PHASE III ENVIRONMENTAL SITE ASSESSMENT

Subject Property Address 1208 Lincoln Avenue Alameda, CA 94501

ENCON Project Number

1410097ESAII

Report Date

1/14/2015

Prepared for

Mr. Ryan Shin

Open Bank

1000 Wilshire Blvd. Suite 500

Los Angeles, CA 90017

ENCON Solutions, Inc.

Environmental Consulting and Real Estate Due Diligence 3255 Wilshire Blvd. Suite 1508, Los Angeles, CA 90010 213.380.0555, 213.38ENCON, Fax 213-380-0505

3255 Wilshire Blvd. Suite 1508, Los Angeles, CA 90010 213.380.0555, 213.38ENCON, Fax 213-380-0505

1/14/2015 Mr. Ryan Shin Open Bank 1000 Wilshire Blvd. Suite 500 Los Angeles, CA 90017 Phone: 213-892-1164 Fax: 213-892-1199

Attached please find our PHASE III ENVIRONMENTAL SITE ASSESSMENT, ("the Report") for the above-mentioned Subject Property. This report has been prepared by ENCON for the Client under the professional supervision of the principal and/or senior staff whose seal(s) and signatures appear hereon. Neither ENCON, nor any staff member assigned to this investigation has any interest or contemplated interest, financial or otherwise, in the subject or surrounding properties, or in any entity which owns, leases, or occupies the subject or surrounding properties , and has no personal bias with respect to the parties involved.

The assessment was conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession, and in accordance with generally accepted practices of other consultants currently practicing in the same locality under similar conditions. No other representation, expressed or implied, and no warranty or guarantee is included or intended. The Report speaks only as of its date, in the absence of a specific written update of the Report, signed and delivered by ENCON.

There are no intended or unintended third party beneficiaries to this Report, unless specifically named. ENCON is an independent contractor, not an employee of either the issuer or the borrower, and its compensation was not based on the findings or recommendations made in the Report or on the closing of any business transaction. Thank you for the opportunity to prepare this Report, and assist you with this project. Please call us if you have any questions or if we may be of further assistance.

By signing below, ENCON declares that, to the best of our professional knowledge and belief, the undersigned meet the definition of an Environmental Professional as defined in §312.10 of 40 CFR 312 and have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Subject Property. ENCON has developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Respectfully Submitted,

Hyung K. Kim, P.E. Principal Consultant, Professional Engineer

ENCON Solutions, Inc.

Environmental Consulting & Real Estate Due Diligence

3255 Wilshire Blvd., Suite 1508, Los Angeles, CA 90010 213.380.0555, 213.38ENCON, F 213-380-0505

January 14, 2015

To: Open Bank ("Lender") 1000 Wilshire Boulevard, Suite 500 Los Angeles, CA 90017

And

U.S. Small Business Administration ("SBA")

Re: Borrower Name: N/A Project Address ("Property"): 1208 Lincoln Avenue, Alameda, CA 94501 Environmental Investigation Report Number(s): 1410097ESAIII

Dear Lender and SBA:

Hyung Kim ("Environmental Professional") meets the definition of an Environmental Professional as defined by 40 C.F.R. § 312.10(b) and has performed the following "Environmental Investigation(s)" (check all that apply):

____ A Transaction Screen of the Property dated _____, 2015____, conducted in accordance with ASTM International's most recent standard (currently ASTM E1528-06);

_____ A Phase I (or an Updated Phase I) Environmental Site Assessment of the Property dated ______ ___, 2015_____, conducted in accordance with ASTM International's most recent standard (currently ASTM E1527-13). In addition, the Environmental Professional has addressed the performance of the "additional inquiries" set forth at 40 C.F.R. § 312.22;

___X__ A Phase II Environmental Site Assessment of the Property dated January 14, 2015 conducted in accordance with generally-accepted industry standards of practice and consisting of a scope of work that would be considered reasonable and sufficient to identify the presence, nature and extent of a Release as it impacts the Property.

<u>Reliance by SBA and Lender</u>. Environmental Professional (and Environmental Professional's firm, where applicable) understand(s) that the Property may serve as collateral for an SBA guaranteed loan, a condition for which is an Environmental Investigation of the Property by an Environmental Professional. Environmental Professional (and Environmental Professional's firm, where applicable) authorize(s) Lender and SBA to use and rely upon the Environmental Investigation. Further, Environmental Professional (and Environmental Professional's firm, where applicable) authorize(s) Lender and SBA to use and rely upon the Environmental Investigation. Further, Environmental Professional (and Environmental Professional's firm, where applicable) authorize(s) Lender and SBA to release a copy of the Environmental Investigation to the borrower for information purposes only. This letter is not an update or modification to the Environmental Investigation. Environmental Professional (and Environmental Professional's firm, where applicable) makes no representation or warranty, express or implied, that the condition of the Property on the date of this letter is the same or similar to the condition of the Property on the Environmental Investigation.

<u>Insurance Coverage</u>. Environmental Professional (and/or Environmental Professional's firm, where applicable) certifies that he or she or the firm is covered by errors and omissions liability insurance with a minimum coverage of \$1,000,000 per claim (or occurrence) and that evidence of this insurance is attached. As to the Lender and SBA, Environmental Professional (and Environmental Professional's firm, where applicable) specifically waive(s) any dollar amount limitations on liability up to \$1,000,000.

<u>Waiver of Right to Indemnification.</u> Environmental Professional and Environmental Professional's firm waive any right to indemnification from the Lender and SBA.

<u>Impartiality</u>. Environmental Professional certifies that (1) to the best of his or her knowledge, Environmental Professional is independent of and not a representative, nor an employee or affiliate of seller, borrower, operating company, or any person in which seller has an ownership interest; and (2) the Environmental Professional has not been unduly influenced by any person with regard to the preparation of the Environmental Investigation or the contents thereof.

<u>Acknowledgment</u>. The undersigned acknowledge(s) and agree(s) that intentionally falsifying or concealing any material fact with regard to the subject matter of this letter or the Environmental Investigations may, in addition to other penalties, result in prosecution under applicable laws including 18 U.S.C. § 1001.

Environmental Professional Printed Name: Hyung Kim

(Note: The Environmental Professional must <u>always</u> sign this letter above. If the Environmental Professional is employed or retained by an Environmental Firm, then an authorized representative of the firm must also sign below).

Signature of representative of firm who is authorized to sign this letter Printed Name & Title: Hyung Kim, Principal Consultant Name of Environmental Firm: ENCON Solutions, Inc. Enclosure: Evidence of Insurance

ACORE	®

CERTIFICATE OF LIABILITY INSURANCE

DATE (MM/DD/YYYY) 01/28/2014

T C B R	HIS CERTIFICATE IS ISSUED AS A M ERTIFICATE DOES NOT AFFIRMATIV ELOW. THIS CERTIFICATE OF INSU EPRESENTATIVE OR PRODUCER, ANI	IATI IEL) JRA D TH	rer / Of NCE IE C	OF INFORMATION ONLY R NEGATIVELY AMEND, DOES NOT CONSTITU ERTIFICATE HOLDER.	Y AND EXTE TE A	CONFERS ND OR ALT CONTRACT	NO RIGHTS TER THE CO BETWEEN	UPON THE CERTIFICA OVERAGE AFFORDED I THE ISSUING INSURER	ΓΕ ΗΟ 3Υ ΤΗ :(S), Α	DLDER. THIS E POLICIES UTHORIZED	
il te	MPORTANT: If the certificate holder is erms and conditions of the policy, cert ertificate holder in lieu of such endorse	an / tain	ADD poli	ITIONAL INSURED, the po icles may require an end	olicy(ie Iorsem	es) must be e lent. A state	endorsed. If ement on thi	SUBROGATION IS WAIN is certificate does not c	/ED, si onfer i	ubject to the rights to the	
PRO	DUCER		(0)		CONTA	ст Juan Marti	inez				
					PHONE (A/C, No	p. Ext): (714)97	78-2000	FAX (A/C, No):	(714)9	78-2075	
LEE	DS INSURANCE SERVICES, Inc.				È-MÀIL ADDRE	ss: jcleeds@d	concentric.net	<u>.</u>			
180	32 Lemon Drive, Suite C428			-	INSURER(S) AFFORDING COVERAGE						
YOR	Da Linda, CA 92886				INSURE	RA: Westche	ester Surplus	Lines Insurance Company	r	10172	
INSL	JRED			-	INSURE	RB:					
	ENCON SOLUTIONS, Inc.				INSURE	RC:	· •				
	3255 Wilshire Blvd., #1508			-	INSURE	RD:					
	Los Angeles, CA 90010				INSURE	RE:					
co	VERAGES CERT	IFIC	ATE	NUMBER:	moure			REVISION NUMBER:	1		
TI IN C E	HIS IS TO CERTIFY THAT THE POLICIES (IDICATED. NOTWITHSTANDING ANY REG ERTIFICATE MAY BE ISSUED OR MAY PE XCLUSIONS AND CONDITIONS OF SUCH PC		NSUI EME AIN, IES.	RANCE LISTED BELOW HAV NT, TERM OR CONDITION THE INSURANCE AFFORD LIMITS SHOWN MAY HAVE	VE BEE OF AN ED BY BEEN F	EN ISSUED TO Y CONTRACT THE POLICIE REDUCED BY	O THE INSUR OR OTHER S DESCRIBE PAID CLAIMS.	ED NAMED ABOVE FOR T DOCUMENT WITH RESPE D HEREIN IS SUBJECT T	he po ct to o all	Licy Period Which This The Terms,	
LTR		ISR	WVD	POLICY NUMBER		(MM/DD/YYYY)	(MM/DD/YYYY)	LIMIT	3		
								EACH OCCURRENCE DAMAGE TO RENTED	\$ 2,00	0,000	
								PREMISES (Ea occurrence)	\$ 50.00	00	
A	X Professional & Pollution Liab			EGL000327		01/30/2014	01/30/2015		\$ 2,000	0 000	
								GENERAL AGGREGATE	\$ 4.00	0.000	
	GEN'L AGGREGATE LIMIT APPLIES PER:							PRODUCTS - COMP/OP AGG	\$ 2.00	0.000	
	POLICY PRO- JECT LOC								\$		
								COMBINED SINGLE LIMIT (Ea accident)	\$		
								BODILY INJURY (Per person)	\$		
	AUTOS AUTOS							BODILY INJURY (Per accident)	\$		
	HIRED AUTOS							(Per accident)	\$		
									<u> </u>		
								EACH OCCURRENCE	\$ e		
	DED RETENTION \$							AGGREGATE	\$		
	WORKERS COMPENSATION							WC STATU- TORY LIMITS ER			
								E.L. EACH ACCIDENT	\$		
	(Mandatory in NH)	<u>'</u> - <u></u>						E.L. DISEASE - EA EMPLOYEE	\$		
	DESCRIPTION OF OPERATIONS below							E.L. DISEASE - POLICY LIMIT	\$		
DESC	CRIPTION OF OPERATIONS / LOCATIONS / VEHICLES	S (At	tach /	ACORD 101, Additional Remarks S	ichedule,	if more space is	required}				
	ficate holder as additional incread										
Ceru	ncate noticer as additional inscred.										
CE				1	CANC	ELLATION					
	ц				SHO THE ACC	ULD ANY OF EXPIRATION ORDANCE WI	The above d I date thi Th the polic	ESCRIBED POLICIES BE C EREOF, NOTICE WILL I Y PROVISIONS.	ANCEL 3E DE	LED BEFORE LIVERED IN	
					AUTHOR	RIZED REPRESE	NTATIVE				
					luan M	artinez					
				Y		© 19	88-2010 ACC		All riok	its reserved	

The ACORD name and logo are registered marks of ACORD

Clear All

1.0 LIMITATIONS	
2.0 INTRODUCTION	6
2.1 Project Information	
2.2 Objectives	
3.0 SUBJECT PROPERTY CHARACTERISTICS	
3.1 Site Description	
3.2 Site History	
3.3 Physical Setting	
4.0 FIELD METHODOLOGY	
5.0 FINDINGS AND RESULTS	
5.1 Surface/Subsurface Conditions	
5.2 Analytical Results:	
6.0 CONCLUSIONS	
7.0 RECOMMENDATIONS	
8.0 REFERENCES	

TABLE OF CONTENTS

ATTACHMENTS

TABLE 1 – SUMMARY OF INDOOR AIR SAMPLE COLLECTION AND ANALYTICAL RESULTS
TABLE 2 – SUMMARY OF SOIL VAPOR SAMPLING AND ANALYTICAL RESULTS
TABLE 3 – SUMMARY OF WELL CONSTRUCTION DETAILS
TABLE 4A – SUMMARY OF SOIL MATRIX SAMPLE ANALYTICAL RESULTS – NOVEMBER 2014
TABLE 4B – SUMMARY OF HISTORICAL SOIL MATRIX SAMPLE ANALYTICAL RESULTS – ERAS, 2006
TABLE 5A – SUMMARY OF SOIL VAPOR SAMPLE ANALYTICAL RESULTS – NOVEMBER 2014
TABLE 5B – SUMMARY OF SOIL VAPOR SAMPLE ANALYTICAL RESULTS – AUGUST 2014
TABLE 6 – GROUNDWATER MONITORING DATA
TABLE 7 – SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS – DETECTED CONSTITUENTS
FIGURE 1 – SITE LOCATION MAP
FIGURE 2 – SITE MAP SHOWING CURRENT AND HISTORICAL BORING AND WELL LOCATIONS
FIGURE 3 – BACKGROUND AND INDOOR AIR SAMPLING RESULTS
FIGURE 4 – GROUNDWATER SURFACE ELEVATION CONTOUR MAP
FIGURE 5 – PCE IN GROUNDWATER: ISO-CONCENTRATION CONTOUR MAP
FIGURE 6 – PCE IN SHALLOW SOIL VAPOR: ISO-CONCENTRATION CONTOUR MAP

APPENDIX A – SITE PHOTOGRAPHS

APPENDIX B – SITE SPECIFIC HEALTH AND SAFETY PLAN AND USA TICKET INFORMATION

APPENDIX C – ALAMEDA COUNTY WELL PERMITS

APPENDIX D – INDOOR AIR SAMPLING DATA:

BUILDING SURVEY SAMPLE COLLECTION DATA LAB REPORTS AND CHAIN OF CUSTODY APPENDIX E – LABORATORY REPORTS AND CHAIN OF CUSTODY: SOIL MATRIX SAMPLES

APPENDIX F – BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

APPENDIX G – WELL DEVELOPMENT LOGS

APPENDIX H – SURVEY DATA

APPENDIX I – STANDARD METHODS FOR SOIL GAS SAMPLING AND ANALYSIS

APPENDIX J – LABORATORY REPORTS AND CHAIN OF CUSTODY: SOIL VAPOR SAMPLES

APPENDIX K – GROUNDWATER MONITORING AND PURGING RECORDS

APPENDIX L – LABORATORY REPORTS AND CHAIN OF CUSTODY: GROUNDWATER SAMPLES

APPENDIX M- NON-HAZARDOUS WASTE MANIFESTS

1.0 LIMITATIONS

The opinion expressed herein is based on the information collected during our study, our present understanding of the site conditions and our professional judgment in light of such information at the time of preparation of this report. No warranty is either expressed, implied or made as to the conclusions, advice and recommendations offered in this report.

Our investigation was performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable Engineers and Geologists practicing in this or similar localities. The samples taken and used for testing and the observations made are believed representative of the study area; however, soil and/or groundwater samples can vary significantly between borings, test pits, and/or test sample locations.

The interpretations and conclusions contained in this report are based on the results of laboratory tests and analysis intended to detect the presence and concentration of certain chemical constituents in samples taken from the subject property. Such testing and analysis have been conducted by an independent laboratory which is certified by the State of California to conduct such test analyses and which used methodologies mandated by the Environmental Protection Agency or the State Department of Health Services in the performance of such test and analyses. The consultant has no involvement in, or control over, such testing and analysis, and has no non-laboratory means of confirming the accuracy of such laboratory results. The consultant, therefore, disclaims any responsibility for any inaccuracy in such laboratory results.

The findings, conclusions and recommendations in this report are considered valid as of the present date. However, changes in the conditions of the property can occur with the passage of time, due to natural process or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur. Accordingly, portions of this report may be invalidated wholly or partially by the changes beyond our control.

INDEPENDANT CONTRACTOR STATUS

In performing Services under the scope of work contained in this Report and agreed Contract/Agreement, ENCON shall operate as, and have the status of, an independent contractor.

PROFESSIONAL RESPONSIBILITY

ENCON shall perform the Services consistent with that level of care and skill ordinarily exercised by other professional consultants under similar circumstances at the time the Services are performed. Client hereby acknowledges that whenever a Project involves hazardous or toxic materials there are certain inherent risk factors involved (such as limitations on laboratory analytical methods, variations in subsurface conditions, economic loss to Client or property owner, a potential obligation for disclosure to regulatory agencies, a potential for a decrease in market value of real property, and the like) that may adversely affect the results of the Project, even though the Services are performed with such skill and care. No other representation, warranty, or guarantee, express or implied, is included or intended by the scope of work contained in this Report and agreed Contract/Agreement.

LIMITATION OF LIABILITY

Client agrees that the liability of ENCON and all officers, employees, agents, and subcontractors of ENCON (the "ENCON Parties") to Client for all claims, suits, arbitration, or other proceedings arising from the performance of the Services under the scope of work contained in this Report and agreed Contract/Agreement, including, but not limited to, ENCON's professional negligence, errors and omissions, or other professional acts, shall be limited to the Fee amount. ENCON Parties are not liable for any indirect, incidental or consequential damages, lost profits, lost revenue, or loss of property value

based on the Services provided as part of the scope of work contained in this Report and agreed Contract/Agreement.

HAZARDOUS OR UNSAFE CONDITIONS

Client has fully informed ENCON of the type, quantity, and location of any hazardous, toxic, or dangerous materials or unsafe or unhealthy conditions that may affect the Project which Client knows to exist. If Client hereafter becomes aware of any such information, Client shall immediately inform ENCON. The discovery of unanticipated hazardous, toxic, or dangerous materials or unsafe or unhealthy conditions constitutes a Changed Condition that may justify a revision to Services and/or Fees. If ENCON takes emergency measures to protect the health and safety of ENCON Parties and/or the public or to prevent undue harm to the environment, the Fee shall be appropriately adjusted to compensate ENCON for the cost of such emergency measures.

RIGHT OF ENTRY

Client agrees to grant or arrange permission for right of entry from time to time by ENCON Parties upon all real property included in the Project Site(s) where the Services are to be performed, whether or not the Project Site(s) is owned by Client. Client recognizes that the use of investigative equipment and practice may unavoidable alter conditions or affect the environment at the existing Project Site(s). ENCON will operate with reasonable care to minimize damage to the Project Site(s). The cost of repairing such damage will be borne by Client, and in not included in the Fee unless otherwise stated.

UNDERGROUND UTILITIES

Client shall correctly designate on plans to be furnished to ENCON, the location of all subsurface structures, such as pipes, tanks, cables, and utilities within the property lines of the Project Site(s) and shall be responsible for any damage inadvertently cause by ENCON to any such structure or utility not so designated.

REPORTING AND DISPOSAL REQUIREMENTS

Nothing contained in this Report shall be construed or interpreted as requiring ENCON to assume the status of an owner, operator, generator, person who arranges for disposal, transportation, storage, treatment, or a disposal facility as those terms appear within any federal or state statute governing the treatment, storage, and disposal of hazardous substances or wastes. Client shall be solely responsible for notifying all appropriate federal, state, municipal, or other governmental agencies of the existence of any hazardous, toxic, or dangerous materials located on or in the Project Site(s), or discovered during the performance of the scope of work contained in this Report and agreed Contract/Agreement. Client agrees that ENCON is not responsible for disclosures, notifications, or reports that may be required to be made to third parties. Client shall be responsible for making and paying for all necessary arrangements to lawfully store, treat, recycle, dispose of, or otherwise handle hazardous or toxic substances or wastes, including but no limited to, samples and cuttings, to be handled in connection with the Project.

SAMPLES AND CUTTINGS

ENCON shall not be obligated to preserve samples such as oil, rock, water, building materials, fluids and other samples obtained from the Project Site(s) for a longer period of time than a laboratory will store the samples for no additional fee. If sample storage is requested by Client beyond standard laboratory time, Client will be responsible for any storage fee for those samples.

HEALTH AND SAFETY

ENCON shall not be responsible for the health and safety of any persons other than ENCON Parties, nor shall it have any responsibility for the operations, procedures, or practices of persons or entities other than ENCON Parties.

2.0 INTRODUCTION

2.1 PROJECT INFORMATION

All work was performed in accordance with ENCON's Proposal for Additional Site Characterization dated August 29, 2013.

Project Information						
Ітем						
ENCON Project Number	1410097ESAIII					
Subject Property Address	1208 Lincoln Avenue in Alameda, Alameda County, CA 94501					
Subject Property Name	Elegant Cleaners					
Pre-Drilling Activity	October 27, 2014 through November 4, 2014					
Workplan and Well Permits	October 28, 2014, permits received on November 4, 2014					
Indoor Air/Geophysical Survey	October 30, 2014					
Mark/Notify USA	October 30, 2014 and November 9, 2014					
Drilling & Well Installation Dates	November 12, 2014					
Soil Vapor Survey Date:	November 19, 2014					
Well Development Date:	November 21, 2014					
Groundwater Sampling Date	November 25, 2014					
Wellhead Survey Date	December 22, 2014					
Investigative Waste Disposal	December 23, 2014					
Report Date	January 9, 2015					
QAQC and Figures	January 14, 2015					
Staff Engineer	Cora Olson, Project Engineer, EIT					
Project Manager / Author	Thomas Lindros, Senior Geologist, P.G.					
, 3	California Licensed Professional Geologist					
QAQC/Reviewer	Hyung Kim, Principal Engineer, P.E.					
	California Licensed Professional Civil Engineer					
Broporty Logotion	immediately agest of Bay Street in the parth control partian of the					
Property Location	City of Alameda					
	The general setting is commercial/retail with nearby residential					
General Setting	buildings.					
Property Type	Dry cleaner					

2.2 OBJECTIVES

The objective(s) of this investigation are to 1) determine if indoor air quality has been degraded as a result of vapor intrusion from known subsurface contamination with chlorinated solvent released from historical onsite dry cleaning operation, 2) further evaluate the lateral and vertical extent of known chlorinated solvent contamination in soil vapor, 3) characterize the presence or absence of chlorinated solvents in soil matrix phase, 4) evaluate if shallow groundwater has been impacted by the solvent release, and 5) measure depth to water in the three (3) groundwater wells to calculate the groundwater flow direction and gradient.

2.3 Scope of Work

To satisfy the Site Characterization and Remedial Design objectives described above, ENCON completed the following scope of work:

- Pre-marked the Site in white paint and notified Underground Service Alert of the intent to excavate;
- Conducted a geophysical utility clearance survey;
- Prepared a Site Investigation Workplan; obtained groundwater and soil vapor well permits from Alameda County;
- Collected eight-hour time-weighted average indoor and ambient air quality samples;
- Advanced five soil vapor probe borings to depths of approximately 5 feet bgs, installed permanent soil vapor monitoring wells with vapor inlet screens at depth of 5 feet bgs.
- Advanced three (3) soil borings to target depths of 15 feet bgs, or approximately 6 feet below the water level encountered during drilling;
- Collected relatively undisturbed soil samples at approximate 5-foot intervals in the three (3) monitoring well borings;
- Monitored the headspace of collected soil samples using a photo-ionization detector;
- Installed one (1) ³/₄-inch diameter pre-packed groundwater well indoors (MW-01) and two (2) twoinch diameter PVC groundwater monitoring wells at outdoor locations (MW-02 and MW-03);
- Following minimum 48 hour equilibration period, ENCON conducted a DTSC-compliant soil vapor survey by purging and collecting soil vapor samples from five (5) newly installed soil vapor monitoring wells (VW-1 through VW-5). Analyzed soil vapor and QA/QC samples in an on-Site mobile laboratory.
- Developed and surveyed the newly installed groundwater monitoring wells;
- Purged and collected groundwater samples from the three (3) newly installed monitoring wells.
- Submitted selected soil and groundwater samples for laboratory analysis of volatile organic compounds (VOCs);
- Recorded data on boring log forms;
- Produced a scaled Site map;
- Characterized and disposed of containerized Investigatively-Derived Waste (IDW) soil and purged groundwater.
- Evaluated data and prepared technical report.

3.0 SUBJECT PROPERTY CHARACTERISTICS

3.1 SITE DESCRIPTION

Property Improvement & Building/Land Description								
Ітем								
General Layout of Property	The Property is a 5,500 square-foot irregularly shaped parcel that is developed with two-story 2,500 square-foot commercial building currently occupied by a dry cleaning business name Elegant Cleaners. The northern portion of the building's first floor features a main entrance door leading into a reception area and clothes racks. The southern portion features a large dry cleaning machine, storage and various pressers and dryers. The second floor is used as storage. There is an unpaved parking area at the southern end of the Property. Access to the Property is achieved from the north along Lincoln Avenue and southwest along Bay Street.							

3.2 SITE HISTORY

The Property was developed with the current site building in the late 1800s or early 1900s. The building was originally developed as a meat market and was occupied by a store until the mid-1900s. In the 1970s it was occupied by a general store, and in 1980 it was occupied by a pet store. The current occupant, Elegant Cleaners, began occupying the building in 1986. The dry cleaners upgraded to an eco-friendly dry cleaning machine in 2005, which replaced the previous machine that used Tetrachloroethylene (PCE).

3.3 PHYSICAL SETTING

TOPOGRAPHY

The Property's physical location was researched employing a United States Geological Survey (USGS) 7.5 Minute Topographic Quadrangle (Quad) Map relevant to the Property. The USGS 7.5 Minute Quad Map has an approximate scale of 1 inch to 2,000 feet, and may show physical features with environmental significance such as wetlands, water bodies, roadways, mines, and buildings. The elevation of the Property is approximately 30 feet above mean sea level. There is a regional downslope to the north.

GEOLOGY & HYDROGEOLOGY

The site is located within the Coast Ranges geomorphic province of Northern California. The Coast Ranges are characterized as parallel mountain ranges and valleys displaced by strike-slip earthquake faults. The site is underlain by Quaternary-aged beach and dune sand.

While groundwater flow direction at the subject property cannot be confirmed without survey measurement of static groundwater level at triangulated points, it is expected to flow in the direction of surface topographical contour, or toward the wetland or nearest water body or discharge basin (percolation channel).

It is important to note that groundwater flow direction can be influenced locally and regionally by the presence of local wetland features, surface topography, recharge and discharge areas, horizontal and vertical inconsistencies in the types and location of subsurface soils, and proximity to water pumping wells.

Depth and gradient of the water table can change seasonally in response to variation in precipitation and recharge, and over time, in response to urban development such as storm water controls, impervious surfaces, pumping wells, cleanup activities, dewatering, seawater intrusion barrier projects near the coast, and other factors.

SOURCES OF DATA

Current USGS 7.5 Minute Topographical Map EDR Radius Map Report http://geotracker.waterboards.ca.gov/esi/uploads/geo_report/3293363273/T0605900506.PDF

3.4 Previous Investigations

Phase II Subsurface Investigation - 2006

A previous Phase II Subsurface Investigation report was prepared by Eras Environmental Inc in 2006. Three hand auger borings were advanced by ERAS Environmental (ERAS) to about 5' depth in the southern portion of the building around the location of the dry cleaning machine. Soil samples collected from the borings were analyzed for TPH-diesel, TPH-kerosene, and HVOC including PCE. The test results indicated non-detectable concentrations for all contaminants tested, including PCE.

Phase I Environmental Site Assessment – January 2013:

A Phase I Environmental Site Assessment was conducted by Eras Environmental, Inc. in January 2013. Eras concluded:

... the operating dry cleaning operation and historical dry cleaning operation (from 1983) are a recognized environmental condition. Proper operation of the dry cleaning system using less hazardous materials combined with proper storage and disposal practices will minimize the risk of leakage or spillage that might pose a risk to subsurface environmental conditions.

Based on the Phase I ESA results, Eras recommended:

... that the dry cleaning operation continue to operate in compliance with agency guidelines for the use, storage and disposal of dry cleaning fluids. Eras concludes that the risk of contamination at the Property is minimal, provided the dry cleaning operation operates in compliance with agency guidelines and no further investigation is warranted for the property.

Phase II Limited Soil Gas Survey - August 2014:

On August 22, 2014, ENCON Solutions, Inc. (ENCON) advanced six borings for the purposes of a soil gas survey. Soil gas samples were collected at depths of 5 to 12 feet bgs. The results indicated the presence of tetrachloroethylene (PCE) at a maximum concentration of 22.48 micrograms per liter (ug/L) in the southern gravel lot area at SV-5-8.0 feet, and 13.54 ug/L at SV-4-5.0 feet inside the building. Soil sampling was not performed. The results indicated soil vapor concentrations are not protective of indoor air quality, and detected concentrations of PCE in soil vapor exceeded California Human Health Screening Level for PCE for commercial land use as well as Bay Area Environmental Screening Level (See Table 2 and 5 in the Attachments of this Report). Groundwater was not encountered at a maximum refusal depth of 12 feet bgs.

4.0 FIELD METHODOLOGY

4.1 Preliminary Activities

Site Photographs are presented in Appendix A.

Prior to initiating the proposed investigation, a Site-Specific Health and Safety Plan (HASP) was prepared. All field investigation activities will be performed in accordance with health and safety procedures described in the HASP. The HASP is presented in Appendix B.

The Site owner and tenants were notified of the field schedule at least 72 hours in advance. Proposed boring locations were marked on-Site in white paint on October 30, 2014, and Underground Services Alert (USA) was notified of the intent to excavate. USA Ticket No. 0471328-000 is presented along with the HASP in Appendix B.

At the time of boring marking for USA, a geophysical borehole clearance survey was performed by Cruz Brothers Locating, Soquel, California. The purpose of the survey was to identify any subsurface anomalies that might represent an impediment to drilling such as subsurface utility lines, void spaces, etc. A combination of methods including radio-detection, electro-magnetic, and ground penetrating radar were employed to satisfy the stated objectives.

Well permits were obtained from the Alameda County Public Works Agency Water Resources Department (ACPWA). A workplan was prepared to describe the work activities, well construction methods, proposed well types, screened intervals and materials. The workplan was submitted along with the online permit application Number 1414191432944. Permits were obtained for 1) three (3) groundwater monitoring wells (MW-1 through MW-3); and five (5) permanent soil vapor sampling wells (VW-1 through VW-5). Permit Numbers W2014-1027 through W2014-1029 were approved on November 4, 2014 for the groundwater monitoring wells; and permit no. W2014-1030 was also approved on November 4, 2014 for the five (5) vapor monitoring wells. Well permits are presented in Appendix C.

4.2 Indoor Air Survey

An indoor air quality test was completed by ENCON Solutions, Inc. The objective of the survey was to determine if known chlorinated solvent contamination in the Site subsurface has an active migration pathway to the building interior (i.e. vapor intrusion); and if identified, whether degraded indoor air quality represents a significant health risk to the building occupants.

Sampling was performed in accordance with DTSC guidance for vapor intrusion, specifically the guidance document entitled *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor* Air, dated October 2011. The air sampling activities were performed on October 30, 2014, and conducted scope of work included the following tasks:

- Notified the Property owner of the schedule for sampling, and ensured that the air circulation system was operating for at least 24 to 48 hours prior to the start of sampling. Indoor air conditions were consistent with operating conditions on a normal business day at the time of sampling.
- Conducted a survey and screening of the building using the DTSC Building Survey form provided in Appendix L of the 2011 DTSC Vapor Intrusion to Indoor Air Guidance document.
- Collected two (2) outdoor ambient air samples which were sampled concurrently with indoor air samples. Sample BG-1 was located at the extreme southeast portion of the gravel parking lot. Sample BG-2 was located at the southern entrance to the tenant space near the HVAC system intake. Outdoor air sampling started approximately 15 minutes prior to collection of indoor air

samples, such that the ambient air sampled had entered the building before indoor air sampling begins. Wind direction was noted in the morning and afternoon. Sample locations are shown on Figure 2 and Figure 3.

- Collected two (2) Indoor air samples. Sample IA-1 was located on the southwest stairs near the existing hydrocarbon/former solvent based dry cleaning machines. Sample IA-2 was located in the northern portion of the tenant space near the public counter. Sample locations are shown on Figure 2 and Figure 3.
- All four (4) samples were collected on an eight-hour time-weighted average (TWA) basis using flow controllers. Laboratory-supplied 6-liter Summa canisters were placed at the above described sampling locations. Each of the Summa canisters was fitted with flow controller such that the air samples were collected at a slow rate over the period of 8 hours.
- Upon completion of the 8-hour sampling period, each canister was labeled, packaged, and delivered under chain of custody protocol to Air Technology Laboratories, Inc. in the City of Industry, California.
- The two (2) Outdoor and two (2) Indoor Air samples were analyzed for the 23 compound target list (VOCs) by EPA Test Method TO15 using low level selective ion mode (SIM) method to provide detection limits at or below the California Human Health Screening Levels (CHHSL).

Locations of air samples are shown on Figure 2 and Figure 3. Air Sample Collection Data is presented in Appendix D and on Table 1.

4.3 Soil Matrix Sampling and Analysis

On November 12, 2014, eight (8) soil borings were advanced using either direct push or hollow stem auger methods by Environmental Control Associates, Inc. (ECA) of Santa Cruz, California. Direct push methods were employed for the five (5) soil vapor probe borings (VW-1 through VW-5) and the limited access indoor groundwater monitoring well boring (MW-1). Hollow stem auger (HSA) methods were used for the full access outdoor groundwater monitoring well locations (MW-2 and MW-3). The locations of current and historical Site Assessment borings are shown on Figure 2.

Relatively undisturbed soil samples were collected continuously from each of the three (3) monitoring well borings using the Macrocore system. For each core run, an approximate 4-foot core barrel was advanced and a continuous 4-foot interval of representative soil was recovered in lexan sleeves. Selected samples at minimum 5-foot intervals were cut out for laboratory analysis. All remaining soils were used for lithologic description and headspace monitoring.

Immediately following the retrieval of undisturbed soil samples, selected six-inch portion(s) of lexan tube were lined with teflon, capped, labeled, placed into a Ziploc bag, and stored in an ice-chilled cooler.

All soil samples were recorded on a chain-of-custody form to document sample identification and handling. The soil samples were transported to Asset Laboratories, LLC (Asset) in Las Vegas, Nevada within 24 hours of sample collection. Asset is a State of California Certified Laboratory. Selected soil samples were analyzed for volatile organic compounds (VOCs) using EPA Test Method 8260B. Laboratory Reports and Chain of Custody Records for Soil Matrix Sample Analysis are presented in Appendix E.

Following preparation of soil samples for laboratory analysis, a representative portion of remaining soil was retained in a separate Ziploc bag for lithologic logging. Soils were logged and visually classified in substantial accordance with the United Soil Classification (USCS) system under the direct supervision and oversight of ENCON's Senior Geologist, a State of California Licensed Professional Geologist, and recorded on an appropriate boring log form. Boring Logs are presented in Appendix F.

4.4 Vapor Monitoring Well Construction

On November 12, 2014, Borings VW-1 through VW-5 were advanced to a depth of 5.5 feet below ground surface (bgs) using direct push methods. Prior to advancing the vapor monitoring well borings, it was assumed that depth to groundwater was more than 12 feet deep, however, groundwater was encountered at depths of 9 to 12 feet. As such, the planned 10 to 15 foot probe depths were eliminated from the scope of work. Vapor monitoring well borings were not logged or sampled. Upon reaching the target depth of 5.5 feet, bgs, each boring was converted to a permanent soil vapor monitoring well by removing the drive pipe, and installing one-quarter (1/4)-inch diameter nylaflow tubing fitted with a vapor implant (stainless steel inlet screen). The annular space for 6 inches above and below the inlet screen was backfilled with #2/12 sand. Approximately 1-foot of dry granular bentonite was placed above the sand pack. Hydrated granular bentonite was installed above the dry granular bentonite to near ground surface.

The surface of each vapor monitoring well was completed with a flush mounted traffic box. The sample tubing was labeled, fitted with three-way valve in the closed position, and allowed to equilibrate for at least 2 hours prior to purging and sampling. Probe installation and sealing times were recorded on a field collection form, and are presented in Table 2. Vapor Monitoring Well Construction Details are summarized in Table 3.

4.5 Groundwater Monitoring Well Construction

Groundwater was encountered at depths ranging from 9 to 12 feet bgs in Monitoring Well Borings MW-1 through MW-3. Each boring was therefore advanced to a total depth of 15 to 20 feet, or not greater than approximately 10 feet below the water level encountered during drilling, and converted to a permanent groundwater monitoring well.

Due to limited access, Well MW-1 located inside the building was constructed in a 2-inch diameter direct push boring using a ³/₄-inch inside diameter pre-packed well screen. Upon reaching the total depth, 8-feet of pre-packed well screen and blank casing was lowered into the boring to set the screen at depth of 7 to 15 feet bgs. Additional #2/12 sand was added to ensure the borehole annulus was completely filled to a level of approximately 2 feet above the well screen or to 5 feet bgs. A minimum 3-foot hydrated granular bentonite seal was subsequently installed from 2 to 5 feet. Following hydration of the bentonite seal, neat cement grout was installed in the upper 2 feet. Well construction details are presented with the boring logs in Appendix F, and are summarized on Table 3.

Hollow Stem Auger borings for wells MW-2 and MW-3 were advanced using 8-inch outside diameter hollow augers. Immediately following drilling and soil sampling, borings MW-2 through MW-3 were converted to 2-inch diameter groundwater monitoring wells. The wells were constructed, developed and sampled in a manner consistent with Title 23, California Code of Regulations (CCR), Division 3, Chapter 16, Section 2649. A minimum annular space of 2 inches was maintained at all time during well construction. The wells were constructed of a 2-inch diameter, schedule 40, flush threaded PVC casing, which was mechanically screwed together. The bottom of the casing was fitted with a threaded PVC bottom plug.

Well installation was performed through the annulus of the hollow stem augers. The PVC well casing (screen and blank) was lowered downhole to the total or target depth. The augers were then slowly removed while #2/12 sand was added to form a filter pack around the casing to a level of approximately 2 feet above the top of the screened interval, or to depth of approximately 8 feet bgs. Prior to placement of a sanitary seal, each well was pre-developed using a surge block to settle the sand pack. Pre-development was performed for approximately 5 minutes, or until no appreciable settlement of the sand pack was measured. The annular space above the filter pack was then sealed with a minimum 3-foot-thick hydrated granular bentonite sanitary seal to depth of approximately 5 feet bgs. Following adequate hydration of the sanitary seal, cement grout was placed from depth of 5 feet to near surface. The surface was completed using a traffic rated well box. A reference mark was established at the top of and on the north side of the groundwater monitoring well casing. Well construction details are presented in Appendix F and summarized in Table 3.

4.6 Well Development

On Wednesday, November 21, 2014, at least 48 hours after installation, the groundwater monitoring wells were developed using a surge block, bailer and for wells with sufficient yield, a submersible pump. Well development was performed by BlaineTech Services located in San Jose, California. The wells were developed until a minimum of 10 well volumes of water were removed or until field observations and/or measurements with field instruments indicate that water quality parameters (pH, temperature, electrical conductivity, and turbidity) had stabilized. Attempts were made to reach a target turbidity of 10 NTU, but this goal could not reasonably be achieved, however turbidity levels of approximately 40 NTU were achieved. Well development information is presented in Appendix G.

Well development water was retained in 55-gallon D.O.T. drums, labeled, and placed in an out of the way location, at the direction of the Property manager or Site representative. Waste profiling, transportation and disposal methods are discussed below.

4.7 Well Surveying

On December 22, 2014, each of the newly installed groundwater monitoring wells MW-1 through MW-3 was surveyed to a benchmark of known elevation by Mid Coast Engineers of Watsonville, California. Mid Coast is a State of California Licensed Civil Surveyor. Prior to surveying, a reference mark was established on the north side, at the top of the well casing. The elevation survey included both the top of casing (TOC) reference mark and the ground surface elevation at the top of the traffic box rim (TOR).

The wells were surveyed relative to the California Coordinate System, Zone III, NAD 83, benchmark NGS HT 0882, a disk set in a concrete seawall west of the center of 5th street in Alameda, California, Elevation of benchmark is 9.13 feet above mean sea level. The elevation survey results have been reported to the nearest 0.01 feet of elevation and were referenced to mean sea level (msl). The survey was performed in accordance with the guidelines for submittal to the State of California Geotracker Database.

A horizontal control survey was also performed by the Mid Coast Engineers. Groundwater monitoring wells MW-1 through MW-3 were surveyed for horizontal (x, y) control using the same benchmark used for vertical control. Horizontal control measurements were reported to the nearest 0.01 feet. The horizontal survey was also performed in accordance with the guidelines for submittal to the State of California Geotracker Database.

Survey results are presented in Appendix H.

4.8 Vapor Monitoring Well and Sub-Slab Vapor Point Sampling and Analysis

On November 19, 2014, approximately 7 days after installation, the five (5) permanent soil vapor monitoring wells (VW-1 to VW-5) and one (1) sub-slab vapor point (SS-1) were purged, sampled, and analyzed for VOCs, including chlorinated solvents, using EPA Test Method 8260B. QA/QC measures included a purge volume vs. concentration test at VW-2, duplicate sample at VW-3, shut in and leak tests, and tracer tests in accordance with the 2012 DTSC Guidance for Active Soil Gas Investigations. Soil vapor sampling and analysis was performed by TEG Northern California, Inc. of Rancho Cordova, California. TEG is an ELAP certified laboratory.

Standard operating methods and procedures for soil gas sampling are presented in Appendix I.

Laboratory reports for on-Site soil vapor sample analysis are presented in Appendix J. Soil gas sampling collection data including probe installation and sealing times; vapor sample purge times, rates, volumes; sample collection and injection times are summarized in Table 2.

4.9 Groundwater Monitoring and Sampling and Analysis

On November 25, 2014, at least 72 hours after development, each well was monitored for depth to groundwater using an electric well sounder. To limit the potential for cross contamination, the wells were monitored and sampled in the order of anticipated increasing concentrations of contaminants. Depth to water measurements was referenced to the surveyed marks established at the top of well casing.

Following well monitoring, each well was purged using a peristaltic pump (MW-1) or single use bailer (MW-2 and MW-3). Purging was performed at a low rate, equal or lower than the recharge capacity of the well, to prevent excessive draw down. Each well was purged until at least three (3) well volumes have been removed; until purged dry twice; until water quality parameters have stabilized. Achieving a target turbidity of approximately 10 NTU or less was not practical for the budgeted scope of work.

Immediately upon completion of purging, the wells were allowed to recover to at least 80 percent of static level. Samples were collected using a single use disposable bailer to transfer samples directly to laboratory-supplied sample containers. Purge water was contained in 55 gallon drums for subsequent profiling and transportation to a treatment and disposal facility as described below.

Groundwater samples were collected in accordance with the following procedures:

- All measuring and sampling equipment was decontaminated prior to and following each use,
- Groundwater samples were collected in laboratory-supplied sample containers filled directly from single-use disposable bailers.

The samples were immediately sealed, labeled, stored in an ice-chilled cooler.

Samples were transported on the same or day following collection to Asset Laboratories in Las Vegas Nevada for analysis of VOCs using EPA Test Method 8260B. Duplicate, Trip Blank, and/or Equipment Blank Samples were not collected or analyzed as part of this investigation.

Groundwater monitoring and purging data are presented in Appendix K. Laboratory Reports and Chain of Custody Records for groundwater sample analysis are presented in Appendix L.

4.10 Equipment Decontamination

All down-hole equipment was decontaminated prior to and after each use. Equipment was decontaminated using steam cleaning methods prior to arriving on-Site and by washing in a Liquinox solution, followed by tap and de-ionized water rinses between borings. All other materials were provided to the Site in a new, factory-packaged, condition, and therefore decontamination was required for such materials.

4.11 Waste Management and Disposal

All Investigatively-Derived Waste (IDW) was placed into 55-gallon Department of Transportation (DOT) drums, which were labeled with Site Name, Date of Generation, Description of Contents, and Emergency Name and Contact Information. Two (2) drums of soil cuttings from hollow stem auger drilling at MW-2 and MW-3 were generated, and two (2) drums of purged groundwater and/or decontamination water were generated during well development and sampling activities. The drums were stored in the southern gravel parking lot area, immediately south and on the western margin of the access driveway. The waste materials were characterized based on the results of discreet depth soil and groundwater sample results. All materials (soil and groundwater) were classified as non-hazardous non-RCRA waste.

On December 23, 2014, four (4) drums were transported off-Site by Belshire Environmental Services of Foothill Ranch, California.

Drums containing purged water were transported under Non-Hazardous Manifest No. 714379. At the time of this Report, the drums have not yet been transported to the final disposal facility, but are planned to be transported by Nieto and Sons, Inc. to Demenno Kerdoon in Compton, California for disposal or recycling.

The two (2) soil drums were transported under Non-Hazardous Manifest No. 714381. At the time of this Report, the drums have not yet been transported to the final disposal facility, but are planned to be transported by unspecified transporter to U.S. Ecology Nevada Operations in Beatty, Nevada for disposal.

Partially signed Non-Hazardous Waste Manifests for soil and groundwater are presented in Appendix M.

5.0 FINDINGS AND RESULTS

5.1 SURFACE/SUBSURFACE CONDITIONS

Boring logs are presented in Appendix F. The following field observations are noted:

- The southern portion of the subject building is constructed with slab-on-grade, and the northern portion with a raised foundation and crawl space under the ground floor. As the raised foundation area with crawl space allows ambient air circulation, and natural ventilation, this may significantly reduce the potential risk of vapor intrusion and degradation in indoor air quality. The approximate limits of raised foundation are shown on Figures 2 through 6 and on the DTSC Building Survey Form in Appendix D.
- Subsurface soil conditions at this Site were predominantly Poorly Graded Sand (SP) and Silty-Sand (SM) to a depth of 20 feet the maximum depth explored.
- Groundwater was encountered at depths of approximately 9 feet, 12 feet, and 12 feet in groundwater monitoring well borings MW-1 through MW-3, respectively.
- Field evidence of contamination was not observed in any soil matrix samples collected.

5.2 ANALYTICAL RESULTS:

Site photographs are presented in Appendix A. A Site map showing all current and historical investigation locations, including indoor air samples, background or ambient air samples, soil borings, soil gas sampling, permanent vapor monitoring wells, sub-slab vapor point SS-1, and groundwater monitoring wells are shown on Figure 2. The following summarizes the laboratory analytical results:

Indoor Air Survey:

Indoor and Ambient (Background) 8-hour time-weighted average (TWA) air sample results are summarized in Table 1. Site Building Survey results, sample collection data, laboratory reports, and chain of custody documentation are presented in Appendix D. The indoor air sampling results are also shown on Figure 3.

- Based on the building survey and interview with building owner as well as the Site occupant, the following describes the condition and use of the building:
 - The building was constructed about 100 years ago, as a commercial building with 2,500 square feet of tenant space. The southern portion of the building is constructed with slab on grade, while the northern portion has a raised foundation. The building has been occupied by dry cleaning business operation since 1986. In 2005, the chlorinated organic solvent (such as PCE) based dry cleaning machine was replaced with the current hydrocarbon machine. PCE solvent was used at the Site for approximately 19 years. The onsite drycleaners has not used chlorinated solvents for the past 9 or 10 years.
 - The condition of the concrete slab was observed to be in poor condition with numerous cracks observed in the slab on grade portion of the foundation near the current dry-cleaning machine.

The northern approximately 2/3 of the building is occupied by a raised foundation with a crawl space. As such, no investigation was performed in the area of raised foundation. Indoor Air Sample IA-2 is located in the storefront interior approximately 3 feet above the floor within the area of the raised foundation. Permanent soil vapor probe VW-1 is located north of the raised foundation outside the store within the Property line, with the crawl space between the source area and the sampling point. VW-1 is located immediately outside the building in a tiled section under the building overhang. It is located within the Property line as the door is inset and the store front windows extend out of the building.

- The tenant space uses electricity and natural gas for energy sources. There is no air conditioning (air handling) system, The tenant reportedly only uses fans to circulate air. The building interior was very steamy at the time of sampling, and the front and rear doors remain open during normal business hours for natural ventilation.
- The tenant was conducting typical commercial retail business operations during normal business hours at the time of the survey. There were no observed sources of indoor air pollution including chemical storage or products containing chlorinated VOCs. It is not known if the building has been fumigated or sprayed for pests within the past 3 years.
- The building is connected to public water supply and sewer.
- There are no identified potential outdoor sources of chlorinated solvents in the immediate vicinity.
- Wind direction was measured to be from the south-southeast at the start of sample collection. The wind direction was measured to remain unchanged in the afternoon, but with increasing wind velocity.
- Fifteen (15) chemical compounds were detected in the Indoor and Background samples analyzed (see Table 1).
- Of the fifteen (15) detected compounds, only tetrachlorethylene (PCE) is known to be present in shallow soil gas beneath the Site.
- Of the fifteen, all, except tetrachloroethylene (PCE), had ambient air concentrations that were similar to or higher than the indoor air concentrations, indicating that all except PCE are representative of ambient air, and as such cannot the result of vapor intrusion from subsurface soil gas.
- PCE was detected at the maximum indoor air concentration of 1.0 micrograms per cubic meter (ug/m3) in sample IA-1 collected near the former solvent based dry cleaning machine and over the slab on grade portion of the building foundation.
- PCE was detected at concentrations of 0.12 ug/m3 and 0.20 ug/m3 in the background air samples collected from the upwind and near the area where ambient air would enter the building space. As such, the average ambient air concentration for PCE is 0.16 ug/m3.
- Subtracting the average PCE concentration in the ambient air from the maximum concentration of PCE in indoor air samples indicates that the maximum contribution for vapor intrusion from subsurface soil gas at the site can be as high as 0.84 ug/m3. This exceeds the Indoor Air CHHSL for PCE for Commercial Industrial Land Use of 0.693 ug/m3 by a small margin of 0.147

ug/m3, but it is less than the Bay Area Environmental Screening Level (ESL) of 2.1 ug/m3 for PCE in indoor air.

- Carbon Tetrachloride and Benzene were detected at Indoor Air Concentrations that exceed their respective CHHSLs and ESLs for Commercial/Industrial Land Use, Indoor Air. However, because 1) these compounds were not present in the subsurface soil vapor during ENCON's previous soil gas survey conducted in Aug 2014 as well as Nov 2014, and 2) because detected concentrations of these chemicals in the ambient air were similar to indoor air concentrations, Carbon Tetrachloride and Benzene detected in the indoor air of the subject building are considered to be representative of ambient air condition and NOT from vapor intrusion from the subsurface beneath the Property or other sources.
- All other detected compounds are below their respective CHHSLs and ESLs for an industrial/commercial setting.

Soil Matrix Samples:

Soil matrix sample results for current and historical investigations are presented in Tables 4a and 4b, respectively. Laboratory reports and chain of custody reports for soil matrix samples are presented in Appendix E.

Nine (9) soil matrix samples have been analyzed for Volatile Organic Compounds (VOCs) using EPA Test Method 8260B, including chlorinated solvents typically used in dry cleaning operations. In 2006, Eras analyzed one (1) soil sample for Total Extractable Petroleum Hydrocarbons (TPH) using EPA Test Method 8015M.

No TPH or VOCs have been detected above laboratory practical reporting limits in any of the ten (10) soil matrix samples analyzed.

Soil Vapor Samples:

Soil vapor sample results are summarized in Tables 2, 5a (November 2014) and 5b (August 2014). Permanent vapor monitoring well construction details are presented in Table 3. Laboratory reports and chain of custody documentation for soil vapor sample analysis are presented in Appendix J. Shallow soil vapor sampling results are also shown graphically on Figure 6.

- PCE is the only compound detected in the current or historical soil vapor samples analyzed.
- PCE was detected in all eleven (11) shallow soil vapor (5-foot depth) samples analyzed at concentrations ranging from 450 ug/m3 in VW-1 near the storefront to the maximum of 22,480 ug/m3 in SV-5 located south of the building in the gravel parking lot. During ENCON's previous subsurface soil vapor survey conducted in Aug 2014, PCE was also detected at elevated concentrations ranging from 11,110 ug/m3 in SV-3 to 13,540 ug/m3 in SV-4 near the former solvent based dry cleaning machine source area.
- As shown on Figure 6, concentrations of PCE in soil gas decline in all directions away from the source area at the southern end of building and northern end of gravel parking lot.
- PCE concentrations were compared to regulatory screening levels for shallow subsurface soil gas. PCE concentrations exceeded CHHSLs for shallow soil gas in a commercial/industrial setting (603 ug/m3) in all samples except VW-1 and SV-6.
- Detected PCE concentrations exceeded soil gas screening level for PCE for commercial setting at 0.6ug/L for sites with buildings constructed without engineered fill below sub-slab gravel, and

Environmental Site Investigation Report 1410097ESAIII - 19 –

1.6ug/L for sites with buildings constructed with engineered fill below sub-slab gravel (Office of Environmental Health Hazard Assessment (OEHHA), CHHSLs revised Sep 2010).

• PCE concentrations exceed the Bay Area ESLs for shallow soil gas in a commercial/industrial land use (2,100 ug/m3) in all samples except VW-1, VW-5, and SV-6. These samples were collected from locations that are approximately 40 to 70 feet (radial distance) away from the identified source area. As such, the data supports that the maximum extent of vapor phase contamination limited to a radial distance of 40 to 70 feet from the documented source area.

Groundwater Monitoring and Sampling:

Groundwater well construction details are summarized in Table 3, and are presented along with the Boring Logs in Appendix F. Groundwater well development details are provided in Appendix G. Well survey data is presented in Appendix H. Water level monitoring, well purging and sampling data are summarized in Table 6 and presented in Appendix K. Groundwater sampling analytical results are summarized in Table 7. Laboratory reports and chain of custody documentation for groundwater samples are presented in Appendix L.

- Groundwater was encountered at depths of 9 (MW-1) to 12 feet (MW-2 and MW-3) below ground surface (bgs) during drilling.
- Stabilized groundwater levels were measured at depths of 7.82 feet, 9.82 feet, and 10.00 feet, below the Top of Casing (BTOC) in Wells MW-1 through MW-3, respectively.
- Groundwater Surface Elevations are calculated to be 16.39 feet, 16.46 feet, and 16.51 feet above mean seal level (AMSL) in wells MW-1 through MW-3, respectively.
- The groundwater surface elevation slopes toward the northwest at a shallow gradient of 0.003 feet vertical per foot horizontal (ft/ft). Groundwater surface elevation contours and flow direction are shown on Figure 4. This measured groundwater flow direction is consistent with the slope of the ground surface elevation in the Site vicinity as shown on Figure 1.
- Based on the northwesterly flow direction of the groundwater, Wells MW-2 and MW-3 are considered to be upgradient of the source area, and MW-1 is at the source area. Due to limited access to the north-northwest of the source area, installation of a downgradient well was not contracted by the Client as part of the agreed scope of work for this investigation.
- PCE was detected in all three (3) groundwater samples at concentrations of 1.0 micrograms per liter (ug/L), 8.8 ug/L, and 29 ug/L, respectively in Wells MW-3, MW-2, and MW-1. The distribution of PCE in groundwater is shown on Figure 5.
- PCE in groundwater was compared to regulatory screening levels. The State and Federal Maximum Contaminant Level (MCL) for drinking water for PCE is 5.0 ug/L, thus detected concentrations of PCE from Wells MW-1 and MW-2 exceed the MCL. The Bay Area ESL for PCE in groundwater for evaluation of vapor intrusion potential is 23 ug/L. PCE concentration detected from MW-1 exceeds the Bay Area ESL.
- Based on the known concentrations, the groundwater plume is documented to be limited to an approximate 30 foot radius in the up and cross-gradient directions from the source area. The down-gradient extent has not been characterized.
- Trichloroethylene (TCE) was also detected in the groundwater sample collected from MW-1 at a concentration of 0.65 ug/L. However, this is below the MCL for TCE of 5 ug/L.
- No other VOCs were detected above the laboratory practical reporting limits in the groundwater samples analyzed.

6.0 CONCLUSIONS

As stated in this Report, the objective(s) of this investigation were to:

1) Determine if indoor air quality has been degraded as a result of vapor intrusion from known subsurface contamination with chlorinated solvent released from historical onsite dry cleaning operation;

2) Further evaluate the lateral and vertical extent of known chlorinated solvent contamination in soil vapor;

3) Characterize the presence or absence of chlorinated solvents in soil matrix phase;

4) Evaluate if shallow groundwater has been impacted by the solvent release; and

5) Measure depth to water to calculate the groundwater flow direction and gradient.

Based on the current and historical data presented in this Report, ENCON concludes the following:

Objective 1: Indoor Air Quality:

Indoor air quality has been degraded as a result of vapor intrusion from known concentrations of PCE in shallow soil gas. The magnitude of impact slightly exceeds the established regulatory levels, but only by a very small margin. The degraded air quality is concentrated in the southern portion of the building, which is co-located with both the former solvent-based dry cleaning machine and the portion of the building which is slab-on-grade.

As described earlier, the southern portion of the subject building is constructed with slab-on-grade, while the northern portion with a raised foundation and crawl space under the ground floor. As the raised foundation area with crawl space allows ambient air circulation, and natural ventilation, this may significantly reduce the potential risk of vapor intrusion and degradation in indoor air quality.

Based on this distribution, ENCON concludes that there may be adequate ventilation under the northern raised foundation portion of the building to prevent a complete pathway for vapor intrusion to indoor air. ENCON also concludes that the differences in PCE concentrations in indoor air from 1.0 ug/m3 at the former source area, declining to 0.35 ug/m3 away from the source area and over the raised foundation, confirms that there is a lack of mixing of indoor air within the building during normal business operations. Providing an adequate air handling system within the building can be at least part of the remedy to improve indoor air quality in the southern portion of the building. Other remedies may include sealing of the floor in the slab-on-grade portion of the building with an epoxy coating to create a barrier to intrusion of subsurface vapors to indoor air space, and/or the removal of the subsurface source of PCE in soil vapor.

Objective 2: Lateral and Vertical Extent of Solvents in Soil Vapor:

The extent of known chlorinated solvent contamination in soil vapor has been defined to a radial distance of approximately 40 feet in the southerly direction; and up to 80 feet in the northerly direction from the identified source area. The vapor phase plume remains un-characterized in the westerly and easterly directions, due to access concerns. However, because of relatively permeable and laterally consistent sand soils, the vapor phase plume is expected to be equally distributed in all directions from the point of release. The vadose zone beneath the Site has been identified to be no more than 10 feet thick (i.e. the depth to groundwater). Based on this information, the total volume of impacted vadose zone is approximately 113,000 cubic feet, and based on a permeability of 0.25 percent for sandy soils, the estimated volume of impacted vapor beneath the Site is approximately 28,300 cubic feet. At a conservative rate of extraction of 40 cubic feet per minute (CFM), a soil vapor extraction system can be expected to remove one pore volume from within the impacted area in approximately 800 minutes, or 13 hours of operation (assuming linear relationship of mass removal vs. time), without considering reduction

in mass removal rate per time typically in the form of the first degree order decay curve. While removal of a single pore volume of air may not be expected to adequately removal entire PCE in the subsurface vapor phase, it is a good indicator that given the lack of adhesion to soil (detectable concentration of PCE in all soil matrix samples were not identified), soil vapor extraction is expected to be a highly effective remedial method for removing PCE in the soil vapor phase beneath the Property from the vadose zone.

ENCON estimates that the bulk of vadose zone vapor phase solvents known to exist beneath the Site can be effectively removed in as little as 3 months of operating a soil vapor extraction system.

Objective 3: Extent of Solvents in Soil Matrix:

No VOCs or TPH have been detected in all soil matrix samples collected beneath the Site. The presence of detectable PCE concentrations in Indoor Air, Soil Vapor, and Groundwater indicates that there has been a historical release at the Site that directly corresponds to past dry-cleaning operations from 1986 through 2005, or approximately 19 years. The lack of solvents adhering to soil matrix phase can be attributed to the anticipated high air permeability of movement beneath the Site, and the lack of continuing source of solvent release for the past 9 to 10 years, due to the current hydrocarbon-based dry cleaning operation.

Objective 4: Solvent Impact to Shallow Groundwater:

PCE has been detected in shallow groundwater beneath the Property at the maximum concentration of 29 ug/L. This level exceeds the drinking water standard or MCL of 5.0 ug/L by approximately 6 times. Concentrations decline to less than MCL in the cross-and up-gradient directions within approximately 30 feet of radial distance from the source area. The extent of dissolved phase solvents are not defined the in downgradient or northwesterly direction. However, the dissolved phase solvent plume is expected to be elongated in the downgradient direction, thus it may be more than 30 feet radial distance from point of release. The distribution of solvents is consistent with the groundwater flow direction and slope of ground surface elevation. While the downgradient extent has not been entirely defined, ENCON concludes that the magnitude of release has been relatively small over a limited time, due to the relatively low concentrations of detected PCE, and that the primary (solvent based dry cleaning operations) and secondary (the vadose zone) sources have effectively been stabilized to the extent that the plume is characterized by low concentrations and relatively limited lateral extent. Further characterization in the downgradient direction and continued groundwater monitoring and sampling can be helpful to support this hypothesis, and provide data to show that the plume is stable or declining, and will not have any significant impact to human health or the environment.

Objective 5: Depth to Groundwater, Flow Direction, and Gradient:

As stated previously in this Report, the depth to stabilized groundwater beneath the Site is approximately 10 feet below ground surface. The flow direction has been calculated to be toward the northwest at a very shallow gradient of 0.003 feet vertical per horizontal foot. The flow direction is consistent with the ground surface topography and the shallow gradient is consistent with the unconfined and permeable sandy aquifer.

7.0 RECOMMENDATIONS

Based on the results and conclusions presented in this Report, ENCON recommends the following scope of work to mitigate known solvent impacts to Indoor Air, Shallow Soil Vapor, and Groundwater resulting from past chlorinated solvent-based dry cleaning operations at the Site:

- 1. Install off-Site down-gradient monitoring well in City right-of-way to the northwest of the Site to confirm (1) down-gradient extent of PCE in groundwater and (2) hypothesize a minimal risk to human health or the environment. If this hypothesis is confirmed and vadose zone soil vapor is mitigated, no further action is warranted with respect to known solvent contamination in groundwater.
- 2. Continue groundwater monitoring and sampling of existing and newly installed groundwater wells on a quarterly basis for a period of 1 year (4 events), ensuring that at least 2 events are completed after mitigating the risk of contamination with PCE at the Property either by engineering/institutional control or source removal (if implemented). This will provide data to support that plume is stable or declining, and validate the hypothesis that there is no continuing source of chlorinated solvents to groundwater beneath the Site.
- 3. Mitigate a potential risk of degradation in indoor air quality resulting from exposure pathway such as vapor intrusion. As identified in this Report, elevated PCE concentration in the soil vapor of up to 22,480 ug/m3 in the vadose zone beneath the Site was identified.

As discussed in Section 5.2 of this Report, maximum contribution for PCE vapor intrusion from subsurface soil gas at the Site can be as high as 0.84 ug/m3. Although this exceeds the Indoor Air CHHSL for PCE for Commercial Industrial Land Use of 0.693 ug/m3 by a small margin of 0.147 ug/m3, it is less than the Bay Area Environmental Screening Level (ESL) of 2.1 ug/m3 for PCE in indoor air.

While no definitive data exists to conclude that the presence of PCE in the subsurface beneath the Property represents a significant threat to the building occupants through vapor intrusion pathway, the application of certain presumptive remedies such as source removal or engineering controls can significantly minimize or even eliminate the potential threat of vapor intrusion. Proactively addressing the potential vapor intrusion condition would enhance protection of human health for building occupants and may facilitate the future Property transaction and unrestricted commercial occupancy of the Property.

Because the known subsurface contamination is located beneath an existing occupied building, In-Situ removal method can be considered at the Site. Soil Vapor Extraction (SVE) is a very common and cost effective method of removing chlorinated solvents such as PCE from vapor phase in vadose (un-saturated) zone, and subsequent removal of by adsorption onto vapor phase granular activated carbon. The use of SVE is limited to sites with adequate permeability. Vapors are removed from the subsurface by installing vapor extraction and monitoring wells that are screened in the impacted intervals. A vacuum is applied to the extraction well, thus withdrawing solvent mass from the subsurface. Solvents are then adsorbed onto granular activated carbon (primary and secondary vessels), and the effluent treated air is discharged to the atmosphere. Vapor monitoring wells or probes located at variable radial distances from the extraction well are monitored for vacuum response to document that the radius of influence (ROI) is adequate to capture known contamination. Initial concentrations will be the most elevated. As contaminant mass is recovered from the subsurface, influent concentrations will decline with time. At some point, removal of contaminant mass will reach asymptotic conditions, namely, unreasonably excessive effort will be required to remove a relatively small amount of contaminant mass. At this point, rebound testing is performed to be sure the influent concentrations do not significantly increase follow a period of non-operation. Upon completion, the SVE extraction and monitoring

probes must be abandoned, so they do not represent a conduit for future migration of contaminants.

Normally, a pilot test is performed to ensure that adequate ROI and contaminant capture support cost effective remediation, and information obtained from the pilot test is used to design the placement of wells; size/type of extraction blower; and rate contaminant removal/carbon consumption. However, because subsurface soils are found to be generally air permeable; and because the starting contaminant mass is expected to be of limited volume, the pilot test can be performed as part of the initial installation and operation of the SVE system, with operation continuing at the end of the pilot test. The results of pilot test data collection (vacuum response monitoring, rate of extraction, and laboratory testing of influent samples) during that startup phase of operation will be used to confirm that the design is adequate, or modify the initial design, as appropriate. SVE also has the added benefit of removing accumulated vapors from beneath the building slab that may have the potential to intrude into the indoor air space and degrade the indoor air quality.

Engineering Controls are intended control the source in place, and must remain in place as long as there is a continuing source of contamination. Typical Engineering Controls that can be employed to manage the degradation of indoor air quality from the known subsurface contamination may include subsurface depressurization (lower the vapor pressure under the existing building slab and create an alternative pathway for vapor migration); impermeable vapor barrier (i.e. epoxy floor sealing in the slab on grade portion of the building) that can eliminate the migration pathway from the subsurface to indoor air, thereby mitigating the threat of subsurface migration of contaminant vapors through the building slab and into the indoor air; and improved ventilation or addition/modification to air handling within the building interior to provide for increased mixing of indoor air, such that should there be any continued migration to indoor air, contaminant vapors do not remain in the air space or are sufficiently reduced in concentration.

4. Post-remedy Air Sampling will be required to document that the performance of the remedy has been adequate to improve the Site conditions to regulatory acceptable levels.

The above recommended scope of work should be completed with the oversight of a lead regulatory agency. Such oversight will require the Property owner to enter into a voluntary oversight agreement to reimburse the regulatory authority for oversight costs. Agency oversight will also require verbal/written communication, correspondences, memorandum, meetings, preparation of workplans, remedial action plans, pollution characterization report, site conceptual model, site mitigation report, various technical reports, and closure requests. ENCON also notes that the final scope of work required to achieve regulatory closure will depend in part upon the opinion of the regulator.

If so requested, ENCON will gladly provide a detailed scope of work and estimated costs for achieving the objective of regulatory closure.

8.0 REFERENCES

Reference sources for site-specific information, hydro-geologic setting, technical data, historical research data, environmental reports and other records used are identified throughout this Report in corresponding sections. Any additional reference sources not cited in the preceding sections in this report are disclosed in this section.

- Current USGS 7.5 Minute Topographical Map
- EDR Radius Map Report
- California Water Resources Control Board Geotracker online database
- <u>http://geotracker.waterboards.ca.gov/default.asp</u>
- USGS Professional Paper 1401-C, Geology of the Fresh Ground Water Basin, California (1986)
- California Department of Toxic Substance Control (DTSC) Human and Ecological Risk Division (HERD) 2009. Modified Johnson and Ettinger (J&E) soil vapor screening model (version 2.0, revised June 2009)
- California Regional Water Quality Control Board Los Angeles Region (RWQCB-LA), Attenuation Factor Method of the RWQCB-LA "Interim Site Assessment and Cleanup Guidebook, Vol. 1" dated February 1995
- CA RWQCB- Los Angeles, Dr. Rong, Soil and Groundwater Cleanup Guideline, How to relate soil matrix to soil gas samples, 1996
- DTSC/CalEPA, 2005. Interim Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, revised February 7.
- Active Soil Gas Investigations superseding the 2003 Advisory Active Soil Gas Investigations (Cal/EPA, 2003) and 1997 LARWQCB Interim Guidance for Active Soil Gas Investigations (CRWQCB, 1997), April 2012
- HERD_Soil_Gas_Screening_Model, Screening Level Implementation of the Johnson and Ettinger Vapor Intrusion Model revised March 2014
- Guidance for the evaluation and mitigation of subsurface vapor intrusion to indoor air (vapor intrusion guidance), Department of Toxic Substances Control, California Environmental Protection Agency, October 2011
- The California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties, January 2005, California Environmental Protection Agency, modified Sep 2010 (Office of Environmental Health Hazard Assessment)
- ENCON Solutions, 2014. Limited Subsurface Phase II Investigation, report dated August 2014.

TABLES

		Sample Date: Oc	tober 20, 2014			
Sample Number:	BG-1	BG-2	IA-1	IA-2		
Start Time :	8:47	8:50	9:00	9:04		
End Time :	16:31	16:35	16:38	16:43		
Elapsed Time (minutes)	464	465	458	459		
Initial Vacuum (in Hg)	30"	30"	30"	30"		
Final Vacuum (in Hg)	5.5"	6.0"	3"	5.5"		Dec-13
				Northwest		Bay Area
		Under HVAC	On southwest	corner of	CHHSL for	ESL for
	Southeast	system above	stairs behind	store near	Commercial	Commercial
	corner of	gas meter by	dry cleaning	sewing	/Industrial	/Industrial
Sample Location	parking lot	back door	machine	macine.	Land Use	Land Use
Constituent						
Units:	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
Dichlordifluoromethane (12)	2.4	2.5	2.5	2.7		
Chloromethane	1.1	1.1	1.4	1.2		390
Vinyl Chloride	< 0.013	< 0.013	< 0.013	< 0.013	0.0524	0.16
Chloroethane	< 0.026	< 0.026	< 0.026	< 0.026		
Trichlorofluoromethane (11)	3.0	3.0	3.4	3.0		
1,1,2-Cl 1,2,2-F ethane (113)	0.51	0.50	0.50	0.55		
1,1-Dichloroethene	<0.020	< 0.020	<0.020	< 0.020		880
Methylene Chloride	0.83	0.73	0.74	0.73		26
t-1,2-Dichloroethene	< 0.040	< 0.040	<0.040	< 0.040	102	260
1,1-Dichloroethane	< 0.040	< 0.040	< 0.040	< 0.040		7.7
c-1,2Dichloroethene	< 0.040	< 0.040	<0.040	< 0.040	51.1	31
Chloroform	0.25	0.40	0.84	0.38		2.3
1,1,1-Trichloroethane	< 0.055	< 0.055	<0.055	< 0.055	3,210	22,000
Carbon Tetrachloride	0.62	0.65	0.61	0.72	0.0973	0.29
Benzene	0.94	1	1.2	1.1	0.141	0.42
1,2-Dichloroethane	0.087	0.082	0.079	0.092	0.195	7.7
Trichloroethene	< 0.054	< 0.054	0.061	< 0.054	2.04	3.0
1,2-Dichloropropane	< 0.092	< 0.092	< 0.092	<0.092		1.2
Bromodichloromethane	<0.067	< 0.067	<0.067	<0.067		0.33
Toluene	3.7	4.2	4.7	4.0	438	1,300
t-1,3-Dichloroethane	< 0.045	< 0.045	<0.045	< 0.045		
1,1,2 -Trichloroethane	< 0.055	< 0.055	< 0.055	<0.055		1.6
Tetrachloroethene	0.12	0.20	1.0	0.35	0.693	2.1
1,2,-Dibromoethane	<0.15	<0.15	<0.15	<0.15		17
Ethylbenzene	0.88	1.6	1.6	0.97		4.9
p,&m-Xylene	3.2	6.1	6.0	3.5	1,020	440
0-Xylene	1.1	2.1	2.0	1.2	1,020	440
Styrene	0.23	0.31	0.45	0.38		3900
1,1,2,2-Tetrachloroethane	<0.14	<0.14	<0.14	<0.14		0.21

Table 1 - Summary of Indoor Air Sampling Collection and Analytical Results Volatile Organic Compounds by EPA Test Method TO-15 Selective Ion Method 1208 Lincoln Avenue, Alameda, California

Notes:

ug/m3 indicates micrograms per cubic meter

"<" indicates less than the laboratory reporting limit shown.

"-----" indicates not tested and/or no established regulatory screening level.

CHHSL indicates California Human Health Screening Level, January 2005

Bold Compound Name indicates compound was also detected in subsurface soil vapor

Bold Value indicates result exceeds established Commercial/Industrial CHHSL and/or Bay Area ESL

Encon Solutions

Table 2 - Summary of Soil Vapor Sampling and Analytical Results Elegant Cleaners 1208 Lincoln Avenue Alameda, California

Field Representative: Project Information:

Equipment Information: Field Instrument:

PID - Not used

Cora Olson Elegant Cleaners 1208 Lincoln Avenue Alameda, California

Contractor Information: TEG Norcal on 11/19/14

Probe Installation: ECA Drilling on 11/12/14

Sample Collection On-Site Laboratory Analysis. on 11/19/14

Tubing (type & diameter):

1/4-inch diameter nylaflow tubing

Purge Method:Volumetric SyringePurge Volume Test:1, 3, and 10 VolumesPurge rate:200

Low/No Flow = >10inHg or qualitative if using syringe to purge

Sample	e ID		Probe In	stallation				Samplin	g Collectio	on/Analysis			Resu	lts (ug/n	າ3)	Comments
		Date	Probe	Seal	Headspace	Date	Purge	Purge	Flow Rate	Evacuation	Sample	Sample				
Sample	Depth		Installation	Completion	PID (ppm)		Start	Duration	(ml/min)	Volume	Collection	Injection				
Number	(feet)		(Time)	(Time)			Time	(minutes)		(milliliters)	Time	Time	PCE			
VW-1	5.0	11/12/2014	13:00	13:35	NM	11/19/2014	10:52	4.8	200	950	10:57	11:00	450			3PV
VW-2	5.0	11/12/2014	12:15	12:40	NM	11/19/2014	9:43	1.6	200	317	9:45	9:47	12,000			1PV
VW-2	5.0	11/12/2014	12:15	12:40	NM	11/19/2014	10:01	4.8	200	950	10:06	10:09	13,000			3PV
VW-2	5.0	11/12/2014	12:15	12:40	NM	11/19/2014	10:17	15.8	200	3,167	10:33	10:35	12,000			10PV
VW-3	5.0	11/12/2014	14:00	14:30	NM	11/19/2014	11:15	4.8	200	950	11:20	11:22	9,300			3PV
VW-3	5.0	11/12/2014	14:00	14:30	NM	11/19/2014	11:15	4.8	200	950	11:20	11:38	10,000			Duplicate
VW-4	5.0	11/12/2014	14:50	15:30	NM	11/19/2014	11:56	4.8	200	950	12:01	12:04	4,600			3PV
VW-5	5.0	11/12/2014	15:45	16:15	NM	11/19/2014	12:18	4.8	200	950	12:23	12:25	930			3PV
SS-1	<0.5	11/12/2014	13:40	13:45	NM	11/19/2014	12:50	0.3	200	50	12:50	12:53	7,000			3PV

Table 3Summary of Well Completion DetailsElegant Cleaners1208 Lincoln AvenueAlameda, California

	Well Completion Details											
	Total Borehole Casing Total Depth Screened											
Well	Drill	Depth	Diameter	Diameter	of Casing	Interval	Subsurface	Slot Size				
ID	ID Date (feet, bgs) (inches) (inches) (feet, bgs) (feet, bgs) Zone (inches)											

Groundwater Monitoring Wells:

MW-1	11/12/2014	15.0	2"	3/4"	15	7-15	Groundwater	0.010"
MW-2	11/12/2014	20.0	8"	2"	20	10-20	Groundwater	0.010"
MW-3	11/12/2014	20.0	8"	2"	20	10-20	Groundwater	0.010"

Vapor Monitoring Wells:

1	0							
VW-2	11/12/2014	5.5	2"	1/4"	5.0	4.5-50	Vadose	SS inlet
VW-2	11/12/2014	5.5	2"	1/4"	5.0	4.5-5.0	Vadose	SS inlet
VW-3	11/12/2014	5.5	2"	1/4"	5.0	4.5-5.0	Vadose	SSinlet
VW-4	11/12/2014	5.5	2"	1/4"	5.0	4.5-5.0	Vadose	SS inlet
VW-5	11/12/2014	5.5	2"	1/4"	5.0	4.5-5.0	Vadose	SS inlet

Notes: ft,bgs indicates feet, below ground surface.

Table 4a - Summary of Current Soil Matrix Sample Analytical Results Volatile Organic Compounds by EPA 8260B 1208 Lincoln Avenue, Alameda, California

			Sample D	ate: Novemb	er 11, 2014		
SampleName:	MW-1@5'	MW-1@10	MW-1 @ 15'	MW-2 @ 5'	MW-2 @ 10'	MW-3 @ 5'	MW-3 @ 10'
Sample Time	10:10	10:23	10:35	11:10	11:22	9:30	9:45
Units:	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Constituent	-8/ -8	-8/ -8		-8/ -8	-8, -8	-8, -8	-8/18
1 1 1 2 Tatrashlarosthana	~E	~E	~E	~E	~E	~E	< <u> </u>
1,1,1,Z-Tetrachioroethane	<5	<5	<5	<5	<5	<5	<5
1,1,1-1richloroethane	<5	<5	<5	<5	<5	<5	<5
1,1,2,2-Tetrachloroethane	<5	<5	<5	<5	<5	<5	<5
1,1,2-Trichloroethane	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloropropene	<5	<5	<5	<5	<5	<5	<5
1,2,3-Trichlorobenzene	<5	<5	<5	<5	<5	<5	<5
1.2.3-Trichloropropage	<5	<5	<5	<5	<5	<5	<5
1.2.4-Trichlorobenzene	~5	~5	~5	~5	~5	~5	~5
1.2.4 Trimethylhonzone	<5 <e< td=""><td><5 <5</td><td><5 <e< td=""><td><5 <e< td=""><td><5 <5</td><td><5 <5</td><td><5 <5</td></e<></td></e<></td></e<>	<5 <5	<5 <e< td=""><td><5 <e< td=""><td><5 <5</td><td><5 <5</td><td><5 <5</td></e<></td></e<>	<5 <e< td=""><td><5 <5</td><td><5 <5</td><td><5 <5</td></e<>	<5 <5	<5 <5	<5 <5
1,2,4-Thilethyldenzene	<10	()	()	<3	<3	<3	< 10
1,2-Dibromo-3-chioropropane	<10	<10	<10	<10	<10	<10	<10
1,2-Dibromoethane	<5	<5	<5	<5	<5	<5	<5
1,2-Dichlorobenzene	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloropropane	<5	<5	<5	<5	<5	<5	<5
1,3,5-Trimethylbenzene	<5	<5	<5	<5	<5	<5	<5
1,3-Dichlorobenzene	<5	<5	<5	<5	<5	<5	<5
1.3-Dichloropropane	<5	<5	<5	<5	<5	<5	<5
1 3 5-Trimethylbenzene	<5	<5	<5	<5	<5	<5	<5
1 3-Dichlorobenzene	~5	~5	~5	~5	~5	~5	·
1.2 Diablargererer	~5	 > 	~5	 	 >	 >	 -5
1,3-Dichloropropane	<5	<5	<5	<5	<5	<5	<5
1,4-Dichlorobenzene	<5	<5	<5	<5	<5	<5	<5
2,2-Dichloropropane	<5	<5	<5	<5	<5	<5	<5
2-Chlorotoluene	<5	<5	<5	<5	<5	<5	<5
4-Chlorotoluene	<5	<5	<5	<5	<5	<5	<5
4-Isopropyltoluene	<5	<5	<5	<5	<5	<5	<5
Benzene	<5	<5	<5	<5	<5	<5	<5
Bromobenzene	<5	<5	<5	<5	<5	<5	<5
Bromodichloromethane	<5	<5	<5	<5	<5	<5	<5
Bromoform	<5	<5	<5	<5	<5	<5	<5
Bromomethane	<5	<5	<5	<5	<5	<5	<5
Carbon tetrachloride	<5	<5	<5	<5	<5	<5	<5
Chloreberrere	<5 <5	<5 <5	<5	<5	<5 <5	<5 <5	<5
Chlorobenzene	<5	<5	<5	<5	<5	<5	<5
Chloroethane	<5	<5	<5	<5	<5	<5	<5
Chloroform	<5	<5	<5	<5	<5	<5	<5
Chloromethane	<5	<5	<5	<5	<5	<5	<5
cis-1,2-Dichloroethene	<5	<5	<5	<5	<5	<5	<5
cis-1,3-Dichloropropene	<5	<5	<5	<5	<5	<5	<5
Dibromochloromethane	<5	<5	<5	<5	<5	<5	<5
Dibromomethane	<5	<5	<5	<5	<5	<5	<5
Dichlorodifluoromethane	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	<5	<5	<5	<5	<5	<5	<5
Freon-113	<5	<5	<5	<5	<5	<5	<5
Hexachlorobutadiene	<5	<5	<5	<5	<5	<5	<5
Isopropulhenzene	~5	~5	~5	~5	~5	~5	~5
m n Yulana	~10	~3	~3	~10	~3	~3	\J
m,p-Aylene	<10	<10	<10	<10	<10	<10	<10
Methylene chloride	<5	<5	<5	<5	<5	<5	<5
MTBE	<5	<5	<5	<5	<5	<5	<5
n-Butylbenzene	<5	<5	<5	<5	<5	<5	<5
n-Propylbenzene	<5	<5	<5	<5	<5	<5	<5
Naphthalene	<5	<5	<5	<5	<5	<5	<5
o-Xylene	<5	<5	<5	<5	<5	<5	<5
sec-Butylbenzene	<5	<5	<5	<5	<5	<5	<5
Styrene	<5	<5	<5	<5	<5	<5	<5
tert-Butylbenzene	<5	<5	<5	<5	<5	<5	<5
Tatrachloroathana	<	~5	~5	~5	~5	~5	~5
Teluene	~5	 > 	~5	 	 	 	 >
	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	<5	<5	<5	<5	<5	<5	<5
Trichloroethene	<5	<5	<5	<5	<5	<5	<5
Trichlorofluoromethane	<5	<5	<5	<5	<5	<5	<5
Vinyl chloride	<5	<5	<5	<5	<5	<5	<5

Notes: ug/Kg indicates micrograms per kilogram "<" indicates less than the laboratory reporting limit shown.

"-----" indicates not tested and/or no established regulatory screening level.

Table 4b. Summary of Historical Soil Analytical Data - ERAS Environmental, 2006 Total Petroleum Hydrocarbons (TPH) and Volatile Organic Compounds (VOCs) Former Service Station Elegant Cleaners, 1208 Lincoln Avenue Alameda, California

Sample	Depth	Date	EPA 8015M TPH (mg\kg)		EPA 8260B (8010 list, ug\kg)									
ID	(ft,bgs)	Sampled	as kerosene	as diesel	PCE	TCE	1,1-DCE	1,1-DCA	cis-1,2-DCE	trans-1,2-DCE	1,2-DCA	CCl4	VC	Other VOCs
D 1	2.25	10/2/06			1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.6	4.0
B-1	3.25	10/3/06			<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<9.6	<4.8 to <19
B-2	3.25	10/3/06			<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<9.6	<4.8 to <19
B-3	3.25	10/3/06	<1	<1										

Notes: "mg\kg" indicates milligrams per kilogram.

"ug\kg" indicates micrograms per kilogram

"---" indicates not tested.

"<" indicates constituent not detected at laboratory detection limit shown.

PCE indicates tetrachloroethylene

TCE indicates trichloroethylene

1,1-DCE indicates 1,1-dichloroethylene

1,1-DCA indicates 1,1-dichloroethane

cis-1,2-DCE indicates cis-1,2-dichloroethylene

trans-1,2-DCE indicates trans-1,2-dichloroethylene

CCl4 indicates carbon tetrachloride

VC indicates Vinyl chloride

Encon Solutions, Inc.
Table 5a - Summary of November 2014 Soil Vapor Sampling Analytical Results Volatile Organic Compounds by EPA 8260B 1208 Lincoln Avenue, Alameda, California

				Sample D	ate: Novem	ber 25, 2014					
Sample Number :	VW-1	VW-2	VW-2	VW-2	VW-3	VW-3 (dup)	VW-4	VW-5	SS-1		
Sample Depth (feet) :	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	0.25		
Purge Volume :	3	1	3	10	3	3	3	3	3		
Sample Time :	10:57	9:45	10:06	10:33	11:20	11:20	12:01	12:23	12:50	CHHSLs	ESLs
Dilution Factor :	1	1	1	1	1	1	1	1	1	(commercial)	(commercial)
Units:	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
Constituent											
Tetrachloroethene	450	12,000	13,000	12,000	9,300	10,000	4,600	930	7000	603	2,100
Dichlorodifluoromethane	<100	<100	<100	<100	<100	<100	<100	<100	<100		
Vinyl Chloride	<100	<100	<100	<100	<100	<100	<100	<100	<100	44.8	160
Trichlorofluoromethane	<100	<100	<100	<100	<100	<100	<100	<100	<100		
1,1,-Dichloroethene	<100	<100	<100	<100	<100	<100	<100	<100	<100		
1,1,2-Trichloror-trifluoroethane	<100	<100	<100	<100	<100	<100	<100	<100	<100		
Methylene Chloride	<100	<100	<100	<100	<100	<100	<100	<100	<100		26,000
trans-1,2-Dichloroethene	<100	<100	<100	<100	<100	<100	<100	<100	<100	88,700	260,000
1,1-Dichloroethane	<100	<100	<100	<100	<100	<100	<100	<100	<100		7,700
cis-1,2-Dichloroethene	<100	<100	<100	<100	<100	<100	<100	<100	<100	44,400	31,000
Chloroform	<100	<100	<100	<100	<100	<100	<100	<100	<100		2,300
1,2,4-Trimethylbenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100		
1,1,1-Trichloroethane	<100	<100	<100	<100	<100	<100	<100	<100	<100	2,790,000	22,000,000
Carbon tetrachloride	<100	<100	<100	<100	<100	<100	<100	<100	<100	84.6	290
1,2-Dichloroethane	<100	<100	<100	<100	<100	<100	<100	<100	<100	167	580
Benzene	<80	<80	<80	<80	<80	<80	<80	<80	<80	122	420
Trichloroethene	<100	<100	<100	<100	<100	<100	<100	<100	<100	1,770	3,000
Toluene	<200	<200	<200	<200	<200	<200	<200	<200	<200	378,000	1,300,000
1,1,2-Trichloroethane	<100	<100	<100	<100	<100	<100	<100	<100	<100		1,600
Ethylbenzene	<100	<100	<100	<100	<100	<100	<100	<100	<100		4,900
m,p-Xylene	<200	<200	<200	<200	<200	<200	<200	<200	<200	887,000	440,000
o-Xylene	<100	<100	<100	<100	<100	<100	<100	<100	<100	879,000	440,000
1,1,2,2-Tetrachloroethane	<100	<100	<100	<100	<100	<100	<100	<100	<100		

Notes: ug/m3 indicates micrograms per cubic meter.

"<" indicates less than the laboratory reporting limit shown.

"-----" indicates not tested and/or no established regulatory screening level.

CHHSL indicates California Human Health Screening Level for soil gas at 5' depth, commerical/industrial setting.

ESL indicates the San Francisco Bay Area Environmental Screening Level for shallow soil gas, commercial/industrial setting.

Table 5b - Summary of August 2014 Soil Vapor Sampling Analytical Results Volatile Organic Compounds by EPA Modified 8021B 1208 Lincoln Avenue, Alameda, California

			Sample	Date: August 2	20, 2014				
Sample Number :	SV-1	SV-2	SV-3	SV-4	SV-5	SV-6	SV-6 Dup		
Sample Depth (feet) :	5.0	5.0	5.0	5.0	5.0	5.0	5.0		
Purge Volume :	3	1	3	10	3	3	3		
Sample Time :	10:57	9:45	10:06	10:33	11:20	11:20	12:01	CHHSLs	ESLs
Dilution Factor :	1	1	1	1	1	1	1	(commercial)	(commercial)
Units:	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
Constituent									
Tetrachloroethene	2,420	8,250	11,110	13,540	22,480	590	630	603	2,100
Dichlorodifluoromethane	<100	<100	<100	<100	<100	<100	<100		
Vinyl Chloride	<10	<10	<10	<10	<10	<10	<10	44.8	160
Trichlorofluoromethane	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000		
1,1,-Dichloroethene	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000		
1,1,2-Trichloror-trifluoroethane	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000		
Methylene Chloride	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000		26,000
trans-1,2-Dichloroethene	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	88,700	260,000
1,1-Dichloroethane	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000		7,700
cis-1,2-Dichloroethene	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	44,400	31,000
Chloroform	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000		2,300
1,2,4-Trimethylbenzene									
1,1,1-Trichloroethane	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	2,790,000	22,000,000
Carbon tetrachloride	<20	<20	<20	<20	<20	<20	<20	84.6	290
1,2-Dichloroethane	<40	<40	<40	<40	<40	<40	<40	167	580
Benzene	<30	<30	<30	<30	<30	<30	<30	122	420
Trichloroethene	<100	<100	<100	<100	<100	<100	<100	1,770	3,000
Toluene	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	378,000	1,300,000
1,1,2-Trichloroethane	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000		1,600
Ethylbenzene	<400	<400	<400	<400	<400	<400	<400		4,900
m,p-Xylene	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	887,000	440,000
o-Xylene	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	879,000	440,000
1,1,2,2-Tetrachloroethane	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000		

Notes: ug/m3 indicates micrograms per cubic meter.

"<" indicates less than the laboratory reporting limit shown.

"-----" indicates not tested and/or no established regulatory screening level.

CHHSL indicates California Human Health Screening Level for soil gas at 5' depth, commerical/industrial setting.

ESL indicates the San Francisco Bay Area Environmental Screening Level for shallow soil gas, commercial/industrial setting. **BOLD** indicates result exceeds regulatory screening level(s).

Table 6 - Groundwater Monitoring DataElegant Cleaners1208 Lincoln AvenueAlameda, California

Well ID	Date	Time	Top of Casing Elevation (ft., AMSL)	Depth to Groundwater (ft.,BTOC)	Groundwater Surface Elevation (ft., AMSL)	Comments
MW-1	11/25/14	8:06	24.21	7.82	16.39	Total Depth = 15.32 ft, BTOC
MW-2	11/25/14	8:10	26.28	9.82	16.46	Total Depth = 19.65 ft, BTOC
MW-3	11/25/14	8:14	26.51	10.00	16.51	Total Depth = 19.90 ft, BTOC

Notes: ft, AMSL indicates feet above mean sea level.

ft,BTOC indicates feet below top of casing.

Wells surveyed December 19, 2014 by Mid-Coast Engineers, Wastonville, California

Survey referenced to benchmark HT0882, a disk set in a concrete seawall 59 feet west of the center of 5th Street and north of the extended center of Atlantic Avenue in Alameda. Elevation = 9.13 feet, NAVD 88 datum

Table 7 - Summary of Groundwater Sample Analytical Results - Detected ConstituentsVolatile Organic Compounds by EPA 8260B1208 Lincoln Avenue, Alameda, California

	Samp		San Francisco		
SampleName:	MW-1	MW-2	MW-3		Bay Area
Sample Time	9:10	8:35	8:55		ESLs
TOC Elevation, ft MSL	24.21	26.28	26.51	Maximum	(to evaluate
Depth to Water Ft TOC	7.82	9.82	10	Contaminant	vapor intrusion,
GW Elevation MSL	16.39	16.46	16.51	Level (MCL)	commerical)
Units:	ug/L	ug/L	ug/L	ug/L	ug/L
Constituent					
Tetrachloroethene	29	8.8	1.0	5	23
Trichloroethene	0.65	<0.50	<0.50	5	52

Notes: TOC ft MSL indicates the surveyed height of the top of casing from mean sea level

Depth to Water TOC indicated the depth to water from the top of the well casing

Groundwater Elevation MSL indicates the GW elevation from MSL (TOC FT MSL - Depth to Water TOC) ug/L indicates micrograms per liter

ESLs indicate San Francisco Bay Area Environmental Screening Levels for evaluation of vapor intrusion, Commercial/Industrial property.

"<" indicates less than the laboratory reporting limit shown.

"-----" indicates not tested and/or no established regulatory screening level.

Bold indicates constituent detected at or above regulatory screening level.

FIGURES

APPENDIX A:

SITE PHOTOGRAPHS

Drill Rig on Site, south of building in gravel lot.

View of MW-3, looking northward

Hollow Stem Auger Drilling for Groundwater Monitoring Well

Cored slab, Indoor Limited Acess Drilling

View of Monitoring Well Completion - 2 inch PVC casing.

Permanent Soil Vapor Monitoring Well Completion

View of southern gravel parking lot and VW-3.

Vapor Monitoring Well Completion, Indoors

View at rear (south) of building

Showing indoor well completions and condition of concrete.

APPENDIX B:

SITE SPECIFIC HEALTH AND SAFETY PLAN

AND

USA TICKET INFORMATION

HEALTH & SAFETY PLAN

COMMERCIAL RETAIL

Environmental Consulting & Real Estate Due Diligence 3255 Wilshire Blvd. Suite 1508 Los Angeles, CA 90010 213 – 380-0555

Encon Solutions, Inc. SITE HEALTH & SAFETY PLAN

This Site Health & Safety Plan is specifically prepared for:

Project Location:	Elegant Cleaners
	Alameda, California 94501
Job Number:	1410097ESAIII

ALL PERSONNEL PARTICIPATING IN THE FIELD MUST BE TRAINED IN THE GENERAL AND SPECIFIC HAZARDS UNIQUE TO THE JOB AND, IF APPLICABLE, MEET RECOMMENDED MEDICAL EXAMINATION REQUIREMENTS. ALL SAFETY AND FIELD PERSONAL ARE IN COMPLIANCE WITH 8CCR SECTION 5192 AND 29 CFR 1910.120 TRAINING REQUIREMENTS. ALL SITE PERSONNEL AND VISITORS SHALL FOLLOW THE GUIDELINES, RULES, AND PROCEDURES CONTAINED IN THIS SAFETY PLAN. THE PROJECT MANAGER OR SITE SAFETY OFFICER MAY IMPOSE ANY OTHER PROCEDURES OR PROHIBITIONS THAT THEY BELIEVE ARE NECESSARY FOR SAFE OPERATIONS.

THIS PLAN IS PREPARED TO INFORM ALL FIELD PERSONNEL, INCLUDING ENCON CONTRACTORS AND ENCON SUBCONTRACTORS, OF THE POTENTIAL HAZARDS ON THE SITE. HOWEVER, EACH CONTRACTOR OR SUBCONTRACTOR MUST ASSUME DIRECT RESPONSIBILITY FOR HIS OWN EMPLOYEES' HEALTH AND SAFETY.

TABLE OF CONTENTS

	<u>Topic</u>	Pag	<u>e No.</u>
I.		INTRODUCTION	1
II.		PERSONS RESPONSIBLE AND INVOLVED	2
III.		FACILITY BACKGROUND	3
IV.		IDENTIFIED CHEMICAL CONTAMINANTS	5
V.		GENERAL WORK PRACTICES	7
VI.		SITE CONTROL/WORK ZONES	9
VII.		SITE RESOURCES	10
VIII.		HAZARD ANALYSES	11
IX.		HAZARD MITIGATION	12
X.		AIR MONITORING	15
XI.		PERSONAL PROTECTIVE AND RELATED SAFETY EQUIPMENT	17
XII.		DECONTAMINATION PROCEDURES	19
XIII.		DOCUMENTATION	20
XIV.		CONTINGENCY/EMERGENCY INFORMATION	23

APPENDICES

- A Hazardous Property Information
- B General First Aid Procedures
- $C-Level\ D$ and Level C Standards
- D-MSDS Sheets

ILLUSTRATIONS

Figure 1 - Route to Hospital and Site Vicinity Map Figure 2 - Site Plot Plan

I. INTRODUCTION

А. В.	SITE LOCATION: PLAN PREPARED:	1208 Lincoln Avenue, Alameda, CA 9 Tom Lindros	94501 10/23/2014
		Name	Date
C.	PLAN APPROVED:	Hyung Kim Project Manager	<u>10/23/2014</u> Date
D.	PLAN REVISED:	Name	Date
E.	REVISION APPROVED:	Project Manager	Date

F. THE POSSIBLE HAZARDS ON THIS JOB ARE EXPECTED TO BE:

<u>Geophsical Survey, traffic in parking lot, Drilling equipment (Push Probe, Hollow Stem Auger) –</u> <u>contact with chlorinated solvent-impacted soil and groundwater, inhalation of dust or</u> <u>vapors, traffic, sunburn, slips, trips, falls, noise, heat stress.</u>

II. PERSONS RESPONSIBLE AND INVOLVED

A. PROJECT MANAGER: <u>Mr. Thomas Lindros</u>

Health and Safety Responsibilities: Delegate health and safety responsibilities to site safety officer, to ensure proper procedures are implemented, make available proper PPE, adequate time and budget, and qualified personnel to perform site work in a safe manner.

B. SITE SUPERVISOR: Encon Solutions Field Representative (Cora Olson)

Health and Safety Responsibilities: Ensure that all field personnel have read and sign the master copy of this document. Check that all site personnel meet Occupational Safety and Health Administration (OSHA) requirements regarding training, medical examinations, and fit testing.

C. SITE SAFETY OFFICER: <u>Encon Solutions Field Representative (Cora Olson)</u>

Health and Safety Responsibilities: Ensure that the guidelines, rules, and procedures in this document are followed for all site work. Be familiar with local emergency services. Conduct a tailgate health and safety meeting before work start-up and daily thereafter. Additional meetings may be required for specific job tasks, site activities or new field personnel. Maintain and inspect PPE, monitor onsite hazards, and monitor the physical condition of site personnel. Probably will be the same individual as the site supervisor.

D. SUBCONTRACTORS: <u>ECA Drilling, Geophysical Locator, Mobile Laboratory, Lab Courier,</u> etc.

Health and Safety Responsibilities: Perform work in a safe and neat manner, following the instructions of the Site Safety Officer (SSO), Site Supervisor, and DHSO. Follow guidelines, rules, and procedures in this document. Distribute a copy of the plan among your field personnel for their review prior to initiating field work.

III. FACILITY BACKGROUND

A. FACILITY BACKGROUND AND DESCRIPTION:

The Property is a 5,500 square-foot irregularly shaped parcel that is developed with two-story 2,500 square-foot commercial building currently occupied by a dry cleaning business name Elegant Cleaners. The northern portion of the building's first floor features a main entrance door leading into a reception area and clothes racks. The southern portion features a large dry cleaning machine, storage and various pressers and dryers. The second floor is used as storage. There is an unpaved parking area at the southern end of the Property. Access to the Property is achieved from the north along Lincoln Avenue and southwest along Bay Street.

The Property was developed with the current site building in the late 1800s or early 1900s. The building was originally developed as a meat market and was occupied by a store until the mid 1900s. In the 1970s it was occupied by a general store and in 1980 it was occupied by a pet store. The current occupant, Elegant Cleaners, began occupying the building in 1986. The dry cleaners upgraded to an a eco-friendly dry cleaning machine in 2005, which replaced the previous machine that used Tetrachloroethylene (PCE).

B. SITE HISTORY (USE OF SITE, ORIGIN OF CONTAMINATION):

A previous Phase II Report prepared by Eras Environmental Inc in 2006. Three hand auger borings were advanced by ERAS Environmental (ERAS) to about 5' depth in the southern portion of the building around the location of the dry cleaning machine. Soil samples collected from the borings were analyzed for TPH-diesel, TPH-kerosene, and HVOC including PCE. The test results indicated nondetectable concentrations for all contaminants tested, including PCE.

On August 22, 2014, Encon advanced six borings for the purposes of a soil gas survey. Soil gas samples were collected at depths of 5 to 12 feet bgs. The results indicated the presence of PCE at a maximum concentration of 22.48 ug/L in the southern gravel lot area at SV-5-8.0 feet, and 13.54 ug/L at SV-4-5.0 feet inside the building. Soil sampling was not performed. The results indicated soil vapor concentrations are NOT protective of indoor air quality.

Groundwater was not encountered at a maximum refusal depth of 12 feet bgs.

C. HAZARDOUS INCIDENCE HISTORY (HISTORY OF INJURIES, EXPOSURE, CHEMICAL SPILLS, COMPLAINTS, ETC.): <u>None reported.</u>

D.

PURPOSE OF ACTIVITY/OBJECTIVE OF ENCON'S WORK (CHARACTERIZATION, REMEDIAL ACTIONS, EXCAVATION, TRENCHING; INCLUDE LOCATION WITH RESPECT TO AREAS OF KNOWN OR SUSPECTED CONTAMINATION):

The objective(s) of this workplan are to:

2. Install Groundwater Monitoring Wells to determine if chlorinated solvents have impacted shallow groundwater beneath the Site, and to determine the depth, flow direction groundwater surface gradient.

^{1..} Further characterize the lateral and vertical extent of chlorinated solvents resulting from current/past dry cleaning operations in soil matrix and soil vapor phase in the vadose zone beneath the Site.

3. Conduct and Indoor Air Quality survey to determine if indoor air quality has been degraded as a result of known subsurface soil gas concentrations (i.e. vapor intrusion).

E. SITE STATUS: X ACTIVE (gas station) INACTIVE UNKNOWN

F. SURROUNDINGS (LOCATION WITH RESPECT TO CITY, ROADS, RESIDENCES, BUSINESSES, NATURAL FEATURES, GRADIENTS, TANKS, ETC.):

See Site Vicinity Plan, attached.

SITE MAP (Attach map at end of this plan showing salient features, including location of ENCON's work and location of contaminated areas): <u>See attached Vicinity and Site maps.</u>

H. CLIMATE: January April July October 80 MEAN HIGH TEMPERATURE 100+ 65 80 55 55 MEAN LOW TEMPERATURE 45 68 AVERAGE WIND SPEED AND DIRECTION

G.

IV. IDENTIFIED CHEMICAL CONTAMINANTS

A. IDENTIFIED CHEMICAL CONTAMINANTS KNOWN TO BE PRESENT

List chemical contaminants that have been identified, their concentration, and the environmental media in which they are present. Hazardous property information for selected chemicals appears in the appendix. Review this information for all chemicals listed below. If chemicals are not listed in the appendix, you must enter the hazardous property information in the appendix in the spaces provided.

	Environmental	Measured Concentration		
Chemical	Media (Enter Code)	Minimum	Maximum	
Tetrachloroethylene	Soil	ND	ND	
Tetrachloroethylene	Soil Vapor	0.45 ug/L	22.48 ug/L	
Tetrachloroethylene	GW	1.0 ug/L	29 ug/L	

B. SUSPECTED CHEMICAL CONTAMINANTS ONSITE:

List chemical contaminants that are suspected to be present.

Chemical	Environmental Media (Enter Code)
PCE/TCE	So, SV, GW

Code for environmental media:

SI	Sludge
GW	Groundwater
SW	Surface water
LW	Liquid waste
So	Soil
А	Air
Other	Specify

C. CHEMICAL CONTAMINANTS CHARACTERIZATION

Has the site been adequately characterized to the best of your knowledge?

Yes _____ No __X___

If yes, list applicable references or previous reports/studies.

1. V. <u>GENERAL WORK PRACTICES</u>

Use extreme caution when workers or the workers equipment is within 20 feet of powered electrical lines or equipment (i.e. capacitors, transformers, switching banks, etc). Check with electrical substation manager as appropriate.

No one will be permitted to engage in work operations alone.

Smoking, eating, drinking, chewing gum or tobacco will not be permitted within the work zones.

Personnel should keep track of weather conditions and wind direction to the extent they could affect potential exposure.

Personnel should be alert to any abnormal behavior on the part of other workers that might indicate distress, disorientation, or other ill effects.

Personnel should never ignore symptoms which could indicate potential exposure to chemical contaminants. These should be immediately reported to their supervisor or the Site Safety Officer.

Use of equipment that may generate a spark is not permitted at sites where the potential presence of explosive gases is suspected. At these sites, an explosimeter (specific to the potential explosive gas) must be used. Only intrinsically safe monitors will be used.

If chemical odors are noted during onsite activities, personnel should go upwind until the odors can by identified.

Follow established procedures for a particular job. Do not wear jewelry or loose-fitting clothing when operating or near equipment.

Call the supervisor's attention to any behavior or condition that may cause injury or illness to others or damage to property.

Read warning labels on containers and equipment. Follow specified precautions.

Discontinue any operation that could lead to injury, illness, or property damage.

• Keep horseplay and other disruptive behavior away from the job.

Promptly report to the Site Supervisor any occupational injury, illness, or exposure to toxic material. If injured, get first aid. Small injuries can become serious if neglected.

Promptly inform the Site Supervisor whenever new substances, processes, procedures, or equipment that could present new safety and health hazards are brought into work areas or onto projects.

Report accidents, incidents, or near misses to the Site Supervisor.

• Do not allow visitors without adequate safety training into the work area.

• Work upwind of any field activity.

.

- Perform work in a manner that will minimize dust from becoming airborne.
- When appropriate for safety considerations, use the "buddy system."
- Be alert to any abnormal behavior of other personnel that may indicate distress, disorientation, or other ill effects.
- Verify that vehicles have an ABC-rated fire extinguisher, first aid kit, and 32 ounces of eyewash fluid.
- Monitor weather conditions.
- Operate a vehicle only if you are a licensed driver. Seatbelts must be worn when operating a company vehicle or when driving a private vehicle on company business.
- Drive vehicles in a safe manner and obey traffic regulations.
- Contact the Site Supervisor if contact with human blood occurs during the administration of first aid.

VI. SITE CONTROL/WORK ZONES

- A. DESCRIBE LOCATION OF EXCLUSION ZONE, HOT LINE, CONTAMINATION REDUCTION ZONE, AND DECONTAMINATION AREA AND SUPPORT ZONE. SHOW LOCATIONS ON SITE PLAN: <u>Traffic cones/caution tape will be used to mark work area</u>. Exclusion Zone - 10 ft radius from perimeter of the work area. Contaminant Reduction Zone - Upwind of Equipment Operations.
- B. DEFINE THE SITE CONTROL/SECURITY MEASURES (I.E., FENCING, LOCKED GATES, KEYS, SECURITY GUARDS, FLAGGING, ETC: <u>The site is un-secured</u>. Work areas will be controlled <u>during field activities with caution tape placed around perimeter of work area</u>.
- C. DESCRIBE SAFETY PLAN LOCATIONS: <u>Onsite during all field activities</u>, on dash board of <u>field vehicle</u>, and in project files.

VII. SITE RESOURCES

SITE RESOURCES LOCATIONS

 Toilet facilities: Onsite

 Drinking water supply: Onsite

 Telephone: Onsite/mobile phone in field vehicle

 First Aid: Field vehicle

 Fire Extinguisher: Field vehicle

VIII. <u>HAZARD ANALYSES</u>

This section provides (1) information regarding potential hazards that might be encountered during field activities and (2) a risk assessment relative to hazards identified onsite.

List all activities in the Job Activity Column and assign a number to each activity (example: 1. Ground Water Sampling)

Identify how each category of hazard exists at each activity.

Activity Number	Job Task	Mechanical	Electrical	Chemical	Temperature	Acoustical	Radioactive	O ² Deficiency Confied Space	Biohazard
1	GeoProbe Soil/Groundwater Sampling/ vapor piezometers	Drilling Equipment, Slip, Trip, Fall, Traffic	overhead and buried lines	Chlorinated Solvents in soil and groundwater	heat stress	equipment noise	NE	NE	NE
2	Geophysical Survey	Drilling Equipment, Overhead, Slip, Trip, Fall, Traffic	overhead and buried lines	None	heat stress	equipment noise	NE	NE	NE
3	Indoor vapor point Installation	Tight working spaces, slip, trip fall,	Equipment, extension cords, subsurface	Soil, soil vapor	Heat stress	Equipment noise	NE	NE	NE
4	Well Installation, Development and Sampling	Rig Tower, rigs, lines, slip trip, fall	Overhead, buried lines, cords	Groundwater	Heat stress	Equipment noise	NE	NE	NE
5	Vapor Sampling	Equipment, Trip, Slip, Fall	Equipment	Soil vapor	Heat stress	Equipment noise	NE	NE	NE

Not Applicable = NA,Not Expected = NE

IX. HAZARD MITIGATION

Procedures that will be used to minimize hazards identified onsite are listed below. Job tasks are identified by activity numbers (see below). The applicable activity number(s) is shown next to the procedure to mitigate the hazard.

Activity Number	Job Task
1	<u>Soil Sampling, DPT, HSA, rigs</u>
2	Geophysical Survey
3	Indoor Vapor Point Installation
4	Well Installation, Development, Sampling
5	Vapor Sampling

Identify procedures to mitigate all hazards listed in Section VIII by placing the task number next to the appropriate mitigating measure. Listing of standard procedures is not inclusive. A specific procedure must be entered to mitigate each hazard identified in Section VIII.

Hazards not presently applicable or anticipated to ever become applicable onsite are identified by N/A.

Activity	
List Number	A. Mechanical Hazards
1,4	Do not stand near backhoe buckets and earthmoving equipment.
1-5	Verify that all equipment is in good condition.
1-5	Do not stand or walk under elevated loads or ladders.
NE	Do not stand near unguarded excavation and trenches.
NE	Do not enter excavation or trenches over 5 feet deep that are not properly guarded, shored, or sloped. Obtain trenching/excavation permit.
1-5	Consult Site Supervisor if other mechanical hazards exist.
1,4	Caution when backhoe/drill rig is in operation.
1-5	Caution when working in street or sidewalk for traffic hazards.

B. Electrical Hazards

1-5	Locate and mark buried utilities before excavating/drilling.
1-5	Utilities located by: USA Ticket No. A41980130-00A, expires 8/14/14
1-5	Maintain at least 10 foot clearance from overhead power lines.
1-5	Contact utility company for minimum clearance from high voltage power lines.
1-5	If unavoidably close to buried or overhead power lines, have power turned off, with
	circuit breaker locked and tagged.
1-5	Properly ground all electrical equipment.
1-5	Avoid standing in water when operating electrical equipment.
1-5	If equipment must be connected by splicing wires, make sure all connections are
	properly taped.
1-5	Be familiar with specific operating instructions for each piece of equipment.
	C. <u>Chemical Hazards</u>
1-5	Use personal protective equipment indicated in Section XI.
1-5	Conduct direct reading air monitoring to evaluate respiratory and explosion hazards
	(list instrument, action level, monitoring location, and action to be taken in Section
	X).
NA	Consult Site Supervisor for personal air monitoring.

D. Temperature Hazards

1. Heat Stress

<u>1-5</u> When temperature exceeds 70°F, take frequent breaks in shaded area. Unzip or remove coveralls during breaks. Have cool water or electrolyte replenishment solution available. Drink small amounts frequently to avoid dehydration. Count the pulse rate for 30 seconds as early as possible in the rest period. If the pulse rate exceeds 110 beats per minute at the beginning of the rest period, shorten the work cycle by one-third.

2. Cold Stress

- <u>NA</u> Wear multilayer cold weather outfits. The outer layer should be of wind resistant fabric.
 - 0° to 30°F total work time is 4 hours. Alternate 1 hour in and 1 hour out of the low-temperature area. Below 30°F, consult industrial hygienist. Drink warm fluid. Provide warm shelter for resting. Use buddy system. Avoid heavy sweating.

E. Acoustical Hazards

NA

<u>1-5</u> Use earplugs or earmuffs when noise level prevents conversation in normal voice at distance of 3 feet.

F. <u>O₂ Deficiency - Confined Space Hazards</u>

Confined spaces include trenches, pits, sumps, elevator shafts, tunnels, or any other area where circulation of fresh air is restricted or ability to readily escape from the area is restricted. **Confined space entry NOT PERMITTED!!!**

NA	Obtain permit for confined space entry
NA	Monitor O_2 and organic vapors. If following values are exceeded, do not enter:
	- O_2 less than 19.5 percent or greater than 25%.
	- Total hydrocarbons greater than 5 ppm above background, if all air contaminants
	have not been identified.
	- Concentrations of specific contaminants exceeding action level in Section X if all air contaminants are identified.
NA	Monitor Ω_2 and organic vapors continuously while inside confined space. If values
	cited above are exceeded evacuate immediately. Record instrument readings
NA	At least one person must be on standby outside the confined space who is canable of
	nulling workers from confined space in an emergency
NA	Use portable fans or blowers to introduce fresh air to confined spaces whenever use
	of respirator is required
NA	Work involving the use of flame arc spark or other source of ignition is prohibited
	within a confined space.
	G. Radiation Hazards
NA	If radiation meter indicates 2mR/hr or more, leave the area and consult Site
	Supervisor.
	H. <u>Biohazards</u>
NA	Learn to recognize and avoid contact with poison oak or poison ivy.
NA	Do not touch infectious waste.
NA	Do not approach or agitate rabid animals.
NA	Avoid breathing dust in dry desert or central valley areas (valley fever).
NA	Use insect repellant to avoid contact with ticks, mosquitoes, and other insects
	(disease carriers or poisonous), as necessary.
NA	Do not touch refuse suspected of being from a biological or animal.
NA	If possible, avoid contact with poisonous snakes or other reptiles by quietly walking
	away. If bitten, seek medical assistance immediately.
X. AIR MONITORING

Air monitoring should be conducted with instruments selected to measure contaminants that employees may be exposed to. Measurements should be taken within the breathing zones of workers. If action levels are reached for a 1-minute reading, appropriate action must occur.

A. GASES AND VAPORS

Instrument and Date of Calibration	Calibration Gas Standard	Frequency/Duration of Air Monitoring	Action Level (a) (b) Above Background (Breathing Zone)	Action
PID	100 ppm hexane	continuous	0-15 ppm	Introduce engineering controls (i.e., blower fans) (Level D)
PID	100 ppm hexane	continuous	>15 ppm	Don respirator (Level C)
PID	100 ppm hexane	continuous	15-300 ppm	Leave area (Level C)
				Upgrade to Level B
	Also see Section D - Other Instruments.			Upgrade to Level A

- (a) Action Levels for "known contaminants" should be based upon the contaminants Permissible Exposure Level (PEL) or Threshold Limit Values (TLVs).
- (b) Action levels for unknown contaminants are based upon the following:

PID Measurements in Breathing Zone Reading for 1 minute

Background	Level D
>0-5 ppm above background	Level C
5-500 ppm above background	Level B
500-1,000 ppm above background	Level A

Comments: _____

B. EXPLOSION HAZARD

Instrument and Date Calibration	Action Level Above Background (Ambient Air)	Frequency/Duration of Air Monitoring	Action	
Combustible gas indicator	Greater than 10% LEL	as needed	Leave Area	

C. OXYGEN DEFICIENCY

Instrument and Date of Calibration	Above Background (Ambient Air)	Frequency/Duration of Air Monitoring	Action
O ₂ meter	Less than 19.5% O_2 More than 23% O_2	as needed	breathable atmosphere/O2 source for combustion.

D. OTHER INSTRUMENTS

Instrument and Date of Calibration	Above Background (Ambient Air)	Frequency/Duration of Air Monitoring	Action
Draeger pump/tubes			
Radiation monitor			
Heat stress meter			
Noise meter			
H ₂ s meter			
pH analyzer			
Others			

XI. PERSONAL PROTECTIVE AND RELATED SAFETY EQUIPMENT

Place the activity number from Section VIII next to each item of personal protective equipment required for that task. All personal safety equipment must meet ANSI standards or equivalent. Don Level C respirator if stained soils are observed during sampling.

LEVEL: _____A ___B ___C ___X D

Comments: Work will initially be performed in Level D. However, if real-time monitoring indicates as specified in Section X, Level C PPE will be donned accordingly. Don Level C PPE (with respirator) if stained soils are observed during sampling activity.

lead Eye/Face	
X Hardhat X Safety Glasses Faceshield Chemical Goggles	
land	
Neoprene Nitrile PVC Viton Underglove	
other =	
ody	
Full Encapsulating Suit	
Two Piece Rainsuit, Material	
One Piece Splash Suit, Material	
X Tyvek Suit or dedicated cloth coveralls	
Hooded Tyvek/Saranax Suit	
Hooded Tyvek/Polyethylene Suit	
X Cloth Coveralls	
X High Visibility Vest when working in high traffic area's	
Other	

Lung		
	SCBA (open circuit, pressure	demand)
	Full Face Respirator, cartridge	=
	Supplied Air, Airline	
	Half Mask Respirator, cartridg	ge = Organic Vapor (OV)/HEPA
	Other	
<u>Ear</u>		
X	Earplug, type foam	
	Earmuff, type	
<u>Foot</u>		
Χ	Steel-toed Boots, type	
	Disposable Overboots, type _	
Other S	afety Equipment	
	Ventilation blower/fan	Ground fault circuit interrupter
Χ	Traffic cones	Lifeline harness
X	Barrier tape	Radiation Dosimeter
	Blast alarm	Life vests
Require	ed PPE by Task: PPE that should	be used for each task is as follows.
	Task	Protection Level

1-5

Level D

XII. DECONTAMINATION PROCEDURES

A. EQUIPMENT (SAMPLING, CONSTRUCTION, ETC.) DECONTAMINATION (SOLVENTS USED, EQUIPMENT USED, METHOD OF DISPOSAL). ATTACH SITE DECONTAMINATION MAP AS NECESSARY:

 B. PERSONNEL DECONTAMINATION (SOLVENTS USED, METHOD OF SOLVENT DISPOSAL; INCLUDE DECONTAMINATION METHOD OF PPE AND DISPOSAL OF PPE): <u>Decontaminate boots and remove all contaminated clothing before leaving the site,</u> <u>storing them in 55-gallon drums, wash hands and face before leaving site.</u> Dispose of PPE in <u>accordance with federal and State Regulations.</u>

C. INVESTIGATION-DERIVED MATERIAL DISPOSAL

- 1. Excavated soil, drilling cuttings: <u>Place in Labeled 55 gallon DOT Drums</u>
- 2. Decontamination solutions: Labeled 55 gallon DOT drums
- 3. Other: _____

XIII. DOCUMENTATION

PERSONNEL TRAINING AND MEDICAL RECORDS ARE AT ENCON Solutions, Los Angeles, CALIFORNIA.

A. PROJECT PERSONNEL LIST AND SAFETY PLAN DISTRIBUTION RECORD

1. Encon Representatives

All project staff must sign, indicating they have read and understand the Site Health and Safety Plan. A copy of this Site Health and Safety Plan must be made available for their review and readily available at the job site.

	Date	
Employee Name/Job Title	Distributed	Signature

2. <u>Contractors, Subcontractors</u>

A copy of this safety plan shall be provided to contractors and subcontractors who may be affected by activities covered under the scope of this Site Safety Plan. All contractors and subcontractors must comply with applicable OSHA, EPA, and local government rules and regulations.

Firm Name	Contact Person	Date Distributed

B. <u>HEALTH AND SAFETY MEETING</u> - ALL PERSONNEL PARTICIPATING IN THE PROJECT MUST RECEIVE INITIAL HEALTH AND SAFETY ORIENTATION. THEREAFTER, A BRIEF TAILGATE SAFETY MEETING IS REQUIRED AS DEEMED NECESSARY BY THE SITE SAFETY OFFICER (OR AT LEAST ONCE EVERY 10 WORKING DAYS).

Date	Topics	Name of Attendee	Firm Name	Employee <u>Initials</u>
_	Health and safety pla	an		
_	Health and safety			
·				

C. <u>VISITOR</u> - IT IS Encon'S POLICY THAT VISITORS MUST FURNISH HIS/HER OWN PERSONAL PROTECTIVE EQUIPMENT. ALL VISITORS ARE REQUIRED TO SIGN THE VISITOR LOG AND COMPLY WITH THE SAFETY PLAN REQUIREMENTS. IF THE VISITOR REPRESENTS A REGULATORY AGENCY CONCERNED WITH SITE HEALTH AND SAFETY ISSUES, THE SITE SAFETY OFFICER SHALL ALSO IMMEDIATELY NOTIFY THE SITE SUPERVISOR.

VISITOR LOG

Name of Visitor	Firm Name	Date of Visit	Firm Name	<u>Signature</u>
		<u> </u>		

XIV. CONTINGENCY/EMERGENCY INFORMATION

A.	REQUIRED EMERGENCY EQUIPMENT LOCATION
	First aid kit: Field Vehicle
	Fire extinguisher: Field Vehicle
B.	EMERGENCY TELEPHONE NUMBERS* Ambulance: 911 Police: 911
Fire	e department: 911
Hos	spital: <u>Highland Hospital Emergency Department</u> <u>1411 East 31st Street, Oakland, California 94602-1018</u> Phone: 510-437-4559 (ER Direct Line)
Clie	ent Contact: Grace Yang – Open Bank Mr. Rick Pak (408) 202-7814 (Site Access)
Pois	son Control Center: <u>911</u> CHEMTREC:
	Project Manager:Mr. Tom LindrosOffice:805-498-4937Cell:805-410-2725Site Supervisor:Cora OlsonOffice:213-380-0555Cell:??:
C.	* STANDARD PROCEDURES FOR REPORTING EMERGENCIES: When calling for assistance in an emergency situation, the following information should be provided:
	 Name of person making call Telephone number at location of person making call Name of person(s) exposed or injured Nature of emergency
	5. Actions already taken Recipient of call should hang up firstnot the caller.
	Acceptent of call should hang up mist <u>not</u> the caller.
D.	EMERGENCY ROUTES: ATTACH MAP SHOWING ROUTE TO NEAREST

- HOSPITAL. DESCRIBE NARRATIVELY THE ROUTE TO THE HOSPITAL. See attached step by step directions. 4.6 miles, approximately 15 minutes without traffic.
- E. CONTINGENCY PLANS AS APPROPRIATE: DESCRIBE CONTINGENCY PLANS FOR EMERGENCIES SUCH AS: FIRES, EMERGENCY CARE, INJURY, PPE, OR OTHER

EQUIPMENT FAILURE. INCLUDE EMERGENCY SIGNALS AND EVACUATION ROUTES.

3 horn blasts will be warning signal
 Evacuate work area - -proceed upwind
 Congregate at pre-established location

4) Follow-up with first aid and medical evacuation, if necessary

APPENDIX A

APPENDIX A HAZARDOUS PROPERTY INFORMATION

This appendix contains hazardous property information for selected compounds. Place a check mark next to each compound identified in Section IV, and review the hazardous property information for those compounds. If you have identified compounds in Section IV that are not listed in the appendix, you must list the compounds and enter the appropriate information.

*if present	Material	Water Solubility ^a	Specific Gravity	Vapor Density	Flash Point F	Vapor Pressure ^e	LEL UEL	LD ₅₀ mg/kg	TLV-TWA ^g	IDLH Level	Odor Threshold or Warning Concentration	Hazard ⁱ Property	Dermal ^k Toxicity	Acute ^l Exposure Symptoms
VOLATILE	ORGANIC POLLUTANTS													
Acrol	lein	22%	0.8410	1.9	-15	214 mm	2.8% 31%	46	0.1 ppm	5 ppm	0.1-16.6 (0.21-0.5)	BCED	BJ	ABDFGHIKLMNO PQR
Acryl	yenitrile	7.1%	0.8060	1.8	30	83 mm	3% 17%	82	2 ppm	4,000 ppm	19-100	BCEGO	DIG	FGIKLMNOR
Anthr	racene	Insoluble	1.25	6.15	250	1.0	0.6%		0.2 mg/m ³	200 mg/m ³		BCG		Ν
*Benz	zene	820 ppm	0.8765	2.8	12	75 mm	0.339% 7/1%	3800	11 ppm	2,000 ppm	4.68	BCGO	CIG	BCDFHIKLMNOQ <mark>R</mark>
Benz	co(a)pyrene	Slightly	1.351	8.7	N/I	>1	N/I		0.1 mg/m ³	N/I		CG		IM
Brom	nomethane	0.1 g	1.732	3.3	none	1.88 atm	13.5%c 14.5%		5 ppmh	2,000 ppm	no odor	CD		BCDEIJKLMNOQ R
Brom	nodichloromethane	Insoluble	1.980		none	n/a	non flam	916	none established	none specified		CGO		BIMN
Brom	oform	0.01g	2.887		none	5 mm	non flam	1147	0.5 ppm	n/a	530	CED		BCDKLM
Carbo	on Tetrachloride	0.08%	1.5967	5.3	none	91 mm	non flam	2800	5 ppmh	300 ppm	21.4-200	CD	JGH	ABCFGHKMO
Chlor	robenzene	0.01 g	1.1058	3.9	84	8.8 mm	1.3% 9.6%	2910	75 ppm	2,400 ppm	0.21-60	BCD	CIF	BCFIKLMNOPQR
Chlor	roethane	0.6 g	0.8978	2.2	-58	1.36 atm	3.8% 15.4%		1000 ppm	20,000 ppm		BCD		BFHIKMNP
2-Chl	loroethylvinyl Ether	Insoluble	1.0475	3.7	80	30 mm		250	none established	none specified		BCD		NIM
Chlor	roform	0.8 g	1.4832	4.12	none	160 mm	non flam	800	10 ppmh	1,000 ppm	50-307 fatigue (>4096)	CD		BCDGIKLMN
Chlor	romethane	0.74%	0.9159	1.8	32	50 atm	7.6% 19%		50 ppmh	10,000 ppm	10-100 no odor (500-1000)	BCD	DHF	ABCDEFGIJKLO QR
Chrys	sene	Insoluble	1.274	N/I	N/A	6.3 x 10 ⁻⁷	N/A		0.2 mg/m ³	200 mg/m ³	(000-1000)	G		IM
Dibro	omochloromethane	Insoluble	2.451					848	none established	none specified		BCD		BFHIMNPQ
1,1-D	Dichloroethane (DCA)	0.1 g	1.1757	8.4 16%	22	182 mm	6%	725100 p	pm 4,000 ppm	5 ppm	BCD		AGHIMNO	

eck sent	Material	Water Solubility ^a	Specific Gravity	Vapor Density	Flash Point F	Vapor Pressure ^e	LEL UEL	LD ₅₀ mg/kg	TLV-TWA ^g	IDLH Level	Odor Threshold or Warning Concentration	Hazard ⁱ Property	Dermal ^k Toxicity	Acute ^l Exposure Symptoms
1,2-Dich	loroethane	0.8%	1.2554	3.4	55	87 mm	6.2% 16%	670	10 ppmh	1,000 ppm	6 ppm	BCDG		BCFGOLMNQ
1,1-Dich (DCE)	loroethylene	2250 mg/l @77of		3.4	3	591 mm	7.3% 16.0%	200	5 ppmh	none specified		BCD		BIMN
Trans-1	,2-Dichloroethylene	Slightly soluble	1.2565		36	400 mm	9.7% 12.8%		none established	none specified	.0043 mg/l	BCD		ABFILOQ
1,2 Dich	loropropane	0.26%	1.583	3.9	60	40 mm	3.4% 14.5%	1900	75 ppm	2,000 ppm	50	BCD		ABGHIKMNO
Cis-1,3-	Dichloropropane	Insoluble	1.2	3.8	83	28 mm	5% 14.5%		1 ppmh	none specified		BCD		ABGIKLMNP
Trans-1	,3-Dichloropropane	Insoluble	1.2	3.8	83	28 mm	5% 14.5%		1 ppmh	none specified		BCD		ABGIKLMNP
*Ethylbe	enzene	0.015 g	0.867	3.7	59	7.1 mm	1.0% 6.7%	3500	100 ppm	2,000 ppm		BCD	CIF	ABFHIKLMNPQR
Phenan	threne	Insoluble	1.06	6.14	171°C	1 @ 118.3ºF	N/A		0.2 mg/m ³	700 mg/m ³		BG		IM
Methyle	ne Chloride	Slightly soluble	1.335	2.9	none	350 mm	12%c unavailable	167	100 ppmh	5,000 ppm (200)	25-320	CED	CIF	BCIKLMNPR
Pyrene		1.35 mg/l	1.271	N/I	N/I	6.85 x 10 ⁻⁷	N/I		0.2 mg/m ³	700 mg/m ³		BCG		IMN
1,1,2,2-	Tetrachloroethane	0.19%	1.5953	5.8	none	5 mm	non flam		1 ppmh	150 ppm	3-5	CD		ABCFHIKLMNOQ
Tetrach	oroethylene	0.15 g/ml	1.6227	5.8	none	15.8 mm	non flam	8850	50 ppmh	500 ppm	4.68%-50 (160-690)	CD		ACFHIKLMNP
1,1,1-Tr (TCA)	ichloroethane	0.7 g	1.3390	4.6	none	100 mm	8.0%c 10.5%	10300	350 ppm	1,000 ppm	20-400 (500-1000)	BCED		ABEFHIKLNOP
1,1,2-Tr	ichloroethane	0.45	1.4397	4.6	none	19 mm	6%c 15.5%	1140	10 ppm	500 ppm	-0-	С		DEFGHIKMNOP Q
Trichlor	pethylene (TCE)	0.1%	1.4642	4.5	90d	58 mm	12.5% 90%	4920	50 ppmh	1,000 ppm	21.4-400	BC		BFKLNOPQ
Trichlor	ofluoromethane	0.11 g	1.494	 flam	none	0.91 atm	non	1000 ppm	10,000 ppm	135-209	CD		BFHKLQ	

Check if present	Material	Water Solubility ^a	Specific Gravity	Vapor Density	Flash Point F	Vapor Pressure ^e	LEL UEL	LD ₅₀ mg/kg	TLV-TWA ⁹	IDLH Level	Odor Threshold or Warning Concentration	Hazard ⁱ Property	Dermal ^k Toxicity	Acute ^l Exposure Symptoms
*Tolue	ne	0.05 g	0.866	3.2	40	22 mm	1.3% 7.1%	5000	100 ppm	2,000 ppm	0.17-40 fatigue (300-400)	BC	BHE	DEFHIKLMNOPQ
Vinyl C	Chloride	negligible	0.9100	2.24	-108	3.31 atm	3.6% 33%	500	1 ppm	none specified	260	BCEG	DJG	ABFHIKLMN
METALS														
Arsenio	c	b	5.727	n/a	none	n/a	f		10 g/m ³	none specified		CEG	CJG	ACDGJMOQR
Berylliu	m	b	1.85	n/a	none	n/a	f		2 = g/m ³	none specified		С		IJMNR
Cadmi	um	b	8.642	n/a	none	n/a	f	225	0.5 mg/m ³	40/mg ³		С		ABGHIKLMNQR
Chrom	ium	b	7.20	n/a	none	n/a	f		0.5 mg/m ³ h	500/mg ³		С		FMNQ
Coppe	r	b	8.92	n/a	none	n/a	f		0.1 mg/m ³	none specified		С		FGIJMOQR
*Lead		b	11.3437	n/a	none	n/a	f		50 g/m ³	none specified		С		ACDFGKOQR
Mercur	У	b	13.5939	7.0	none	0.0012 mm	f		50 g/m ³ h	28 mg/m ³		С		AGLMNQ
Nickel		b	8.9	n/a	none	n/a	f		1 mg/m ³	none specified		С		DGHLMNQ
Silver		b	10.5	n/a	none	n/a	f		0.01mg/m ³	none specified		С		IN
Thalliu	m	b	11.85	n/a	none	n/a	f		0.01mg/m ³	20 mg/m ³		С	BG	ABGLNOQ
Zinc		b	7.14	n/a	none	n/a	f		none established	none specified		С		DF

Check if present	Material	Water Solubility ^a	Specific Gravity	Vapor Density	Flash Point F	Vapor Pressure ^e	LEL UEL	LD ₅₀ mg/kg	TLV-TWA ^g	IDLH Level	Odor Threshold or Warning Concentration	Hazard ⁱ Property	Dermal ^k Toxicity	Acute ^l Exposure Symptoms
MISCELLANEOUS														
Asbesto	s	Insoluble	2.5	n/a	none	n/a	non flam		0.2-2 fibers/cc	none specified		CG		MN
Cyanide	s	58-72%		n/a	none	n/a	non flam		5 mg/m ³			CE		FKLMPQ
PCB (ge	neric)	slightly		n/a	none	n/a	non flam		1.0 g/m³i	none specified		CG		CHLPQ
Phenol		8.4%	1.0576	3.2	175	0.36 mm	1.8% 8.6%	414	5 ppm	100 ppm	0.47-5 (48)	С		ABCDGIKMNOQR
Xylene		0.00003%	0.8642	3.7	84	9 mm	1.1% 7%	5000	100 ppm	10,000 ppm	0.5-200 (200)	BCD		ABFHIKLMNPQ
Acetone		soluble	0.8	2.0	-4	400 mm	2.6% 12.8%	9750	750 ppm	10,000 ppm	100	BCD	DI	Н
Chromic	Acid	soluble	1.67-2.82	n/a	none	n/a	non flam		none established	none specified		ACEG		GIH
*Diesel F	Fuel	insoluble	0.81-0.90		130		0.6-1.3 6-7.5		none established	none specified	0.08	BC	ABC	IN
*Gasolin	e	insoluble	0.72-0.76	3.4	-45	variable	1.4% 7.6%		300 ppm	none specified	0.005-10 x 0.25	CD	AB	IN
Kerosen	e	insoluble	0.83-1.0		100-165	5	0.7% 5.0%		none established	none specified	1.0	BCD	AB	IN

SIGMA-ALDRICH

sigma-aldrich.com

SAFETY DATA SHEET

Version 4.3 Revision Date 07/01/2014 Print Date 01/15/2015

1. PRODUCT AND COMPANY IDENTIFICATION

1.1	Product identifiers Product name	:	Tetrachloroethylene						
	Product Number Brand Index-No.	:	371696 Sigma-Aldrich 602-028-00-4						
	CAS-No.	:	127-18-4						
1.2	Relevant identified uses of the substance or mixture and uses advised against								
	Identified uses	:	Laboratory chemicals, Manufacture of substances						
1.3	Details of the supplier of the safety data sheet								
	Company		Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA						
	Telephone Fax	:	+1 800-325-5832 +1 800-325-5052						
1.4	Emergency telephone num	ıbe	r						

Emergency Phone # : (314) 776-6555

2. HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture

GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Skin irritation (Category 2), H315 Carcinogenicity (Category 2), H351 Acute aquatic toxicity (Category 2), H401 Chronic aquatic toxicity (Category 2), H411

For the full text of the H-Statements mentioned in this Section, see Section 16.

2.2 GHS Label elements, including precautionary statements

Pictogram

Signal word

Warning

Hazard statement(s) H315 H351 H411	Causes skin irritation. Suspected of causing cancer. Toxic to aquatic life with long lasting effects.
Precautionary statement(s)	Obtain special instructions before use.
P201	Do not handle until all safety precautions have been read and
P202	understood.
P264	Wash skin thoroughly after handling.
P273	Avoid release to the environment.
P280	Wear protective gloves.

P302 + P352	IF ON SKIN: Wash with plenty of soap and water.
P308 + P313	IF exposed or concerned: Get medical advice/ attention.
P321	Specific treatment (see supplemental first aid instructions on this label).
P332 + P313	If skin irritation occurs: Get medical advice/ attention
P362	Take off contaminated clothing and wash before reuse.
P391	Collect spillage.
P405	Store locked up.
P501	Dispose of contents/ container to an approved waste disposal plant.

2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

3. COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substances

Synonyms	:	Perchloroethylene PCE
Formula	:	C ₂ Cl ₄
Molecular Weight	:	165.83 g/mol
CAS-No.	:	127-18-4
EC-No.	:	204-825-9
Index-No.	:	602-028-00-4

Hazardous components

Classification	Concentration
Skin Irrit. 2; Carc. 2; Aquatic	-
Acute 2; Aquatic Chronic 2;	
H315, H351, H411	
	Classification Skin Irrit. 2; Carc. 2; Aquatic Acute 2; Aquatic Chronic 2; H315, H351, H411

For the full text of the H-Statements mentioned in this Section, see Section 16.

4. FIRST AID MEASURES

4.1 Description of first aid measures

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

lf inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Wash off with soap and plenty of water. Consult a physician.

In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

If swallowed

Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed no data available

5. FIREFIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media

Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

- 5.2 Special hazards arising from the substance or mixture Carbon oxides, Hydrogen chloride gas
- **5.3** Advice for firefighters Wear self contained breathing apparatus for fire fighting if necessary.
- 5.4 Further information no data available

6. ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures

Use personal protective equipment. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas.

For personal protection see section 8.

6.2 Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

- 6.3 Methods and materials for containment and cleaning up Soak up with inert absorbent material and dispose of as hazardous waste. Keep in suitable, closed containers for disposal.
- 6.4 Reference to other sections

For disposal see section 13.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist. For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1 Control parameters

Components with workplace control parameters

Component	CAS-No.	Value	Control parameters	Basis				
Tetrachloroethylene	127-18-4	TWA	25 ppm	USA. ACGIH Threshold Limit Values (TLV)				
	Remarks	Central Nervous System impairment Substances for which there is a Biological Exposure Index or Indices (see BEI® section) Confirmed animal carcinogen with unknown relevance to humans						
		STEL	100 ppm	USA. ACGIH Threshold Limit Values (TLV)				
		Central Nerv Substances (see BEI® se Confirmed at	Itral Nervous System impairment stances for which there is a Biological Exposure Index or Indices BEI® section) Ifirmed animal carcinogen with unknown relevance to humans					
		Potential Occupational Carcinogen Minimize workplace exposure concentrations. See Appendix A						
		See Table Z	-2					

-	TWA	100 ppm	USA. Occupational Exposure Limits (OSHA) - Table Z2
	CEIL	200 ppm	USA. Occupational Exposure Limits (OSHA) - Table Z2
	Peak	300 ppm	USA. Occupational Exposure Limits (OSHA) - Table Z2
-	TWA	25 ppm 170 mg/m3	USA. OSHA - TABLE Z-1 Limits for Air Contaminants - 1910.1000

Biological occupational exposure limits

Component	CAS-No.	Parameters	Value	Biological specimen	Basis
Tetrachloroethylene	127-18-4	Tetrachloroet hylene	3parts per million	In end-exhaled air	ACGIH - Biological Exposure Indices (BEI)
	Remarks	Prior to shift (1	6 hours after	· exposure ceases)	
		Tetrachloroet hylene	0.5 mg/l	In blood	ACGIH - Biological Exposure Indices (BEI)
		Prior to shift (1	6 hours after	exposure ceases)	

8.2 Exposure controls

Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Personal protective equipment

Eye/face protection

Safety glasses with side-shields conforming to EN166 Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact

Material: Fluorinated rubber Minimum layer thickness: 0.7 mm Break through time: 480 min Material tested:Vitoject® (KCL 890 / Aldrich Z677698, Size M)

Splash contact Material: Nitrile rubber Minimum layer thickness: 0.2 mm Break through time: 49 min Material tested:Dermatril® P (KCL 743 / Aldrich Z677388, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Body Protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multipurpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

a)	Appearance	Form: liquid, clear Colour: colourless
b)	Odour	no data available
c)	Odour Threshold	no data available
d)	рН	no data available
e)	Melting point/freezing point	Melting point/range: -22 °C (-8 °F) - lit.
f)	Initial boiling point and boiling range	121 °C (250 °F) - lit.
g)	Flash point	no data available
h)	Evapouration rate	no data available
i)	Flammability (solid, gas)	no data available
j)	Upper/lower flammability or explosive limits	no data available
k)	Vapour pressure	25.3 hPa (19.0 mmHg) at 25.0 °C (77.0 °F) 17.3 hPa (13.0 mmHg) at 20.0 °C (68.0 °F)
I)	Vapour density	no data available
m)	Relative density	1.623 g/cm3 at 25 °C (77 °F)
n)	Water solubility	no data available
o)	Partition coefficient: n- octanol/water	log Pow: 3.40
p)	Auto-ignition temperature	no data available
q)	Decomposition temperature	no data available
r)	Viscosity	no data available
s)	Explosive properties	no data available
t)	Oxidizing properties	no data available
Oth no (ter safety information data available	

10. STABILITY AND REACTIVITY

10.1 Reactivity no data available

9.2

10.2 Chemical stability Stable under recommended storage conditions.

10.3 Possibility of hazardous reactions no data available

- **10.4 Conditions to avoid** no data available
- **10.5** Incompatible materials Strong oxidizing agents, Strong bases
- **10.6 Hazardous decomposition products** Other decomposition products - no data available In the event of fire: see section 5

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

Acute toxicity

LD50 Oral - rat - 2,629 mg/kg

LC50 Inhalation - rat - 8 h - 34,200 mg/m3

LD50 Dermal - rabbit - 5,000 mg/kg

no data available

Skin corrosion/irritation

Skin - rabbit Result: Severe skin irritation - 24 h

Serious eye damage/eye irritation Eves - rabbit

Result: Mild eye irritation - 24 h

Respiratory or skin sensitisation no data available

Germ cell mutagenicity no data available

Carcinogenicity

Limited evidence of carcinogenicity in animal studies

- IARC: 2A Group 2A: Probably carcinogenic to humans (Tetrachloroethylene)
- NTP: Reasonably anticipated to be a human carcinogen (Tetrachloroethylene)
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

no data available

no data available

Specific target organ toxicity - single exposure no data available

Specific target organ toxicity - repeated exposure no data available

Aspiration hazard no data available

Additional Information RTECS: KX3850000

narcosis, Liver injury may occur., Kidney injury may occur.

12. ECOLOGICAL INFORMATION

12.1 Toxicity

Toxicity to fish	LC50 - Cyprinodon variegatus (sheepshead minnow) - 9.8 mg/l - 96.0 h	
	LC50 - Lepomis macrochirus (Bluegill) - 13 mg/l - 96.0 h	
	LC50 - Oncorhynchus mykiss (rainbow trout) - 4.9 mg/l - 96.0 h	
	NOEC - Oryzias latipes - 17 mg/l - 10.0 d	
	NOEC - Cyprinodon variegatus (sheepshead minnow) - 29 mg/l - 96.0 h	
Toxicity to daphnia and other aquatic invertebrates	EC50 - Daphnia magna (Water flea) - 7.50 mg/l - 48 h	

12.2 Persistence and degradability

12.3 Bioaccumulative potential Bioaccumulation Leg

Lepomis macrochirus (Bluegill) - 21 d - 0.00343 mg/l

Bioconcentration factor (BCF): 49

12.4 Mobility in soil

no data available

12.5 Results of PBT and vPvB assessment PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects

An environmental hazard cannot be excluded in the event of unprofessional handling or disposal. Toxic to aquatic life.

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

Product

Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material. Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US)

UN number: 1897 Proper shipping name Reportable Quantity (Marine pollutant: No Poison Inhalation Haz	Class: 6.1 e: Tetrachloroethylene RQ): 100 lbs zard: No	Packing group: III	
IMDG UN number: 1897 Proper shipping name Marine pollutant: Mari	Class: 6.1 e: TETRACHLOROETHYI ne pollutant	Packing group: III _ENE	EMS-No: F-A, S-A
IATA			

UN number: 1897 Class: 6.1 Packing group: III Proper shipping name: Tetrachloroethylene

15. REGULATORY INFORMATION

SARA 302 Components

SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

SARA 311/312 Hazards

Acute Health Hazard, Chronic Health Hazard

Massachusetts Right To Know Components		
	CAS-No.	Revision Date
Tetrachloroethylene	127-18-4	2007-07-01
Pennsylvania Right To Know Components		
	CAS-No.	Revision Date
Tetrachloroethylene	127-18-4	2007-07-01
New Jersey Right To Know Components		
	CAS-No.	Revision Date
Tetrachloroethylene	127-18-4	2007-07-01
California Prop. 65 Components		
WARNING! This product contains a chemical known to the	CAS-No.	Revision Date
State of California to cause cancer.	127-18-4	2007-09-28
Tetrachloroethylene		

16. OTHER INFORMATION

Full text of H-Statements referred to under sections 2 and 3.

Aquatic Acute	Acute aquatic toxicity
Aquatic Chronic	Chronic aquatic toxicity
Carc.	Carcinogenicity
H315	Causes skin irritation.
H351	Suspected of causing cancer.
H401	Toxic to aquatic life.
H411	Toxic to aquatic life with long lasting effects.
Skin Irrit.	Skin irritation

HMIS Rating

-	
Health hazard:	1
Chronic Health Hazard:	*
Flammability:	0
Physical Hazard	0

NFPA Rating

Health hazard:	1
Fire Hazard:	0
Reactivity Hazard:	0

Further information

Copyright 2014 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Preparation Information Sigma-Aldrich Corporation Product Safety – Americas Region 1-800-521-8956

Version: 4.3

Revision Date: 07/01/2014

Print Date: 01/15/2015

SIGMA-ALDRICH

sigma-aldrich.com

SAFETY DATA SHEET

Version 5.2 Revision Date 11/18/2014 Print Date 01/15/2015

1. PRODUCT AND COMPANY IDENTIFICATION

1.1	Product identifiers Product name	:	Trichloroethylene
	Product Number Brand Index-No.	:	133124 Aldrich 602-027-00-9
	CAS-No.	:	79-01-6
1.2 Relevant identified uses of the substance or mixture and uses advised ag			e substance or mixture and uses advised against
	Identified uses	:	Laboratory chemicals, Manufacture of substances
1.3	Details of the supplier of the	ne s	afety data sheet
	Company	:	Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA
	Telephone Fax	:	+1 800-325-5832 +1 800-325-5052
1.4	Emergency telephone num	be	r

Emergency Phone #	:	(314) 776-6555
-------------------	---	----------------

2. HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture

GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Skin irritation (Category 2), H315 Eye irritation (Category 2A), H319 Germ cell mutagenicity (Category 2), H341 Carcinogenicity (Category 1B), H350 Specific target organ toxicity - single exposure (Category 3), Central nervous system, H336 Acute aquatic toxicity (Category 3), H402 Chronic aquatic toxicity (Category 3), H412

For the full text of the H-Statements mentioned in this Section, see Section 16.

2.2 GHS Label elements, including precautionary statements

Pictogram

Signal word

Danger

Hazard statement(s)	
H315	Causes skin irritation.
H319	Causes serious eye irritation.
H336	May cause drowsiness or dizziness.
H341	Suspected of causing genetic defects.
H350	May cause cancer
H412	Harmful to aquatic life with long lasting effects.

Precautionary statement(s)	
P201	Obtain special instructions before use.
P202	Do not handle until all safety precautions have been read and understood.
P261	Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray.
P264	Wash skin thoroughly after handling.
P271	Use only outdoors or in a well-ventilated area.
P273	Avoid release to the environment.
P280	Wear eye protection/ face protection.
P280	Wear protective gloves.
P281	Use personal protective equipment as required.
P302 + P352	IF ON SKIN: Wash with plenty of soap and water.
P304 + P340 + P312	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. Call a POISON CENTER or doctor/ physician if you feel unwell.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P308 + P313	IF exposed or concerned: Get medical advice/ attention.
P332 + P313	If skin irritation occurs: Get medical advice/ attention.
P337 + P313	If eye irritation persists: Get medical advice/ attention.
P362	Take off contaminated clothing and wash before reuse.
P403 + P233	Store in a well-ventilated place. Keep container tightly closed.
P405	Store locked up.
P501	Dispose of contents/ container to an approved waste disposal plant.

2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

3. COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substances

Synonyms	: TCE Trichloroe	thene
Formula	: C ₂ HCl ₃	
Molecular weight	: 131.39 g/r	nol
CAS-No.	: 79-01-6	
EC-No.	: 201-167-4	
Index-No.	: 602-027-0	0-9

Hazardous components

Component	Classification	Concentration
Trichloroethylene Included in the Candidate List of Sub to Regulation (EC) No. 1907/2006 (REACH)	stances of Very High Concern (S	SVHC) according
	Skin Irrit. 2; Eye Irrit. 2A; Muta. 2; Carc. 1B; STOT SE 3; Aquatic Acute 3; Aquatic Chronic 3; H315, H319, H336, H341, H350, H412	<= 100 %

For the full text of the H-Statements mentioned in this Section, see Section 16.

4. FIRST AID MEASURES

4.1 Description of first aid measures

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Wash off with soap and plenty of water. Consult a physician.

In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

If swallowed

Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

- **4.2 Most important symptoms and effects, both acute and delayed** The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11
- **4.3 Indication of any immediate medical attention and special treatment needed** No data available

5. FIREFIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

5.2 Special hazards arising from the substance or mixture Carbon oxides, Hydrogen chloride gas

5.3 Advice for firefighters

Wear self-contained breathing apparatus for firefighting if necessary.

5.4 Further information

No data available

6. ACCIDENTAL RELEASE MEASURES

- 6.1 Personal precautions, protective equipment and emergency procedures Use personal protective equipment. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas. For personal protection see section 8.
- 6.2 Environmental precautions Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.
- 6.3 Methods and materials for containment and cleaning up Soak up with inert absorbent material and dispose of as hazardous waste. Keep in suitable, closed containers for disposal.
- 6.4 Reference to other sections

For disposal see section 13.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist. For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

Light sensitive. Handle and store under inert gas. Storage class (TRGS 510): Non-combustible, acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1 Control parameters

Components with workplace control parameters

Component	CAS-No.	Value	Control	Basis
- · · · ·	70.04.0		parameters	
Irichloroethylene	79-01-6	IWA	10 ppm	(TLV)
	Remarks	Central Nerv	ous System impai	rment
		cognitive de	crement	
		Renal toxicit	y	
		Substances	for which there is a	a Biological Exposure Index or Indices
		(see BEI® s	ection)	3
		Suspected h	uman carcinogen	
		STEL	25 ppm	USA. ACGIH Threshold Limit Values
				(TLV)
		Central Nerv	ous Svstem impai	rment
		cognitive de	crement	
		Renal toxicit	V	
		Substances	for which there is a	a Biological Exposure Index or Indices
		(see BEI® s	ection)	
		Suspected h	uman carcinogen	
		Potential Oc	cupational Carcino	paen
		See Append	lix C	5
		See Append	lix A	
		See Table Z	-2	
		TWA	100 ppm	USA. Occupational Exposure Limits
				(OSHA) - Table Z-2
		Z37.19-1967	7	
		CEIL	200 ppm	USA. Occupational Exposure Limits
				(OSHA) - Table Z-2
		Z37.19-1967	7	
		Peak	300 ppm	USA. Occupational Exposure Limits
				(OSHA) - Table Z-2
		Z37.19-1967	7	•••••
		TWA	50 ppm	USA. OSHA - TABLE Z-1 Limits for
			270 mg/m3	Air Contaminants - 1910.1000
		Skin notatior	- <u>-</u> 1	·
		STEL	200 ppm	USA. OSHA - TABLE Z-1 Limits for
			1,080 mg/m3	Air Contaminants - 1910.1000
		Skin notatior	- <u>-</u> 1	·

Biological occupational exposure limits

Component	CAS-No.	Parameters	Value	Biological specimen	Basis
Trichloroethylene	79-01-6	Trichloroaceti c acid	15.0000 mg/l	Urine	ACGIH - Biological Exposure Indices (BEI)
	Remarks	End of shift at	end of work	veek	
		Trichloroetha nol	0.5000 mg/l	In blood	ACGIH - Biological Exposure Indices (BEI)
		End of shift at	end of work	veek	
Trichloroethyl In blo ene				In blood	ACGIH - Biological Exposure Indices (BEI)
End of shift at end of workweek					
		Trichloroethyl ene		In end-exhaled air	ACGIH - Biological Exposure Indices (BEI)
End of shift at end of workweek					

8.2 Exposure controls

Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Personal protective equipment

Eye/face protection

Safety glasses with side-shields conforming to EN166 Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact

Material: Fluorinated rubber Minimum layer thickness: 0.7 mm Break through time: 480 min Material tested:Vitoject® (KCL 890 / Aldrich Z677698, Size M)

Splash contact Material: Fluorinated rubber Minimum layer thickness: 0.7 mm Break through time: 480 min Material tested:Vitoject® (KCL 890 / Aldrich Z677698, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Body Protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multipurpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

a)	Appearance	Form: liquid, clear Colour: colourless
b)	Odour	No data available
c)	Odour Threshold	No data available
d)	рН	No data available
e)	Melting point/freezing point	Melting point/range: -84.8 °C (-120.6 °F) - lit.
f)	Initial boiling point and boiling range	86.7 °C (188.1 °F) - lit.
g)	Flash point	No data available

h)	Evaporation rate	No data available
i)	Flammability (solid, gas)	No data available
j)	Upper/lower flammability or explosive limits	Upper explosion limit: 10.5 %(V) Lower explosion limit: 8 %(V)
k)	Vapour pressure	81.3 hPa (61.0 mmHg) at 20.0 °C (68.0 °F)
I)	Vapour density	No data available
m)	Relative density	1.463 g/mL at 25 °C (77 °F)
n)	Water solubility	No data available
o)	Partition coefficient: n- octanol/water	log Pow: 2.29log Pow: 5
p)	Auto-ignition temperature	410.0 °C (770.0 °F)
q)	Decomposition temperature	No data available
r)	Viscosity	No data available
s)	Explosive properties	No data available
t)	Oxidizing properties	No data available

9.2 Other safety information No data available

10. STABILITY AND REACTIVITY

- 10.1 Reactivity No data available
- **10.2 Chemical stability** Stable under recommended storage conditions.
- **10.3 Possibility of hazardous reactions** No data available
- **10.4 Conditions to avoid** No data available
- **10.5** Incompatible materials Oxidizing agents, Strong bases, Magnesium

10.6 Hazardous decomposition products Other decomposition products - No data available In the event of fire: see section 5

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

Acute toxicity LD50 Oral - Rat - 4,920 mg/kg

LC50 Inhalation - Mouse - 4 h - 8450 ppm

LD50 Dermal - Rabbit - > 20,000 mg/kg

No data available

Skin corrosion/irritation

Skin - Rabbit Result: Severe skin irritation - 24 h

Serious eye damage/eye irritation

Eyes - Rabbit Result: Eye irritation - 24 h

Respiratory or skin sensitisation

No data available

Germ cell mutagenicity

Laboratory experiments have shown mutagenic effects. In vitro tests showed mutagenic effects

Carcinogenicity

This product is or contains a component that has been reported to be probably carcinogenic based on its IARC, OSHA, ACGIH, NTP, or EPA classification.

Possible human carcinogen

|--|

- NTP: Reasonably anticipated to be a human carcinogen (Trichloroethylene)
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

No data available

No data available

Specific target organ toxicity - single exposure

No data available

Specific target organ toxicity - repeated exposure No data available

Aspiration hazard No data available

Additional Information

RTECS: Not available

burning sensation, Cough, wheezing, laryngitis, Shortness of breath, Headache, Nausea, Vomiting, Exposure to and/or consumption of alcohol may increase toxic effects., Gastrointestinal disturbance, Kidney injury may occur., narcosis To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

12. ECOLOGICAL INFORMATION

12.1 Toxicity

Toxicity to fish	LC50 - Pimephales promelas (fathead minnow) - 41 mg/I - 96.0 h
	LOEC - other fish - 11 mg/I - 10.0 d
	NOEC - Oryzias latipes - 40 mg/l - 10.0 d
Toxicity to daphnia and other aquatic invertebrates	EC50 - Daphnia magna (Water flea) - 18.00 mg/l - 48 h
Toxicity to algae	IC50 - Pseudokirchneriella subcapitata (green algae) - 175.00 mg/l - 96 h
Persistence and degrad No data available	ability

12.3 Bioaccumulative potential Does not bioaccumulate.

12.4 Mobility in soil

No data available

12.2

12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects

An environmental hazard cannot be excluded in the event of unprofessional handling or disposal. Harmful to aquatic life with long lasting effects.

An environmental hazard cannot be excluded in the event of unprofessional handling or disposal.

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

Product

Contact a licensed professional waste disposal service to dispose of this material. Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. Offer surplus and non-recyclable solutions to a licensed disposal company.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

	DOT (US) UN number: 1710 Proper shipping name: Reportable Quantity (R	Class: 6.1 Trichloroethylene Q): 100 lbs	Packing group: I	II		
	Poison Inhalation Haza	rd: No				
	IMDG UN number: 1710 Proper shipping name:	Class: 6.1 TRICHLOROETHYLENE	Packing group: I	II EMS-	-No: F-A, S-A	
	IATA UN number: 1710 Proper shipping name:	Class: 6.1 Trichloroethylene	Packing group: I	II		
15. R	EGULATORY INFORM	ATION				
	SARA 302 Componer No chemicals in this m	n ts aterial are subject to the re	eporting requirem	ents of SARA Titl	e III, Section 302.	
	SARA 313 Componer The following compone	nts ents are subject to reportin	ıg levels establish	ed by SARA Title	III, Section 313:	
	Trichloroethylene			CAS-No. 79-01-6	Revision Date 2007-07-01	
	Massachusetts Right	To Know Components				
	Trichloroethylene			CAS-No. 79-01-6	Revision Date 2007-07-01	
	Pennsylvania Right T	o Know Components				
	Trichloroethylene			CAS-No. 79-01-6	Revision Date 2007-07-01	
	New Jersey Right To	Know Components				
	Trichloroethylene			CAS-No. 79-01-6	Revision Date 2007-07-01	
	California Prop. 65 Co WARNING! This produ State of California to ca Trichloroethylene	omponents let contains a chemical kno ause cancer.	own to the	CAS-No. 79-01-6	Revision Date 2011-09-01	

WARNING: This product contains a chemical known to the State of California to cause birth defects or other reproductive harm. Trichloroethylene

CAS-No. 79-01-6 Revision Date 2011-09-01

16. OTHER INFORMATION

Full text of H-Statements referred to under sections 2 and 3.

Acute aquatic toxicity
Chronic aquatic toxicity
Carcinogenicity
Eye irritation
Causes skin irritation.
Causes serious eye irritation.
May cause drowsiness or dizziness.
Suspected of causing genetic defects.
May cause cancer.
Harmful to aquatic life.

HMIS Rating

Health hazard:	2
Chronic Health Hazard:	*
Flammability:	0
Physical Hazard	0
NFPA Rating	
Health hazard:	2
NFPA Rating Health hazard: Fire Hazard:	2 0

Further information

Copyright 2014 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Preparation Information

Sigma-Aldrich Corporation Product Safety – Americas Region 1-800-521-8956

Version: 5.2

Revision Date: 11/18/2014

Print Date: 01/15/2015

HAZARDOUS PROPERTY INFORMATION EXPLANATIONS AND FOOTNOTES

Water solubility is expressed in different terms in different references. Many references use the term "insoluble" for materials that will not readily mix with water, such as gasoline. However, most of these materials are water soluble at the part per million or part per billion level. Gasoline, for example, is insoluble in the gross sense, and will be found as a discreet layer on top of the groundwater. But certain gasoline constituents, such as benzene, toluene, and xylene will also be found in solution in the groundwater at the part per million of part per billion level.

- a. Water solubility expressed as 0.2g means 0.2grams per 100grams water at 20°C.
- b. Solubility of metals depends on the compound in which they are present.
- c. Several chlorinated hydrocarbons exhibit no flash point in conventional sense, but will burn in presence of high energy ignition source or will form explosive mixtures at temperatures above 200°F.
- d. Practically non-flammable under standard conditions.
- e. Expressed as mm Hg under standard conditions.
- f. Explosive concentrations of airborne dust can occur in confined areas.
- g. Values for Threshold Limit Value-Time Weighted Average (TLV-TWA) are OSHA Permissible Exposure Limits except where noted in h and i.
- h. TLV-TWA adopted by the American Conference of Governmental Industrial Hygienists, which is lower than the OSHA PEL.
- i. TLV-TWA recommended by the national Institute for Occupational Safety and Health (NIOSH). A TLV or PEL has not been adopted by ACGIH or OSHA.

- j. A corrosive
 - B flammable
 - C toxic
 - D volatile
 - E reactive
 - F radioactive
 - G carcinogen
 - H infectious
- k. Dermal Toxicity data is summarized in the following three categories:

Skin Penetration

-	Α	-	negligible penetration (solid-polar)
+	В	-	slight penetration (solid-nonpolar)
++	С	-	moderate penetration (liquid/solid-nonpolar)
+++	D	-	high penetration (gas/liquid-nonpolar)

Systemic Potency

- $E slight hazard LD_{50} = 500-15,000 mg/kg$ lethal dose for 70 kg man = 1 pint-1 quart
- $F moderate hazard LD_{50} = 50-500 mg/kg$ lethal dose for 70 kg man = 1 ounce-1 pint
- G extreme hazard $LD_{50} = 10-50 \text{ mg/kg}$ lethal dose for 70 kg/man = drops to 20 ml

Local Potency

- H slight reddening of skin
- I moderate irritation/inflammation of skin
- J extreme tissue destruction/necrosis
- 1. Acute Exposure Symptoms
 - A abdominal pain
 - B central nervous system depression
 - C comatose
 - D convulsions
 - E confusion
 - F dizziness
 - G diarrhea
 - H drowsiness
 - I eye irritation
 - J fever
 - K headache
 - L nausea
 - M respiratory system irritation
 - N skin irritation
 - O tremors
 - P unconsciousness
 - \boldsymbol{Q} vomiting
 - R weakness

Map data ©2014 Google 2000 ft

Drive 4.6 miles, 12 min

Google

Directions from 1208 Lincoln Ave to Alameda Health System

O 1208 Lincoln Ave

Alameda, CA 94501

Take Lincoln Ave, Clement Ave, E 12th St, 15th Ave and 14th Ave to E 27th St in Oakland

			4.2 mi / 11 mir
1.		Head east on Lincoln Ave toward Sherman St	
2.		Turn left onto Grand St	0.5 n
	- 		0.3 m
3.	•	Turn right toward Clement Ave	200 1
4.		Continue onto Clement Ave	
5		Turn left onto Park St	0.9 m
0.	•		0.2 m
6.	•	Continue onto 29th Ave	456 1
7.		Turn left onto Ford St	-00
0		Slight right onto 22rd Ava	440
0.	•	Slight hght onto zord Ave	0.1 m
9.	•	23rd Ave turns slightly left and becomes 23rd Ave Ovp	0.2 ~
1(0.	Slight left onto 23rd Ave	0.5 11
1	1	Continue onto 22nd Ave	449 1
-	1.		0.2 m
12	2.	Slight left onto E 12th St	0.5 ~
1:	3.	Turn right onto 15th Ave	0.511
-	4		0.2 m
4	4.	Slight right to stay on 15th Ave	0.1 m
1	5.	Continue onto 14th Ave	
~ `	1-		U.6 m
e v	va	AIIECITO PITO E 31ST ST	
			0.3 mi / 2 m

1	16.	Turn left onto E 27th St	
٢	17.	Slight right onto Vallecito Pl	62 ft
r *	18.	Turn right onto E 31st St	0.2 mi
		i Destination will be on the right	0.1 mi

Alameda Health System

1411 E 31st St, Oakland, CA 94602

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route.

Map data ©2014 Google

SOIL VAPOR RESULTS

Site Name: 1208 Lincoln Ave., Alameda, CA Analyst: A. Baly Method: Modified EPA 8021B Lab Name: Optimal Technology Inst. ID: HP-5890 Series II

Detectors: FID and ECD

Date: 8/20/14

Page: 1 of 1

SAMPLE ID	BLANK	-1 SV-1	SV-2	SV-3	SV-4	SV-5	SV-6	SV-6 Dup
Sampling Depth (Ft.)	N/A	8.0	5.0	5.0	5.0	8.0	9.0	9.0
Purge Volume (ml)	N/A	2,250	1,500	1,500	1,500	2,250	2,250	2,250
Vacuum (in. of Water)	N/A	15	0	0	0	0	10	10
Injection Volume (ul)	500/250	00 500/2500	500/2500	500/2500	500/2500	500/2500	500/2500	500/2500
Dilution Factor (ECD/FID)	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1

COMPOUND	REP. LIMIT	CONC (ug/L)							
Dichlorodifluoromethane	1.00	ND							
Chloroethane	1.00	ND							
Trichlorofluoromethane	1.00	ND							
Freon 113	1.00	ND							
Methylene Chloride	1.00	ND							
1,1-Dichloroethane	1.00	ND							
Chloroform	1.00	ND							
1,1,1-Trichloroethane	1.00	ND							
Carbon Tetrachloride	0.02	ND							
1,2-Dichloroethane	0.04	ND							
Trichloroethene (TCE)	0.10	ND							
1,1,2-Trichloroethane	1.00	ND							
Tetrachloroethene (PCE)	0.10	ND	2.42	8.25	11.11	13.54	22.48	0.59	0.63
1,1,1,2-Tetrachloroethane	1.00	ND							
1,1,2,2-Tetrachloroethane	1.00	ND							
Vinyl Chloride	0.01	ND							
Acetone	1.00	ND							
1,1-Dichloroethene	1.00	ND							
trans-1,2-Dichloroethene	1.00	ND							
2-Butanone (MEK)	1.00	ND							
cis-1,2-Dichloroethene	1.00	ND							
Cyclohexane	1.00	ND							
Benzene	0.03	ND							
4-Methyl-2-Pentanone	1.00	ND							
Toluene	1.00	ND							
Chlorobenzene	1.00	ND							
Ethylbenzene	0.40	ND							
m/p-Xylene	1.00	ND							
o-Xylene	1.00	ND							
Isobutane (Tracer Gas)	1.00	ND							

Note: ND = Below Listed Reporting Limit

Tom Lindros

From:	Cora O. <engineercora@gmail.com></engineercora@gmail.com>
Sent:	Monday, January 05, 2015 1:19 PM
То:	Tom Lindros
Subject:	Fwd: USAN 2014/11/09 #00000 0471328-000 SHRT NEW

USA ticket

----- Forwarded message -----From: <<u>support@usan.org</u>> Date: Sunday, November 9, 2014 Subject: USAN 2014/11/09 #00000 0471328-000 SHRT NEW To: <u>engineercora@gmail.com</u>

00000 USAN 11/09/14 14:36:12 0471328 SHORT NOTICE

Message Number: 0471328 Received by USAN at 14:18 on 11/09/14 by INTERNET

Work Begins: 11/12/14 at 07:00 Notice: 010 hrs Priority: 1 Night Work: N Weekend Work: N

Expires: 12/07/14 at 23:59 Update By: 12/03/14 at 16:59

Call Requested

Caller:CORA OLSONCompany:ENCON SOLUTIONSAddress:3255 WILSHIRE BLVD., STE 1510City:LOS ANGELESBusiness Tel:413-519-3781Fax:213-380-0505Email Address:ENGINEERCORA@GMAIL.COM

Nature of Work: SOIL BORINGSDone for:PROPERTY OWNERExplosives: NForeman:CORA OLSONField Tel:Cell Tel: 413-519-3781Area Premarked: YPremark Method: WHITE PAINTPermit Type:COUNTYVac / Pwr Equip Use In The Approx Location Of Member Facilities Requested: NExcavation Enters Into Street Or Sidewalk Area: N

Location: Street Address: 1208 LINCOLN AVE Cross Street: BAY STREET

REAR OF PROPERTY

Place: ALAMEDA County: ALAMEDA State: CA

Long/Lat Long: -122.264964 Lat: 37.773832 Long: -122.26341 Lat: 37.775084

Sent to:

CTYALA = CITY ALAMEDACTYOAK = CITY OAKLAND CONST DEPTCOMHAY = COMCAST-HAYWARDCOMOAK = COMCAST-OAKLANDEBWCMS = EAST BAY WATERMPOWER = MPOWER COMMUNICATIONSPACBEL = PACIFIC BELLPGEOAK = PGE DISTR OAKLAND

Member Contact Information Member Utility Main Contact #

Member Utility Main Contact # Vacuum Contact # Emergency # After hours #

CITY ALAMEDA (510)748-3943 (510)715-6111 (510)748-3966 (510)715-6111 CITY OAKLAND C (510)238-6348 (510)772-8134 (510)238-7288 COMCAST-HAYWAR (510)887-1300 COMCAST-OAKLAN (925)424-0181 (888)824-8219 EAST BAY WATER (510)287-0600 (510)287-0600 MPOWER COMMUNI (916)903-6028 (877)370-4482 (510)645-2929 PACIFIC BELL (510)645-2929 (510)645-2929 (800)332-1321x8 PGE DISTR OAKL (800)743-5000x00 (800)743-5000 (800)743-5000 (800)743-5000

The information contained herein ("Data") is provided to the recipient exclusively for informational purposes in response to a request by the recipient. Underground Service Alert of Northern California and Nevada, a California nonprofit mutual benefit corporation ("USA North"), makes absolutely no representations or warranties whatsoever, whether expressed or implied, as to the accuracy, thoroughness, value, quality, validity, suitability, condition or fitness for a particular purpose or use of the Data, nor as to whether the Data is error-free, up-to-date, complete or based upon accurate or meaningful facts. Further, the Data should not be relied-upon by the recipient for any purposes. USA North does not assume, and expressly disclaims, any and all liability for any damages incurred directly or indirectly, whether foreseeable or not, as a result of errors, omissions or discrepancies contained within or concerning the Data. **APPENDIX C:**

ALAMEDA COUNTY WELL PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 11/04/2014 By jamesy

Permit Numbers: W2014-1027 to W2014-1030 Permits Valid from 11/12/2014 to 11/14/2014

Application Id: Site Location: Project Start Date: Assigned Inspector:	1414191432944 1208 Lincoln Avenue, Alameda, CA-Elegant Cleaner 11/12/2014 Contact Steve Miller at (510) 670-5517 or stevem@a	City of Project Site:Alameda S Completion Date:11/14/2014 acpwa.org
Applicant:	Encon Solutions, Inc Thomas Lindros	Phone: 213-380-0555
Property Owner:	Reza Sheikhai	Phone: 510-377-0233
Client:	Ryan Shin 1000 Wilshire Blvd Suite 500 Los Angeles CA 900	Phone: 213-892-1164
Contact:	Thomas Lindros	Phone: 805-380-0555 Cell: 805-410-2725

Receipt Number: WR2014-0439	Total Due: Total Amount Paid:	\$1456.00 \$1456.00
Payer Name : Hyung Kim	Paid By: VISA	PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 3 Wells Driller: ECA Drilling - Lic #: 695970 - Method: hstem

Specificatio	ons						
Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2014- 1027	11/04/2014	02/10/2015	MW-1	2.00 in.	0.75 in.	13.00 ft	30.00 ft
W2014- 1028	11/04/2014	02/10/2015	MW-2	8.00 in.	2.00 in.	13.00 ft	30.00 ft
W2014- 1029	11/04/2014	02/10/2015	MW-3	8.00 in.	2.00 in.	13.00 ft	30.00 ft

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Work Total: \$1191.00

Alameda County Public Works Agency - Water Resources Well Permit

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

6. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Minimum surface seal thickness is two inches of cement grout placed by tremie.

9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Diam.

Seal Depth Max. Depth

Well Construction-Vapor monitoring well-Vapor monitoring well - 5 Wells Driller: ECA Drilling - Lic #: 695970 - Method: hstem

Work Total: \$265.00

Specifications Permit # Issued Date Expire Date Owner Well Hole Diam. Casing ld W2014-11/04/2014 02/10/2015 VW-1 2.00 in.

W2014-	11/04/2014	02/10/2015	VW-1	2.00 in.	0.25 in.	3.00 ft	5.00 ft
1030							
W2014-	11/04/2014	02/10/2015	VW-2	2.00 in.	0.25 in.	3.00 ft	5.00 ft
1030							
W2014-	11/04/2014	02/10/2015	VW-3	2.00 in.	0.25 in.	3.00 ft	10.00 ft
1030							
W2014-	11/04/2014	02/10/2015	VW-4	2.00 in.	0.25 in.	3.00 ft	10.00 ft
1030							
W2014-	11/04/2014	02/10/2015	VW-5	2.00 in.	0.25 in.	3.00 ft	10.00 ft
1030							

Specific Work Permit Conditions

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days, including permit number and site map.

Alameda County Public Works Agency - Water Resources Well Permit

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

6. No changes in construction procedures or well type shall change, as described on this permit application. This permit may be voided if it contains incorrect information.

7. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

8. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

9. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

11. Vapor monitoring wells above water level constructed with tubing maybe be backfilled with pancake-batter consistency bentonite. Minimum surface seal thickness is two inches of cement grout around well box.

Vapor monitoring wells above water level constructed with pvc pipe shall have a minimum seal depth (Neat Cement Seal) of 2 feet below ground surface (BGS). Minimum surface seal thickness is two inches of cement grout around well box. All other conditions for monitoring well construction shall apply.

APPENDIX D:

INDOOR AIR SAMPLING DATA:

DTSC BUILDING SURVEY FORM L SAMPLE COLLECTION DATA LABORATORY DATA AND COC

State of California Vapor Intrusion Guidance Document – Final	October 2011 DTSC – Cal/EPA
APPENDIX L - BUILDING SU	RVEY FORM
Preparer's Name: <u>CORCOISCU</u> Affiliation: <u>Encon Solutions</u>	Date/Time Prepared: 10/31/14 Phone Number: 413-519-378
Occupant Information	
Occupant Name: Elegant Clemers - Miz	hael Interviewed: 19 Yes 10 No
City: <u>Alameda</u> State: <u>C.</u> Phone: <u>510-8(65-0331</u> Email: <u>N/A</u>	A Zip Code: 9450
Owner/Landlord Information (Check if same as occupant	
Occupant Name: Mailing Address:	Interviewed: 🗆 Yes 🗆 No
City: State:	Zip Code:
Phone: Email:	
□ Residential □ Residential Duplex □ Apartment Building □ Commercial (warehouse) □ Industrial □ Strip Mall □ S Building Characteristics Approximate Building Age (years): <u>100 yes</u> Numb	□ Mobile Home □ Ćommercial (office) olit Level □ Church □ School er of Stories:
Residential □ Residential Duplex □ Apartment Building Commercial (warehouse) □ Industrial □ Strip Mall □ S Building Characteristics Approximate Building Age (years): <u>100 yes5</u> Numb Approximate Building Area (square feet): <u>2,500</u> Foundation Type (Check appropriate boxes) - S160 Slab-on-Grade □ Crawl Space □ Basement - Craw	□ Mobile Home □ Commercial (office) olit Level □ Church □ School er of Stories: 1 Number of Elevators: M back new D.C. Mach I space floor in front
□ Residential □ Residential □ Apartment Building □ Commercial (warehouse) □ Industrial □ Strip Mall □ Strip Mall<	□ Mobile Home □ Commercial (office) olit Level □ Church □ School er of Stories: Number of Elevators: M back New D.C. Mach I space floor in Front Concrete Cracks. □ Eloor Drains
Residential Residential Duplex Apartment Building Commercial (warehouse) Industrial Strip Mall St	□ Mobile Home □ Commercial (office) olit Level □ Church □ School er of Stories: Number of Elevators: M back New D.C. Mach I space floor in Front Concrete Cracks □ Floor Drains

L-1

Sampling Locations

Draw the general floor plan of the building and denote locations of sample collection. Indicate locations of doors, windows, indoor air contaminant sources and field instrument readings.

Primary Type of Energy Used (Check appropriate boxes)

☑ Natural Gas ☐ Fuel Oil ☐ Propane ☐ Electricity ☐ Wood ☐ Kerosene

Meteorological Conditions

Describe the general weather conditions during the indoor air sampling event. SUNNY to Ourcast (0.5-70° F

General Comments

Provide any other information that may be of importance in understanding the indoor air quality of this building.

The dry cleares is very steamy inside from Ironing + pressing machinos. The doors remain open in front and buck of building wing be remained pushors hours.

L-2

^o roject: Subject:	Elegant Cle Indoor Air S	eaners, 1208 Sampling	Lincoln Avenue, /	Alameda, C	alifornia	DATA			Job No: 1410097 ESAIII Date: October 30, 2014 To: Tom Lindros By: Cora Olson
Sample Number	Canister Number	Flow Controller	Location	Time Start	Initial Vacuum (inHg)	Time Stop	Final Vacuum (inHg)	Elapsed Time (mins)	Comments
BG-1	1046	2056	se converof yurd	847	30"	1631	5.5"	464	
BG-2	5475	2078	Under HVAC above gas mor by back door	850	30"	1635	6.0"	465	
IA-1	3647	2085	On Stairs behind DC Mue	900	30"+	1638	3"	458	
IA-2	1343	2084	Front New Sewingmach	904	30"	1643	5.5"	459	
			Note: All	locations el	evated 3 to 5 feet	above ground o	pr flooring.		

Page 1 of 4 F110403

Laboratories, Inc.

November 14, 2014

ADE-1461 EPA Methods TO-3, TO14A,TO15 SIM & Scan, ASTM D1946

LA Cert 04140 EPA Methods TO3, TO14A, TO15, 25C/3C, RSK-175

TX Cert T104704450-09-TX EPA Methods T014A, T015 UT Cert CA0133332014-1

EPA Methods T03, T014A, T015, RSK-175

Encon Solutions, Inc. ATTN: Hyung Kim 3255 Wilshire Blvd., Suite 1508 Los Angeles, CA 90010

LABORATORY TEST RESULTS

Project Reference:Elegant Cleaners, 1208 Lincoln Avenue, Alameda, CAProject Number:1410097 ESAIIILab Number:F110403-01/04

Enclosed are results for sample(s) received 11/04/14 by Air Technology Laboratories. Samples were received intact. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the NELAC Standards.
- The enclosed results relate only to the sample(s).

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson Operations Manager MJohnson@AirTechLabs.com

Note: The cover letter is an integral part of this analytical report.

Project No.: Project No.: Report To:	Laborat Laborat 1410097 E Elegant Cle Hyung Kim/	NOLOGY Iories, Inc. SAlli aners, 1208 Lincoln Avenue Tom Lindros	18501 E. Gale Ave., Suite 130 City of Industry, CA 91748 Ph: 626-964-5832 Fx: 626-964-5832 , Alameda, CA	TUR Standard Same Day 24 hours Other:		CHA OTIME 28 hours [28 hours [86 hours []		CUSTO DELIVERA PDF Level 3 Level 4		CORD PAGE: Condition upon re Se Ir Condition upon re Condition upon re	1 OF selpt: led Yes led If	
Company: Street: City/State/Zip: Phone& Fax: e-mail: LAB USE	Encon Solu 3255 Wilshi Los Angele: 213-380-05 hkim@odit	tions, Inc. ire Boulevard, Suite 1508 s, California 90010 55 / 213-380-0505 cenv.com; tom@knollwoo cenv.com; tom@knollwoo	id.us IENTIFICATION	P.O. No. 19 11 10 No. 10 1	1410097 Hyung Kin Encon Sol 3255 Wils 3255 Wils 3255 Wils 3255 Wils 535 Mils Los Angel	Anton Lindra Montanuer Boulevs Contriner es, Californi	MATRIX PRESERVA- PRESERVA-		End		Flow Controller #	Canister # 194
2010103	- 02 - 03 04	BG-1 BG-2 IA-1 IA-2		10/30/14 10/30/14 10/30/14	847 850 950 9:00	C-1 Amil C-1 Ind C-1 Ind C-1 Ind	Marr. Add. NOT		16:31 16:35 16:43		5472 1343 1343	2056 2085 2084
AUTHORIZATION TO PERF SAMPLED CON SAMPLED CON AUTOURIED BY RELINQUERIED BY METHOD OF TR. DISTIRIUTION: U	ORNWORK	COMPANY COMPANY ML LOS IN LA MATERIME V/IU DATERIME PATERIME Lab Copies / Pink - Customer	RECEIVED BY RECEIVED BY RECEIVED BY RECEIVED BY RECEIVED BY ARCANED BY ARCANE	DATETIME DATETIME DATETIME DATETIME DATETIME	1 16:55 1 16:55 10:57 reservation	Comment Email pre Provide * Report re : H=HCl N=	s: Iiminary pdf file sults in None / Co	results. with final microgra	report. ms per c ⊧Bag c=c	ubic meter (u	g/m3) the ^{Re}	, 03 - 5/7/09

EPA Method TO15 SIM F110403-03 F110403-04 F110403-01 F110403-02 Lab No.: BG-1 **BG-2** IA-1 IA-2 **Client Sample I.D.:** 10/30/14 9:04 Date/Time Sampled: 10/30/14 8:47 10/30/14 8:50 10/30/14 9:00 11/12/14 14:44 11/12/14 15:29 Date/Time Analyzed: 11/12/14 13:15 11/12/14 13:59 141111MS2A1 141111MS2A1 141111MS2A1 141111MS2A1 QC Batch No.: **Analyst Initials:** DT DT DT DT **Dilution Factor:** 1.0 1.0 1.0 1.0 RL RL RL RL Result Result Result Result ug/m3 ug/m3 ug/m3 ANALYTE ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 Dichlorodifluoromethane (12) 2.4 0.049 2.5 0.049 2.5 0.049 2.7 0.049 0.021 0.021 1.2 0.021 Chloromethane 1.1 0.021 1.1 1.4 0.013 ND 0.013 ND 0.013 ND Vinyl Chloride ND 0.013 0.026 0.026 ND 0.026 Chloroethane ND 0.026 ND ND 0.11 0.11 0.11 0.11 3.0 Trichlorofluorometbane (11) 3.0 3.0 3.4 1,1,2-Cl 1,2,2-F ethane (113) 0.51 0.15 0.50 0.15 0.50 0.15 0.55 0.15 0.020 0.020 ND 0,020 ND 0.020 ND 1,1-Dichloroethene ND 0.17 0.17 0.17 Methylene Chloride 0.83 0.17 0.73 0.740.730.040 0.040 ND 0.040 ND 0.040 t-1,2-Dichloroethene ND NÐ 0.040 0,040 ND 0.040 ND 0.040 1,1-Dichloroethane ND ND 0.040 0.040 c-1,2-Dichloroethene ND 0.040 ND 0.040 ND ND Chloroform 0.25 0.049 0.40 0.049 0.84 0.049 0.38 0.049 0.055 0.055 0.080 0.055 NÐ 0.055 1,1,1-Trichloroethane ND ND 0.063 0.61 0.063 0.72 0.063 Carbon Tetrachloride 0.62 0.063 0.65 0.16 0.94 0.16 1.0 0.16 1.2 0.16 1.1 Benzene 0.040 0.040 0.079 0.040 0.092 1,2-Dichloroethane 0.087 0.040 0.082Trichloroethene ND 0.054 ND 0.054 0.061 0.054 ND 0.054 1,2-Dichloropropane ND 0.092 ND 0.092 ND 0.092 ND 0.092 0.067 0.067 0.067 ND Bromodichloromethane ND 0.067 ND ND 0.075 0.075 4.0 0.075 0.075 4.2 4.7 Toluene 3.7 ND 0.045 0.045 0.045 0.045 ND ND t-1,3-Dichloropropene ND 0.055 1,1,2-Trichloroethane ND 0:055 ND 0.055 NÐ 0.055 ND 0.068 Tetrachloroethene 0.12 0.068 0.20 0.068 1.0 0,068 0.35 0.15 1,2-Dibromoethane ND 0.15 ND 0.15 ND 0.15 ND Ethylbenzene 0.88 0,087 0.087 1.6 0.087 0.97 0.087 1.6 p,&m-Xylene 0.087 6.1 0.087 6.0 0.087 3.5 0.087 3.2 0.087 0.087 0.087 o-Xylene 1.1 0.087 2.12.0 1.2 0.085 0.085 0.38 0.085 Styrene 0.23 0.085 0.31 0.45 1,1,2,2-Tetrachloroethane ND 0.14 ND 0.14 ND 0.14 ND 0.14

MDL = Method Detection Limit

ND= Not Detected (below MDL)

RL = Reporting Limit

J = Trace amount. Analyte concentration between RL and MDL.

Reviewed/Approved By:

Date (1/14/14

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc. -

page 1 of 1

18501 E. Gale Avenue, Suite 130 City of Industry, CA 91748 Ph: (626) 964-4032 Fx: (626) 964-5832

EPA Method TO15 SIM								
Lab No.:	METHO	D BLANK						
Client Sample I.D.:		-						
Date/Time Sampled:	-							
Date/Time Analyzed:	11/12/14 8:03							
QC Batch No.:	141111MS2A1							
Analyst Initials:	DT							
Dilution Factor:	1.0							
ANALYTE	Result ug/m3	RL ug/m3						
Dichlorodifluoromethane (12)	ND	0.049						
Chloromethane	ND	0.021						
Vinyl Chloride	ND	0,013						
Chloroethane	ND	0.026						
Trichlorofluoromethane (11)	ND	0.11						
1,1,2-Cl 1,2,2-F ethane (113)	ND	0,15						
1,1-Dichloroethene	ND	0,020						
Methylene Chloride	ND	0,17						
t-1,2-Dichloroethene	ND	0.040						
1,1-Dichloroethane	ND	0.040						
c-1,2-Dichloroethene	ND	0.040						
Chloroform	ND	0.049						
1,1,1-Trichloroethane	ND	0.055						I
Carbon Tetrachloride	ND	0,063						
Benzene	ND	0.16						
1,2-Dichloroethane	ND	0.040						[
Trichloroethene	ND	0.054						[
1,2-Dichloropropane	ND	0.092						
Bromodichloromethane	ND	0.067						
Toluene	ND	0.075						
t-1,3-Dichloropropene	ND	0.045						
1,1,2-Trichloroethane	ND	0.055						· · · ·
Tetrachloroethene	ND	0.068						
1,2-Dibromoethaue	ND	0.15						ļ
Ethylbenzene	ND	0.087						
p,&m-Xylene	ND	0.087						
o-Xylene	ND	0.087						
Styrene	ND	0.085						
1,1,2,2-Tetrachloroethane	ND	0.14		l				

MDL = Method Detection Limit

ND= Not Detected (below MDL)

RL = Reporting Limit

J = Trace amount. Analyte concentration between RL and MDL.

Reviewed/Approved By:

Operations Manager

Date 1/14/14

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc. -

page 1 of 1

Page 3 of 4 F110403

18501 E. Gale Avenue, Suite 130 + City of Industry, CA 91748 + Ph: (626) 964-4032 + Fx: (626) 964-5832

Date: (| / 4/14

QC Batch #: 141111MS2A1

Matrix: Air

EPA Method TO-15 SIM											
Lab No:	Method Blank		L	CS	LC	SD					
Date/Time Analyzed:	11/12/14 8:03		11/11/1	11/11/14 17:27		4 18:08					
Data File ID:	11NOV017.D		11NOV004.D 11NOV005.D								
Analyst Initials:	DT		DT DT								
Dilution Factor:	1.0		1.0 1.0				Limits				
ANALYTE	Result pptv	Spike Amount	Result pptv	% Rec	Result pptv	% Rec	RPD	Low %Rec	High %Rec	Max. RPD	Pass/ Fail
Vinyl Chloride	0.0	500	550	110	547	109	0.5	70	130	30	Pass
1,1-Dichloroethene	0.0	500	470	94	464	93	1.3	70	130	30	Pass
1,1,1-Trichloroethane	0.0	500	523	105	517	103	1.3	70	130	30	Pass
Benzene	37.1	500	422	84	414	83	1.7	70	130	30	Pass
Trichloroethene	0.0	500	505	101	482	96	4.7	7.0	130	30	Pass
Tetrachloroethene	0.0	500	480	96	473	95	1.4	70	130	30	Pass
			I	1	1					1.	

Reviewed/Approved By:

Mark Johnson Operations Manager

The cover letter is an integral part of this analytical report

AITTECHNOLOGY Laboratories, Inc. -

18501 E. Gale Avenue, Suite 130 • City of Industry, CA 91748 • Ph: (626) 964-4032 • Fx: (626) 964-5832

APPENDIX E:

LABORATORY REPORTS

AND

CHAIN-OF-CUSTODY DOCUMENTATION:

SOIL MATRIX SAMPLES

November 26, 2014

Thomas E. Lindros ENCON Solutions Inc. 3255 Wilshire Blvd. Suite 1508 Los Angeles, CA 90010 TEL: (213) 380-0555 FAX: (213) 380-0505

CA-ELAP No.: 2676 NV Cert. No.: NV-00922

Workorder No.: N013889

RE: Elegant Cleaners, 1410097

Attention: Thomas E. Lindros

Enclosed are the results for sample(s) received on November 15, 2014 by ASSET Laboratories. The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 or Molky Brar at (562)-881-3622 if we can be of further assistance to your company.

Sincerely,

Al Bm

Molky Brar Project Manager

Nancy litucan For

Glen Gesmundo QA Manager

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

CLIENT:ENCON Solutions Inc.Project:Elegant Cleaners, 1410097Lab Order:N013889

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 Rage/2 of 25 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

CLIENT:ENCON Solutions Inc.Project:Elegant Cleaners, 1410097Lab Order:N013889Contract No:

Date: 26-Nov-14

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N013889-001A M	IW-3@5'	Solid	11/12/2014 9:30:00 AM	11/15/2014	11/26/2014
N013889-002A M	IW-3@10'	Solid	11/12/2014 9:45:00 AM	11/15/2014	11/26/2014
N013889-003A M	IW-1@5'	Solid	11/12/2014 10:10:00 AM	11/15/2014	11/26/2014
N013889-004A M	IW-1@10'	Solid	11/12/2014 10:23:00 AM	11/15/2014	11/26/2014
N013889-005A M	IW-1@15'	Solid	11/12/2014 10:35:00 AM	11/15/2014	11/26/2014
N013889-006A M	IW-2@5'	Solid	11/12/2014 11:10:00 AM	11/15/2014	11/26/2014
N013889-007A M	IW-2@10'	Solid	11/12/2014 11:22:00 AM	11/15/2014	11/26/2014
N013889-008A W	aste Comp	Solid	11/12/2014 2:43:00 PM	11/15/2014	11/26/2014

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 Page 1 of EVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-001A

Client Sample ID: MW-3@5' Collection Date: 11/12/2014 9:30:00 AM Matrix: SOLID

Analyses	Resu	ılt PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPO	UNDS BY GC/MS				
			EPA 826	50B	
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM
1.1.1.2-Tetrachloroethane	Ν	ND 5.0	ua/Ka	1	11/20/2014 07:05 PM
1,1,1-Trichloroethane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,1,2,2-Tetrachloroethane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,1,2-Trichloroethane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,1-Dichloroethane	Ν	ND 5.0	μg/Kg	1	11/20/2014 07:05 PM
1,1-Dichloroethene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,1-Dichloropropene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,2,3-Trichlorobenzene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,2,3-Trichloropropane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,2,4-Trichlorobenzene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,2,4-Trimethylbenzene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,2-Dibromo-3-chloropropane	Ν	ND 10	µg/Kg	1	11/20/2014 07:05 PM
1,2-Dibromoethane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,2-Dichlorobenzene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,2-Dichloroethane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,2-Dichloropropane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,3,5-Trimethylbenzene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,3-Dichlorobenzene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,3-Dichloropropane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
1,4-Dichlorobenzene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
2,2-Dichloropropane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
2-Chlorotoluene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
4-Chlorotoluene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
4-Isopropyltoluene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
Benzene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
Bromobenzene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
Bromodichloromethane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
Bromoform	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
Bromomethane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
Carbon tetrachloride	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
Chlorobenzene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
Chloroethane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
Chloroform	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
Chloromethane	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM
cis-1,2-Dichloroethene	Ν	ND 5.0	µg/Kg	1	11/20/2014 07:05 PM

Qualifiers:

В

Н

Analyte detected in the associated Method Blank

E Value above quantitation range

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

ASSET LABORATORIES

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-001A

Client Sample ID: MW-3@5' Collection Date: 11/12/2014 9:30:00 AM Matrix: SOLID

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	NDS BY GC/MS				
			EPA 826	60B	
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM
cis-1,3-Dichloropropene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Dibromochloromethane	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Dibromomethane	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Dichlorodifluoromethane	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Ethylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Freon-113	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Hexachlorobutadiene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Isopropylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
m,p-Xylene	ND	10	µg/Kg	1	11/20/2014 07:05 PM
Methylene chloride	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
МТВЕ	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
n-Butylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
n-Propylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Naphthalene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
o-Xylene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
sec-Butylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Styrene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
tert-Butylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Tetrachloroethene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Toluene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
trans-1,2-Dichloroethene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Trichloroethene	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Trichlorofluoromethane	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Vinyl chloride	ND	5.0	µg/Kg	1	11/20/2014 07:05 PM
Surr: 1,2-Dichloroethane-d4	111	67-136	%REC	1	11/20/2014 07:05 PM
Surr: 4-Bromofluorobenzene	101	59-124	%REC	1	11/20/2014 07:05 PM
Surr: Dibromofluoromethane	107	70-131	%REC	1	11/20/2014 07:05 PM
Surr: Toluene-d8	105	75-120	%REC	1	11/20/2014 07:05 PM

Oualifiers:	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
•	Н	Holding times for preparation or analysis exceeded	ND	Not Detected at the Reporting Limit
	S	Spike/Surrogate outside of limits due to matrix interference		Results are wet unless otherwise specified
	DO	Surrogate Diluted Out		

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-002A

Client Sample ID: MW-3@10' Collection Date: 11/12/2014 9:45:00 AM Matrix: SOLID

Analyses	Resu	lt PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	JNDS BY GC/MS				
			EPA 826	60B	
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM
1,1,1,2-Tetrachloroethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,1,1-Trichloroethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,1,2,2-Tetrachloroethane	Ν	D 5.0	μg/Kg	1	11/20/2014 07:27 PM
1,1,2-Trichloroethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,1-Dichloroethane	Ν	D 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,1-Dichloroethene	Ν	D 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,1-Dichloropropene	Ν	D 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,2,3-Trichlorobenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,2,3-Trichloropropane	Ν	D 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,2,4-Trichlorobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,2,4-Trimethylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,2-Dibromo-3-chloropropane	Ν	ID 10	µg/Kg	1	11/20/2014 07:27 PM
1,2-Dibromoethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,2-Dichlorobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,2-Dichloroethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,2-Dichloropropane	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,3,5-Trimethylbenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,3-Dichlorobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,3-Dichloropropane	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
1,4-Dichlorobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
2,2-Dichloropropane	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
2-Chlorotoluene	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
4-Chlorotoluene	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
4-Isopropyltoluene	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
Benzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
Bromobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
Bromodichloromethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
Bromoform	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
Bromomethane	Ν	D 5.0	µg/Kg	1	11/20/2014 07:27 PM
Carbon tetrachloride	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
Chlorobenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 07:27 PM
Chloroethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
Chloroform	Ν	D 5.0	µg/Kg	1	11/20/2014 07:27 PM
Chloromethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 07:27 PM
cis-1,2-Dichloroethene	Ν	D 5.0	µg/Kg	1	11/20/2014 07:27 PM

Qualifiers:

В

Н

Analyte detected in the associated Method Blank

E Value above quantitation range

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-002A

Client Sample ID: MW-3@10' Collection Date: 11/12/2014 9:45:00 AM Matrix: SOLID

Analyses	Resul	t PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	NDS BY GC/MS				
			EPA 820	60B	
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM
cis-1,3-Dichloropropene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Dibromochloromethane	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Dibromomethane	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Dichlorodifluoromethane	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Ethylbenzene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Freon-113	NI	5.0	µg/Kg	1	11/20/2014 07:27 PM
Hexachlorobutadiene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Isopropylbenzene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
m,p-Xylene	N	D 10	µg/Kg	1	11/20/2014 07:27 PM
Methylene chloride	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
МТВЕ	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
n-Butylbenzene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
n-Propylbenzene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Naphthalene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
o-Xylene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
sec-Butylbenzene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Styrene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
tert-Butylbenzene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Tetrachloroethene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Toluene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
trans-1,2-Dichloroethene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Trichloroethene	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Trichlorofluoromethane	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Vinyl chloride	N	5.0	µg/Kg	1	11/20/2014 07:27 PM
Surr: 1,2-Dichloroethane-d4	10	9 67-136	%REC	1	11/20/2014 07:27 PM
Surr: 4-Bromofluorobenzene	97.	8 59-124	%REC	1	11/20/2014 07:27 PM
Surr: Dibromofluoromethane	10	8 70-131	%REC	1	11/20/2014 07:27 PM
Surr: Toluene-d8	10	4 75-120	%REC	1	11/20/2014 07:27 PM

Oualifiers :	в	Analyte detected in the associated Method Blank	Е	Value above quantitation range
X	Н	Holding times for preparation or analysis exceeded	ND	Not Detected at the Reporting Limit
	S	Spike/Surrogate outside of limits due to matrix interference		Results are wet unless otherwise specified
	DO	Surrogate Diluted Out		

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

ENCON Solutions Inc. **CLIENT:** N013889 Lab Order: Elegant Cleaners, 1410097 **Project:** N013889-003A Lab ID:

Client Sample ID: MW-1@5' Collection Date: 11/12/2014 10:10:00 AM Matrix: SOLID

DF Analyses Result **PQL Qual Units Date Analyzed VOLATILE ORGANIC COMPOUNDS BY GC/MS EPA 8260B** RunID: MS5_141120A QC Batch: P14VS093 PrepDate: Analyst: QBM ND 5.0 11/20/2014 07:49 PM 1,1,1,2-Tetrachloroethane µg/Kg 1 1,1,1-Trichloroethane ND 5.0 µg/Kg 1 11/20/2014 07:49 PM 1.1.2.2-Tetrachloroethane ND 5.0 11/20/2014 07:49 PM µg/Kg 1 1,1,2-Trichloroethane ND 5.0 µg/Kg 1 11/20/2014 07:49 PM ND 5.0 11/20/2014 07:49 PM 1.1-Dichloroethane µg/Kg 1 1,1-Dichloroethene ND 5.0 µg/Kg 1 11/20/2014 07:49 PM 1,1-Dichloropropene ND 5.0 1 11/20/2014 07:49 PM µg/Kg ND 5.0 11/20/2014 07:49 PM 1,2,3-Trichlorobenzene µg/Kg 1 1,2,3-Trichloropropane ND 5.0 µg/Kg 1 11/20/2014 07:49 PM 1,2,4-Trichlorobenzene ND 5.0 µg/Kg 1 11/20/2014 07:49 PM 1,2,4-Trimethylbenzene ND 5.0 µg/Kg 1 11/20/2014 07:49 PM ND 11/20/2014 07:49 PM 1,2-Dibromo-3-chloropropane 10 µg/Kg 1 1,2-Dibromoethane ND 5.0 µg/Kg 1 11/20/2014 07:49 PM ND 5.0 11/20/2014 07:49 PM 1.2-Dichlorobenzene 1 µg/Kg 1,2-Dichloroethane ND 5.0 1 11/20/2014 07:49 PM µg/Kg ND 5.0 1 11/20/2014 07:49 PM 1,2-Dichloropropane µg/Kg 1,3,5-Trimethylbenzene ND 5.0 µg/Kg 1 11/20/2014 07:49 PM 1.3-Dichlorobenzene ND 5.0 1 11/20/2014 07:49 PM µg/Kg 1,3-Dichloropropane ND 5.0 µg/Kg 1 11/20/2014 07:49 PM 1,4-Dichlorobenzene ND 5.0 µg/Kg 1 11/20/2014 07:49 PM ND 5.0 11/20/2014 07:49 PM 2,2-Dichloropropane µg/Kg 1 2-Chlorotoluene ND 5.0 µg/Kg 1 11/20/2014 07:49 PM ND 4-Chlorotoluene 5.0 1 11/20/2014 07:49 PM µg/Kg 4-Isopropyltoluene ND 5.0 µg/Kg 1 11/20/2014 07:49 PM ND 5.0 11/20/2014 07:49 PM Benzene 1 µg/Kg Bromobenzene ND 5.0 1 11/20/2014 07:49 PM µg/Kg 11/20/2014 07:49 PM Bromodichloromethane ND 5.0 µg/Kg 1 Bromoform ND 5.0 µg/Kg 1 11/20/2014 07:49 PM Bromomethane ND 5.0 1 11/20/2014 07:49 PM µg/Kg Carbon tetrachloride ND 5.0 µg/Kg 1 11/20/2014 07:49 PM Chlorobenzene ND 5.0 1 11/20/2014 07:49 PM µg/Kg Chloroethane ND 5.0 µg/Kg 1 11/20/2014 07:49 PM Chloroform ND 5.0 µg/Kg 1 11/20/2014 07:49 PM Chloromethane ND 5.0 µg/Kg 1 11/20/2014 07:49 PM cis-1,2-Dichloroethene ND 5.0 µg/Kg 1 11/20/2014 07:49 PM

Oualifiers:

В

Н

Analyte detected in the associated Method Blank

Е Value above quantitation range

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

ASSET LABORATORIES

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-003A

Client Sample ID: MW-1@5' Collection Date: 11/12/2014 10:10:00 AM Matrix: SOLID

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	NDS BY GC/MS				
			EPA 826	60B	
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM
cis-1,3-Dichloropropene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Dibromochloromethane	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Dibromomethane	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Dichlorodifluoromethane	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Ethylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Freon-113	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Hexachlorobutadiene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Isopropylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
m,p-Xylene	ND	10	µg/Kg	1	11/20/2014 07:49 PM
Methylene chloride	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
МТВЕ	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
n-Butylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
n-Propylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Naphthalene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
o-Xylene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
sec-Butylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Styrene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
tert-Butylbenzene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Tetrachloroethene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Toluene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
trans-1,2-Dichloroethene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Trichloroethene	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Trichlorofluoromethane	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Vinyl chloride	ND	5.0	µg/Kg	1	11/20/2014 07:49 PM
Surr: 1,2-Dichloroethane-d4	112	67-136	%REC	1	11/20/2014 07:49 PM
Surr: 4-Bromofluorobenzene	98.0	59-124	%REC	1	11/20/2014 07:49 PM
Surr: Dibromofluoromethane	108	70-131	%REC	1	11/20/2014 07:49 PM
Surr: Toluene-d8	103	75-120	%REC	1	11/20/2014 07:49 PM

Oualifiers:	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
•	Н	Holding times for preparation or analysis exceeded	ND	Not Detected at the Reporting Limit
	S	Spike/Surrogate outside of limits due to matrix interference		Results are wet unless otherwise specified
	DO	Surrogate Diluted Out		

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-004A

Client Sample ID: MW-1@10' Collection Date: 11/12/2014 10:23:00 AM Matrix: SOLID

Analyses	Resul	t PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOL	JNDS BY GC/MS				
			EPA 826	50B	
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM
1,1,1,2-Tetrachloroethane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,1,1-Trichloroethane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,1,2,2-Tetrachloroethane	N	5.0	μg/Kg	1	11/20/2014 08:11 PM
1,1,2-Trichloroethane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,1-Dichloroethane	N	5.0	μg/Kg	1	11/20/2014 08:11 PM
1,1-Dichloroethene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,1-Dichloropropene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,2,3-Trichlorobenzene	N	5.0	μg/Kg	1	11/20/2014 08:11 PM
1,2,3-Trichloropropane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,2,4-Trichlorobenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,2,4-Trimethylbenzene	N	5.0	µa/Ka	1	11/20/2014 08:11 PM
1,2-Dibromo-3-chloropropane	N	D 10	µg/Kg	1	11/20/2014 08:11 PM
1,2-Dibromoethane	N	5.0	μg/Kg	1	11/20/2014 08:11 PM
1,2-Dichlorobenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,2-Dichloroethane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,2-Dichloropropane	N	5.0	μg/Kg	1	11/20/2014 08:11 PM
1,3,5-Trimethylbenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,3-Dichlorobenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,3-Dichloropropane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
1,4-Dichlorobenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
2,2-Dichloropropane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
2-Chlorotoluene	N	5.0	µa/Ka	1	11/20/2014 08:11 PM
4-Chlorotoluene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
4-Isopropyltoluene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
Benzene	N	5.0	μg/Kg	1	11/20/2014 08:11 PM
Bromobenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
Bromodichloromethane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
Bromoform	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
Bromomethane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
Carbon tetrachloride	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
Chlorobenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
Chloroethane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
Chloroform	N	5.0	μg/Kg	1	11/20/2014 08:11 PM
Chloromethane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM
cis-1,2-Dichloroethene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM

Qualifiers:

В

Н

Analyte detected in the associated Method Blank

E Value above quantitation range

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

ASSET LABORATORIES

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-004A

Client Sample ID: MW-1@10' Collection Date: 11/12/2014 10:23:00 AM Matrix: SOLID

Analyses	Resul	t PQL	Qual Units	DF	Date Analyzed		
VOLATILE ORGANIC COMPOU	NDS BY GC/MS						
	EPA 8260B						
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM		
cis-1,3-Dichloropropene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Dibromochloromethane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Dibromomethane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Dichlorodifluoromethane	NI	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Ethylbenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Freon-113	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Hexachlorobutadiene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Isopropylbenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
m,p-Xylene	N	D 10	µg/Kg	1	11/20/2014 08:11 PM		
Methylene chloride	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
МТВЕ	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
n-Butylbenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
n-Propylbenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Naphthalene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
o-Xylene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
sec-Butylbenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Styrene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
tert-Butylbenzene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Tetrachloroethene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Toluene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
trans-1,2-Dichloroethene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Trichloroethene	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Trichlorofluoromethane	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Vinyl chloride	N	5.0	µg/Kg	1	11/20/2014 08:11 PM		
Surr: 1,2-Dichloroethane-d4	11	0 67-136	%REC	1	11/20/2014 08:11 PM		
Surr: 4-Bromofluorobenzene	98.	2 59-124	%REC	1	11/20/2014 08:11 PM		
Surr: Dibromofluoromethane	10	7 70-131	%REC	1	11/20/2014 08:11 PM		
Surr: Toluene-d8	10-	4 75-120	%REC	1	11/20/2014 08:11 PM		

Oualifiers:	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
•	Н	Holding times for preparation or analysis exceeded	ND	Not Detected at the Reporting Limit
	S	Spike/Surrogate outside of limits due to matrix interference		Results are wet unless otherwise specified
	DO	Surrogate Diluted Out		

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-005A

Client Sample ID: MW-1@15' Collection Date: 11/12/2014 10:35:00 AM Matrix: SOLID

Analyses	Result	t PQL	Qual Units	DF	Date Analyzed	
VOLATILE ORGANIC COMPOU	INDS BY GC/MS					
	EPA 8260B					
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM	
1,1,1,2-Tetrachloroethane	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,1,1-Trichloroethane	ND	5.0	μg/Kg	1	11/20/2014 08:33 PM	
1,1,2,2-Tetrachloroethane	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,1,2-Trichloroethane	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,1-Dichloroethane	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,1-Dichloroethene	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,1-Dichloropropene	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,2,3-Trichlorobenzene	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,2,3-Trichloropropane	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,2,4-Trichlorobenzene	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,2,4-Trimethylbenzene	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,2-Dibromo-3-chloropropane	ND) 10	µg/Kg	1	11/20/2014 08:33 PM	
1,2-Dibromoethane	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,2-Dichlorobenzene	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,2-Dichloroethane	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,2-Dichloropropane	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,3,5-Trimethylbenzene	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,3-Dichlorobenzene	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,3-Dichloropropane	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
1,4-Dichlorobenzene	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
2,2-Dichloropropane	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
2-Chlorotoluene	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
4-Chlorotoluene	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
4-Isopropyltoluene	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
Benzene	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
Bromobenzene	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
Bromodichloromethane	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
Bromoform	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
Bromomethane	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
Carbon tetrachloride	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
Chlorobenzene	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	
Chloroethane	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
Chloroform	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
Chloromethane	ND	5.0	µg/Kg	1	11/20/2014 08:33 PM	
cis-1,2-Dichloroethene	NC	5.0	µg/Kg	1	11/20/2014 08:33 PM	

Qualifiers:

В

Н

Analyte detected in the associated Method Blank

E Value above quantitation range

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-005A

Client Sample ID: MW-1@15' Collection Date: 11/12/2014 10:35:00 AM Matrix: SOLID

Analyses	Resul	t PQL	Qual Units	DF	Date Analyzed		
VOLATILE ORGANIC COMPOU	NDS BY GC/MS						
	EPA 8260B						
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM		
cis-1,3-Dichloropropene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Dibromochloromethane	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Dibromomethane	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Dichlorodifluoromethane	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Ethylbenzene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Freon-113	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Hexachlorobutadiene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Isopropylbenzene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
m,p-Xylene	N	D 10	µg/Kg	1	11/20/2014 08:33 PM		
Methylene chloride	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
МТВЕ	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
n-Butylbenzene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
n-Propylbenzene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Naphthalene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
o-Xylene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
sec-Butylbenzene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Styrene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
tert-Butylbenzene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Tetrachloroethene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Toluene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
trans-1,2-Dichloroethene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Trichloroethene	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Trichlorofluoromethane	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Vinyl chloride	N	D 5.0	µg/Kg	1	11/20/2014 08:33 PM		
Surr: 1,2-Dichloroethane-d4	11	0 67-136	%REC	1	11/20/2014 08:33 PM		
Surr: 4-Bromofluorobenzene	99.	9 59-124	%REC	1	11/20/2014 08:33 PM		
Surr: Dibromofluoromethane	10	7 70-131	%REC	1	11/20/2014 08:33 PM		
Surr: Toluene-d8	10	4 75-120	%REC	1	11/20/2014 08:33 PM		

Oualifiers:	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
•	Н	Holding times for preparation or analysis exceeded	ND	Not Detected at the Reporting Limit
	S	Spike/Surrogate outside of limits due to matrix interference		Results are wet unless otherwise specified
	DO	Surrogate Diluted Out		

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"
ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT: ENCON Solutions Inc. Lab Order: N013889 Elegant Cleaners, 1410097 **Project:** Lab ID: N013889-006A

Client Sample ID: MW-2@5' Collection Date: 11/12/2014 11:10:00 AM Matrix: SOLID

Analyses	Res	ult PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOL	JNDS BY GC/MS				
			EPA 826	0B	
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM
1,1,1,2-Tetrachloroethane		ND 5.0	µa/Ka	1	11/20/2014 08:55 PM
1,1,1-Trichloroethane		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,1,2,2-Tetrachloroethane		ND 5.0	μg/Kg	1	11/20/2014 08:55 PM
1,1,2-Trichloroethane		ND 5.0	μg/Kg	1	11/20/2014 08:55 PM
1,1-Dichloroethane		ND 5.0	μg/Kg	1	11/20/2014 08:55 PM
1,1-Dichloroethene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,1-Dichloropropene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,2,3-Trichlorobenzene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,2,3-Trichloropropane		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,2,4-Trichlorobenzene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,2,4-Trimethylbenzene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,2-Dibromo-3-chloropropane		ND 10	µg/Kg	1	11/20/2014 08:55 PM
1,2-Dibromoethane		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,2-Dichlorobenzene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,2-Dichloroethane		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,2-Dichloropropane		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,3,5-Trimethylbenzene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,3-Dichlorobenzene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,3-Dichloropropane		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
1,4-Dichlorobenzene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
2,2-Dichloropropane		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
2-Chlorotoluene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
4-Chlorotoluene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
4-Isopropyltoluene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
Benzene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
Bromobenzene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
Bromodichloromethane		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
Bromoform		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
Bromomethane		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
Carbon tetrachloride		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
Chlorobenzene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
Chloroethane		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
Chloroform		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
Chloromethane		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM
cis-1,2-Dichloroethene		ND 5.0	µg/Kg	1	11/20/2014 08:55 PM

Qualifiers:

В

Н

Analyte detected in the associated Method Blank

Е Value above quantitation range

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

ASSET LABORATORIES

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-006A

Client Sample ID: MW-2@5' Collection Date: 11/12/2014 11:10:00 AM Matrix: SOLID

Analyses	Resu	lt PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	NDS BY GC/MS				
			EPA 826	0B	
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM
cis-1,3-Dichloropropene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Dibromochloromethane	N	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Dibromomethane	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Dichlorodifluoromethane	N	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Ethylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Freon-113	N	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Hexachlorobutadiene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
lsopropylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
m,p-Xylene	Ν	D 10	µg/Kg	1	11/20/2014 08:55 PM
Methylene chloride	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
МТВЕ	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
n-Butylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
n-Propylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Naphthalene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
o-Xylene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
sec-Butylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Styrene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
tert-Butylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Tetrachloroethene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Toluene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
trans-1,2-Dichloroethene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Trichloroethene	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Trichlorofluoromethane	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Vinyl chloride	Ν	D 5.0	µg/Kg	1	11/20/2014 08:55 PM
Surr: 1,2-Dichloroethane-d4	11	3 67-136	%REC	1	11/20/2014 08:55 PM
Surr: 4-Bromofluorobenzene	99	.8 59-124	%REC	1	11/20/2014 08:55 PM
Surr: Dibromofluoromethane	11	0 70-131	%REC	1	11/20/2014 08:55 PM
Surr: Toluene-d8	10	5 75-120	%REC	1	11/20/2014 08:55 PM

Oualifiers:	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
•	Н	Holding times for preparation or analysis exceeded	ND	Not Detected at the Reporting Limit
	S	Spike/Surrogate outside of limits due to matrix interference		Results are wet unless otherwise specified
	DO	Surrogate Diluted Out		

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-007A

Client Sample ID: MW-2@10' Collection Date: 11/12/2014 11:22:00 AM Matrix: SOLID

Analyses	Resu	lt PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOL	INDS BY GC/MS				
			EPA 826	60B	
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM
1,1,1,2-Tetrachloroethane	Ν	ID 5.0	µq/Kq	1	11/20/2014 09:17 PM
1,1,1-Trichloroethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,1,2,2-Tetrachloroethane	Ν	ID 5.0	μg/Kg	1	11/20/2014 09:17 PM
1,1,2-Trichloroethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,1-Dichloroethane	Ν	ID 5.0	μg/Kg	1	11/20/2014 09:17 PM
1,1-Dichloroethene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,1-Dichloropropene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,2,3-Trichlorobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,2,3-Trichloropropane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,2,4-Trichlorobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,2,4-Trimethylbenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,2-Dibromo-3-chloropropane	Ν	ID 10	µg/Kg	1	11/20/2014 09:17 PM
1,2-Dibromoethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,2-Dichlorobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,2-Dichloroethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,2-Dichloropropane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,3,5-Trimethylbenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,3-Dichlorobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,3-Dichloropropane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
1,4-Dichlorobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
2,2-Dichloropropane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
2-Chlorotoluene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
4-Chlorotoluene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
4-Isopropyltoluene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
Benzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
Bromobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
Bromodichloromethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
Bromoform	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
Bromomethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
Carbon tetrachloride	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
Chlorobenzene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
Chloroethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
Chloroform	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
Chloromethane	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM
cis-1,2-Dichloroethene	Ν	ID 5.0	µg/Kg	1	11/20/2014 09:17 PM

Qualifiers:

В

Н

Analyte detected in the associated Method Blank

E Value above quantitation range

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

ASSET LABORATORIES

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 26-Nov-14

CLIENT:ENCON Solutions Inc.Lab Order:N013889Project:Elegant Cleaners, 1410097Lab ID:N013889-007A

Client Sample ID: MW-2@10' Collection Date: 11/12/2014 11:22:00 AM Matrix: SOLID

Analyses	Resu	lt PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	NDS BY GC/MS				
			EPA 826	60B	
RunID: MS5_141120A	QC Batch:	P14VS093		PrepDate:	Analyst: QBM
cis-1,3-Dichloropropene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Dibromochloromethane	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Dibromomethane	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Dichlorodifluoromethane	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Ethylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Freon-113	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Hexachlorobutadiene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Isopropylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
m,p-Xylene	Ν	D 10	µg/Kg	1	11/20/2014 09:17 PM
Methylene chloride	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
МТВЕ	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
n-Butylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
n-Propylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Naphthalene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
o-Xylene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
sec-Butylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Styrene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
tert-Butylbenzene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Tetrachloroethene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Toluene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
trans-1,2-Dichloroethene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Trichloroethene	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Trichlorofluoromethane	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Vinyl chloride	Ν	D 5.0	µg/Kg	1	11/20/2014 09:17 PM
Surr: 1,2-Dichloroethane-d4	11	3 67-136	%REC	1	11/20/2014 09:17 PM
Surr: 4-Bromofluorobenzene	99.	.3 59-124	%REC	1	11/20/2014 09:17 PM
Surr: Dibromofluoromethane	10	8 70-131	%REC	1	11/20/2014 09:17 PM
Surr: Toluene-d8	10	4 75-120	%REC	1	11/20/2014 09:17 PM

Oualifiers:	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
C	Н	Holding times for preparation or analysis exceeded	ND	Not Detected at the Reporting Limit
	S	Spike/Surrogate outside of limits due to matrix interference		Results are wet unless otherwise specified
	DO	Surrogate Diluted Out		

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

Date: 26-Nov-14

CLIENT: ENCON Solutions Inc.

Work Order: N013889

Elegant Cleaners, 1410097 **Project:**

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260SOIL

Sample ID: P141120LCS	SampType: LCS	TestCo	de: 8260SOIL	Units: µg/Kg		Prep Da	te:		RunNo: 968	382	
Client ID: LCSS	Batch ID: P14VS093	Test	No: EPA 8260	В		Analysis Da	te: 11/20/2	2014	SeqNo: 187	79040	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	41.850	5.0	40.00	0	105	79	128				
1,1,1-Trichloroethane	40.200	5.0	40.00	0	101	80	122				
1,1,2,2-Tetrachloroethane	41.400	5.0	40.00	0	104	80	120				
1,1,2-Trichloroethane	40.910	5.0	40.00	0	102	80	120				
1,1-Dichloroethane	40.060	5.0	40.00	0	100	80	120				
1,1-Dichloroethene	40.030	5.0	40.00	0	100	74	126				
1,1-Dichloropropene	38.980	5.0	40.00	0	97.5	80	120				
1,2,3-Trichlorobenzene	39.470	5.0	40.00	0	98.7	70	124				
1,2,3-Trichloropropane	40.710	5.0	40.00	0	102	78	120				
1,2,4-Trichlorobenzene	37.540	5.0	40.00	0	93.8	73	123				
1,2,4-Trimethylbenzene	40.660	5.0	40.00	0	102	80	120				
1,2-Dibromo-3-chloropropane	40.980	10	40.00	0	102	71	127				
1,2-Dibromoethane	41.940	5.0	40.00	0	105	80	120				
1,2-Dichlorobenzene	40.650	5.0	40.00	0	102	80	120				
1,2-Dichloroethane	40.130	5.0	40.00	0	100	78	122				
1,2-Dichloropropane	40.100	5.0	40.00	0	100	80	120				
1,3,5-Trimethylbenzene	40.740	5.0	40.00	0	102	80	120				
1,3-Dichlorobenzene	40.270	5.0	40.00	0	101	80	120				
1,3-Dichloropropane	40.970	5.0	40.00	0	102	80	120				
1,4-Dichlorobenzene	38.190	5.0	40.00	0	95.5	80	120				
2,2-Dichloropropane	39.680	5.0	40.00	0	99.2	79	128				
2-Chlorotoluene	39.660	5.0	40.00	0	99.2	80	120				
4-Chlorotoluene	40.430	5.0	40.00	0	101	80	120				
4-Isopropyltoluene	40.350	5.0	40.00	0	101	79	122				
Benzene	39.500	5.0	40.00	0	98.8	80	120				
Bromobenzene	40.380	5.0	40.00	0	101	80	120				
Bromodichloromethane	41.460	5.0	40.00	0	104	80	125				
Bromoform	42.090	5.0	40.00	0	105	69	145				
Bromomethane	38.910	5.0	40.00	0	97.3	57	140				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Е Value above quantitation range

Calculations are based on raw values

Н Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ASSET LABORATORIES

11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

"Serving Clients with Passion and Professionalism"

CALIFORNIA

- S Spike/Surrogate outside of limits due to matrix interference

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

Work Order: N013889

Project: Elegant Cleaners, 1410097

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260SOIL

Sample ID: P141120LCS	SampType: LCS	TestCo	de: 8260SOIL	Units: µg/Kg	Prep Date:				RunNo: 96882		
Client ID: LCSS	Batch ID: P14VS093	Test	No: EPA 8260	В		Analysis Da	te: 11/20/2	2014	SeqNo: 187	79040	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon tetrachloride	40.750	5.0	40.00	0	102	80	125				
Chlorobenzene	39.750	5.0	40.00	0	99.4	80	120				
Chloroethane	41.910	5.0	40.00	0	105	64	139				
Chloroform	39.620	5.0	40.00	0	99.0	80	120				
Chloromethane	38.900	5.0	40.00	0	97.3	73	120				
cis-1,2-Dichloroethene	39.510	5.0	40.00	0	98.8	80	120				
cis-1,3-Dichloropropene	40.430	5.0	40.00	0	101	80	121				
Dibromochloromethane	41.560	5.0	40.00	0	104	80	120				
Dibromomethane	41.190	5.0	40.00	0	103	66	125				
Dichlorodifluoromethane	39.950	5.0	40.00	0	99.9	76	123				
Ethylbenzene	38.940	5.0	40.00	0	97.4	80	120				
Freon-113	40.230	5.0	40.00	0	101	75	130				
Hexachlorobutadiene	38.290	5.0	40.00	0	95.7	69	120				
Isopropylbenzene	40.040	5.0	40.00	0	100	78	120				
m,p-Xylene	79.850	10	80.00	0	99.8	80	120				
Methylene chloride	40.590	5.0	40.00	0	101	73	120				
МТВЕ	40.540	5.0	40.00	0	101	77	120				
n-Butylbenzene	40.820	5.0	40.00	0	102	79	125				
n-Propylbenzene	40.140	5.0	40.00	0	100	80	120				
Naphthalene	37.200	5.0	40.00	0	93.0	68	126				
o-Xylene	40.200	5.0	40.00	0	101	80	120				
sec-Butylbenzene	40.420	5.0	40.00	0	101	79	120				
Styrene	41.860	5.0	40.00	0	105	80	120				
tert-Butylbenzene	40.160	5.0	40.00	0	100	78	120				
Tetrachloroethene	39.450	5.0	40.00	0	98.6	80	120				
Toluene	39.540	5.0	40.00	0	98.8	80	120				
trans-1,2-Dichloroethene	38.320	5.0	40.00	0	95.8	80	120				
Trichloroethene	39.700	5.0	40.00	0	99.2	80	120				
Trichlorofluoromethane	41.460	5.0	40.00	0	104	71	132				
Vinyl chloride	40.400	5.0	40.00	0	101	75	123				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

Value above quantitation range Е

R RPD outside accepted recovery limits

Calculations are based on raw values

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference S

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

CALIFORNIA

11060 Artesia Blvd., Ste C, Cerritos, CA 90703

P: 562.219.7435 F: 562.219.7436

Work Order: N013889

Project: Elegant Cleaners, 1410097

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260SOIL

Sample ID: P141120LCS	SampType: LCS	TestCo	de: 8260SOIL	Units: µg/Kg	g Prep Date:				RunNo: 96882		
Client ID: LCSS	Batch ID: P14VS093	Test	lo: EPA 8260	В		Analysis Da	te: 11/20/2	2014	SeqNo: 187	9040	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	52.590		50.00		105	67	136				
Surr: 4-Bromofluorobenzene	52.510		50.00		105	59	124				
Surr: Dibromofluoromethane	52.520		50.00		105	70	131				
Surr: Toluene-d8	51.660		50.00		103	75	120				
Sample ID: N013879-006AMS	SampType: MS	TestCo	de: 8260SOIL	Units: µg/Kg		Prep Da	te:		RunNo: 968	82	
Client ID: ZZZZZZ	Batch ID: P14VS093	Test	lo: EPA 8260	В		Analysis Da	te: 11/20/2	2014	SeqNo: 187	9041	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	39.350	5.0	40.00	0	98.4	71	130				
1,1,1-Trichloroethane	41.230	5.0	40.00	0	103	72	126				
1,1,2,2-Tetrachloroethane	38.940	5.0	40.00	0	97.4	56	135				
1,1,2-Trichloroethane	40.450	5.0	40.00	0	101	73	138				
1,1-Dichloroethane	40.310	5.0	40.00	0	101	75	127				
1,1-Dichloroethene	41.890	5.0	40.00	0	105	72	123				
1,1-Dichloropropene	40.170	5.0	40.00	0	100	71	120				
1,2,3-Trichlorobenzene	40.030	5.0	40.00	0	100	42	134				
1,2,3-Trichloropropane	38.420	5.0	40.00	0	96.0	64	127				
1,2,4-Trichlorobenzene	38.990	5.0	40.00	0	97.5	46	133				
1,2,4-Trimethylbenzene	40.350	5.0	40.00	0	101	66	122				
1,2-Dibromo-3-chloropropane	36.850	10	40.00	0	92.1	53	141				
1,2-Dibromoethane	41.270	5.0	40.00	0	103	72	135				
1,2-Dichlorobenzene	38.740	5.0	40.00	0	96.9	69	120				
1,2-Dichloroethane	38.770	5.0	40.00	0	96.9	70	134				
1,2-Dichloropropane	39.330	5.0	40.00	0	98.3	74	126				
1,3,5-Trimethylbenzene	39.870	5.0	40.00	0	99.7	65	120				
1,3-Dichlorobenzene	39.770	5.0	40.00	0	99.4	70	120				
1,3-Dichloropropane	39.540	5.0	40.00	0	98.8	74	125				
1,4-Dichlorobenzene	38.330	5.0	40.00	0	95.8	70	120				
2,2-Dichloropropane	43.630	5.0	40.00	0	109	72	132				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

Value above quantitation range Е

R RPD outside accepted recovery limits

Calculations are based on raw values

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

CALIFORNIA

11060 Artesia Blvd., Ste C, Cerritos, CA 90703

P: 562.219.7435 F: 562.219.7436

Work Order: N013889

Project: Elegant Cleaners, 1410097

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260SOIL

Sample ID: N013879-006AMS	SampType: MS	TestCo	de: 8260SOIL	Units: µg/Kg	Prep Date:				RunNo: 968	382	
Client ID: ZZZZZZ	Batch ID: P14VS093	Test	No: EPA 8260	В		Analysis Da	te: 11/20/2	2014	SeqNo: 187	79041	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Chlorotoluene	39.440	5.0	40.00	0	98.6	67	120				
4-Chlorotoluene	40.020	5.0	40.00	0	100	68	120				
4-Isopropyltoluene	40.770	5.0	40.00	0	102	58	125				
Benzene	39.730	5.0	40.00	0	99.3	75	122				
Bromobenzene	38.810	5.0	40.00	0	97.0	71	120				
Bromodichloromethane	40.270	5.0	40.00	0	101	73	132				
Bromoform	39.510	5.0	40.00	0	98.8	59	152				
Bromomethane	39.190	5.0	40.00	0	98.0	57	144				
Carbon tetrachloride	41.530	5.0	40.00	0	104	70	125				
Chlorobenzene	38.520	5.0	40.00	0	96.3	74	120				
Chloroethane	42.560	5.0	40.00	0	106	40	164				
Chloroform	39.350	5.0	40.00	0	98.4	74	129				
Chloromethane	39.090	5.0	40.00	0	97.7	46	151				
cis-1,2-Dichloroethene	38.880	5.0	40.00	0	97.2	75	129				
cis-1,3-Dichloropropene	40.440	5.0	40.00	0	101	73	132				
Dibromochloromethane	39.780	5.0	40.00	0	99.4	74	133				
Dibromomethane	39.130	5.0	40.00	0	97.8	43	150				
Dichlorodifluoromethane	41.530	5.0	40.00	0	104	72	137				
Ethylbenzene	38.930	5.0	40.00	0	97.3	71	120				
Freon-113	42.400	5.0	40.00	0	106	68	129				
Hexachlorobutadiene	38.780	5.0	40.00	0	97.0	33	125				
Isopropylbenzene	39.570	5.0	40.00	0	98.9	66	120				
m,p-Xylene	78.900	10	80.00	0	98.6	70	120				
Methylene chloride	36.670	5.0	40.00	2.630	85.1	63	137				
MTBE	39.850	5.0	40.00	0	99.6	69	138				
n-Butylbenzene	42.380	5.0	40.00	0	106	56	125				
n-Propylbenzene	40.250	5.0	40.00	0	101	66	120				
Naphthalene	36.610	5.0	40.00	0	91.5	46	135				
o-Xylene	38.990	5.0	40.00	0	97.5	69	121				
sec-Butylbenzene	40.610	5.0	40.00	0	102	61	120				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

Е Value above quantitation range

R RPD outside accepted recovery limits

Calculations are based on raw values

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

S

"Serving Clients with Passion and Professionalism"

CALIFORNIA

11060 Artesia Blvd., Ste C, Cerritos, CA 90703

P: 562.219.7435 F: 562.219.7436

Work Order: N013889

Project: Elegant Cleaners, 1410097

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260SOIL

Sample ID: N013879-006AMS	SampType: MS	TestCo	de: 8260SOIL	Units: µg/Kg	g Prep Date:				RunNo: 968	882	
Client ID: ZZZZZZ	Batch ID: P14VS093	Test	No: EPA 8260	В		Analysis Dat	te: 11/20/2	014	SeqNo: 187	9041	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Styrene	40.460	5.0	40.00	0	101	69	127				
tert-Butylbenzene	39.760	5.0	40.00	0	99.4	63	120				
Tetrachloroethene	39.580	5.0	40.00	0	99.0	68	120				
Toluene	39.220	5.0	40.00	0	98.0	73	121				
trans-1,2-Dichloroethene	39.050	5.0	40.00	0	97.6	75	126				
Trichloroethene	39.190	5.0	40.00	0	98.0	69	130				
Trichlorofluoromethane	43.070	5.0	40.00	0	108	67	130				
Vinyl chloride	41.870	5.0	40.00	0	105	65	132				
Surr: 1,2-Dichloroethane-d4	54.480		50.00		109	67	136				
Surr: 4-Bromofluorobenzene	52.310		50.00		105	59	124				
Surr: Dibromofluoromethane	54.780		50.00		110	70	131				
Surr: Toluene-d8	52.240		50.00		104	75	120				
		TantOa				Dren Det			Dura Nation 000		

Sample ID: N013879-006AMSD	Sampiype: MSD	TestCo	de: 8260SOIL	Units: µg/kg		Prep Dat	e:		Runno: 968	82	
Client ID: ZZZZZZ	Batch ID: P14VS093	Test	No: EPA 8260	3		Analysis Dat	te: 11/20/2	014	SeqNo: 187	9042	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	38.920	5.0	40.00	0	97.3	71	130	39.35	1.10	20	
1,1,1-Trichloroethane	41.010	5.0	40.00	0	103	72	126	41.23	0.535	20	
1,1,2,2-Tetrachloroethane	38.460	5.0	40.00	0	96.2	56	135	38.94	1.24	20	
1,1,2-Trichloroethane	39.840	5.0	40.00	0	99.6	73	138	40.45	1.52	20	
1,1-Dichloroethane	40.230	5.0	40.00	0	101	75	127	40.31	0.199	20	
1,1-Dichloroethene	41.200	5.0	40.00	0	103	72	123	41.89	1.66	20	
1,1-Dichloropropene	40.400	5.0	40.00	0	101	71	120	40.17	0.571	20	
1,2,3-Trichlorobenzene	41.220	5.0	40.00	0	103	42	134	40.03	2.93	20	
1,2,3-Trichloropropane	39.560	5.0	40.00	0	98.9	64	127	38.42	2.92	20	
1,2,4-Trichlorobenzene	38.730	5.0	40.00	0	96.8	46	133	38.99	0.669	20	
1,2,4-Trimethylbenzene	39.470	5.0	40.00	0	98.7	66	122	40.35	2.20	20	
1,2-Dibromo-3-chloropropane	38.860	10	40.00	0	97.2	53	141	36.85	5.31	20	
1,2-Dibromoethane	40.890	5.0	40.00	0	102	72	135	41.27	0.925	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Value above quantitation range Е

R RPD outside accepted recovery limits

Calculations are based on raw values

Н Holding times for preparation or analysis exceeded

Spike/Surrogate outside of limits due to matrix interference S

ASSET LABORATORIES

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

Work Order: N013889

Project: Elegant Cleaners, 1410097

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260SOIL

Sample ID: N013879-006AMSD	SampType: MSD	TestCo	de: 8260SOIL	Units: µg/Kg		Prep Da	te:		RunNo: 968	882	
Client ID: ZZZZZZ	Batch ID: P14VS093	Test	No: EPA 8260	В		Analysis Da	te: 11/20/2	2014	SeqNo: 187	9042	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichlorobenzene	39.030	5.0	40.00	0	97.6	69	120	38.74	0.746	20	
1,2-Dichloroethane	39.590	5.0	40.00	0	99.0	70	134	38.77	2.09	20	
1,2-Dichloropropane	39.790	5.0	40.00	0	99.5	74	126	39.33	1.16	20	
1,3,5-Trimethylbenzene	39.620	5.0	40.00	0	99.0	65	120	39.87	0.629	20	
1,3-Dichlorobenzene	39.100	5.0	40.00	0	97.8	70	120	39.77	1.70	20	
1,3-Dichloropropane	39.460	5.0	40.00	0	98.6	74	125	39.54	0.203	20	
1,4-Dichlorobenzene	37.700	5.0	40.00	0	94.3	70	120	38.33	1.66	20	
2,2-Dichloropropane	42.740	5.0	40.00	0	107	72	132	43.63	2.06	20	
2-Chlorotoluene	38.680	5.0	40.00	0	96.7	67	120	39.44	1.95	20	
4-Chlorotoluene	38.940	5.0	40.00	0	97.4	68	120	40.02	2.74	20	
4-Isopropyltoluene	40.220	5.0	40.00	0	101	58	125	40.77	1.36	20	
Benzene	39.800	5.0	40.00	0	99.5	75	122	39.73	0.176	20	
Bromobenzene	37.410	5.0	40.00	0	93.5	71	120	38.81	3.67	20	
Bromodichloromethane	39.310	5.0	40.00	0	98.3	73	132	40.27	2.41	20	
Bromoform	39.650	5.0	40.00	0	99.1	59	152	39.51	0.354	20	
Bromomethane	38.100	5.0	40.00	0	95.2	57	144	39.19	2.82	20	
Carbon tetrachloride	42.040	5.0	40.00	0	105	70	125	41.53	1.22	20	
Chlorobenzene	38.120	5.0	40.00	0	95.3	74	120	38.52	1.04	20	
Chloroethane	41.990	5.0	40.00	0	105	40	164	42.56	1.35	20	
Chloroform	38.530	5.0	40.00	0	96.3	74	129	39.35	2.11	20	
Chloromethane	38.030	5.0	40.00	0	95.1	46	151	39.09	2.75	20	
cis-1,2-Dichloroethene	38.230	5.0	40.00	0	95.6	75	129	38.88	1.69	20	
cis-1,3-Dichloropropene	40.370	5.0	40.00	0	101	73	132	40.44	0.173	20	
Dibromochloromethane	39.790	5.0	40.00	0	99.5	74	133	39.78	0.0251	20	
Dibromomethane	40.000	5.0	40.00	0	100	43	150	39.13	2.20	20	
Dichlorodifluoromethane	41.440	5.0	40.00	0	104	72	137	41.53	0.217	20	
Ethylbenzene	38.460	5.0	40.00	0	96.2	71	120	38.93	1.21	20	
Freon-113	41.600	5.0	40.00	0	104	68	129	42.40	1.90	20	
Hexachlorobutadiene	39.050	5.0	40.00	0	97.6	33	125	38.78	0.694	20	
Isopropylbenzene	38.510	5.0	40.00	0	96.3	66	120	39.57	2.72	20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

Value above quantitation range Е

R RPD outside accepted recovery limits

Calculations are based on raw values

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

CALIFORNIA

11060 Artesia Blvd., Ste C, Cerritos, CA 90703

P: 562.219.7435 F: 562.219.7436

Work Order: N013889

Project: Elegant Cleaners, 1410097

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260SOIL

Sample ID: N013879-006AMSD	SampType: MSD	TestCo	de: 8260SOIL	Units: µg/Kg		Prep Da	te:		RunNo: 968	82	
Client ID: ZZZZZZ	Batch ID: P14VS093	Test	No: EPA 8260	В		Analysis Da	te: 11/20/2	014	SeqNo: 187	9042	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	78.480	10	80.00	0	98.1	70	120	78.90	0.534	20	
Methylene chloride	34.040	5.0	40.00	2.630	78.5	63	137	36.67	7.44	20	
MTBE	39.690	5.0	40.00	0	99.2	69	138	39.85	0.402	20	
n-Butylbenzene	42.220	5.0	40.00	0	106	56	125	42.38	0.378	20	
n-Propylbenzene	39.820	5.0	40.00	0	99.6	66	120	40.25	1.07	20	
Naphthalene	38.870	5.0	40.00	0	97.2	46	135	36.61	5.99	20	
o-Xylene	38.820	5.0	40.00	0	97.0	69	121	38.99	0.437	20	
sec-Butylbenzene	40.140	5.0	40.00	0	100	61	120	40.61	1.16	20	
Styrene	39.900	5.0	40.00	0	99.8	69	127	40.46	1.39	20	
tert-Butylbenzene	39.180	5.0	40.00	0	98.0	63	120	39.76	1.47	20	
Tetrachloroethene	39.210	5.0	40.00	0	98.0	68	120	39.58	0.939	20	
Toluene	39.600	5.0	40.00	0	99.0	73	121	39.22	0.964	20	
trans-1,2-Dichloroethene	38.110	5.0	40.00	0	95.3	75	126	39.05	2.44	20	
Trichloroethene	39.760	5.0	40.00	0	99.4	69	130	39.19	1.44	20	
Trichlorofluoromethane	42.730	5.0	40.00	0	107	67	130	43.07	0.793	20	
Vinyl chloride	41.650	5.0	40.00	0	104	65	132	41.87	0.527	20	
Surr: 1,2-Dichloroethane-d4	53.870		50.00		108	67	136		0		
Surr: 4-Bromofluorobenzene	51.540		50.00		103	59	124		0		
Surr: Dibromofluoromethane	53.000		50.00		106	70	131		0		
Surr: Toluene-d8	51.900		50.00		104	75	120		0		
Sample ID: P141120MB3	SampType: MBLK	TestCo	de: 8260SOIL	Units: µg/Kg		Prep Da	te:		RunNo: 968	82	
Client ID: PBS	Batch ID: P14VS093	Test	No: EPA 82601	В		Analysis Da	te: 11/20/2	014	SeqNo: 187	9043	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	5.0									
1,1,1-Trichloroethane	ND	5.0									
1,1,2,2-Tetrachloroethane	ND	5.0									
1,1,2-Trichloroethane	ND	5.0									
1,1-Dichloroethane	ND	5.0									

Qualifiers:

- В Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

ASSET LABORATORIES

- Е Value above quantitation range
- R RPD outside accepted recovery limits
 - Calculations are based on raw values

Н Holding times for preparation or analysis exceeded

- NEVADA

S Spike/Surrogate outside of limits due to matrix interference

3151 W. Post Rd., Las Vegas, NV 89118 11060 Artesia Blvd., Ste C, Cerritos, CA 90703

P: 562.219.7435 F: 562.219.7436

CALIFORNIA

"Serving Clients with Passion and Professionalism"

P: 702.307.2659 F: 702.307.2691

Work Order: N013889

Project: Elegant Cleaners, 1410097

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260SOIL

Sample ID: P141120MB3	SampType: MBLK	TestCod	le: 8260SOIL	Units: µg/Kg		Prep Da	ite:		RunNo: 968	382	
Client ID: PBS	Batch ID: P14VS093	TestN	lo: EPA 8260I	В		Analysis Da	ite: 11/20/2	2014	SeqNo: 187	79043	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	ND	5.0									
1,1-Dichloropropene	ND	5.0									
1,2,3-Trichlorobenzene	ND	5.0									
1,2,3-Trichloropropane	ND	5.0									
1,2,4-Trichlorobenzene	ND	5.0									
1,2,4-Trimethylbenzene	0.070	5.0									
1,2-Dibromo-3-chloropropane	ND	10									
1,2-Dibromoethane	ND	5.0									
1,2-Dichlorobenzene	ND	5.0									
1,2-Dichloroethane	ND	5.0									
1,2-Dichloropropane	ND	5.0									
1,3,5-Trimethylbenzene	ND	5.0									
1,3-Dichlorobenzene	ND	5.0									
1,3-Dichloropropane	ND	5.0									
1,4-Dichlorobenzene	ND	5.0									
2,2-Dichloropropane	ND	5.0									
2-Chlorotoluene	ND	5.0									
4-Chlorotoluene	ND	5.0									
4-Isopropyltoluene	ND	5.0									
Benzene	ND	5.0									
Bromobenzene	ND	5.0									
Bromodichloromethane	ND	5.0									
Bromoform	ND	5.0									
Bromomethane	0.340	5.0									
Carbon tetrachloride	ND	5.0									
Chlorobenzene	ND	5.0									
Chloroethane	ND	5.0									
Chloroform	ND	5.0									
Chloromethane	0.470	5.0									
cis-1,2-Dichloroethene	ND	5.0									

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

Value above quantitation range Е

R RPD outside accepted recovery limits

Calculations are based on raw values

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

Н Holding times for preparation or analysis exceeded

S Spike/Surrogate outside of limits due to matrix interference

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

"Serving Clients with Passion and Professionalism"

Work Order: N013889

Project: Elegant Cleaners, 1410097

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260SOIL

Sample ID: P141120MB3	SampType: MBLK	TestCo	de: 8260SOIL	Units: µg/Kg		Prep Da	ate:		RunNo: 968	82	
Client ID: PBS	Batch ID: P14VS093	TestN	lo: EPA 8260	В		Analysis Da	ate: 11/20/2	2014	SeqNo: 187	9043	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	ND	5.0									
Dibromochloromethane	ND	5.0									
Dibromomethane	ND	5.0									
Dichlorodifluoromethane	ND	5.0									
Ethylbenzene	ND	5.0									
Freon-113	ND	5.0									
Hexachlorobutadiene	ND	5.0									
Isopropylbenzene	ND	5.0									
m,p-Xylene	ND	10									
Methylene chloride	1.250	5.0									
MTBE	ND	5.0									
n-Butylbenzene	ND	5.0									
n-Propylbenzene	ND	5.0									
Naphthalene	ND	5.0									
o-Xylene	ND	5.0									
sec-Butylbenzene	ND	5.0									
Styrene	ND	5.0									
tert-Butylbenzene	ND	5.0									
Tetrachloroethene	ND	5.0									
Toluene	0.170	5.0									
trans-1,2-Dichloroethene	ND	5.0									
Trichloroethene	ND	5.0									
Trichlorofluoromethane	ND	5.0									
Vinyl chloride	ND	5.0									
Surr: 1,2-Dichloroethane-d4	53.090		50.00		106	67	136				
Surr: 4-Bromofluorobenzene	49.100		50.00		98.2	59	124				
Surr: Dibromofluoromethane	52.700		50.00		105	70	131				
Surr: Toluene-d8	51.450		50.00		103	75	120				

Qualifiers:

- B Analyte detected in the associated Method Blank
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

- Value above quantitation range Е
- R RPD outside accepted recovery limits

Calculations are based on raw values

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

- Н Holding times for preparation or analysis exceeded
- S Spike/Surrogate outside of limits due to matrix interference

ASSET LABORATORIES 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

"Serving Clients with Passion and Professionalism"

CALIFORNIA

<u>SET LABORATORES</u>

ANALYTICAL SUPPORT SERVICES FOR ENVIRONMENTAL TECHNOLOGIES

CHAIN OF CUSTODY RECORD

Contact us: Nevada: 3151 W. Post Road, Las Vegas, NV 89118 P: 702.307.2659 F: 702.3072691 California: 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 www.assetlaboratories.com

Client: Encon Solutions	Report to: Tan / Dad		Bill to: To and	5.185		EDD Regul	noment	04/00	Sama Basaist Condition
Address: PELILLA PLI STE	Company:	0.3	Address:	<u>India:</u>	> RITRIF	Excel EDD		RTNE	
Address:	Encan	ana ana amin'ny fantana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny	3255	Wilshim	C DIVA 1500	Geotracker		RWQCB	
Los Angeles, CA 90010	Home knollwoo	rhows	105 Ana	obs CA	90010	Labspec		CalTrans	2, Headspace
Phone: Fax:	Address:		Email to:	10#	1	Specify:		LEVEL IV	4. Seal Present 0
213-380-0535 213-380-0505	Same		tom@knoll	wood. 05 14	110097-			Regulatory	5, IR number 2
Cara Olson			Phone: 5-499	8-49325	3-390-050	Global ID:		Specify State:	6. Method of
Title: Eveld Enginees	Phone: _ 1198 - 1195 Fax:	Oldu (něm i	Matrix		Analyses Reg	uested	******		Sample Temp:
Signature: Date:	Sampled By:	an	Ground T Sediment F				TT	11-000	O.I°C
1/13/14	I attest to the validity and authenticity of this sam with or Intentionally mislabeling the sample local	ple. I am aware thei tampering	Potable C Sol K						Courion
I hereby sutherize ASSET Labs to perform the tests indicated befow: Project Name:	considered fraud and may be grounds for legal a Signature:	IDate		1 3 1				_	650
Elegant U Earles	Cap Clar	hala / h	NPDES D Solid						Tracking No.
1410097		111414	Surface	5				cound contair ner Ty, ERV/	
Kem Laboratory Work Order No. Sampl	le ID/Location	Date Time	Water Solid	Others S				Turn Ar No. of c Contair PRESI	Remarks
1 NU13889-1 MW-3@	51	11/12/14/9:30	X					वि रेडे	2010 - 1000 - 1001 - 1001 Carlos Carlos Carlos II Strando - 100 Agricano - 1000 - 1000 - 1000 - 1000 - 1000 - 1 -
2 -2 MW-3@	101	11/12/14 9:45							annan an a
3 -3 MW-1@ 5	51	Wrz/14/10:10							
4 -4 MW-1@	10)	11/12/14/10:23							and a second second in a second s
5 -5 MW-10	151	11.7/4 10:85							
6 - 6 MW-7 @	51	ILIA		╈╍╌╢┾╾┥					
7 -7 MW-2@1	01	1127							
8 XILIASE CA	m.O	J- 11-42	*/				+		UN D
a Worst Cen	T.		v				+		nuc
10			an de sente a la company de la company d	┝	┼┼┼┼┤		$\left - \right $		
	*******				┥┽┼┼┼		+		
12/								┥┥┦╏	
Relinguished by (Signature and Printed Name):	Date / Time /, Received by (Signature	and Printed Name):	an Tellicoperin description and a second	Date / Time	Turn Around Time /TA		Casalal		ne i kalandan da kalan sebaran berberah wasar persisan da si Sance vi si baharangg
116 MA Cost Disco 11	13/14 ALI	IL ·	-	T. L. M.D	A < 24 Hrs or S	iame Day TAT	special	instruction:	1. (
Refinquined by (Signature and Printed Name);	15am Horeburg	and Reinlard Martin		11411YON R	E 🛛 B = Next Works	lay	1 170	Id W	usecomp
	16.80		4	11-11100	C = 2 Workdays	\$	Su	nple. 1	vill opdate
Relinguished by (Signature and Printed Name);	Date (Time Breakad by (Strashus	and Bindard Manual	κ_{-}	115/14/04	U D 3 Workday	5		h rea	med unal isi
		ange muco realizer.		Date/ Ime	Q/E = Routine 5-7	Workdays	uite	an il	
					samplos received a	her 3:00 PM.		~ · · R	nown
All samples will be disposed in 45 days upon receipt and records will be destroyed in 5 years upon submission of Regular TAT is 5-7 biotness days, surcharges will apply for rush analysis	5. Tilp Manks and Equipment final report. 6. ASSET Laboratories is not re	Blanks are billable sample. sponsible for samples collected using inc	prrect methodology.	**************************************	Preservatives:			Container Ty	/p8:
Less than 24 Hrs = 200% Next Day = 100% 2 Workdays = 50% 3 Workdays = 35% 4 Workd . Custom EDD farmats will be an additional 3% of the total project price.	days = 20% 5. All reports are submitted in	electronic format. Please inform ASSET t.	aborationies if hard copy of import is r	weded.	$Z = Zn(AC)_2 \qquad O = NaOH$	$S = H_2SO_4$ $T = Na_2S_2O_3$	IC = 4°C	J = Jar	V = VOA P = Pint B = Tedlar G = Glass
access our compour comme for level in Data Packages, 15% for level (V Data Packages, Surcharge applied on total projec	et price. 9. For subcontract analysis. TA	At and Surcharges will vary. Laboratory Coov	nen kan sela ana ang kanang		Others/Specify:	Conv	Ministration and a second	M = Metal	P = Plastic C = Can

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Resample Temp (Deg): 0.1 IR Gun (De 2) Temp Blank: Image: Control (Control (Contro) (Contro) (Control (Control (Control (Contro) (Contro	Cooler Received/Opened On:	11/15/201	4			Workorder:	N013889		
Temp Blank: Yes No Carrier name: Golden State Overnight: Packing Material Used: Bubble Warp Last 4 digits of Tracking No: 210 Carle Pack Dy Ice Chein Dy Ice Chein Dy Ice Chein C	Rep sample Temp (Deg C):	0.1				IR Gun ID:	2		
Cardier name: Golden State Oversight Last 4 digits of Tracking N: 210 Packing Material Use: Bubble Wrap Cooling process: Is to Pack Dry to O Other Non State A digits of Tracking N: Is to Pack Dry to O Other Non Cooling process: Is to Pack Dry to O Other Non Not Present 1. Shipping container/cooler in good condition? Yes No Not Present Image: State Stat	Temp Blank:	✔ Yes	🗌 No						
Last 4 digits of Tracking No: 210 Packing Meria Bubble Wrap Cooling process: I le Pack Pup le Non Non Sample Condition Yes No Not Present Image: Second	Carrier name:	Golden St	ate Overnight						
• De la e Pack • Dry le • Other • None • None	Last 4 digits of Tracking No .:	2110			Packing	Material Used:	Bubble Wrap		
Sample Receipt CheckBits 1. Shipping container/cooler in good condition? Yes No Not Present Image: Source So	Cooling process:	✓ Ice	Ice Pack	Dry Ice	Other	None None			
1. Shipping container/cooler in good condition? Yes No Not Present Implement/cooler? 2. Custody seals intact, signed, dated on shippping container/cooler? Yes No Not Present Implement/cooler? 3. Custody seals intact on sample bottles? Yes No Not Present Implement/cooler? 4. Chain of custody present? Yes No Not Present Implement/cooler? 5. Sampler's name present in COC? Yes No No No 7. Chain of custody agrees with sample labels? Yes No No Yes 8. Samples in proper container/bottle? Yes No No Yes No 9. Sample containers intact? Yes No No Yes No Yes 10. Sufficient sample volume for indicated test? Yes No Na Implementer 12. Temperature of rep sample or Temp Blank within acceptable limit? Yes No NA Implementer 13. Water - VOA vials have zero headspace? Yes No NA Implementer 14. Water - pH acceptable upon receipt? Yes No NA Implementer 1			C.	ample Receiu	nt Chacklist				
1. Simpling Container/cooler in good Container? Yes No Not Present Image: Container/cooler in good Container? 2. Custody seals intact, signed, dated on shippping container/cooler? Yes No Not Present Image: Container/Cooler? 3. Custody seals intact on sample bottles? Yes No Not Present Image: Container/Cooler? 4. Chain of custody present? Yes No No Not Present Image: Container/Cooler? 5. Sampler's name present in COC? Yes No No No Image: Container? 6. Chain of custody signed when relinquished and received? Yes No Image: Container? Yes No Image: Container? 7. Chain of custody agrees with sample labels? Yes No Image: Container? Yes No Image: Container? <t< td=""><td>1 Shipping container/cooler in a</td><td>lood conditic</td><td><u></u></td><td></td><td></td><td>Voc 🗸</td><td></td><td>Not Procont</td><td></td></t<>	1 Shipping container/cooler in a	lood conditic	<u></u>			Voc 🗸		Not Procont	
2. Custody seals intact, signed, dated on shippping container/cooler? Yes No Not Present Image: Signed with a signed with a signed with a ceveral signed with a merceived? 3. Custody seals intact on sample bottles? Yes Image: Signed with a merceived? Yes No Not Present Image: Signed with a merceived? 4. Chain of custody signed when relinquished and received? Yes Image: Signed with a merceived? Yes No Image: Signed with a merceived? 7. Chain of custody agrees with sample labels? Yes Image: Signed with a merceived? Yes No Image: Signed with a merceived? 8. Samples in proper container/bottle? Yes Image: Signed with a merceived? Yes No Image: Signed with a merceived? 9. Sample containers intact? Yes Image: Signed with a merceived? Yes No Image: Signed with a merceived? 10. Sufficient sample volume for indicated test? Yes No Image: Signed with a merceived? Yes No Image: Signed with a merceived? 11. All samples received within holding time? Yes No NA Image: Signed with a merceived? No NA Image: Signed with a merceived? No NA Image: Signed with a merceived? No <td></td> <td></td> <td>, , , , , , ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			, , , , , , ,						
3. Custody seals intact on sample bottles? Yes No Not Present ✓ 4. Chain of custody present? Yes ✓ No ✓ 5. Sampler's name present in COC? Yes ✓ No ✓ 6. Chain of custody signed when relinquished and received? Yes ✓ No ✓ 7. Chain of custody agrees with sample labels? Yes ✓ No ✓ 8. Samples in proper container/bottle? Yes ✓ No ✓ 9. Sample containers intact? Yes ✓ No ✓ 10. Sufficient sample volume for indicated test? Yes ✓ No ✓ 11. All samples received within holding time? Yes ✓ No ✓ 12. Temperature of rep sample or Temp Blank within acceptable limit? Yes ✓ No NA ✓ 13. Water - VOA vials have zero headspace? Yes No NA ✓ 14. Water - pH acceptable upon receipt? Example: pH > 12 for (CN,S); pH <2 for Metals	2. Custody seals intact, signed,	dated on sh	ippping container/	cooler?		Yes 🗀	No 🗀	Not Present	
4. Chain of custody present? Yes No 5. Sampler's name present in COC? Yes No 6. Chain of custody signed when relinquished and received? Yes No 7. Chain of custody agrees with sample labels? Yes No 7. Chain of custody agrees with sample labels? Yes No 8. Samples in proper container/bottle? Yes No 9. Sample containers intact? Yes No 10. Sufficient sample volume for indicated test? Yes No 11. All samples received within holding time? Yes No 12. Temperature of rep sample or Temp Blank within acceptable limit? Yes No NA 13. Water - VOA vials have zero headspace? Yes No NA Image: Sample: pH > 12 for (CN,S); pH < 2 for Metals	3. Custody seals intact on samp	le bottles?				Yes	No 🗌	Not Present	\checkmark
5. Sampler's name present in COC? Yes No 6. Chain of custody signed when relinquished and received? Yes No 7. Chain of custody agrees with sample labels? Yes No 7. Chain of custody agrees with sample labels? Yes No 8. Samples in proper container/bottle? Yes No 9. Sample containers intact? Yes No 10. Sufficient sample volume for indicated test? Yes No 11. All samples received within holding time? Yes No 12. Temperature of rep sample or Temp Blank within acceptable limit? Yes No NA 13. Water - VOA vials have zero headspace? Yes No NA Image: Sample: pH > 12 for (CN,S); pH<2 for Metals	4. Chain of custody present?					Yes 🗹	No 🗌		
6. Chain of custody signed when relinquished and received? Yes No 7. Chain of custody agrees with sample labels? Yes No 8. Samples in proper container/bottle? Yes No 9. Sample containers intact? Yes No 10. Sufficient sample volume for indicated test? Yes No 11. All samples received within holding time? Yes No 12. Temperature of rep sample or Temp Blank within acceptable limit? Yes No 13. Water - VOA vials have zero headspace? Yes No 14. Water - pH acceptable upon receipt? Example: pH > 12 for (CN,S); pH<2 for Metals	5. Sampler's name present in CO	OC?				Yes 🗹	Νο		
7. Chain of custody agrees with sample labels? Yes No No 8. Samples in proper container/bottle? Yes No No 9. Sample containers intact? Yes No No 10. Sufficient sample volume for indicated test? Yes No No 11. All samples received within holding time? Yes No NA 12. Temperature of rep sample or Temp Blank within acceptable limit? Yes No NA 13. Water - VOA vials have zero headspace? Yes No NA Image: Sample: pH > 12 for (CN,S); pH<2 for Metals	6. Chain of custody signed when	n relinquishe	ed and received?			Yes 🗹	No 🗌		
8. Samples in proper container/bottle? Yes No 9. Sample containers intact? Yes No 10. Sufficient sample volume for indicated test? Yes No 11. All samples received within holding time? Yes No 12. Temperature of rep sample or Temp Blank within acceptable limit? Yes No NA 13. Water - VOA vials have zero headspace? Yes No NA 14. Water - pH acceptable upon receipt? Example: pH > 12 for (CN,S); pH<2 for Metals	7. Chain of custody agrees with	sample labe	els?			Yes 🗹	No 🗌		
9. Sample containers intact? Yes No No 10. Sufficient sample volume for indicated test? Yes No No 11. All samples received within holding time? Yes No No Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No NA Image: Some sample or Temp Blank within acceptable limit? Yes No	8. Samples in proper container/b	oottle?				Yes 🗹	No 🗌		
10. Sufficient sample volume for indicated test? Yes ✓ No 11. All samples received within holding time? Yes ✓ No 12. Temperature of rep sample or Temp Blank within acceptable limit? Yes ✓ No NA 13. Water - VOA vials have zero headspace? Yes ✓ No NA ✓ 14. Water - pH acceptable upon receipt? Example: pH > 12 for (CN,S); pH<2 for Metals	9. Sample containers intact?					Yes 🗹	No 🗌		
11. All samples received within holding time? Yes No No 12. Temperature of rep sample or Temp Blank within acceptable limit? Yes No NA 13. Water - VOA vials have zero headspace? Yes No NA Image: Comparison of the provided space in the	10. Sufficient sample volume for	· indicated te	est?			Yes 🗹	No 🗌		
12. Temperature of rep sample or Temp Blank within acceptable limit? Yes No NA Image: NA	11. All samples received within h	nolding time	?			Yes 🗹	No 🗌		
13. Water - VOA vials have zero headspace? Yes No NA ✓ 14. Water - pH acceptable upon receipt? Example: pH > 12 for (CN,S); pH<2 for Metals	12. Temperature of rep sample of	or Temp Bla	nk within acceptal	ole limit?		Yes 🗹	No 🗌	NA	
14. Water - pH acceptable upon receipt? Example: pH > 12 for (CN,S); pH<2 for Metals	13. Water - VOA vials have zero	headspace	?			Yes	No 🗌	NA	\checkmark
15. Did the bottle labels indicate correct preservatives used? Yes No NA Image: Second	14. Water - pH acceptable upon Example: pH > 12 for (CN	receipt? I,S); pH<2 fe	or Metals			Yes 🗌	No 🗌	NA	
16. Were there Non-Conformance issues at login? Yes No NA ✓ Was Client notified? Yes No NA ✓	15. Did the bottle labels indicate	correct pres	servatives used?			Yes	No 🗌	NA	\checkmark
	16. Were there Non-Conformance Wa	ce issues at as Client no	ilogin? tified?			Yes 🗌 Yes 🗍	No 🗌 No 🗌	NA NA	✓

Comments:

Checklist Completed By:

мвс МЗС 11/15/2014

GESO GOLDEA STRIE DOURDHEMT	< WebShip > 800-322-5555 www	>>>> w.gso.com
Ship From: MEYNARD LARIN ASSET LABORATORIES 11060 ARTESIA BLVD., SUITE C CERRITOS CA 90703	Tracking #: 526152110	SDS
Ship To: MARLON CARTIN ATL INC 3151 W. POST RD LAS VEGAS, NV 89118	LVS LAS VEGAS	
COD: \$0.00	D89103A	
Reference: Delivery Instructions:		
TO HOLD FOR PICK UP Signature Type: SIGNATURE REQUIRED	30862973	rint Date : 11/14/14 16:38 PM
	F	Package 1 of 1
Send Label To Printer Print A	II Edit Shipment Finis	h

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value we allow is \$500. Items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value. **APPENDIX F:**

BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

Encon Solutions, Inc.

									Field	Borin	ng Log Sheet of
Locat	ion d	of Bo	ring:								Project: Boring No. MW-
			Liv	NC C	$\left \right $	Λ					Elegant Cleaners, Alamead Total Depth: 151
	*****************		<u> </u>		/ 1	Cos	915				Job No.1410097ESAIII Logged by: C. Olson
				2	/ ((1000		ŧ			Drilling Contractor: ECA
					200	Mυ)~}				Drill Rig Type: Dolly-Divect 19056
	Dr	-	11	2164		- {	•)	Drillers Name: Brent
C	10-	NM	<u>ን</u> ከ		ا سر خ)	7		JUS	()	Sampling Methods: Aco tute (mer
N	444	hih	ě						l		Hammer WT. N/A Drop N/A
							troi th				Start Time 0,00 Date
			}				1				Completed Time 11, 30 Date
							,		NT	S	Boring Depth: 151 Screen 71-15
											Casing Depth: 15' SAA 2/12 5'-15
											Water Depth: 591 Bentinite 21-5
				6				j.			Time: 10.15 Const $0-21$
			(se	che				Ste	· ·		Date: 11/12/13 3/14" Well 2", Rota
šet)			uch.	d Ü				bg	et)		Backfilled Time: Date: By:
h (fe		ø	ц Г	eive(litio			oca	L.		
Dept	ype	Slow	Ž.	Sece	ğ	ine T		Ъ ф	Dept		Conditions:
	F									17	Fill (2-2)!
Ŭ	1		No.	10	-	23		10		- 2 2	
	L		H	1.40		2			1.0		
									\$1 ⁹ ~		
									.4	2012/2012	
21	20			l					ann		SP-poorly graded sand, It. Olive brown
-	ST								Se -		12 CV SUN day 10050
									3.0 9 G		$\frac{ c_{\mathcal{F}} ^{2}}{ c_{\mathcal{F}} ^{2}} = \frac{ c_{\mathcal{F}} ^{2}}{ c_{\mathcal{F}} $
									6.2		
			V	1							
41	$\circ 0$			1,1		12		4			SP-poorly grudey, akyellauish brown
ŕ	7		3	ez (2		h	5.0		(INVR 416) Davi med donse - trace
											Silt-
									À		
									2		
									Цíг "Ľ		
1,0 *	2″]			11/					5 7.0		SM -Silty Send, dk yellowish brawn
,				[}]						111	110YRH/10), dump, meildense
			SV.								·
			43	3				٩,			
							-	M	V 9.0		DM-Same as above, wet
											·
									1 0.0		
						-			1		CM- Sque as above increasing
I				<u>i – ļ – </u>	L	1	I	L	1	ļļ	
											SIH
											۰

															-	Encon Solutions,	Inc.
									Field	Bori	ng	Log	Shee	et	of	2	
Loca	tion o	of Boi	ring:	,							Ţ	Project:		Во	ring No. /	$M_{W} - 1$	
			1	NA	01	10						Elegant Cleaners, Al	amead	Tot	al Depth: 19	51	
	10000000	25.7 × × × × × ×	••••••••••••••••••••••••••••••••••••••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			ورزيني وروي و	و خرمی مرسور سرو	(~~~dq			Job No.1410097	ESAIII Log	iged b	y: c.o	son	
				on ten tradució								Drilling Contracto	or: EC/	Α			
			Sale of the second	به فعود الأولى ويرو								Drill Rig Type:	Dolly	- D	inect R	osh	
			-	na "ik fiki" web							1	Drillers Name:	Bren	<u>+</u>		·	
S)tel	N'NS				.v = !	7				4	Sampling Metho	ds: <u>A</u> CS	etr	KLIN		
	yer	N ^P	77	3.el	- M	V	r				-	Hammer WT.	N/A	Dr	op N/A		
	Ŷ		+-		L	~		115	9		1	Start Time 10	.00	Da	te		
						1	$\leq \gamma$	0				Completed Time	11.30	Da	te		
						1			NTS	3	_	Boring Depth:	151		1402A	71-15	
			1								9	Casing Depth:	151	5	md 2/12	5-151	
											1	Nater Depth:	~91	R	entovitte	2	
			_	es)				tain			1	Time:	10:15	\underline{C}	event	0-5.	
			hes)	nch				S LO	□		-	Date:	11/12/13	3			
(feel			(înc	ed (ы			ärþ	(feel		1	Backfilled Time:	Dat	e:	By:	∿a;d	
pth	é	SWS	ven	cei⁄	nditi	ę		droc	pth		5	Surface Elev:	Dat	um:			
å	Ϋ́	ă	ā	Ř	<u></u>	Ē		£	å	14	_	Conditions:				· · · · · · · · · · · · · · · · · · ·	
10	21			62		h		1 hr				<u>SM - ></u>	ane a	es	abore	tess s	
	/			50		ž		1m	1.0							Vesyin	\checkmark
				¥					0°		4.					l	
									\mathcal{P}	12							
	- 0		52					·····	~		: - - -						
12	$\langle \chi $											SP-DAGE	LI DOL	10	lead	dly ylls	h hon
2									3.0			51-10	$\frac{1}{1}$		2 JAIN	, yn yns	
										-8	2	CIONK	4145),1	Me	d den	e, we	-
												·}				<u>-</u>	
													<u></u>			<u> </u>	
									5.0			V				uniter application of the	
]``		FIN	& Ba	551	na 6	151	
										1	ſ	1			0		
										1	ŀ					· · · · · · · · · · · · · · · · · · ·	
											┢						
									7.0	-	┢						
										4	Ļ					·····	
									1 9.0	1	ſ						
						-				1	ľ						
										1	ł					· · · · · ·	
									L.0.0	-	┠					······································	

• .

Sheet of Field Boring Log MW - 7Boring No. Project: Location of Boring: 01 Total Depth: Elegant Cleaners, Alamead Lmcoln Job No.1410097ESAIII Logged by: C. Olson Drilling Contractor: ECA denos it you 51 Drill Rig Type: ohn Jesse -Drillers Name: 5 Snoon 01 Sampling Methods: Hammer WT. KO3 Drop N/A 11:00 Mun Date L 17 Н Start Time 110 10 17 Date II 112 4 Completed Time 101-20 Screen 70' Boring Depth: NTS 01 Sciean 3.010 2 Casing Depth: 8'-20' Vin Sad ~121 Water Depth: Cenent 6-51 11:10 Hydrocarbon Stain Time: Received (inches) 81 112 Dentenilo Driven (inches) Date: A (feet) Depth (feet) Backfilled Time: Date: By: Condition Depth (Blows Datum: Surface Elev: **Lype** lĩme Conditions: 1.0 30 SP-poort draded sand ø 5.0 <u>dí</u> loose. 5 5 9 Б 0 E 181 SP 18 NO race o rav 105 11 7.0 9.0 No - Silly sand, dkyllsh bin (10 YR4 mp, med dense N ٥.0 إ ump. 18 18" 12" 2 sM 10

Encon Solutions, Inc.

1.5

Encon Solutions, Inc.

	Field Borir	ng Log Sheet 2 of 2
Location of Boring: Lincoln	Const Vent	Project: Boring No. M.W. ~ 2 Elegant Cleaners, Alamead Total Depth: 2.0 Job No.1410097ESAIII Logged by: c. Olson Drilling Contractor: ECA Drilling Contractor: ECA Drillers Name: John + DESSVE Sampling Methods: Subit + Seon Hammer WT. N/A Start Time 11.00 Date 11.12./14 Completed Time 12.15
Normalize Normalize Normalize Depth (feet) Image: state st	NTS STM STM Image: State of the state of	Boring Depth: 10 Screen 10, -70 Casing Depth: 20 Screen 0.010 Water Depth: -12 2/10 Scud & -20 Time: 11, 15 CONENT 0-51 Date: 11/12/14 bentanile 51-91 Backfilled Time: Date: By: Surface Elev: Datum: Conditions: Same as abev, med derve SP-Poorly graded Sond, 14 Olive DFM, (2.575/6), dense, frace Silt, wef End of Boriviy @ 201

									Field I	Bori	Encon Solutions, Inc.	
1		-4 12-			No. 1974 Anna Anto	-Coloristan					Project Radia No. $M(4) = 3$	
LOC	ation	01 B0 }	oring:		١						Flogent Cleaners Alement	
		l	-1	nce	ply						In No 1410097ESAUL Logged by: C. Olson	
			1	-2548-reading	Ì		~	Jan			Drilling Contractor ECA	
					1	Na	\$ C 2	3				6
			and the second	a	\downarrow	A.S.					Drillers Name: JONO + YESSTE	76
				10							Sampling Methode: Salit Srow	
	D	14		3				14. 19. 19.	2		Hammer WT N/A Dron N/A	<u>t</u>
	Nº.	,C.	L			\sim	N	Р.			Start Time 9:15 Date 11/12/14	
						al	10	bla			Completed Time 10:30 Date 11/12/14	Q(
			6			e			NTS		Boring Depth: 20' CaMON 0-5!	101
			ľ	1		Ē		Γ	I	T	Casing Denth: 201 REATING 51-31	17
											Water Depth: 12^{12} $2/12$ Sin c 8^{12} $2/12$	24
			1	<u>ش</u>			1	Ę.			Time: 9:30 Scrept 0.010	
			(Sé	che				Sta			Date: 11/12/14 Screan 10'-20'	
set)			nche	ц Ш				rbon	set)		Backfilled Time: Date: Bv'	
ر لو		Ø	i) us	eive(litio			00	19 19	5	Surface Flev: Datum:	
Dept	Уре Г	No No No	ž	Sec.	ğ	l me		T T T	Depl	3	Conditions:	
					Ĭ					E		
			1						╞			
									1.0	aland of the fights		
									▎▕	Constraints of the		
										and the second		
										and the second second		
									-53.0	a di secondo		
									9 4			
									Ý			
									╞	The second second		
				ļ				<u> </u>	5.0		St and the state of the state o	
5	10	۳	10.1			M			8		For ingraded same it jellowish brown	
	St		18	18		6.		1h	4		10 YR (0/4) fine Grain, loose, dry	
05		14							3		tarco a a p	
-									12-1		Jacob	
									7.0			
									╞			
									╞		ž	
											\$	
									J.9.0			
									s N			
											SM Silty Scort alle 10 march has	
		12				, So		2	0.0		LIDVR HILL COLOR IN A PERI	
						<u>م</u> .		M.	V	11	quivin The , The SANG, MED WEIL	
		~~	T I								MOIST	
	. '	5									*	

Encon Solutions, Inc.

									Field	Bo	orir	ng Log Sheet <u>2</u> of <u>2</u>
Loca	tion o	of Bo	ring:									Project: Boring No. MW - 3
			L	1/v	<u>l</u>	1					_	Elegant Cleaners, Alamead Total Depth:
~	1. S.											Job No.1410097ESAIII Logged by: C. Olson
												Drilling Contractor: ECA
)	. 06	<u>_</u>				
				2	1^{\prime}	100	A1					Drillers Name: John + tesse
	X	A		E.					١			Sampling Methods: Macrocore Subtit Spoon
	Nach	1.	121				1	γr	<i>ich</i>			Hammer WT. NA 14016 Drop N/A
					<u> </u>	N	1		. 7	>		Start Time 915 Date 11/12/14
								M	D. S			Completed Time 10 30 Date 11/12/14
			}				a		NTS	S		Boring Depth: 20' Convert 0-5'
												Casing Depth: 20' Benjonile 5'-81
												Water Depth: wiz' 2/2 Shind 8-70'
				(s				ain				Time: G:30 Screep 0.010
			les)	uche				n St				Date: 11/12/14 Screen 10'-20'
feet			inch	ij) po	Ę			arbo	feet)			Backfilled Time: Date: By:
Ť	പ	ş	en (eive.	ditic	e		20C	th (t			Surface Elev: - Datum: -
De	τŢ	BIO	ă	Rec	Š	ШЦ		Hyo	Dep	Τ		Conditions:
									1 10			
									A- 1.0			
									Ŵ			
									2 3.0			
									118	j		
									40.00			
										-		
									2 5.0	-		Sample Lost - wet Sands
17		19	181	0^{N}	B				3		н. ж.	· · · · · · · · · · · · · · · · · · ·
		18		Ť	¢۲			10	উঁগ			
16.4	ľ	28							0	-	2	
									170	ļ		
									A			
										-		·
											• •	
									2 9.0			
		T										
									200			
لسمح									2	-		

/08/2015 FLUSH-MOUNTED TRAFFIC-RATED VAULT COVER GROUND SURFACE Standard MW W-Traffic SLIP CAP TYPE OF SURFACE SEAL COncrete ANNULAR SEAL INTERVAL _3''-5' SURFACE SEAL TYPE OF ANNULAR SEAL DEAT COMENT 2:\Drawing Files\ENCON Solutions\ Standard Figures SANITARY SEAL INTERVAL _5'-8' TYPE OF SANITARY SEAL bentonite TYPE OF WELL CASING PVC SAND PACK INTERVAL 81-20 TYPE OF SAND PACK # 2/12 ANNULAR SEAL SCREEN INTERVAL 10'- 20' DESCRIPTION OF SCREEN 0.010"- Slotled WELL BLANK CASING (TYP.) DEPTH OF WELL _ 20.0 20.0' ANNULAR SEAL DEPTH OF BOREHOLE SANITARY SEAL SAND PACK WELL SCREEN (TYP.) MW-3 SUMP (IF APPLICABLE) ADDRESS: 1208 Lincoln Ave, Alamedu WELL CAP (TYP.) 20' PROJECT: ENCON Solutions, inc TOTAL DEPTH OF BOREHOLE Elegent Cleaners

C:Drewing Files/ENCON Solutions\ Standard Figures/Standard IAW W-Traffic Reted Cover - 01/08/201

APPENDIX G:

WELL DEVELOPMENT LOGS

Well I.D.	MW -	1		PAGE 2 O	F2	
Project #:	144 2	21- GRI		Client:	ENCON	Serlections
			î			
TIME	TEMP (F)	Hđ	Cond. (mS or (LS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
1312		Resume	purge u	/ Master	Pleso	
1313	66.9	7.55	403	63	1.1	
1314	68.4	7.36	425	781	1.2	
13:5	69.3	7.58	399	448	1.3	
3151	9.93	7.67	393	183	1-4	

 	-	-	1	 	 			-	-	-	-		-			-			_	-	
								1324	1323	1322	1321	1320	1319	1318	1317	.1316	1315	1314	1313	1312	TIME
								20.3	70.4	78.1	69.9	70.1	69.7	69.7	69.8	9.63	69.3	68.4	66.9		TEMP (F)
								7.73	7.72	7.72	7.71	7.71	17.71	7.71	7.69	7.67	7.58	7.36	7.55	Resume	pH
								382	383	384	385	386	387	388	390	393	399	425	403	purge u	(mS or (LS)
					•			20	22	45	27	50	49	72	88	183	448	781	63	/ Master	TURBIDITY (NTUs)
								2.2	2.1	2.0	1-9	1.8	1-7	1.6	1.5	1-4	1.3	1.2	1.1	fless	VOLUME REMOVED:
								TD- 15.34													NOTATIONS:
						*	- 2														

				If was note show	M Gratar	Did Well Dev
	16.5	142	591	6.68	66.9	1157
	15.0	238	617	6.69	66.9	1155
	13.5	411	628	6.72	66.7	1153
	12.0	932	662	6.74	66.7	1151
	10.5	21000	694	6.75	66.6	1149
	9-0	21000	208	6.78	66.6	1147
c	7.5	71000	012	6-83	66.6	(145
becoming less turbid	6-0	>1000	408	6.91	66.7	1143
on hard bottom	4.5	>1000	228	7.02	66.6	1141
	3.0	>1000	1130	7.17	66.5	1139
very turbid w/ silt	1.5	>1000	1299	7.22	66.1	1137
	Clex pump	Master 1	with	purging	Bein	1135
	N20min		iscen	Swappin	Beyin	010
. NOTATIONS:	VOLUME REMOVED:	TURBIDITY (NTUs)	(mS or uS)	pH	TEMP (F)	TIME
	lock	2" surge b	nent used	Other equipm		
		nou	lled Pump	Type of Insta		
Electric Submersible Positive Air Displacement	his Pump	p Peristal	Bailer Suction Pum		vice:	Purging De
gallons	I	d Volumes	Specified		Volume	1 Case
15.0		9	11	Х	5	1
		0	12" = 6.8		3/gal	231 = in
		17	$6^n = 1.4$		ameter (in.) 1416	d = di
		55	4" = 0.3		/ foot	where 12 = in
		9.2	$\frac{\text{Well dia.}}{2^{\prime\prime}} = 0.1$	F);	(d ² /4) x π} /231	Volume Cor {12 x
				ns:	al Notation	Addition
ICSS:	duct, thickn	If Free Pro		oed:	ot develop	Reason n
er 18,53	.95 Afte	Before 9	-61	After 19	19.57	Before
	Vater:	Depth to V			II Depth:	Total We
one) (2) 3 4 6	ieter: (circle	Well Diam		1-2	mu	Well I.D.
121/2014	loped: n	Date Deve		2	ar: G	Develope
ions	Encon Solut	Client:		-6121	: 14/121	Project #

Well I.D.	MW-2	34 Ur Duited insertitutiutistyck attroch	SALENAR DE LA	PAGE 2 OI	72	da no successo sensita Manania Manania successo e poder preside di consulta da consulta a successo e su de una
Project #:	14/121-	6201		Client:	hcon So	intime
TIME	TEMP (F)	pH	Cond. (mS or LS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
1159	66.9	6.67	584	100	18.0	
1201	66.7	6.67	255	65	19.5	
1203	66-8	6.64	550	49	21.0	
1205	66.9	6.65	533	35	22.5	
1207	66.7	6.64	520	30	24-0	
1209	66.7	6-63	514	29	25.5	
1211	66.7	6-64	693	26	27.0	0720-10.53/70-19.61
•						
						4
					-	
			-			

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	>1000 >1000 >1000 >1000 >1000 >1000 >1000	603	6.15	65.1	1047	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7001< 2001< 2001< 2001< 2001<	603	6.16			
volume REMOVED: NOTATIONS: REMOVED: NOTATIONS: REMOVED: NOTATIONS: REMOVED: NOTATIONS: 1.5 Very turbid w/ silt. 3.0 4.5 on hard bettern 0 4.5 on hard bettern 0 6.0 7.5 becoming less turbid 0 12.0 12.0 13.5	aalL saalL saalL saalL		1 31	64.9	1045	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2007200720072007	601	6.7.8	65.2	1043	
Image: Product of the product of the product of the product of the prime of the	100/2 200/2	615	6.80	65.3	1041	
Image: Product of the prime of the primage. The prime of the prime of the prime of the prime of	>100	676	6.84	65.2	1039	
VOLUME REMOVED: NOTATIONS: n REMOVED: NOTATIONS: h 2.0 1.5 Very Hubid w/ Silt. 3.0 4.5 on hard bottern 0 6.0 7.5 becoming less Hurbid	>1000	765	6.81	65.1	1037	
Plack VOLUME REMOVED: NOTATIONS: NOTATI		777	6.79	65.2	1035	
Image: Provide provide provide provide provided in the provided in the provide provided in the provide provided in the provid	>400	790	6.81	65.2	1033	
Image: Provide and the provide of the provided in the provide of the provide of the prime of the prima of the prime of the prime of the prime of the prime of	21000	803	6.92	65.2	1031	
Image: Province of a control of a point preparation Preparation Image: Preparation REMOVED: Notations: Preparation Preparation Notations: Preparation Notation Preparation Notation	71600	9448	6.92	65.3	10201	
Levente an Displacement Volume Removed: NOTATIONS:	>1000	1929	6.57	65.1	1027	
P block VOLUME REMOVED: NOTATIONS:	Master f	en with	wiging to	Beyn p	1025	
Image: Second Control of the second control of th	~ 20 mi	well.	Scoabbing	Reyin	0001	
block	TURBIDIT (NTUs)	(mS or (LS)	pH	TEMP (F)	TIME	
istallic Runp n Docitive Air Displacement	p peri noru 2" surye	Suction Pum alled Pump ment used	Type of Inst Other equip			
Flexe Electric Submersible	X master	Bailer		vice:	Purging De	
= gallons	d Volumes	Specifie	. *	Volume	1 Case	
141	0		4	2	1	
	47 08 87	6" = 1. 10" = 4. 12" = 6.		ameter (in.) 1416 3/gal	α = αι π = 3. 231 = in	
	5 5	4 1 1		/ foot	12 = in	
	3 6 G	2" = 0.	ų.	(d ² /4) x π} /231	Volume Con {12 x	
			ns:	al Notation	Additiona	
Product, thickness:	If Free P)ed:	ot develop	Reason n	
10.09 After 11.50	Before	18.	After 19	19.77	Before	
Water:	Depth to			II Depth:	Total We	
ameter: (circle one) 2 3 4 6	Well Dia		6	mw-	Well I.D.	
veloped: 11/21/ 2014	Date De		~	II: Cal	Develope	
Encon Solutions	Client:		- GRI	: 141121	Project #	
Well I.D.	MW-3			PAGE 2 O	F2	
------------	----------	--------	---------------------	---------------------	--------------------	-------------------
Project #:	141121	- 6121		Client:	ENCON So	Un times
TIME	TEMP (F)	pH	Cond. (mS or/LS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
bhal	65.1	6.72	493	242	18.0	
1501	65.2	6.72	470	109	19.5	
1053	65.2	6.73	46.2	67	21.0	
1055	64.7	6.72	2517	42	22.5	11-11.50 70-19.81

WELL DEVELOPMENT DATA SHEET

÷

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	IE Encon @ E	legent Cleaner	s - Alameda, A	PROJECT NU	MBER 14/171- Co	RI	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Myron L Ulframeter II	6219985	11/21/2014 @ 0915	3900 105	3900	yes	17.2%	CaR
			7.0 10.0 4.0 pH	7.00 10.00 3,98	4 25	17.1%	GR
			-				

APPENDIX H:

SURVEY DATA

Mid Coast Engineers

Civil Engineers and Land Surveyors

70 Penny Lane, Suite A - Watsonville, CA 95076 phone: (831) 724-2580 fax: (831) 724-8025 e-mail: lee@midcoastengineers.com Lee D. Vaage Land Surveyor

Jeff S. Nielsen Land Surveyor

December 22, 2014

Cora Olson Encon Solutions 3255 Wilshire Boulevard #1508 Los Angeles, CA 90010

Re: Elegant Cleaners, 1208 Lincoln Avenue, Alameda, California; ENCON Project, MCE Job No. 14157

Dear Ms. Olson,

As you requested, on December 19 we surveyed three monitoring wells located at the referenced site. Our findings are shown on the attached sheets, expressed in State Plane Coordinates and Latitude/Longitude.

A notch was cut in the north rim of the PVC casing (toc) and a cross chiseled in the north rim of the standard box (tob).

Measurements were obtained from conventional survey techniques in combination with GPS techniques (Code CGPS), using control points HT0882 (941 4750 TIDAL 7) and HT3553 (941 4750 R TIDAL) as published by NGS/NOAA and listed on their website. Latitude and Longitude as shown were determined from the California Coordinate System, Zone 3, NAD 83 Datum, 2010.00 EPOCH. The accuracy range of the reported information is +/- 1cm. GPS equipment is the Leica iRover system (Code LIROV).

The benchmark used for this survey is HT0882, as mentioned above, a bench mark disk set in a concrete seawall 59 feet west of the center of 5^{th} Street and north of the extended center of Atlantic Avenue in Alameda. Elevation = 9.13 feet, NAVD 88 datum.

Please let me know if you have questions or need additional information.

Yours truly,

Lee D. Vaage

	A	В	С	D	E	F	G	Н	Ι	J	K	L
1	ELEGANT CLE	ANERS										
2	1208 Lincoln A	venue										
3	Alameda, Calif	ornia										
4												
5	ENCON Project	t										
6												
7	Project : 14157											
8	User name	MCE	Dat	e & Time 1	10:27:59 AM 12	/22/2014						
9	Coordinate	System	US S	tate Plane 1	983 Zone	California Zone 3	0403					
10	Project Date	um NAD	1983	(Conus)								
11	Vertical Dat	um NAV	′D 88									
12	Coordinate	Units US	S surv	vey feet								
13	Distance Ur	nits US s	survey	/ feet								
14	Elevation U	nits US	surve	y feet								
15												
16		MW-1	MW	12/19/2014	37.7744218	-122.2640508	CGPS	NAD83	1	Mid Coast Engineers	LIROV	top of casing
17		MW-2	MW	12/19/2014	37.7743476	-122.2640830	CGPS	NAD83	1	Mid Coast Engineers	LIROV	top of casing
18		MW-3	MW	12/19/2014	37.7743477	-122.2639439	CGPS	NAD83	1	Mid Coast Engineers	LIROV	top of casing

	A	В	C	D	E	F	G	Н		J
1	ELEGANT CLE	ANERS								
2	1208 Lincoln A	venue								
3	Alameda, Calif	iornia								
4										
5	ENCON Project	t								
6										
7	Project : 14157									
8	User name	MCE	Date & Tin	ne 10	:27:59 A	\M 1	2/22	/2014		
9	Coordinate	System	US State Pla	ane 198	<u>3</u> Z	one	Ca	alifornia Zone 3 0403		
10	Project Date	um NAD	1983 (Conu	s)						
11	Vertical Dat	um NA∖	/D 88							
12	Coordinate	Units US	S survey feet							
13	Distance Ur	hits US s	survey feet							
14	Elevation U	nits US	survey feet							
15										
16		MW-1	12/19/2014	24.21	CGPS	88	0.5	Mid Coast Engineers	-0.18	BM NGS HT0882 EL=9.13 FEET
17		MW-2	12/19/2014	26.28	CGPS	88	0.5	Mid Coast Engineers	-0.40	BM NGS HT0882 EL=9.13 FEET
18		MW-3	12/19/2014	26.51	CGPS	88	0.5	Mid Coast Engineers	-0.32	BM NGS HT0882 EL=9.13 FEET

ELEGANT CLEANERS 1208 Lincoln Avenue Alameda, California

ENCON Project

Project : 14157 User name MCE Date & Time 10:27:59 AM 12/22/2014 Coordinate System US State Plane 1983 Zone California Zone 3 0403 Project Datum NAD 1983 (Conus) Vertical Datum NAVD 88 Coordinate Units US survey feet Distance Units US survey feet Elevation Units US survey feet

Point Number	Latitude	Longitude	Elevation	Description
13	37.774421760°N	122.264050788°W	24.21	MW-1toc
14	37.774421578°N	122.264051569°W	24.39	MW-1tob
9	37.774347610°N	122.264083045°W	26.28	MW-2toc
10	37.774347813°N	122.264083943°W	26.68	MW-2tob
11	37.774347679°N	122.263943903°W	26.51	MW-3toc
12	37.774347940°N	122.263944946°W	26.83	MW-3tob

ELEGANT CLEANERS 1208 Lincoln Avenue Alameda, California

ENCON Project

Project : 14157 User name MCE Date & Time 10:27:59 AM 12/22/2014 Coordinate System US State Plane 1983 Zone California Zone 3 0403 Project Datum NAD 1983 (Conus) Vertical Datum NAVD 88 Coordinate Units US survey feet Distance Units US survey feet US survey feet Elevation Units Northing Easting Description Point Number Elevation

13	2109251.53	6051844.43	24.21	MW-1toc
14	2109251.47	6051844.20	24.39	MW-1tob
9	2109224.71	6051834.60	26.28	MW-2toc
10	2109224.79	6051834.34	26.68	MW-2tob
11	2109223.98	6051874.81	26.51	MW-3toc
12	2109224.08	6051874.51	26.83	MW-3tob

APPENDIX I:

STANDARD OPERATING METHODS:

SOIL GAS SAMPLING AND ANALYSIS

Soil Gas Sampling – Standard Operating Procedures Encon Solutions, Inc. December 2012

Equilibration Time

Subsurface conditions are disturbed during probe installation. To allow for the subsurface to equilibrate back to representative conditions, the following equilibration times are observed before proceeding with soil gas sampling:

1. For soil gas probes installed with the direct-push method, purge volume test, leak test and soil gas sampling will not be performed for at least two hours following soil gas probe installation;

2. For soil gas probes installed with hollow stem or hand auger drilling methods, purge volume test, leak test and soil gas sampling will not be performed for at least 48 hours after soil gas probe installation;

3. For soil gas probes installed with a combination of hand auger drilling or hollow stem auger and direct push methods, purge volume test, leak test and soil gas sampling will not be performed for at least two hours following vapor probe installation provided that the probe tip is not less than five feet (vertically or laterally) from the point where hollow-stem or hand-auger equipment was used. If the probe tip is located with this five-foot distance, purge volume test, leak test and soil gas sampling will not be performed for at least 48 hours after soil gas probe installation.

Soil Gas Assembly Tests

Shut-in, leak, and purge volume tests will be performed before collecting soil gas samples after the soil gas probe has been installed and properly equilibrated.

Shut-In Test

Prior to purging or sampling, a shut-in is be performed on each probe to check for leaks in the above-ground sampling system. The test is performed as follows:

• Assemble the above-ground valves, lines and fittings downstream from the top of the probe.

• Evacuate the system to an approximate measured vacuum of about 100 inches of water using a glass or plastic syringe or a vacuum pump.

• If a passivated stainless steel canister is used (i.e. EPA TO-15), the test is conducted while the sampling canister is attached with its valve in the closed position.

• Observe the vacuum gauge connected to the system for at least one minute. If there is any obvious loss of vacuum, the fittings are adjusted until the vacuum in the sample train does not noticeably dissipate.

• After the shut-in test is validated, the sampling train should not be altered.

Leak Test

A leak test is be performed for each probe to evaluate whether atmospheric air is introduced into the soil gas sample during the collection process. Atmospheric leakage may result in an underestimation of actual site contaminant concentrations or, alternatively, may introduce external contaminants into samples.

A leak test is performed for soil gas probes each time a soil gas sample is collected to evaluate the integrity of the sample using a liquid tracer (2-propanol or other appropriate compound). The liquid tracer compound is applied to towels or other clean adsorbent material and placed around the connections in the sampling train in order to evaluate potential leaks of ambient air into the sampling train. The liquid tracer will not be directly sprayed or poured onto a fitting, but rather applied to a towel and placed near the connection. Towels with the liquid tracer will be placed on the ground adjacent to the probe to evaluate soil column and probe construction breakthrough. The leak check compound selected should not be a suspected site-specific contaminant. Seal integrity is confirmed by analyzing the soil gas sample for the tracer compound.

Liquid leak check compounds are included in the laboratory analyte list. The laboratory reports quantify and annotate all detections of the leak check compound. If the concentration of the leak check compound is greater than or equal to 10 times the reporting limit for the target analyte(s), then probe corrective action is necessary. A soil gas probe should be decommissioned if the leak cannot be corrected. Replacement soil gas probes should be installed at least five feet from the location where the original soil gas probe was decommissioned due to a confirmed leak.

Purge Volume Test

A purge volume test is performed to ensure that stagnant air is removed from the sampling system and to ensure that samples are representative of subsurface conditions. The purge volume test is performed after the shut-in test and leak test. Site-specific probe purging and sample volume calibrations will be initially performed to evaluate the appropriate volume of gas to be purged from each probe prior to sample collection. This will be done by performing time-series sampling of at least one probe at each site to evaluate trends in soil gas concentrations as a function of purge volume. The test is normally performed on a probe located near the contaminant source zone and in a lithologic unit where soil gas concentrations are anticipated to be elevated (if known). The purge volume test is performed by collecting and analyzing a sample for target compounds after removing one, three and 10 purge volumes. The purge volume test samples are analyzed with the same analytical method as the constituents of concern. An example purge volume calculation spreadsheet is attached as Figure 2.

One probe purge volume includes the following volumes:

- The internal volume of tubing;
- The void space of the sand pack around the probe tip; and,
- The void space of the dry bentonite in the annular borehole space.

Sample containers are not included in the purge volume calculation except when non-evacuated glass bulbs are used. In those instances, the volume of the non-evacuated glass bulbs are added to the purge volume to account for mixing and dilution of gasses inside the glass bulb. The data 4

set includes the purge volume test as well as the flow rate, vacuum exerted on the formation (if any), and duration of each purge step.

Soil Gas Sample Collection

A battery-operated vacuum pump set at a flow rate of either 100 or 200 milliliters per minute (mL/min) is used for soil gas sampling. Flow rates between 100 to 200 mL/min and vacuums less than 100 inches of water are maintained during purging and sampling to minimize stripping (partitioning of vapors from pore liquids to soil gas), to prevent ambient air from diluting the soil gas samples and to reduce variability between samples. Maintaining these flow rates and vacuums will increase the likelihood that representative samples will be collected. A flow rate greater than 200 mL/min may be used when purging times are excessive, such as for deep wells with larger diameter boreholes or tubing. However, a vacuum of 100 inches of water or less will be maintained during sampling whenever a higher flow rate is used.

Soil gas samples will be collected from probes using the soil gas sampling system as shown in Figure 1. The soil gas sampling system is constructed of stainless steel, glass, NylaflowTM, and TeflonTM components. Instrumentation associated with the sampling system will be tested using the shut-in and leak testing methods described in Sections 3.2.1 and 3.2.2 above. After probe purging, soil gas samples are withdrawn from the moving sample stream using a clean glass syringe equipped with a gas-tight valve. Immediately following collection, the samples are loaded into the purge and trap system for analysis by EST's California ELAP Certified Mobile Laboratory using EPA Method 8260B (GC/MS) modified for soil gas.

Soil Gas Probe Abandonment or Semi-Permanent Completion

When soil gas sampling is completed, the tubing can either be removed or can remain in-place for subsequent sampling. If the abandonment method requires tube removal, the sample tubing will be removed and the remaining void will be filled with hydrated bentonite until slightly below grade. The remaining depression will be filled with concrete patch material and finished flush with grade. If it is desired to leave the tubing in-place for subsequent sampling, a small man-way cover can be installed at the surface to protect the probe. In this instance, the sample tubing will remain as a semi-permanent soil gas monitoring point, unless otherwise specified by the project manager.

Summary of Soil Gas Sample Analysis Methods and Procedures *Soil Gas Samples Analyzed for VOCs by EPA Method 8260B*

Soil gas samples will be analyzed by EPA Method 8260B (GC/MS) using one of EST's California ELAP Certified Mobile Laboratories (ELAP Certification Numbers 2772, 2773 and 2767) for target volatile organic compounds (VOCs) specified by the project manager. Reporting limits for the target compounds will range from 0.01 to 1.0 micrograms per liter (μ g/L) of gas depending on data quality objectives except when compound concentration exceeds the initial calibration range. If this occurs, the sample will be diluted using a smaller volume, which will result in raised reporting limits for the analysis.

A series of Quality Assurance/Quality Control (QA/QC) analyses will be performed prior to, during, and following the analysis of the soil gas samples. A summary of these QA/QC analyses is shown in Table 1 and each are described below.

Table 1

SUMMARY OF QUALITY ASSURANCE/QUALITY CONTROL ANALYSES FOR SOIL GAS SURVEYS

DESCRIPTION	FREQUENCY	ACCURACY/ PRECISION GOAL
Initial Multi-Point Calibration	Prior to the beginning of the soil gas	20, 30% RSD (1)
	survey.	
Continuing Calibration	Mid-level calibration run for each	<u>±15, ±25%</u> D (2)
Verification (CCV)	analytical batch or once every 12 hours.	
Initial Calibration Verification	Need only to be analyzed after the initial	±15, ±25% D (3)
(ICV) (14 Target Compounds)	multi-point calibration. If acceptable, not	
	needed again or until next multi-point	
	calibration is necessary.	
Laboratory Control Sample (LCS)	After daily calibration check (optional).	Laboratory-generated control limits (4)
End of Run Calibration Check	At the end of the day if all samples from	At least 50% recovery (5)
	that day of analysis show non-detect (ND)	
	result (optional)	
Method Blank	One per batch.	<rl 125%<="" 75="" compounds,="" of="" target="" td="" to=""></rl>
		recovery of surrogate compounds (6)
Equipment Blank	One per batch.	<rl 125%<="" 75="" compounds,="" of="" target="" td="" to=""></rl>
		recovery of surrogate compounds (6)
Duplicate Samples	One per batch.	$RPD \le 50\%$ for all detected analytes
Replicate Samples	One per batch	RPD \leq 50% for all detected analytes (7)

%RSD = Percent Relative Standard Deviation calculated based on the initial multi-point calibration.

%D =Percent Difference between the response factor obtained from the LCS, the daily ICV, and the average response factor initially calculated based on the multi-point calibration.

RL =Reporting Limit.

RPD =Relative Percent Difference.

(1) The %RDS goal for the initial multi-point calibration will be 20 percent for all compounds except for Dichlorodiflouromethane (Freon®-12, Vinyl Chloride (VC), Chloroethane (CE),

Trichlorofluoromethane (Freon®-11, and 1,1,2-Trichloro-trifluoroethane (Freon®-113) for which the % RSD goal is 30 percent.

(2) The %D goal for the daily CCV will be ± 15 percent for all compounds except for Freon®-12, Vinyl Chloride, Chloroethane, Freon®-11, and Freon®-113 for which the %D goal is ± 25 percent.

(3) The %D goal for the ICV will be ± 15 percent for all compounds except for Freon®-12, Vinyl Chloride, Chloroethane, Freon®-11, and Freon®-113 for which the %D goal is ± 25 percent.

(4) The %D goal for the initial laboratory control standard are laboratory-generated for all compounds. (5) A LCS at the detection limit concentration is analyzed. The recovery for each compound must be at least 50 percent.

(6) A method blank and equipment blank sample will be analyzed using ambient air. If volatile organic compounds (VOCs) are not detected, the ambient air sample will represent the background sample and syringe blank. If VOCs are detected in the ambient air sample, a syringe blank will be analyzed using ultra-high-purity helium or nitrogen gas.

(7) The ability to run replicate sample analysis is dependent on sample volume. Replicates are generally limited to samples collected in glass bulbs. Insufficient sample volume exists for samples collected in glass syringes.

Surrogate Compounds

Three (3) surrogate compounds will be added to all analysis runs. Surrogate compound concentrations will be within the calibration range. The percent recovery of the surrogate compounds will be calculated and reported with soil gas sampling results. The acceptance goal for surrogate recovery is $\pm 25\%$ difference from the true concentration of the surrogate compounds. Surrogate compounds added to each sample analysis run will include dibromofluoromethane, toluene-d8, and 4-bromofluorobenzene, each at a concentration of 12.5 μ g/L.

GC/MS Used for Soil Gas Analysis

The GC/MS used for soil gas analysis will be calibrated using high-purity solvent-based standards obtained from certified vendors. Standards are typically prepared in high-purity methanol solvent. Calibration will be performed using solvent-based standards at varying concentration levels. If necessary, stock solvent-based standards will be diluted to an appropriate concentration. Diluted standards will be prepared by introducing a known volume of stock solvent-based standard into a known volume of high-purity solvent.

Initial GC/MS Calibration

Initial GC/MS calibration will be performed for volatile organic compounds (VOCs) prior to the soil gas survey. The GC/MS will be calibrated using multiple standard runs to establish a multipoint

calibration curve. The lowest standard will not be higher than 5 times the method reporting limit. The percent relative standard deviation (% RSD) of the response factor (RF) for the VOC target compounds must not exceed 20% except for trichlorofluoromethane (Freon®-11), dichlorodifluoromethane (Freon®-12), trichlorotrifuloroethane (Freon®-113), chloroethane (CE), and vinyl chloride (VC) which must not exceed 30% RSD. Initial calibration will also meet the Calibration Check Compounds (CCC)/System Performance Check Compounds (SPCC) requirements for EPA Method 8260B. Identification and quantification of compounds in the field will be conducted under the same analytical conditions as for the initial calibration.

Daily Calibration (Continuing Calibration Verification)

The calibration curve for each compound of interest will be verified with each analytical batch, or once every 12 hours for EPA Method 8260B. Continuing calibration verification (CCV) is performed by analyzing the mid-point calibration standard. The RF of each compound (except for Freon®-11, Freon®-12, Freon®-113, CE, and VC) must be within $\pm 15\%$ difference from the ARF of the initial calibration. The RF for Freon®-11, Freon®-12, Freon®-113, CE, and VC must be within $\pm 25\%$ difference from the ARF of the initial calibration in order to assume the calibration curve is valid. The CCV is performed at a mid-level calibration run for each analytical batch or once every 12 hours.

Initial Calibration Verification

A Initial Calibration Verification (ICV) will consist of a mid-range concentration of the initial calibration using the calibration standard solution. The RF of each compound (except for Freon®-11, Freon®-12, Freon®-113, CE, and VC) must be within ±15% difference from the ARF of the initial calibration. The RF for Freon®-11, Freon®-12, Freon®-113, CE, and VC must be within ±25% difference from the ARF of the initial calibration. ICV will also meet the Calibration Check Compounds (CCC)/System Performance Check Compounds (SPCC) requirements for EPA Method 8260B. Daily ICV will be performed prior to the first sample analysis of the day. Daily ICV also will be performed for compounds detected at a particular location to ensure accurate quantification. If results are acceptable, an additional ICV is not required until the next multi-point calibration is necessary.

Laboratory Control Sample (LCS) from a Source or a Lot

A laboratory control sample (LCS) from a source or a lot number other than the initial calibration standard will be analyzed to verify the true concentration of the initial calibration standard. The response factor (RF) for each compound must be within $\pm 15\%$ difference from the average response factor (ARF) of the initial calibration except for Freon®-11, Freon®-12, Freon®-113, CE, and VC, which must be within $\pm 25\%$ difference from the ARF of the initial calibration. This analysis for EPA Method 8260B is equivalent to the CCV and is redundant. This analysis is optional.

End of Run Calibration Check

A LCS can be analyzed at the reporting limit concentrations should the soil gas samples show no detections of volatile organic compounds. The recovery for each compound must be at least 50% of the true concentration of the LCS. If these criteria are not met, an additional LCS will be analyzed to satisfy these criteria. EPA Method 8260B does not require this analysis because the instrument is monitored by internal standards which are added to each sample. This analysis is optional and based on discretion of the project manager and DQOs.

Blank Samples

The syringes used for soil gas sample collection will be filled with ambient air or high-purity carrier-grade gas from a compressed gas cylinder. The ambient air or high-purity gas will be analyzed daily before running samples. The blank injection will serve to detect contamination of the syringe to be used for sampling and verify the effectiveness of equipment decontamination procedures.

Duplicate and Replicate Samples

Duplicate sample analysis evaluates the reproducibility (precision) of the sampling process. Replicate sample analysis evaluates the reproducibility (precision) of the laboratory's analytical ability and is used to estimate sample variability. The ability to run replicate sample analysis is dependent on sample volume. Replicates are generally limited to samples collected in glass bulbs. Insufficient sample volume exists for samples collected in glass syringes. Duplicate samples and replicate samples (depending on sample volume) will be analyzed at a minimum of one per batch of samples. Duplicate samples will be collected in a separate sample container at the same location and depth immediately after the original sample.

Decontamination Procedures

Soil gas sampling syringes and applicable fittings will be decontaminated by placing the equipment in the gas chromatograph oven and heated at a temperature ranging from 100 to 120 degree centigrade (°C) for a minimum of 30 minutes. The syringes will be allowed to cool to ambient temperature before use on the next sampling location.

Calculation of Soil Gas Probe Purge Volume Parameter Enter Values

Tubing Length (Feet) 5 Tubing ID (Inches) Ent. 0 if Not Used 0.1875 Glass Bulb Volume (cc) Enter 0 if Not Used 0 Borehole Diameter (Inches) 1.625 Sand Pack Length (Feet) 1 Dry Bentonite Length (Feet) 0.5 Porosity Sand (%) 0.4 Porosity Bentonite (%) 0.5 Results Tubing Volume $(In_3) = 1.7$ Tubing Volume (cc) = 27.1 Glass Bulb Volume (In_3) = 0.0 Glass Bulb Volume (cc) = 0.0Sand Pore Volume $(In_3) = 10.0$ Sand Pore Volume (cc) = 163.1 Bentonite Pore Volume (In₃) 6.2 Bentonite Pore Volume (cc) 102.0 1 Purge Volume (In₃)= 17.8 1 Purge Volume (cc) = 292.23 Purge Volumes $(In_3) = 53.5$ 3 Purge Volumes (cc) = 876.710 Purge Volumes $(In_3) = 178.3$ 10 Purge Volumes (cc) = 2922.3 Time for 1 PV 100 cc/min (mn) = 2.9Time for 1 PV 200 cc/min (min) = 1.5Time for 3 PV 100 cc/min (min) = 8.8 Time for 3 PV 200 cc/min (min) = 4.4 Time for 10 PV 100 cc/min (min) = 29.2 Time for 10 PV 200 c/min (min) = 14.6 Note: Purge volume calculations and times include one glass bulb volume (if used).

APPENDIX J:

LABORATORY REPORTS

AND

CHAIN-OF-CUSTODY DOCUMENTATION:

SOIL VAPOR SAMPLES

TEG Northern California Inc.

3 December 2014

Mr. Tom Lindros Encon Solutions, Inc. 3255 Wilshire Blvd., Suite 1510 Los Angeles, CA 90010

SUBJECT: DATA REPORT - Encon Solutions, Inc. Project # 1410097 Elegant Cleaners / 1208 Lincoln Avenue, Alameda, California

TEG Project # 41119F

Mr. Lindros:

Please find enclosed a data report for the samples analyzed from the above referenced project for Encon Solutions, Inc. The samples were analyzed on site in TEG's mobile laboratory. TEG conducted a total of 9 analyses on 9 soil vapor samples.

-- 9 analyses on soil vapors for volatile organic hydrocarbons by EPA method 8260B.

The results of the analyses are summarized in the enclosed tables. Applicable detection limits and calibration data are included in the tables.

TEG appreciates the opportunity to have provided analytical services to Encon Solutions, Inc. on this project. If you have any further questions relating to these data or report, please do not hesitate to contact us.

Sincerely,

Mark Jerpbak Director, TEG-Northern California

Encon Solutions, Inc. Project # 1410097 **Elegant Cleaners** 1208 Lincoln Avenue Alameda, California

TEG Project #41119F

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapor

SAMPLE NUMBER:		Syringe	VW-1	VW-2	VW-2	VW-2
SAMPLE DEPTH (feet)		Dialin	5.0	5.0	50	5.0
PURGE VOLUME			3	1	3	10
COLLECTION DATE:		11/19/14	11/19/14	11/19/14	11/10/14	11/10/14
COLLECTION TIME:		09-19	10.57	09:45	10:06	10.33
DILUTION FACTOR:		1	1	1	1	1
	RL					
Dichlorodifluoromethane	100	nd	nd	nd	nd	nd
Vinyl Chloride	100	nd	nd	nd	nd	nd
Chloroethane	100	nd	nd	nd	nd	nd
Trichlorofluoromethane	100	nd	nd	nd	nd	nd
1,1-Dichloroethene	100	nd	nd	nd	nd	nd
1,1,2-Trichloro-trifluoroethane	100	nd	nd	nd	nd	nd
Methylene Chloride	100	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	nd
1,1-Dichloroethane	100	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	100	nd	nd	nd	nd	nd
Chloroform	100	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nd	nd	nd	nd	nd
Carbon Tetrachloride	100	nd	nd	nd	nd	nd
1,2-Dichloroethane	100	nd	nd	nd	nd	nd
Benzene	80	nd	nd	nd	nd	nd
Trichloroethene	100	nd	nd	nd	nd	nd
Toluene	200	nď	nd	nd	nd	nd
1,1,2-Trichloroethane	100	nd	nd	nd	nd	nd
Tetrachloroethene	100	nd	450	12000	13000	12000
Ethylbenzene	100	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	100	nd	nd	nd	nd	nd
m,p-Xylene	200	nd	nd	nd	nd	nd
o-Xylene	100	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	100	nd	nd	nd	nd	nd
1,1 Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (Toluene-d8) Surrogate Recovery (1,4-BFB)		98% 93% 86%	98% 96% 90%	99% 94% 84%	97% 93% 82%	99% 94% 86%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Leif Jonsson

page 1

teg

Encon Solutions, Inc. Project # 1410097 Elegant Cleaners 1208 Lincoln Avenue Alameda, California

TEG Project #41119F

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapor

SAMPLE NUMBER:		VW-3	VW-3	VW-4	VW-5	SS-1
SAMPLE DEPTH (feet): PURGE VOLUME: COLLECTION DATE:		5.0 3 11/19/14	5.0 3 11/19/14	5.0 3 11/19/14	5.0 3 11/19/14	0.25 3 11/19/14
COLLECTION TIME:		11:20	11:20	12:01	12:23	12:50
DILUTION FACTOR:	RL	1	1	1	1	1
Dichlorodifluoromethane	100	nd	nd	nd	nd	nd
Vinyl Chloride	100	nd	nd	nd	nd	nd
Chloroethane	100	nd	nd	nd	nd	nd
Trichlorofluoromethane	100	nd	nd	nd	nd	nd
1,1-Dichloroethene	100	nd	nd	nd	nd	nd
1,1,2-Trichloro-trifluoroethane	100	nd	nd	nd	nd	nd
Methylene Chloride	100	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	nd
1,1-Dichloroethane	100	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	100	nd	nd	nd	nd	nd
Chloroform	100	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nd	nd	nd	nd	nd
Carbon Tetrachloride	100	nd	nd	nd	nd	nd
1,2-Dichloroethane	100	nd	nd	nd	nd	nd
Benzene	80	nd	nd	nd	nd	nd
Trichloroethene	100	nd	nd	nd	nd	nd
Toluene	200	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	100	nd	nd	nd	nd	nd
Tetrachloroethene	100	9300	10000	4600	930	7000
Ethylbenzene	100	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	100	nd	nd	nd	nd	nd
m,p-Xylene	200	nd	nd	nd	nd	nd
o-Xylene	100	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	100	nd	nd	nd	nd	nd
1,1 Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (Toluene-d8) Surrogate Recovery (1,4-BFB)	5.2	104% 96% 92%	95% 95% 90%	96% 93% 82%	97% 92% 86%	95% 92% 95%

'RL' Indicates reporting limit at a dilution factor of 1

'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Leif Jonsson

page 2

Encon Solutions, Inc. Project # 1410097 Elegant Cleaners 1208 Lincoln Avenue Alameda, California

TEG Project #41119F

CALIBRATION DATA - Calibration Check Compounds

	Vinyl Chloride	1,1 DCE	Chloroform	1,2 DCP	Toluene	Ethylbenzene
Midpoint	10.0	10.0	10.0	10.0	10.0	10.0
Continuing Cali	ibration - Midpoint					
11/19/14	8.6	10.0	10.0	9.9	9.5	10.2

APPENDIX K:

GROUNDWATER WELL MONITORING AND PURGING RECORDS

		1 3/2	5		1	1	T		 				
										MW-3	MW -2	MW -1	Well ID
										1180	0180	0306	Time
										2	2	3/4	Well Size (in.)
													Sheen / Odor
													Depth to Immiscible Liquid (ft.)
													Thickness of Immiscible Liquid (ft.)
													Volume of Immiscibles Removed (ml)
										10.00	9,82	7.82	Depth to water (ft.)
•										19.90	19.65	15.32	Depth to well bottom (ft.)
								•		4			Survey Point: TOB or
													Notes

WELL GAUGING DATA

Project # 141125-201

Date 11/25/14

Client ENCON SOLUTIONS

1

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

www.blainetech.com

MANTDEE 111	C Intan	·	.A	1.				
Number 4	1125-DCI	V FUE, I	HLANEVA	Techr	nician	DC		
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain	Well Not Inspected (explain	Repair Orde Submitted
MW-1	\times				NL	(MOIDA	(writer	
MW-2	\times				NL			
Mw-3	×		1		NI			
								Τ
								T
IOTES:								Γ
		-						
BLAINE TECH SERVICES, ING	0	AN JOSE SI	ACRAMENTO	I DS ANGELES		SEATTIE		www.hlainplerh.com

mV	Post-purge:	mV		e-purge:	1): Pr	O.R.P. (if req'o
7/ _{Sw}	Post-purge:	mg/L		e-purge:	. Pr	D.O. (if req'd)
	Other:	Oxygenates (5)	MTBE TPH-D	BTEX	TPH-G	Analyzed for:
	. (if applicable): ·	Duplicate I.D	@ Time		licable)	EB I.D. (if app
OC.	Other: SER O	Oxygenates (5)	MTBE TPH-D	BTEX	TPH-G	Analyzed for:
Other A Start	Kiff CalScience	Laboratory:			MW-1	Sample I.D.:
ht'8 =	Depth to Water	le: 0910	Sampling Tim	4	1/25/1	Sampling Date
0,3	ally evacuated: (Gallons actua	No	Yes (ter?	Did well dewa
LIGHT BROwn	0.3	> 1000	hth	6.90	£.89	2060
LIGHT BROWN	0.2	7 1000	6th	6.83	68.6	5060
LIGHT BROWN	0,1	71000	481	6.88	67.9	0903
Observations	Gals. Removed	Turbidity (NTUs)	Cond. (mS or[fiS)	pH	Temp For °C)	Time
iamieter Multiplier. 0.65 1.47 radius ² * 0.163	neter Multiplier Well E 0.04 4" 0.16 6" 0.37 Other	Gals. - Gals. - June -	= 0.3 es Calculated V	J fied Volum	s.) X Speci	0,1 (Gali 1 Case Volume
Bailer Oisposable Bailer Extraction Port Dedicated Tubing	Sampling Method:	Waterra Peristaltic ction Pump 3/4	nt Extra	ailer Displaceme nersible	ailer Isposable B ositive Air I ectric Subr	Purge Method: Ba Dj Pc El
32	0) + DTWJ: q.	Column x 0.2	eight of Water	urge [(H	% Rech	DTW with 80
YSI HACH	if req'd):	D.O. Meter ()	Grade	EVO		Referenced to
:t):	Free Product (fee	Thickness of			Product	Depth to Free
2	ter (DTW): 7.8	Depth to Wat	2): 15.3	pth (TD	Total Well De
6 8 <u>(3/4)</u>	er: 2 3 4	Well Diamete			1-M	Well I.D.: M
	hd .	Date: "/25				Sampler: Do
	on Sourness	Client: ENC			125-74	Project #: 141

togers Ave., San Jose, CA 95112 (408) 573-0555

.

LL MONITORING DATA SHEET

Sampler: DC	()		Date: 11/25/	14		
Well I.D.: MW	ŕ		Well Diamete	r: 2 3 4	8 9	
Total Well Dept	h (TD): 19.	59	Depth to Wate	er (DTW): 9,8	2	
Depth to Free Pr	roduct:		Thickness of J	Free Product (fee	x):	
Referenced to:	ava	Grade	D.O. Meter (it	f req'd):	YSI HACH	
DTW with 80%	Recharge [(Height of Water	r Column x 0.20)+DTW]: //.;		-
Purge Method: Baile Dispo Positi Electu	ar <u>osable Bailer</u> ive Air Displacer ric Submersible	nent Extra	Waterra Peristaltic ction Pump	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing	
I Case Volume	x 3 Specified Volu	$=\frac{4.5}{\text{Calculated v}}$	Gals: 	ter Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	bianieter <u>Multiplier</u> 0.65 1.47 radius ² * 0.163	
Time (F	emp br °C) pH	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations	
0824 6	5.5 6.6	1 599	71000	1.5	BROWN	
0827 6	6.1 6.50	555	7 1000	3.0	BROWN	
0830 61	0.0 6.52	541	21000	S'h	BROWN	
)	1		Ň	
Did well dewater	r? Yes	No	Gallons actual	ly evacuated: 4	S	
Sampling Date: 1	1/25/14	Sampling Tin	10:0835	Depth to Water	: 10.04	
Sample I.D.: Mu	N-2		Laboratory:	Kiff CalScience	Other ASS	
Analyzed for:	TPH-G BTEX	MTBE TPH-D	Oxygenates (5)	Other: SEE C	800	
EB I.D. (if applic	cable):	@ Time	Duplicate I.D.	(if applicable):		
Analyzed for:	TPH-G BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req'd):	Pre-purge		^{mg} /L	Post-purge:	/3ur	ng/L
O.R.P. (if req'd):	Pre-purge		mV	Post-purge:	μV	ND
Riaina Tach Se						

LL MONITORING DATA SHEAT

mV		ost-purge:	đ	mV			e-purge:	: Pre	eq'd)	O.R.P. (if p
1/3 ^m		ost-purge:	đ	T/ _{Bun}	× I		e-purge:	Pre	('d):	D.O. (if req
		Other:	ates (5)	Oxygen	TPH-D	MTBE	BTEX	TPH-G	or:	Analyzed for
	ole): ·	(if applicab	ate I.D.	Duplic	Time	@		icable):	appli	EB I.D. (if
1.2	E COC	Other:)SE	ates (5)	Oxygen	TPH-D	MTBE	BTEX	TPH-G	or:	Analyzed for
Other ASSET	cience	Kiff Cals	utory:	Labora				W-3	: M	Sample I.D
0.94	Water: /	Depth to V	S	e: 085	ing Tim	Sampl	IY	"/25)ate:	Sampling I
01	d: 4.5	y evacuate	s actuall	Gallon		Ki	Yes	er?	wate	Did well de
ROLUN	E	4.5	00	210	46	4	6.72	SH	6	0850
Rown	G	3.0	00	01 2	06	8	6.75	0.2	6	£480
Rown	00	1.5	00	Sion	282	\$	6.77	3.6	6	0844
Observations	oved	Gals. Rem	bidity TUs)	Tur N	ond.	, C (mS	pH	Temp or °C)	A.	Time
ter Multiplier. 0.65 1.47 radius ² * 0.163	Well Díanie 4" 6" Other	er Multiplier 0.04 0.16 0.37	Well Diamet	Gals.	4,5 alculated V		3 Jied Volun) X Specif	(Gals.)	1.5 1 Case Volume
Bailer Disposable Bailer Extraction Port Dedicated Tubing	fethod: Other:	Sampling N	1 2 2 2	Waterri Peristaltic ction Pump	Extra Other	ent	ailer Displaceme tersible	<u>ler</u> posable Ba itive Air I ctric Subm	Dis Pos	Purge Method:
	11.98)+DTW]:	n x 0.20)	. Colum	of Water	leight (urge [(H	6 Recha	80%	DTW with
HACH	YSI	req'd):	Meter (if	D.O. 1	Grade		PVC		d to:	Reference
	xt (feet):	ree Produc	ness of F	Thick				roduct	ree F	Depth to F
	10.00	r (DTW):	to Wate	Depth		0): 19.9	oth (TD	Dep	Total Well
8	4 6	: ② 3	Diameter	Well I				ŵ	MW	Well I.D.:
		14	11/25/	Date:					R	Sampler:
	ζu	Sound	: ENCON	Client				25-261	14112	Project #:
		SHEET	G DATA	ORIN	LINOW	باللله.]

ices, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

÷,

٠

TEST EQUIPMENT CALIBRATION LOG

PROJECT NA	ME ENCON C ELE	GANT CLEANDES,	ALAMEDA, CA	PROJECT NUM	MBER 141125-DCI		
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
MYRON L ULTREAME JBR	6209492	11/25/14 0750	pH 7,10,4	7.02,10.01,4.01	Olsecy	18° .	DC
\downarrow	↓ ·	\downarrow	6000 3902 Star	38964 Sten	Y	18=	X

Srh	1 or Purg	ge Water Drun	1 Lug
Client: Ehron Solath	SW		
Site Address: 1208 Linch	n Ave	Alameda, 6A	
STATUS OF DRUM(S) UPON /	ARRIVAL		
Date	11/21/2014	11/25/14	
Number of drum(s) empty:			
Number of drum(s) 1/4 full:			
Number of drum(s) 1/2 full:			
Number of drum(s) 3/4 full:	-	-	
Number of drum(s) full:	-	2	
Total drum(s) on site:	2	ev)	
Are the drum(s) properly labeled?	No	4 <i>ES</i>	
Drum ID & Contents:	Soil Cutting	Myo /soil	
If any drum(s) are partially or totally filled, what is the first use date:		"Hulu"	
- If you add any SPH to an empty or partially	filled drum, d	lrum must have at least	20 gals, of Purgewater or DI Water.
-If drum contains SPH, the drum MUST be st	teel AND labe	led with the appropriat	e label.
STATUS OF DRUM(S) UPON	DEPARTU	URE	
Date	11/21/2014	MIS2IM	
Number of drums empty:			•
Number of drum(s) 1/4 full:			
Number of drum(s) 1/2 full:			
Number of drum(s) 3/4 full:	-	-	
Number of drum(s) full:	2	2	
Total drum(s) on site:	w	4	
Are the drum(s) properly labeled?	Yes /NO	YES	
Drum ID & Contents:	purge / suit	st Map / Sout	
LOCATION OF DRUM(S)			
Describe location of drum(s): Near	MW-2 6	y west Ceater	
FINAL STATUS			
Number of new drum(s) left on site this event	-		
Date of inspection:	1/21/14	11/25/14	
Drum(s) labelled properly:	425	YES	
Logged by BTS Field Tech:	GR	PC	
Office reviewed by:	×	J.	

.

APPENDIX L:

LABORATORY REPORTS

AND

CHAIN-OF-CUSTODY DOCUMENTATION:

GROUNDWATER SAMPLES

December 04, 2014

Thomas E. Lindros ENCON Solutions Inc. 3255 Wilshire Blvd. Suite 1508 Los Angeles, CA 90010 TEL: (213) 380-0555 FAX: (213) 380-0505

CA-ELAP No.:2676 NV Cert. No.:NV-00922

Workorder No.: N013987

RE: Elegant Cleaners, 1410097

Attention: Thomas E. Lindros

Enclosed are the results for sample(s) received on November 26, 2014 by ASSET Laboratories . The sample(s) are tested for the parameters as indicated in the enclosed chain of custody in accordance with the applicable laboratory certifications.

Thank you for the opportunity to service the needs of your company.

Please feel free to call me at (702) 307-2659 or Molky Brar at (562)-881-3622 if we can be of further assistance to your company.

Sincerely,

g-1 Bm

Molky Brar Project Manager

Nancy MA ucan For

Glen Gesmundo QA Manager

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ASSET Laboratories

CLIENT:ENCON Solutions Inc.Project:Elegant Cleaners, 1410097Lab Order:N013987

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS:

Samples were received intact with proper chain of custody documentation.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Samples were analyzed within method holding time.

Analytical Comments for EPA 8260B:

Laboratory Control Sample (LCS) recovery biased high for trans-1,2-Dichloroethene. Sample results were non-detect (ND) for this analyte therefore reanalysis of the sample was not necessary.

Matrix Spike Duplicate (MSD) is outside recovery criteria for some analytes possibly due to matrix interference. The associated Laboratory Control Sample (LCS) recovery was acceptable.

RPD for Matrix Spike (MS)/Matrix Spike Duplicate (MSD) is outside criteria for some analytes; however, the analytical batch was validated by the Laboratory Control Sample (LCS).

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 Rage A of 10 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ASSET Laboratories

_

CLIENT:	ENCON Solutions Inc.
Project:	Elegant Cleaners, 1410097
Lab Order:	N013987
Contract No:	

Date: 04-Dec-14

Work Order Sample Summary

Lab Sample ID Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N013987-001A MW-1	Groundwater	11/25/2014 9:10:00 AM	11/26/2014	12/4/2014
N013987-002A MW-2	Groundwater	11/25/2014 8:35:00 AM	11/26/2014	12/4/2014
N013987-003A MW-3	Groundwater	11/25/2014 8:55:00 AM	11/26/2014	12/4/2014

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 Page 1 of EVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

03 of 18

ASSET Laboratories

ANALYTICAL RESULTS

Print Date: 04-Dec-14

CLIENT: ENCON Solutions Inc. Lab Order: N013987 Elegant Cleaners, 1410097 **Project:** N013987-001A Lab ID:

Client Sample ID: MW-1 Collection Date: 11/25/2014 9:10:00 AM Matrix: GROUNDWATER

Result **PQL** Qual Units DF Analyses Date Analyzed **VOLATILE ORGANIC COMPOUNDS BY GC/MS EPA 8260B** MS5_141203A QC Batch: P14VW191 PrepDate: RunID: Analyst: QBM ND µg/L 12/3/2014 06:53 PM 1,1,1,2-Tetrachloroethane 0.50 1 12/3/2014 06:53 PM 1,1,1-Trichloroethane ND 0.50 µg/L 1 12/3/2014 06:53 PM 1,1,2,2-Tetrachloroethane ND 0.50 1 µg/L 1,1,2-Trichloroethane ND 0.50 µg/L 1 12/3/2014 06:53 PM 1.1-Dichloroethane ND 0.50 µg/L 1 12/3/2014 06:53 PM 1,1-Dichloroethene ND 0.50 1 12/3/2014 06:53 PM µg/L ND 12/3/2014 06:53 PM 1,1-Dichloropropene 0.50 1 µg/L 1,2,3-Trichlorobenzene ND 0.50 µg/L 1 12/3/2014 06:53 PM 1,2,3-Trichloropropane ND 0.50 1 12/3/2014 06:53 PM µg/L 1,2,4-Trichlorobenzene ND 0.50 µg/L 1 12/3/2014 06:53 PM 1,2,4-Trimethylbenzene ND 0.50 µg/L 1 12/3/2014 06:53 PM 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 12/3/2014 06:53 PM 1,2-Dibromoethane ND 0.50 µg/L 1 12/3/2014 06:53 PM ND 12/3/2014 06:53 PM 1.2-Dichlorobenzene 0.50 1 µg/L ND 12/3/2014 06:53 PM 1,2-Dichloroethane 0.50 µg/L 1 0.50 ND 12/3/2014 06:53 PM 1,2-Dichloropropane µg/L 1 1,3,5-Trimethylbenzene ND 0.50 µg/L 1 12/3/2014 06:53 PM ND 12/3/2014 06:53 PM 1,3-Dichlorobenzene 0.50 1 µg/L 1,3-Dichloropropane ND 0.50 µg/L 1 12/3/2014 06:53 PM 1,4-Dichlorobenzene ND 0.50 1 12/3/2014 06:53 PM µg/L 2,2-Dichloropropane ND 0.50 µg/L 1 12/3/2014 06:53 PM 2-Chlorotoluene ND 0.50 12/3/2014 06:53 PM µg/L 1 ND 4-Chlorotoluene 0.50 µg/L 1 12/3/2014 06:53 PM 4-Isopropyltoluene ND 0.50 µg/L 1 12/3/2014 06:53 PM ND 12/3/2014 06:53 PM Benzene 0.50 µg/L 1 Bromobenzene ND 0.50 µg/L 1 12/3/2014 06:53 PM Bromodichloromethane ND 0.50 12/3/2014 06:53 PM µg/L 1 Bromoform ND 1 12/3/2014 06:53 PM 0.50 µg/L 12/3/2014 06:53 PM Bromomethane ND 1.0 1 µg/L Carbon tetrachloride ND 0.50 1 12/3/2014 06:53 PM µg/L ND 0.50 12/3/2014 06:53 PM Chlorobenzene µg/L 1 Chloroethane ND 1 12/3/2014 06:53 PM 1.0 µg/L Chloroform ND 12/3/2014 06:53 PM 0.50 µg/L 1 Chloromethane ND 0.50 µg/L 1 12/3/2014 06:53 PM cis-1,2-Dichloroethene ND 0.50 12/3/2014 06:53 PM µg/L 1

Oualifiers:

В

Η

S

Analyte detected in the associated Method Blank

Е Value above quantitation range

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

04 of 18
ANALYTICAL RESULTS

Print Date: 04-Dec-14

CLIENT: ENCON Solutions Inc. N013987 Lab Order: Elegant Cleaners, 1410097 **Project:** N013987-001A Lab ID:

Client Sample ID: MW-1 Collection Date: 11/25/2014 9:10:00 AM Matrix: GROUNDWATER

PQL Qual Units DF Analyses Result **Date Analyzed VOLATILE ORGANIC COMPOUNDS BY GC/MS EPA 8260B** RunID: MS5_141203A QC Batch: P14VW191 PrepDate: Analyst: QBM ND 0.50 12/3/2014 06:53 PM cis-1,3-Dichloropropene µg/L 1 Dibromochloromethane ND 0.50 1 12/3/2014 06:53 PM µg/L 12/3/2014 06:53 PM Dibromomethane ND 0.50 µg/L 1 Dichlorodifluoromethane ND 0.50 µg/L 1 12/3/2014 06:53 PM ND 0.50 12/3/2014 06:53 PM Ethylbenzene µg/L 1 Freon-113 ND 0.50 µg/L 1 12/3/2014 06:53 PM Hexachlorobutadiene ND 0.50 12/3/2014 06:53 PM µg/L 1 Isopropylbenzene ND 0.50 µg/L 1 12/3/2014 06:53 PM m,p-Xylene ND 1.0 µg/L 1 12/3/2014 06:53 PM 12/3/2014 06:53 PM Methylene chloride ND 2.0 µg/L 1 MTBE 0.50 12/3/2014 06:53 PM ND µg/L 1 n-Butylbenzene ND 0.50 µg/L 1 12/3/2014 06:53 PM n-Propylbenzene ND 0.50 µg/L 1 12/3/2014 06:53 PM Naphthalene ND 0.50 1 12/3/2014 06:53 PM µg/L o-Xylene ND 0.50 1 12/3/2014 06:53 PM µg/L ND 12/3/2014 06:53 PM sec-Butylbenzene 0.50 1 µg/L Styrene ND 0.50 µg/L 1 12/3/2014 06:53 PM tert-Butylbenzene ND 0.50 12/3/2014 06:53 PM µg/L 1 Tetrachloroethene 29 0.50 µg/L 1 12/3/2014 06:53 PM Toluene ND 0.50 µg/L 1 12/3/2014 06:53 PM trans-1,2-Dichloroethene ND 0.50 12/3/2014 06:53 PM µg/L 1 Trichloroethene 0.65 0.50 µg/L 1 12/3/2014 06:53 PM Trichlorofluoromethane ND 0.50 µg/L 1 12/3/2014 06:53 PM Vinyl chloride ND 0.50 µg/L 1 12/3/2014 06:53 PM Surr: 1,2-Dichloroethane-d4 95.8 76-124 %REC 1 12/3/2014 06:53 PM Surr: 4-Bromofluorobenzene 80-120 %REC 12/3/2014 06:53 PM 100 1 Surr: Dibromofluoromethane 97.2 80-124 %REC 1 12/3/2014 06:53 PM Surr: Toluene-d8 102 80-120 %REC 1 12/3/2014 06:53 PM

Oualifiers:	В	Analyte detected in the associated Method Blank	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	ND	Not Detected at the Reporting Limit
	S	Spike/Surrogate outside of limits due to matrix interference		Results are wet unless otherwise specified
	DO	Surrogate Diluted Out		

ASSET LABORATORIES 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

CALIFORNIA

ANALYTICAL RESULTS

Print Date: 04-Dec-14

CLIENT:ENCON Solutions Inc.Lab Order:N013987Project:Elegant Cleaners, 1410097Lab ID:N013987-002A

Client Sample ID: MW-2 Collection Date: 11/25/2014 8:35:00 AM Matrix: GROUNDWATER

Result **PQL** Qual Units DF Analyses Date Analyzed **VOLATILE ORGANIC COMPOUNDS BY GC/MS EPA 8260B** MS5_141203A QC Batch: P14VW191 PrepDate: RunID: Analyst: QBM ND 12/3/2014 07:18 PM 1,1,1,2-Tetrachloroethane 0.50 µg/L 1 12/3/2014 07:18 PM 1,1,1-Trichloroethane ND 0.50 µg/L 1 1,1,2,2-Tetrachloroethane ND 0.50 1 12/3/2014 07:18 PM µg/L 1,1,2-Trichloroethane ND 0.50 µg/L 1 12/3/2014 07:18 PM 1.1-Dichloroethane ND 0.50 µg/L 1 12/3/2014 07:18 PM 1,1-Dichloroethene ND 0.50 1 12/3/2014 07:18 PM µg/L ND 12/3/2014 07:18 PM 1,1-Dichloropropene 0.50 1 µg/L 1,2,3-Trichlorobenzene ND 0.50 µg/L 1 12/3/2014 07:18 PM 1,2,3-Trichloropropane ND 0.50 1 12/3/2014 07:18 PM µg/L 1,2,4-Trichlorobenzene ND 0.50 µg/L 1 12/3/2014 07:18 PM 1,2,4-Trimethylbenzene ND 0.50 µg/L 1 12/3/2014 07:18 PM 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 12/3/2014 07:18 PM 1,2-Dibromoethane ND 0.50 µg/L 1 12/3/2014 07:18 PM ND 12/3/2014 07:18 PM 1.2-Dichlorobenzene 0.50 1 µg/L ND 12/3/2014 07:18 PM 1,2-Dichloroethane 0.50 µg/L 1 0.50 ND 12/3/2014 07:18 PM 1,2-Dichloropropane µg/L 1 1,3,5-Trimethylbenzene ND 0.50 µg/L 1 12/3/2014 07:18 PM ND 12/3/2014 07:18 PM 1,3-Dichlorobenzene 0.50 1 µg/L 1,3-Dichloropropane ND 0.50 µg/L 1 12/3/2014 07:18 PM 1,4-Dichlorobenzene ND 0.50 1 12/3/2014 07:18 PM µg/L 2,2-Dichloropropane ND 0.50 µg/L 1 12/3/2014 07:18 PM 2-Chlorotoluene ND 0.50 12/3/2014 07:18 PM µg/L 1 ND 4-Chlorotoluene 0.50 µg/L 1 12/3/2014 07:18 PM 4-Isopropyltoluene ND 0.50 µg/L 1 12/3/2014 07:18 PM ND 12/3/2014 07:18 PM Benzene 0.50 µg/L 1 Bromobenzene ND 0.50 µg/L 1 12/3/2014 07:18 PM Bromodichloromethane ND 0.50 12/3/2014 07:18 PM µg/L 1 Bromoform ND 1 12/3/2014 07:18 PM 0.50 µg/L 12/3/2014 07:18 PM Bromomethane ND 1.0 1 µg/L Carbon tetrachloride ND 0.50 1 12/3/2014 07:18 PM µg/L ND 0.50 Chlorobenzene µg/L 1 12/3/2014 07.18 PM Chloroethane ND 1 12/3/2014 07:18 PM 1.0 µg/L Chloroform ND 12/3/2014 07:18 PM 0.50 µg/L 1 Chloromethane ND 0.50 µg/L 1 12/3/2014 07:18 PM cis-1,2-Dichloroethene ND 0.50 12/3/2014 07:18 PM µg/L 1

Qualifiers:

В

Η

S

Analyte detected in the associated Method Blank

E Value above quantitation range

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 04-Dec-14

CLIENT:ENCON Solutions Inc.Lab Order:N013987Project:Elegant Cleaners, 1410097Lab ID:N013987-002A

Client Sample ID: MW-2 Collection Date: 11/25/2014 8:35:00 AM Matrix: GROUNDWATER

Analyses	Res	ult PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	NDS BY GC/MS				
			EPA 8260	В	
RunID: MS5_141203A	QC Batch:	P14VW191	Р	repDate:	Analyst: QBM
cis-1,3-Dichloropropene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
Dibromochloromethane		ND 0.50	µg/L	1	12/3/2014 07:18 PM
Dibromomethane		ND 0.50	μg/L	1	12/3/2014 07:18 PM
Dichlorodifluoromethane		ND 0.50	µg/L	1	12/3/2014 07:18 PM
Ethylbenzene		ND 0.50	µg/L	1	12/3/2014 07:18 PM
Freon-113		ND 0.50	μg/L	1	12/3/2014 07:18 PM
Hexachlorobutadiene		ND 0.50	µg/L	1	12/3/2014 07:18 PM
Isopropylbenzene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
m,p-Xylene		ND 1.0	μg/L	1	12/3/2014 07:18 PM
Methylene chloride		ND 2.0	μg/L	1	12/3/2014 07:18 PM
МТВЕ		ND 0.50	μg/L	1	12/3/2014 07:18 PM
n-Butylbenzene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
n-Propylbenzene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
Naphthalene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
o-Xylene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
sec-Butylbenzene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
Styrene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
tert-Butylbenzene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
Tetrachloroethene		8.8 0.50	μg/L	1	12/3/2014 07:18 PM
Toluene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
trans-1,2-Dichloroethene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
Trichloroethene		ND 0.50	μg/L	1	12/3/2014 07:18 PM
Trichlorofluoromethane		ND 0.50	μg/L	1	12/3/2014 07:18 PM
Vinyl chloride		ND 0.50	μg/L	1	12/3/2014 07:18 PM
Surr: 1,2-Dichloroethane-d4	9	4.2 76-124	%REC	1	12/3/2014 07:18 PM
Surr: 4-Bromofluorobenzene	9	9.0 80-120	%REC	1	12/3/2014 07:18 PM
Surr: Dibromofluoromethane	9	4.4 80-124	%REC	1	12/3/2014 07:18 PM
Surr: Toluene-d8	1	02 80-120	%REC	1	12/3/2014 07:18 PM

 Qualifiers:
 B
 Analyte detected in the associated Method Blank
 E
 Value above quantitation range

 H
 Holding times for preparation or analysis exceeded
 ND
 Not Detected at the Reporting Limit

 S
 Spike/Surrogate outside of limits due to matrix interference
 Results are wet unless otherwise specified

 DO
 Surrogate Diluted Out
 Surrogate Diluted Out

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 04-Dec-14

CLIENT: ENCON Solutions Inc. Lab Order: N013987 Elegant Cleaners, 1410097 **Project:** N013987-003A Lab ID:

Client Sample ID: MW-3 Collection Date: 11/25/2014 8:55:00 AM Matrix: GROUNDWATER

Result **PQL** Qual Units DF Analyses Date Analyzed **VOLATILE ORGANIC COMPOUNDS BY GC/MS EPA 8260B** MS5_141203A QC Batch: P14VW191 PrepDate: RunID: Analyst: QBM ND 12/3/2014 07:43 PM 1,1,1,2-Tetrachloroethane 0.50 µg/L 1 12/3/2014 07:43 PM 1,1,1-Trichloroethane ND 0.50 µg/L 1 1,1,2,2-Tetrachloroethane ND 0.50 1 12/3/2014 07:43 PM µg/L 1,1,2-Trichloroethane ND 0.50 µg/L 1 12/3/2014 07:43 PM 1.1-Dichloroethane ND 0.50 µg/L 1 12/3/2014 07:43 PM 1,1-Dichloroethene ND 0.50 1 12/3/2014 07:43 PM µg/L ND 12/3/2014 07:43 PM 1,1-Dichloropropene 0.50 1 µg/L 1,2,3-Trichlorobenzene ND 0.50 µg/L 1 12/3/2014 07:43 PM 1,2,3-Trichloropropane ND 0.50 1 12/3/2014 07:43 PM µg/L 1,2,4-Trichlorobenzene ND 0.50 µg/L 1 12/3/2014 07:43 PM 1,2,4-Trimethylbenzene ND 0.50 µg/L 1 12/3/2014 07:43 PM 1,2-Dibromo-3-chloropropane ND 1.0 µg/L 1 12/3/2014 07:43 PM 1,2-Dibromoethane ND 0.50 µg/L 1 12/3/2014 07:43 PM ND 12/3/2014 07:43 PM 1.2-Dichlorobenzene 0.50 1 µg/L ND 12/3/2014 07:43 PM 1,2-Dichloroethane 0.50 µg/L 1 0.50 ND 12/3/2014 07:43 PM 1,2-Dichloropropane µg/L 1 1,3,5-Trimethylbenzene ND 0.50 µg/L 1 12/3/2014 07:43 PM ND 12/3/2014 07:43 PM 1,3-Dichlorobenzene 0.50 1 µg/L 1,3-Dichloropropane ND 0.50 µg/L 1 12/3/2014 07:43 PM 1,4-Dichlorobenzene ND 0.50 1 12/3/2014 07:43 PM µg/L 2,2-Dichloropropane ND 0.50 µg/L 1 12/3/2014 07:43 PM 2-Chlorotoluene ND 0.50 12/3/2014 07:43 PM µg/L 1 ND 4-Chlorotoluene 0.50 µg/L 1 12/3/2014 07:43 PM 4-Isopropyltoluene ND 0.50 µg/L 1 12/3/2014 07:43 PM ND 12/3/2014 07:43 PM Benzene 0.50 µg/L 1 Bromobenzene ND 0.50 µg/L 1 12/3/2014 07:43 PM Bromodichloromethane ND 0.50 12/3/2014 07:43 PM µg/L 1 Bromoform ND 1 12/3/2014 07:43 PM 0.50 µg/L 12/3/2014 07:43 PM Bromomethane ND 1.0 1 µg/L Carbon tetrachloride ND 0.50 1 12/3/2014 07:43 PM µg/L ND 0.50 12/3/2014 07:43 PM Chlorobenzene µg/L 1 Chloroethane ND 1 12/3/2014 07:43 PM 1.0 µg/L Chloroform ND 12/3/2014 07:43 PM 0.50 µg/L 1 Chloromethane ND 0.50 µg/L 1 12/3/2014 07:43 PM cis-1,2-Dichloroethene ND 0.50 12/3/2014 07:43 PM µg/L 1

Oualifiers:

В

Η

S

Analyte detected in the associated Method Blank

Е Value above quantitation range

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

- Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

ANALYTICAL RESULTS

Print Date: 04-Dec-14

CLIENT:ENCON Solutions Inc.Lab Order:N013987Project:Elegant Cleaners, 1410097Lab ID:N013987-003A

Client Sample ID: MW-3 Collection Date: 11/25/2014 8:55:00 AM Matrix: GROUNDWATER

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOU	NDS BY GC/MS				
			EPA 8260B		
RunID: MS5_141203A	QC Batch: P	14VW191	Prepl	Date:	Analyst: QBM
cis-1,3-Dichloropropene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Dibromochloromethane	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Dibromomethane	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Dichlorodifluoromethane	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Ethylbenzene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Freon-113	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Hexachlorobutadiene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Isopropylbenzene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
m,p-Xylene	ND	1.0	µg/L	1	12/3/2014 07:43 PM
Methylene chloride	ND	2.0	µg/L	1	12/3/2014 07:43 PM
МТВЕ	ND	0.50	µg/L	1	12/3/2014 07:43 PM
n-Butylbenzene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
n-Propylbenzene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Naphthalene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
o-Xylene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
sec-Butylbenzene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Styrene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
tert-Butylbenzene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Tetrachloroethene	1.0	0.50	µg/L	1	12/3/2014 07:43 PM
Toluene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
trans-1,2-Dichloroethene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Trichloroethene	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Trichlorofluoromethane	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Vinyl chloride	ND	0.50	µg/L	1	12/3/2014 07:43 PM
Surr: 1,2-Dichloroethane-d4	94.4	76-124	%REC	1	12/3/2014 07:43 PM
Surr: 4-Bromofluorobenzene	98.7	80-120	%REC	1	12/3/2014 07:43 PM
Surr: Dibromofluoromethane	96.8	80-124	%REC	1	12/3/2014 07:43 PM
Surr: Toluene-d8	101	80-120	%REC	1	12/3/2014 07:43 PM

Oualifiers:	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	ND	Not Detected at the Reporting Limit
	S	Spike/Surrogate outside of limits due to matrix interference		Results are wet unless otherwise specified
	DO	Surrogate Diluted Out		

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

"Serving Clients with Passion and Professionalism"

CLIENT: ENCON	Solutions Inc.					ANALY	TICAL Q	C SUI	MMAR	Y REP()RT
Project: Elegant	Cleaners, 1410097						TestCo	de: 82	60WATE	RP	
Sample ID: P141203LCS	SampType: LCS	TestCoo	de: 8260WATEF	P Units: µg/L		Prep Date			RunNo: 97	005	
Client ID: LCSW	Batch ID: P14VW191	TestN	Vo: EPA 8260B			Analysis Date	: 12/3/2014		SeqNo: 18	84447	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD F	tef Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	21.870	0.50	20.00	0	109	80	126				
1,1,1-Trichloroethane	20.030	0.50	20.00	0	100	77	120				
1,1,2,2-Tetrachloroethane	18.140	0.50	20.00	0	90.7	77	120				
1,1,2-Trichloroethane	18.840	0.50	20.00	0	94.2	77	122				
1,1-Dichloroethane	17.200	0.50	20.00	0	86.0	74	123				
1,1-Dichloroethene	19.640	0.50	20.00	0	98.2	71	128				
1,1-Dichloropropene	19.640	0.50	20.00	0	98.2	80	120				
1,2,3-Trichlorobenzene	18.890	0.50	20.00	0	94.4	80	126				
1,2,3-Trichloropropane	17.270	0.50	20.00	0	86.4	77	120				
1,2,4-Trichlorobenzene	18.340	0.50	20.00	0	91.7	80	128				
1,2,4-Trimethylbenzene	22.450	0.50	20.00	0	112	80	120				
1,2-Dibromo-3-chloropropane	18.870	1.0	20.00	0	94.4	62	133				
1,2-Dibromoethane	20.730	0.50	20.00	0	104	80	123				
1,2-Dichlorobenzene	21.610	0.50	20.00	0	108	80	120				
1,2-Dichloroethane	19.680	0.50	20.00	0	98.4	80	120				
1,2-Dichloropropane	18.120	0.50	20.00	0	90.6	80	120				
1,3,5-Trimethylbenzene	21.830	0.50	20.00	0	109	80	120				
1,3-Dichlorobenzene	20.800	0.50	20.00	0	104	80	120				
1,3-Dichloropropane	19.070	0.50	20.00	0	95.4	80	120				
1,4-Dichlorobenzene	19.610	0.50	20.00	0	98.0	80	120				
2,2-Dichloropropane	21.100	0.50	20.00	0	106	66	145				
2-Chlorotoluene	20.010	0.50	20.00	0	100	80	120				
4-Chlorotoluene	20.330	0.50	20.00	0	102	80	120				
4-Isopropyltoluene	20.840	0.50	20.00	0	104	80	120				
Benzene	19.580	0.50	20.00	0	97.9	80	120				
Bromobenzene	20.550	0.50	20.00	0	103	80	120				
Bromodichloromethane	20.140	0.50	20.00	0	101	80	120				
Bromoform	21.230	0.50	20.00	0	106	69	144				
Bromomethane	24.200	1.0	20.00	0	121	30	156				
Qualifiers:		ŗ	-					د		-	
B Analyte detected in	the associated Method Blank	ц	Value above qu	antitation range			H Holding tune	es for prep	aration or ana	ysis exceeded	

Date: 04-Dec-14

ASSET Laboratories

10 of 18

"Serving Clients with Passion and Professionalism"

ASSET LABORATORIES

11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 CALIFORNIA

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

R RPD outside accepted recovery limits Calculations are based on raw values

ND Not Detected at the Reporting Limit

DO Surrogate Diluted Out

S Spike/Surrogate outside of limits due to matrix interference

CLIENT:	ENCON So	olutions Inc.					ANAL	YTICA	L QC SU	MMARY	REPO	RT
Project:	Elegant Cle	eaners, 1410097						L	estCode: 8	260WATE	RP	
Sample ID: P141203	3LCS	SampType: LCS	TestCoc	Je: 8260WATER	P Units: µg/L		Prep Da	te:		RunNo: 970	005	
Client ID: LCSW		Batch ID: P14VW191	Test	Vo: EPA 8260B			Analysis Da	ite: 12/3/20	114	SeqNo: 188	34447	
Analyte		Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon tetrachloride		22.320	0.50	20.00	0	112	72	137				
Chlorobenzene		20.320	0.50	20.00	0	102	80	120				
Chloroethane		19.570	1.0	20.00	0	97.9	61	137				
Chloroform		17.640	0.50	20.00	0	88.2	77	120				
Chloromethane		14.830	0.50	20.00	0	74.2	41	150				
cis-1,2-Dichloroether	ne	17.910	0.50	20.00	0	89.6	77	120				
cis-1,3-Dichloroprope	ene	20.130	0.50	20.00	0	101	80	120				
Dibromochlorometha	ane	20.950	0.50	20.00	0	105	80	120				
Dibromomethane		19.540	0.50	20.00	0	97.7	72	125				
Dichlorodifluorometh	ane	19.370	0.50	20.00	0	96.9	56	137				
Ethylbenzene		20.030	0.50	20.00	0	100	80	120				
Freon-113		19.350	0.50	20.00	0	96.8	71	132				
Hexachlorobutadiene	Ð	22.280	0.50	20.00	0	111	78	127				
lsopropylbenzene		20.610	0.50	20.00	0	103	80	120				
m,p-Xylene		41.610	1.0	40.00	0	104	80	120				
Methylene chloride		18.020	2.0	20.00	0	90.1	67	125				
MTBE		19.440	0.50	20.00	0	97.2	67	122				
n-Butylbenzene		19.380	0.50	20.00	0	96.9	80	120				
n-Propylbenzene		20.430	0.50	20.00	0	102	80	120				
Naphthalene		17.330	0.50	20.00	0	86.7	74	129				
o-Xylene		21.050	0.50	20.00	0	105	80	120				
sec-Butylbenzene		21.640	0.50	20.00	0	108	80	120				
Styrene		21.470	0.50	20.00	0	107	80	120				
tert-Butylbenzene		21.350	0.50	20.00	0	107	80	120				
Tetrachloroethene		20.270	0.50	20.00	0	101	80	120				
Toluene		19.960	0.50	20.00	0	99.8	80	120				
trans-1,2-Dichloroeth	nene	24.450	0.50	20.00	0	122	75	122				S
Trichloroethene		20.140	0.50	20.00	0	101	80	120				
Trichlorofluorometha	ine	20.450	0.50	20.00	0	102	75	132				
Vinyl chloride		17.160	0.50	20.00	0	85.8	66	131				
Oualifiers:												
B Analyte	detected in the	e associated Method Blank	μ	Value above du	antitation range			H Hol	ding times for nea	naration or analy	vsis exceeded	
NTD Not Date	and at the De		0	DDD sutside of				1:43 S	- (Cumozota outoic	f limite due	t- moteiv interf	
IND IND DOL	ected at ute in	eporting Limit	4	NFU UUISIUU av	cepted recovery in	mus		nde e	weine angomedate	IG OF THITTES AND	TO IIIGILIY THEFT	erence

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

Calculations are based on raw values

DO Surrogate Diluted Out ASSET LABORATORIES

"Serving Clients with Passion and Professionalism" CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

CL	IENT:	ENCON Sc	olutions Inc.					ANAL	YTICA	L OC SU	MMAR	Y REPO	RT
W0 Pro	rk Order: iect:	N013987 Elegant Cle	eaners 1410097						E	estCode: 82	60WATE	RP	
		NO MIRONI							•				
Sar	nple ID: P14120	03LCS	SampType: LCS	TestCo	de: 8260WATI	ERP Units: µg/L		Prep Da	te:		RunNo: 97	005	
Clié	ent ID: LCSW		Batch ID: P14VW191	Test	Vo: EPA 8260	В		Analysis Da	te: 12/3/20	14	SeqNo: 18	84447	
Ani	alyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	Surr: 1,2-Dichlor	oethane-d4	22.830		25.00		91.3	76	124				
	Surr: 4-Bromoflu	iorobenzene	25.820		25.00		103	80	120				
.,	Surr: Dibromoflue	oromethane	22.920		25.00		91.7	80	124				
"	surr: Toluene-d8	~	25.560		25.00		102	80	120				
Sar	mple ID: P14120	03MB3	SampType: MBLK	TestCo	de: 8260WATI	ERP Units: µg/L		Prep Da	te:		RunNo: 97	005	
Cli	ent ID: PBW		Batch ID: P14VW191	Test	Vo: EPA 82601	В		Analysis Da	te: 12/3/20	14	SeqNo: 18	84448	
Ani	alyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1	,1,2-Tetrachloro	ethane	ND	0.50									
1,1	,1-Trichloroethar	ne	ND	0.50									
1,1	,2,2-Tetrachloro	ethane	ND	0.50									
1,1	,2-Trichloroethar	ne	DN	0.50									
- -	-Dichloroethane		ND	0.50									
- 1	-Dichloroethene		ON :	0.50									
- , - (-Dichloropropen	θ	ON 2	0.50									
1	,3-Trichlorobenz	tene	ON :	0.50									
 0, 0	,3-Trichloroprop; 4 Trichlorobooz	ane		0.50									
 1 c	4-Trimethylben:	2010		00									
 ĭ Ŭ	-Dibromo-3-chlo	ropropane	D D Z	0.00 1.0									
1,2	-Dibromoethane		ND	0.50									
1,2	-Dichlorobenzen	le	ND	0.50									
1,2	-Dichloroethane		DN	0.50									
1,2	-Dichloropropan	Θ	DN	0.50									
1,3	,5-Trimethylbenz	zene	DN	0.50									
1,3	-Dichlorobenzen	ы	DN	0.50									
1,3	-Dichloropropan	Θ	DN	0.50									
1,4	-Dichlorobenzen	ы	ND	0.50									
2,2	-Dichloropropan	е	ND	0.50									
Qu	alifiers:												
	B Analyte	e detected in the	e associated Method Blank	Щ	Value above	quantitation range			H Hold	ding times for prep	aration or anal	lysis exceeded	
	ND Not De	stected at the Re	eporting Limit	R	RPD outside	accepted recovery lim	its		S Spik	ce/Surrogate outsid	e of limits due	to matrix inter	ference
25	DO Surroga	ate Diluted Out			Calculations	are based on raw value	SS						
P	ASSET LABO	RATORIES	CALIFORNIA 11060 Artesia Blvd., Ste C, C	erritos, CA 9070		NEVADA 3151 W. Post Rd., Las Vegas, P: 702 307 2650 E: 702 30	NV 89118 77 2691						
			P: 562.219.7435 F: 56	2.219.7436		P. 102:301:2037 F. 102:30	11.2071						

CLI	ENT: EN	NCON Sc	olutions Inc.				IN JU I VILLA I VU SI		La
W_{0I}	k Order: N(013987					ANALI I LAL VO		IVI
Proj	ect: El	legant Clé	caners, 1410097				TestCode:	8260WATERP	
Sam	ple ID: P141203M	AB3	SampType: MBLK	TestCoc	e: 8260WATERP Units: µg/L		Prep Date:	RunNo: 97005	
Clier	nt ID: PBW		Batch ID: P14VW191	TestN	0: EPA 8260B		Analysis Date: 12/3/2014	SeqNo: 1884448	
Anal	yte		Result	PQL	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
2-Ch	lorotoluene		DN	0.50					
4-Ch	lorotoluene		ND	0.50					
4-lsc	propyltoluene		ND	0.50					
Benz	cene		ND	0.50					
Bron	anazene		ND	0.50					
Bron	nodichloromethane	Ð	ND	0.50					
Bron	noform		ND	0.50					
Bron	nomethane		ND	1.0					
Carb	on tetrachloride		ND	0.50					
Chlo	robenzene		ND	0.50					
Chlo	roethane		ND	1.0					
Chlo	roform		ND	0.50					
Chlo	romethane		ND	0.50					
cis-1	,2-Dichloroethene	c	ND	0.50					
cis-1	,3-Dichloropropen	Je	ND	0.50					
Dibro	omochloromethane	e	ND	0.50					
Dibre	omomethane		ND	0.50					
Dich	lorodifluoromethan	ne	ND	0.50					
Ethy	lbenzene		ND	0.50					
Freo	n-113		ND	0.50					
Неха	achlorobutadiene		ND	0.50					
Isop	ropylbenzene		ND	0.50					
m,p-	Xylene		ND	1.0					
Meth	iylene chloride		ND	2.0					
MTB	щ		ND	0.50					
n-Bu	tylbenzene		ND	0.50					
n-Pr	opylbenzene		ND	0.50					
Napł	nthalene		ND	0.50					
o-Xy	lene		ND	0.50					
Sec-	Butylbenzene		ND	0.50					
Qual	ifiers:								
	B Analyte de	stected in the	e associated Method Blank	Е	Value above quantitation range		H Holding times for pr	eparation or analysis exceeded	
	ND Not Detect	ted at the Re	eporting Limit	R	RPD outside accepted recovery lim	iits	S Spike/Surrogate outs	ide of limits due to matrix inter	erence
15	DO Surrogate I	Diluted Out			Calculations are based on raw valu	es			
P	ASSET LABORAI	TORIES	CALIFORNIA 11060 Artesia Blvd., Ste C, Cer D, E22 240 7425 E, E22	rritos, CA 90703	NEVADA 3151 W. Post Rd., Las Vegas, P: 702.307.2659 F: 702.3	NV 89118 07.2691			
		(P: 302.219.7433 F: 302		:				

13.0

CL	JIENT: ENC	CON Sol	lutions Inc.					ANAL	YTICA	r qc su	MMAR	Y REPC	RT
Pro	ork Urder: NUL. Dject: Elega	13987 şant Clea	mers, 1410097						L	'estCode: 82	260WATE	RP	
)		×										
Sai	mple ID: P141203MB3	3	SampType: MBLK	TestCod	le: 8260WATE	:RP Units: µg/L		Prep Da	te:		RunNo: 97	005	
Cli	ent ID: PBW		Batch ID: P14VW191	TestN	lo: EPA 8260B		-	Analysis Da	te: 12/3/20	14	SeqNo: 18	84448	
Ani	alyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sty	/rene		DN	0.50									
teri	t-Butylbenzene		ND	0.50									
Tei	trachloroethene		ND	0.50									
Tol	luene		ND	0.50									
trai	ns-1,2-Dichloroethene		ND	0.50									
Tri	chloroethene		ND	0.50									
Tri	chlorofluoromethane		ND	0.50									
Vin	yl chloride		ND	0.50									
	Surr: 1,2-Dichloroethan	ne-d4	23.350		25.00		93.4	76	124				
,	Surr: 4-Bromofluorober	nzene	24.780		25.00		99.1	80	120				
.,	Surr: Dibromofluorome	sthane	23.480		25.00		93.9	80	124				
	Surr: Toluene-d8		25.490		25.00		102	80	120				
Sar	mple ID: N014024-005	5 AMS	SampType: MS	TestCod	le: 8260WATE	:RP Units: µg/L		Prep Da	te:		RunNo: 97	005	
Cli	ent ID: ZZZZZ		Batch ID: P14VW191	TestN	io: EPA 8260B	~	·	Analysis Da	te: 12/3/20	14	SeqNo: 18	84450	
Ani	alyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1	',1,2-Tetrachloroethane	۵	22.270	0.50	20.00	0	111	80	122				
1,1	',1-Trichloroethane		19.220	0.50	20.00	0	96.1	76	120				
1,1	1,2,2-Tetrachloroethane	Ð	18.550	0.50	20.00	0	92.8	74	124				
1,1	1,2-Trichloroethane		19.010	0.50	20.00	0	95.1	75	127				
1,1	1-Dichloroethane		16.840	0.50	20.00	0	84.2	76	124				
1,1	1-Dichloroethene		19.820	0.50	20.00	0	99.1	99	134				
1,1	1-Dichloropropene		19.690	0.50	20.00	0	98.4	79	115				
1,2	2,3-Trichlorobenzene		17.410	0.50	20.00	0	87.1	73	132				
1,2	2,3-Trichloropropane		18.610	0.50	20.00	0	93.0	74	121				
1,2	2,4-Trichlorobenzene		16.610	0.50	20.00	0	83.0	74	132				
1,2	2,4-Trimethylbenzene		21.850	0.50	20.00	0	109	54	137				
1,2	?-Dibromo-3-chloroprop	oane	19.410	1.0	20.00	0	97.0	56	133				
1,2	2-Dibromoethane		20.720	0.50	20.00	0	104	78	126				
Qu	alifiers:												
	B Analyte detect	sted in the	associated Method Blank	Е	Value above c	quantitation range			H Hol	ding times for prep	varation or anal	ysis exceeded	
	ND Not Detected :	at the Rep	oorting Limit	R	RPD outside :	accepted recovery lim	uits		S Spik	ce/Surrogate outsid	e of limits due	to matrix inte	rference
R	DO Surrogate Dilı	luted Out			Calculations a	tre based on raw valu	es						
	ASSET LABORATO	RIES	CALIFORNIA 11060 Artesia Blvd., Ste C, Cer	rritos, CA 90703	(*)	3151 W. Post Rd., Las Vegas,	NV 89118						
	Internet service services and services and services and	1 Thronord	P: 562.219.7435 F: 562	2.219.7436		P: 702.307.2659 F: 702.3	07.2691						

	200	1110.					ANAL	YTICA	L QC SU	MMARY RI	EPORT	
Project: Elega	yo/ nt Cleaners, 1	1410097						Γ	estCode: 8	260WATERP		
Sample ID: N014024-005/	AMS Samp	Type: MS	TestCod	le: 8260WATE	RP Units: µg/L		Prep Da	te:		RunNo: 97005		
Client ID: ZZZZZ	Batc	h ID: P14VW191	TestN	o: EPA 8260B			Analysis Da	te: 12/3/20	14	SeqNo: 1884450		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDI	Limit Qua	_
1,2-Dichlorobenzene		21.400	0.50	20.00	0	107	80	120]
1,2-Dichloroethane		19.880	0.50	20.00	0	99.4	80	120				
1,2-Dichloropropane		18.270	0.50	20.00	0	91.4	71	128				
1,3,5-Trimethylbenzene		21.210	0.50	20.00	0	106	71	126				
1,3-Dichlorobenzene		20.520	0.50	20.00	0	103	80	120				
1,3-Dichloropropane		19.790	0.50	20.00	0	0.06	80	120				
1,4-Dichlorobenzene		19.730	0.50	20.00	0	98.6	79	120				
2,2-Dichloropropane		21.180	0.50	20.00	0	106	63	150				
2-Chlorotoluene		20.040	0.50	20.00	0	100	77	120				
4-Chlorotoluene		20.000	0.50	20.00	0	100	78	119				
4-Isopropyltoluene		19.730	0.50	20.00	0	98.6	74	124				
Benzene		19.590	0.50	20.00	0	98.0	80	120				
Bromobenzene		20.610	0.50	20.00	0	103	80	120				
Bromodichloromethane		20.180	0.50	20.00	0	101	74	128				
Bromoform		22.170	0.50	20.00	0	111	65	137				
Bromomethane		20.670	1.0	20.00	0	103	20	155				
Carbon tetrachloride		22.390	0.50	20.00	0	112	74	125				
Chlorobenzene		20.920	0.50	20.00	0	105	80	120				
Chloroethane		19.630	1.0	20.00	0	98.2	43	151				
Chloroform		17.740	0.50	20.00	0	88.7	76	118				
Chloromethane		14.480	0.50	20.00	0	72.4	37	164				
cis-1,2-Dichloroethene		18.120	0.50	20.00	0	90.6	78	121				
cis-1,3-Dichloropropene		20.530	0.50	20.00	0	103	80	120				
Dibromochloromethane		21.120	0.50	20.00	0	106	80	120				
Dibromomethane		19.880	0.50	20.00	0	99.4	67	129				
Dichlorodifluoromethane		19.430	0.50	20.00	0	97.2	54	147				
Ethylbenzene		20.140	0.50	20.00	0	101	80	120				
Freon-113		19.120	0.50	20.00	0	95.6	99	138				
Hexachlorobutadiene		19.820	0.50	20.00	0	99.1	64	129				
Isopropylbenzene		20.130	0.50	20.00	0	101	78	121				
Qualifiers:												
B Analyte detecte	d in the associate	ed Method Blank	Е	Value above o	quantitation range			H Hold	ling times for prej	paration or analysis exc	eeded	
ND Not Detected a:	the Reporting L	imit	R	RPD outside	accepted recovery lim	its		S Spik	e/Surrogate outsic	e of limits due to matri	ix interference	0
DO Surrogate Dilu	ed Out			Calculations a	re based on raw valu	es						
ASSET LABORATOR	IES	CALIFORNIA 11060 Artesia Blvd., Ste C, Cer	ritos, CA 90703		NEVADA 3151 W. Post Rd., Las Vegas, D: 702 307 2650 F: 702 3	NV 89118						

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

CALIFORNIA 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

CLIENT: ENCON	Solutions Inc.					ANAL	YTICA	r qc su	IMMARY	7 REPO	\mathbf{RT}
Project: Elegant C	leaners, 1410097						Τ	estCode: 8	3260WATE	RP	
Sample ID: N014024-005AMS	SampType: MS	TestCo	de: 8260WATE	:RP Units: µg/L		Prep Da	te:		RunNo: 970	005	
Client ID: ZZZZZ	Batch ID: P14VW191	Test	Vo: EPA 8260B			Analysis Da	te: 12/3/20	14	SeqNo: 188	34450	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	42.180	1.0	40.00	0	105	80	120				
Methylene chloride	17.850	2.0	20.00	0	89.2	63	130				
MTBE	19.690	0.50	20.00	0	98.4	58	139				
n-Butylbenzene	17.140	0.50	20.00	0	85.7	73	126				
n-Propylbenzene	20.000	0.50	20.00	0	100	76	123				
Naphthalene	17.250	0.50	20.00	0	86.2	49	146				
o-Xylene	21.250	0.50	20.00	0	106	80	120				
sec-Butylbenzene	20.950	0.50	20.00	0	105	74	124				
Styrene	7.260	0.50	20.00	0	36.3	32	149				
tert-Butylbenzene	20.670	0.50	20.00	0	103	77	122				
Tetrachloroethene	20.720	0.50	20.00	0	104	62	128				
Toluene	20.270	0.50	20.00	0	101	80	120				
trans-1,2-Dichloroethene	25.370	0.50	20.00	0	127	70	128				
Trichloroethene	20.140	0.50	20.00	0	101	80	120				
Trichlorofluoromethane	20.250	0.50	20.00	0	101	63	138				
Vinyl chloride	16.940	0.50	20.00	0	84.7	63	138				
Surr: 1,2-Dichloroethane-d4	23.300		25.00		93.2	76	124				
Surr: 4-Bromofluorobenzene	26.380		25.00		106	80	120				
Surr: Dibromofluoromethane	22.940		25.00		91.8	80	124				
Surr: Toluene-d8	25.910		25.00		104	80	120				
Sample ID: N014024-005AMSE) SampType: MSD	TestCo	de: 8260WATE	RP Units: µg/L		Prep Da	te:		RunNo: 970	005	
Client ID: ZZZZZ	Batch ID: P14VW191	Test	Vo: EPA 8260B			Analysis Da	te: 12/3/20	14	SeqNo: 188	34451	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	21.690	0.50	20.00	0	108	80	122	22.27	2.64	20]
1,1,1-Trichloroethane	19.280	0.50	20.00	0	96.4	76	120	19.22	0.312	20	
1,1,2,2-Tetrachloroethane	18.130	0.50	20.00	0	90.7	74	124	18.55	2.29	20	
1,1,2-Trichloroethane	18.810	0.50	20.00	0	94.1	75	127	19.01	1.06	20	
1,1-Dichloroethane	17.470	0.50	20.00	0	87.4	76	124	16.84	3.67	20	
Qualifiers:											
B Analyte detected in t	he associated Method Blank	Щ	Value above o	quantitation range			H Hold	ling times for pre	paration or analy	ysis exceeded	
ND Not Detected at the	Reporting Limit	R	RPD outside	accepted recovery lin	nits		S Spik	e/Surrogate outsi	de of limits due	to matrix inter	erence
DO Surrogate Diluted Ot	ıt		Calculations a	re based on raw valu	les						
ASSET LABORATORIES	CALIFORNIA 11060 Artesia Blvd., Ste C, C	erritos, CA 9070		3151 W. Post Rd., Las Vegas	s, NV 89118						
	P: 562.219.7435 F: 56	52.219.7436		P: /02.30/.2659 F: /02.	307.2691						

ENCON Solutions Inc. N013987 Work Order: **CLIENT:**

ANALYTICAL QC SUMMARY REPORT

Project: Elegant Cle	aners, 1410097						T	estCode: 8	3260WATE	RP	
Sample ID: N014024-005AMSD	SampType: MSD	TestCoo	de: 8260WATE	:RP Units: µg/L		Prep Dat	 G		RunNo: 970	005	
Client ID: ZZZZZ	Batch ID: P14VW191	Testh	lo: EPA 8260E	~		Analysis Dat	e: 12/3/20	14	SeqNo: 188	34451	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	19.580	0.50	20.00	0	97.9	66	134	19.82	1.22	20	
1,1-Dichloropropene	18.860	0.50	20.00	0	94.3	79	115	19.69	4.31	20	
1,2,3-Trichlorobenzene	12.990	0.50	20.00	0	65.0	73	132	17.41	29.1	20	SR
1,2,3-Trichloropropane	17.470	0.50	20.00	0	87.4	74	121	18.61	6.32	20	
1,2,4-Trichlorobenzene	13.030	0.50	20.00	0	65.2	74	132	16.61	24.2	20	SR
1,2,4-Trimethylbenzene	18.290	0.50	20.00	0	91.4	54	137	21.85	17.7	20	
1,2-Dibromo-3-chloropropane	18.960	1.0	20.00	0	94.8	56	133	19.41	2.35	20	
1,2-Dibromoethane	20.910	0.50	20.00	0	105	78	126	20.72	0.913	20	
1,2-Dichlorobenzene	18.550	0.50	20.00	0	92.8	80	120	21.40	14.3	20	
1,2-Dichloroethane	19.780	0.50	20.00	0	98.9	80	120	19.88	0.504	20	
1,2-Dichloropropane	17.860	0.50	20.00	0	89.3	71	128	18.27	2.27	20	
1,3,5-Trimethylbenzene	17.490	0.50	20.00	0	87.5	71	126	21.21	19.2	20	
1,3-Dichlorobenzene	17.990	0.50	20.00	0	90.0	80	120	20.52	13.1	20	
1,3-Dichloropropane	19.180	0.50	20.00	0	95.9	80	120	19.79	3.13	20	
1,4-Dichlorobenzene	17.200	0.50	20.00	0	86.0	79	120	19.73	13.7	20	
2,2-Dichloropropane	20.600	0.50	20.00	0	103	63	150	21.18	2.78	20	
2-Chlorotoluene	17.020	0.50	20.00	0	85.1	77	120	20.04	16.3	20	
4-Chlorotoluene	17.530	0.50	20.00	0	87.6	78	119	20.00	13.2	20	
4-Isopropyltoluene	14.280	0.50	20.00	0	71.4	74	124	19.73	32.0	20	SR
Benzene	19.080	0.50	20.00	0	95.4	80	120	19.59	2.64	20	
Bromobenzene	19.170	0.50	20.00	0	95.9	80	120	20.61	7.24	20	
Bromodichloromethane	19.930	0.50	20.00	0	99.7	74	128	20.18	1.25	20	
Bromoform	22.030	0.50	20.00	0	110	65	137	22.17	0.633	20	
Bromomethane	23.880	1.0	20.00	0	119	20	155	20.67	14.4	20	
Carbon tetrachloride	22.180	0.50	20.00	0	111	74	125	22.39	0.942	20	
Chlorobenzene	20.160	0.50	20.00	0	101	80	120	20.92	3.70	20	
Chloroethane	20.000	1.0	20.00	0	100	43	151	19.63	1.87	20	
Chloroform	17.570	0.50	20.00	0	87.9	76	118	17.74	0.963	20	
Chloromethane	14.720	0.50	20.00	0	73.6	37	164	14.48	1.64	20	
cis-1,2-Dichloroethene	18.420	0.50	20.00	0	92.1	78	121	18.12	1.64	20	
Qualifiers:											

B Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

Spike/Surrogate outside of limits due to matrix interference

H Holding times for preparation or analysis exceededS Spike/Surrogate outside of limits due to matrix inter

DO Surrogate Diluted Out ASSET LABORATORIES

CALIFORNIA

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691

RPD outside accepted recovery limits Calculations are based on raw values

Value above quantitation range

ш 2

"Serving Clients with Passion and Professionalism" 11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436

ENCON Solutions Inc. N013987 Work Order: **CLIENT:**

ANALYTICAL QC SUMMARY REPORT

Project: Elegant Cle	aners, 1410097						T	'estCode: 8	260WATEI	RP	
Sample ID: N014024-005AMSD	SampType: MSD	TestCoo	le: 8260WATE	:RP Units: µg/L		Prep Dat	е:		RunNo: 970	05	
Client ID: ZZZZZ	Batch ID: P14VW191	TestN	lo: EPA 8260E			Analysis Dai	e: 12/3/20	14	SeqNo: 188	4451	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	20.250	0.50	20.00	0	101	80	120	20.53	1.37	20	
Dibromochloromethane	21.230	0.50	20.00	0	106	80	120	21.12	0.519	20	
Dibromomethane	19.970	0.50	20.00	0	99.8	67	129	19.88	0.452	20	
Dichlorodifluoromethane	20.360	0.50	20.00	0	102	54	147	19.43	4.67	20	
Ethylbenzene	18.690	0.50	20.00	0	93.5	80	120	20.14	7.47	20	
Freon-113	18.900	0.50	20.00	0	94.5	66	138	19.12	1.16	20	
Hexachlorobutadiene	9.640	0.50	20.00	0	48.2	64	129	19.82	69.1	20	SR
Isopropylbenzene	17.020	0.50	20.00	0	85.1	78	121	20.13	16.7	20	
m,p-Xylene	39.270	1.0	40.00	0	98.2	80	120	42.18	7.15	20	
Methylene chloride	18.400	2.0	20.00	0	92.0	63	130	17.85	3.03	20	
MTBE	19.620	0.50	20.00	0	98.1	58	139	19.69	0.356	20	
n-Butylbenzene	11.970	0.50	20.00	0	59.8	73	126	17.14	35.5	20	SR
n-Propylbenzene	16.190	0.50	20.00	0	81.0	76	123	20.00	21.1	20	Ч
Naphthalene	14.880	0.50	20.00	0	74.4	49	146	17.25	14.8	20	
o-Xylene	19.840	0.50	20.00	0	99.2	80	120	21.25	6.86	20	
sec-Butylbenzene	14.460	0.50	20.00	0	72.3	74	124	20.95	36.7	20	SR
Styrene	20.660	0.50	20.00	0	103	32	149	7.260	96.0	20	Ж
tert-Butylbenzene	15.820	0.50	20.00	0	79.1	77	122	20.67	26.6	20	Ж
Tetrachloroethene	18.660	0.50	20.00	0	93.3	62	128	20.72	10.5	20	
Toluene	19.550	0.50	20.00	0	97.8	80	120	20.27	3.62	20	
trans-1,2-Dichloroethene	25.450	0.50	20.00	0	127	70	128	25.37	0.315	20	
Trichloroethene	19.880	0.50	20.00	0	99.4	80	120	20.14	1.30	20	
Trichlorofluoromethane	20.320	0.50	20.00	0	102	63	138	20.25	0.345	20	
Vinyl chloride	16.990	0.50	20.00	0	85.0	63	138	16.94	0.295	20	
Surr: 1,2-Dichloroethane-d4	23.370		25.00		93.5	76	124		0		
Surr: 4-Bromofluorobenzene	26.190		25.00		105	80	120		0		
Surr: Dibromofluoromethane	23.490		25.00		94.0	80	124		0		
Surr: Toluene-d8	25.370		25.00		101	80	120		0		

Qualifiers:

- B Analyte detected in the associated Method BlankND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out
- ASSET LABORATORIES

11060 Artesia Blvd., Ste C, Cerritos, CA 90703 P: 562.219.7435 F: 562.219.7436 CALIFORNIA

"Serving Clients with Passion and Professionalism"

RPD outside accepted recovery limits

Value above quantitation range

ച ഷ

NEVADA 3151 W. Post Rd., Las Vegas, NV 89118 P: 702.307.2659 F: 702.307.2691 Calculations are based on raw values

18 of 18

H Holding times for preparation or analysis exceededS Spike/Surrogate outside of limits due to matrix inter

Spike/Surrogate outside of limits due to matrix interference

Please review the checklist below. Any NO signifies non-compliance. Any non-compliance will be noted and must be understood as having an impact on the quality of the data. All tests will be performed as requested regardless of any compliance issues.

If you have any questions or further instruction, please contact our Project Coordinator at (702) 307-2659.

Cooler Received/Opened On:	11/26/201	4			Workorder:	N013987		
Rep sample Temp (Deg C):	1.9				IR Gun ID:	2		
Temp Blank:	✓ Yes	🗌 No						
Carrier name:	FedEx							
Last 4 digits of Tracking No.:	5520			Packing	Material Used:	Bubble Wrap		
Cooling process:	✓ Ice	C Ice Pack	Dry Ice	Other	None			
		6	mplo Bocoiu	ot Chocklist				
1 Shipping container/cooler in a	rood conditic	<u>30</u>			Voc 🗸		Not Procont	
2. Custody seals intact, signed,	dated on shi	ippping container/	cooler?		Yes 🗀	No 🗀	Not Present	\checkmark
3. Custody seals intact on samp	ble bottles?				Yes 🗌	No 🗌	Not Present	\checkmark
4. Chain of custody present?		Yes 🗹	No 🗌					
5. Sampler's name present in C		Yes 🗹	No 🗌					
6. Chain of custody signed when relinquished and received?					Yes 🗹	No 🗌		
7. Chain of custody agrees with	sample labe	ls?			Yes 🗹	No 🗌		
8. Samples in proper container/	bottle?				Yes 🗹	No 🗌		
9. Sample containers intact?					Yes 🗹	No 🗌		
10. Sufficient sample volume fo	r indicated te	est?			Yes 🗹	No 🗌		
11. All samples received within	holding time	?			Yes 🗹	No 🗌		
12. Temperature of rep sample	or Temp Bla	nk within acceptak	ble limit?		Yes 🗹	No 🗌	NA	
13. Water - VOA vials have zero	o headspace	?			Yes 🗹	No 🗌	NA	
14. Water - pH acceptable upor Example: pH > 12 for (CN	n receipt? N,S); pH<2 fe	or Metals			Yes	No 🗌	NA	
15. Did the bottle labels indicate	e correct pres	servatives used?			Yes 🗹	No 🗌	NA	
16. Were there Non-Conforman W	ice issues at as Client not	login? tified?			Yes 🗌 Yes 🗍	No 🗌 No 🗌	NA NA	

Comments:

MBC 11/26/2014 MBC Checklist Completed By:

Reviewed By: 12/02/14

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

APPENDIX M:

NON HAZARDOUS WASTE MANIFESTS

NO. 714381

NON-HAZARDOUS WASTE DATA FORM

			BE	249051	
	Generator's Name and Mailing Address		Generator's Site Address (if di	fferent than mailing address)	
	REZA SHEIKHAI		ELEGANT CLEAN	IFRS	
	37053 CHERRY STREET SUITE 115			1 Low	
	NEWARK CA 94580			4504	
	Generator's Phone: 510-797-5811				
	Container type removed from site:		Container type transpo	orted to receiving facility:	
	전 ^y Drums 🖸 Vacuum Truck 📮 Roll-off Truck 🕻	Dump Truck	🗙 Drums 🛛 Vacuu	Im Truck 🔲 Roll-off Truck	Dump Truck
	□ Other		Gener		
TOR	Quantity		Quantity_002	Volume	
GENERA	WASTE DESCRIPTION NON-HAZARDOUS	BOIL	GENERATING PROCESS	WELL INSTALL	ATIONS
	COMPONENTS OF WASTE PP	M %	COMPONE	ENTS OF WASTE	PPM %
	SOIL	99-100%	2		
	P		3. <u></u>		<u> </u>
	2TPH	<1%	4		
	Waste Profile	PROPERTIES: pH	SOLID 📮 LIQU	JID 🔲 SLUDGE 🛄 SLURRY (OTHER
	HANDLING INSTRUCTIONS	TE PERSON	A PROTECTIVE CL	OTHING	
		·····			
			-		
			$- \rho$		
	Generator Printed/Typed Name	Signature	KI		Month Day Year
	Larry Moothart of BESI on behalf of generat	or		<u> </u>	12 24 14
	The Generator certifies that the waste as described is 100% non-hazardous	am			
	Transporter 1 Company Name BELSHIRE			Phone# I 949-460-5200	
£	Transporter 1 Printed/Typed Name	Signature	<u>^</u>		Month Day Year
Ĕ		Signature	\bigcirc		Month Day Year
Р	Larry Moothar T		IA.		12 24 14
Ē	Transporter Acknowledgment of Beceipt of Materials			Phone#	
ž				Filone	
A	Transporter 2 Printed/Typed Name	Signature	uw <u></u>		Month Day Year
<u> </u>		1			
	Transporter Acknowledgment of Baceint of Materials				
~	Designated Facility Name and Site Address			Phone#	
E	U.S. ECOLOGY, NEVADA OPERATIONS			775-553-2203	
늰	HIGHWAY 95, 11 MILES S. OF BEATTY				
U					
\triangleleft	BEATTY, NV 89003				
EA	BEATTY, NV 89003				
NG FA	BEATTY, NV 89003				
IVING FA	BEATTY, NV 89003				
CEIVING FA	BEATTY, NV 89003 Printed/Typed Name	Signature			Month Day Year
ECEIVING FA	BEATTY, NV 89003 Printed/Typed Name	Signature			Month Day Year
RECEIVING FA	BEATTY, NV 89003 Printed/Typed Name Designated Facility Owner or Operator: Certification of receipt of materials co	Signature			Month Day Year

NO. 714379

NON-HAZARDOUS WASTE DATA FORM

		В	249051	
	Generator's Name and Mailing Address	Generator's Site Address (if	different than mailing address)	
	REZA SHEIKHAI	ELEGANT CLEA	NERS	
	37053 CHERRY STREET SUITE 115	1208 LINCOLN A	AVE.	
	NEWARK CA 94560	ALAMEDA CA	94501	
		r sharet 31 2 khann hann'z sig saar'd s		
	Generator's Phone: 510-797-5811		and the same state of the 100	
	Container type removed from site:	Container type trans	ported to receiving facility:	
	🖄 Drums 🔲 Vacuum Truck 🛄 Roll-off Truck 🛄 Dum	np Truck 🔲 Drums 🗶 🖾 Vac	uum Truck 🔲 Roll-off Truck	Dump Truck
	• Other	Other		
۲.	Quantity 2	Quantity	Volume	
ENERATO	Guanny	Quantity		
	WASTE DESCRIPTION NON-HAZARDOUS WATE	R GENERATING PROCES	sWELL PURGING / DE	CON WATER
	COMPONENTS OF WASTE PPM	% COMPO	NENTS OF WASTE	PPM %
В В	WATER	99-100%		
	1	3		
	2TPH	<u></u> 4		
	Waste Profile PROPE	RTIES: pH <u>7-10</u> Solid XX L	QUID 🔲 SLUDGE 🛄 SLURRY 🗌	OTHER
		PERSONAL PROTECTIVE (CIOTHING	
			ar lag har 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		<u> </u>		
	Generator Printed/Typed Name	Signature		Month Day Year
	Larry Moothart of BESI on behalf of generator			12 23 14
	The Generator certifies that the waste as described is 100% non-hazardous			
	Transporter 1 Company Name		Phone# 040_460_5200	
ß		Simular A		Month Day Var-
lμ	Iransporter 1 Printed/ Iyped Name			wonun Day Year
HC	LANNY MUNTANT		anne ang a ga tao 1911 distants dan ing mang mang mang ang ang ang ang ang ang ang ang ang	16 23 14
١ ٣	Transporter Acknowledgment of Receipt of Materials			
ANSF	Transporter 2 Company Name		Phone#	
	Transporter 2 Company Name NIETO & SONS TRUCKING, INC.	<u> </u>	Phone# 714-990-8855	
RAN	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name	Signature	Phone# 714-990-8855	Month Day Year
TRAN	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name	Signature	Phone# 714-990-8855	Month Day Year
TRAN	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials	Signature	Phone# 714-990-8855	Month Day Year
TRAN	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address	Signature	Phone# 714-990-8855 Phone#	Month Day Year
ITY TRAN	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address DEMENNO KERDOON	Signature	Phone# 714-990-8855 Phone# 310-537-7100	Month Day Year
	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST.	Signature	Phone# 714-990-8855 Phone# 310-537-7100	Month Day Year
ACILITY TRAN	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST. COMPTON, CA 90222	Signature	Phone# 714-990-8855 Phone# 310-537-7100	Month Day Year
FACILITY TRAN	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST. COMPTON, CA 90222	Signature	Phone# 714-990-8855 Phone# 310-537-7100	Month Day Year
NG FACILITY TRAN	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST. COMPTON, CA 90222	Signature	Phone# 714-990-8855 Phone# 310-537-7100	Month Day Year
IVING FACILITY TRAN	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name	Signature	Phone# 714-990-8855 Phone# 310-537-7100	Month Day Year
CEIVING FACILITY TRAN	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST. COMPTON, CA 90222	Signature	Phone# 714-990-8855 Phone# 310-537-7100	Month Day Year
RECEIVING FACILITY TRAN	Transporter 2 Company Name NIETO & SONS TRUCKING, INC. Transporter 2 Printed/Typed Name Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address DEMENNO KERDOON 2000 N. ALAMEDA ST. COMPTON, CA 90222 Printed/Typed Name	Signature	Phone# 714-990-8855 Phone# 310-537-7100	Month Day Year