

Corporate Office

410 East Arrellaga Street, Santa Barbara, CA 93101 Phone (805) 568-0074; FAX (805) 965-3374

Ventura Office

1056 East Meta Street, Suite 101, Ventura, CA 93001 Phone (805) 653-0633; FAX (805) 653-0266

October 26, 2015

RECEIVED

By Alameda County Environmental Health 3:07 pm, Oct 28, 2015

Mr. Keith Nowell Alameda County Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject:

Winton Valero

23990 Hesperian Boulevard, Hayward, CA 94541

Fuel Leak Case No. RO0003188 GeoTracker Global ID T10000007782

SOIL AND GROUNDWATER ASSESSMENT WORKPLAN

Dear Mr. Nowell:

DMI-EMK Environmental Services, Inc., (DMI-EMK) prepared this *Soil and Groundwater Assessment Workplan* on behalf of Mr. Oscar Quiambao, the responsible party (RP) for the subject site located at 23990 Hesperian Boulevard in Hayward, California. In a letter dated October 23, 2015, (Appendix A) the Alameda County Environmental Health (ACEH) required submittal of a workplan to delineate the extent of petroleum hydrocarbon impact associated with an identified fuel release at the subject site. The following workplan presents a scope of work designed to meet the current requirements of ACEH for the site. The RP's authorization to submit this workplan is presented in Appendix B.

PHYSICAL SETTING

The following presents a physical description of the site, along with an overview of the geologic and hydrogeologic setting in which it is located.

SITE DESCRIPTION

The site is located at 23990 Hesperian Boulevard, in Hayward, California (Figure 1). The site is situated at the northeast corner of West Winton Avenue and Hesperian Boulevard, in an area used for commercial and residential purposes. The site is bordered to the north, east, and south by commercial businesses and residential properties and to the west by Hayward Executive Airport. Until recently, the site was operated as an automobile fueling station containing four underground storage tanks (USTs) and repair facility. The former site configuration is shown on Figure 2. Currently, the automobile repair facility has been removed and the site is being renovated to include a convenience store and updated fuel delivery system (fuel dispensers and underground fuel delivery piping) while utilizing the four existing USTs.

GEOLOGY AND HYDROGEOLOGY

The site is located within the East Bay Plain Groundwater Basin (Plain) of the San Francisco Bay hydrologic system. The Plain is about 25 miles long, two to seven miles wide, and includes all or portions of the cities of Richmond, San Pablo, EL Cerrito, Albany, Berkeley, Emeryville, Piedmont, Alameda, Oakland, San Leandro, San Lorenzo, and Hayward. It is bounded by the San Francisco Bay to the west, the San Pablo Bay to the north, and the Hayward Fault to the east. The southern boundary is defined as the northern boundary of the Alameda County Water District (DWR, 1980). The site is located near the Alameda Creek watershed at the southern end of the Plain. The area has a Mediterranean climate with an average annual rainfall of 23 inches that occurs mostly between November and March. The upland watershed area for the Plain is over 100 square miles along the western slope of the Coast Ranges. The Site is located within the San Leandro Sub-Area of the Plain. Locally, unconsolidated sediments beneath the Sub-Area are approximately 500 feet thick and consist primarily of estuarine deposits of the Alameda Formation and younger alluvial fans. The upper portion of the sub-area is underlain extensively by the Yerba Buena Mud Member that contains high clay content and forms an extensive eastwest aguitard across the Plain. This black, organic clay averages 25 to 50 feet thick with a gravel/sand/shell layer commonly in the middle of the unit. The San Francisco Bay Regional Water Quality Control Board (RWQCB, 2015) has identified the Yerba Buena Mud to be an ideal case for "less aggressive" remediation because "groundwater in these shallow deposits is unlikely to be used as a source of drinking water (due to low yield, elevated levels of coliform bacteria from leaking sewer pipes, and requirement of a 50 foot well seal for new municipal wells)." Deeper units beneath the site consist of a sequence of alluvial fan deposits between older muds. From the 1860s to the 1930s, all water supplies to the Plain area were provided by groundwater, springs, and local reservoirs. As a result of the development of various Sierra Nevada water supplies in the 1920s and 1930s, all local municipal water supplies were abandoned. Since then, the Plain has not been a regional water supply source. However, the Plain is used locally for irrigation, industry, emergency water supply purposes, and as a limited drinking water supply. Water service in the Plain is provided by the City of Hayward and East Bay Municipal Utility District (EBMUD). Future potential beneficial uses include utilizing the Basin's aquifers for storage of imported surface water by EBMUD. This storage is intended for use during a drought or an earthquake. Additional potential uses by EBMUD include municipal extraction wells and non-potable irrigation wells (RWQCB, 1999). The City of Hayward overlies the San Lorenzo Cone, which contains upper (Shallow Zone: 0 to 200 feet below ground surface [bgs]) and lower (Deep Zone: greater than 200 feet bgs) aquifers. The Shallow Zone groundwater is generally a calcium-bicarbonate type of water with total dissolved solids (TDS) concentrations ranging from about 300 to 1,000 milligrams per liter (mg/L). The Deep Zone groundwater is generally a sodium-bicarbonate type of water with TDS concentrations ranging from about 300 to 1,400 mg/L (Muir, 1993). Previous investigations in the site area indicate that soils generally consist of sandy silts, silty sands, fine sands, and clays consistent with the Yerba Buena Mud Member. The subsurface conditions can be divided into three broad lithologic units based on texture and relative depth:

1. An upper fine-grained unit, extending to a depth of approximately 25 to 30 feet bgs, consisting of dark brown to olive gray clay, clayey silt and sandy silt, with occasional silty sand beds.

- 2. A coarse-grained middle unit from a depth of approximately 30 to 45 feet bgs consisting of light brown to brownish yellow silty to gravelly sand, with sandy clay and silt interbeds. This coarse-grained middle unit was not encountered in every boring and is not locally continuous.
- 3. A lower fine-grained unit beginning at a depth of approximately 45 feet bgs consisting of sandy clay. This lower unit was not detected in all borings that contained the coarse-grained middle unit, primarily because those well borings were drilled to limited depths.

Based on the previous UST investigation conducted at the site, first groundwater likely occurs at approximately 25 feet bgs and generally flows in a west-southwesterly to south-southwesterly direction.

BACKGROUND INFORMATION

PREVIOUS ACTIVITIES

Based on information contained in the RWQCB *Site Closure Summary* dated November 8, 2000 (Appendix C), it appears that the site was remediated using soil vapor extraction. Although the *Site Closure Summary* documents maximum pollutant concentrations before and after site cleanup, no other reports were found on the State Water Resources Control Board (SWRCB) GeoTracker database or in the regulatory files at the City of Hayward Fire Department, San Francisco Bay Regional Water Quality Control Board, or ACEH.

CURRENT ACTIVITIES

On July 31, 2015, DMI-EMK was onsite to collect compliance soil samples from beneath removed fuel dispenser islands, fuel delivery piping, and UST vent lines, and from stockpiled gravel removed from above the USTs. The soil samples were collected under direction from City of Hayward Fire Department and submitted to a State-certified laboratory for analysis. In addition, soil samples were collected from beneath two removed hydraulic hoists and the footprint of the planned building. Soil sampling locations are shown on Figure 2. Complete laboratory analytical results and Chain-of-Custody documentation for the July 31, 2015 soil samples are presented in Appendix D.

As laboratory analytical results reported for sample D4@2' indicated the presence of elevated concentrations of total petroleum hydrocarbons as diesel (TPH-D) and oil (TPH-O), City of Hayward Fire concurred that a limited excavation was acceptable to remove accessible soil prior to installation of the fuel delivery system scheduled for this area. As such, an area measuring approximately 6 feet by 10 feet was excavated to approximately 14 feet bgs. On September 4, 2015, DMI-EMK was onsite to collect soil samples from the bottom and sidewalls of the excavation, and from the excavation soil stockpile. Soil sampling locations are shown on Figure 2. Complete laboratory analytical results and COC documentation for the September 4, 2015 soil samples are presented in Appendix E.

As laboratory analytical results reported for the excavation soil samples indicated the presence of total petroleum hydrocarbons as gasoline (TPH-G) and TPH-D as well as several volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) the City of Hayward Fire Department required the submittal of an Underground Storage Tank (UST) Site – Unauthorized Release / Contamination Report (Appendix F). After review by the Hayward Fire Department and the San Francisco Bay Regional Water Quality Control Board, the case was transferred to ACEH for regulatory oversight.

CURRENT REQUIREMENTS

In a letter dated October 23, 2015, ACEH directed the submittal of a workplan to delineate the extent of the recently identified contamination with respect to the SWRCB Low-Threat Underground Storage Tank Case Closure Policy (LTCP). The following workplan presents a scope of work designed to address the current site assessment requirements of ACEH.

PROPOSED SCOPE OF SERVICES

DMI-EMK proposes to conduct site assessment services consisting of: 1) drilling and sampling of five direct-push borings; 2) collection of soil and groundwater samples from each boring; 3) submittal of collected soil and groundwater samples to a State-certified laboratory for analysis; 4) evaluation of field and laboratory analytical data; and, 5) preparation of a technical report documenting the results of this phase of work and presenting corrective action recommendations with respect to the SWRCB LTCP. The proposed boring locations are shown on Figure 3. The proposed scope of services is described in further detail by task below.

Task 1 - Project Initiation

DMI-EMK proposes to provide project initiation services consisting of: 1) negotiating and obtaining approval for drilling and sampling of five direct-push borings and four potential stepout borings through ACEH; 2) preparation of a site-specific Health & Safety Plan; and 3) acquiring permits for drilling activities through the Alameda County Public Works Agency. Once the scope of work has been approved, DMI-EMK will mark the planned boring locations and contact Underground Service Alert (USA), as required by law. USA will notify local utility companies of the proposed work and the utility companies mark the location(s) of underground utilities within the marked area. DMI-EMK will check the utility markings to assess whether there are conflicts with the proposed boring locations.

Prior to initiating field activities, DMI-EMK will coordinate the proposed work with the client, ACEH, and subcontracted services such as the driller and laboratory. ACEH will be contacted a minimum of 48 hours in advance of commencing field exploration services at the site.

Task 2 - Field Exploration

Direct Push Soil and Groundwater Sampling

DMI-EMK proposes to obtain the services of a State-licensed contractor to drill and sample five borings using direct-push technology. Additional step-out borings may be drilled and sampled if field indications of contamination (petroleum hydrocarbon odors and/or staining) are observed in soil or groundwater from the initial five borings. The proposed boring locations are shown on Figure 4. Based on current site data, we anticipate that initial groundwater will be encountered at approximately 25 feet bgs. As such, the borings will be advanced to an estimated depth of approximately 30 feet bgs in order to collect soil and groundwater samples.

The borings will be excavated using 1.5-inch-diameter, hydraulically driven continuous-core samplers equipped with either polyethylene or brass sample sleeves. Soil samples will be collected at approximate five-foot intervals during exploration. The sampling depths may be modified based on our observations of actual field conditions at the time of exploration. A sample sleeve will be collected from each sample interval. The samples collected will be capped, sealed, labeled, and stored in the field in a cooler containing ice. COC records for the soil samples will be completed in the field. The samples and the COC records will be delivered to a State-certified laboratory for analyses. To minimize the potential for cross-contamination, down-hole equipment will be washed prior to use in each boring.

Soil from each sampling interval will be placed in a plastic bag for field evaluation. The field evaluation will consist of: 1) visually classifying the soils in general accordance with *ASTM Test Method D2488*; 2) screening the soil samples for the presence of organic vapor emissions using an organic vapor analyzer (OVA); and 3) noting soil discoloration or the presence of hydrocarbon odors. The results of the field evaluation will be used in the selection of soil samples for laboratory analyses.

Groundwater Sampling

A sample of the first encountered groundwater (currently estimated to be at approximately 30 feet bgs) will be collected from each of the borings. The groundwater samples will be collected through the hollow stem of the drill rod equipped with a four-foot long HydroPunch® tip. The HydroPunch® tip will be advanced approximately three feet below the soil/groundwater interface, the sheathing will be pulled back to expose the screened portion, allowing groundwater to enter. Groundwater samples will be collected through the drill rod using clean polythene tubing and placed into 1-liter amber, and 40-milliliter VOA bottles prepared and supplied by an analytical laboratory. The samples collected will be capped, labeled, and stored in the field in a cooler containing ice. COC records for the groundwater samples will be completed in the field. The samples and the COC records will be delivered to a State-certified laboratory for analyses. To minimize the potential for cross-contamination, down-hole equipment will be washed prior to use in each boring.

Task 3 - Laboratory Analyses & EDF Management

DMI-EMK proposes to submit the collected soil samples and groundwater samples to a State-certified laboratory for analyses of: TPH-G, TPH-D, TPH-O using EPA Method 8015M; and for VOCs including: benzene, toluene, ethylbenzene, total xylenes (BTEX); methyl-tertiary butyl ether (MTBE); tertiary-butyl alcohol (TBA); tertiary-amyl-methyl ether (TAME); di-isopropyl ether (DIPE); ethyl-tertiary-butyl ether (ETBE); n-butylbenzene; sec-butylbenzene; tert-butylbenzene; isopropyl benzene; n-propyl benzene, 1,2,4-trimethylbenzene; and, 1,3,5-trimethylbenzene using EPA Method 8260B.

Results of the analytical testing will be obtained in both standard and Electronic Data Format (EDF). As required, the analytical test data generated during this phase of work will be submitted to the SWRCB GeoTracker database.

Task 4 – Data Evaluation and Reporting

DMI-EMK proposes to evaluate the field and laboratory data and prepare a report documenting the results of site assessment activities. It is anticipated that the data evaluation and reporting will include:

- Preparation of a site map showing the approximate locations of the completed borings;
- Preparation and evaluation of boring logs for the completed borings depicting subsurface conditions encountered during sampling, and will include borehole backfill/sealing details;
- Preparation and evaluation of tables summarizing laboratory analytical results reported for collected soil and groundwater samples;
- DMI-EMK's findings and conclusions regarding impacts to soil and/or groundwater beneath the site;
- DMI-EMK's corrective action recommendations with respect to the SWRCB LTCP. A copy of the report and all attachments will be submitted to ACEH and the GeoTracker database as required.

SCHEDULE

DMI-EMK estimates that the proposed scope of services can begin within one week following approval of the workscope by ACEH, receipt of the required permit, and authorization by the client. Once initiated, DMI-EMK estimates that field activities may be completed in three to four working days. Laboratory analytical results will be available approximately 7-10 business days following completion of field work. Once the laboratory data has been obtained, we estimate that completion of the assessment report will take approximately 2-3 weeks.

We trust this workplan meets the current requirements of ACEH for the site. If you have any questions concerning this workplan, please contact the undersigned at (805) 653-0633.

Respectfully submitted, DMI-EMK Environmental Services, Inc.

Eric M. Kirkegaard, PG #7405 Senior Geologist

Oscar Quiambao

cc:

Enclosures: Figures 1-3, and Appendices A-F

REFERENCES

- California Department of Water Resources (DWR), 1980. *Groundwater Basins in California*, Bulletin 118-80, 73 p.
- Muir, K.S., 1993. Evaluation of the Groundwater Monitoring Program and the East Bay Plain, Alameda County, California: Alameda County Flood Control and Water Conservation District, 33 p.
- San Francisco Bay Regional Water Quality Control Board Groundwater Committee (RWQCB), 2015. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, October 2015, 106 p.
 - -RWQCB, 2000. Site Closure Summary Former Exxon Service Station 7-0128, 2399 Hesperian Boulevard, Hayward California, November 2000, 4 p.

10/28/2015 GeoTracker ESI

GEOTRACKER ESI

UPLOADING A GEO_REPORT FILE

SUCCESS

Your GEO_REPORT file has been successfully submitted!

Submittal Type: GEO_REPORT

Report Title: Soil and Groundwater Assessment Workplan

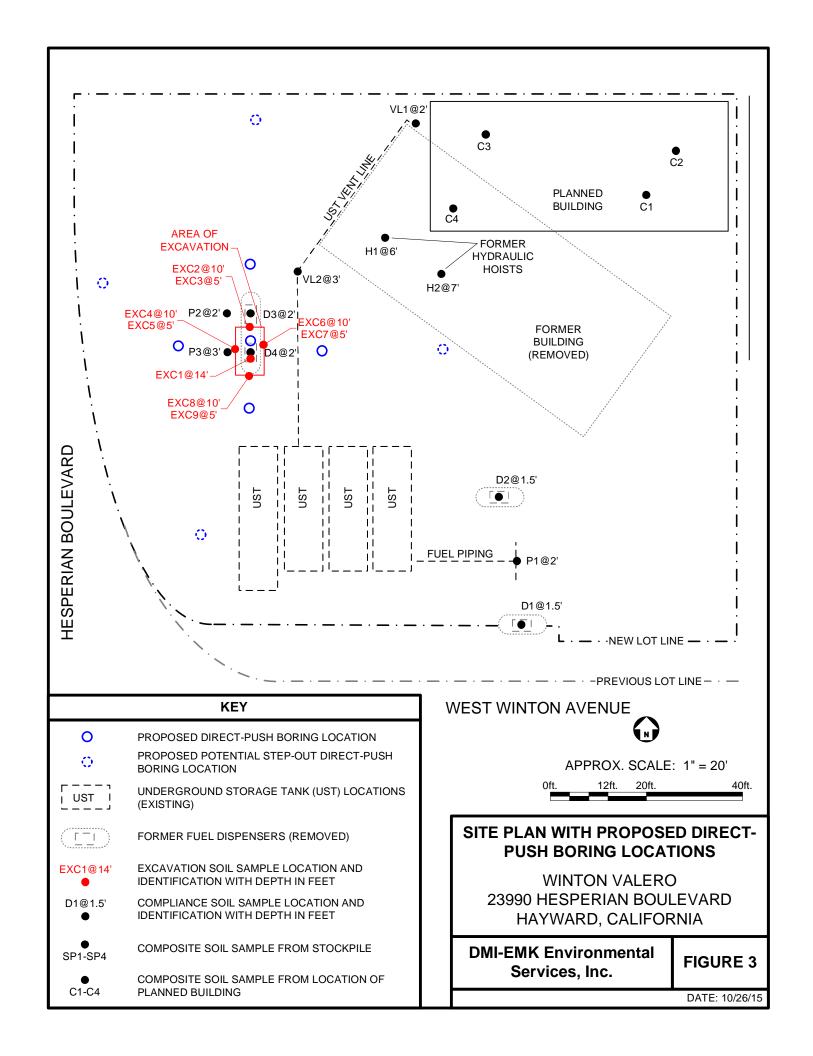
Report Type: Soil and Water Investigation Workplan

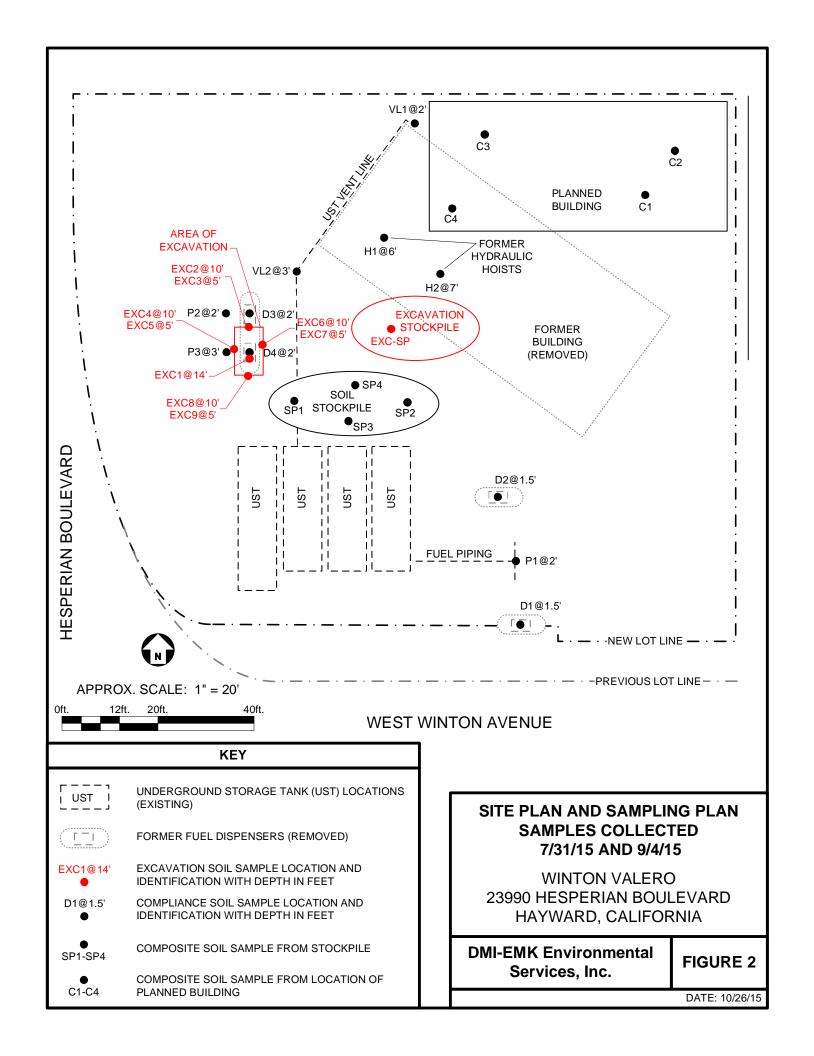
Report Date: 10/28/2015
Facility Global ID: T10000007782
Facility Name: WINTON VALERO

File Name: RO0003188_SoilAndGroundwaterAssessmentWorkplan_2015-10-26.pdf

Organization Name: DMI Environmental Services

<u>Username:</u> DMI ENVIRONMENTAL


<u>IP Address:</u> 97.93.42.158


Submittal Date/Time: 10/28/2015 12:56:24 PM

Confirmation Number: 8404356539

Copyright © 2015 State of California

FIGURES

SITE LOCATION MAP

WINTON VALERO 23990 HESPERIAN BOULEVARD HAYWARD, CALIFORNIA

DMI-EMK Environmental Services, Inc.

FIGURE 1

DATE: 10/26/15

APPENDIX A

ACEH DIRECTIVE LETTER DATED OCTOBER 23, 2015

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

October 23, 2015

OQ Enterprises Inc. 27472 Hayward Boulevard Hayward, CA 94542 Attn.: Oscar Quiambao

Subject: Request for Work Plan; Fuel Leak Case No. RO0003188 and GeoTracker Global ID

T10000007782, Winton Valero, 23990 Hesperian Boulevard, Hayward, CA 94541

Dear Mr. Quiambao:

I would like to take this opportunity to introduce myself. I am the case worker for the subject Local Oversight Program case. I have reviewed the Alameda County Environmental Health (ACEH) case file and the State Water Resources Control Board's (SWRCBs) GeoTracker website for the above-referenced site. No files have been uploaded to the ACEH ftp website or the California State Water Resources Control Board's GeoTracker website.

The San Francisco Bay Region, Regional Water Quality Control Board (SFBR-RWQCB) has provided a copy of analytical results, via email, for 10 soil samples recovered on September 4, 2015. These results document maximum petroleum hydrocarbon concentrations of 3,700 milligrams per kilogram (mg/kg) total petroleum hydrocarbons (TPH) as diesel (TPHd) and 560 mg/kg TPH as gasoline (TPHg). Additionally, several volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) were detected.

This case has been opened as a result of a documented release from the fueling system. Please prepare a workplan to delineate the extent of contamination. The work plan should be prepared in conjunction with the SWRCB Low Threat Underground Storage Tank Case Closure Policy (LTCP) and the SWRCB Leaking Underground Fuel Tank Guidance Manual.

In order to insure that site's current property owner has been identified, please complete the attached *List Landowners* form and return to ACEH by the date specified below. The completed form may be returned as an email attachment or by land mail to the attention of Keith Nowell.

In order to initiate a case review, ACEH will need to review all documents related to investigations performed for the site in order to develop an adequate picture of the current status of the case. Please upload any and all documents pertaining to the current investigation and remedial activities, including all Phase I and Phase II Environmental Site Assessments, and tank removal/upgrade reports, for your site to the ACEH ftp and the SWRCB GeoTracker websites. Please note that the case will need to be claimed in GeoTracker prior to uploading files to the SWRCB website. Additionally, GeoTracker requires electronic submittal of information (ESI). Hence, once the site is claimed, please upload the laboratory analysis report(s) in electronic deliverable format (EDF), reports (GEO_REPORTs) and figures (GEO_MAPs) to GeoTracker.

Please claim your site and upload existing and all future submittals to GeoTracker and ACEH's ftp websites by the date specified below. Electronic reporting is described on the attachments. Additional information regarding the SWRCB's GeoTracker website may be obtained online at:

Mr. Oscar Quiambao RO0003188 October 23, 2015, Page 2

http://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/and at http://www.swrcb.ca.gov/ust/electronic_submittal/report_rgmts.shtml.

Additional information and/or clarification may be obtained by contacting the GeoTracker Help Desk at geotracker@waterboards.ca.gov or (866) 480-1028.

Please provide ACEH with a list of uploaded documents by the date specified below. The document listing may be provided via email to my attention.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Keith Nowell), and to the State Water Resources Control Board's Geotracker website, in accordance with the following specified file naming convention and schedule:

- November 20, 2015 Claim Site in GeoTracker
- **November 20, 2015** Electronic Submittal of Information
- November 20, 2015 List of uploaded documents (provided via email Attn.: Keith Nowell)
- December 18, 2015 Work Plan for Site Characterization (file to be named: RO0003188_WP_R_yyyy-mm-dd)

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Online case files are available for review at the following website: http://www.acgov.org/aceh/index.htm.

If your email address does not appear on the cover page of this notification, ACEH is requesting you provide your email address so that we can correspond with you quickly and efficiently regarding your case.

Thank you for your cooperation. ACEH looks forward to working with you and your consultants to advance the case toward closure. Should you have any questions regarding this correspondence or your case, please call me at (510) 567-6764 or send an electronic mail message at keith.nowell@acgov.org

Sincerely,

Digitally signed by Keith Nowell
DN: cn=Keith Nowell, o=Alameda County,
ou=Department of Environmental
Health, email=keith.nowell@acgov.org,
c=US

Date: 2015.10.23 14:15:45 -07'00'

Keith Nowell, PG, CHG

Hazardous Materials Specialist

Mr. Oscar Quiambao RO0003188 October 23, 2015, Page 3

Enclosures: Attachment 1 – Responsible Party (ies) Legal Requirements/Obligations and

Electronic Report Upload (ftp) Instructions

Attachment 2 - List of Landowners Form

Cc: Eric Kirkegaard, DMI-EMK Environmental Services, Inc., 1056 East Meta Street, #101,

Ventura, CA 93001 (Sent via electronic mail to: Erick@dmi-emk.com)

Dilan Roe, ACEH (electronic mail to: dilan.roe@acgov.org)

Keith Nowell, ACEH, (Sent via electronic mail to keith.nowell@acgov.org)

GeoTracker, file

Attachment 1

Responsible Party(ies) Legal Requirements / Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please **SWRCB** visit the website for more information on these requirements (http://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

<u>UNDERGROUND STORAGE TANK CLEANUP FUND</u>

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

REVISION DATE: May 15, 2014

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005;

December 16, 2005; March 27, 2009; July 8, 2010,

July 25, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password. <u>Documents</u>
 with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to deh.loptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to deh.loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ATTACHMENT 2

List of Landowners Form

LIST OF LANDOWNERS FORM

County of Alameda Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

CERTIFIED LIST OF RECORD FEE TITLE OWNERS FOR:

O'te News Western Western
Site Name: Winton Valero
Address: 23990 Hesperian Boulevard
City, State, Zip: Hayward, CA 94541
Record ID #: RO0003188
Please fill out item 1 if there are multiple site landowners (attach an extra sheet if necessary). If you are the sole andowner, skip item 1 and fill out item 2.
I. In accordance with Section 25297.15(a) of Chapter 6.7 of the California Health & Safety Code,
Name:
Address:
City, State, Zip:
E-mail Address:
Name:
Addross
City, State, Zip:
E-mail Address:
Name:
Address:
City, State, Zip:
E-mail Address:
2. In accordance with Section 25297.15(a) of Chapter 6.7 of the California Health & Safety Code, certify that I am the sole landowner for the above site.
Sincerely,
Signature of Primary Responsible Party Printed Name Date E-mail Address

APPENDIX B

RESPONSIBLE PARTY AUTHORIZATION TO SUBMIT WORKPLAN

October 26, 2015

Mr. Eric Kirkegaard DMI-EMK Environmental Services, Inc. 1056 East Meta Street, #101 Ventura, CA 93001

Subject:

Winton Valero

23990 Hesperian Boulevard, Hayward, CA 94541

Fuel Leak Case No. RO0003188 GeoTracker Global ID T10000007782

AUTHORIZATION TO SUBMIT WORKPLAN

Dear Mr. Kirkegaard:

I have reviewed and approve the Soil and Groundwater Assessment Workplan dated October 26, 2015, prepared by DMI-EMK Environmental Services, Inc. Please submit this document to Alameda County Environmental Health and the State Water Resources Control Board GeoTracker database.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

OQ Enterprises, Inc.

Oscar Quiambao

APPENDIX C

RWQCB SITE CLOSURE SUMMARY NOVEMBER 8, 2000

SITE CLOSURE SUMMARY

8	AGENCY	INFORMATION
4.		THE CHANGE IN THE

Date: November 8, 2000

Agency Name:	S.F.B.R.W.Q.C.B.	Address:	1515 Clay Street, Suite 1400
City/State/Zip:	Oakland, CA 94612	Phone:	(510) 622-2433
Responsible Staff Person:	Mr. Stephen Hill	Title:	Environmental Specialist

II. SITE INFORMATION

Site Facility N	lame: Former E	exon Service Station 7-02	18		
Site Facility A	ddress: 23990 Hes	perian Boulevard, Haywa	rd, California		A. 5.
RB LUSTIS O	Case No.	Local or LOP Case	No.: Priority	:	
URF Filing D	ate:	SWEEPS No.:	01-003-	i	
Responsible P	arties (include addres	ses and phone numbers)			
Mr. Darin L.	Rouse	(925) 246-8768			
ExxonMobil R	tefining and Supply				
P.O. Box 4032	2				
Concord, Cali	fornia 94524-4032				- 1
Tank No.	Size in Gallons	Contents	Closed In-Place/Rem	oved?	Date
	750	Used-Oil	Active		
i	42,000 (total)	4 UST's (gasoline and	Active	14	THE STREET

diesel)

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and Type	of Release	: Unknown	cau	se, un	known qu	antity of gasoline					771. //	
Site characteriza	tion compl	ete? Y	es		Date	Date Approved By Oversight Agency: Uńknown						
Monitoring well	installed?	Y	es			Number: 8 Proper screened			:		Yes	
Highest GW Dep	oth Below	Ground Surfa	ice:	11.80	Low	vest Depth: 22.10		Direction:	-			
	-				gasoline service station.							
	*				e, gasoline service station.							
Are drinking water wells affected? No					Aquifer Name: East Bay Plain Aquifer System							
Is surface water affected? No					Nearest/Affected SW Name: Sulpher Creek (3,750 feet North)							
Off-Site Benefic	ial Use Im	pacts (Addre	sses	/Loca								
Report(s) on file	?	Y	es		Whe	re is report(s) file	d? City of	Haywan	d, F	ire Depart	ment	
		TREATME	INI	AND		AL OF AFFECT						
Material	Amo	unt (Include		1		(Treatment or Di			op)		Date	
Tank	550-g	alion used-oii				at Erickson Inc., 1	-			January		
Piping	Produ	Product piping								August-September 1996		
Free Product	None											
Soil	31.21	Tons			Disposal,	BFI Landfill, Live	ermore		Јапиагу 1997			
Groundwater	145 ga	illons			Treatmen CA	reatment, Romic Environmental- East Palo A to, April 1998					998	
Barrels												
MAXIMU	M DOCU	MENTED P	OLI	UTANT CONCENTRATIONS—BEFORE AND AFTER CLEANUP							NUP	
POLLUTANT	Soil	(ppm)		Water	r (ppb)	POLLUTAN T	Soil (ppm)			Water (ppb)		
	Before	After	F	Before	Afte r		Before	Afte	r	Before	After	
TPH (Gas)	810	<1.0	15	0,000	4600	Xylene	44	< 0.00	50	39,000	82	
TPH (Diesel)	110	12		-		Ethylbenzene	16	< 0.00	50	9,200	85	
Benzene	86	< 0.0050	16	,000	40	Oil & Grease						
Toluene	1.3	< 0.0050	33	,000	4.9	Heavy Metals						
MTBE			<	50	96	Other						
Comments (Depti Concentrations rea	of Reme	diation, etc.): ptotic levels.	Si	te was remediated by soil vapor extraction (SVE) and groundwater extraction. erefore, remediation was discontinued.						traction.		
		1814 18 19 19 19 19 19 19 19 19 19 19 19 19 19				100100000						
~					*****							

4 1/	11	5 R 🗨 5	DL
27.	1	VO	

	1		
Does completed corr	ective action protect ex	isting beneficial uses per the Regional Board Ba	sin Plan? Yes
Does completed corr	ective action protect po	tential beneficial uses per the Regional Board Ba	asin Plan? Yes
Does corrective action	protect public health	for current land use?	Yes
Site Management Re	quirements:		
		rioku w	
			,
Monitoring Wells De	commissioned: Yes	Number Decommissioned: 4	Number Retained: 4
List Enforcement Ac	tions Taken: NON	JE	
		,	
List Enforcement Ac	tions Rescinded:		
	<u> </u>		
** ************************************	DEPORTS CORP.	TORONDONION SING PRINCIPLE OF OR	
V. TECHNICAI WAS BASEI		ESPONDENCE ETC., THAT THIS CLOS	URE RECOMMENDATION
		ESPONDENCE ETC., THAT THIS CLOS	URE RECOMMENDATION
	UPON	ESPONDENCE ETC., THAT THIS CLOS	URE RECOMMENDATION Date:
WAS BASEL	UPON	ESPONDENCE ETC., THAT THIS CLOS	
WAS BASEL	UPON	ESPONDENCE ETC., THAT THIS CLOS	
WAS BASEL	UPON	ESPONDENCE ETC., THAT THIS CLOS	
WAS BASEL	UPON	ESPONDENCE ETC., THAT THIS CLOS	
WAS BASEL	UPON	ESPONDENCE ETC., THAT THIS CLOS	
WAS BASEL Title: See attached l	UPON		
WAS BASED Title: See attached l	UPON isting.	IA, ETC.	
WAS BASED Title: See attached I	L COMMENTS, DA'	IA, ETC.	Date:
VI. ADDITIONA PLEASE INCLUD 1) SITE MAP II	L COMMENTS, DA'	FA, ETC. DIG AS APPROPRIATE:	Date:
VI. ADDITIONA PLEASE INCLUD 1) SITE MAP II	L COMMENTS, DA'	FA, ETC. DIG AS APPROPRIATE: CATION, MONITORING WELL LOCATION, GROUNDW	Date:
VI. ADDITIONA PLEASE INCLUD 1) SITE MAP II 2) SITE COMM	L COMMENTS, DA' E/ATTACH THE FOLLOWING TANK PIT LOW ENT'S WORTHY OF NOTICE	FA, ETC. DIG AS APPROPRIATE: CATION, MONITORING WELL LOCATION, GROUNDW	Date:
VI. ADDITIONA PLEASE INCLUD 1) SITE MAP II	L COMMENTS, DA' E/ATTACH THE FOLLOWING TANK PIT LOW ENT'S WORTHY OF NOTICE	FA, ETC. DIG AS APPROPRIATE: CATION, MONITORING WELL LOCATION, GROUNDW	Date:

This document and the related CASE CLOSURE LETTER, shall be retained by the lead agency as part of the official site file.

Technical Reports Former Exxon Service Station 7-0218 23990 Hesperian Boulevard Hayward, California

Harding Lawson Associates, July 20, 1988, Subsurface Investigation

Harding Lawson Associates, February 23, 1989, Underground Storage Tank Unauthorized Release Form

Harding Lawson Associates, October 13, 1989, Environmental Assessment Report

Harding Lawson Associates, May 7, 1990, Groundwater Remediation Plan

International Technology Corporation, February 1991, Report of Analytical Findings: Exxon Company, U.S.A. Bay Drain Closures

Terra Vac Corporation, January 21, 1994, Letter Modification to Work Plan

Terra Vac Corporation, February 17, 1994, Drilling Report, Dual Vacuum Extraction Remediation

Harding Lawson Associates, Quarterly Summary Report, Second Quarter, 1994

Krazan & Associates, Inc., November 22, 1994, <u>Limited Level II Environmental Site Assessment Proposed Taco</u> Bell #06-1052

Transglobal Environmental Geochemistry, February 6, 1995, Data Report - Van Brunt Associates Project #94502, Soil Vapor Survey - W. Winton & Hesperian, Hayward, California

Van Brunt Associates, March 20, 1995, Remedial Action Workplan for the Investigation of the Source, Location, and Extent of Volatile Organic Compounds (VOC's) Found in Groundwater at Airport Plaza Shopping Center

Terra Vac Corporation, July 25, 1995, Drilling Report

Terra Vac Corporation, January 2, 1996, Non-Attainment Area Management Plan

Terra Vac Corporation, June 13, 1996, Well Abandonment

Environmental Resolutions, Inc., October 14, 1996, Product Line Replacement

Terra Vac Corporation, October 17, 1996, Well Abandonment Report

Blaine Tech Services, April 8, 1997, Groundwater Monitoring and Sampling, First Quarter, 1997

Environmental Resolutions, Inc., May 18, 1998, Quarterly Groundwater Monitoring, Second Quarter 1998

Environmental Resolutions, Inc., April 29, 1999, Annual Groundwater Monitoring, 1999

Environmental Resolutions, Inc., June 22, 1999, Request for No Further Action

Environmental Resolutions, Inc., February 11, 2000, Annual Groundwater Monitoring, 2000

APPENDIX D

LABORATORY ANALYTICAL RESULTS JULY 31, 2015

Eric Kirkegaard

DMI-EMK Environmental Services Inc. Ventura
1056 Meta Street, Suite 101

Ventura, CA 93001

04 August 2015

RE: Winton Valero Work Order: 1503271

Dear Client:

Enclosed is an analytical report for the above referenced project. The samples included in this report were received on 31-Jul-15 17:05 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Marissa L. Censullo

Marie Centillos

Project Manager

TEL: (805) 922-4772

www.oecusa.com FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Building Footprint Crush Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 04-Aug-15 16:31

ANALYTICAL REPORT FOR SAMPLES

-				
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
VL1@2'	1503271-01	Solid	31-Jul-15 09:30	31-Jul-15 17:05
H1@6'	1503271-02	Solid	31-Jul-15 09:45	31-Jul-15 17:05
H2@7'	1503271-03	Solid	31-Jul-15 10:00	31-Jul-15 17:05

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Building Footprint Crush Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 04-Aug-15 16:31

VL1@2' 1503271-01 (Solid)

		MO	DOL							
Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oilf	ield Env	ironme	ntal an	d Com	pliance	е			
Total Metals by EPA 6000/700	M Series Me	thods								
Lead	7.2	0.28	0.47	mg/kg	1	B5H0022	03-Aug-15	03-Aug-15	EPA 6010B	
TEPH by GC FID				2 2			C	C		
TPH Diesel (C13-C22)	8.9	7.6	10	mg/kg	1	B5H0007	03-Aug-15	03-Aug-15	EPA 8015M	J
TPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	03 71 u g 13	"	,
						"	"	"	"	
Surrogate: o-Terphenyl			95.1 %	78	125	"	"	"	"	
Volatile Organic Compounds	by EPA Met	hod 8260B								
Benzene	ND	0.0018	0.0044	mg/kg	1	B5H0014	03-Aug-15	03-Aug-15	EPA 8260B	
Bromobenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
Bromochloromethane	ND	0.0018	0.0044	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0018	0.0044	"	"	"	"	"	"	
Bromoform	ND	0.0018	0.0044	"	"	"	"	"	"	
Bromomethane	ND	0.0018	0.0044	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0018	0.0044	"	"	"	"	"	"	
Chlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
Chloroethane	ND	0.0018	0.0044	"	"	"	"	"	"	
Chloroform	ND	0.0018	0.0044	"	"	"	"	"	"	
Chloromethane	ND	0.0018	0.0044	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0018	0.0044	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0018	0.0044	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0018	0.0044	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0018	0.0044	"	"	"	"	"	"	
Dibromomethane	ND	0.0018	0.0044	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0018	0.0044	"	"	"	"	"	"	ССНІ
1,1-Dichloroethane	ND	0.0018	0.0044	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0018	0.0044	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0018	0.0044	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 3 of 16

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Building Footprint Crush Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 04-Aug-15 16:31

VL1@2' 1503271-01 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

cis-1,2-Dichloroethene	ND	0.0018	0.0044	mg/kg	1	B5H0014	03-Aug-15	03-Aug-15	EPA 8260E
rans-1,2-Dichloroethene	ND	0.0018	0.0044	"	"	"	"	"	"
1,2-Dichloropropane	ND	0.0018	0.0044	"	"	"	"	"	"
1,3-Dichloropropane	ND	0.0018	0.0044	"	"	"	"	"	"
2,2-Dichloropropane	ND	0.0018	0.0044	"	"	"	"	"	"
,1-Dichloropropene	ND	0.0018	0.0044	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.0018	0.0044	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.0018	0.0044	"	"	"	"	"	"
Ethylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	0.0018	0.0044	"	"	"	"	"	"
Hexachlorobutadiene	ND	0.0018	0.0044	"	"	"	"	"	"
Isopropylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"
4-Isopropyl Toluene	ND	0.0018	0.0044	"	"	"	"	"	"
Methylene chloride	ND	0.0018	0.0044	"	"	"	"	"	"
Naphthalene	ND	0.0018	0.0044	"	"	"	"	"	"
n-Propylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"
Styrene	ND	0.0018	0.0044	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	0.0018	0.0044	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	0.0018	0.0044	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	0.0018	0.0044	"	"	"	"	"	"
Гoluene	ND	0.0018	0.0044	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	0.0018	0.0044	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	0.0018	0.0044	"	"	"	"	"	"
Trichloroethene (TCE)	ND	0.0018	0.0044	"	"	"	"	"	"
richlorofluoromethane	ND	0.0018	0.0044	"	"	"	"	"	"
,2,3-Trichloropropane	ND	0.0018	0.0044	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"
Vinyl chloride	ND	0.0018	0.0044	"	"	"	"	"	"
Xylenes (total)	ND	0.0018	0.0044	"	"	"	"	"	"
-Amyl Methyl Ether	ND	0.0018	0.0044	"	"	"	"	"	"
-Butyl alcohol	ND	0.0088	0.022	"	"	"	"	"	"
Diisopropyl Ether	ND	0.0018	0.0044	"	"	"	"	"	"
Ethanol	ND	1.8	4.4	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 4 of 16

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101

Ventura CA, 93001

Project: Winton Valero

Project Number: Building Footprint Crush

Project Manager: Eric Kirkegaard

Reported: 04-Aug-15 16:31

VL1@2' 1503271-01 (Solid)

,	Oilfi	eld Envi	ronmei	ntal ar	nd Comi	olianc	<u> </u>	,		
Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Volatile Organic Compounds by EPA Method 8260B

Ethyl t-Butyl Ether	ND	0.0018	0.0044	mg/kg	1	B5H0014	03-Aug-15	03-Aug-15	EPA 8260B	
Methyl-t-butyl ether	ND	0.0018	0.0044	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			117 %	70-13	30	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			103 %	70-13	30	"	"	"	"	
Surrogate: Toluene-d8			99.6 %	70-13	30	"	"	"	"	

Volatile Organic Compounds by EPA Method 8260B/LUFT

TPH Gasoline (C4-C12)	ND	0.18	0.44	mg/kg	ng/kg 1		"	03-Aug-15	EPA 8260B/LUFT
Surrogate: Dibromofluoromethane			117 %	70-130		"	"	"	"
Surrogate: 4-Bromofluorobenzene			103 %	70-130		"	"	"	"
Surrogate: Toluene-d8			99.6 %	70-130		"	"	"	"

H1@6' 1503271-02 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmental and Compliance

TVPH by GC FID

TPH Gasoline (C4-C12)	ND	0.080	0.40	mg/kg	1	B5H0058	04-Aug-15	04-Aug-15	EPA 8015M	
Surrogate: 4-Bromofluorobenzene			92.7 %	70-13	0	"	"	"	"	
TEPH by GC FID										
TPH Diesel (C13-C22)	ND	7.6	10	mg/kg	1	B5H0007	03-Aug-15	03-Aug-15	EPA 8015M	
TPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	"	"	
Surrogate: o-Terphenyl			97.8 %	78-12.	5	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Surrogate: o-Terphenyl

Oilfield Environmental and Compliance, INC.

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Building Footprint Crush
Project Manager: Eric Kirkegaard

Reported: 04-Aug-15 16:31

H2@7' 1503271-03 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oilf	ield Env	ironme	ntal an	d Com	pliance	е			
TVPH by GC FID										
TPH Gasoline (C4-C12)	ND	0.086	0.43	mg/kg	1	B5H0058	04-Aug-15	04-Aug-15	EPA 8015M	
Surrogate: 4-Bromofluorobenzene			90.9 %	70-1	130	"	"	"	"	
TEPH by GC FID										
TPH Diesel (C13-C22)	7.9	7.6	10	mg/kg	1	B5H0007	03-Aug-15	03-Aug-15	EPA 8015M	J
TPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	"	"	

78-125

96.4 %

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Building Footprint Crush Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 04-Aug-15 16:31

Total Metals by EPA 6000/7000 Series Methods - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5H0022 - EPA 3050B											
Blank (B5H0022-BLK1)					Prepared	& Analyze	ed: 03-Au	g-15			
Lead	ND	0.30	0.50	mg/kg							
LCS (B5H0022-BS1)					Prepared	& Analyze	ed: 03-Au	g-15			
Lead	104	0.30	0.50	mg/kg	100		104	80-120			
LCS Dup (B5H0022-BSD1)					Prepared	& Analyze	ed: 03-Au	g-15			
Lead	108	0.30	0.50	mg/kg	100		108	80-120	4.30	20	
Duplicate (B5H0022-DUP1)	Sour	e: 1503240-	-01		Prepared	& Analyze	ed: 03-Au	g-15			
Lead	3.64	0.29	0.48	mg/kg		3.94			7.91	20	
Matrix Spike (B5H0022-MS1)	Sour	e: 1503240-	-01		Prepared	& Analyze	ed: 03-Au	g-15			
Lead	92.6	0.28	0.47	mg/kg	94.5	3.94	93.8	60-124			
Matrix Spike Dup (B5H0022-MSD1) Sour	e: 1503240-		Prepared & Analyzed: 03-Aug-15							
Lead	97.7	0.30	0.50	mg/kg	99.5	3.94	94.2	60-124	5.39	20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero

Project Number: Building Footprint Crush Project Manager: Eric Kirkegaard **Reported:** 04-Aug-15 16:31

TVPH by GC FID - Quality Control

•											
Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H0058 - EPA 5035/5	030B MEOH	GC									
Blank (B5H0058-BLK1)					Prepared	& Analyz	ed: 04-Au	g-15			
TPH Gasoline (C4-C12)	ND	0.10	0.50	mg/kg							
Surrogate: 4-Bromofluorobenzene	0.112			"	0.125		89.5	70-130			
LCS (B5H0058-BS1)					Prepared	& Analyz	ed: 04-Au	g-15			
TPH Gasoline (C4-C12)	0.532	0.099	0.50	mg/kg	0.495		107	70-130			
Surrogate: 4-Bromofluorobenzene	0.118			"	0.124		95.1	70-130			
LCS Dup (B5H0058-BSD1)					Prepared	& Analyz	ed: 04-Au	g-15			
TPH Gasoline (C4-C12)	0.462	0.098	0.49	mg/kg	0.490	-	94.2	70-130	14.2	20	
Surrogate: 4-Bromofluorobenzene	0.115			"	0.123		93.7	70-130			
Duplicate (B5H0058-DUP1)	Sour	ce: 1503271	-02		Prepared	& Analyz	ed: 04-Au	g-15			
TPH Gasoline (C4-C12)	ND	0.079	0.39	mg/kg		ND				20	
Surrogate: 4-Bromofluorobenzene	0.0899			"	0.0984		91.3	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero

1056 Meta Street, Suite 101 Ventura CA, 93001 Project Number: Building Footprint Crush Project Manager: Eric Kirkegaard **Reported:** 04-Aug-15 16:31

TEPH by GC FID - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5H0007 - EPA 3550B											
Blank (B5H0007-BLK1)					Prepared	& Analyz	ed: 03-Au	g-15			
TPH Diesel (C13-C22)	ND	7.6	10	mg/kg							
TPH Motor Oil (C23-C40)	ND	40	50	"							
Surrogate: o-Terphenyl	47.9			"	50.0		95.9	78-125			
LCS (B5H0007-BS1)					Prepared	& Analyz	ed: 03-Au	g-15			
TPH Diesel (C13-C22)	490	7.6	10	mg/kg	500		98.1	86-111			
Surrogate: o-Terphenyl	41.6			"	50.0		83.2	78-125			
LCS Dup (B5H0007-BSD1)					Prepared	& Analyz	ed: 03-Au	g-15			
TPH Diesel (C13-C22)	493	7.6	10	mg/kg	500		98.5	86-111	0.498	20	
Surrogate: o-Terphenyl	41.5			"	50.0		82.9	78-125			
Duplicate (B5H0007-DUP1)	Sour	ce: 1503260-	01		Prepared	& Analyz	ed: 03-Au	g-15			
TPH Diesel (C13-C22)	ND	7.6	10	mg/kg		ND				20	
TPH Motor Oil (C23-C40)	ND	40	50	"		ND				20	
Surrogate: o-Terphenyl	48.1			"	50.0		96.2	78-125			
Matrix Spike (B5H0007-MS1)	Sour	ce: 1503260-	01		Prepared	& Analyz	ed: 03-Au	g-15			
TPH Diesel (C13-C22)	499	7.6	10	mg/kg	499	ND	100	78-117			
Surrogate: o-Terphenyl	41.7			"	49.9		83.7	78-125			
Matrix Spike Dup (B5H0007-MSD1) Sour	ce: 1503260-	01		Prepared	& Analyz	ed: 03-Au	g-15			
TPH Diesel (C13-C22)	495	7.6	10	mg/kg	501	ND	98.8	78-117	0.841	20	
Surrogate: o-Terphenyl	41.5			"	50.1		82.9	78-125			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Building Footprint Crush Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 04-Aug-15 16:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5H0014 - EPA 5035/5030B MEOH

Blank (B5H0014-BLK1)					Prepared & Analyzed: 03-Aug-15
Benzene	ND	0.0020	0.0050	mg/kg	
Bromobenzene	ND	0.0020	0.0050	"	
Bromochloromethane	ND	0.0020	0.0050	"	
Bromodichloromethane	ND	0.0020	0.0050	"	
Bromoform	ND	0.0020	0.0050	"	
Bromomethane	ND	0.0020	0.0050	"	
n-Butylbenzene	ND	0.0020	0.0050	"	
sec-Butylbenzene	ND	0.0020	0.0050	"	
tert-Butylbenzene	ND	0.0020	0.0050	"	
Carbon tetrachloride	ND	0.0020	0.0050	"	
Chlorobenzene	ND	0.0020	0.0050	"	
Chloroethane	ND	0.0020	0.0050	"	
Chloroform	ND	0.0020	0.0050	"	
Chloromethane	ND	0.0020	0.0050	"	
2-Chlorotoluene	ND	0.0020	0.0050	"	
4-Chlorotoluene	ND	0.0020	0.0050	"	
1,2-Dibromo-3-chloropropane	ND	0.0020	0.0050	"	
Dibromochloromethane	ND	0.0020	0.0050	"	
Dibromomethane	ND	0.0020	0.0050	"	
1,2-Dichlorobenzene	ND	0.0020	0.0050	"	
1,3-Dichlorobenzene	ND	0.0020	0.0050	"	
1,4-Dichlorobenzene	ND	0.0020	0.0050	"	
Dichlorodifluoromethane	ND	0.0020	0.0050	"	CCHI
1,1-Dichloroethane	ND	0.0020	0.0050	"	
1,2-Dichloroethane	ND	0.0020	0.0050	"	
1,1-Dichloroethene	ND	0.0020	0.0050	"	
cis-1,2-Dichloroethene	ND	0.0020	0.0050	"	
trans-1,2-Dichloroethene	ND	0.0020	0.0050	"	
1,2-Dichloropropane	ND	0.0020	0.0050	"	
1,3-Dichloropropane	ND	0.0020	0.0050	"	
2,2-Dichloropropane	ND	0.0020	0.0050	"	
1,1-Dichloropropene	ND	0.0020	0.0050	"	
cis-1,3-Dichloropropene	ND	0.0020	0.0050	"	
trans-1,3-Dichloropropene	ND	0.0020	0.0050	"	
Ethylbenzene	ND	0.0020	0.0050	"	
1,2-Dibromoethane (EDB)	ND	0.0020	0.0050	"	
Hexachlorobutadiene	ND	0.0020	0.0050	"	
Isopropylbenzene	ND	0.0020	0.0050	"	
4-Isopropyl Toluene	ND	0.0020	0.0050	"	
Methylene chloride	ND	0.0020	0.0050	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

Project Number: Building Footprint Crush 1056 Meta Street, Suite 101 Reported: Ventura CA, 93001 Project Manager: Eric Kirkegaard 04-Aug-15 16:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B5H0014-BLK1)					Prepared & Analyzed: 03-Aug-15
Naphthalene	ND	0.0020	0.0050	mg/kg	
n-Propylbenzene	ND	0.0020	0.0050	"	
Styrene	ND	0.0020	0.0050	"	
1,1,1,2-Tetrachloroethane	ND	0.0020	0.0050	"	
1,1,2,2-Tetrachloroethane	ND	0.0020	0.0050	"	
Tetrachloroethene (PCE)	ND	0.0020	0.0050	"	
Toluene	ND	0.0020	0.0050	"	
1,2,3-Trichlorobenzene	ND	0.0020	0.0050	"	
1,2,4-Trichlorobenzene	ND	0.0020	0.0050	"	
1,1,1-Trichloroethane	ND	0.0020	0.0050	"	
1,1,2-Trichloroethane	ND	0.0020	0.0050	"	
Trichloroethene (TCE)	ND	0.0020	0.0050	"	
Trichlorofluoromethane	ND	0.0020	0.0050	"	
1,2,3-Trichloropropane	ND	0.0020	0.0050	"	
1,2,4-Trimethylbenzene	ND	0.0020	0.0050	"	
1,3,5-Trimethylbenzene	ND	0.0020	0.0050	"	
Vinyl chloride	ND	0.0020	0.0050	"	
Xylenes (total)	ND	0.0020	0.0050	"	
t-Amyl Methyl Ether	ND	0.0020	0.0050	"	
t-Butyl alcohol	ND	0.0099	0.025	"	
Diisopropyl Ether	ND	0.0020	0.0050	"	
Ethanol	ND	2.0	5.0	"	
Ethyl t-Butyl Ether	ND	0.0020	0.0050	"	
Methyl-t-butyl ether	ND	0.0020	0.0050	"	
Surrogate: Dibromofluoromethane	0.0557			"	0.0496 112 70-130
Surrogate: Toluene-d8	0.0490			"	0.0496 98.7 70-130
Surrogate: 4-Bromofluorobenzene	0.0549			"	0.0496 111 70-130

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Building Footprint Crush Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 04-Aug-15 16:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
•		т		Cinto	Le vei	resurt	,ville	Zimito	10.2	Dillit	110003
<u>Batch B5H0014 - EPA 5035/5</u> LCS (B5H0014-BS1)	USUB MEUF	1			Prepared a	Or Analysis	adı 02 A	g 15			
Benzene	0.0997	0.0020	0.0050	mg/kg	0.0998	x Anaryze	99.9	70-130			
Chlorobenzene	0.0997	0.0020	0.0050	mg/kg	0.0998		109	70-130			
1,1-Dichloroethene	0.108	0.0020	0.0050		0.0998		109	70-130			
Toluene	0.108	0.0020	0.0050	,,	0.0998		109	70-130			
Trichloroethene (TCE)	0.102	0.0020	0.0050	,,	0.0998		102	70-130			
		0.0020	0.0030	"							
Surrogate: Dibromofluoromethane	0.0549				0.0499		110	70-130			
Surrogate: Toluene-d8	0.0491			"	0.0499		98.5	70-130			
Surrogate: 4-Bromofluorobenzene	0.0533			"	0.0499		107	70-130			
LCS Dup (B5H0014-BSD1)					Prepared 6	& Analyze	ed: 03-Au	g-15			
Benzene	0.0965	0.0020	0.0050	mg/kg	0.0990		97.5	70-130	3.23	20	
Chlorobenzene	0.102	0.0020	0.0050	"	0.0990		103	70-130	5.66	20	
1,1-Dichloroethene	0.106	0.0020	0.0050	"	0.0990		107	70-130	2.73	20	
Гoluene	0.0977	0.0020	0.0050	"	0.0990		98.7	70-130	4.46	20	
Γrichloroethene (TCE)	0.111	0.0020	0.0050	"	0.0990		112	70-130	4.42	20	
Surrogate: Dibromofluoromethane	0.0552			"	0.0495		112	70-130			
Surrogate: 4-Bromofluorobenzene	0.0535			"	0.0495		108	70-130			
Surrogate: Toluene-d8	0.0486			"	0.0495		98.2	70-130			
Duplicate (B5H0014-DUP1)	Sou	rce: 150324	5-03		Prepared of	& Analyze	ed: 03-Au	g-15			
Benzene	ND	0.0020	0.0050	mg/kg		ND				20	
Bromobenzene	ND	0.0020	0.0050	"		ND				20	
Bromochloromethane	ND	0.0020	0.0050	"		ND				20	
Bromodichloromethane	ND	0.0020	0.0050	"		ND				20	
Bromoform	ND	0.0020	0.0050	"		ND				20	
Bromomethane	ND	0.0020	0.0050	"		ND				20	
n-Butylbenzene	ND	0.0020	0.0050	"		ND				20	
sec-Butylbenzene	ND	0.0020	0.0050	"		ND				20	
tert-Butylbenzene	ND	0.0020	0.0050	"		ND				20	
Carbon tetrachloride	ND	0.0020	0.0050	"		ND				20	
Chlorobenzene	ND	0.0020	0.0050	"		ND				20	
Chloroethane	ND	0.0020	0.0050	"		ND				20	
Chloroform	ND	0.0020	0.0050	"		ND				20	
Chloromethane	ND	0.0020	0.0050	"		ND				20	
2-Chlorotoluene	ND	0.0020	0.0050	"		ND				20	
4-Chlorotoluene	ND	0.0020	0.0050	"		ND				20	
		0.0020	0.0050	"		ND				20	
1,2-Dibromo-3-chloropropane	ND	0.0020									
• •	ND ND	0.0020	0.0050	"		ND				20	
1,2-Dibromo-3-chloropropane Dibromochloromethane Dibromomethane				"		ND ND				20 20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Building Footprint Crush Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 04-Aug-15 16:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5H0014 - EPA 5035/5030B MEOH

Duplicate (B5H0014-DUP1)	Sou	rce: 150324	5-03		Prepared & Analyzed: 03-Aug-15		
1,3-Dichlorobenzene	ND	0.0020	0.0050	mg/kg	ND	20	
1,4-Dichlorobenzene	ND	0.0020	0.0050	"	ND	20	
Dichlorodifluoromethane	ND	0.0020	0.0050	"	ND	20	CCHI
1,1-Dichloroethane	ND	0.0020	0.0050	"	ND	20	
1,2-Dichloroethane	ND	0.0020	0.0050	"	ND	20	
1,1-Dichloroethene	ND	0.0020	0.0050	"	ND	20	
cis-1,2-Dichloroethene	ND	0.0020	0.0050	"	ND	20	
trans-1,2-Dichloroethene	ND	0.0020	0.0050	"	ND	20	
1,2-Dichloropropane	ND	0.0020	0.0050	"	ND	20	
1,3-Dichloropropane	ND	0.0020	0.0050	"	ND	20	
2,2-Dichloropropane	ND	0.0020	0.0050	"	ND	20	
1,1-Dichloropropene	ND	0.0020	0.0050	"	ND	20	
cis-1,3-Dichloropropene	ND	0.0020	0.0050	"	ND	20	
trans-1,3-Dichloropropene	ND	0.0020	0.0050	"	ND	20	
Ethylbenzene	ND	0.0020	0.0050	"	ND	20	
1,2-Dibromoethane (EDB)	ND	0.0020	0.0050	"	ND	20	
Hexachlorobutadiene	ND	0.0020	0.0050	"	ND	20	
Isopropylbenzene	ND	0.0020	0.0050	"	ND	20	
4-Isopropyl Toluene	ND	0.0020	0.0050	"	ND	20	
Methylene chloride	ND	0.0020	0.0050	"	ND	20	
Naphthalene	ND	0.0020	0.0050	"	ND	20	
n-Propylbenzene	ND	0.0020	0.0050	"	ND	20	
Styrene	ND	0.0020	0.0050	"	ND	20	
1,1,1,2-Tetrachloroethane	ND	0.0020	0.0050	"	ND	20	
1,1,2,2-Tetrachloroethane	ND	0.0020	0.0050	"	ND	20	
Tetrachloroethene (PCE)	ND	0.0020	0.0050	"	ND	20	
Toluene	ND	0.0020	0.0050	"	ND	20	
1,2,3-Trichlorobenzene	ND	0.0020	0.0050	"	ND	20	
1,2,4-Trichlorobenzene	ND	0.0020	0.0050	"	ND	20	
1,1,1-Trichloroethane	ND	0.0020	0.0050	"	ND	20	
1,1,2-Trichloroethane	ND	0.0020	0.0050	"	ND	20	
Trichloroethene (TCE)	ND	0.0020	0.0050	"	ND	20	
Trichlorofluoromethane	ND	0.0020	0.0050	"	ND	20	
1,2,3-Trichloropropane	ND	0.0020	0.0050	"	ND	20	
1,2,4-Trimethylbenzene	ND	0.0020	0.0050	"	ND	20	
1,3,5-Trimethylbenzene	ND	0.0020	0.0050	"	ND	20	
Vinyl chloride	ND	0.0020	0.0050	"	ND	20	
Xylenes (total)	ND						
rigiones (total)	ND	0.0020	0.0050	"	ND	20	
t-Amyl Methyl Ether		0.0020 0.0020	0.0050 0.0050	"	ND ND	20 20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Building Footprint Crush Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 04-Aug-15 16:31

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Amaluta	Dogult	MDL	PQL	Linita	Spike	Source	0/ DEC	%REC	DDD	RPD	Notes
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5H0014 - EPA 5035/50)30B MEOH	<u>T</u>									
Duplicate (B5H0014-DUP1)	Sour	rce: 1503245	5-03		Prepared &	& Analyze	ed: 03-Aug	g-15			
Diisopropyl Ether	ND	0.0020	0.0050	mg/kg		ND				20	
Ethanol	ND	2.0	5.0	"		ND				20	
Ethyl t-Butyl Ether	ND	0.0020	0.0050	"		ND				20	
Methyl-t-butyl ether	ND	0.0020	0.0050	"		ND				20	
Surrogate: Dibromofluoromethane	0.0559			"	0.0503		111	70-130			
Surrogate: Toluene-d8	0.0499			"	0.0503		99.3	70-130			
Surrogate: 4-Bromofluorobenzene	0.0543			"	0.0503		108	70-130			
Matrix Spike (B5H0014-MS1)	Sour	rce: 1503245	5-03		Prepared &	& Analyze	e <u>d: 03-</u> Aug	g-15			
Benzene	0.0908	0.0019	0.0047	mg/kg	0.0940	ND	96.6	70-130		-	
Chlorobenzene	0.0976	0.0019	0.0047	"	0.0940	ND	104	70-130			
1,1-Dichloroethene	0.0989	0.0019	0.0047	"	0.0940	ND	105	70-130			
Toluene	0.0943	0.0019	0.0047	"	0.0940	ND	100	70-130			
Trichloroethene (TCE)	0.107	0.0019	0.0047	"	0.0940	ND	113	70-130			
Surrogate: Dibromofluoromethane	0.0521			"	0.0470		111	70-130			
Surrogate: Toluene-d8	0.0464			"	0.0470		98.8	70-130			
Surrogate: 4-Bromofluorobenzene	0.0503			"	0.0470		107	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.oecusa.com

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Building Footprint Crush Reported: 04-Aug-15 16:31 Ventura CA, 93001 Project Manager: Eric Kirkegaard

Volatile Organic Compounds by EPA Method 8260B/LUFT - Quality Control

A o alore	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result			Units	Level	Resuit	%REC	Limits	KPD	Limit	Notes
Batch B5H0014 - EPA 5035/5	030B MEOH										
Blank (B5H0014-BLK1)					Prepared o	& Analyze	ed: 03-Au	g-15			
TPH Gasoline (C4-C12)	ND	0.20	0.50	mg/kg							
Surrogate: Dibromofluoromethane	0.0557			"	0.0496		112	70-130			
Surrogate: 4-Bromofluorobenzene	0.0549			"	0.0496		111	70-130			
Surrogate: Toluene-d8	0.0490			"	0.0496		98.7	70-130			
LCS (B5H0014-BS2)					Prepared a	& Analyz	ed: 03-Au	g-15			
TPH Gasoline (C4-C12)	2.03	0.20	0.49	mg/kg	1.97		103	70-130			
Surrogate: Dibromofluoromethane	0.0540			"	0.0493		110	70-130			
Surrogate: 4-Bromofluorobenzene	0.0552			"	0.0493		112	70-130			
Surrogate: Toluene-d8	0.0492			"	0.0493		99.8	70-130			
LCS Dup (B5H0014-BSD2)					Prepared 6	& Analyze	ed: 03-Au	g-15			
TPH Gasoline (C4-C12)	1.79	0.20	0.49	mg/kg	1.97		90.8	70-130	12.6	20	
Surrogate: Dibromofluoromethane	0.0556			"	0.0493		113	70-130			
Surrogate: Toluene-d8	0.0492			"	0.0493		99.8	70-130			
Surrogate: 4-Bromofluorobenzene	0.0555			"	0.0493		113	70-130			
Duplicate (B5H0014-DUP1)	Sour	e: 1503245	-03		Prepared a	Prepared & Analyzed: 03-Aug-15					
TPH Gasoline (C4-C12)	ND	0.20	0.50	mg/kg		ND				20	
Surrogate: Dibromofluoromethane	0.0559			"	0.0503		111	70-130			
Surrogate: 4-Bromofluorobenzene	0.0543			"	0.0503		108	70-130			
Surrogate: Toluene-d8	0.0499			"	0.0503		99.3	70-130			
Matrix Spike (B5H0014-MS2)	Sour	e: 1503246	-05		Prepared of	& Analyze	ed: 03-Au	g-15			
TPH Gasoline (C4-C12)	1.98	0.20	0.50	mg/kg	1.99	ND	99.2	70-130			
Surrogate: Dibromofluoromethane	0.0543			"	0.0498		109	70-130			
Surrogate: 4-Bromofluorobenzene	0.0545			"	0.0498		109	70-130			
Surrogate: Toluene-d8	0.0494			"	0.0498		99.2	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Building Footprint Crush Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 04-Aug-15 16:31

Notes and Definitions

J Detected but below the RL/PQL; therefore, result is an estimated concentration.

CCHI The CCV for this analyte failed high. Analyte result is ND. Data is not impacted.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the Method Limit (MDL)

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

TEL: (805) 922-4772

Highway 33, McKittrick CA

Page _

CHAIN OF CUSTODY

Oilfield Environmental and Compliance 307 Roemer Way Suite 300, Santa Maria CA 93454 phone: (805) 922-4772 fax: (805) 925-3376 www.oecusa.com

phone: (661) 762-9143

company: DMI-EMK ENVIRONMENTAL SERVICES	Projec	t Nam	ne/#:	Bu	LD1.	06	Ŧ	00	TP	RINT CRUSH)
Address: 1056 E. META ST #101				NOTE		_			*	
City/State/ZIP: VENTURA, CA 93001				Analysis	Requ	ested				Special Instructions:
Phone 305-653 6633 Fax: E-mail: DMT-EMV	5	Ç	A.							
Report To: DMI-EMK Sampler: ERIC KIRKEGAARD.	ダベ	$\frac{3}{2}$	1							
Send report via- FAX- PDF- Colt/LUFT EDF- EDD- Turnaround Time 10 Days- 5 Days- 72 hr- 48 hr- 24 hr ASAP-	30	74	K							
Turnaround Time 10 Days- 5 Days- 72 hr- 48 hr- 24 hr ASAP- OEC Sample ID Date/Time Sampled Matrix Cont. Client Sample ID	图	30	107					,		And the second second
1503271-14-073115087 5 4 VL102	X	X	7							
240 1 0949 5 4 H126'	1		,							
3AD V 1000 S 4 HZP7	X									
					•					
	İ						,			
			,							
										·
				,						
										-
Relinquished By: Date: 7/31/15 Tir	ne: /7(<u> </u>	_	Comment	s/PO#:	-				alil.
Received By: Lynette 100 Date: 7-31-15 Tir	ne: /	78		RES	443	, 0	2	Tu	SU	my 8/4/15
Relinquished By: Date: Tir	ne:								.5	
Received By: Date: Tir	ne:					,		ر. 10 ستر ا لد	,	
Relinquished By: Date: Tir	ne:			reci	a a		0.8	נשיי ה	لدور	
Received By: Date: Tir	ne:			ar	ecr.	120	<u></u>	رخل		

CLIENT: DM1 OEC ID #: 1503271 Temp: 6.8 °C
Acceptable Range: 0°C to 6°C

COC RECEIVED DATE/TIME: 7-31-15 170S

RECEIPT LOGIN

RECEIPT LOGIN
DATE/TIME: 7-31-15 1731
REFRIGERATOR(s): 8(VOA freezer)

SAMPLE TRANSPORT, RECEIPT, CO	NDITION & PRESERVATION:	Yes	No	N/A	(*) PROBLEM CHA	IN FORM NEEDED
OEC Courier/Sampler	COC document(s) received with samples	区	□ *		Custody Seals (circle):	Present Absent
Delivery(Other than OEC Courier)	Correct containers for analysis requested	Ø	*			Samples / Coolers
Samples Received on Ice	Container(s) intact and in good condition	A	□*			Intact / Broken*
☐ Samples Received Outside Temp. Range*	Container label(s) consistent with COC	Ø	*		Method of Shipment &	Tracking #(if applicable):
Samples Direct from field (Outside Temp)	OEC preservative added (**note std ID)	**		Ø		
☐ After-Hours Outside Drop-off [Brought Inside]	Proper preservation on sample label(s)	A			(**) OEC Preservative II	D:
(Initials/Date/Time):	VOA containers free of headspace		*	<u>A</u>	Dissolved Metals Filtrati	On: (Date/Init/Preserve ID)
	Tedlar Bags free of condensation	L	*	×	entreg i martine e men untur que la respesa contre esta forma la contre el men una si el mensa de men	NORTH TO A CONTRACTOR OF THE

CONTAIN	ERS, COC CHANGES AN	D/OR CORRECTIONS		CHANGES AUTHORIZED BY:							
OEC ID	Client ID ***If blank, refer to CoC	Container Description	Preservative	ResCl /pH	Matrix	Date/Time Sampled ***	Comments / Remarks / Condition Notes, Etc.				
1-3A		1-402 glass each	-	T	S		8				
1-3B-C		1-402 glass each 2-40 ml xoAs each 1-40 ml xoA exch	ch 30B1	٠			8 (voa freezer)				
1-3 D		1-40 ml 484 exc	h MeoH	4	1		1,				
	·	nal	·			-					
-	,	e e	- -				e ·				
		· ·									
							1				
	,										
	.′			1 :			1				
	-										
			-	ξ.							

RECEIPT LOGIN BY:	Ly	RECEIPT REVIEWED BY:	KNJ	Page
	· . I			

Eric Kirkegaard

DMI-EMK Environmental Services Inc. Ventura
1056 Meta Street, Suite 101

Ventura, CA 93001

10 August 2015

RE: Winton Valero Work Order: 1503272

Dear Client:

Enclosed is an analytical report for the above referenced project. The samples included in this report were received on 31-Jul-15 17:05 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Marissa L. Censullo

Marie Centilles

Project Manager

TEL: (805) 922-4772

www.oecusa.com FAX: (805) 925-3376

Ventura CA, 93001

Oilfield Environmental and Compliance, INC.

DMI-EMK Environmental Services Inc. Ventura 1056 Meta Street, Suite 101

Project: Winton Valero
Project Number: Soil Disposal Profile
Project Manager: Eric Kirkegaard

Reported: 10-Aug-15 17:37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
C1@1' C2@1' C3@1' C4@1.5' Composite	1503272-05	Solid	31-Jul-15 08:20	31-Jul-15 17:05

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero Project Number: Soil Disposal Profile Project Manager: Eric Kirkegaard

Reported: 10-Aug-15 17:37

C1@1' C2@1' C3@1' C4@1.5' Composite 1503272-05 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oilf	ield Env	ironme	ntal ar	nd Com	pliance	9			
Total Metals by EPA 6000/70	000 Series Met	thods								
Antimony	ND	0.96	2.4	mg/kg	1	B5H0046	04-Aug-15	04-Aug-15	EPA 6010B	
Arsenic	9.7	0.48	0.96	"	"	"	"	"	"	
Barium	160	0.48	0.96	"	"	"	"	"	"	
Beryllium	0.42	0.24	0.48	"	"	"	"	"	"	J
Cadmium	0.41	0.14	0.24	"	"	"	"	"	"	
Chromium	33	0.24	0.48	"	"	"	"	"	"	
Cobalt	10	0.24	0.48	"	"	"	"	"	"	
Copper	46	0.48	0.96	"	"	"	"	"	"	
_ead	20	0.29	0.48	"	"	"	"	"	"	
Aercury	0.022	0.010	0.095	"	"	B5H0054	04-Aug-15	04-Aug-15	EPA 7471A	J
Aolybdenum	0.40	0.24	0.48	"	"	B5H0046	04-Aug-15	04-Aug-15	EPA 6010B	J
lickel	44	0.096	0.24	"	"	"	"	"	"	
Selenium	ND	0.96	1.9	"	"	"	"	"	"	
Silver	ND	0.19	0.48	"	"	"	"	"	"	
Thallium	ND	0.48	0.96	"	"	"	"	"	"	
Vanadium	29	0.48	0.96	"	"	"	"	"	"	
Zinc	52	0.48	0.96	"	"	"	"	"	"	
TVPH by GC FID										
TPH Gasoline (C4-C12)	ND	0.099	0.50	mg/kg	1	B5H0185	07-Aug-15	08-Aug-15	EPA 8015M	
urrogate: 4-Bromofluorobenzene			71.0 %	70-	130	"	"	"	"	
ГЕРН by GC FID										
ΓPH Diesel (C13-C22)	ND	7.6	10	mg/kg	1	B5H0085	05-Aug-15	05-Aug-15	EPA 8015M	
TPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	"	"	
Surrogate: o-Terphenyl			99.1 %	78	125	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 3 of 13

TEL: (805) 922-4772

Surrogate: 4-Bromofluorobenzene

Surrogate: Toluene-d8

Oilfield Environmental and Compliance, INC.

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero

1056 Mata Street Swite 101

Project Number: Soil Disposal Prof

1056 Meta Street, Suite 101Project Number: Soil Disposal ProfileReported:Ventura CA, 93001Project Manager: Eric Kirkegaard10-Aug-15 17:37

C1@1' C2@1' C3@1' C4@1.5' Composite 1503272-05 (Solid)

A 1.	D. I	MDL	PQL	TT :	D'1 4'	D (1	D 1	A 1 1	Mala	NY 4			
Analyte	Result	WIDL	1 QL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
	Oilfield Environmental and Compliance												
						-							
Volatile Organic Compounds by EPA Method 8260B													
Benzene	ND	0.0020	0.0050	mg/kg	1	B5H0128	06-Aug-15	06-Aug-15	EPA 8260B				
Ethylbenzene	ND	0.0020	0.0050	"	"	"	"	"	"				
Toluene	ND	0.0020	0.0050	"	"	"	"	"	"				
Xylenes (total)	ND	0.0020	0.0050	"	"	"	"	"	"				
Surrogate: Dibromofluoromethane			112 %	70-1	130	"	"	"	"				

70-130

70-130

97.3 %

103 %

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Soil Disposal Profile
Project Manager: Eric Kirkegaard

Reported: 10-Aug-15 17:37

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H0046 - EPA 3050	В										
Blank (B5H0046-BLK1)					Prepared	& Analyze	ed: 04-Au	g-15			
Antimony	ND	1.0	2.5	mg/kg							
Arsenic	ND	0.50	1.0	"							
Barium	ND	0.50	1.0	"							
Beryllium	ND	0.25	0.50	"							
Cadmium	ND	0.15	0.25	"							
Chromium	ND	0.25	0.50	"							
Cobalt	ND	0.25	0.50	"							
Copper	ND	0.50	1.0	"							
Lead	ND	0.30	0.50	"							
Molybdenum	ND	0.25	0.50	"							
Nickel	ND	0.10	0.25	"							
Selenium	ND	1.0	2.0	"							
Silver	ND	0.20	0.50	"							
Thallium	ND	0.50	1.0	"							
Vanadium	ND	0.50	1.0	"							
Zinc	ND	0.50	1.0	"							
LCS (B5H0046-BS1)					Prepared	& Analyze	ed: 04-Au	g-15			
Antimony	99.4	1.0	2.5	mg/kg	100		99.4	80-120			
Arsenic	99.0	0.50	1.0	"	100		99.0	80-120			
Barium	105	0.50	1.0	"	100		105	80-120			
Beryllium	99.7	0.25	0.50	"	100		99.7	80-120			
Cadmium	103	0.15	0.25	"	100		103	80-120			
Chromium	104	0.25	0.50	"	100		104	80-120			
Cobalt	104	0.25	0.50	"	100		104	80-120			
Copper	104	0.50	1.0	"	100		104	80-120			
Lead	104	0.30	0.50	"	100		104	80-120			
Molybdenum	102	0.25	0.50	"	100		102	80-120			
Nickel	104	0.10	0.25	"	100		104	80-120			
Selenium	98.6	1.0	2.0	"	100		98.6	80-120			
Silver	4.90	0.20	0.50	"	5.00		98.0	80-120			
Thallium	105	0.50	1.0	"	100		105	80-120			
Vanadium	103	0.50	1.0	"	100		103	80-120			
Zinc	103	0.50	1.0	"	100		103	80-120			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero Project Number: Soil Disposal Profile 1056 Meta Street, Suite 101 Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 10-Aug-15 17:37

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H0046 - EPA 3050B	ı										
LCS Dup (B5H0046-BSD1)					Prepared	& Analyze	:d: 04-Au	g-15			
Antimony	99.3	1.0	2.5	mg/kg	100		99.3	80-120	0.151	20	
Arsenic	99.4	0.50	1.0	"	100		99.4	80-120	0.353	20	
Barium	103	0.50	1.0	"	100		103	80-120	1.77	20	
Beryllium	98.1	0.25	0.50	"	100		98.1	80-120	1.62	20	
Cadmium	103	0.15	0.25	"	100		103	80-120	0.0968	20	
Chromium	101	0.25	0.50	"	100		101	80-120	2.53	20	
Cobalt	104	0.25	0.50	"	100		104	80-120	0.0483	20	
Copper	102	0.50	1.0	"	100		102	80-120	2.47	20	
Lead	104	0.30	0.50	"	100		104	80-120	0.432	20	
Molybdenum	103	0.25	0.50	"	100		103	80-120	0.587	20	
Nickel	104	0.10	0.25	"	100		104	80-120	0.192	20	
Selenium	99.0	1.0	2.0	"	100		99.0	80-120	0.405	20	
Silver	4.76	0.20	0.50	"	5.00		95.2	80-120	2.90	20	
Thallium	105	0.50	1.0	"	100		105	80-120	0.381	20	
Vanadium	100	0.50	1.0	"	100		100	80-120	2.55	20	
Zinc	103	0.50	1.0	"	100		103	80-120	0.146	20	
Duplicate (B5H0046-DUP1)	Sour	ce: 1503272	-05		Prepared	& Analyze	ed: 04-Aug	g-15			
Antimony	ND	0.98	2.4	mg/kg		ND				20	
Arsenic	7.17	0.49	0.98	"		9.75			30.5	20	QR-04
Barium	150	0.49	0.98	"		158			5.55	20	
Beryllium	0.400	0.24	0.49	"		0.419			4.56	20	J
Cadmium	0.430	0.15	0.24	"		0.409			4.83	20	
Chromium	33.7	0.24	0.49	"		33.4			0.996	20	
Cobalt	9.30	0.24	0.49	"		9.96			6.80	20	
Copper	28.7	0.49	0.98	"		46.2			47.0	20	QR-04
Lead	11.5	0.29	0.49	"		20.5			56.1	20	QR-04
Molybdenum	0.396	0.24	0.49	"		0.405			2.28	20	J
Nickel	42.7	0.098	0.24	"		43.9			2.91	20	
Selenium	ND	0.98	2.0	"		ND				20	
Silver	ND	0.20	0.49	"		ND				20	
Thallium	ND	0.49	0.98	"		ND				20	
Vanadium	28.2	0.49	0.98	"		28.9			2.48	20	
Zinc	48.9	0.49	0.98	"		52.4			6.87	20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001

Batch B5H0046 - EPA 3050B

Project: Winton Valero
Project Number: Soil Disposal Profile
Project Manager: Eric Kirkegaard

Reported: 10-Aug-15 17:37

Total Metals by EPA 6000/7000 Series Methods - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (B5H0046-MS1)	Sour	ce: 1503272-	-05		Prepared	& Analyze	ed: 04-Au	g-15			
Antimony	39.1	0.93	2.3	mg/kg	93.0	ND	42.0	0-111			
Arsenic	97.4	0.47	0.93	"	93.0	9.75	94.3	69-125			
Barium	267	0.47	0.93	"	93.0	158	117	42-167			
Beryllium	89.1	0.23	0.47	"	93.0	0.419	95.3	78-115			
Cadmium	88.6	0.14	0.23	"	93.0	0.409	94.8	76-115			
Chromium	127	0.23	0.47	"	93.0	33.4	101	70-135			
Cobalt	95.8	0.23	0.47	"	93.0	9.96	92.3	74-113			
Copper	142	0.47	0.93	"	93.0	46.2	103	74-131			
Lead	107	0.28	0.47	"	93.0	20.5	92.7	60-124			
Molybdenum	81.8	0.23	0.47	"	93.0	0.405	87.5	70-113			
Nickel	133	0.093	0.23	"	93.0	43.9	95.5	68-128			
Selenium	86.0	0.93	1.9	"	93.0	ND	92.5	73-118			
Silver	4.26	0.19	0.47	"	4.65	ND	91.6	71-123			
Thallium	77.7	0.47	0.93	"	93.0	ND	83.6	65-113			
Vanadium	119	0.47	0.93	"	93.0	28.9	97.0	79-128			
Zinc	144	0.47	0.93	"	93.0	52.4	98.3	58-138			
Matrix Spike Dup (B5H0046-MSD1)	Sour	ce: 1503272-	-05		Prepared	& Analyze	ed: 04-Au	g-15			
Antimony	43.9	0.98	2.5	mg/kg	98.3	ND	44.6	0-111	11.6	20	
Arsenic	106	0.49	0.98	"	98.3	9.75	97.4	69-125	7.99	20	

Antimony	43.9	0.98	2.5	mg/kg	98.3	ND	44.6	0-111	11.6	20	
Arsenic	106	0.49	0.98	"	98.3	9.75	97.4	69-125	7.99	20	
Barium	287	0.49	0.98	"	98.3	158	132	42-167	7.53	20	
Beryllium	94.7	0.25	0.49	"	98.3	0.419	95.9	78-115	6.12	20	
Cadmium	92.9	0.15	0.25	"	98.3	0.409	94.0	76-115	4.70	20	
Chromium	130	0.25	0.49	"	98.3	33.4	97.9	70-135	2.04	20	
Cobalt	100	0.25	0.49	"	98.3	9.96	91.7	74-113	4.37	20	
Copper	172	0.49	0.98	"	98.3	46.2	128	74-131	19.2	20	
Lead	124	0.29	0.49	"	98.3	20.5	106	60-124	15.3	20	
Molybdenum	86.8	0.25	0.49	"	98.3	0.405	87.9	70-113	6.00	20	
Nickel	135	0.098	0.25	"	98.3	43.9	93.1	68-128	2.02	20	
Selenium	88.9	0.98	2.0	"	98.3	ND	90.4	73-118	3.30	20	
Silver	4.46	0.20	0.49	"	4.92	ND	90.8	71-123	4.67	20	
Thallium	81.9	0.49	0.98	"	98.3	ND	83.2	65-113	5.19	20	
Vanadium	123	0.49	0.98	"	98.3	28.9	96.1	79-128	3.57	20	
Zinc	150	0.49	0.98	"	98.3	52.4	99.4	58-138	4.28	20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Soil Disposal Profile
Project Manager: Eric Kirkegaard

Reported: 10-Aug-15 17:37

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H0054 - EPA 7471A l	Prep										
Blank (B5H0054-BLK1)					Prepared	& Analyze	ed: 04-Au	g-15			
Mercury	ND	0.011	0.10	mg/kg							
LCS (B5H0054-BS1)					Prepared	& Analyze	ed: 04-Au	g-15			
Mercury	0.835	0.011	0.10	mg/kg	0.833		100	85-115			
LCS Dup (B5H0054-BSD1)					Prepared	& Analyze	ed: 04-Au	g-15			
Mercury	0.860	0.011	0.10	mg/kg	0.833		103	85-115	2.93	20	
Duplicate (B5H0054-DUP1)	Sour	rce: 1503272	2-05		Prepared	& Analyze	ed: 04-Au	g-15			
Mercury	0.0199	0.0090	0.083	mg/kg		0.0222			11.2	20	
Matrix Spike (B5H0054-MS1)	Sour	rce: 1503272	2-05		Prepared	& Analyze	ed: 04-Au	g-15			
Mercury	0.826	0.010	0.095	mg/kg	0.789	0.0222	102	75-125			
Matrix Spike Dup (B5H0054-MS)	D1) Sour	rce: 1503272	2-05		Prepared	& Analyze	ed: 04-Au	g-15			
Mercury	0.852	0.010	0.097	mg/kg	0.806	0.0222	103	75-125	3.01	20	
Post Spike (B5H0054-PS1)	Sour	rce: 1503272	2-05		Prepared	& Analyze	ed: 04-Au	g-15			
Mercury	5.12			ug/L	5.00	0.126	99.9	85-115			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Soil Disposal Profile
Project Manager: Eric Kirkegaard

Reported: 10-Aug-15 17:37

TVPH by GC FID - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
				Omts	Level	Kesuit	/0KEC	Lillits	ΚID	Lillit	110105
Batch B5H0185 - EPA 5035/5	<u>030B MEOH</u>	GC									
Blank (B5H0185-BLK1)					Prepared:	07-Aug-1	5 Analyze	ed: 08-Aug	-15		
TPH Gasoline (C4-C12)	ND	0.099	0.50	mg/kg							
Surrogate: 4-Bromofluorobenzene	0.116			"	0.124		93.6	70-130			
LCS (B5H0185-BS1)					Prepared:	07-Aug-1	5 Analyze	ed: 08-Aug	-15		
TPH Gasoline (C4-C12)	0.474	0.10	0.50	mg/kg	0.501		94.7	70-130			
Surrogate: 4-Bromofluorobenzene	0.119			"	0.125		95.0	70-130			
LCS Dup (B5H0185-BSD1)					Prepared:	07-Aug-1	5 Analyze	ed: 08-Aug	-15		
TPH Gasoline (C4-C12)	0.469	0.098	0.49	mg/kg	0.491		95.5	70-130	1.08	20	
Surrogate: 4-Bromofluorobenzene	0.116			"	0.123		94.6	70-130			
Duplicate (B5H0185-DUP1)	Sour	ce: 1503233	-38		Prepared:	07-Aug-1	5 Analyze	ed: 08-Aug	-15		
TPH Gasoline (C4-C12)	ND	0.098	0.49	mg/kg		ND				20	
Surrogate: 4-Bromofluorobenzene	0.113	-		"	0.123	-	92.6	70-130		-	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.oecusa.com

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Soil Disposal Profile
Project Manager: Eric Kirkegaard

Reported: 10-Aug-15 17:37

TEPH by GC FID - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5H0085 - EPA 3550B											
Blank (B5H0085-BLK1)					Prepared	& Analyze	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	ND	7.6	10	mg/kg							
TPH Motor Oil (C23-C40)	ND	40	50	"							
Surrogate: o-Terphenyl	48.7			"	50.0		97.4	78-125			
LCS (B5H0085-BS1)					Prepared	& Analyze	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	495	7.6	10	mg/kg	500		99.1	86-111			
Surrogate: o-Terphenyl	42.3			11	50.0		84.6	78-125			
LCS Dup (B5H0085-BSD1)					Prepared	& Analyze	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	496	7.6	10	mg/kg	500		99.3	86-111	0.172	20	
Surrogate: o-Terphenyl	41.7			"	50.0		83.4	78-125			
Duplicate (B5H0085-DUP1)	Sour	ce: 1503163-	06		Prepared	& Analyze	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	ND	7.6	10	mg/kg		ND				20	
TPH Motor Oil (C23-C40)	ND	40	50	"		ND				20	
Surrogate: o-Terphenyl	52.1			11	50.0		104	78-125			
Matrix Spike (B5H0085-MS1)	Sour	ce: 1503163-	06		Prepared	& Analyze	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	503	7.6	10	mg/kg	499	ND	101	78-117			
Surrogate: o-Terphenyl	42.8			"	49.9		85.8	78-125			
Matrix Spike Dup (B5H0085-MSD1) Sour	ce: 1503163-	06		Prepared	& Analyze	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	511	7.6	10	mg/kg	501	ND	102	78-117	1.59	20	
Surrogate: o-Terphenyl	43.2			"	50.1		86.2	78-125			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Soil Disposal Profile Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 10-Aug-15 17:37

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H0128 - EPA 5035/5	030B MEOH	-									
Blank (B5H0128-BLK1)					Prepared 6	& Analyz	ed: 06-Au	g-15			
Benzene	ND	0.0020	0.0050	mg/kg	•						
Ethylbenzene	ND	0.0020	0.0050	"							
Toluene	ND	0.0020	0.0050	"							
Xylenes (total)	ND	0.0020	0.0050	"							
Surrogate: Dibromofluoromethane	0.0543			"	0.0497		109	70-130			
Surrogate: Toluene-d8	0.0516			"	0.0497		104	70-130			
Surrogate: 4-Bromofluorobenzene	0.0509			"	0.0497		102	70-130			
LCS (B5H0128-BS1)					Prepared of	& Analyz	ed: 06-Au	g-15			
Benzene	0.110	0.0020	0.0050	mg/kg	0.0996		111	70-130			
Toluene	0.117	0.0020	0.0050	"	0.0996		118	70-130			
Surrogate: Dibromofluoromethane	0.0540			"	0.0498		108	70-130			
Surrogate: 4-Bromofluorobenzene	0.0502			"	0.0498		101	70-130			
Surrogate: Toluene-d8	0.0515			"	0.0498		103	70-130			
LCS Dup (B5H0128-BSD1)					Prepared 6	& Analyz	ed: 06-Au	g-15			
Benzene	0.105	0.0020	0.0050	mg/kg	0.100		105	70-130	4.70	20	
Toluene	0.110	0.0020	0.0050	"	0.100		110	70-130	6.11	20	
Surrogate: Dibromofluoromethane	0.0580			"	0.0501		116	70-130			
Surrogate: Toluene-d8	0.0520			"	0.0501		104	70-130			
Surrogate: 4-Bromofluorobenzene	0.0515			"	0.0501		103	70-130			
Duplicate (B5H0128-DUP1)	Sour	ce: 150323	6-06		Prepared 6	& Analyz	ed: 06-Au	g-15			
Benzene	ND	0.0020	0.0050	mg/kg		ND				20	
Ethylbenzene	ND	0.0020	0.0050	"		ND				20	
Toluene	ND	0.0020	0.0050	"		ND				20	
Xylenes (total)	ND	0.0020	0.0050	"		ND				20	
Surrogate: Dibromofluoromethane	0.0592			"	0.0500		118	70-130			
Surrogate: Toluene-d8	0.0512			"	0.0500		102	70-130			
Surrogate: 4-Bromofluorobenzene	0.0509			"	0.0500		102	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Soil Disposal Profile
Project Manager: Eric Kirkegaard

Reported: 10-Aug-15 17:37

Volatile Organic Compounds by EPA Method 8260B - Quality Control

-											
		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5H0128 - EPA 5035/5	030B MEOH	I									
Matrix Spike (B5H0128-MS1)	Sour	rce: 1503230	5-06		Prepared	& Analyze	ed: 06-Au	g-15			
Benzene	0.0999	0.0020	0.0050	mg/kg	0.0996	ND	100	70-130			
Toluene	0.106	0.0020	0.0050	"	0.0996	ND	106	70-130			
Surrogate: Dibromofluoromethane	0.0539			"	0.0498		108	70-130			
Surrogate: Toluene-d8	0.0516			"	0.0498		104	70-130			
Surrogate: 4-Bromofluorobenzene	0.0506			"	0.0498		102	70-130			
Matrix Spike Dup (B5H0128-MS	SD1) Sour	rce: 1503230	5-06		Prepared	& Analyze	ed: 06-Au	g-15			
Benzene	0.0948	0.0020	0.0049	mg/kg	0.0984	ND	96.3	70-130	5.26	20	
Toluene	0.0993	0.0020	0.0049	"	0.0984	ND	101	70-130	6.06	20	
Surrogate: Dibromofluoromethane	0.0535			"	0.0492		109	70-130			
Surrogate: 4-Bromofluorobenzene	0.0495			"	0.0492		101	70-130			
Surrogate: Toluene-d8	0.0507			"	0.0492		103	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.oecusa.com

307 Roemer Way, Suite 300, Santa Maria, CA 93454

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero

1056 Meta Street, Suite 101Project Number: Soil Disposal ProfileReported:Ventura CA, 93001Project Manager: Eric Kirkegaard10-Aug-15 17:37

Notes and Definitions

QR-04 The RPD exceeded the QC control limits.

J Detected but below the RL/PQL; therefore, result is an estimated concentration.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the Method Limit (MDL)

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

TEL: (805) 922-4772

307 Roemer Way Suite 300, Santa Maria CA 93454

phone: (805) 922-4772 fax: (805) 925-3376 www.oecusa.com

CHAIN OF CUSTODY

Highway 33, McKittrick CA

phone: (661) 762-9143

Company: DM	I-EMK	ENV	PD	MENTY	r_Saev	CES	Proje	ct Nam	ne/#:	5016	- 2	25P	054	h	PR	0F12	<u>.e</u>	
Address: (05%							Site:	W	•	TON		tuć						
City/State/ZIP: V	ENTURA	G	1	93001			(V)			Analysi	Requ	ested			,	Spe	cial Instru	ctions:
Phone 805-65	3-0633	Fax:		E	-mail: DM	I-ENK	200	BTEX (SOLO)	·						記			
Report To: DMI	FEMK			ler:E/212	_Kirk	EGAARN	12	E.	L						2527 25027			
Send report via- FA		PDF-		Colt/LUFT EDF		EDD-	2	<u>کر</u>	F1 my		-			1	हैं।		\$1.5 ×	·
Turnaround Time	10 Days- 5	Days-	# of	T		ASAP- □	孝	12	3,	,					P			•
OEC Sample ID	Sampled	Matrix	Cont.	C	lient Sample	∋ ID	E	627	0						\square		150	3777-SA
1503272-H	7/31/15001	5_	1	Cle	('		11/	$\setminus I$	_/							COMP	05175	3272 -5 4
2A	0315		1	(20	1'		17	Y	V				۸.	,	7	(1-	C4 4	•
3A	0817		1	Cze			\prod	Λ	Λ	,					X	ANA	470	f For
¥ 4A	0820		l	14e	i.s'		V١	/ [$J \setminus$						X	TPH/	STEX	CAM
-		A CO					7									a.		
		\. -				: -					-						,	
												·				*****************	***************************************	*************************
					-	*										**************		
	# 1 <u>-</u> 24															***************************************	****************	*************************
					**************************************								7.	-		***************	***************	***************************************
						,										***************	**************	***************************************
					***************************************											*********************	*************	
Relinquished By:	(· V: Y-1				Date:	13Ve Tir	ne: /	705		Commen	ts/PÓ#:							
Received By:	Rynn	te 4	رهر'	Committed that their read rape and half the state State State State and pain		1-31-15 Tir					· •				*			
Relinquished By:	0	0			Date:		ne:							es e e e e e e e e e e e e e e e e e e				eren ing same
Received By:	age yang bahan bilah. Salah balan awan jeran yang yang yang bahan balan salah dada bahan bala			wax yake field gay good tool soo field you are soo soo soo good too too	Date:	MATERIA SERVICE	ne:	-			1				•		44 A	
Relinquished By:		······································			Date:	· .	ne:				10		280					
Received By:		nd data data dari penganan dak melalah seb		enth faile that this hale was pure par year and you had this shat shat	Date:		ne:			rece	da ect	6.8 For	かい	fie)	1	·		
						111			1.1		رس	1.01	• -	1				

COCRECEIVED DATE/TIME: 7-3/-/5 /705	IPT CLIENT: DM1 RECEIPT LOGIN DATE/TIME: 8-3-/	<u> </u>	oec i 0934	D#:	1503272 Temp: 6.8 °C Acceptable Range: 0°C to 6°C REFRIGERATOR(s): 8
SAMPLE TRANSPORT, RECEIPT, CO OEC Courier/Sampler Delivery(Other than OEC Courier) Samples Received on Ice Samples Received Outside Temp. Range* Samples Direct from field (Outside Temp) After-Hours Outside Drop-off [Brought Inside] (Initials/Date/Time):		Yes	No * * *		(*) PROBLEM CHAIN FORM NEEDED Custody Seals (circle): Present Absent Samples / Coolers Intact / Broken* Method of Shipment & Tracking #(if applicable): (**) OEC Preservative ID: Dissolved Metals Filtration: (Date/Init/Preserve ID)

EC ID	Client ID ***If blank, refer to CoC	Container Description	Preservative	ResCl /pH	Matrix	Date/Time Sampled ***	Comments / Remarks / Condition Notes, Etc.
1-4A		1-4 02 glass ea	ch T	T	Ş	·	
5A		1-16 02 glass					composite
58		1-16 02 glass 1-20 mL VOA		1	1		1
	·						
		×				4	
· · · · · · · · · · · · · · · · · · ·	7	,					,
, s					·		
							, , , , , , , , , , , , , , , , , , ,
· · · · · · · · · · · · · · · · · · ·							
			· · · · · · · · · · · · · · · · · · ·				
					,.		
			<u>.</u>				

					, .			
RECEIPT LOGIN BY:	<u> </u>	RECE	IPT REVIEWE	D BY: _	E	VH .	P.	ageof

307 Roemer Way, Suite 300, Santa Maria, CA 93454 101 Adkisson Way, Taft, CA 93268

Phone: 805-922-4772 / 661-762-9143

AR@oecusa.com

·	Sample Cont	rol Work	Ticket	· .	
Work Order: 1503272	Date: 8-3	-15	Employee:	Lynnette	
Client/Project: DMI / So				•	
Start Tech Time: 0915		Stop Tech			
Additional Supplies/Personnel/Com	ments:				
measured out	~50 mL	. of	sam	ple from)
measured out each jar model 16 02	received	ar	nd co	mposited	
mto 16 oz	ior	e de Compa			
	O . 1				
		<			***
		<u> </u>		·	
	<u> </u>	•	<u> </u>	in the second se	
	·				
Admin Use: Name:		Initials:		Date:	
Total Tech Time:		Lab Pack:	, , , , , , , , , , , , , , , , , , , ,		
Compositing:		Disposal:			

Eric Kirkegaard

DMI-EMK Environmental Services Inc. Ventura
1056 Meta Street, Suite 101

Ventura, CA 93001

12 August 2015

RE: Winton Valero Work Order: 1503273

Dear Client:

Enclosed is an analytical report for the above referenced project. The samples included in this report were received on 31-Jul-15 17:05 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Marissa L. Censullo

Marie Centilles

Project Manager

TEL: (805) 922-4772

www.oecusa.com FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

ANALYTICAL REPORT FOR SAMPLES

Project: Winton Valero

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
D1@1.5'	1503273-01	Solid	31-Jul-15 10:10	31-Jul-15 17:05
D2@1.5'	1503273-02	Solid	31-Jul-15 10:20	31-Jul-15 17:05
D3@2'	1503273-03	Solid	31-Jul-15 10:45	31-Jul-15 17:05
D4@2'	1503273-04	Solid	31-Jul-15 11:05	31-Jul-15 17:05
P1@2'	1503273-05	Solid	31-Jul-15 10:30	31-Jul-15 17:05
P2@2'	1503273-06	Solid	31-Jul-15 10:50	31-Jul-15 17:05
P3@3'	1503273-07	Solid	31-Jul-15 11:15	31-Jul-15 17:05
VL2@3'	1503273-08	Solid	31-Jul-15 10:35	31-Jul-15 17:05
SP1 SP2 SP3 SP4 Composite	1503273-13	Solid	31-Jul-15 11:30	31-Jul-15 17:05

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Dispensers and Piping
Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

D1@1.5' 1503273-01 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oilf	ield Env	ironme	ntal an	d Com	pliance	е			
Total Metals by EPA 6000/700	00 Series Me	thods								
Lead	8.4	0.28	0.46	mg/kg	1	B5H0046	04-Aug-15	04-Aug-15	EPA 6010B	
ГЕРН by GC FID										
ΓΡΗ Diesel (C13-C22)	ND	7.6	10	mg/kg	1	B5H0085	05-Aug-15	05-Aug-15	EPA 8015M	
ΓPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	"	"	
Surrogate: o-Terphenyl			99.9 %	78	125	"	"	"	"	
Volatile Organic Compounds	by EPA Met	hod 8260B								
Benzene	ND	0.0017	0.0042	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Bromobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
Bromochloromethane	ND	0.0017	0.0042	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0017	0.0042	"	"	"	"	"	"	
Bromoform	ND	0.0017	0.0042	"	"	"	"	"	"	
Bromomethane	ND	0.0017	0.0042	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
ert-Butylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0017	0.0042	"	"	"	"	"	"	
Chlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
Chloroethane	ND	0.0017	0.0042	"	"	"	"	"	"	
Chloroform	ND	0.0017	0.0042	"	"	"	"	"	"	
Chloromethane	ND	0.0017	0.0042	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0017	0.0042	"	"	"	"	"	"	
l-Chlorotoluene	ND	0.0017	0.0042	"	"	"	"	"	"	
,2-Dibromo-3-chloropropane	ND	0.0017	0.0042	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0017	0.0042	"	"	"	"	"	"	
Dibromomethane	ND	0.0017	0.0042	"	"	"	"	"	"	
,2-Dichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
,3-Dichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0017	0.0042	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0017	0.0042	"	"	"	"	"	"	
,2-Dichloroethane	ND	0.0017	0.0042	"	"	"	"	"		

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 3 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

D1@1.5' 1503273-01 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

Volatile Organic Compound	s by EPA Met	hod 8260B								
1,1-Dichloroethene	ND	0.0017	0.0042	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
cis-1,2-Dichloroethene	ND	0.0017	0.0042	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0017	0.0042	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.0017	0.0042	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.0017	0.0042	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0017	0.0042	"	"	"	"	"	"	
Ethylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0017	0.0042	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0017	0.0042	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
4-Isopropyl Toluene	ND	0.0017	0.0042	"	"	"	"	"	"	
Methylene chloride	ND	0.0017	0.0042	"	"	"	"	"	"	
Naphthalene	ND	0.0017	0.0042	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
Styrene	ND	0.0017	0.0042	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0017	0.0042	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0017	0.0042	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.0017	0.0042	"	"	"	"	"	"	
Toluene	ND	0.0017	0.0042	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0017	0.0042	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0017	0.0042	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	0.0017	0.0042	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0017	0.0042	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
Vinyl chloride	ND	0.0017	0.0042	"	"	"	"	"	"	
Xylenes (total)	ND	0.0017	0.0042	"	"	"	"	"	"	
t-Amyl Methyl Ether	ND	0.0017	0.0042	"	"	"	"	"	"	
t-Butyl alcohol	ND	0.0084	0.021	"	"	"	"	"	"	
		0.0015								

Oilfield Environmental and Compliance

Diisopropyl Ether

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

ND

0.0017

0.0042

www.oecusa.com

Page 4 of 44

TEL: (805) 922-4772

Surrogate: Toluene-d8

Oilfield Environmental and Compliance, INC.

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero

Project Number: Dispensers and Piping Project Manager: Eric Kirkegaard **Reported:** 12-Aug-15 10:54

D1@1.5' 1503273-01 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Oilf	ield Env	ironme	ntal and	l Com	pliance	е			
Volatile Organic Compounds	by EPA Met	hod 8260B								
Ethanol	ND	1.7	4.2	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Ethyl t-Butyl Ether	ND	0.0017	0.0042	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	0.0017	0.0042	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			120 %	70-130		"	"	"	"	
Surrogate: Toluene-d8			97.0 %	70-13	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			105 %	70-13	20	"	"	"	"	
Volatile Organic Compounds	by EPA Met	hod 8260B/	LUFT							
TPH Gasoline (C4-C12)	ND	0.17	0.42	mg/kg	1	B5H0165	"	07-Aug-15	EPA 8260B/LUFT	
Surrogate: Dibromofluoromethane			120 %	70-13	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			105 %	70-13	0	"	"	"	"	

70-130

97.0 %

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Dispensers and Piping
Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

D2@1.5' 1503273-02 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oil	field Env	ironme	ntal ar	d Com	pliance	Э			
Total Metals by EPA 6000/700	00 Series Me	thods								
Lead	7.9	0.30	0.50	mg/kg	1	B5H0046	04-Aug-15	04-Aug-15	EPA 6010B	
ΓVPH by GC FID										
ΓΡΗ Gasoline (C4-C12)	ND	0.081	0.40	mg/kg	1	B5H0184	07-Aug-15	07-Aug-15	EPA 8015M	
Surrogate: 4-Bromofluorobenzene			92.8 %	70-	130	"	"	"	"	
ГЕРН by GC FID										
ΓPH Diesel (C13-C22)	ND	7.6	10	mg/kg	1	B5H0085	05-Aug-15	05-Aug-15	EPA 8015M	
ΓPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	"	"	
Surrogate: o-Terphenyl			97.1 %	78-	125	"	"	"	"	
Volatile Organic Compounds	by EPA Met	thod 8260B								
Benzene	ND	0.0017	0.0041	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Bromobenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
Bromochloromethane	ND	0.0017	0.0041	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0017	0.0041	"	"	"	"	"	"	
Bromoform	ND	0.0017	0.0041	"	"	"	"	"	"	
Bromomethane	ND	0.0017	0.0041	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
ec-Butylbenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
ert-Butylbenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0017	0.0041	"	"	"	"	"	"	
Chlorobenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
Chloroethane	ND	0.0017	0.0041	"	"	"	"	"	"	
Chloroform	ND	0.0017	0.0041	"	"	"	"	"	"	
Chloromethane	ND	0.0017	0.0041	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0017	0.0041	"	"	"	"	"	"	
l-Chlorotoluene	ND	0.0017	0.0041	"	"	"	"	"	"	
,2-Dibromo-3-chloropropane	ND	0.0017	0.0041	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0017	0.0041	"	"	"	"	"	"	
Dibromomethane	ND	0.0017	0.0041	"	"	"	"	"	"	
,2-Dichlorobenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
,3-Dichlorobenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
.4-Dichlorobenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0017	0.0041	"	"	"	"	"	"	
1,1-Dichloroethane	ND ND	0.0017	0.0041	,,		,,			"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 6 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

D2@1.5' 1503273-02 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

Volatile Organic Compoun	ds by EPA Met	hod 8260B								
1,2-Dichloroethane	ND	0.0017	0.0041	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
1,1-Dichloroethene	ND	0.0017	0.0041	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0017	0.0041	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0017	0.0041	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0017	0.0041	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0017	0.0041	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0017	0.0041	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.0017	0.0041	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.0017	0.0041	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0017	0.0041	"	"	"	"	"	"	
Ethylbenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0017	0.0041	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0017	0.0041	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
4-Isopropyl Toluene	ND	0.0017	0.0041	"	"	"	"	"	"	
Methylene chloride	ND	0.0017	0.0041	"	"	"	"	"	"	
Naphthalene	ND	0.0017	0.0041	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
Styrene	ND	0.0017	0.0041	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0017	0.0041	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0017	0.0041	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.0017	0.0041	"	"	"	"	"	"	
Toluene	ND	0.0017	0.0041	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0017	0.0041	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0017	0.0041	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	0.0017	0.0041	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0017	0.0041	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0017	0.0041	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0017	0.0041	"	"	"	"	"	"	
Vinyl chloride	ND	0.0017	0.0041	"	"	"	"	"	"	
Xylenes (total)	0.0018	0.0017	0.0041	"	"	"	"	"	"	J
t-Amyl Methyl Ether	ND	0.0017	0.0041	"	"	"	"	"	"	
t-Butyl alcohol	ND	0.0083	0.021	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 7 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Project: Winton Valero
Project Number: Dispensers and Piping
Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

D2@1.5' 1503273-02 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oilf	field Envi	ironme	ntal ar	d Com	pliance	е			
Volatile Organic Compound	s by EPA Met	hod 8260B								
Diisopropyl Ether	ND	0.0017	0.0041	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Ethanol	ND	1.7	4.1	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	0.0017	0.0041	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	0.0017	0.0041	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			119 %	70-	130	"	"	"	"	

70-130

70-130

98.9 %

109 %

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

D3@2' 1503273-03 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oil	ield Env	ironme	ntal an	d Com	pliance	9			
Total Metals by EPA 6000/700	00 Series Me									
Lead	9.8	0.30	0.49	mg/kg	1	B5H0046	04-Aug-15	04-Aug-15	EPA 6010B	
TVPH by GC FID										
TPH Gasoline (C4-C12)	ND	0.082	0.41	mg/kg	1	B5H0184	07-Aug-15	07-Aug-15	EPA 8015M	
Surrogate: 4-Bromofluorobenzene			92.2 %	70	130	"	"	"	"	
TEPH by GC FID										
TPH Diesel (C13-C22)	ND	7.6	10	mg/kg	1	B5H0085	05-Aug-15	05-Aug-15	EPA 8015M	
TPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	"	"	
Surrogate: o-Terphenyl			98.6 %	78	125	"	"	"	"	
Volatile Organic Compounds	by EPA Met	hod 8260B								
Benzene	ND	0.0018	0.0044	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Bromobenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
Bromochloromethane	ND	0.0018	0.0044	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0018	0.0044	"	"	"	"	"	"	
Bromoform	ND	0.0018	0.0044	"	"	"	"	"	"	
Bromomethane	ND	0.0018	0.0044	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0018	0.0044	"	"	"	"	"	"	
Chlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
Chloroethane	ND	0.0018	0.0044	"	"	"	"	"	"	
Chloroform	ND	0.0018	0.0044	"	"	"	"	"	"	
Chloromethane	ND	0.0018	0.0044	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0018	0.0044	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0018	0.0044	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0018	0.0044	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0018	0.0044	"	"	"	"	"	"	
Dibromomethane	ND	0.0018	0.0044	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0018	0.0044	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0018	0.0044	,,	.,	,,			"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 9 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

D3@2' 1503273-03 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

1,2-Dichloroethane	ND	0.0018	0.0044	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260E
1,1-Dichloroethene	ND	0.0018	0.0044	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	0.0018	0.0044	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	0.0018	0.0044	"	"	"	"	"	"
1,2-Dichloropropane	ND	0.0018	0.0044	"	"	"	"	"	"
1,3-Dichloropropane	ND	0.0018	0.0044	"	"	"	"	"	"
2,2-Dichloropropane	ND	0.0018	0.0044	"	"	"	"	"	"
1,1-Dichloropropene	ND	0.0018	0.0044	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.0018	0.0044	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.0018	0.0044	"	"	"	"	"	"
Ethylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	0.0018	0.0044	"	"	"	"	"	"
Hexachlorobutadiene	ND	0.0018	0.0044	"	"	"	"	"	"
Isopropylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"
4-Isopropyl Toluene	ND	0.0018	0.0044	"	"	"	"	"	"
Methylene chloride	ND	0.0018	0.0044	"	"	"	"	"	"
Naphthalene	ND	0.0018	0.0044	"	"	"	"	"	"
n-Propylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"
Styrene	ND	0.0018	0.0044	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	0.0018	0.0044	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	0.0018	0.0044	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	0.0018	0.0044	"	"	"	"	"	"
Гoluene	ND	0.0018	0.0044	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	0.0018	0.0044	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	0.0018	0.0044	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	0.0018	0.0044	"	"	"	"	"	"
Trichloroethene (TCE)	ND	0.0018	0.0044	"	"	"	"	"	"
Γrichlorofluoromethane	ND	0.0018	0.0044	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	0.0018	0.0044	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	0.0018	0.0044	"	"	"	"	"	"
Vinyl chloride	ND	0.0018	0.0044	"	"	"	"	"	"
Xylenes (total)	ND	0.0018	0.0044	"	"	"	"	"	"
-Amyl Methyl Ether	ND	0.0018	0.0044	"	"	"	"	"	"
-Butyl alcohol	ND	0.0088	0.022	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 10 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001

Surrogate: 4-Bromofluorobenzene

Project: Winton Valero
Project Number: Dispensers and Piping
Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

D3@2' 1503273-03 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oilf	field Envi	ronme	ntal an	d Com	pliance	е			
Volatile Organic Compounds	by EPA Met	thod 8260B								
Diisopropyl Ether	ND	0.0018	0.0044	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Ethanol	ND	1.8	4.4	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	0.0018	0.0044	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	0.0018	0.0044	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			118 %	70-1	130	"	"	"	"	
Surrogate: Toluene-d8			98.8 %	70-1	130	"	"	"	"	

70-130

108 %

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Dispensers and Piping
Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

D4@2' 1503273-04 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Oil	field Env	ironme	ntal an	d Com	pliance	9			
Fotal Metals by EPA 6000/70	00 Series Me	thods								
Lead	21	0.28	0.47	mg/kg	1	B5H0046	04-Aug-15	04-Aug-15	EPA 6010B	
TVPH by GC FID										
TPH Gasoline (C4-C12)	8.1	0.45	2.3	mg/kg	1	B5H0245	11-Aug-15	11-Aug-15	EPA 8015M	D-03
Surrogate: 4-Bromofluorobenzene			117 %	70	130	"	"	"	"	
v			117 70	70	150					
FEPH by GC FID		7.6								
TPH Diesel (C13-C22)	570	7.6 40	10	mg/kg "	1	B5H0085	05-Aug-15	05-Aug-15	EPA 8015M	
TPH Motor Oil (C23-C40)	300	40	50							
Surrogate: o-Terphenyl			101 %	78	125	"	"	"	"	
Volatile Organic Compounds	s by EPA Met	hod 8260B								
Benzene	ND	0.0018	0.0045	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Bromobenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
Bromochloromethane	ND	0.0018	0.0045	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0018	0.0045	"	"	"	"	"	"	
Bromoform	ND	0.0018	0.0045	"	"	"	"	"	"	
Bromomethane	ND	0.0018	0.0045	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
ec-Butylbenzene	0.0062	0.0018	0.0045	"	"	"	"	"	"	
ert-Butylbenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0018	0.0045	"	"	"	"	"	"	
Chlorobenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
Chloroethane	ND	0.0018	0.0045	"	"	"	"	"	"	
Chloroform	ND	0.0018	0.0045	"	"	"	"	"	"	
Chloromethane	ND	0.0018	0.0045	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0018	0.0045	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0018	0.0045	"	"	"	"	"	"	
,2-Dibromo-3-chloropropane	ND	0.0018	0.0045	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0018	0.0045	"	"	"	"	"	"	
Dibromomethane	ND	0.0018	0.0045	"	"	"	"	"	"	
,2-Dichlorobenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0018	0.0045	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0018	0.0045	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

D4@2' 1503273-04 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental	and	Compliance
------------------------	-----	------------

Volatile Organic Compound	ds by EPA Met	hod 8260B								
1,2-Dichloroethane	ND	0.0018	0.0045	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
1,1-Dichloroethene	ND	0.0018	0.0045	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0018	0.0045	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0018	0.0045	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0018	0.0045	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0018	0.0045	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0018	0.0045	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.0018	0.0045	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.0018	0.0045	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0018	0.0045	"	"	"	"	"	"	
Ethylbenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0018	0.0045	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0018	0.0045	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
4-Isopropyl Toluene	0.0029	0.0018	0.0045	"	"	"	"	"	"	J
Methylene chloride	ND	0.0018	0.0045	"	"	"	"	"	"	
Naphthalene	ND	0.0018	0.0045	"	"	"	"	"	"	
n-Propylbenzene	0.0020	0.0018	0.0045	"	"	"	"	"	"	J
Styrene	ND	0.0018	0.0045	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.0018	0.0045	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0018	0.0045	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.0018	0.0045	"	"	"	"	"	"	
Toluene	ND	0.0018	0.0045	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0018	0.0045	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0018	0.0045	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	0.0018	0.0045	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0018	0.0045	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0018	0.0045	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.0098	0.0018	0.0045	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0018	0.0045	"	"	"	"	"	"	
Vinyl chloride	ND	0.0018	0.0045	"	"	"	"	"	"	
Xylenes (total)	0.0025	0.0018	0.0045	"	"	"	"	"	"	J
t-Amyl Methyl Ether	ND	0.0018	0.0045	"	"	"	"	"	"	
t-Butyl alcohol	ND	0.0089	0.022	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001

Surrogate: 4-Bromofluorobenzene

Project: Winton Valero

Project Number: Dispensers and Piping Project Manager: Eric Kirkegaard **Reported:** 12-Aug-15 10:54

D4@2' 1503273-04 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oil	field Envi	ironme	ntal an	d Con	nplianc	е			
Volatile Organic Compounds	by EPA Met	thod 8260B								
Diisopropyl Ether	ND	0.0018	0.0045	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Ethanol	ND	1.8	4.5	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	0.0018	0.0045	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	0.0018	0.0045	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			120 %	70-	130	"	"	"	"	
Surrogate: Toluene-d8			88.9 %	70-	130	"	"	"	"	

111 %

70-130

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Dispensers and Piping
Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

P1@2' 1503273-05 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Oil	ield Env	ironme	ntal an	d Com	pliance	9			
Total Metals by EPA 6000/700	00 Series Me	thods								
Lead	7.5	0.28	0.46	mg/kg	1	B5H0046	04-Aug-15	04-Aug-15	EPA 6010B	
TVPH by GC FID										
ΓΡΗ Gasoline (C4-C12)	ND	0.084	0.42	mg/kg	1	B5H0184	07-Aug-15	07-Aug-15	EPA 8015M	
Surrogate: 4-Bromofluorobenzene			90.1 %	70	130	"	"	"	"	
TEPH by GC FID										
ΓPH Diesel (C13-C22)	ND	7.6	10	mg/kg	1	B5H0085	05-Aug-15	05-Aug-15	EPA 8015M	
ΓPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	"	"	
Surrogate: o-Terphenyl			100 %	78	125	"	"	"	"	
Volatile Organic Compounds	by EPA Met	hod 8260B								
Benzene	ND	0.0017	0.0042	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Bromobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
Bromochloromethane	ND	0.0017	0.0042	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0017	0.0042	"	"	"	"	"	"	
Bromoform	ND	0.0017	0.0042	"	"	"	"	"	"	
Bromomethane	ND	0.0017	0.0042	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
ert-Butylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0017	0.0042	"	"	"	"	"	"	
Chlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
Chloroethane	ND	0.0017	0.0042	"	"	"	"	"	"	
Chloroform	ND	0.0017	0.0042	"	"	"	"	"	"	
Chloromethane	ND	0.0017	0.0042	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0017	0.0042	"	"	"	"	"	"	
1-Chlorotoluene	ND	0.0017	0.0042	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0017	0.0042	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0017	0.0042	"	"	"	"	"	"	
Dibromomethane	ND	0.0017	0.0042	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0017	0.0042	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0017	0.0042	"	,,	,,		,,	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

P1@2' 1503273-05 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental	and	Compliance
------------------------	-----	------------

,2-Dichloroethane	ND	0.0017	0.0042	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260E
,1-Dichloroethene	ND	0.0017	0.0042	"	"	"	"	"	"
ris-1,2-Dichloroethene	ND	0.0017	0.0042	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	0.0017	0.0042	"	"	"	"	"	"
,2-Dichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"
,3-Dichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"
2,2-Dichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"
,1-Dichloropropene	ND	0.0017	0.0042	"	"	"	"	"	"
eis-1,3-Dichloropropene	ND	0.0017	0.0042	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.0017	0.0042	"	"	"	"	"	"
Ethylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	0.0017	0.0042	"	"	"	"	"	"
Hexachlorobutadiene	ND	0.0017	0.0042	"	"	"	"	"	"
sopropylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
l-Isopropyl Toluene	ND	0.0017	0.0042	"	"	"	"	"	"
Methylene chloride	ND	0.0017	0.0042	"	"	"	"	"	"
Naphthalene	ND	0.0017	0.0042	"	"	"	"	"	"
n-Propylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
Styrene	ND	0.0017	0.0042	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	0.0017	0.0042	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	0.0017	0.0042	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	0.0017	0.0042	"	"	"	"	"	"
Toluene	ND	0.0017	0.0042	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"
,1,1-Trichloroethane	ND	0.0017	0.0042	"	"	"	"	"	"
,1,2-Trichloroethane	ND	0.0017	0.0042	"	"	"	"	"	"
Trichloroethene (TCE)	ND	0.0017	0.0042	"	"	"	"	"	"
Trichlorofluoromethane	ND	0.0017	0.0042	"	"	"	"	"	"
,2,3-Trichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
√inyl chloride	ND	0.0017	0.0042	"	"	"	"	"	"
Kylenes (total)	ND	0.0017	0.0042	"	"	"	"	"	"
-Amyl Methyl Ether	ND	0.0017	0.0042	"	"	"	"	"	"
-Butyl alcohol	ND	0.0085	0.021	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 16 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001

Surrogate: 4-Bromofluorobenzene

Project: Winton Valero

Project Number: Dispensers and Piping Project Manager: Eric Kirkegaard **Reported:** 12-Aug-15 10:54

P1@2' 1503273-05 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oil	field Envi	ironme	ntal an	d Con	npliance	е			
Volatile Organic Compounds	by EPA Met	thod 8260B								
Diisopropyl Ether	ND	0.0017	0.0042	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Ethanol	ND	1.7	4.2	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	0.0017	0.0042	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	0.0017	0.0042	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			119 %	70-1	30	"	"	"	"	
Surrogate: Toluene-d8			99.0 %	70-1	30	"	"	"	"	

109 %

70-130

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

P2@2' 1503273-06 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oil	ield Env	ironme	ntal an	d Com	pliance	е			
Fotal Metals by EPA 6000/700	00 Series Me	thods								
Lead	7.2	0.29	0.48	mg/kg	1	B5H0046	04-Aug-15	04-Aug-15	EPA 6010B	
TVPH by GC FID										
TPH Gasoline (C4-C12)	ND	0.079	0.40	mg/kg	1	B5H0184	07-Aug-15	07-Aug-15	EPA 8015M	
Surrogate: 4-Bromofluorobenzene			93.0 %	70	130	"	"	"	"	
TEPH by GC FID										
ΓPH Diesel (C13-C22)	ND	7.6	10	mg/kg	1	B5H0085	05-Aug-15	05-Aug-15	EPA 8015M	
ΓPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	"	"	
Surrogate: o-Terphenyl			97.2 %	<i>7</i> 8	125	"	"	"	"	
Volatile Organic Compounds	by EPA Met	hod 8260B								
Benzene	ND	0.0016	0.0039	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Bromobenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
Bromochloromethane	ND	0.0016	0.0039	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0016	0.0039	"	"	"	"	"	"	
Bromoform	ND	0.0016	0.0039	"	"	"	"	"	"	
Bromomethane	ND	0.0016	0.0039	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
ert-Butylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0016	0.0039	"	"	"	"	"	"	
Chlorobenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
Chloroethane	ND	0.0016	0.0039	"	"	"	"	"	"	
Chloroform	ND	0.0016	0.0039	"	"	"	"	"	"	
Chloromethane	ND	0.0016	0.0039	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0016	0.0039	"	"	"	"	,,	"	
4-Chlorotoluene	ND	0.0016	0.0039	"	"	"	"	,,	"	
,2-Dibromo-3-chloropropane	ND ND	0.0016	0.0039	"	"	"	"	"	"	
Dibromochloromethane	ND ND	0.0016	0.0039	"	"	"	"	"	"	
Dibromomethane	ND ND	0.0016	0.0039	"	"	"	"	"	"	
,2-Dichlorobenzene	ND ND	0.0016	0.0039	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND ND	0.0016	0.0039	"	"	"	"	"	"	
	ND ND	0.0016		"	"	"	,,	,,	"	
1,4-Dichlorobenzene		0.0016	0.0039	,,	"	"	,	"	"	
Dichlorodifluoromethane 1.1-Dichloroethane	ND ND	0.0016	0.0039	"	"	"		**	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 18 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero
1056 Meta Street, Suite 101 Project Number: Dispensers and Piping

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:

Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

P2@2' 1503273-06 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

Volatile Organic Compound	s by EPA Met	hod 8260B							
1,2-Dichloroethane	ND	0.0016	0.0039	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B
1,1-Dichloroethene	ND	0.0016	0.0039	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	0.0016	0.0039	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	0.0016	0.0039	"	"	"	"	"	"
1,2-Dichloropropane	ND	0.0016	0.0039	"	"	"	"	"	"
1,3-Dichloropropane	ND	0.0016	0.0039	"	"	"	"	"	"
2,2-Dichloropropane	ND	0.0016	0.0039	"	"	"	"	"	"
1,1-Dichloropropene	ND	0.0016	0.0039	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.0016	0.0039	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.0016	0.0039	"	"	"	"	"	"
Ethylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	0.0016	0.0039	"	"	"	"	"	"
Hexachlorobutadiene	ND	0.0016	0.0039	"	"	"	"	"	"
Isopropylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"
4-Isopropyl Toluene	ND	0.0016	0.0039	"	"	"	"	"	"
Methylene chloride	ND	0.0016	0.0039	"	"	"	"	"	"
Naphthalene	ND	0.0016	0.0039	"	"	"	"	"	"
n-Propylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"
Styrene	ND	0.0016	0.0039	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	0.0016	0.0039	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	0.0016	0.0039	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	0.0016	0.0039	"	"	"	"	"	"
Toluene	ND	0.0016	0.0039	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	0.0016	0.0039	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	0.0016	0.0039	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	0.0016	0.0039	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	0.0016	0.0039	"	"	"	"	"	"
Trichloroethene (TCE)	ND	0.0016	0.0039	"	"	"	"	"	"
Trichlorofluoromethane	ND	0.0016	0.0039	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	0.0016	0.0039	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"
Vinyl chloride	ND	0.0016	0.0039	"	"	"	"	"	"
Xylenes (total)	ND	0.0016	0.0039	"	"	"	"	"	"
t-Amyl Methyl Ether	ND	0.0016	0.0039	"	"	"	"	"	"
t-Butyl alcohol	ND	0.0078	0.019	"	"	"	"	"	"
•									

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 19 of 44

TEL: (805) 922-4772

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Oilfield Environmental and Compliance, INC.

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project Winton Valero
Project Number: Dispensers and Piping
Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

P2@2' 1503273-06 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oilf	field Envi	ironme	ntal an	d Com	pliance	е			
Volatile Organic Compounds	by EPA Met	thod 8260B								
Diisopropyl Ether	ND	0.0016	0.0039	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Ethanol	ND	1.6	3.9	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	0.0016	0.0039	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	0.0016	0.0039	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			119 %	70	130	"	"	"	"	

70-130 70-130

99.5 %

110 %

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Ventura CA, 93001 Project Manager: Eric Kirkegaard

> P3@3' 1503273-07 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Oil	ield Env	ironme	ntal an	d Com	pliance	9			
Total Metals by EPA 6000/70	00 Series Me	thods								
Lead	7.0	0.30	0.49	mg/kg	1	B5H0046	04-Aug-15	04-Aug-15	EPA 6010B	
TVPH by GC FID										
ΓΡΗ Gasoline (C4-C12)	ND	0.083	0.41	mg/kg	1	B5H0184	07-Aug-15	07-Aug-15	EPA 8015M	
Surrogate: 4-Bromofluorobenzene			92.0 %	70-1	130	"	"	"	"	
TEPH by GC FID										
ΓPH Diesel (C13-C22)	19	7.6	10	mg/kg	1	B5H0085	05-Aug-15	05-Aug-15	EPA 8015M	
ΓPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	"	"	
Surrogate: o-Terphenyl			95.0 %	78-1	125	"	11	"	"	
Volatile Organic Compounds	by EPA Met	hod 8260B								
Benzene	ND	0.0016	0.0039	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Bromobenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
Bromochloromethane	ND	0.0016	0.0039	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0016	0.0039	"	"	"	"	"	"	
Bromoform	ND	0.0016	0.0039	"	"	"	"	"	"	
Bromomethane	ND	0.0016	0.0039	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
ert-Butylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0016	0.0039	"	"	"	"	"	"	
Chlorobenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
Chloroethane	ND	0.0016	0.0039	"	"	"	"	"	"	
Chloroform	ND	0.0016	0.0039	"	"	"	"	"	"	
Chloromethane	ND	0.0016	0.0039	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0016	0.0039	"	"	"	"	"	"	
1-Chlorotoluene	ND	0.0016	0.0039	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0016	0.0039	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0016	0.0039	"	"	"	"	"	"	
Dibromomethane	ND	0.0016	0.0039	"	"	"	"	"	"	
,2-Dichlorobenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0016	0.0039	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0016	0.0039	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0016	0.0039	"	,,	"	,,	,,	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 21 of 44

TEL: (805) 922-4772

FAX: (805) 925-3376

Reported:

12-Aug-15 10:54

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero

1056 Meta Street Suite 101

Project Number: Dispensers and

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

P3@3' 1503273-07 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

Volatile Organic Compounds	s by EPA Met	hod 8260B							
1,2-Dichloroethane	ND	0.0016	0.0039	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B
1,1-Dichloroethene	ND	0.0016	0.0039	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	0.0016	0.0039	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	0.0016	0.0039	"	"	"	"	"	"
1,2-Dichloropropane	ND	0.0016	0.0039	"	"	"	"	"	"
1,3-Dichloropropane	ND	0.0016	0.0039	"	"	"	"	"	"
2,2-Dichloropropane	ND	0.0016	0.0039	"	"	"	"	"	"
1,1-Dichloropropene	ND	0.0016	0.0039	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.0016	0.0039	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.0016	0.0039	"	"	"	"	"	"
Ethylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	0.0016	0.0039	"	"	"	"	"	"
Hexachlorobutadiene	ND	0.0016	0.0039	"	"	"	"	"	"
Isopropylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"
4-Isopropyl Toluene	ND	0.0016	0.0039	"	"	"	"	"	"
Methylene chloride	ND	0.0016	0.0039	"	"	"	"	"	"
Naphthalene	ND	0.0016	0.0039	"	"	"	"	"	"
n-Propylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"
Styrene	ND	0.0016	0.0039	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	0.0016	0.0039	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	0.0016	0.0039	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	0.0016	0.0039	"	"	"	"	"	"
Toluene	ND	0.0016	0.0039	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	0.0016	0.0039	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	0.0016	0.0039	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	0.0016	0.0039	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	0.0016	0.0039	"	"	"	"	"	"
Trichloroethene (TCE)	ND	0.0016	0.0039	"	"	"	"	"	"
Trichlorofluoromethane	ND	0.0016	0.0039	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	0.0016	0.0039	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	0.0016	0.0039	"	"	"	"	"	"
Vinyl chloride	ND	0.0016	0.0039	"	"	"	"	"	"
Xylenes (total)	ND	0.0016	0.0039	"	"	"	"	"	"
t-Amyl Methyl Ether	ND	0.0016	0.0039	"	"	"	"	"	"
t-Butyl alcohol	ND	0.0079	0.020	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 22 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001

Surrogate: 4-Bromofluorobenzene

Project: Winton Valero
Project Number: Dispensers and Piping

Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

P3@3' 1503273-07 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oil	field Envi	ironme	ntal ar	d Com	pliance	е			
Volatile Organic Compounds	by EPA Met	thod 8260B								
Diisopropyl Ether	ND	0.0016	0.0039	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Ethanol	ND	1.6	3.9	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	0.0016	0.0039	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	0.0016	0.0039	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			117 %	70-	130	"	"	"	"	
Surrogate: Toluene-d8			100 %	70-	130	"	"	"	"	

111 %

70-130

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero

Project Number: Dispensers and Piping Project Manager: Eric Kirkegaard **Reported:** 12-Aug-15 10:54

VL2@3' 1503273-08 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oil	ield Env	ironme	ntal an	d Com	pliance	е			
Total Metals by EPA 6000/700	00 Series Me	thods								
Lead	8.6	0.29	0.49	mg/kg	1	B5H0046	04-Aug-15	04-Aug-15	EPA 6010B	
TVPH by GC FID										
TPH Gasoline (C4-C12)	ND	0.082	0.41	mg/kg	1	B5H0185	07-Aug-15	08-Aug-15	EPA 8015M	
Surrogate: 4-Bromofluorobenzene			88.4 %	70	130	"	"	"	"	
TEPH by GC FID										
ΓPH Diesel (C13-C22)	ND	7.6	10	mg/kg	1	B5H0085	05-Aug-15	05-Aug-15	EPA 8015M	
ΓPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	"	"	
Surrogate: o-Terphenyl			97.5 %	78	125	"	"	"	"	
Volatile Organic Compounds	by EPA Met	hod 8260B								
Benzene	ND	0.0016	0.0040	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Bromobenzene	ND	0.0016	0.0040	"	"	"	"	"	"	
Bromochloromethane	ND	0.0016	0.0040	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0016	0.0040	"	"	"	"	"	"	
Bromoform	ND	0.0016	0.0040	"	"	"	"	"	"	
Bromomethane	ND	0.0016	0.0040	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0016	0.0040	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0016	0.0040	"	"	"	"	"	"	
ert-Butylbenzene	ND	0.0016	0.0040	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0016	0.0040	"	"	"	"	"	"	
Chlorobenzene	ND	0.0016	0.0040	"	"	"	"	"	"	
Chloroethane	ND	0.0016	0.0040	"	"	"	"	,,	"	
Chloroform	ND	0.0016	0.0040	"	"	"	"	,,	"	
Chloromethane	ND	0.0016	0.0040	"	"	"	"	,,	"	
2-Chlorotoluene	ND	0.0016	0.0040	"	"	"	,,	"	"	
4-Chlorotoluene	ND ND	0.0016	0.0040	"	"	"	,,	"	"	
1,2-Dibromo-3-chloropropane	ND ND	0.0016	0.0040	"	"	"	,,	"	"	
Dibromochloromethane	ND ND	0.0016	0.0040	"	"	"	,,	"	"	
Dibromomethane	ND ND	0.0016	0.0040	"	"	"	,,	"	"	
,2-Dichlorobenzene	ND ND	0.0016	0.0040	"	"	"	,,	"	"	
<i>'</i>	ND ND	0.0016	0.0040	"	"	"	,,	"	"	
1,3-Dichlorobenzene	ND ND	0.0016		"	"	"	,,	,,	"	
1,4-Dichlorobenzene		0.0016	0.0040	,,	"	"	,,	"	"	
Dichlorodifluoromethane	ND ND	0.0016	0.0040	"	"	"		**	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 24 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

VL2@3' 1503273-08 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

Volatile Organic Compounds	by EPA Met	hod 8260B							
1,2-Dichloroethane	ND	0.0016	0.0040	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B
1,1-Dichloroethene	ND	0.0016	0.0040	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	0.0016	0.0040	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	0.0016	0.0040	"	"	"	"	"	"
1,2-Dichloropropane	ND	0.0016	0.0040	"	"	"	"	"	"
1,3-Dichloropropane	ND	0.0016	0.0040	"	"	"	"	"	"
2,2-Dichloropropane	ND	0.0016	0.0040	"	"	"	"	"	"
1,1-Dichloropropene	ND	0.0016	0.0040	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.0016	0.0040	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.0016	0.0040	"	"	"	"	"	"
Ethylbenzene	ND	0.0016	0.0040	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	0.0016	0.0040	"	"	"	"	"	"
Hexachlorobutadiene	ND	0.0016	0.0040	"	"	"	"	"	"
Isopropylbenzene	ND	0.0016	0.0040	"	"	"	"	"	"
4-Isopropyl Toluene	ND	0.0016	0.0040	"	"	"	"	"	"
Methylene chloride	ND	0.0016	0.0040	"	"	"	"	"	"
Naphthalene	ND	0.0016	0.0040	"	"	"	"	"	"
n-Propylbenzene	ND	0.0016	0.0040	"	"	"	"	"	"
Styrene	ND	0.0016	0.0040	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	0.0016	0.0040	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	0.0016	0.0040	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	0.0016	0.0040	"	"	"	"	"	"
Toluene	ND	0.0016	0.0040	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	0.0016	0.0040	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	0.0016	0.0040	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	0.0016	0.0040	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	0.0016	0.0040	"	"	"	"	"	"
Trichloroethene (TCE)	ND	0.0016	0.0040	"	"	"	"	"	"
Trichlorofluoromethane	ND	0.0016	0.0040	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	0.0016	0.0040	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	0.0016	0.0040	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	0.0016	0.0040	"	"	"	"	"	"
Vinyl chloride	ND	0.0016	0.0040	"	"	"	"	"	"
Xylenes (total)	ND	0.0016	0.0040	"	"	"	"	"	"
t-Amyl Methyl Ether	ND	0.0016	0.0040	"	"	"	"	"	"
t-Butyl alcohol	ND	0.0080	0.020	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 25 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001

Surrogate: 4-Bromofluorobenzene

Project: Winton Valero

Project Number: Dispensers and Piping Project Manager: Eric Kirkegaard **Reported:** 12-Aug-15 10:54

VL2@3' 1503273-08 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oil	field Envi	ironme	ntal an	d Con	npliance	е			
Volatile Organic Compounds	by EPA Met	thod 8260B								
Diisopropyl Ether	ND	0.0016	0.0040	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Ethanol	ND	1.6	4.0	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	0.0016	0.0040	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	0.0016	0.0040	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			116 %	70-1	130	"	"	"	"	
Surrogate: Toluene-d8			98.1 %	70-1	130	"	"	"	"	

70-130

112 %

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

SP1 SP2 SP3 SP4 Composite 1503273-13 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Oil	ield Env	ironme	ntal an	d Com	pliance)			
Fotal Metals by EPA 6000/700	00 Series Me	thods								
Lead	3.4	0.28	0.46	mg/kg	1	B5H0046	04-Aug-15	04-Aug-15	EPA 6010B	
TVPH by GC FID										
TPH Gasoline (C4-C12)	ND	0.10	0.50	mg/kg	1	B5H0185	07-Aug-15	08-Aug-15	EPA 8015M	
Surrogate: 4-Bromofluorobenzene			94.2 %	70-	130	"	"	"	"	
TEPH by GC FID										
TPH Diesel (C13-C22)	13	7.6	10	mg/kg	1	B5H0085	05-Aug-15	05-Aug-15	EPA 8015M	
ΓPH Motor Oil (C23-C40)	ND	40	50	"	"	"	"	"	"	
Surrogate: o-Terphenyl			98.9 %	78-	125	"	"	"	"	
Volatile Organic Compounds	by EPA Met	hod 8260B								
Benzene	ND	0.0020	0.0049	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Bromobenzene	ND	0.0020	0.0049	"	"	"	"	"	"	
Bromochloromethane	ND	0.0020	0.0049	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0020	0.0049	"	"	"	"	"	"	
Bromoform	ND	0.0020	0.0049	"	"	"	"	"	"	
Bromomethane	ND	0.0020	0.0049	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0020	0.0049	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0020	0.0049	"	"	"	"	"	"	
ert-Butylbenzene	ND	0.0020	0.0049	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0020	0.0049	"	"	"	"	"	"	
Chlorobenzene	ND	0.0020	0.0049	"	"	"	"	"	"	
Chloroethane	ND	0.0020	0.0049	"	"	"	"	"	"	
Chloroform	ND	0.0020	0.0049	"	"	"	"	"	"	
Chloromethane	ND	0.0020	0.0049	"		"	"	"	"	
2-Chlorotoluene	ND	0.0020	0.0049	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0020	0.0049	"	,,	"	"	"	"	
,2-Dibromo-3-chloropropane	ND	0.0020	0.0049	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0020	0.0049	"	"	"	"	"	"	
Dibromomethane	ND	0.0020	0.0049	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0020	0.0049	"	"	,,	,,	"	"	
1,3-Dichlorobenzene	ND ND	0.0020	0.0049	"	,,	,,	"	"	"	
1,4-Dichlorobenzene	ND ND	0.0020	0.0049	"	,,	,,	"	"	"	
T,4-Dictiorobenzene Dichlorodifluoromethane	ND ND	0.0020	0.0049	"	,,	,,	"	"	"	
Dichiorodiffuoromethane 1.1-Dichloroethane	ND ND	0.0020	0.0049	"		,,		,,	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 27 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street Suite 101 Project Number: Dispensers and Pining

1056 Meta Street, Suite 101Project Number: Dispensers and PipingReported:Ventura CA, 93001Project Manager: Eric Kirkegaard12-Aug-15 10:54

SP1 SP2 SP3 SP4 Composite 1503273-13 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

1,2-Dichloroethane	ND	0.0020	0.0049	mg/kg	1	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B
1,1-Dichloroethene	ND	0.0020	0.0049	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	0.0020	0.0049	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	0.0020	0.0049	"	"	"	"	"	"
1,2-Dichloropropane	ND	0.0020	0.0049	"	"	"	"	"	"
1,3-Dichloropropane	ND	0.0020	0.0049	"	"	"	"	"	"
2,2-Dichloropropane	ND	0.0020	0.0049	"	"	"	"	"	"
1,1-Dichloropropene	ND	0.0020	0.0049	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.0020	0.0049	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.0020	0.0049	"	"	"	"	"	"
Ethylbenzene	ND	0.0020	0.0049	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	0.0020	0.0049	"	"	"	"	"	"
Hexachlorobutadiene	ND	0.0020	0.0049	"	"	"	"	"	"
Isopropylbenzene	ND	0.0020	0.0049	"	"	"	"	"	"
4-Isopropyl Toluene	ND	0.0020	0.0049	"	"	"	"	"	"
Methylene chloride	ND	0.0020	0.0049	"	"	"	"	"	"
Naphthalene	ND	0.0020	0.0049	"	"	"	"	"	"
n-Propylbenzene	ND	0.0020	0.0049	"	"	"	"	"	"
Styrene	ND	0.0020	0.0049	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	0.0020	0.0049	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	0.0020	0.0049	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	0.0020	0.0049	"	"	"	"	"	"
Toluene	ND	0.0020	0.0049	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	0.0020	0.0049	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	0.0020	0.0049	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	0.0020	0.0049	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	0.0020	0.0049	"	"	"	"	"	"
Trichloroethene (TCE)	ND	0.0020	0.0049	"	"	"	"	"	"
Trichlorofluoromethane	ND	0.0020	0.0049	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	0.0020	0.0049	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	0.0020	0.0049	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	0.0020	0.0049	"	"	"	"	"	"
Vinyl chloride	ND	0.0020	0.0049	"	"	"	"	"	"
Xylenes (total)	ND	0.0020	0.0049	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 28 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

SP1 SP2 SP3 SP4 Composite 1503273-13 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	

Oilfield Environmental and Compliance

Volatile Organic	Com	pounds	bv	EPA	Method	8260B
-------------------------	-----	--------	----	------------	--------	-------

voiathe Organic Compounds	Uy ETA MIC	mou o∠ood								
Surrogate: Toluene-d8			98.9 %	70-130)	B5H0165	07-Aug-15	07-Aug-15	EPA 8260B	
Surrogate: 4-Bromofluorobenzene			114 %	70-130)	"	"	"	"	
t-Amyl Methyl Ether	ND	0.0020	0.0049	"	"	"	"	"	"	
t-Butyl alcohol	ND	0.0098	0.024	"	"	"	"	"	"	
Diisopropyl Ether	ND	0.0020	0.0049	"	"	"	"	"	"	
Ethanol	ND	2.0	4.9	"	"	"	"	"	"	
Ethyl t-Butyl Ether	ND	0.0020	0.0049	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	0.0020	0.0049	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			115 %	70-130)	"	"	"	"	
Surrogate: Toluene-d8			98.9 %	70-130)	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			114 %	70-130)	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 29 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero

1056 Meta Street, Suite 101Project Number: Dispensers and PipingReported:Ventura CA, 93001Project Manager: Eric Kirkegaard12-Aug-15 10:54

Total Metals by EPA 6000/7000 Series Methods - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5H0046 - EPA 3050B											
Blank (B5H0046-BLK1)					Prepared	& Analyze	ed: 04-Au	g-15			
Lead	ND	0.30	0.50	mg/kg							
LCS (B5H0046-BS1)					Prepared	& Analyze	ed: 04-Au	g-15			
Lead	104	0.30	0.50	mg/kg	100		104	80-120			
LCS Dup (B5H0046-BSD1)					Prepared	& Analyze	ed: 04-Au	g-15			
Lead	104	0.30	0.50	mg/kg	100		104	80-120	0.432	20	
Duplicate (B5H0046-DUP1)	Sour	ce: 1503272	-05		Prepared	& Analyze	ed: 04-Au	g-15			
Lead	11.5	0.29	0.49	mg/kg		20.5			56.1	20	QR-04
Matrix Spike (B5H0046-MS1)	Sour	ce: 1503272	-05		Prepared	& Analyze	ed: 04-Au	g-15			
Lead	107	0.28	0.47	mg/kg	93.0	20.5	92.7	60-124			
Matrix Spike Dup (B5H0046-MSD1) Sour	ce: 1503272	-05		Prepared	& Analyze	ed: 04-Au	g-15			
Lead	124	0.29	0.49	mg/kg	98.3	20.5	106	60-124	15.3	20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Dispensers and Piping
Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

TVPH by GC FID - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H0184 - EPA 5035/5	030В МЕОН	GC									
Blank (B5H0184-BLK1)					Prepared	& Analyz	ed: 07-Au	g-15			
TPH Gasoline (C4-C12)	ND	0.10	0.51	mg/kg							
Surrogate: 4-Bromofluorobenzene	0.117			"	0.126		92.9	70-130			
LCS (B5H0184-BS1)					Prepared	& Analyz	ed: 07-Au	g-15			
TPH Gasoline (C4-C12)	0.571	0.10	0.50	mg/kg	0.499		115	70-130			
Surrogate: 4-Bromofluorobenzene	0.124			"	0.125		99.2	70-130			
LCS Dup (B5H0184-BSD1)					Prepared	& Analyz	ed: 07-Au	g-15			
TPH Gasoline (C4-C12)	0.497	0.10	0.50	mg/kg	0.500	-	99.3	70-130	14.0	20	
Surrogate: 4-Bromofluorobenzene	0.121			"	0.125		96.7	70-130			
Duplicate (B5H0184-DUP1)	Sour	ce: 1503304	-01		Prepared	& Analyz	ed: 07-Au	g-15			
TPH Gasoline (C4-C12)	ND	0.10	0.50	mg/kg		ND				20	
Surrogate: 4-Bromofluorobenzene	0.115			"	0.126		91.6	70-130			
Batch B5H0185 - EPA 5035/5	030В МЕОН	GC									
Blank (B5H0185-BLK1)					Prepared:	07-Aug-1	5 Analyze	ed: 08-Aug	g-15		
TPH Gasoline (C4-C12)	ND	0.099	0.50	mg/kg	•						
Surrogate: 4-Bromofluorobenzene	0.116			"	0.124		93.6	70-130			
LCS (B5H0185-BS1)					Prepared:	07-Aug-1	5 Analyze	ed: 08-Aug	₅ -15		
TPH Gasoline (C4-C12)	0.474	0.10	0.50	mg/kg	0.501		94.7	70-130			
Surrogate: 4-Bromofluorobenzene	0.119			"	0.125		95.0	70-130			
LCS Dup (B5H0185-BSD1)					Prepared:	07-Aug-1	5 Analyze	ed: 08-Aug	₅ -15		
TPH Gasoline (C4-C12)	0.469	0.098	0.49	mg/kg	0.491		95.5	70-130	1.08	20	
Surrogate: 4-Bromofluorobenzene	0.116			"	0.123		94.6	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001

Project: Winton Valero

Project Number: Dispensers and Piping Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

TVPH by GC FID - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H0185 - EPA 5035/50	030B MEOH	GC									
Duplicate (B5H0185-DUP1)	Sour	ce: 1503233	3-38		Prepared:	07-Aug-1	5 Analyze	ed: 08-Aug	-15		
TPH Gasoline (C4-C12)	ND	0.098	0.49	mg/kg		ND	-			20	
Surrogate: 4-Bromofluorobenzene	0.113			"	0.123		92.6	70-130			
Batch B5H0245 - EPA 5035/50	030В МЕОН	GC									
Blank (B5H0245-BLK1)					Prepared	& Analyze	ed: 11-Aug	g-15			
TPH Gasoline (C4-C12)	ND	0.10	0.50	mg/kg							
Surrogate: 4-Bromofluorobenzene	0.114			"	0.125		91.7	70-130			
LCS (B5H0245-BS1)					Prepared	& Analyze	ed: 11-Aug	g-15			
TPH Gasoline (C4-C12)	0.498	0.099	0.50	mg/kg	0.497	-	100	70-130			
Surrogate: 4-Bromofluorobenzene	0.119			"	0.124		95.7	70-130			
LCS Dup (B5H0245-BSD1)					Prepared	& Analyze	ed: 11-Auş	g-15			
TPH Gasoline (C4-C12)	0.513	0.10	0.50	mg/kg	0.503		102	70-130	2.81	20	
Surrogate: 4-Bromofluorobenzene	0.121			11	0.126		96.2	70-130			
Duplicate (B5H0245-DUP1)	Sour	ce: 1503232	2-48		Prepared	& Analyze	ed: 11-Aug	g-15			
TPH Gasoline (C4-C12)	ND	0.097	0.48	mg/kg		ND				20	
Surrogate: 4-Bromofluorobenzene	0.114			"	0.121		93.7	70-130			
Matrix Spike (B5H0245-MS1)	Sour	ce: 1503388	3-05		Prepared	& Analyze	ed: 11-Auş	g-15			
TPH Gasoline (C4-C12)	0.507	0.098	0.49	mg/kg	0.489	ND	104	70-130			
Surrogate: 4-Bromofluorobenzene	0.121			"	0.122		99.1	70-130			
Matrix Spike Dup (B5H0245-MS	D1) Sour	ce: 1503388	3-05		Prepared	& Analyze	ed: 11-Au	g-15			
TPH Gasoline (C4-C12)	0.486	0.098	0.49	mg/kg	0.490	ND	99.2	70-130	4.23	20	
Surrogate: 4-Bromofluorobenzene	0.118			"	0.123		96.5	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.oecusa.com

307 Roemer Way, Suite 300, Santa Maria, CA 93454

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero

Project Number: Dispensers and Piping Project Manager: Eric Kirkegaard **Reported:** 12-Aug-15 10:54

TEPH by GC FID - Quality Control

			DOI		G '1	C		0/ DEC		DDD	
Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H0085 - EPA 3550B											
Blank (B5H0085-BLK1)					Prepared	& Analyz	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	ND	7.6	10	mg/kg							
TPH Motor Oil (C23-C40)	ND	40	50	"							
Surrogate: o-Terphenyl	48.7			"	50.0		97.4	78-125			
LCS (B5H0085-BS1)					Prepared	& Analyz	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	495	7.6	10	mg/kg	500		99.1	86-111			
Surrogate: o-Terphenyl	42.3			"	50.0		84.6	78-125			
LCS Dup (B5H0085-BSD1)					Prepared	& Analyz	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	496	7.6	10	mg/kg	500		99.3	86-111	0.172	20	
Surrogate: o-Terphenyl	41.7			"	50.0		83.4	78-125			
Duplicate (B5H0085-DUP1)	Sour	ce: 1503163-	06		Prepared	& Analyz	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	ND	7.6	10	mg/kg		ND				20	
TPH Motor Oil (C23-C40)	ND	40	50	"		ND				20	
Surrogate: o-Terphenyl	52.1			"	50.0		104	78-125			
Matrix Spike (B5H0085-MS1)	Sour	ce: 1503163-	06		Prepared	& Analyz	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	503	7.6	10	mg/kg	499	ND	101	78-117			
Surrogate: o-Terphenyl	42.8			"	49.9		85.8	78-125			
Matrix Spike Dup (B5H0085-MSD1) Sour	ce: 1503163-	06		Prepared	& Analyz	ed: 05-Au	g-15			
TPH Diesel (C13-C22)	511	7.6	10	mg/kg	501	ND	102	78-117	1.59	20	
Surrogate: o-Terphenyl	43.2			"	50.1		86.2	78-125			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5H0165 - EPA 5035/5030B MEOH

Benzene ND 0.0020 0.00500 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0	Blank (B5H0165-BLK1)					Prepared & Analyzed: 07-Aug-15
Benzene ND 0.0020 0.0050 0.00	Benzene	ND	0.0020	0.0050	mg/kg	
Bromobenzene ND 0.0020 0.0050	Benzene	ND	0.0020	0.0050		
Bromochloromethane ND 0.0020 0.0050 " Bromochloromethane ND 0.0020 0.0050 " Bromodichloromethane ND 0.0020 0.0050 " Bromodichloromethane ND 0.0020 0.0050 " Bromoform ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " Bromoficherane ND 0.0020 0.0050 " terr-Buylbenzene ND 0.0020 0.0050	Bromobenzene	ND	0.0020	0.0050	"	
Bromochloromethane ND 0.0020 0.0050 " Bromodichloromethane ND 0.0020 0.0050 " Bromodichloromethane ND 0.0020 0.0050 " Bromoform ND 0.0020 0.0050 " Bromoform ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " see-Butylbenzene ND 0.0020 0.0050 " tert-Butylbenzene ND 0.0020 0.0050 " Carbon tertachloride ND 0.0020	Bromobenzene	ND	0.0020	0.0050	"	
Society Soci	Bromochloromethane	ND	0.0020	0.0050	"	
Bromodichloromethane ND 0.0020 0.0050 " Bromoform ND 0.0020 0.0050 " Bromoform ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " n-Butylbenzee ND 0.0020 0.0050 " n-Butylbenzee ND 0.0020 0.0050 " see-Butylbenzee ND 0.0020 0.0050 " terr-Butylbenzee ND 0.0020 0.0050 " terr-Butylbenzee ND 0.0020 0.0050 " terr-Butylbenzee ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorochane ND 0.0020 0.0050 " Chlorochane ND 0.0020 0.0050	Bromochloromethane	ND	0.0020	0.0050	"	
Bromoform ND 0.0020 0.0050 " Bromoform ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " see-Butylbenzene ND 0.0020 0.0050 " see-Butylbenzene ND 0.0020 0.0050 " terr-Butylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.	Bromodichloromethane	ND	0.0020	0.0050	"	
Bromoform ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " see-Butylbenzene ND 0.0020 0.0050 " see-Butylbenzene ND 0.0020 0.0050 " tert-Butylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorochazene ND 0.0020 0.0050 " Chlorochazene ND 0.0020 0.0050 " Chlorochane ND 0.0020 0	Bromodichloromethane	ND	0.0020	0.0050	"	
Bromomethane ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " sec-Butylbenzene ND 0.0020 0.0050 " terr-Butylbenzene ND 0.0020 0.0050 " terr-Butylbenzene ND 0.0020 0.0050 " terr-Butylbenzene ND 0.0020 0.0050 " carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorotetrachloride ND 0.0020 0.0050 " Chlorotetrachloride ND 0.0020 0.0050 " Chlorotetrachloride ND 0.0020 0.0050 " Chlorotethane ND 0.0020 0.0050 " Chlorotofumehane ND 0.00	Bromoform	ND	0.0020	0.0050	"	
Bromomethane ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " sec-Butylbenzene ND 0.0020 0.0050 " sec-Butylbenzene ND 0.0020 0.0050 " terr-Butylbenzene ND 0.0020 0.0050 " terr-Butylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorochane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroformethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.005	Bromoform	ND	0.0020	0.0050	"	
n-Butylbenzene ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " sec-Butylbenzene ND 0.0020 0.0050 " sec-Butylbenzene ND 0.0020 0.0050 " tert-Butylbenzene ND 0.0020 0.0050 " tert-Butylbenzene ND 0.0020 0.0050 " carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorofomace ND 0.0020 0.0050 " Chlorothane ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " C-Chlorotoluene ND 0.0020 0.0	Bromomethane	ND	0.0020	0.0050	"	
n-Butylbenzene ND 0.0020 0.0050 " sec-Butylbenzene ND 0.0020 0.0050 " sec-Butylbenzene ND 0.0020 0.0050 " set-Hutylbenzene ND 0.0020 0.0050 " set-Hutylbenzene ND 0.0020 0.0050 " set-Hutylbenzene ND 0.0020 0.0050 " carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorochtane ND 0.0020 0.0050 " Chlorochtane ND 0.0020 0.0050 " Chlorochtane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroformethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chlorochtane ND 0.0020 0.0050 " Chlorochtane ND 0.0020 0.0050 " Chlorochtane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chlorochtane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chlorochtane ND 0.0020 0.0050 " Ch	Bromomethane	ND	0.0020	0.0050	"	
sec-Butylbenzene ND 0.0020 0.0050 " sec-Butylbenzene ND 0.0020 0.0050 " tert-Butylbenzene ND 0.0020 0.0050 " tert-Butylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorochtane ND 0.0020 0.0050 " Chlorochtane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 </td <td>n-Butylbenzene</td> <td>ND</td> <td>0.0020</td> <td>0.0050</td> <td>"</td> <td></td>	n-Butylbenzene	ND	0.0020	0.0050	"	
sec-Buylbenzene ND 0.0020 0.0050 " tert-Butylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 <td>n-Butylbenzene</td> <td>ND</td> <td>0.0020</td> <td>0.0050</td> <td>"</td> <td></td>	n-Butylbenzene	ND	0.0020	0.0050	"	
tert-Butylbenzene ND 0.0020 0.0050 " tert-Butylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorobethane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroforbane ND 0.0020 0.0050 " Chlorofor	sec-Butylbenzene	ND	0.0020	0.0050	"	
tert-Buylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020	sec-Butylbenzene	ND	0.0020	0.0050	"	
Carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chloroferm ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.	tert-Butylbenzene	ND	0.0020	0.0050	"	
Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorobetane ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 <t< td=""><td>tert-Butylbenzene</td><td>ND</td><td>0.0020</td><td>0.0050</td><td>"</td><td></td></t<>	tert-Butylbenzene	ND	0.0020	0.0050	"	
Chlorobenzene ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.005	Carbon tetrachloride	ND	0.0020	0.0050	"	
Chlorobenzene ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " C-Chlorotoluene ND 0.0020 0.0050 " C-Chlorotolue	Carbon tetrachloride	ND	0.0020	0.0050	"	
Chloroethane ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020<	Chlorobenzene	ND	0.0020	0.0050	"	
Chloroethane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020	Chlorobenzene	ND		0.0050	"	
Chloroform ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020	Chloroethane	ND	0.0020	0.0050	"	
Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND <t< td=""><td>Chloroethane</td><td>ND</td><td>0.0020</td><td>0.0050</td><td>"</td><td></td></t<>	Chloroethane	ND	0.0020	0.0050	"	
Chloromethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0050 "	Chloroform	ND	0.0020	0.0050	"	
Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 "	Chloroform	ND	0.0020	0.0050	"	
2-Chlorotoluene ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-dloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 "	Chloromethane	ND	0.0020	0.0050	"	
2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 "	Chloromethane	ND		0.0050	"	
4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 "	2-Chlorotoluene	ND		0.0050	"	
4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 "	2-Chlorotoluene	ND		0.0050		
1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 "	4-Chlorotoluene	ND		0.0050	"	
1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 "	4-Chlorotoluene			0.0050		
Dibromochloromethane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 "	1,2-Dibromo-3-chloropropane			0.0050		
Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 "	1,2-Dibromo-3-chloropropane					
Dibromomethane	Dibromochloromethane			0.0050		
Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 "	Dibromochloromethane			0.0050		
1,2-Dichlorobenzene ND 0.0020 0.0050 "	Dibromomethane			0.0050		
	Dibromomethane	ND				
1,2-Dichlorobenzene ND 0.0020 0.0050 "	1,2-Dichlorobenzene					
	1,2-Dichlorobenzene	ND	0.0020	0.0050	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 34 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported: 12-Aug-15 10:54 Ventura CA, 93001 Project Manager: Eric Kirkegaard

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5H0165 - EPA 5035/5030B MEOH

Blank (B5H0165-BLK1)					Prepared & Analyzed: 07-Aug-15
1,3-Dichlorobenzene	ND	0.0020	0.0050	mg/kg	
1,3-Dichlorobenzene	ND	0.0020	0.0050	"	
1,4-Dichlorobenzene	ND	0.0020	0.0050	"	
1,4-Dichlorobenzene	ND	0.0020	0.0050	"	
Dichlorodifluoromethane	ND	0.0020	0.0050	"	
Dichlorodifluoromethane	ND	0.0020	0.0050	"	
1,1-Dichloroethane	ND	0.0020	0.0050	"	
1,1-Dichloroethane	ND	0.0020	0.0050	"	
1,2-Dichloroethane	ND	0.0020	0.0050	"	
1,2-Dichloroethane	ND	0.0020	0.0050	"	
1,1-Dichloroethene	ND	0.0020	0.0050	"	
1,1-Dichloroethene	ND	0.0020	0.0050	"	
cis-1,2-Dichloroethene	ND	0.0020	0.0050	"	
cis-1,2-Dichloroethene	ND	0.0020	0.0050	"	
trans-1,2-Dichloroethene	ND	0.0020	0.0050	"	
trans-1,2-Dichloroethene	ND	0.0020	0.0050	"	
1,2-Dichloropropane	ND	0.0020	0.0050	"	
1,2-Dichloropropane	ND	0.0020	0.0050	"	
1,3-Dichloropropane	ND	0.0020	0.0050	"	
1,3-Dichloropropane	ND	0.0020	0.0050	"	
2,2-Dichloropropane	ND	0.0020	0.0050	"	
2,2-Dichloropropane	ND	0.0020	0.0050	"	
1,1-Dichloropropene	ND	0.0020	0.0050	"	
1,1-Dichloropropene	ND	0.0020	0.0050	"	
cis-1,3-Dichloropropene	ND	0.0020	0.0050	"	
cis-1,3-Dichloropropene	ND	0.0020	0.0050	"	
trans-1,3-Dichloropropene	ND	0.0020	0.0050	"	
trans-1,3-Dichloropropene	ND	0.0020	0.0050	"	
Ethylbenzene	ND	0.0020	0.0050	"	
Ethylbenzene	ND	0.0020	0.0050	"	
1,2-Dibromoethane (EDB)	ND	0.0020	0.0050	"	
1,2-Dibromoethane (EDB)	ND	0.0020	0.0050	"	
Hexachlorobutadiene	ND	0.0020	0.0050	"	
Hexachlorobutadiene	ND	0.0020	0.0050	"	
Isopropylbenzene	ND	0.0020	0.0050	"	
Isopropylbenzene	ND	0.0020	0.0050	"	
4-Isopropyl Toluene	ND	0.0020	0.0050	"	
4-Isopropyl Toluene	ND	0.0020	0.0050	"	
Methylene chloride	ND	0.0020	0.0050	"	
Methylene chloride	ND	0.0020	0.0050	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5H0165 - EPA 5035/5030B MEOH

Blank (B5H0165-BLK1)					Prepared & Analyzed: 07-Aug-15
Naphthalene	ND	0.0020	0.0050	mg/kg	
Naphthalene	ND	0.0020	0.0050	"	
n-Propylbenzene	ND	0.0020	0.0050	"	
n-Propylbenzene	ND	0.0020	0.0050	"	
Styrene	ND	0.0020	0.0050	"	
Styrene	ND	0.0020	0.0050	"	
1,1,1,2-Tetrachloroethane	ND	0.0020	0.0050	"	
1,1,1,2-Tetrachloroethane	ND	0.0020	0.0050	"	
1,1,2,2-Tetrachloroethane	ND	0.0020	0.0050	"	
1,1,2,2-Tetrachloroethane	ND	0.0020	0.0050	"	
Tetrachloroethene (PCE)	ND	0.0020	0.0050	"	
Tetrachloroethene (PCE)	ND	0.0020	0.0050	"	
Toluene	ND	0.0020	0.0050	"	
Toluene	ND	0.0020	0.0050	"	
1,2,3-Trichlorobenzene	ND	0.0020	0.0050	"	
1,2,3-Trichlorobenzene	ND	0.0020	0.0050	"	
1,2,4-Trichlorobenzene	ND	0.0020	0.0050	"	
1,2,4-Trichlorobenzene	ND	0.0020	0.0050	"	
1,1,1-Trichloroethane	ND	0.0020	0.0050	"	
1,1,1-Trichloroethane	ND	0.0020	0.0050	"	
1,1,2-Trichloroethane	ND	0.0020	0.0050	"	
1,1,2-Trichloroethane	ND	0.0020	0.0050	"	
Trichloroethene (TCE)	ND	0.0020	0.0050	"	
Trichloroethene (TCE)	ND	0.0020	0.0050	"	
Trichlorofluoromethane	ND	0.0020	0.0050	"	
Trichlorofluoromethane	ND	0.0020	0.0050	"	
1,2,3-Trichloropropane	ND	0.0020	0.0050	"	
1,2,3-Trichloropropane	ND	0.0020	0.0050	"	
1,2,4-Trimethylbenzene	ND	0.0020	0.0050	"	
1,2,4-Trimethylbenzene	ND	0.0020	0.0050	"	
1,3,5-Trimethylbenzene	ND	0.0020	0.0050	"	
1,3,5-Trimethylbenzene	ND	0.0020	0.0050	"	
Vinyl chloride	ND	0.0020	0.0050	"	
Vinyl chloride	ND	0.0020	0.0050	"	
Xylenes (total)	ND	0.0020	0.0050	"	
Xylenes (total)	ND	0.0020	0.0050	"	
t-Amyl Methyl Ether	ND	0.0020	0.0050	"	
t-Amyl Methyl Ether	ND	0.0020	0.0050	"	
t-Butyl alcohol	ND	0.010	0.025	"	
t-Butyl alcohol	ND	0.010	0.025	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B5H0165-BLK1)					Prepared & Ana	alyzed: 07-Au	g-15
Diisopropyl Ether	ND	0.0020	0.0050	mg/kg	-	•	
Diisopropyl Ether	ND	0.0020	0.0050	"			
Ethanol	ND	2.0	5.0	"			
Ethanol	ND	2.0	5.0	"			
Ethyl t-Butyl Ether	ND	0.0020	0.0050	"			
thyl t-Butyl Ether	ND	0.0020	0.0050	"			
Methyl-t-butyl ether	ND	0.0020	0.0050	"			
lethyl-t-butyl ether	ND	0.0020	0.0050	"			
rrogate: Dibromofluoromethane	0.0584			"	0.0500	117	70-130
urrogate: Dibromofluoromethane	0.0584			"	0.0500	117	70-130
urrogate: Dibromofluoromethane	0.0584			"	0.0500	117	70-130
urrogate: Toluene-d8	0.0500			"	0.0500	100	70-130
urrogate: 4-Bromofluorobenzene	0.0548			"	0.0500	110	70-130
urrogate: Toluene-d8	0.0500			"	0.0500	100	70-130
urrogate: 4-Bromofluorobenzene	0.0548			"	0.0500	110	70-130
ırrogate: 4-Bromofluorobenzene	0.0548			"	0.0500	110	70-130
rrogate: Toluene-d8	0.0500			"	0.0500	100	70-130
CS (B5H0165-BS1)					Prepared & Ana	alyzed: 07-Au	g-15
enzene	0.100	0.0020	0.0050	mg/kg	0.100	99.8	70-130
enzene	0.100	0.0020	0.0050	"	0.100	99.8	70-130
hlorobenzene	0.111	0.0020	0.0050	"	0.100	111	70-130
hlorobenzene	0.111	0.0020	0.0050	"	0.100	111	70-130
1-Dichloroethene	0.107	0.0020	0.0050	"	0.100	107	70-130
1-Dichloroethene	0.107	0.0020	0.0050	"	0.100	107	70-130
luene	0.104	0.0020	0.0050	"	0.100	103	70-130
oluene	0.104	0.0020	0.0050	"	0.100	103	70-130
richloroethene (TCE)	0.119	0.0020	0.0050	"	0.100	119	70-130
richloroethene (TCE)	0.119	0.0020	0.0050	"	0.100	119	70-130
ırrogate: Dibromofluoromethane	0.0557			"	0.0501	111	70-130
urrogate: Dibromofluoromethane	0.0557			"	0.0501	111	70-130
urrogate: Toluene-d8	0.0494			"	0.0501	98.6	70-130
urrogate: 4-Bromofluorobenzene	0.0554			"	0.0501	110	70-130
Surrogate: Toluene-d8	0.0494			"	0.0501	98.6	70-130
urrogate: 4-Bromofluorobenzene	0.0554			"	0.0501	110	70-130

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5H0165 - EPA 5035/5	030B MEOH	[
LCS Dup (B5H0165-BSD1)					Prepared	& Analyze	ed: 07-Au	g-15			
Benzene	0.101	0.0020	0.0050	mg/kg	0.100	<u> </u>	101	70-130	1.12	20	
Benzene	0.101	0.0020	0.0050	"	0.100		101	70-130	1.12	20	
Chlorobenzene	0.112	0.0020	0.0050	"	0.100		112	70-130	0.647	20	
Chlorobenzene	0.112	0.0020	0.0050	"	0.100		112	70-130	0.647	20	
1,1-Dichloroethene	0.110	0.0020	0.0050	"	0.100		110	70-130	2.51	20	
1,1-Dichloroethene	0.110	0.0020	0.0050	"	0.100		110	70-130	2.51	20	
Toluene	0.103	0.0020	0.0050	"	0.100		103	70-130	0.620	20	
Toluene	0.103	0.0020	0.0050	"	0.100		103	70-130	0.620	20	
Trichloroethene (TCE)	0.119	0.0020	0.0050	"	0.100		119	70-130	0.236	20	
Trichloroethene (TCE)	0.119	0.0020	0.0050	"	0.100		119	70-130	0.236	20	
Surrogate: Dibromofluoromethane	0.0564			"	0.0501		113	70-130			
Surrogate: Dibromofluoromethane	0.0564			"	0.0501		113	70-130			
Surrogate: Toluene-d8	0.0491			"	0.0501		97.9	70-130			
Surrogate: 4-Bromofluorobenzene	0.0558			"	0.0501		111	70-130			
Surrogate: 4-Bromofluorobenzene	0.0558			"	0.0501		111	70-130			
Surrogate: Toluene-d8	0.0491			"	0.0501		97.9	70-130			
Duplicate (B5H0165-DUP1)	Sour	rce: 150327	3-01		Prepared	& Analyze	ed: 07-Aug	g-15			
Benzene	ND	0.0016	0.0040	mg/kg		ND				20	
Benzene	ND	0.0016	0.0040	"		ND				20	
Bromobenzene	ND	0.0016	0.0040	"		ND				20	
Bromobenzene	ND	0.0016	0.0040	"		ND				20	
Bromochloromethane	ND	0.0016	0.0040	"		ND				20	
Bromochloromethane	ND	0.0016	0.0040	"		ND				20	
Bromodichloromethane	ND	0.0016	0.0040	"		ND				20	
Bromodichloromethane	ND	0.0016	0.0040	"		ND				20	
Bromoform	ND	0.0016	0.0040	"		ND				20	
Bromoform	ND	0.0016	0.0040	"		ND				20	
Bromomethane	ND	0.0016	0.0040	"		ND				20	
Bromomethane	ND	0.0016	0.0040	"		ND				20	
n-Butylbenzene	ND	0.0016	0.0040	"		ND				20	
n-Butylbenzene	ND	0.0016	0.0040	"		ND				20	
sec-Butylbenzene	ND	0.0016	0.0040	"		ND				20	
sec-Butylbenzene	ND	0.0016	0.0040	"		ND				20	
tert-Butylbenzene	ND	0.0016	0.0040	"		ND				20	
tert-Butylbenzene	ND	0.0016	0.0040	"		ND				20	
Carbon tetrachloride	ND	0.0016	0.0040	"		ND				20	
Carbon tetrachloride	ND	0.0016	0.0040	"		ND				20	
Chlorobenzene	ND	0.0016	0.0040	"		ND				20	
Chlorobenzene	ND	0.0016	0.0040	"		ND				20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5H01	65 -	EPA 5035	5/5030B	MEOH

Duplicate (B5H0165-DUP1)	Sou	rce: 150327	3-01		Prepared & Analyzed: 07-Aug-15	
Chloroethane	ND	0.0016	0.0040	mg/kg	ND	20
Chloroethane	ND	0.0016	0.0040	"	ND	20
Chloroform	ND	0.0016	0.0040	"	ND	20
Chloroform	ND	0.0016	0.0040	"	ND	20
Chloromethane	ND	0.0016	0.0040	"	ND	20
Chloromethane	ND	0.0016	0.0040	"	ND	20
2-Chlorotoluene	ND	0.0016	0.0040	"	ND	20
2-Chlorotoluene	ND	0.0016	0.0040	"	ND	20
4-Chlorotoluene	ND	0.0016	0.0040	"	ND	20
4-Chlorotoluene	ND	0.0016	0.0040	"	ND	20
1,2-Dibromo-3-chloropropane	ND	0.0016	0.0040	"	ND	20
1,2-Dibromo-3-chloropropane	ND	0.0016	0.0040	"	ND	20
Dibromochloromethane	ND	0.0016	0.0040	"	ND	20
Dibromochloromethane	ND	0.0016	0.0040	"	ND	20
Dibromomethane	ND	0.0016	0.0040	"	ND	20
Dibromomethane	ND	0.0016	0.0040	"	ND	20
1,2-Dichlorobenzene	ND	0.0016	0.0040	"	ND	20
1,2-Dichlorobenzene	ND	0.0016	0.0040	"	ND	20
1,3-Dichlorobenzene	ND	0.0016	0.0040	"	ND	20
1,3-Dichlorobenzene	ND	0.0016	0.0040	"	ND	20
1,4-Dichlorobenzene	ND	0.0016	0.0040	"	ND	20
1,4-Dichlorobenzene	ND	0.0016	0.0040	"	ND	20
Dichlorodifluoromethane	ND	0.0016	0.0040	"	ND	20
Dichlorodifluoromethane	ND	0.0016	0.0040	"	ND	20
1,1-Dichloroethane	ND	0.0016	0.0040	"	ND	20
1,1-Dichloroethane	ND	0.0016	0.0040	"	ND	20
1,2-Dichloroethane	ND	0.0016	0.0040	"	ND	20
1,2-Dichloroethane	ND	0.0016	0.0040	"	ND	20
1,1-Dichloroethene	ND	0.0016	0.0040	"	ND	20
1,1-Dichloroethene	ND	0.0016	0.0040	"	ND	20
cis-1,2-Dichloroethene	ND	0.0016	0.0040	"	ND	20
cis-1,2-Dichloroethene	ND	0.0016	0.0040	"	ND	20
trans-1,2-Dichloroethene	ND	0.0016	0.0040	"	ND	20
trans-1,2-Dichloroethene	ND	0.0016	0.0040	"	ND	20
1,2-Dichloropropane	ND	0.0016	0.0040	"	ND	20
1,2-Dichloropropane	ND	0.0016	0.0040	"	ND	20
1,3-Dichloropropane	ND	0.0016	0.0040	"	ND	20
1,3-Dichloropropane	ND	0.0016	0.0040	"	ND	20
2,2-Dichloropropane	ND	0.0016	0.0040	"	ND	20
2,2-Dichloropropane	ND	0.0016	0.0040	"	ND	20

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5H01	65 -	EPA	5035	/5030B	MEOH

Duplicate (B5H0165-DUP1)	Sou	Source: 1503273-01			Prepared & Analyzed: 07-Aug-15	
1,1-Dichloropropene	ND	0.0016	0.0040	mg/kg	ND	20
1,1-Dichloropropene	ND	0.0016	0.0040	"	ND	20
cis-1,3-Dichloropropene	ND	0.0016	0.0040	"	ND	20
cis-1,3-Dichloropropene	ND	0.0016	0.0040	"	ND	20
trans-1,3-Dichloropropene	ND	0.0016	0.0040	"	ND	20
trans-1,3-Dichloropropene	ND	0.0016	0.0040	"	ND	20
Ethylbenzene	ND	0.0016	0.0040	"	ND	20
Ethylbenzene	ND	0.0016	0.0040	"	ND	20
1,2-Dibromoethane (EDB)	ND	0.0016	0.0040	"	ND	20
1,2-Dibromoethane (EDB)	ND	0.0016	0.0040	"	ND	20
Hexachlorobutadiene	ND	0.0016	0.0040	"	ND	20
Hexachlorobutadiene	ND	0.0016	0.0040	"	ND	20
Isopropylbenzene	ND	0.0016	0.0040	"	ND	20
Isopropylbenzene	ND	0.0016	0.0040	"	ND	20
4-Isopropyl Toluene	ND	0.0016	0.0040	"	ND	20
4-Isopropyl Toluene	ND	0.0016	0.0040	"	ND	20
Methylene chloride	ND	0.0016	0.0040	"	ND	20
Methylene chloride	ND	0.0016	0.0040	"	ND	20
Naphthalene	ND	0.0016	0.0040	"	ND	20
Naphthalene	ND	0.0016	0.0040	"	ND	20
n-Propylbenzene	ND	0.0016	0.0040	"	ND	20
n-Propylbenzene	ND	0.0016	0.0040	"	ND	20
Styrene	ND	0.0016	0.0040	"	ND	20
Styrene	ND	0.0016	0.0040	"	ND	20
1,1,1,2-Tetrachloroethane	ND	0.0016	0.0040	"	ND	20
1,1,1,2-Tetrachloroethane	ND	0.0016	0.0040	"	ND	20
1,1,2,2-Tetrachloroethane	ND	0.0016	0.0040	"	ND	20
1,1,2,2-Tetrachloroethane	ND	0.0016	0.0040	"	ND	20
Tetrachloroethene (PCE)	ND	0.0016	0.0040	"	ND	20
Tetrachloroethene (PCE)	ND	0.0016	0.0040	"	ND	20
Toluene	ND	0.0016	0.0040	"	ND	20
Toluene	ND	0.0016	0.0040	"	ND	20
1,2,3-Trichlorobenzene	ND	0.0016	0.0040	"	ND	20
1,2,3-Trichlorobenzene	ND	0.0016	0.0040	"	ND	20
1,2,4-Trichlorobenzene	ND	0.0016	0.0040	"	ND	20
1,2,4-Trichlorobenzene	ND	0.0016	0.0040	"	ND	20
1,1,1-Trichloroethane	ND	0.0016	0.0040	"	ND	20
1,1,1-Trichloroethane	ND	0.0016	0.0040	"	ND	20
1,1,2-Trichloroethane	ND	0.0016	0.0040	"	ND	20
1,1,2-Trichloroethane	ND	0.0016	0.0040	"	ND	20

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 40 of 44

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Project: Winton Valero

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5H01	65 -	EPA 5035	5/5030B	MEOH

Duplicate (B5H0165-DUP1)	Sour	rce: 150327	3-01		Prepared &	Analyzed: 07	7-Au	g-15		
Trichloroethene (TCE)	ND	0.0016	0.0040	mg/kg	_	ND			20	
Trichloroethene (TCE)	ND	0.0016	0.0040	"		ND			20	
Trichlorofluoromethane	ND	0.0016	0.0040	"		ND			20	
Trichlorofluoromethane	ND	0.0016	0.0040	"		ND			20	
1,2,3-Trichloropropane	ND	0.0016	0.0040	"		ND			20	
1,2,3-Trichloropropane	ND	0.0016	0.0040	"		ND			20	
1,2,4-Trimethylbenzene	ND	0.0016	0.0040	"		ND			20	
1,2,4-Trimethylbenzene	ND	0.0016	0.0040	"		ND			20	
1,3,5-Trimethylbenzene	ND	0.0016	0.0040	"		ND			20	
1,3,5-Trimethylbenzene	ND	0.0016	0.0040	"		ND			20	
Vinyl chloride	ND	0.0016	0.0040	"		ND			20	
Vinyl chloride	ND	0.0016	0.0040	"		ND			20	
Xylenes (total)	ND	0.0016	0.0040	"		ND			20	
Xylenes (total)	ND	0.0016	0.0040	"		ND			20	
t-Amyl Methyl Ether	ND	0.0016	0.0040	"		ND			20	
t-Amyl Methyl Ether	ND	0.0016	0.0040	"		ND			20	
t-Butyl alcohol	ND	0.0081	0.020	"		ND			20	
t-Butyl alcohol	ND	0.0081	0.020	"		ND			20	
Diisopropyl Ether	ND	0.0016	0.0040	"		ND			20	
Diisopropyl Ether	ND	0.0016	0.0040	"		ND			20	
Ethanol	ND	1.6	4.0	"		ND			20	
Ethanol	ND	1.6	4.0	"		ND			20	
Ethyl t-Butyl Ether	ND	0.0016	0.0040	"		ND			20	
Ethyl t-Butyl Ether	ND	0.0016	0.0040	"		ND			20	
Methyl-t-butyl ether	ND	0.0016	0.0040	"		ND			20	
Methyl-t-butyl ether	ND	0.0016	0.0040	"		ND			20	
Surrogate: Dibromofluoromethane	0.0480			"	0.0403	1.	19	70-130		
Surrogate: Dibromofluoromethane	0.0480			"	0.0403	1.	19	70-130		
Surrogate: Dibromofluoromethane	0.0480			"	0.0403	1.	19	70-130		
Surrogate: Toluene-d8	0.0399			"	0.0403	99	9.1	70-130		
Surrogate: 4-Bromofluorobenzene	0.0430			"	0.0403	10	07	70-130		
Surrogate: Toluene-d8	0.0399			"	0.0403	99	9.1	70-130		
Surrogate: 4-Bromofluorobenzene	0.0430			"	0.0403	10	07	70-130		
Surrogate: Toluene-d8	0.0399			"	0.0403	99	9.1	70-130		
Surrogate: 4-Bromofluorobenzene	0.0430			"	0.0403	10	07	70-130		

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Batch B5H0165 - EPA 5035/5030B MEOH

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Project: Winton Valero

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (B5H0165-MS1)	Sour	rce: 150334	4-01	ed: 07-Au	g-15						
Benzene	0.0922	0.0019	0.0047	mg/kg	0.0947	ND	97.3	70-130			
Benzene	0.0922	0.0019	0.0047	"	0.0947	ND	97.3	70-130			
Chlorobenzene	0.0984	0.0019	0.0047	"	0.0947	ND	104	70-130			
Chlorobenzene	0.0984	0.0019	0.0047	"	0.0947	ND	104	70-130			
1,1-Dichloroethene	0.0944	0.0019	0.0047	"	0.0947	ND	99.7	70-130			
1,1-Dichloroethene	0.0944	0.0019	0.0047	"	0.0947	ND	99.7	70-130			
Toluene	0.0962	0.0019	0.0047	"	0.0947	ND	102	70-130			
Toluene	0.0962	0.0019	0.0047	"	0.0947	ND	102	70-130			
Trichloroethene (TCE)	0.109	0.0019	0.0047	"	0.0947	ND	115	70-130			
Trichloroethene (TCE)	0.109	0.0019	0.0047	"	0.0947	ND	115	70-130			
Surrogate: Dibromofluoromethane	0.0506			"	0.0473		107	70-130			
Surrogate: Dibromofluoromethane	0.0506			"	0.0473		107	70-130			
Surrogate: Toluene-d8	0.0476			"	0.0473		100	70-130			
Surrogate: Toluene-d8	0.0476			"	0.0473		100	70-130			
Surrogate: 4-Bromofluorobenzene	0.0517			"	0.0473		109	70-130			
Surrogate: 4-Bromofluorobenzene	0.0517			"	0.0473		109	70-130			
Matrix Spike Dup (B5H0165-MS	SD1) Sour	rce: 150334	4-01		Prepared &	& Analyze	ed: 07-Au	g-15			
Benzene	0.0909	0.0019	0.0046	mg/kg	0.0928	ND	98.0	70-130	1.41	20	
Benzene	0.0909	0.0019	0.0046	"	0.0928	ND	98.0	70-130	1.41	20	
Chlorobenzene	0.0967	0.0019	0.0046	"	0.0928	ND	104	70-130	1.72	20	
Chlorobenzene	0.0967	0.0019	0.0046	"	0.0928	ND	104	70-130	1.72	20	
1,1-Dichloroethene	0.0929	0.0019	0.0046	"	0.0928	ND	100	70-130	1.62	20	
1,1-Dichloroethene	0.0929	0.0019	0.0046	"	0.0928	ND	100	70-130	1.62	20	
Toluene	0.0925	0.0019	0.0046	"	0.0928	ND	99.7	70-130	3.93	20	
Toluene	0.0925	0.0019	0.0046	"	0.0928	ND	99.7	70-130	3.93	20	
Trichloroethene (TCE)	0.106	0.0019	0.0046	"	0.0928	ND	114	70-130	2.83	20	
Trichloroethene (TCE)	0.106	0.0019	0.0046	"	0.0928	ND	114	70-130	2.83	20	
Surrogate: Dibromofluoromethane	0.0504			"	0.0464		109	70-130			

Oilfield	l Environmenta	land	Compliance
----------	----------------	------	------------

Surrogate: Dibromofluoromethane

Surrogate: 4-Bromofluorobenzene

Surrogate: 4-Bromofluorobenzene

Surrogate: Toluene-d8

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

109

113

99.6

113

99.6

70-130

70-130

70-130

70-130

70-130

307 Roemer Way, Suite 300, Santa Maria, CA 93454

0.0504

0.0526

0.0462

0.0526

0.0462

www.oecusa.com

0.0464

0.0464

0.0464

0.0464

0.0464

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero
Project Number: Dispensers and Piping

Ventura CA, 93001

1056 Meta Street, Suite 101

Project Manager: Eric Kirkegaard

Reported: 12-Aug-15 10:54

Volatile Organic Compounds by EPA Method 8260B/LUFT - Quality Control

Amalaita	Dogult	MDL	PQL	Unita	Spike	Source	0/ DEC	%REC	DDD	RPD Limit	Not
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5H0165 - EPA 5035/5	030В МЕОН	[
Blank (B5H0165-BLK1)					Prepared	& Analyze	ed: 07-Au	g-15			
TPH Gasoline (C4-C12)	ND	0.20	0.50	mg/kg							
Surrogate: Dibromofluoromethane	0.0584			"	0.0500		117	70-130			
Surrogate: Toluene-d8	0.0500			"	0.0500		100	70-130			
Surrogate: 4-Bromofluorobenzene	0.0548			"	0.0500		110	70-130			
LCS (B5H0165-BS2)					Prepared	& Analyze	ed: 07-Au	g-15			
TPH Gasoline (C4-C12)	1.97	0.20	0.51	mg/kg	2.03		97.0	70-130			
Surrogate: Dibromofluoromethane	0.0542			"	0.0507		107	70-130			
Surrogate: 4-Bromofluorobenzene	0.0577			"	0.0507		114	70-130			
Surrogate: Toluene-d8	0.0505			"	0.0507		99.6	70-130			
LCS Dup (B5H0165-BSD2)					Prepared	& Analyze	ed: 07-Au	g-15			
TPH Gasoline (C4-C12)	1.95	0.20	0.49	mg/kg	1.96		99.6	70-130	0.989	20	
Surrogate: Dibromofluoromethane	0.0516			"	0.0489		106	70-130			
Surrogate: 4-Bromofluorobenzene	0.0566			"	0.0489		116	70-130			
Surrogate: Toluene-d8	0.0490			"	0.0489		100	70-130			
Duplicate (B5H0165-DUP1)	Sour	ce: 1503273	-01		Prepared	& Analyze	ed: 07-Au	g-15			
TPH Gasoline (C4-C12)	ND	0.16	0.40	mg/kg		ND				20	
Surrogate: Dibromofluoromethane	0.0480			"	0.0403		119	70-130			
Surrogate: 4-Bromofluorobenzene	0.0430			"	0.0403		107	70-130			
Surrogate: Toluene-d8	0.0399			"	0.0403		99.1	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Dispensers and Piping Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 12-Aug-15 10:54

Notes and Definitions

QR-04 The RPD exceeded the QC control limits.

J Detected but below the RL/PQL; therefore, result is an estimated concentration.

D-03 The hydrocarbons present are a complex mixture of diesel range and heavy oil range organics.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the Method Limit (MDL)

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

TEL: (805) 922-4772

Highway 33, McKittrick CA

	CH.	AIN	OF	CU	ST	OD	Y
--	-----	-----	-----------	----	----	----	---

Oilfield Environmental and Compliance 307 Roemer Way Suite 300, Santa Maria CA 93454 phone: (805) 922-4772 fax: (805) 925-3376 www.oecusa.com

phone: (661) 762-9143

>	
	Special Instructions:
COMPOSITE	
	*
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Composite 1503272-
7	ANALIZE FOR THINOCLEAN

company: DMI-EMK GNURWMAUTHL SERVICES	
Address: 1056 E-META ST #101	Site: WINTON VALERO
City/State/ZIP: VENTURA CA 93001	Analysis Requested Special Instructions:
Phone OS 653 0633 Fax: E-mail: DMT-EMY Report To: DMT-EMK Sampler: EXICK RKG34AV	ON SERVICE SER
Report To: DMI-EMK Sampler: ERICK RKE, 4AR	屋が寝る 3 1
Send report via- FAX- PDF- Colt/LUFT EDF- EDD-	1
Turnaround Time 10 Days- 5 Days- 72 hr- 48 hr- 24 hr- ASAP-	1
OEC Sample ID Date/Time Sampled Matrix # of Cont. Cont.	1918
1503273-1407311510105 4 DIEL5?	X X X
240 1 1020 1 9 DZ @1.5'	* + 1
3AD 645 4 D3EZ	
4AD 1105 4 DYEZ'	X X X
540 1030 4 Flez	* X X X X X X X X X
6AD 1050 4 8202'	
7AD 1115 14 P3 Q3'	
8AD 1035 4 VL2@3"	
9A 1125 1 SP1	X Composite 1503272-
10A 1127 1 SPZ	V \/ \/
11A 128 1 SP3	1 ANALYZE FOR
12A 4 130 4 1 SP4	/ / / X TAH/VOL/LEAM
Relinquished By: Date: 751(15 Tim	ne: (70 S Comments/PO#:
Received By: Synthys Date: 7-31-15 Tim	ne: /765
Relinquished By: Date: Tim	ne:
Received By: Date: Tim	ne:
Relinquished By: Date: Tim	
Received By: Date: Tim	
강하는 이 병원들이 하는 사람이 되는 것은 말라고 그렇게 하는 이 사람들은 사람들이 되었다.	direct from food

O E C			R	CLIENT:				#: <u>15032</u>	Acceptable Range: 0°C to 6°C
DATE/TIME:	7-31-15	1705	D.	ATE/TIME: _	8-0-	73	1006	RE	FRIGERATOR(s): 8
SAMPLE '	TRANSPORT, R	ЕСЕГРТ,	CONDITIO	N & PRESE	RVATION:	Yes		• •	BLEM CHAIN FORM NEEDED
M	rier/Sampler		COC doc	ument(s) receive	ed with samples			Custody Se	als (circle): Present Absent
	Other than OEC Cour	rier)	Correct co	ontainers for ana	alysis requested] .	Samples / Coolers
Samples 1	Received on Ice		Container	(s) intact and in	good condition			.	Intact / Broken*
	Received Outside Ten		Container	label(s) consist	ent with COC	Ø			Shipment & Tracking #(if applicable):
Samples I	Direct from field (Out	side Temp)	OEC pres	ervative added	(**note std ID)	_	=	丞	
After-Hou	urs Outside Drop-off [Brought Ins	ide] Proper pro	eservation on sa	mple label(s)				reservative ID:
(Initials/Date/	Time):			tainers free of h			□* § □* §	☐ Dissolved M	Actals Filtration: (Date/Init/Preserve ID)
CONTAIN	ERS, COC CHA	NGES AI	ND/OR COR	RECTIONS		CHAN	GES AU	THORIZED B	Y:
OEC ID	Client ID ***If blan	k, refer to CoC	Container De	scription	Preservative	ResCl /pH	Matrix	Date/Time Sampled ***	Comments / Remarks / Condition Notes, Etc.
1-12A	·		1-402	glass each	, -	7	Ş		
1-8B-C			2-40 mi						
1-8D			1-40m 1	rial each	MeOH				
13A			1-16 02	glass	-				composite
138	-	•	1-20 mL	VOA.		V	1		1
		-	·						
***************************************					,				
	<u> </u>	***************************************			·				
	-	· .				1	1		
			· · · · · · · · · · · · · · · · · · ·						
		ž.				 	1		
						1 . ,			

RECEIPT LOGIN BY: ______ RECEIPT REVIEWED BY: ______ Page _____ of _____

307 Roemer Way, Suite 300, Santa Maria, CA 93454 101 Adkisson Way, Taft, CA 93268

Phone: 805-922-4772 / 661-762-9143

AR@oecusa.com

	Sample Contro	l Work Ticke	t	
Work Order: 1503273	Date: 8-3-/5	Emplo	yee: Lynne	x+es
Client/Project: DMI / Dis	pensers a	nd Piping	vee: Lynne Winton U	lalero
Start Tech Time: 0953	s	top Tech Time:	1006	
Additional Supplies/Personnel/Com	ments:	•		
composited samy	oles 9-12	. meas	iurina ov	J+
~50 mL (by				
4 oz jars re	•		• • •	
labeled 13A				138
		e e e e e e e e e e e e e e e e e e e	,	
		,		
			,	
		*		
				-
Admin Use: Name:	·	nitials:	Date:	
Total Tech Time:	L.	ab Pack:		
Compositing:		Disposal:		

APPENDIX E

LABORATORY ANALYTICAL RESULTS SEPTEMBER 4, 2015

Eric Kirkegaard

DMI-EMK Environmental Services Inc. Ventura
1056 Meta Street, Suite 101

Ventura, CA 93001

14 September 2015

RE: Winton Valero Work Order: 1503795

Dear Client:

Enclosed is an analytical report for the above referenced project. The samples included in this report were received on 04-Sep-15 17:05 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Ankita Kashyap

Project Manager

TEL: (805) 922-4772

www.oecusa.com FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Project Number: Excavation
Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

ANALYTICAL REPORT FOR SAMPLES

Project: Winton Valero

Sample ID	Laboratory ID	Matrix	Date Sampled Date Received
EXC1 @ 14'	1503795-01	Solid	04-Sep-15 00:00 04-Sep-15 17:05
EXC2 @ 10'	1503795-02	Solid	04-Sep-15 00:00 04-Sep-15 17:05
EXC3 @ 5'	1503795-03	Solid	04-Sep-15 00:00 04-Sep-15 17:05
EXC4 @ 10'	1503795-04	Solid	04-Sep-15 00:00 04-Sep-15 17:05
EXC5 @ 5'	1503795-05	Solid	04-Sep-15 00:00 04-Sep-15 17:05
EXC6 @ 10'	1503795-06	Solid	04-Sep-15 00:00 04-Sep-15 17:05
EXC7 @ 5'	1503795-07	Solid	04-Sep-15 00:00 04-Sep-15 17:05
EXC8 @ 10'	1503795-08	Solid	04-Sep-15 00:00 04-Sep-15 17:05
EXC9 @ 5'	1503795-09	Solid	04-Sep-15 00:00 04-Sep-15 17:05
EXC-SP	1503795-10	Solid	04-Sep-15 00:00 04-Sep-15 17:05

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772

FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC1 @ 14' 1503795-01 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oilf	ield Env	ironme	ntal ar	d Com	plianc	е			
ГЕРН by GC FID										
TPH Diesel (C13-C22)	2600	38	50	mg/kg	5	B5I0168	08-Sep-15	09-Sep-15	EPA 8015M	
Surrogate: o-Terphenyl			101 %	78-	125	"	"	"	"	
Volatile Organic Compounds	by EPA Metl	hod 8260B/	LUFT							R-06
Benzene	ND	0.11	0.28	mg/kg	200	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT	
Bromobenzene	ND	0.11	0.28	"	"	"	"	"	"	
Bromochloromethane	ND	0.11	0.28	"	"	"	"	"	"	
Bromodichloromethane	ND	0.11	0.28	"	"	"	"	"	"	
Bromoform	ND	0.11	0.28	"	"	"	"	"	"	
Bromomethane	ND	0.11	0.28	"	"	"	"	"	"	
ı-Butylbenzene	1.1	0.11	0.28	"	"	"	"	"	"	
ec-Butylbenzene	0.51	0.11	0.28	"	"	"	"	"	"	
ert-Butylbenzene	ND	0.11	0.28	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.11	0.28	"	"	"	"	"	"	
Chlorobenzene	ND	0.11	0.28	"	"	"	"	"	"	
Chloroethane	ND	0.11	0.28	"	"	"	"	"	"	
Chloroform	ND	0.11	0.28	"	"	"	"	"	"	
Chloromethane	ND	0.11	0.28	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.11	0.28	"	"	"	"	"	"	
-Chlorotoluene	ND	0.11	0.28	"	"	"	"	"	"	
,2-Dibromo-3-chloropropane	ND	0.11	0.28	"	"	"	"	"	"	
Dibromochloromethane	ND	0.11	0.28	"	"	"	"	"	"	
Dibromomethane	ND	0.11	0.28	"	"	"	"	"	"	
,2-Dichlorobenzene	ND	0.11	0.28	"	"	"	"	"	"	
,3-Dichlorobenzene	ND	0.11	0.28	"	"	"	"	"	"	
,4-Dichlorobenzene	ND	0.11	0.28	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.11	0.28	"	"	"	"	"	"	
,1-Dichloroethane	ND	0.11	0.28	"	"	"	"	"	"	
,2-Dichloroethane	ND	0.11	0.28	"	"	"	"	"	"	
,1-Dichloroethene	ND	0.11	0.28	"	"	"	"	"	"	
eis-1,2-Dichloroethene	ND	0.11	0.28	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	0.11	0.28	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC1 @ 14' 1503795-01 (Solid)

MDL **PQL** Result Units Dilution Batch Analyzed Analyte Prepared Method Notes

Oilfield Environmental and Compliance

Volatile Organic Compounds	-	0.11		а	200	D 570155	00.0 4.5	000 45	R-C
1,2-Dichloropropane	ND	0.11	0.28	mg/kg	200	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT
1,3-Dichloropropane	ND	0.11	0.28	"	"	"	"	"	"
2,2-Dichloropropane	ND	0.11	0.28	"	"	"	"	"	"
1,1-Dichloropropene	ND	0.11	0.28	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.11	0.28	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.11	0.28	"	"	"	"	"	"
Ethylbenzene	ND	0.11	0.28	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	0.11	0.28	"	"	"	"	"	"
Hexachlorobutadiene	ND	0.11	0.28	"	"	"	"	"	"
sopropylbenzene	0.91	0.11	0.28	"	"	"	"	"	"
4-Isopropyl Toluene	ND	0.11	0.28	"	"	"	"	"	"
Methylene chloride	ND	0.11	0.28	"	"	"	"	"	"
Naphthalene	ND	0.11	0.28	"	"	"	"	"	"
n-Propylbenzene	2.5	0.11	0.28	"	"	"	"	"	"
Styrene	ND	0.11	0.28	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	0.11	0.28	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	0.11	0.28	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	0.11	0.28	"	"	"	"	"	"
Гoluene	ND	0.11	0.28	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	0.11	0.28	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	0.11	0.28	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	0.11	0.28	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	0.11	0.28	"	"	"	"	"	"
Trichloroethene (TCE)	ND	0.11	0.28	"	"	"	"	"	"
Trichlorofluoromethane	ND	0.11	0.28	"	"	"	"	"	"
,2,3-Trichloropropane	ND	0.11	0.28	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	0.11	0.28	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	0.11	0.28	"	"	"	"	"	"
Vinyl chloride	ND	0.11	0.28	"	"	"	"	"	"
Kylenes (total)	ND	0.11	0.28	"	"	"	"	"	"
ΓPH Gasoline (C4-C12)	180	11	28	"	"	"	"	"	"
Surrogate: Dibromofluoromethane			99.1 %	70-13	0	"	"	"	"
Surrogate: Toluene-d8			95.4 %	70-13	0	"	"	"	"
Surrogate: 4-Bromofluorobenzene			96.0 %	70-13		,,	"	,,	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 4 of 67

TEL: (805) 922-4772

FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC1 @ 14' 1503795-01 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

TEL: (805) 922-4772

FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC2 @ 10' 1503795-02 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

TEPH by GC FID

TPH Diesel (C13-C22) 310 7.6 10 mg/kg 1 B5I0168 08-Sep-15 08-Sep-15 EPA 8015M

78-125

Surrogate: o-Terphenyl 94.9 %

Volatile Organic Compounds by EPA Method 8260B/LUFT

R-06

Benzene	ND	0.46	1.2	mg/kg	1000	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT	1/-
Bromobenzene	ND	0.46	1.2	"	"	"	"	"	"	
Bromochloromethane	ND	0.46	1.2	"	"	"	"	"	"	
Bromodichloromethane	ND	0.46	1.2	"	"	"	"	"	"	
Bromoform	ND	0.46	1.2	"	"	"	"	"	"	
Bromomethane	ND	0.46	1.2	"	"	"	"	"	"	
n-Butylbenzene	1.9	0.46	1.2	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.46	1.2	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.46	1.2	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.46	1.2	"	"	"	"	"	"	
Chlorobenzene	ND	0.46	1.2	"	"	"	"	"	"	
Chloroethane	ND	0.46	1.2	"	"	"	"	"	"	
Chloroform	ND	0.46	1.2	"	"	"	"	"	"	
Chloromethane	ND	0.46	1.2	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.46	1.2	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.46	1.2	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.46	1.2	"	"	"	"	"	"	
Dibromochloromethane	ND	0.46	1.2	"	"	"	"	"	"	
Dibromomethane	ND	0.46	1.2	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.46	1.2	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.46	1.2	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.46	1.2	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.46	1.2	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.46	1.2	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.46	1.2	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.46	1.2	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.46	1.2	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.46	1.2	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.46	1.2	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.46	1.2	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.46	1.2	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

EXC2 @ 10' 1503795-02 (Solid)

MDL **PQL** Result Units Dilution Batch Analyzed Analyte Prepared Method Notes

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA Method 8260B/LUFT R-00												
1,1-Dichloropropene	ND	0.46	1.2	mg/kg	1000	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT			
cis-1,3-Dichloropropene	ND	0.46	1.2	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	0.46	1.2	"	"	"	"	"	"			
Ethylbenzene	ND	0.46	1.2	"	"	"	"	"	"			
1,2-Dibromoethane (EDB)	ND	0.46	1.2	"	"	"	"	"	"			
Hexachlorobutadiene	ND	0.46	1.2	"	"	"	"	"	"			
Isopropylbenzene	ND	0.46	1.2	"	"	"	"	"	"			
4-Isopropyl Toluene	ND	0.46	1.2	"	"	"	"	"	"			
Methylene chloride	ND	0.46	1.2	"	"	"	"	"	"			
Naphthalene	12	0.46	1.2	"	"	"	"	"	"			
n-Propylbenzene	ND	0.46	1.2	"	"	"	"	"	"			
Styrene	ND	0.46	1.2	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	0.46	1.2	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	0.46	1.2	"	"	"	"	"	"			
Tetrachloroethene (PCE)	ND	0.46	1.2	"	"	"	"	"	"			
Toluene	ND	0.46	1.2	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	0.46	1.2	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	0.46	1.2	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	0.46	1.2	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	0.46	1.2	"	"	"	"	"	"			
Trichloroethene (TCE)	ND	0.46	1.2	"	"	"	"	"	"			
Trichlorofluoromethane	ND	0.46	1.2	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	0.46	1.2	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	0.46	1.2	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	0.46	1.2	"	"	"	"	"	"			
Vinyl chloride	ND	0.46	1.2	"	"	"	"	"	"			
Xylenes (total)	ND	0.46	1.2	"	"	"	"	"	"			
TPH Gasoline (C4-C12)	540	46	120	"	"	"	"	"	"			
Surrogate: Dibromofluoromethane			104 %	70-1	30	"	"	"	"			
Surrogate: Toluene-d8			94.8 %	70-1	30	"	"	"	"			
Surrogate: 4-Bromofluorobenzene			98.9 %	70-1	30	"	"	"	"			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported:

14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC3 @ 5' 1503795-03 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

TEPH by GC FID

TPH Diesel (C13-C22)	ND	7.6	10	mg/kg	1	B5I0168	08-Sep-15	09-Sep-15	EPA 8015M	
Surrogate: o-Terphenyl			97.9 %	78-125		"	"	"	"	

Volatile Organic Compounds by EPA Method 8260B/LUFT

Benzene	ND	0.0016	0.0041	mg/kg	1	B5I0160	08-Sep-15	08-Sep-15	EPA 8260B/LUFT	
Bromobenzene	ND	0.0016	0.0041	"	"	"	"	"	"	
Bromochloromethane	ND	0.0016	0.0041	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0016	0.0041	"	"	"	"	"	"	
Bromoform	ND	0.0016	0.0041	"	"	"	"	"	"	
Bromomethane	ND	0.0016	0.0041	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0016	0.0041	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0016	0.0041	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0016	0.0041	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0016	0.0041	"	"	"	"	"	"	
Chlorobenzene	ND	0.0016	0.0041	"	"	"	"	"	"	
Chloroethane	ND	0.0016	0.0041	"	"	"	"	"	"	
Chloroform	ND	0.0016	0.0041	"	"	"	"	"	"	
Chloromethane	ND	0.0016	0.0041	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0016	0.0041	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0016	0.0041	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0016	0.0041	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0016	0.0041	"	"	"	"	"	"	
Dibromomethane	ND	0.0016	0.0041	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0016	0.0041	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0016	0.0041	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0016	0.0041	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0016	0.0041	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0016	0.0041	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0016	0.0041	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0016	0.0041	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0016	0.0041	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0016	0.0041	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0016	0.0041	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0016	0.0041	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0016	0.0041	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC3 @ 5' 1503795-03 (Solid)

MDL PQL Result Units Dilution Batch Analyzed Analyte Prepared Method Notes

Oilfield Environmental and Compliance

Volatile Organic Co	ompounds by	EPA Method	8260B/LUFT
----------------------------	-------------	------------	------------

1,1-Dichloropropene	ND	0.0016	0.0041	mg/kg	1	B5I0160	08-Sep-15	08-Sep-15	EPA 8260B/LUFT
cis-1,3-Dichloropropene	ND	0.0016	0.0041	"	"	"	"	"	m .
trans-1,3-Dichloropropene	ND	0.0016	0.0041	"	"	"	"	"	"
Ethylbenzene	ND	0.0016	0.0041	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	0.0016	0.0041	"	"	"	"	"	"
Hexachlorobutadiene	ND	0.0016	0.0041	"	"	"	"	"	"
Isopropylbenzene	ND	0.0016	0.0041	"	"	"	"	"	"
4-Isopropyl Toluene	ND	0.0016	0.0041	"	"	"	"	"	"
Methylene chloride	ND	0.0016	0.0041	"	"	"	"	"	"
Naphthalene	ND	0.0016	0.0041	"	"	"	"	"	"
n-Propylbenzene	ND	0.0016	0.0041	"	"	"	"	"	"
Styrene	ND	0.0016	0.0041	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	0.0016	0.0041	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	0.0016	0.0041	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	0.0016	0.0041	"	"	"	"	"	"
Toluene	ND	0.0016	0.0041	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	0.0016	0.0041	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	0.0016	0.0041	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	0.0016	0.0041	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	0.0016	0.0041	"	"	"	"	"	"
Trichloroethene (TCE)	ND	0.0016	0.0041	"	"	"	"	"	"
Trichlorofluoromethane	ND	0.0016	0.0041	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	0.0016	0.0041	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	0.0016	0.0041	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	0.0016	0.0041	"	"	"	"	"	"
Vinyl chloride	ND	0.0016	0.0041	"	"	"	"	"	"
Xylenes (total)	ND	0.0016	0.0041	"	"	"	"	"	"
TPH Gasoline (C4-C12)	ND	0.16	0.41	"	"	"	"	"	"
Surrogate: Dibromofluoromethane			111 %	70-13	0	"	"	"	"
Surrogate: 4-Bromofluorobenzene			95.5 %	70-13	0	"	"	"	"
Surrogate: Toluene-d8			93.6 %	70-13	0	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC4 @ 10' 1503795-04 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	

Oilfield Environmental and Compliance

TEPH by GC FID

TPH Diesel (C13-C22)	1400	38	50	mg/kg	5	B5I0168	08-Sep-15	09-Sep-15	EPA 8015M	
Surrogate: o-Terphenyl			103 %	78-125		"	"	"	"	

Volatile Organic Compounds	s by EPA Metl	nod 8260B/L	UFT							R-06
Benzene	ND	0.41	1.0	mg/kg	1000	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT	
Bromobenzene	ND	0.41	1.0	"	"	"	"	"	"	
		0.41								

Bromobenzene	ND	0.41	1.0	"	"	"	"	"	"	
Bromochloromethane	ND	0.41	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	0.41	1.0	"	"	"	"	"	"	
Bromoform	ND	0.41	1.0	"	"	"	"	"	"	
Bromomethane	ND	0.41	1.0	"	"	"	"	"	"	
n-Butylbenzene	7.0	0.41	1.0	"	"	"	"	"	"	
sec-Butylbenzene	2.5	0.41	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.41	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.41	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	0.41	1.0	"	"	"	"	"	"	
Chloroethane	ND	0.41	1.0	"	"	"	"	"	"	
Chloroform	ND	0.41	1.0	"	"	"	"	"	"	
Chloromethane	ND	0.41	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.41	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.41	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.41	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	0.41	1.0	"	"	"	"	"	"	
Dibromomethane	ND	0.41	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.41	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.41	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.41	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.41	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.41	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.41	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.41	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.41	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.41	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.41	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.41	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.41	1.0	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC4 @ 10' 1503795-04 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and	d Compliance
----------------------------	--------------

Volatile Organic Compounds	<u>by EPA Metl</u>	hod 8260B/.	LUFT							R-06
1,1-Dichloropropene	ND	0.41	1.0	mg/kg	1000	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT	
cis-1,3-Dichloropropene	ND	0.41	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.41	1.0	"	"	"	"	"	"	
Ethylbenzene	0.97	0.41	1.0	"	"	"	"	"	"	J
1,2-Dibromoethane (EDB)	ND	0.41	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.41	1.0	"	"	"	"	"	"	
Isopropylbenzene	1.5	0.41	1.0	"	"	"	"	"	"	
4-Isopropyl Toluene	0.45	0.41	1.0	"	"	"	"	"	"	J
Methylene chloride	ND	0.41	1.0	"	"	"	"	"	"	
Naphthalene	14	0.41	1.0	"	"	"	"	"	"	
n-Propylbenzene	5.5	0.41	1.0	"	"	"	"	"	"	
Styrene	ND	0.41	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.41	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.41	1.0	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.41	1.0	"	"	"	"	"	"	
Toluene	ND	0.41	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.41	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.41	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.41	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.41	1.0	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	0.41	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.41	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.41	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	7.5	0.41	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.41	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	0.41	1.0	"	"	"	"	"	"	
Xylenes (total)	ND	0.41	1.0	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	560	41	100	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			100 %	70-1	30	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			98.5 %	70-1		"	"	"	"	
Surrogate: Toluene-d8			93.9 %	70-1		"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC5 @ 5' 1503795-05 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmental and Compliance

TEPH by GC FID

TPH Diesel (C13-C22)	3700	38	50	mg/kg	5	B5I0168	08-Sep-15	09-Sep-15	EPA 8015M	
Surrogate: o-Terphenyl			93.4 %	78-125		"	"	"	"	

Surroguie. 0-1erpnenyi			93.4 /0	/0-1.	23					
Volatile Organic Compounds	by EPA Met	hod 8260B/I	LUFT							R-06
Benzene	ND	0.096	0.24	mg/kg	200	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT	
Bromobenzene	ND	0.096	0.24	"	"	"	"	"	"	
Bromochloromethane	ND	0.096	0.24	"	"	"	"	"	"	
Bromodichloromethane	ND	0.096	0.24	"	"	"	"	"	"	
Bromoform	ND	0.096	0.24	"	"	"	"	"	"	
Bromomethane	ND	0.096	0.24	"	"	"	"	"	"	
n-Butylbenzene	ND	0.096	0.24	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.096	0.24	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.096	0.24	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.096	0.24	"	"	"	"	"	"	
Chlorobenzene	ND	0.096	0.24	"	"	"	"	"	"	
Chloroethane	ND	0.096	0.24	"	"	"	"	"	"	
Chloroform	ND	0.096	0.24	"	"	"	"	"	"	
Chloromethane	ND	0.096	0.24	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.096	0.24	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.096	0.24	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.096	0.24	"	"	"	"	"	"	
Dibromochloromethane	ND	0.096	0.24	"	"	"	"	"	"	
Dibromomethane	ND	0.096	0.24	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.096	0.24	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.096	0.24	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.096	0.24	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.096	0.24	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.096	0.24	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.096	0.24	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.096	0.24	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.096	0.24	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.096	0.24	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.096	0.24	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.096	0.24	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.096	0.24	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

> EXC5 @ 5' 1503795-05 (Solid)

MDL PQL Result Units Dilution Batch Analyzed Method Analyte Prepared Notes

Oilfield Environmental and Compliance

Volatile Organic Compounds l	by EPA Met	hod 8260B	/LUFT						R	R-06
1,1-Dichloropropene	ND	0.096	0.24	mg/kg	200	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT	
cis-1,3-Dichloropropene	ND	0.096	0.24	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.096	0.24	"	"	"	"	"	"	
Ethylbenzene	ND	0.096	0.24	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.096	0.24	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.096	0.24	"	"	"	"	"	"	
Isopropylbenzene	ND	0.096	0.24	"	"	"	"	"	"	
4-Isopropyl Toluene	ND	0.096	0.24	"	"	"	"	"	"	
Methylene chloride	ND	0.096	0.24	"	"	"	"	"	"	
Naphthalene	ND	0.096	0.24	"	"	"	"	"	"	
n-Propylbenzene	ND	0.096	0.24	"	"	"	"	"	"	
Styrene	ND	0.096	0.24	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.096	0.24	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.096	0.24	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.096	0.24	"	"	"	"	"	"	
Гoluene	ND	0.096	0.24	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.096	0.24	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.096	0.24	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.096	0.24	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.096	0.24	"	"	"	"	"	"	
Γrichloroethene (TCE)	ND	0.096	0.24	"	"	"	"	"	"	
Γrichlorofluoromethane	ND	0.096	0.24	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.096	0.24	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.096	0.24	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.096	0.24	"	"	"	"	"	"	
Vinyl chloride	ND	0.096	0.24	"	"	"	"	"	"	
Xylenes (total)	ND	0.096	0.24	"	"	"	"	"	"	
ΓPH Gasoline (C4-C12)	36	9.6	24	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			98.9 %	70-1.	30	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			95.2 %	70-1.	30	"	"	"	"	
Surrogate: Toluene-d8			96.0 %	70-1.	30	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 13 of 67

TEL: (805) 922-4772

FAX: (805) 925-3376

Reported:

14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001

Project: Winton Valero Project Number: Excavation Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC6 @ 10' 1503795-06 (Solid)

MDL **PQL** Result Units Dilution Batch Analyte Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

TEPH by GC FID

TPH Diesel (C13-C22)	3400	38	50	mg/kg	5	B5I0168	08-Sep-15	09-Sep-15	EPA 8015M	
Surrogate: o-Terphenyl			96.4 %	78-125		"	"	"	"	

Surroguie. 0-terphenyi			90.4 /0	70-1	23					
Volatile Organic Compounds	by EPA Metl	nod 8260B/I	LUFT						R-06	6
Benzene	ND	0.39	0.98	mg/kg	1000	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT	
Bromobenzene	ND	0.39	0.98	"	"	"	"	"	"	
Bromochloromethane	ND	0.39	0.98	"	"	"	"	"	"	
Bromodichloromethane	ND	0.39	0.98	"	"	"	"	"	"	
Bromoform	ND	0.39	0.98	"	"	"	"	"	"	
Bromomethane	ND	0.39	0.98	"	"	"	"	"	"	
n-Butylbenzene	ND	0.39	0.98	"	"	"	"	"	"	
sec-Butylbenzene	1.4	0.39	0.98	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.39	0.98	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.39	0.98	"	"	"	"	"	"	
Chlorobenzene	ND	0.39	0.98	"	"	"	"	"	"	
Chloroethane	ND	0.39	0.98	"	"	"	"	"	"	
Chloroform	ND	0.39	0.98	"	"	"	"	"	"	
Chloromethane	ND	0.39	0.98	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.39	0.98	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.39	0.98	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.39	0.98	"	"	"	"	"	"	
Dibromochloromethane	ND	0.39	0.98	"	"	"	"	"	"	
Dibromomethane	ND	0.39	0.98	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.39	0.98	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.39	0.98	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.39	0.98	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.39	0.98	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.39	0.98	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.39	0.98	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.39	0.98	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.39	0.98	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.39	0.98	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.39	0.98	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.39	0.98	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.39	0.98	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC6 @ 10' 1503795-06 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance
ounds by EPA Method 8260B/LUFT

Volatile Organic Compounds	by EPA Metl	nod 8260B/	LUFT/							R-06
1,1-Dichloropropene	ND	0.39	0.98	mg/kg	1000	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT	
cis-1,3-Dichloropropene	ND	0.39	0.98	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.39	0.98	"	"	"	"	"	"	
Ethylbenzene	ND	0.39	0.98	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.39	0.98	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.39	0.98	"	"	"	"	"	"	
Isopropylbenzene	0.48	0.39	0.98	"	"	"	"	"	"	J
4-Isopropyl Toluene	0.98	0.39	0.98	"	"	"	"	"	"	
Methylene chloride	ND	0.39	0.98	"	"	"	"	"	"	
Naphthalene	9.1	0.39	0.98	"	"	"	"	"	"	
n-Propylbenzene	1.3	0.39	0.98	"	"	"	"	"	"	
Styrene	ND	0.39	0.98	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	0.39	0.98	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.39	0.98	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.39	0.98	"	"	"	"	"	"	
Toluene	ND	0.39	0.98	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.39	0.98	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.39	0.98	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.39	0.98	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.39	0.98	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	0.39	0.98	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.39	0.98	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.39	0.98	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	17	0.39	0.98	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	5.5	0.39	0.98	"	"	"	"	"	"	
Vinyl chloride	ND	0.39	0.98	"	"	"	"	"	"	
Xylenes (total)	1.0	0.39	0.98	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	450	39	98	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane			102 %	70-1	30	"	"	"	"	
Surrogate: Toluene-d8			95.7 %	70-1	30	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			94.2 %	70-1	30	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC7 @ 5' 1503795-07 (Solid)

MDL **PQL** Result Units Dilution Analyte Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

TEPH by GC FID

Benzene

TPH Diesel (C13-C22)	240	7.6	10	mg/kg	1	B5I0168	08-Sep-15	08-Sep-15	EPA 8015M	
Surrogate: o-Terphenyl			102 %	78-125		"	"	"	"	

mg/kg

B5I0160

08-Sep-15

08-Sep-15

0.0043

0.0017

Volatile Organic Compounds by EPA Method 8260B/LUFT

ND

Belizelie	ND	0.0017	0.0043	mg/kg	1	B 310100	06-Sep-13	06-зер-13	8260B/LUFT	
Bromobenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
Bromochloromethane	ND	0.0017	0.0043	"	"	"	"	"	"	
Bromodichloromethane	ND	0.0017	0.0043	"	"	"	"	"	"	
Bromoform	ND	0.0017	0.0043	"	"	"	"	"	"	
Bromomethane	ND	0.0017	0.0043	"	"	"	"	"	"	
n-Butylbenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.0017	0.0043	"	"	"	"	"	"	
Chlorobenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
Chloroethane	ND	0.0017	0.0043	"	"	"	"	"	"	
Chloroform	ND	0.0017	0.0043	"	"	"	"	"	"	
Chloromethane	ND	0.0017	0.0043	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.0017	0.0043	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.0017	0.0043	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.0017	0.0043	"	"	"	"	"	"	
Dibromochloromethane	ND	0.0017	0.0043	"	"	"	"	"	"	
Dibromomethane	ND	0.0017	0.0043	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.0017	0.0043	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.0017	0.0043	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.0017	0.0043	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.0017	0.0043	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.0017	0.0043	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.0017	0.0043	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.0017	0.0043	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.0017	0.0043	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.0017	0.0043	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 16 of 67

TEL: (805) 922-4772

FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC7 @ 5' 1503795-07 (Solid)

MDL PQL Result Units Dilution Batch Analyte Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA Method 8260B/LUFT

1,1-Dichloropropene	ND	0.0017	0.0043	mg/kg	1	B5I0160	08-Sep-15	08-Sep-15	EPA 8260B/LUFT	
cis-1,3-Dichloropropene	ND	0.0017	0.0043	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.0017	0.0043	"	"	"	"	"	"	
Ethylbenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.0017	0.0043	"	"	"	"	"	"	
Hexachlorobutadiene	ND	0.0017	0.0043	"	"	"	"	"	"	
Isopropylbenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
4-Isopropyl Toluene	ND	0.0017	0.0043	"	"	"	"	"	"	
Methylene chloride	ND	0.0017	0.0043	"	"	"	"	"	"	
Naphthalene	ND	0.0017	0.0043	"	"	"	"	"	"	
n-Propylbenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
Styrene	ND	0.0017	0.0043	"	"	"	"	"	"	
1,1,2-Tetrachloroethane	ND	0.0017	0.0043	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.0017	0.0043	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.0017	0.0043	"	"	"	"	"	"	
Toluene	ND	0.0017	0.0043	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.0017	0.0043	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.0017	0.0043	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	0.0017	0.0043	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.0017	0.0043	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.0017	0.0043	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.0017	0.0043	"	"	"	"	"	"	
Vinyl chloride	ND	0.0017	0.0043	"	"	"	"	"	"	
Xylenes (total)	ND	0.0017	0.0043	"	"	"	"	"	"	
TPH Gasoline (C4-C12)	2.4	0.17	0.43	"	"	"	"	"	" D-0	04
Surrogate: Dibromofluoromethane			105 %	70-130		"	"	"	"	
Surrogate: 4-Bromofluorobenzene			94.7 %	70-130		"	"	"	"	
Surrogate: Toluene-d8			92.4 %	70-130		"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC8 @ 10' 1503795-08 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

TEPH by GC FID

TPH Diesel (C13-C22)	28	7.6	10	mg/kg	1	B5I0168	08-Sep-15	08-Sep-15	EPA 8015M	
Surrogate: o-Terphenyl			95.4 %	78-125		"	"	"	"	

Volatile Organic Compounds by EPA Method 8260B/LUFT

R-06

Benzene	ND	0.73	1.8	mg/kg	1000	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT
Bromobenzene	ND	0.73	1.8	"	"	"	"	"	"
Bromochloromethane	ND	0.73	1.8	"	"	"	"	"	"
Bromodichloromethane	ND	0.73	1.8	"	"	"	"	"	"
Bromoform	ND	0.73	1.8	"	"	"	"	"	"
Bromomethane	ND	0.73	1.8	"	"	"	"	"	"
n-Butylbenzene	ND	0.73	1.8	"	"	"	"	"	"
sec-Butylbenzene	7.6	0.73	1.8	"	"	"	"	"	"
tert-Butylbenzene	ND	0.73	1.8	"	"	"	"	"	"
Carbon tetrachloride	ND	0.73	1.8	"	"	"	"	"	"
Chlorobenzene	ND	0.73	1.8	"	"	"	"	"	"
Chloroethane	ND	0.73	1.8	"	"	"	"	"	"
Chloroform	ND	0.73	1.8	"	"	"	"	"	"
Chloromethane	ND	0.73	1.8	"	"	"	"	"	"
2-Chlorotoluene	ND	0.73	1.8	"	"	"	"	"	"
4-Chlorotoluene	ND	0.73	1.8	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	0.73	1.8	"	"	"	"	"	"
Dibromochloromethane	ND	0.73	1.8	"	"	"	"	"	"
Dibromomethane	ND	0.73	1.8	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	0.73	1.8	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	0.73	1.8	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	0.73	1.8	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.73	1.8	"	"	"	"	"	"
1,1-Dichloroethane	ND	0.73	1.8	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.73	1.8	"	"	"	"	"	"
1,1-Dichloroethene	ND	0.73	1.8	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	0.73	1.8	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	0.73	1.8	"	"	"	"	"	"
1,2-Dichloropropane	ND	0.73	1.8	"	"	"	"	"	"
1,3-Dichloropropane	ND	0.73	1.8	"	"	"	"	"	"
2,2-Dichloropropane	ND	0.73	1.8	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC8 @ 10' 1503795-08 (Solid)

Analyte Result MDL PQL Units Dilution Batch Prepared Analyzed Method Notes

Oilfield I	Environment	al and	Compliance
------------	-------------	--------	------------

Volatile Organic Compounds	by EPA Metl	hod 8260B/	LUFT_						R-0
1,1-Dichloropropene	ND	0.73	1.8	mg/kg	1000	B5I0177	09-Sep-15	09-Sep-15	EPA 8260B/LUFT
cis-1,3-Dichloropropene	ND	0.73	1.8	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.73	1.8	"	"	"	"	"	"
Ethylbenzene	5.4	0.73	1.8	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	0.73	1.8	"	"	"	"	"	"
Hexachlorobutadiene	ND	0.73	1.8	"	"	"	"	"	"
sopropylbenzene	7.0	0.73	1.8	"	"	"	"	"	"
-Isopropyl Toluene	5.5	0.73	1.8	"	"	"	"	"	"
Methylene chloride	ND	0.73	1.8	"	"	"	"	"	"
Naphthalene	55	0.73	1.8	"	"	"	"	"	"
-Propylbenzene	37	0.73	1.8	"	"	"	"	"	"
Styrene	ND	0.73	1.8	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	0.73	1.8	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	0.73	1.8	"	"	"	"	"	"
Cetrachloroethene (PCE)	ND	0.73	1.8	"	"	"	"	"	"
Coluene	ND	0.73	1.8	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	0.73	1.8	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	0.73	1.8	"	"	"	"	"	"
,1,1-Trichloroethane	ND	0.73	1.8	"	"	"	"	"	"
,1,2-Trichloroethane	ND	0.73	1.8	"	"	"	"	"	"
Trichloroethene (TCE)	ND	0.73	1.8	"	"	"	"	"	"
Trichlorofluoromethane	ND	0.73	1.8	"	"	"	"	"	"
,2,3-Trichloropropane	ND	0.73	1.8	"	"	"	"	"	"
,2,4-Trimethylbenzene	310	15	37	"	20000	"	"	09-Sep-15	"
,3,5-Trimethylbenzene	83	15	37	"	"	"	"	"	"
Vinyl chloride	ND	0.73	1.8	"	1000	"	"	09-Sep-15	"
Kylenes (total)	13	0.73	1.8	"	"	"	"	"	"
TPH Gasoline (C4-C12)	2600	150	370	"	2000	"	09-Sep-15	10-Sep-15	"
Surrogate: Dibromofluoromethane			99.1 %	70-1	130	"	09-Sep-15	09-Sep-15	"
Surrogate: Toluene-d8			93.5 %	70-1	130	"	"	"	"
Surrogate: 4-Bromofluorobenzene			98.1 %	70-1	130	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC9 @ 5' 1503795-09 (Solid)

	O:It:	ald Engli			- d C	- l!	_			
Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmental and Compliance

TEPH by GC FID

TPH Diesel (C13-C22)	ND	7.6	10	mg/kg	1	B5I0168	08-Sep-15	08-Sep-15	EPA 8015M	
Surrogate: o-Terphenyl			95.6 %	78-125		"	"	"	"	

Volatile Organic Compounds by EPA Method 8260B/LUFT

Benzene	ND	0.0017	0.0042	mg/kg	1	B5I0160	08-Sep-15	08-Sep-15	EPA 8260B/LUFT
Bromobenzene	ND	0.0017	0.0042	"	"	"	"	"	"
Bromochloromethane	ND	0.0017	0.0042	"	"	"	"	"	"
Bromodichloromethane	ND	0.0017	0.0042	"	"	"	"	"	"
Bromoform	ND	0.0017	0.0042	"	"	"	"	"	"
Bromomethane	ND	0.0017	0.0042	"	"	"	"	"	"
n-Butylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
sec-Butylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
tert-Butylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
Carbon tetrachloride	ND	0.0017	0.0042	"	"	"	"	"	"
Chlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"
Chloroethane	ND	0.0017	0.0042	"	"	"	"	"	"
Chloroform	ND	0.0017	0.0042	"	"	"	"	"	"
Chloromethane	ND	0.0017	0.0042	"	"	"	"	"	"
2-Chlorotoluene	ND	0.0017	0.0042	"	"	"	"	"	"
4-Chlorotoluene	ND	0.0017	0.0042	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	0.0017	0.0042	"	"	"	"	"	"
Dibromochloromethane	ND	0.0017	0.0042	"	"	"	"	"	"
Dibromomethane	ND	0.0017	0.0042	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.0017	0.0042	"	"	"	"	"	"
1,1-Dichloroethane	ND	0.0017	0.0042	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.0017	0.0042	"	"	"	"	"	"
1,1-Dichloroethene	ND	0.0017	0.0042	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	0.0017	0.0042	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	0.0017	0.0042	"	"	"	"	"	"
1,2-Dichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"
1,3-Dichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"
2,2-Dichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC9 @ 5' 1503795-09 (Solid)

MDL **PQL** Result Units Dilution Batch Analyte Prepared Analyzed Method Notes

Oilfield Environmental and Compliance

Volatile Organic Compounds by EPA Method 8260B/LUFT

1,1-Dichloropropene	ND	0.0017	0.0042	mg/kg	1	B5I0160	08-Sep-15	08-Sep-15	EPA 8260B/LUFT
cis-1,3-Dichloropropene	ND	0.0017	0.0042	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.0017	0.0042	"	"	"	"	"	"
Ethylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	0.0017	0.0042	"	"	"	"	"	"
Hexachlorobutadiene	ND	0.0017	0.0042	"	"	"	"	"	"
Isopropylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
4-Isopropyl Toluene	ND	0.0017	0.0042	"	"	"	"	"	"
Methylene chloride	ND	0.0017	0.0042	"	"	"	"	"	"
Naphthalene	ND	0.0017	0.0042	"	"	"	"	"	"
n-Propylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
Styrene	ND	0.0017	0.0042	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	0.0017	0.0042	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	0.0017	0.0042	"	"	"	"	"	"
Tetrachloroethene (PCE)	ND	0.0017	0.0042	"	"	"	"	"	"
Toluene	ND	0.0017	0.0042	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	0.0017	0.0042	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	0.0017	0.0042	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	0.0017	0.0042	"	"	"	"	"	"
Trichloroethene (TCE)	ND	0.0017	0.0042	"	"	"	"	"	"
Trichlorofluoromethane	ND	0.0017	0.0042	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	0.0017	0.0042	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	0.0017	0.0042	"	"	"	"	"	"
Vinyl chloride	ND	0.0017	0.0042	"	"	"	"	"	11
Xylenes (total)	ND	0.0017	0.0042	"	"	"	"	"	"
TPH Gasoline (C4-C12)	ND	0.17	0.42	"	"	"	"	"	"
Surrogate: Dibromofluoromethane			110 %	70-13	30	"	"	"	"
Surrogate: Toluene-d8			93.6 %	70-13	30	"	"	"	n .
Surrogate: 4-Bromofluorobenzene			91.4 %	70-13	30	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC-SP 1503795-10 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oilf	ield Envi	ronme	ntal an	d Com	pliance	е			
Flashpoint, Closed Cup	. 212	72	70	°F		D.510150	00.0 15	00.0 15	ED4 1010	
Flashpoint	>212	12	72	F	1	B5I0158	08-Sep-15	08-Sep-15	EPA 1010	
Wet Chemistry by EPA or AP	HA Standar	d Methods								
рН @ 25 C	8.83	0.05	0.10	pH Units	1	B5I0143	05-Sep-15	05-Sep-15	EPA 9045	НТ-рН
Sample Temperature During	19	1.0	1.0	°C	"	"	"	"	"	
pH Analysis										
Reactives										
Cyanide, reactive	ND	0.167	0.500	mg/kg	1	B5I0156	08-Sep-15	08-Sep-15	SW846. 7.3	
Sulfide, reactive	10.4	1.00	2.00	"	"	B5I0157	08-Sep-15	08-Sep-15	SW 846 7.3	
Total Metals by EPA 6000/700	00 Series Me	thods								
Antimony	1.1	0.94	2.4	mg/kg	1	B5I0182	09-Sep-15	10-Sep-15	EPA 6010B	J
Arsenic	8.0	0.47	0.94	"	"	"	"	"	"	
Barium	160	0.47	0.94	"	"	"	"	"	"	
Beryllium	0.32	0.24	0.47	"	"	"	"	"	"	J
Cadmium	0.57	0.14	0.24	"	"	"	"	"	"	
Chromium	53	0.24	0.47	"	"	"	"	"	"	N-02
Cobalt	11	0.24	0.47	"	"	"	"	"	"	
Copper	25	0.47	0.94	"	"	"	"	"	"	
Lead	10	0.28	0.47	"	"	"	"	"	"	
Mercury	0.018	0.0099	0.091	"	"	B5I0200	09-Sep-15	09-Sep-15	EPA 7471A	J
Molybdenum	ND	0.24	0.47	"	"	B5I0182	09-Sep-15	10-Sep-15	EPA 6010B	
Nickel	51	0.094	0.24	"	"	"	"	"	"	
Selenium	ND	0.94	1.9	"	"	"	"	"	"	
Silver	ND	0.19	0.47	"	"	"	"	"	"	
Thallium	ND	0.47	0.94	"	"	"	"	"	"	
Vanadium	40	0.47	0.94	"	"	"	"	"	"	
Zinc	51	0.47	0.94	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC-SP 1503795-10 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Oilfi	ield Env	ironme	ntal and	I Com	pliance	е			
STLC Metals by 6000/7000 Ser	ies Methods	S								
Chromium	0.28	0.025	0.050	mg/L	1	B5I0327	14-Sep-15	14-Sep-15	STLC/EPA 6010B	
TVPH by GC FID										
TPH Gasoline (C4-C12)	290	20	99	mg/kg	200	B5I0222	10-Sep-15	10-Sep-15	EPA 8015M	D-04
Surrogate: 4-Bromofluorobenzene			132 %	70-13	0	"	"	"	"	S-02
DI WET/STLC/ZHE Volatiles										
TPH Gasoline (C4-C12)	1300	21	50	ug/L	1	B5I0250	10-Sep-15	10-Sep-15	ZHE-DIWET /EPA 8015M	B-02, D-04
Surrogate: 4-Bromofluorobenzene			111 %	70-13	0	"	"	"	"	
TEPH by GC FID										
TPH Diesel (C13-C22)	3500	38	50	mg/kg	5	B5I0170	08-Sep-15	09-Sep-15	EPA 8015M	
TPH Motor Oil (C23-C40)	430	200	250	"	"	"	"	"	"	
Surrogate: o-Terphenyl			95.2 %	78-12	5	"	"	"	"	
DI WET/STLC Semi-Volatiles										
TPH Diesel (C13-C22)	0.27	0.046	0.056	mg/L	1	B5I0215	10-Sep-15	10-Sep-15	DIWET/EPA 8015M	
TPH Motor Oil (C23-C40)	0.11	0.056	0.11	"	"	"	"	"	"	
Surrogate: o-Terphenyl			94.4 %	50-15	7	"	"	"	"	
Polychlorinated Biphenyls by F	EPA Method	8082								
PCB-1016	ND	0.010	0.020	mg/kg	1	B5I0195	09-Sep-15	10-Sep-15	EPA 8082	
PCB-1221	ND	0.010	0.020	"	"	"	"	"	"	
PCB-1232	ND	0.010	0.020	"	"	"	"	"	"	
PCB-1242	ND	0.010	0.020	"	"	"	"	"	"	
PCB-1248	ND	0.010	0.020	"	"	"	"	"	"	
PCB-1254	ND	0.010	0.020	"	"	"	"	"	"	
PCB-1260	ND	0.010	0.020	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl			43.0 %	24-13	4	"	"	"	"	
Surrogate: 2,4,5,6 Tetrachloro-m-xylene			64.5 %	11-14	5	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Reported: Ventura CA, 93001 Project Manager: Eric Kirkegaard 14-Sep-15 16:55

EXC-SP 1503795-10 (Solid)

MDL **PQL** Result Units Dilution Analyte Batch Prepared Analyzed Method Notes

Volatile Organic Compounds	by EPA Met	hod 8260B								R-05
Benzene	ND	0.020	0.050	mg/kg	1	B5I0160	08-Sep-15	08-Sep-15	EPA 8260B	
Bromobenzene	ND	0.020	0.050	"	"	"	"	"	"	
Bromochloromethane	ND	0.020	0.050	"	"	"	"	"	"	
Bromodichloromethane	ND	0.020	0.050	"	"	"	"	"	"	
Bromoform	ND	0.020	0.050	"	"	"	"	"	"	
Bromomethane	ND	0.020	0.050	"	"	"	"	"	"	
n-Butylbenzene	ND	0.020	0.050	"	"	"	"	"	"	
sec-Butylbenzene	1.1	0.020	0.050	"	"	"	"	"	"	
tert-Butylbenzene	0.021	0.020	0.050	"	"	"	"	"	"	J
Carbon tetrachloride	ND	0.020	0.050	"	"	"	"	"	"	
Chlorobenzene	ND	0.020	0.050	"	"	"	"	"	"	
Chloroethane	ND	0.020	0.050	"	"	"	"	"	"	
Chloroform	ND	0.020	0.050	"	"	"	"	"	"	
Chloromethane	ND	0.020	0.050	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.020	0.050	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.020	0.050	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	0.020	0.050	"	"	"	"	"	"	
Dibromochloromethane	ND	0.020	0.050	"	"	"	"	"	"	
Dibromomethane	ND	0.020	0.050	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.020	0.050	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.020	0.050	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.020	0.050	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.020	0.050	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.020	0.050	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.020	0.050	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.020	0.050	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.020	0.050	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.020	0.050	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.020	0.050	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.020	0.050	"	"	"	"	"	"	
2,2-Dichloropropane	ND	0.020	0.050	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.020	0.050	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.020	0.050	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.020	0.050	"	"	"	"	"	"	
Ethylbenzene	0.10	0.020	0.050	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.020	0.050	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC-SP 1503795-10 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmental a	and Compliance
--------------------------	----------------

Volatile Organic Compounds	by EPA Met									R-05
Hexachlorobutadiene	ND	0.020	0.050	mg/kg	1	B5I0160	08-Sep-15	08-Sep-15	EPA 8260B	
Isopropylbenzene	0.44	0.020	0.050	"	"	"	"	"	"	
4-Isopropyl Toluene	0.027	0.020	0.050	"	"	"	"	"	"	J
Methylene chloride	ND	0.020	0.050	"	"	"	"	"	"	
Naphthalene	6.2	0.10	0.25	"	200	B5I0177	09-Sep-15	09-Sep-15	"	
n-Propylbenzene	1.3	0.020	0.050	"	1	B5I0160	08-Sep-15	08-Sep-15	"	
Styrene	ND	0.020	0.050	"	"	"	"	"	"	
,1,1,2-Tetrachloroethane	ND	0.020	0.050	"	"	"	"	"	"	
,1,2,2-Tetrachloroethane	ND	0.020	0.050	"	"	"	"	"	"	
Tetrachloroethene (PCE)	ND	0.020	0.050	"	"	"	"	"	"	
Toluene	ND	0.020	0.050	"	"	"	"	"	"	
,2,3-Trichlorobenzene	ND	0.020	0.050	"	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.020	0.050	"	"	"	"	"	"	
,1,1-Trichloroethane	ND	0.020	0.050	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.020	0.050	"	"	"	"	"	"	
Trichloroethene (TCE)	ND	0.020	0.050	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.020	0.050	"	"	"	"	"	"	
,2,3-Trichloropropane	ND	0.020	0.050	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	0.42	0.020	0.050	"	"	"	"	"	"	
,3,5-Trimethylbenzene	ND	0.020	0.050	"	"	"	"	"	"	
Vinyl chloride	ND	0.020	0.050	"	"	"	"	"	"	
Xylenes (total)	ND	0.020	0.050	"	"	"	"	"	"	
Methyl-t-butyl ether	ND	0.020	0.050	"	"	"	п	"	"	
Surrogate: Dibromofluoromethane			102 %	70-1.	30	"	"	"	"	
Surrogate: Toluene-d8			93.4 %	70-1.	30	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			95.8 %	70-1.	30	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC-SP 1503795-10 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmental and Compliance

				iiiai aiii					
Organochlorine Pesticides by	EPA Metho								
alpha-BHC	ND	0.0015	0.0030	mg/kg	1	B5I0195	09-Sep-15	10-Sep-15	EPA 8081A
alpha-Chlordane	ND	0.0015	0.0030	"	"	"	"	"	"
Aldrin	ND	0.0015	0.0030	"	"	"	"	"	"
beta-BHC	ND	0.0015	0.0030	"	"	"	"	"	"
delta-BHC	ND	0.0015	0.0030	"	"	"	"	"	"
4,4´-DDD	ND	0.0015	0.0030	"	"	"	"	"	"
4,4´-DDE	ND	0.0015	0.0030	"	"	"	"	"	"
4,4´-DDT	ND	0.0016	0.0030	"	"	"	"	"	"
Dieldrin	ND	0.0015	0.0030	"	"	"	"	"	"
Endosulfan I	ND	0.0017	0.0030	"	"	"	"	"	"
Endosulfan II	ND	0.0015	0.0030	"	"	"	"	"	"
Endosulfan sulfate	ND	0.0015	0.0030	"	"	"	"	"	"
Endrin	ND	0.0015	0.0030	"	"	"	"	"	"
Endrin aldehyde	ND	0.0015	0.0030	"	"	"	"	"	"
Endrin ketone	ND	0.0016	0.0030	"	"	"	"	"	"
gamma-BHC	ND	0.0015	0.0030	"	"	"	"	"	"
gamma-Chlordane	ND	0.0015	0.0030	"	"	"	"	"	"
Heptachlor	ND	0.0015	0.0030	"	"	"	"	"	"
Heptachlor epoxide	ND	0.0015	0.0030	"	"	"	"	"	"
Methoxychlor	ND	0.0015	0.0030	"	"	"	"	"	"
Chlordane (tech)	ND	0.010	0.020	"	"	"	"	"	"
Toxaphene	ND	0.016	0.020	"	"	"	"	"	"
Surrogate: Decachlorobiphenyl			104 %	26-17	71	"	"	"	"
Surrogate: 2,4,5,6 Tetrachloro-m-xylen	e		114 %	2-18	0	"	"	"	"

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

14-Sep-15 16:55

Reported:

EXC-SP 1503795-10 (Solid)

MDL **PQL** Result Units Dilution Analyte Batch Prepared Analyzed Method Notes

Oilfield Environmental a	and Compliance
--------------------------	----------------

Semivolatile Organic Compo										R-0
Acenaphthene	ND	0.50	1.0	mg/kg	10	B5I0174	08-Sep-15	09-Sep-15	EPA 8270C	
Acenaphthylene	ND	0.50	1.0	"	"	"	"	"	"	
Aniline	ND	0.60	1.0	"	"	"	"	"	"	
Anthracene	ND	0.50	1.0	"	"	"	"	"	"	
Azobenzene	ND	0.50	1.0	"	"	"	"	"	"	
Benz (a) anthracene	ND	0.50	1.0	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	0.50	1.0	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	0.50	1.0	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.50	1.0	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.90	1.0	"	"	"	"	"	"	
Benzoic acid	ND	0.50	1.0	"	"	"	"	"	"	
Benzyl alcohol	ND	0.50	1.0	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	0.50	1.0	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	0.50	1.0	"	"	"	"	"	"	
Bis(2-chloroisopropyl) ether	ND	0.60	1.0	"	"	"	"	"	"	
Bis(2-ethylhexyl) phthalate	ND	0.50	1.0	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.50	1.0	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	0.50	1.0	"	"	"	"	"	"	
1-Chloroaniline	ND	0.50	1.0	"	"	"	"	"	"	
2-Chloronaphthalene	ND	0.50	1.0	"	"	"	"	"	"	
1-Chlorophenyl phenyl ether	ND	0.50	1.0	"	"	"	"	"	"	
Chrysene	ND	0.50	1.0	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.60	1.0	"	"	"	"	"	"	
Dibenzofuran	ND	0.50	1.0	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	0.50	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.70	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.80	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.70	1.0	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	2.0	5.0	"	"	"	"	"	"	
Diethyl phthalate	0.94	0.80	1.0	"	"	"	"	"	"	
Dimethyl phthalate	ND	0.50	1.0	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	0.60	1.0	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	0.50	1.0	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	0.50	1.0	"	"	"	"	"	"	
Fluoranthene	ND	0.50	1.0	"	"	"	"	"	"	
Fluorene	1.1	0.50	1.0	"	"	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC-SP 1503795-10 (Solid)

MDL PQL Result Analyte Batch Prepared Analyzed Method Notes

Semivolatile Organic Compou	ınds by EPA	Method 82	70C							R-05
Hexachlorobenzene	ND	0.50	1.0	mg/kg	10	B5I0174	08-Sep-15	09-Sep-15	EPA 8270C	
Hexachlorobutadiene	ND	0.60	1.0	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	0.50	1.0	"	"	"	"	"	"	
Hexachloroethane	ND	0.80	1.0	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.60	1.0	"	"	"	"	"	"	
Isophorone	ND	0.50	1.0	"	"	"	"	"	"	
2-Methylnaphthalene	4.9	0.50	1.0	"	"	"	"	"	"	
Naphthalene	2.7	0.50	1.0	"	"	"	"	"	"	
2-Nitroaniline	ND	0.50	1.0	"	"	"	"	"	"	
3-Nitroaniline	ND	0.50	1.0	"	"	"	"	"	"	
4-Nitroaniline	ND	0.60	2.5	"	"	"	"	"	"	
Nitrobenzene	ND	0.50	1.0	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	0.70	1.0	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	0.50	1.0	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	0.50	1.0	"	"	"	"	"	"	
Phenanthrene	2.2	0.50	1.0	"	"	"	"	"	"	
Pyrene	ND	0.50	1.0	"	"	"	"	"	"	
Carbazole	ND	0.50	1.0	"	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	0.70	1.0	"	"	"	"	"	"	
1-Chloro-3-methylphenol	ND	0.50	1.0	"	"	"	"	"	"	
Parachlorometa cresol)										
2-Chlorophenol	ND	0.60	1.0	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.50	1.0	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	0.50	1.0	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	0.97	1.0	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	0.95	1.0	"	"	"	"	"	"	
2-Methylphenol	ND	0.70	1.0	"	"	"	"	"	"	
8 & 4-Methylphenol	ND	0.60	1.0	"	"	"	"	"	"	
2-Nitrophenol	ND	0.60	1.0	"	"	"	"	"	"	
l-Nitrophenol	ND	0.50	1.0	"	"	"	"	"	"	
Pentachlorophenol	ND	0.50	1.0	"	"	"	"	"	"	
Phenol	ND	0.60	1.0	"	"	"	"	"	"	
Pyridine	ND	0.50	1.0	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	0.50	1.0	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	0.50	1.0	"	"	"	"	"	"	
, i,o minoropiienoi										

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

EXC-SP 1503795-10 (Solid)

Analyte	Result	MDL	PQL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Oilfield Environmental and Compliance

Semivolatile Organic Compounds by EPA Metho	od 8270C						R-05
Surrogate: Phenol-d5	80.4 %	24-106	B5I0174	08-Sep-15	09-Sep-15	EPA 8270C	
Surrogate: Nitrobenzene-d5	71.1 %	35-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl	99.8 %	37-122	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol	83.5 %	15-134	"	"	"	"	
Surrogate: p-Terphenyl-d14	89.8 %	22-172	"	"	"	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.oecusa.com

TEL: (805) 922-4772

FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Flashpoint, Closed Cup - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5I0158 - Wetchem	default method										
Blank (B5I0158-BLK1)					Prepared	& Analyz	ed: 08-Sep	p-15			
Flashpoint	>212	72	72	°F							
LCS (B5I0158-BS1)			Prepared & Analyzed: 08-Sep-15 72 72 °F Prepared & Analyzed: 08-Sep-15 72 72 °F 81.0 104 95-105 Prepared & Analyzed: 08-Sep-15								
Flashpoint	84	72	72	°F	81.0		104	95-105			
LCS (B5I0158-BS2)					Prepared	& Analyze	ed: 08-Sep	p-15			
Flashpoint	136	72	72	°F	133		102	95-105			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Wet Chemistry by EPA or APHA Standard Methods - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch B5I0143 - EPA 9045 p	H Prep												
LCS (B5I0143-BS1)	Prepared & Analyzed: 05-Sep-15												
pH @ 25 C	3.98	0.05	0.10	pH Units	4.00		99.5	90-110					
LCS (B5I0143-BS2)					Prepared &	& Analyze	ed: 05-Sep	-15					
pH @ 25 C	7.02	0.05	0.10	pH Units	7.00		100	90-110					
LCS (B5I0143-BS3)					Prepared &	& Analyze	ed: 05-Sep	-15					
pH @ 25 C	10.02	0.05	0.10	pH Units	10.0		100	90-110					
LCS (B5I0143-BS4)					Prepared &	& Analyze	ed: 05-Sep	-15					
pH @ 25 C	12.04	0.05	0.10	pH Units	12.0		100	90-110					
Duplicate (B5I0143-DUP1)	Source	e: 1503774-	-01		Prepared & Analyzed: 05-Sep-15								
Sample Temperature During pH Analysis	19.7	1.0	1.0	°C		19.5			1.02	10			
pH @ 25 C	7.71	0.05	0.10	pH Units		7.76			0.646	10			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Reactives - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5I0156 - Wetchem de	efault method										
Blank (B5I0156-BLK1)					Prepared	& Analyz	ed: 08-Sep	-15			
Cyanide, reactive	ND	0.167	0.500	mg/kg							
LCS (B5I0156-BS1)					Prepared	& Analyz	ed: 08-Sep	-15			
Cyanide, reactive	0.452	0.167	0.500	mg/kg	4.00		11.3	1-26			Ţ
Duplicate (B5I0156-DUP1)	Sour	ce: 1503795	5-10		Prepared	& Analyz	ed: 08-Sep	-15			
Cyanide, reactive	ND	0.167	0.500	mg/kg	ND					20	
Batch B5I0157 - Wetchem de	efault method										
Blank (B5I0157-BLK1)					Prepared	& Analyz	ed: 08-Sep	-15			
Sulfide, reactive	ND	1.00	2.00	mg/kg							
LCS (B5I0157-BS1)					Prepared	& Analyz	ed: 08-Sep	-15			
Sulfide, reactive	64.9	1.00	2.00	mg/kg	80.0		81.2	1-141			
Duplicate (B5I0157-DUP1)	Sour	ce: 1503795	5-10		Prepared & Analyzed: 08-Sep-15						
Sulfide, reactive	11.2	1.00	2.00	mg/kg		10.4			7.39	20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

14-Sep-15 16:55

Reported:

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5I0182 - EPA 3050I	3										
Blank (B5I0182-BLK1)					Prepared:	09-Sep-1:	5 Analyze	d: 10-Sep-	15		
Antimony	ND	1.0	2.5	mg/kg							
Arsenic	0.600	0.50	1.0	"							
Barium	ND	0.50	1.0	"							
Beryllium	ND	0.25	0.50	"							
Cadmium	ND	0.15	0.25	"							
Chromium	ND	0.25	0.50	"							
Cobalt	ND	0.25	0.50	"							
Copper	ND	0.50	1.0	"							
Lead	ND	0.30	0.50	"							
Molybdenum	ND	0.25	0.50	"							
Nickel	ND	0.10	0.25	"							
Selenium	ND	1.0	2.0	"							
Silver	ND	0.20	0.50	"							
Thallium	ND	0.50	1.0	"							
Vanadium	ND	0.50	1.0	"							
Zinc	ND	0.50	1.0	"							
LCS (B5I0182-BS1)					Prepared:	09-Sep-13	5 Analyze	d: 10-Sep-	15		
Antimony	99.7	1.0	2.5	mg/kg	100		99.7	80-120			
Arsenic	104	0.50	1.0	"	100		104	80-120			
Barium	97.7	0.50	1.0	"	100		97.7	80-120			
Beryllium	94.8	0.25	0.50	"	100		94.8	80-120			
Cadmium	102	0.15	0.25	"	100		102	80-120			
Chromium	107	0.25	0.50	"	100		107	80-120			
Cobalt	104	0.25	0.50	"	100		104	80-120			
Copper	97.4	0.50	1.0	"	100		97.4	80-120			
Lead	101	0.30	0.50	"	100		101	80-120			
Molybdenum	100	0.25	0.50	"	100		100	80-120			
Nickel	103	0.10	0.25	"	100		103	80-120			
Selenium	98.3	1.0	2.0	"	100		98.3	80-120			
Silver	5.10	0.20	0.50	"	5.00		102	80-120			
Thallium	108	0.50	1.0	"	100		108	80-120			
Vanadium	103	0.50	1.0	"	100		103	80-120			
Zinc	102	0.50	1.0	"	100		102	80-120			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

14-Sep-15 16:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5I0182 - EPA 3050B											
LCS Dup (B5I0182-BSD1)					Prepared:	09-Sep-15	5 Analyze	d: 10-Sep-	15		
Antimony	96.8	1.0	2.5	mg/kg	100		96.8	80-120	2.90	20	
Arsenic	101	0.50	1.0	"	100		101	80-120	2.99	20	
Barium	95.2	0.50	1.0	"	100		95.2	80-120	2.54	20	
Beryllium	92.4	0.25	0.50	"	100		92.4	80-120	2.62	20	
Cadmium	99.2	0.15	0.25	"	100		99.2	80-120	2.49	20	
Chromium	103	0.25	0.50	"	100		103	80-120	3.19	20	
Cobalt	101	0.25	0.50	"	100		101	80-120	2.74	20	
Copper	94.6	0.50	1.0	"	100		94.6	80-120	2.92	20	
Lead	98.7	0.30	0.50	"	100		98.7	80-120	2.65	20	
Molybdenum	98.5	0.25	0.50	"	100		98.5	80-120	1.96	20	
Nickel	100	0.10	0.25	"	100		100	80-120	2.76	20	
Selenium	96.6	1.0	2.0	"	100		96.6	80-120	1.74	20	
Silver	5.04	0.20	0.50	"	5.00		101	80-120	1.08	20	
Thallium	106	0.50	1.0	"	100		106	80-120	2.15	20	
Vanadium	100	0.50	1.0	"	100		100	80-120	2.26	20	
Zinc	98.6	0.50	1.0	"	100		98.6	80-120	2.85	20	
Duplicate (B5I0182-DUP1)	Sour	ce: 1503779	-06		Prepared:	09-Sep-15	5 Analyze	d: 10-Sep-	15		
Antimony	ND	0.95	2.4	mg/kg		ND				20	
Arsenic	3.12	0.47	0.95	"		3.78			19.2	20	
Barium	29.1	0.47	0.95	"		27.3			6.24	20	
Beryllium	ND	0.24	0.47	"		ND				20	
Cadmium	0.346	0.14	0.24	"		0.297			15.2	20	
Chromium	8.48	0.24	0.47	"		8.63			1.74	20	
Cobalt	2.86	0.24	0.47	"		2.92			2.19	20	
Copper	5.30	0.47	0.95	"		5.63			6.03	20	
Lead	2.49	0.28	0.47	"		2.59			4.02	20	
Molybdenum	1.11	0.24	0.47	"		1.46			27.4	20	QR-04
Nickel	6.66	0.095	0.24	"		7.12			6.74	20	
Selenium	ND	0.95	1.9	"		ND				20	
Silver	ND	0.19	0.47	"		ND				20	
Thallium	ND	0.47	0.95	"		ND				20	
Vanadium	16.1	0.47	0.95	"		16.7			3.81	20	
Zinc	17.4	0.47	0.95	"		18.3			5.17	20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported:

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	B510182	- EPA 3050B
-------	---------	-------------

Matrix Spike (B5I0182-MS1)	Sou	rce: 1503779-	-06		Prepared:	09-Sep-15	5 Analyze	d: 10-Sep-	15		
Antimony	50.6	0.96	2.4	mg/kg	96.3	ND	52.6	0-121			
Arsenic	100	0.48	0.96	"	96.3	3.78	99.8	53-141			
Barium	134	0.48	0.96	"	96.3	27.3	111	47-160			
Beryllium	89.2	0.24	0.48	"	96.3	ND	92.6	83-115			
Cadmium	94.5	0.14	0.24	"	96.3	0.297	97.7	80-116			
Chromium	110	0.24	0.48	"	96.3	8.63	106	68-136			
Cobalt	96.6	0.24	0.48	"	96.3	2.92	97.2	76-118			
Copper	100	0.48	0.96	"	96.3	5.63	98.2	70-135			
Lead	93.1	0.29	0.48	"	96.3	2.59	93.9	54-136			
Molybdenum	92.8	0.24	0.48	"	96.3	1.46	94.8	61-122			
Nickel	99.5	0.096	0.24	"	96.3	7.12	95.9	55-142			
Selenium	93.4	0.96	1.9	"	96.3	ND	96.9	48-141			
Silver	4.85	0.19	0.48	"	4.82	ND	101	68-125			
Thallium	92.4	0.48	0.96	"	96.3	ND	95.9	68-117			
Vanadium	117	0.48	0.96	"	96.3	16.7	105	46-154			
Zinc	111	0.48	0.96	"	96.3	18.3	96.7	66-133			
Matrix Spike Dup (B5I0182-MSD1)	Sou	rce: 1503779-	-06		Prepared:	09-Sep-15	5 Analyze	d: 10-Sep-	15		
A	4= 0										
Antimony	47.3	0.93	2.3	mg/kg	93.3	ND	50.7	0-121	6.80	20	
•	47.3 101	0.93 0.47	2.3 0.93	mg/kg	93.3 93.3	ND 3.78	50.7 105	0-121 53-141	6.80 1.30	20 20	
Arsenic											
Arsenic Barium	101	0.47	0.93	"	93.3	3.78	105	53-141	1.30	20	
Arsenic Barium Beryllium	101 134	0.47 0.47	0.93 0.93	"	93.3 93.3	3.78 27.3	105 115	53-141 47-160	1.30 0.119	20 20	
Arsenic Barium Beryllium Cadmium	101 134 87.4	0.47 0.47 0.23	0.93 0.93 0.47	" "	93.3 93.3 93.3	3.78 27.3 ND	105 115 93.7	53-141 47-160 83-115	1.30 0.119 1.99	20 20 20	
Arsenic Barium Beryllium Cadmium Chromium	101 134 87.4 93.0	0.47 0.47 0.23 0.14	0.93 0.93 0.47 0.23	" "	93.3 93.3 93.3 93.3	3.78 27.3 ND 0.297	105 115 93.7 99.4	53-141 47-160 83-115 80-116	1.30 0.119 1.99 1.55	20 20 20 20	
Arsenic Barium Beryllium Cadmium Chromium Cobalt	101 134 87.4 93.0 109	0.47 0.47 0.23 0.14 0.23	0.93 0.93 0.47 0.23 0.47	" " " " " " " " " " " " " " " " " " " "	93.3 93.3 93.3 93.3 93.3	3.78 27.3 ND 0.297 8.63	105 115 93.7 99.4 108	53-141 47-160 83-115 80-116 68-136	1.30 0.119 1.99 1.55 0.980	20 20 20 20 20 20	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper	101 134 87.4 93.0 109 95.2	0.47 0.47 0.23 0.14 0.23 0.23	0.93 0.93 0.47 0.23 0.47 0.47	" " " " " " " " " " " " " " " " " " " "	93.3 93.3 93.3 93.3 93.3	3.78 27.3 ND 0.297 8.63 2.92	105 115 93.7 99.4 108 99.0	53-141 47-160 83-115 80-116 68-136 76-118	1.30 0.119 1.99 1.55 0.980 1.39	20 20 20 20 20 20 20	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead	101 134 87.4 93.0 109 95.2 99.1	0.47 0.47 0.23 0.14 0.23 0.23 0.47	0.93 0.93 0.47 0.23 0.47 0.47 0.93	" " " " " " " " " " " " " " " " " " " "	93.3 93.3 93.3 93.3 93.3 93.3	3.78 27.3 ND 0.297 8.63 2.92 5.63	105 115 93.7 99.4 108 99.0 100	53-141 47-160 83-115 80-116 68-136 76-118 70-135	1.30 0.119 1.99 1.55 0.980 1.39 1.18	20 20 20 20 20 20 20 20	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum	101 134 87.4 93.0 109 95.2 99.1 91.1	0.47 0.47 0.23 0.14 0.23 0.23 0.47 0.28	0.93 0.93 0.47 0.23 0.47 0.47 0.93	" " " " " " " " " " " " " " " " " " "	93.3 93.3 93.3 93.3 93.3 93.3 93.3 93.3	3.78 27.3 ND 0.297 8.63 2.92 5.63 2.59	105 115 93.7 99.4 108 99.0 100 94.9	53-141 47-160 83-115 80-116 68-136 76-118 70-135 54-136	1.30 0.119 1.99 1.55 0.980 1.39 1.18 2.14	20 20 20 20 20 20 20 20 20	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum	101 134 87.4 93.0 109 95.2 99.1 91.1 92.2	0.47 0.47 0.23 0.14 0.23 0.23 0.47 0.28	0.93 0.93 0.47 0.23 0.47 0.47 0.93 0.47	" " " " " " " " " " " " " " " " " " " "	93.3 93.3 93.3 93.3 93.3 93.3 93.3 93.3	3.78 27.3 ND 0.297 8.63 2.92 5.63 2.59 1.46	105 115 93.7 99.4 108 99.0 100 94.9 97.2	53-141 47-160 83-115 80-116 68-136 76-118 70-135 54-136 61-122	1.30 0.119 1.99 1.55 0.980 1.39 1.18 2.14 0.660	20 20 20 20 20 20 20 20 20 20	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium	101 134 87.4 93.0 109 95.2 99.1 91.1 92.2 98.5	0.47 0.47 0.23 0.14 0.23 0.23 0.47 0.28 0.23 0.093	0.93 0.93 0.47 0.23 0.47 0.47 0.93 0.47 0.47 0.23	"""""""""""""""""""""""""""""""""""""""	93.3 93.3 93.3 93.3 93.3 93.3 93.3 93.3	3.78 27.3 ND 0.297 8.63 2.92 5.63 2.59 1.46 7.12	105 115 93.7 99.4 108 99.0 100 94.9 97.2 98.0	53-141 47-160 83-115 80-116 68-136 76-118 70-135 54-136 61-122 55-142	1.30 0.119 1.99 1.55 0.980 1.39 1.18 2.14 0.660 1.02	20 20 20 20 20 20 20 20 20 20 20	
Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium	101 134 87.4 93.0 109 95.2 99.1 91.1 92.2 98.5 93.4	0.47 0.47 0.23 0.14 0.23 0.23 0.47 0.28 0.23 0.093 0.93	0.93 0.93 0.47 0.23 0.47 0.47 0.93 0.47 0.47 0.23	"" "" "" "" "" "" "" "" "" "" "" "" ""	93.3 93.3 93.3 93.3 93.3 93.3 93.3 93.3	3.78 27.3 ND 0.297 8.63 2.92 5.63 2.59 1.46 7.12 ND	105 115 93.7 99.4 108 99.0 100 94.9 97.2 98.0 100	53-141 47-160 83-115 80-116 68-136 76-118 70-135 54-136 61-122 55-142 48-141	1.30 0.119 1.99 1.55 0.980 1.39 1.18 2.14 0.660 1.02 0.0260	20 20 20 20 20 20 20 20 20 20 20 20	
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium	101 134 87.4 93.0 109 95.2 99.1 91.1 92.2 98.5 93.4 4.70	0.47 0.47 0.23 0.14 0.23 0.23 0.47 0.28 0.23 0.093 0.93 0.19	0.93 0.93 0.47 0.23 0.47 0.47 0.93 0.47 0.23 1.9		93.3 93.3 93.3 93.3 93.3 93.3 93.3 93.3	3.78 27.3 ND 0.297 8.63 2.92 5.63 2.59 1.46 7.12 ND	105 115 93.7 99.4 108 99.0 100 94.9 97.2 98.0 100 101	53-141 47-160 83-115 80-116 68-136 76-118 70-135 54-136 61-122 55-142 48-141 68-125	1.30 0.119 1.99 1.55 0.980 1.39 1.18 2.14 0.660 1.02 0.0260 3.02	20 20 20 20 20 20 20 20 20 20 20 20 20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Total Metals by EPA 6000/7000 Series Methods - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5I0200 - EPA 7471A Pr	ер										
Blank (B5I0200-BLK1)					Prepared	& Analyze	ed: 09-Sep	o-15			
Mercury	ND	0.011	0.10	mg/kg							
LCS (B5I0200-BS1)					Prepared	& Analyze	ed: 09-Sep	p-15			
Mercury	0.948	0.011	0.10	mg/kg	0.833	·	114	85-115		·	
LCS Dup (B5I0200-BSD1)					Prepared	& Analyze	ed: 09-Sep	p-15			
Mercury	0.946	0.011	0.10	mg/kg	0.833		114	85-115	0.158	20	
Duplicate (B5I0200-DUP1)	Sour	rce: 1503779	9-06		Prepared	& Analyze	ed: 09-Sep	p-15			
Mercury	ND	0.0085	0.079	mg/kg		ND				20	
Matrix Spike (B5I0200-MS1)	Sour	rce: 1503779	9-06		Prepared	& Analyze	ed: 09-Sep	o-15			
Mercury	0.931	0.011	0.098	mg/kg	0.814	ND	114	75-125			
Matrix Spike Dup (B5I0200-MSD2	l) Soui	rce: 1503779	9-06		Prepared	& Analyze	ed: 09-Sep	o-15			
Mercury	0.744	0.0091	0.085	mg/kg	0.704	ND	106	75-125	22.3	20	QR-0
Post Spike (B5I0200-PS1)	Sour	rce: 1503779	9-06		Prepared	& Analyze	ed: 09-Sep	p-15			
Mercury	5.94			ug/L	5.00	0.0324	118	85-115			QL-0

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

STLC Metals by 6000/7000 Series Methods - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5I0327 - EPA 3050B Lea	chate										
Blank (B5I0327-BLK1)					Prepared of	& Analyze	ed: 14-Sep	p-15			
Chromium	ND	0.025	0.050	mg/L							
LCS (B5I0327-BS1)					Prepared of	& Analyze	ed: 14-Sep	p-15			
Chromium	10.6	0.025	0.050	mg/L	10.0	-	106	80-120			
LCS Dup (B5I0327-BSD1)					Prepared of	& Analyze	ed: 14-Sep	p-15			
Chromium	10.6	0.025	0.050	mg/L	10.0	-	106	80-120	0.661	20	
Duplicate (B5I0327-DUP1)	Sour	ce: 1503774	-01		Prepared 6	& Analyze	ed: 14-Sep	p-15			
Chromium	0.632	0.025	0.050	mg/L		0.624			1.27	20	
Matrix Spike (B5I0327-MS1)	Sour	ce: 1503774	-01		Prepared 6	& Analyze	ed: 14-Sep	p-15			
Chromium	10.5	0.025	0.050	mg/L	10.0	0.624	99.1	75-125			
Matrix Spike Dup (B5I0327-MSD1)	Sour	ce: 1503774	-01		Prepared 6	& Analyze	ed: 14-Sep	p-15			
Chromium	10.6	0.025	0.050	mg/L	10.0	0.624	99.5	75-125	0.379	20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

TVPH by GC FID - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5I0222 - EPA 5035/50	30B MEOH	GC									
Blank (B5I0222-BLK1)					Prepared	& Analyz	ed: 10-Sep	p-15			
TPH Gasoline (C4-C12)	28.9	20	100	mg/kg							
Surrogate: 4-Bromofluorobenzene	0.116			"	0.125		92.7	70-130			
LCS (B5I0222-BS1)					Prepared	& Analyz	ed: 10-Sep	o-15			
TPH Gasoline (C4-C12)	204	20	99	mg/kg	198		103	70-130			
Surrogate: 4-Bromofluorobenzene	0.115			"	0.124		93.0	70-130			
LCS Dup (B5I0222-BSD1)					Prepared	& Analyz	ed: 10-Sep	o-15			
TPH Gasoline (C4-C12)	244	20	100	mg/kg	200		122	70-130	17.7	20	
Surrogate: 4-Bromofluorobenzene	0.116			"	0.125		92.6	70-130			
Duplicate (B5I0222-DUP1)	Sour	ce: 1503795	10RE1		Prepared	& Analyz	ed: 10-Sep	p-15			
TPH Gasoline (C4-C12)	349	20	100	mg/kg		293			17.5	20	D-0
Surrogate: 4-Bromofluorobenzene	0.180			"	0.126		143	70-130			S-0

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.oecusa.com

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Page 38 of 67

TEL: (805) 922-4772

FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

DI WET/STLC/ZHE Volatiles - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5I0250 - EPA 5030B Lea	chate										
Blank (B5I0250-BLK1)					Prepared	& Analyz	ed: 10-Sep	o-15			
TPH Gasoline (C4-C12)	49.7	21	50	ug/L							J, B-02
Surrogate: 4-Bromofluorobenzene	116			"	125		92.5	70-130			
LCS (B5I0250-BS1)					Prepared	& Analyze	ed: 10-Sep	p-15			
TPH Gasoline (C4-C12)	559	21	50	ug/L	500		112	70-130			
Surrogate: 4-Bromofluorobenzene	117			"	125		93.9	70-130			
LCS Dup (B5I0250-BSD1)					Prepared	& Analyz	ed: 10-Sep	o-15			
TPH Gasoline (C4-C12)	527	21	50	ug/L	500	•	105	70-130	6.02	20	
Surrogate: 4-Bromofluorobenzene	117			"	125		93.3	70-130			
Duplicate (B5I0250-DUP1)	Sour	ce: 1503795-	10		Prepared	& Analyz	ed: 10-Sep	o-15			
TPH Gasoline (C4-C12)	1200	21	50	ug/L		1250			4.27	20	D-04
Surrogate: 4-Bromofluorobenzene	139			"	125		111	70-130			
Matrix Spike (B5I0250-MS1)	Sour	ce: 1503795-	10		Prepared	& Analyz	ed: 10-Sep	p-15			
TPH Gasoline (C4-C12)	1180	21	50	ug/L	500	1250	NR	70-130			QM-07
Surrogate: 4-Bromofluorobenzene	133			"	125		107	70-130			
Matrix Spike Dup (B5I0250-MSD1)	Sour	ce: 1503795-	10		Prepared	& Analyz	ed: 10-Sep	p-15			
TPH Gasoline (C4-C12)	1280	21	50	ug/L	500	1250	5.92	70-130	8.11	20	QM-07
Surrogate: 4-Bromofluorobenzene	133			"	125		107	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

TEPH by GC FID - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5I0168 - EPA 3550B											
Blank (B5I0168-BLK1)					Prepared	& Analyz	ed: 08-Sep	p-15			
TPH Diesel (C13-C22)	ND	7.6	10	mg/kg							
Surrogate: o-Terphenyl	48.6			"	50.0		97.2	78-125			
LCS (B5I0168-BS1)					Prepared	& Analyz	ed: 08-Sep	p-15			
TPH Diesel (C13-C22)	495	7.6	10	mg/kg	500		98.9	86-111			
Surrogate: o-Terphenyl	46.8			"	50.0		93.6	78-125			
LCS Dup (B5I0168-BSD1)					Prepared	& Analyz	ed: 08-Sep	p-15			
TPH Diesel (C13-C22)	493	7.6	10	mg/kg	500	-	98.6	86-111	0.356	20	
Surrogate: o-Terphenyl	46.6			"	50.0		93.2	78-125			
Duplicate (B5I0168-DUP1)	Sour	ce: 1503795-	02		Prepared	& Analyz	ed: 08-Sep	p-15			
TPH Diesel (C13-C22)	393	7.6	10	mg/kg	_	309			23.8	20	QR-03
Surrogate: o-Terphenyl	47.1			"	49.9		94.4	78-125			
Matrix Spike (B5I0168-MS1)	Sour	ce: 1503795-	02		Prepared	& Analyz	ed: 08-Sep	p-15			
TPH Diesel (C13-C22)	740	7.6	10	mg/kg	499	309	86.3	78-117			
Surrogate: o-Terphenyl	45.5			"	49.9		91.2	78-125			
Matrix Spike Dup (B5I0168-MSD1)	Sour	ce: 1503795-	02		Prepared	& Analyz	ed: 08-Sep	p-15			
TPH Diesel (C13-C22)	825	7.6	10	mg/kg	498	309	103	78-117	10.8	20	
Surrogate: o-Terphenyl	46.2			"	49.8		92.8	78-125			
Batch B5I0170 - EPA 3550B											
Blank (B5I0170-BLK1)					Prepared	& Analyz	ed: 08-Sep	p-15			
TPH Diesel (C13-C22)	ND	7.6	10	mg/kg	_	•					
TPH Motor Oil (C23-C40)	ND	40	50	"							
Surrogate: o-Terphenyl	49.4			"	50.0		98.9	78-125			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

TEPH by GC FID - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5I0170 - EPA 3550B											
LCS (B5I0170-BS1)					Prepared	& Analyze	ed: 08-Sep	p-15			
TPH Diesel (C13-C22)	467	7.6	10	mg/kg	500		93.3	86-111			
Surrogate: o-Terphenyl	47.3			"	50.0		94.6	78-125			
LCS Dup (B5I0170-BSD1)					Prepared	& Analyze	ed: 08-Sep	o-15			
TPH Diesel (C13-C22)	472	7.6	10	mg/kg	500		94.3	86-111	1.04	20	
Surrogate: o-Terphenyl	47.9			"	50.0		95.7	78-125			
Duplicate (B5I0170-DUP1)	Sour	ce: 1503796-1	12		Prepared	& Analyze	ed: 08-Sep	o-15			
TPH Diesel (C13-C22)	ND	7.6	10	mg/kg		ND				20	
TPH Motor Oil (C23-C40)	ND	40	50	"		ND				20	
Surrogate: o-Terphenyl	49.0			"	49.9		98.2	78-125			
Matrix Spike (B5I0170-MS1)	Sour	ce: 1503796-1	12		Prepared	& Analyze	ed: 08-Sep	o-15			
TPH Diesel (C13-C22)	467	7.6	10	mg/kg	502	ND	93.0	78-117			
Surrogate: o-Terphenyl	49.2			"	50.2		98.1	78-125			
Matrix Spike Dup (B5I0170-MSD1)	Sour	ce: 1503796-1	12		Prepared	& Analyze	ed: 08-Sep	p-15			
TPH Diesel (C13-C22)	485	7.6	10	mg/kg	498	ND	97.4	78-117	3.82	20	
Surrogate: o-Terphenyl	49.5			"	49.8		99.4	78-125			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.oecusa.com

TEL: (805) 922-4772

FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

DI WET/STLC Semi-Volatiles - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5I0215 - EPA 3510C											
Blank (B5I0215-BLK1)					Prepared	& Analyze	ed: 10-Sep	-15			
TPH Diesel (C13-C22)	ND	0.041	0.050	mg/L							
TPH Motor Oil (C23-C40)	ND	0.050	0.10	"							
Surrogate: o-Terphenyl	0.102			"	0.100		102	50-157			
LCS (B5I0215-BS1)					Prepared	& Analyze	ed: 10-Sep	-15			
TPH Diesel (C13-C22)	0.701	0.041	0.050	mg/L	1.00		70.1	59-114			
Surrogate: o-Terphenyl	0.0862			"	0.100		86.2	50-157			
LCS Dup (B5I0215-BSD1)					Prepared	& Analyze	ed: 10-Sep	-15			
TPH Diesel (C13-C22)	0.802	0.041	0.050	mg/L	1.00		80.2	59-114	13.3	20	
Surrogate: o-Terphenyl	0.0918			"	0.100		91.8	50-157			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

MDI	POL	Snike	Source	%RFC	RPD

Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5I0195 - EPA 3550B	3										
Blank (B5I0195-BLK2)					Prepared:	09-Sep-1:	5 Analyze	d: 10-Sep-	15		
PCB-1016	ND	0.010	0.020	mg/kg							
PCB-1221	ND	0.010	0.020	"							
PCB-1232	ND	0.010	0.020	"							
PCB-1242	ND	0.010	0.020	"							
PCB-1248	ND	0.010	0.020	"							
PCB-1254	ND	0.010	0.020	"							
PCB-1260	ND	0.010	0.020	"							
Surrogate: Decachlorobiphenyl	0.00745			"	0.00833		89.4	24-134			
Surrogate: 2,4,5,6	0.00548			"	0.00833		65.8	11-145			
Tetrachloro-m-xylene											
LCS (B5I0195-BS2)					Prepared:	09-Sep-1:	5 Analyze	d: 10-Sep-	15		
PCB-1016	0.0480	0.010	0.020	mg/kg	0.0667		72.0	50-104			
PCB-1260	0.0507	0.010	0.020	"	0.0667		76.1	48-125			
Surrogate: Decachlorobiphenyl	0.00860			"	0.00833		103	24-134			
Surrogate: 2,4,5,6	0.00582			"	0.00833		69.8	11-145			
Tetrachloro-m-xylene											
LCS Dup (B5I0195-BSD2)					Prepared:	09-Sep-1:	5 Analyze	d: 10-Sep-	15		
PCB-1016	0.0503	0.010	0.020	mg/kg	0.0667		75.4	50-104	4.62	30	
PCB-1260	0.0474	0.010	0.020	"	0.0667		71.2	48-125	6.73	30	
Surrogate: Decachlorobiphenyl	0.00652			"	0.00833		78.2	24-134			
Surrogate: 2,4,5,6	0.00502			"	0.00833		60.3	11-145			
Tetrachloro-m-xylene											
Duplicate (B5I0195-DUP2)	Sour	ce: 1503795	5-10		Prepared:	09-Sep-1:	5 Analyze	d: 10-Sep-	15		
PCB-1016	ND	0.010	0.020	mg/kg		ND				30	
PCB-1221	ND	0.010	0.020	"		ND				30	
PCB-1232	ND	0.010	0.020	"		ND				30	
PCB-1242	ND	0.010	0.020	"		ND				30	
PCB-1248	ND	0.010	0.020	"		ND				30	
PCB-1254	ND	0.010	0.020	"		ND				30	
PCB-1260	ND	0.010	0.020	"		ND				30	
Surrogate: Decachlorobiphenyl	0.00917			"	0.0166		55.1	24-134			
Surrogate: 2,4,5,6	0.0110			"	0.0166		66.1	11-145			
Tetrachloro-m-xylene											

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported:

14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101Project Number: ExcavationReported:Ventura CA, 93001Project Manager: Eric Kirkegaard14-Sep-15 16:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5I0160 - EPA 5035/5030B MEOH

Benene ND 0,002 0,005 mg/kg Bromochormethane ND 0,002 0,005 " Bromochloromethane ND 0,002 0,005 " sec-Burylbenzene ND 0,002 0,005 " sec-Burylbenzene ND 0,002 0,005 " Carbon tetrachloride ND 0,002 0,005 " Chloroforne ND 0,002 0,005 " Chloroform ND 0,002 0,005 " Chloroform ND 0,002 0,005 " Chloroform ND 0,002 0,005 " Chloroformethane ND 0,002 0,005 " L-Dichloroformethane ND 0,002 0,005 " <th>Blank (B5I0160-BLK1)</th> <th></th> <th></th> <th></th> <th></th> <th>Prepared & Analyzed: 08-Sep-15</th>	Blank (B5I0160-BLK1)					Prepared & Analyzed: 08-Sep-15
Promoch Chromethane ND 0.0020 0.0050	Benzene	ND	0.0020	0.0050	mg/kg	
Bromodichloromethane ND 0.0020 0.0050 " Bromoform ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " ser-Butylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " L'2-Dichlorom-3-chloropropane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichloroebnzene ND 0.0020	Bromobenzene	ND	0.0020	0.0050	"	
Bromoform ND 0.0020 0.0050 " Bromomethame ND 0.0020 0.0050 " Bromomethame ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " carbon tetrachloride ND 0.0020 0.0050 " Chlorochenzene ND 0.0020 0.0050 " Chlorochenzene ND 0.0020 0.0050 " Chlorochenae ND 0.0020 0.0050 " Chlorochenee ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " La-Dichlorochenzene ND 0.0020 0.0050	Bromochloromethane	ND	0.0020	0.0050	"	
Bromomethane ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " tert-Butylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chloroetane ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dichorothane ND 0.0020 0.0050 " 1,3-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050	Bromodichloromethane	ND	0.0020	0.0050	"	
n-Buylbenzene ND 0.0020 0.0050 " sec-Buylbenzene ND 0.0020 0.0050 " etr-Buylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorochenzene ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroformethane ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Diromo-3-chloropropane ND 0.0020 0.0050 " Dibromo-Ghromethane ND 0.0020 0.0050 " 1,3-Dichlorothane ND 0.0020 0.0050 " 1,4-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichlorothane ND 0.002	Bromoform	ND	0.0020	0.0050	"	
sec-Dutylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorochane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chlorostoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dichorob-a-chloropropane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,2-Dichlorobethane ND 0.0020 0.0050 " 1,1-Dichlorochene <td< td=""><td>Bromomethane</td><td>ND</td><td>0.0020</td><td>0.0050</td><td>"</td><td></td></td<>	Bromomethane	ND	0.0020	0.0050	"	
tert-Butylbenzene ND 0.0020 0.0050 " Carbon tertachloride ND 0.0020 0.0050 " Chlorocetane ND 0.0020 0.0050 " Chlorocthane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " 1.Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1-2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND	n-Butylbenzene	ND	0.0020	0.0050	"	
Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dishomo-3-chloropropane ND 0.0020 0.0050 " Dibromo-S-chloropropane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloropropane ND	sec-Butylbenzene	ND	0.0020	0.0050	"	
Chlorobenzene ND 0.0020 0.0050 " Chlorochane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroptene ND 0.0020 0.0050 " cis-1,2-Dichloroptopane ND <td>tert-Butylbenzene</td> <td>ND</td> <td>0.0020</td> <td>0.0050</td> <td>"</td> <td></td>	tert-Butylbenzene	ND	0.0020	0.0050	"	
Chloroethane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromodhloromethane ND 0.0020 0.0050 " Dibromodhane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorodfluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroptopane ND	Carbon tetrachloride	ND	0.0020	0.0050	"	
Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloropropane ND 0.0020 0.0050 " 1,2-Dichloropropane N	Chlorobenzene	ND	0.0020	0.0050	"	
Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromoethlane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichloromethane ND 0.0020 0.0050 " 1,4-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichlorothane ND	Chloroethane	ND	0.0020	0.0050	"	
2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromo-Ghromethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropr	Chloroform	ND	0.0020	0.0050	"	
4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " trans-1,2-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichloropropane	Chloromethane	ND	0.0020	0.0050	"	
1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropane	2-Chlorotoluene	ND	0.0020	0.0050	"	
Dibromochloromethane ND 0.0020 0.0050 " Jibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " Dichlorodifluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " trans-1,2-Dichloroptopene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichlorop	4-Chlorotoluene	ND	0.0020	0.0050	"	
Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " Dichlorodifluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropr	1,2-Dibromo-3-chloropropane	ND	0.0020	0.0050	"	
1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " Dichlorodifluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " Ly-Dibromoethane	Dibromochloromethane	ND	0.0020	0.0050	"	
1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " Dichlorodifluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " cis-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropthene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " 1,2-Di	Dibromomethane	ND	0.0020	0.0050	"	
	1,2-Dichlorobenzene	ND	0.0020	0.0050	"	
Dichlorodifluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " cis-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloroptopane ND 0.0020 0.0050 " 1,2-Dichloroptopane ND 0.0020 0.0050 " 2,2-Dichloroptopane ND 0.0020 0.0050 " 1,1-Dichloroptopene ND 0.0020 0.0050 " 1,1-Dichloroptopene ND 0.0020 0.0050 " cis-1,3-Dichloroptopene ND 0.0020 0.0050 " ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropyl benzen	1,3-Dichlorobenzene	ND	0.0020	0.0050	"	
ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " Isopropyl Toluene ND 0.0020 0.0050 "	1,4-Dichlorobenzene	ND	0.0020	0.0050	"	
1,2-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " cis-1,2-Dichloroethene ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	Dichlorodifluoromethane	ND		0.0050	"	
1,1-Dichloroethene ND 0.0020 0.0050 " cis-1,2-Dichloroethene ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropyl Toluene ND 0.0020 0.0050 "	1,1-Dichloroethane	ND		0.0050	"	
cis-1,2-Dichloroethene ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropyl Toluene ND 0.0020 0.0050 "	1,2-Dichloroethane	ND	0.0020	0.0050	"	
trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropyl Toluene ND 0.0020 0.0050 "	1,1-Dichloroethene	ND		0.0050	"	
1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	cis-1,2-Dichloroethene	ND		0.0050	"	
1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	trans-1,2-Dichloroethene	ND	0.0020	0.0050	"	
1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	1,2-Dichloropropane	ND	0.0020			
1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "						
cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	2,2-Dichloropropane			0.0050		
trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	1,1-Dichloropropene			0.0050		
Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	cis-1,3-Dichloropropene	ND		0.0050	"	
1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	trans-1,3-Dichloropropene	ND		0.0050		
Hexachlorobutadiene	· ·			0.0050		
Isopropylbenzene				0.0050		
4-Isopropyl Toluene ND 0.0020 0.0050 "						
				0.0050		
Methylene chloride ND 0.0020 0.0050 "	1 17	ND		0.0050		
	Methylene chloride	ND	0.0020	0.0050	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

FAX: (805) 925-3376

TEL: (805) 922-4772

DMI-EMK Environmental Services Inc. Ventura

Batch B5I0160 - EPA 5035/5030B MEOH

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B5I0160-BLK1)					Prepared & Ana	lyzed: 08-Sep	o-15	
Naphthalene	ND	0.0020	0.0050	mg/kg				
n-Propylbenzene	ND	0.0020	0.0050	"				
Styrene	ND	0.0020	0.0050	"				
1,1,1,2-Tetrachloroethane	ND	0.0020	0.0050	"				
1,1,2,2-Tetrachloroethane	ND	0.0020	0.0050	"				
Tetrachloroethene (PCE)	ND	0.0020	0.0050	"				
Toluene	ND	0.0020	0.0050	"				
1,2,3-Trichlorobenzene	ND	0.0020	0.0050	"				
1,2,4-Trichlorobenzene	ND	0.0020	0.0050	"				
1,1,1-Trichloroethane	ND	0.0020	0.0050	"				
1,1,2-Trichloroethane	ND	0.0020	0.0050	"				
Trichloroethene (TCE)	ND	0.0020	0.0050	"				
Trichlorofluoromethane	ND	0.0020	0.0050	"				
1,2,3-Trichloropropane	ND	0.0020	0.0050	"				
1,2,4-Trimethylbenzene	ND	0.0020	0.0050	"				
1,3,5-Trimethylbenzene	ND	0.0020	0.0050	"				
Vinyl chloride	ND	0.0020	0.0050	"				
Xylenes (total)	ND	0.0020	0.0050	"				
Methyl-t-butyl ether	ND	0.0020	0.0050	"				
Surrogate: Dibromofluoromethane	0.0521			"	0.0498	105	70-130	
Surrogate: 4-Bromofluorobenzene	0.0429			"	0.0498	86.2	70-130	
Surrogate: Toluene-d8	0.0502			"	0.0498	101	70-130	
LCS (B5I0160-BS1)					Prepared & Ana	lyzed: 08-Sep	p-15	
	0.0000	0.0000	0.0050	-	0.100			

LCS (B5I0160-BS1)					Prepared & An	alyzed: 08-Sep	p-15
Benzene	0.0990	0.0020	0.0050	mg/kg	0.100	99.0	70-130
Chlorobenzene	0.101	0.0020	0.0050	"	0.100	101	70-130
1,1-Dichloroethene	0.107	0.0020	0.0050	"	0.100	107	70-130
Toluene	0.0996	0.0020	0.0050	"	0.100	99.6	70-130
Trichloroethene (TCE)	0.0980	0.0020	0.0050	"	0.100	98.0	70-130
Surrogate: Dibromofluoromethane	0.0514			"	0.0500	103	70-130
Surrogate: 4-Bromofluorobenzene	0.0435			"	0.0500	87.0	70-130
Surrogate: Toluene-d8	0.0492			"	0.0500	98.3	70-130

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5I0160 - EPA 5035/50	30В МЕОН										
LCS Dup (B5I0160-BSD1)					Prepared of	& Analyze	ed: 08-Sep	-15			
Benzene	0.106	0.0020	0.0050	mg/kg	0.0994	-	107	70-130	6.95	20	
Chlorobenzene	0.110	0.0020	0.0050	"	0.0994		111	70-130	8.11	20	
1,1-Dichloroethene	0.116	0.0020	0.0050	"	0.0994		116	70-130	7.53	20	
Toluene	0.108	0.0020	0.0050	"	0.0994		108	70-130	7.72	20	
Trichloroethene (TCE)	0.106	0.0020	0.0050	"	0.0994		107	70-130	8.26	20	
Surrogate: Dibromofluoromethane	0.0530			"	0.0497		107	70-130			
Surrogate: 4-Bromofluorobenzene	0.0437			"	0.0497		87.8	70-130			
Surrogate: Toluene-d8	0.0499			"	0.0497		100	70-130			
Duplicate (B5I0160-DUP1)	Sour	rce: 150372	8-01		Prepared of	& Analyze	ed: 08-Sep	-15			
Benzene	ND	0.020	0.050	mg/kg	-	ND				20	
Bromobenzene	ND	0.020	0.050	"		ND				20	
Bromochloromethane	ND	0.020	0.050	"		ND				20	
Bromodichloromethane	ND	0.020	0.050	"		ND				20	
Bromoform	ND	0.020	0.050	"		ND				20	
Bromomethane	ND	0.020	0.050	"		ND				20	
n-Butylbenzene	ND	0.020	0.050	"		ND				20	
sec-Butylbenzene	0.0204	0.020	0.050	"		0.0348			52.2	20	J, QR-0
tert-Butylbenzene	ND	0.020	0.050	"		ND				20	
Carbon tetrachloride	ND	0.020	0.050	"		ND				20	
Chlorobenzene	ND	0.020	0.050	"		ND				20	
Chloroethane	ND	0.020	0.050	"		ND				20	
Chloroform	ND	0.020	0.050	"		ND				20	
Chloromethane	ND	0.020	0.050	"		ND				20	
2-Chlorotoluene	ND	0.020	0.050	"		ND				20	
4-Chlorotoluene	ND	0.020	0.050	"		ND				20	
1,2-Dibromo-3-chloropropane	ND	0.020	0.050	"		ND				20	
Dibromochloromethane	ND	0.020	0.050	"		ND				20	
Dibromomethane	ND	0.020	0.050	"		ND				20	
1,2-Dichlorobenzene	ND	0.020	0.050	"		ND				20	
1,3-Dichlorobenzene	ND	0.020	0.050	"		ND				20	
1,4-Dichlorobenzene	ND	0.020	0.050	"		ND				20	
Dichlorodifluoromethane	ND	0.020	0.050	"		ND				20	
1,1-Dichloroethane	ND	0.020	0.050	"		ND				20	
1,2-Dichloroethane	ND	0.020	0.050	"		ND				20	
1,1-Dichloroethene	ND	0.020	0.050	"		ND				20	
cis-1,2-Dichloroethene	ND	0.020	0.050	"		ND				20	
trans-1,2-Dichloroethene	ND	0.020	0.050	"		ND				20	
1,2-Dichloropropane	ND	0.020	0.050	"		ND				20	
1,3-Dichloropropane	ND	0.020	0.050	"		ND				20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 46 of 67

TEL: (805) 922-4772

FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5I0160 - EPA 5035/5030B MEOH

Duplicate (B5I0160-DUP1)	Sour	ce: 1503728	3-01		Prepared & A	Analyze	d: 08-Se _l	o-15			
2,2-Dichloropropane	ND	0.020	0.050	mg/kg		ND				20	
1,1-Dichloropropene	ND	0.020	0.050	"		ND				20	
cis-1,3-Dichloropropene	ND	0.020	0.050	"		ND				20	
trans-1,3-Dichloropropene	ND	0.020	0.050	"		ND				20	
Ethylbenzene	ND	0.020	0.050	"		ND				20	
1,2-Dibromoethane (EDB)	ND	0.020	0.050	"		ND				20	
Hexachlorobutadiene	ND	0.020	0.050	"		ND				20	
Isopropylbenzene	ND	0.020	0.050	"		ND				20	
4-Isopropyl Toluene	0.0864	0.020	0.050	"		0.154			56.2	20	QR-01
Methylene chloride	ND	0.020	0.050	"		ND				20	
Naphthalene	ND	0.020	0.050	"		ND				20	
n-Propylbenzene	ND	0.020	0.050	"		ND				20	
Styrene	ND	0.020	0.050	"		ND				20	
1,1,1,2-Tetrachloroethane	ND	0.020	0.050	"		ND				20	
1,1,2,2-Tetrachloroethane	ND	0.020	0.050	"		ND				20	
Tetrachloroethene (PCE)	ND	0.020	0.050	"		ND				20	
Toluene	ND	0.020	0.050	"		ND				20	
1,2,3-Trichlorobenzene	ND	0.020	0.050	"		ND				20	
1,2,4-Trichlorobenzene	ND	0.020	0.050	"		ND				20	
1,1,1-Trichloroethane	ND	0.020	0.050	"		ND				20	
1,1,2-Trichloroethane	ND	0.020	0.050	"		ND				20	
Trichloroethene (TCE)	ND	0.020	0.050	"		ND				20	
Trichlorofluoromethane	ND	0.020	0.050	"		ND				20	
1,2,3-Trichloropropane	ND	0.020	0.050	"		ND				20	
1,2,4-Trimethylbenzene	0.371	0.020	0.050	"		0.676			58.3	20	QR-04
1,3,5-Trimethylbenzene	0.100	0.020	0.050	"		0.182			58.0	20	QR-01
Vinyl chloride	ND	0.020	0.050	"		ND				20	
Xylenes (total)	ND	0.020	0.050	"		ND				20	
Methyl-t-butyl ether	ND	0.020	0.050	"		ND				20	
Surrogate: Dibromofluoromethane	0.496			"	0.500		99.2	70-130			
Surrogate: Toluene-d8	0.500			"	0.500		100	70-130			
Surrogate: 4-Bromofluorobenzene	0.470			"	0.500		94.1	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported:

14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5I0160 - EPA 5035/5030B MEOH

Matrix Spike (B5I0160-MS1)	Sour	ce: 1503795	5-10		Prepared &	& Analyz	ed: 08-Se _j	p-15	OTW
Benzene	0.992	0.020	0.050	mg/kg	1.00	ND	99.2	70-130	
Chlorobenzene	0.986	0.020	0.050	"	1.00	ND	98.6	70-130	
1,1-Dichloroethene	1.06	0.020	0.050	"	1.00	ND	106	70-130	
Toluene	0.933	0.020	0.050	"	1.00	ND	93.3	70-130	
Trichloroethene (TCE)	0.969	0.020	0.050	"	1.00	ND	96.9	70-130	
Surrogate: Dibromofluoromethane	0.517			"	0.500		103	70-130	
Surrogate: 4-Bromofluorobenzene	0.464			"	0.500		92.8	70-130	
Surrogate: Toluene-d8	0.474			"	0.500		94.7	70-130	

Blank (B5I0177-BLK1)					Prepared: 08-Sep-15 Analyzed: 09-Sep-15
Benzene	ND	0.099	0.25	mg/kg	
Bromobenzene	ND	0.099	0.25	"	
Bromochloromethane	ND	0.099	0.25	"	
Bromodichloromethane	ND	0.099	0.25	"	
Bromoform	ND	0.099	0.25	"	
Bromomethane	ND	0.099	0.25	"	
n-Butylbenzene	ND	0.099	0.25	"	
sec-Butylbenzene	ND	0.099	0.25	"	
ert-Butylbenzene	ND	0.099	0.25	"	
Carbon tetrachloride	ND	0.099	0.25	"	
Chlorobenzene	ND	0.099	0.25	"	
Chloroethane	ND	0.099	0.25	"	
Chloroform	ND	0.099	0.25	"	
Chloromethane	ND	0.099	0.25	"	
-Chlorotoluene	ND	0.099	0.25	"	
-Chlorotoluene	ND	0.099	0.25	"	
,2-Dibromo-3-chloropropane	ND	0.099	0.25	"	
Dibromochloromethane	ND	0.099	0.25	"	
Dibromomethane	ND	0.099	0.25	"	
,2-Dichlorobenzene	ND	0.099	0.25	"	
,3-Dichlorobenzene	ND	0.099	0.25	"	
,4-Dichlorobenzene	ND	0.099	0.25	"	
Dichlorodifluoromethane	ND	0.099	0.25	"	
,1-Dichloroethane	ND	0.099	0.25	"	
,2-Dichloroethane	ND	0.099	0.25	"	
,1-Dichloroethene	ND	0.099	0.25	"	
ris-1,2-Dichloroethene	ND	0.099	0.25	"	
rans-1,2-Dichloroethene	ND	0.099	0.25	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero Project Number: Excavation 1056 Meta Street, Suite 101 Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	B5I0177	- EPA	5035	/5030B	MEOH

Blank (B5I0177-BLK1)					Prepared: 08-Sep-15 Analyzed: 09-Sep-15
1,2-Dichloropropane	ND	0.099	0.25	mg/kg	
1,3-Dichloropropane	ND	0.099	0.25	"	
2,2-Dichloropropane	ND	0.099	0.25	"	
1,1-Dichloropropene	ND	0.099	0.25	"	
cis-1,3-Dichloropropene	ND	0.099	0.25	"	
trans-1,3-Dichloropropene	ND	0.099	0.25	"	
Ethylbenzene	ND	0.099	0.25	"	
1,2-Dibromoethane (EDB)	ND	0.099	0.25	"	
Hexachlorobutadiene	ND	0.099	0.25	"	
Isopropylbenzene	ND	0.099	0.25	"	
4-Isopropyl Toluene	ND	0.099	0.25	"	
Methylene chloride	ND	0.099	0.25	"	
Naphthalene	ND	0.099	0.25	"	
n-Propylbenzene	ND	0.099	0.25	"	
Styrene	ND	0.099	0.25	"	
1,1,1,2-Tetrachloroethane	ND	0.099	0.25	"	
1,1,2,2-Tetrachloroethane	ND	0.099	0.25	"	
Tetrachloroethene (PCE)	ND	0.099	0.25	"	
Toluene	ND	0.099	0.25	"	
1,2,3-Trichlorobenzene	ND	0.099	0.25	"	
1,2,4-Trichlorobenzene	ND	0.099	0.25	"	
1,1,1-Trichloroethane	ND	0.099	0.25	"	
1,1,2-Trichloroethane	ND	0.099	0.25	"	
Trichloroethene (TCE)	ND	0.099	0.25	"	
Trichlorofluoromethane	ND	0.099	0.25	"	
1,2,3-Trichloropropane	ND	0.099	0.25	"	
1,2,4-Trimethylbenzene	ND	0.099	0.25	"	
1,3,5-Trimethylbenzene	ND	0.099	0.25	"	
Vinyl chloride	ND	0.099	0.25	"	
Xylenes (total)	ND	0.099	0.25	"	
Methyl-t-butyl ether	ND	0.099	0.25	"	
Surrogate: Dibromofluoromethane	0.0506			"	0.0497 102 70-130
Surrogate: Toluene-d8	0.0476			"	0.0497 95.8 70-130
Surrogate: 4-Bromofluorobenzene	0.0450			"	0.0497 90.6 70-130

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control

	D 1	MDL	PQL	T T '.	Spike	Source	0/ DEC	%REC	DDD	RPD	NI 4
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5I0177 - EPA 5035/50	30В МЕОН										
LCS (B5I0177-BS1)					Prepared:	08-Sep-15	5 Analyze	d: 09-Sep-	15		
Benzene	4.82	0.10	0.25	mg/kg	4.98		96.9	70-130			
Chlorobenzene	4.76	0.10	0.25	"	4.98		95.6	70-130			
1,1-Dichloroethene	5.20	0.10	0.25	"	4.98		104	70-130			
Toluene	4.56	0.10	0.25	"	4.98		91.5	70-130			
Trichloroethene (TCE)	4.75	0.10	0.25	"	4.98		95.4	70-130			
Surrogate: Dibromofluoromethane	0.0504			"	0.0498		101	70-130			
Surrogate: 4-Bromofluorobenzene	0.0464			"	0.0498		93.1	70-130			
Surrogate: Toluene-d8	0.0477			"	0.0498		95.8	70-130			
LCS Dup (B5I0177-BSD1)					Prepared:	08-Sep-15	5 Analyze	d: 09-Sep-	15		
Benzene	5.58	0.099	0.25	mg/kg	4.95		113	70-130	14.5	20	
Chlorobenzene	5.59	0.099	0.25	"	4.95		113	70-130	16.0	20	
1,1-Dichloroethene	6.03	0.099	0.25	"	4.95		122	70-130	14.8	20	
Toluene	5.12	0.099	0.25	"	4.95		104	70-130	11.7	20	
Trichloroethene (TCE)	5.34	0.099	0.25	"	4.95		108	70-130	11.6	20	
Surrogate: Dibromofluoromethane	0.0503			"	0.0495		102	70-130			
Surrogate: Toluene-d8	0.0473			"	0.0495		95.6	70-130			
Surrogate: 4-Bromofluorobenzene	0.0443			"	0.0495		89.5	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101Project Number: ExcavationReported:Ventura CA, 93001Project Manager: Eric Kirkegaard14-Sep-15 16:55

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5I0195 - EPA 3550B				- 195						<u> </u>	
Blank (B5I0195-BLK1)					Prepared:	09-Sep-1:	5 Analyze	d: 10-Sep-	15		
alpha-BHC	ND	0.0015	0.0030	mg/kg	*	•		•			
alpha-Chlordane	ND	0.0015	0.0030	"							
Aldrin	ND	0.0015	0.0030	"							
beta-BHC	ND	0.0015	0.0030	"							
delta-BHC	ND	0.0015	0.0030	"							
4,4´-DDD	ND	0.0015	0.0030	"							
4,4´-DDE	ND	0.0015	0.0030	"							
4,4´-DDT	ND	0.0016	0.0030	"							
Dieldrin	ND	0.0015	0.0030	"							
Endosulfan I	ND	0.0017	0.0030	"							
Endosulfan II	ND	0.0015	0.0030	"							
Endosulfan sulfate	ND	0.0015	0.0030	"							
Endrin	ND	0.0015	0.0030	"							
Endrin aldehyde	ND	0.0015	0.0030	"							
Endrin ketone	ND	0.0016	0.0030	"							
gamma-BHC	ND	0.0015	0.0030	"							
gamma-Chlordane	ND	0.0015	0.0030	"							
Heptachlor	ND	0.0015	0.0030	"							
Heptachlor epoxide	ND	0.0015	0.0030	"							
Methoxychlor	ND	0.0015	0.0030	"							
Chlordane (tech)	ND	0.010	0.020	"							
Toxaphene	ND	0.016	0.020	"							
Surrogate: Decachlorobiphenyl	0.00873			"	0.00833		105	26-171			
Surrogate: 2,4,5,6 Tetrachloro-m-xylene	0.00783			"	0.00833		93.9	2-180			
LCS (B5I0195-BS1)					Prepared:	09-Sep-1:	5 Analyze	d: 10-Sep-	15		
alpha-BHC	0.00630	0.0015	0.0030	mg/kg	0.00667		94.5	41-128			
alpha-Chlordane	0.00598	0.0015	0.0030	"	0.00667		89.7	54-131			
Aldrin	0.00596	0.0015	0.0030	"	0.00667		89.3	43-125			
beta-BHC	0.00708	0.0015	0.0030	"	0.00667		106	42-137			
delta-BHC	0.00731	0.0015	0.0030	"	0.00667		110	52-142			
4,4´-DDD	0.00625	0.0015	0.0030	"	0.00667		93.7	53-142			
4,4´-DDE	0.00625	0.0015	0.0030	"	0.00667		93.7	59-134			
4,4´-DDT	0.00601	0.0016	0.0030	"	0.00667		90.2	57-152			
Dieldrin	0.00600	0.0015	0.0030	"	0.00667		90.0	58-136			
Endosulfan I	0.00611	0.0017	0.0030	"	0.00667		91.7	56-135			
Endosulfan II	0.00625	0.0015	0.0030	"	0.00667		93.8	58-140			
Endosulfan sulfate	0.00608	0.0015	0.0030	"	0.00667		91.3	61-141			
Endrin	0.00590	0.0015	0.0030	"	0.00667		88.4	56-154			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

Page 51 of 67

TEL: (805) 922-4772

FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Organochlorine Pesticides by EPA Method 8081A - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
				C	20.01	1100011	,,,,,,,,				1.0.00
Batch B5I0195 - EPA 3550B	<u> </u>										
LCS (B5I0195-BS1)					Prepared:	09-Sep-15	5 Analyze	d: 10-Sep-	15		
Endrin aldehyde	0.00650	0.0015	0.0030	mg/kg	0.00667		97.5	59-145			
Endrin ketone	0.00643	0.0016	0.0030	"	0.00667		96.5	64-145			
gamma-BHC	0.00641	0.0015	0.0030	"	0.00667		96.1	45-132			
gamma-Chlordane	0.00610	0.0015	0.0030	"	0.00667		91.4	52-140			
Heptachlor	0.00701	0.0015	0.0030	"	0.00667		105	42-143			
Heptachlor epoxide	0.00603	0.0015	0.0030	"	0.00667		90.4	56-134			
Methoxychlor	0.00675	0.0015	0.0030	"	0.00667		101	53-164			
Surrogate: Decachlorobiphenyl	0.00808			"	0.00833		96.9	26-171			
Surrogate: 2,4,5,6	0.00825			"	0.00833		99.0	2-180			
Tetrachloro-m-xylene											
LCS Dup (B5I0195-BSD1)					Prepared:	09-Sep-15	5 Analyze	d: 10-Sep-	15		
alpha-BHC	0.00568	0.0015	0.0030	mg/kg	0.00667		85.2	41-128	10.4	25	
alpha-Chlordane	0.00542	0.0015	0.0030	"	0.00667		81.2	54-131	9.92	25	
Aldrin	0.00511	0.0015	0.0030	"	0.00667		76.6	43-125	15.3	25	
beta-BHC	0.00607	0.0015	0.0030	"	0.00667		91.1	42-137	15.3	25	
delta-BHC	0.00630	0.0015	0.0030	"	0.00667		94.6	52-142	14.8	25	
4,4´-DDD	0.00587	0.0015	0.0030	"	0.00667		88.1	53-142	6.18	25	
4,4´-DDE	0.00564	0.0015	0.0030	"	0.00667		84.6	59-134	10.3	25	
4,4´-DDT	0.00573	0.0016	0.0030	"	0.00667		86.0	57-152	4.79	25	
Dieldrin	0.00548	0.0015	0.0030	"	0.00667		82.2	58-136	9.13	25	
Endosulfan I	0.00558	0.0017	0.0030	"	0.00667		83.7	56-135	9.08	25	
Endosulfan II	0.00591	0.0015	0.0030	"	0.00667		88.6	58-140	5.64	25	
Endosulfan sulfate	0.00579	0.0015	0.0030	"	0.00667		86.8	61-141	4.98	25	
Endrin	0.00549	0.0015	0.0030	"	0.00667		82.4	56-154	7.11	25	
Endrin aldehyde	0.00612	0.0015	0.0030	"	0.00667		91.8	59-145	5.99	25	
Endrin ketone	0.00615	0.0016	0.0030	"	0.00667		92.3	64-145	4.43	25	
gamma-BHC	0.00552	0.0015	0.0030	"	0.00667		82.9	45-132	14.8	25	
gamma-Chlordane	0.00560	0.0015	0.0030	"	0.00667		84.0	52-140	8.52	25	
Heptachlor	0.00587	0.0015	0.0030	"	0.00667		88.0	42-143	17.7	25	
Heptachlor epoxide	0.00554	0.0015	0.0030	"	0.00667		83.1	56-134	8.48	25	
Methoxychlor	0.00647	0.0015	0.0030	"	0.00667		97.0	53-164	4.38	25	
Surrogate: Decachlorobiphenyl	0.00796			"	0.00833		95.5	26-171			
Surrogate: 2,4,5,6	0.00714			"	0.00833		85.6	2-180			
Tetrachloro-m-xylene											

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported:

14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero Project Number: Excavation 1056 Meta Street, Suite 101 Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Organochlorine Pesticides by EPA Method 8081A - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	B510195	- EPA 3550B

Duplicate (B5I0195-DUP1)	Sour	ce: 1503795-10		Prepared: 09-Sep-15 Analyz	ed: 10-Sep-15
alpha-BHC	ND	0.0015 0.00	30 mg/kg	ND	25
alpha-Chlordane	ND	0.0015 0.00	30 "	ND	25
Aldrin	ND	0.0015 0.00	30 "	ND	25
beta-BHC	ND	0.0015 0.00	30 "	ND	25
delta-BHC	ND	0.0015 0.00	30 "	ND	25
4,4´-DDD	ND	0.0015 0.00	30 "	ND	25
4,4´-DDE	ND	0.0015 0.00	30 "	ND	25
4,4´-DDT	ND	0.0016 0.00	30 "	ND	25
Dieldrin	ND	0.0015 0.00	30 "	ND	25
Endosulfan I	ND	0.0017 0.00	30 "	ND	25
Endosulfan II	ND	0.0015 0.00	30 "	ND	25
Endosulfan sulfate	ND	0.0015 0.00	30 "	ND	25
Endrin	ND	0.0015 0.00	30 "	ND	25
Endrin aldehyde	ND	0.0015 0.00	30 "	ND	25
Endrin ketone	ND	0.0016 0.00	30 "	ND	25
gamma-BHC	ND	0.0015 0.00	30 "	ND	25
gamma-Chlordane	ND	0.0015 0.00	30 "	ND	25
Heptachlor	ND	0.0015 0.00	30 "	ND	25
Heptachlor epoxide	ND	0.0015 0.00	30 "	ND	25
Methoxychlor	ND	0.0015 0.00	30 "	ND	25
Surrogate: Decachlorobiphenyl	0.0181		"	0.0166 109	26-171
Surrogate: 2,4,5,6 Tetrachloro-m-xylene	0.0193		"	0.0166 116	2-180

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101Project Number: ExcavationReported:Ventura CA, 93001Project Manager: Eric Kirkegaard14-Sep-15 16:55

Volatile Organic Compounds by EPA Method 8260B/LUFT - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5I0160 - EPA 5035/5030B MEOH

Benene ND 0,002 0,005 mg/kg Bromochormethane ND 0,002 0,005 " Bromochloromethane ND 0,002 0,005 " sec-Burylbenzene ND 0,002 0,005 " sec-Burylbenzene ND 0,002 0,005 " Carbon tetrachloride ND 0,002 0,005 " Chloroforne ND 0,002 0,005 " Chloroform ND 0,002 0,005 " Chloroform ND 0,002 0,005 " Chloroform ND 0,002 0,005 " Chloroformethane ND 0,002 0,005 " L-Dichloroformethane ND 0,002 0,005 " <th>Blank (B5I0160-BLK1)</th> <th></th> <th></th> <th></th> <th></th> <th>Prepared & Analyzed: 08-Sep-15</th>	Blank (B5I0160-BLK1)					Prepared & Analyzed: 08-Sep-15
Promoch Chromethane ND 0.0020 0.0050	Benzene	ND	0.0020	0.0050	mg/kg	
Bromodichloromethane ND 0.0020 0.0050 " Bromoform ND 0.0020 0.0050 " Bromomethane ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " ser-Butylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " L'2-Dichlorom-3-chloropropane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichloroebnzene ND 0.0020	Bromobenzene	ND	0.0020	0.0050	"	
Bromoform ND 0.0020 0.0050 " Bromomethame ND 0.0020 0.0050 " Bromomethame ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " carbon tetrachloride ND 0.0020 0.0050 " Chlorochenzene ND 0.0020 0.0050 " Chlorochenzene ND 0.0020 0.0050 " Chlorochenae ND 0.0020 0.0050 " Chlorochenee ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " La-Dichlorochenzene ND 0.0020 0.0050	Bromochloromethane	ND	0.0020	0.0050	"	
Bromomethane ND 0.0020 0.0050 " n-Butylbenzene ND 0.0020 0.0050 " tert-Butylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chloroetane ND 0.0020 0.0050 " Chloroethane ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dichorothane ND 0.0020 0.0050 " 1,3-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050	Bromodichloromethane	ND	0.0020	0.0050	"	
n-Buylbenzene ND 0.0020 0.0050 " sec-Buylbenzene ND 0.0020 0.0050 " etr-Buylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorochenzene ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroformethane ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Diromo-3-chloropropane ND 0.0020 0.0050 " Dibromo-Ghromethane ND 0.0020 0.0050 " 1,3-Dichlorothane ND 0.0020 0.0050 " 1,4-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichlorothane ND 0.002	Bromoform	ND	0.0020	0.0050	"	
sec-Dutylbenzene ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chlorochane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chlorostoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " 1,2-Dichorob-a-chloropropane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,2-Dichlorobethane ND 0.0020 0.0050 " 1,1-Dichlorochene <td< td=""><td>Bromomethane</td><td>ND</td><td>0.0020</td><td>0.0050</td><td>"</td><td></td></td<>	Bromomethane	ND	0.0020	0.0050	"	
tert-Butylbenzene ND 0.0020 0.0050 " Carbon tertachloride ND 0.0020 0.0050 " Chlorocetane ND 0.0020 0.0050 " Chlorocthane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " 1.Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1-2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND	n-Butylbenzene	ND	0.0020	0.0050	"	
Carbon tetrachloride ND 0.0020 0.0050 " Chlorobenzene ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dishomo-3-chloropropane ND 0.0020 0.0050 " Dibromo-S-chloropropane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloropropane ND	sec-Butylbenzene	ND	0.0020	0.0050	"	
Chlorobenzene ND 0.0020 0.0050 " Chlorochane ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroptene ND 0.0020 0.0050 " cis-1,2-Dichloroptopane ND <td>tert-Butylbenzene</td> <td>ND</td> <td>0.0020</td> <td>0.0050</td> <td>"</td> <td></td>	tert-Butylbenzene	ND	0.0020	0.0050	"	
Chloroethane ND 0.0020 0.0050 " Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromodhloromethane ND 0.0020 0.0050 " Dibromodhane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorodfluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroptopane ND	Carbon tetrachloride	ND	0.0020	0.0050	"	
Chloroform ND 0.0020 0.0050 " Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloropropane ND 0.0020 0.0050 " 1,2-Dichloropropane N	Chlorobenzene	ND	0.0020	0.0050	"	
Chloromethane ND 0.0020 0.0050 " 2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromoethlane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichloromethane ND 0.0020 0.0050 " 1,4-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichlorothane ND	Chloroethane	ND	0.0020	0.0050	"	
2-Chlorotoluene ND 0.0020 0.0050 " 4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromo-Ghromethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropr	Chloroform	ND	0.0020	0.0050	"	
4-Chlorotoluene ND 0.0020 0.0050 " 1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " trans-1,2-Dichlorothane ND 0.0020 0.0050 " 1,2-Dichloropropane	Chloromethane	ND	0.0020	0.0050	"	
1,2-Dibromo-3-chloropropane ND 0.0020 0.0050 " Dibromochloromethane ND 0.0020 0.0050 " Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " 1,1-Dichlorothane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropane	2-Chlorotoluene	ND	0.0020	0.0050	"	
Dibromochloromethane ND 0.0020 0.0050 " Jibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " Dichlorodifluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " trans-1,2-Dichloroptopene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichlorop	4-Chlorotoluene	ND	0.0020	0.0050	"	
Dibromomethane ND 0.0020 0.0050 " 1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " Dichlorodifluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropr	1,2-Dibromo-3-chloropropane	ND	0.0020	0.0050	"	
1,2-Dichlorobenzene ND 0.0020 0.0050 " 1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " Dichlorodifluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " Ly-Dibromoethane	Dibromochloromethane	ND	0.0020	0.0050	"	
1,3-Dichlorobenzene ND 0.0020 0.0050 " 1,4-Dichlorobenzene ND 0.0020 0.0050 " Dichlorodifluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " cis-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropthene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " 1,2-Di	Dibromomethane	ND	0.0020	0.0050	"	
	1,2-Dichlorobenzene	ND	0.0020	0.0050	"	
Dichlorodifluoromethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,2-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " cis-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloroptopane ND 0.0020 0.0050 " 1,2-Dichloroptopane ND 0.0020 0.0050 " 2,2-Dichloroptopane ND 0.0020 0.0050 " 1,1-Dichloroptopene ND 0.0020 0.0050 " 1,1-Dichloroptopene ND 0.0020 0.0050 " cis-1,3-Dichloroptopene ND 0.0020 0.0050 " ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropyl benzen	1,3-Dichlorobenzene	ND	0.0020	0.0050	"	
ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " Isopropyl Toluene ND 0.0020 0.0050 "	1,4-Dichlorobenzene	ND	0.0020	0.0050	"	
1,2-Dichloroethane ND 0.0020 0.0050 " 1,1-Dichloroethene ND 0.0020 0.0050 " cis-1,2-Dichloroethene ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	Dichlorodifluoromethane	ND		0.0050	"	
1,1-Dichloroethene ND 0.0020 0.0050 " cis-1,2-Dichloroethene ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropyl Toluene ND 0.0020 0.0050 "	1,1-Dichloroethane	ND		0.0050	"	
cis-1,2-Dichloroethene ND 0.0020 0.0050 " trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropyl Toluene ND 0.0020 0.0050 "	1,2-Dichloroethane	ND	0.0020	0.0050	"	
trans-1,2-Dichloroethene ND 0.0020 0.0050 " 1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropyl Toluene ND 0.0020 0.0050 "	1,1-Dichloroethene	ND		0.0050	"	
1,2-Dichloropropane ND 0.0020 0.0050 " 1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	cis-1,2-Dichloroethene	ND		0.0050	"	
1,3-Dichloropropane ND 0.0020 0.0050 " 2,2-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	trans-1,2-Dichloroethene	ND	0.0020	0.0050	"	
1,3-Dichloropropane ND 0.0020 0.0050 " 1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	1,2-Dichloropropane	ND	0.0020			
1,1-Dichloropropene ND 0.0020 0.0050 " cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "						
cis-1,3-Dichloropropene ND 0.0020 0.0050 " trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	2,2-Dichloropropane			0.0050		
trans-1,3-Dichloropropene ND 0.0020 0.0050 " Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	1,1-Dichloropropene			0.0050		
Ethylbenzene ND 0.0020 0.0050 " 1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	cis-1,3-Dichloropropene	ND		0.0050	"	
1,2-Dibromoethane (EDB) ND 0.0020 0.0050 " Hexachlorobutadiene ND 0.0020 0.0050 " Isopropylbenzene ND 0.0020 0.0050 " 4-Isopropyl Toluene ND 0.0020 0.0050 "	trans-1,3-Dichloropropene	ND		0.0050		
Hexachlorobutadiene	· ·			0.0050		
Isopropylbenzene				0.0050		
4-Isopropyl Toluene ND 0.0020 0.0050 "						
				0.0050		
Methylene chloride ND 0.0020 0.0050 "	1 17	ND		0.0050		
	Methylene chloride	ND	0.0020	0.0050	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Volatile Organic Compounds by EPA Method 8260B/LUFT - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B5I0160-BLK1)					Prepared & An	alyzed: 08-Sep	p-15
Naphthalene	ND	0.0020	0.0050	mg/kg			
n-Propylbenzene	ND	0.0020	0.0050	"			
Styrene	ND	0.0020	0.0050	"			
1,1,1,2-Tetrachloroethane	ND	0.0020	0.0050	"			
1,1,2,2-Tetrachloroethane	ND	0.0020	0.0050	"			
Tetrachloroethene (PCE)	ND	0.0020	0.0050	"			
Toluene	ND	0.0020	0.0050	"			
1,2,3-Trichlorobenzene	ND	0.0020	0.0050	"			
1,2,4-Trichlorobenzene	ND	0.0020	0.0050	"			
1,1,1-Trichloroethane	ND	0.0020	0.0050	"			
1,1,2-Trichloroethane	ND	0.0020	0.0050	"			
Trichloroethene (TCE)	ND	0.0020	0.0050	"			
Trichlorofluoromethane	ND	0.0020	0.0050	"			
1,2,3-Trichloropropane	ND	0.0020	0.0050	"			
1,2,4-Trimethylbenzene	ND	0.0020	0.0050	"			
1,3,5-Trimethylbenzene	ND	0.0020	0.0050	"			
Vinyl chloride	ND	0.0020	0.0050	"			
Kylenes (total)	ND	0.0020	0.0050	"			
TPH Gasoline (C4-C12)	ND	0.20	0.50	"			
urrogate: Dibromofluoromethane	0.0521			"	0.0498	105	70-130
Surrogate: Toluene-d8	0.0502			"	0.0498	101	70-130
Surrogate: 4-Bromofluorobenzene	0.0429			"	0.0498	86.2	70-130
LCS (B5I0160-BS1)					Prepared & An	alyzed: 08-Sep	o-15
Benzene	0.0990	0.0020	0.0050	mg/kg	0.100	99.0	70-130
Chlorobenzene	0.101	0.0020	0.0050	"	0.100	101	70-130
1,1-Dichloroethene	0.107	0.0020	0.0050	"	0.100	107	70-130
Toluene	0.0996	0.0020	0.0050	"	0.100	99.6	70-130
Trichloroethene (TCE)	0.0980	0.0020	0.0050	"	0.100	98.0	70-130
Surrogate: Dibromofluoromethane	0.0514			"	0.0500	103	70-130
Surrogate: 4-Bromofluorobenzene	0.0435			"	0.0500	87.0	70-130
Surrogate: Toluene-d8	0.0492			"	0.0500	98.3	70-130

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Volatile Organic Compounds by EPA Method 8260B/LUFT - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5I0160 - EPA 5035/50	30В МЕОН										
LCS (B5I0160-BS2)					Prepared of	& Analyze	ed: 08-Sep	p-15			
TPH Gasoline (C4-C12)	2.46	0.20	0.50	mg/kg	2.00		123	70-130			
Surrogate: Dibromofluoromethane	0.0524			"	0.0500		105	70-130			
Surrogate: Toluene-d8	0.0502			"	0.0500		100	70-130			
Surrogate: 4-Bromofluorobenzene	0.0461			"	0.0500		92.2	70-130			
LCS Dup (B5I0160-BSD1)					Prepared of	& Analyze	ed: 08-Sep	p-15			
Benzene	0.106	0.0020	0.0050	mg/kg	0.0994		107	70-130	6.95	20	
Chlorobenzene	0.110	0.0020	0.0050	"	0.0994		111	70-130	8.11	20	
1,1-Dichloroethene	0.116	0.0020	0.0050	"	0.0994		116	70-130	7.53	20	
Toluene	0.108	0.0020	0.0050	"	0.0994		108	70-130	7.72	20	
Trichloroethene (TCE)	0.106	0.0020	0.0050	"	0.0994		107	70-130	8.26	20	
Surrogate: Dibromofluoromethane	0.0530			"	0.0497		107	70-130			
Surrogate: 4-Bromofluorobenzene	0.0437			"	0.0497		87.8	70-130			
Surrogate: Toluene-d8	0.0499			"	0.0497		100	70-130			
LCS Dup (B5I0160-BSD2)					Prepared 6	& Analyze	ed: 08-Sep	p-15			
TPH Gasoline (C4-C12)	2.41	0.20	0.50	mg/kg	2.01	-	120	70-130	2.13	20	
Surrogate: Dibromofluoromethane	0.0528			"	0.0502		105	70-130			
Surrogate: Toluene-d8	0.0504			"	0.0502		100	70-130			
Surrogate: 4-Bromofluorobenzene	0.0481			"	0.0502		95.8	70-130			
Duplicate (B5I0160-DUP1)	Sour	ce: 150372	8-01		Prepared 6	& Analyze	ed: 08-Sep	p-15			
Benzene	ND	0.020	0.050	mg/kg		ND				20	
Bromobenzene	ND	0.020	0.050	"		ND				20	
Bromochloromethane	ND	0.020	0.050	"		ND				20	
Bromodichloromethane	ND	0.020	0.050	"		ND				20	
Bromoform	ND	0.020	0.050	"		ND				20	
Bromomethane	ND	0.020	0.050	"		ND				20	
n-Butylbenzene	ND	0.020	0.050	"		ND				20	
sec-Butylbenzene	0.0204	0.020	0.050	"		0.0348			52.2	20	J, QR-0
tert-Butylbenzene	ND	0.020	0.050	"		ND				20	
Carbon tetrachloride	ND	0.020	0.050	"		ND				20	
Chlorobenzene	ND	0.020	0.050	"		ND				20	
Chloroethane	ND	0.020	0.050	"		ND				20	
Chloroform	ND	0.020	0.050	"		ND				20	
Chloromethane	ND	0.020	0.050	"		ND				20	
2-Chlorotoluene	ND	0.020	0.050	"		ND				20	
4-Chlorotoluene	ND	0.020	0.050	"		ND				20	
1,2-Dibromo-3-chloropropane	ND	0.020	0.050	"		ND				20	
Dibromochloromethane	ND	0.020	0.050	"		ND				20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported: 14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Volatile Organic Compounds by EPA Method 8260B/LUFT - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Duplicate (B5I0160-DUP1)	Sour	ce: 1503728	3-01		Prepared & Analyzed: 08-Sep-15			
Dibromomethane	ND	0.020	0.050	mg/kg	ND		20	
1,2-Dichlorobenzene	ND	0.020	0.050	"	ND		20	
1,3-Dichlorobenzene	ND	0.020	0.050	"	ND		20	
1,4-Dichlorobenzene	ND	0.020	0.050	"	ND		20	
Dichlorodifluoromethane	ND	0.020	0.050	"	ND		20	
1,1-Dichloroethane	ND	0.020	0.050	"	ND		20	
1,2-Dichloroethane	ND	0.020	0.050	"	ND		20	
1,1-Dichloroethene	ND	0.020	0.050	"	ND		20	
cis-1,2-Dichloroethene	ND	0.020	0.050	"	ND		20	
trans-1,2-Dichloroethene	ND	0.020	0.050	"	ND		20	
1,2-Dichloropropane	ND	0.020	0.050	"	ND		20	
1,3-Dichloropropane	ND	0.020	0.050	"	ND		20	
2,2-Dichloropropane	ND	0.020	0.050	"	ND		20	
1,1-Dichloropropene	ND	0.020	0.050	"	ND		20	
cis-1,3-Dichloropropene	ND	0.020	0.050	"	ND		20	
trans-1,3-Dichloropropene	ND	0.020	0.050	"	ND		20	
Ethylbenzene	ND	0.020	0.050	"	ND		20	
1,2-Dibromoethane (EDB)	ND	0.020	0.050	"	ND		20	
Hexachlorobutadiene	ND	0.020	0.050	"	ND		20	
Isopropylbenzene	ND	0.020	0.050	"	ND		20	
4-Isopropyl Toluene	0.0864	0.020	0.050	"	0.154	56.2	20	QR-01
Methylene chloride	ND	0.020	0.050	"	ND		20	
Naphthalene	ND	0.020	0.050	"	ND		20	
n-Propylbenzene	ND	0.020	0.050	"	ND		20	
Styrene	ND	0.020	0.050	"	ND		20	
1,1,1,2-Tetrachloroethane	ND	0.020	0.050	"	ND		20	
1,1,2,2-Tetrachloroethane	ND	0.020	0.050	"	ND		20	
Tetrachloroethene (PCE)	ND	0.020	0.050	"	ND		20	
Toluene	ND	0.020	0.050	"	ND		20	
1,2,3-Trichlorobenzene	ND	0.020	0.050	"	ND		20	
1,2,4-Trichlorobenzene	ND	0.020	0.050	"	ND		20	
1,1,1-Trichloroethane	ND	0.020	0.050	"	ND		20	
1,1,2-Trichloroethane	ND	0.020	0.050	"	ND		20	
Trichloroethene (TCE)	ND	0.020	0.050	"	ND		20	
Trichlorofluoromethane	ND	0.020	0.050	"	ND		20	
1,2,3-Trichloropropane	ND	0.020	0.050	"	ND		20	
1,2,4-Trimethylbenzene	0.371	0.020	0.050	"	0.676	58.3	20	QR-04
1,3,5-Trimethylbenzene	0.100	0.020	0.050	"	0.182	58.0	20	QR-01
Vinyl chloride	ND	0.020	0.050	"	ND		20	
Xylenes (total)	ND	0.020	0.050	"	ND		20	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported: 14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Volatile Organic Compounds by EPA Method 8260B/LUFT - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Duplicate (B5I0160-DUP1)	Sour	ce: 1503728	3-01		Prepared &	& Analyz	ed: 08-Sej	p-15			
TPH Gasoline (C4-C12)	45.3	2.0	5.0	mg/kg		63.1			32.9	20	QR-04
Surrogate: Dibromofluoromethane	0.496			"	0.500		99.2	70-130			
Surrogate: 4-Bromofluorobenzene	0.470			"	0.500		94.1	70-130			
Surrogate: Toluene-d8	0.500			"	0.500		100	70-130			
Matrix Spike (B5I0160-MS1)	Source: 1503795-10				Prepared & Analyzed: 08-Sep-15						
Benzene	0.992	0.020	0.050	mg/kg	1.00	ND	99.2	70-130			
Chlorobenzene	0.986	0.020	0.050	"	1.00	ND	98.6	70-130			
1,1-Dichloroethene	1.06	0.020	0.050	"	1.00	ND	106	70-130			
Toluene	0.933	0.020	0.050	"	1.00	ND	93.3	70-130			
Trichloroethene (TCE)	0.969	0.020	0.050	"	1.00	ND	96.9	70-130			
Surrogate: Dibromofluoromethane	0.517			"	0.500		103	70-130			
Surrogate: 4-Bromofluorobenzene	0.464			"	0.500		92.8	70-130			
Surrogate: Toluene-d8	0.474			"	0.500		94.7	70-130			
Matrix Spike (B5I0160-MS2)	Sour	ce: 1503795	5-10		Prepared &	& Analyz	ed: 08-Se	p-15			OTWN
TPH Gasoline (C4-C12)	180	2.0	5.0	mg/kg	20.0	147	162	70-130			QM-4X
Summer of the Dibmone of the one of the or o	0.400			"	0.500		00.5	70 120			

Matrix Spike (B5I0160-MS2)	Source	Source: 1503795-10			Prepared &	OTWN			
TPH Gasoline (C4-C12)	180	2.0	5.0	mg/kg	20.0	147	162	70-130	QM-4X
Surrogate: Dibromofluoromethane	0.498			"	0.500		99.5	70-130	
Surrogate: Toluene-d8	0.477			"	0.500		95.4	70-130	
Surrogate: 4-Bromofluorobenzene	0.476			"	0.500		95.3	70-130	

Batch B5I0177 - EPA 5035/5030B MEOH

Blank (B5I0177-BLK1)					Prepared: 08-Sep-15 Analyzed: 09-Sep-15
Senzene	ND	0.099	0.25	mg/kg	
romobenzene	ND	0.099	0.25	"	
romochloromethane	ND	0.099	0.25	"	
omodichloromethane	ND	0.099	0.25	"	
omoform	ND	0.099	0.25	"	
romomethane	ND	0.099	0.25	"	
Butylbenzene	ND	0.099	0.25	"	
c-Butylbenzene	ND	0.099	0.25	"	
t-Butylbenzene	ND	0.099	0.25	"	
rbon tetrachloride	ND	0.099	0.25	"	
nlorobenzene	ND	0.099	0.25	"	
hloroethane	ND	0.099	0.25	"	
nloroform	ND	0.099	0.25	"	
nloromethane	ND	0.099	0.25	"	
Chlorotoluene	ND	0.099	0.25	"	
Chlorotoluene	ND	0.099	0.25	"	
2-Dibromo-3-chloropropane	ND	0.099	0.25	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported:

14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Excavation Reported:
Ventura CA, 93001 Project Manager: Eric Kirkegaard 14-Sep-15 16:55

Volatile Organic Compounds by EPA Method 8260B/LUFT - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5I0177 - E1	PA 5035/5	5030B	MEOH
--------------------	-----------	-------	------

Blank (B5I0177-BLK1)					Prepared: 08-Sep-15 Analyzed: 09-Sep-15
Dibromochloromethane	ND	0.099	0.25	mg/kg	
Dibromomethane	ND	0.099	0.25	"	
1,2-Dichlorobenzene	ND	0.099	0.25	"	
1,3-Dichlorobenzene	ND	0.099	0.25	"	
1,4-Dichlorobenzene	ND	0.099	0.25	"	
Dichlorodifluoromethane	ND	0.099	0.25	"	
1,1-Dichloroethane	ND	0.099	0.25	"	
1,2-Dichloroethane	ND	0.099	0.25	"	
1,1-Dichloroethene	ND	0.099	0.25	"	
cis-1,2-Dichloroethene	ND	0.099	0.25	"	
trans-1,2-Dichloroethene	ND	0.099	0.25	"	
1,2-Dichloropropane	ND	0.099	0.25	"	
1,3-Dichloropropane	ND	0.099	0.25	"	
2,2-Dichloropropane	ND	0.099	0.25	"	
1,1-Dichloropropene	ND	0.099	0.25	"	
cis-1,3-Dichloropropene	ND	0.099	0.25	"	
trans-1,3-Dichloropropene	ND	0.099	0.25	"	
Ethylbenzene	ND	0.099	0.25	"	
1,2-Dibromoethane (EDB)	ND	0.099	0.25	"	
Hexachlorobutadiene	ND	0.099	0.25	"	
Isopropylbenzene	ND	0.099	0.25	"	
4-Isopropyl Toluene	ND	0.099	0.25	"	
Methylene chloride	ND	0.099	0.25	"	
Naphthalene	ND	0.099	0.25	"	
n-Propylbenzene	ND	0.099	0.25	"	
Styrene	ND	0.099	0.25	"	
1,1,1,2-Tetrachloroethane	ND	0.099	0.25	"	
1,1,2,2-Tetrachloroethane	ND	0.099	0.25	"	
Tetrachloroethene (PCE)	ND	0.099	0.25	"	
Toluene	ND	0.099	0.25	"	
1,2,3-Trichlorobenzene	ND	0.099	0.25	"	
1,2,4-Trichlorobenzene	ND	0.099	0.25	"	
1,1,1-Trichloroethane	ND	0.099	0.25	"	
1,1,2-Trichloroethane	ND	0.099	0.25	"	
Trichloroethene (TCE)	ND	0.099	0.25	"	
Trichlorofluoromethane	ND	0.099	0.25	"	
1,2,3-Trichloropropane	ND	0.099	0.25	"	
1,2,4-Trimethylbenzene	ND	0.099	0.25	"	
1,3,5-Trimethylbenzene	ND	0.099	0.25	"	
Vinyl chloride	ND	0.099	0.25	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Volatile Organic Compounds by EPA Method 8260B/LUFT - Quality Control

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B5I0177 - EPA 5035/50	30В МЕОН										
Blank (B5I0177-BLK1)					Prepared:	08-Sep-15	5 Analyze	d: 09-Sep-	15		
Xylenes (total)	ND	0.099	0.25	mg/kg	•			•			
TPH Gasoline (C4-C12)	ND	9.9	25	"							
Surrogate: Dibromofluoromethane	0.0506			"	0.0497		102	70-130			
Surrogate: 4-Bromofluorobenzene	0.0450			"	0.0497		90.6	70-130			
Surrogate: Toluene-d8	0.0476			"	0.0497		95.8	70-130			
LCS (B5I0177-BS1)					Prepared:	08-Sep-15	5 Analyze	d: 09-Sep-	15		
Benzene	4.82	0.10	0.25	mg/kg	4.98		96.9	70-130			
Chlorobenzene	4.76	0.10	0.25	"	4.98		95.6	70-130			
1,1-Dichloroethene	5.20	0.10	0.25	"	4.98		104	70-130			
Toluene	4.56	0.10	0.25	"	4.98		91.5	70-130			
Trichloroethene (TCE)	4.75	0.10	0.25	"	4.98		95.4	70-130			
Surrogate: Dibromofluoromethane	0.0504			"	0.0498		101	70-130			
Surrogate: 4-Bromofluorobenzene	0.0464			"	0.0498		93.1	70-130			
Surrogate: Toluene-d8	0.0477			"	0.0498		95.8	70-130			
LCS (B5I0177-BS2)					Prepared:	08-Sep-15	5 Analyze	d: 09-Sep-	15		
TPH Gasoline (C4-C12)	106	10	25	mg/kg	100		105	70-130			
Surrogate: Dibromofluoromethane	0.0500			"	0.0502		99.7	70-130			
Surrogate: Toluene-d8	0.0481			"	0.0502		95.8	70-130			
Surrogate: 4-Bromofluorobenzene	0.0469			"	0.0502		93.5	70-130			
LCS Dup (B5I0177-BSD1)					Prepared:	08-Sep-15	5 Analyze	d: 09-Sep-	15		
Benzene	5.58	0.099	0.25	mg/kg	4.95	•	113	70-130	14.5	20	
Chlorobenzene	5.59	0.099	0.25	"	4.95		113	70-130	16.0	20	
1,1-Dichloroethene	6.03	0.099	0.25	"	4.95		122	70-130	14.8	20	
Toluene	5.12	0.099	0.25	"	4.95		104	70-130	11.7	20	
Trichloroethene (TCE)	5.34	0.099	0.25	"	4.95		108	70-130	11.6	20	
Surrogate: Dibromofluoromethane	0.0503			"	0.0495		102	70-130			
Surrogate: Toluene-d8	0.0473			"	0.0495		95.6	70-130			
Surrogate: 4-Bromofluorobenzene	0.0443			"	0.0495		89.5	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported:

14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura

1056 Meta Street, Suite 101 Ventura CA, 93001 Project: Winton Valero
Project Number: Excavation
Project Manager: Eric Kirkegaard

Reported: 14-Sep-15 16:55

Volatile Organic Compounds by EPA Method 8260B/LUFT - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B5I0177 - EPA 5035/5030B MEOH

LCS Dup (B5I0177-BSD2)		Prepared: 08-S	ep-15 Analyze	d: 09-Sep-1	15					
TPH Gasoline (C4-C12)	104	9.9	25	mg/kg	99.2	105	70-130	1.84	20	
Surrogate: Dibromofluoromethane	0.0489			"	0.0496	98.6	70-130			
Surrogate: Toluene-d8	0.0467			"	0.0496	94.1	70-130			
Surrogate: 4-Bromofluorobenzene	0.0460			"	0.0496	92.6	70-130			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.oecusa.com

TEL: (805) 922-4772

FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101Project Number: ExcavationReported:Ventura CA, 93001Project Manager: Eric Kirkegaard14-Sep-15 16:55

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	B510174 -	EPA	3550B	MS

Blank (B5I0174-BLK1)					Prepared: 08-Sep-15 Analyzed: 09-Sep-15
Acenaphthene	ND	0.050	0.10	mg/kg	
Acenaphthylene	ND	0.050	0.10	"	
Aniline	ND	0.060	0.10	"	
Anthracene	ND	0.050	0.10	"	
Azobenzene	ND	0.050	0.10	"	
Benz (a) anthracene	ND	0.050	0.10	"	
Benzo (b) fluoranthene	ND	0.050	0.10	"	
Benzo (k) fluoranthene	ND	0.050	0.10	"	
Benzo (a) pyrene	ND	0.050	0.10	"	
Benzo (g,h,i) perylene	ND	0.090	0.10	"	
Benzoic acid	ND	0.050	0.10	"	
Benzyl alcohol	ND	0.050	0.10	"	
Bis(2-chloroethoxy)methane	ND	0.050	0.10	"	
Bis(2-chloroethyl)ether	ND	0.050	0.10	"	
Bis(2-chloroisopropyl) ether	ND	0.060	0.10	"	
Bis(2-ethylhexyl) phthalate	0.0580	0.050	0.10	"	J, B-02, O-01
4-Bromophenyl phenyl ether	ND	0.050	0.10	"	
Butyl benzyl phthalate	ND	0.050	0.10	"	
4-Chloroaniline	ND	0.050	0.10	"	
2-Chloronaphthalene	ND	0.050	0.10	"	
4-Chlorophenyl phenyl ether	ND	0.050	0.10	"	
Chrysene	ND	0.050	0.10	"	
Dibenz (a,h) anthracene	ND	0.060	0.10	"	
Dibenzofuran	ND	0.050	0.10	"	
Di-n-butyl phthalate	ND	0.050	0.10	"	
1,2-Dichlorobenzene	ND	0.070	0.10	"	
1,3-Dichlorobenzene	ND	0.080	0.10	"	
1,4-Dichlorobenzene	ND	0.070	0.10	"	
3,3'-Dichlorobenzidine	ND	0.20	0.50	"	
Diethyl phthalate	0.577	0.080	0.10	"	A-01, O-01
Dimethyl phthalate	ND	0.050	0.10	"	
2,4-Dinitrotoluene	ND	0.060	0.10	"	
2,6-Dinitrotoluene	ND	0.050	0.10	"	
Di-n-octyl phthalate	ND	0.050	0.10	"	
Fluoranthene	ND	0.050	0.10	"	
Fluorene	ND	0.050	0.10	"	
Hexachlorobenzene	ND	0.050	0.10	"	
Hexachlorobutadiene	ND	0.060	0.10	"	
Hexachlorocyclopentadiene	ND	0.050	0.10	"	
Hexachloroethane	ND	0.080	0.10	"	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

DMI-EMK Environmental Services Inc. Ventura Project: Winton Valero

1056 Meta Street, Suite 101 Project Number: Excavation Reported: Ventura CA, 93001 Project Manager: Eric Kirkegaard 14-Sep-15 16:55

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B5I0174-BLK1)					Prepared: 08-S	Sep-15 A	Analyze
Indeno (1,2,3-cd) pyrene	ND	0.060	0.10	mg/kg			
Isophorone	ND	0.050	0.10	"			
2-Methylnaphthalene	ND	0.050	0.10	"			
Naphthalene	ND	0.050	0.10	"			
2-Nitroaniline	ND	0.050	0.10	"			
3-Nitroaniline	ND	0.050	0.10	"			
4-Nitroaniline	ND	0.060	0.25	"			
Nitrobenzene	ND	0.050	0.10	"			
N-Nitrosodimethylamine	ND	0.070	0.10	"			
N-Nitrosodi-n-propylamine	ND	0.050	0.10	"			
N-Nitrosodiphenylamine	ND	0.050	0.10	"			
Phenanthrene	ND	0.050	0.10	"			
Pyrene	ND	0.050	0.10	"			
Carbazole	ND	0.050	0.10	"			
1,2,4-Trichlorobenzene	ND	0.070	0.10	"			
4-Chloro-3-methylphenol (Parachlorometa cresol)	ND	0.050	0.10	"			
2-Chlorophenol	ND	0.060	0.10	"			
2,4-Dichlorophenol	ND	0.050	0.10	"			
2,4-Dimethylphenol	ND	0.050	0.10	"			
2,4-Dinitrophenol	ND	0.097	0.10	"			
4,6-Dinitro-2-methylphenol	ND	0.095	0.10	"			
2-Methylphenol	ND	0.070	0.10	"			
3 & 4-Methylphenol	ND	0.060	0.10	"			
2-Nitrophenol	ND	0.060	0.10	"			
4-Nitrophenol	ND	0.050	0.10	"			
Pentachlorophenol	ND	0.050	0.10	"			
Phenol	ND	0.060	0.10	"			
2,4,5-Trichlorophenol	ND	0.050	0.10	"			
Pyridine	ND	0.050	0.10	"			
2,4,6-Trichlorophenol	ND	0.050	0.10	"			
Surrogate: 2-Fluorophenol	2.74			"	2.67	103	26-112
Surrogate: Phenol-d5	2.21			"	2.67	82.9	24-106
Surrogate: Nitrobenzene-d5	2.15			"	2.67	80.5	35-119
Surrogate: 2-Fluorobiphenyl	2.16			"	2.67	81.1	37-122
Surrogate: 2,4,6-Tribromophenol	2.28			"	2.67	85.5	15-134

Oilfield Environmental and Compliance

 $Surrogate: p\hbox{-}Terphenyl\hbox{-}d14$

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

22-172

84.2

307 Roemer Way, Suite 300, Santa Maria, CA 93454

2.25

www.oecusa.com

2.67

TEL: (805) 922-4772

FAX: (805) 925-3376

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B5I0174 - EPA 3550B	MS										
LCS (B5I0174-BS1)					Prepared:	08-Sep-1:	5 Analyze	d: 09-Sep-	15		
Acenaphthene	2.38	0.050	0.10	mg/kg	2.67		89.3	53-131			
1,4-Dichlorobenzene	2.05	0.070	0.10	"	2.67		76.8	43-121			
2,4-Dinitrotoluene	2.89	0.060	0.10	"	2.67		108	51-129			
N-Nitrosodi-n-propylamine	2.54	0.050	0.10	"	2.67		95.2	29-150			
Pyrene	2.76	0.050	0.10	"	2.67		104	66-128			
1,2,4-Trichlorobenzene	2.70	0.070	0.10	"	2.67		101	59-124			
4-Chloro-3-methylphenol (Parachlorometa cresol)	2.59	0.050	0.10	"	2.67		97.1	65-128			
2-Chlorophenol	2.25	0.060	0.10	"	2.67		84.3	46-125			
4-Nitrophenol	1.75	0.050	0.10	"	2.67		65.7	39-126			
Pentachlorophenol	1.66	0.050	0.10	"	2.67		62.1	30-111			
Phenol	2.27	0.060	0.10	"	2.67		85.0	50-116			
Surrogate: 2-Fluorophenol	2.26			"	2.67		84.6	26-112			
Surrogate: Phenol-d5	2.30			"	2.67		86.3	24-106			
Surrogate: Nitrobenzene-d5	2.24			"	2.67		84.2	35-119			
Surrogate: 2-Fluorobiphenyl	2.13			"	2.67		79.9	37-122			
Surrogate: 2,4,6-Tribromophenol	2.24			"	2.67		84.2	15-134			
Surrogate: p-Terphenyl-d14	2.29			"	2.67		86.0	22-172			
LCS Dup (B5I0174-BSD1)					Prepared:	08-Sep-13	5 Analyze	d: 09-Sep-	15		
Acenaphthene	2.45	0.050	0.10	mg/kg	2.67		92.0	53-131	3.00	30	
1,4-Dichlorobenzene	2.23	0.070	0.10	"	2.67		83.7	43-121	8.57	30	
2,4-Dinitrotoluene	2.94	0.060	0.10	"	2.67		110	51-129	1.77	30	
N-Nitrosodi-n-propylamine	2.73	0.050	0.10	"	2.67		102	29-150	7.30	30	
Pyrene	2.82	0.050	0.10	"	2.67		106	66-128	2.22	30	
1,2,4-Trichlorobenzene	2.83	0.070	0.10	"	2.67		106	59-124	4.71	30	
4-Chloro-3-methylphenol (Parachlorometa cresol)	2.56	0.050	0.10	"	2.67		96.0	65-128	1.07	30	
2-Chlorophenol	2.46	0.060	0.10	"	2.67		92.4	46-125	9.21	30	
4-Nitrophenol	1.76	0.050	0.10	"	2.67		66.1	39-126	0.531	30	
Pentachlorophenol	1.91	0.050	0.10	"	2.67		71.5	30-111	14.0	30	
Phenol	2.13	0.060	0.10	"	2.67		80.0	50-116	6.08	30	
Surrogate: 2-Fluorophenol	2.80			"	2.67		105	26-112			
Surrogate: Phenol-d5	2.11			"	2.67		79.3	24-106			
Surrogate: Nitrobenzene-d5	2.56			"	2.67		96.1	35-119			
Surrogate: 2-Fluorobiphenyl	2.27			"	2.67		85.0	37-122			
Surrogate: 2,4,6-Tribromophenol	2.42			"	2.67		90.8	15-134			
Surrogate: p-Terphenyl-d14	2.36			"	2.67		88.5	22-172			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported: 14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero Project Number: Excavation 1056 Meta Street, Suite 101 Ventura CA, 93001 Project Manager: Eric Kirkegaard

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Dotah	R510174 -	TODA	255AD	N/C
Katch	K510174 -	H.PA	インカリド	VIS

Duplicate (B5I0174-DUP1)	Sour	ce: 1503795	-10		Prepared: 08-Sep-15 Analyzed			
Acenaphthene	ND	0.50	0.99	mg/kg	ND		30	
Acenaphthylene	ND	0.50	0.99	"	ND		30	
Aniline	ND	0.60	0.99	"	ND		30	
Anthracene	ND	0.50	0.99	"	ND		30	
Azobenzene	ND	0.50	0.99	"	ND		30	
Benz (a) anthracene	ND	0.50	0.99	"	ND		30	
Benzo (b) fluoranthene	ND	0.50	0.99	"	ND		30	
Benzo (k) fluoranthene	ND	0.50	0.99	"	ND		30	
Benzo (a) pyrene	ND	0.50	0.99	"	ND		30	
Benzo (g,h,i) perylene	ND	0.89	0.99	"	ND		30	
Benzoic acid	ND	0.50	0.99	"	ND		30	
Benzyl alcohol	ND	0.50	0.99	"	ND		30	
Bis(2-chloroethoxy)methane	ND	0.50	0.99	"	ND		30	
Bis(2-chloroethyl)ether	ND	0.50	0.99	"	ND		30	
Bis(2-chloroisopropyl) ether	ND	0.60	0.99	"	ND		30	
Bis(2-ethylhexyl) phthalate	ND	0.50	0.99	"	ND		30	
4-Bromophenyl phenyl ether	ND	0.50	0.99	"	ND		30	
Butyl benzyl phthalate	ND	0.50	0.99	"	ND		30	
4-Chloroaniline	ND	0.50	0.99	"	ND		30	
2-Chloronaphthalene	ND	0.50	0.99	"	ND		30	
4-Chlorophenyl phenyl ether	ND	0.50	0.99	"	ND		30	
Chrysene	ND	0.50	0.99	"	ND		30	
Dibenz (a,h) anthracene	ND	0.60	0.99	"	ND		30	
Dibenzofuran	ND	0.50	0.99	"	ND		30	
Di-n-butyl phthalate	ND	0.50	0.99	"	ND		30	
1,2-Dichlorobenzene	ND	0.70	0.99	"	ND		30	
1,3-Dichlorobenzene	ND	0.80	0.99	"	ND		30	
1,4-Dichlorobenzene	ND	0.70	0.99	"	ND		30	
3,3'-Dichlorobenzidine	ND	2.0	5.0	"	ND		30	
Diethyl phthalate	0.968	0.80	0.99	"	0.939	3.00	30	j
Dimethyl phthalate	ND	0.50	0.99	"	ND		30	
2,4-Dinitrotoluene	ND	0.60	0.99	"	ND		30	
2,6-Dinitrotoluene	ND	0.50	0.99	"	ND		30	
Di-n-octyl phthalate	ND	0.50	0.99	"	ND		30	
Fluoranthene	ND	0.50	0.99	"	ND		30	
Fluorene	1.08	0.50	0.99	"	1.07	1.10	30	
Hexachlorobenzene	ND	0.50	0.99	"	ND		30	
Hexachlorobutadiene	ND	0.60	0.99	"	ND		30	
Hexachlorocyclopentadiene	ND	0.50	0.99	"	ND		30	
Hexachloroethane	ND	0.80	0.99	"	ND		30	

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported:

14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero 1056 Meta Street, Suite 101 Project Number: Excavation Ventura CA, 93001 Project Manager: Eric Kirkegaard

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

		MDL	PQL		Spike	Source		%REC		RPD	
Analyte	Result			Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	B510174 -	EPA 3550B	MS
-------	-----------	-----------	----

Duplicate (B5I0174-DUP1)	Sour	Source: 1503795-10				Prepared: 08-Sep-15 Analyzed: 09-Sep-15					
Indeno (1,2,3-cd) pyrene	ND	0.60	0.99	mg/kg		ND	-	-		30	
Isophorone	ND	0.50	0.99	"		ND				30	
2-Methylnaphthalene	5.92	0.50	0.99	"		4.87			19.5	30	
Naphthalene	3.03	0.50	0.99	"		2.65			13.3	30	
2-Nitroaniline	ND	0.50	0.99	"		ND				30	
3-Nitroaniline	ND	0.50	0.99	"		ND				30	
4-Nitroaniline	ND	0.60	2.5	"		ND				30	
Nitrobenzene	ND	0.50	0.99	"		ND				30	
N-Nitrosodimethylamine	ND	0.70	0.99	"		ND				30	
N-Nitrosodi-n-propylamine	ND	0.50	0.99	"		ND				30	
N-Nitrosodiphenylamine	ND	0.50	0.99	"		ND				30	
Phenanthrene	2.73	0.50	0.99	"		2.22			20.4	30	
Pyrene	ND	0.50	0.99	"		ND				30	
Carbazole	ND	0.50	0.99	"		ND				30	
1,2,4-Trichlorobenzene	ND	0.70	0.99	"		ND				30	
4-Chloro-3-methylphenol	ND	0.50	0.99	"		ND				30	
(Parachlorometa cresol)											
2-Chlorophenol	ND	0.60	0.99	"		ND				30	
2,4-Dichlorophenol	ND	0.50	0.99	"		ND				30	
2,4-Dimethylphenol	ND	0.50	0.99	"		ND				30	
2,4-Dinitrophenol	ND	0.96	0.99	"		ND				30	
4,6-Dinitro-2-methylphenol	ND	0.94	0.99	"		ND				30	
2-Methylphenol	ND	0.70	0.99	"		ND				30	
3 & 4-Methylphenol	ND	0.60	0.99	"		ND				30	
2-Nitrophenol	ND	0.60	0.99	"		ND				30	
4-Nitrophenol	ND	0.50	0.99	"		ND				30	
Pentachlorophenol	ND	0.50	0.99	"		ND				30	
Phenol	ND	0.60	0.99	"		ND				30	
Pyridine	ND	0.50	0.99	"		ND				30	
2,4,5-Trichlorophenol	ND	0.50	0.99	"		ND				30	
2,4,6-Trichlorophenol	ND	0.50	0.99	"		ND				30	
Surrogate: 2-Fluorophenol	5.06			"	5.30		95.4	26-112			
Surrogate: Phenol-d5	4.09			"	5.30		77.1	24-106			
Surrogate: Nitrobenzene-d5	4.15			"	5.30		78.2	35-119			
Surrogate: 2-Fluorobiphenyl	5.25			"	5.30		99.1	37-122			
Surrogate: 2,4,6-Tribromophenol	4.30			"	5.30		81.1	15-134			
Surrogate: p-Terphenyl-d14	4.47			"	5.30		84.2	22-172			

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Reported: 14-Sep-15 16:55

DMI-EMK Environmental Services Inc. Ventura

Project: Winton Valero

1056 Meta Street, Suite 101

Project Number: Excavation

Ventura CA, 93001

Project Manager: Eric Kirkegaard

Project Manager: Eric Kirkegaard

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS and/or LCSD recovery and/or RPD values.
A-01	Analyte J-flag value in the sample.
B-02	The method blank contains analyte at a J-flag concentration.
D-04	The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
НТ-рН	Water pH should be analyzed within 15 minutes of sampling. Soil pH should be analyzed as soon as possible.
J	Detected but below the RL/PQL; therefore, result is an estimated concentration.
N-02	Analyte concentration below TTLC but above 10x STLC.
O-01	This compound is a common laboratory contaminant.
>212	>212
QL-02	The spike recovery is outside the control limits.
S-02	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
QM-4X	The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.
QR-01	Analyses are not controlled on RPD values from sample concentrations less than 10 times the reporting limit. QC batch accepted based on LCS and/or LCSD QC results.
QR-02	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QR-04	The RPD exceeded the QC control limits.
R-05	The sample was diluted due to the presence of high levels of non-target analytes resulting in elevated reporting limits.
R-06	The Reporting Limit has been raised to account for the presence of high levels of analytes.
OTWN	This sample was analyzed outside of the 12 hour tuning window specified in the method.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the Method Limit (MDL)
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Oilfield Environmental and Compliance

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TEL: (805) 922-4772 www.oecusa.com FAX: (805) 925-3376

Received By:

Oilfield Environmental and Compliance

307 Roemer Way Suite 300, Santa Maria CA 93454

Highway 33, McKittrick CA

CHAIN OF CUSTODY

phone: (805) 922-4772 fax: (805) 925-3376 www.oecusa.com phone: (661) 762-9143 COMPANY: BUT-EMK ENVIRONMENME SERVICES, IVE. EXCAUATION Project Name/#: 1056 E. META ST#(01 93003 **Analysis Requested** Special Instructions: E-mail: OMI-BMK C KILKEGAARA Sampler: Report To MI - EMK Send report via- FAX- 🗌 PDF-5 Days-72 hr-ASAP-10 Days-**Turnaround Time** Date/Time # of **Client Sample ID** Matrix **OEC Sample ID** Sampled Cont 1563795 -14-6 91/4/15 24-6 CK3e5' 34-6 EXLY 010 4AG K EXC505 SAG GAG 7A-G 8AG X 9 AG X MACL Rec'd 04.7'C 5 Time: 1705 Comments/PO#: RESULTS FRIDAY 9/11/15 Relinquished By Date: 4-4-15 Time: 1768 Received By: Relinquished By: Date: Time: Received By: Date: Time: Relinquished By: Date: Time:

Time:

Date:

	•
O SAMP	LE RECEIPT
D. Alleria	EE RECEII I

CLIENT: DMI-EMK OEC ID#: 1563795

Temp: 4.3 ° C

Acceptable Range: 0°C to 6°C

COC RECEIVED DATE/TIME: 49.4-150 1705

RECEIPT LOGIN
DATE/TIME: * 09/04/15@ 1734
REFRIGERATOR(s): ______

SAMPLE TRANSPORT, RECEIPT, CO	NDITION & PRESERVATION:	Yes	No	N/A	(*) PROBLEM CHA	IN FORM NEEDED		
OEC Courier/Sampler	COC document(s) received with samples	Ø	□ *		Custody Seals (circle):	Present Absent		
Delivery(Other than OEC Courier)	Correct containers for analysis requested	X	$\square *$			Samples / Coolers		
☐ Samples Received on Ice	Container(s) intact and in good condition	区	*			Intact / Broken*		
Samples Received Outside Temp. Range*	Container label(s) consistent with COC	\triangleright	$\square *$		Method of Shipment & Tracking #(if applicable):			
☐ Samples Direct from field (Outside Temp)	OEC preservative added (**note std ID)	- **		\boxtimes				
After-Hours Outside Drop-off [Brought Inside]	Proper preservation on sample label(s)	区			(**) OEC Preservative II	D :		
(Initials/Date/Time):	VOA containers free of headspace		□* .	Z Z	Dissolved Metals Filtrati	on: (Date/Init/Preserve ID)		
	Tedlar Bags free of condensation	L	□ ∗′	<u> </u>	<u> </u>			

CONTAIN	ERS, COC CHANGES AN	D/OR CORRECTIONS		CHANG	GES AU	THORIZED B	Y:
OEC ID	Client ID ***If blank, refer to CoC	_	Preservative	ResCl /pH	Matrix	Date/Time Sampled ***	Comments / Remarks / Condition Notes, Etc.
1-9A		1-TUBE EA 2-40ML VOAS EA			<u> </u>		3
19 BC		2-40ML VOAS EA	MeOH				VOA FREEZER
-9 D-G		4-40 ML VOAT EA	SOBI	-			1
6A-B		2-402 GLASS JAPS				Name of the second seco	8
10c	•	1-402 GLASS JAR		•	\perp	,	VOA FREEZER
							·
194	· e-	`>					14
							,

ビーけ
'

RECEIPT REVIEWED BY: __

111		
	 -	

i		1
Page	of	Ĺ.,

307 Roemer Way Suite 300, Santa Maria CA 93454

phone: (805) 922-4772 fax: (805) 925-3376 www.oecusa.com

Highway 33, McKittrick CA

phone: (661) 762-9143

CHAIN OF CUSTODY

Page_

Company: MI	-EMK E	:NUL	ON	MENIAL SEXVICES, IUC.	Proje	ct Nan	ne/#:	<u>خ×</u>	CA	04	710	<u>()</u>			
Address: (0.5)	· E.ME	74	51	#(0)	Site:	_		70			_ی		¥		
City/State/ZIP:VEW		AS	30	03			~	Analy	/sis R	eque	ested	•			Special Instructions:
Phone: 85)	3-0633	Fax:	,	E-mail: OFG-EMK	5		25/25/24/25/25/24/25/25/25/25/25/25/25/25/25/25/25/25/25/								000
Report To	-EMK			EPIA KOMO AAAA	E~		رز کر	3							MASAP PER ENC
Send report via- FA		PDF- 🔽		Coll/LUFT EDF- EDD-	43	19	7	17							9/11/15
Turnaround Time		Days- 🔲	72 h	ar	875 875	±	24	,					,		M
OEC Sample ID	Date/Time Sampled	Matrix	# of Cont.	Client Sample ID	30	李	××	Š			-	,	-		
1503795 - 1A-G	રીપાંડ	S	7	Excle14'	X	X									
2A-G		-		EXCZ010'	1	×									
34-6				CK3e5'	4	X								·	
HAG				Exc4010'	7	7									***************************************
546				EXSOS'	X	X									
624				EXCE e10'	X	K								`	
74-64				exc7e5	1	X									
846				EXCOCO"	7	+									
9 469			4	Exc9 e5'	4	X	,							:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
100A-C	. \	4	3	EXC-SP		Ì	X								
		-				·							-		•
	200	4				٠.	·		·			, .			Rec'd Q 4.7'C
Relinquished By:	XX	gener trade once your labor than your laber lab		Date: 9/4/15 Tim	e: [705	>	Comm	nents/P	O#:	_			/	'
Received By:	-		,	Date: 4-4-15 Tim	e: 🌾	165		RE	کدر	₹ ⋝	TOP	CA	MY	U	uls
Relinquished By:				Date: Tim	e:										
Received By:				Date: Tim	e: .								* * * * * * * * * * * * * * * * * * * *		
Relinquished By:	MR (MR MR) have have only take join join who will the same that the same			Date: Tim	e:						ě	٠.			
Received By:				Date: Tim	e:									٠.	,

APPENDIX F

UNDERGROUND STORAGE TANK (UST) SITE – UNAUTHORIZED RELEASE / CONTAMINATION REPORT

	UNDERGROUND STORAGE TANK (UST) SITE - UNAUTHORIZED RELEASE / CONTAMINATION REPORT	
UNDERGROUND STURAGE TANK (UST) SITE - UNAUTHORIZED RELEASED TO THE DEPTHALE OF		
☐ Yes	REPORT BEEN FILED? Yes DND REPORT BEEN FILED? Yes DND I HEREBY CERTIFY THAT I AM A DESIGNATED GOVERNMENT ENTRY TO SECTION 25180.7 O REPORTED THIS INFORMATION TO LOCAL OFFICIALS PURSUANT TO SECTION 25180.7 O REPORTED THAT I AM A DESIGNATED GOVERNMENT ENTRY THAT I AM A DESIGNATED GOV	
REPO	DATE DATE	3
	NAME OF INDIVIDUAL FILING REPORT PHONE SIGNATURE	
<u>}</u>	OSCAN QUI AMBAO BIO 130 108 CONTRAIN OR ACENCY NAME	
REPORTED BY	DLOCAL AGENCY REGIONAL BOARD OF REGIONAL BOARD	-
REPO	ADDRESS CA 9454	2
	STREET HAYMATCH IS CONTACT PERSON PHONE 750 2000	
RESPONSIBLE PARTY	DQ ENTERPRISES INC DUNKNOWN OSCAR QUIAMBAD (510) 750 790	×
SPON	27472 HAYWARD BLUD CITY HAYWARD STATE CA ZD94545	2
R	OPERATOR OPERATOR	d
NO	WINTON VAVELED TOTALLE QUINTING	7
SITE LOCATION	23990 STREET HESPERIAN BLVQ MYWARD COUNTY ALAMEDY 209454	Ц
SITE	CROSS STREET	
	LOCAL'AGENCY AGENCY NAME	
SES	HAYWARI FIRE DEPARTMENT (510)583-4901	0
IMPLEMENTING AGENCIES	REGIONAL BOARD REGIONAL BOARD PHONE 619 C22 - 2300	
IN A		-
SS	(1)	
SUBSTANCES	(2) Munknown	
SUBS		-
EN	DATE DISCOVERED Tank last Subsurface Maniforing Country Other Light Remarks	al oxor
ATEM	DATE DISCHARGE BEGAN METHOD USED TO STOP DISCHARGE (CHECK ALL THAT APPLY) Remove Contents Close Tank	
DISCOVERY/ABATEMENT	Unknown Repair Tank Change Procedure	
SCOVE	HAS DISCHARGE BEEN STOPPEDY	
-	CAUSE(S).	
OURCE	Tank Pump (STP) Other Installation Problem Unknown Cure	
200		
CASE		
28	CHECK ONE ONLY Open - Site Assessment Open - Site Assessment Open - Inactive Open - Assessment Closed - No Further Action Required	
CURRENT	Open - Assessment & Interim Remedial Action Closed - No Further Action Required Open - Remediation	
-	ACTION(S)	
REMEDIAL ACTION	Groundwater migration control? Test (FT) Treatment at Hookup (TH) Other	
EDIAL	□ No Action Required (NAR) □ Excavate a Treat (= PR) □ Replace Supply (RS)	
AE .	titus rebuild due to street	-
-	Note: Contamination discovered during station case on this site was	
COMMENTS	widering project. Formate Continue	
COM	Note: Contamination discovered during station rebuild due to street widering project. Fortuner contamination case on this site was closed. Note: Contamination discovered during station rebuild due to street widering project. Fortuner contamination case on this site was closed. Rev. 02/01/2	2012