Preliminary Environmental Assessment Report Batarse Site 104<sup>th</sup> Avenue and East 14th Street Oakland, California

> October 3, 2001 7962.01-003

- Volume I Text, Tables, Figures, Appendices

Prepared for Oakland Unified School District 955 High Street Oakland, California 94601





October 3, 2001 7962.01-003

Mr. Michael Stephens California Environmental Protection Agency Department of Toxic Substances Control 8800 Cal Center Drive Sacramento, California 95826

Subject: Preliminary Environmental Assessment Report, Batarse Site, 104th Avenue and

East 14th Street, Oakland, California

Dear Mr. Stephens:

LFR Levine·Fricke (LFR) has prepared this Preliminary Environmental Assessment (PEA) report on behalf of the Oakland Unified School District for the Batarse Site in Oakland, California ("the Site"). The Site, which consists of numerous parcels, is located within an area bounded to the north by 104<sup>th</sup> Avenue, to the west by commercial businesses fronting on East 14<sup>th</sup> Street, to the east by residences along Breed Avenue, and to the south by Alameda-Contra Costa Transit's (AC Transit) vehicle maintenance facility.

LFR prepared a PEA work plan for the Site in general accordance with California Environmental Protection Agency Department of Toxic Substances Control (DTSC) guidelines, as presented in the PEA Guidance Manual (January 1994). LFR's work plan for the Site entitled, "Preliminary Environmental Assessment Work Plan, Batarse Project Site, 104th Avenue and East 14th Street, Oakland, California," dated May 25, 2001, was approved by the DTSC. This report presents the results of the PEA.

An electronic copy, in Microsoft Word and Excel format, of the PEA report is included with our submittal. LFR is submitting this electronic copy in accordance with the DTSC's request and with the understanding that it will be accessible only to internal DTSC staff via DTSC's computer network for informational purposes only and will not be made available to outside parties. Because LFR has no control over the ability of others to modify or otherwise change the document, the signed, paper copy of the PEA report, dated October 3, 2001, shall be the only official version of the report.



If you have any questions or comments concerning the PEA report, please call either of the undersigned at (510) 652-4500.

Sincerely,

Alan D. Gibbs, R.G., R.E.A. II

Senior Associate Geologist

Michael B. Marsden, R.G., C.HG.

Senior Associate Hydrogeologist

cc: Ms. Ineda P. Adesanya, Oakland Unified School District (Volume I only)

Mr. Jerry Suich, Oxbridge Development (Volume I only)

## **CONTENTS**

| EXE | CUTI             | VE SUMMARY vii                                          |  |  |
|-----|------------------|---------------------------------------------------------|--|--|
| 1.0 | INTRODUCTION1    |                                                         |  |  |
|     | 1.1              | Introduction1                                           |  |  |
|     | 1.2              | Purpose                                                 |  |  |
|     | 1.3              | Objectives                                              |  |  |
| 2.0 | SITE DESCRIPTION |                                                         |  |  |
|     | 2.1              | Site Description                                        |  |  |
|     | 2.2              | Site Name and Address                                   |  |  |
|     | 2.3              | Designated Contact Person                               |  |  |
|     | 2.4              | Assessor's Parcel Number(s) and Maps                    |  |  |
|     | 2.5              | Site Maps                                               |  |  |
|     | 2.6              | Township, Range, Section, and Meridian                  |  |  |
|     | 2.7              | Site Zoning4                                            |  |  |
|     | 2.8              | EPA Identification Number                               |  |  |
|     | 2.9              | Calsites Database Number4                               |  |  |
|     | 2.10             | Surrounding Property Land Use                           |  |  |
| 3.0 | BACI             | KGROUND5                                                |  |  |
|     | 3.1              | Site Status and History5                                |  |  |
|     |                  | 3.1.1 Previous Assessments5                             |  |  |
|     |                  | 3.1.2 Hazardous Substances/Waste Management Information |  |  |
| 4.0 | APPA             | ARENT PROBLEM 9                                         |  |  |
| 5.0 | ENV              | RONMENTAL SETTING9                                      |  |  |
|     | 5.1              | Factors Related to Soil Pathways                        |  |  |
|     |                  | 5.1.1 Topography                                        |  |  |
|     |                  | 5.1.2 Geologic Setting                                  |  |  |
|     |                  | 5.1.3 Affected Soil from Site Releases                  |  |  |

|     | 5.2 | Factors Related to Water Pathways11                                                                                                                   |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     | 5.2.1 Surface Water Bodies                                                                                                                            |
|     |     | 5.2.2 Affected Surface Water from Site Releases                                                                                                       |
|     |     | 5.2.3 Groundwater                                                                                                                                     |
|     |     | 5.2.4 Affected Aquifers from Site Releases                                                                                                            |
|     | 5.3 | Factors Related to Air Pathways                                                                                                                       |
| 6.0 | SAM | LING ACTIVITIES AND RESULTS                                                                                                                           |
|     | 6.1 | Summary of Activities14                                                                                                                               |
|     |     | 5.1.1 Public Notification                                                                                                                             |
|     |     | 5.1.2 Planning/Permitting Activities                                                                                                                  |
|     |     | 5.1.3 PEA Scope of Work                                                                                                                               |
|     | 6.2 | Sampling Program                                                                                                                                      |
| •   |     | 5.2.1 Soil Sampling                                                                                                                                   |
|     |     | 5.2.2 Groundwater Sampling                                                                                                                            |
|     |     | 5.2.3 Water Sampling                                                                                                                                  |
|     | 6.3 | Sampling Locations and Analyses                                                                                                                       |
|     |     | 5.3.1 Area 1: Lloyd Wise, Inc., Parcel Group (10550 East 14th Street and 1424 105th Avenue)                                                           |
|     |     | 5.3.2 Area 2: Bill & Bill's Auto Body Parcel (1500 105th Avenue)                                                                                      |
|     |     | 5.3.3 Area 3: Management Storage Parcel Group (1510, 1520, and 1528 105 <sup>th</sup> Avenue)                                                         |
|     |     | 5.3.4 Area 4: Ward's Custom Paint Parcel Group (1536, 1538, 1544, and 1548 105 <sup>th</sup> Avenue)                                                  |
|     |     | 6.3.5 Area 5: Chevron Tow Parcel Group (1560 and 1570 105th Avenue)20                                                                                 |
|     |     | 5.3.6 Area 6: Union Pacific Railroad (105th Avenue)                                                                                                   |
|     |     | 6.3.7 Area 7: West Side of 105 <sup>th</sup> Avenue Commercial, Industrial, and Residential Parcel Group (1429 through 1561 105 <sup>th</sup> Avenue) |
|     |     | 5.3.8 Area 8: East Side of 104th Avenue Residential Parcel (10403 Walnut Street and 1440 through 1648 104th Avenue)                                   |
|     |     | 6.3.9 Area 9: AC Transit Area (Northeast End of 105th Avenue)23                                                                                       |
|     | 6.4 | QA/QC Samples23                                                                                                                                       |
|     |     | 6.4.1 Field Duplicate Samples                                                                                                                         |
|     |     | 6.4.2 Equipment Rinsate Blanks                                                                                                                        |

|      |      | 6.4.3 Field Blanks                                              | 24 |
|------|------|-----------------------------------------------------------------|----|
|      |      | 6.4.4 Travel/Trip Blanks                                        | 24 |
|      | 6.5  | Laboratory QA/QC Procedures                                     | 25 |
|      | 6.6  | Presentation of Data                                            | 26 |
|      | 6.7  | Deviations from PEA Work Plan                                   | 26 |
|      | 6.8  | Discussion of Results                                           | 28 |
| 7.0  | HUM  | IAN HEALTH SCREENING EVALUATION                                 | 29 |
|      | 7.1  | Data Evaluation and Selection of Chemicals of Potential Concern | 29 |
|      | 7.2  | Exposure Assessment                                             | 30 |
|      | 7.3  | Toxicity Assessment and Risk Characterization                   | 30 |
| 8.0  | ECOI | LOGICAL SCREENING EVALUATION                                    | 31 |
| 9.0  | СОМ  | MUNITY PROFILE                                                  | 31 |
| 10.0 | SUM  | MARY AND CONCLUSIONS                                            | 32 |
| 11.0 | RECO | DMMENDATIONS                                                    | 34 |
| 12.0 | LIMI | ΓATIONS                                                         | 34 |
| 13.0 | REFE | RENCES                                                          | 35 |
| TAB  | LES  |                                                                 |    |
| ı    | Cur  | rent Site Information                                           |    |
| 2    | Sam  | pling Plan                                                      |    |
| 3    | Sam  | ple Collection Information                                      |    |
| 4    | Sam  | ple Matrix Analysis Summary                                     |    |
| 5    | Sam  | aple Analysis Summary                                           |    |
| 6    | Tota | al Petroleum Hydrocarbons Detected in Soil                      |    |
| 7    | Vol  | atile Organic Compounds Detected in Soil                        |    |
| 8    | Sem  | nivolatile Organic Compounds Detected in Soil                   |    |
| 9    | Poly | ynuclear Aromatic Hydrocarbons Detected in Soil                 |    |
| 10   | Org  | anochlorine Pesticides Detected in Soil                         |    |

#### TABLES (continued)

- 11 Title 22 Metals Detected in Soil
- 12 Total Petroleum Hydrocarbons Detected in Groundwater
- 13 Volatile Organic Compounds Detected in Groundwater
- 14 Semivolatile Organic Compounds Detected in Groundwater
- 15 Title 22 Metals Detected in Groundwater
- 16 Total Petroleum Hydrocarbons in Soil Concentrations Above 100 mg/kg
- 17 Title 22 Metals in Soil Concentrations Above Background Levels
- 18 Total Petroleum Hydrocarbons in Groundwater Concentrations Above SNARLs
- 19 Title 22 Metals and Volatile Organic Compounds in Groundwater Concentrations Above MCLs
- 20 Selection of Chemicals of Potential Concern in Soil
- 21 Selection of Chemicals of Potential Concern in Groundwater
- 22 Chemicals Properties for Chemicals of Potential Concern
- 23 Carcinogenic Toxicity Information for Chemicals of Potential Concern
- 24 Noncarcinogenic Toxicity Information for Chemicals of Potential Concern
- 25 Carcinogenic Risk Estimate for Chemicals of Potential Concern
- 26 Noncarcinogenic Hazard Estimate for Chemicals of Potential Concern
- 27 Lead Risk Assessment Spreadsheet, California Department of Toxic Substances Control

#### **FIGURES**

- 1 Site Location Map
- 2 Site Plan
- 3 Proposed School Layout
- 4 Sampling Locations
- 5a Soil Sample Analyses, Total Petroleum Hydrocarbons
- 5b Soil Sample Analyses, Other Analytes
- 6a Groundwater Sample Analyses, Total Petroleum Hydrocarbons
- 6b Groundwater Sample Analyses, Metals, Semivolatile Organic Compounds, and Volatile Organic Compounds
- 7 Areas of Concern, Concentrations of Total Petroleum Hydrocarbons in Soil
- 8 Areas of Concern, Concentrations of Metals in Soil

#### FIGURES (continued)

- 9 Areas of Concern, Concentrations of Total Petroleum Hydrocarbons in Groundwater
- 10 Areas of Concern, Concentrations of Volatile Organic Compounds and Metals in Groundwater
- 11 Conceptual Site Model
- 12 Approximate Extent of Proposed Removal Action

#### APPENDICES

- A Historical Use Summary
- B Soil Lithology Chart and Boring Logs
- C Groundwater Monitoring Well Logs and Tank Removal Information
- D Preliminary Environmental Assessment Work Plan, Batarse Project Site, 104th Avenue and East 14th Street, Oakland, California, May 25, 2001
- E Permits
- F Water Supply Well Sampling Sheet
- G Quality Assurance/Quality Control Tables
- H Screening Level Evaluation

#### **VOLUMES**

- II Laboratory Analytical Sheets and Chain-of-Custody Documents
- III Laboratory Analytical Sheets and Chain-of-Custody Documents, continued

#### **EXECUTIVE SUMMARY**

LFR Levine Fricke (LFR) was contracted by 'he Oakland Unified School District to conduct a Preliminary Environmental Assessment (PEA) for the Batarse Site, located near the southeast corner of the intersection of 104th Avenue and East 14th Street in Oakland, California ("the Site"; Figure 1). This work was performed under the oversight of the California Environmental Protection Agency Department of Toxic Substances Control (DTSC).

The approximately 8-acre Site, which consists of numerous parcels, is located within an area bounded to the north by 104<sup>th</sup> Avenue, to the west by commercial businesses fronting on East 14<sup>th</sup> Street, to the east by residences along Breed Avenue, and to the south by Alameda-Contra Costa (AC) Transit's bus maintenance facility (Figure 2).

This PEA was conducted in general accordance with the DTSC guidance manual for evaluation of hazardous substance release sites entitled, "Preliminary Endangerment Assessment Guidance Manual, State of California, Environmental Protection Agency" (DTSC 1994) and LFR's work plan entitled, "Preliminary Endangerment Assessment Work Plan, Batarse Project Site, 104th Avenue and East 14th Street, Oakland, California," dated May 25, 2001 ("the PEA Work Plan"). The PEA Work Plan was approved by DTSC. The overall objectives of the PEA included the following:

- Evaluating historical information regarding the past use, storage, disposal, or release of hazardous wastes/substances at the Site
- Conducting a field sampling and analysis program to characterize the nature, concentration, and presence and/or absence of a release of hazardous materials, and if found, establishing the extent of hazardous wastes/substances present in soil and groundwater at the Site
- Estimating the potential threat to public health and/or the environment posed by known hazardous constituents at the Site using a residential land use scenario

The results of the PEA will be used to assist the DTSC in evaluating whether the Site is appropriate for a school setting. At the time of the PEA sampling program, the Site was occupied by various commercial buildings and residences located along 105<sup>th</sup> Avenue and residential buildings along 104<sup>th</sup> Avenue. Construction of a new permanent school campus is planned at the Site (Figure 3).

In accordance with the PEA Work Plan, LFR advanced 62 soil borings on the Site (Figure 4). Nine shallow borings and 53 deep boring were advanced on the Site and one or more soil samples were collected from each boring. In addition, a water sample was collected from a water supply well located on the Site.

For the purpose of our investigation, the Site was divided into nine areas consisting of one or more parcels. Area 1 includes Lloyd A. Wise, Inc.; Area 2 includes Bill & Bill's

PEA-batarsc-07962.doc: Page vii

Auto Body; Area 3 includes the majority of the Management Storage property; Area 4 includes Ward's Custom Paint and a portion of the Management Storage property; Area 5 includes Chevron Tow; Area 6 includes the Union Pacific Railroad and 105th Avenue; Area 7 includes commercial, industrial, and residential properties on the west side of 105<sup>th</sup> Avenue; Area 8 includes residential properties on the east side of 104<sup>th</sup> Avenue; and Area 9 includes a portion of AC Transit.

Soil samples were collected in shallow borings from the first native soil encountered (shallow depth interval). Soil samples were collected from deep borings at approximately 5-foot intervals to the depth at which groundwater was encountered. Grab groundwater samples were collected from 52 of the deep borings.

Selected soil and groundwater samples were analyzed for Title 22 Metals using U.S. Environmental Protection Agency (EPA) Method 6010/7000 Series; semivolatile organic compounds (SVOCs) using EPA Method 8270 or 525; volatile organic compounds (VOCs) using EPA Method 8260; total petroleum hydrocarbons (TPH) as gasoline, diesel, motor oil, paint thinner, mineral spirits, and/or Stoddard solvent using EPA Method 8015 (modified); organochlorine pesticides (OCPs) using EPA Method 8081; polychlorinated biphenyls using EPA Method 8082; ethylenedibromide (EDB) using EPA Method 504; and polycyclic aromatic hydrocarbons (PAHs) using EPA Method 8310. These analyses were selected because they represent the chemicals of potential concern (COPCs) at the Site based on the historical and current site uses for commercial operations, automobile repair operations, and spray painting operations.

The results of soil sampling identified the presence of various metals, OCPs, PAHs, SVOCs, and VOCs as COPCs. The results of groundwater sampling identified the presence of various metals, PAHs, SVOCs, and VOCs as COPCs. In addition, petroleum hydrocarbons were detected in soil and groundwater samples collected across the Site.

The petroleum hydrocarbons and VOCs detected in the groundwater samples from the west end of Area 6 appear to be related to the waste oil and product underground storage tanks (USTs) formerly located immediately to the west of the Site. According to reports prepared by other consultants for the investigation of the USTs, groundwater flow direction is to the west-southwest based on depth-to-water measurements in the three monitoring wells installed on the properties adjacent to the west of the Site. Therefore, the three borings advanced at the west end of Area 6 would be located in an upgradient direction from these former USTs. In LFR's opinion, the former USTs appear to be the likely source of the petroleum hydrocarbons in groundwater because of the proximity of the USTs to the borings.

The petroleum hydrocarbons detected in the soil and groundwater samples from beneath the maintenance building at the west end of Area 1 appear to be related to the hydraulic lifts and chemical storage in this building.

Page viii PEA-batarse-07962.doc:

For the purposes of conducting a human health screening evaluation, the potential exposure pathways identified for the Site were inhalation, ingestion, and dermal absorption. The PEA human health screening evaluation indicated that, based on the information developed during the PEA and the conservative human health screening evaluation using the PEA Guidance Manual, potential health risks to human health were found to be below the target level (less than  $10^{-6}$ ) for the COPCs identified at the Site.

The information reviewed and observations made for this PEA do not indicate that soil or groundwater quality at the Site has been significantly affected by on-site releases of hazardous substances with the exception of the petroleum hydrocarbons detected in the soil and groundwater beneath the maintenance building on the west end of Area 1.

LFR proposes remedial activities in the area of the maintenance building to address the presence of petroleum hydrocarbon-affected soil and groundwater in Area 1. LFR will prepare a removal action work plan for these proposed activities at the Site. Removal actions and delineation of these compounds will be addressed during construction of the proposed school. Areas of proposed removal actions are presented in Figure 12.

#### 1.0 INTRODUCTION

## 1.1 Introduction

This Preliminary Environmental Assessment (PEA) report for the Batarse site, located near the southeast corner of the intersection of 104<sup>th</sup> Avenue and East 14<sup>th</sup> Street in Oakland, California ("the Site"; Figure 1), is being submitted by LFR Levine Fricke (LFR) on behalf of the Oakland Unified School District (OUSD). The Site, which consists of numerous parcels, is located within an area bounded to the north by 104<sup>th</sup> Avenue, to the west by commercial businesses fronting on East 14<sup>th</sup> Street, to the east by residences along Breed Avenue, and to the south by Alameda-Contra Costa Transit's ("AC Transit") bus maintenance facility. The Site is being considered as a potential location for a new school.

This PEA was conducted under the oversight of the California Environmental Protection Agency Department of Toxic Substances Control (DTSC) to fulfill the Education Code requirements for new school sites. A Voluntary Cleanup Agreement (VCA) was signed by the OUSD and DTSC to provide for DTSC oversight of the PEA.

#### 1.2 Purpose

The purpose of the PEA was to establish whether a release or threatened release of hazardous substances that pose a threat to human health or the environment exists at the Site. Consistent with requirements in the VCA, a technical PEA work plan entitled, "Preliminary Environmental Assessment Work Plan, Batarse Project Site, 104th Avenue and East 14th Street, Oakland, California," dated May 25, 2001 ("the PEA Work Plan"), was prepared by LFR and approved by the DTSC.

This PEA was conducted in accordance with the DTSC guidance manual for evaluation of hazardous substance release sites entitled, "Preliminary Endangerment Assessment Guidance Manual, State of California, Environmental Protection Agency" (DTSC 1994; "the PEA Guidance Manual") and the PEA Work Plan. Pursuant to the Health and Safety Code Section 25355.5 (a)(1)(C), the activities conducted under the VCA were performed under the oversight of the DTSC. LFR's representatives discussed the results of the PEA with Mr. Charlie Ridenour, Mr. Michael Stephens, and Ms. Janet Naito of the DTSC during a meeting on August 16, 2001.

## 1.3 Objectives

The California Department of Education (CDE), in accordance with State of California Senate Bill 162 (effective as a law in January 2000), requires evaluation, if applicable, of ambient air, subsurface soil, and shallow groundwater at new school sites. A "No Further Action" designation or an "Environmental Hardship" determination must be

obtained from the DTSC before the CDE can allocate funds to a school district for the acquisition and/or construction of a new school. The PEA is intended to identify whether a release or threatened release of hazardous substances exists at the proposed school site and to evaluate the potential risk to human health or the environment before the DTSC issues a "No Further Action" or "Environmental Hardship" designation.

The overall objectives of the PEA include the following:

- Evaluating historical information regarding the past use, storage, disposal, or release of hazardous wastes/substances at the Site
- Conducting a field sampling and analysis program to further characterize the nature, concentration, and presence and/or absence of a release of hazardous materials, and if found, establishing the extent of hazardous wastes/substances present in soil and groundwater at the Site
- Estimating the potential threat to public health and/or the environment posed by known hazardous constituents at the Site using a residential land use scenario

The DTSC will use the information developed during the PEA and the conservative human and ecological risk evaluation conducted using the PEA Guidance Manual, to make an informed decision regarding potential risks posed by the Site, as follows:

- the requirement for further assessment through the Remedial Action Work Plan process, if the Site is found to be significantly affected by hazardous substances
- the need to perform a Removal Action for areas where localized impacts by hazardous substances release(s) are found
- issuance of a "No Further Action" finding if the Site is found not to be affected or risks to human health and the environment are found to be within acceptable levels based on the conservative screening-level risk assessment
- abandonment of the Site as a potential school site

This report presents the scope and findings of the PEA. The limitations of the PEA are presented in Section 12.

## 2.0 SITE DESCRIPTION

## 2.1 Site Description

The Site consists of numerous parcels that together occupy approximately 8 acres. The Site has been divided into nine areas consisting of one or more parcels: Area 1 includes Lloyd A. Wise, Inc.; Area 2 includes Bill & Bill's Auto Body; Area 3 includes the majority of the Management Storage property; Area 4 includes Ward's Custom Paint and a portion of the Management Storage property; Area 5 includes Chevron Tow;

Area 6 includes the Union Pacific Railroad and 105th Avenue; Area 7 includes commercial, industrial, and residential properties on the west side of 105<sup>th</sup> Avenue; Area 8 includes residential properties on the east side of 104<sup>th</sup> Avenue; and Area 9 includes a portion of AC Transit. These parcels are located southeast of the intersection of 104<sup>th</sup> Avenue and East 14<sup>th</sup> Street (Figure 2). Information on the areas, including the occupant/use, street address, and Assessor's Parcel Number, is presented in Table 1.

#### 2.2 Site Name and Address

The Site has been identified by the OUSD as the Batarse Site, located southeast of the intersection of 104<sup>th</sup> Avenue and East 14<sup>th</sup> Street in Oakland, California. Street addresses currently assigned to the Site are presented in Table 1.

## 2.3 Designated Contact Person

Ms. Ineda Adesanya, Director of Facilities, Oakland Unified School District, is the primary contact person for this project. Ms. Adesanya may be contacted at the following address:

Oakland Unified School District 955 High Street Oakland, California 94601 Telephone: (510) 879-8385

Fax: (510) 879-1860

## 2.4 Assessor's Parcel Number(s) and Maps

The Site consists of 29 parcels as identified by the Alameda County Assessor's Office and a portion of 105th Avenue. The street addresses on record for these parcels are presented in Table 1.

## 2.5 Site Maps

A site location map and site plan are included as Figures 1 and 2, respectively. Figure 3 shows the proposed layout for the new school. PEA sampling locations are shown in Figure 4. Site photographs and Sanborn Fire Insurance Maps (Sanborn Maps) were presented in the "Phase I Environmental Site Assessment Report, Batarse Project Site, East 14<sup>th</sup> Street and 105<sup>th</sup> Avenue, Oakland, California", dated October 2000, prepared by ENSR Consulting and Engineering (ENSR 2000; "the Phase I ESA").

## 2.6 Township, Range, Section, and Meridian

The United States Geological Survey (USGS) San Leandro, California Quadrangle, 7.5-minute topographic map (1993), shows that the Site is located in Subsection P of

Section 23, Township 2 South, Range 3 West. The approximate geographic coordinates of the Site are Latitude North 37° 44'21" and Longitude West 122° 09'52".

## 2.7 Site Zoning

The City of Oakland Community and Economic Development Agency has zoned the Site for manufacturing (M-20) and residential (R-30).

#### 2.8 EPA Identification Number

According to a review of the regulatory database search report and contacts with regulatory agencies, the Site has not been issued an EPA Identification Number.

A portion of the Lloyd Wise Honda/Nissan property at 10550 East 14th Street is included as a portion of the Site (Area 1) and was previously included in the Resource Conservation and Recovery Act (RCRA) database as a small quantity hazardous waste generator. However, based on information provided by Mr. Les Rich, Vice President of Lloyd A. Wise, Inc., ("Lloyd Wise"), hazardous wastes have not been generated at this property since the late 1990s.

Milichichi Auto Body Fender, a former tenant at 1550 105th Avenue (current address is 1544 105th Avenue), was previously included on the RCRA database as a small quantity hazardous waste generator. However, the current tenant at this parcel, Ward's Custom Paint, is not listed as a hazardous waste generator.

#### 2.9 Calsites Database Number

According to a review of the regulatory database search report and contacts with regulatory agencies, the Site has not been included on the Calsites database.

## 2.10 Surrounding Property Land Use

The surrounding property land use includes a combination of commercial businesses, light industrial facilities, a church, and residential buildings. Generally, commercial businesses and light industrial facilities front East 14th Street with residential buildings located behind the commercial/industrial properties.

The Lloyd Wise dealership is located adjacent to the west of the Site. According to information provided by Mr. Rich of Lloyd Wise, vehicles were repaired at this facility until the late 1990s.

AC Transit operates a bus maintenance yard adjacent to the south and southeast of the Site.

The OUSD will consider the types of hazardous chemicals released into the air by businesses within a 1/4-mile radius of the Site and their potential effect on students and faculty at the proposed school site as part of the California Environmental Quality Act (CEQA) document for the Site.

#### 3.0 BACKGROUND

## 3.1 Site Status and History

The Site consists of multiple parcels that are occupied by commercial businesses, industrial facilities, and residential buildings. Figure 2 shows the buildings currently present on the Site, their associated street address, and their use. A summary of historical site uses, property ownership, facility ownership and operators, business types, years of operation, and business and manufacturing activities is presented in Appendix A. This information was obtained from our review of reports previously prepared for the Site by other consultants.

According to available information, none of the parcels comprising the Site are currently listed as active cases with local, state, or federal regulatory agencies.

#### 3.1.1 Previous Assessments

Pertinent data on previous assessments performed for the Site and adjacent properties are summarized below. This information was obtained from reports prepared by previous consultants, including the Phase I ESA (ENSR 2000). As part of the Phase I ESA, ENSR reviewed Sanborn Maps, aerial photographs, and agency files for historical site use information. Copies of Sanborn Maps and site photographs, as well as data from agency files were presented in the Phase I ESA report.

LFR personnel reviewed the following reports to identify potential environmental concerns associated with the Site:

- "Underground Tank Technical Closure Report," prepared by Gen-Tech Environmental (Gen-Tech), dated March 26, 1993
- "Monitoring Well Installation and Sampling, Lloyd Wise Olds, 10440 East 14th Street, Oakland, California," prepared by Gen-Tech, dated May 6, 1993
- "Soil and Groundwater Investigation Site at 10440 and 10550 East 14th Street, Oakland, California," prepared by Gen-Tech, dated May 20, 1994
- "Overview of Environmental Conditions at 10550 East 14th Ave., Nissan/Honda Auto Dealership in Oakland, CA," prepared by Gen-Tech, dated October 11, 1994

A map presented in a report prepared by Gen-Tech (1993a) indicated that the two USTs were located beneath the sidewalk on the north side of 105th Avenue. The USTs were situated end to end and each measured 12 feet in length. The west end of the westernmost UST was located at a distance of 147 feet from East 14th Street and the east end of the easternmost UST was approximately 173 feet from East 14th Street. Based on these distances, the end of the easternmost UST was located at a distance of approximately 15 feet from the site border.

At the time of the UST removals, soil and groundwater samples were collected from the tank pits for analyses. These samples were analyzed for TPHg; TPHd; BTEX; volatile organic compounds (VOCs); semivolatile organic compounds (SVOCs); oil and grease; five LUFT metals; and ethylene glycol (antifreeze).

Analysis of the soil samples revealed the presence of TPHg, TPHd, ethylene glycol, toluene, ethylbenzene, total xylenes, oil and grease, cis-1,2-dichloroethene (cis-1,2-DCE), and tetrachloroethene (PCE). Analysis of the groundwater samples collected from the excavation revealed the presence of TPHg, and BTEX; cis-1,2-DCE and PCE were not detected in the groundwater samples at concentrations at or above the laboratory reporting limits.

#### 10550 East 14th Street (Western Portion)

One 2,000-gallon gasoline UST was removed in February 1993; the address given for the work site was listed in Gen-Tech's report as 10550 East 14<sup>th</sup> Street (1994b). According to the map provided in the case closure summary prepared by ACHCSA, the gasoline UST was located to the west of the Lloyd Wise auto dealership building and approximately 75 feet from the Site's western border.

Soil samples collected at the time of the tank removal were analyzed for TPHg and BTEX. Analysis of the soil samples indicated the presence of TPHg, toluene, and ethylbenzene.

Three groundwater monitoring wells were installed on and near the 10550 East 14<sup>th</sup> Street property following removal of the gasoline UST (Figure 2). Wells MW-1-N and MW-2-N were installed on the west side of the Lloyd Wise auto dealership building, and well MW-1-0 was installed on the north side of  $105^{th}$  Avenue. Analysis of groundwater samples collected from wells MW-1-N and MW-2-N in 1995 indicated the presence of TPHg (up to 240,000 micrograms per liter [ $\mu$ g/I]), benzene (up to 3,600  $\mu$ g/I), toluene (up to 1,200  $\mu$ g/I), ethylbenzene (up to 6,900  $\mu$ g/I), and total xylenes (up to 35,000  $\mu$ g/I). Analysis of groundwater samples from MW-1-0 did not indicate the presence of petroleum hydrocarbons at concentrations at or above the laboratory reporting limits.

The ACHCSA issued a case closure letter for the property known as 10500 East 14<sup>th</sup> Street. The case closure summary applied to both the 550-gallon waste oil UST formerly located in Area 1 (as discussed in Section 3.1.1.1) and a 2,000-gallon gasoline

Page 8 PEA-batarse-07962.doc:

UST that had been removed from this property. According to information presented in the case closure summary, the following chemicals of concern were present in the groundwater samples collected from the monitoring wells in February 1998: TPHg (up to  $18,000~\mu g/l$ ), benzene (up to  $270~\mu g/l$ ), toluene (up to  $120~\mu g/l$ ), ethylbenzene (up to  $1,800~\mu g/l$ ), and total xylenes (up to  $6,300~\mu g/l$ ).

#### 10626 East 14th Street

The AC Transit facility at 10626 East 14th Street is located adjacent to the Site's southern border. Depth-to-water measurements indicate that groundwater flow direction has historically been to the west-southwest, therefore, this facility would be located in an upgradient direction from the Site.

According to information in ENSR's Phase I ESA, this property was reported as having a leaking UST. According to available information in the Phase I ESA, approximately 300 gallons of waste oil and water was released and flowed into a storm drain on this property. The remediation was reportedly completed and the property granted case closure by the local regulatory agency.

#### 3.1.2 Hazardous Substances/Waste Management Information

Hazardous substances formerly and currently used and stored on the Site are summarized in Appendix A and in reports prepared for the Site by other consultants.

#### 4.0 APPARENT PROBLEM

Based on the historical information reviewed and observations made during LFR's site visits, potential sources of impacts at the Site include past releases, a suspect former waste oil UST, hydraulic lifts, product aboveground storage tanks (ASTs), floor drain, sumps, use/storage of hazardous substances (motor oils, paints, thinners, etc.), and small quantities of residential hazardous substances (pesticides, lead-based paint [LBP]).

Chemicals of potential concern (COPCs) identified at the Site include TPH; BTEX; VOCs (including methyl-tertiary butyl ether [MTBE]); SVOCs; Title 22 metals (also referred to as California Assessment Manual 17 metals); and polychlorinated biphenyls (PCBs). These COPCs are associated with historical industrial operations, vehicle maintenance, and painting operations at the Site.

#### 5.0 ENVIRONMENTAL SETTING

Factors related to soil, water, and air pathways at the Site are presented in the following sections.

## 5.1 Factors Related to Soil Pathways

Soil types encountered at the Site during the PEA field investigation are summarized below.

#### 5.1.1 Topography

The elevation of the Site is approximately 40 to 42 feet above mean sea level according to the USGS San Leandro, California, Quadrangle, 7.5-minute topographic map (1993). The surface topography in the vicinity of the Site is fairly level with a slight slope to the southwest toward San Francisco Bay.

## 5.1.2 Geologic Setting

The following information about the regional geology and hydrogeology was derived from Helley and LaJoie (1979), Hickenbottom and Muir (1988), and California Division of Mines and Geology (1999).

Near-surface sediments (generally less than 50 feet thick in the vicinity of the Site) consist primarily of interbedded sequences of silts and clays with poorly sorted sands and gravels. These sediments represent Quaternary to Recent alluvial deposits that originated in the mountains of the Coast Ranges to the east.

Tidal-flat and other clayey and silty marine and estuarine sediments, informally referred to as young Bay Mud, underlie the alluvial deposits. This young Bay Mud unit is approximately 25 feet thick at the San Francisco Bay margin and becomes thicker toward the center of the San Francisco Bay. The young Bay Mud is the youngest of a sequence of unconsolidated marine estuarine sediments ranging up to several hundred feet thick that overlies bedrock.

Underlying the young Bay Mud is the Merritt Sand Formation, an eolian (windblown) sand unit deposited in a dune environment during a period of lower sea levels (approximately 40,000 to 10,000 years ago). The Merritt Sand is exposed in the City of Alameda to the west of the Site and in parts of western Oakland. The actual lateral extent of the Merritt Sand is unknown. The maximum reported thickness is 65 feet.

Deposition of the young Bay Mud on the Merritt Sand occurred as a result of the latest sea level rise that began approximately 10,000 years ago. The fine-grained marine and estuarine sediments of the young Bay Mud commonly contain sandy lenses that may represent small buried stream channels.

Unconsolidated sediments underlying the Merritt Sand Formation in the site vicinity are informally referred to as old Bay Mud.

Page 10 PEA-batarse-07962.doc:

Soil borings completed at the Site for the PEA did not penetrate deeper than the Recent alluvial deposits. Soil encountered during the PEA field investigation consisted primarily of very-fine grained silty clay transitioning into clayey sand to sand at depths of approximately 18 to 25 feet below ground surface (bgs). Thin sand lenses were encountered interfingered with the silty clays in some borings. The sand layers comprise the primary shallow water bearing zone in the site vicinity. This zone has an average thickness of at least 4 feet over most of the Site area. The total thickness of this sand layer at the Site was not established during the PEA because the borings did not penetrate this layer.

A chart showing the types of soil encountered at the Site and total depth for each boring is presented in Appendix B. Copies of the field sampling logs completed for borings advanced during the field investigation for this PEA are also presented in Appendix B.

#### 5.1.3 Affected Soil from Site Releases

Based on information obtained during the PEA, a release of petroleum hydrocarbons to soil appears to have occurred at several locations at the Site, including the maintenance building, service building, and the vehicle storage yard in Area 1; the vehicle storage lot in Area 5; the west end of Area 6; various locations across Area 7; the central portion of Area 8; and the east end of Area 9. These releases are further discussed in Section 6.8.

## **5.2** Factors Related to Water Pathways

Water pathways information was obtained from published literature, available maps, and subsurface conditions encountered at the Site during the PEA field investigation and is summarized below.

#### 5.2.1 Surface Water Bodies

Based on our site visit and review of the USGS San Leandro, California Quadrangle, 7.5-minute topographic map (1993), surface water bodies are not present on the Site. The nearest body of surface water is San Leandro Creek, located approximately 4,400 feet south of the Site. This creek drains into San Leandro Bay, which is part of San Francisco Bay. The Site is approximately 5.5 miles northeast of San Francisco Bay.

#### 5.2.2 Affected Surface Water from Site Releases

Surface water bodies are not present on the Site. The nearest body of surface water is San Leandro Creek, located approximately 4,400 feet south of the Site. Hazardous levels of COPCs were not detected in surface soil samples collected at the Site during the PEA. Thus, there is no known release or threatened release of hazardous substances to surface water bodies.

#### 5.2.3 Groundwater

Locally and regionally, the groundwater in the Site area is typically poor in quality and rarely used as a groundwater resource (Hickenbottom and Muir 1988). Groundwater is present in the overlying alluvium, but is generally controlled by local precipitation in the nearby hills to the east and fluctuates seasonally.

The shallow water bearing zone underlying the Site consists of sand layers that were encountered between 18 and 25 feet bgs in borings advanced during the PEA field investigation at the Site. The sand layers consist of clayey sand to sand.

Depth-to-water was measured in each boring before collection of the grab-groundwater samples. The measured depth to shallow groundwater at the Site ranged from approximately 16 to 31 feet bgs. In LFR's opinion, these measurements were taken too soon after the borings were completed to represent an accurate potentiometric surface. The depth to the top of the sand layers in the area ranges from 18 to 25 feet bgs, and the depth-to-water measurements indicate that the shallow groundwater is pressurized with 2 to 3 feet of hydraulic head.

Regional shallow and deep (greater than 200 feet bgs) groundwater flows west-southwest toward San Francisco Bay. Groundwater extraction rates from the young Bay Mud are low.

Groundwater monitoring wells were not installed on the Site during the PEA; however, three monitoring wells are located immediately west of the Site. These wells were installed in the mid-1990s during a groundwater quality investigation associated with the removal of off-site USTs. These wells were completed at depths of approximately 21 to 30 feet. Groundwater monitoring logs (from reports by Gen-Tech and PIERS) and UST removal information (from reports by Gen-Tech) are presented in Appendix C.

The well located nearest to the Site was installed in 1993 in the sidewalk on the north side of 105th Avenue, approximately 32 feet from the Site's western border. The identification number for this well is listed as MW-1 on the boring log and MW-1-0 on subsequent maps and data sheets and will be referred to in this report as MW-1-0. The two remaining wells, located on the west side of the former Lloyd Wise showroom building at 10550 East 14th Street, are identified as MW-1-N and MW-2-N.

It should be noted that the boring log for well MW-1-0 indicates that the boring extended to a depth of 21 feet; however, the water quality sampling information sheet completed in 1997 by CGS Sampling Specialist's representative indicates that the total depth of the well was 23.65 feet bgs. During the PEA field investigation, the well cover was removed and the total depth of the well was measured at 23.81 feet bgs.

The boring logs for wells MW-1-0 and MW-2-N indicate that these wells were completed in silty clay and that well MW-1-N was completed in silty clay and silty sand.

Page 12 PEA-batarsc-07962.doc:

Stabilized groundwater levels for the three wells were reported in 1995 to be approximately 17 to 17.5 feet bgs. Groundwater flow direction was estimated to be to the west-southwest based on the depth-to-water measurements collected in 1995.

## 5.2.4 Affected Aquifers from Site Releases

The information obtained during the PEA indicates that a release of petroleum hydrocarbons from the Site to the groundwater appears to have occurred at several locations, including at the maintenance and service buildings in Area 1; Area 3; the vehicle storage lot in Area 5; and at two locations in Area 7 (one at the west end and one at the east end). In addition, a release of petroleum hydrocarbons and solvents from an off-site source to groundwater appears to have affected groundwater quality at the Site. The petroleum hydrocarbons and solvents detected in groundwater at the west end of Area 6 appear to be the result of a release from off-site USTs formerly located adjacent to the Site's western border. These releases are further discussed in Section 6.8.

## 5.3 Factors Related to Air Pathways

There is no documentation of an on-site release of hazardous substances to the atmosphere; however, LFR is conducting an air emissions study for inclusion in the CEQA documents being prepared for the Site. Air emissions sources at the Site are currently limited to paint booths used at Bill & Bill's Auto Body, located at 1500 105<sup>th</sup> Avenue (Area 2) and Ward's Custom Paint, located at 1544 105<sup>th</sup> Avenue (Area 4). Potential release sources of hazardous substance to the atmosphere are limited to fugitive dust from surface soil and volatilization of chemicals found in the soil during the PEA. Acetone and methylene chloride were the only volatile chemicals detected in soil samples from the Site, and these volatile chemicals were detected in only 8 soil samples at very low levels (less than 0.06 milligram per kilogram [mg/kg]). Therefore, the potential for releases of hazardous substances from the Site to the atmosphere is considered to be negligible.

The site vicinity is located in an area of typical Mediterranean climate, characterized by warm dry summers and mild winters. Based on data obtained from the City of Oakland, the mean temperature in the site vicinity ranges from approximately 50° Fahrenheit in the winter to approximately 80° Fahrenheit in the summer. The average annual precipitation is approximately 18 inches per year.

#### 6.0 SAMPLING ACTIVITIES AND RESULTS

This PEA was prepared to satisfy DTSC requirements for the environmental assessment of a proposed school site before it could approve the Site for school construction. The PEA was conducted in accordance with the PEA Work Plan that was approved by the DTSC.

## 6.1 Summary of Activities

This section summarizes the scope of work performed by LFR during the field investigation portion of the PEA.

## 6.1.1 Public Notification

LFR worked with the OUSD to notify the surrounding community of the PEA field activities planned for the Site. A summary of the public notification process and a community profile is presented in Section 9.

## 6.1.2 Planning/Permitting Activities

Before conducting field investigation activities, LFR prepared a PEA Work Plan that included a field sampling plan, a quality assurance/quality control (QA/QC) plan, and a site-specific health and safety plan. A copy of the PEA Work Plan is presented in Appendix D. LFR also obtained the necessary drilling permits from the Alameda County Public Works Department, and encroachment and obstruction permits from the City of Oakland. Copies of the permits are presented in Appendix E.

LFR's representative identified proposed boring locations by marking the area with white paint on the ground surface or with wooden stakes that had been painted white. LFR's representative then contacted Underground Service Alert (USA) at least 48 hours before start of the subsurface investigation. USA notified utility owners of record in the Site vicinity of our planned activities. Utility owners of record, or their designated representatives, were then responsible for indicating the presence of their utilities within the areas of the proposed investigation by marking the ground surface above the utilities with paint. In addition to contacting USA, LFR contracted with a private underground utility locating service to perform a geophysical survey in the areas of the proposed sampling locations.

## 6.1.3 PEA Scope of Work

The PEA investigation activities consisted of performing site visits to observe site and area features; the use, storage, handling, discharge, and disposal of potentially hazardous substances; and visible evidence of possible release(s) of hazardous substances to the environment at the Site. LFR implemented the PEA Work Plan, which included collecting soil samples from shallow borings, soil and groundwater samples from deep borings, and a water sample from the water supply well at 1510 105th Avenue. The samples were submitted to a laboratory for analysis. LFR evaluated the data generated during the field investigation activities and prepared the PEA report to present our findings, conclusions, and recommendations.

Potential environmental issues were identified at the Site based on historical and current site uses presented in the Phase I ESA report for the Site (ENSR 2000) and LFR's site

Page 14

PEA-batarse-07962,doc:

visits. The potential environmental issues identified at the Site included affected soil and groundwater beneath the Site as a result of the current or former presence of hydraulic lifts, sumps, an oil/water separator, a suspected former waste oil UST, floor drains, auto body painting operations, chemical use, a railroad spur, LBP, and asbestos. In addition, spills were previously reported in the past on two parcels located within the Site boundaries (1433 and 1561 105th Avenue in Area 7).

The potential COPCs identified at the Site included TPH, BTEX, VOCs (including MTBE), SVOCs, Title 22 metals, and PCBs. These COPCs are associated with historical industrial operations, vehicle maintenance, and painting operations at the Site.

Because of the ages of the structures on the Site, asbestos containing materials (ACMs) and LBPs may be present. LFR's representatives were able to obtain access to many of the site structures to perform a building materials survey for ACMs and LBPs. The results of these surveys will be presented in separate reports. Building materials surveys will be conducted for each of the site structures if OUSD proceeds with the project.

Ambient air sampling was not conducted as part of this PEA. In LFR's opinion and based on available information on surrounding site conditions and activities, ambient air sampling is not warranted. However, LFR is performing an air emissions study as part of the CEQA documents for the Site.

## 6.2 Sampling Program

The soil and groundwater sampling program implemented at the Site was prepared by LFR with input from Ms. Janet Naito and Dr. David Berry of the DTSC, as documented in the PEA Work Plan. The sampling locations were selected based on historical information, current site use, and information obtained during LFR's site visits.

Table 2 presents the sampling plan from the PEA work plan and Table 3 summarizes the analytical methods, types of sample containers, preservation methods, and holding times for the samples collected from the Site. Table 4 presents sample identification numbers (in numerical order) and sampling dates. Figure 4 presents sampling locations. Gaps between sample identification numbers exist because the sample identification numbers reserved for some areas exceeded the number of borings advanced within the area during the PEA field investigation.

Table 5 presents information on the analysis performed on each of the soil and groundwater samples collected from each area of the Site.

Samples were collected from the Site between March and July 2001; sampling dates are presented in Table 5. The rationale for boring location selection is discussed in Sections 6.3.1 through 6.3.9. At the time of our field investigation, access to site parcels was controlled by fencing with locked gates or by locked doors on the buildings.

Soil and groundwater sampling procedures are described in Section 6.2.1 and 6.2.2. After collection, each soil and groundwater sample was labeled with the sampler's initials, time and date of collection, project number, project name, and a unique sample identification number. Samples were placed in an ice-chilled cooler under strict chain-of-custody (COC) protocol and transported to the analytical laboratory. COC forms were completed for each set of samples and transported to the analytical laboratory with the samples. The COC records identified the contents of each shipment and maintained the custodial integrity of the samples. Generally, a sample is considered to be in the custody of an individual if it is in physical possession, in view, locked up, or kept in a secured area that is restricted to authorized personnel. Until receipt by the laboratory, the custody of the samples is the responsibility of the sample collector.

Sampling equipment was decontaminated and rinsed with distilled water before use at each sampling location and sampling event in accordance with the PEA Work Plan. Disposable equipment intended for one-time use was packaged for appropriate disposal and not reused. Drilling and sampling devices were decontaminated using high-pressure hot water (steam-cleaned) or the following procedures:

- laboratory-grade detergent and tap water wash, in a 5-gallon plastic bucket, using a brush
- initial tap water rinse, in a 5-gallon plastic bucket
- final distilled water rinse in a 5-gallon plastic bucket

Equipment was decontaminated over plastic sheeting in a pre-designated area, and clean bulky equipment was stored on plastic sheeting in uncontaminated areas. Cleaned small equipment was stored in plastic bags. Materials stored for more than a few hours were covered with plastic sheeting.

Boreholes were backfilled with neat cement after sample collection in accordance with permit requirements.

## 6.2.1 Soil Sampling

Shallow soil borings (total depth of 0.5-feet) were advanced using hand sampling equipment. The hand sampling equipment includes a sampler that is lined with one 2-inch by 6-inch brass or steel tube for sample collection. The sampler is then attached to a slide hammer that is raised and allowed to drop. This action drives the sampler into the ground. The sampler is extracted by pulling upward on the slide hammer.

The remaining soil borings were advanced to depths of up to 34 feet bgs using Geoprobe direct-push technology. Geoprobe rigs use a hydraulic hammer or vibrator to drive a metal sampling probe into the subsurface to the desired sampling depth.

Using the Geoprobe rig, soil samples were collected in disposable 4-foot-long by 1.5-inch-diameter acetate sample tubes that line the metal sampling probes. Upon

recovery from the sample probe, the acetate tubes containing the soil samples were cut to a desired length (0.5 to 1 foot) to yield sufficient material for the specified analyses. The soil sample liners/tubes were sealed at each end with a Teflon sheet and fitted with a plastic end cap for submittal to the analytical laboratory. The remaining soil in the sampling tube was used for litholigic description.

During the field investigation, a photoionization detector (PID) with a 10.6 eV lamp was used for health and safety monitoring and field screening. PID monitoring was used as an immediate indicator of the presence of volatile organic vapors in the breathing zone.

The drilling and sampling activities were conducted under the direct supervision of a California-Registered Geologist. Boring logs were completed for each borehole during the field investigation. Each boring log included the boring number, boring location, date and time of sampling, sampling depths, lithology, depths of stained or discolored soils, and PID readings. The Unified Soil Classification System was used to describe lithology at the Site. Copies of the field sampling logs and a chart showing the types of soils encountered at the Site and total depth for each boring are also presented in Appendix B.

#### 6.2.2 Groundwater Sampling

Groundwater samples were collected using a Hydropunch sampler advanced through the Geoprobe direct-push probes into the water bearing zone. The Hydropunch sampler features a cone-shaped drive tip and polyvinyl chloride or steel slotted well screen. The well point is housed inside a steel drive casing during its advancement into the subsurface. The sampler is pulled up approximately 3 feet to expose the inner core screen when the desired groundwater sampling depth is reached. Groundwater enters the screen point sampler and is sampled using a disposable bailer. The groundwater samples are decanted into appropriate clean, laboratory-supplied bottles for submittal to the analytical laboratory. After sampling is complete, the Hydropunch sampler is removed from the subsurface.

#### 6.2.3 Water Sampling

Groundwater samples were collected from the water supply well at 1510 105th Avenue. A peristaltic pump and new tubing was used to collect the water sample. The groundwater samples were decanted from the tubing into appropriate clean, laboratory-supplied bottles for submittal to the analytical laboratory.

## 6.3 Sampling Locations and Analyses

A total of 62 soil borings were advanced on the Site. The boring designations are noted in Table 4. LFR retained Lee and Sung, a licensed land surveyor, to survey the lateral

location of each soil boring to within the nearest foot. The surveyed locations for the soil boring are presented in Figure 4.

Soil samples were collected from each of the 62 soil borings and groundwater samples were collected from 52 of the soil borings. Table 5 presents the depth at which soil samples were collected for analysis and the borings from which groundwater samples were collected for analysis. The water supply well located at 1510 105th Avenue is designated BADW001 in Figure 4.

Selected soil and groundwater samples were submitted to Curtis & Tompkins, Ltd. ("Curtis & Tompkins"), for analysis. Curtis & Tompkins is an analytical laboratory certified by the State of California to perform the requested analyses. The analyses performed on the samples are discussed in the Sections 6.3.1 through 6.3.9. A summary of analysis performed on the soil and groundwater samples collected from the Site is presented in Table 5. The analyses performed on one or more of the soil samples from the indicated boring are presented in Figures 5a and 5b, and results are summarized in Tables 6 through 11. Groundwater sample analyses are presented in Figures 6a and 6b, and results are summarized in Tables 12 through 15.

A summary of the sampling and analysis program for each area is presented below.

# 6.3.1 Area 1: Lloyd Wise, Inc., Parcel Group (10550 East 14<sup>th</sup> Street and 1424 105<sup>th</sup> Avenue)

A total of 21 soil borings were advanced in Area 1, including 7 borings located inside the maintenance building (BASB031, BASB032, BASB033, BASB034, BASB070, BASB071, and BASB072), 5 borings located inside the service building (BASB073, BASB074, BASB075, BASB076, and BASB078), 2 located adjacent to an oil-stained pad (BASB036 and BASB037), 5 located outside the maintenance building (BASB026, BASB027, BASB028, BASB029, and BASB030), and 2 located in the car storage area (BASB077 and BASB082). Soil and groundwater samples were collected from each of these borings.

The borings inside the maintenance building were located adjacent to former hydraulic lifts (BASB031 through BASB034; BASB070 and BASB071 are step out locations from BASB031), and motor oil ASTs (BASB072). Borings in the service building were located in the areas of a sump (BASB078) and a floor drain (BASB073). Borings outside the maintenance building were advanced in the areas of the former UST (BASB026), sump (BASB030), and the oil/water separator (BASB027 and BASB028). Boring locations in the car storage area (BASB077 and BASB082) were randomly selected as no stained areas were noted in this area.

A magnetic survey was conducted in the area of the maintenance building during the field investigation to establish the presence of remaining underground structures. No anomalies indicative of USTs were noted during this survey.

Page 18

PEA-batarse-07962.doc:

The soil and groundwater samples collected from the 21 soil borings advanced in this area were analyzed for Title 22 metals and petroleum hydrocarbons. Groundwater samples from each boring were also analyzed for VOCs.

In addition, each of the soil samples from borings BASB029, BASB030, BASB036, BASB037, and BASB082; two soil samples from BASB070 (at the 23- and 25-foot depths); and three soil samples from BASB071 (at the 20-, 23-, and 25-foot depths), were analyzed for VOCs. Soil samples from BASB082 were also analyzed for PAHs. Additionally, each of the soil samples from BASB082, located at the east end of the parcel; groundwater samples from BASB071 and BASB072, located in the maintenance building; and groundwater samples from BASB078, located in the service building, were analyzed for SVOCs. The soil samples collected from BASB078 at the 13- and 28-foot depths were also analyzed for total organic carbon (TOC).

These analyses were selected based on the past use of the parcel as an automobile dealership maintenance and service center.

## 6.3.2 Area 2: Bill & Bill's Auto Body Parcel (1500 105th Avenue)

Three soil borings (BASB006, BASB007, and BASB008) were advanced within the building located in Area 2. Soil and groundwater samples were collected from each of these borings.

Borings BASB006 and BASB007 were advanced adjacent to and downgradient from floor drains. Boring BASB008 was advanced near the front entrance to the building.

Soil and groundwater samples collected from these soil borings were analyzed for Title 22 metals, petroleum hydrocarbons, and VOCs.

These analyses were selected based on the past commercial and industrial use of the parcel.

## 6.3.3 Area 3: Management Storage Parcel Group (1510, 1520, and 1528 105<sup>th</sup> Avenue)

Two soil borings (BASB040 and BASB041) were advanced near floor drains within the building in Area 3. Soil and groundwater samples were collected from both of these borings.

A groundwater sample was collected from the water supply well located outside the north wall of the building. The total depth of the well was not established during the field investigation because the well pump, located at a depth of approximately 63 feet below the top of the well casing, could not be removed from the well. The well sampling log is presented in Appendix F.

Soil and groundwater samples collected from the two borings were analyzed for Title 22 metals and petroleum hydrocarbons. In addition, the groundwater samples from both borings were analyzed for VOCs, and the groundwater samples collected from boring BASB040 were analyzed for SVOCs.

The water sample collected from the water supply well (BADW001), located outside the north wall of the building, was analyzed for Title 22 metals, petroleum hydrocarbons, and VOCs.

These analyses were selected based on the past use of the parcel as a candy factory.

## 6.3.4 Area 4: Ward's Custom Paint Parcel Group (1536, 1538, 1544, and 1548 105<sup>th</sup> Avenue)

Three soil borings (BASB012, BASB013, and BASB016) were advanced in Area 4. Soil samples were collected from each of the three borings and groundwater samples were collected from borings BASB012 and BASB016.

Borings BASB013 and BASB016 were advanced within the building near chemical and paint storage areas, and boring BASB012 was advanced outside the north wall of the building.

Soil samples collected from the three borings and groundwater samples collected from borings BASB012 and BASB016 were analyzed for Title 22 metals, petroleum hydrocarbons (including paint thinner or mineral spirits), and VOCs, with the exception of the soil samples from depths of 13-, 19-, and 28-feet from boring BASB016. Samples BASB016-13, BASB016-19, and BASB016-28 were analyzed for TOC only.

These analyses were selected based on the current use of the parcel as an automobile spray painting business and on-site storage of paints and thinners.

## 6.3.5 Area 5: Chevron Tow Parcel Group (1560 and 1570 105th Avenue)

Six borings (BASB022, BASB023, BASB024, BASB025, BASB086, and BASB087) were advanced in Area 5. Soil and groundwater samples were collected from each boring.

The surface of this area was covered with asphaltic concrete pavement with six drains. No stains or chemical storage areas were noted on the pavement. These borings were advanced adjacent to the drains because most of this property has been used for vehicle washing, maintenance, and storage.

Soil and groundwater samples collected from each of the borings were analyzed for Title 22 metals and petroleum hydrocarbons (including paint thinner). In addition, the

Page 20 PEA-batarse-07962.doc:

soil samples from boring BASB022 and the groundwater samples from each of the borings were analyzed for VOCs.

These analyses were selected based on the current use of the parcel as an automobile storage yard.

## 6.3.6 Area 6: Union Pacific Railroad (105th Avenue)

Eight borings were advanced in Area 6, including four shallow borings and four deep borings. Shallow borings (BASB002, BASB005, BASB011, and BASB017) were advanced to depths of approximately 2.5 feet. Deep borings (BASB001, BASB051, BASB081, and BASB021) were advanced to groundwater. Soil samples were collected from each of the borings, and groundwater samples were collected from the deep borings.

Borings BASB002, BASB005, BASB011, and BASB017 were advanced along the railroad tracks. Borings BASB051 and BASB081 were advanced on the northern side of 105th Street; borings BASB051 and BASB081 were advanced adjacent to and upgradient from the two former 1,000-gallon product and waste oil USTs. Boring BASB001 was advanced in the reported location of the stockpile of soil removed from the UST excavations. Boring BASB021 was advanced at the east end of this area to evaluate groundwater quality in this area.

Soil samples collected from the shallow borings were analyzed for Title 22 metals, petroleum hydrocarbons, SVOCs, and PAHs. Soil and groundwater samples from the four deep borings were analyzed for Title 22 metals and petroleum hydrocarbons. In addition, soil samples from boring BASB081, and groundwater samples from each of the deep borings were analyzed for VOCs. Soil samples from the 10- and 23-foot depths of boring BASB051 and from the 26-foot depth of boring BASB081 as well as groundwater samples from borings BASB051 and BASB081 were analyzed for SVOCs. Each of the soil samples and the groundwater sample collected from boring BASB051 were analyzed for ethylene glycol (antifreeze). The soil sample from the 20-foot depth of boring BASB081 was analyzed for TOC.

These analyses were selected based on the presence of the railroad tracks along 105th Avenue and the former presence of a waste oil UST, a product UST, and a stockpile of soil removed from the UST excavations.

# 6.3.7 Area 7: West Side of 105<sup>th</sup> Avenue Commercial, Industrial, and Residential Parcel Group (1429 through 1561 105<sup>th</sup> Avenue)

Ten borings (BASB018, BASB019, BASB052, BASB053, BASB054, BASB055, BASB056, BASB057, BASB058, and BASB080) were advanced in Area 7. Soil and groundwater samples were collected from these borings.

The sampling locations included the reported location of the buried coal bin (boring BASB058); 1433 105<sup>th</sup> Avenue where a reported release occurred in 1991 (borings BASB052, BASB053, BASB054, and BASB080); and 1561 105<sup>th</sup> Avenue where an oil spill reportedly occurred in 1992 (BASB018 and BASB019). In addition, vent pipes were noted on the roof at the west end of the building near boring BASB019. Other borings were randomly placed across the parcel.

Soil and groundwater samples collected from each boring were analyzed for Title 22 metals and petroleum hydrocarbons. The soil samples from boring BASB058 and groundwater samples from each of the borings were analyzed for VOCs. Soil samples from the 5-foot depth of boring BASB019 and the 4- and 25-foot depths of boring BASB052 and groundwater samples from borings BASB018, BASB019, BASB052, BASB053, BASB054, BASB058, and BASB080 were also analyzed for SVOCs. The soil sample from the 5-foot depth of boring BASB019 was analyzed for PAHs.

These analyses were selected based on the current use of the parcels in this area (commercial, light industrial, and residential), and releases reported at 1433 105<sup>th</sup> Avenue in 1991 and at 1561 105<sup>th</sup> Avenue in 1992.

# 6.3.8 Area 8: East Side of 104th Avenue Residential Parcel (10403 Walnut Street and 1440 through 1648 104th Avenue)

Five shallow borings and one deep boring were advanced in Area 8. The five shallow borings (BASB060, BASB061, BASB062, BASB063, and BASB065) were advanced to depths of approximately 0.5 feet. Soil and groundwater samples were collected from the deep boring (BASB050), which was advanced to groundwater in the east end of this area.

The shallow soil borings were located within the drip line adjacent to the exterior walls of the residences exhibiting the most visible signs of weathered paint.

The deep boring was advanced on the east end of the area to assess whether an off-site release had affected the Site.

Additional soil samples for lead analysis may be collected after demolition of the residential facilities. These samples will be collected from the first soil encountered in residential areas (from the surface to approximately 0.5 foot bgs). Asbestos surveys of the structures will be performed if OUSD decides to proceed with the project.

During the PEA field investigation, a possible vent pipe for a heating oil UST was noted near the residence at 1604 104th Avenue. LFR's representatives were unable to establish the purpose of this pipe because the property owner did not grant us access to the property.

Page 22

The soil samples collected from the five shallow borings in this area were analyzed for Title 22 metals and petroleum hydrocarbons. The soil samples from borings BASB061 and BASB065 were also analyzed for organochlorine pesticides (OCPs) and PCBs. The soil and groundwater samples collected from the deep boring (BASB050) were analyzed for Title 22 metals, petroleum hydrocarbons, and VOCs.

These analyses were selected based on the possible use of metal-based and/or oil-based exterior paints on the houses and pest control chemicals on some parcels that may have affected the Site. In addition, groundwater samples from the deep boring were analyzed to assess whether an off-site release have affected the Site.

## 6.3.9 Area 9: AC Transit Area (Northeast End of 105th Avenue)

Three deep borings (BASB088, BASB089, and BASB090) were advanced in Area 9. Soil and groundwater samples were collected from these borings to establish a baseline of subsurface conditions. The borings were randomly located along the railroad tracks that cross this area.

Soil and groundwater samples collected from the three borings were analyzed for Title 22 metals, petroleum hydrocarbons, and VOCs.

These analyses were selected to establish a baseline of subsurface conditions and assess if an off-site release has affected the Site, particularly from the AC Transit vehicle wash building located adjacent to the south of this area.

## 6.4 QA/QC Samples

LFR collected duplicate soil and groundwater samples, equipment rinsate blank samples, and travel blank samples for QA/QC purposes. The QA/QC program is summarized below. Analytical results for the duplicate soil and groundwater samples are presented in Tables 5 through 11. Analytical results for the equipment rinsate blanks, field blanks, and travel/trip blanks are presented in Appendix G.

## **6.4.1 Field Duplicate Samples**

Duplicate soil samples were collected to evaluate the analytical procedures and methods used by the laboratory. Eleven duplicate soil samples (BASB029-5, BASB032-5, BASB036-5.5, BASB077-5, BASB008-5, BASB040-5, BASB041-5, BASB012-4.5, BASB025-5, BASB087-5, BASB058-5.5) were collected in the field and two soil samples (BASB088-3.5 and BASB090-2.5) were split at the laboratory.

Five duplicate groundwater samples were collected from borings BASB026 (duplicate designated BASB126), BASB016 (duplicate designated BASB116), BASB081 (duplicate designated BASB181), BASB019 (duplicate designated BASB181), and BASB088 (duplicate designated BASB088 DUP).

The consistent analytical data for the samples collected at the Site indicate that laboratory analytical procedures were adequate for this sampling program.

## 6.4.2 Equipment Rinsate Blanks

Equipment rinsate blanks (equipment blanks) were collected from the final water rinsed over equipment after the decontamination procedures was complete. The equipment blank was collected from nondedicated (reusable) sampling equipment (e.g., split spoon sampler, drive sampler). To collect an equipment blank sample, laboratory-supplied, organic-free, deionized water was carefully poured over or through the sampling equipment and collected in the appropriate sample container. Equipment blank samples were labeled, stored, and submitted to the analytical laboratory using the same procedures as for field samples.

Nine equipment rinsate blanks were collected during this sampling program. Analytical results of these samples indicated the presence of low levels of petroleum hydrocarbons and VOCs. These compounds were present in some of the soil and groundwater samples collected from the Site. The presence of low levels of these compounds in the equipment blanks does not indicate a significant concern about the decontamination procedures for this sampling program because of the concentrations of petroleum hydrocarbons and VOCs detected in the samples from these borings.

#### 6.4.3 Field Blanks

Field blank samples consist of a sample of the distilled water that was used as a final rinse for sampling equipment during equipment cleaning activities. The purpose of the field blank sample was to evaluate the distilled water for the presence of chemicals for which environmental samples are being analyzed. A field blank sample was collected by pouring distilled water into the appropriate sample container. Field blank samples were labeled, stored, and submitted to the analytical laboratory using the same procedures as those for field samples.

Two field blanks were collected during this sampling program. Analytical results of the field blank sample collected on July 9, 2001, indicated the presence of low levels of the VOC acetone. Acetone was present in some of the soil samples collected from the Site on this date. The presence of low levels of this compound in the field blank does not indicate a significant concern about decontamination procedures for this sampling program, because of acetone concentrations detected in the samples from these borings.

## 6.4.4 Travel/Trip Blanks

Travel/trip blanks were used to detect VOC contamination during sample shipping and handling. Travel blanks comprised 40-milliliter VOA vials of American Society for Testing and Materials (ASTM) Type II water that were filled in the laboratory with organic-free, deionized water, transported to the sampling site, and returned to the

Page 24

PEA-batarse-07962.doc:

laboratory with samples collected for VOC analysis. Travel blanks were not opened in the field. The planned frequency for travel blanks was one per cooler containing samples for VOC analysis.

Twelve travel/trip blanks were collected during this sampling program. Analytical results of these samples did not indicate the presence of the analytes tested for in the blanks. The consistent analytical data for the travel/trip blanks collected at the Site indicate that sample shipping and handling procedures were adequate for this sampling program.

## 6.5 Laboratory QA/QC Procedures

LFR performed level-three data validation on the analytical results for this project. Laboratory data validation issues were noted; however, none led to the rejection of data. Tables presenting QA/QC issues and summary of qualified sample results are presented in Appendix G.

Laboratory QA/QC procedures included the following:

- Laboratory analyses was performed within the required holding time. Groundwater samples submitted for metal analysis were filtered and preserved in the laboratory within 24 hours of sample collection.
- Appropriate minimum reporting limits were used for each analysis. The reporting
  limits were lower than the corresponding preliminary remediation goals established
  by the EPA Region IX for residential land use. For water samples, the detection
  limits for low concentration volatiles in water by gas chromatograph/mass
  spectrometer system were used.
- The analytical method used for arsenic analysis provided a detection limit sufficient for residential risk evaluation purposes.
- Samples were analyzed by a laboratory certified by the state of California for the requested analysis.
- The laboratory reported the following information for each sample delivery group:
  - a discussion of how the QA/QC criteria were met by the laboratory
  - a discussion of hold times
  - matrix spike/matrix spike duplicate results
  - relative percent difference
  - method blank data
  - surrogate recovery, instrument tuning, and calibration data
  - signed laboratory reports including the sample designation, date of sample collection, date of sample analysis, laboratory analytical method used, sample volume, and the minimum reporting limit

LFR used a state-certified environmental testing laboratory for the sample analyses. LFR confirmed the DTSC's minimum reporting limits with the selected laboratory before submitting samples for analysis.

#### 6.6 Presentation of Data

Selected soil and groundwater samples were submitted to Curtis & Tompkins to perform the requested analyses. Analytical data sheets and chain-of-custody records are presented in Volumes II and III.

The analytical data sheets refer to the petroleum hydrocarbon analyses as total extractable hydrocarbons and total volatile hydrocarbons. In this report, total extractable hydrocarbons are referred to as TPHd, TPHmo, TPHpt, TPHms, and TPHss. Total volatile hydrocarbons are referred to as TPHg.

A total of 279 soil samples and 52 groundwater samples collected from the Site were analyzed for Title 22 metals using EPA Method 6010/7000 Series, and for TPHd, TPHmo, TPHpt, TPHms, TPHss, and/or TPHg using EPA Method 8015 (modified). A total of 96 soil samples and 52 groundwater were analyzed for VOCs using EPA Method 8260. Fifteen soil samples and 13 groundwater samples were analyzed for SVOCs using EPA Method 8270. In addition, two soil samples were analyzed for OCPs using EPA Method 8081, nine soil samples were analyzed for PAHs using EPA Method 8310, and two soil samples were analyzed for PCBs using EPA Method 8082.

Analytical results for soil samples are summarized in Tables 6 through 11; groundwater results are summarized in Tables 12 through 15.

Soil property data were collected to model the fate and transport of chemicals in the subsurface environment. These data include TOC, grain size, bulk density, porosity, and moisture content. TOC was analyzed using the Walkley-Black method; grain size was analyzed using ASTM D422M; and bulk density, porosity, and moisture content were analyzed using the American Petroleum Institute RP40 method. Seven soil samples were analyzed for TOC, grain size, bulk density, porosity, and moisture content. Copies of these test results are presented in Volumes II and III.

## 6.7 Deviations from PEA Work Plan

Several deviations from the PEA Work Plan occurred during the PEA field investigation for the Site. These deviations are noted below:

Area 1. Soil samples collected near the hydraulic lifts in the maintenance and service building were to be analyzed for PCBs. This analysis was not performed during the PEA; however, remedial activities, including removal of soil, will be performed because of the presence of petroleum hydrocarbons in these areas. Confirmation samples collected during the remedial activities will be analyzed for PCBs.

Page 26
PEA-batarse-07962.doc:

- Area 2. No deviations from the PEA Work Plan occurred during the field investigation.
- Area 3. Three borings were planned inside the building located on this parcel, including one at a floor drain and two at sumps. Based on observations made in the field at the time of the sampling program, including the size of the building and proximity of the sumps to each other, LFR advanced two rather than three borings at this location.
- Area 4. Five borings were planned in this area, including one or two inside the vehicle storage lot. Based on observations made in the field at the time of the sampling program, including the number of vehicles in this area, LFR advanced three rather than five borings at this location. None of the borings were located in the vehicle storage lot; however, two borings (BASB077 and BASB082) were located adjacent to Area 4 within Area 1.
- Area 5. No deviations from the PEA Work Plan occurred during the field investigation.
- Area 6. No deviations from the PEA Work Plan occurred during the field investigation.
- Area 7. Eleven borings were planned in this area. Based on observations made in the field at the time of the sampling program, including the lack of evidence of past releases, LFR advanced a total of 10 borings at this location. In addition, the PEA Work Plan stated that each of the soil samples to be collected from this area would be analyzed for SVOCs. Only three samples from this area were analyzed for SVOCs because analytical results for other samples collected at the Site did not indicate significant effects to the Site from SVOCs.
- Area 8. Six shallow borings were planned in this area. Soil samples from each shallow boring and the deep boring advanced on the east end of the area were analyzed for OCPs. Based on access constraints and observations made in the field at the time of the sampling program, only five shallow soil borings were advanced. In addition, only two samples from this area were analyzed for OCPs because evidence of pesticide releases were not observed on other parcels during the PEA field investigation.
- Area 9. No deviations from the PEA Work Plan occurred during the field investigation.

**Duplicate Samples.** A total of 279 soil samples, including 13 duplicate soil samples, were collected from the Site for analyses. The PEA work plan noted that the duplicate soil sampling program would represent 10 percent of the total number of samples collected for analysis. To satisfy the proposed duplicate soil sampling program, a total of 27 duplicate soil samples should have been collected from the Site during the PEA. In LFR's opinion, the 13 duplicate soil samples were sufficient for this sampling program, based on the number of soil samples collected from the Site and the consistent data obtained from the analytical laboratory.

#### 6.8 Discussion of Results

Table 16 presents analytical results of soil samples with petroleum hydrocarbons detections above 100 mg/kg. Table 17 presents analytical results of soil samples with metals detections at concentrations above those detected during the Oakland Urban Land Development study (City of Oakland 2001). Table 18 presents analytical results of groundwater samples with petroleum hydrocarbons detections at concentrations above the Suggested No Adverse Response Levels (SNARLs) established by the RWQCB. Table 19 presents analytical results of groundwater samples with metals and VOC detections at concentrations above their respective Maximum Contaminant Levels (MCLs), established by the California Department of Health Services and the RWQCB.

Figure 7 presents analytical results of soil samples with TPH concentrations at or above 100 mg/kg. Figure 8 presents analytical results of soil samples with metals detections at concentrations above those detected in the Oakland Urban Land Development study. Figure 9 presents analytical results of groundwater samples with TPH concentrations at or above the RWQCB's SNARLs. Figure 10 presents analytical results of groundwater samples with metals and VOC detections at concentrations at or above their respective MCLs.

The results of the soil sampling identified the presence of metals, OCPs, PAHs, SVOCs, and VOCs as COPCs. Metals were reported across the Site; lead, zinc, arsenic, and chromium were present at concentrations above the 95 percent upper confidence limit (UCL). OCPs were detected in soil samples from borings BASB061 and BASB065 located in Area 8. PAHs were detected in soil samples from boring BASB082 in Area 1; borings BASB002, BASB005, BASB011, and BASB017 in Area 6; and borings BASB019 in Area 7. The VOCs acetone and methylene chloride were detected in soil samples collected from across the Site. SVOCs were detected in soil samples from boring BASB082 in Area 1; borings BASB002, BASB005, BASB011, BASB017, BASB051, and BASB081 in Area 6; and borings BASB019 and BASB052 in Area 7. In addition, petroleum hydrocarbons were identified in shallow soil at various locations on the Site.

The results of the groundwater sampling identified the presence of metals, PAHs, SVOCs, and VOCs as COPCs. Metals were reported across the Site; barium, lead, antimony, and nickel were present at concentrations above the MCLs. PAHs and SVOCs were detected in groundwater samples from borings BASB071, BASB072, and BASB078 in Area 1; boring BASB040 in Area 3; borings BASB051 and BASB081 in Area 6; and borings BASB018, BASB019, BASB052, BASB053, BASB054, BASB058, and BASB080 in Area 7. VOCs were detected in groundwater samples from boring BASB026 in Area 1; boring BASB022 in Area 5; borings BASB001, BASB051, and BASB081 in Area 6; and boring BASB050 in Area 8. In addition, petroleum hydrocarbons were identified at concentrations above the SNARLs in groundwater at various locations on the Site, including borings BASB026, BASB031, BASB037, BASB071, and BASB076 in Area 1; boring BASB008 in Area 2; boring BASB041 in

Page 28

PEA-batarse-07962.doc:

Area 3; borings BASB022 and BASB023 in Area 5; borings BASB001, BASB051, and BASB081 in Area 6; and borings BASB018 and BASB052 in 7.

The petroleum hydrocarbons and VOCs detected in groundwater samples from Area 6 appear to be related to the waste oil and product USTs formerly located immediately to the west of the Site. According to reports prepared by other consultants for the investigation of the USTs, groundwater flow direction is to the west-southwest based on depth to water measurements in the three monitoring wells installed on the properties adjacent to the west of the Site. Therefore, the three borings advanced at the west end of Area 6 are located in an upgradient direction from these former USTs. In LFR's opinion, the USTs appear to be the likely source of the petroleum hydrocarbons in the groundwater based on the proximity of the USTs to the borings.

The petroleum hydrocarbons detected in the soil and groundwater samples from beneath the maintenance building at the west end of Area 1 appear to be related to the hydraulic lifts and chemical storage in this building.

#### 7.0 HUMAN HEALTH SCREENING EVALUATION

#### 7.1 Data Evaluation and Selection of Chemicals of Potential Concern

In accordance with the PEA Guidance Manual, a screening-level evaluation was conducted to provide an estimate of potential chronic (long-term) health risks from affected soil and groundwater identified at the Site. Analytical data from LFR's sampling program were used for this evaluation. LFR analyzed 279 samples as part of the chemical characterization of soil. During an August 16, 2001 meeting with LFR, DTSC authorized the use of 95 percent UCL of the mean to represent exposure point concentrations. DTSC's representatives stated that, based on the relatively large data set, 95 percent UCLs would be appropriate to use in the risk evaluation (LFR 2001). In addition, DTSC's representatives agreed with LFR that the concentration of chromium at 160 mg/kg in the soil sample collected at the 3 foot depth from boring BASB013 and the concentration of arsenic at 33 mg/kg in the soil sample collected at the 2 foot depth at boring BASB023 could be considered outliers of the data set and excluded from the risk assessment.

The evaluation was conducted using the analytical models provided in the PEA Guidance Manual, which are structured to provide a conservative estimate of the chronic risk from affected media along exposure pathways that are most frequently encountered in a residential setting. The default factors contained in the analytical models are conservative in nature and represent a reasonable maximum exposure to COPCs as defined by EPA. The screening-level evaluation was conducted for each chemical species detected in site soil and groundwater at concentrations above local background levels. In addition, the groundwater vapor transport model presented in the

PEA-batarse-07962.doc: Page 29

DTSC-modified Johnson and Ettinger vapor model spreadsheet was used for groundwater to indoor air estimations.

Appendix H presents the details of the screening-level evaluation. The results of the evaluation are summarized below.

### 7.2 Exposure Assessment

Soil COPCs used in the evaluation of chronic health risk from the ingestion, dermal contact, and inhalation pathways included metals, OCPs, PAHs, SVOCs, and VOCs and are summarized in Table 20.

Groundwater COPCs used in the evaluation of chronic health risk from inhalation of vapors and domestic use include metals, PAHs, SVOCs, and VOCs and are summarized in Table 21.

## 7.3 Toxicity Assessment and Risk Characterization

The site conceptual model is presented in Figure 11. COPC data are presented in Tables 20 through 24. Exposure pathway evaluations, distribution evaluations, and 95 percent UCLs are presented in Tables 25 and 26, and summarized as follows:

- The PEA soil model for the carcinogenic compounds does not indicate a significant cancer risk (less than 10<sup>-6</sup>) for the ingestion/dermal contact pathways from shallow soil at the Site.
- The DTSC groundwater spreadsheet for the carcinogenic compounds does not indicate a significant cancer risk (less than 10<sup>-6</sup>) for the indirect inhalation pathway to indoor air at the Site.
- The PEA Guidance Manual's groundwater model for the carcinogenic compounds bromodichloromethane and vinyl chloride did indicate a significant cancer risk (4.9 x 10<sup>-6</sup>) for the domestic use pathway at the Site. This pathway includes exposures from ingestion and bathing. Because the Site is located in an urban setting, public supply water will most likely be used as the domestic water source. Therefore, although the estimated risk from this model is above the target for this exposure scenario, direct contact with shallow groundwater is actually considered highly unlikely, and does not represent an actual complete exposure pathway.
- The PEA soil model for the noncarcinogenic compounds does not indicate a significant hazard (greater than 1) for the indirect inhalation and ingestion/dermal contact pathways from shallow soil at the Site.
- The DTSC groundwater spreadsheet for the noncarcinogenic compounds does not indicate a significant hazard (greater than 1) for the indirect inhalation pathway to indoor air at the Site.

Page 30 PEA-batarse-07962.doc:

• The PEA Guidance Manual's model did reveal a significant hazard (2) for the domestic use pathway for groundwater at the Site. As previously stated, this pathway includes exposures from ingestion and bathing. Because the Site is located in an urban setting, public supply water will most likely be used as the domestic water source. Therefore, although the estimated risk from this model is above the target for this exposure scenario, direct contact with shallow groundwater is actually considered highly unlikely, and does not represent an actual complete exposure pathway.

Because lead is a COPC at the Site, blood-lead level calculations were performed, using the DTSC's LeadSpread Model (Version 7.0) and inputting the 95 percent UCL lead concentration in soil at the Site (10 micrograms per gram). Lead concentrations detected in groundwater at the Site were not incorporated into the model because public supply water will most likely be used as the domestic water source. The default value of 15  $\mu$ g/l was used for the lead concentration in water in the model calculations. These results are presented in Table 27. The calculations were performed with the "home-grown produce" pathway turned on, to produce a conservative result. LFR assumed that up to 7 percent of vegetables consumed by a family would be raised on the Site. According to LFR's calculations, the 95th percentile blood lead levels for adults and children are below 10 micrograms per deciliter, indicating that concentrations of lead detected at the Site are not a health concern.

#### 8.0 ECOLOGICAL SCREENING EVALUATION

A detailed ecological screening evaluation was not performed during this PEA because the Site is located within a highly developed commercial and residential urban setting. Natural wildlife habitat areas were not noted on the Site during the PEA. Therefore, based on the available information, there does not appear to be a significant pathway of exposure to nonhuman, sensitive ecological species.

#### 9.0 COMMUNITY PROFILE

Before beginning field activities, LFR worked with the OUSD to notify the surrounding community of the PEA field activities planned for the Site.

On March 13, 2001, LFR's representative distributed written flyers to notify residential and commercial establishments within "sight distance" of the Site of the schedule fieldwork. LFR distributed approximately 120 flyers to residents and occupants on 105<sup>th</sup> Avenue, East 14th Street (also known as International Boulevard), 104<sup>th</sup> Avenue, Plymouth Street, Walnut Street, and Breed Street. Flyers printed on OUSD letterhead included information on the proposed environmental investigation (soil and groundwater sampling), and dates of field work. Neighbors were instructed to contact Ms. Ineda Adesanya, Director of Facilities for OUSD, with any questions or comments.

PEA-batarse-07962.doc: Page 31

No specific concerns have been raised by the community regarding the PEA performed at the Site and no substantial concerns or issues related to this project have been brought to OUSD's attention by the community.

LFR obtained information on the community demographics from the United States Census Bureau (www.census.gov). The population of City of Oakland ranges from low-middle to upper income families. A summary of the information obtained for the City of Oakland is presented below.

#### Population:

| Total                            | 399,484 |
|----------------------------------|---------|
| White                            | 125,013 |
| Black/African-American           | 142,460 |
| Hispanic/Latino                  | 87,467  |
| American Indian                  | 2,655   |
| Asian                            | 60,851  |
| Native Hawaiian/Pacific Islander | 2,002   |
| Other                            | 46,592  |
| Two or More Races                | 19,911  |

#### Age:

| Estimated Median Age                   | 33.3    |
|----------------------------------------|---------|
| Population Between Ages 5 and 19 Years | 81,300  |
| Population Over Age 21                 | 284,538 |

#### Households:

| Total                                | 150,790  |
|--------------------------------------|----------|
| Average Persons Per Household        | 2.60     |
| Number of Owner-Occupied Households  | 62,489   |
| Number of Renter-Occupied Households | 88,301   |
| Mean Household Income                | \$53,400 |

#### **Families:**

| Total                               | 86,347 |
|-------------------------------------|--------|
| With Children Under 18 Years of Age | 43,152 |

#### 10.0 SUMMARY AND CONCLUSIONS

The purpose of the PEA was to establish whether a release or threatened release of hazardous substances, which pose a threat to human health or the environment, exists at the Site. Based on past site use, selected soil and groundwater samples collected from

Page 32

the Site were analyzed for Title 22 metals, petroleum hydrocarbons, VOCs, SVOCs, OCPs, PAHs, and PCBs.

The results of the soil sampling identified the presence of metals, OCPs, PAHs, SVOCs, and VOCs as COPCs. Metals were reported across the Site; lead, zinc, arsenic, and chromium were present at concentrations above the 95 percent UCL. OCPs were detected in soil samples from borings BASB061 and BASB065 located in Area 8. PAHs were detected in soil samples from boring BASB082 in Area 1; borings BASB002, BASB005, BASB011, and BASB017 in Area 6; and borings BASB019 in Area 7. The VOCs acetone and methylene chloride were detected in soil samples collected from across the Site. SVOCs were detected in soil samples from boring BASB082 in Area 1; borings BASB002, BASB005, BASB011, BASB017, BASB051, and BASB081 in Area 6; and borings BASB019 and BASB052 in Area 7. In addition, petroleum hydrocarbons were identified in shallow soil at various locations on the Site.

The results of the groundwater sampling identified the presence of metals, PAHs, SVOCs, and VOCs as COPCs. Metals were reported across the Site; barium, lead, antimony, and nickel were present at concentrations above the MCLs. PAHs and SVOCs were detected in groundwater samples from borings BASB071, BASB072, and BASB078 in Area 1; boring BASB040 in Area 3; borings BASB051 and BASB081 in Area 6; and borings BASB018, BASB019, BASB052, BASB053, BASB054, BASB058, and BASB080 in Area 7. VOCs were detected in groundwater samples from boring BASB026 in Area 1; boring BASB022 in Area 5; borings BASB001, BASB051, and BASB081 in Area 6; and boring BASB050 in Area 8. In addition, petroleum hydrocarbons were identified at concentrations above the SNARLs in groundwater at various locations on the Site, including borings BASB026, BASB031, BASB037, BASB071, and BASB076 in Area 1; boring BASB008 in Area 2; boring BASB041 in Area 3; borings BASB022 and BASB023 in Area 5; borings BASB001, BASB051, and BASB081 in Area 6; and borings BASB018 and BASB052 in 7. In addition, petroleum hydrocarbons were detected in groundwater samples collected from across the Site.

The petroleum hydrocarbons and VOCs detected in the groundwater samples from the west end of Area 6 appear to be related to the waste oil and product USTs formerly located immediately to the west of the Site. According to reports prepared by other consultants for the investigation of the USTs, groundwater flow direction is to the west-southwest based on depth-to-water measurements in the three monitoring wells installed on the properties adjacent to the west of the Site. Therefore, the three borings advanced at the west end of Area 6 are located in an upgradient direction from these former USTs. In LFR's opinion, the USTs appear to be the likely source of the petroleum hydrocarbons in the groundwater based on the proximity of the USTs to the borings.

The petroleum hydrocarbons detected in the soil and groundwater samples from beneath the maintenance building at the west end of Area 1 appear to be related to the hydraulic lifts and chemical storage in this building.

PEA-batarse-07962.doc:

For the purposes of conducting a human health screening evaluation, the potential exposure pathways identified for the Site were inhalation, ingestion, and dermal absorption. The PEA human health screening evaluation indicated that potential risks to human health were below the target risk level (less than  $10^{-6}$ ) for the compounds identified as COPCs at the Site.

#### 11.0 RECOMMENDATIONS

The information reviewed and observations made in this PEA report do not indicate that soil or groundwater quality at the Site has been significantly affected by on-site releases of hazardous substances, with the exception of the petroleum hydrocarbons detected in soil and groundwater beneath the maintenance building on the west end of Area 1.

Risks to human health have been found to be within acceptable levels based on the information developed during the PEA and the conservative human health screening evaluation using the PEA Guidance Manual. LFR proposes to perform remedial activities in the area of the maintenance building to address the presence of petroleum hydrocarbon-affected soil and groundwater. LFR will prepare a removal action work plan for these proposed activities at the Site. Removal actions and delineation of these compounds will be addressed during construction of the proposed school. Areas of proposed removal actions are presented in Figure 12.

### 12.0 LIMITATIONS

This PEA did not include assessment of natural hazards such as naturally occurring asbestos, radon gas, or methane gas; assessment of the potential presence of radionuclides or electromagnetic fields; or assessment of nonchemical hazards, such as the potential for damage from earthquakes or floods, or the presence of endangered species or wildlife habitats.

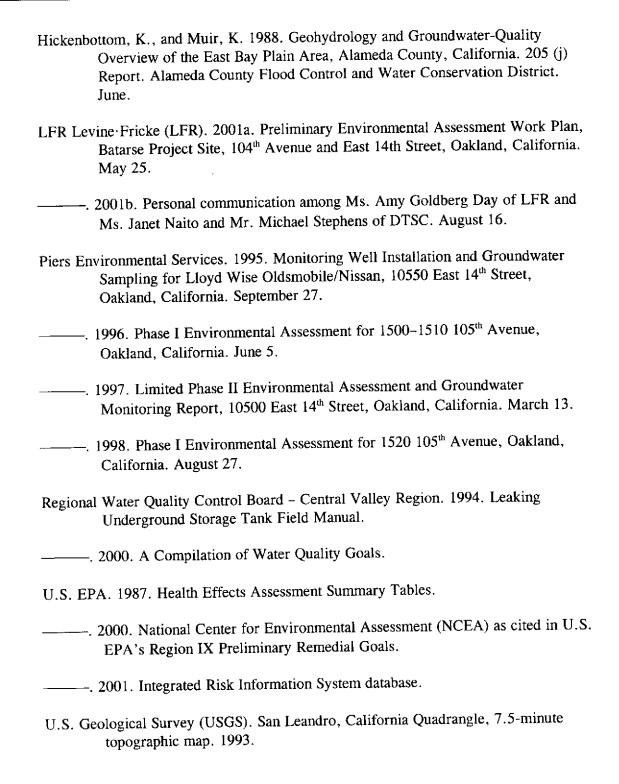
The observations and conclusions presented in this report are professional opinions based on the scope of activities and information obtained through the PEA described in this report. Opinions presented in the report apply to site conditions at the time of our study, and cannot apply to site conditions or changes of which we are not aware, or which we have not had the opportunity to evaluate. It must be recognized that any conclusions drawn from these data rely on the integrity of the information available to LFR at the time of the investigation, and that a full and complete determination of environmental risks cannot be made.

This report is exclusively for the use of the OUSD, the CDE, and the DTSC. Any reliance on this report by any other party shall be at such party's sole risk.

Page 34

PEA-batarse-07962.doc:

#### 13.0 REFERENCES


Alameda County Health Care Services Agency (ACHCSA). 1998a. Case Closure Summary for Lloyd Wise Nissan, 10500 East 14th Street, Oakland, California. April 29. -. 1998b. Fuel Leak Site Case Closure for 10500 East 14th Street, Oakland. California Division of Mines and Geology. 1966. Bulletin 190. 1999. Bulletin 190 -Geology of Northern California. San Francisco. Edgar H. Bailey, Editor. p. 508. Cal/EPA. 2001a. Office of Environmental Health Hazard Assessment's (OEHHA). Cancer Potency Value Table, March. -. 2001b. OEHHA database. City of Oakland. 2001. Oakland Urban Land Development Program, City of Oakland Survey of Background Metal Concentration Studies Table. <a href="http://www.oaklandpw.com/ulrprogram/">http://www.oaklandpw.com/ulrprogram/</a> Department of Toxic Substances Control. 1994. Preliminary Endangerment Assessment Guidance Manual, State of California, Environmental Protection Agency. January. ENSR Consulting and Engineering. 2000. Phase I Environmental Site Assessment Report, Batarse Project Site, East 14th Street and 105th Avenue, Oakland, California. October. Gen-Tech Environmental (Gen-Tech). 1993a. Underground Tank Technical Closure Report, March 26. -----. 1993b. Monitoring Well Installation and Sampling, Lloyd Wise Olds, 10440 East 14th Street, Oakland, California. May 6. 1994a. Soil and Groundwater Investigation Site at 10440 and 10550 East 14th Street, Oakland, California. May 20. —. 1994b. Overview of Environmental Conditions at 10550 East 14th Ave. [sic] Nissan/Honda Auto Dealership in Oakland, California. October 11.

PEA-batarse-07962.doc: Page 35

D.C.

Helley, E., and LaJoie, K. 1979. Flatland Deposits of the San Francisco Bay Region,

California - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning. USGS Professional Paper 943. Washington,



Page 36

# Table 1 Current Site Information Batarse Site, Oakland, California

| Area | Occupant/Use                                                                  | Street Address                                                                | Assessor's Parcel<br>Number                                 |
|------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|
| 1    | Lloyd A. Wise, Inc.                                                           | 10550 East 14 <sup>th</sup> Street<br>(eastern portion)                       | 047-5519-005-02<br>(eastern portion)                        |
|      |                                                                               | 1424 105 <sup>th</sup> Avenue (formerly part of East 14 <sup>th</sup> Street) | 047-5509-010-00                                             |
| 2    | Bill & Bill's Auto Body                                                       | 1500 105th Avenue                                                             | 047-5509-009-01                                             |
| 3/4  | Management Storage                                                            | 1510, 1520, and 1528 105 <sup>th</sup> Avenue                                 | 047-5509-007-00 and 047-5509-006-00                         |
| 4    | Ward's Custom Paint                                                           | 1536, 1538, 1544, and 1548<br>105 <sup>th</sup> Avenue                        | 047-5509-003-00,<br>047-5509-004-00, and<br>047-5509-005-00 |
| 5    | Chevron Tow                                                                   | 1560 and 1570 105th Avenue                                                    | 047-5509-001-01                                             |
| 6    | Union Pacific Railroad<br>and 105th Avenue                                    | Center of 105 <sup>th</sup> Avenue                                            | 047-5519-004-10 and<br>047-5519-003                         |
| 7    | West Side of 105 <sup>th</sup> Avenue Commercial, Industrial, and Residential | 1429/1433/1439 105 <sup>th</sup> Avenue                                       | 047-5509-015-03                                             |
|      |                                                                               | 1449 105 <sup>th</sup> Avenue                                                 | 047-5509-015-04                                             |
|      |                                                                               | 1501 105 <sup>th</sup> Avenue                                                 | 047-5509-17                                                 |
|      |                                                                               | 1525 and 1545 105 <sup>th</sup> Avenue                                        | 047-5509-021-01                                             |
|      |                                                                               | 1557, 1559, and 1561 105th Avenue                                             | 047-5509-023-01                                             |
|      |                                                                               | 105th Avenue Right of Way                                                     | NA                                                          |
| 8    | East Side of 104th Avenue<br>Residential                                      | 10403 Walnut Street                                                           | 047-5509-32-01                                              |
|      |                                                                               | 1440 104th Avenue                                                             | 047-5509-36-01                                              |
|      |                                                                               | 1446 104th Avenue                                                             | 047-5509-34-00                                              |
|      |                                                                               | 1452 104 <sup>th</sup> Avenue                                                 | 047-5509-33-00                                              |
|      |                                                                               | 1604 104th Avenue                                                             | 047-5509-31-00                                              |
|      |                                                                               | 1608 104th Avenue                                                             | 047-5509-30-00                                              |
|      |                                                                               | 1616 104th Avenue                                                             | 047-5509-029-00                                             |
|      |                                                                               | 1626 104 <sup>th</sup> Avenue                                                 | 047-5509-28-00                                              |

### Table 1 Current Site Information Batarse Site, Oakland, California

| Area | Occupant/Use      | Street Address                | Assessor's Parcel<br>Number |
|------|-------------------|-------------------------------|-----------------------------|
|      |                   | 1632 104th Avenue             | 047-5509-27-00              |
|      |                   | 1636 104 <sup>th</sup> Avenue | 047-5509-26-00              |
|      |                   | 1640 104th Avenue             | 047-5509-25-00              |
|      |                   | 1648 104th Avenue             | 047-5509-24-00              |
| 9    | AC Transit Parcel | No assigned address           | 047-5519-004-03             |

| samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46 groundwater samples 1 well sample | amples                                                                   | 306 soil samples                        | oth<br>donment                       | 1,494' depth      | 49 deep<br>12 shallow  | Totals                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|-------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil: Title 22 metals; TVH and TEH using EPA 8015 20' sample on hold Groundwater: Title 22 metals; TVH and TEH using EPA 8015M; VOCs using EPA 8260                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                    | First native soil, 5', 10', 15', 20' and just above groundwater          | 18                                      | 6 sample/boring                      | 30'               | w                      | 9 AC Transit (3 deep borings)                                                                                                                                                          |
| Soil: shallow borings: lead; TVH and TEH using EPA 8015 M; pesticides using EPA 8081 Soil: deep boring: Title 22 metals; TVH and TEH using EPA 8015; VOCs using EPA 8260; pesticides using EPA 8081 20' sample on hold Groundwater: Title 22 metals; TVH and TEH using EPA 8015M; VOCs using EPA 8260                                                                                                                                                                                                                                                                                               | NA<br>1                              | 0.0-0.5' First native soil, 5', 10', 15', 20' and just above groundwater | 6 4                                     | 1 sample/boring<br>6 samples/borings | 1'<br>30'         | 1 6                    | 8 East Side 104th Ave.<br>(residential; possible lead<br>impacted soils)                                                                                                               |
| Soil: Title 22 metals; TVH and TEH using EPA 8015; SVOCs using EPA 8270 20' sample on hold Groundwater: Title 22 metals; TVH and TEH using EPA 8015M; VOCs using EPA 8260; SVOCs using EPA 8270                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                   | First native soil, 5', 10', 15', 20' and just above groundwater          | 66                                      | 6 samples/borings                    | 30'               | 11                     | 7 West Side 105th Ave (commercial/industrial and residential; possible buried coal bin; possible heating oil USTs and past releases)                                                   |
| Soil: shallow borings: Title 22 metals; TVH and TEH (including hydraulic oil) using EPA 8015 M; SVOCs using EPA 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                    | First "dirt"                                                             | 6                                       | 1 sample/boring                      | 1-3'              | 4                      | 6 Union Pacific Railroad Spur<br>(shallow borings along railroad<br>tracks)                                                                                                            |
| Soil: Title 22 metals; TVH and TEH using EPA 8015 M 20' sample on hold Groundwater: Title 22 metals; TVH and TEH using EPA 8015 M; VOCs using EPA 8260                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>at east border                  | First native soil, 5', 10', 15', 20' and just above groundwater          | 24                                      | 6 samples/boring                     | 30'               | 4                      | 5 Chevron Tow (1560 and 1570<br>105th Ave.; vehicle storage)                                                                                                                           |
| Soil: Title 22 metals; TVH and TEH using EPA 8015 M; VOCs using EPA 8260 20' sample on hold Groundwater: Title 22 metals; TVH and TEH using EPA 8015 M; VOCs using EPA 8260                                                                                                                                                                                                                                                                                                                                                                                                                         | υ                                    | First native soil, 5', 10', 15', 20' and just above groundwater          | 30                                      | 6 samples/boring                     | 30'               | 5                      | 4 Ward's Custom Paint (1544<br>105th Ave.; chemical use and<br>vehicle storage)                                                                                                        |
| Soil: Title 22 metals; TVH and TEH using EPA 8015 M  20' sample on hold  Groundwater: Title 22 metals; TVH and TEH using EPA 8015 M; VOCs using EPA 8260                                                                                                                                                                                                                                                                                                                                                                                                                                            | ω -                                  | First native soil, 5', 10', 15', 20' and just above groundwater          | 18 N                                    | 6 samples/boring                     | 30'               | i well aband.          | 3 Management Storage (1510<br>105th Ave.; two sumps, one<br>floor drain area)                                                                                                          |
| Soil: Title 22 metals; TVH and TEH using EPA 8015 M; VOCs using EPA 8260 20' sample on hold Groundwater: Title 22 metals; TVH and TEH using EPA 8015 M; VOCs using EPA 8260 Groundwater: Title 22 metals; TVH and TEH using EPA 8015 M; VOCs using EPA 8260                                                                                                                                                                                                                                                                                                                                         | . ω                                  | First native soil, 5', 10', 15', 20' and just above groundwater          | 18                                      | 6 samples/boring                     | 30.               | 3                      |                                                                                                                                                                                        |
| Soil: Title 22 metals; TVH and TEH (including hydraulic oil at lifts) using EPA 8015 M; PCBs using EPA 8082 (soil samples at lifts); antifreeze (ethylene glycol) using GC-FID (for samples from boring adjacent to two former 1,000-gallon product and waste oil USTs located on the north side of 105th Street)  20' sample on hold  Groundwater: Title 22 metals; TVH and TEH using EPA 8015 M; VOCs using EPA 8260;antifreeze (ethylene glycol) using GC-FID (for samples from boring adjacent to two former 1,000-gallon product and waste oil USTs located on the north side of 105th Street) | 19                                   | First native soil, 5', 10', 15', 20', and just above groundwater         | ======================================= | 6 samples/boring                     | 30'               | 19                     | 1 Lloyd Wise, Inc. (10550 E. 14th St. and 1424 105th Ave.; includes hydraulic lifts area, sumps, oil/water separator, former waste oil UST, former oil ASTs and stained concrete slab) |
| Comments: Laboratory Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Groundwater<br>Samples               | sample Intervals                                                         | Total<br>Number of<br>Soil<br>Samples   | Number of Soil<br>Samples            | Depth (ft<br>bgs) | Number of<br>Boreholes | Parcels                                                                                                                                                                                |

Notes:

The total number and depth of soil samples collected from each boring will depend on the actual depth of groundwater.

PAHs = polynuclear aromatic hydrocarbons

SVOCs = semivolatile organic compounds

TEH = total extractable hydrocarbons

TVH = total volatile hydrocarbons

VOCs = volatile organic compounds

# Table 3 Sample Collection Information Batarse Site, Oakland, California

| Test Methods                                                                                                                                       | Hold Time                                                                                            | Preservative                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Title 22 Metals<br>(EPA Test Method 6010/7000<br>Series)                                                                                           | Soil and Water: Mercury – 28 days preserved; Remaining metals – 6 months preserved                   | Ice (4° C) No preservative – samples filtered at laboratory |
| Polychlorinated Biphenyls<br>and Organochlorine Pesticides<br>(EPA Test Method 8081/8082)                                                          | Soil: 14 days extraction<br>and 40 days analyzed<br>Water: 7 days extraction<br>and 40 days analyzed | Ice (4° C)                                                  |
| Semi-Volatile Organic<br>Compounds<br>(EPA Test Method 8270)                                                                                       | Soil: 14 days extraction<br>and 40 days analyzed<br>Water: 7 days extraction<br>and 40 days analyzed | Ice (4° C)                                                  |
| Semi-Volatile Organic<br>Compounds<br>(EPA Test Method 525)                                                                                        | Water: 7 days extraction and 40 days analyzed                                                        | Ice (4° C)                                                  |
| EDB (EPA Test Method 504)                                                                                                                          | Water: 14 days analyzed                                                                              | Ice (4° C)                                                  |
| Polycyclic Aromatic Hydrocarbons (EPA Test Method 8310)                                                                                            | Soil: 14 days extraction<br>and 40 days analyzed<br>Water: 7 days extraction<br>and 40 days analyzed | Ice (4° C)                                                  |
| Total Petroleum Hydrocarbons<br>quantified as diesel, motor oil,<br>paint thinner, mineral spirits, or<br>Stoddard solvents<br>(EPA 8015 modified) | Soil and Water: 14 days<br>extraction and 40 days<br>analyzed                                        | Ice (4° C)                                                  |
| Total Petroleum Hydrocarbons<br>quantified as gasoline<br>(EPA 8015 modified)                                                                      | Soil and Water: 14 days analyzed                                                                     | Ice (4° C)/HCl                                              |
| Volatile Organic Compounds<br>(EPA 8260A)                                                                                                          | Soil and Water: 14 days<br>analyzed if preserved<br>and 7 days analyzed if<br>not preserved          | Ice (4° C)/HCI                                              |
| Total Organic Carbon                                                                                                                               | Soil: 28 days analyzed                                                                               | Ice (4° C)/H2SO4                                            |

Table 4 Sample Matrix Analysis Summary Batarse Site, Oakland, California

| Location ID | Area | Soil | Water |
|-------------|------|------|-------|
|             |      |      |       |
| BADW001     | 3    |      | X     |
| BASB001     | 6    | X    | X     |
| BASB002     | 6    | X    |       |
| BASB005     | 6    | X    |       |
| BASB006     | 2    | X    | X     |
| BASB007     | 2    | X    | X     |
| BASB008     | 2    | X    | X     |
| DUP         | 2    | X    |       |
| BASB011     | 6    | X    |       |
| BASB012     | 4    | X    | X     |
| DUP         | 4    | X    |       |
| BASB013     | 4    | X    |       |
| BASB016     | 4    | X    | X     |
| DUP         | 4    |      | X     |
| BASB017     | 6    | X    |       |
| BASB018     | 7    | X    | X     |
| BASB019     | 7    | X    | X     |
| DUP         | 7    |      | X     |
| BASB021     | 6    | X    | X     |
| BASB022     | 5    | X    | X     |
| BASB023     | 5    | X    | X     |
| BASB024     | 5    | X    | X     |
| BASB025     | 5    | X    | X     |
| DUP         | 5    | X    |       |
| BASB026     | 1    | X    | X     |
| DUP         | 1    |      | X     |
| BASB027     | 1    | X    | X     |
| BASB028     | 1    | X    | X     |
| BASB029     | 1    | X    | X     |
| DUP         | 1    | X    |       |
| BASB030     | 1    | X    | X     |
| BASB031     | 1    | X    | X     |
| BASB032     | 1    | X    | X     |
| DUP         | 1    | X    |       |
| BASB033     | 1    | X    | X     |
| BASB034     | 1    | X    | X     |
| BASB036     | 1    | X    | X     |
| DUP         | 1    | X    |       |
| BASB037     | 1    | X    | X     |
| BASB040     | 3    | X    | X     |
|             |      |      |       |

Table 4 Sample Matrix Analysis Summary Batarse Site, Oakland, California

| Location ID | Area | Soil | Water |
|-------------|------|------|-------|
| DUP         | 3    | X    |       |
| BASB041     | 3    | X    | X     |
| DUP         | 3    | X    |       |
| BASB050     | 8    | X    | X     |
| BASB051     | 6    | X    | X     |
| RE          | 6    | X    |       |
| BASB052     | 7    | X    | X     |
| RE          | 7    | X    |       |
| BASB053     | 7    | X    | X     |
| BASB054     | 7    | X    | X     |
| BASB055     | 7    | X    | X     |
| BASB056     | 7    | X    | X     |
| BASB057     | 7    | X    | X     |
| BASB058     | 7    | X    | X     |
| DUP         | 7    | X    |       |
| BASB060     | 8    | X    |       |
| BASB061     | 8    | X    |       |
| BASB062     | 8    | X    |       |
| BASB063     | 8    | X    |       |
| BASB065     | 8    | X    |       |
| BASB070     | 1    | X    | X     |
| BASB071     | 1    | X    | X     |
| BASB072     | 1    | X    | X     |
| BASB073     | 1    | X    | X     |
| BASB074     | 1    | X    | X     |
| BASB075     | 1    | X    | X     |
| BASB076     | 1    | X    | X     |
| BASB077     | 1    | X    | X     |
| DUP         | 1    | X    |       |
| BASB078     | 1    | X    | X     |
| BASB080     | 7    | X    | X     |
| BASB081     | 6    | X    | X     |
| RE          | 6    | X    |       |
| DUP         | 6    |      | X     |
| BASB082     | 1    | X    | X     |
| BASB086     | 5    | X    | X     |
| BASB087     | 5    | X    | X     |
| DUP         | 5    | X    |       |
| BASB088     | 9    | X    | X     |
| DUP         | 9    | X    | X     |

Table 4
Sample Matrix Analysis Summary
Batarse Site, Oakland, California

| Location ID | Area | Soil | Water |
|-------------|------|------|-------|
| BASB089     | 9    | х    | X     |
| BASB090     | 9    | X    | X     |
| DUP         | 9    | X    |       |

Data prepared by: <u>TIH</u>. Data QA/QC by: <u>LDF</u>. Notes:

Numerical gaps in Location ID indicate sampling locations were not used.

DUP = Duplicate sample

RE = Samples were re-extracted and reanalyzed because QC did not meet laboratory criteria.

Table 5 Sample Analysis Summary Batarse Site, Oakland, California

| Location ID | Field Sample ID | Date<br>Sampled | extr-<br>TPH | Metals      | OCPs | PAHs | PCBs | purg-<br>TPH | SVOCs | TOC | VOCs               |
|-------------|-----------------|-----------------|--------------|-------------|------|------|------|--------------|-------|-----|--------------------|
| Area 1      |                 |                 |              |             |      |      |      |              |       |     |                    |
| BASB026     | SB-26-GGW       | 28-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| DUP         | SB-126-GGW      | 28-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB026     | SB-26-4'        | 28-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB026     | SB-26-71        | 28-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB026     | SB-26-10'       | 28-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB026     | SB-26-15'       | 28-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB026     | SB-26-25'       | 28-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB027     | SB-27-GGW       | 27-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB027     | SB-27-4'        | 27-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB027     | SB-27-6.51      | 27-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB027     | SB-27-10'       | 27-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB027     | \$B-27-15'      | 27-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB027     | SB-27-25'       | 27-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB028     | SB-28-GGW       | 27-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB028     | SB-28-1'        | 27-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB028     | SB-28-4'        | 27-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB028     | SB-28-7'        | 27-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB028     | SB-28-10'       | 27-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB028     | SB-28-15'       | 27-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB028     | SB-28-25'       | 27-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB029     | SB-29-GGW       | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB029     | SB-29-4         | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| DUP         | SB-29-5         | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB029     | SB-29-10        | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB029     | SB-29-15        | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB029     | SB-29-20        | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB029     | SB-29-25        | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB030     | SB-30-GGW       | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB030     | SB-30-5         | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB030     | SB-30-10        | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB030     | SB-30-15        | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB030     | SB-30-20        | 23-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB030     | SB-30-25        | 23-Mar-01       | X            | x           |      |      |      | X            |       |     | X                  |
| BASB031     | SB-31-GGW       | 26-Mar-01       | X            | X           |      |      |      | X            |       |     | X                  |
| BASB031     | SB-31-41        | 26-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB031     | SB-31-7'        | 26-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB031     | SB-31-10'       | 26-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB031     | SB-31-15'       | 26-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| BASB031     | SB-31-23'       | 26-Mar-01       | X            | X           |      |      |      | X            |       |     |                    |
| The         | _ <del></del>   |                 |              | Daga 1 of 1 | _    |      |      | ~ -          |       | 0.0 | 1/07 <i>/</i> 2001 |

Table 5 Sample Analysis Summary Batarse Site, Oakland, California

| Location ID | Field Sample ID | Date<br>Sampled | extr-<br>TPH | Metals | OCPs | PAHs | PCBs | purg-<br>TPH | SVOCs | TOC | VOCs |
|-------------|-----------------|-----------------|--------------|--------|------|------|------|--------------|-------|-----|------|
| Area 1      |                 |                 |              |        |      |      |      |              |       | •   |      |
| BASB031     | SB-31-25'       | 26-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB032     | SB-32-GGW       | 26-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB032     | SB-32-4'        | 26-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| DUP         | SB-32-5'        | 26-Mar-01       | X            | X      |      |      |      | Х            |       |     |      |
| BASB032     | SB-32-9.5'      | 26-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB032     | SB-32-15'       | 26-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB032     | SB-32-25'       | 26-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB033     | SB-33-GGW       | 26-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB033     | SB-33-41        | 26-Mar-01       | X            | X      |      |      |      | Х            |       |     |      |
| BASB033     | \$B-33-6.5'     | 26-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB033     | SB-33-10'       | 26-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB033     | SB-33-15'       | 26-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB033     | SB-33-25'       | 26-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB034     | SB-34-GGW       | 27-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB034     | SB-34-4'        | 27-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB034     | SB-34-6.75'     | 27-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB034     | SB-34-10'       | 27-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB034     | SB-34-15'       | 27-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB034     | SB-34-25'       | 27-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB036     | SB-36-GGW       | 22-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB036     | SB-36-4         | 22-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| DUP         | SB-36-5.5       | 22-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB036     | SB-36-10        | 22-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB036     | SB-36-15        | 22-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB036     | SB-36-25        | 22-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB037     | SB-37-GGW       | 22-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB037     | SB-37-5         | 22-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB037     | SB-37-10        | 22-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB037     | SB-37-15        | 22-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB037     | SB-37-25        | 22-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB070     | SB-70-GGW       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB070     | SB-70-3.5'      | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB070     | SB-70-6.5'      | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB070     | SB-70-10'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB070     | SB-70-15'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB070     | SB-70-231       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB070     | SB-70-25'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB071     | SB-71-GGW       | 03-Apr-01       | X            | X      |      |      |      | X            | X     |     | X    |
| BASB071     | SB-71-2'        | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
|             |                 |                 |              |        |      |      |      |              |       |     |      |

Table 5 Sample Analysis Summary Batarse Site, Oakland, California

| Location ID | Field Sample ID | Date<br>Sampled | extr-<br>TPH | Metals | OCPs     | PAHs | PCBs | purg-<br>TPH | SVOCs | TOC | VOCs |
|-------------|-----------------|-----------------|--------------|--------|----------|------|------|--------------|-------|-----|------|
| Area 1      |                 |                 |              |        | <b>L</b> |      |      |              |       |     |      |
| BASB071     | SB-71-7'        | 03-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB071     |                 | 03-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB071     |                 | 03-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB071     |                 | 03-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB071     |                 | 03-Apr-01       | X            | X      |          |      |      | X            |       |     | X    |
| BASB071     |                 | 03-Apr-01       | X            | X      |          |      |      | X            |       |     | X    |
| BASB071     |                 | 03-Apr-01       | X            | X      |          |      |      | X            |       |     | X    |
| BASB072     |                 | 05-Apr-01       | X            | X      |          |      |      | X            | X     |     | X    |
| BASB072     |                 | 05-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB072     |                 | 05-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB072     |                 | 05-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB072     |                 | 05-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB072     |                 | 05-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB073     |                 | 02-Apr-01       | X            | X      |          |      |      | X            |       |     | X    |
| BASB073     |                 | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB073     |                 | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB073     |                 | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB073     |                 | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB073     |                 | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB073     |                 | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB074     |                 | 02-Apr-01       | X            | X      |          |      |      | X            |       |     | X    |
| BASB074     | SB-74-31        | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB074     | SB-74-10'       | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB074     | SB-74-15'       | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB074     | SB-74-25'       | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB075     | SB-75-GGW       | 02-Apr-01       | X            | X      |          |      |      | X            |       |     | X    |
| BASB075     | SB-75-7'        | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB075     | SB-75-10'       | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB075     | SB-75-15'       | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB075     | SB-75-251       | 02-Apr-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB076     | SB-76-GGW       | 30-Mar-01       | X            | X      |          |      |      | X            |       |     | X    |
| BASB076     | SB-76-4'        | 30-Mar-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB076     | SB-76-7'        | 30-Mar-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB076     | SB-76-10'       | 30-Mar-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB076     | SB-76-15'       | 30-Mar-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB076     | SB-76-20'       | 30-Mar-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB076     | SB-76-25'       | 30-Mar-01       | X            | X      |          |      |      | X            |       |     |      |
| BASB077     | SB-77-GGW       | 30-Mar-01       | X            | X      |          |      |      | X            |       |     | X    |
| BASB077     | SB-77-4'        | 30-Mar-01       | X            | X      |          |      |      | X            |       |     |      |

rpt\_IDs.rpt Page 3 of 10 09/07/2001

Table 5 Sample Analysis Summary Batarse Site, Oakland, California

| Location ID | Field Sample ID | Date<br>Sampled | extr-<br>TPH | Metals | OCPs | PAHs    | PCBs | purg-<br>TPH | SVOCs    | TOC | VOC |
|-------------|-----------------|-----------------|--------------|--------|------|---------|------|--------------|----------|-----|-----|
| Area 1      |                 |                 |              |        |      |         |      |              |          |     |     |
| DUP         | SB-77-5'        | 30-Mar-01       | X            | X      |      |         |      | X            |          |     |     |
| BASB077     | SB-77-10'       | 30-Mar-01       | X            | X      |      |         |      | X            |          |     |     |
| BASB077     | SB-77-15'       | 30-Mar-01       | X            | X      |      |         |      | X            |          |     |     |
| BASB077     | SB-77-20'       | 30-Mar-01       | X            | X      |      |         |      | X            |          |     |     |
| BASB077     | SB-77-25'       | 30-Mar-01       | X            | X      |      |         |      | X            |          |     |     |
| BASB078     | SB-78-13        | 04-Apr-01       |              |        |      |         |      |              |          | X   |     |
| BASB078     | SB-78-28        | 04-Apr-01       |              |        |      |         |      |              |          | X   |     |
| BASB078     | SB-78-GGW       | 05-Apr-01       | X            | X      |      |         |      | X            | X        |     | Х   |
| BASB078     | SB-78-4'        | 05-Apr-01       | X            | X      |      |         |      | X            |          |     |     |
| BASB078     | SB-78-7'        | 05-Apr-01       | X            | X      |      |         |      | X            |          |     |     |
| BASB078     | SB-78-10'       | 05-Apr-01       | X            | X      |      |         |      | X            |          |     |     |
| BASB078     | SB-78-15'       | 05-Apr-01       | X            | X      |      |         |      | X            |          |     |     |
| BASB078     | SB-78-251       | 05-Apr-01       | X            | X      |      |         |      | X            |          |     |     |
| BASB082     | SB-82-GGW       | 05-Apr-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB082     | SB-82-2'        | 05-Apr-01       | X            | X      |      | X       |      | X            | X        |     | X   |
| BASB082     | SB-82-5'        | 05-Apr-01       | X            | X      |      | X       |      | X            | X        |     | X   |
| BASB082     | SB-82-121       | 05-Apr-01       | X            | X      |      | X       |      | X            | X        |     | X   |
| BASB082     | SB-82-15'       | 05-Apr-01       | X            | X      |      | X       |      | X            | X        |     | X   |
| BASB082     | SB-82-20'       | 05-Apr-01       | X            | X      |      | X       |      | X            | X        |     | X   |
| Area 2      |                 |                 |              |        |      | <b></b> |      |              |          |     |     |
| BASB006     | SB-6-GGW        | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB006     | SB-6-2'         | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB006     | SB-6-6'         | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB006     | SB-6-10'        | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB006     | SB-6-15'        | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB006     | SB-6-27'        | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB007     | SB-7-GGW        | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB007     | SB-7-2          | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB007     | SB-7-5'         | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB007     | SB-7-10'        | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB007     | SB-7-15'        | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB007     | SB-7-26'        | 31-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB008     | SB-8-GGW        | 21-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB008     | SB-8-4          | 21-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| DUP         | SB-8-5          | 21-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB008     | SB-8-10         | 21-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB008     | SB-8-15         | 21-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| BASB008     | SB-8-25         | 21-Mar-01       | X            | X      |      |         |      | X            |          |     | X   |
| Area 3      |                 |                 |              |        |      | -       |      |              | <u> </u> |     |     |

Table 5 Sample Analysis Summary Batarse Site, Oakland, California

| Location ID | Field Sample ID | Date<br>Sampled | extr-<br>TPH | Metals | OCPs | PAHs | PCBs | purg-<br>TPH | SVOCs | TOC | VOC |
|-------------|-----------------|-----------------|--------------|--------|------|------|------|--------------|-------|-----|-----|
| Area 3      |                 |                 |              |        |      |      |      |              |       |     | -   |
| BADW001     | <b>DW</b> -1    | 23-Mar-01       | X            | х      |      |      |      | X            |       |     | х   |
| BASB040     | SB-40-GGW       | 03-Apr-01       | X            | X      |      |      |      | X            | X     |     | X   |
| BASB040     | SB-40-4'        | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |     |
| DUP         | SB-40-5'        | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |     |
| BASB040     | SB-40-10*       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |     |
| BASB040     | SB-40-15'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |     |
| BASB040     | SB-40-20'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |     |
| BASB040     | SB-40-25'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |     |
| BASB041     | SB-41-GGW       | 28-Mar-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB041     | SB-41-4'        | 28-Mar-01       | X            | X      |      |      |      | X            |       |     |     |
| DUP         | SB-41-5'        | 28-Mar-01       | Х            | X      |      |      |      | X            |       |     |     |
| BASB041     | SB-41-10'       | 28-Mar-01       | X            | X      |      |      |      | X            |       |     |     |
| BASB041     | SB-41-15'       | 28-Mar-01       | X            | X      |      |      |      | X            |       |     |     |
| BASB041     | SB-41-25'       | 28-Mar-01       | X            | X      |      |      |      | X            |       |     |     |
| Area 4      |                 |                 |              |        |      |      |      |              |       |     |     |
| BASB012     | SB-12GGW        | 19-Mar-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB012     | SB-12-4'        | 19-Mar-01       | X            | X      |      |      |      |              |       |     |     |
| DUP         | SB-12-4.5'      | 19-Mar-01       |              |        |      |      |      | X            |       |     | X   |
| BASB012     | SB-12-10'       | 19-Mar-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB012     | SB-12-15'       | 19-Mar-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB012     | SB-12-24.5'     | 19-Mar-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB013     | SB-13-3         | 20-Mar-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB013     | SB-13-5         | 20-Mar-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB013     | SB-13-10        | 20-Mar-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB013     | SB-13-15        | 20-Mar-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB016     | SB-16-GGW       | 04-Apr-01       | X            | X      |      |      |      | X            |       |     | X   |
| DUP         | SB-116-GGW      | 04-Apr-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB016     | SB-16-2.51      | 04-Apr-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB016     | SB-16-6'        | 04-Apr-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB016     | SB-16-10'       | 04-Apr-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB016     | SB-16-13        | 04-Apr-01       |              |        |      |      |      |              |       | X   |     |
| BASB016     | SB-16-15'       | 04-Apr-01       | X            | X      |      | 4    |      | X            |       |     | X   |
| BASB016     | SB-16-19        | 04-Apr-01       |              |        |      |      |      |              |       | X   |     |
| BASB016     | SB-16-25'       | 04-Apr-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB016     | SB-16-28        | 04-Apr-01       |              |        |      |      |      |              |       | X   |     |
| Area 5      |                 |                 |              | ·····  | ·    |      |      |              |       |     |     |
| BASB022     | SB-22-GGW       | 04-Apr-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB022     | SB-22-2'        | 04-Apr-01       | X            | X      |      |      |      | X            |       |     | X   |
| BASB022     | SB-22-5'        | 04-Apr-01       | X            | X      |      |      |      | X            |       |     | X   |

rpt\_IDs.rpt Page 5 of 10 09/07/2001

Table 5 Sample Analysis Summary Batarse Site, Oakland, California

| Location ID | Field Sample ID | Date<br>Sampled | extr-<br>TPH | Metals       | OCP <sub>5</sub> | PAHs | PCBs | purg-<br>TPH | SVOCs | TOC | VOCs      |
|-------------|-----------------|-----------------|--------------|--------------|------------------|------|------|--------------|-------|-----|-----------|
| Area 5      |                 |                 | •            |              |                  |      |      | <u> </u>     |       |     |           |
| BASB022     | SB-22-10'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     | X         |
| BASB022     | SB-22-15'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     | X         |
| BASB022     | SB-22-21'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     | X         |
| BASB023     | SB-23-GGW       | 04-Apr-01       | Х            | X            |                  |      |      | X            |       |     | X         |
| BASB023     | SB-23-21        | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB023     | SB-23-5'        | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB023     | SB-23-11'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB023     | SB-23-151       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB023     | SB-23-21        | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB024     | SB-24-GGW       | 04-Арг-01       | X            | X            |                  |      |      | X            |       |     | X         |
| BASB024     | SB-24-2'        | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     | ••        |
| BASB024     | SB-24-4'        | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB024     | SB-24-10'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB024     | SB-24-15'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB024     | SB-24-22'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB025     | SB-25-GGW       | 04-Apr-01       | Х            | X            |                  |      |      | X            |       |     | X         |
| BASB025     | SB-25-4'        | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| DUP         | SB-25-5'        | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB025     | SB-25-10'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB025     | SB-25-15'       | 04-Apr-01       | X            | X            |                  |      |      | Х            |       |     |           |
| BASB025     | SB-25-251       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB086     | SB-86-GGW       | 04-Арг-01       | X            | X            |                  |      |      | X            |       |     | X         |
| BASB086     | SB-86-2'        | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB086     | SB-86-4'        | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB086     | SB-86-10'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB086     | SB-86-16'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB086     | SB-86-20'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB087     | SB-87-GGW       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     | X         |
| BASB087     | SB-87-41        | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| DUP         | SB-87-5'        | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB087     | SB-87-10'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB087     | SB-87-15'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB087     | SB-87-25'       | 04-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| Area 6      |                 | ·····           |              |              |                  |      |      |              |       |     |           |
| BASB001     | SB-1-GGW        | 02-Apr-01       | X            | X            |                  |      |      | X            |       |     | X         |
| BASB001     | SB-1-3'         | 02-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB001     | SB-1-5'         | 02-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB001     | SB-1-10'        | 02-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| BASB001     | SB-1-15'        | 02-Apr-01       | X            | X            |                  |      |      | X            |       |     |           |
| ot IDs.rpt  |                 |                 |              | Page 6 of 10 | )                |      |      |              |       | ng  | 0/07/2001 |

Table 5 Sample Analysis Summary Batarse Site, Oakland, California

| Location ID | Field Sample 1D |            | extr- | Metals              | OCPs | PAHs     | PCBs | purg- | SVOCs                                   | TOC      | VOCs     |
|-------------|-----------------|------------|-------|---------------------|------|----------|------|-------|-----------------------------------------|----------|----------|
|             | !               | Sampled    | TPH   |                     |      | <u> </u> | i    | TPH   | <u> </u>                                | <u> </u> |          |
| Area 6      |                 |            |       |                     |      |          |      |       |                                         |          |          |
| BASB001     | SB-1-23'        | 02-Apr-01  | X     | X                   |      |          |      | X     |                                         |          |          |
| BASB002     | SB-2-3'         | 31-Мат-01  | X     | X                   |      | X        |      | Χ     | X                                       |          |          |
| BASB005     | SB-5-3'         | 31-Mar-01  | X     | X                   |      | X        |      | X     | X                                       |          |          |
| BASB011     | SB-11-3'        | 05-Apr-01  | X     | X                   |      | X        |      | X     | X                                       |          |          |
| BASB017     | SB-17-3'        | 05-Apr-01  | X     | X                   |      | X        |      | X     | X                                       |          |          |
| BASB021     | SB-21-GGW       | 29-Маг-01  | X     | X                   |      |          |      | X     |                                         |          | X        |
| BASB021     | SB-21-1'        | 29-Mar-01  | X     | X                   |      |          |      | X     |                                         |          |          |
| BASB021     | SB-21-5'        | 29-Mar-01  | X     | X                   |      |          |      | X     |                                         |          |          |
| BASB021     | SB-21-10'       | 29-Mar-01  | X     | X                   |      |          |      | X     |                                         |          |          |
| BASB021     | SB-21-15'       | 29-Mar-01  | X     | X                   |      |          |      | X     |                                         |          |          |
| BASB021     | SB-21-25'       | 29-Mar-01  | X     | X                   |      |          |      | X     |                                         |          |          |
| BASB051     | SB-51-GGW       | 02-Apr-01  | X     | X                   |      |          |      | X     |                                         |          | X        |
| BASB051     | SB-51-3'        | 02-Apr-01  | X     | X                   |      |          |      | X     |                                         |          |          |
| BASB051     | SB-51-10'       | 02-Apr-01  | X     | X                   |      |          |      | X     | X                                       |          |          |
| RE          | SB-51-10'RE     | 02-Apr-01  |       |                     |      |          |      |       | X                                       |          |          |
| BASB051     | SB-51-15'       | 02-Apr-01  | X     | X                   |      |          |      | X     |                                         |          |          |
| BASB051     | SB-51-231       | 02-Apr-01  | X     | X                   |      |          |      | X     | X                                       |          |          |
| RE          | SB-51-23'RE     | 02-Apr-01  |       |                     |      |          |      |       | X                                       |          |          |
| BASB051     | SB-51-GGW       | 03-Apr-01  |       |                     |      |          |      |       | X                                       |          |          |
| BASB081     | SB-81-20        | 04-Apr-01  |       |                     |      |          |      |       |                                         | X        |          |
| BASB081     | SB-81-27        | 04-Apr-01  |       |                     |      |          |      |       |                                         | X        |          |
| BASB081     | SB-81-GGW       | 05-Apr-01  | X     | X                   |      |          |      | X     | X                                       |          | X        |
| DUP         | SB-181-GGW      | 05-Apr-01  | X     | X                   |      |          |      | X     | X                                       |          | X        |
| BASB081     | SB-81-3'        | 05-Apr-01  | X     | X                   |      |          |      | X     |                                         |          | X        |
| BASB081     | SB-81-5'        | 05-Apr-01  | X     | X                   |      |          |      | X     |                                         |          | X        |
| BASB081     | SB-81-10'       | 05-Apr-01  | X     | X                   |      |          |      | X     |                                         |          | X        |
| BASB081     | SB-81-15'       | 05-Apr-01  | X     | X                   |      |          |      | X     |                                         |          | Х        |
| BASB081     | SB-81-26'       | 05-Apr-01  | X     | X                   |      |          |      | X     | X                                       |          | X        |
| RE          | SB-81-26'RE     | 05-Apr-01  |       |                     |      |          |      |       | X                                       |          |          |
| Area 7      |                 |            |       |                     |      |          |      |       | - · · · · · · · · · · · · · · · · · · · |          |          |
| BASB018     | SB-18-GGW       | 05-Apr-01  | X     | X                   |      |          |      | X     | X                                       |          | X        |
| BASB018     | SB-18-31        | 05-Apr-01  | X     | X                   |      |          |      | X     | -                                       |          | -        |
| BASB018     | SB-18-6'        | 05-Apr-01  | X     | X                   | •    |          |      | X     |                                         |          |          |
| BASB018     | SB-18-12'       | 05-Apr-01  | X     | X                   |      |          |      | X     |                                         |          |          |
| BASB018     | SB-18-15'       | 05-Apr-01  | X     | X                   |      |          |      | X     |                                         |          |          |
| BASB018     | SB-18-20'       | 05-Apr-01  | X     | X                   |      |          |      | X     |                                         |          |          |
| BASB019     | SB-19-GGW       | 05-Apr-01  | X     | X                   |      |          |      | X     | X                                       |          | X        |
| DUP         | SB-119-GGW      | 05-Apr-01  | X     | X                   |      |          |      | X     | X                                       |          | X        |
| BASB019     | SB-19-2.5'      | 05-Apr-01  | X     | X                   |      |          |      | X     | 4.5                                     |          | 71       |
|             |                 | 22 12pr 01 |       | 21.<br>Рапе 7 of 1/ |      |          |      | 4.    |                                         |          | /07/2001 |

rpt\_IDs.rpt Page 7 of 10 09/07/2001

Table 5 Sample Analysis Summary Batarse Site, Oakland, California

| Location ID | Field Sample ID | Date<br>Sampled | extr-<br>TPH | Metals | OCPs | PAHs | PCBs | purg-<br>TPH | SVOCs | TOC | VOCs |
|-------------|-----------------|-----------------|--------------|--------|------|------|------|--------------|-------|-----|------|
| Area 7      |                 |                 |              |        |      |      |      |              |       |     |      |
| BASB019     | SB-19-5'        | 05-Apr-01       | X            | X      |      | X    |      | X            | X     |     |      |
| BASB019     | SB-19-10'       | 05-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB019     | SB-19-15'       | 05-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB019     | SB-19-25'       | 05-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB052     | SB-52-GGW       | 02-Apr-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB052     | SB-52-2'        | 02-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB052     | SB-52-4'        | 02-Apr-01       | X            | X      |      |      |      | X            | X     |     |      |
| RE          | SB-52-4'RE      | 02-Apr-01       |              |        |      |      |      |              | X     |     |      |
| BASB052     | SB-52-10'       | 02-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB052     | SB-52-15'       | 02-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB052     | SB-52-23'       | 02-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB052     | SB-52-25'       | 02-Apr-01       | X            | X      |      |      |      | X            | X     |     |      |
| RE          | SB-52-25'RE     | 02-Apr-01       |              |        |      |      |      |              | X     |     |      |
| BASB053     | SB-53-GGW       | 03-Apr-01       | X            | X      |      |      |      | X            | X     |     | X    |
| BASB053     | SB-53-2'        | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB053     | SB-53-5'        | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB053     | SB-53-11'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB053     | SB-53-15'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB053     | SB-53-20'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB054     | SB-54-GGW       | 03-Apr-01       | X            | X      |      |      |      | X            | X     |     | X    |
| BASB054     | SB-54-2*        | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB054     | SB-54-5'        | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB054     | SB-54-10'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB054     | SB-54-15'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB054     | SB-54-22'       | 03-Apr-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB055     | SB-55-GGW       | 29-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB055     | SB-55-8.5'      | 29-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB055     | SB-55-10'       | 29-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB055     | SB-55-15'       | 29-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB055     | SB-55-20.51     | 29-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB055     | SB-55-25'       | 29-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB056     | SB-56-GGW       | 30-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB056     | SB-56-4'        | 30-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB056     | SB-56-6'        | 30-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB056     | SB-56-10'       | 30-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB056     | SB-56-15'       | 30-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB056     | SB-56-20'       | 30-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB056     | SB-56-25'       | 30-Mar-01       | X            | X      |      |      |      | X            |       |     |      |
| BASB057     | SB-57-GGW       | 28-Mar-01       | X            | X      |      |      |      | X            |       |     | X    |
|             |                 |                 |              |        |      |      |      |              |       |     |      |

Table 5 Sample Analysis Summary Batarse Site, Oakland, California

| Location ID | Field Sample ID | Data            | 024-           | AAntal-  | OCD- | DAII- | DCD- |              | SVOC-    | TOC | VOC-     |
|-------------|-----------------|-----------------|----------------|----------|------|-------|------|--------------|----------|-----|----------|
| Location ID | Field Sample ID | Date<br>Sampled | extr-<br>TPH   | Metals   | OCPS | PAHs  | PCBs | purg-<br>TPH | SVOCs    | TOC | VOCs     |
| Area 7      | ·               |                 |                |          |      |       |      |              | <u> </u> |     | <u> </u> |
| BASB057     | SB-57-4'        | 28-Mar-01       | X              | X        |      |       |      | Х            |          |     |          |
| BASB057     | SB-57-6'        | 28-Mar-01       | X              | X        |      |       |      | X            |          |     |          |
| BASB057     | SB-57-10'       | 28-Mar-01       | X              | X        |      |       |      | X            |          |     |          |
| BASB057     | SB-57-15'       | 28-Mar-01       | X              | X        |      |       |      | X            |          |     |          |
| BASB057     | SB-57-25'       | 28-Mar-01       | X              | X        |      |       |      | X            |          |     |          |
| BASB058     | SB-58-GGW       | 21-Mar-01       | X              | X        |      |       |      | X            | X        |     | X        |
| BASB058     | SB-58-4         | 21-Mar-01       | X              | X        |      |       |      | X            | Λ        |     | X        |
| DUP         | SB-58-5.5       | 21-Mar-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB058     | SB-58-10        | 21-Mar-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB058     | SB-58-15        | 21-Mar-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB058     | SB-58-25        | 21-Mar-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB080     | SB-80-GGW       | 03-Apr-01       | X              | X        |      |       |      | X            | X        |     | X        |
| BASB080     | SB-80-33 W      | 03-Apr-01       | X              | X        |      |       |      | X            | Λ        |     | Λ        |
| BASB080     | SB-80-5'        | 03-Apr-01       | X              | X        |      |       |      | X            |          |     |          |
| BASB080     | SB-80-10'       | 03-Apr-01       | X              | X        |      |       |      | X            |          |     |          |
| BASB080     | SB-80-10        | 03-Apr-01       | X              | X        |      |       |      | X            |          |     |          |
| BASB080     | SB-80-13        | 03-Apr-01       | X              | X        |      |       |      | X            |          |     |          |
| Area 8      | 3D-60-24        | 03-Apt-01       |                | <b>^</b> |      |       |      |              |          |     |          |
| BASB050     | SB-50-GGW       | 20-Mar-01       | X              | X        |      |       |      | X            |          |     | Х        |
| BASB050     | SB-50-2.5       | 20-Mar-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB050     | SB-50-5         | 20-Mar-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB050     | SB-50-10        | 20-Mar-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB050     | SB-50-15        | 20-Mar-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB050     | SB-50-25        | 20-Mar-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB060     | SB-60           | 05-Apr-01       | x              | X        |      |       |      | X            |          |     | **       |
| BASB061     | SB-61           | 05-Apr-01       | X              | X        | X    |       | X    | X            |          |     |          |
| BASB062     | SB-62           | 05-Apr-01       | X              | X        | 11   |       | 71   | X            |          |     |          |
| BASB063     | SB-63           | 05-Apr-01       | X              | X        |      |       |      | X            |          |     |          |
| BASB065     | SB-65           | 22-Mar-01       | X              | X        | X    |       | X    | X            |          |     |          |
| Area 9      |                 |                 |                |          |      |       |      |              |          |     |          |
| BASB088     | SB-88-GGW       | 09-Jul-01       | X              | X        |      |       |      | X            |          |     | X        |
| DUP         | SB-88-GGW DUP   | 09-Jul-01       | - <del>-</del> | X        |      |       |      | X            |          |     | X        |
| BASB088     | SB-88-3.5'      | 09-Jul-01       | X              | X        |      |       |      | X            |          |     | X        |
| DUP         | SB-88-3.5' DUP  | 09-Jul-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB088     | SB-88-5'        | 09-Jul-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB088     | SB-88-10'       | 09-Jul-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB088     | SB-88-15'       | 09-Jul-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB088     | SB-88-25.5'     | 09-Jul-01       | X              | X        |      |       |      | X            |          |     | X        |
| BASB089     | SB-89-GGW       | 09-Jul-01       | X              | X        |      |       |      | X            |          |     | X        |
| DA3D007     | SD-03-QQ W      | OPTUITOI        | Λ              | Λ        |      |       |      | А            |          |     | Λ        |

rpt\_IDs.rpt Page 9 of 10 09/07/2001

Table 5 Sample Analysis Summary Batarse Site, Oakland, California

| Location ID | Field Sample ID | Date<br>Sampled | extr-<br>TPH | Metals | OCPs | PAHs | PCBs | purg-<br>TPH | SVOCs | TOC | VOCs |
|-------------|-----------------|-----------------|--------------|--------|------|------|------|--------------|-------|-----|------|
| Area 9      |                 |                 |              |        |      |      |      |              |       |     |      |
| BASB089     | SB-89-3.5*      | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB089     | SB-89-5'        | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB089     | SB-89-10'       | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB089     | SB-89-15'       | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB089     | SB-89-27.5'     | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB090     | SB-90-GGW       | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB090     | SB-90-2.51      | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |
| DUP         | SB-90-2.5' DUP  | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB090     | SB-90-5'        | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB090     | SB-90-10'       | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB090     | SB-90-15'       | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |
| BASB090     | SB-90-25.5'     | 09-Jul-01       | X            | X      |      |      |      | X            |       |     | X    |

Data prepared by: TIH. Data QA/QC by: LDF.

Notes:

Metals include the Title 22 list of 17 metals.

DUP = Duplicate sample

RE = Samples were re-extracted and reanalyzed because QC did not meet laboratory criteria.

extr-TPH = total extractable hydrocarbons

OCPs = organochlorine pesticides

PAHs = polyaromatic hydrocarbons

PCBs = polychlorinated biphenyls

purg-TPH = total volatile hydrocarbons

SVOCs = semivolatile organic compounds

TOC = total organic carbon

VOCs = volatile organic compounds

Table 6
Total Petroleum Hydrocarbons Detected in Soil
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | TPHd     | TPHg    | TPHmo       | TPHms   | TPHpt | TPHss       |
|-------------|-----------------|---------------------|----------|---------|-------------|---------|-------|-------------|
| Area 1      |                 |                     | <b>.</b> |         |             |         |       |             |
| BASB026     | 28-Mar-01       | (3.5-4.0)           | 6.3 YZ   | < 0.91  | 11 <b>Y</b> | < 0.91  | NA    | NA          |
| BASB026     | 28-Mar-01       | (6.5-7.0)           | 14 YZ    | <1      | <5          | <1      | NA    | NA          |
| BASB026     | 28-Mar-01       | (9.5-10.0)          | 22 YZ    | < 1     | <5          | <1      | NA    | NA          |
| BASB026     | 28-Mar-01       | (14.5-15.0)         | 26 YZ    | < 1.1   | <5          | <1.1    | NA    | NA          |
| BASB026     | 28-Mar-01       | (24.5-25.0)         | 5.5 YZ   | < 1     | < 5         | < 1     | NA    | NA          |
| BASB027     | 27-Mar-01       | (3.5-4.0)           | 35 YHZ   | < 0.97  | 120 YH      | < 0.97  | NA    | NA          |
| BASB027     | 27-Mar-01       | (6.0-6.5)           | 7.4 YZ   | < 1     | < 5         | < 1     | NA    | NA          |
| BASB027     | 27-Mar-01       | (9.5-10.0)          | 9.7 YZ   | < 0.95  | < 5         | < 0.95  | NA    | NA          |
| BASB027     | 27-Mar-01       | (14.5-15.0)         | 18 YZ    | <1      | <5          | <1      | NA    | NA          |
| BASB027     | 27-Mar-01       | (24.5-25.0)         | 26 YZ    | < 0.91  | <5          | < 0.91  | NA    | NA          |
| BASB028     | 27-Mar-01       | (0.5-1.0)           | 24 YZ    | < 0.99  | 58 Y        | < 0.99  | NA    | NA          |
| BASB028     | 27-Mar-01       | (3.5-4.0)           | 14 YZ    | <1.1    | <5          | <1.1    | NA    | NA          |
| BASB028     | 27-Mar-01       | (6.5-7.0)           | 18 YZ    | <1.1    | < 5         | <1.1    | NA    | NA          |
| BASB028     | 27-Mar-01       | (9.5-10.0)          | 15 YZ    | < 0.92  | < 5         | < 0.92  | NA    | NA          |
| BASB028     | 27-Mar-01       | (14.5-15.0)         | 17 YZ    | <1.1    | < 5         | <1.1    | NA    | NA          |
| BASB028     | 27-Mar-01       | (24.5-25.0)         | 20 YZ    | < 0.97  | < 5         | < 0.97  | NA    | NA          |
| BASB029     | 23-Mar-01       | (3.5-4.0)           | 18 YZ    | <1.1    | 5.5 Y       | < 1.1   | NA    | NA          |
| DUP         | 23-Mar-01       | (4.5-5.0)           | 9.5 YZ   | < 0.95  | <5          | < 0.95  | NA    | NA          |
| BASB029     | 23-Mar-01       | (9.5-10.0)          | 40 YZ    | < 1     | 5.3 Y       | < 1     | NA    | NA          |
| BASB029     | 23-Mar-01       | (14.5-15.0)         | 19 YZ    | < 0.96  | < 5         | < 0.96  | NA    | NA          |
| BASB029     | 23-Mar-01       | (19.5-20.0)         | 18 YZ    | < 1     | 9 Y         | < 1     | NA    | NA          |
| BASB029     | 23-Mar-01       | (24.5-25.0)         | < 1      | < 0.93  | < 5         | < 0.93  | NA    | NA          |
| BASB030     | 23-Mar-01       | (4.5-5.0)           | 15 YZ    | <1.1    | < 5         | <1.1    | NA    | NA          |
| BASB030     | 23-Mar-01       | (9.5-10.0)          | 16 YZ    | < 0.93  | < 5         | < 0.93  | NA    | NA          |
| BASB030     | 23-Mar-01       | (14.5-15.0)         | 13 YZ    | < 0.93  | < 5         | < 0.93  | NA    | NA          |
| BASB030     | 23-Mar-01       | (19.5-20.0)         | 19 YZ    | < 0.94  | < 5         | < 0.94  | NA    | NA          |
| BASB030     | 23-Mar-01       | (24.5-25.0)         | 18 YZ    | < 0.93  | <5          | < 0.93  | NA    | NA          |
| BASB031     | 26-Mar-01       | (3.5-4.0)           | 8.5 YZH  | <1.1    | 12          | <1.1    | NA    | NA          |
| BASB031     | 26-Mar-01       | (6.5-7.0)           | 21 YZ    | 440 JYH | 5.7 Y       | 480 JYL | NA    | 220 J       |
| BASB031     | 26-Mar-01       | (9.5-10.0)          | 79 YLZ   | 490 JYH | < 5         | 530 JYL | NA    | 250 J       |
| BASB031     | 26-Mar-01       | (14.5-15.0)         | 20 YLZ   | 180 JYH | < 5         | 190 JYL | NA    | 89 J        |
| BASB031     | 26-Mar-01       | (22.5-23.0)         | 49 YLH   | 80 JYH  | 36          | 87 JYL  | NA    | 40 <b>J</b> |

rpt\_Soil\_TPH.rpt

Table 6
Total Petroleum Hydrocarbons Detected in Soil
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | TPHd   | TPHg   | TPHmo    | TPHms  | TPHpt  | TPHss  |
|-------------|-----------------|---------------------|--------|--------|----------|--------|--------|--------|
| Area 1      |                 | 0.7                 |        |        | <u>I</u> |        |        |        |
| BASB031     | 26-Mar-01       | (24.5-25.0)         | 83 YLZ | < 0.99 | 51       | < 0.99 | NA     | < 0.99 |
| BASB032     | 26-Mar-01       | (3.5-4.0)           | 33 YZH | <1.1   | 69       | <1.1   | NA     | <1.1   |
| DUP         | 26-Mar-01       | (4.5-5.0)           | 85 YH  | < 0.93 | 360      | < 0.93 | NA     | NA     |
| BASB032     | 26-Mar-01       | (9.0-9.5)           | 20 YZ  | < 0.95 | <5       | < 0.95 | NA     | NA     |
| BASB032     | 26-Mar-01       | (14.5-15.0)         | 8.6 YZ | <1.1   | <5       | <1.1   | NA     | NA     |
| BASB032     | 26-Mar-01       | (24.5-25.0)         | 23 YZ  | <1     | < 5      | <1     | NA     | NA     |
| BASB033     | 26-Mar-01       | (3.5-4.0)           | 83 YHZ | < 0.97 | 240      | < 0.97 | NA     | NA     |
| BASB033     | 26-Mar-01       | (6.0-6.5)           | 11 YZ  | < 1.1  | <5       | <1.1   | NA     | NA     |
| BASB033     | 26-Mar-01       | (9.5-10.0)          | 27 YZ  | <1     | < 5      | <1     | NA     | NA     |
| BASB033     | 26-Mar-01       | (14.5-15.0)         | 16 YZ  | <1     | <5       | <1     | NA     | NA     |
| BASB033     | 26-Mar-01       | (24.5-25.0)         | 5.8 YZ | < 0.93 | < 5      | < 0.93 | NA     | NA     |
| BASB034     | 27-Mar-01       | (3.5-4.0)           | 5 YHZ  | < 0.92 | 18 Y     | < 0.92 | NA     | NA     |
| BASB034     | 27-Mar-01       | (6.25-6.75)         | 8.1 YZ | <1.1   | < 5      | <1.1   | NA     | NA     |
| BASB034     | 27-Mar-01       | (9.5-10.0)          | 18 YZ  | <1.1   | 5.2 Y    | <1.1   | NA     | NA     |
| BASB034     | 27-Mar-01       | (14.5-15.0)         | 12 YZ  | < 0.94 | <5       | < 0.94 | NA     | NA     |
| BASB034     | 27-Mar-01       | (24.5-25.0)         | 16 YZ  | < 0.96 | <5       | < 0.96 | NA     | NA     |
| BASB036     | 22-Mar-01       | (3.5-4.0)           | 160 YH | < 0.94 | 630      | < 0.94 | NA     | NA     |
| DUP         | 22-Mar-01       | (5.0-5.5)           | 23 YZ  | <1     | < 5      | <1     | NA     | NA     |
| BASB036     | 22-Mar-01       | (9.5-10.0)          | 20 YZ  | < 0.99 | <5       | < 0.99 | NA     | NA     |
| BASB036     | 22-Mar-01       | (14.5-15.0)         | 17 YZ  | < 0.99 | < 5      | < 0.99 | NA     | NA     |
| BASB036     | 22-Mar-01       | (24.5-25.0)         | 21 YZ  | <1     | < 5      | <1     | NA     | NA     |
| BASB037     | 22-Mar-01       | (4.5-5.0)           | 17 YZ  | <1.1   | 72 YH    | <1.1   | NA     | NA     |
| BASB037     | 22-Mar-01       | (9.5-10.0)          | 9.1 YZ | <1     | < 5      | < 1    | NA     | NA     |
| BASB037     | 22-Mar-01       | (14.5-15.0)         | 16 YZ  | < 0.94 | < 5      | < 0.94 | NA     | NA     |
| BASB037     | 22-Mar-01       | (24.5-25.0)         | 11 YZ  | <1     | < 5      | <1     | NA     | NA     |
| BASB070     | 03-Apr-01       | (3.0-3.5)           | 5.6 YH | <1     | 51       | NA     | <1     | NA     |
| BASB070     | 03-Apr-01       | (6.0-6.5)           | 1.1 YZ | <1     | < 5      | NA     | <1     | NA     |
| BASB070     | 03-Apr-01       | (9.5-10.0)          | 1.1 YZ | < 0.91 | < 5      | NA     | < 0.91 | NA     |
| BASB070     | 03-Apr-01       | (14.5-15.0)         | 1.3 YZ | < 0.98 | < 5      | NA     | < 0.98 | NA     |
| BASB070     | 03-Apr-01       | (22.5-23.0)         | 23 YL  | <1.1   | < 5      | NA     | <1.1   | NA     |
| BASB070     | 03-Apr-01       | (24.5-25.0)         | < 1    | <1     | < 5      | NA     | <1     | NA     |
| BASB071     | 03-Apr-01       | (1.5-2.0)           | 33 YH  | <1.1   | 85       | NA     | <1.1   | NA     |
|             |                 |                     |        |        |          |        |        |        |

rpt\_Soil\_TPH.rpt 09/07/2001

Table 6
Total Petroleum Hydrocarbons Detected in Soil
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | TPHd    | TPHg     | TPHmo | TPHms | TPHpt  | TPHss |
|-------------|-----------------|---------------------|---------|----------|-------|-------|--------|-------|
| Area 1      |                 |                     |         | <u> </u> |       |       |        |       |
| BASB071     | 03-Apr-01       | (6.5-7.0)           | 3.1 YZ  | <1.1     | 5.7 Y | NA    | <1.1   | NA    |
| BASB071     | 03-Apr-01       | (9.5-10.0)          | 1 YZ    | < 0.96   | <5    | NA    | < 0.96 | NA    |
| BASB071     | 03-Apr-01       | (14.5-15.0)         | 1.3 YZ  | < 0.99   | <5    | NA    | < 0.99 | NA    |
| BASB071     | 03-Apr-01       | (18.5-19.0)         | < 1     | < 0.97   | <5    | NA    | < 0.97 | NA    |
| BASB071     | 03-Apr-01       | (19.5-20.0)         | 8.9 YLZ | 5 Y      | < 5   | NA    | 4.1    | NA    |
| BASB071     | 03-Apr-01       | (22.5-23.0)         | 59 YL   | 7.5 Y    | 6     | NA    | 6.2    | NA    |
| BASB071     | 03-Apr-01       | (24.5-25.0)         | 68 YL   | 60 Y     | 9.3   | NA    | 38     | NA    |
| BASB072     | 05-Apr-01       | (2.0-2.5)           | 30 YH   | <1.1     | 76 Y  | NA    | <1.1   | NA    |
| BASB072     | 05-Apr-01       | (5.5-6.0)           | <1      | < 0.95   | < 5   | NA    | < 0.95 | NA    |
| BASB072     | 05-Apr-01       | (9.5-10.0)          | <1      | < 0.93   | < 5   | NA    | < 0.93 | NA    |
| BASB072     | 05-Apr-01       | (14.5-15.0)         | <1      | < 0.91   | < 5   | NA    | < 0.91 | NA    |
| BASB072     | 05-Apr-01       | (24.5-25.0)         | < 0.99  | < 0.99   | < 5   | NA    | < 0.99 | NA    |
| BASB073     | 02-Apr-01       | (2.5-3.0)           | 12 YH   | <1.1     | 120 Y | NA    | <1.1   | NA    |
| BASB073     | 02-Apr-01       | (4.5-5.0)           | 2 YH    | < 0.97   | 12 Y  | NA    | < 0.97 | NA    |
| BASB073     | 02-Apr-01       | (9.5-10.0)          | <1      | < 0.94   | < 5   | NA    | < 0.94 | NA    |
| BASB073     | 02-Apr-01       | (14.5-15.0)         | <1      | <1       | < 5   | NA    | <1     | NA    |
| BASB073     | 02-Apr-01       | (19.5-20.0)         | 1 Y     | <1       | <5    | NA    | <1     | NA    |
| BASB073     | 02-Apr-01       | (24.5-25.0)         | <1      | < 0.95   | < 5   | NA    | < 0.95 | NA    |
| BASB074     | 02-Apr-01       | (2.5-3.0)           | 2.2 YH  | < 0.93   | 13 Y  | NA    | < 0.93 | NA    |
| BASB074     | 02-Apr-01       | (9.5-10.0)          | <1      | < 0.94   | < 5   | NA    | < 0.94 | NA    |
| BASB074     | 02-Apr-01       | (14.5-15.0)         | <1      | < 0.96   | < 5   | NA    | < 0.96 | NA    |
| BASB074     | 02-Apr-01       | (24.5-25.0)         | < 0.99  | < 0.97   | < 5   | NA    | < 0.97 | NA    |
| BASB075     | 02-Apr-01       | (6.5-7.0)           | < 0.99  | < 0.96   | < 5   | NA    | < 0.96 | NA    |
| BASB075     | 02-Apr-01       | (9.5-10.0)          | < 1     | < 0.91   | < 5   | NA    | < 0.91 | NA    |
| BASB075     | 02-Apr-01       | (14.5-15.0)         | < 1     | < 0.94   | <5    | NA    | < 0.94 | NA    |
| BASB075     | 02-Apr-01       | (24.5-25.0)         | <1      | <1.1     | <5    | NA    | <1.1   | NA    |
| BASB076     | 30-Mar-01       | (3.5-4.0)           | 9.8 YH  | < 1      | 25 Y  | NA    | <1     | NA    |
| BASB076     | 30-Mar-01       | (6.5-7.0)           | 2.9 YZ  | < 0.99   | <5    | NA    | < 0.99 | NA    |
| BASB076     | 30-Маг-01       | (9.5-10.0)          | 6.8 YZ  | < 0.94   | <5    | NA    | < 0.94 | NA    |
| BASB076     | 30-Mar-01       | (14.5-15.0)         | 7.8 YZ  | < 0.94   | <5    | NA    | < 0.94 | NA    |
| BASB076     | 30-Mar-01       | (19.5-20.0)         | 3.8 YZ  | <1.1     | <5    | NA    | <1.1   | NA    |
| BASB076     | 30-Mar-01       | (24.5-25.0)         | 5.6 YZ  | < 1      | <5    | NA    | <1     | NA    |

09/07/2001

Table 6
Total Petroleum Hydrocarbons Detected in Soil
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | TPHd   | TPHg   | TPHmo        | TPHms  | TPHpt  | TPHss |
|-------------|-----------------|---------------------|--------|--------|--------------|--------|--------|-------|
| Area 1      |                 |                     |        |        |              |        |        |       |
| BASB077     | 30-Mar-01       | (3.5-4.0)           | 270 YH | <1     | 2200 Y       | NA     | <1     | NA    |
| DUP         | 30-Mar-01       | (4.5-5.0)           | 13 YZ  | < 0.99 | 6 Y          | NA     | < 0.99 | NA    |
| BASB077     | 30-Mar-01       | (9.5-10.0)          | 22 YZ  | < 0.93 | <5           | NA     | < 0.93 | NA    |
| BASB077     | 30-Mar-01       | (14.5-15.0)         | 1.9 YZ | < 0.92 | <5           | NA     | < 0.92 | NA    |
| BASB077     | 30-Mar-01       | (19.5-20.0)         | 11 YZ  | < 0.91 | <5           | NA     | < 0.91 | NA    |
| BASB077     | 30-Mar-01       | (24.5-25.0)         | 1.9 YZ | < 0.96 | <5           | NA     | < 0.96 | NA    |
| BASB078     | 05-Apr-01       | (3.5-4.0)           | 4.3 YH | < 1    | 30 Y         | NA     | <1     | NA    |
| BASB078     | 05-Apr-01       | (6.5-7.0)           | < 0.99 | < 0.93 | < 5          | NA     | < 0.93 | NA    |
| BASB078     | 05-Apr-01       | (9.5-10.0)          | < 1    | <1.1   | < 5          | NA     | <1.1   | NA    |
| BASB078     | 05-Apr-01       | (14.5-15.0)         | < 0.99 | < 0.94 | < 5          | NA     | < 0.94 | NA    |
| BASB078     | 05-Apr-01       | (24.5-25.0)         | < 0.99 | < 1    | <5           | NA     | <1     | NA    |
| BASB082     | 05-Apr-01       | (1.5-2.0)           | 1.1 YH | < 0.91 | 7.5 Y        | NA     | < 0.91 | NA    |
| BASB082     | 05-Apr-01       | (4.5-5.0)           | < 0.99 | < 1    | < 5          | NA     | <1     | NA    |
| BASB082     | 05-Apr-01       | (11.5-12.0)         | <1     | < 0.96 | 13 YH        | NA     | < 0.96 | NA    |
| BASB082     | 05-Apr-01       | (14.5-15.0)         | <1     | < 1    | <5           | NA     | <1     | NA    |
| BASB082     | 05-Apr-01       | (19.5-20.0)         | < 0.99 | <1.1   | 10 YH        | NA     | <1.1   | NA    |
| Area 2      |                 |                     |        |        | <del> </del> |        |        |       |
| BASB006     | 31-Mar-01       | (1.5-2.0)           | 4.4 YZ | < 0.96 | 9.1 Y        | NA     | < 0.96 | NA    |
| BASB006     | 31-Mar-01       | (5.5-6.0)           | <1     | <1.1   | < 5          | NA     | <1.1   | NA    |
| BASB006     | 31-Mar-01       | (9.5-10.0)          | < 0.99 | < 0.99 | < 5          | NA     | < 0.99 | NA    |
| BASB006     | 31-Mar-01       | (14.5-15.0)         | <1     | < 0.92 | < 5          | NA     | < 0.92 | NA    |
| BASB006     | 31-Mar-01       | (26.5-27.0)         | <1     | < 0.94 | <5           | NA     | < 0.94 | NA    |
| BASB007     | 31-Mar-01       | (1.5-2.0)           | 2.3 YZ | <1.1   | 5.6 Y        | NA     | <1.1   | NA    |
| BASB007     | 31-Mar-01       | (4.5-5.0)           | 1.3 YZ | < 1.1  | < 5          | NA     | <1.1   | NA    |
| BASB007     | 31-Mar-01       | (9.5-10.0)          | < 1    | < 1    | < 5          | NA     | <1     | NA    |
| BASB007     | 31-Mar-01       | (14.5-15.0)         | < 0.99 | < 0.97 | <5           | NA     | < 0.97 | NA    |
| BASB007     | 31-Mar-01       | (25.5-26.0)         | < 1    | < 1    | < 5          | NA     | <1     | NA    |
| BASB008     | 21-Mar-01       | (3.5-4.0)           | 12 YH  | < 0.97 | 22 Y         | < 0.97 | NA     | NA    |
| DUP         | 21-Mar-01       | (4.5-5.0)           | 21 YZ  | < 0.92 | < 25         | < 0.92 | NA     | NA    |
| BASB008     | 21-Mar-01       | (9.5-10.0)          | 23 YZ  | < 0.92 | < 25         | < 0.92 | NA     | NA    |
| BASB008     | 21-Mar-01       | (14.5-15.0)         | 14 YZ  | < 0.95 | <25          | < 0.95 | NA     | NA    |
| BASB008     | 21-Mar-01       | (24.5-25.0)         | 18 YZ  | < 0.92 | < 25         | < 0.92 | NA     | NA    |
|             |                 |                     |        |        |              |        |        |       |

rpt\_Soil\_TPH.rpt 09/07/2001

Table 6
Total Petroleum Hydrocarbons Detected in Soil
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | TPHd    | TPHg   | TPHmo  | TPHms  | TPHpt  | TPHss |
|-------------|-----------------|---------------------|---------|--------|--------|--------|--------|-------|
| Area 3      |                 |                     |         |        |        |        |        |       |
| BASB040     | 03-Apr-01       | (3.5-4.0)           | 3.7 YZ  | < 0.93 | 5.1 Y  | NA     | < 0.93 | NA    |
| DUP         | 03-Apr-01       | (4.5-5.0)           | 2.8 YZ  | < 0.94 | <5     | NA     | < 0.94 | NA    |
| BASB040     | 03-Apr-01       | (9.5-10.0)          | < 0.99  | <1.1   | < 5    | NA     | <1.1   | NA    |
| BASB040     | 03-Apr-01       | (14.5-15.0)         | <1      | < 1    | < 5    | NA     | <1     | NA    |
| BASB040     | 03-Apr-01       | (19.5-20.0)         | 1.2 YZ  | < 0.92 | < 5    | NA     | < 0.92 | NA    |
| BASB040     | 03-Apr-01       | (24.5-25.0)         | 1.1 YZ  | <1.1   | < 5    | NA     | <1.1   | NA    |
| BASB041     | 28-Mar-01       | (3.5-4.0)           | 9.5 YZ  | < 0.99 | 59 Y   | < 0.99 | NA     | NA    |
| DUP         | 28-Mar-01       | (4.5-5.0)           | 27 YZ   | < 1    | 6.5 Y  | <1     | NA     | NA    |
| BASB041     | 28-Mar-01       | (9.5-10.0)          | 3.1 YZ  | < 0.95 | 7.9 Y  | < 0.95 | NA     | NA    |
| BASB041     | 28-Mar-01       | (14.5-15.0)         | 37 YZ   | < 0.95 | 8.5 Y  | < 0.95 | NA     | NA    |
| BASB041     | 28-Mar-01       | (24.5-25.0)         | 23 YZ   | 3.6 YH | 29 Y   | 4.3 b  | NA     | NA    |
| Area 4-     |                 | · <u>, </u>         |         |        |        |        |        |       |
| BASB012     | 19-Mar-01       | (3.5-4.0)           | 6.6 YH  | NA     | 22     | NA     | NA     | NA    |
| DUP         | 19-Mar-01       | (4.0-4.5)           | NA      | <1.I   | NA     | <1.1   | NA     | NA    |
| BASB012     | 19-Mar-01       | (9.5-10.0)          | 5.5 YZ  | <1.1   | < 5    | <1.1   | NA     | NA    |
| BASB012     | 19-Mar-01       | (14.5-15.0)         | 26 YZ   | < 0.94 | <25    | < 0.94 | NA     | NA    |
| BASB012     | 19-Mar-01       | (24.0-24.5)         | <1      | < 1.1  | < 5    | <1.1   | NA     | NA    |
| BASB013     | 20-Mar-01       | (2.5-3.0)           | 27 YZ   | <1.1   | 5.6 Y  | <1.1   | NA     | NA    |
| BASB013     | 20-Mar-01       | (4.5-5.0)           | 7.9 YZ  | < 0.99 | <5     | < 0.99 | NA     | NA    |
| BASB013     | 20-Mar-01       | (9.5-10.0)          | < 0.99  | <1     | < 5    | <1     | NA     | NA    |
| BASB013     | 20-Mar-01       | (14.5-15.0)         | 13 YZ   | <1     | < 9.9  | <1     | NA     | NA    |
| BASB016     | 04-Apr-01       | (2.0-2.5)           | 12 YHZ  | < 1    | . 32 Y | NA     | <1     | NA    |
| BASB016     | 04-Apr-01       | (5.5-6.0)           | < 1     | < 0.98 | < 5    | NA     | < 0.98 | NA    |
| BASB016     | 04-Apr-01       | (9.5-10.0)          | < 1     | < 1    | < 5    | NA     | <1     | NA    |
| BASB016     | 04-Apr-01       | (14.5-15.0)         | < 0.99  | <1.1   | < 5    | NA     | <1.1   | NA    |
| BASB016     | 04-Apr-01       | (24.5-25.0)         | <1      | < 0.93 | <5     | NA     | < 0.93 | NA    |
| Area 5      | <u></u>         |                     |         |        |        |        |        |       |
| BASB022     | 04-Apr-01       | (1.5-2.0)           | 220 YLH | <1     | 1300   | NA     | <1     | NA    |
| BASB022     | 04-Apr-01       | (4.5-5.0)           | 970 YLH | <1.1   | 490    | NA     | <1.1   | NA    |
| BASB022     | 04-Apr-01       | ,                   | 600 YLH | <1     | 300    | NA     | <1     | NA    |
| BASB022     | •               | (14.5-15.0)         | 7 YL    | <1.1   | <5     | NA     | <1.1   | NA    |
| BASB022     | 04-Apr-01       | (20.5-21.0)         | 14 YLH  | 2.5 YH | 13     | NA     | 1.6 YH | NA    |

rpt\_Soil\_TPH.rpt 09/07/2001

Table 6
Total Petroleum Hydrocarbons Detected in Soil
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | TPHd   | TPHg   | TPHmo  | TPHms    | TPHpt                                  | TPHss |
|-------------|-----------------|---------------------|--------|--------|--------|----------|----------------------------------------|-------|
| Area 5      | ·               |                     |        |        |        | <u> </u> | ·- · · · · · · · · · · · · · · · · · · |       |
| BASB023     | 04-Apr-01       | (1.5-2.0)           | 11 YH  | < 0.92 | 63     | NA       | < 0.92                                 | NA    |
| BASB023     | 04-Apr-01       | (4.5-5.0)           | <1     | <1.1   | 5 Y    | NA       | <1.1                                   | NA    |
| BASB023     | 04-Apr-01       | (10.5-11.0)         | <1     | < 0.91 | < 5    | NA       | < 0.91                                 | NA    |
| BASB023     | 04-Apr-01       | (14.5-15.0)         | <1     | <1     | <5     | NA       | <1                                     | NA    |
| BASB023     | 04-Apr-01       | (20.5-21.0)         | 24 YH  | <1.1   | 150    | NA       | <1.1                                   | NA    |
| BASB024     | 04-Apr-01       | (1.5-2.0)           | 3.9 YH | <1.1   | 39     | NA       | <1.1                                   | NA    |
| BASB024     | 04-Apr-01       | (3.5-4.0)           | <1     | <1.1   | 5.2 Y  | NA       | <1.1                                   | NA    |
| BASB024     | 04-Apr-01       | (9.5-10.0)          | < 1    | < 0.93 | 9.1 Y  | NA       | < 0.93                                 | NA    |
| BASB024     | 04-Apr-01       | (14.5-15.0)         | < 1    | <1.1   | <5     | NA       | <1.1                                   | NA    |
| BASB024     | 04-Apr-01       | (21.5-22.0)         | 3.8 YH | <1     | 27 H   | NA       | <1                                     | NA    |
| BASB025     | 04-Apr-01       | (3.5-4.0)           | 1.4 YH | <1     | 10 Y   | NA       | <1                                     | NA    |
| DUP         | 04-Apr-01       | (4.5-5.0)           | < 0.99 | < 0.93 | < 5    | NA       | < 0.93                                 | NA    |
| BASB025     | 04-Apr-01       | (9.5-10.0)          | < 1    | < 1    | < 5    | NA       | <1                                     | NA    |
| BASB025     | 04-Apr-01       | (14.5-15.0)         | < 1    | < 0.92 | < 5    | NA       | < 0.92                                 | NA    |
| BASB025     | 04-Apr-01       | (24.5-25.0)         | < 1    | <1     | < 5    | NA       | <1                                     | NA    |
| BASB086     | 04-Apr-01       | (1.5-2.0)           | 2.5 YH | < 0.92 | 33 H   | NA       | < 0.92                                 | NA    |
| BASB086     | 04-Apr-01       | (3.5-4.0)           | < 1    | < 0.93 | 5.2 Y  | NA       | < 0.93                                 | NA    |
| BASB086     | 04-Apr-01       | (9.5-10.0)          | < 1    | < 0.97 | 8.2 H  | NA       | < 0.97                                 | NA    |
| BASB086     | 04-Apr-01       | (15.5-16.0)         | 1.1 YH | <1     | 14 H   | NA       | <1                                     | NA    |
| BASB086     | 04-Apr-01       | (19.5-20.0)         | < 0.99 | <1     | < 5    | NA       | <1                                     | NA    |
| BASB087     | 04-Apr-01       | (3.5-4.0)           | 9.3 YH | < 0.94 | 45     | NA       | < 0.94                                 | NA    |
| DUP         | 04-Apr-01       | (4.5-5.0)           | 1.4 YH | < 0.96 | 6.7 Y  | NA       | < 0.96                                 | NA    |
| BASB087     | 04-Apr-01       | (9.5-10.0)          | < 1    | <1.1   | <5     | NA       | <1.1                                   | NA    |
| BASB087     | 04-Apr-01       | (14.5-15.0)         | <1     | <1     | <5     | NA       | <1                                     | NA    |
| BASB087     | 04-Арг-01       | (24.5-25.0)         | <1     | <1     | <5     | NA       | < 1                                    | NA    |
| Area 6———   |                 |                     |        |        |        |          |                                        |       |
| BASB001     | 02-Арг-01       | (2.5-3.0)           | 16 YH  | <1     | 56 Y   | NA       | <1                                     | NA    |
| BASB001     | 02-Apr-01       | (4.5-5.0)           | 4.6 YH | <1.1   | 27 Y   | NA       | <1.1                                   | NA    |
| BASB001     | 02-Apr-01       | (9.5-10.0)          | < 0.99 | <1     | < 5    | NA       | <1                                     | NA    |
| BASB001     | 02-Apr-01       | (14.5-15.0)         | < 1    | < 0.93 | < 5    | NA       | < 0.93                                 | NA    |
| BASB001     | 02-Apr-01       | (22.5-23.0)         | 19 YH  | <1.1   | 140 Y  | NA       | <1.1                                   | NA    |
| BASB002     | 31-Mar-01       | (2.5-3.0)           | 150 YH | < 0.98 | 1000 Y | NA       | < 0.98                                 | NA    |
|             |                 |                     |        |        |        |          |                                        |       |

09/07/2001

Table 6
Total Petroleum Hydrocarbons Detected in Soil
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | TPHd   | TPHg   | TPHmo        | TPHms  | TPHpt  | TPHss |
|-------------|-----------------|---------------------|--------|--------|--------------|--------|--------|-------|
| Area 6      |                 |                     |        |        |              |        |        |       |
| BASB005     | 31-Mar-01       | (2.5-3.0)           | <1     | < 0.91 | 5.3 Y        | NA     | < 0.91 | NA    |
| BASB011     | 05-Apr-01       | (2.5-3.0)           | 4.3 YH | <1.1   | 39 Y         | NA     | <1.1   | NA    |
| BASB017     | 05-Apr-01       | (2.5-3.0)           | 3.7 YH | <1     | 11 Y         | NA     | <1     | NA    |
| BASB021     | 29-Mar-01       | (0.5-1.0)           | 2.8 YH | <1     | 20 Y         | <1     | NA     | NA    |
| BASB021     | 29-Mar-01       | (4.5-5.0)           | 20 YZ  | < 0.92 | 6.1 Y        | < 0.92 | NA     | NA    |
| BASB021     | 29-Mar-01       | (9.5-10.0)          | 4.9 YZ | <1.1   | <5           | <1.1   | NA     | NA    |
| BASB021     | 29-Mar-01       | (14.5-15.0)         | 48 YZ  | <1     | 6.5 Y        | < 1    | NA     | NA    |
| BASB021     | 29-Mar-01       | (24.5-25.0)         | 2.6 YZ | < 0.91 | <5           | < 0.91 | NA     | NA    |
| BASB051     | 02-Apr-01       | (2.5-3.0)           | <1     | <1     | 6.4 Y        | NA     | <1     | NA    |
| BASB051     | 02-Apr-01       | (9.5-10.0)          | < 0.99 | < 1.1  | < 5          | NA     | <1.1   | NA    |
| BASB051     | 02-Apr-01       | (14.5-15.0)         | < 0.99 | < 0.98 | < 5          | NA     | < 0.98 | NA    |
| BASB051     | 02-Apr-01       | (22.5-23.0)         | < 1    | < 0.95 | < 5          | NA     | < 0.95 | NA    |
| BASB081     | 05-Apr-01       | (2.5-3.0)           | <1     | < 0.95 | 10 Y         | NA     | < 0.95 | NA    |
| BASB081     | 05-Apr-01       | (4.5-5.0)           | < 1    | < 0.94 | 5.4 Y        | NA     | < 0.94 | NA    |
| BASB081     | 05-Apr-01       | (9.5-10.0)          | < 0.99 | <1.1   | <5           | NA     | <1.1   | NA    |
| BASB081     | 05-Apr-01       | (14.5-15.0)         | < 0.99 | <1     | <5           | NA     | <1     | NA    |
| BASB081     | 05-Apr-01       | (25.5-26.0)         | <1     | < 0.92 | <5           | NA     | < 0.92 | NA    |
| Area 7      |                 |                     |        |        | <del>.</del> |        |        |       |
| BASB018     | 05-Apr-01       | (2.5-3.0)           | <1     | < 0.98 | 6.1 Y        | NA     | < 0.98 | NA    |
| BASB018     | 05-Apr-01       | (5.5-6.0)           | 1.2 YH | <1.1   | 7.2 Y        | NA     | <1.1   | NA    |
| BASB018     | 05-Apr-01       | (11.5-12.0)         | 27 YH  | < 0.98 | 130          | NA     | < 0.98 | NA    |
| BASB018     | 05-Apr-01       | (14.5-15.0)         | < 0.99 | <1.1   | <5           | NA     | <1.1   | NA    |
| BASB018     | 05-Apr-01       | (19.5-20.0)         | < 0.99 | <1.1   | < 5          | NA     | <1.1   | NA    |
| BASB019     | 05-Apr-01       | (2.0-2.5)           | 92 YH  | < 1.1  | 330          | NA     | <1.1   | NA    |
| BASB019     | 05-Apr-01       | (4.5-5.0)           | 1.2 YH | < 0.94 | < 5          | NA     | < 0.94 | NA    |
| BASB019     | 05-Apr-01       | (9.5-10.0)          | < 1    | < 0.99 | < 5          | NA     | < 0.99 | NA    |
| BASB019     | 05-Apr-01       | (14.5-15.0)         | < 0.99 | < 0.98 | < 5          | NA     | < 0.98 | NA    |
| BASB019     | 05-Apr-01       | (24.5-25.0)         | < 1    | <1.1   | < 5          | NA     | <1.1   | NA    |
| BASB052     | 02-Apr-01       | (1.5-2.0)           | 1.9 YH | < 0.91 | 16 Y         | NA     | < 0.91 | NA    |
| BASB052     | 02-Apr-01       | (3.5-4.0)           | 39 YH  | < 0.97 | 290 Y        | NA     | < 0.97 | NA    |
| BASB052     | 02-Apr-01       | (9.5-10.0)          | <1     | < 0.98 | <5           | NA     | < 0.98 | NA    |
| BASB052     | 02-Apr-01       | (14.5-15.0)         | < 0.99 | < 0.93 | <5           | NA     | < 0.93 | NA    |

rpt\_Soil\_TPH.rpt

Table 6
Total Petroleum Hydrocarbons Detected in Soil
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | TPHd         | TPHg   | TPHmo  | TPHms  | TPHpt  | TPHss |
|-------------|-----------------|---------------------|--------------|--------|--------|--------|--------|-------|
| Area 7      |                 |                     |              |        |        |        |        |       |
| BASB052     | 02-Apr-01       | (22.5-23.0)         | 2.4 YH       | < 0.92 | 30 Y   | NA     | < 0.92 | NA    |
| BASB052     | 02-Apr-01       | (24.5-25.0)         | 71 <b>HY</b> | <1     | 480    | NA     | <1     | NA    |
| BASB053     | 03-Apr-01       | (1.5-2.0)           | 29 YH        | <1.1   | 460 YH | NA     | <1.1   | NA    |
| BASB053     | 03-Apr-01       | (4.5-5.0)           | 1.7 YH       | < 1    | 25     | NA     | <1     | NA    |
| BASB053     | 03-Apr-01       | (10.5-11.0)         | < 0.99       | < 0.97 | <5     | NA     | < 0.97 | NA    |
| BASB053     | 03-Apr-01       | (14.5-15.0)         | <1           | <1     | <5     | NA     | <1     | NA    |
| BASB053     | 03-Apr-01       | (19.5-20.0)         | < 0.99       | < 0.91 | < 5    | NA     | < 0.91 | NA    |
| BASB054     | 03-Apr-01       | (1.5-2.0)           | 39 YH        | < 0.96 | 290    | NA     | < 0.96 | NA    |
| BASB054     | 03-Apr-01       | (4.5-5.0)           | < 0.99       | < 0.97 | 7.5 Y  | NA     | < 0.97 | NA    |
| BASB054     | 03-Apr-01       | (9.5-10.0)          | < 0.99       | < 0.97 | <5     | NA     | < 0.97 | NA    |
| BASB054     | 03-Apr-01       | (14.5-15.0)         | <1           | <1.1   | < 5    | NA     | <1.1   | NA    |
| BASB054     | 03-Apr-01       | (21.5-22.0)         | 24 YH        | < 0.93 | 170    | NA     | < 0.93 | NA    |
| BASB055     | 29-Mar-01       | (8.0-8.5)           | 36 YZ        | < 0.95 | 13 Y   | < 0.95 | NA     | NA    |
| BASB055     | 29-Mar-01       | (9.5-10.0)          | 3.4 YHZ      | < 0.94 | 20 YH  | < 0.94 | NA     | NA    |
| BASB055     | 29-Mar-01       | (14.5-15.0)         | 32 YZ        | < 0.93 | < 5    | < 0.93 | NA     | NA    |
| BASB055     | 29-Mar-01       | (20.0-20.5)         | 37 YZ        | <1     | 6.7 Y  | < l    | NA     | NA    |
| BASB055     | 29-Mar-01       | (24.5-25.0)         | 3 YZ         | <1     | < 5    | <1     | NA     | NA    |
| BASB056     | 30-Mar-01       | (3.5-4.0)           | 38 YH        | < 0.97 | 120 Y  | NA     | < 0.97 | NA    |
| BASB056     | 30-Mar-01       | (5.5-6.0)           | 6.7 YZH      | <1.1   | 15 Y   | NA     | <1.1   | NA    |
| BASB056     | 30-Mar-01       | (9.5-10.0)          | <1           | <1     | < 5    | NA     | <1     | NA    |
| BASB056     | 30-Mar-01       | (14.5-15.0)         | < 1          | <1     | < 5    | NA     | <1     | NA    |
| BASB056     | 30-Mar-01       | (19.5-20.0)         | < 1          | < 0.96 | < 5    | NA     | < 0.96 | NA    |
| BASB056     | 30-Mar-01       | (24.5-25.0)         | <1           | < 0.99 | < 5    | NA     | < 0.99 | NA    |
| BASB057     | 28-Mar-01       | (3.5-4.0)           | 13 YZ        | < 0.93 | 74 Y   | < 0.93 | NA     | NA    |
| BASB057     | 28-Mar-01       | (5.5-6.0)           | 17 YZ        | <1.1   | < 5    | <1.1   | NA     | NA    |
| BASB057     | 28-Mar-01       | (9.5-10.0)          | 14 YZ        | < 0.93 | < 5    | < 0.93 | NA     | NA    |
| BASB057     | 28-Mar-01       | (14.5-15.0)         | 44 YZ        | < 0.96 | < 5    | < 0.96 | NA     | NA    |
| BASB057     | 28-Mar-01       | (24.5-25.0)         | 1.5 YZ       | < 0.95 | < 5    | < 0.95 | NA     | NA    |
| BASB058     | 21-Mar-01       | (3.5-4.0)           | 45 YH        | < 0.97 | 310 Y  | < 0.97 | NA     | NA    |
| DUP         | 21-Mar-01       | (5.0-5.5)           | 23 YZ        | < 1    | < 25   | <1     | NA     | NA    |
| BASB058     | 21-Mar-01       | (9.5-10.0)          | 12 YZ        | < 0.91 | < 25   | < 0.91 | NA     | NA    |
| BASB058     | 21-Mar-01       | (14.5-15.0)         | 12 YZ        | < 0.93 | < 25   | < 0.93 | NA     | NA    |
|             |                 |                     |              |        |        |        |        |       |

rpt\_Soil\_TPH.rpt 09/07/2001

Table 6
Total Petroleum Hydrocarbons Detected in Soil
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled    | Depth<br>(feet bgs) | TPHd   | TPHg   | TPHmo | TPHms  | TPHpt  | TPHss |
|-------------|--------------------|---------------------|--------|--------|-------|--------|--------|-------|
| Area 7      |                    |                     |        |        |       |        |        |       |
| BASB058     | 21-Mar-01          | (24.5-25.0)         | 25 YZ  | < 0.99 | < 25  | < 0.99 | NA     | NA    |
| BASB080     | 03-Apr-01          | (1.5-2.0)           | 1.4 YH | < 0.96 | 9.8 Y | NA     | < 0.96 | NA    |
| BASB080     | 03-Apr-01          | (4.5-5.0)           | 2.5 YH | < 0.91 | 17    | NA     | < 0.91 | NA    |
| BASB080     | 03-Apr-01          | (9.5-10.0)          | < 1    | < 1    | <5    | NA     | <1     | NA    |
| BASB080     | 03-Apr-01          | (14.5-15.0)         | < 0.99 | < 1    | < 5   | NA     | <1     | NA    |
| BASB080     | 03-Apr-01          | (23.5-24.0)         | <1     | < 0.99 | < 5   | NA     | < 0.99 | NA    |
| Area 8      |                    | ·-                  |        |        |       |        |        |       |
| BASB050     | 20-Mar-01          | (2.0-2.5)           | 6.2 YZ | < 0.93 | < 5   | < 0.93 | NA     | NA    |
| BASB050     | 20-Mar-01          | (4.5-5.0)           | 28 YZ  | < 1.1  | < 25  | <1.1   | NA     | NA    |
| BASB050     | 20-Mar-01          | (9.5-10.0)          | 1.2 YZ | < 0.91 | < 5   | < 0.91 | NA     | NA    |
| BASB050     | 20-Mar-01          | (14.5-15.0)         | 14 YZ  | <1.1   | < 9.9 | <1.1   | NA     | NA    |
| BASB050     | 20-Mar-01          | (24.5-25.0)         | 28 YZ  | < 0.95 | < 25  | < 0.95 | NA     | NA    |
| BASB060     | 05-Apr-01          | (0.0-0.5)           | 3.2 YH | < 1.1  | 21 Y  | NA     | <1.1   | NA    |
| BASB061     | 05-Apr-01          | (0.0-0.5)           | 14 YH  | < 0.98 | 120   | NA     | < 0.98 | NA    |
| BASB062     | 05-Apr-01          | (0.0-0.5)           | 5.4 YH | < 1    | 67    | NA     | <1     | NA    |
| BASB063     | 05-Apr-01          | (0.0-0.5)           | 6.3 YH | <1     | 54    | NA     | <1     | NA    |
| BASB065     | 22-Mar-01          | (0.0-0.5)           | 8.2 YH | < 0.93 | 24 Y  | < 0.93 | NA     | NA    |
| Area 9      |                    |                     |        |        |       |        |        |       |
| BASB088     | 09-Jul-01          | (3.0-3.5)           | 1.7 Y  | < 0.96 | < 5   | NA     | NA     | NA    |
| DUP         | 09-Jul-01          | (3.0-3.5)           | < 1    | <1.1   | < 5   | NA     | NA     | NA    |
| BASB088     | 09-Jul-01          | (4.5-5.0)           | 1.9 Y  | < 0.93 | < 5   | NA     | NA     | NA    |
| BASB088     | 09-Jul-01          | (9.5-10.0)          | < 1    | < 1.1  | < 5   | NA     | NA     | NA    |
| BASB088     | 09-Jul-01          | (14.5-15.0)         | 3.2 YH | < 1.1  | 18    | NA     | NA     | NA    |
| BASB088     | 09-Jul-01          | (25.0-25.5)         | < 1    | <1     | < 5   | NA     | NA     | NA    |
| BASB089     | 09-Jul-01          | (3.0-3.5)           | 1.7 Y  | < 1    | 5 Y   | NA     | NA     | NA    |
| BASB089     | 09-Jul-01          | (4.5-5.0)           | < 1    | < 0.95 | < 5   | NA     | NA     | NA    |
| BASB089     | 09-Jul-01          | (9.5-10.0)          | 1.8 Y  | < 0.99 | < 5   | NA     | NA     | NA    |
| BASB089     | 09-Jul <b>-</b> 01 | (14.5-15.0)         | 2.6 Y  | < 0.94 | < 5   | NA     | NA     | NA    |
| BASB089     | 09-Jul-01          | (27.0-27.5)         | 3.3 Y  | <1     | < 5   | NA     | NA     | NA    |
| BASB090     | 09-Jul-01          | (2.0-2.5)           | 46 YH  | <1     | 360   | NA     | NA     | NA    |
| DUP         | 09-Jul-01          | (2.0-2.5)           | 38 YH  | <1     | 310   | NA     | NA     | NA    |
| BASB090     | 09-Jul-01          | (4.5-5.0)           | 3.4 YH | < 0.95 | 17    | NA     | NA     | NA    |

rpt\_Soil\_TPH.rpt

# Table 6 Total Petroleum Hydrocarbons Detected in Soil Batarse Site, Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | TPHd   | TPHg | TPHmo | TPHms | TPHpt | TPHss |
|-------------|-----------------|---------------------|--------|------|-------|-------|-------|-------|
| Area 9      |                 |                     |        |      |       |       |       |       |
| BASB090     | 09-Jul-01       | (9.5-10.0)          | 1.2 Y  | <1.1 | < 5   | NA    | NA    | NA    |
| BASB090     | 09-Jul-01       | (14.5-15.0)         | 2.6 Y  | <1   | < 5   | NA    | NA    | NA    |
| BASB090     | 09-Jul-01       | (25.0-25.5)         | 2.8 YH | <1   | 29    | NA    | NA    | NA    |

Data prepared by: TIH. Data QA/QC by: LDF.

Notes:

bgs = below ground surface

b = Continuing calibration verification percent difference was slightly above acceptance limits in batch.

DUP = Duplicate sample

H = Heavier hydrocarbons contributed to the quantitation.

J = Reported value is estimated.

L = Lighter hydrocarbons contributed to the quantitation.

NA = Not analyzed

Y = Sample exhibits fuel pattern which does not resemble standard.

Z = Sample exhibits unknown single peak or peaks.

TPHd = total petroleum hydrocarbons as diesel

TPHg = total petroleum hydrocarbons as gasoline

TPHmo = total petroleum hydrocarbons as motor oil

TPHms = total petroleum hydrocarbons as mineral spirits

TPHpt = total petroleum hydrocarbons as paint thinner

TPHss = total petroleum hydrocarbons as stoddard solvent

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for all compounds using EPA test method 8015 modified.

Table 7 Volatile Organic Compounds Detected in Soil Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | Acetone | Methylene<br>chloride |
|-------------|-----------------|---------------------|---------|-----------------------|
| Area 1      |                 |                     |         |                       |
| BASB036     | 22-Mar-01       | (3.5-4.0)           | < 0.019 | < 0.019               |
| DUP         | 22-Mar-01       | (5.0-5.5)           | < 0.019 | < 0.019               |
| BASB036     | 22-Mar-01       | (9.5-10.0)          | < 0.02  | < 0.02                |
| BASB036     | 22-Mar-01       | (14.5-15.0)         | < 0.02  | < 0.02                |
| BASB036     | 22-Mar-01       | (24.5-25.0)         | < 0.019 | < 0.019               |
| BASB037     | 22-Mar-01       | (4.5-5.0)           | 0.025   | < 0.02                |
| BASB037     | 22-Mar-01       | (9.5-10.0)          | < 0.02  | < 0.02                |
| BASB037     | 22-Mar-01       | (14.5-15.0)         | < 0.019 | < 0.019               |
| BASB037     | 22-Mar-01       | (24.5-25.0)         | < 0.019 | < 0.019               |
| BASB029     | 23-Mar-01       | (3.5-4.0)           | < 0.019 | < 0.019               |
| DUP         | 23-Mar-01       | (4.5-5.0)           | < 0.019 | < 0.019               |
| BASB029     | 23-Mar-01       | (9.5-10.0)          | < 0.02  | < 0.02                |
| BASB029     | 23-Mar-01       | (14.5-15.0)         | < 0.02  | < 0.02                |
| BASB029     | 23-Mar-01       | (19.5-20.0)         | < 0.019 | < 0.019               |
| BASB029     | 23-Маг-01       | (24.5-25.0)         | < 0.02  | < 0.02                |
| BASB030     | 23-Mar-01       | (4.5-5.0)           | < 0.02  | < 0.02                |
| BASB030     | 23-Mar-01       | (9.5-10.0)          | < 0.02  | < 0.02                |
| BASB030     | 23-Mar-01       | (14.5-15.0)         | < 0.021 | < 0.021               |
| BASB030     | 23-Mar-01       | (19.5-20.0)         | < 0.019 | < 0.019               |
| BASB030     | 23-Mar-01       | (24.5-25.0)         | < 0.02  | < 0.02                |
| BASB070     | 03-Apr-01       | (22.5-23.0)         | < 0.021 | < 0.021               |
| BASB070     | 03-Apr-01       | (24.5-25.0)         | < 0.02  | < 0.02                |
| BASB071     | 03-Apr-01       | (19.5-20.0)         | < 0.019 | < 0.019               |
| BASB071     | 03-Apr-01       | (22.5-23.0)         | < 0.019 | < 0.019               |
| BASB071     | 03-Apr-01       | (24.5-25.0)         | < 0.02  | < 0.02                |
| BASB082     | 05-Арт-01       | (1.5-2.0)           | < 0.02  | < 0.02                |
| BASB082     | 05-Apr-01       | (4.5-5.0)           | < 0.021 | < 0.021               |
| BASB082     | 05-Apr-01       | (11.5-12.0)         | < 0.019 | 0.034                 |
| BASB082     | 05-Apr-01       | (14.5-15.0)         | < 0.02  | < 0.02                |
| BASB082     | 05-Apr-01       | (19.5-20.0)         | < 0.019 | 0.034                 |
| Area 2      |                 |                     |         |                       |
| BASB008     | 21-Mar-01       | (3.5-4.0)           | < 0.02  | < 0.02                |
| DUP         | 21-Mar-01       | (4.5-5.0)           | < 0.019 | < 0.019               |
| BASB008     | 21-Mar-01       | (9.5-10.0)          | < 0.019 | < 0.019               |
| BASB008     | 21-Mar-01       | (14.5-15.0)         | < 0.019 | < 0.019               |
| BASB008     | 21-Mar-01       | (24.5-25.0)         | < 0.019 | < 0.019               |

Table 7
Volatile Organic Compounds Detected in Soil
Batarse Site, Oakland, California

| Location ID       | Data            | Donth               | Acotono | Mothylana             |
|-------------------|-----------------|---------------------|---------|-----------------------|
| Location ID       | Date<br>Sampled | Depth<br>(feet bgs) | Acetone | Methylene<br>chloride |
| Area 2            |                 |                     |         |                       |
|                   | 21 May 01       | (1.5.2.0)           | <0.00   | <0.03                 |
| BASB006           | 31-Mar-01       | (1.5-2.0)           | < 0.02  | < 0.02                |
| BASB006           | 31-Mar-01       | (5.5-6.0)           | < 0.02  | < 0.02                |
| BASB006           | 31-Mar-01       | (9.5-10.0)          | < 0.02  | < 0.02                |
| BASB006           | 31-Mar-01       | (14.5-15.0)         | < 0.019 | < 0.019               |
| BASB006           | 31-Mar-01       | (26.5-27.0)         | < 0.02  | < 0.02                |
| BASB007           | 31-Mar-01       | (1.5-2.0)           | < 0.02  | < 0.02                |
| BASB007           | 31-Mar-01       | (4.5-5.0)           | < 0.019 | < 0.019               |
| BASB007           | 31-Mar-01       | (9.5-10.0)          | < 0.019 | < 0.019               |
| BASB007           | 31-Mar-01       | (14.5-15.0)         | < 0.019 | < 0.019               |
| BASB007           | 31-Mar-01       | (25.5-26.0)         | < 0.02  | < 0.02                |
| Area 4 ····       |                 |                     |         |                       |
| DUP               | 19-Mar-01       | (4.0-4.5)           | < 0.02  | < 0.02                |
| BASB012           | 19-Mar-01       | (9.5-10.0)          | < 0.02  | < 0.02                |
| BASB012           | 19-Mar-01       | (14.5-15.0)         | < 0.02  | < 0.02                |
| BASB012           | 19-Mar-01       | (24.0-24.5)         | < 0.02  | < 0.02                |
| BASB013           | 20-Mar-01       | (2.5-3.0)           | < 0.021 | < 0.021               |
| BASB013           | 20-Маг-01       | (4.5-5.0)           | < 0.019 | < 0.019               |
| BASB013           | 20-Mar-01       | (9.5-10.0)          | < 0.02  | < 0.02                |
| BASB013           | 20-Mar-01       | (14.5-15.0)         | < 0.019 | < 0.019               |
| BASB016           | 04-Apr-01       | (2.0-2.5)           | < 0.02  | < 0.02                |
| BASB016           | 04-Apr-01       | (5.5-6.0)           | < 0.019 | < 0.019               |
| BASB016           | 04-Арг-01       | (9.5-10.0)          | < 0.019 | < 0.019               |
| BASB016           | 04-Apr-01       | (14.5-15.0)         | < 0.022 | < 0.022               |
| BASB016           | 04-Apr-01       | (24.5-25.0)         | < 0.019 | < 0.019               |
| Area 5            |                 |                     |         |                       |
| BASB022           | 04-Apr-01       | (1.5-2.0)           | < 0.019 | < 0.019               |
| BASB022           | 04-Apr-01       | (4.5-5.0)           | < 0.019 | < 0.019               |
| BASB022           | 04-Apr-01       | (9.5-10.0)          | < 0.02  | < 0.02                |
| BASB022           |                 | (14.5-15.0)         |         |                       |
| BASB022           |                 | (20.5-21.0)         |         | < 0.019               |
| Area 6            | •               | •                   |         |                       |
| BASB081           |                 | (2.5-3.0)           | < 0.02  | < 0.02                |
| BASB081           | _               | (4.5-5.0)           |         |                       |
| BASB081           | •               | (9.5-10.0)          |         |                       |
| BASB081           | _               | (14.5-15.0)         |         |                       |
| BASB081           | 05-Apr-01       |                     |         |                       |
| rpt_Soil_VOCs.rpt | F               | Page 2 of 3         |         | 09/07/2001            |

Table 7 Volatile Organic Compounds Detected in Soil Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | Acetone | Methylene<br>chloride |
|-------------|-----------------|---------------------|---------|-----------------------|
| Area 7      |                 |                     |         |                       |
| BASB058     | 21-Mar-01       | (3.5-4.0)           | < 0.019 | < 0.019               |
| DUP         | 21-Mar-01       | (5.0-5.5)           | < 0.02  | < 0.02                |
| BASB058     | 21-Mar-01       | (9.5-10.0)          | < 0.019 | < 0.019               |
| BASB058     | 21-Mar-01       | (14.5-15.0)         | < 0.02  | < 0.02                |
| BASB058     | 21-Mar-01       | (24.5-25.0)         | < 0.02  | < 0.02                |
| Area 8      |                 |                     | F       |                       |
| BASB050     | 20-Mar-01       | (2.0-2.5)           | < 0.02  | < 0.02                |
| BASB050     | 20-Mar-01       | (4.5-5.0)           | < 0.02  | < 0.02                |
| BASB050     | 20-Mar-01       | (9.5-10.0)          | < 0.019 | < 0.019               |
| BASB050     | 20-Mar-01       | (14.5-15.0)         | < 0.02  | < 0.02                |
| BASB050     | 20-Mar-01       | (24.5-25.0)         | < 0.019 | < 0.019               |
| Area 9      |                 |                     |         |                       |
| BASB088     | 09-Jul-01       | (3.0-3.5)           | < 0.02  | 0.025                 |
| DUP         | 09-Jul-01       | (3.0-3.5)           | < 0.019 | 0.028                 |
| BASB088     | 09-Jul-01       | (4.5-5.0)           | < 0.02  | < 0.02                |
| BASB088     | 09-Jul-01       | (9.5-10.0)          | < 0.02  | < 0.02                |
| BASB088     | 09-Jul-01       | (14.5-15.0)         | < 0.019 | < 0.019               |
| BASB088     | 09-Jul-01       | (25.0-25.5)         | < 0.02  | < 0.02                |
| BASB089     | 09-Jul-01       | (3.0-3.5)           | < 0.019 | 0.02                  |
| BASB089     | 09-Jul-01       | (4.5-5.0)           | < 0.019 | < 0.019               |
| BASB089     | 09-Jul-01       | (9.5-10.0)          | < 0.02  | < 0.02                |
| BASB089     | 09-Jul-01       | (14.5-15.0)         | < 0.021 | < 0.021               |
| BASB089     | 09-Jul-01       | (27.0-27.5)         | < 0.019 | 0.02                  |
| BASB090     | 09-Jul-01       | (2.0-2.5)           | < 0.02  | < 0.02                |
| DUP         | 09-Jul-01       | (2.0-2.5)           | < 0.02  | 0.025                 |
| BASB090     | 09-Jul-01       | (4.5-5.0)           | < 0.02  | < 0.02                |
| BASB090     | 09-Jul-01       | (9.5-10.0)          | < 0.019 | < 0.019               |
| BASB090     | 09-Jul-01       | (14.5-15.0)         | < 0.019 | < 0.019               |
| BASB090     | 09-Jul-01       | (25.0-25.5)         | < 0.021 | 0.06                  |

Data prepared by: <u>TIH</u>. Data QA/QC by: <u>LDF</u>.

Notes:

bgs = Below ground surface

DUP = Duplicate sample

VOCs = Volatile organic compounds

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for VOCs using EPA test method 8260B.

Semivolatile Organic Compounds Detected in Soil Batarse Site, Oakland, California Concentrations in milligrams per kilogram (mg/kg)

| Location ID | Date<br>Sampled | Depth<br>(feet bgs)     | B(a)A    | B(a)P     | B(b)F    | B(g,h,i)P | CHR      | D(a,h)A  | DEHP    | DEHP 1(1,2,3-cd)P Phenol | Phenol    | PYR      |
|-------------|-----------------|-------------------------|----------|-----------|----------|-----------|----------|----------|---------|--------------------------|-----------|----------|
| Area 1      |                 |                         |          |           |          |           |          |          | !       |                          |           | :        |
| BASB082     | 05-Apr-01       | 05-Apr-01 (1.50-2.00)   | <0.33    | < 0.33    | <0.33    | < 0.33    | < 0.33   | <0.33    | <0.33   | <0.33                    | <0.33     | <0.33    |
| BASB082     | 05-Apr-01       | 05-Apr-01 (4.50-5.00)   | < 0.05   | < 0.05    | < 0.05   | <0.05     | < 0.05   | < 0.05   | < 0.34  | <0.05                    | < 0.34    | < 0.05   |
| BASB082     | 05-Apr-01       | 05-Apr-01 (11.50-12.00) | < 0.051  | < 0.051   | < 0.051  | < 0.051   | < 0.051  | < 0.051  | < 0.34  | < 0.051                  | < 0.34    | < 0.051  |
| BASB082     | 05-Apr-01       | 05-Apr-01 (14.50-15.00) | <0.33    | <0.33     | <0.33    | < 0.33    | < 0.33   | <0.33    | <0.33   | <0.33                    | < 0.33    | < 0.33   |
| BASB082     | 05-Apr-01       | 05-Apr-01 (19.50-20.00) | < 0.051  | < 0.051   | < 0.051  | < 0.051   | < 0.051  | < 0.051  | < 0.34  | <0.051                   | <0.34     | < 0.051  |
| Area 6      |                 |                         |          |           |          |           |          |          |         | :                        |           |          |
| BASB002     | 31-Mar-01       | 31-Mar-01 (2.50-3.00)   | <0.33    | <0.33     | <0.33    | < 0.33    | <0.33    | <0.33    | 0.87    | <0.33                    | 0.82      | <0.33    |
| BASB(X)5    | 31-Mar-01       | (2.50-3.00)             | <0.33    | <0.33     | < 0.33   | < 0.33    | <0.33    | <0.33    | < 0.33  | <0.33                    | < 0.33    | <0.33    |
| BASB011     | 05-Apr-01       | (2.50-3.00)             | <0.05    | < 0.05    | < 0.05   | < 0.05    | < 0.05   | <0.05    | <0.33   | <0.05                    | < 0.33    | <0.05    |
| BASB017     | 05-Apr-01       | (2.50-3.00)             | < 0.49   | < 0.49    | < 0.49   | <0.49     | < 0.49   | <0.49    | <3.3    | <0.49                    | <3.3      | < 0.49   |
| BASB051     | 02-Apr-01       | (9.50-10.00)            | <0.049 J | < 0.049 J | <0.049 J | <0.049 J  | <0.049 J | <0.049 J | <0.33 J | <0.049 J                 | <0.33 J < | <0.049 J |
| RE          | 02-Apr-01       | 02-Apr-01 (9.50-10.00)  | <0.05 J  | <0.05 J   | <0.05 J  | <0.05 J   | <0.05 J  | <0.05 J  | <0.33 J | <0.05 J                  | <0.33 J   | < 0.05 J |
| BASB051     | 02-Apr-01       | 02-Apr-01 (22.50-23.00) | <0.05 J  | <0.05 J   | <0.05 J  | <0.05 J   | <0.05 J  | <0.05 J  | <0.33 J | <0.05 J                  | <0.33 J   | < 0.05 J |
| RE          | 02-Apr-01       | 02-Apr-01 (22.50-23.00) | <0.05 J  | <0.05 J   | <0.05 J  | < 0.05 J  | < 0.05 J | <0.05 J  | <0.34 J | <0.05 J                  | <0.34 J   | < 0.05 J |
| BASB081     | 05-Apr-01       | 05-Apr-01 (25.50-26.00) | <0.05 J  | <0.05 J   | <0.05 J  | < 0.05 J  | < 0.05 J | <0.05 J  | <0.33 J | <0.05 J                  | <0.33 J   | < 0.05 J |
| RE          | 05-Apr-01       | 05-Apr-01 (25.50-26.00) | <0.05 J  | <0.05 J   | <0.05 J  | <0.05 J   | <0.05 J  | <0.05 J  | <0.33 J | <0.05 J                  | <0.33 J   | < 0.05 J |
| Area 7      |                 |                         |          |           |          |           |          |          |         |                          |           |          |
| BASB019     | 05-Apr-01       | 05-Apr-01 (4,50-5.00)   | < 0.051  | <0.051    | < 0.051  | < 0.051   | < 0.051  | < 0.051  | <0.34   | < 0.051                  | < 0.34    | <0.051   |
| BASB052     | 02-Apr-01       | (3.50-4.00)             | < 0.05 J | < 0.05 J  | <0.05 J  | <0.05 J   | <0.05 J  | < 0.05 J | <0.33 J | <0.05 J                  | <0.33 J   | <0.05 J  |
| RE          | 02-Apr-01       | (3.50-4.00)             | < 0.05 J | <0.05 J   | <0.05 J  | <0.05 J   | <0.05 J  | < 0.05 J | <0.33 J | < 0.05 J                 | <0.33 J   | <0.05 J  |
| BASB052     | 02-Apr-01       | 02-Apr-01 (24.50-25.00) | <0.05 J  | < 0.05 J  | <0.05 J  | <0.05 J   | < 0.05 J | < 0.05 J | <0.33 J | <0.05 J                  | <0.33 J   | <0.05 J  |

# Table 8 Semivolatile Organic Compounds Detected in Soil Batarse Site, Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

| PYR             |          |   |
|-----------------|----------|---|
| louac           |          |   |
|                 |          |   |
| ,3-cd           |          |   |
| 1(1,2,3         |          |   |
| DEHP            |          |   |
| -               |          |   |
| D(a,h)          |          |   |
|                 |          |   |
| CHR             |          |   |
| q(i,            |          |   |
| B(g)            |          |   |
| B(b)F           |          |   |
| <u> </u>        |          |   |
| B(a)P           |          |   |
| <u> </u>        | _        |   |
| B(a)A           |          |   |
|                 | (S)      |   |
| Septh           | et bgs)  |   |
|                 | <b>≗</b> | ļ |
| ate             | pled     |   |
|                 | San      |   |
| 9               |          |   |
| ation           |          |   |
| <u>آ</u>        |          |   |
| ocation ID Date | Sampled  |   |

Area 7

RE

<0.33 J <0.05 J < 0.05 J 02-Apr-01 (24.50-25.00) < 0.05 J < 0.33 J

Data prepared by: TIH. Data QA/QC by: LDF.

Notes:

DUP = Duplicate sample

J = Reported value is estimated.

bgs = Below ground surface

RE = Samples were re-extracted and reanalyzed because QC did not meet laboratory criteria.

SVOCs = Semivolatile organic compounds

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for SVOCs using EPA method 8270C.

B(a)A = Benzo(a)anthracene

B(a)P = Benzo(a)pyrene

B(b)F = Benzo(b)fluoranthene

B(g,h,i)P = Benzo(g,h,i)perylene

CHR = Chrysene

D(a,h)A = Dibenzo(a,h)anthracene

DEHP = Bis(2-Ethylhexyl) phthalate

I(1,2,3-cd)P = Indeno(1,2,3-c,d)pyrene

PYR = Pyrene

### Table 9 Polynuclear Aromatic Hydrocarbons Detected in Soil Batarse Site, Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | B(a)A    | B(a)P    | B(b)F    | B(g,h,i)P | CHR             | D(a,h)A  | I(1,2,3-cd)P   | PYR      |
|-------------|-----------------|---------------------|----------|----------|----------|-----------|-----------------|----------|----------------|----------|
| Area 1      |                 |                     |          |          |          |           |                 |          |                |          |
| BASB082     | 05-Apr-01       | (1.5-2.0)           | < 0.0033 | 0.0081   | < 0.0068 | < 0.0068  | 0.0047          | 0.011    | < 0.0033       | 0.0091   |
| BASB082     | 05-Арг-01       | (4.5-5.0)           | < 0.0033 | < 0.0033 | < 0.0067 | < 0.0067  | < 0.0033        | < 0.0067 | < 0.0033       | < 0.0067 |
| BASB082     | 05-Apr-01       | (11.5-12.0)         | < 0.0033 | < 0.0033 | < 0.0068 | < 0.0068  | < 0.0033        | < 0.0068 | < 0.0033       | < 0.0068 |
| BASB082     | 05-Apr-01       | (14.5-15.0)         | < 0.0033 | < 0.0033 | < 0.0068 | < 0.0068  | < 0.0033        | < 0.0068 | < 0.0033       | < 0.0068 |
| BASB082     | 05-Apr-01       | (19.5-20.0)         | < 0.0034 | < 0.0034 | < 0.0069 | < 0.0069  | < 0.0034        | < 0.0069 | < 0.0034       | < 0.0069 |
| Area 6      |                 |                     |          |          |          |           |                 |          | <del></del> _, |          |
| BASB002     | 31-Mar-01       | (2.5-3.0)           | < 0.013  | < 0.013  | < 0.027  | < 0.027   | 0.062           | < 0.027  | < 0.013        | < 0.027  |
| BASB005     | 31-Mar-01       | (2.5-3.0)           | < 0.0033 | < 0.0033 | < 0.0067 | < 0.0067  | < 0.0033        | < 0.0067 | < 0.0033       | < 0.0067 |
| BASB011     | 05-Apr-01       | (2.5-3.0)           | 0.0036 Ј | 0.0079 J | 0.0067 J | 0.0071 J  | 0.0064 <b>J</b> | 0.016 J  | 0.0059 J       | 0.0097   |
| BASB017     | 05-Apr-01       | (2.5-3.0)           | < 0.0033 | < 0.0033 | < 0.0068 | < 0.0068  | < 0.0033        | < 0.0068 | < 0.0033       | < 0.0068 |
| Area 7      |                 |                     |          |          |          |           |                 |          |                |          |
| BA\$B019    | 05-Apr-01       | (4.5-5.0)           | < 0.0034 | < 0.0034 | < 0.0068 | < 0.0068  | < 0.0034        | < 0.0068 | < 0.0034       | < 0.0068 |

Data prepared by: TIH. Data QA/QC by: LDF.

Notes:

bgs = Below ground surface

DUP = Duplicate sample

J = Reported value is estimated.

PAH = Polyaromatic hydrocarbons

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for PAHs using EPA test method 8310.

B(a)A = Benzo(a)anthracene

B(a)P = Benzo(a)pyrene

B(b)F = Benzo(b)fluoranthene

B(g,h,i)P = Benzo(g,h,i)perylene

CHR = Chrysene

D(a,h)A = Dibenzo(a,h)anthracene

I(1,2,3-cd)P = Indeno(1,2,3-c,d)pyrene

PYR = Pyrene

### Table 10 Organochlorine Pesticides Detected in Soil Batarse Site, Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | 4,4'-DDT | alpha-<br>Chlordane | gamma-<br>Chlordane |
|-------------|-----------------|---------------------|----------|---------------------|---------------------|
| Area 8      |                 |                     |          |                     |                     |
| BASB061     | 05-Apr-01       | (0.0-0.5)           | 0.012    | 0.012               | 0.0075              |
| BASB065     | 22-Mar-01       | (0.0-0.5)           | < 0.06   | < 0.03              | < 0.03              |

Data prepared by: TIH. Data QA/QC by: LDF.

Notes:

bgs = below ground surface

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for organochlorine pesticides using EPA test method 8081A.

4,4'-DDT = Dichlorodiphenyltrichloroethane

Table 11

Title 22 Metals Detected in Soil
Batarse Site, Oakland, California
Concentrations in milligrams per kilogram (mg/kg)

|             |            | 1 |
|-------------|------------|---|
| Zn          |            |   |
| Λ           |            |   |
| Ш           |            |   |
| Se          |            |   |
| qd          |            |   |
| Ż           | ,          |   |
| oW          |            |   |
| Hg          |            |   |
| Cu          |            |   |
| ن           |            |   |
| ပိ          |            |   |
| 5           |            |   |
| Be          |            |   |
| Ва          |            |   |
| As          |            |   |
| Ag          |            |   |
| Depth       | (teet bgs) |   |
| Date        | Sampled    |   |
| Location ID |            |   |

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | Ag     | As  | Ba  | Be   | Cd   | Co  | Ċ  | Cu   | Hg    | Wo     | Ž  | Pb  | Se     | E      | >  | Zn  |
|-------------|-----------------|---------------------|--------|-----|-----|------|------|-----|----|------|-------|--------|----|-----|--------|--------|----|-----|
| Area 1      |                 |                     |        |     |     |      |      |     |    |      | ;     | :      |    | :   |        |        |    |     |
| BASB026     | 28-Mar-01       | (3.5-4.0)           | <0.24  | 3   | 130 | 0.36 | 1.7  | 7.9 | 28 | 18   | 0.097 | <0.97  | 46 | 22  | 0.44   | <0.24  | 26 | 46  |
| BASB026     | 28-Mar-01       | (6.5-7.0)           | < 0.24 | 3.5 | 110 | 0.45 | 1.5  | 7.6 | 31 | 19   | 0.031 | <0.95  | 45 | 9   | < 0.24 | < 0.24 | 26 | 37  |
| BASB026     | 28-Mar-01       | (9.5-10.0)          | < 0.24 | 2.7 | 110 | 0.48 | 1.5  | 7.2 | 33 | 17   | 0.05  | <0.94  | 45 | 6.1 | < 0.24 | < 0.24 | 24 | 36  |
| BASB026     | 28-Mar-01       | (14.5-15.0)         | < 0.25 | 2.5 | 130 | 0.51 | 1.8  | 8.5 | 39 | 21   | 0.076 | <0.99  | 59 | 5.9 | < 0.25 | < 0.25 | 25 | 45  |
| BASB026     | 28-Mar-01       | (24.5-25.0)         | < 0.24 | 3.8 | 130 | 0.44 | 1.7  | œ   | 38 | 19   | 0.046 | <0.98  | 57 | 6.1 | < 0.24 | 0.39   | 28 | 37  |
| BASB027     | 27-Mar-01       | (3.5-4.0)           | < 0.24 | 5.4 | 290 | 0.33 | 7    | 6'9 | 28 | 53   | 0.05  | <0.96  | 41 | 74  | 0.29   | < 0.24 | 56 | 140 |
| BASB027     | 27-Mar-01       | (6.0-6.5)           | < 0.24 | 7   | 43  | 0.18 | 0.85 | 3.8 | 16 | 6.2  | 0.024 | <0.96  | 24 | 2.4 | < 0.24 | <0.24  | 13 | 17  |
| BASB027     | 27-Mar-01       | (9.5-10.0)          | < 0.24 | 3.2 | 130 | 0.44 | 1.5  | 7.1 | 29 | 16   | 0.059 | <0.95  | 45 | 6.3 | < 0.24 | < 0.24 | 24 | 35  |
| BASB027     | 27-Mar-01       | (14.5-15.0)         | < 0.23 | 3.4 | 170 | 0.54 | 2.2  | 9.2 | 42 | 24   | 1.1   | < 0.93 | 62 | 7.1 | < 0.23 | < 0.23 | 59 | 51  |
| BASB027     | 27-Mar-01       | (24.5-25.0)         | < 0.24 | 2.8 | 110 | 0.35 | 1.5  | 8.7 | 33 | 16   | 0.044 | <0.97  | 58 | 5.2 | 0.34   | 0.39   | 22 | 34  |
| BASB028     | 27-Mar-01       | (0.5-1.0)           | < 0.24 | 7.8 | 170 | 0.35 | 1.8  | 7.1 | 56 | 25   | 0.16  | >0.96  | 43 | 83  | 0.26   | 0.27   | 23 | 120 |
| BASB028     | 27-Mar-01       | (3.5-4.0)           | < 0.23 | 3.2 | 130 | 0.38 | 1.8  | 9.3 | 8  | 16   | 0.047 | <0.94  | 54 | 5.4 | < 0.23 | 0.43   | 25 | 38  |
| BASB028     | 27-Mar-01       | (6.5-7.0)           | <0.24  | 3.6 | 170 | 0.48 | 7    | 6   | 35 | 22   | 0.1   | <0.95  | 53 | 6.7 | < 0.24 | < 0.24 | 31 | 43  |
| BASB028     | 27-Mar-01       | (9.5-10.0)          | < 0.23 | 2.9 | 130 | 0.43 | 1.6  | 9   | 56 | 16   | 0.025 | <0.91  | 4  | 5.9 | < 0.23 | < 0.23 | 24 | 35  |
| BASB028     | 27-Mar-01       | (14.5-15.0)         | < 0.25 | 3.1 | 150 | 0.49 | 1.9  | 8.7 | 35 | 22   | 0.19  | \<br>\ | 54 | 6.3 | < 0.25 | < 0.25 | 25 | 44  |
| BASB028     | 27-Mar-01       | (24.5-25.0)         | < 0.23 | 5.6 | 110 | 0.32 | 1.5  | 8.1 | 53 | 17   | 0.047 | <0.91  | 53 | 5.4 | < 0.23 | 0.5    | 21 | 31  |
| BASB029     | 23-Mar-01       | (3.5-4.0)           | < 0.23 | 4.3 | 120 | 0.57 | 2    | 10  | 38 | 20 J | 0.046 | <0.93  | 09 | 8.9 | < 0.23 | 0.53   | 37 | 49  |
| DUP         | 23-Mar-01       | (4.5-5.0)           | <0.23  | 3.4 | 901 | 0.43 | 1.3  | 7.9 | 53 | 12 J | 0.028 | <0.91  | 50 | 4.6 | < 0.23 | 0.75   | 26 | 32  |
| BASB029     | 23-Mar-01       | (9.5-10.0)          | <0.23  | 2.6 | 110 | 0.54 | 1.5  | 5.6 | 32 | 16 J | 0.043 | <0.9   | 44 | 5.6 | < 0.23 | < 0.23 | 28 | 40  |
| BASB029     | 23-Mar-01       | (14.5-15.0)         | < 0.23 | 3.1 | 140 | 99'0 | 7    | 6.7 | 42 | 23 J | 0.13  | <0.94  | 61 | 7   | < 0.23 | 0.55   | 35 | 55  |
| BASB029     | 23-Mar-01       | (19.5-20.0)         | < 0.24 | 8.4 | 150 | 0.61 | 2    | 7.8 | 42 | 21 J | 0.073 | >0.96  | 28 | 5.9 | < 0.24 | < 0.24 | 37 | 54  |
| BASB029     | 23-Mar-01       | (24.5-25.0)         | < 0.25 | ιco | 96  | 0.43 | 1.4  | 5.9 | 34 | 15 J | 0.29  | <0.99  | 46 | 4.4 | < 0.25 | < 0.25 | 28 | 37  |
| BASB030     | 23-Mar-01       | (4.5-5.0)           | <0.24  | 3.6 | 120 | 0.35 | 7    | 8.9 | 29 | 15 J | 0.033 | <0.97  | 46 | 4.5 | < 0.24 | <0.24  | 29 | 38  |

09/07/2001 Page 1 of 14 rpt\_Soil\_Metals.rpt

# Title 22 Metals Detected in Soil Batarse Site, Oakland, California Concentrations in milligrams per kilogram (mg/kg)

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | Ag     | As  | Ва  | Be   | PD  | Co  | Cr | Cu   | Hg    | Mo     | ž  | Pb  | Se      | F      | >  | Zn  |
|-------------|-----------------|---------------------|--------|-----|-----|------|-----|-----|----|------|-------|--------|----|-----|---------|--------|----|-----|
| Area 1      |                 |                     |        |     |     |      |     |     |    |      |       | -      |    |     |         |        |    |     |
| BASB030     | 23-Mar-01       | (9.5-10.0)          | < 0.24 | 4.9 | 110 | 0.63 | 1.9 | 9.3 | 38 | 19 J | 90.0  | >0.96  | 22 | 7.1 | < 0.24  | 0.3    | 37 | 46  |
| BASB030     | 23-Mar-01       | (14.5-15.0)         | < 0.23 | 3.1 | 110 | 0.65 | 2.1 | 10  | 43 | 22 J | 0.088 | < 0.93 | 62 | 7.3 |         | 0.42   | 36 | 55  |
| BASB030     | 23-Mar-01       | (19.5-20.0)         | < 0.24 | 4.6 | 150 | 0.67 | 2.1 | 7.5 | 4  | 25 J | 0.063 | <0.95  | 61 | 8.1 |         | <0.24  | 38 | 59  |
| BASB030     | 23-Mar-01       | (24.5-25.0)         | < 0.24 | 4.6 | 100 | 0.47 | 1.7 | 11  | 34 | 18 J | 0.049 | <0.95  | 61 | 6.7 |         | 69.0   | 31 | 38  |
| BASB031     | 26-Mar-01       | (3.5-4.0)           | < 0.24 | 3.2 | 130 | 0.48 | 1.9 | 8.9 | 33 | 19   | 0.045 | <0.97  | 57 | 8.5 |         | 0.38   | 28 | 45  |
| BASB031     | 26-Mar-01       | (6.5-7.0)           | < 0.24 | 2.6 | 150 | 0.46 | 1.5 | 6   | 31 | 17   |       | <0.95  | 46 | 6.7 |         | 0.36   | 24 | 35  |
| BASB031     | 26-Mar-01       | (9.5-10.0)          | < 0.23 | 2.3 | 160 | 0.51 | 1.7 | 7.5 | 35 | 18   |       | <0.93  | 54 | 8.1 | -       | :0.23  | 27 | 40  |
| BASB031     | 26-Mar-01       | (14.5-15.0)         | < 0.23 | 2.6 | 170 | 0.56 | 7   | 8'6 | 39 | 22   | 0.084 | <0.93  | 62 | 7.9 | <0.23 < | :0.23  | 26 | 20  |
| BASB031     | 26-Mar-01       | (22.5-23.0)         | < 0.25 | 2.3 | 120 | 0.37 | 1.6 | 6'9 | 35 | 18   | 0.047 | <0.98  | 53 | 4.7 |         | < 0.25 | 24 | 38  |
| BASB031     | 26-Mar-01       | (24.5-25.0)         | < 0.24 | 2.8 | 110 | 0.29 | 1.4 | 9.4 | 56 | 15   | 0.045 | <0.97  | 54 | 5.3 |         | :0.24  | 19 | 30  |
| BASB032     | 26-Mar-01       | (3.5-4.0)           | < 0.25 | 5.9 | 110 | 0.36 | 1.5 | 8.1 | 28 | 15   | 0.021 | <0.99  | 46 | 7.5 |         | :0.25  | 24 | 38  |
| DUP         | 26-Mar-01       | (4.5-5.0)           | < 0.25 | 1.8 | 71  | 0.22 | 1.1 | 9.9 | 19 | 9.3  | 0.022 | <0.98  | 36 | 3.3 |         | :0.25  | 16 | 24  |
| BASB032     | 26-Mar-01       | (9.0-9.5)           | < 0.24 | 3   | 170 | 0.49 | 1.7 | 6   | 33 | 18   | 690.0 | <0.97  | 54 | 8.2 |         | (0.24  | 26 | 39  |
| BASB032     | 26-Mar-01       | (14.5-15.0)         | < 0.25 | 1.8 | 140 | 0.49 | 1.7 | 7.8 | 34 | 19   | 0.15  | <0.99  | 53 | 9.9 |         | :0.25  | 22 | 46  |
| BASB032     | 26-Mar-01       | (24.5-25.0)         | < 0.24 | 2.8 | 120 | 0.33 | 1.6 | 8.3 | 28 | 16   | 690'0 | <0.97  | 58 | 5.4 |         | 1.1    | 22 | 33  |
| BASB033     | 26-Mar-01       | (3.5-4.0)           | < 0.25 | 9   | 340 | 0.33 | 2.7 | 7.4 | 30 | 41   |       | <0.98  | 44 | 160 |         | :0.25  | 25 | 430 |
| BASB033     | 26-Mar-01       | (6.0-6.5)           | < 0.24 | 7   | 63  | 0.23 | _   | S   | 19 | 9.8  |       | <0.97  | 30 | 3.4 | <0.24 < | <0.24  | 17 | 24  |
| BASB033     | 26-Mar-01       | (9.5-10.0)          | < 0.24 | 3.1 | 120 | 0.46 | 1.6 | 5.7 | 31 | 16   |       | >0.96  | 41 | 9.6 |         | <0.24  | 25 | 36  |
| BASB033     | 26-Mar-01       | (14.5-15.0)         | < 0.24 | 33  | 130 | 0.44 | 1.7 | 7.9 | 31 | 18   | 0.16  | <0.96  | 51 | 6.1 |         | :0.24  | 24 | 41  |
| BASB033     | 26-Mar-01       | (24.5-25.0)         | < 0.24 | æ   | 120 | 0.38 | 1.8 | 8.9 | 38 | 18   | 0.055 | >0.96  | 61 | 5.7 |         | 0.31   | 26 | 39  |
| BASB034     | 27-Mar-01       | (3.5-4.0)           | < 0.25 | 5.7 | 130 | 0.35 | 7   | 8.1 | 53 | 22   | 0.04  | <0.98  | 46 | 24  |         | <0.25  | 25 | 85  |
| BASB034     | 27-Mar-01       | (6.25-6.75)         | < 0.23 | 2.1 | 53  | 0.2  |     | 5.2 | 17 | 8.7  | 0.055 | <0.92  | 53 | 3:1 |         | < 0.23 | 15 | 22  |
| BASB034     | 27-Mar-01       | (6.5-10.0)          | < 0.24 | 2.9 | 110 | 0.41 | 4.1 | 9.9 | 26 | 16   | 0.067 | >0.96  | 38 | 9.9 |         | < 0.24 | 22 | 32  |

09/07/2001 Page 2 of 14 rpt\_Soil\_Metals.rpt

Table 11

Title 22 Metals Detected in Soil
Batarse Site, Oakland, California
Concentrations in milligrams per kilogram (mg/kg)

|             |            | l |
|-------------|------------|---|
| uZ          |            |   |
| >           |            |   |
| I           |            |   |
| Se          |            |   |
| Pb          |            |   |
| ż           |            |   |
| oW          |            |   |
| Hg          |            |   |
| Cu          |            |   |
| ڻ           |            |   |
| Co          |            |   |
| PS          |            |   |
| Be          |            |   |
| Ba          |            |   |
| As          |            |   |
| Ag          |            |   |
| Depth       | (feet bgs) |   |
| Date        | Sampled    |   |
| Location ID |            |   |

| 27-Mar-01 (14.5-15.0)<br>27-Mar-01 (24.5-25.0)<br>22-Mar-01 (3.5-4.0)<br>22-Mar-01 (5.0-5.5)<br>22-Mar-01 (9.5-10.0)<br>22-Mar-01 (24.5-15.0) | 5.0) < 0.24<br>5.0) < 0.24<br>0) < 0.21<br>5) < 0.2<br>0) < 0.24<br>5.0) < 0.23<br>5.0) < 0.19<br>0) < 0.25<br>0) < | 3<br>0.68<br>4.2<br>3.5<br>3.5<br>3.5<br>3.1<br>4.8 | 130 |      |      |     |     |     |       |        |      |     |          |        |    |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----|------|------|-----|-----|-----|-------|--------|------|-----|----------|--------|----|------|
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     | 130 |      |      | :   |     |     |       |        |      | :   | :        |        |    |      |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |     | 0.45 | 1.7  | 8.3 | 31  | 19  | 0.22  | <0.98  | 51   | 7   |          | <0.24  | 22 | 42   |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     | 76  | 0.32 | 1.5  | ν   | 29  | 16  | 0.072 | <0.94  | 45   | 5.9 | <0.24 <  | < 0.24 | 23 | 32   |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     | 84  | 0.38 | 3.1  | 7.9 | 2.1 | 14  | 0.18  | < 0.83 | 19 J | 4.9 | 0.45     | 0.28   | 27 | 64 J |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     | 150 | 0.47 | 2.1  | 9.3 | 38  | 19  | 0.041 | < 0.81 | 52 J | 5.9 |          | < 0.2  | 31 | 44 J |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     | 100 | 0.5  | 1.9  | 8.4 | 35  | 17  | 0.046 | <0.94  | 53 J | 6.2 |          | <0.24  | 25 | 41 J |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     | 130 | 0.49 | 2.2  | 8.8 | 42  | 20  | 90.0  | <0.93  | 57 J | 9.9 |          | <0.23  | 29 | 47 J |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     | 120 | 0.42 | 1.7  | 7.2 | 38  | 18  | 0.055 | <0.75  | 50 J | 5.2 |          | <0.19  | 25 | 39 J |
| 22-Mar-01 (4.5-5.0)                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     | 130 | 0.45 | 1.6  | 6.2 | 35  | 22  | 0.069 | <0.99  | 47 J | 14  |          | < 0.25 | 27 | 52 J |
| 22-Mar-01 (9.5-10.0)                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     | 170 | 0.49 | 1.9  | 8.6 | 35  | 17  | 0.054 | < 0.88 | 60 J | 6.1 |          | <0.22  | 24 | 41 J |
| 22-Mar-01 (14.5-15.0)                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     | 160 | 0.59 | 5.6  | 8.5 | 20  | 23  | 0.067 | < 0.93 | 69 J | 8.9 |          | < 0.23 | 35 | 56 J |
| 22-Mar-01 (24.5-25.0)                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3                                                 | 100 | 0.36 | 1.6  | 5.4 | 36  | 15  | 0.12  | < 0.93 | 49 J | 3.6 |          | < 0.23 | 22 | 38 J |
| 03-Apr-01 (3.0-3.5)                                                                                                                           | 5) <0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1                                                 | 140 | 0.44 | 1.9  | 9.8 | 33  | 20  | 0.057 | < 0.84 | 51   | 27  | < 0.21 < | <0.21  | 29 | 70 J |
| 03-Apr-01 (6.0-6.5)                                                                                                                           | 5) <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                                                 | 72  | 0.22 | 0.82 | 4.2 | 17  | 8.1 | 0.063 | < 0.81 | 29   | ю   |          | < 0.2  | 14 | 21   |
| 03-Apr-01 (9.5-10.0)                                                                                                                          | .0) <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5                                                 | 140 | 0.44 | 1.3  | 8.5 | 25  | 14  | 0.043 | < 0.81 | 20   | 5.4 |          | 0.34   | 19 | 32   |
| 03-Apr-01 (14.5-15.0)                                                                                                                         | (0) < 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.5                                                 | 130 | 0.49 | 1.6  | 7.8 | 30  | 17  | 0.058 | <0.87  | 53   | 5.7 |          | 0.45   | 19 | 41   |
| 03-Apr-01 (22.5-23.0)                                                                                                                         | 1.0) < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ю                                                   | 120 | 0.44 | 1.7  | 6.6 | 41  | 61  | 90.0  | < 0.81 | 9    | 5.4 |          | 0.21   | 25 | 42   |
| 03-Apr-01 (24.5-25.0)                                                                                                                         | (0) < 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4                                                 | 100 | 0.34 | 1.3  | 7.8 | 56  | 14  | 0.044 | <0.87  | 47   | 4.8 |          | 0.39   | 19 | 31   |
| 03-Apr-01 (1.5-2.0)                                                                                                                           | 0) <0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.1                                                 | 170 | 0.35 | 2    | 6.9 | 56  | 35  | 0.23  | < 0.82 | 38   | 130 |          | د0.21  | 21 | 240  |
| 03-Apr-01 (6.5-7.0)                                                                                                                           | 0) <0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6                                                 | 140 | 0.52 | 9.1  | 8.1 | 32  | 17  | 0.039 | < 0.91 | 42   | 6.5 |          | < 0.23 | 28 | 38   |
| 03-Apr-01 (9.5-10.0)                                                                                                                          | .0) <0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.5                                                 | 160 | 0.53 | 1.6  | 9.2 | 33  | 17  | 0.058 | <0.91  | 99   | 9.9 |          | 0.33   | 23 | 37 J |
| 03-Apr-01 (14.5-15.0)                                                                                                                         | 5.0) < 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.8                                                 | 150 | 0.56 | 1.8  | œ   | 37  | 20  | 0.064 | <0.89  | 28   | 6.3 | ٧        | < 0.22 | 24 | 48 J |
| 03-Apr-01 (18.5-19.0)                                                                                                                         | .0) <0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.1                                                 | 180 | 0.53 | 2.2  | 6.6 | 9   | 21  | 690.0 | <0.87  | 49   | 6.2 | ٧        | < 0.22 | 34 | 48 J |
| 03-Apr-01 (19.5-20.0)                                                                                                                         | 0.0) < 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2                                                 | 150 | 0.46 | 1.7  | 11  | 37  | 20  | 0.054 | <0.9   | 53   | 5.9 |          | < 0.22 | 24 | 47   |

 $\rho_{\rm s} = 1.4 \, \mathrm{m} \cdot \mathrm{s}^{-1.5} \, \mathrm{s}^$ 

09/07/2001 Page 3 of 14 rpt\_Soil\_Metals.rpt

Title 22 Metals Detected in Soil
Batarse Site, Oakland, California
Concentrations in milligrams per kilogram (mg/kg) Table 11

| Location 1D | Date<br>Sampled | Depth<br>(feet bgs) | Ag     | As  | Ba  | Be   | Cd   | Co  | ڻ              | J   | Hg    | Мо     | Ż  | Pb  | Se     | I      | >  | Zn   |
|-------------|-----------------|---------------------|--------|-----|-----|------|------|-----|----------------|-----|-------|--------|----|-----|--------|--------|----|------|
| Area 1      |                 |                     |        |     |     |      |      |     |                |     |       |        |    |     |        |        |    |      |
| BASB071     | 03-Apr-01       | (22.5-23.0)         | < 0.2  | 5.9 | 140 | 0.43 | 1.6  | ∞   | 37             | 19  | 0.049 | < 0.82 | 5  | 5.9 | < 0.2  | < 0.2  | 27 | 37 J |
| BASB071     | 03-Apr-01       | (24.5-25.0)         | < 0.23 | 3.4 | 120 | 0.4  | 1.5  | 8.2 | 34             | 17  | 0.048 | < 0.92 | 75 | 5.9 | < 0.23 | < 0.23 | 25 | 35 J |
| BASB072     | 05-Apr-01       | (2.0-2.5)           | < 0.24 | 4.7 | 170 | 0.4  | 1.9  | 7.5 | 30             | 23  | 0.13  | <0.94  | 4  | 44  | < 0.24 | < 0.24 | 28 | 110  |
| BASB072     | 05-Apr-01       | (5.5-6.0)           | < 0.2  | 2.6 | 11  | 0.31 | 1.2  | 5.1 | 24             | 11  | 0.035 | <0.81  | 35 | 30. | < 0.2  | < 0.2  | 19 | 25   |
| BASB072     | 05-Apr-01       | (9.5-10.0)          | < 0.23 | 2.9 | 110 | 0.41 | 1.3  | 5.7 | 56             | 11  | 0.046 | < 0.91 | 40 | 4.4 | < 0.23 | <0.23  | 21 | 27   |
| BASB072     | 05-Apr-01       | (14.5-15.0)         | < 0.23 | 2.5 | 130 | 0.48 | 1.6  | 9.7 | 32             | 17  | 690.0 | < 0.93 | 48 | 5.3 | < 0.23 | <0.23  | 22 | 40   |
| BASB072     | 05-Apr-01       | (24.5-25.0)         | < 0.25 | 3.4 | 110 | 0.36 | 1.5  | 1.6 | 28             | 16  | 0.057 | <0.99  | 28 | 5.4 | < 0.25 | 9.0    | 22 | 30   |
| BASB073     | 02-Apr-01       | (2.5-3.0)           | < 0.23 | 3.3 | 140 | 0.34 | 1.8  | 7.5 | 56             | 28  | 990.0 | <0.91  | 42 | 16  | < 0.23 | <0.23  | 26 | 9    |
| BASB073     | 02-Apr-01       | (4.5-5.0)           | < 0.22 | 2.9 | 110 | 0.34 | 1.5  | 5.9 | 27             | 4   | 0.15  | <0.87  | 46 | 4.4 | < 0.22 | <0.22  | 22 | 33   |
| BASB073     | 02-Apr-01       | (9.5-10.0)          | <0.22  | 7   | 76  | 0.31 | 0.93 | 4.6 | 17             | 9.3 | 0.051 | < 0.87 | 34 | 3.9 | < 0.22 | 0.24   | Ξ  | 24   |
| BASB073     | 02-Apr-01       | (14.5-15.0)         | <0.21  | 1.7 | 98  | 0.31 | 0.97 | 5.1 | 18             | Ξ   | 0.052 | <0.84  | 33 | 3.9 | <0.21  | < 0.21 | Ξ  | 26   |
| BASB073     | 02-Apr-01       | (19.5-20.0)         | < 0.22 | 1.4 | 100 | 0.3  | 1.1  | 6.5 | 21             | 12  | 0.05  | < 0.88 | 37 | 4.5 | < 0.22 | <0.22  | 12 | 32   |
| BASB073     | 02-Apr-01       | (24.5-25.0)         | < 0.22 | 3.3 | 66  | 0.31 | 1.4  | œ   | 56             | 15  | 0.052 | <0.89  | 20 | 9.6 | < 0.22 | <0.22  | 19 | 31   |
| BASB074     | 02-Apr-01       | (2.5-3.0)           | <0.22  | 4   | 120 | 0.39 | 1.9  | 7.4 | 30             | 17  | 0.036 | 6.0>   | 53 | 5.8 | <0.22  | <0.22  | 27 | 41   |
| BASB074     | 02-Apr-01       | (9.5-10.0)          | < 0.23 | 1.8 | 86  | 0.32 | 0.99 | 3.9 | 19             | 10  | 0.057 | <0.92  | 53 | 4   | < 0.23 | <0.23  | 12 | 24   |
| BASB074     | 02-Apr-01       | (14.5-15.0)         | < 0.24 | 2.2 | 110 | 0.37 | 1.3  | 5.9 | 24             | 13  | 0.076 | <0.95  | 41 | 4.6 | < 0.24 | <0.24  | 14 | 36   |
| BASB074     | 02-Apr-01       | (24.5-25.0)         | < 0.22 | 2.8 | 96  | 0.29 | 1.4  | 8.1 | 26             | 13  | 0.054 | < 0.88 | 48 | 8.1 | <0.22  | < 0.22 | 61 | 28   |
| BASB075     | 02-Apr-01       | (6.5-7.0)           | < 0.22 | 3.2 | 140 | 0.42 | 1.5  | 9.9 | 56             | 16  | 0.023 | <0.88  | 42 | 5.4 | 0.3    | 0.61   | 20 | 33   |
| BASB075     | 02-Apr-01       | (9.5-10.0)          | < 0.23 | 3.3 | 160 | 0.44 | 1.6  | œ   | 28             | 15  | 0.061 | < 0.93 | 9  | 7.1 | < 0.23 | 0.84   | 61 | 33   |
| BASB075     | 02-Apr-01       | (14.5-15.0)         | <0.2   | 7   | 16  | 0.33 | 1.1  | 5.4 | 21             | 12  | 0.064 | < 0.82 | 37 | 4.1 | < 0.2  | < 0.2  | 12 | 29   |
| BASB075     | 02-Apr-01       | (24.5-25.0)         | < 0.23 | 1.6 | 88  | 0.24 | _    | 4.1 | 22             | 8.6 | 0.051 | < 0.92 | 31 | 3.4 | < 0.23 | <0.23  | 12 | 25   |
| BASB076     | 30-Mar-01       | (3.5-4.0)           | < 0.21 | 6.5 | 130 | 0.46 | 1.9  | 9.5 | 31             | 19  | 0.047 | <0.82  | 47 | 12  | 0.51   | 0.28   | 37 | 49 J |
| BASB076     | 30-Mar-01       | (6.5-7.0)           | < 0.22 | 3.9 | 150 | 0.52 | 1.7  | 10  | <del>2</del> 6 | 17  | 0.025 | <0.89  | 51 | 5.6 | 0.53   | 0.52   | 31 | 38 J |

09/07/2001 Page 4 of 14 rpt\_Soil\_Metals.rpt

Table 11

Title 22 Metals Detected in Soil
Batarse Site, Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | Ag     | As  | Ва  | Be   | рЭ   | ပ       | Ċ  | Cu       | НВ    | Мо     | ž          | P <sub>P</sub> | Şe     | F      | >  | Zn   |
|-------------|-----------------|---------------------|--------|-----|-----|------|------|---------|----|----------|-------|--------|------------|----------------|--------|--------|----|------|
| Area 1      |                 |                     |        |     |     |      |      |         |    |          |       |        |            |                |        |        |    |      |
| BASB076     | 30-Mar-01       | (9.5-10.0)          | < 0.22 | 3.6 | 140 | 0.53 | 1.7  | œ       | 35 | 17       | 90.0  | <0.87  | 51         | 5.7            | < 0.22 | 0.25   | 27 | 39 J |
| BASB076     | 30-Mar-01       | (14.5-15.0)         | < 0.22 | 4.6 | 150 | 0.63 | 2.2  | 10      | 45 | 23       | 0.04  | <0.86  | <i>L</i> 9 | 7.4            | 0.28   | <0.22  | 33 | 53 J |
| BASB076     | 30-Mar-01       | (19.5-20.0)         | < 0.23 | 7.6 | 210 | 0.61 | 2.5  | 12      | 45 | 25       | 0.055 | 6.0>   | 65         | 7.2            | 0.37   | 0.77   | 40 | 57 J |
| BASB076     | 30-Mar-01       | (24.5-25.0)         | < 0.23 | 4.4 | 120 | 0.44 | 1.8  | 6'6     | 38 | 19       | 0.054 | <0.93  | 58         | 9              |        | 0.29   | 31 | 38 J |
| BASB077     | 30-Mar-01       | (3.5-4.0)           | < 0.22 | 2.9 | 130 | 0.31 | 1.5  | 5.7     | 23 | 18       | 0.087 | >0.86  | 32         | 30             | 0.22   | <0.22  | 24 | 55 J |
| DUP         | 30-Mar-01       | (4.5-5.0)           | < 0.24 | 3.7 | 110 | 0.47 | 1.6  | 5.6     | 33 | 15       | 0.036 | <0.94  | 4          | S              | -      | <0.24  | 30 | 34 J |
| BASB077     | 30-Mar-01       | (9.5-10.0)          | < 0.23 | 8.4 | 92  | 0.56 | 1.8  | 8.4     | 39 | 19       | 690.0 | <0.91  | 53         | 9              | ~~     | < 0.23 | 33 | 41 J |
| BASB077     | 30-Mar-01       | (14.5-15.0)         | < 0.2  | 2.7 | 140 | 0.51 | 1.8  | ∞.<br>∞ | 35 | 19       | 0.027 | < 0.82 | 20         | 9              |        | <0.2   | 25 | 43 J |
| BASB077     | 30-Mar-01       | (19.5-20.0)         | < 0.22 | 5.4 | 150 | 0.49 | 2    | 13      | 39 | 20       | 0.044 | >0.86  | 99         | 8.9            |        | 0.82   | 32 | 44 J |
| BASB077     | 30-Mar-01       | (24.5-25.0)         | < 0.22 | 4.5 | 150 | 0.43 | 1.6  | 11      | 36 | 91       | 0.067 | <0.89  | 55         | 5.6            |        | 0.51   | 59 | 34 J |
| BASB078     | 05-Apr-01       | (3.5-4.0)           | < 0.21 | 3.9 | 120 | 0.42 | 89.  | 9.6     | 53 | 18       |       | <0.83  | 46         | 20             | 0.26   | 0.92   | 56 | 20   |
| BASB078     | 05-Apr-01       | (6.5-7.0)           | < 0.22 | 5.7 | 190 | 0.62 | 5.6  | 14      | 46 | 24       |       | <0.87  | 70         | 7.2            |        | 0.46   | 42 | 51   |
| BASB078     | 05-Apr-01       | (9.5-10.0)          | < 0.23 | 2.2 | 120 | 0.42 | 1.3  | 4.6     | 56 | 13       | 0.059 | < 0.93 | 35         | 4.6            | •      | < 0.23 | 17 | 30   |
| BASB078     | 05-Apr-01       | (14.5-15.0)         | < 0.23 | 2.4 | 16  | 0.36 | 1:1  | 5.6     | 24 | 12       | 0.046 | <0.91  | 37         | 4.4            |        | 0.46   | 15 | 29   |
| BASB078     | 05-Apr-01       | (24.5-25.0)         | < 0.22 | 3.6 | 100 | 0.36 | 1.5  | 9.6     | 30 | 16       | 0.051 | <0.89  | 51         | 5.9            |        | 0.53   | 22 | 32   |
| BASB082     | 05-Apr-01       | (1.5-2.0)           | < 0.23 | 4.1 | 98  | 0.31 | 1.3  | 5.7     | 21 | 12       | 0.12  | <0.93  | 32         | 9.6            |        | < 0.23 | 20 | 36   |
| BASB082     | 05-Apr-01       | (4.5-5.0)           | < 0.22 | 1.9 | 54  | 0.22 | 0.82 | 3.5     | 15 | 7.5      | 0.024 | <0.88  | 24         | 2.5            |        | < 0.22 | 14 | 19   |
| BASB082     | 05-Apr-01       | (11.5-12.0)         | < 0.21 | 2.6 | 110 | 0.39 | 1.2  | 7.5     | 25 | 13       | 0.063 | <0.85  | 41         | 4,6            |        | <0.21  | 18 | 31   |
| BASB082     | 05-Apr-01       | (14.5-15.0)         | < 0.24 | 3.4 | 130 | 0.47 | 1.6  | 7.5     | 33 | <u>8</u> | 980.0 | <0.97  | 49         | 5.3            |        | <0.24  | 22 | 40   |
| BASB082     | 05-Apr-01       | (19.5-20.0)         | < 0.22 | 3.2 | 120 | 0.39 | 1.4  | 9       | 27 | 91       | 0.053 | <0.87  | 41         | 2              | •      | <0.22  | 21 | 35   |
| Area 2      |                 |                     |        |     |     |      |      |         |    |          |       |        |            |                |        |        |    |      |
| BASB006     | 31-Mar-01       | (1.5-2.0)           | < 0.23 | 2.6 | 86  | 0.34 | 1.6  | 6.4     | 15 | 14       | 0.056 | <0.9   | 29         | 4.2            |        | 0.49   | 17 | 34 J |
| BASB006     | 31-Mar-01       | (5.5-6.0)           | <0.22  | 3.4 | 150 | 0.52 | 1.7  | 7.1     | 34 | 18       | 0.029 | <0.9   | 47         | 5.8            | <0.22  | <0.22  | 26 | 40 J |

09/07/2001 Page 5 of 14 rpt\_Soil\_Metals.rpt

Title 22 Metals Detected in Soil
Batarse Site, Oakland, California
Concentrations in milligrams per kilogram (mg/kg) Table 11

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | Ag     | As  | Ba  | Be   | рЭ  | Co  | رد | Cu  | Hg     | Мо     | ż    | Pb  | Se     | L      | ٧  | Zn   |
|-------------|-----------------|---------------------|--------|-----|-----|------|-----|-----|----|-----|--------|--------|------|-----|--------|--------|----|------|
| Area 2      |                 |                     |        |     |     |      |     |     |    |     |        |        |      |     |        |        |    |      |
| BASB006     | 31-Mar-01       | (9.5-10.0)          | < 0.23 | 4   | 091 | 0.5  | 1.7 | 7.7 | 34 | 17  | 0.13   | <0.93  | 52   | 5.6 | < 0.23 | < 0.23 | 26 | 38 J |
| BASB006     | 31-Mar-01       | (14.5-15.0)         | <0.22  | 3.3 | 140 | 0.51 | 1.8 | 8.3 | 37 | 20  | 0.068  | <0.87  | 26   | 5.9 | < 0.22 | < 0.22 | 25 | 45 J |
| BASB006     | 31-Mar-01       | (26.5-27.0)         | < 0.22 | 2.6 | 061 | 0.34 | 1.4 | 7.5 | 29 | 14  | 0.053  | <0.88  | 48   | 4.3 | 0.32   | 0.93   | 21 | 32 J |
| BASB007     | 31-Mar-01       | (1.5-2.0)           | < 0.2  | 5.6 | 130 | 0.39 | 1.7 | 7.5 | 30 | 15  | 0.031  | < 0.82 | 45   | 6.7 | < 0.2  | < 0.2  | 27 | 35 J |
| BASB007     | 31-Mar-01       | (4.5-5.0)           | < 0.23 | 3.2 | 091 | 0.56 | 1.6 | 7.5 | 34 | 18  | 0.023  | < 0.92 | 47   | 6.2 | < 0.23 | <0.23  | 25 | 41 J |
| BASB007     | 31-Mar-01       | (9.5-10.0)          | < 0.24 | 3.3 | 170 | 0.51 | 1.7 | 8.4 | 35 | 61  | 0.072  | <0.95  | 54   | 5.9 | < 0.24 | < 0.24 | 56 | 41 J |
| BASB007     | 31-Mar-01       | (14.5-15.0)         | < 0.23 | æ   | 140 | 0.49 | 1.7 | 6.9 | 36 | 61  | 0.076  | < 0.91 | 49   | 5.7 | < 0.23 | < 0.23 | 22 | 43 J |
| BASB007     | 31-Mar-01       | (25.5-26.0)         | < 0.22 | 3.3 | 120 | 0.37 | 1.6 | 7.9 | 34 | 17  | 990.0  | <0.89  | 51   | ĸ   | < 0.22 | < 0.22 | 23 | 36 J |
| BASB008     | 21-Mar-01       | (3.5-4.0)           | < 0.23 | 4.5 | 200 | 0.41 | 2.1 | 9.3 | 36 | 23  | 0.065  | < 0.93 | 53 J | 56  | 0.25   | < 0.23 | 30 | 76 J |
| DUP         | 21-Mar-01       | (4.5-5.0)           | < 0.24 | 3.2 | 8   | 0.34 | 1.2 | 7.6 | 24 | 12  | < 0.02 | <0.95  | 46 J | 4.1 | 0.44   | 0.49   | 22 | 28 J |
| BASB008     | 21-Mar-01       | (9.5-10.0)          | < 0.24 | 3.3 | 140 | 0.58 | 1.7 | 8.8 | 39 | 19  | 0.067  | <0.97  | 57 J | 6.9 | < 0.24 | < 0.24 | 56 | 40 J |
| BASB008     | 21-Mar-01       | (14.5-15.0)         | < 0.23 | 2.8 | 150 | 0.56 | 1.8 | 8.3 | 41 | 21  | 0.063  | <0.92  | 60 J | 6.5 | < 0.23 | 0.42   | 26 | 50 J |
| BASB008     | 21-Mar-01       | (24.5-25.0)         | < 0.22 | 2.5 | 120 | 0.36 | 1.5 | 6.5 | 35 | 17  | 0.049  | <0.88  | 48 J | 4.9 | < 0.22 | <0.22  | 21 | 35 J |
| Area 3      |                 |                     |        |     |     |      |     |     |    |     |        |        |      |     | !      | :      |    |      |
| BASB040     | 03-Apr-01       | (3.5-4.0)           | < 0.23 | 2.6 | 79  | 0.31 | 1:1 | 6.1 | 18 | 10  | 0.037  | < 0.91 | 35   | 3.9 | < 0.23 | < 0.23 | 18 | 25   |
| DUP         | 03-Apr-01       | (4.5-5.0)           | < 0.21 | 2.4 | 89  | 0.26 | 1.1 | 5.5 | 20 | 6.7 | 0.059  | < 0.84 | 37   | 3.1 | < 0.21 | < 0.21 | 16 | 23   |
| BASB040     | 03-Apr-01       | (9.5-10.0)          | < 0.22 | 2.5 | 110 | 0.39 | 1.3 | 6.9 | 24 | 4   | 0.072  | <0.88  | 45   | 2   | < 0.22 | 0.47   | 17 | 31   |
| BASB040     | 03-Apr-01       | (14.5-15.0)         | < 0.23 | 3.3 | 150 | 0.48 | 1.8 | 7.7 | 32 | 18  | 0.046  | <0.92  | 53   | 9.6 | < 0.23 | 0.49   | 25 | 43   |
| BASB040     | 03-Apr-01       | (19.5-20.0)         | <0.22  | 2.6 | 120 | 0.39 | 1.6 | 5.5 | 32 | 17  | 0.062  | <0.89  | 41   | 8.4 | < 0.22 | <0.22  | 20 | 39   |
| BASB040     | 03-Apr-01       | (24.5-25.0)         | < 0.23 | 3.3 | 120 | 0.38 | 1.5 | 6.7 | 32 | 16  | 0.062  | <0.92  | 46   | 4.6 | < 0.23 | < 0.23 | 24 | 34   |
| BASB041     | 28-Mar-01       | (3.54.0)            | 8.0    | 2.7 | 120 | 0.4  | 1.4 | 5.4 | 25 | 13  | 0.035  | <0.97  | 32   | 28  | < 0.24 | <0.24  | 24 | 36   |
| DUP         | 28-Mar-01       | (4.5-5.0)           | < 0.24 | 2.8 | 65  | 0.4  | 2.1 | 5.2 | 31 | 21  | 0.056  | <0.97  | 36   | 49  | < 0.24 | < 0.24 | 56 | 20   |
| BASB041     | 28-Mar-01       | (9.5-10.0)          | < 0.24 | 2.5 | 110 | 0.49 | 4.1 | 6.9 | 31 | 15  | 90.0   | <0.97  | 46   | 5.6 | < 0.24 | <0.24  | 24 | 36   |
|             |                 |                     |        |     |     |      |     |     |    |     |        |        |      |     |        |        |    |      |

Page 6 of 14 rpt\_Soil\_Metals.rpt

09/07/2001

Table 11

Title 22 Metals Detected in Soil
Batarse Site, Oakland, California
Concentrations in milligrams per kilogram (mg/kg)

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | Ag     | As  | Ва  | Be   | Cd  | တ   | Ċ   | Cu | Hg     | Мо     | z  | Pb  | Se      | F      | >  | Zn  |
|-------------|-----------------|---------------------|--------|-----|-----|------|-----|-----|-----|----|--------|--------|----|-----|---------|--------|----|-----|
| Area 3      | •               |                     |        |     |     |      |     |     |     |    |        |        |    |     | :       |        |    |     |
| BASB041     | 28-Mar-01       | (14.5-15.0)         | < 0.24 | 4.4 | 130 | 0.54 | 1.7 | 7.5 | 37  | 18 | 0.061  | <0.96  | 53 | 6.4 | <0.24   | <0.24  | 30 | 43  |
| BASB041     | 28-Mar-01       | (24.5-25.0)         | < 0.25 | 3.6 | 130 | 0.44 | 1.4 | ∞   | 36  | 17 | 0.044  | <0.99  | 52 | 6.3 | <0.25 < | <0.25  | 27 | 34  |
| Area 4      |                 |                     |        |     |     |      |     |     |     |    |        |        |    | •   |         |        |    |     |
| BASB012     | 19-Mar-01       | (3.5-4.0)           | <0.19  | 1.1 | 69  | 0.26 | 2.7 | 5.9 | 5.1 | 12 | 0.054  | < 0.75 | 20 | 17  | < 0.19  | 0.55   | 29 | 93  |
| BASB012     | 19-Mar-01       | (9.5-10.0)          | < 0.24 | 3.4 | 100 | 0.46 | 1.9 | 9.8 | 37  | 20 | 0.054  | < 0.98 | 59 | 6.2 |         | 0.34   | 24 | 43  |
| BASB012     | 19-Mar-01       | (14.5-15.0)         | < 0.2  | 3   | 94  | 0.37 | 1.8 | 6.9 | 31  | 17 | 0.063  | < 0.79 | 47 | 5.3 |         | < 0.2  | 24 | 39  |
| BASB012     | 19-Mar-01       | (24.0-24.5)         | < 0.22 | 3.3 | 160 | 0.37 | 1.9 | 9.1 | 37  | 21 | 0.056  | <0.88  | 29 | 9   | <0.22   | 0.73   | 23 | 42  |
| BASB013     | 20-Mar-01       | (2.5-3.0)           | < 0.22 | 1.3 | 55  | 0.15 | 2.2 | 20  | 160 | 35 | 0.041  | <0.87  | 45 | 1.9 |         | <0.22  | 20 | 21  |
| BASB013     | 20-Mar-01       | (4.5-5.0)           | < 0.21 | 4.4 | 190 | 0.47 | 2.4 | 6.7 | 35  | 19 | < 0.02 | < 0.85 | 58 | 5.7 | < 0.21  | 0.29   | 29 | 42  |
| BASB013     | 20-Mar-01       | (9.5-10.0)          | <0.23  | 3.2 | 130 | 0.45 | 2.1 | 8.7 | 31  | 18 | 0.052  | < 0.93 | 26 | 5.9 |         | 0.35   | 21 | 43  |
| BASB013     | 20-Mar-01       | (14.5-15.0)         | < 0.21 | 2.7 | 150 | 0.4  | 2.1 | 9   | 29  | 17 | 690.0  | < 0.84 | 46 | 4.8 |         | <0.21  | 21 | 41  |
| BASB016     | 04-Apr-01       | (2.0-2.5)           | < 0.22 | 5.6 | 001 | 0.21 | 1.4 | 5.4 | 19  | 32 | 0.14   | >0.86  | 29 | 8   |         | <0.22  | 17 | 81  |
| BASB016     | 04-Apr-01       | (5.5-6.0)           | < 0.23 | 2.7 | 120 | 0.38 | 1.5 | 8.9 | 30  | 15 | 690.0  | <0.91  | 47 | 4.8 |         | 0.31   | 25 | 34  |
| BASB016     | 04-Apr-01       | (9.5-10.0)          | < 0.22 | 2.7 | 110 | 0.35 | 1.3 | 5.6 | 25  | 12 | 0.036  | <0.86  | 37 | 4.4 | -       | <0.22  | 21 | 27  |
| BASB016     | 04-Apr-01       | (14.5-15.0)         | < 0.21 | 2.8 | 120 | 0.41 | 1.7 | 6.9 | 33  | 17 | 0.079  | < 0.84 | 47 | 5.2 | < 0.21  | <0.21  | 24 | 38  |
| BASB016     | 04-Apr-01       | (24.5-25.0)         | <0.22  | 2.8 | 66  | 0.3  | 1.5 | œ   | 30  | 16 | 0.075  | < 0.87 | 53 | 5   |         | 0.3    | 21 | 31  |
| Area 5      | ;               |                     |        |     |     |      |     | :   | :   | :  |        | :      |    | -   |         | -      | i  |     |
| BASB022     | 04-Apr-01       | (1.5-2.0)           | <0.23  | 5.4 | 140 | 0.46 | 2.2 | 10  | 33  | 25 | 0.072  | < 0.93 | 54 | 31  |         | <0.23  | 31 | 2   |
| BASB022     | 04-Apr-01       | (4.5-5.0)           | < 0.18 | 9.7 | 130 | 0.27 | 1.6 | 9   | 22  | 21 | 0.061  | 2.1    | 32 | 63  | < 0.18  | 0.47   | 23 | 100 |
| BASB022     | 04-Apr-01       | (9.5-10.0)          | < 0.23 | 3.9 | 88  | 0.26 | 1.7 | 5.4 | 16  | 24 | 0.08   | 1.6    | 26 | 23  |         | < 0.23 | 21 | 84  |
| BASB022     | 04-Apr-01       | (14.5-15.0)         | < 0.23 | 4.1 | 150 | 0.53 | 2.3 | 8.9 | 41  | 23 | 0.058  | <0.93  | 62 | 6.4 |         | <0.23  | 31 | 20  |
| BASB022     | 04-Apr-01       | (20.5-21.0)         | < 0.19 | 4.3 | 120 | 0.38 | 1.6 | 7.2 | 28  | 17 | 920.0  | <0.75  | 45 | 6.9 |         | <0.19  | 25 | 39  |
| BASB023     | 04-Apr-01       | (1.5-2.0)           | 0.52   | 33  | 220 | 0.21 | 2.3 | 6.3 | 11  | 25 | 0.25   | 1.6    | 17 | 130 | 0.55    | 1.9    | 16 | 400 |

rpt Soil Metals.rpt

### Title 22 Metals Detected in Soil Batarse Site, Oakland, California Concentrations in milligrams per kilogram (mg/kg) Table 11

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | Ag     | As   | Ba  | Be   | РЭ   | တ        | Ď   | J  | Hg    | Wo     | Ē  | Pp  | Se     | F      | >  | Zn  |
|-------------|-----------------|---------------------|--------|------|-----|------|------|----------|-----|----|-------|--------|----|-----|--------|--------|----|-----|
| Area 5      |                 |                     |        |      |     | i    |      |          |     |    |       |        |    | :   | !!     |        |    |     |
| BASB023     | 04-Apr-01       | (4.5-5.0)           | < 0.24 | 2.1  | 63  | 0.26 | 0.91 | 4.5      | 16  | œ  | 0.033 | <0.97  | 27 | 3.6 | < 0.24 | < 0.24 | 16 | 23  |
| BASB023     | 04-Apr-01       | (10.5-11.0)         | < 0.23 | 4.5  | 140 | 0.56 | 7    | 9.5      | 37  | 18 | 0.048 | < 0.92 | 55 | 6.5 | < 0.23 | < 0.23 | 32 | 40  |
| BASB023     | 04-Apr-01       | (14.5-15.0)         | < 0.24 | 3.5  | 100 | 0.5  | 2    | 9.1      | 35  | 20 | 0.067 | <0.97  | 3  | 6.2 | < 0.24 | < 0.24 | 56 | 4   |
| BASB023     | 04-Apr-01       | (20.5-21.0)         | < 0.24 | 8.4  | 190 | 0.41 | 7    | <b>∞</b> | 38  | 27 | 0.078 | 8.4    | 49 | 33  | < 0.24 | 0.25   | 28 | 120 |
| BASB024     | 04-Apr-01       | (1.5-2.0)           | < 0.23 | ю    | 130 | 0.36 | 1.5  | 6.7      | 25  | 17 | 90.0  | <0.9   | 40 | 17  | < 0.23 | <0.23  | 23 | 47  |
| BASB024     | 04-Apr-01       | (3.5-4.0)           | < 0.21 | 4.1  | 140 | 0.48 | 1.9  | 8.1      | 33  | 18 | 0.039 | < 0.83 | 20 | 6.4 | <0.21  | < 0.21 | 30 | 41  |
| BASB024     | 04-Apr-01       | (9.5-10.0)          | < 0.21 | 3.5  | 120 | 0.53 | 2    | 8.8      | 35  | 20 | 0.062 | < 0.85 | 57 | 6.3 | < 0.21 | < 0.21 | 25 | 47  |
| BASB024     | 04-Apr-01       | (14.5-15.0)         | < 0.23 | 4.1  | 160 | 0.5  | 2    | 11       | 31  | 21 | 0.05  | <0.0>  | 99 | 6.4 | < 0.23 | 0.45   | 25 | 42  |
| BASB024     | 04-Apr-01       | (21.5-22.0)         | < 0.21 | 2.9  | 110 | 0.39 | 1.4  | 6.5      | 31  | 15 | 90.0  | 1.4    | 38 | 6.1 | < 0.21 | <0.21  | 22 | 92  |
| BASB025     | 04-Apr-01       | (3.5-4.0)           | < 0.23 | 3.9  | 120 | 0.33 | 1.7  | 6.4      | 25  | 16 | 0.041 | < 0.94 | 35 | 81  | 0.48   | < 0.23 | 25 | 110 |
| DUP         | 04-Apr-01       | (4.5-5.0)           | < 0.21 | 3.3  | 150 | 0.45 | 1.7  | 9.9      | 32  | 20 | 0.023 | >0.86  | 42 | 9   | < 0.21 | 0.32   | 56 | 41  |
| BASB025     | 04-Apr-01       | (9.5-10.0)          | < 0.25 | 3.5  | 110 | 0.44 | 1.7  | ∞        | 30  | 17 | 0.046 | <0.98  | 48 | 5.7 | < 0.25 | < 0.25 | 24 | 40  |
| BASB025     | 04-Apr-01       | (14.5-15.0)         | < 0.25 | 2.6  | 130 | 0.4  | 1.5  | 6.5      | 28  | 17 | 0.045 | <0.99  | 43 | 5   | < 0.25 | < 0.25 | 21 | 37  |
| BASB025     | 04-Apr-01       | (24.5-25.0)         | < 0.22 | 2.5  | 250 | 0.32 | 1.5  | 9.7      | 53  | 91 | 0.063 | < 0.87 | 49 | 4.9 | 0.39   | 1.3    | 21 | 31  |
| BASB086     | 04-Apr-01       | (1.5-2.0)           | < 0.23 | 0.87 | 20  | 0.41 | 3    | 10       | 3.2 | 15 | 0.11  | < 0.91 | 18 | 3.4 | < 0.23 | 0.61   | 61 | 71  |
| BASB086     | 04-Apr-01       | (3.5-4.0)           | < 0.21 | 4.2  | 82  | 0.28 | 1.3  | ∞        | 70  | 10 | 0.033 | <0.83  | 37 | 4.6 | 0.39   | 1.5    | 20 | 27  |
| BASB086     | 04-Apr-01       | (9.5-10.0)          | < 0.23 | 3.5  | 100 | 0.38 | 1.5  | 8.9      | 28  | 13 | 0.071 | <0.92  | 41 | 4.8 | < 0.23 | 0.34   | 25 | 31  |
| BASB086     | 04-Apr-01       | (15.5-16.0)         | < 0.23 | 3.7  | 120 | 0.45 | 1.7  | 7.8      | 33  | 18 | 0.062 | <0.0>  | 52 | 5.7 | < 0.23 | < 0.23 | 25 | 42  |
| BASB086     | 04-Apr-01       | (19.5-20.0)         | < 0.25 | 3.3  | 160 | 0.42 | 1.9  | 8.5      | 34  | 70 | 90.0  | <0.99  | 55 | 5.8 | < 0.25 | 0.71   | 23 | 43  |
| BASB087     | 04-Apr-01       | (3.5-4.0)           | < 0.24 | 3.3  | 110 | 0.39 | 2.8  | 8.9      | 5.8 | 21 | 0.13  | >0.96  | 18 | 4   | 0.62   | 0.51   | 56 | 35  |
| DUP         | 04-Apr-01       | (4.5-5.0)           | < 0.22 | 2    | 130 | 0.44 | 1.7  | 6.2      | 38  | 20 | 0.031 | <0.89  | 46 | 5.3 | < 0.22 | < 0.22 | 30 | 43  |
| BASB087     | 04-Apr-01       | (9.5-10.0)          | < 0.21 | 2.8  | 26  | 0.37 | 1.5  | 7.4      | 27  | 16 | 0.063 | < 0.85 | 47 | 4.8 | < 0.21 | < 0.21 | 21 | 34  |
| BASB087     | 04-Apr-01       | (14.5-15.0)         | < 0.24 | 4.2  | 130 | 0.4  | 1.7  | ∞<br>∞.  | 31  | 17 | 0.051 | <0.94  | 48 | 5.8 | < 0.24 | < 0.24 | 25 | 36  |

Page 8 of 14 rpt\_Soil\_Metals.rpt

09/07/2001

Concentrations in milligrams per kilogram (mg/kg) Table 11
Title 22 Metals Detected in Soil
Batarse Site, Oakland, California

| Zn                                |  |
|-----------------------------------|--|
| >                                 |  |
| =                                 |  |
| Se                                |  |
| Pb                                |  |
| Ž                                 |  |
| Wo                                |  |
| Hg                                |  |
| J)                                |  |
| ċ                                 |  |
| ဝ                                 |  |
| PO                                |  |
| Be                                |  |
| Ba                                |  |
| As                                |  |
| Ag                                |  |
| Depth<br>(feet bgs)               |  |
| Date<br>Sampled                   |  |
| Location ID Date De Sampled (feet |  |

| Location ID | Date<br>Sampled | Depth<br>(feet bgs)   | Ag     | As  | Ba  | Be   | ಶ    | Co  | Cr | Cu | НВ    | Wo     | Ž  | Pb       | Se    | F      | >  | Zn   |
|-------------|-----------------|-----------------------|--------|-----|-----|------|------|-----|----|----|-------|--------|----|----------|-------|--------|----|------|
| Area 5      |                 | į                     |        |     |     |      |      |     |    |    |       |        |    | :        | :     |        |    |      |
| BASB087     | 04-Apr-01       | 04-Apr-01 (24.5-25.0) | < 0.22 | 1.9 | 130 | 0.21 | 1.2  | 5.6 | 20 | 11 | 0.12  | < 0.9  | 31 | 3.4      | <0.22 | 0.49   | 23 | 27   |
| Area 6      |                 |                       |        |     |     |      |      |     |    |    |       |        |    | :        | :     |        |    |      |
| BASB001     | 02-Apr-01       | (2.5-3.0)             | < 0.23 | 3.5 | 95  | 0.31 | 1.3  | 6.4 | 23 | 15 | 0.062 | <0.9   | 40 | <b>%</b> | <0.23 | <0.23  | 20 | 39   |
| BASB001     | 02-Apr-01       | (4.5-5.0)             | < 0.23 | 7.7 | 220 | 0.51 | 2.5  | 18  | 94 | 21 | 0.047 | <0.93  | 70 | 6.3      | <0.23 | 2.3    | 36 | 51   |
| BASB001     | 02-Apr-01       | (9.5-10.0)            | < 0.23 | 4   | 160 | 0.4  | 2.2  | ∞   | 33 | 20 | 0.078 | < 0.93 | 51 | 5.6      | 0.57  | < 0.23 | 26 | 6    |
| BASB001     | 02-Apr-01       | (14.5-15.0)           | <0.22  | 3.7 | 140 | 0.48 | 1.8  | 8.7 | 31 | 19 | 0.068 | <0.0>  | 57 | 6.5      | <0.22 | <0.22  | 25 | 4    |
| BASB001     | 02-Apr-01       | (22.5-23.0)           | < 0.23 | 3.2 | 120 | 0.39 | 1.5  | 6.5 | 28 | 14 | 0.047 | <0.91  | 4  | 7.2      |       | <0.23  | 22 | 35   |
| BASB002     | 31-Mar-01       | (2.5-3.0)             | < 0.23 | 4.3 | 110 | 0.23 | 2.3  | 7.9 | 24 | 20 | 0.047 | <0.9   | 39 | 24       |       | <0.23  | 25 | 48 J |
| BASB005     | 31-Mar-01       | (2.5-3.0)             | < 0.23 | 4   | 170 | 0.52 | 1.6  | 7.8 | 31 | 61 | 0.027 | <0.91  | 48 | 5.7      |       | 0.27   | 25 | 37 J |
| BASB011     | 05-Apr-01       | (2.5-3.0)             | < 0.23 | 1.7 | 49  | 0.14 | 0.88 | 3.7 | Ξ  | 7  | 0.026 | <0.92  | 19 | 4.3      |       | < 0.23 | 14 | 25   |
| BASB017     | 05-Apr-01       | (2.5-3.0)             | < 0.22 | 3.4 | 100 | 0.37 | 1.5  | 9.9 | 28 | 15 | 0.026 | <0.88  | 39 | 5.7      |       | 0.29   | 28 | 37   |
| BASB021     | 29-Mar-01       | (0.5-1.0)             | < 0.23 | 18  | 120 | 0.41 | 2.1  | 7.3 | 25 | 31 | 0.1   | <0.93  | 29 | 61       |       | 0.81   | 43 | 93   |
| BASB021     | 29-Mar-01       | (4.5-5.0)             | < 0.2  | 1.7 | 88  | 0.4  | 1.1  | 6.1 | 22 | 16 | 0.033 | < 0.79 | 37 | 4.7      |       | 0.33   | 20 | 31   |
| BASB021     | 29-Mar-01       | (9.5-10.0)            | < 0.24 | 4.4 | 130 | 9.0  | 1.9  | 10  | 38 | 23 | 0.07  | < 0.97 | 57 | 7.4      |       | 0.53   | 35 | 49   |
| BASB021     | 29-Mar-01       | (14.5-15.0)           | < 0.23 | 3.6 | 140 | 0.51 | 1.6  | 8.5 | 33 | 18 | 0.056 | <0.91  | 51 | 9        |       | 0.54   | 27 | 39   |
| BASB021     | 29-Mar-01       | (24.5-25.0)           | < 0.23 | 2.8 | 110 | 0.4  | 4.4  | 6.7 | 53 | 15 | 0.055 | <0.91  | 47 | 8.4      |       | 0.5    | 24 | 31   |
| BASB051     | 02-Apr-01       | (2.5-3.0)             | < 0.23 | 2.3 | 100 | 0.36 | 1.3  | 6.2 | 23 | 14 | 0.033 | <0.0>  | 42 | 4.7      |       | <0.23  | 16 | 33   |
| BASB051     | 02-Apr-01       | (9.5-10.0)            | < 0.21 | 2.6 | 95  | 0.32 | 1.3  | 9   | 22 | 41 | 0.061 | < 0.85 | 36 | 8.8      | -     | <0.21  | 20 | 33   |
| BASB051     | 02-Apr-01       | (14.5-15.0)           | < 0.23 | 33  | 120 | 0.37 | 1.6  | 7.1 | 27 | 18 | 0.07  | <0.93  | 46 | 5.5      |       | <0.23  | 24 | 40   |
| BASB051     | 02-Apr-01       | (22.5-23.0)           | < 0.22 | 2.8 | 83  | 0.26 | 1.1  | 5.2 | 17 | 11 | 0.092 | <0.89  | 30 | 4.3      |       | < 0.22 | 16 | 51   |
| BASB081     | 05-Apr-01       | (2.5-3.0)             | < 0.22 | 3.6 | 130 | 0.36 | 1.6  | 8.1 | 31 | 19 | 0.044 | <0.87  | 45 | 10       |       | 0.39   | 56 | 47   |
| BASB081     | 05-Apr-01       | (4.5-5.0)             | < 0.22 | 2.9 | 86  | 0.29 | 1.2  | 5.2 | 24 | 13 | 0.05  | <0.0>  | 35 | 4.1      | 0.25  | <0.22  | 22 | 30   |
| BASB081     | 05-Apr-01       | (9.5-10.0)            | < 0.23 | 2.7 | 120 | 0.38 | 1.2  | 6.1 | 25 | 13 | 0.056 | <0.92  | 36 | 4.7      |       | <0.23  | 18 | 28   |

rpt\_Soil\_Metals.rpt

### Title 22 Metals Detected in Soil Batarse Site, Oakland, California Concentrations in milligrams per kilogram (mg/kg) Table 11

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | Ag     | As     | Ba  | Be   | P    | ပိ       | ڻ      | J.  | Hg    | Мо          | ī    | <u>୫</u> | Se     | =      | >   | Zu         |
|-------------|-----------------|---------------------|--------|--------|-----|------|------|----------|--------|-----|-------|-------------|------|----------|--------|--------|-----|------------|
| Area 7      |                 |                     |        |        |     |      |      |          |        |     |       |             |      |          |        |        |     |            |
| DUP         | 21-Mar-01       | (5.0-5.5)           | < 0.25 | 3.6    | 091 | 0.52 | 1.7  | 9.2      | 35     | 81  | 0.022 | <0.99       | 47 J | 9        | < 0.25 | < 0.25 | 30  | 40 J       |
| BASB058     | 21-Mar-01       | (9.5-10.0)          | < 0.21 | 2.7    | 120 | 0.47 | 1.5  | 4.5      | 32     | 15  | 0.052 | <0.85       | 38 J | 4.3      | < 0.21 | < 0.21 | 19  | 34 J       |
| BASB058     | 21-Mar-01       | (14.5-15.0)         | < 0.23 | 2.1    | 130 | 0.41 | 1.5  | 6.7      | 28     | 14  | 0.043 | <0.93       | 41 J | 4.9      | < 0.23 | <0.23  | 20  | 34 J       |
| BASB058     | 21-Mar-01       | (24.5-25.0)         | < 0.21 | 2.4    | 120 | 0.37 | 1.6  | 6.7      | 75     | 16  | 0.067 | <0.85       | 51 J | 5        | < 0.21 | < 0.21 | 21  | 38 J       |
| BASB080     | 03-Apr-01       | (1.5-2.0)           | < 0.25 | 3.6    | 140 | 0.47 | 1.8  | 8.5      | 35     | 19  | 0.098 | \<br>-      | 46   | 9.8      | <0.25  | < 0.25 | 31  | 45         |
| BASB080     | 03-Apr-01       | (4.5-5.0)           | < 0.21 | 3.5    | 130 | 0.43 | 1.7  | 7.7      | 32     | 16  | 0.16  | >0.86       | 46   | 4.9      | < 0.21 | < 0.21 | 29  | 38         |
| BASB080     | 03-Apr-01       | (9.5-10.0)          | < 0.21 | 4.6    | 160 | 9.0  | 2.2  | 6.6      | 45     | 23  | 0.067 | < 0.82      | 61   | 6.5      | < 0.21 | < 0.21 | 33  | 20         |
| BASB080     | 03-Apr-01       | (14.5-15.0)         | < 0.22 | 3.8    | 130 | 0.49 | 1.8  | 7.7      | 36     | 18  | 0.091 | < 0.88      | 99   | 9.6      | < 0.22 | 0.38   | 27  | 42         |
| BASB080     | 03-Apr-01       | (23.5-24.0)         | < 0.25 | 0.58   | 36  | 0.12 | 0.38 | 1.8      | 9.3    | 4.3 | 0.063 | <0.99       | 16   | 1.3      | < 0.25 | < 0.25 | 8.4 | 11         |
| Area 8      |                 |                     |        |        |     |      |      |          |        |     |       |             |      |          |        |        |     |            |
| BASB050     | 20-Mar-01       | (2.0-2.5)           | < 0.22 | 4.5    | 160 | 0.45 | 1.8  | 7.3      | 30     | 23  | 0.028 | < 0.88      | 45   | 38       | < 0.22 | 0.46   | 28  | 11         |
| BASB050     | 20-Mar-01       | (4.5-5.0)           | < 0.23 | 4.3    | 170 | 0.56 | 1.8  | 12       | 35     | 61  | 0.032 | < 0.92      | 20   | 9.9      | < 0.23 | 0.7    | 29  | 41         |
| BASB050     | 20-Mar-01       | (9.5-10.0)          | < 0.24 | 5.6    | 120 | 0.46 | 1.6  | 7.6      | 31     | 81  | 0.21  | <0.96       | 49   | 5.6      | < 0.24 | 0.46   | 70  | 41         |
| BASB050     | 20-Mar-01       | (14.5-15.0)         | <0.2   | 4.5    | 100 | 0.33 | 1.6  | 7.8      | 34     | 14  | 0.058 | <0.82       | 4    | 3.6      | <0.2   | 0.78   | 24  | 29         |
| BASB050     | 20-Mar-01       | (24.5-25.0)         | <0.22  | 1.5    | 96  | 0.32 | 1.3  | 4.1      | 31     | 13  | 0.068 | >0.86       | 40   | 3.7      | < 0.22 | < 0.22 | 17  | 32         |
| BASB060     | 05-Apr-01       | (0.0-0.5)           | NA     | NA     | NA  | NA   | NA   | NA       | NA     | Ν   | NA    | N<br>A      | NA   | 36       | Ϋ́     | NA     | ΝΑ  | NA         |
| BASB061     | 05-Apr-01       | (0.0-0.5)           | NA     | NA     | NA  | Ϋ́   | NA   | NA       | Y<br>Y | Ν   | NA    | NA          | NA   | 130      | Y<br>Y | NA     | Ϋ́  | NA         |
| BASB062     | 05-Apr-01       | (0.0-0.5)           | NA     | NA     | Υ   | Ϋ́   | NA   | NA       | Ν      | NA  | NA    | NA          | NA   | 18       | Ν      | NA     | Ϋ́  | NA         |
| BASB063     | 05-Apr-01       | (0.0-0.5)           | NA     | N<br>A | NA  | Ϋ́   | NA   | NA       | NA     | NA  | Ν     | N<br>A      | NA   | 110      | NA     | NA     | Ϋ́  | NA         |
| BASB065     | 22-Mar-01       | (0.0-0.5)           | < 0.23 | 7.5    | 150 | 0.42 | 1.9  | 8.1      | 32     | 25  | 0.1   | < 0.92      | 48 J | 31       | 0.37   | <0.23  | 29  | 82 J       |
| Area 9      |                 |                     |        |        |     |      |      |          |        |     |       |             |      |          |        |        |     |            |
| BASB088     | 09-Jul-01       | (3.0-3.5)           | < 0.25 | Э      | 120 | 0.37 | 1.5  | 7.5      | 30     | 17  | 0.047 | \<br>\      | 46   | 4.9      | < 0.25 | <0.25  | 56  | 35         |
| DUP         | 09-Jul-01       | (3.0-3.5)           | < 0.25 | 3,4    | 35  | 0.32 | 1.6  | 6.5      | 26     | 13  | 0.36  | \<br>\<br>! | 41   | 8.8      | 0.45   | <0.25  | 25  | 33         |
|             |                 |                     |        |        |     |      | ć    | ¥1.30 €1 |        |     |       |             |      |          |        |        | δ   | 1000120700 |

rpt\_Soil\_Metals.rpt

Batarse Site, Oakland, California Title 22 Metals Detected in Soil Table 11

| Location ID | Date<br>Sampled | Depth<br>(feet bgs)   | Ag          | As    | Ва  | Be   | р   | Co  | Ċ  | J  | Нg    | Мо                | Z  | Pb  | Se       | =      | >  | Zu |
|-------------|-----------------|-----------------------|-------------|-------|-----|------|-----|-----|----|----|-------|-------------------|----|-----|----------|--------|----|----|
| Area 9      |                 |                       |             |       |     |      |     |     |    |    |       |                   |    |     |          |        |    |    |
| BASB088     | 09-Jul-01       | 09-Jul-01 (4.5-5.0)   | <0.25 3.4   | 3.4   | 170 | 0.48 | 1.7 | 10  | 34 | 50 | 0.042 | <0.98             | 53 | 6.3 | < 0.25 < | < 0.25 | 28 | 39 |
| BASB088     | 09-Jul-01       | (9.5-10.0)            | < 0.25      | 2.7   | 150 | 0.47 | 1.7 | 7.8 | 38 | 21 | 0.067 | $\overline{\vee}$ | 53 | 9   | <0.25 <  | < 0.25 | 25 | 42 |
| BASB088     | 09-Jul-01       | 09-Jul-01 (14.5-15.0) | < 0.24      | 5.6   | 140 | 0.39 | 1.7 | 7.9 | 36 | 21 | 0.071 | < 0.95            | 49 | 7.1 | < 0.24 < | < 0.24 | 24 | 44 |
| BASB088     | 09-Jul-01       | 09-Jul-01 (25.0-25.5) | < 0.24      | 2.9   | 110 | 0.33 | 1.5 | 9.3 | 78 | 18 | 0.074 | < 0.95            | 51 | 6.5 | < 0.24 < | < 0.24 | 21 | 34 |
| BASB089     | 09-Jul-01       | (3.0-3.5)             | <0.25 , 2.3 | . 2.3 | 110 | 0.35 | 1.2 | 9   | 56 | 15 | 0.051 | <0.99             | 37 | 4.9 | <0.25 <  | <0.25  | 20 | 33 |
| BASB089     | 09-Jul-01       | (4.5-5.0)             | < 0.24      | 33    | 160 | 0.51 | 1.5 | 7.4 | *  | 18 | 0.044 | <0.95             | 46 | 6.3 |          | < 0.24 | 25 | 40 |
| BASB089     | 09-Jul-01       | (9.5-10.0)            | < 0.24      | 3.5   | 160 | 0.49 | 1.9 | 6   | 39 | 22 | 0.058 | < 0.95            | 9  | 6.1 |          | < 0.24 | 28 | 46 |
| BASB089     | 09-Jul-01       | (14.5-15.0)           | < 0.25      | 2     | 130 | 0.4  | 1.6 | 7   | 32 | 18 | 0.079 | ^                 | 49 | 4.7 |          | < 0.25 | 22 | 38 |
| BASB089     | 09-Jul-01       | (27.0-27.5)           | < 0.24      | 4.5   | 130 | 0.44 | 1.9 | ∞   | 41 | 25 | 90.0  | < 0.95            | 99 | 7.3 |          | < 0.24 | 28 | 47 |
| BASB090     | 09-Jul-01       | (2.0-2.5)             | < 0.25      | 9.7   | 8   | 0.18 | 2.5 | 6.7 | 24 | 52 | 0.05  | <0.98             | 4  | 99  |          | < 0.25 | 25 | 83 |
| DUP         | 09-Jul-01       | (2.0-2.5)             | < 0.25      | 5.9   | 100 | 0.23 | 2.5 | 7.8 | 53 | 34 | 0.049 | ^                 | 49 | 43  | 0.82 <   | < 0.25 | 26 | 71 |
| BASB090     | 09-Jul-01       | (4.5-5.0)             | < 0.24      | 5.9   | 170 | 0.49 | 1.7 | 7.4 | 35 | 21 | 0.13  | <0.96             | 48 | 6.4 | < 0.24 < | < 0.24 | 27 | 44 |
| BASB090     | 09-Jul-01       | (9.5-10.0)            | < 0.24      | т     | 150 | 0.49 | 1.9 | 9.1 | 38 | 23 | 960.0 | <0.98             | 2  | 6.3 | < 0.24 < | < 0.24 | 28 | 46 |
| BASB090     | 09-Jul-01       | (14.5-15.0)           | < 0.25      | 2.1   | 120 | 0.33 | 1.4 | 6.1 | 27 | 15 | 0.14  | Ÿ                 | 9  | 4.1 | < 0.25 < | <0.25  | 23 | 34 |
| BASB090     | 09-Jul-01       | 09-Jul-01 (25.0-25.5) | < 0.25      | 3.3   | 150 | 0.42 | 1.8 | 6.9 | 45 | 21 | 0.065 | $\vec{\lor}$      | 54 | 5.9 | <0.25 <  | <0.25  | 28 | 44 |

Data prepared by: TIH. Data QA/QC by: LDF.

Notes:

J = Reported value is estimated.

bgs = below ground surface DUP = Duplicate sample

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for mercury using EPA test method 7470 and EPA test method 7470A and all other metals were analyzed by EPA test method 6010B.

Be = Berrylium Cd = Cadmium Co = Cobalt Ba = Barium As = Arsenic Ag = Silver

Cr = Chromium Cu = Copper

### Table 11 Title 22 Metals Detected in Soil Batarse Site, Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

| Zu          |            |
|-------------|------------|
| >           |            |
| =           |            |
| Şe          |            |
| Pp          |            |
| Ż           |            |
| Ψ°          |            |
| Ε̈́Ε        |            |
| 3           |            |
| ڻ           |            |
| ပိ          |            |
| 3           |            |
| Be          |            |
| Ва          |            |
| As          |            |
| Ag          |            |
| Depth       | (feet bgs) |
| Date        | Sampled    |
| Location ID |            |

Hg = Mercury Mo = Molybdenum Ni = Nickel

Se = Selenium T1 = Thallium V = Vanadium Zn = Zinc

Pb = Lead

Table 12
Total Petroleum Hydrocarbons Detected in Groundwater
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | TPHd   | TPHg   | TPHmo | TPHms   | TPHpt     | TPHss |
|-------------|-----------------|--------|--------|-------|---------|-----------|-------|
| Area 1      | •               |        |        |       |         |           |       |
| BASB026     | 28-Mar-01       | 130 Y  | < 50   | < 300 | < 50    | NA        | NA    |
| DUP         | 28-Mar-01       | 140 Y  | < 50   | < 300 | < 50    | NA        | NA    |
| BASB027     | 27-Mar-01       | < 50   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB028     | 27-Mar-01       | < 50   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB029     | 23-Mar-01       | < 50   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB030     | 23-Mar-01       | < 50   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB031     | 26-Mar-01       | 800 YL | 610 YH | < 300 | 920 YLb | NA        | 320   |
| BASB032     | 26-Mar-01       | 61 Y   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB033     | 26-Mar-01       | < 50   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB034     | 27-Mar-01       | < 50   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB036     | 22-Mar-01       | 73 Y   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB037     | 22-Mar-01       | 100 Y  | < 50   | < 300 | < 50    | NA        | NA    |
| BASB070     | 03-Apr-01       | < 50   | < 50   | < 300 | NA      | < 50      | NA    |
| BASB071     | 03-Apr-01       | 150 YL | 320 Y  | < 300 | NA      | 240       | NA    |
| BASB072     | 05-Apr-01       | 80 Y   | < 50   | < 300 | NA      | < 50      | NA    |
| BASB073     | 02-Apr-01       | 73 Y   | < 50   | < 300 | NA      | < 50      | NA    |
| BASB074     | 02-Apr-01       | < 50   | < 50   | < 300 | NA      | < 50      | NA    |
| BASB075     | 02-Apr-01       | < 50   | < 50   | < 300 | NA      | < 50      | NA    |
| BASB076     | 30-Mar-01       | 530 Y  | < 50   | 530   | < 50    | NA        | NA    |
| BASB077     | 30-Mar-01       | 52 Y   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB078     | 05-Apr-01       | < 50   | < 50   | < 300 | NA      | < 50      | NA    |
| BASB082     | 05-Apr-01       | < 50   | < 50   | < 300 | NA      | < 50      | NA    |
| Area 2      |                 |        |        |       |         |           |       |
| BASB006     | 31-Mar-01       | < 50   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB007     | 31-Mar-01       | 70 Y   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB008     | 21-Mar-01       | 150 YZ | < 50   | < 300 | < 50    | NA        | NA    |
| Area 3      |                 |        |        |       |         |           |       |
| BADW001     | 23-Mar-01       | < 50   | < 50   | < 300 | < 50    | NA        | NA    |
| BASB040     | 03-Apr-01       | < 50   | < 50   | < 300 | NA      | < 50      | NA    |
| BASB041     | 28-Mar-01       | 120 Y  | < 50   | < 300 | < 50    | NA        | NA    |
| Area 4      | 10 M 0:         | (1.37  | × 50   | × 200 |         |           | ***   |
| BASB012     | 19-Mar-01       | 61 Y   | < 50   | < 300 | < 50    | NA<br>150 | NA    |
| BASB016     | 04-Apr-01       | 71 Y   | < 50   | < 300 | NA      | < 50      | NA    |
| DUP         | 04-Apr-01       | 61 Y   | < 50   | < 300 | NA      | < 50      | NA    |

rpt\_water\_TPH.rpt Page 1 of 3 09/07/2001

### Table 12 Total Petroleum Hydrocarbons Detected in Groundwater Batarse Site, Oakland, California

Concentrations in micrograms per liter (µg/l)

| Location ID | Date      | TPHd     | TPHg        | TPHmo   | TPHms | TPHpt   | TPHss |
|-------------|-----------|----------|-------------|---------|-------|---------|-------|
|             | Sampled   |          |             |         |       |         |       |
| Area 5      |           |          | <del></del> |         |       |         |       |
| BASB022     | 04-Apr-01 | 110 Y    | < 50        | < 300   | NA    | < 50    | NA    |
| BASB023     | 04-Apr-01 | 310 YH   | < 50        | 1100    | NA    | < 50    | NA    |
| BASB024     | 04-Apr-01 | < 50     | < 50        | < 300   | NA    | < 50    | NA    |
| BASB025     | 04-Apr-01 | < 50     | < 50        | < 300   | NA    | < 50    | NA    |
| BASB086     | 04-Apr-01 | < 50     | < 50        | < 300   | NA    | < 50    | NA    |
| BASB087     | 04-Apr-01 | < 50     | < 50        | < 300   | NA    | < 50    | NA    |
| Area 6      |           |          |             |         |       |         |       |
| BASB001     | 02-Apr-01 | 360 YH   | < 50        | 1200 Y  | NA    | < 50    | NA    |
| BASB021     | 29-Mar-01 | 66 Y     | < 50        | < 300   | < 50  | NA      | NA    |
| BASB051     | 02-Apr-01 | 20000 Y  | 19000       | < 3000  | NA    | 14000 Y | NA    |
| BASB081     | 05-Apr-01 | 210000 Y | 7700        | < 15000 | NA    | 5800 Y  | NA    |
| DUP         | 05-Apr-01 | 90000 Y  | 7200        | < 7500  | NA    | 5400 Y  | NA    |
| Area 7      |           |          |             |         |       |         |       |
| BASB018     | 05-Apr-01 | 160 YH   | < 50        | < 300   | NA    | < 50    | NA    |
| BASB019     | 05-Apr-01 | < 50     | < 50        | < 300   | NA    | < 50    | NA    |
| DUP         | 05-Apr-01 | < 50     | < 50        | < 300   | NA    | < 50    | NA    |
| BASB052     | 02-Apr-01 | 100 YH   | < 50        | 360 YH  | NA    | < 50    | NA    |
| BASB053     | 03-Apr-01 | < 50     | < 50        | < 300   | NA    | < 50    | NA    |
| BASB054     | 03-Apr-01 | < 50     | < 50        | < 300   | NA    | < 50    | NA    |
| BASB055     | 29-Mar-01 | 51 Y     | < 50        | < 300   | < 50  | NA      | NA    |
| BASB056     | 30-Mar-01 | < 50     | < 50        | < 300   | < 50  | NA      | NA    |
| BASB057     | 28-Mar-01 | < 50     | < 50        | < 300   | < 50  | NA      | NA    |
| BASB058     | 21-Mar-01 | 57 Y     | < 50        | < 300   | < 50  | NA      | NA    |
| BASB080     | 03-Apr-01 | < 50     | < 50        | < 300   | NA    | < 50    | NA    |
| Area 8      |           |          |             |         |       |         |       |
| BASB050     |           |          | < 50        | < 300   | < 50  | NA      | NA    |
| Area 9      |           |          |             |         |       |         |       |
| BASB088     |           |          |             |         |       |         |       |
| DUP         |           |          |             |         | NA    | NA      | NA    |
| BASB089     |           |          |             |         | NA    | NA      | NA    |
| BASB090     | 09-Jul-01 | < 50     | < 50        | < 300   | NA    | NA      | NA    |

Data prepared by: <u>TIH</u>. Data QA/QC by: <u>LDF</u>.

Notes:

b = Continuing calibration verification percent difference was slightly above acceptance limits in batch. DUP = Duplicate sample

#### Table 12 Total Petroleum Hydrocarbons Detected in Groundwater Batarse Site, Oakland, California

Concentrations in micrograms per liter (µg/l)

| Location ID | Date    | TPHd | TPHg | TPHmo | TPHms | TPHpt | TPHss |
|-------------|---------|------|------|-------|-------|-------|-------|
|             | Sampled |      |      |       |       |       |       |

H = Heavier hydrocarbons contributed to the quantitation.

J = Reported value is estimated.

L = Lighter hydrocarbons contributed to the quantitation.

Y = Sample exhibits fuel pattern which does not resemble standard.

Z = Sample exhibits unknown single peak or peaks.

TPHd = total petroleum hydrocarbons as diesel

TPHg = total petroleum hydrocarbons as gasoline

TPHmo = total petroleum hydrocarbons as motor oil

TPHms = total petroleum hydrocarbons as mineral spirits

TPHpt = total petroleum hydrocarbons as paint thinner

TPHss = total petroleum hydrocarbons as stoddard solvent

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for all compounds using EPA test method 8015 modified.

rpt water TPH.rpt Page 3 of 3 09/07/2001

Table 13
Volatile Organic Compounds Detected in Groundwater
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | 1,2,4-<br>TMB | 1,2,5-<br>TMB | CF    | cis-1,2-<br>DCE | CS2   | EBENZ | ISPB  | m,p-<br>XYL | MTBE NAPH | NAPH                          | n-<br>BBENZ | PBENZ | PCE   | TdSI  | s-<br>BBENZ | TCE   | TOL   | VC    |
|-------------|-----------------|---------------|---------------|-------|-----------------|-------|-------|-------|-------------|-----------|-------------------------------|-------------|-------|-------|-------|-------------|-------|-------|-------|
| Area 1      |                 |               |               |       |                 |       |       |       |             |           |                               |             |       |       |       |             |       |       |       |
| BASB026     | 28-Mar-01       | <0.5          | <0.5          | <0.5  | <0.5            | <0.5  | < 0.5 | < 0.5 | < 0.5       | <0.5      | ~                             | <0.5        | < 0.5 | <0.5  | <0.5  | <0.5        | <0.5  | <0.5  | <0.5  |
| DUP         | 28-Mar-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | < 0.5 | <0.5  | < 0.5 | < 0.5       | < 0.5     | V                             | <0.5        | < 0.5 | < 0.5 | < 0.5 | <0.5        | < 0.5 | <0.5  | <0.5  |
| BASB027     | 27-Mar-01       | < 0.5         | <0.5          | < 0.5 | <0.5            | <0.5  | <0.5  | < 0.5 | < 0.5       | <0.5      | \<br>\<br>\                   | < 0.5       | < 0.5 | < 0.5 | < 0.5 | <0.5        | < 0.5 | < 0.5 | <0.5  |
| BASB028     | 27-Mar-01       | < 0.5         | <0.5          | < 0.5 | <0.5            | <0.5  | <0.5  | < 0.5 | < 0.5       | <0.5      | \<br>\<br>!                   | <0.5        | <0.5  | < 0.5 | < 0.5 | <0.5        | <0.5  | <0.5  | < 0.5 |
| BASB029     | 23-Mar-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | < 0.5 | <0.5  | <0.5  | < 0.5       | <0.5      | $\overline{\dot{\mathbf{v}}}$ | < 0.5       | <0.5  | < 0.5 | < 0.5 | <0.5        | <0.5  | <0.5  | < 0.5 |
| BASB030     | 23-Mar-01       | < 0.5         | <0.5          | < 0.5 | <0.5            | < 0.5 | < 0.5 | <0.5  | < 0.5       | <0.5      | \<br>1                        | < 0.5       | <0.5  | <0.5  | <0.5  | <0.5        | <0.5  | <0.5  | < 0.5 |
| BASB031     | 26-Mar-01       | <0.5          | < 0.5         | < 0.5 | < 0.5           | < 0.5 | < 0.5 | <0.5  | < 0.5       | <0.5      | <u>^</u>                      | < 0.5       | < 0.5 | <0.5  | <0.5  | <0.5        | <0.5  | <0.5  | <0.5  |
| BASB032     | 26-Mar-01       | < 0.5         | < 0.5         | <0.5  | < 0.5           | < 0.5 | < 0.5 | <0.5  | < 0.5       | <0.5      | <u>^</u>                      | <0.5        | <0.5  | <0.5  | <0.5  | <0.5        | < 0.5 | <0.5  | < 0.5 |
| BASB033     | 26-Mar-01       | < 0.5         | < 0.5         | < 0.5 | <0.5            | < 0.5 | <0.5  | < 0.5 | < 0.5       | < 0.5     | <del>-</del>                  | <0.5        | <0.5  | <0.5  | < 0.5 | <0.5        | < 0.5 | < 0.5 | <0.5  |
| BASB034     | 27-Mar-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | < 0.5 | < 0.5 | < 0.5 | < 0.5       | <0.5      | <u>-</u>                      | < 0.5       | <0.5  | < 0.5 | < 0.5 | < 0.5       | < 0.5 | < 0.5 | <0.5  |
| BASB036     | 22-Mar-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | < 0.5 | <0.5  | < 0.5 | < 0.5       | <0.5      | \<br>\                        | <0.5        | < 0.5 | <0.5  | < 0.5 | < 0.5       | < 0.5 | <0.5  | <0.5  |
| BASB037     | 22-Mar-01       | <0.5          | <0.5          | < 0.5 | < 0.5           | < 0.5 | <0.5  | < 0.5 | < 0.5       | <0.5      | <u>\ \ 1</u>                  | <0.5        | < 0.5 | <0.5  | <0.5  | < 0.5       | < 0.5 | <0.5  | <0.5  |
| BASB070     | 03-Apr-01       | < 0.5         | <0.5          | <0.5  | <0.5            | <0.5  | <0.5  | < 0.5 | < 0.5       | <0.5      | \<br>\<br>!                   | <0.5        | <0.5  | < 0.5 | < 0.5 | < 0.5       | < 0.5 | < 0.5 | <0.5  |
| BASB071     | 03-Apr-01       | < 0.5         | <0.5          | < 0.5 | < 0.5           | <0.5  | <0.5  | <0.5  | < 0.5       | < 0.5     | \<br>\<br>\                   | < 0.5       | < 0.5 | <0.5  | <0.5  | < 0.5       | < 0.5 | <0.5  | <0.5  |
| BASB072     | 05-Apr-01       | <0.5          | < 0.5         | 11    | < 0.5           | <0.5  | <0.5  | < 0.5 | < 0.5       | < 0.5     | \<br>\<br>V                   | < 0.5       | <0.5  | < 0.5 | < 0.5 | < 0.5       | < 0.5 | <0.5  | <0.5  |
| BASB073     | 02-Apr-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | <0.5  | <0.5  | < 0.5 | < 0.5       | < 0.5     | ī,                            | < 0.5       | <0.5  | <0.5  | < 0.5 | < 0.5       | < 0.5 | < 0.5 | < 0.5 |
| BASB074     | 02-Apr-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | < 0.5 | < 0.5 | <0.5  | < 0.5       | < 0.5     | V                             | < 0.5       | < 0.5 | < 0.5 | < 0.5 | < 0.5       | < 0.5 | < 0.5 | < 0.5 |
| BASB075     | 02-Apr-01       | < 0.5         | <0.5          | < 0.5 | < 0.5           | <0.5  | <0.5  | < 0.5 | < 0.5       | < 0.5     | ٧<br>-                        | <0.5        | < 0.5 | <0.5  | < 0.5 | < 0.5       | < 0.5 | < 0.5 | <0.5  |
| BASB076     | 30-Mar-01       | < 0.5         | <0.5          | < 0.5 | < 0.5           | < 0.5 | < 0.5 | <0.5  | < 0.5       | < 0.5     | \<br>V                        | < 0.5       | <0.5  | <0.5  | <0.5  | < 0.5       | < 0.5 | < 0.5 | <0.5  |
| BASB077     | 30-Mar-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | 9'0   | <0.5  | < 0.5 | < 0.5       | < 0.5     | \<br>\<br>1                   | <0.5        | <0.5  | < 0.5 | < 0.5 | <0.5        | < 0.5 | < 0.5 | < 0.5 |
| BASB078     | 05-Apr-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | < 0.5 | <0.5  | < 0.5 | < 0.5       | < 0.5     | × 1                           | <0.5        | <0.5  | < 0.5 | < 0.5 | <0.5        | <0.5  | < 0.5 | <0.5  |
| BASB082     | 05-Apr-01       | < 0.5         | < 0.5         | <0.5  | < 0.5           | < 0.5 | <0.5  | <0.5  | <0.5        | <0.5      | $\overline{\lor}$             | <0.5        | <0.5  | <0.5  | <0.5  | <0.5        | <0.5  | <0.5  | < 0.5 |
| Area 2      |                 |               |               |       |                 |       |       |       |             |           |                               |             |       |       |       |             | :     |       |       |
| BASB006     | 31-Mar-01       | < 0.5         | <0.5          | <0.5  | < 0.5           | < 0.5 | <0.5  | <0.5  | <0.5        | <0.5      | $\overline{\vee}$             | <0.5        | <0.5  | <0.5  | <0.5  | <0.5        | <0.5  | 2.3   | <0.5  |
| BASB007     | 31-Mar-01       | < 0.5         | <0.5          | < 0.5 | < 0.5           | < 0.5 | <0.5  | <0.5  | < 0.5       | <0.5      | <u>~</u>                      | < 0.5       | < 0.5 | <0.5  | <0.5  | < 0.5       | < 0.5 | 0.5   | <0.5  |
| BASB008     | 21-Mar-01       | <0.5          | <0.5          | <0.5  | <0.5            | <0.5  | <0.5  | <0.5  | <0.5        | <0.5      | 7                             | <0.5        | < 0.5 | <0.5  | <0.5  | <0.5        | <0.5  | 1.2   | <0.5  |

Volatile Organic Compounds Detected in Groundwater Batarse Site, Oakland, California Table 13

| Location ID        | Date<br>Sampled | 1,2,4-<br>TMB | 1,2,5-<br>TMB | 5     | cis-1,2-<br>DCE | CS2   | EBENZ | ISPB        | m,p-       | MTBE  | NAPH              | n-<br>BBENZ | PBENZ | PCE   | P-<br>ISPT | s-<br>BBENZ | TCE   | TOI   | ۸C         |
|--------------------|-----------------|---------------|---------------|-------|-----------------|-------|-------|-------------|------------|-------|-------------------|-------------|-------|-------|------------|-------------|-------|-------|------------|
| Area 3             |                 |               |               |       |                 |       |       |             |            |       |                   |             |       |       |            |             |       |       |            |
| BADW001            | 23-Mar-01       | < 0.5         | <0.5          | <0.5  | < 0.5           | <0.5  | <0.5  | <0.5        | <0.5       | <0.5  | <u>^</u>          | < 0.5       | <0.5  | <0.5  | < 0.5      | <0.5        | <0.5  | <0.5  | < 0.5      |
| BASB040            | 03-Apr-01       | < 0.5         | <0.5          | < 0.5 | < 0.5           | < 0.5 | <0.5  | < 0.5       | < 0.5      | <0.5  | \<br>\            | < 0.5       | < 0.5 | < 0.5 | < 0.5      | <0.5        | <0.5  | < 0.5 | <0.5       |
| BASB041            | 28-Mar-01       | < 0.5         | < 0.5         | <0.5  | <0.5            | <0.5  | < 0.5 | <0.5        | <0.5       | <0.5  | <u>~</u>          | <0.5        | < 0.5 | < 0.5 | < 0.5      | < 0.5       | <0.5  | < 0.5 | < 0.5      |
| Area 4             |                 |               |               |       |                 |       |       |             |            |       |                   |             |       |       |            | :           |       |       |            |
| BASB012            | 19-Mar-01       | <0.5          | < 0.5         | < 0.5 | <0.5            | < 0.5 | <0.5  | < 0.5       | <0.5       | <0.5  | ~                 | <0.5        | <0.5  | < 0.5 | < 0.5      | <0.5        | <0.5  | <0.5  | <0.5       |
| BASB016            | 04-Apr-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | < 0.5 | < 0.5 | < 0.5       | <0.5       | < 0.5 | $\overline{\lor}$ | < 0.5       | <0.5  | <0.5  | < 0.5      | <0.5        | < 0.5 | 6.0   | <0.5       |
| DUP                | 04-Apr-01       | < 0.5         | <0.5          | <0.5  | < 0.5           | <0.5  | <0.5  | <0.5        | <0.5       | <0.5  | $\overline{\lor}$ | < 0.5       | <0.5  | < 0.5 | < 0.5      | < 0.5       | <0.5  | 1.6   | < 0.5      |
| Area 5             |                 |               |               |       |                 |       |       |             |            |       |                   |             |       |       |            |             |       |       |            |
| BASB022            | 04-Apr-01       | <0.5          | <0.5          | <0.5  | <0.5            | <0.5  | <0.5  | <0.5        | <0.5       | 16    | $\overline{\ }$   | < 0.5       | <0.5  | <0.5  | < 0.5      | <0.5        | < 0.5 | <0.5  | <0.5       |
| BASB023            | 04-Apr-01       | < 0.5         | < 0.5         | <0.5  | <0.5            | 8'0   | < 0.5 | <0.5        | < 0.5      | 1.1   | <u>~</u>          | < 0.5       | <0.5  | <0.5  | < 0.5      | <0.5        | < 0.5 | < 0.5 | < 0.5      |
| BASB024            | 04-Apr-01       | < 0.5         | < 0.5         | < 0.5 | <0.5            | <0.5  | < 0.5 | <0.5        | <0.5       | <0.5  | $\overline{\ }$   | <0.5        | < 0.5 | <0.5  | < 0.5      | < 0.5       | <0.5  | < 0.5 | <0.5       |
| BASB025            | 04-Apr-01       | <0.5          | < 0.5         | < 0.5 | <0.5            | <0.5  | < 0.5 | <0.5        | < 0.5      | 1.3   | ~                 | < 0.5       | <0.5  | <0.5  | < 0.5      | < 0.5       | <0.5  | < 0.5 | < 0.5      |
| BASB086            | 04-Apr-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | < 0.5 | < 0.5 | < 0.5       | 0.5        | <0.5  | ۲<br>۲            | < 0.5       | < 0.5 | < 0.5 | < 0.5      | < 0.5       | < 0.5 | < 0.5 | < 0.5      |
| BASB087            | 04-Apr-01       | < 0.5         | <0.5          | <0.5  | < 0.5           | <0.5  | < 0.5 | <0.5        | <0.5       | 0.5   | $\vec{\ }$        | < 0.5       | < 0.5 | <0.5  | < 0.5      | < 0.5       | <0.5  | <0.5  | <0.5       |
| Area 6             |                 |               |               |       |                 |       |       |             |            |       |                   |             |       |       |            | :           |       |       |            |
| BASB001            | 02-Apr-01       | < 0.5         | < 0.5         | < 0.5 | 2.3             | < 0.5 | < 0.5 | <0.5        | <0.5       | < 0.5 | <u>^</u>          | < 0.5       | <0.5  | <0.5  | <0.5       | < 0.5       | 5.2   | < 0.5 | < 0.5      |
| BASB021            | 29-Mar-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | < 0.5 | < 0.5 | < 0.5       | <0.5       | < 0.5 | $\vec{\lor}$      | <0.5        | <0.5  | < 0.5 | <0.5       | < 0.5       | < 0.5 | < 0.5 | < 0.5      |
| BASB051            | 02-Apr-01       | 2600          | 820           | <8.3  | 7.6             | <8.3  | 210   | 190         | 330        | < 8.3 | 180               | 550         | 200   | <8.3  | 92         | 140         | 15    | <8.3  | < 8.3      |
| BASB081            | 05-Apr-01       | 610           | 110           | <2.5  | 7.5             | <2.5  | 32    | 86          | <b>2</b> 6 | < 2.5 | 78                | 110         | 250   | <2.5  | 14         | 32          | 5.4   | < 2.5 | 4.4        |
| DUP                | 05-Apr-01       | 580           | 110           | <2.5  | 10              | <2.5  | 31    | 93          | \$         | <2.5  | 89                | 93          | 240   | <2.5  | 14         | 31          | 11    | <2.5  | 5.7        |
| Area 7             |                 |               |               |       |                 |       |       |             |            |       |                   |             |       |       | •          |             |       |       |            |
| BASB018            | 05-Apr-01       | < 0.5         | <0.5          | <0.5  | < 0.5           | < 0.5 | < 0.5 | < 0.5       | <0.5       | < 0.5 | $\overline{\lor}$ | <0.5        | <0.5  | <0.5  | <0.5       | <0.5        | <0.5  | <0.5  | <0.5       |
| BASB019            | 05-Apr-01       | < 0.5         | < 0.5         | <0.5  | < 0.5           | < 0.5 | <0.5  | <0.5        | <0.5       | < 0.5 | ~                 | <0.5        | <0.5  | <0.5  | <0.5       | < 0.5       | <0.5  | < 0.5 | <0.5       |
| DUP                | 05-Apr-01       | < 0.5         | < 0.5         | <0.5  | < 0.5           | <0.5  | <0.5  | < 0.5       | < 0.5      | < 0.5 | <u>-</u>          | <0.5        | <0.5  | < 0.5 | <0.5       | < 0.5       | < 0.5 | < 0.5 | <0.5       |
| BASB052            | 02-Apr-01       | < 0.5         | < 0.5         | < 0.5 | < 0.5           | < 0.5 | < 0.5 | <0.5        | <0.5       | < 0.5 | $\overline{\lor}$ | <0.5        | <0.5  | < 0.5 | < 0.5      | <0.5        | < 0.5 | < 0.5 | <0.5       |
| BASB053            | 03-Apr-01       | < 0.5         | < 0.5         | 1.3   | <0.5            | <0.5  | <0.5  | <0.5        | <0.5       | <0.5  | ~                 | <0.5        | <0.5  | < 0.5 | < 0.5      | <0.5        | <0.5  | <0.5  | < 0.5      |
| rpt_water_VOCs.rpt |                 |               |               |       |                 |       |       | Page 2 of 4 | 2 of 4     |       |                   |             |       |       |            |             |       | 8     | 09/07/2001 |

Volatile Organic Compounds Detected in Groundwater Batarse Site, Oakland, California Table 13

| Location ID | Date<br>Sampled                    | 1,2,4-<br>TMB | 1,2,4- 1,2,5-<br>TMB TMB |           | CF cis-1,2- CS2<br>DCE | CS2   | EBENZ | ISPB  | m,p-<br>XYL | MTBE  | NAPH         | BBENZ | PBENZ | PCE   | P-<br>ISPT | s-<br>BBENZ | TCE   | 101   | ΛC    |
|-------------|------------------------------------|---------------|--------------------------|-----------|------------------------|-------|-------|-------|-------------|-------|--------------|-------|-------|-------|------------|-------------|-------|-------|-------|
| Area 7      |                                    |               |                          |           |                        |       |       |       |             |       |              |       |       |       |            |             |       |       |       |
| BASB054     | 03-Apr-01 <0.5 <0.5 <0.5 <0.5 <0.5 | <0.5          | < 0.5                    | <0.5      | <0.5                   | <0.5  | < 0.5 | < 0.5 | •           |       | ~            | <0.5  | <0.5  | 1.3   | < 0.5      | ٧           | <0.5  | <0.5  | < 0.5 |
| BASB055     | 29-Mar-01 <0.5                     | < 0.5         |                          | <0.5 <0.5 | <0.5                   | <0.5  | < 0.5 | < 0.5 | -           |       | ~            | <0.5  | < 0.5 | < 0.5 | < 0.5      | ٧           | <0.5  | < 0.5 | < 0.5 |
| BASB056     | 30-Mar-01 < 0.5                    | < 0.5         | <0.5 <0.5                | <0.5      | < 0.5                  | 9.0   | < 0.5 | <0.5  | <0.5        | <0.5  | \<br>\       | <0.5  | < 0.5 | < 0.5 | <0.5       | < 0.5       | <0.5  | < 0.5 | < 0.5 |
| BASB057     | 28-Mar-01 < 0.5                    | < 0.5         | <0.5 <0.5                | <0.5      | < 0.5                  | < 0.5 | < 0.5 | <0.5  | -           |       | \<br>\<br>-  | <0.5  | <0.5  | <0.5  | < 0.5      | ٧           | < 0.5 | < 0.5 | < 0.5 |
| BASB058     | 21-Mar-01                          | < 0.5         | <0.5 <0.5                | <0.5      | < 0.5                  | < 0.5 | < 0.5 | <0.5  | < 0.5       |       | \<br>\<br>\  | <0.5  | < 0.5 | < 0.5 | < 0.5      | ٧           | < 0.5 | < 0.5 | < 0.5 |
| BASB080     | 03-Apr-01                          | < 0.5         | <0.5 <0.5                | < 0.5     | <0.5                   | <0.5  | < 0.5 | <0.5  | < 0.5       | < 0.5 | \<br>\<br>!  | <0.5  | <0.5  | <0.5  | < 0.5      | ٧           | < 0.5 | < 0.5 | < 0.5 |
| Area 8      |                                    |               |                          |           |                        |       |       |       |             |       |              |       |       |       |            | i           |       |       |       |
| BASB050     | 20-Mar-01 <0.5 <0.5 <0.5 <0.5 <0.5 | <0.5          | <0.5                     | <0.5      | <0.5                   | < 0.5 | < 0.5 | <0.5  | <0.5        | <0.5  | $\vec{\ \ }$ | <0.5  | <0.5  | <0.5  | <0.5       | <0.5        | <0.5  | <0.5  | < 0.5 |
| Area 9      |                                    |               |                          |           |                        |       |       |       |             |       |              |       |       |       | :          |             |       |       |       |
| BASB088     | 09-Jul-01 <0.5 <0.5 <0.5 <0.5 <0.5 | < 0.5         | < 0.5                    | <0.5      | <0.5                   | <0.5  | < 0.5 | < 0.5 | ٧           |       | ^            | <0.5  | <0.5  | < 0.5 | <0.5       | -           | <0.5  | <0.5  | < 0.5 |
| DUP         | 09-Jul-01                          | < 0.5         |                          | <0.5 <0.5 | < 0.5                  | <0.5  | < 0.5 | <0.5  | •           | <0.5  | \<br>\       | <0.5  | < 0.5 | <0.5  | < 0.5      | <0.5        | < 0.5 | < 0.5 | < 0.5 |
| BASB089     | 09-Jul-01                          | < 0.5         |                          | <0.5 <0.5 | <0.5                   | < 0.5 | < 0.5 | < 0.5 | ٧           | <0.5  | \<br>\<br>!  | <0.5  | <0.5  | < 0.5 | < 0.5      |             | <0.5  | <0.5  | < 0.5 |
| BASB090     | 09-Jul-01 < 0.5                    | < 0.5         | <0.5 <0.5                | < 0.5     | <0.5                   | < 0.5 | <0.5  | < 0.5 | < 0.5       | < 0.5 | <u>-</u>     | <0.5  | < 0.5 | <0.5  | <0.5       | Ť           | < 0 5 | < 0.5 | < 0.5 |

Data prepared by: TIH. Data QA/QC by: LDF.

Notes:

DUP = Duplicate sample

J = Reported value is estimated.

VOCs = volatile organic compounds

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for VOCs using EPA test method 8260B.

1,2,4-TMB = 1,2,4-Trimethylbenzene 1,2,5-TMB = 1,3,5-Trimethylbenzene

CF = Chloroform

c-1,2-DCE = cis-1,2-Dichloroethene

CS2 = Carbon Disulfide EBENZ = Ethylbenzene

ISPB = Isopropylbenzene

m,p-XYL = m,p-Xylenes

rpt\_water\_VOCs.rpt

# Table 13

## Volatile Organic Compounds Detected in Groundwater Batarse Site, Oakland, California

Concentrations in micrograms per liter (µg/l)

| Location ID | Date    | 1,2,4- 1,2,5 | 1,2,5- | CF | cis-1,2- | CS2 | EBENZ | ISPB | -d'm | MTBE | NAPH     | Ė    | <b>PBENZ</b> | PCE | 4    | ۶.    | TCE | TOL | ΛC |
|-------------|---------|--------------|--------|----|----------|-----|-------|------|------|------|----------|------|--------------|-----|------|-------|-----|-----|----|
|             | Sampled | d TMB TMB    | TMB    |    | DCE      |     |       | •    | X    |      | <u> </u> | BENZ |              |     | ISPT | BBENZ |     |     |    |
|             |         | _            |        |    |          |     |       |      |      |      |          |      |              |     |      |       |     |     |    |

MTBE = Methyl-tertiary-butyl ether

n-BBENZ = n-Butylbenzene

NAPH = Naphthalene

p-ISPT = para-Isopropyl Toluene

PBENZ = Propylbenzene

s-BBENZ = sec-Butylbenzene PCE = Tetrachloroethene

TCE = Trichloroethene

TOL = Toluene

VC = Vinyl chloride

## Other Detected Compounds:

- 1.2  $\mu$ g/l of Bromodichloromethane was detected at BASB072 on 04/05/2001
  - 7.3 µg/l of Bromoform was detected at BASB075 on 04/02/2001
- 0.6  $\mu$ g/l of Dibromochloromethane was detected at BASB075-DUP on 04/02/2001 0.5  $\mu$ g/l of Trichlorofluoromethane was detected at BADW001 on 03/23/2001
- 1.4  $\mu$ g/l of Styrene was detected at BASB016 on 04/04/2001 0.6  $\mu$ g/l of Styrene was detected at BASB016-DUP on 04/04/2001

Table 14
Semivolatile Organic Compounds
Detected in Groundwater
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled | 2-MNAPH       |        | NAPH   |
|-------------|-----------------|---------------|--------|--------|
|             | Sampleu         |               |        |        |
| Area 1      |                 |               |        |        |
| BASB071     | 03-Apr-01       | < 9.4         | < 9.4  | < 9.4  |
| BASB071     | 03-Apr-01       | NA            | < 3    | NA     |
| BASB072     | 05-Apr-01       | < 9.4         | < 9.4  | < 9.4  |
| BASB072     | 05-Apr-01       | NA            | 3.1    | NA     |
| BASB078     | 05-Apr-01       | < 9.6         | < 9.6  | < 9.6  |
| BASB078     | 05-Apr-01       | NA            | <3     | NA     |
| Area 3      |                 |               |        |        |
| BASB040     | 03-Apr-01       | < 9.4         | < 9.4  | < 9.4  |
| BASB040     | 03-Apr-01       | NA            | < 3    | NA     |
| Area 6      |                 |               |        |        |
| BASB051     | 03-Apr-01       | < 9.9         | < 9.9  | < 9.9  |
| BASB051     | 03-Apr-01       | NA            | < 3    | NA     |
| BASB081     | 05-Apr-01       | 15000         | < 4800 | 7000   |
| BASB081     | 05-Apr-01       | NA            | < 3    | NA     |
| DUP         | 05-Apr-01       | 570           | < 470  | < 470  |
| DUP         | 05-Apr-01       | NA            | < 60   | NA     |
| Area 7      |                 |               |        |        |
| BASB018     | 05-Apr-01       | < 9.4         | < 9.4  | < 9.4  |
| BASB018     | 05-Apr-01       | NA            | < 3    | NA     |
| BASB019     | 05-Apr-01       | < 9.4         | < 9.4  | <9.4   |
| BASB019     | 05-Apr-01       | NA            | <3     | NA     |
| DUP         | 05-Apr-01       | < 9.6         | < 9.6  | < 9.6  |
| DUP         | 05-Apr-01       | NA            | < 3    | NA     |
| BASB053     | 03-Apr-01       | < 9.6         | < 9.6  | < 9.6  |
| BASB053     | 03-Apr-01       | NA            | <3     | NA     |
| BASB054     | 03-Apr-01       | < 9.7         | < 9.7  | < 9.7  |
| BASB054     | 03-Apr-01       | NA            | <3     | NA     |
| BASB058     | 21-Mar-01       | < 10          | < 10   | < 10   |
| BASB058     | 21-Mar-01       | NA            | <3     | NA     |
| BASB080     | 03-Apr-01       | < 10          | < 10   | < 10   |
| BASB080     | 03-Apr-01       | NA            | <3     | NA     |
|             |                 | = := <b>=</b> |        | . 14 & |

### Table 14 Semivolatile Organic Compounds Detected in Groundwater Batarse Site, Oakland, California

Concentrations in micrograms per liter (µg/l)

| Location ID | Date    | 2-MNAPH | DEHP | NAPH |
|-------------|---------|---------|------|------|
|             | Sampled |         |      |      |

Data prepared by: <u>TIH</u>. Data QA/QC by: <u>LDF</u>.

Notes:

J = Reported value is estimated.

DUP = Duplicate sample

NA = Not analyzed

SVOCs = Semivolatile organic compounds

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for SVOCs using EPA method 8270C. The second record for any sample was analyzed by BC Laboratories using EPA method 525.2.

2-MNAPH = 2-Methylnaphthalene

DEHP = Bis(2-Ethylhexyl) phthalate

NAPH = Naphthalene

### Table 15 Title 22 Metals Detected in Groundwater Batarse Site, Oakland, California

Concentrations in micrograms per liter (µg/l)

| Location ID | Date      | As  | Ba      | Co    | Cu    | Мо   | Ni                                           | Pb  | Sb  | Zn    |
|-------------|-----------|-----|---------|-------|-------|------|----------------------------------------------|-----|-----|-------|
| <u></u>     | Sampled   |     | <u></u> | 1     | l     |      | <u>                                     </u> |     |     |       |
| Area 1 ——   |           |     |         |       |       |      |                                              |     |     |       |
| BASB036     | 22-Mar-01 | < 5 | 98      | < 20  | < 10  | < 20 | < 20                                         | <3  | < 1 | < 20  |
| BASB037     | 22-Mar-01 | < 5 | 110     | < 20  | < 10  | < 20 | < 20                                         | < 3 | < 1 | < 20  |
| BASB029     | 23-Mar-01 | < 5 | 77      | < 20  | < 10  | < 20 | < 20                                         | <3  | < 1 | < 20  |
| BASB030     | 23-Mar-01 | <5  | 64      | < 20  | < 10  | < 20 | < 20                                         | <3  | < 1 | < 20  |
| BASB031     | 26-Mar-01 | < 5 | 73      | < 20  | < 10  | < 20 | < 20                                         | <3  | <1  | < 20  |
| BASB032     | 26-Mar-01 | < 5 | 99      | < 20  | < 10  | < 20 | < 20                                         | <3  | <1  | < 20  |
| BASB033     | 26-Mar-01 | < 5 | 110     | 50    | < 10  | < 20 | < 20                                         | <3  | <1  | < 20  |
| BASB027     | 27-Mar-01 | < 5 | 100     | < 20  | < 10  | < 20 | < 20                                         | <3  | < 1 | < 20  |
| BASB028     | 27-Mar-01 | < 5 | 120     | < 20  | < 10  | < 20 | < 20                                         | <3  | <1  | < 20  |
| BASB034     | 27-Mar-01 | < 5 | 120     | < 20  | < 10  | < 20 | < 20                                         | < 3 | < 1 | < 20  |
| BASB026     | 28-Mar-01 | < 5 | 97      | 37    | 15    | < 20 | 130                                          | < 3 | <1  | < 20  |
| DUP         | 28-Mar-01 | < 5 | 95      | 37    | 16    | < 20 | 130                                          | <3  | <1  | < 20  |
| BASB076     | 30-Mar-01 | < 5 | 110     | < 20  | < 10  | < 20 | < 20                                         | <3  | <1  | < 20  |
| BASB077     | 30-Mar-01 | < 5 | 140     | < 20  | < 10  | < 20 | < 20                                         | <3  | <1  | < 20  |
| BASB073     | 02-Apr-01 | < 5 | 99      | < 20  | < 10  | < 20 | < 20                                         | < 3 | <1  | < 20  |
| BASB074     | 02-Apr-01 | < 5 | 87      | < 20  | < 10  | < 20 | < 20                                         | <3  | < 1 | < 20  |
| BASB075     | 02-Apr-01 | < 5 | 100     | < 20  | < 10  | < 20 | < 20                                         | < 3 | < 1 | < 20  |
| BASB070     | 03-Apr-01 | < 5 | 77      | < 20  | < 10  | < 20 | < 20                                         | < 3 | < 1 | < 20  |
| BASB071     | 03-Apr-01 | < 5 | 92      | < 20  | < 10  | < 20 | < 20                                         | < 3 | < 1 | < 20  |
| BASB072     | 05-Apr-01 | < 5 | 100     | < 20  | < 10  | < 20 | < 20                                         | <3  | < 1 | < 20  |
| BASB078     | 05-Apr-01 | < 5 | 28      | < 20  | < 10  | < 20 | < 20                                         | <3  | < 1 | < 20  |
| BASB082     | 05-Apr-01 | < 5 | 79      | < 20  | < 10  | < 20 | < 20                                         | <3  | < 1 | < 20  |
| Area 2      |           |     |         |       |       |      |                                              |     |     |       |
| BASB008     | 21-Mar-01 | < 5 | 110     | < 20  | < 10  | < 20 | < 20                                         | <3  | < 1 | < 20  |
| BASB006     | 31-Mar-01 | < 5 | 120     | < 20  | < 10  | < 20 | < 20                                         | <3  | < 1 | < 20  |
| BASB007     | 31-Mar-01 | < 5 | 120     | < 20  | < 10  | < 20 | < 20                                         | < 3 | <1  | < 20  |
| Area 3      |           |     |         |       |       |      |                                              |     |     |       |
| BADW001     | 23-Mar-01 |     | 130     |       |       |      |                                              |     | 1.3 |       |
| BASB041     | 28-Mar-01 | < 5 | 110     | < 20  | < 10  | < 20 | < 20                                         | < 3 | <1  | < 20  |
| BASB040     | 03-Apr-01 | < 5 | 99      | < 20  | < 10  | < 20 | < 20                                         | <3  | < 1 | < 20  |
| Area 4      |           |     |         |       |       |      |                                              |     |     |       |
| BASB012     | 19-Mar-01 | < 5 | 110     | <20 J | <10 J | < 20 | <20 J                                        | < 3 | <1  | <20 J |
| BASB016     | 04-Apr-01 | < 5 | 99      | < 20  | < 10  | < 20 | 33                                           | < 3 | <1  | < 20  |
| DUP         | 04-Apr-01 | <5  | 95      | < 20  | < 10  | < 20 | 33                                           | <3  | < 1 | < 20  |
|             |           |     |         |       |       |      |                                              |     |     |       |

rpt\_water\_Metals.rpt Page 1 of 3 09/07/2001

### Table 15 Title 22 Metals Detected in Groundwater Batarse Site, Oakland, California

Concentrations in micrograms per liter (µg/l)

| Location ID | Date<br>Sampled | As  | Ba    | Со   | Cu   | Мо   | Ni   | Pb             | Sb  | Zn   |
|-------------|-----------------|-----|-------|------|------|------|------|----------------|-----|------|
| Area 5      |                 |     |       |      |      |      |      |                |     |      |
| BASB022     | 04-Apr-01       | <5  | 66    | < 20 | < 10 | < 20 | 38   | < 3            | < 1 | < 20 |
| BASB023     | 04-Apr-01       | <5  | 90    | < 20 | < 10 | 25   | 69   | <3             | <1  | < 20 |
| BASB024     | 04-Apr-01       | < 5 | 91    | < 20 | < 10 | < 20 | < 20 | <3             | < 1 | < 20 |
| BASB025     | 04-Apr-01       | < 5 | 90    | < 20 | < 10 | < 20 | 64   | < 3            | < 1 | < 20 |
| BASB086     | 04-Apr-01       | <5  | 68    | < 20 | < 10 | < 20 | < 20 | < 3            | <1  | < 20 |
| BASB087     | 04-Apr-01       | <5  | 68    | < 20 | < 10 | < 20 | 39   | <3             | < 1 | < 20 |
| Area 6      |                 |     |       |      |      |      |      |                |     |      |
| BASB021     | 29-Mar-01       | <5  | 130   | < 20 | < 10 | < 20 | < 20 | < 3            | < 1 | < 20 |
| BASB001     | 02-Apr-01       | <5  | 94    | < 20 | < 10 | < 20 | < 20 | <3             | < 1 | < 20 |
| BASB051     | 02-Apr-01       | <5  | 88    | < 20 | < 10 | 36   | 23   | < 3            | < 1 | < 20 |
| BASB081     | 05-Apr-01       | 9.4 | 230   | < 20 | < 10 | < 20 | 26   | 12             | < 1 | 26   |
| DUP         | 05-Apr-01       | 9.1 | 230   | < 20 | < 10 | < 20 | 23   | 16             | < 1 | < 20 |
| Area 7      |                 |     |       |      |      |      |      |                |     |      |
| BASB058     | 21-Mar-01       | <5  | 110   | < 20 | < 10 | < 20 | < 20 | <3             | < 1 | < 20 |
| BASB057     | 28-Mar-01       | < 5 | 120   | < 20 | < 10 | < 20 | < 20 | < 3            | < 1 | 27   |
| BASB055     | 29-Mar-01       | < 5 | 95    | < 20 | < 10 | < 20 | < 20 | <3             | <1  | < 20 |
| BASB056     | 30-Mar-01       | <5  | 99    | < 20 | < 10 | < 20 | < 20 | < 3            | <1  | < 20 |
| BASB052     | 02-Apr-01       | < 5 | 110   | < 20 | < 10 | < 20 | < 20 | <3             | <1  | < 20 |
| BASB053     | 03-Apr-01       | < 5 | 87    | < 20 | < 10 | < 20 | < 20 | <3             | < i | < 20 |
| BASB054     | 03-Apr-01       | < 5 | 69    | < 20 | < 10 | < 20 | < 20 | < 3            | <1  | < 20 |
| BASB080     | 03-Apr-01       | <5  | 79    | < 20 | < 10 | < 20 | < 20 | < 3            | < 1 | < 20 |
| BASB018     | 05-Apr-01       | < 5 | 110   | < 20 | < 10 | < 20 | < 20 | < 3            | <1  | < 20 |
| BASB019     | 05-Apr-01       | < 5 | 90    | < 20 | < 10 | < 20 | < 20 | < 3            | < 1 | 44   |
|             | 05-Apr-01       | < 5 | 87    | < 20 | < 10 | < 20 | < 20 | < 3            | < 1 | < 20 |
| Area 8      |                 |     |       |      |      |      |      | Annual Control |     |      |
| BASB050     | 20-Mar-01       | <5  | 2000  | < 20 | < 10 | <410 | < 20 | 100            | 490 | < 20 |
| Area 9      |                 |     | · · · |      |      |      |      |                |     |      |
| BASB088     | 09-Jul-01       | < 5 | 72    | < 20 | < 10 | < 20 | < 20 | <3             | < 1 | < 20 |
| DUP         | 09-Jul-01       | < 5 | 74    | < 20 | < 10 | 20   | < 20 | < 3            | < 1 | < 20 |
| BASB089     | 09-Jul-01       | < 5 | 110   | < 20 | < 10 | < 20 | < 20 | < 3            | < 1 | < 20 |
| BASB090     | 09-Jul-01       | < 5 | 70    | < 20 | < 10 | < 20 | < 20 | < 3            | < 1 | < 20 |

#### Table 15 Title 22 Metals Detected in Groundwater Batarse Site, Oakland, California

Concentrations in micrograms per liter (µg/l)

| Location ID | Date<br>Sampled | As | Ва | Co | Cu | Мо | Ni | Pb | Sb | Zn |
|-------------|-----------------|----|----|----|----|----|----|----|----|----|
|-------------|-----------------|----|----|----|----|----|----|----|----|----|

Data prepared by: TIH. Data QA/QC by: LDF.

Notes:

DUP = Duplicate sample

J = Reported value is estimated.

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for metals using EPA test method 6020A.

As = Silver

Ba = Barium

Co = Cobalt

Cu = Copper

Mo = Molybdenum

Ni = Nickel

Pb = Lead

Sb = Antimony Zn = Zinc

#### Table 16 Total Petroleum Hydrocarbons in Soil -Concentrations Above 100 mg/kg Batarse Site, Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

| Location ID           | Date      | Depth         | Chemica       | l Result        | Comparison |
|-----------------------|-----------|---------------|---------------|-----------------|------------|
|                       | Sampled   | (feet bgs)    |               |                 | Value      |
| Area 1———             |           | <u>.</u>      |               |                 |            |
| BASB027               | 27-Mar-01 | (3.50-4.00)   | TPHmo         | 120 YH          | 100        |
| BASB031               | 26-Mar-01 | (6.50-7.00)   | TPHg          | 440 <b>JYH</b>  | 100        |
| BASB031               | 26-Mar-01 | (6.50-7.00)   | TPHms         | 480 JYL         | 100        |
| BASB031               | 26-Mar-01 | (6.50-7.00)   | <b>TPHss</b>  | 220 J           | 100        |
| BASB031               | 26-Mar-01 | (9.50-10.00)  | TPHg          | 490 JYH         | 100        |
| BASB031               | 26-Mar-01 | (9.50-10.00)  | <b>TPH</b> ms | 530 JYL         | 100        |
| BASB031               | 26-Mar-01 | (9.50-10.00)  | TPHss         | 250 J           | 100        |
| BASB031               | 26-Mar-01 | (14.50-15.00) | TPHg          | 1 <b>80 JYH</b> | 100        |
| BASB031               | 26-Mar-01 | (14.50-15.00) | TPHms         | 190 JYL         | 100        |
| BASB032-DUP           | 26-Mar-01 | (4.50-5.00)   | TPHmo         | 360             | 100        |
| BASB033               | 26-Mar-01 | (3.50-4.00)   | TPHmo         | 240             | 100        |
| BASB036               | 22-Mar-01 | (3.50-4.00)   | TPHd          | 160 YH          | 100        |
| BASB036               | 22-Mar-01 | (3.50-4.00)   | TPHmo         | 630             | 100        |
| BASB073               | 02-Apr-01 | (2.50-3.00)   | TPHmo         | 120 Y           | 100        |
| BASB077               | 30-Mar-01 | (3.50-4.00)   | TPHd          | 270 YH          | 100        |
| BASB077               | 30-Mar-01 | (3.50-4.00)   | TPHmo         | 2200 Y          | 100        |
| Area 5                |           |               |               |                 |            |
| BASB022               | 04-Apr-01 | (1.50-2.00)   | TPHd          | 220 YL          | 100        |
| BASB022               | 04-Apr-01 | (1.50-2.00)   | TPHmo         | 1300            | 100        |
| BASB022               | 04-Apr-01 | (4.50-5.00)   | TPHd          | 970 YL          | 100        |
| BASB022               | 04-Apr-01 | (4.50-5.00)   | TPHmo         | 490             | 100        |
| BASB022               | 04-Apr-01 | (9.50-10.00)  | TPHd          | 600 YL          | 100        |
| BASB022               | 04-Apr-01 | (9.50-10.00)  | TPHmo         | 300             | 100        |
| BASB023               | 04-Apr-01 | (20.50-21.00) | TPHmo         | 150             | 100        |
| Area 6                |           |               |               |                 |            |
| BASB001               | -         | (22.50-23.00) |               | 140 Y           | 100        |
| BASB002               | 31-Mar-01 | (2.50-3.00)   | TPHd          | 150 YH          | 100        |
| BASB002               | 31-Mar-01 | (2.50-3.00)   | TPHmo         | 1000 Y          | 100        |
| Area 7                |           |               |               |                 |            |
| BASB018               | -         | (11.50-12.00) |               | 130             | 100        |
| BASB019               | -         | (2.00-2.50)   | TPHmo         | 330             | 100        |
| BASB052               | •         | (3.50-4.00)   |               | 290 Y           | 100        |
| BASB052               | •         | (24.50-25.00) |               | 480             | 100        |
| BASB053               | 03-Apr-01 | (1.50-2.00)   | TPHmo         | 460 YH          | 100        |
| ot Soil TPH Bkgrnd.ri | nt        | Page 1 of 2   |               |                 | 09/07/2001 |

rpt\_Soil\_TPH\_Bkgrnd.rpt

Page 1 of 2

### Table 16 Total Petroleum Hydrocarbons in Soil Concentrations Above 100 mg/kg Batarse Site, Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

| Location ID | Date<br>Sampled | Depth<br>(feet bgs) | Chemical    | Result | Comparison<br>Value |
|-------------|-----------------|---------------------|-------------|--------|---------------------|
| Area 7      | •••             |                     |             |        |                     |
| BASB054     | 03-Apr-01       | (1.50-2.00)         | TPHmo       | 290    | 100                 |
| BASB054     | 03-Apr-01       | (21.50-22.00)       | TPHmo       | 170    | 100                 |
| BASB056     | 30-Мат-01       | (3.50-4.00)         | TPHmo       | 120 Y  | 100                 |
| BASB058     | 21-Mar-01       | (3.50-4.00)         | TPHmo       | 310 Y  | 100                 |
| Area 8      |                 |                     | <del></del> |        |                     |
| BASB061     | 05-Apr-01       | (0.00-0.50)         | TPHmo       | 120    | 100                 |
| Area 9      |                 |                     |             |        |                     |
| BASB090     | 09-Jul-01       | (2.00-2.50)         | TPHmo       | 360    | 100                 |
| BASB090-DUP | 09-Jul-01       | (2.00-2.50)         | TPHmo       | 310    | 100                 |

Data prepared by: <u>TIH</u>. Data QA/QC by: <u>LDF</u>.

#### Notes:

bgs = below ground surface

DUP = Duplicate sample

H = Heavier hydrocarbons contributed to the quantitation.

J = Reported value is estimated.

L = Lighter hydrocarbons contributed to the quantitation.

Y = Sample exhibits fuel pattern which does not resemble standard.

TPHd = total petroleum hydrocarbons as diesel

TPHg = total petroleum hydrocarbons as gasoline

TPHmo = total petroleum hydrocarbons as motor oil

TPHms = total petroleum hydrocarbons as mineral spirits

TPHpt = total petroleum hydrocarbons as paint thinner

TPHss = total petroleum hydrocarbons as stoddard solvent

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for all compounds using EPA test method 8015 modified.

Table 17 Title 22 Metals in Soil - Concentrations Above Background Levels Batarse Site, Oakland, California

| Location ID           | Date<br>Sampled | Depth<br>(feet bgs)                    | Chemical | Result | Background<br>Level                    |
|-----------------------|-----------------|----------------------------------------|----------|--------|----------------------------------------|
| Area 1                |                 |                                        |          |        | ······································ |
| BASB026               | 28-Mar-01       | (4.00-4.50)                            | Pb       | 22.0   | 16.1                                   |
| BASB027               | 27-Mar-01       | (4.00-4.50)                            | Pb       | 74.0   | 16.1                                   |
| BASB027               | 27-Mar-01       | (4.00-4.50)                            | Zn       | 140.0  | 106.1                                  |
| BASB027               | 27-Mar-01       | (15.00-15.50)                          | Hg       | 1.1    | 0.4                                    |
| BASB028               | 27-Mar-01       | (1.00-1.50)                            | Pb       | 83.0   | 16.1                                   |
| BASB028               | 27-Mar-01       | (1.00-1.50)                            | Zn       | 120.0  | 106.1                                  |
| BASB033               | 26-Mar-01       | (4.00-4.50)                            | Ba       | 340.0  | 323.6                                  |
| BASB033               | 26-Mar-01       | (4.00-4.50)                            | Pb       | 160.0  | 16.1                                   |
| BASB033               | 26-Mar-01       | (4.00-4.50)                            | Zn       | 430.0  | 106.1                                  |
| BASB034               | 27-Mar-01       | (4.00-4.50)                            | Pb       | 24.0   | 16.1                                   |
| BASB036               | 22-Mar-01       | (4.00-4.50)                            | Cđ       | 3.1    | 2.7                                    |
| BASB070               | 03-Apr-01       | (3.50-4.00)                            | Pb       | 27.0   | 16.1                                   |
| BASB071               | 03-Apr-01       | (2.00-2.50)                            | Pb       | 130.0  | 16.1                                   |
| BASB071               | 03-Apr-01       | (2.00-2.50)                            | Zn       | 240.0  | 106.1                                  |
| BASB072               | 05-Apr-01       | (2.50-3.00)                            | Pb       | 44.0   | 16.1                                   |
| BASB072               | 05-Apr-01       | (2.50-3.00)                            | Zn       | 110.0  | 106.1                                  |
| BASB077               | 30-Mar-01       | (4.00-4.50)                            | Pb       | 30.0   | 16.1                                   |
| BASB078               | 05-Apr-01       | (4.00-4.50)                            | Pb       | 20.0   | 16.1                                   |
| Area 2                |                 |                                        |          |        | <del> </del>                           |
| BASB008               | 21-Mar-01       | (4.00-4.50)                            | Pb       | 26.0   | 16.1                                   |
| Area 3                |                 |                                        |          |        |                                        |
| BASB041               | 28-Mar-01       | (4.00-4.50)                            | Pb       | 28.0   | 16.1                                   |
| BASB041               | 28-Mar-01       | (5.00-5.50)                            | Pb       | 49.0   | 16.1                                   |
| Area 4                |                 | ······································ |          |        |                                        |
| BASB012               | 19-Mar-01       | (4.00-4.50)                            | Pb       | 17.0   | 16.1                                   |
| BASB013               | 20-Mar-01       | (3.00-3.50)                            | Cr       | 160.0  | 99.6                                   |
| BASB016               | 04-Apr-01       | (2.50-3.00)                            | Pb       | 60.0   | 16.1                                   |
| Area 5                | 04.4.01         | (2.00.2.50)                            | 7.1      | 21.0   |                                        |
| BASB022               | 04-Apr-01       | (2.00-2.50)                            | Pb       | 31.0   | 16.1                                   |
| BASB022               | 04-Apr-01       | (5.00-5.50)                            | Pb       | 63.0   | 16.1                                   |
| BASB022               | -               | (10.00-10.50)                          | Pb       | 23.0   | 16.1                                   |
| BASB023               | 04-Apr-01       |                                        | As       | 33.0   | 19.1                                   |
| BASB023               | 04-Apr-01       |                                        | Pb       | 130.0  | 16.1                                   |
| BASB023               | 04-Apr-01       | ,                                      | Zn       | 400.0  | 106.1                                  |
| BASB023               | 04-Apr-01       | (21.00-21.50)                          | Pb       | 33.0   | 16.1                                   |
| pt_Soil_Metals_Bkgrnd | l.rpt           | Page 1 of 3                            |          |        | 09/07/2001                             |

Table 17
Title 22 Metals in Soil - Concentrations Above Background Levels
Batarse Site, Oakland, California

| Location ID | Date<br>Sampled                       | Depth<br>(feet bgs)                    | Chemical | Result       | Background<br>Level |
|-------------|---------------------------------------|----------------------------------------|----------|--------------|---------------------|
| Area 5      |                                       |                                        |          | <del> </del> |                     |
| BASB023     | 04-Apr-01                             | (21.00-21.50)                          | Zn       | 120.0        | 106.1               |
| BASB024     | 04-Apr-01                             | (2.00-2.50)                            | Pb       | 17.0         | 16.1                |
| BASB025     | 04-Apr-01                             | (4.00-4.50)                            | Pb       | 18.0         | 16.1                |
| BASB025     | 04-Apr-01                             | (4.00-4.50)                            | Zn       | 110.0        | 106.1               |
| BASB086     | 04-Apr-01                             | (2.00-2.50)                            | Cd       | 3.0          | 2.7                 |
| BASB087     | 04-Apr-01                             | (4.00-4.50)                            | Cd       | 2.8          | 2.7                 |
| Area 6      |                                       |                                        |          |              |                     |
| BASB002     | 31-Mar-01                             | (3.00-3.50)                            | Pb       | 24.0         | 16.1                |
| BASB021     | 29-Mar-01                             | (1.00-1.50)                            | Pb       | 19.0         | 16.1                |
| Area 7      |                                       |                                        |          |              |                     |
| BASB019     | 05-Apr-01                             | (2.50-3.00)                            | Pb       | 54.0         | 16.1                |
| BASB019     | 05-Apr-01                             | (2.50-3.00)                            | Zn       | 130.0        | 106.1               |
| BASB052     | 02-Apr-01                             | (4.00-4.50)                            | Zn       | 130.0        | 106.1               |
| BASB052     | 02-Apr-01                             | (25.00-25.50)                          | Zn       | 150.0        | 106.1               |
| BASB055     | 29-Mar-01                             | (8.50-9.00)                            | Pb       | 20.0         | 16.1                |
| BASB056     | 30-Mar-01                             | (25.00-25.50)                          | Ba       | 410.0        | 323.6               |
| BASB057     | 28-Mar-01                             | (4.00-4.50)                            | Pb       | 140.0        | 16.1                |
| BASB057     | 28-Mar-01                             | (4.00-4.50)                            | Zn       | 140.0        | 106.1               |
| Area 8      | · · · · · · · · · · · · · · · · · · · | ······································ |          |              |                     |
| BASB050     | 20-Mar-01                             | (2.50-3.00)                            | Pb       | 38.0         | 16.1                |
| BASB060     | 05-Apr-01                             | (0.00-0.50)                            | Pb       | 36.0         | 16.1                |
| BASB061     | 05-Apr-01                             | (0.00-0.50)                            | Pb       | 130.0        | 16.1                |
| BASB062     | 05-Apr-01                             | (0.00-0.50)                            | Pb       | 18.0         | 16.1                |
| BASB063     | 05-Apr-01                             | (0.00-0.50)                            | Pb       | 110.0        | 16.1                |
| BASB065     | 22-Mar-01                             | (0.00-0.50)                            | Pb       | 31.0         | 16.1                |
| Area 9      |                                       |                                        |          |              |                     |
| BASB090     | 09-Jul-01                             | (2.50-3.00)                            | Pb       | 66.0         | 16.1                |
| DUP         | 09-Jul-01                             | (2.50-3.00)                            | Pb       | 43.0         | 16.1                |

Data prepared by: TIH. Data QA/QC by: LDF.

#### Notes:

Metals background concentrations from Oakland Urban Land Development.

bgs = below ground surface

DUP = Duplicate sample

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for mercury using EPA test method 7470 and EPA test method 7470A and all other metals were analyzed by EPA test method 6010B.

As = Arsenic Ba = Barium Cd = Cadmium Cr = Chromium

rpt\_Soil\_Metals\_Bkgrnd.rpt

### Table 17 Title 22 Metals in Soil - Concentrations Above Background Levels Batarse Site, Oakland, California

Concentrations in milligrams per kilogram (mg/kg)

| Location ID | Date    | Depth      | Chemical | Result | Background |
|-------------|---------|------------|----------|--------|------------|
|             | Sampled | (feet bgs) |          |        | Level      |

Hg = Mercury Pb = Lead

Zn = Zinc

Table 18
Total Petroleum Hydrocarbons in Water Concentrations Above SNARLs
Batarse Site, Oakland, California

Concentrations in micrograms per liter (µg/l)

| Location ID       | Date<br>Sampled | Chemical | Result  | SNARL<br>value |
|-------------------|-----------------|----------|---------|----------------|
| Area 1            |                 |          |         |                |
| BASB026           | 28-Mar-01       | TPHd     | 130 Y   | 100            |
| DUP               | 28-Mar-01       | TPHd     | 140 Y   | 100            |
| BASB031           | 26-Mar-01       | TPHd     | 800 YL  | 100            |
| BASB031           | 26-Mar-01       | TPHg     | 610 YH  | 5              |
| BASB031           | 26-Mar-01       | TPHms    | 920 YLb | 5              |
| BASB031           | 26-Mar-01       | TPHss    | 320     | 5              |
| BASB032           | 26-Mar-01       | TPHd     | 61 Y    | 100            |
| BASB036           | 22-Mar-01       | TPHd     | 73 Y    | 100            |
| BASB037           | 22-Mar-01       | TPHd     | 100 Y   | 100            |
| BASB071           | 03-Apr-01       | TPHd     | 150 YL  | 100            |
| BASB071           | 03-Apr-01       | TPHg     | 320 Y   | 5              |
| BASB071           | 03-Apr-01       | TPHpt    | 240     | 5              |
| BASB072           | 05-Apr-01       | TPHd     | 80 Y    | 100            |
| BASB073           | 02-Apr-01       | TPHd     | 73 Y    | 100            |
| BASB076           | 30-Mar-01       | TPHd     | 530 Y   | 100            |
| BASB076           | 30-Mar-01       | TPHmo    | 530     | 100            |
| BASB077           | 30-Mar-01       | TPHd     | 52 Y    | 100            |
| Area 2            |                 |          |         |                |
| BASB007           | 31-Mar-01       | TPHd     | 70 Y    | 100            |
| BASB008           | 21-Mar-01       | TPHd     | 150 YZ  | 100            |
| Area 3            | ,               |          |         | -              |
| BASB041           | 28-Mar-01       | TPHd     | 120 Y   | 100            |
| Area 4 ··· ·· ··· |                 |          |         |                |
| BASB012           | 19-Mar-01       | TPHd     | 61 Y    | 100            |
| BASB016           | 04-Apr-01       | TPHd     | 71 Y    | 100            |
| DUP               | 04-Apr-01       | TPHd     | 61 Y    | 100            |
| Area 5            |                 |          |         |                |
| BASB022           | 04-Apr-01       | TPHd     | 110 Y   | 100            |
| BASB023           | 04-Apr-01       | TPHd     | 310 YH  | 100            |
| BASB023           | 04-Apr-01       | TPHmo    | 1100    | 100            |
| Area 6            |                 |          |         |                |
| BASB001           | 02-Apr-01       | TPHd     | 360 YH  | 100            |
| BASB001           | 02-Apr-01       | TPHmo    | 1200 Y  | 100            |
| BASB021           | 29-Mar-01       | TPHd     | 66 Y    | 100            |

Page 1 of 3

09/07/2001

 $rpt\_water\_TPH\_Bkgrnd.rpt$ 

## Table 18 Total Petroleum Hydrocarbons in Water Concentrations Above SNARLs Batarse Site, Oakland, California

Concentrations in micrograms per liter (µg/l)

| Location ID | Date<br>Sampled | Chemical | Result   | SNARL<br>value |
|-------------|-----------------|----------|----------|----------------|
| Area 6      |                 |          |          |                |
| BASB051     | 02-Apr-01       | TPHd     | 20000 Y  | 100            |
| BASB051     | 02-Apr-01       | TPHg     | 19000    | 5              |
| BASB051     | 02-Apr-01       | TPHpt    | 14000 Y  | 5              |
| BASB081     | 05-Apr-01       | TPHd     | 210000 Y | 100            |
| BASB081     | 05-Apr-01       | TPHg     | 7700     | 5              |
| BASB081     | 05-Apr-01       | TPHpt    | 5800 Y   | 5              |
| DUP         | 05-Apr-01       | TPHd     | 90000 Y  | 100            |
| DUP         | 05-Apr-01       | TPHg     | 7200     | 5              |
| DUP         | 05-Apr-01       | TPHpt    | 5400 Y   | 5              |
| Area 7      |                 |          |          |                |
| BASB018     | 05-Apr-01       | TPHd     | 160 YH   | 100            |
| BASB052     | 02-Apr-01       | TPHd     | 100 YH   | 100            |
| BASB052     | 02-Apr-01       | TPHmo    | 360 YH   | 100            |
| BASB055     | 29-Mar-01       | TPHd     | 51 Y     | 100            |
| BASB058     | 21-Mar-01       | TPHd     | 57 Y     | 100            |
| Area 8      |                 |          |          |                |
| BASB050     | 20-Mar-01       | TPHd     | 65 Y     | 100            |

Data prepared by: <u>TIH</u>. Data QA/QC by: <u>LDF</u>.

SNARLs = Suggested No-Adverse-Response Levels, Regional Water Quality Control Board, Central Valley Region, A Compilation of Water Quality Goals, August 2000

SNARLs only exist for TPHg and TPHd but were applied to similar TPH fractions.

bgs = below ground surface

b = Continuing calibration verification percent difference was slightly above acceptance limits in batch.

DUP = Duplicate sample

H = Heavier hydrocarbons contributed to the quantitation.

L = Lighter hydrocarbons contributed to the quantitation.

Y = Sample exhibits fuel pattern which does not resemble standard.

Z = Sample exhibits unknown single peak or peaks.

TPHd = total petroleum hydrocarbons as diesel

TPHg = total petroleum hydrocarbons as gasoline

TPHmo = total petroleum hydrocarbons as motor oil

TPHms = total petroleum hydrocarbons as mineral spirits

TPHpt = total petroleum hydrocarbons as paint thinner

TPHss = total petroleum hydrocarbons as stoddard solvent Samples were analyzed by Curtis and Tompkins Analytical

# Table 18 Total Petroleum Hydrocarbons in Water Concentrations Above SNARLs Batarse Site, Oakland, California

Concentrations in micrograms per liter (µg/l)

| Location ID | Date    | Chemical | Result | SNARL |
|-------------|---------|----------|--------|-------|
|             | Sampled |          |        | value |

Laboratories Ltd. for all compounds using EPA test method 8015 modified.

Table 19
Title 22 Metals and Volatile Organic Compounds in Groundwater - Concentrations Above MCLs
Batarse Site, Oakland, California

Concentrations in micrograms per liter (µg/l)

| Location ID | Date<br>Sampled | Chemical  | Result  | MCL<br>value |
|-------------|-----------------|-----------|---------|--------------|
| Area 1      |                 | -         |         |              |
| BASB026     | 28-Mar-01       | Ni        | 130     | 100          |
| DUP         | 28-Mar-01       | Ni        | 130     | 100          |
| Area 5      |                 |           |         |              |
| BASB022     | 04-Apr-01       | MTBE      | 16      | 13           |
| Area 6      | ·               |           | ··· - · |              |
| BASB001     | 02-Apr-01       | TCE       | 5.2     | 5            |
| BASB051     | 02-Apr-01       | c-1,2-DCE | 9.7     | 6            |
| BASB051     | 02-Apr-01       | TCE       | 15      | 5            |
| BASB081     | 05-Apr-01       | c-1,2-DCE | 7.5     | 6            |
| BASB081     | 05-Apr-01       | TCE       | 5.4     | 5            |
| BASB081     | 05-Apr-01       | VC        | 4.4     | 0.5          |
| DUP         | 05-Apr-01       | Pb        | 16      | 15           |
| DUP         | 05-Apr-01       | c-1,2-DCE | 10      | 6            |
| DUP         | 05-Apr-01       | TCE       | 11      | 5            |
| DUP         | 05-Apr-01       | VC        | 5.7     | 0.5          |
| Area 8      | ·               |           |         |              |
| BASB050     | 20-Маг-01       | Ba        | 2000    | 1000         |
| BASB050     | 20-Mar-01       | Pb        | 100     | 15           |
| BASB050     | 20-Mar-01       | Sb        | 490     | 6            |

Data prepared by: <u>TIH</u>. Data QA/QC by: <u>LDF</u>.

Notes:

DUP = Duplicate sample

MCL = Maximum concentration limit

MCL values were derived from the California Department of Health Services Primary MCL list, Regional Water Quality Control Board, Central Valley Region, A Compilation of Water Quality Goals, August 2000

Samples were analyzed by Curtis and Tompkins Analytical Laboratories Ltd. for metals using EPA test method 6010B and for volatile organic compounds using EPA test method 8260B.

Ba = Barium

c-1,2-DCE = cis-1,2-Dichloroethene

MTBE = Methyl-tertiary-butyl ether

Ni = Nickel

Pb = Lead

Sb = Antimony

TCE = Trichloroethene

VC = Vinyl Chloride

Table 20
Selection of Chemicals of Potential Concern in Soil
Batarse Site, Oakland, California

|                       |                        | Minimum<br>Reporting       | Maximum<br>Reporting       | Minimum<br>Detected           | Maximum<br>Detected           | Background                  |                     |                                         |
|-----------------------|------------------------|----------------------------|----------------------------|-------------------------------|-------------------------------|-----------------------------|---------------------|-----------------------------------------|
| Chemical              | Detection<br>Frequency | Limit <sup>1</sup> (mg/kg) | Limit <sup>1</sup> (mg/kg) | Value <sup>1</sup><br>(mg/kg) | Value <sup>1</sup><br>(mg/kg) | Values <sup>2</sup> (mg/kg) | Selected as<br>COPC | Rationale for<br>Selection or Exclusion |
| Metals                |                        |                            |                            |                               |                               |                             |                     |                                         |
| Arsenic               | 279 / 279              | 0.18                       | 0.25                       | 0.58                          | 33                            | 19.1                        | No                  | Within Background Levels 3              |
| Barium                | 279 / 279              | 0.36                       | 8.6                        | 36                            | 410                           | 323.6                       | Yes                 | Above Background Levels                 |
| Beryllium             |                        | 0.072                      | 0.10                       | 0.12                          | 79.0                          | 1.0                         | No                  | Within Background Levels                |
| Chromium              | 279 / 279              | 0.36                       | 0.50                       | 2.1                           | 160                           | 9.66                        | Yes                 | Above Background Levels                 |
| Cobalt                | 279 / 279              | 0.72                       | 1.0                        | 1.8                           | 20                            | 22.2                        | No                  | Within Background Levels                |
| Copper                | 279 / 279              | 0.36                       | 0.50                       | 4.3                           | 29                            | 69.4                        | No                  | Within Background Levels                |
| Lead                  | 283 / 283              | 0.11                       | 0.15                       | 1.3                           | 160                           | 16.1                        | Yes                 | Above Background Levels                 |
| Mercury               | 277 / 279              | 0.017                      | 0.091                      | 0.021                         | 1.1                           | 0.40                        | Yes                 | Above Background Levels                 |
| Molybdenum            | 6 / 279                | 0.72                       | 1.0                        | 1.0                           | 8.4                           | 7.4                         | No                  | Within Background Levels                |
| Nickel                | 279 / 279              | 0.72                       | 1.0                        | 16                            | 94                            | 119.8                       | No                  | Within Background Levels                |
| Selenium              | 54 / 279               | 0.18                       | 0.25                       | 0.22                          | 98.0                          | 5.6                         | No                  | Within Background Levels                |
| Silver                | 2 / 279                | 0.18                       | 0.25                       | 0.52                          | 8.0                           | 1.8                         | N <sub>o</sub>      | Within Background Levels                |
| Thallium              | 89 / 279               | 0.18                       | 0.25                       | 0.21                          | 2.8                           | 27.1                        | No                  | Within Background Levels                |
| Vanadium              | 279 / 279              | 0.36                       | 0.50                       | 4.8                           | 61                            | 74.3                        | No                  | Within Background Levels                |
| Zinc                  | 279 / 279              | 0.72                       | 20                         | 11.0                          | 430                           | 106                         | Yes                 | Above Background Levels                 |
| OCPs                  |                        |                            |                            |                               |                               |                             |                     |                                         |
| 4,4'-DDT              | 1 / 2                  | 0.0059                     | 090.0                      | 0.012                         | 0.012                         | NA                          | Yes                 | Detected                                |
| alpha-Chlordane       | 1/2                    | 0.003                      | 0.030                      | 0.012                         | 0.012                         | NA                          | Yes                 | Detected                                |
| gamma-Chlordane       | 1 / 2                  | 0.003                      | 0.030                      | 0.0075                        | 0.0075                        | NA                          | Yes                 | Detected                                |
| PAHs                  |                        |                            |                            | **                            |                               |                             |                     |                                         |
| Benzo(a)anthracene    | 1 / 15                 | 0.0033                     | 0.050                      | 0.0036                        | 0.0036                        | NA                          | Yes                 | Detected                                |
| Benzo(a)pyrene        | 2 / 15                 | 0.0033                     | 0.050                      | 0.0079                        | 0.0081                        | NA                          | Yes                 | Detected                                |
| Benzo(b)fluoranthene  | 1 / 15                 | 0.0067                     | 0.050                      | 0.0067                        | 0.0067                        | NA                          | Yes                 | Detected                                |
| Benzo(g,h,i)perylene  | 1 / 15                 | 0.0067                     | 0.050                      | 0.007                         | 0.0071                        | NA                          | Yes                 | Detected                                |
| Chrysene              | 3 / 15                 | 0.0033                     | 0.050                      | 0.0047                        | 0.062                         | AN                          | Yes                 | Detected                                |
| Dibenz(a,h)anthracene | 2 / 15                 | 0.0067                     | 0.050                      | 0.011                         | 0.016                         | NA                          | Yes                 | Detected                                |

Table 20
Selection of Chemicals of Potential Concern in Soil
Batarse Site, Oakland, California

|                            | Detection | Minimum<br>Reporting<br>Limit | Maximum<br>Reporting<br>Limit | Minimum<br>Detected<br>Value 1 | Maximum<br>Detected<br>Value | Background<br>Values <sup>2</sup> | Selected as | Rationale for          |
|----------------------------|-----------|-------------------------------|-------------------------------|--------------------------------|------------------------------|-----------------------------------|-------------|------------------------|
| Chemical                   | Frequency | (mg/kg)                       | (mg/kg)                       | (mg/kg)                        | (mg/kg)                      | (mg/kg)                           | COPC        | Selection or Exclusion |
| Indeno(1,2,3-cd)pyrene     | 1 / 15    | 0.0033                        | 0.050                         | 0.0059                         | 0.0059                       | NA                                | Yes         | Detected               |
| Pyrene                     | 2 / 15    | 0.0067                        | 0.050                         | 0.0091                         | 0.0097                       | ΥN                                | Yes         | Detected               |
| SVOCS                      |           |                               |                               |                                |                              |                                   |             |                        |
| bis(2-Ethylhexyl)phthalate | 1 / 15    | 0.33                          | 3.3                           | 0.87                           | 0.87                         | AN                                | Yes         | Detected               |
| Phenol                     | 1 / 15    | 0.33                          | 3.3                           | 0.82                           | 0.82                         | A'N                               | Yes         | Detected               |
| VOCS                       |           |                               |                               |                                |                              | -                                 |             |                        |
| Acetone                    | 1 / 95    | 0.019                         | 0.022                         | 0.025                          | 0.025                        | ¥Z                                | Yes         | Detected               |
| Methylene Chloride         | 8 / 95    | 0.019                         | 0.022                         | 0.020                          | 090.0                        | NA                                | Yes         | Detected               |

1 Minimum and maximum reporting limits and detecteds value from LFR sampling program.

Metal background concentrations from Oakland Urban Land Development.

3 Arsenic maximum detected value of 33 mg/kg is anomalous and considered an outlier; the other 278 arsenic results are below the background level of 19.1 mg/kg.

mg/kg = Milligrams per kilogram

NA = Not applicable

OCPs = Organochlorine Pesticides

PAH = Polynuclear Aromatic Hydrocarbons

SVOCs = Semivolatile organic compound

VOCs = Volatile organic compound

Table 21
Selection of Chemicals of Potential Concern in Groundwater
Batarse Site, Oakland, California

|                            |           | Minimum | Maximum     | Minimum<br>Detected | Maximum<br>Detected |             |                        |
|----------------------------|-----------|---------|-------------|---------------------|---------------------|-------------|------------------------|
|                            | Detection | Limit 1 | Limit 1     | Value 1             | Value 1             | Selected as | Rationale for          |
| Chemical                   | Frequency | (µg/l)  | (hg/l)      | (J/gri)             | (l/gn)              | COPC        | Selection or Exclusion |
| Metals                     |           |         |             |                     |                     |             |                        |
| Antimony                   | 2 / 58    | 1.0     | 20          | 1.3                 | 490                 | Yes         | Detected               |
| Arsenic                    | 2 / 58    | 5.0     | 5.0         | 9.1                 | 9.4                 | Yes         | Detected               |
| Barium                     | 58 / 58   | 10      | 200         | 28                  | 2000                | Yes         | Detected               |
| Cobalt                     | ~         | 20      | 20          | 37                  | 50                  | Yes         | Detected               |
| Copper                     | ~         | 10      | 10          | 15                  | 16                  | Yes         | Detected               |
| Lead                       |           | 3.0     | 3.0         | 12                  | 100                 | Yes         | Detected               |
| Molybdenum                 | 3 / 58    | 20      | 410         | 20                  | 36                  | Yes         | Detected               |
| Nickel                     | 11 / 58   | 20      | 20          | 23                  | 130                 | Yes         | Detected               |
| Zinc                       | 3 / 58    | 20      | 20          | 26                  | 4                   | Yes         | Detected               |
| SVOCs                      |           |         |             |                     |                     |             |                        |
| 2-Methylnaphthalene        | 2 / 14    | 9.4     | 4800        | 570                 | 15000               | Yes         | Detected               |
| Naphthalene                | 1 / 14    | 9.4     | 4800        | 7000                | 7000                | Yes         | Detected               |
| bis(2-Ethylhexyl)phthalate | 1 / 28    | 3.0     | 4800        | 3.1                 | 3.1                 | Yes         | Detected               |
| VOCs                       |           |         |             |                     |                     |             |                        |
| 1,2,4-Trimethylbenzene     | 3 / 58    | 0.50    | 8.3         | 580                 | 2600                | Yes         | Detected               |
| 1,3,5-Trimethylbenzene     | 3 / 58    | 0.50    | 8.3         | 110                 | 820                 | Yes         | Detected               |
| Bromodichloromethane       | 1 / 58    | 0.50    | 8.3         | 1.2                 | 1.2                 | Yes         | Detected               |
| Bromoform                  | 1 / 58    | 1.0     | 17          | 7.3                 | 7.3                 | Yes         | Detected               |
| Carbon Disulfide           | 3 / 58    | 0.50    | 8.3         | 09:0                | 08.0                | Yes         | Detected               |
| Chloroform                 | 2 / 58    | 0.50    | 8.3         | 1.3                 | 11                  | Yes         | Detected               |
| cis-1,2-Dichloroethene     | 4 / 58    | 0.50    | 8.3         | 2.3                 | 01                  | Yes         | Detected               |
| Dibromochloromethane       | 1 / 58    | 0.50    | 8.3         | 09.0                | 09.0                | Yes         | Detected               |
| Ethylbenzene               | 3 / 58    | 0.50    | 8.3         | 31                  | 210                 | Yes         | Detected               |
| Isopropylbenzene           | 3 / 58    | 0.50    | 8.3         | 68                  | 190                 | Yes         | Detected               |
| m,p-Xylenes                | 4 / 58    | 0.50    | 8.3         | 0.50                | 390                 | Yes         | Detected               |
| MTBE                       | 4 / 58    | 0.50    | <b>8</b> 0: | 0.50                | 16                  | Yes         | Detected               |
| n-Butylbenzene             | 3 / 58    | 0.50    | 8.3         | 93                  | 550                 | Yes         | Detected               |

Table 21
Selection of Chemicals of Potential Concern in Groundwater
Batarse Site, Oakland, California

|                        |           | Minimum | Maximum<br>Reporting | Minimum         | Maximum |             |                        |
|------------------------|-----------|---------|----------------------|-----------------|---------|-------------|------------------------|
|                        | Detection | Limit 1 | Limit 1              | Value 1         | Value 1 | Selected as | Rationale for          |
| Chemical               | Frequency | (l/gn)  | (l/g <sub>H</sub> )  | (h <b>g</b> /l) | (l/gn)  | COPC        | Selection or Exclusion |
| Naphthalene            | 3 / 58    | 1.0     | 17                   | 89              | 180     | Yes         | Detected               |
| para-Isopropyi Toluene | 3 / 58    | 0.50    | 8.3                  | 14              | 65      | Yes         | Detected               |
| Propylbenzene          | 3 / 58    | 0.50    | 8.3                  | 240             | 700     | Yes         | Detected               |
| sec-Butylbenzene       | 3 / 58    | 0.50    | 8.3                  | 31              | 140     | Yes         | Detected               |
| Styrene                | 2 / 58    | 0.50    | 8.3                  | 0.60            | 1.4     | Yes         | Detected               |
| Tetrachloroethene      | 1 / 58    | 0.50    | 8.3                  | 1.3             | 1.3     | Yes         | Detected               |
| Toluene                | 5 / 58    | 0.50    | 8.3                  | 0.50            | 2.3     | Yes         | Detected               |
| Trichloroethene        | 4 / 58    | 0.50    | 8.3                  | 5.2             | 15      | Yes         | Detected               |
| Trichlorofluoromethane | 1 / 58    | 0.50    | 8.3                  | 0.50            | 0.50    | Yes         | Detected               |
| Vinyl Chloride         | 2 / 58    | 0.50    | 8.3                  | 4.4             | 5.7     | Yes         | Detected               |
|                        |           |         |                      |                 |         |             |                        |

μg/l =Micrograms per liter

NA = Not applicable

SVOCs = Semivolatile organic compound

VOCs = Volatile organic compounds

<sup>&</sup>lt;sup>1</sup> Minimum and maximum reporting limits and detecteds value from LFR sampling program.

Table 22
Chemical Properties for Chemicals of Potential Concern
Batarse Site, Oakland, California

|                                         | <del></del>   |                                                   |                                            |                                                       |
|-----------------------------------------|---------------|---------------------------------------------------|--------------------------------------------|-------------------------------------------------------|
| Chemical                                | CAS<br>Number | Vapor<br>Pressure <sup>†</sup><br>(mmHg @ 20-30C) | Solubility <sup>1</sup><br>(mg/l @ 20-30C) | Henry's Law <sup>1</sup><br>(atm-m <sup>3</sup> /mol) |
| Metals                                  |               |                                                   |                                            |                                                       |
| Antimony                                | 7440-36-0     | 1.00E+00                                          |                                            | NA                                                    |
| Arsenic                                 | 7440-38-2     | 0.00E+00                                          |                                            | NA                                                    |
| Barium                                  | 7440-39-3     |                                                   |                                            | NA                                                    |
| Cadmium                                 | 7440-43-9     | 0.00E+00                                          |                                            | NA                                                    |
| Chromium                                | 7440-47-3     | 0.00E+00                                          | one with one                               | NA                                                    |
| Cobalt                                  | 7440-48-4     |                                                   |                                            | NA                                                    |
| Copper                                  | 7440-50-8     | 0.00E+00                                          |                                            | NA                                                    |
| Lead                                    | 7439-92-1     | 0.00E+00                                          |                                            | NA                                                    |
| Mercury                                 | 7439-97-6     | 2.00E-03                                          |                                            | NA                                                    |
| Molybdenum                              | 7439-98-7     | 0.00E+00                                          |                                            | NA                                                    |
| Nickel                                  | 7440-02-0     | 0.00E+00                                          |                                            | NA                                                    |
| Zinc                                    | 7440-66-6     | 0.00E+00                                          |                                            | NA                                                    |
| OCPs                                    |               |                                                   |                                            |                                                       |
| 4,4'-DDT                                | 50-29-3       | 5.50E-06                                          | 5.00E-03                                   | 5.13E-04                                              |
| alpha-Chlordane                         | 5103-71-9     | 1.00E-05                                          | 5.60E-01                                   | 9.63E-06                                              |
| gamma-Chlordane                         | 5103-74-2     | 1.00E-05                                          | 5.60E-01                                   | 9.63E-06                                              |
| PAHs                                    |               |                                                   |                                            |                                                       |
| 2-Methylnaphthalene                     | 91-57-6       |                                                   |                                            |                                                       |
| Benzo(a)anthracene                      | 56-55-3       | 2.20E-08                                          | 5.70E-03                                   | 1.16E-06                                              |
| Benzo(a)pyrene                          | 50-32-8       | 5.60E-09                                          | 1.20E-03                                   | 1.55E-06                                              |
| Benzo(b)fluoranthene                    | 205-99-2      | 5.00E-07                                          | 1.40E-02                                   | 1.19E-05                                              |
| Benzo(g,h,i)perylene                    | 191-24-2      | 1.03E-10                                          | 7.00E-04                                   | 5.34E-08                                              |
| Chrysene                                | 218-01-9      | 6.3E-09                                           | 1.80E-03                                   | 1.05E-06                                              |
| Dibenz(a,h)anthracene                   | 53-70-3       | 1.00E-10                                          | 5.00E-04                                   | 7.33E-08                                              |
| Indeno(1,2,3-cd)pyrene                  | 193-39-5      | 1.00E-10                                          | 5.30E-04                                   | 6.86E-08                                              |
| Naphthalene <sup>2</sup>                | 91-20-3       | 8.50E-02                                          | 3.10E+01                                   | 4.40E-04                                              |
| Pyrene                                  | 129-00-0      | 2.50E-06                                          | 1.32E-01                                   | 5.04E-06                                              |
| SVOCs                                   |               |                                                   |                                            | - · · · <del>-</del> · · ·                            |
| bis(2-Ethylhexyl)phthalate <sup>2</sup> | 117-81-7      | 1.42E-07                                          | 2.70E-01                                   | 2.70E-07                                              |
| Phenol                                  | 108-95-2      | 3.41E-01                                          | 9.30E+04                                   | 4.54E-07                                              |
| VOCs                                    | 100 /3 2      | 3.112.01                                          | 7.555104                                   | 1.5 (2.0)                                             |
| 1,2,4-Trimethylbenzene <sup>2</sup>     | 05.63.6       | 2.100.100                                         | 5 70E + 04                                 | 6 16E 02                                              |
|                                         | 95-63-6       | 2.10E+00                                          | 5.70E+01                                   | 6.16E-03                                              |
| 1,3,5-Trimethylbenzene <sup>2</sup>     | 108-67-8      | 2.48E+00                                          | 4.82E+01                                   | 8.77E-03                                              |
| Acetone                                 | 67-64-1       | 2.70E+02                                          | 1.00E + 06                                 | 2.06E-05                                              |

Table 22
Chemical Properties for Chemicals of Potential Concern
Batarse Site, Oakland, California

| Chemical                            | CAS<br>Number | Vapor<br>Pressure <sup>†</sup><br>(mmHg @ 20-30C) | Solubility <sup>1</sup><br>(mg/l @ 20-30C) | Henry's Law <sup>1</sup><br>(atm-m³/mol) |
|-------------------------------------|---------------|---------------------------------------------------|--------------------------------------------|------------------------------------------|
| Bromodichloromethane 2              | 75-27-4       | 5.00E+01                                          | 3.03E+03                                   | 2.12E-03                                 |
| Bromoform                           | 75-25-2       | 5.00E+00                                          | 3.01E+03                                   | 5.52E-04                                 |
| Carbon Disulfide                    | 75-15-0       | 3.60E+02                                          | 2.94E+03                                   | 1.23E-02                                 |
| Chloroform                          | 67-66-3       | 1.51E+02                                          | 8.20E+03                                   | 2.87E-03                                 |
| cis-1,2-Dichloroethene              | 156-59-2      | 2.08E+02                                          | 3.50E+03                                   | 7.58E-03                                 |
| Dibromochloromethane <sup>2</sup>   | 124-48-1      | 5.54E+00                                          | 2.70E+03                                   | 7.83E-04                                 |
| Ethylbenzene                        | 100-41-4      | 7.00E+00                                          | 1.52E+02                                   | 6.43E-03                                 |
| Isopropylbenzene 2                  | 98-82-8       | 4.50E+00                                          | 6.13E+01                                   | 1.15E-02                                 |
| m,p-Xylenes                         | 1330-20-7     | 1.00E+01                                          | 1.98E+02                                   | 7.04E-03                                 |
| Methylene Chloride                  | 75-09-2       | 4.31E+03                                          | 6.50E+03                                   | 4.40E-02                                 |
| MTBE <sup>2</sup>                   | 1634-04-4     | 2.50E+02                                          | 5.10E+04                                   | 5.87E-04                                 |
| n-Butylbenzene <sup>2</sup>         | 104-51-8      | 1.06E+00                                          | 1.18E+01                                   | 1.59E-02                                 |
| para-Isopropyl Toluene <sup>2</sup> | 99-87-6       | 1.46E+00                                          | 2.34E+01                                   | 1.10E-02                                 |
| Propylbenzene <sup>2</sup>          | 103-65-1      | 3.42E+00                                          | 5.22E+01                                   | 1.05E-02                                 |
| sec-Butylbenzene <sup>2</sup>       | 135-98-8      | 1.75E+00                                          | 1.76E+01                                   | 1.76E-02                                 |
| Styrene <sup>2</sup>                | 100-42-5      | 6.40E+00                                          | 3.10E+02                                   | 2.75E-03                                 |
| Tetrachloroethene                   | 127-18-4      | 1.78E+01                                          | 1.50E+02                                   | 2.59E-02                                 |
| Toluene                             | 108-88-3      | 2.81E+01                                          | 5.35E+02                                   | 6.37E-03                                 |
| Trichloroethene                     | 79-01-6       | 5.79E+01                                          | 1.10E+03                                   | 9.10E-03                                 |
| Trichlorofluoromethane <sup>2</sup> | 75-69-4       | 8.03E+02                                          | 1.10E+03                                   | 9.70E-02                                 |
| Vinyl Chloride                      | 75-01-4       | 2.66E+03                                          | 2.67E+03                                   | 8.19E-02                                 |

atm-m<sup>3</sup>/mol = atmosphere-cubic meter per mole

NA = Not applicable

--- = Not available

OCPs = Organochlorine Pesticides

PAH = Polynuclear Aromatic Hydrocarbons

SVOCs = Semivolatile organic compound

VOCs = Volatile organic compound

<sup>&</sup>lt;sup>1</sup> Values from Exhibit A-1, U.S.EPA Superfund Public Health Evaluation Manual, October 1986.

<sup>&</sup>lt;sup>2</sup> Values from Environmental Science Center Database; http://esc.syrres.com/interknow/physdemo.htm mg/l = Milligrams per liter

Table 23
Carcinogenic Toxicity Information for Chemicals of Potential Concern
Batarse Site, Oakland, California

|                                      | Oral Cancer               | Inhalation Cancer         |                       |                               |
|--------------------------------------|---------------------------|---------------------------|-----------------------|-------------------------------|
|                                      | Slope Factor<br>(Sfo)     | Slope Factor<br>(Sfi)     | Weight-of<br>Evidence | Toxicity Information          |
| Chemical                             | (mg/kg-day) <sup>-1</sup> | (mg/kg-day) <sup>-1</sup> | Classification        | Reference Source <sup>1</sup> |
| Metals                               |                           |                           |                       |                               |
| Antimony                             | NA                        | NA                        |                       | IRIS 2001                     |
| Arsenic                              | 1.5E+00                   | 1.2E±01                   | A                     | CAL/EPA 2001, IRIS 2001       |
| Barium                               | NA                        | NA                        | D                     | IRIS 2001                     |
| Cadmium                              | 3.8E-01                   | 1.5E+01                   | B1                    | CAL/EPA 2001, IRIS 2001       |
| Chromium                             | NA                        |                           |                       |                               |
| 11                                   |                           | NA<br>NA                  | D                     | IRIS 2001                     |
| Cobalt                               | NA                        | NA                        |                       | IRIS 2001                     |
| Copper                               | NA                        | NA                        | D                     | IRIS 2001                     |
| Lead                                 | NA                        | NA NA                     | B2                    | IRIS 2001                     |
| Mercury                              | NA                        | NA                        | D                     | IRIS 2001                     |
| Molybdenum                           | NA                        | NA                        |                       | IRIS 2001                     |
| Nickel                               | NA                        | 9.1E-01                   | Α                     | CAL/EPA 2001, IRIS 2001       |
| Zine                                 | NA                        | NA I                      | D                     | IRIS 2001                     |
| OCPs                                 |                           |                           | _                     |                               |
| 4,4'-DDT                             | 3.4E-01                   | 3.4E-01                   | B2                    | CAL/EPA 2001, IRIS 2001       |
| alpha-Chlordane                      | 1.3E+00                   | 1.2E+00                   | В2                    | CAL/EPA 2001, IRIS 2001       |
| gamma-Chlordane                      | 1.3E+00                   | 1.2E+00                   | В2                    | CAL/EPA 2001, IRIS 2001       |
| PAHs                                 |                           |                           |                       | ,                             |
| 2-Methylnaphthalene                  | NA                        | NA                        |                       | IRIS 2001                     |
| Benzo(a)anthracene                   | 1.2E+00                   | 3.9E-01                   | B2                    | CAL/EPA 2001, IRIS 2001       |
| Benzo(a)pyrene                       | 1.2E+01                   | 3.9E+00                   | B2                    | CAL/EPA 2001, IRIS 2001       |
| Benzo(h)fluoranthene                 | 1.2E+00                   | 3.9E-01                   | B2                    | CAL/EPA 2001, IRIS 2001       |
| Benzo(g,h,i)perylene                 | NA                        | NA                        | -25                   | IRIS 2001                     |
| Chrysene                             | 1.2E-01                   | 3.9E-02                   | B2                    | CAL/EPA 2001, IRIS 2001       |
| Dibenz(a,h)anthracene                | 4.1E+00                   | 4.1E+00                   | B2                    | CAL/EPA 2001, IRIS 2001       |
| Indeno(1,2,3-cd)pyrene               | 1.2E+00                   | 3.9E-01                   | B2                    | CAL/EPA 2001, IRIS 2001       |
| Naphthalene                          | NA                        | NA                        | С                     | IRIS 2001                     |
| Pyrene                               | NA                        | NA                        | D                     | IRIS 2001                     |
| SVOCs                                | 2.07.02                   | 0.45.03                   | P.0                   | 011 (501 000) (501 000)       |
| bis(2-Ethylhexyl)phthalate<br>Phenol | 3.0E-03                   | 8.4E-03                   | B2                    | CAL/EPA 2001, IRIS 2001       |
| YOCs                                 | NA                        | NA                        | D                     | IRIS 2001                     |
| 1,2,4-Trimethylbenzene               | NA                        | NA                        |                       | IRIS 2001                     |
| 1,3,5-Trimethylbenzene               | NA<br>NA                  | NA<br>NA                  |                       | IRIS 2001<br>IRIS 2001        |
| Acetone                              | NA<br>NA                  | NA<br>NA                  | D                     | IRIS 2001                     |
| Bromodichloromethane                 | 1.3E-01                   | 1.3E-01                   | B2                    | CAL/EPA 2001, IRIS 2001       |
| Bromoform                            | 7.9E-03                   | 3.9E-03                   | B2                    | IRIS 2001                     |
| Carbon Disulfide                     | NA                        | NA                        |                       | IRIS 2001                     |
| Chloroform                           | 3.1E-02                   | 1.9E-02                   | B2                    | CAL/EPA 2001, IRIS 2001       |
| cis-1,2-Dichloroethene               | NA                        | NA                        | D                     | IRIS 2001                     |
| Dibromochloromethane                 | 9.4E-02                   | 9.4E-02                   | С                     | CAL/EPA 2001, IRIS 2001       |
| Ethylbenzene                         | NA                        | NA                        | Ð                     | IRIS 2001                     |

Table 23

Carcinogenic Toxicity Information for Chemicals of Potential Concern

Batarse Site, Oakland, California

| Chemical               | Oral Cancer<br>Slope Factor<br>(Sfo)<br>(mg/kg-day) <sup>-1</sup> | Inhalation Cancer<br>Slope Factor<br>(Sfi)<br>(mg/kg-day) <sup>-1</sup> | Weight-of<br>Evidence<br>Classification | Toxicity Information<br>Reference Source <sup>1</sup> |
|------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|
| Isopropylbenzene       | NA                                                                | NA                                                                      | D                                       | IRIS 2001                                             |
| m,p-Xylenes            | NA                                                                | NA                                                                      | D                                       | IRIS 2001                                             |
| Methylene Chloride     | 1.4E-02                                                           | 3.5E-03                                                                 | B2                                      | CAL/EPA 2001, IRIS 2001                               |
| МТВЕ                   | 1.8E-03                                                           | 1.8E-03                                                                 |                                         | CAL/EPA 2001, IRIS 2001                               |
| n-Butylbenzene         | NA                                                                | NΛ                                                                      |                                         | IRIS 2001                                             |
| para-Isopropyl Toluene | NA                                                                | NA                                                                      |                                         | IRIS 2001                                             |
| Propylbenzene          | NA                                                                | NA                                                                      |                                         | IRIS 2001                                             |
| sec-Butylbenzene       | NA                                                                | NA NA                                                                   |                                         | IRIS 2001                                             |
| Styrene                | NA                                                                | NA                                                                      |                                         | IRIS 2001                                             |
| Tetrachloroethene      | 5.1E-02                                                           | 2.1E-02                                                                 |                                         | CAL/EPA 2001, IRIS 2001                               |
| Toluene                | NA                                                                | NA                                                                      | D                                       | IRIS 2001                                             |
| Trichloroethene        | 1.5E-02                                                           | 1.0E-02                                                                 |                                         | CAL/EPA 2001, IRIS 2001                               |
| Trichlorofluoromethane | NA                                                                | NA                                                                      | D                                       | IRIS 2001                                             |
| Vinyl Chloride         | 2.7E-01                                                           | 2.7E-01                                                                 | A                                       | CAL/EPA 2001, IRIS 2001                               |

- California EPA OEHHA Cancer Potency Values, March 2001;
- U.S. EPA Integrated Risk Information System (IRIS) database, May 2001.

mg/kg-day = Milligrams per kilogram per day

OCPs = Organochlorine Pesticides

PAH = Polynuclear Aromatic Hydrocarbons

SVOCs = Semivolatile organic compound

VOCs = Volatile organic compound

NA = Not applicable

--- = Not available

Weight-of Evidence Classification:

- A Human carcinogen
- B1 Probable human carcinogen indicates that limited human data are available
- B2 Probable human carcinogen indicates sufficient evidence in animals and inadequate or no evidence in humans
- C Possible human carcinogen
- D Not classifiable as to human carcinogenicity

Table 24
Noncarcinogenic Toxicity Information for Chemicals of Potential Concern
Batarse Site, Oakland, California

| Chemical                   | Oral<br>Reference Dose<br>(RfDo)<br>(mg/kg-day) | Inhalation<br>Reference Dose<br>(RfDi)<br>(mg/kg-day) | Primary Target<br>Organs | Toxicity Information<br>Reference Source <sup>1</sup> |
|----------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------|-------------------------------------------------------|
| Metals                     |                                                 |                                                       |                          |                                                       |
| Antimony                   | 4.0E-04                                         |                                                       | Blood                    | NCEA                                                  |
| Arsenic                    | 3.0E-04                                         |                                                       | Skin                     | NCEA                                                  |
| Barium                     | 7.0E-02                                         | 1.4E-04                                               | Blood Pressure           | NCEA                                                  |
| Cadmium                    | 5.0E-04                                         |                                                       | Kidney                   | NCEA                                                  |
| Chromium                   | 3.0E-03                                         |                                                       | Liver                    | NCEA                                                  |
| Cobalt                     | 6.0E-02                                         |                                                       |                          |                                                       |
| Copper                     | 3.7E-02                                         |                                                       | GI                       | NCEA                                                  |
| Lead                       | J.7L-02                                         |                                                       | Neurotoxicity            | NCEA                                                  |
| Mercury                    |                                                 | 2.6E-05                                               | Neurotoxicity            | CAL/EPA OEHHA 2001                                    |
| Molybdenum                 | 5.0E-03                                         | 2.06-05                                               | Neurotoxicity            | NCEA                                                  |
| 31 -                       | 2.0E-02                                         |                                                       | Weight Loss              | NCEA                                                  |
| Nickel                     |                                                 |                                                       | -                        | - ·                                                   |
| Zinc                       | 3.0E-01                                         |                                                       | Blood                    | NCEA                                                  |
| OCPs                       |                                                 |                                                       |                          |                                                       |
| 4,4'-DDT                   | 5.0E-04                                         | 5.0E-04                                               | Liver                    | IRIS 2001                                             |
| alpha-Chlordane            | 5.0E-04                                         | 2.0E-04                                               | Liver                    | IRIS 2001                                             |
| gamma-Chlordane            | 5.0E-04                                         | 2.0E-04                                               | Liver                    | IRIS 2001                                             |
| PAHs                       |                                                 |                                                       |                          |                                                       |
| 2-Methylnaphthalene        |                                                 |                                                       |                          |                                                       |
| Benzo(a)anthracene         |                                                 |                                                       |                          |                                                       |
| Benzo(a)pyrene             |                                                 |                                                       |                          |                                                       |
| Benzo(b)fluoranthene       |                                                 |                                                       |                          |                                                       |
| Benzo(g,h,i)perylene       |                                                 |                                                       |                          |                                                       |
| Chrysene                   |                                                 |                                                       |                          |                                                       |
| Dibenz(a,h)anthracene      |                                                 |                                                       |                          |                                                       |
| Indeno(1,2,3-cd)pyrene     |                                                 |                                                       |                          |                                                       |
|                            |                                                 |                                                       | Body Weight,             | IRIS 2001, CAL/EPA                                    |
| Naphthalene                | 2.0E-02                                         | 2.6E-03                                               | Respiratory System       | OEHHA 2001                                            |
| Pyrene                     | 3.0E-02                                         | 3.0E-02                                               | Kidney                   | IRIS 2001                                             |
| SYOCs                      | 5.023 030                                       | 2.02.02                                               |                          |                                                       |
| bis(2-Ethylhexyl)phthalate | 2.0E-02                                         | 2.0E-02                                               | Liver                    | IRIS 2001                                             |
| Phenol                     | 6.0E-01                                         | 6.0E-01                                               | Fetal Body Weight        | IRIS 2001                                             |
| VOCs                       | 0.02.01                                         | 0.02.01                                               | Louis sona, moight       |                                                       |
| 1,2,4-Trimethylbenzene     | 5.0E-02                                         | 1.7E-03                                               |                          | NCEA                                                  |
| 1,3,5-Trimethylbenzene     | 5.0E-02<br>5.0E-02                              | 1.7E-03                                               |                          | NCEA                                                  |
| Acetone                    | 1.0E-01                                         | 1.0E-01                                               | Liver, Kidney            | IRIS 2001                                             |
| Bromodichloromethane       | 2.0E-02                                         | 2.0E-02                                               | Kidney                   | IRIS 2001                                             |
| II                         | 2.0E-02<br>2.0E-02                              | 2.0E-02<br>2.0E-02                                    | Liver                    | IRIS 2001                                             |
| Bromoform                  |                                                 |                                                       | Fetal Toxicity, PNS      | IRIS 2001                                             |
| Carbon Disulfide           | 1.0E-01                                         | 2.0E-01                                               | retat Toxicity, PNS      | IKI3 2001                                             |

Table 24
Noncarcinogenic Toxicity Information for Chemicals of Potential Concern
Batarse Site, Oakland, California

| Chemical               | Oral<br>Reference Dose<br>(RfDo)<br>(mg/kg-day) | Inhalation<br>Reference Dose<br>(RfDi)<br>(mg/kg-day) | Primary Target<br>Organs | Toxicity Information<br>Reference Source <sup>1</sup>  |
|------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------|--------------------------------------------------------|
| Chloroform             | 1.0E-02                                         | 1.0E-02                                               | Liver                    | IRIS 2001                                              |
| cis-1,2-Dichloroethene | 1.0E-02                                         | 1,0E-02                                               | Blood                    | HEAST 1997                                             |
| Dibromochloromethane   | 2.0E-02                                         | 2.0E-02                                               | Liver                    | IRIS 2001<br>IRIS 2001, CAL/EPA                        |
| Ethylbenzene           | 1.0E-01                                         | 5.7E-01                                               | Liver, Kidney, Fetus     | OEHHA 2001                                             |
| Isopropylbenzene       | 1.0E-01                                         | 1.1E-01                                               | Kidney                   | IRIS 2001                                              |
|                        |                                                 |                                                       | Body weight, CNS,        | IRIS 2001, CAL/EPA                                     |
| m,p-Xylenes            | 2.0E+00                                         | 2.0E-01                                               | Whole Body               | OEHHA 2001                                             |
| Methylene Chloride     | 6.0E-02                                         | 1.1E-01                                               | Liver                    | IRIS 2001, CAL/EPA<br>OEHHA 2001<br>IRIS 2001, CAL/EPA |
| МТВЕ                   | 8.6E-01                                         | 2.2E+00                                               | Liver, Kidney            | OEHHA 2001                                             |
| n-Butylbenzene         | 1.0E-02                                         | 1.0E-02                                               |                          | NCEA                                                   |
| para-Isopropyl Toluene |                                                 |                                                       |                          |                                                        |
| Propylbenzene          | 1.0E-02                                         | 1.0E-02                                               |                          | NCEA                                                   |
| sec-Butylbenzene       | 1.0E-02                                         | 1.0E-02                                               |                          | NCEA                                                   |
| Styrene                | 2.0E-01                                         | 3.0E-01                                               | Blood, Liver, CNS        | IRIS 2001                                              |
| Tetrachloroethene      | 1.0E-02                                         | 1.1E-01                                               | Liver                    | IRIS 2001, NCEA                                        |
|                        |                                                 |                                                       | Liver, Kidney, CNS,      | IRIS 2001, CAL/EPA                                     |
| Toluene                | 2.0E-01                                         | 8.6E-02                                               | PNS                      | OEHHA 2001                                             |
| Trichloroethene        | 1.0E-02                                         | 1.0E-02                                               |                          | IRIS, withdrawn value                                  |
| Trichlorofluoromethane | 3.0E-01                                         | 3.0E-01                                               |                          | IRIS 2001                                              |
| Vinyl Chloride         | 3.0E-03                                         | 2.9E-02                                               | CNS/PNS, GI System       | IRIS 2001                                              |

mg/kg-day = Milligrams per kilogram per day

NA = Not applicable

--- = Not available

OCPs = Organochlorine Pesticides

PAH = Polynuclear Aromatic Hydrocarbons

SVOCs = Semivolatile organic compound

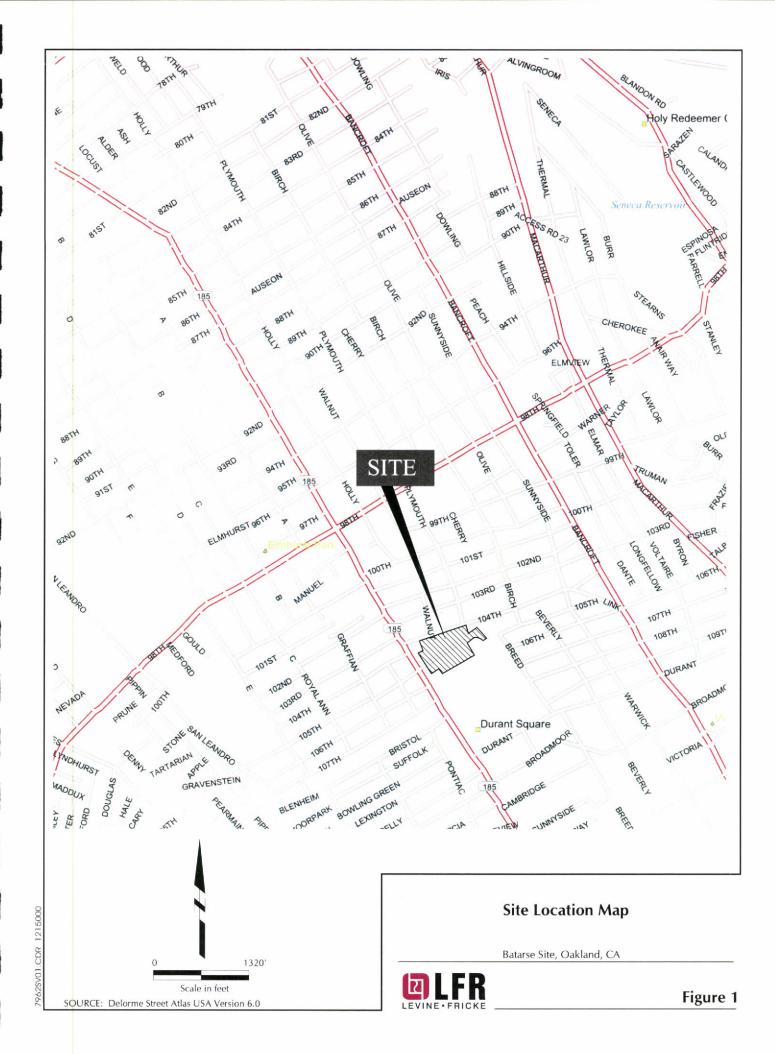
VOCs = Volatile organic compound

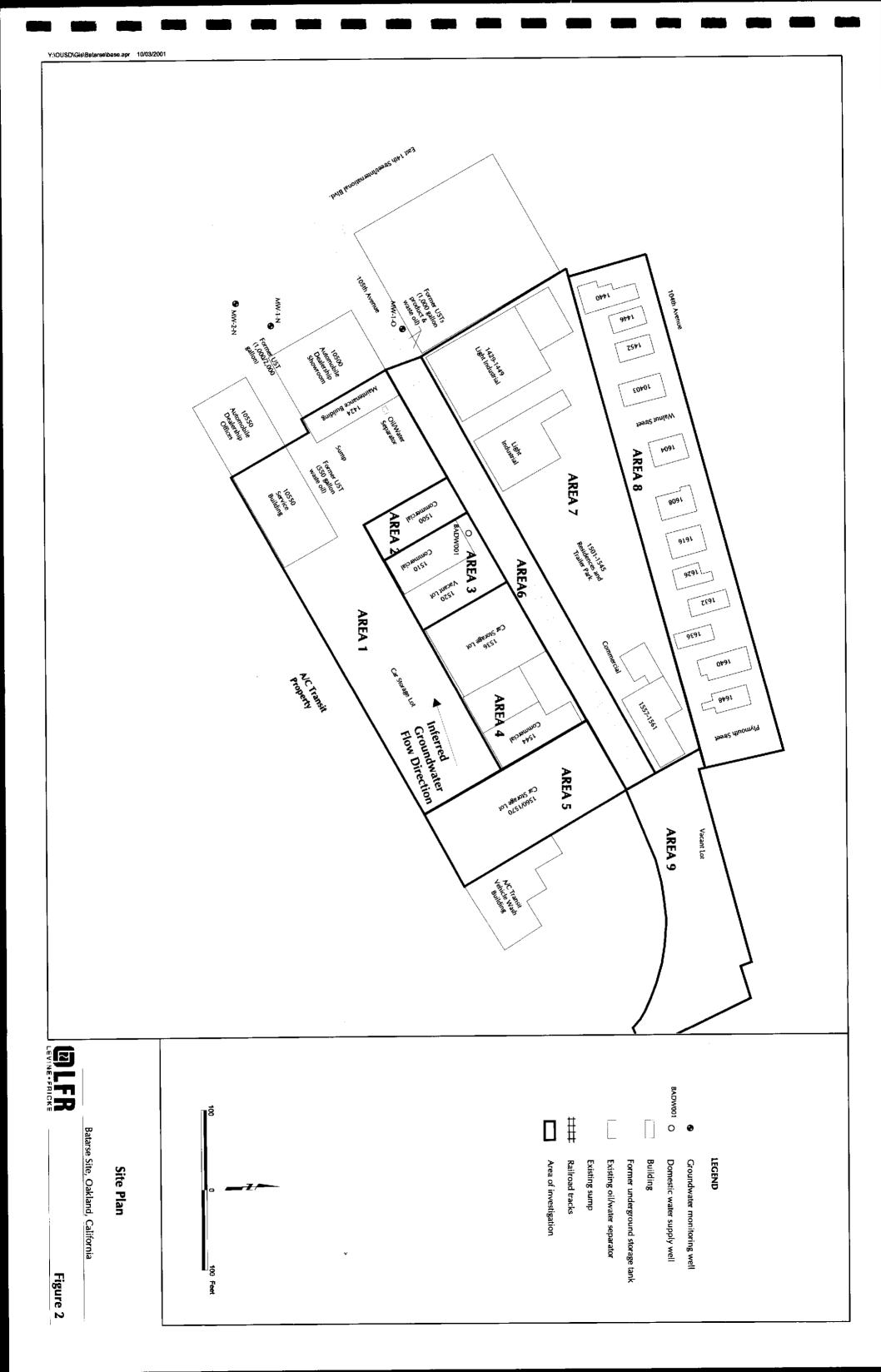
PNS = Peripheral Nervous System

CNS = Central Nervous System

National Center for Environmental Assessment (NCEA) as cited in

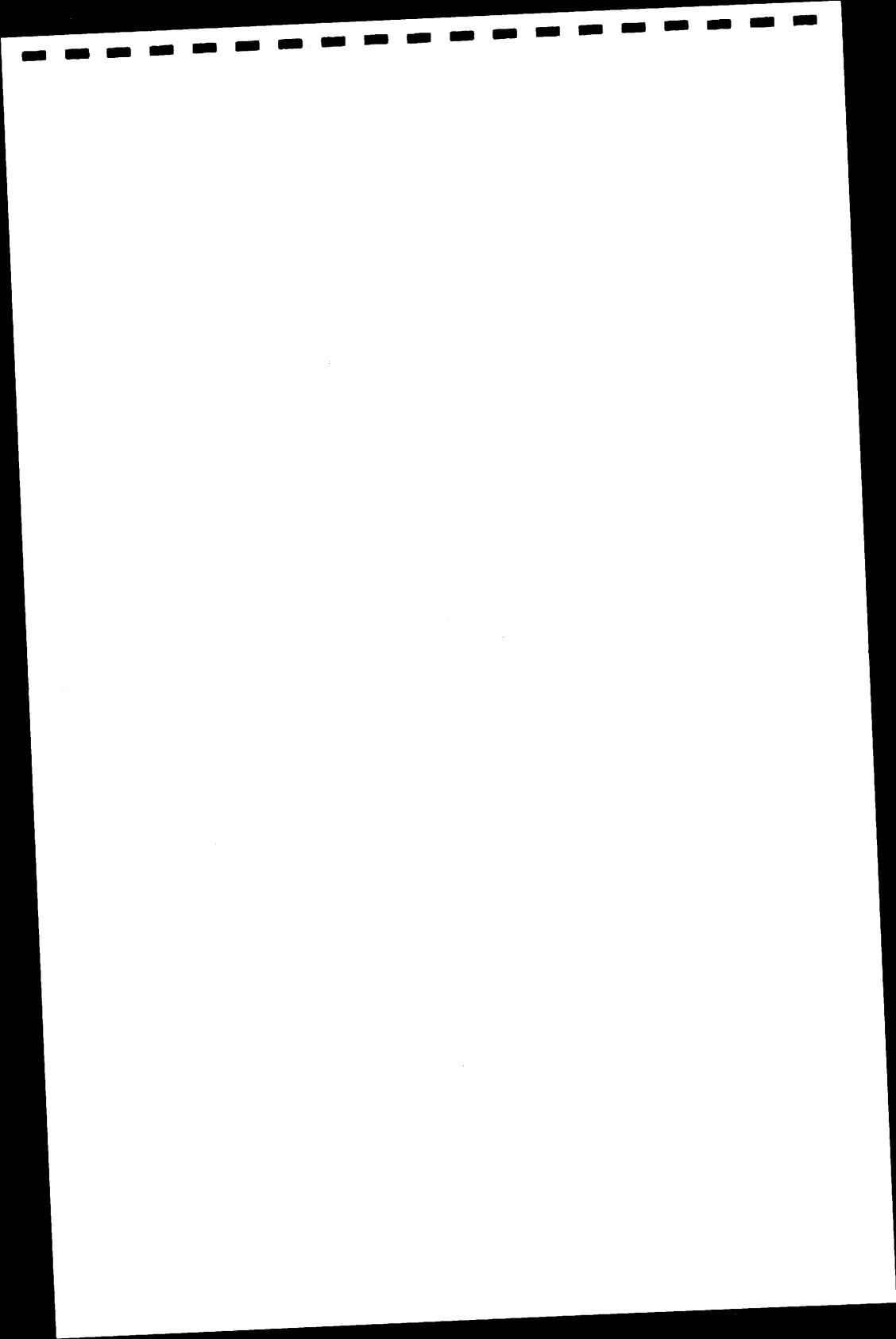
U.S. EPA Region 9 Preliminary Remedial Goals, November 2000.


U.S. EPA Integrated Risk Information System (IRIS) database, May 2001.

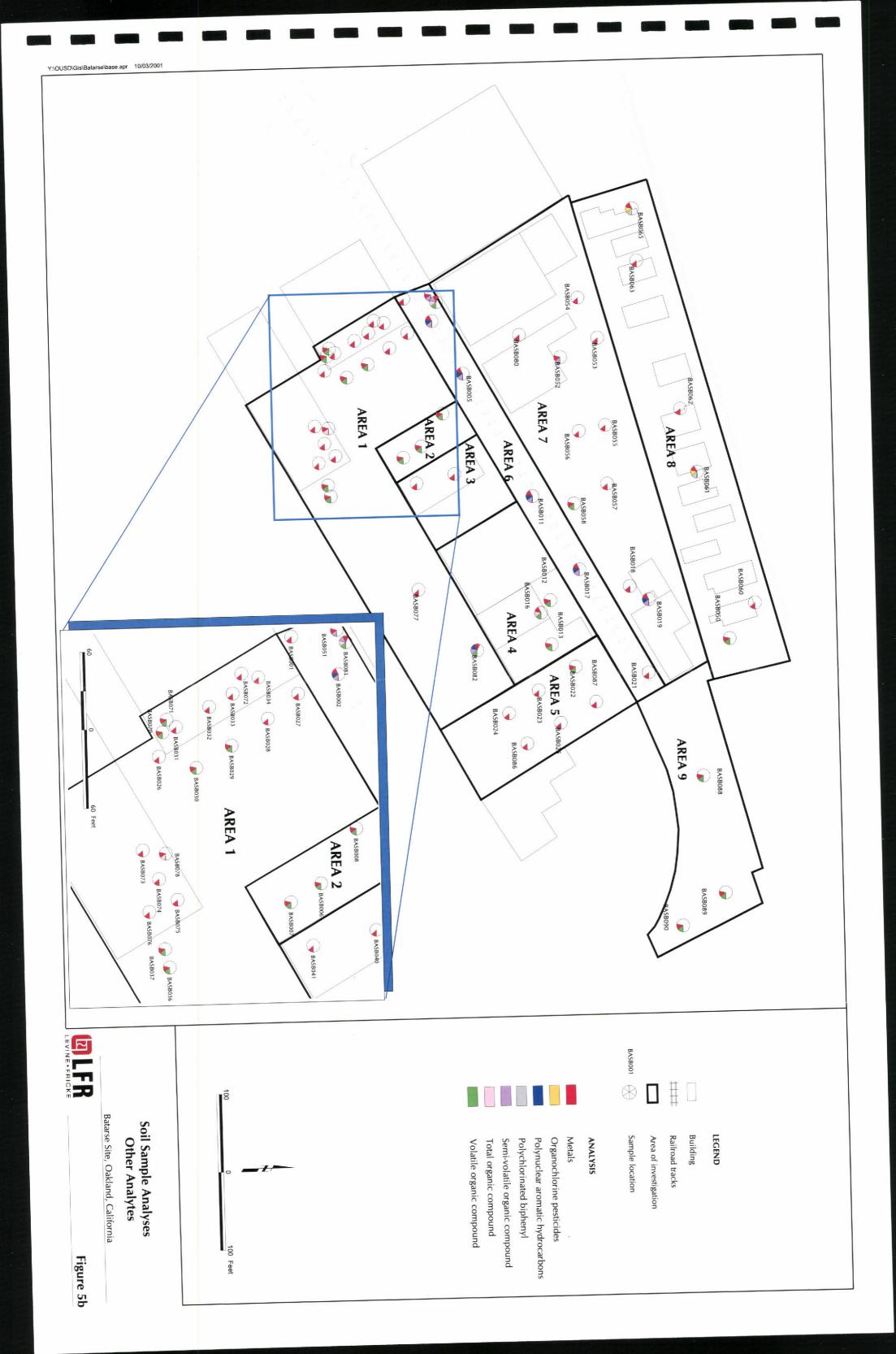

U.S. EPA Heath Effects Assessment Summary Tables (HEAST), Annual Update, FY 1997.

CAL/EPA Office of Environmental Heath Hazard Assessment (OEHHA) database, August 2001.

Table 25
Carcinogenic Risk Estimate for Chemicals of Potential Concern
Batarse Site, Oakland, California

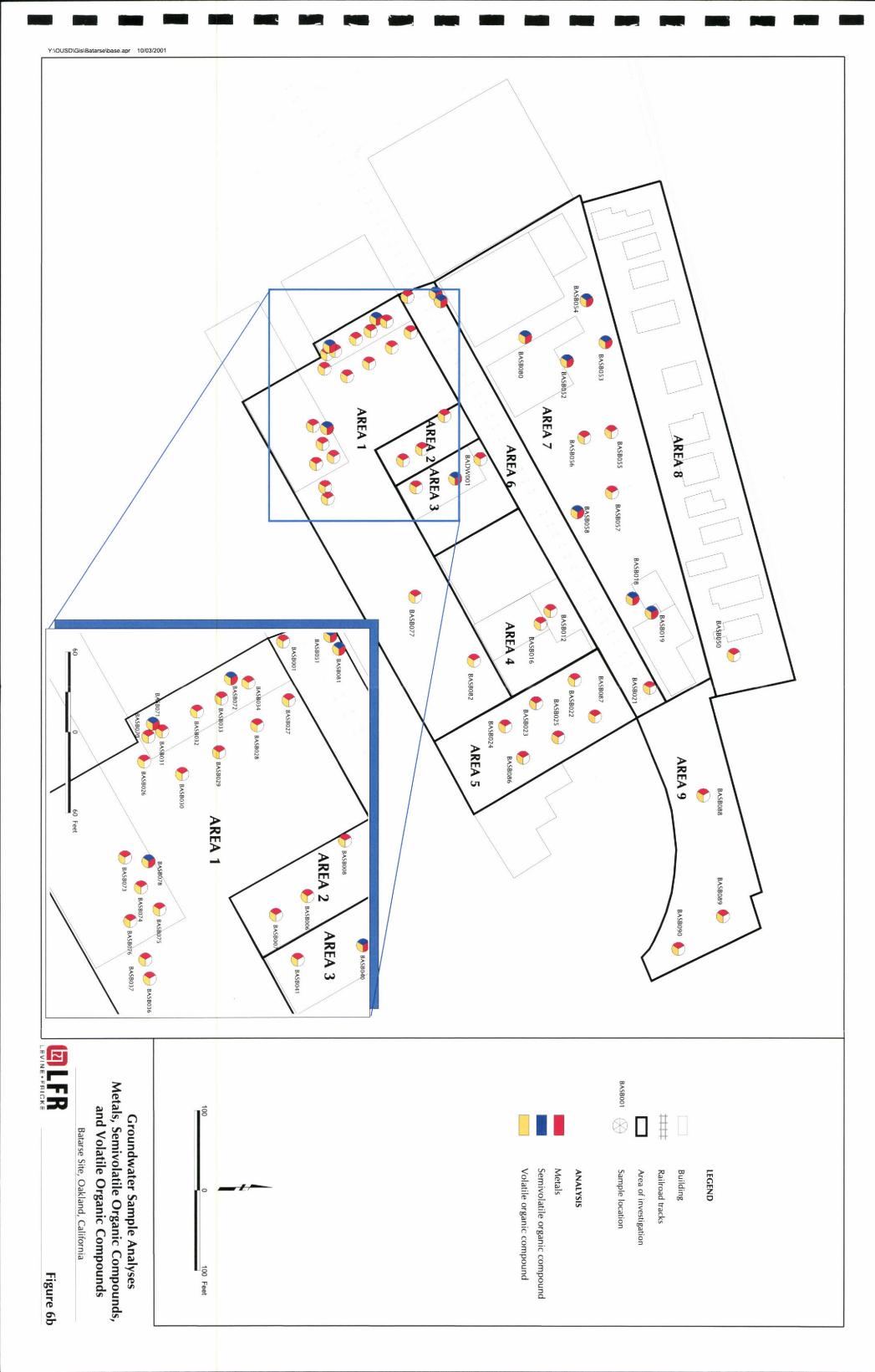

|                                     | Oral                      | Inhalation                | Dermal           | Dermal            |                  |                            |              |                      |                   |             |            |
|-------------------------------------|---------------------------|---------------------------|------------------|-------------------|------------------|----------------------------|--------------|----------------------|-------------------|-------------|------------|
|                                     | Cancer<br>close Eactor    | Cancer<br>Slone Factor    | Permeability     | Absorption        | Concentration in |                            | <del>.</del> | Concentration in Air | i                 | RISK        | RISK       |
|                                     | Slope Factor<br>(Sfo)     | Siope (Sfi)               | Coefficient (Kp) | rraction<br>(ABS) | Water<br>(Cw)    | Concentration in Soil (Cs) | los u        |                      | KISK<br>for Water | for<br>Soil | tor<br>Air |
| Chemical                            | (mg/kg-day) <sup>-1</sup> | (mg/kg-day) <sup>-1</sup> | (cm/hr)          | (dimensionless)   | (l/gm)           | (mg/kg)                    |              | (mg/m³)              | Pathway           | Pathway     | Pathway    |
| Metals                              |                           |                           |                  |                   |                  |                            |              |                      |                   |             |            |
| Antimony                            | NA                        | NA                        |                  |                   | U                |                            |              | NA                   | NA                | NA          | NA<br>A    |
| Arsenic                             | 1.5E+00                   | 1.2E+01                   |                  | а 0.03            | D ~              |                            | n r          | NA                   | NA                | Α̈́         | Ϋ́Z        |
| Barium                              | AN<br>A                   | NA<br>A                   | 9                | a 0.001           | Ω                | L 131                      |              | 6.6E-06              | NA                | NA          | NA         |
| Cadmium                             | 3.8E-01                   | 1.5E+01                   | NA<br>A          | 0.001             | NA<br>V          | 1.7                        |              | 8.5E-08              | ΥN                | 1.0E-06     | 1.9E-07    |
| Chromium                            | NA                        | Y X                       | NA<br>VA         | 0.01              |                  |                            | ם            | 1.6E-06              | Y.                | NA<br>V     | Y'A        |
| Cobalt                              | NA                        | NA                        |                  |                   | ₽                |                            |              | NA                   | Y.                | AN          | Y<br>Y     |
| Copper                              | Ϋ́Z                       | Y Y                       |                  | a 0.01            | Ω                |                            |              | NA                   | A'A               | VΑ          | Y.         |
| Lead                                | NA                        | NA<br>A                   |                  |                   | <u> </u>         | L 10                       | T<br>D       | 5.0E-07              | ٧Z                | : NA        | NA<br>A    |
| Mercury                             | NA<br>AN                  | NA                        | N.A.             | 0.01              |                  |                            |              | 3.6E-09              | NA                | Ϋ́          | NA         |
| Molybdenum                          | NA                        | NA<br>A                   |                  | a 0.01            | ח                | L NA                       |              | NA                   | ĄZ.               | NA          | K'N        |
| Nickel                              | NA                        | 9.1E-01                   |                  | а 0.01            | <u> </u>         |                            |              | NA                   | AN                | ΝĀ          | Ϋ́         |
| Zinc                                | A'N                       | NA                        | 0.00016          |                   | 0.012 U          | L 47                       | n            | 2.4E-06              | NA<br>A           | ĄZ          | N.A        |
| OCEs                                |                           |                           |                  |                   |                  |                            |              |                      |                   |             |            |
| 4,4'-DDT                            | 3.4E-01                   | 3.4E-01                   | NA               | 0.05              | NA<br>VA         | 0.012                      |              | 6.0E-10              | Y<br>Z            | 1.0E-08     | 3.0E-11    |
| alpha-Chlordane                     | 1.3E+00                   | 1.2E+00                   | NA               | 0.05              | A'A              | 0.012                      | Z            | 6.0E-10              | NA                | 3.9E-08     | 1.1E-10    |
| gamma-Chlordane                     | 1.3E+00                   | 1.2E+00                   | NA<br>A          | 0.05              | NA               | 0.0075                     | Z            | 3.8E-10              | AN                | 2.4E-08     | 6.7E-11    |
| SVOCs                               |                           |                           |                  |                   |                  |                            |              |                      |                   |             |            |
| 2-Methylnaphthalene                 | N.A.                      | NA                        | ~                | AN A              | 9.1 U L          |                            |              | 6.7E-05              | NA                | KZ.         | NA         |
| Benzo(a)anthracene                  | 1.2E+00                   | 3.9E-01                   | V.               | 0.1               | NA<br>AN         | 0:0036                     |              | 1.8E-10              | ΝĄ                | 1.5E-08     | 1.0E-11    |
| Вепzо(а)ругепе                      | 1.2E+01                   | 3.9E+00                   | V V              | 0.1               | NA               | 0.0081                     | M            | 4.1E-10              | NA<br>A           | 3.3E-07     | 2.4E-10    |
| Benzo(b)fluoranthene                | 1.2E+00                   | 3.9E-01                   | V.               | 0.1               | NA               | 0.0067                     |              | 3.4E-10              | AN                | 2.8E-08     | 1.9E-11    |
| Benzo(g,h,i)perylene                | Ϋ́Α                       | NA                        | A Z              | 0.1               | NA               | 0.0071                     |              | 3.6E-10              | Y Y               | NA<br>V     | Y<br>Y     |
| Chrysene                            | 1.2E-01                   | 3.9E-02                   | NA<br>V          | 0.1               | NA               | 0.057                      | n<br>n       | 2.96-09              | AN                | 2.4E-08     | 1.7E-11    |
| Dibenz(a,h)anthracene               | 4.1E+00                   | 4.1E+00                   | Y<br>Y           | 0.1               | AN               | 0.016                      |              | 8.0E-10              | NA                | 2.3E-07     | 4.9E-10    |
| Indeno(1,2,3-cd)pyrene              | 1.2E+00                   | 3.9E-01                   | Y<br>Y           | 0.1               |                  | _                          | Z            | 3.0E-10              | NA                | 2.4E-08     | 1.7E-11    |
| Naphthalene                         | ΝΑ                        | NA                        | 0.069            | 0.1               | 0.0046 UL        |                            |              | 3.4E-08              | NA<br>A           | NA<br>A     | Ϋ́Z        |
| Pyrene                              | X<br>V                    | NA                        | NA<br>V          | 0.1               | A N              | 0.0097                     | M            | 1.3E-11              | AN<br>A           | AN          | Ϋ́Z        |
| SVOCs<br>his/2.Fthvlhexvl)nhthalate | 3.0E-03                   | 8.4E-03                   | 0.033            | 0.1               | 0.0031 M L       |                            | 1            | 2.2E-08              | 1.5E-07           | 4.4E-09     | 2.7E-11    |
| Phenol                              | Ϋ́Α                       | N.A                       | NA               | 0.1               | NA               | 0.42                       | T n          | 2.1E-08              | AN                | N.          | ₹<br>Z     |
|                                     |                           |                           |                  |                   |                  |                            |              |                      |                   |             |            |

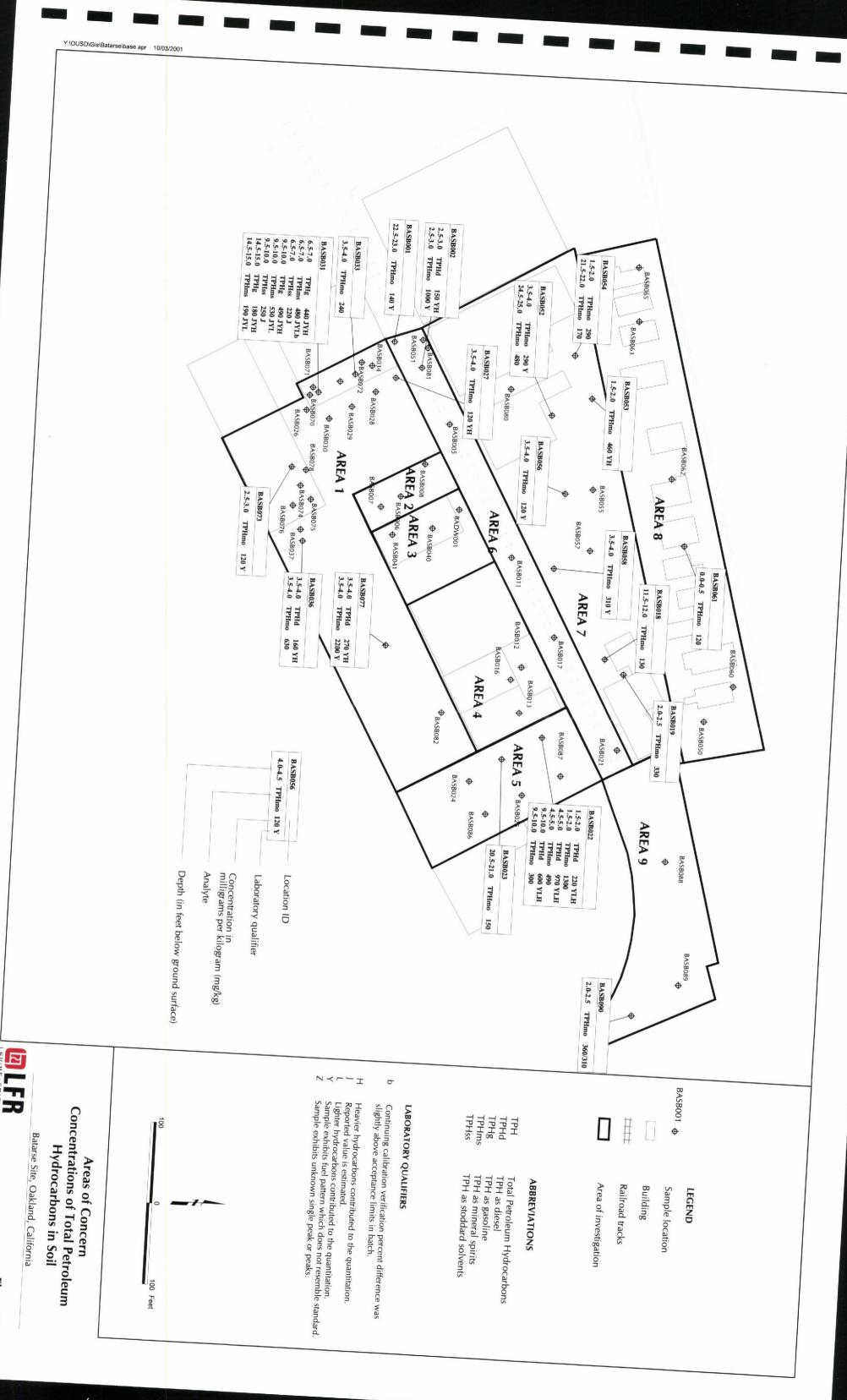


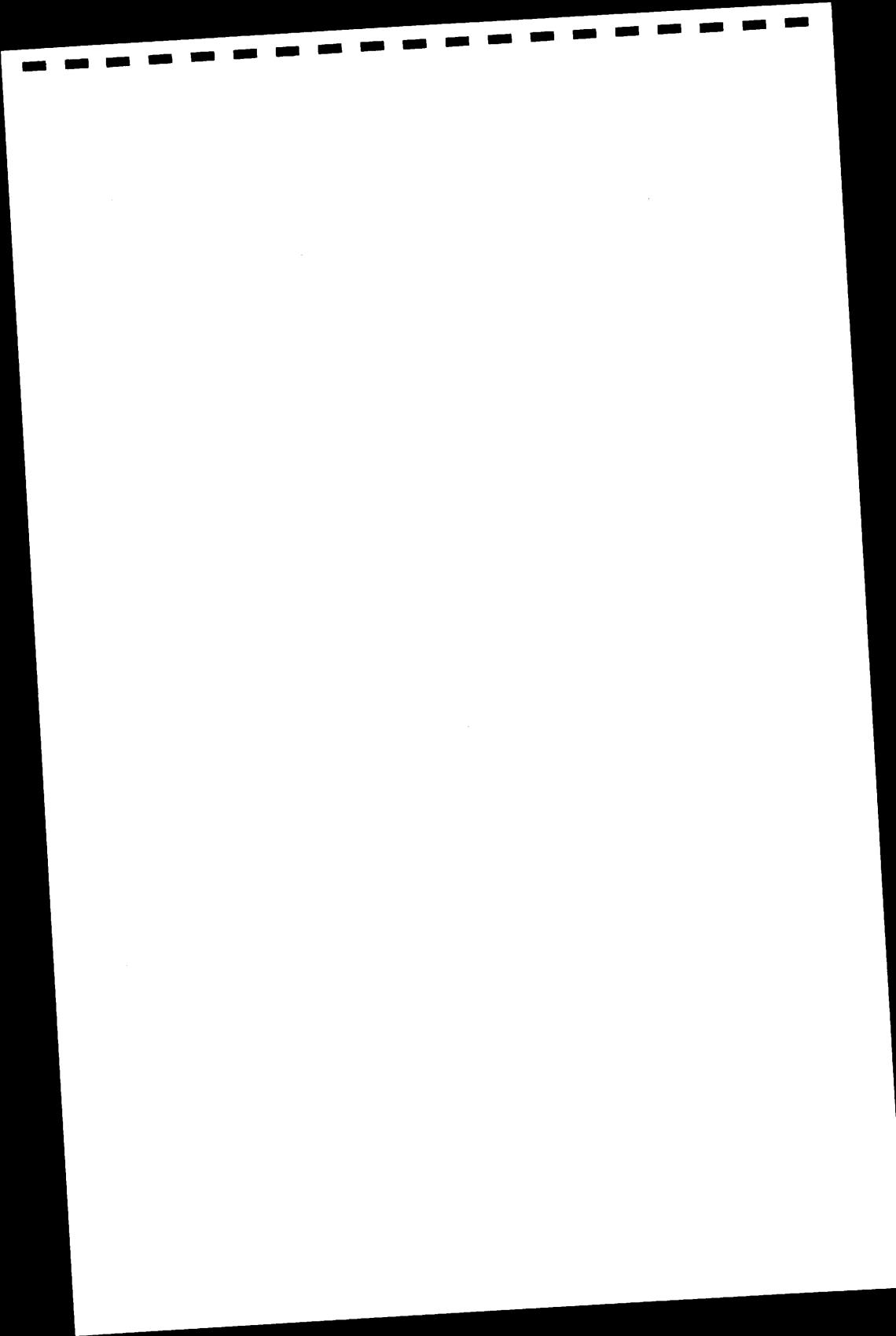




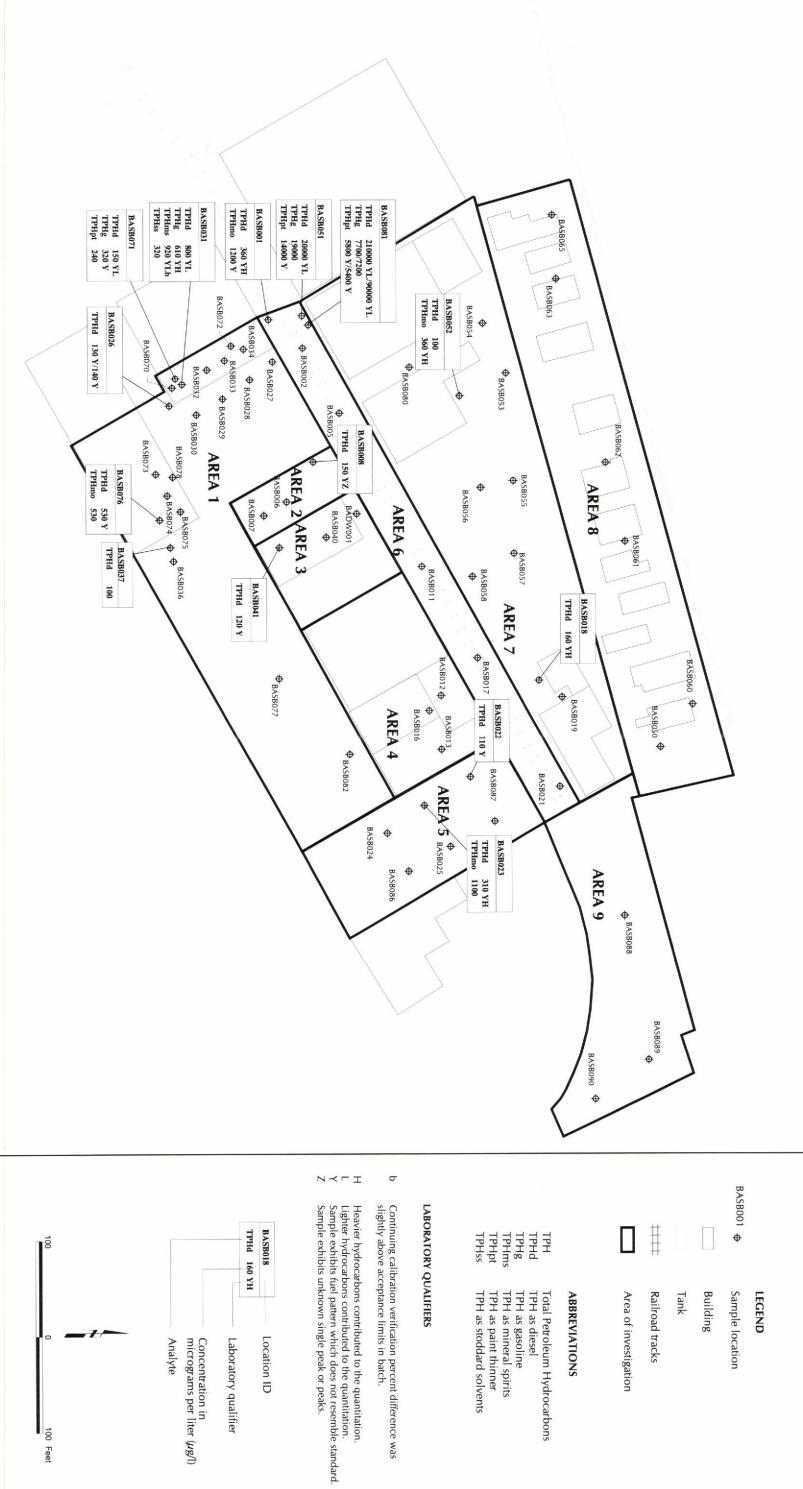
E-FRICKE


Figure 4












## Concentrations of Metals in Soil Areas of Concern Area of investigation Depth (in feet below ground surface) Concentration in milligrams per kilogram (mg/kg) 100 Feet



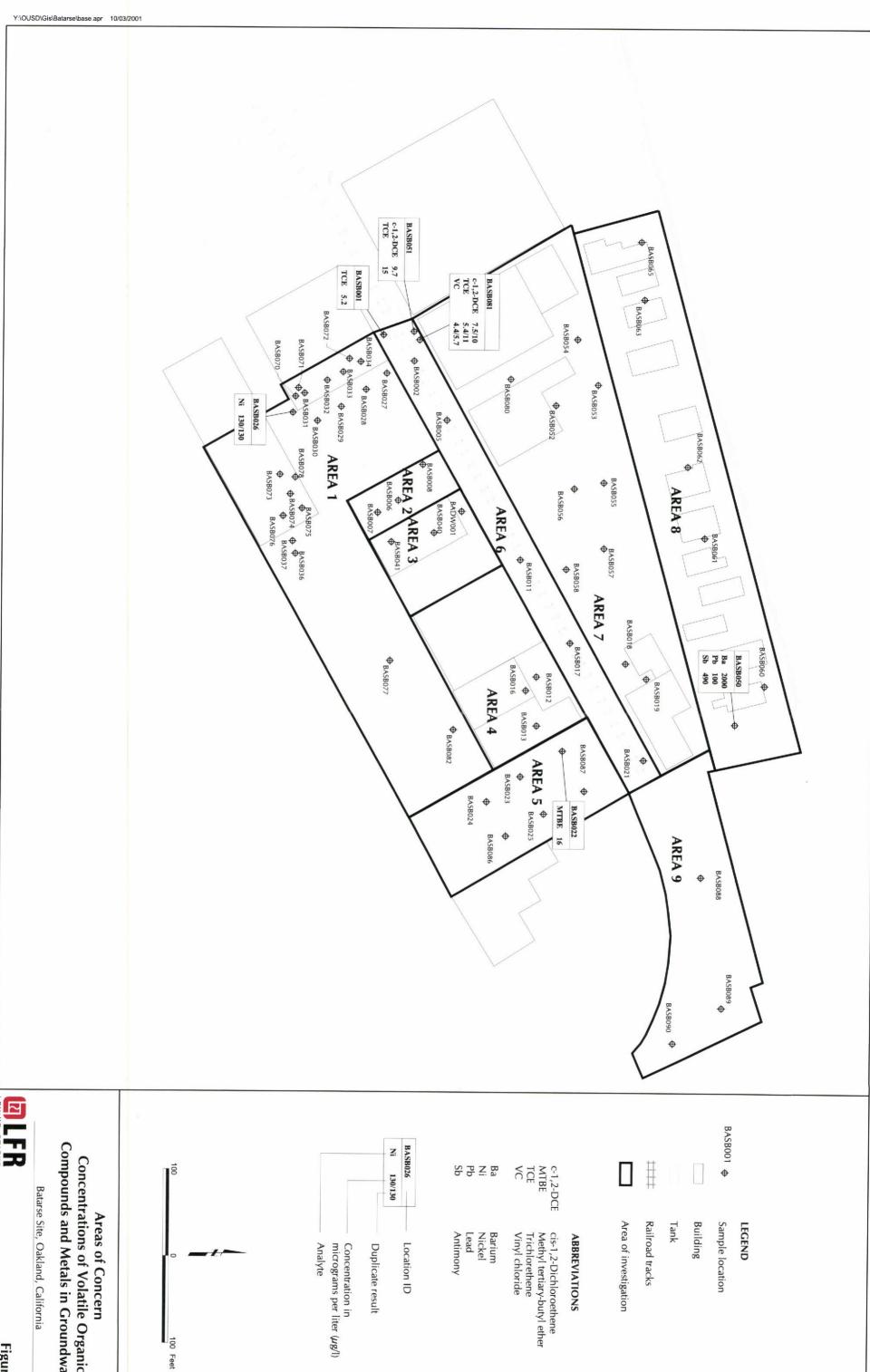

# ABBREVIATIONS

TPH as mineral spirits
TPH as paint thinner
TPH as stoddard solvents Total Petroleum Hydrocarbons TPH as diesel TPH as gasoline

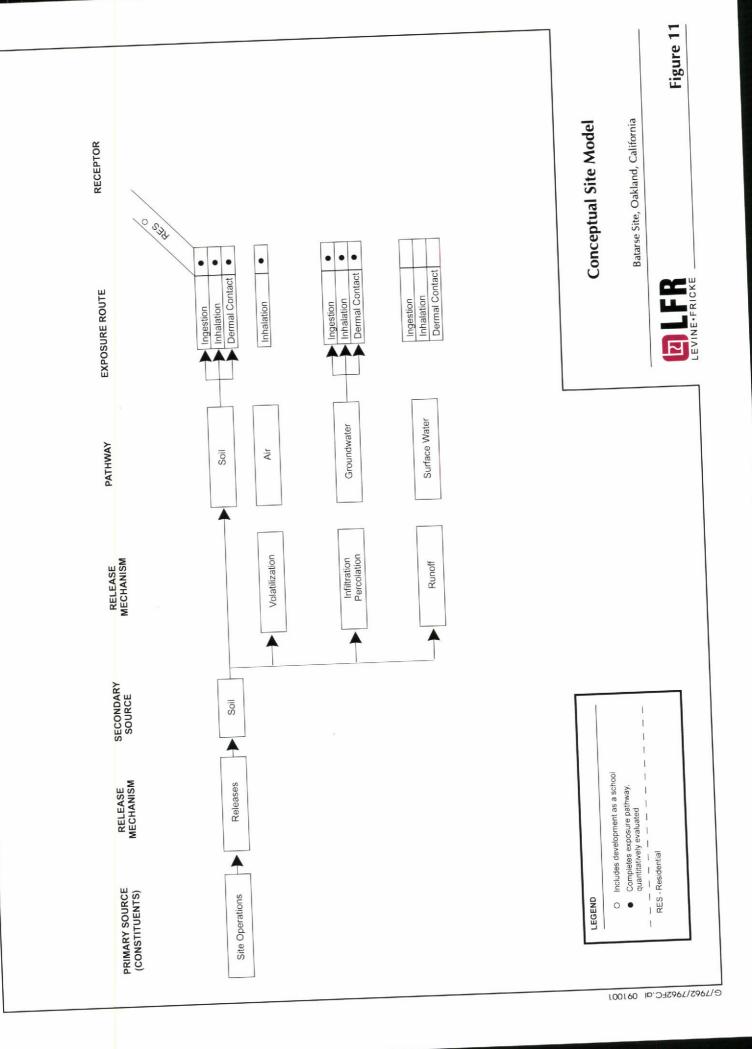
- Continuing calibration verification percent difference was slightly above acceptance limits in batch.

- Location ID Analyte Concentration in micrograms per liter (µg/l) Laboratory qualifier




# **Concentrations of Total Petroleum** Hydrocarbons in Groundwater Areas of Concern

Y:\OUSD\Gis\Batarse\base.apr 10/03/2001


Batarse Site, Oakland, California

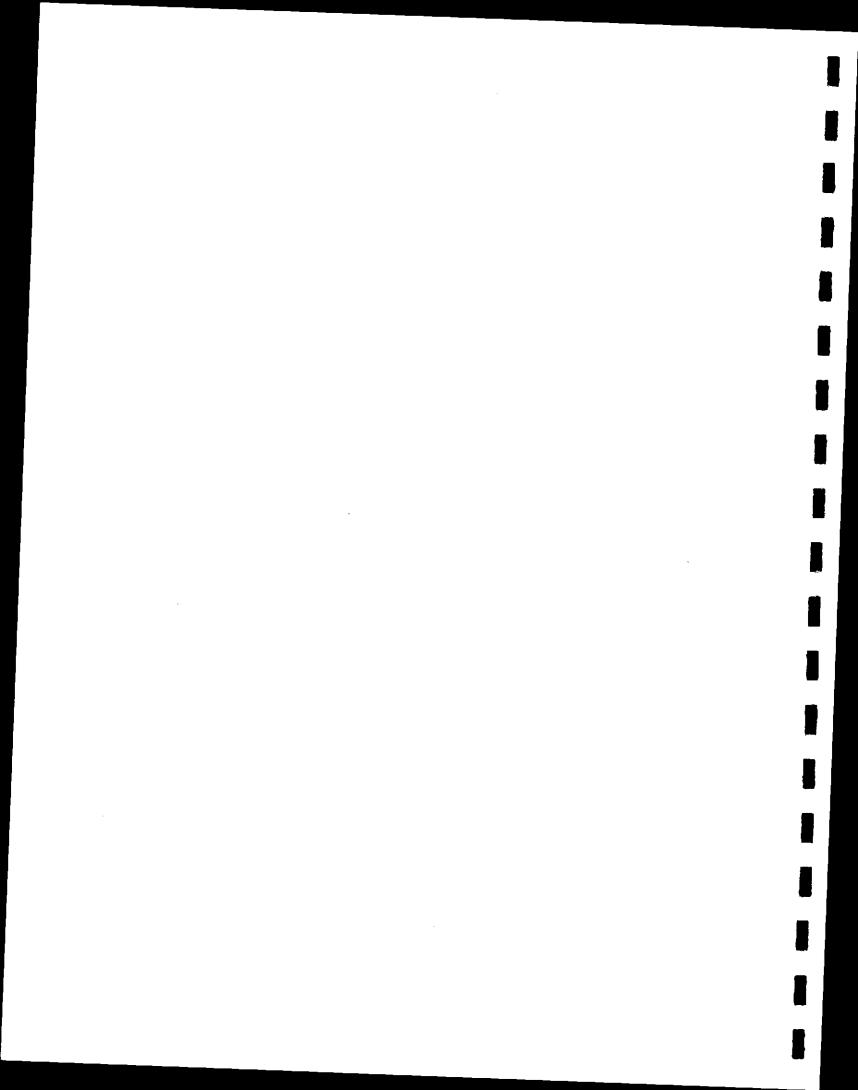



Figure 9



Compounds and Metals in Groundwater Areas of Concern Concentrations of Volatile Organic





