dublin, California

									concentration	ons report	ed in micro	grams per k	ilogram (µg/k	(g)									
Location	Sample ID	Depth (feet bgs)	Date	Acetone	Benzene	Bromo- benzene	,	sec-Butyl- benzene	Chloro- benzene			1,3- Dichloro- benzene	1,4- Dichloro- benzene	cis-1,2- Dichloro- ethene	Ethyl- benzene	Naphthalene	PCE	1,2,4- Trichloro- benzene	TCE	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Xylenes, Total	All Other VOCs
Basics Februar	ry 2009 Investigation	n ¹																					
B1	B1-4.0	4.0	2/25/2009	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5.0	<5	<5	<5	<5	<5	<5	ND
B2	B2-4.0	4.0	2/25/2009	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5.0	<5	<5	<5	<5	<5	<5	ND
В3	B3-4.0	4.0	2/24/2009	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5.0	<5	<5	<5	<5	<5	<5	ND
B4	B4-4.0	4.0	2/25/2009	180	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5.0	<5	<5	<5	<5	<5	<5	ND
B5	B5-4.0	4.0	2/24/2009	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5.0	<5	<5	<5	<5	<5	<5	ND
B6	B6-10.0	10.0	2/25/2009	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5.0	<5	<5	<5	<5	<5	<5	ND
B7	B7-4.0	4.0	2/24/2009	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5.0	<5	<5	<5	<5	<5	<5	ND
B9	B9-14.0	14.0	2/25/2009	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5.0	<5	<5	<5	<5	<5	<5	ND
B10	B10-4.0	4.0	2/24/2009	<50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5.0	<5	<5	<5	<5	<5	<5	ND
AMEC Septemb	ber 2010 Investigation	n ²			l.	l .			u.						•			•					1
SB-01	SB-01-11.7	11.7	9/27/2010	NA	<3.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3.7	NA	NA	NA	NA	NA	NA	<7.4	ND
	SB-01-13.8	13.8	9/27/2010	NA	<3.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.5 J	NA	NA	NA	NA	NA	NA	0.43 J	ND
SB-02	SB-02-9.1	9.1	9/27/2010	NA	<3.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3.8	NA	NA	NA	NA	NA	NA	<7.6	ND
	SB-02-11.5	11.5	9/27/2010	NA	<3.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3.6	NA	NA	NA	NA	NA	NA	<7.2	ND
SB-04	SB-04-3.0	3.0	9/27/2010	NA	<3.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3.3	NA	NA	NA	NA	NA	NA	<6.5	ND
	SB-04-7.0	7.0	9/27/2010	NA	<4.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.0	NA	NA	NA	NA	NA	NA	<7.9	ND
	SB-04-8.5	8.5	9/27/2010	NA	<3.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3.9	NA	NA	NA	NA	NA	NA	<7.8	ND
	SB-04-12.0	12.0	9/27/2010	NA	<4.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.0	NA	NA	NA	NA	NA	NA	<7.9	ND
Ninvo & Moore	December 2010 Inve	estigation ³			l.	l.			ı						•	1		I.	L		I.	l	·
NM-B-1	NM-B-1-1.5-2.0	2.0	12/16/2010	NA	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	NA	ND
	NM-B-1-4.5-5.0	5.0	12/16/2010	NA	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	NA	ND
NM-B-4	NM-B-4-1.5-2.0	2.0	12/16/2010	NA	<4.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.6	NA	NA	NA	NA	NA	NA	NA	ND
	NM-B-4-4.5-5.0	5.0	12/16/2010	NA	<4.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.7	NA	NA	NA	NA	NA	NA	NA	ND
NM-B-5	NM-B-5-1.5-2.0	2.0	12/16/2010	NA	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	NA	ND
	NM-B-5-4.5-5.0	5.0	12/16/2010		<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	NA	ND
AMEC May-July	y 2011 Investigation	4			l.	l.			ı						•	1		I.	L		I.	l	·
SB-18	SB-18-4.0	4.0	6/7/2011	<59	<5.9	<5.9	<5.9	<5.9	<5.9	<5.9	<5.9	<5.9	<5.9	<5.9	<5.9	<12	<5.9	<5.9	<5.9	<5.9	<5.9	<12	ND
	SB-18-8.0	8.0	6/7/2011	<40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	ND
	SB-18-12.0	12.0	6/7/2011	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	ND
SB-19	SB-19-4.0	4.0	6/7/2011	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	ND
	SB-19-8.0	8.0	6/9/2011	<43	<4.3	<4.3	<4.3	<4.3	110	<4.3	98	<4.3	<4.3	<4.3	<4.3	<8.7	<4.3	<4.3	<4.3	<4.3	<4.3	<8.7	ND
	SB-19-11.0	11.0	6/9/2011	<53	<5.3	<5.3	<5.3	<5.3	29	<5.3	12	<5.3	<5.3	<5.3	<5.3	<11	<5.3	<5.3	<5.3	<5.3	<5.3	<11	ND
	SB-19-13.0	13.0	6/9/2011	<58	<5.8	<5.8	<5.8	<5.8	21	<5.8	<5.8	<5.8	<5.8	<5.8	<5.8	<12	<5.8	<5.8	<5.8	<5.8	<5.8	<12	ND
SB-22	SB-22-4.0	4.0	6/8/2011	<49	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<9.9	<4.9	<4.9	<4.9	<4.9	<4.9	<9.9	ND
	SB-22-9.0	9.0	6/8/2011	<38	<3.8	<3.8	<3.8	<3.8	200	<3.8	69	<3.8	<3.8	<3.8	<3.8	<7.7	<3.8	<3.8	<3.8	<3.8	<3.8	<7.7	ND
	SB-22-12.0	12.0	6/8/2011	<63	<6.3	<6.3	<6.3	<6.3	310	<6.3	110	<6.3	<6.3	<6.3	<6.3	<13	<6.3	<6.3	<6.3	<6.3	<6.3	<13	ND
SB-24	SB-24-6.0	6.0	6/9/2011	<40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	ND
	SB-24-11.5	11.5	6/9/2011	<41	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	ND
SB-29	SB-29-4.0	4.0	7/26/2011	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	ND
	SB-29-8.0	8.0	7/26/2011	<39	<3.9	4.8	<3.9	<3.9	4.7	19	240	32	160	<3.9	<3.9	<7.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	ND
	SB-29-12.0	12.0	7/26/2011	<38	<3.8	<3.8	<3.8	<3.8	<3.8	8.2	220	25	120	<3.8	<3.8	<7.7	<3.8	<3.8	<3.8	<3.8	<3.8	<7.7	ND
SB-30	SB-30-4.0	4.0	7/26/2011	<40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	ND
	SB-30-8.0	8.0	7/26/2011	<36	<3.6	<3.6	<3.6	<3.6	<3.6	9.8	110	18	74	<3.6	<3.6	<7.2	<3.6	<3.6	<3.6	<3.6	<3.6	<7.2	ND
	SB-30-12.0	12.0	7/26/2011	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	26	3.9	19	<3.9	<3.9	<7.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	ND
SB-31	SB-31-4.0	4.0	7/26/2011	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	ND
	SB-31-8.0	8.0	7/26/2011	<41	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	12	<4.1	5.6	<4.1	<4.1	<8.2	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	ND
	SB-31-12.0	12.0	7/26/2011	<40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	11	<4.0	6.8	<4.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	ND

SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SOIL

Aster Apartments 6775 Golden Gate Drive Dublin, California

								C	concentration	ons report	ed in micro	grams per k	logram (µg/k	(g)									
Location	Sample ID	Depth (feet bgs)	Date	Acetone	Benzene	Bromo- benzene	,	sec-Butyl- benzene			1,2- Dichloro- benzene		1,4- Dichloro- benzene	cis-1,2- Dichloro- ethene	Ethyl- benzene	Naphthalene	PCE	1,2,4- Trichloro- benzene	TCE	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Xylenes, Total	All Other VOCs
Ninyo & Moor	e August 2011 Investi	igation ⁵																					ļ
NM-B-13	NM-B-13-12.5-13.0	13.0	8/10/2011	NA	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	NA	ND
NM-B-18	NM-B-18-3.5-4.0	4.0	8/10/2011	NA	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	NA	ND
	NM-B-18-12.5-13.0	13.0	8/12/2011	NA	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	NA	ND
	NM-B-18-13.5-14.0	14.0	8/10/2011	NA	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	NA	ND
NM-B-19	NM-B-19-3.5-4.0	4.0	8/11/2011	NA	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	NA	ND
	NM-B-19-5.5-6.0	6.0	8/11/2011	NA	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	NA	ND
	NM-B-19-13.5-14.0	14.0	8/11/2011	NA	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	NA	ND
NM-B-21	NM-B-21-3.5-4.0	4.0	8/11/2011	NA	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	NA	ND
	NM-B-21-6.0-6.5	6.5	8/11/2011	NA	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	NA	ND
	NM-B-21-12.0-12.9	12.9	8/11/2011	NA	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	NA	ND
NM-B-23B	NM-B-23B-3.5-4.0	4.0	8/11/2011	NA	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	NA	ND
	NM-B-23B-5.0-5.5	5.5	8/11/2011	NA	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	6.8	<4.3	<4.3	<4.3	<4.3	NA	ND
	NM-B-23B-13.5-14.0	14.0	8/11/2011	NA	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	36	<4.2	<4.2	<4.2	<4.2	NA	ND
NM-B-25	NM-B-25-3.5-4.0	4.0	8/11/2011	NA	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	NA	ND
	NM-B-25-5.0-5.5	5.5	8/11/2011	NA	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	NA	ND
	NM-B-25-12.5-13.0	13.0	8/11/2011	NA	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	13	<4.2	<4.2	NA	ND
NM-B-27	NM-B-27-4.5-5.0	5.0	8/11/2011	NA	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	NA	ND
	NM-B-27-7.5-8.0	8.0	8/11/2011	NA	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	NA	ND
	NM-B-27-14.0-14.5	14.5	8/11/2011	NA	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	NA	ND
NM-B-24	NM-B-24-12.5-13.0	13.0	8/9/2011	NA	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	13	<4.6	<4.6	<4.6	<4.6	NA	ND
NM-B-26	NM-B-26-13.5-14.0	14.0	8/9/2011	NA	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	12	<4.5	<4.5	NA	ND
NM-B-28	NM-B-28-13.0-13.5	13.5	8/9/2011	NA	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	NA	ND
NM-B-29	NM-B-29-12.5-13.0	13.0	8/9/2011	NA	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	7.1	<4.2	<4.2	<4.2	<4.2	NA	ND
NM-B-30	NM-B-30-14.0-14.5	14.5	8/9/2011	NA	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	17	<4.5	<4.5	<4.5	<4.5	NA	ND
NM-B-23B2	NM-B-23B2-5.0-5.5	5.5	9/8/2011	NA	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	5.8	<3.4	<3.4	<3.4	<3.4	NA	ND
NM-B-23C	NM-B-23C-5.0-5.5	5.5	9/8/2011	NA	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	<3.2	5.7	<3.2	<3.2	<3.2	<3.2	NA	ND
NM-B-23D	NM-B-23D-5.0-5.5	5.5	9/8/2011	NA	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	4.5	<3.6	<3.6	<3.6	<3.6	NA	ND
NM-B-23E	NM-B-23E-5.0-5.5	5.5	9/8/2011	NA	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	5	<4.2	<4.2	<4.2	<4.2	NA	ND
NM-B-32A	NM-B-32A-5.0-5.5	5.5	9/8/2011	NA	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	5.7	<3.6	<3.6	<3.6	<3.6	NA	ND
AMEC Octobe	r 2011 Remediation C	Confirmatio	n Sampling	6																			
PIT-EXS-10	FEPIT-EXS-10-12	12.0	10/26/2011	<43	<4.3	4.3 J	<4.3	<4.3	10 J	17 J	170 J	20 J	110 J	5.6 J	<4.3	<8.6	<4.3	<4.3	6.8 J	<4.3	<4.3	<8.6	ND
AMEC August	-September 2012 Inve	estigation ⁸																					ļ
SB-33	SB-33-5.3	5.3	8/27/2012	<38	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<7.7	5.7	<3.8	<3.8	<3.8	<3.8	<7.7	ND
	SB-33-10.3	10.3	8/27/2012	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	28	<3.9	<3.9	<3.9	<3.9	<7.9	ND
SB-34	SB-34-5.0	5.0	8/27/2012	<41	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.2	14	<4.1	<4.1	<4.1	<4.1	<8.2	ND
	SB-34-10.0	10.0	8/27/2012	<36	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	<7.2	38	<3.6	<3.6	<3.6	<3.6	<7.2	ND
SB-35	SB-35-5.0	5.0	8/27/2012	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	21	<3.9	<3.9	<3.9	<3.9	<7.7	ND
	SB-35-10.0	10.0	8/27/2012	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.9	48	<3.9	<3.9	<3.9	<3.9	<7.9	ND
SB-38	SB-38-5.0	5.0	8/28/2012	<44	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<4.4	<8.7	5.1	<4.4	<4.4	<4.4	<4.4	<8.7	ND
	SB-38-10.0	10.0	8/28/2012	<40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	12	<4.0	<4.0	<4.0	<4.0	<8.0	ND
SB-39	SB-39-5.0	5.0	8/28/2012	<41	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<4.1	<8.3	7.1	<4.1	<4.1	<4.1	<4.1	<8.3	ND
	SB-39-10.0	10.0	8/28/2012	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.3	15	<4.2	<4.2	<4.2	<4.2	<8.3	ND
SB-40	SB-40-5.0	5.0	8/28/2012	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	36	<5.0	<5.0	<5.0	<5.0	<10	ND
	SB-40-10.0	10.0	8/28/2012	<48	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<9.6	19	<4.8	<4.8	<4.8	<4.8	<9.6	ND
SB-41	SB-41-5.0	5.0	8/28/2012	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.4	20	<4.2	<4.2	<4.2	<4.2	<8.4	ND
	SB-41-10.0	10.0	8/28/2012	<43	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<4.3	<8.5	9.1	<4.3	<4.3	<4.3	<4.3	<8.5	ND
MW-02	MW-02-11.0	11.0	8/30/2012	<39	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<3.9	<7.7	<3.9	<3.9	4.7	<3.9	<3.9	<7.7	ND
SB-46	SB-46-13.8	13.8	9/4/2012	<42	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<4.2	<8.3	<4.2	<4.2	7.4	<4.2	<4.2	<8.3	ND

SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SOIL

Aster Apartments 6775 Golden Gate Drive Dublin, California

Notes

- 1. Basics Environmental, Inc., 2009, Limited Phase II Environmental Site Sampling Report, 7544 Dublin Boulevard & 6707 Golden Gate Drive, Dublin, California, March 16.
- 2. AMEC, 2011, Revised Soil and Groundwater Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, April 4. California, August 16.
- 3. Ninyo & Moore, 2011, Limited Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, January 7.
- 4. AMEC, 2011, Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, September 27.
- 5. Ninyo & Moore, 2011, Additional Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, September 16.
- 6. AMEC, 2011, Remediation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, December 21.
- 7. m,p-Xylene was detected in this sample at 150 μg/kg. o-Xylene was not detected above the reporting limit of 50 μg/kg.
- 8. Samples were collected by AMEC in August and September 2012 and analyzed for VOCs by TestAmerica Laboratories, Inc., of Pleasanton, California, for TPHg using U.S. EPA Method 8260B.

Abbreviations and Data Qualifiers

< = not detected at or above the laboratory reporting limit shown

μg/kg = micrograms per kilogram

bgs = below ground surface

J = the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample

NA = not analyzed

NC = no change to 2008 ESL

NL = not listed

PCE = tetrachloroethene

TCE = trichloroethene

U.S. EPA = U.S. Environmental Protection Agency

VOCs = volatile organic compounds

TABLE C-8

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN SOIL

Aster Apartments 6775 Golden Gate Drive Dublin, California

						TPH			PAH	s
		Depth								All Other
Location	Sample ID	(feet bgs)	Date	TPHg	TPHd	TPHmo	TPHho	TPHss	Naphthalene	PAHs
Basics February	y 2009 Investigation 1									
B1	B1-4.0	4	2/25/2009	<1.0	<1.0	<5.0	NA	<1.0	NA	NA
B2	B2-4.0	4	2/25/2009	<1.0	1.1	5.4	NA	<1.0	NA	NA
B3	B3-4.0	4	2/24/2009	<1.0	<1.0	<5.0	NA	<1.0	NA	NA
B4	B4-4.0	4	2/25/2009	<1.0	<1.0	<5.0	NA	<1.0	NA	NA
B5	B5-4.0	4	2/24/2009	<1.0	1.9	<5.0	NA	<1.0	NA	NA
B6	B6-10.0	10	2/25/2009	<1.0	<1.0	<5.0	NA	<1.0	NA	NA
B7	B7-4.0	4	2/24/2009	<1.0	33	180	NA	<1.0	NA	NA
B9	B9-14.0	14	2/25/2009	<1.0	1.4	5.5	NA	<1.0	NA	NA
B10	B10-4.0	4	2/24/2009	<1.0	1.6	<5.0	NA	<1.0	NA	NA
AMEC Septemb	er 2010 Investigation	2								
SB-01	SB-01-11.7	11.7	9/27/2010	<0.18	NA	NA	NA	NA	NA	NA
3B-01	SB-01-13.8	13.8	9/27/2010	13 J	NA	NA	NA	NA	NA	NA
SB-02	SB-02-9.1	9.1	9/27/2010	<0.19	NA	NA	NA	NA	NA	NA
3B-02	SB-02-11.5	11.5	9/27/2010	1.4	NA	NA	NA	NA	NA	NA
	SB-04-3.0	3	9/27/2010	<0.16	2.6	<50	NA	NA	< 0.005	NA
SB-04	SB-04-7.0	7	9/27/2010	<0.20	< 0.99	<50	NA	NA	NA	NA
3b-04	SB-04-8.5	8.5	9/27/2010	<0.19	< 0.99	<49	NA	NA	NA	NA
	SB-04-12.0	12	9/27/2010	<0.20	<1.0	<50	NA	NA	< 0.005	ND
	SB-05-0.7	0.7	9/28/2010	NA	20	58	NA	NA	<0.01 UJ	ND
SB-05	SB-05-2.0	2	9/28/2010	NA	< 0.99	<50	NA	NA	NA	NA
	SB-05-11.5	11.5	9/28/2010	NA	<1.0	<50	NA	NA	<0.005 UJ	ND
SB-06	SB-06-3.0	3	9/28/2010	NA	< 0.99	<50	NA	NA	0.0094 J	ND
30-00	SB-06-11.0	11	9/28/2010	NA	<1.0	<50	NA	NA	<0.005 UJ	ND
	SB-09-3.0	3	9/28/2010	NA	< 0.99	<50	NA	NA	NA	NA
SB-09	SB-09-4.9	4.9	9/28/2010	NA	1.4	<50	NA	NA	0.005 J	ND
3D-09	SB-09-6.0	6	9/28/2010	NA	< 0.99	<50	NA	NA	NA	NA
	SB-09-11.8	11.8	9/28/2010	NA	<1.0	<50	NA	NA	0.0051 J	ND

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN SOIL

Aster Apartments 6775 Golden Gate Drive Dublin, California

						TPH			PAH	s
		Depth								All Other
Location	Sample ID	(feet bgs)	Date	TPHg	TPHd	TPHmo	TPHho	TPHss	Naphthalene	PAHs
	SB-10-4.0	4	9/28/2010	NA	1.1	<50	NA	NA	NA	NA
SB-10	SB-10-9.0	9	9/28/2010	NA	< 0.99	<50	NA	NA	NA	NA
36-10	SB-10-10.5	10.5	9/28/2010	NA	< 0.99	<49	NA	NA	NA	NA
	SB-10-11.5	11.5	9/28/2010	NA	<1.0	<50	NA	NA	<0.005 UJ	ND
SB-11	SB-11-12.8	12.8	9/27/2010	NA	< 0.99	<50	NA	NA	< 0.005	ND
SB-12	SB-12-12.0	12	9/28/2010	NA	<0.98	<49	NA	NA	<0.0049 UJ	ND
Ninyo & Moore	December 2010 Invest	tigation ³								
NM-B-1	NM-B-1-1.5-2.0	2	12/16/2010	<0.98	<1.0	<1.0	NA	NA	NA	NA
INIVI-D- I	NM-B-1-4.5-5.0	5	12/16/2010	<1.7	<1.0	<1.0	NA	NA	NA	NA
NM-B-2	NM-B-2-1.5-2.0	2	12/16/2010	NA	11	40	NA	NA	NA	NA
INIVI-D-Z	NM-B-2-4.5-5.0	5	12/16/2010	NA	8.0	34	NA	NA	NA	NA
NM-B-3	NM-B-3-1.5-2.0	2	12/16/2010	NA	2.4	6.6	NA	NA	NA	NA
INIVI-D-3	NM-B-3-4.5-5.0	5	12/16/2010	NA	<1.0	<1.0	NA	NA	NA	NA
NM-B-4	NM-B-4-1.5-2.0	2	12/16/2010	<1.2	11	33	NA	NA	NA	NA
INIVI-D-4	NM-B-4-4.5-5.0	5	12/16/2010	<1.1	<1.0	1.7	NA	NA	NA	NA
NM-B-5	NM-B-5-1.5-2.0	2	12/16/2010	< 0.93	<1.0	<1.0	NA	NA	NA	NA
C-D-IVIVI	NM-B-5-4.5-5.0	5	12/16/2010	< 0.93	<1.0	<1.0	NA	NA	NA	NA
AMEC May-July	/ 2011 Investigation ⁴									
	SB-18-4.0	4	6/7/2011	<0.29	NA	NA	NA	NA	NA	NA
SB-18	SB-18-8.0	8	6/7/2011	<0.20	NA	NA	NA	NA	NA	NA
	SB-18-12.0	12	6/7/2011	<0.21	NA	NA	NA	NA	< 0.005	NA
	SB-19-4.0	4	6/7/2011	<0.21	NA	NA	NA	NA	NA	NA
SB-19	SB-19-8.0	8	6/9/2011	<0.22	NA	NA	NA	NA	NA	NA
36-19	SB-19-11.0	11	6/9/2011	<0.27	NA	NA	NA	NA	<0.0049	NA
	SB-19-13.0	13	6/9/2011	<0.29	NA	NA	NA	NA	NA	NA
	SB-22-4.0	4	6/8/2011	< 0.25	NA	NA	NA	NA	NA	NA
SB-22	SB-22-9.0	9	6/8/2011	<0.19	NA	NA	NA	NA	< 0.005	NA
	SB-22-12.0	12	6/8/2011	< 0.32	NA	NA	NA	NA	NA	NA

TABLE C-8

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN SOIL

Aster Apartments 6775 Golden Gate Drive Dublin, California

						TPH			PAH	s
Location	Samula ID	Depth	Date	TPHg	TPHd	TPHmo	TPHho	TPHss	Naphthalene	All Other PAHs
Location	Sample ID	(feet bgs)								
SB-23	SB-23-6.0	6	6/8/2011	NA	NA	NA	<50	NA	<0.005	NA
	SB-23-12.0	12	6/8/2011	NA	NA	NA	<50	NA	NA	NA
SB-24	SB-24-6.0	6	6/9/2011	<0.20	<0.99	<49	NA	NA	<0.0049	ND
<u> </u>	SB-24-11.5	11.5	6/9/2011	<0.21	<1.0	<50	NA	NA	<0.005	ND
SB-26	SB-26-6.0	6	6/9/2011	NA	NA	NA	<49	NA	<0.0049	NA
05 20	SB-26-9.0	9	6/9/2011	NA	NA	NA	<50	NA	NA	NA
SB-27	SB-27-6.0	6	6/10/2011	NA	NA	NA	<49	NA	<0.005	NA
OB 21	SB-27-11.0	11	6/10/2011	NA	NA	NA	<50	NA	NA	NA
SB-28	SB-28-6.0	6	6/10/2011	NA	NA	NA	<50	NA	< 0.005	NA
3D-20	SB-28-10.8	10.8	6/10/2011	NA	NA	NA	<50	NA	NA	NA
	SB-29-4.0	4	7/26/2011	<0.20	51	97	98	NA	NA	NA
SB-29	SB-29-8.0	8	7/26/2011	<0.2	<1.0	<50	<50	NA	NA	NA
	SB-29-12.0	12	7/26/2011	<0.19	< 0.99	<50	<50	NA	NA	NA
	SB-30-4.0	4	7/26/2011	<0.20	2.9	<50	<50	NA	NA	NA
SB-30	SB-30-8.0	8	7/26/2011	<0.18	< 0.99	<49	<49	NA	NA	NA
	SB-30-12.0	12	7/26/2011	<0.2	<1.0	<50	<50	NA	NA	NA
	SB-31-4.0	4	7/26/2011	<0.21	2.8	<50	<50	NA	NA	NA
SB-31	SB-31-8.0	8	7/26/2011	<0.21	<1.0	<50	<50	NA	NA	NA
	SB-31-12.0	12	7/26/2011	<0.20	<1.0	<50	<50	NA	NA	NA
Ninyo & Moore	August 2011 Investiga	ation ⁵								
NM-B-7	NM-B-7-12.0-12.5	12.5	8/11/2011	NA	NA	NA	<10	NA	NA	NA
NM-B-8	NM-B-8-12.5-13.0	13	8/11/2011	NA	NA	NA	<10	NA	NA	NA
NM-B-9	NM-B-9-12.0-12.5	12.5	8/11/2011	NA	NA	NA	<10	NA	NA	NA
NM-B-10	NM-B-10-12.0-12.5	12.5	8/12/2011	NA	NA	NA	<10	NA	NA	NA
NM-B-11	NM-B-11-14.5-15.0	15	8/12/2011	NA	NA	NA	230 J	NA	NA	NA
NM-B-12	NM-B-12-12.5-13.0	13	8/12/2011	NA	NA	NA	<10	NA	NA	NA
NM-B-13	NM-B-13-12.5-13.0	13	8/10/2011	NA	NA	NA	<10	NA	NA	NA
NM-B-14	NM-B-14-13.0-13.5	13.5	8/12/2011	NA	NA	NA	<10	NA	NA	NA
NM-B-15	NM-B-15-12.0-12.5	12.5	8/12/2011	NA	NA	NA	<10	NA	NA	NA

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN SOIL

Aster Apartments 6775 Golden Gate Drive Dublin, California

						TPH			РАН	s
		Depth								All Other
Location	Sample ID	(feet bgs)	Date	TPHg	TPHd	TPHmo	TPHho	TPHss	Naphthalene	PAHs
NM-B-16	NM-B-16-12.0-12.5	12.5	8/12/2011	NA	NA	NA	<10	NA	NA	NA
NM-B-17	NM-B-17-12.5-13.0	13	8/11/2011	NA	NA	NA	<10	NA	NA	NA
	NM-B-18-3.5-4.0	4	8/10/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-18	NM-B-18-12.5-13.0	13	8/10/2011	NA	NA	NA	NA	NA	NA	NA
INIVI-D-10	NM-B-18-12.5-13.0	13	8/12/2011	NA	NA	NA	<10	NA	NA	NA
	NM-B-18-13.5-14.0	14	8/10/2011	NA	NA	NA	NA	NA	NA	NA
	NM-B-19-3.5-4.0	4	8/11/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-19	NM-B-19-5.5-6.0	6	8/11/2011	NA	NA	NA	NA	NA	NA	NA
	NM-B-19-13.5-14.0	14	8/11/2011	NA	NA	NA	NA	NA	NA	NA
	NM-B-21-3.5-4.0	4	8/11/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-21	NM-B-21-6.0-6.5	6.5	8/11/2011	NA	NA	NA	NA	NA	NA	NA
	NM-B-21-12.0-12.9	12.9	8/11/2011	NA	NA	NA	NA	NA	NA	NA
	NM-B-23B-3.5-4.0	4	8/11/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-23B	NM-B-23B-5.0-5.5	5.5	8/11/2011	NA	NA	NA	NA	NA	NA	NA
	NM-B-23B-13.5-14.0	14	8/11/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-23B2	NM-B-23B2-5.0-5.5	5.5	9/8/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-23C	NM-B-23C-5.0-5.5	5.5	9/8/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-23D	NM-B-23D-5.0-5.5	5.5	9/8/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-23E	NM-B-23E-5.0-5.5	5.5	9/8/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-24	NM-B-24-12.5-13.0	13	8/9/2011	NA	NA	NA	NA	NA	NA	NA
	NM-B-25-3.5-4.0	4	8/11/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-25	NM-B-25-5.0-5.5	5.5	8/11/2011	NA	NA	NA	NA	NA	NA	NA
	NM-B-25-12.5-13.0	13	8/11/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-26	NM-B-26-13.5-14.0	14	8/9/2011	NA	NA	NA	NA	NA	NA	NA
	NM-B-27-4.5-5.0	5	8/11/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-27	NM-B-27-7.5-8.0	8	8/11/2011	NA	NA	NA	NA	NA	NA	NA
	NM-B-27-14.0-14.5	14.5	8/11/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-28	NM-B-28-13.0-13.5	13.5	8/9/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-29	NM-B-29-12.5-13.0	13	8/9/2011	NA	NA	NA	NA	NA	NA	NA

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN SOIL

Aster Apartments 6775 Golden Gate Drive Dublin, California

						TPH			PAH	s
Location	Sample ID	Depth (feet bgs)	Date	TPHg	TPHd	TPHmo	TPHho	TPHss	Naphthalene	All Other PAHs
NM-B-30	NM-B-30-14.0-14.5	14.5	8/9/2011	NA	NA	NA	NA	NA	NA	NA
NM-B-32A	NM-B-32A-5.0-5.5	5.5	9/8/2011	NA	NA	NA	NA	NA	NA	NA
AMEC October	2011 Remediation Cor	nfirmation S	ampling ⁶							
PIT-EXB-10	FEPIT-EXB-10-12	12	10/26/2011	<0.21	89 J	170 J	NA	NA	NA	NA
AMEC August-S	September 2012 Inves	tigation ⁷								
	SB-33-5.3	5.3	8/27/2012	<0.19	NA	NA	NA	NA	NA	NA
SB-33	SB-33-10.3	10.3	8/27/2012	<0.20	NA	NA	NA	NA	NA	NA
SB-34	SB-34-5.0	5.0	8/27/2012	<0.21	NA	NA	NA	NA	NA	NA
3D-34	SB-34-10.0	10.0	8/27/2012	<0.18	NA	NA	NA	NA	NA	NA
SB-35	SB-35-5.0	5.0	8/27/2012	<0.19	NA	NA	NA	NA	NA	NA
30-33	SB-35-10.0	10.0	8/27/2012	<0.20	NA	NA	NA	NA	NA	NA
SB-38	SB-38-5.0	5.0	8/28/2012	<0.22	NA	NA	NA	NA	NA	NA
30-30	SB-38-10.0	10.0	8/28/2012	<0.20	NA	NA	NA	NA	NA	NA
SB-39	SB-39-5.0	5.0	8/28/2012	<0.21	NA	NA	NA	NA	NA	NA
30-39	SB-39-10.0	10.0	8/28/2012	<0.21	NA	NA	NA	NA	NA	NA
SB-40	SB-40-5.0	5.0	8/28/2012	<0.25	NA	NA	NA	NA	NA	NA
3D-40	SB-40-10.0	10.0	8/28/2012	<0.24	NA	NA	NA	NA	NA	NA
SB-41	SB-41-5.0	5.0	8/28/2012	<0.21	NA	NA	NA	NA	NA	NA
3D-41	SB-41-10.0	10.0	8/28/2012	<0.21	NA	NA	NA	NA	NA	NA
MW-02	MW-02-11.0	11.0	8/30/2012	3.2	NA	NA	NA	NA	NA	NA
SB-46	SB-46-13.8	13.8	9/4/2012	1.6	NA	NA	NA	NA	NA	NA

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN SOIL

Aster Apartments 6775 Golden Gate Drive Dublin, California

Notes

- 1. Basics Environmental, Inc., 2009, Limited Phase II Environmental Site Sampling Report, 7544 Dublin Boulevard & 6707 Golden Gate Drive, Dublin, California, March 16.
- 2. AMEC, 2011, Revised Soil and Groundwater Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, April 4.California, August 16.
- 3. Ninyo & Moore, 2011, Limited Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, January 7.
- 4. AMEC, 2011, Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, September 27.
- 5. Ninyo & Moore, 2011, Additional Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, September
- 6. AMEC, 2011, Remediation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California,
- 7. Samples were collected by AMEC in August and September 2012 analyzed by TestAmerica Laboratories, Inc., for TPHg using U.S. EPA Method 8260B.

Abbreviations and Data Qualifiers

< = not detected at or above the laboratory reporting limit shown

bgs = below ground surface

J = the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample mg/kg = milligrams per kilogram

NA = not analyzed

ND = not detected

PAHs = polynuclear aromatic hydrocarbons

TPH = total petroleum hydrocarbons

TPHd = total petroleum hydrocarbons quantified as diesel

TPHg = total petroleum hydrocarbons quantified as gasoline

TPHho = total petroleum hydrocarbons quantified as hydraulic oil

TPHmo = total petroleum hydrocarbons quantified as motor oil

TPHss = total petroleum hydrocarbons quantified as Stoddard solvent

U.S. EPA = United States Environmental Protection Agency

UJ = the analyte was not detected at a level greater than or equal to the quantitation limit shown; the quantitation limit is approximate and may be inaccurate or imprecise.

SUMMARY OF POLYCHLORINATED BIPHENYLS IN SOIL

Aster Apartments 6775 Golden Gate Drive Dublin, California

Concentrations reported in micrograms per kilogram (µg/kg)

						·	9	, , , , , , , , , , , , , , , , , , ,					
Location	Sample ID	Depth (feet bgs)	Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Total PCBs
Basics February	2009 Investigati	on ¹											
B5	B5-4.0	4.0	2/24/2009	<1,200	<1,200	<1,200	<1,200	<1,200	<1,200	<1,200	NA	NA	<1,200
B7	B7-4.0	4.0	2/24/2009	<25	<25	<25	<25	<25	<25	<25	NA	NA	<25
B10	B10-4.0	4.0	2/24/2009	<25	<25	<25	<25	<25	<25	<25	NA	NA	<25
Ninyo & Moore I	December 2010 Ir	nvestigation	2										
NM-B-5	NM-B-5-4.5-5.0	5.0	12/16/2010	<16	<33	<16	25	<16	<16	<16	<16	<16	NA
AMEC May-July	2011 Investigation	on ³											
SB-23	SB-23-6.0	6.0	6/8/2011	<50	<50	<50	<50	<50	<50	<50	NA	NA	NA
	SB-23-12.0	12.0	6/8/2011	<50	<50	<50	<50	<50	<50	<50	NA	NA	NA
SB-26	SB-26-6.0	6.0	6/9/2011	<50	<50	<50	<50	<50	<50	<50	NA	NA	NA
	SB-26-9.0	9.0	6/9/2011	<49	<49	<49	<49	<49	<49	<49	NA	NA	NA
SB-27	SB-27-6.0	6.0	6/10/2011	<50	<50	<50	<50	<50	<50	<50	NA	NA	NA
	SB-27-11.0	11.0	6/10/2011	<50	<50	<50	<50	<50	<50	<50	NA	NA	NA
SB-28	SB-28-6.0	6.0	6/10/2011	<49	<49	<49	<49	<49	<49	<49	NA	NA	NA
	SB-28-10.8	10.8	6/10/2011	<49	<49	<49	<49	<49	<49	<49	NA	NA	NA

Notes

- 1. Basics Environmental, Inc., 2009, Limited Phase II Environmental Site Sampling Report, 7544 Dublin Boulevard & 6707 Golden Gate Drive, Dublin, California, March 16.
- 2. Ninyo & Moore, 2011, Limited Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, January 7.
- 3. AMEC, 2011, Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, September 27.

Abbreviations

< = not detected at or above the laboratory reporting limit shown µg/kg = micrograms per kilogram

bgs= below ground surface

m = meter

NA = not analyzed

NC = no change to 2008 ESL

PCBs = polychlorinated biphenyls

SUMMARY OF METALS IN SOIL

Aster Apartments 6775 Golden Gate Drive Dublin, California

Concentrations reported in milligrams per kilogram (mg/kg)

								- 9 (9,							
		Depth													All Other
Location	Sample ID	(feet bgs)	Date	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Nickel	Vanadium	Zinc	Metals
Basics Febr	uary 2009 Investigati	ion ¹													
B1	B1-4.0	4.0	2/25/2009	8.9	NA	0.56	0.42	46	NA	25	8	41	NA	56	ND
B6	B6-10.0	10.0	2/25/2009	8.2	NA	0.54	0.31	51	NA	28	7.3	41	NA	61	ND
Ninyo & Mod	ore December 2010 li	nvestigation	1 ²			·	•					•			•
NM-B-2	NM-B-2-1.5-2.0	2.0	12/16/2010	6.0	97	<1.0	<1.0	29	9.4	27	12	33	35	56	ND
NM-B-3	NM-B-3-4.5-5.0	5.0	12/16/2010	6.2	100	<1.0	<1.0	28	8.9	25	6.2	33	33	47	ND

Notes

- 1. Basics Environmental, Inc., 2009, Limited Phase II Environmental Site Sampling Report, 7544 Dublin Boulevard & 6707 Golden Gate Drive, Dublin, California, March 16.
- 2. Ninyo & Moore, 2011, Limited Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, January 7.

Abbreviations

-- = not applicable

< = not detected at or above the laboratory reporting limit shown

bgs = below ground surface

m = meter

mg/kg = milligrams per kilogram

NA = not analyzed

ND = not detected

VOLATILE ORGANIC COMPOUNDS IN GRAB GROUNDWATER SAMPLES¹

Aster Apartments 6775 Golden Gate Drive Dublin, California

Concentrations reported in micrograms per liter (µg/L)

Location	Sample ID	Sample Type	Date	Acetone	PCE	TCE	TPHg	All Other
PRB-01HP	PRB-01HP-19.0	Primary	8/25/2014	<50	<0.50	<0.50	<50	ND
	PRB-02HP-18.5	Primary	8/19/2014	<50	39	< 0.50	<50	ND
PRB-02HP	PRB-02HP-23.0	Primary	8/19/2014	<50	59	<0.50	60 R	ND
FKB-02HF	PRB-02HP-27.5	Primary	8/21/2014	<50	58	2.8	61 R	ND
	PRB-02HP-33.0	Primary	8/25/2014	<50	2.3	< 0.50	<50	ND
	PRB-03HP-18.0	Primary	8/19/2014	<50	45	< 0.50	<50	ND
	PRB-03HP-24.0	Primary	8/19/2014	74	3.3	< 0.50	<50	ND
PRB-03HP	PRB-03HP-28.0	Primary	8/20/2014	<50	110	2.3	110 R	ND
	PRB-03HP-34.0	Primary	8/25/2014	<50	11	1.3	<50	ND
	PRB-03HP-340.0	Duplicate	8/25/2014	<50	12	1.3	<50	ND
PRB-04HP	PRB-04HP-28.0	Primary	8/26/2014	<50	91	2.1	92 R	ND
FKB-04HF	PRB-04HP-280.0	Duplicate	8/26/2014	<50	74	1.9	82 R	ND
P-01HP	P-01HP-19.0	Primary	8/20/2014	<50	2.1	< 0.50	<50	ND
P-02HP	P-02HP-18.0	Primary	8/21/2014	70	12	3.0	<50	ND
F-02MP	P-02HP-27.5	Primary	8/21/2014	<50	40	1.9	<50	ND

Notes

- 1. Samples were collected by Amec Foster Wheeler between August 19 and August 26, 2014, and analyzed for VOCs by TestAmerica Laboratories, Inc., of Pleasanton, California, using U.S. EPA Method 8260B.
- 2. Laboratory results for all other VOCs were reviewed for quality control purposes and were determined to be less than the method reporting limits, with all compound reporting limits below their respective screening levels.

Abbreviations

< = not detected at or above the laboratory reporting limit shown

μg/L = micrograms per liter

PCE = tetrachloroethene

R = the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria; the presence or absence of the analyte cannot be verified

TCE = trichloroethene

U.S. EPA = United States Environmental Protection Agency

VOCs = volatile organic compounds

SUMMARY VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER

Aster Apartments 6775 Golden Gate Drive Dublin, California

Concentrations reported in micrograms per liter (µg/L)

										Co	oncentration	is reported in	n microgran	ns per liter ((μg/L)												
Location	Sample ID	Sample Type	Date	Acetone	Benzene	Bromo- dichloro- methane		Chloro- form	Dibromo- chloro- methane	1,2- Dichloro- benzene			1,1- Dichloro- ethene	cis-1,2- Dichloro- ethene	trans-1,2- Dichloro- ethene	Ethyl-	Methyl tert-butyl ether	Naphthalene	n-Propyl-	PCE	Toluene	1,2,4- Trichloro- benzene	_	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Xylenes, Total	All Other VOCs
<u> </u>	2009 Investigation ¹	71.								1					1						1 1						
B1	B1-W	Primary	2/25/2009	54	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.8	<5.0	1.2	<0.5	<0.5	3.0	<0.5	<0.5	4.8	1.9	12	NA
B2	B2-W	Primary	2/25/2009	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<0.5	0.77	<0.5	<0.5	<0.5	<0.5	<0.5	NA
B3	B3-W	Primary	2/24/2009	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	0.65	<0.5	0.66	NA
B4	B4-W	Primary	2/25/2009	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<0.5	0.56	<0.5	<0.5	<0.5	<0.5	<0.5	NA
B5	B5-W	Primary	2/24/2009	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	1.6	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	NA
B7	B7-W	Primary	2/24/2009	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NA
B8	B8-W	Primary	2/24/2009	<10	2.9	<5.0	370	<5.0	<5.0	140	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	9.6	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
B9	B9-W	Primary	2/25/2009	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.94	<0.5	<0.5	<0.5	0.84	<0.5	<0.5	<0.5	<0.5	<0.5	NA
B10	B10-W	Primary	2/24/2009	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	1.9	0.58	<0.5	<0.5	<0.5	<0.5	<0.5	NA
AMEC Septembe	er 2010 Investigation ²																										
SB-01	SB-01	Primary	9/27/2010	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	0.11 J	<0.5	<0.5	<0.5	<1.0	<1.0	44	<0.5	<1.0	3.7	<0.5	<0.5	<1.0	NA
SB-02	SB-02	Primary	9/27/2010	<50	0.087 J	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	0.18 J	2.1	0.34 J	<0.5	<0.5	<1.0	<1.0	15	<0.5	<1.0	60	<0.5 UJ	<0.5	<1.0	NA
SB-03	SB-03	Primary	9/28/2010	<50	1.5	<0.5	85	<1.0	<0.5	42	<0.5	1.3	<0.5	1.3	<0.5	<0.5	<0.5	<1.0	<1.0	3.2	<0.5	<1.0	0.96	<0.5	<0.5	<1.0	NA
SB-04	SB-04	Primary	9/27/2010	NA	<0.5	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	<0.5	<0.5	NA	NA NA	NA	<0.5	NA	NA	NA	NA NA	<1.0	NA
	SB-40	Duplicate	9/27/2010	NA	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.5	<0.5	NA	NA	NA	<0.5	NA	NA	NA	NA	<1.0	NA
	September 2010 Investig					•														•							
NM-B-1	NM-B-1-GW	Primary	12/16/2010	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	ND
NM-B-4	NM-B-4-GW	Primary	12/16/2010	NA	<0.50	NA O 50	NA O 50	NA 0.50	NA 0.50	NA 0.50	NA 0.50	NA 0.50	NA 0.50	NA O FO	NA 0.50	<0.50	<0.50	NA 0.50	NA 0.50	NA 4.5	<0.50	NA 0.50	NA 0.50	NA 0.50	NA 0.50	NA NA	ND
NM-B-5	NM-B-5-GW	Primary	12/16/2010	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1.5	<0.50	<0.50	<0.50	<0.50	<0.50	NA NA	ND
NM-B-6	NM-B-6-GW	Primary	12/16/2010	NA	12	<1.0	620	<1.0	<1.0	350	<1.0	11	<1.0	2.2	<1.0	<1.0	<1.0	<1.0	<1.0	3.5	<1.0	<1.0	1.4	<1.0	<1.0	NA	ND
AMEC May-Augu	ist 2011 Investigation 4						T											1						T			
SB-13	SB-13-GW-2	Primary	5/16/2011	<50 UJ	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	ND
00.45	SB-13-GW-3	Primary	5/16/2011	<50 UJ	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	ND
SB-15	SB-15-GW	Primary	6/7/2011	<50 UJ	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	19	<0.5	<1.0	1.0	<0.5	<0.5	<1.0	ND
SB-16 SB-17	SB-16-GW SB-17-GW	Primary Primary	6/7/2011 6/7/2011	<50 UJ	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0	37 <0.5	<0.5 <0.5	<1.0 <1.0	1.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0	ND ND
SB-17	SB-17-GW	Primary	6/8/2011	<50 UJ	2.1	<0.5	320	<1.0	<0.5	650	<0.5	15	<0.5	1.2	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	ND
	SB-19	Primary	6/9/2011	<50 UJ	<0.5	<0.5	1.4	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	1.1	<0.5	<1.0	0.51	<0.5	<0.5	<1.0	ND
SB-19	SB-190	Duplicate	6/9/2011	<50 UJ	<0.5	<0.5	1.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	0.53	<0.5	<0.5	<0.5	<1.0	<1.0	1.1	<0.5	<1.0	0.53	<0.5	<0.5	<1.0	ND
SB-20	SB-20	Primary	6/9/2011	<50 UJ	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	1.4	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	ND
SB-21	SB-21-GW	Primary	6/8/2011	<50 UJ	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	1.0	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	ND
SB-23	SB-23	Primary	6/8/2011	<50 UJ	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	3.6	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	ND
SB-24	SB-24	Primary	6/8/2011	<50 UJ	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	ND
SB-25	SB-25	Primary	6/9/2011	<50 UJ	<0.5	<0.5	<0.5	<1.0	<0.5	6.6	0.81	3.7	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	0.62	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	ND
SB-26	SB-26	Primary	6/9/2011	<50 UJ	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	0.98	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	ND
SB-27	SB-27	Primary	6/10/2011	<50 UJ	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	1.0	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	ND
SB-28	SB-28	Primary	6/10/2011	<50 UJ	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	4.6	<0.5	<1.0	<0.5	< 0.5	<0.5	<1.0	ND
SB-31	SB-31	Primary	7/26/2011	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<1.0	ND
	August-September 2011			1 514	0.50	0.50	0.50	0.50	0.50	1 4 4	0.50	0.50	0.50	0.0	0.50	0.50	L 514	0.50	0.50	0.50	1 0 50	0.50	0.50	0.50	0.50	h ! ^	N.E.
NM-B-7	NM-B-7-W	Primary	8/12/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	1.1	<0.50	<0.50	<0.50	0.9	<0.50	<0.50	NA	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	NA NA	ND
NM-B-9	NM-B-9-W	Primary	8/12/2011	NA NA	<0.50	<0.50	<0.50	<0.50	< 0.50	0.92	< 0.50	<0.50	<0.50	0.97	<0.50	< 0.50	NA NA	<0.50 <0.50	<0.50	0.87	<0.50	<0.50	<0.50	<0.50	<0.50	NA NA	ND
NM-B-13	NM-B-13-W	Primary Primary	8/10/2011	NA NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA NA		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA NA	ND ND
NM-B-17 NM-B-18	NM-B-17-W NM-B-18-W	Primary	8/11/2011 8/10/2011	NA NA	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	NA NA	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	NA NA	ND ND
NM-B-19	NM-B-19-W	Primary	8/9/2011	NA NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA NA	ND
NM-B-20	NM-B-20-W	Primary	8/9/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	<0.50	<0.50	6.4	<0.50	<0.50	0.52	<0.50	<0.50	NA	ND
NM-B-21	NM-B-21-W	Primary	8/9/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	<0.50	<0.50	2.4	<0.50	<0.50	0.51	<0.50	<0.50	NA	ND
NM-B-22	NM-B-22-W	Primary	8/9/2011	NA	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	3.0	0.9	<0.50	NA	<0.50	<0.50	42	<0.50	<0.50	16	<0.50	<0.50	NA	ND
NM-B-23A	NM-B-23A	Primary	8/8/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	ND
NM-B-23B	NM-B-23B	Primary	8/8/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	<0.50	<0.50	98	<0.50	<0.50	0.89	<0.50	<0.50	NA	ND
NM-B-23E	NM-B-23E-W	Primary	9/8/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	<0.50	< 0.50	130	<0.50	<0.50	2.0	<0.50	<0.50	NA	ND
NM-B-23B2	NM-B-23B2-W	Primary	9/8/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	NA	<0.50	<0.50	120	<0.50	<0.50	1.7	<0.50	<0.50	NA	ND
NM-B-24	NM-B-24-W	Primary	8/10/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.75	0.7	<0.50	NA	<0.50	<0.50	65	<0.50	<0.50	5.6	<0.50	<0.50	NA	ND
NM-B-25	NM-B-25-W	Primary	8/9/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	<0.50	<0.50	48	<0.50	<0.50	12	<0.50	<0.50	NA NA	ND
NM-B-26	NM-B-26-W	Primary	8/10/2011	NA	<0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	4.5	1.9	< 0.50	NA	< 0.50	<0.50	1.7	< 0.50	<0.50	56	< 0.50	< 0.50	NA	ND

SUMMARY VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER

Aster Apartments 6775 Golden Gate Drive Dublin, California

Concentrations reported in micrograms per liter (µg/L)

-										C	oncentration	is reported i	n microgran	ns per liter	(µg/L)												
						Bromo-			Dibromo-	1.2-	1.3-	1.4-	1.1-	cis-1,2-	trans-1.2-		Methyl					1,2,4-		1,2,4-	1.3.5-		
		Sample				dichloro-	Chloro-	Chloro-	chloro-	Dichloro-	,-	Dichloro-	Dichloro-	Dichloro-	,	Ethyl-	tert-butyl		n-Propyl-			Trichloro		Trimethyl-	Trimethyl-	Xylenes,	All Other
Location	Sample ID	Туре	Date	Acetone	Benzene	methane	benzene	form	methane	benzene		benzene	ethene	ethene	ethene	benzene	ether	Naphthalene		PCE	Toluene	benzene	TCE	benzene	benzene	Total	VOCs
NM-B-27	NM-B-27W	Primary	8/9/2011	NA	<0.50	<0.50	<0.50	1.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	ND
NM-B-28	NM-B-28-W	Primary	8/10/2011	NA NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	2.5	<0.50	<0.50	NA NA	<0.50	<0.50	16	<0.50	<0.50	48	<0.50	<0.50	NA NA	ND
NM-B-29	NM-B-29-W	Primary	8/10/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	NA	<0.50	<0.50	53	<0.50	<0.50	3.7	<0.50	<0.50	NA.	ND
NM-B-30	NM-B-30-W	Primary	8/10/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.75	<0.50	<0.50	NA	<0.50	<0.50	58	<0.50	<0.50	18	<0.50	<0.50	NA	ND
NM-B-31	NM-B-31-W	Primary	8/10/2011	NA	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	< 0.50	<0.50	1.3	<0.50	<0.50	<0.50	<0.50	<0.50	NA	ND
NM-B-32	NM-B-32-W	Primary	8/10/2011	NA	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	<0.50	<0.50	190	<0.50	<0.50	1.0	<0.50	<0.50	NA	ND
NM-B-32A	NM-B-32A-W	Primary	9/8/2011	NA	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NA	<0.50	<0.50	72	<0.50	<0.50	0.71	<0.50	<0.50	NA	ND
NM-B-33	NM-B-33-W	Primary	8/10/2011	NA	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	< 0.50	< 0.50	25	< 0.50	< 0.50	2.1	< 0.50	<0.50	NA	ND
NM-B-34	NM-B-34W	Primary	8/9/2011	NA	< 0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	NA	< 0.50	< 0.50	27	< 0.50	< 0.50	0.5	< 0.50	< 0.50	NA	ND
NM-B-35	NM-B-35-W	Primary	8/10/2011	NA	< 0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	ND
NM-B-36	NM-B-36-W	Primary	8/10/2011	NA	< 0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	NA	< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	NA	ND
AMEC Octobe	r 2011 Remediation Confi	irmation Sau	mpling ⁶			-																					
		Primary	10/26/2011	<500	8.2	<5.0	2,800	<10	<5.0	18,000	7.6	250	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<10	<5.0	<5.0	12	<5.0	24	8.3	<10	ND
SUMP-EXB-1	SUMP-EXB-WATER-1-16	Split	10/26/2011	10	7.0	<1	2,400	<1	<1	21.000 J	6.8	240	<1	<1	<1	<1	<1	1.7	3.1	3.5	<1	12	<1	23	8.0	NA	ND
OLIMB EVE	OLIMB EVE WATER : :	Primary	10/28/2011	<50	6.3	<0.5	3,000	<1.0	<0.5	21,000	4.5	130	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	1.5	6.5	0.58	6.6	<0.5	8.3	3.7	1.8	ND
SUMP-EXB-2	SUMP-EXB-WATER-2-16	Split	10/28/2011	<50	7.1	<1	2,100	<1	<1	11,000	4.0	130	<1	<1	<1	<1	<1	<1	1.3	8.9	<1	5.1	<1	9.1	3.3	NA	ND
AMEC August	-September 2012 Investig				1		, ,	ı	ı	, , , , , , , ,	1		I	1	1	1	1	10	1		ı	1		1		-	."
SB-33	SB-33	Primary	8/28/2012	<50 UJ	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	130	<0.50	<1.0	0.57	<0.50	<0.50	<1.0	ND
SB-34	SB-34	Primary	8/27/2012	<50 UJ	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	210	<0.50	<1.0	<2.5	<0.50	<0.50	<1.0	ND
SB-35	SB-35	Primary	8/28/2012	<50 UJ	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	170	<0.50	<1.0	0.58	<0.50	<0.50	<1.0	ND
SB-38	SB-38	Primary	8/28/2012	<50 UJ	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	100	<0.50	<1.0	2.0	<0.50	<0.50	<1.0	ND
	SB-39	Primary	8/28/2012	<50 UJ	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	120	<0.50	<1.0	2.0	<0.50	<0.50	<1.0	ND
SB-39	SB-390	Duplicate	8/28/2012	<50 UJ	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	140	<0.50	<1.0	1.8	<0.50	<0.50	<1.0	ND
SB-40	SB-40	Primary	8/29/2012	<50 UJ	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	160	<0.50	<1.0	<0.50	<0.50	<0.50	<1.0	ND
SB-41	SB-41	Primary	8/29/2012	<50 UJ	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	53	<0.50	<1.0	<0.50	<0.50	<0.50	<1.0	ND
SB-42	SB-42	Primary	9/4/2012	<50 UJ	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	<1.0	140	< 0.50	<1.0	<0.50	< 0.50	< 0.50	<1.0	ND
SB-43	SB-43	Primary	9/4/2012	<50 UJ	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<1.0	<1.0	25	< 0.50	<1.0	< 0.50	< 0.50	<0.50	<1.0	ND
SB-44	SB-44	Primary	9/5/2012	<50 UJ	<0.50	< 0.50	< 0.50	<1.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	<1.0	7.3	< 0.50	<1.0	< 0.50	< 0.50	< 0.50	<1.0	ND
SB-45	SB-45	Primary	9/5/2012	<50 UJ	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<1.0	<1.0	70	< 0.50	<1.0	0.59	< 0.50	< 0.50	<1.0	ND
SB-46	SB-46	Primary	9/5/2012	<50 UJ	< 0.50	<0.50	< 0.50	<1.0	< 0.50	< 0.50	< 0.50	<0.50	<0.50	0.8	< 0.50	<0.50	< 0.50	<1.0	<1.0	45	< 0.50	<1.0	8.5	<0.50	<0.50	<1.0	ND
	MP-01-1	Primary	9/10/2012	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	<1.0	120	< 0.50	<1.0	< 0.50	< 0.50	< 0.50	<1.0	ND
MP-01	MP-01-2	Primary	9/10/2012	130 ⁸	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	<1.0	<0.50	< 0.50	<1.0	< 0.50	< 0.50	< 0.50	<1.0	ND
	MP-01-3	Primary	9/10/2012	<50	< 0.50	<0.50	<0.50	<1.0	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<1.0	<1.0	< 0.50	< 0.50	<1.0	< 0.50	< 0.50	< 0.50	<1.0	ND
	MP-02-1	Primary	9/10/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	1.1	<0.50	<0.50	< 0.50	<1.0	<1.0	1.2	<0.50	<1.0	15	< 0.50	<0.50	<1.0	ND
MP-02	MP-02-10	Duplicate	9/10/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	1.3	<0.50	<0.50	<0.50	<1.0	<1.0	1.6	<0.50	<1.0	19	<0.50	<0.50	<1.0	ND
1011 02	MP-02-2	Primary	9/10/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<1.0	ND
	MP-02-3	Primary	9/10/2012	130 ⁸	<0.50	<0.50	<0.50	<1.0	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<1.0	ND
MP-03	MP-03-1	Primary	9/10/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	120	<0.50	<1.0	6.4	<0.50	<0.50	<1.0	ND
00	MP-03-3	Primary	9/10/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<1.0	ND
	MP-04-1	Primary	9/10/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	4.0	<0.50	<1.0	1.3	<0.50	<0.50	<1.0	ND
MP-04	MP-04-2	Primary	9/10/2012	100 ⁸	<0.50	<0.50	<0.50	<1.0	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<1.0	ND
	MP-04-3	Primary	9/10/2012	150 ⁸	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<1.0	ND
	MW-01-(17-22)-GW ⁹	Primary	8/30/2012	<50 UJ	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	150	<0.50	<1.0	1.1	<0.50	<0.50	<1.0	ND
MW-01	MW-01	Primary	9/10/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<1.0	<1.0	150	<0.50	<1.0	1.2	<0.50	<0.50	<1.0	ND
	MW-10	Duplicate	9/10/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<1.0	<1.0	160	<0.50	<1.0	1.3	<0.50	<0.50	<1.0	ND
MW-02	MW-02-(15-20)-GW ⁹	Primary	8/30/2012	<50 UJ	< 0.50	< 0.50	< 0.50	<1.0	<0.50	< 0.50	< 0.50	< 0.50	<0.50	0.6	<0.50	<0.50	< 0.50	<1.0	<1.0	18	< 0.50	<1.0	9.2	< 0.50	< 0.50	<1.0	ND
IVIVV-UZ	MW-02	Primary	9/10/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	16	<0.50	<1.0	6.9	< 0.50	<0.50	<1.0	ND
MW-03	MW-03-(15-20)-GW ⁹	Primary	8/31/2012	<50 UJ	<0.50	<0.50	<0.50	<1.0	<0.50	1.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<1.0	<1.0	9.3	<0.50	<1.0	0.59	<0.50	<0.50	<1.0	ND
10100-03	MW-03	Primary	9/10/2012	<50	< 0.50	1.4	< 0.50	2.1	0.92	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	<1.0	<1.0	3.2	<0.50	<1.0	< 0.50	< 0.50	<0.50	<1.0	ND

SUMMARY VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER

Aster Apartments 6775 Golden Gate Drive Dublin, California

Notes

- 1. Basics Environmental, Inc., 2009, Limited Phase II Environmental Site Sampling Report, 7544 Dublin Boulevard & 6707 Golden Gate Drive, Dublin, California, March 16. Note that each sample was analyzed for benzene, ethylbenzene, toluene, and xylenes by two different U.S. EPA methods (U.S. EPA Methods 8260B and 8021). The greater of the two results for each constituent is shown herein.
- 2. AMEC, 2011, Revised Soil and Groundwater Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, April 4.
- 3. Ninyo & Moore, 2011, Limited Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, January 7.
- 4. AMEC, 2011, Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, September 27.
- 5. Ninyo & Moore, 2011, Additional Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, September 16.
- 6. AMEC, 2011, Remediation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, December 21.
- 7. Samples were collected by AMEC in August and September 2012, and analyzed by TestAmerica Laboratories, Inc., of Pleasanton, California, for VOCs using U.S. EPA Method 8260B.
- 8. Acetone is a common laboratory contaminant and is not a constituent of concern in shallow groundwater; acetone detected in deeper groundwater may not be representative.
- 9. Results are shown for grab groundwater samples collected from borings MW-01 through MW-03 before the pre-pack monitoring wells were installed.

Abbreviations and Data Qualifiers

- < = not detected at or above the laboratory reporting limit shown
- -- = not applicable
- J = the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample

NA = not analyzed

PCE = tetrachloroethene

TCE = trichloroethene

μg/L = micrograms per liter

UJ = the analyte was not detected at a level greater than or equal to the quantitation limit shown; the quantitation limit is approximate and may be inaccurate or imprecise.

U.S. EPA = United States Environmental Protection Agency

VOCs = volatile organic compounds

TABLE C-13

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN GROUNDWATER

Aster Apartments 6775 Golden Gate Drive Dublin, California

Concentrations reported in micrograms per liter (µg/L)

					Concentrati	ons reported	in micrograms	s per liter (μο	g/L)						
														PAH	S
											TPH-				
		Sample			TPHd	TPHd	TPHmo	TPHmo	TPHho	TPHho	Stoddard	TPH-	TPH-		All other
Location	Sample ID	Type	Date	TPHg	(unfiltered)	(Filtered) 1	(unfiltered)	(filtered) 1	(unfiltered)	(Filtered)	Solvent	Kerosene	Bunker Oil	Naphthalene	PAHs
	009 Investigation ²	1 - 7					<u> </u>		<u> </u>			1		<u> </u>	
B1	B1-W	Primary	2/25/2009	65	2,400	NA	2,100	NA	NA	NA	57	1,500	2,700	NA	NA
B2	B2-W	Primary	2/25/2009	<50	6,400	NA	49,000	NA	NA	NA	<50	1,200	58,000	NA	NA
B3	B3-W	Primary	2/24/2009	<50	930	NA	4,500	NA	NA	NA	<50	230	6,100	NA	NA
B4	B4-W	Primary	2/25/2009	<50	600	NA	3,200	NA	NA	NA	<50	110	4,100	NA	NA
B5	B5-W	Primary	2/24/2009	<50	65	NA	<250	NA	NA	NA	<50	<50	170	NA	NA
B7	B7-W	Primary	2/24/2009	<50	62	NA	410	NA	NA	NA	<50	<50	470	NA	NA
B8	B8-W	Primary	2/24/2009	550	230	NA	270	NA	NA	NA	170	180	530	NA	NA
B9	B9-W	Primary	2/25/2009	<50	3,400	NA	22,000	NA	NA	NA	<50	<500	25,000	NA	NA
B10	B10-W	Primary	2/24/2009	<50	2,400	NA	23,000	NA	NA	NA	<50	<1,000	25,000	NA	NA
AMEC September	2010 Investigation ³	•			•								·		
SB-01	SB-01	Primary	9/27/2010	49 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-02	SB-02	Primary	9/27/2010	63	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-03	SB-03	Primary	9/28/2010	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-04	SB-04	Primary	9/27/2010	<50	<51	<52	<300	<310	NA	NA	NA	NA	NA	<1.0	ND
SD-04	SB-40	Duplicate	9/27/2010	<50	<52	<53	<310	<320	NA	NA	NA	NA	NA	<1.0	ND
SB-05	SB-05	Primary	9/28/2010	NA	<51	<52	<300	<310	NA	NA	NA	NA	NA	<0.1	ND
SB-06	SB-06	Primary	9/28/2010	NA	<51	<53	<310	<320	NA	NA	NA	NA	NA	<0.1	ND
SB-10	SB-10	Primary	9/28/2010	NA	<51	<53	<300	<320	NA	NA	NA	NA	NA	<1.0	ND
SB-11	SB-11	Primary	9/27/2010	NA	<51	<52	<300	<310	NA	NA	NA	NA	NA	<1.0	ND
SB-12	SB-12	Primary	9/28/2010	NA	11 J	<52	<310	<310	NA	NA	NA	NA	NA	<0.1	ND
Ninyo & Moore De	ecember 2010 Investigation	on ⁴													
NM-B-1	NM-B-1-GW	Primary	12/16/2010	NA	<50	NA	<50	NA	NA	NA	NA	NA	NA	NA	NA
NM-B-2	NM-B-2-GW	Primary	12/16/2010	NA	<50	NA	<50	NA	NA	NA	NA	NA	NA	NA	NA
NM-B-3	NM-B-3-GW	Primary	12/16/2010	NA	<50	NA	<50	NA	NA	NA	NA	NA	NA	NA	NA
NM-B-4	NM-B-4-GW	Primary	12/16/2010	<50	<50	NA	<50	NA	NA	NA	NA	NA	NA	NA	NA
NM-B-5	NM-B-5-GW	Primary	12/16/2010	<50	<50	NA	<50	NA	NA	NA	NA	NA	NA	NA	NA
NM-B-6	NM-B-6-GW	Primary	12/16/2010	1,100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AMEC May-July 20	011 Investigation ⁵														
SB-13	SB-13-GW-2	Primary	5/16/2011	<50	<120	NA	<250	NA	NA	NA	NA	NA	NA	NA	NA
30-13	SB-13-GW-3	Primary	5/16/2011	<50	<50	<50	<99	<99	NA	NA	NA	NA	NA	<0.1	NA
SB-15	SB-15-GW	Primary	6/7/2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.11	NA
SB-16	SB-16-GW	Primary	6/7/2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-17	SB-17-GW	Primary	6/7/2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-18	SB-18	Primary	6/8/2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.1	NA
SB-19	SB-19	Primary	6/9/2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.1	NA
	SB-190	Primary	6/9/2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.11	NA

TABLE C-13

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN GROUNDWATER

Aster Apartments 6775 Golden Gate Drive Dublin, California

Concentrations reported in micrograms per liter (µg/L)

		I		ı	Concentiali	i reported	in micrograms	s per iller (þ <u>í</u>	g/∟) I	I	<u> </u>	<u> </u>	<u> </u>	DALL	
														PAH	<u>s</u>
						TD11.1		TDU			TPH-				
		Sample			TPHd	TPHd	TPHmo	TPHmo	TPHho	TPHho	Stoddard	TPH-	TPH-		All other
Location	Sample ID	Type	Date	TPHg	(unfiltered)	(Filtered)	(unfiltered)	(filtered)	(unfiltered)	(Filtered)	Solvent	Kerosene	Bunker Oil	Naphthalene	PAHs
SB-20	SB-20	Primary	6/9/2011	NA	NA	NA	NA	NA	1,500 J	<530	NA	NA	NA	<0.11	NA
SB-21	SB-21-GW	Primary	6/8/2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-23	SB-23	Primary	6/8/2011	NA	NA	NA	NA	NA	<500	37 J	NA	NA	NA	NA	NA
SB-24	SB-24	Primary	6/8/2011	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.1	ND
SB-25	SB-25	Primary	6/9/2011	NA	NA	NA	NA	NA	<520	<520	NA	NA	NA	<0.11	NA
SB-26	SB-26	Primary	6/9/2011	NA	NA	NA	NA	NA	<510	<540	NA	NA	NA	NA	NA
SB-27	SB-27	Primary	6/10/2011	NA	NA	<51	NA	<100	<520	<510	NA	NA	NA	NA	NA
SB-28	SB-28	Primary	6/10/2011	NA	NA	NA	NA	NA	55 J	<520	NA	NA	NA	1.7	NA
SB-31	SB-31	Primary	7/26/2011	NA	<52	<51	60 J	<100	<520	<510	NA	NA	NA	NA	NA
Ninyo & Moore Au	gust-September 2011 Inve	stigation ⁶													
NM-B-7	NM-B-7-W	Primary	8/12/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
NM-B-8	NM-B-8-W	Primary	8/12/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
NM-B-9	NM-B-9-W	Primary	8/12/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
NM-B-10	NM-B-10-W	Primary	8/12/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
NM-B-11	NM-B-11-W	Primary	8/12/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
NM-B-12	NM-B-12-W	Primary	8/12/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
NM-B-13	NM-B-13-W	Primary	8/10/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
NM-B-14	NM-B-14-W	Primary	8/12/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
NM-B-15	NM-B-15-W	Primary	8/12/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
NM-B-16	NM-B-16-W	Primary	8/12/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
NM-B-17	NM-B-17-W	Primary	8/11/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
NM-B-18	NM-B-18-W	Primary	8/10/2011	NA	NA	NA	NA	NA	<200	NA	NA	NA	NA	NA	NA
AMEC October 20	11 Remediation Confirmati	on Samplin	a ⁷												
		Primary	10/26/2011	<25,000	NA	2,200 J ⁸	NA	<120	NA	NA	NA	NA	NA	NA	NA
SUMP-EXB-1	SUMP-EXB-WATER-1-16	Split	10/26/2011	3,900 J ⁸	NA	5,200 J ⁸	NA	<50	NA	NA	NA	NA	NA	NA	NA
		Primary	10/28/2011	<100,000	NA		NA NA	<110	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
SUMP-EXB-2	SUMP-EXB-WATER-2-16	•				6,200 J ⁸			NA NA	NA NA			NA NA		NA NA
		Split	10/28/2011	4,900 J ⁸	NA	5,600 J ⁸	NA	64 J	INA	INA	NA	NA	INA	NA	INA
AMEC August-Sep	otember 2012 Investigation	9													
SB-33	SB-33	Primary	8/28/2012	140 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-34	SB-34	Primary	8/27/2012	200 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-35	SB-35	Primary	8/28/2012	170 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-38	SB-38	Primary	8/28/2012	110 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-39	SB-39	Primary	8/28/2012	110 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	SB-390	Duplicate	8/28/2012	150 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-40	SB-40	Primary	8/29/2012	130 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-41	SB-41	Primary	8/29/2012	62 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-42	SB-42	Primary	9/4/2012	120 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN GROUNDWATER

Aster Apartments 6775 Golden Gate Drive Dublin, California

Concentrations reported in micrograms per liter (µg/L)

														PAH	s
Location	Sample ID	Sample Type	Date	TPHg	TPHd (unfiltered)	TPHd (Filtered) ¹	TPHmo (unfiltered)	TPHmo (filtered) ¹	TPHho (unfiltered)	TPHho (Filtered)	TPH- Stoddard Solvent	TPH- Kerosene	TPH- Bunker Oil	Naphthalene	All other PAHs
SB-43	SB-43	Primary	9/4/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-44	SB-44	Primary	9/5/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-45	SB-45	Primary	9/5/2012	61 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-46	SB-46	Primary	9/5/2012	67 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	MP-1-1	Primary	9/10/2012	110 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MP-01	MP-1-2	Primary	9/10/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	MP-1-3	Primary	9/10/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	MP-2-1	Primary	9/10/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MP-02	MP-2-10	Duplicate	9/10/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
IVII OZ	MP-2-2	Primary	9/10/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	MP-2-3	Primary	9/10/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MP-03	MP-3-1	Primary	9/10/2012	140 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1711 00	MP-3-3	Primary	9/10/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	MP-4-1	Primary	9/10/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MP-04	MP-4-2	Primary	9/10/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	MP-4-3	Primary	9/10/2012	86	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	MW-01-(17-22)-GW ¹⁰	Primary	8/30/2012	150 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-01	MW-1	Primary	9/10/2012	120 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	MW-10	Duplicate	9/10/2012	140 R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-02	MW-02-(15-20)-GW ¹⁰	Primary	8/30/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
10100 02	MW-2	Primary	9/10/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-03	MW-03-(15-20)-GW ¹⁰	Primary	8/31/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
10100 00	MW-3	Primary	9/10/2012	<50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes

- 1. Extra sample volume for samples for TPHd and TPHmo analyses was filtered at the laboratory prior to analysis using a 0.7-micron glass fiber filter.
- 2. Basics Environmental, Inc., 2009, Limited Phase II Environmental Site Sampling Report, 7544 Dublin Boulevard & 6707 Golden Gate Drive, Dublin, California, March 16. It should be noted that the elevated concentrations of TPH detected in groundwater during this investigation are not believed to be representative, as subsequent investigations have not replicated any of the TPHd and TPHmo results generated from the Basics investigation. It is our interpretation that the anomalous data is not the result of a laboratory issue, but likely resulted from sample collection procedures that may have compromised the representativeness of the samples.
- 3. AMEC, 2011, Revised Soil and Groundwater Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, April 4.
- 4. Ninyo & Moore, 2011, Limited Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, January 7.
- 5. AMEC, 2011, Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, September 27. Groundwater,
- 6. Ninyo & Moore, 2011, Additional Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, September 16.
- 7. AMEC, 2011, Remediation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, December 21.
- 8. The laboratory (Friedman & Bruya, Inc., of Seattle, Washington) indicated that the sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- 9. Samples were collected by AMEC in August and September 2012, and analyzed by TestAmerica Laboratories, Inc., of Pleasanton, California, for TPHg using U.S. EPA Method 8260B.
- 10. Results are shown for grab groundwater samples collected from borings MW-01 through MW-03 before the pre-pack monitoring wells were installed.

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN GROUNDWATER

Aster Apartments 6775 Golden Gate Drive Dublin, California

Abbreviations

- -- = not applicable
- < = not detected at or above the laboratory reporting limit shown
- μg/L = micrograms per liter
- J = the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample

NA = not analyzed

PAHs = polynuclear aromatic hydrocarbons

TPHd = total petroleum hydrocarbons quantified as diesel

TPHg = total petroleum hydrocarbons quantified as gasoline

TPHho = total petroleum hydrocarbons quantified as hydraulic oil

TPHmo = total petroleum hydrocarbons quantified as motor oil

R = the sample results are rejected due to serious deficiencies in the ability to meet quality control criteria; the presence or absence of the analyte cannot be verified

U.S. EPA = United States Environmental Protection Agency

SUMMARY OF METALS IN GROUNDWATER

Aster Apartments 6775 Golden Gate Drive Dublin, California

Concentrations reported in micrograms per liter (µg/L)

Location	Sample ID	Date	Antimony	Arsenic	Total Chromium ¹	Dissolved Chromium ²	Hexavalent Chromium	Copper	Mercury	Nickel	Selenium	All Other Metals
Basics Febru	uary 2009 Investi	gation ³										
B1	B1-W	2/25/2009	0.64	3.9	59	NA	NA	1.7	0.017	0.86	0.88	ND
B10	B10-W	2/24/2009	<0.5	1.8	<0.5	NA	NA	<0.5	<0.012	3.6	<0.5	ND
AMEC Geom	natrix Fall 2010 In	vestigation 4										
SB-05	SB-05	9/28/2010	NA	NA	20	2.5 J-	1.1	NA	NA	NA	NA	NA
SB-06	SB-06	9/28/2010	NA	NA	250	2.3 J-	0.94	NA	NA	NA	NA	NA

Notes

- 1. The work plan specified that the samples would be analyzed for dissolved total chromium; however, the laboratory initially performed the analyses with unfiltered samples. Therefore, the resultant total chromium values likely overestimate the concentration of chromium that is dissolved in groundwater.
- 2. The work plan specified that the samples would be analyzed for dissolved total chromium; however, the laboratory initially performed the analyses with unfiltered samples. After this error was noted, Amec Foster Wheeler requested that the analytical laboratory filter some remaining sample volume (from a different, unpreserved container) and perform a dissolved total chromium analysis on each sample. However, since the unfiltered samples were stored in unpreserved glass containers, rather than being filtered and then stored in preserved plastic containers as required by the analytical method, the dissolved total chromium results were qualified as estimated and may be biased low.
- 3. Basics Environmental, Inc., 2009, Limited Phase II Environmental Site Sampling Report, 7544 Dublin Boulevard & 6707 Golden Gate Drive, Dublin, California, March 16.
- 4. AMEC, 2011, Revised Soil and Groundwater Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, April 4.

Abbreviations and Data Qualifiers

- < = not detected at or above the laboratory reporting limit
- -- = not applicable

µg/L = micrograms per liter

ESL = Environmental Screening Level

J- = the result is an estimated quantity and may be biased low

NA = not analyzed

NC = no change to 2008 ESL

ND = not detected

SUMMARY OF GLYCOLS IN GROUNDWATER

Aster Apartments 6775 Golden Gate Drive Dublin, California

Concentrations reported in micrograms per liter (µg/L)

Location	Sample ID	Date	Glycols ²
Basics February 2009	Investigation ¹		
B4	B4-W	2/25/2009	<0.2
B10	B10-W	2/24/2009	<0.2

Notes

- 1. Samples collected by Basics Environmental, Inc., and analyzed by McCampbell Analytical, Inc., of Pittsburgh California. Samples were analyzed for glycols using Method MAI Alcohols.
- 2. Glycols analyzed include ethylene glycol monobutyl ether (EGBE), ethylene glycol monoethyl ether (EGEE), and ethylene glycol monomethyl ether (EGME).

Abbreviations

< = not detected at or above the laboratory reporting limit shown

NL = not listed

μg/L = micrograms per liter

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND NAPTHALENE IN SOIL VAPOR

										Dublin, Cali	IUIIIIa										
Location	Sample ID	Sample Type	Depth (feet bgs)	Date	Acetone	Benzene	Bromo- dichloro- methane	Bromo- methane	2- Butanone	Carbon Disulfide	Chloro- benzene	Chloro- form	Cyclo- hexane	Dibromo- chloro- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	Dichloro- difluoro- methane	1,1- Dichloro- ethane	1,2- Dichloro- ethane	1,1-Dichloro- ethene
ecember 20	10 Investigat	ion ¹																			
SV-1	SV-1	Primary	4.0-5.0	12/16/2010	170	150	<14	<7.9	<150	25	<9.4	<9.9	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-2	SV-2	Primary	0.50	12/15/2010	<10,000	<500	<500	<500	<2,000	<500	<500	<500	NA	<500	32,000	880	2,200	<500	<500	<500	<500
SV-3	SV-3	Primary	0.50	12/15/2010	1,900	<6.5	<14	<7.9	<150	<6.3	22	<9.9	<180	<17	4,400	970	3,300	<10	87	<8.2	<8.1
SV-4	SV-4	Primary	0.50	12/15/2010	<120	<6.5	<14	<7.9	<150	<6.3	<9.4	<9.9	<180	<17	20	<12	<12	<10	<8.2	<8.2	<8.1
SV-5	SV-5	Primary	0.50	12/15/2010	<120	<6.5	<14	150	<150	<6.3	<9.4	<9.9	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-6	SV-6	Primary	0.50	12/16/2010	<120	<6.5	<14	<7.9	<150	<6.3	<9.4	<9.9	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
ugust 2011	Investigation	2																			
SG-01	SG-01	Primary	5.5	6/9/2011	37 J	<3.8	<8.0	<4.6	<14	<15	<5.5	<5.8	<4.1	<10	<7.2	<7.2	<7.2	<5.9	<4.8	<4.8	<4.7
SG-02	SG-02	Primary	5.5	6/9/2011	30 J	<6.9	<14	<8.4	<25	<27	<9.9	<10	<7.4	<18	<13	<13	<13	<11	<8.7	8.8	<8.6
SG-03	SG-03	Primary	5.5	6/9/2011	<150	120 J	<100	<60	<180	<190	<72	<76	140 J	<130	<93	<93	<93	<77	<63	<63	120 J
	SG-03															1					
SG-04		Primary	5.5	6/9/2011	120 J	140	<61	<36	<110	<110	<42	<45	110	<78	<55	<55	<55	<45	<37	<37	150
SG-05	SG-05	Primary	5.5	6/9/2011	12 J	3.6	<7.1	<4.1	<12	<13	<4.9	21	<3.7	<9.1	<6.4	<6.4	<6.4	6.6	<4.3	<4.3	<4.2
SG-06	SG-06	Primary	4.5	6/9/2011	76 J	<3.6	<7.5	<4.3	<13	15	<5.2	<5.5	<3.8	<9.5	<6.7	<6.7	<6.7	9.2	<4.5	<4.5	<4.4
	SG-60	Duplicate	4.5	6/9/2011	34 J	<3.8	<8.0	<4.6	<14	15	<5.5	<5.8	<4.1	<10	<7.2	<7.2	<7.2	8.4	<4.8	<4.8	<4.7
SG-07	SG-07	Primary	4.5	6/9/2011	55 J	27	11	<4.5	<14	46	<5.4	47	8.2	<9.9	<7.0	<7.0	<7.0	<5.8	17	<4.7	<4.6
SG-08	SG-08	Primary	4.5	6/9/2011	79 J	68	8.7	<4.1	16	86	860	28	9.4	<9.1	440	<6.4	<6.4	<5.3	14	4.5	<4.2
August 201	1 Investigation	on ³	•		•	•	•			•	•	•		•	•	•		•	•	•	
SV-7	SV-7	Primary	1.0-1.5	8/23/2011	<120	<6.5	<14	<7.9	<150	<6.3	<9.4	<9.9	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-8	SV-8	Primary	4-5	8/16/2011	210	55	<14	<7.9	<150	35	<9.4	<9.9	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-9	SV-9	Primary	2.5-3.0	8/18/2011	440	44	56	<7.9	<150	38	<9.4	110	<180	23	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-10	SV-10	Primary	4-5	8/16/2011	300	12	<14	<7.9	<150	11	<9.4	<9.9	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-11	SV-11	Primary	4-5	8/18/2011	<120	74	35	<7.9	<150	28	<9.4	270	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-12	SV-12	Primary	4-5	8/16/2011	<1,200	90	46	<7.9	430	44	<9.4	120	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-13	SV-13	Primary	4-5	8/18/2011	<10,000	<500	<500	<500	<2,000	<500	<500	<500	NA	<500	<500	<500	<500	<500	<500	<500	640
SV-14	SV-14	Primary	4-5	8/18/2011	<10,000	<500	<500	<500	<2,000	<500	<500	<500	NA	<500	<500	<500	<500	<500	<500	<500	560
SV-15	SV-15	Primary	2.5-3.0	8/18/2011	280	160	<14	<7.9	180	36	<9.4	44	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-16	SV-16	Primary	1.5-2.0	8/18/2011	<120	1,300	<14	<7.9	<150	29	<9.4	<9.9	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-17	SV-17	Primary	4-5	8/16/2011	<1,200	100	19	<7.9	440	49	<9.4	72	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-18	SV-18	Primary	2.5-3.0	8/18/2011	440	130	24	<7.9	260	170	<9.4	70	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-19	SV-19	Primary	4-5	8/17/2011	170	8.7	<14	<7.9	<150	71	<9.4	74	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-20	SV-20	Primary	0.5-1.0	8/23/2011	150	<6.5	<14	<7.9	<150	<6.3	<9.4	<9.9	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-21	SV-21	Primary	4-5	8/16/2011	150	32	83	<7.9	270	7.4	<9.4	150	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-22	SV-22	Primary	4.5-5.5	8/17/2011	<120	13	<14	<7.9	<150	9.7	<9.4	<9.9	<180	<17	<12	<12	<12	<10	<8.2	<8.2	<8.1
SV-23	SV-23	Primary	3.5-4.0	8/17/2011	<10,000	<500	<500	<500	<2,000	<500	<500	<500	NA	<500	<500	<500	<500	<500	<500	<500	840
SV-24	SV-24	Primary	3.5-4.0		170	170	28	<7.9	<150	51	<9.4	<9.9	<180	<17	<12	<12	<12	<10	<8.2	<8.2	11
	nvestigation	4									•			•	•						-
SG-13	SG-13A	Primary	3.5-4.5	9/4/2012	<31 R	11	<8.6	<50	<15	<16	<5.9	<6.3	<4.4	<11	<7.8	<7.8	<7.8	<6.4	<5.2	<5.2	<5.1 UJ
	SG-13B	Primary	7.5-8.5	9/4/2012	<30 R	4.2	<8.4	<49	<15	<16	6.1	<6.2	<4.3	<11	<7.6	<7.6	<7.6	<6.2	<5.1	<5.1	<5.0 UJ
SG-14	SG-14A	Primary	3.5-4.5	9/4/2012	<33	<4.5	<9.4	<55	<17	<18	6.9	<6.9	<4.8	<12	<8.5	<8.5	<8.5	<7.0	<5.7	<5.7	<5.6
	SG-14B	Primary	7.5-8.5	9/4/2012	<33 R	<4.4	<9.2	<54	<16	<17	<6.4	<6.7	<4.8	<12	<8.3	<8.3	<8.3	<6.8	<5.6	<5.6	<5.5 UJ
	SG-19A	Duplicate	7.5-8.5	9/4/2012	<33	4.9	<9.2	<54	<16	<17	<6.4	<6.7	<4.8	<12	<8.3	<8.3	<8.3	<6.8	<5.6	<5.6	<5.5
SG-15	SG-15A	Primary	3.5-4.5	9/4/2012	28	<3.9	<8.1	<47	<14	<15	<5.6	<5.9	<4.2	<10	<7.3	<7.3	<7.3	<6.0	<4.9	<4.9	<4.8
	SG-15A	Primary	7.5-8.5	9/4/2012	<30	<4.0	<8.4	<49	<15	<16	<5.8	<6.2	<4.3	<11	<7.6	<7.6	<7.6	<6.2	<5.1	<5.1	<5.0
SG-16	SG-16A	Primary	3.5-4.5	9/4/2012	<29	17	<8.1	<47	<14	27	5.6	<5.9	<4.2	<10	<7.3	<7.3	<7.3	<6.0	<4.9	<4.9	<4.8
	SG-16B	Primary	7.5-8.5	9/4/2012	<36	<4.9	<10	<59	<18	<19	<7.0	<7.4	<5.2	<13	<9.2	<9.2	<9.2	<7.5	<6.2	<6.2	<6.0
	00-100	i iiiilaiy	1.0-0.0	31712012	100	\ T.U	\ \ \ \	100	110	110	``	``.T	\U.Z	`10	70.2	٦٥.٢	~U.L	``	٦٥.٢	\U.Z	1 10.0

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND NAPTHALENE IN SOIL VAPOR

1										Dubili	n, California	а									
Location	Sample ID	Sample Type	Depth (feet bgs)	Date	cis-1,2- Dichloro- ethene	trans-1,2- Dichloro- ethene	Ethanol	Ethyl acetate	Ethyl- benzene	4-Ethyl- toluene	Heptane	Hexane	- 1 - 1 7	Methyl tert- butyl ether	Methylene Chloride	4-Methyl- 2-pentanone	Naph- thalene	Propene	n-Propyl- benzene	tert-Butyl Alcohol	PCE
	10 Investigat	ion ¹	-	-																	
SV-1	SV-1	Primary	4.0-5.0	12/16/2010	<8.1	<8.1	<96	<7.3	<8.8	<10	<210	<180	NA	280	<7.1	<8.3	<11	<88	NA	<62	<14
SV-2	SV-2	Primary	0.50	12/15/2010	+	<500	NA	NA	<500	NA	NA	NA	<500	<500	<500	<500	<500	NA	<500	<5,000	<500
SV-3	SV-3	Primary	0.50	12/15/2010	<8.1	<8.1	<96	<7.3	<8.8	<10	<210	<180	NA	<7.3	19	<8.3	<11	<88	NA	<62	4,700
SV-4	SV-4	Primary	0.50	12/15/2010	<8.1	<8.1	1100	57	<8.8	<10	<210	<180	NA	<7.3	<7.1	<8.3	<11	<88	NA	<62	140
SV-5	SV-5	Primary	0.50	12/15/2010		<8.1	250	<7.3	94	33	<210	<180	NA	<7.3	47	<8.3	<11	<88	NA	<62	<14
SV-6	SV-6	Primary	0.50	12/16/2010	<8.1	<8.1	<96	<7.3	<8.8	<10	<210	<180	NA	<7.3	<7.1	<8.3	<11	<88	NA	<62	<14
	Investigation			T						ı	1	1									
SG-01	SG-01	Primary	5.5	6/9/2011	<4.7	<4.7	16	NA	21	<5.8	7.7	9.4	<5.8	<4.3	<4.1	<4.9	<25	NA	<5.8	NA	580
SG-02	SG-02	Primary	5.5	6/9/2011	<8.6	<8.6	<16	NA	21	<11	<8.8	<7.6	<11	<7.8	<7.5	<8.8	<45	NA	<11	NA	4,900
SG-03	SG-03	Primary	5.5	6/9/2011	290 J	450 J	<120	NA	<68	<76	<64	<55	<76	<56	<54	<64	<330	NA	<76	NA	17,000 J
SG-04	SG-04	Primary	5.5	6/9/2011	1,200	380	<69	NA	61	<45	65	310	<45	<33	<32	<37	<190	NA	<45	NA	1,400
SG-05	SG-05	Primary	5.5	6/9/2011	<4.2	<4.2	<8.0	NA	8.4	<5.2	18	<3.8	<5.2	<3.8	<3.7	<4.4	<22	NA	<5.2	NA	100
SG-06	SG-06	Primary	4.5	6/9/2011	<4.4	<4.4	<8.4	NA	5.6	<5.5	<4.6	<3.9	<5.5	<4.0	<3.9	<4.6	<23	NA	<5.5	NA	730
	SG-60	Duplicate	4.5	6/9/2011	<4.7	<4.7	<9.0	NA	5.2	<5.8	<4.9	<4.2	<5.8	<4.3	<4.1	<4.9	<25	NA	<5.8	NA	730
SG-07	SG-07	Primary	4.5	6/9/2011	<4.6	<4.6	<8.8	NA	24	13	30	13	<5.7	<4.2	<4.0	14	<24	NA	<5.7	NA	160
SG-08	SG-08	Primary	4.5	6/9/2011	<4.2	<4.2	<8.0	NA	29	12	69	48	<5.2	<3.8	<3.7	<4.4	<22	NA	<5.2	NA	27
	1 Investigation		7.0	0/3/2011	\ 1 .2	\ 1 .2	\0.0	INA	23	12	03	70	\0.2	₹3.0	₹3.1	\7.7	\ZZ	INA	₹5.2	INA	
SV-7	SV-7	Primary	1.0-1.5	8/23/2011	<8.1	<8.1	<96	<7.3	<8.8	<10	<210	<180	NA	<7.3	<7.1	<8.3	<11	<88	NA	<62	47
SV-7	SV-7	Primary	4-5	8/16/2011	<8.1	<8.1	<96	<7.3	9.5	<10	<210	<180	NA NA	<7.3	<7.1	<8.3	<11	<880	NA NA	<62	<14
SV-9	SV-9	Primary	2.5-3.0	8/18/2011	<8.1	<8.1	<96	<7.3	54	47	<210	<180	NA NA	<7.3	<7.1	77	<11	95	NA	<62	<14
SV-10	SV-10	Primary	4-5	8/16/2011	<8.1	<8.1	<96	<7.3	<8.8	<10	<210	<180	NA	<7.3	<7.1	<8.3	<11	<88	NA	<62	280
SV-11	SV-11	Primary	4-5	8/18/2011	<8.1	<8.1	<96	<7.3	64	52	<210	<180	NA	<7.3	<7.1	13	<11	<88	NA	<62	<14
SV-12	SV-12	Primary	4-5	8/16/2011	84	27	<96	<7.3	52	<10	<210	<180	NA	<7.3	<7.1	25	<11	<880	NA	120	54
SV-13	SV-13	Primary	4-5	8/18/2011	1,300	3,600	NA	NA	<500	NA	NA	NA	<500	<500	<500	<500	<500	NA	<500	<5,000	7,300
SV-14	SV-14	Primary	4-5	8/18/2011	1,000	1,600	NA	NA	<500	NA	NA	NA	<500	<500	<500	<500	<500	NA	<500	<5,000	790
SV-15	SV-15	Primary	2.5-3.0	8/18/2011	21	<8.1	<96	<7.3	540	130	<210	<180	NA	<7.3	<7.1	53	<11	<88	NA	<62	<14
SV-16	SV-16	Primary	1.5-2.0	8/18/2011	<8.1	<8.1	<96	<7.3	1,300	140	<210	480	NA	<7.3	<7.1	64	<11	<88	NA	<62	400
SV-17	SV-17	Primary	4-5	8/16/2011	25	<8.1	110	<7.3	64	<10	<210	<180	NA	<7.3	<7.1	30	<11	<880	NA	240	<14
SV-18	SV-18	Primary	2.5-3.0	8/18/2011	<8.1	<8.1	<96	<7.3	48	34	<210	<180	NA	<7.3	<7.1	36	<11	<88	NA	<62	<14
SV-19	SV-19	Primary	4-5	8/17/2011	<8.1	<8.1	<96	<7.3	28	<10	<210	<180	NA	<7.3	<7.1	<8.3	<11	730	NA	<62	<14
SV-20	SV-20	Primary	0.5-1.0	8/23/2011	<8.1	<8.1	<96	<7.3	<8.8	<10	<210	<180	NA	<7.3	<7.1	<8.3	<11	<88	NA	<62	160
SV-21	SV-21	Primary	4-5	8/16/2011	<8.1	<8.1	<96	<7.3	43	<10	<210	<180	NA	<7.3	<7.1	14	<11	<88	NA	<62	<14
SV-22	SV-22	Primary	4.5-5.5	8/17/2011	<8.1	<8.1	<96	<7.3	9.3	<10	<210	<180	NA	<7.3	<7.1	<8.3	<11	<88>	NA	<62	35,000
SV-23	SV-23	Primary	3.5-4.0	8/17/2011	1,200	1,100	<50,000	NA	<500	NA	NA	NA	<500	<500	<500	<500	<500	NA	<500	<5,000	2,300
SV-24	SV-24	Primary	3.5-4.0	8/17/2011	<8.1	<8.1	<96	<7.3	73	34	<210	<180	NA	<7.3	<7.1	<8.3	<11	<88>	NA	<62	9,600
nber 2012 lr	nvestigation	4																			<u> </u>
SG-13	SG-13A	Primary	3.5-4.5	9/4/2012	<5.1	<5.1	<9.7 R	NA	25	37	<5.3	<4.5	11	<4.6	<45 R	<5.3	<27	NA	6.7	NA	<8.8>
	SG-13B	Primary	7.5-8.5	9/4/2012	<5.0	9.9	<9.5 R	NA	<5.5	6.7	<5.2	<4.4	<6.2	<4.5	<44 R	<5.2	<26	NA	<6.2	NA	<8.5
SG-14	SG-14A	Primary	3.5-4.5	9/4/2012	<5.6	<5.6	<11 R	NA	11	15	<5.8	<5.0	<6.9	<5.1	<49	<5.8	<30	NA	<6.9	NA	24 J
	SG-14B	Primary	7.5-8.5	9/4/2012	<5.5	<5.5	<10 R	NA	7.1	<6.8	<5.6	<4.9	<6.8	<5.0	<48 R	<5.6	<29	NA	<6.8	NA	41 J
	SG-19A	Duplicate	7.5-8.5	9/4/2012	<5.5	<5.5	<10 R	NA	<6.0	<6.8	<5.6	<4.9	<6.8	<5.0	<48	<5.6	<29	NA	<6.8	NA	68 J
SG-15	SG-15A	Primary	3.5-4.5	9/4/2012	<4.8	<4.8	<9.1 R	NA	10	14	<5.0	<4.3	<5.9	<4.4	<42	<5.0	<25	NA	<5.9	NA	74 J
	SG-15B	Primary	7.5-8.5	9/4/2012	<5.0	<5.0	<9.5 R	NA	<5.5	7.8	<5.2	<4.4	<6.2	<4.5	<44	<5.2	<26	NA	<6.2	NA	700 J
SG-16	SG-16A	Primary	3.5-4.5	9/4/2012	<4.8	<4.8	<9.1 R	NA	30	40	<5.0	<4.3	<5.9	<4.4	<42	<5.0	<25	NA	10	NA	92 J
	SG-16B	Primary	7.5-8.5	9/4/2012	<6.0	<6.0	<11 R	NA	<6.6	<7.5	<6.2	<5.4	<7.5	<5.5	<53	<6.2	<32	NA	<7.5	NA	2,700 J

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND NAPTHALENE IN SOIL VAPOR

									Dublin, Ca								Leak Dete	ction Com	pounds
Location	Sample ID	Sample Type	Depth (feet bgs)	Date	Tetra- hydro- furan	Toluene	1,1,1- Trichloro- ethane	TCE	Trichloro- fluoro- methane	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	2,2,4- Trimethyl- pentane	Vinyl Chloride	m,p- Xylene	o- Xylene	Xylenes, Total	Isopropyl Alcohol	Freon 134A	Helium (%)
	10 Investigat	4	<u> </u>	•	•	•				•	•		•	-		•			
SV-1	SV-1	Primary	4.0-5.0	12/16/2010	<6.0	16	<11	<11	<11	<10	<10	NA	<5.2	NA	NA	<27	<10	NA	NA
SV-2	SV-2	Primary	0.50	12/15/2010	NA	<500	<500	<500	<500	4,000	1,800	NA	<500	NA	NA	1,100	<10	NA	NA
SV-3	SV-3	Primary	0.50	12/15/2010	<6.0	30	260	64	13	<10	<10	NA	<5.2	NA	NA	<27	<10	NA	NA
SV-4	SV-4	Primary	0.50	12/15/2010	<6.0	9.6	<11	<11	<11	<10	<10	NA	<5.2	NA	NA	<27	<10	NA	NA
SV-5	SV-5	Primary	0.50	12/15/2010	<6.0	280	<11	<11	<11	200	91	NA	<5.2	NA	NA	550	<10	NA	NA
SV-6	SV-6	Primary	0.50	12/16/2010	<6.0	<7.7	<11	<11	<11	<10	<10	NA	<5.2	NA	NA	<27	<10	NA	NA
ugust 2011	Investigatior	າ ²																	
SG-01	SG-01	Primary	5.5	6/9/2011	<3.5	51	<6.5	20	<6.7	<5.8	<5.8	<5.6	<3.0	35	17	NA	NA	<20	NA
SG-02	SG-02	Primary	5.5	6/9/2011	<6.4	72	<12	65	<12	<11	<11	34	<5.5	23	11	NA	NA	<36	NA
SG-03	SG-03	Primary	5.5	6/9/2011	<46	61 J	<85	3,200 J	<87	<76	<76	81,000	91 J	<68	<68	NA	NA	<260	NA
SG-04	SG-04	Primary	5.5	6/9/2011	<27	98	<50	5,800	<51	<45	<45	18,000	130 J	80	<40	NA	NA	<150	NA
SG-05	SG-05	Primary	5.5	6/9/2011	<3.1	32	<5.8	<5.7	<6.0	<5.2	<5.2	<5.0	3.8 J	14	5.5	NA	NA	<18	NA
SG-06	SG-06	Primary	4.5	6/9/2011	15	22	<6.1	<6.0	<6.3	<5.5	<5.5	12	<2.9	9.1	<4.9	NA	NA	120	NA
00 00	SG-60	Duplicate	4.5	6/9/2011	13	21	<6.5	<6.4	<6.7	<5.8	<5.8	9.4	<3.0	8.6	<5.2	NA	NA NA	110	NA
SG-07	SG-00	Primary	4.5	6/9/2011		120		9.2			8.4	280	<3.0		17	NA	NA NA		NA NA
		,			18		25		6.8	15	7			60			11	550	
SG-08	SG-08	Primary	4.5	6/9/2011	<3.1	110	<5.8	<5.7	<6.0	12	/	450	5.0 J	70	22	NA	NA	910	NA
	1 Investigatio		1 1015	0/00/0044				4.4		10	10					0.7	11 10 1		
SV-7	SV-7	Primary	1.0-1.5	8/23/2011	<6.0	<7.7	<11	<11	<11	<10	<10	NA	<5.2	NA	NA	<27	<10	NA	NA
SV-8	SV-8	Primary	4-5	8/16/2011	1,100	70	<11	<11	<11	<10	<10	NA	<5.2	NA	NA	42	<10	NA	NA
SV-9	SV-9	Primary	2.5-3.0	8/18/2011	450	140	<11	<11	<11	240	84	NA	<5.2	NA NA	NA	320 <27	<10	NA	NA
SV-10 SV-11	SV-10 SV-11	Primary	4-5 4-5	8/16/2011	58 1,300	24 200	<11 <11	<11 <11	<11	<10 250	<10	NA NA	<5.2 <5.2	NA NA	NA NA	390	<10	NA NA	NA NA
SV-11	SV-11	Primary Primary	4-5 4-5	8/18/2011 8/16/2011	4,900	190	<11	300	<11 <11	10	92 <10	NA NA	<5.2 <5.2	NA NA	NA NA	260	<10 <10	NA NA	NA NA
SV-12	SV-12	Primary	4-5 4-5	8/18/2011	<500	<500	<500	12,000	<500	<500	<500	NA NA	<500	NA NA	NA NA	<500	<10	NA NA	NA
SV-14	SV-13	Primary	4-5	8/18/2011	<500	<500	<500	8,300	<500	<500	<500	NA	<500	NA	NA	1,100	<10	NA	NA
SV-15	SV-15	Primary	2.5-3.0	8/18/2011	1,600	180	<11	30	<11	180	130	NA	<5.2	NA	NA	4,300	<10	NA	NA
SV-16	SV-16	Primary	1.5-2.0	8/18/2011	720	180	<11	27	<11	290	160	NA	<5.2	NA NA	NA	2,900	<10	NA NA	NA
SV-17	SV-17	Primary	4-5	8/16/2011	4,400	120	<11	36	<11	<10	<10	NA	<5.2	NA	NA	300	<10	NA	NA
SV-18	SV-18	Primary	2.5-3.0	8/18/2011	1,400	140	<11	<11	<11	150	46	NA	<5.2	NA	NA	260	<10	NA	NA
SV-19	SV-19	Primary	4-5	8/17/2011	93	62	<11	<11	<11	<10	<10	NA	<5.2	NA	NA	120	<10	NA	NA
SV-20	SV-20	Primary	0.5-1.0	8/23/2011	<6.0	8.7	96	<11	<11	<10	<10	NA	<5.2	NA	NA	<27	<10	NA	NA
SV-21	SV-21	Primary	4-5	8/16/2011	3,800	140	<11	<11	<11	<10	<10	NA	<5.2	NA	NA	200	<10	NA	NA
SV-22	SV-22	Primary	4.5-5.5	8/17/2011	500	19	<11	33	<11	17	<10	NA	<5.2	NA	NA	54	<10	NA	NA
SV-23	SV-23	Primary	3.5-4.0	8/17/2011		<500	<500	9,100	<500	<500	<500	NA	510	NA	NA	<500	<10	NA	NA
SV-24	SV-24	Primary	3.5-4.0	8/17/2011	2,800	260	<11	410	<11	120	55	NA	<5.2	NA	NA	410	<10	NA	NA
nber 2012 Ir	nvestigation	4																	
SG-13	SG-13A	Primary	3.5-4.5	9/4/2012	4.0 J	77	<7.0	<6.9	<7.2	51	20	<6.0	<3.3	120	34	NA	NA	NA	NA
	SG-13B	Primary	7.5-8.5	9/4/2012	<3.7 R	16	<6.9	160	<7.1	9.4	<6.2	<5.9	<3.2	20	7.7	NA	NA	NA	NA
SG-14	SG-14A	Primary	3.5-4.5	9/4/2012	<4.2 R	23	<7.7	<7.6	<7.9	22	7.6	<6.6	<3.6	42	12	NA	NA	NA	NA
	SG-14B	Primary	7.5-8.5	9/4/2012	<4.1 R	17	<7.5	400	<7.8	7.0	<6.8	<6.4	<3.5	18	7.1	NA	NA	NA	NA
	SG-19A	Duplicate	7.5-8.5	9/4/2012	<4.1 R	17	<7.5	380	<7.8	8.8	<6.8	<6.4	<3.5	18	<6.0	NA	NA	NA	NA
SG-15	SG-15A	Primary	3.5-4.5	9/4/2012	<3.6 R	17	<6.6	<6.5	<6.8	22	11	<5.6	<3.1	41	9.4	NA	NA	NA	<0.12
	SG-15B	Primary	7.5-8.5	9/4/2012	<3.7 R	7.9	<6.9	140	<7.1	14	8.1	<5.9	<3.2	22	5.6	NA	NA	NA	NA
SG-16	SG-16A	Primary	3.5-4.5	9/4/2012	5.1 J	80	<6.6	<6.5	<6.8	51	20	<5.6	<3.1	120	34	NA	NA	NA	NA
	SG-16B	Primary	7.5-8.5	9/4/2012	<4.5 R	12	<8.3	<8.2	<8.6	<7.5	<7.5	<7.1	<3.9	14	<6.6	NA	NA	NA	NA

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND NAPTHALENE IN SOIL VAPOR

Aster Apartments 6775 Golden Gate Drive Dublin, California

Notes

- 1. Ninyo & Moore, 2011, Limited Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, January 7.
- 2. AMEC, 2011, Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, September 27.
- 3. Ninyo & Moore, 2011, Additional Phase II Environmental Site Assessment, Crown Chevrolet, 7544 Dublin Boulevard, Dublin, California, September 16.
- 4. Soil vapor samples were collected by AMEC in September 2012 and analyzed by Air Toxics, Ltd., of Folsom, California, using U.S. EPA Method TO-15. Selected samples were additionally analyzed for helium using ASTM-D 1946.

Abbreviations and Data Qualifiers

- -- = not applicable
- < = not detected at or above the laboratory reporting limit shown

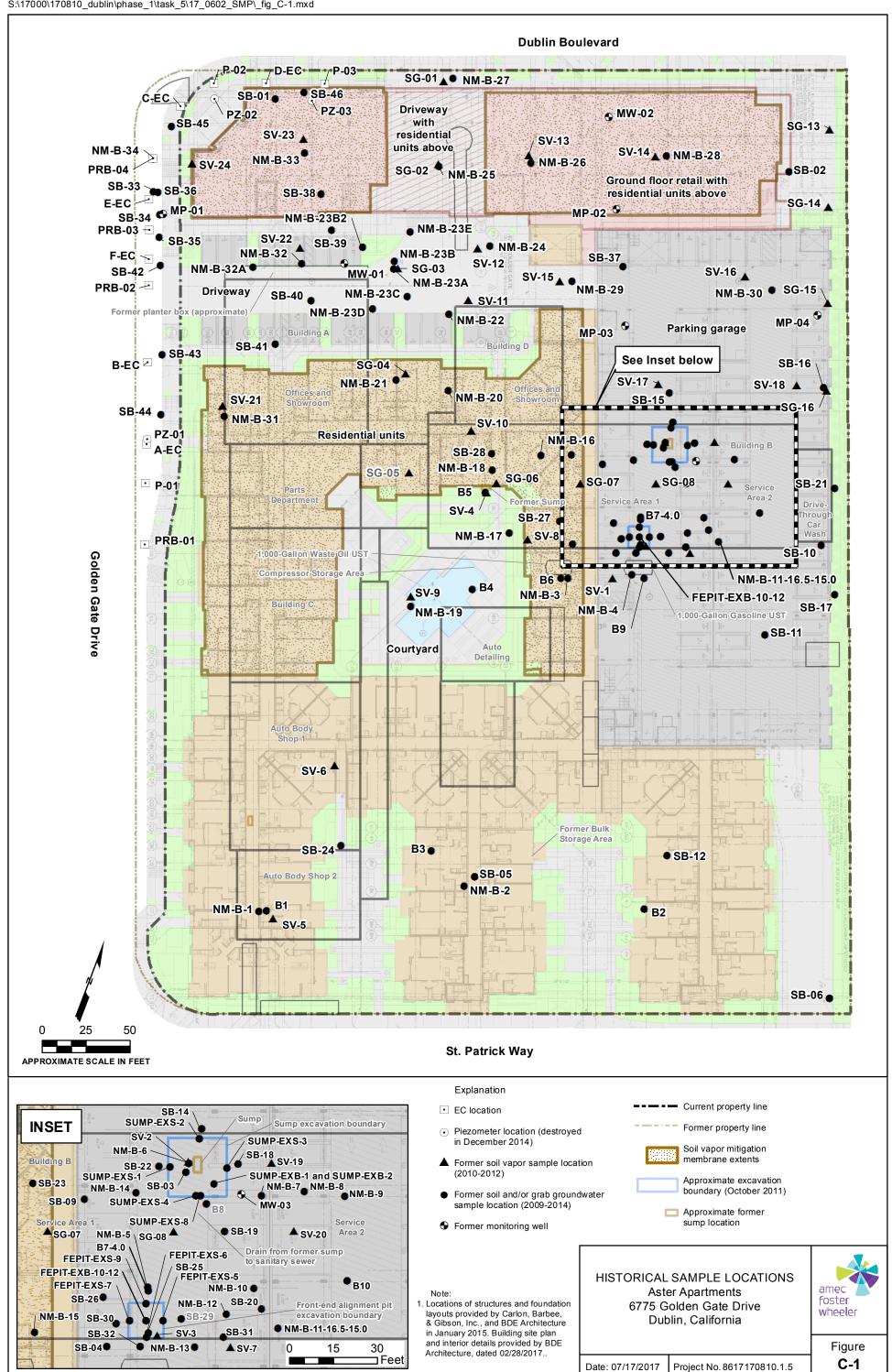
bgs = below ground surface

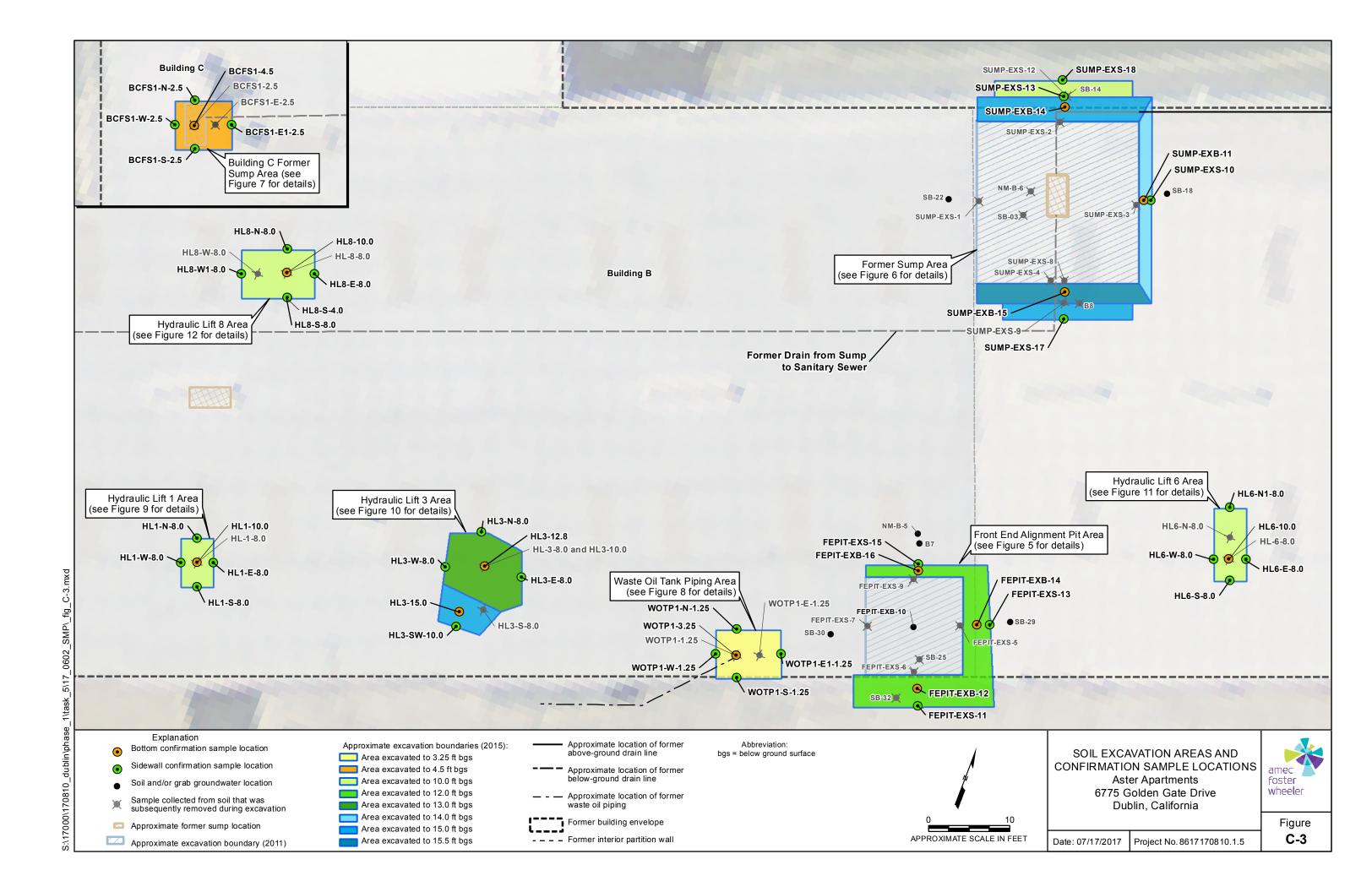
J = the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample

NA = not analyzed

PCE = tetrachloroethene

TCE = trichloroethene


R = the sample results are rejected due to serious deficiencies in the ability to meet quality control criteria; the presence or absence of the analyte cannot be verified


UJ = the analyte was not detected at a level greater than or equal to the quantitation limit shown; the quantitation limit is approximate and may be inaccurate or imprecise

APPENDIX C

Figures

APPENDIX D

Example Site Inspection Form

APPENDIX D EXAMPLE SITE INSPECTION FORM

Date:		Wea	ther:
Inspection By:	<u> </u>		e In:
Others On Site:		Time	Out:
Visual Observations – Permeable Reactive Bar	rier and	l Monito	oring Well Network:
	YES	NO	Comments
Uneven pavement surface or depressions?			
Cracking that follows the footprint of the PRB?			
Any signs of intrusive work intersecting path of PRB?			
Are the 11 groundwater monitoring wells accessible and intact?			
Visual Observations – Vapor Mitigation Systen	n:		
	YES	NO	Comments
Does the vent riser piping have any loose pipe supports, damaged riser guards, cracking resulting from impact, or other signs of physical damage?			
Does the vent riser piping appear to have any obstructions that impede the flow of the turbine?			
Do the wind turbine bearings need additional lubrication?			
Are there any signs of intrusive work that may lead to foundation penetrations (e.g. underground utility construction or trenching activities)?			

NO	Comments
NO	Comments
NO	Comments
	ed item

Note: This form is provided as an example template only and should be modified and updated as needed to reflect current project conditions.