

August 10, 2017

Mr. Keith Nowell Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6540

Subject: Request for Approval of Import Fill Material 2240 Filbert Street, Oakland, ACDEH case # RO3157 and GeoTracker Global ID T10000006445

Dear Keith,

City Ventures is seeking approval from the Alameda County Department of Environmental Health (ACDEH) to import approximately 3,000 cubic yards of Stevens Creek Quarry 3" Minus Engineered Fill from their Sheridan Plant located in Sunol, California.

We have reviewed both the original and updated analytical reports for the material, and the letter and email from the quarry confirming that the sample collected is representative of the current quarry material being exported (attached). The additional analyses were run to obtain required detection limits. Based on our review of the analytical reports, the soil does not contain contaminants exceeding unrestricted residential criteria listed in the RWQCB Environmental Screening Levels (ESLs) June 2016 Rev3 edition, or, in the case of arsenic, above approved background concentrations. The scope of analyses also appears appropriate for the area where the soil is sourced, and the detection limits for the analyses are below the unrestricted ESLs.

We look forward to your review of the materials for the use of this soil at the above referenced site. If you have further questions please feel free to contact the undersigned.

Phone: 415.290.5034

Thank you for your assistance with this project.

Regards,

Tom Graf GrafCon

P.O. Box 1105, Tiburon, CA 94920

Schreiner, Dan

Subject:

FW: Dirt Movers Oakland 2=Import Fill Submittal Data from Stevens Creek Quarry

From: Idemoto, Mark [mailto:MIdemoto@scqinc.com]

Sent: Tuesday, August 08, 2017 11:57 AM

To: Tom Graf <tom@grafcon.us>; Mallin, Mark <MMallin@scqinc.com>

Cc: Schreiner, Dan <Dan.Schreiner@stantec.com>; Lisa M. Rubinger <purchasing@dirtmoversca.com>

Subject: RE: Dirt Movers Oakland 2=Import Fill Submittal Data from Stevens Creek Quarry

August 8, 2017

Tom,

Our individual sample data results are typical of our Sheridan 3" Minus Engineered Fill product. Our site is open to further stockpile sampling & verification by others during normal M-F hours.

Thank you.

Sincerely,

Mark Idemoto Stevens Creek Quarry 12100 Stevens Canyon Road Cupertino, CA 95014

Cell (408) 640-9378 Office (408) 253-2512 Midemoto@scginc.com

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:

1708141

Report Created for:

Stevens Creek Quarry

12100 Stevens Canyon Road

Cupertino, CA 95014

Project Contact:

Mark Mallin

Project P.O.:

Project Name:

8059; P7 Engineered Fill

Project Received:

08/02/2017

Analytical Report reviewed & approved for release on 08/04/2017 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client:

Stevens Creek Quarry

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

Glossary Abbreviation

%D

Serial Dilution Percent Difference

95% Interval

95% Confident Interval

DF

Dilution Factor

DI WET

(DISTLC) Waste Extraction Test using DI water

DISS

Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT

Dilution Test (Serial Dilution)

DUP

Duplicate

EDL

Estimated Detection Limit

ERS

External reference sample. Second source calibration verification.

ITEF

International Toxicity Equivalence Factor

LCS

Laboratory Control Sample

MB

Method Blank

MB % Rec

% Recovery of Surrogate in Method Blank, if applicable

MDL

Method Detection Limit

ML

Minimum Level of Quantitation

MS

Matrix Spike

MSD

Matrix Spike Duplicate

N/A

Not Applicable

ND

Not detected at or above the indicated MDL or RL

NR

Data Not Reported due to matrix interference or insufficient sample amount.

PDS

Post Digestion Spike

PDSD PF Post Digestion Spike Duplicate

Г

Prep Factor

RD

Relative Difference

RL

Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD RRT Relative Percent Deviation
Relative Retention Time

SPK Val

Spike Value

SPKRef Val

Spike Reference Value

SPLP

Synthetic Precipitation Leachate Procedure

ST

Sorbent Tube

TCLP

Toxicity Characteristic Leachate Procedure

TEQ

Toxicity Equivalents

WET (STLC)

Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

e7

Oil range compounds are significant

Glossary of Terms & Qualifier Definitions

Client:

Stevens Creek Quarry

Project:

8059; P7 Engineered Fill

WorkOrder: 1708141

Quality Control Qualifiers

F2

LCS/LCSD recovery and/or RPD is out of acceptance criteria.

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 8/2/17 19:00

Project:

Date Prepared: 8/2/17

8059; P7 Engineered Fill

WorkOrder:

1708141

Extraction Method: SW3060A

Analytical Method: SW7199

Unit:

mg/Kg

Hexavalent chromium by Alkaline Digestion and IC Analysis

Client ID	Lab ID	Matrix	Date	Collected Instrumen	t Batch ID
8059	1708141-001A	Soil	08/02	/2017 10:00 IC2	143092
Analytes	Result	MDL	RL	DE	Date Analyzed
Hexavalent chromium	ND	0.10	0.20	1	08/03/2017 03:53

Analyst(s): AO

Analytical Report

Client: Stevens Creek Quarry

Date Received: 8/2/17 19:00

Date Prepared: 8/2/17

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

Extraction Method: SW3550B/3620B/3640A

Analytical Method: SW8081A/8082

Unit:

mg/kg

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
8059	1708141-001A	Soil	08/02/20	17 10:00	GC23	143144
Analytes	Result		RL	DF		Date Analyzed
Aldrin	ND		0.0010	1		08/04/2017 06:42
a-BHC	ND		0.0010	1		08/04/2017 06:42
b-BHC	ND		0.0010	1		08/04/2017 06:42
d-BHC	ND		0.0010	1		08/04/2017 06:42
g-BHC	ND		0.0010	1		08/04/2017 06:42
Chlordane (Technical)	ND		0.025	1		08/04/2017 06:42
a-Chlordane	ND		0.0010	1		08/04/2017 06:42
g-Chlordane	ND		0.0010	1		08/04/2017 06:42
p,p-DDD	ND		0.0010	1		08/04/2017 06:42
p,p-DDE	ND		0.0010	1		08/04/2017 06:42
p,p-DDT	ND		0.0010	1		08/04/2017 06:42
Dieldrin	ND		0.0010	1		08/04/2017 06:42
Endosulfan I	ND		0.0010	1		08/04/2017 06:42
Endosulfan II	ND		0.0010	1		08/04/2017 06:42
Endosulfan sulfate	ND		0.0010	1		08/04/2017 06:42
Endrin	ND		0.0010	1		08/04/2017 06:42
Endrin aldehyde	ND		0.0010	1		08/04/2017 06:42
Endrin ketone	ND		0.0010	1		08/04/2017 06:42
Heptachlor	ND		0.0010	1		08/04/2017 06:42
Heptachlor epoxide	ND		0.0010	1		08/04/2017 06:42
Hexachlorobenzene	ND		0.010	1		08/04/2017 06:42
Hexachlorocyclopentadiene	ND		0.020	1		08/04/2017 06:42
Methoxychlor	ND		0.0010	1		08/04/2017 06:42
Toxaphene	ND	· · · · · · · · · · · · · · · · · · ·	0.050	1		08/04/2017 06:42
Aroclor1016	ND		0.050	1		08/04/2017 06:42
Aroclor1221	ND		0.050	1		08/04/2017 06:42
Aroclor1232	ND		0.050	1		08/04/2017 06:42
Aroclor1242	ND		0.050	1		08/04/2017 06:42
Aroclor1248	ND		0.050	1		08/04/2017 06:42
Aroclor1254	ND		0.050	1		08/04/2017 06:42
Aroclor1260	ND		0.050	1		08/04/2017 06:42
PCBs, total	ND		0.050	1		08/04/2017 06:42

Limits

70-130

REC (%)

114

Surrogates

Analyst(s): LT

Decachlorobiphenyl

08/04/2017 06:42

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 8/2/17 19:00

Date Prepared: 8/2/17

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit:

mg/kg

Volatile Organics

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
8059	1708141-001A	Soil	08/02/20	17 10:00 GC38	143053
Analytes	Result		RL	DF	Date Analyzed
Acetone	ND		0.10	1	08/03/2017 15:01
tert-Amyl methyl ether (TAME)	ND		0.0050	1	08/03/2017 15:01
Benzene	ND		0.0050	1	08/03/2017 15:01
Bromobenzene	ND		0.0050	1	08/03/2017 15:01
Bromochloromethane	ND		0.0050	1	08/03/2017 15:01
Bromodichloromethane	ND		0.0050	1	08/03/2017 15:01
Bromoform	ND		0.0050	1	08/03/2017 15:01
Bromomethane	ND		0.0050	1	08/03/2017 15:01
2-Butanone (MEK)	ND		0.020	1	08/03/2017 15:01
t-Butyl alcohol (TBA)	ND		0.050	1	08/03/2017 15:01
n-Butyl benzene	ND		0.0050	1	08/03/2017 15:01
sec-Butyl benzene	ND		0.0050	1	08/03/2017 15:01
tert-Butyl benzene	ND	- 1,0 1,000,00	0.0050	1	08/03/2017 15:01
Carbon Disulfide	ND	744	0.0050	1	08/03/2017 15:01
Carbon Tetrachloride	ND		0.0050	1	08/03/2017 15:01
Chlorobenzene	ND		0.0050	1	08/03/2017 15:01
Chloroethane	ND		0.0050	1	08/03/2017 15:01
Chloroform	ND		0.0050	1	08/03/2017 15:01
Chloromethane	ND		0.0050	1	08/03/2017 15:01
2-Chlorotoluene	ND		0.0050	1	08/03/2017 15:01
4-Chlorotoluene	ND		0.0050	1	08/03/2017 15:01
Dibromochloromethane	ND		0.0050	1	08/03/2017 15:01
1,2-Dibromo-3-chloropropane	ND		0.0040	1	08/03/2017 15:01
1,2-Dibromoethane (EDB)	ND		0.0040	1	08/03/2017 15:01
Dibromomethane	ND		0.0050	1	08/03/2017 15:01
1,2-Dichlorobenzene	ND		0.0050	1	08/03/2017 15:01
1,3-Dichlorobenzene	ND		0.0050	1	08/03/2017 15:01
1,4-Dichlorobenzene	ND		0.0050	1	08/03/2017 15:01
Dichlorodifluoromethane	ND		0.0050	1	08/03/2017 15:01
1,1-Dichloroethane	ND		0.0050	1	08/03/2017 15:01
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	08/03/2017 15:01
1,1-Dichloroethene	ND		0.0050	1	08/03/2017 15:01
cis-1,2-Dichloroethene	ND		0.0050	1	08/03/2017 15:01
trans-1,2-Dichloroethene	ND		0.0050	1	08/03/2017 15:01
1,2-Dichloropropane	ND	-	0.0050	1	08/03/2017 15:01
1,3-Dichloropropane	ND		0.0050	1	08/03/2017 15:01
2,2-Dichloropropane	ND		0.0050	1	08/03/2017 15:01
					12.30.2011 10.0

(Cont.)

CDPH ELAP 1644 • NELAP 4033ORELAP

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 8/2/17 19:00

Project:

Date Prepared: 8/2/17

8059; P7 Engineered Fill

WorkOrder:

1708141

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit:

mg/kg

Client ID Lab ID Matrix Date Collected Instrument Batch ID 8699 1708141-001A Soll 08/02/2017 10:00 GC38 143063 Analytes Result RL DE Date Analyzed 1,1-Dichloropropene ND 0.0050 1 08/03/2017 15:01 nis-1-3-Dichloropropene ND 0.0050 1 08/03/2017 15:01 Diisopropyl ether (DIPE) ND 0.0050 1 08/03/2017 15:01 Eithylter-bulyl ether (DIPE) ND 0.0050 1 08/03/2017 15:01 Eithyl tert-bulyl ether (ETBE) ND 0.0050 1 08/03/2017 15:01 Freon 113 ND 0.0050 1 08/03/2017 15:01 Hexachlorobutadlene ND 0.0050 1 08/03/2017 15:01	Volatile Organics							
Analytes	Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID		
1.1-Dichloropropene ND 0.0050 1 08/03/2017 15:01 cis-1,3-Dichloropropene ND 0.0050 1 08/03/2017 15:01 trans-1,3-Dichloropropene ND 0.0050 1 08/03/2017 15:01 Dilsopropyl ether (DIPE) ND 0.0050 1 08/03/2017 15:01 Ethylbenzene ND 0.0050 1 08/03/2017 15:01 Ethyl eth-butyl ether (ETBE) ND 0.0050 1 08/03/2017 15:01 Ethyl eth-butyl ether (ETBE) ND 0.0050 1 08/03/2017 15:01 Hexachlorobutadiene ND 0.0050 1 08/03/2017 15:01 Hexachloroethane ND 0.0050 1 08/03/2017 15:01 Hexachloroethane ND 0.0050 1 08/03/2017 15:01 Jepropyl benzene	8059	1708141-001A	Soil	08/02/20	17 10:00 GC38	143053		
cis-1,3-Dichloropropene ND 0.0050 1 08/03/2017 15:01 trans-1,3-Dichloropropene ND 0.0050 1 08/03/2017 15:01 Diisopropyl ether (DIPE) ND 0.0050 1 08/03/2017 15:01 Ethylberzene ND 0.0050 1 08/03/2017 15:01 Ethyl tert-butyl ether (ETBE) ND 0.0050 1 08/03/2017 15:01 Freon 113 ND 0.0050 1 08/03/2017 15:01 Hexachlorobutadiene ND 0.0050 1 08/03/2017 15:01 Hestyl-Publy ether (MTBE)<	<u>Analytes</u>	Result		RL	DF	Date Analyzed		
trans-1,3-Dichloropropene ND 0.0050 1 08/03/2017 15:01 Dilsopropyl ether (DIPE) ND 0.0050 1 08/03/2017 15:01 Ethyl berbutyl ether (ETBE) ND 0.0050 1 08/03/2017 15:01 Ethyl terbutyl ether (ETBE) ND 0.0050 1 08/03/2017 15:01 Freen 113 ND 0.0050 1 08/03/2017 15:01 Hexachlorobutadiene ND 0.0050 1 08/03/2017 15:01 Heyspropyl Idene ND 0.0050 1 08/03/2017 15:01 Methyl-Leybert (MTBE) ND 0.0050 1 08/03/2017 15:01 Methyl-Leybert (MI	1,1-Dichloropropene	ND		0.0050	1	08/03/2017 15:01		
Disopropyl ether (DIPE) ND 0.0050 1 08/03/2017 15:01	cis-1,3-Dichloropropene	ND		0.0050	1	08/03/2017 15:01		
Ethylbenzene ND 0.0050 1 08/03/2017 15:01 Ethyl tert-butyl ether (ETBE) ND 0.0050 1 08/03/2017 15:01 Freon 113 ND 0.0050 1 08/03/2017 15:01 Hexachlorobutadiene ND 0.0050 1 08/03/2017 15:01 Hexachloroethane ND 0.0050 1 08/03/2017 15:01 2-Hexanone ND 0.0050 1 08/03/2017 15:01 1 sopropylbenzene ND 0.0050 1 08/03/2017 15:01 4-Isopropyl toluene ND 0.0050 1 08/03/2017 15:01 Methyl-Lebyl ether (MTBE)	trans-1,3-Dichloropropene	ND		0.0050	1	08/03/2017 15:01		
Ethyl tert-butyl ether (ETBE) ND 0.0050 1 08/03/2017 15:01 Freon 113 ND 0.0050 1 08/03/2017 15:01 Hexachlorobutadlene ND 0.0050 1 08/03/2017 15:01 Hexachlorobutadlene ND 0.0050 1 08/03/2017 15:01 2-Hexanone ND 0.0050 1 08/03/2017 15:01 Isopropylibenzene ND 0.0050 1 08/03/2017 15:01 4-Isopropyl toluene ND 0.0050 1 08/03/2017 15:01 Methyl-t-butyl ether (MTBE) ND 0.0050 1 08/03/2017 15:01 Methyl-t-butyl ether (MTBE) ND 0.0050 1 08/03/2017 15:01 4-Methyl-2-pentanone (MIBK) ND 0.0050 1 08/03/2017 15:01 4-Methyl-2-pentanone (MIBK) ND 0.0050 1 08/03/2017 15:01 Naphthalene ND 0.0050 1 08/03/2017 15:01 Naphthalene ND 0.0050 1 08/03/2017 15:01 Tyrene ND <td>Diisopropyl ether (DIPE)</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td>08/03/2017 15:01</td>	Diisopropyl ether (DIPE)	ND		0.0050	1	08/03/2017 15:01		
Freon 113 ND 0.0050 1 08/03/2017 15:01 Hexachlorobutadiene ND 0.0050 1 08/03/2017 15:01 Hexachloroethane ND 0.0050 1 08/03/2017 15:01 Hexachloroethane ND 0.0050 1 08/03/2017 15:01 Jespropylenzene ND 0.0050 1 08/03/2017 15:01 4-Isopropyl toluene ND 0.0050 1 08/03/2017 15:01 Methyl-t-butyl ether (MTBE) ND 0.0050 1 08/03/2017 15:01 Methylene chloride ND	Ethylbenzene	ND		0.0050	1	08/03/2017 15:01		
Hexachlorobutadiene	Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	08/03/2017 15:01		
Hexachloroethane	Freon 113	ND		0.0050	1	08/03/2017 15:01		
2-Hexanone ND 0.0050 1 08/03/2017 15:01 Isopropylbenzene ND 0.0050 1 08/03/2017 15:01 4-Isopropyl toluene ND 0.0050 1 08/03/2017 15:01 Methyl-t-butyl ether (MTBE) ND 0.0050 1 08/03/2017 15:01 Methylene chloride ND 0.0050 1 08/03/2017 15:01 NB 0.0050 1 08/03/2017 15:01 0.0050 1 08/03/2017 15:01 NB 0.0050 1 08/03/2017 15:01 0.0050 1 08/03/2017 15:01 0.0050 1 08/03/2017 15:01 0.0050 1 08/03/2017 15:01 0.0050 1 08/03/2017 15:01 0.0050 1 08/03/2017 15:	Hexachlorobutadiene	ND		0.0050	1	08/03/2017 15:01		
2-Hexanone ND 0.0050 1 08/03/2017 15:01 Isopropylbenzene ND 0.0050 1 08/03/2017 15:01 4-Isopropyl toluene ND 0.0050 1 08/03/2017 15:01 Methyl-butyl ether (MTBE) ND 0.0050 1 08/03/2017 15:01 Methyler-chloride ND 0.0050 1 08/03/2017 15:01 4-Methyle-pentanone (MIBK) ND 0.0050 1 08/03/2017 15:01 Naphthalene ND 0.0050 1 08/03/2017 15:01 Naphthalene ND 0.0050 1 08/03/2017 15:01 N-Propyl benzene ND 0.0050 1 08/03/2017 15:01 Styrene ND 0.0050 1 08/03/2017 15:01 1,1,1,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 1,2,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichloroethane ND	Hexachloroethane	ND		0.0050	1	08/03/2017 15:01		
Suppropylbenzene	2-Hexanone	ND		0.0050	1			
Methyl-t-butyl ether (MTBE) ND 0.0050 1 08/03/2017 15:01 Methylene chloride ND 0.0050 1 08/03/2017 15:01 4-Methyl-2-pentanone (MIBK) ND 0.0050 1 08/03/2017 15:01 Naphthalene ND 0.0050 1 08/03/2017 15:01 n-Propyl benzene ND 0.0050 1 08/03/2017 15:01 Styrene ND 0.0050 1 08/03/2017 15:01 Styrene ND 0.0050 1 08/03/2017 15:01 1,1,2,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Toluene ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND	Isopropylbenzene	ND		0.0050	1			
Methyl-t-butyl ether (MTBE) ND 0.0050 1 08/03/2017 15:01 Methylene chloride ND 0.0050 1 08/03/2017 15:01 4-Methyl-2-pentanone (MIBK) ND 0.0050 1 08/03/2017 15:01 Naphthalene ND 0.0050 1 08/03/2017 15:01 n-Propyl benzene ND 0.0050 1 08/03/2017 15:01 Styrene ND 0.0050 1 08/03/2017 15:01 1,1,1,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Toluene ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane <t< td=""><td>4-Isopropyl toluene</td><td>ND</td><td></td><td>0.0050</td><td>1</td><td>08/03/2017 15:01</td></t<>	4-Isopropyl toluene	ND		0.0050	1	08/03/2017 15:01		
4-Methyl-2-pentanone (MIBK) ND 0.0050 1 08/03/2017 15:01 Naphthalene ND 0.0050 1 08/03/2017 15:01 n-Propyl benzene ND 0.0050 1 08/03/2017 15:01 Styrene ND 0.0050 1 08/03/2017 15:01 1,1,1,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Toluene ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,1,1-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichlorofluoromethane ND <td>Methyl-t-butyl ether (MTBE)</td> <td>ND</td> <td>******</td> <td>0.0050</td> <td>1</td> <td></td>	Methyl-t-butyl ether (MTBE)	ND	******	0.0050	1			
Naphthalene ND 0.0050 1 08/03/2017 15:01 n-Propyl benzene ND 0.0050 1 08/03/2017 15:01 Styrene ND 0.0050 1 08/03/2017 15:01 1,1,1,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Tetrachloroethene ND 0.0050 1 08/03/2017 15:01 Toluene ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,1,1-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethane ND <t< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>0.0050</td><td>1</td><td>08/03/2017 15:01</td></t<>	Methylene chloride	ND		0.0050	1	08/03/2017 15:01		
Naphthalene ND 0.0050 1 08/03/2017 15:01 n-Propyl benzene ND 0.0050 1 08/03/2017 15:01 Styrene ND 0.0050 1 08/03/2017 15:01 1,1,1,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Toluene ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,1,1-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethane ND <t< td=""><td>4-Methyl-2-pentanone (MIBK)</td><td>ND</td><td></td><td>0.0050</td><td>1</td><td>08/03/2017 15:01</td></t<>	4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	08/03/2017 15:01		
Styrene ND 0.0050 1 08/03/2017 15:01 1,1,1,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Tetrachloroethene ND 0.0050 1 08/03/2017 15:01 Toluene ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,1,1-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropopane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene	Naphthalene	ND		0.0050	1			
Styrene ND 0.0050 1 08/03/2017 15:01 1,1,1,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Tetrachloroethene ND 0.0050 1 08/03/2017 15:01 Toluene ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,1,1-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene	n-Propyl benzene	ND		0.0050	1	08/03/2017 15:01		
1,1,2,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Tetrachloroethene ND 0.0050 1 08/03/2017 15:01 Toluene ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,1,1-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	Styrene	ND		0.0050	1			
1,1,2,2-Tetrachloroethane ND 0.0050 1 08/03/2017 15:01 Tetrachloroethene ND 0.0050 1 08/03/2017 15:01 Toluene ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,1-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	1,1,1,2-Tetrachloroethane	ND		0.0050	1	08/03/2017 15:01		
Tetrachloroethene ND 0.0050 1 08/03/2017 15:01 Toluene ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,1,1-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinj Chloride ND 0.0050 1 08/03/2017 15:01	1,1,2,2-Tetrachloroethane	ND		0.0050	1	08/03/2017 15:01		
Toluene ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,1,1-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethene ND 0.0050 1 08/03/2017 15:01 Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	Tetrachloroethene	ND		0.0050	1			
1,2,3-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,2,4-Trichlorobenzene ND 0.0050 1 08/03/2017 15:01 1,1,1-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethene ND 0.0050 1 08/03/2017 15:01 Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	Toluene	ND		0.0050	1	08/03/2017 15:01		
1,1,1-Trichloroethane ND 0.0050 1 08/03/2017 15:01 1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethene ND 0.0050 1 08/03/2017 15:01 Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	1,2,3-Trichlorobenzene	ND		0.0050	1	08/03/2017 15:01		
1,1,2-Trichloroethane ND 0.0050 1 08/03/2017 15:01 Trichloroethene ND 0.0050 1 08/03/2017 15:01 Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	1,2,4-Trichlorobenzene	ND		0.0050	1	08/03/2017 15:01		
Trichloroethene ND 0.0050 1 08/03/2017 15:01 Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	1,1,1-Trichloroethane	ND		0.0050	1	08/03/2017 15:01		
Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	1,1,2-Trichloroethane	ND		0.0050	1	08/03/2017 15:01		
Trichlorofluoromethane ND 0.0050 1 08/03/2017 15:01 1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	Trichloroethene	ND		0.0050	1	08/03/2017 15:01		
1,2,3-Trichloropropane ND 0.0050 1 08/03/2017 15:01 1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	Trichlorofluoromethane	ND	***	0.0050	1	08/03/2017 15:01		
1,2,4-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	1,2,3-Trichloropropane	ND		0.0050	1			
1,3,5-Trimethylbenzene ND 0.0050 1 08/03/2017 15:01 Vinyl Chloride ND 0.0050 1 08/03/2017 15:01		ND			1			
Vinyl Chloride ND 0.0050 1 08/03/2017 15:01	1,3,5-Trimethylbenzene	ND		0.0050	1			
	Vinyl Chloride	ND		0.0050	1			
	Xylenes, Total	ND		0.0050	1			

Analytical Report

Client: Stevens Creek Quarry WorkOrder:

1708141

Date Received: 8/2/17 19:00

Extraction Method: SW5030B

Analytical Method: SW8260B

Date Prepared: 8/2/17

Project:

8059; P7 Engineered Fill

Unit: mg/kg

Volatile Organics							
Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID		
8059	1708141-001A	Soil	08/02/2017 10:00 GC38	017 10:00 GC38	143053		
Analytes	Result		<u>RL</u>	DE	Date Analyzed		
Surrogates	REC (%)		Limits				
Dibromofluoromethane	112		70-130		08/03/2017 15:01		
Toluene-d8	108		70-130		08/03/2017 15:01		
4-BFB	89		70-130		08/03/2017 15:01		
Benzene-d6	86		60-140		08/03/2017 15:01		
Ethylbenzene-d10	95		60-140	· · · · · · · · · · · · · · · · · · ·	08/03/2017 15:01		
1,2-DCB-d4	81		60-140		08/03/2017 15:01		

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 8/2/17 19:00

Date Prepared: 8/3/17

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Semi-Volatile Organics (Low Level) with GPC Cleanup

Client ID	Lab ID	Matrix	Date C	ollected In	Batch ID	
8059	1708141-001A	Soil	08/02/20	17 10:00 GC	221	143132
Analytes	Result	MDL	RL	<u>DF</u>		Date Analyzed
Acenaphthene	ND	0.14	0.25	1		08/04/2017 14:41
Acenaphthylene	ND	0.14	0.25	1		08/04/2017 14:41
Acetochlor	ND	0.25	0.25	1		08/04/2017 14:41
Anthracene	ND	0.14	0.25	1		08/04/2017 14:41
Benzidine	ND	0.23	1.3	1		08/04/2017 14:41
Benzo (a) anthracene	ND	0.050	0.050	1		08/04/2017 14:41
Benzo (a) pyrene	0.0038	0.0025	0.0025	1		08/04/2017 14:41
Benzo (b) fluoranthene	ND	0.012	0.012	1		08/04/2017 14:41
Benzo (g,h,i) perylene	ND	0.15	0.25	1		08/04/2017 14:41
Benzo (k) fluoranthene	ND	0.16	0.25	1		08/04/2017 14:41
Benzyl Alcohol	ND	0.51	1.3	1		08/04/2017 14:41
1,1-Biphenyl	ND	0.15	0.25	1		08/04/2017 14:41
Bis (2-chloroethoxy) Methane	ND	0.14	0.25	1		08/04/2017 14:41
Bis (2-chloroethyl) Ether	ND	0.0012	0.0012	1		08/04/2017 14:41
Bis (2-chloroisopropyl) Ether	ND	0.0012	0.0012	1		08/04/2017 14:41
Bis (2-ethylhexyl) Adipate	ND	0.25	0.25	1		08/04/2017 14:41
Bis (2-ethylhexyl) Phthalate	ND	0.13	0.25	1		08/04/2017 14:41
4-Bromophenyl Phenyl Ether	ND	0.16	0.25	1		08/04/2017 14:41
Butylbenzyl Phthalate	ND	0.13	0.25	1		08/04/2017 14:41
4-Chloroaniline	ND	0.0012	0.0012	1		08/04/2017 14:41
4-Chloro-3-methylphenol	ND	0.12	0.25	1		08/04/2017 14:41
2-Chloronaphthalene	ND	0.16	0.25	1		08/04/2017 14:41
2-Chlorophenol	ND	0.0050	0.0050	1		08/04/2017 14:41
4-Chlorophenyl Phenyl Ether	ND	0.15	0.25	1		08/04/2017 14:41
Chrysene	ND	0.14	0.25	1		08/04/2017 14:41
Dibenzo (a,h) anthracene	ND	0.0025	0.0025	1		08/04/2017 14:41
Dibenzofuran	ND	0.13	0.25	1		08/04/2017 14:41
Di-n-butyl Phthalate	ND	0.13	0.25	1		08/04/2017 14:41
1,2-Dichlorobenzene	ND	0.12	0.25	1		08/04/2017 14:41
1,3-Dichlorobenzene	ND	0.14	0.25	1		08/04/2017 14:41
1,4-Dichlorobenzene	ND	0.025	0.025	1		08/04/2017 14:41
3,3-Dichlorobenzidine	ND	0.0050	0.0050	1		08/04/2017 14:41
2,4-Dichlorophenol	ND	0.0025	0.0025	1		08/04/2017 14:41
Diethyl Phthalate	ND	0.0025	0.0025	1		08/04/2017 14:41
2,4-Dimethylphenol	ND	0.025	0.025	1		08/04/2017 14:41
Dimethyl Phthalate	ND	0.0025	0.0025	1		08/04/2017 14:41
4,6-Dinitro-2-methylphenol	ND	0.13	1.3	1		08/04/2017 14:41

(Cont.)

NELAP 4033ORELAP

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 8/2/17 19:00

Date Prepared: 8/3/17

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Client ID	Lab ID	Matrix		Date C	ollected	Instrument	Batch ID	
8059	1708141-001A	Soil		08/02/2017 10:00		GC21	143132	
<u>Analytes</u>	Result		MDL	RL	<u>DF</u>		Date Analyzed	
2,4-Dinitrophenol	ND		0.62	0.62	1		08/04/2017 14:41	
2,4-Dinitrotoluene	ND		0.025	0.025	1		08/04/2017 14:41	
2,6-Dinitrotoluene	ND	10,10,	0.14	0.25	1		08/04/2017 14:41	
Di-n-octyl Phthalate	ND		0.14	0.50	1		08/04/2017 14:41	
1,2-Diphenylhydrazine	ND		0.16	0.25	1		08/04/2017 14:41	
Fluoranthene	ND		0.13	0.25	1		08/04/2017 14:41	
Fluorene	ND		0.14	0.25	1		08/04/2017 14:41	
Hexachlorobenzene	ND		0.025	0.025	1		08/04/2017 14:41	
Hexachlorobutadiene	ND		0.025	0.025	1		08/04/2017 14:41	
Hexachlorocyclopentadiene	ND		0.73	1.3	1		08/04/2017 14:41	
Hexachloroethane	ND		0.14	0.25	1		08/04/2017 14:41	
Indeno (1,2,3-cd) pyrene	ND		0.012	0.012	1		08/04/2017 14:41	
Isophorone	ND		0.12	0.25	1		08/04/2017 14:41	
2-Methylnaphthalene	ND		0.025	0.025	1		08/04/2017 14:41	
2-Methylphenol (o-Cresol)	ND		0.14	0.25	1		08/04/2017 14:41	
3 & 4-Methylphenol (m,p-Cresol)	ND		0.12	0.25	1		08/04/2017 14:41	
Naphthalene	ND		0.0025	0.0025	1		08/04/2017 14:41	
2-Nitroaniline	ND		0.62	1.3	1		08/04/2017 14:41	
3-Nitroaniline	ND		0.59	1.3	1		08/04/2017 14:41	
4-Nitroaniline	ND		0.55	1.3	1		08/04/2017 14:41	
Nitrobenzene	ND		0.14	0.25	1		08/04/2017 14:41	
2-Nitrophenol	ND		0.64	1.3	1		08/04/2017 14:41	
4-Nitrophenol	ND		0.41	1.3	1		08/04/2017 14:41	
N-Nitrosodiphenylamine	ND		0.16	0.25	1		08/04/2017 14:41	
N-Nitrosodi-n-propylamine	ND		0.012	0.012	1		08/04/2017 14:41	
Pentachlorophenol	ND		0.32	1.3	1		08/04/2017 14:41	
Phenanthrene	ND		0.14	0.25	1		08/04/2017 14:41	
Phenol	ND		0.0050	0.0050	1		08/04/2017 14:41	
Pyrene	ND		0.13	0.25	1		08/04/2017 14:41	
Pyridine	ND		0.25	0.25	1		08/04/2017 14:41	
1,2,4-Trichlorobenzene	ND		0.14	0.25	1		08/04/2017 14:41	
2,4,5-Trichlorophenol	ND		0.012	0.012	1		08/04/2017 14:41	
2,4,6-Trichlorophenol	ND		0.012	0.012	1		08/04/2017 14:41	

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 8/2/17 19:00

Project:

Date Prepared: 8/3/17

8059; P7 Engineered Fill

WorkOrder:

1708141

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Client ID	Lab ID	Matrix	Date (Collected Instrument	Batch ID
8059	1708141-001A	Soil	08/02/2	2017 10:00 GC21	143132
Analytes	Result	MDL	<u>RL</u>	DE	Date Analyzed
Surrogates	REC (%)		<u>Limits</u>		
2-Fluorophenol	73		30-130)	08/04/2017 14:41
Phenol-d5	70		30-130		08/04/2017 14:41
Nitrobenzene-d5	74		30-130		08/04/2017 14:41
2-Fluorobiphenyl	68		30-130		08/04/2017 14:41
2,4,6-Tribromophenol	39		16-130		08/04/2017 14:41
4-Terphenyl-d14	82		30-130		08/04/2017 14:41

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 8/2/17 19:00

Date Prepared: 8/2/17

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

Extraction Method: SW3050B

Analytical Method: SW6020

Unit:

mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
8059	1708141-001A	Soil	08/02/20	017 10:00 ICP-MS3	143084
Analytes	Result		RL	DF	Date Analyzed
Antimony	ND		0.50	1	08/03/2017 10:38
Arsenic	6.3		0.50	1	08/03/2017 10:38
Barium	150		5.0	1	08/03/2017 10:38
Beryllium	ND		0.50	1	08/03/2017 10:38
Cadmium	0.62		0.25	1	08/03/2017 10:38
Chromium	37		0.50	1	08/03/2017 10:38
Cobalt	10		0.50	1	08/03/2017 10:38
Copper	16		0.50	1	08/03/2017 10:38
Lead	9.5		0.50	1	08/03/2017 10:38
Mercury	ND		0.050	1	08/03/2017 10:38
Molybdenum	0.86		0.50	1	08/03/2017 10:38
Nickel	21		0.50	1	08/03/2017 10:38
Selenium	ND		0.50	1	08/03/2017 10:38
Silver	ND		0.50	1	08/03/2017 10:38
Thallium	ND		0.50	1	08/03/2017 10:38
Vanadium	67		0.50	1	08/03/2017 10:38
Zinc	65		5.0		08/03/2017 10:38
Surrogates	REC (%)		Limits		
Terbium	111		70-130		08/03/2017 10:38
Analyst(s): JC					

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 8/2/17 19:00

Date Prepared: 8/2/17

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

Extraction Method: SW5030B

Analytical Method: SW8021B/8015Bm

Unit:

mg/Kg

Gasoline Range (Co	o-C12) Volati	le Hydrocart	bons as Gasoline with BTEX and MTBE
	Lab ID	Matrix	Date Collected Instrument

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
8059	1708141-001A	Soil	08/02/20	143074	
<u>Analytes</u>	Result		RL	DE	Date Analyzed
TPH(g) (C6-C12)	ND		1.0	1	08/03/2017 11:46
MTBE			0.050	1	08/03/2017 11:46
Benzene			0.0050	1	08/03/2017 11:46
Toluene			0.0050	1	08/03/2017 11:46
Ethylbenzene	***		0.0050	1	08/03/2017 11:46
Xylenes			0.015	1	08/03/2017 11:46
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
2-Fluorotoluene	81		62-126		08/03/2017 11:46
Analyst(s): IA					

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 8/2/17 19:00

Date Prepared: 8/2/17

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

Extraction Method: SW3550B/3630C

Analytical Method: SW8015B

Unit: mg/Kg

Total Extractable Petroleum	Hydrocarbons with	Silica Gel	Clean-Up

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
8059	1708141-001A	Soil	08/02/2	017 10:00 GC39B	143070
Analytes	Result		RL	DF	Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1	08/03/2017 11:04
TPH-Motor Oil (C18-C36)	5.2		5.0	1	08/03/2017 11:04
Surrogates	REC (%)		<u>Limits</u>		
C9	95		78-109		08/03/2017 11:04
Analyst(s): TK			Analytical Con	nments: e7	

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17

Date Analyzed: 8/2/17 - 8/3/17

Instrument:

IC2

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143092

Extraction Method: SW3060A

Analytical Method: SW7199

Unit:

mg/Kg

Sample ID:

MB/LCS-143092

1708101-002AMS/MSD

QC Summary Report for SW7199 (Hexavalent chromium)

Analyte	MB Result	LCS Result	MDL	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Hexavalent chromium	ND	21.5	0.10	0.20	20	-	108	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Hexavalent chromium	19.1	19.3	20	ND	95	96	70-130	1.04	20

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17 Date Analyzed: 8/4/17

Instrument:

GC22, GC23

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143144

Extraction Method: SW3550B/3620B/3640A

Analytical Method: SW8081A/8082

Unit:

mg/kg

Sample ID:

MB/LCS/LCSD-143144

QC Summary OC Pesticides+PCBs w/ GPC & Florisil

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
Aldrin	ND	0.0010	-	-):
a-BHC	ND	0.0010	-	•	-
b-BHC	ND	0.0010	-	-	-
d-BHC	ND	0.0010	-	-	•
g-BHC	ND	0.0010	-	-	-
Chlordane (Technical)	ND	0.025	-	-	-
a-Chlordane	ND	0.0010	_	-	-:
g-Chlordane	ND	0.0010	-	-	-
p,p-DDD	ND	0.0010	-	-	-
p,p-DDE	ND	0.0010	-	-	-
p,p-DDT	ND	0.0010	-	-	*
Dieldrin	ND	0.0010	-	-	
Endosulfan I	ND	0.0010	-	-	=
Endosulfan II	ND	0.0010	-	-	
Endosulfan sulfate	ND	0.0010	-	-	-
Endrin	ND	0.0010	-	-	•
Endrin aldehyde	ND	0.0010	-	-	-
Endrin ketone	ND	0.0010	-	-	-
Heptachlor	ND	0.0010	-	-	-
Heptachlor epoxide	ND	0.0010	-	-	-
Hexachlorobenzene	ND	0.010	-	-	-
Hexachlorocyclopentadiene	ND	0.020	-	-	-
Methoxychlor	ND	0.0010	-	-	
Toxaphene	ND	0.050	-	-	-
Aroclor1016	ND	0.050	•	-	-
Aroclor1221	ND	0.050	-	-	-
Aroclor1232	ND	0.050	-	-	=
Aroclor1242	ND	0.050	-	-	₹
Aroclor1248	ND	0.050	-	-	-
Aroclor1254	ND	0.050	-	-	:=
Aroclor1260	ND	0.050	-	-	
PCBs, total	ND	0.050	-	-	: =
Surrogate Recovery					
Decachlorobiphenyl	0.0648		0.050	130	70-130

(Cont.) **NELAP 4033ORELAP** QA/QC Officer

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17 Date Analyzed: 8/4/17

Instrument:

GC22, GC23

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143144

Extraction Method: SW3550B/3620B/3640A

Analytical Method: SW8081A/8082

Unit:

mg/kg

Sample ID:

MB/LCS/LCSD-143144

QC Summary OC Pesticides+PCBs w/ GPC & Florisil

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aldrin	0.0582	-	0.050	116	-	78-125	-	-
a-BHC	0.0454	-	0.050	91, F2	-	102-140	-	-
b-BHC	0.0568	-	0.050	114	-	89-124	-	-
d-BHC	0.0690	-	0.050	138	-	63-159	-	-
g-BHC	0.0618	-	0.050	124	-	75-136	-	-
a-Chlordane	0.0605	-	0.050	121	-	77-130	-	-
g-Chlordane	0.0672	-	0.050	134	-	84-146	-	-
p,p-DDD	0.0704	-	0.050	141	-	65-172	-	-
p,p-DDE	0.0652	-	0.050	130	-	73-153	-	-
p,p-DDT	0.0696	-	0.050	139	-	75-161	-	-
Dieldrin	0.0793	-	0.050	159	-	68-177	-	-
Endosulfan I	0.0680	-	0.050	136	-	63-150	-	-
Endosulfan II	0.0681	-	0.050	136	-	75-160	-	-
Endosulfan sulfate	0.0592	-	0.050	118	-	66-155	-	-
Endrin	0.0697	-	0.050	139	-	64-155	-	
Endrin aldehyde	0.0607	-	0.050	121	-	57-159	-	-
Endrin ketone	0.0698	-	0.050	140	-	81-156	-	-
Heptachlor	0.0684	-	0.050	137	-	71-156	-	-
Heptachlor epoxide	0.0660	-	0.050	132	-	77-136	-	
Hexachlorobenzene	0.0515	-	0.050	103	-	83-131	-	-
Hexachlorocyclopentadiene	0.0366	-	0.050	73	-	38-165	-	_
Methoxychlor	0.0469	-	0.050	94	-	56-160	-	
Aroclor1016	0.171	0.178	0.15	114	118	68-138	3.93	20
Aroclor1260	0.193	0.192	0.15	129	128	75-176	0.731	20
Surrogate Recovery	они, они, оне при тор и тор обобо (СССС) (ССС) (СССС) (СС	manaren eta esta esta esta esta esta esta esta	тинистичности по при	andri, september salam gamananni gamananni gas salah yakilay oleh istey diyelah (-) arkin bagilgay				эмпо-макеторическогор, аударутук
Decachlorobiphenyl	0.0735	0.0702	0.050	147	140	55-161	4.58	20

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17

Date Analyzed: 8/2/17 - 8/3/17

Instrument:

GC10, GC16

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143053

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit:

mg/kg

Sample ID:

MB/LCS-143053

1708098-001AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	1.21	0.10	1	-	121	72-156
tert-Amyl methyl ether (TAME)	ND	0.0476	0.0050	0.050	-	95	53-116
Benzene	ND	0.0487	0.0050	0.050	•	97	63-137
Bromobenzene	ND	0.0496	0.0050	0.050	-	99	68-126
Bromochloromethane	ND	0.0485	0.0050	0.050	-	97	72-126
Bromodichloromethane	ND	0.0510	0.0050	0.050	-	102	61-127
Bromoform	ND	0.0372	0.0050	0.050	•	74	49-100
Bromomethane	ND	0.0387	0.0050	0.050	•	77	40-161
2-Butanone (MEK)	ND	0.224	0.020	0.20	-	112	43-157
t-Butyl alcohol (TBA)	ND	0.229	0.050	0.20	-	115	41-135
n-Butyl benzene	ND	0.0699	0.0050	0.050	-	140	102-160
sec-Butyl benzene	ND	0.0697	0.0050	0.050	-	139	74-168
tert-Butyl benzene	ND	0.0662	0.0050	0.050	-	132	88-157
Carbon Disulfide	ND	0.0509	0.0050	0.050	-	102	42-151
Carbon Tetrachloride	ND	0.0531	0.0050	0.050	-	106	49-149
Chlorobenzene	ND	0.0485	0.0050	0.050	-	97	77-121
Chloroethane	ND	0.0404	0.0050	0.050	-	81	41-134
Chloroform	ND	0.0509	0.0050	0.050	-	102	69-133
Chloromethane	ND	0.0360	0.0050	0.050	-	72	31-119
2-Chlorotoluene	ND	0.0581	0.0050	0.050	-	116	79-139
4-Chlorotoluene	ND	0.0540	0.0050	0.050	-	108	77-138
Dibromochloromethane	ND	0.0450	0.0050	0.050	-	90	58-121
1,2-Dibromo-3-chloropropane	ND	0.0213	0.0040	0.020	-	106	39-115
1,2-Dibromoethane (EDB)	ND	0.0531	0.0040	0.050	•	106	67-119
Dibromomethane	ND	0.0487	0.0050	0.050	-	97	66-117
1,2-Dichlorobenzene	ND	0.0413	0.0050	0.050	-	83	59-109
1,3-Dichlorobenzene	ND	0.0510	0.0050	0.050	•	102	75-130
1,4-Dichlorobenzene	ND	0.0482	0.0050	0.050	-	96	71-122
Dichlorodifluoromethane	ND	0.0204	0.0050	0.050		41, F2	43-68
1,1-Dichloroethane	ND	0.0505	0.0050	0.050	-	101	62-139
1,2-Dichloroethane (1,2-DCA)	ND	0.0513	0.0040	0.050	-	103	58-135
1,1-Dichloroethene	ND	0.0464	0.0050	0.050	-	93	42-145
cis-1,2-Dichloroethene	ND	0.0497	0.0050	0.050	•	99	67-129
trans-1,2-Dichloroethene	ND	0.0472	0.0050	0.050	-	94	54-139
1,2-Dichloropropane	ND	0.0491	0.0050	0.050	-	98	68-125
1,3-Dichloropropane	ND	0.0538	0.0050	0.050		108	65-125
2,2-Dichloropropane	ND	0.0548	0.0050	0.050		109	45-151

(Cont.) CDPH ELAP 1644 • NELAP 4033ORELAP

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17

Date Analyzed: 8/2/17 - 8/3/17

Instrument:

GC10, GC16

Matrix: Project:

Soil

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143053

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit:

.......

Sample ID:

mg/kg MB/LCS-143053

1708098-001AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Booult	LCS	RL	SPK	MB SS	LCS	LCS
	Result	Result		Val	%REC	%REC	Limits
1,1-Dichloropropene	ND	0.0499	0.0050	0.050	-	100	64-138
cis-1,3-Dichloropropene	ND	0.0580	0.0050	0.050	-	116	62-134
trans-1,3-Dichloropropene	ND	0.0524	0.0050	0.050	-	105	59-128
Diisopropyl ether (DIPE)	ND	0.0499	0.0050	0.050	-	100	52-129
Ethylbenzene	ND	0.0554	0.0050	0.050	-	111	74-142
Ethyl tert-butyl ether (ETBE)	ND	0.0514	0.0050	0.050	•	103	53-125
Freon 113	ND	0.0405	0.0050	0.050	-	81	51-126
Hexachlorobutadiene	ND	0.0695	0.0050	0.050	-	139	70-158
Hexachloroethane	ND	0.0563	0.0050	0.050	-	113	80-160
2-Hexanone	ND	0.0498	0.0050	0.050	-	100	41-116
Isopropylbenzene	ND	0.0575	0.0050	0.050	-	115	77-146
4-Isopropyl toluene	ND	0.0642	0.0050	0.050	_	128	96-159
Methyl-t-butyl ether (MTBE)	ND	0.0506	0.0050	0.050	-	101	58-122
Methylene chloride	ND	0.0538	0.0050	0.050	-	108	58-135
4-Methyl-2-pentanone (MIBK)	ND	0.0508	0.0050	0.050	-	102	40-112
Naphthalene	ND	0.0263	0.0050	0.050	-	53	23-73
n-Propyl benzene	ND	0.0655	0.0050	0.050	-	131	82-160
Styrene	ND	0.0508	0.0050	0.050	-	102	68-124
1,1,1,2-Tetrachloroethane	ND	0.0545	0.0050	0.050	-	109	70-128
1,1,2,2-Tetrachloroethane	ND	0.0474	0.0050	0.050	-	95	57-111
Tetrachloroethene	ND	0.0553	0.0050	0.050		111	73-145
Toluene	ND	0.0543	0.0050	0.050	-	109	76-130
1,2,3-Trichlorobenzene	ND	0.0316	0.0050	0.050	-	63	43-72
1,2,4-Trichlorobenzene	ND	0.0412	0.0050	0.050	-	82	47-95
1,1,1-Trichloroethane	ND	0.0526	0.0050	0.050		105	60-141
1,1,2-Trichloroethane	ND	0.0518	0.0050	0.050	-	104	62-118
Trichloroethene	ND	0.0504	0.0050	0.050	-	101	72-132
Trichlorofluoromethane	ND	0.0449	0.0050	0.050	-	90	43-135
1,2,3-Trichloropropane	ND	0.0557	0.0050	0.050	-	111	57-122
1,2,4-Trimethylbenzene	ND	0.0605	0.0050	0.050	-	121	81-152
1,3,5-Trimethylbenzene	ND	0.0630	0.0050	0.050	-	126	78-160
Vinyl Chloride	ND	0.0352	0.0050	0.050	_	70	42-131
Xylenes, Total	ND	0.159	0.0050	0.15		106	70-130

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17

Date Analyzed: 8/2/17 - 8/3/17

Instrument:

GC10, GC16

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143053

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit:

mg/kg

Sample ID:

MB/LCS-143053

1708098-001AMS/MSD

QC Summary Report for SW8260B											
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits				
Surrogate Recovery											
Dibromofluoromethane	0.1242	0.127		0.12	99	102	70-130				
Toluene-d8	0.1427	0.142		0.12	114	113	70-130				
4-BFB	0.01276	0.0138		0.012	102	110	70-130				
Benzene-d6	0.09162	0.0929		0.10	92	93	60-140				
Ethylbenzene-d10	0.1214	0.121		0.10	121	121	60-140				
1,2-DCB-d4	0.08876	0.0888		0.10	89	89	60-140				

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17

Date Analyzed: 8/2/17 - 8/3/17

Instrument:

GC10, GC16

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143053

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit:

mg/kg

Sample ID:

MB/LCS-143053

1708098-001AMS/MSD

QC Summary Report for SW8260B

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Acetone	NR	NR	1	ND<1.0	NR	NR	72-156	NR	20
tert-Amyl methyl ether (TAME)	NR	NR	0.050	ND<0.050	NR	NR	53-116	NR	20
Benzene	NR	NR	0.050	0.1053	NR	NR	63-137	NR	20
Bromobenzene	NR	NR	0.050	ND<0.050	NR	NR	68-126	NR	20
Bromochloromethane	NR	NR	0.050	ND<0.050	NR	NR	72-126	NR	20
Bromodichloromethane	NR	NR	0.050	ND<0.050	NR	NR	61-127	NR	20
Bromoform	NR	NR	0.050	ND<0.050	NR	NR	49-100	NR	20
Bromomethane	NR	NR	0.050	ND<0.050	NR	NR	40-161	NR	20
2-Butanone (MEK)	NR	NR	0.20	ND<0.20	NR	NR	43-157	NR	20
t-Butyl alcohol (TBA)	NR	NR	0.20	ND<0.50	NR	NR	41-135	NR	20
n-Butyl benzene	NR	NR	0.050	ND<0.050	NR	NR	102-160	NR	20
sec-Butyl benzene	NR	NR	0.050	ND<0.050	NR	NR	74-168	NR	20
tert-Butyl benzene	NR	NR	0.050	ND<0.050	NR	NR	88-157	NR	20
Carbon Disulfide	NR	NR	0.050	ND<0.050	NR	NR	42-151	NR	20
Carbon Tetrachloride	NR	NR	0.050	ND<0.050	NR	NR	49-149	NR	20
Chlorobenzene	NR	NR	0.050	ND<0.050	NR	NR	77-121	NR	20
Chloroethane	NR	NR	0.050	ND<0.050	NR	NR	41-134	NR	20
Chloroform	NR	NR	0.050	ND<0.050	NR	NR	69-133	NR	20
Chloromethane	NR	NR	0.050	ND<0.050	NR	NR	31-119	NR	20
2-Chlorotoluene	NR	NR	0.050	ND<0.050	NR	NR	79-139	NR	20
4-Chlorotoluene	NR	NR	0.050	ND<0.050	NR	NR	77-138	NR	20
Dibromochloromethane	NR	NR	0.050	ND<0.050	NR	NR	58-121	NR	20
1,2-Dibromo-3-chloropropane	NR	NR	0.020	ND<0.040	NR	NR	39-115	NR	20
1,2-Dibromoethane (EDB)	NR	NR	0.050	ND<0.040	NR	NR	67-119	NR	20
Dibromomethane	NR	NR	0.050	ND<0.050	NR	NR	66-117	NR	20
1,2-Dichlorobenzene	NR	NR	0.050	ND<0.050	NR	NR	59-109	NR	20
1,3-Dichlorobenzene	NR	NR	0.050	ND<0.050	NR	NR	75-130	NR	20
1,4-Dichlorobenzene	NR	NR	0.050	ND<0.050	NR	NR	71-122	NR	20
Dichlorodifluoromethane	NR	NR	0.050	ND<0.050	NR	NR	43-68	NR	20
1,1-Dichloroethane	NR	NR	0.050	ND<0.050	NR	NR	62-139	NR	20
1,2-Dichloroethane (1,2-DCA)	NR	NR	0.050	ND<0.040	NR	NR	58-135	NR	20
1,1-Dichloroethene	NR	NR	0.050	ND<0.050	NR	NR	42-145	NR	20
cis-1,2-Dichloroethene	NR	NR	0.050	ND<0.050	NR	NR	67-129	NR	20
trans-1,2-Dichloroethene	NR	NR	0.050	ND<0.050	NR	NR	54-139	NR	20
1,2-Dichloropropane	NR	NR	0.050	ND<0.050	NR	NR	68-125	NR	20
1,3-Dichloropropane	NR	NR	0.050	ND<0.050	NR	NR	65-125	NR	20
2,2-Dichloropropane	NR	NR	0.050	ND<0.050	NR	NR	45-151	NR	20

(Cont.) CDPH ELAP 1644 • NELAP 4033ORELAP

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17

Date Analyzed: 8/2/17 - 8/3/17 **Instrument:** GC10, GC16

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143053

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit:

mg/kg

Sample ID:

MB/LCS-143053

1708098-001AMS/MSD

QC Summary Report for SW8260B

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
1,1-Dichloropropene	NR	NR	0.050	ND<0.050	NR	NR	64-138	NR	20
cis-1,3-Dichloropropene	NR	NR	0.050	ND<0.050	NR	NR	62-134	NR	20
trans-1,3-Dichloropropene	NR	NR	0.050	ND<0.050	NR	NR	59-128	NR	20
Diisopropyl ether (DIPE)	NR	NR	0.050	ND<0.050	NR	NR	52-129	NR	20
Ethylbenzene	NR	NR	0.050	ND<0.050	NR	NR	74-142	NR	20
Ethyl tert-butyl ether (ETBE)	NR	NR	0.050	ND<0.050	NR	NR	53-125	NR	20
Freon 113	NR	NR	0.050	ND<0.050	NR	NR	51-126	NR	20
Hexachlorobutadiene	NR	NR	0.050	ND<0.050	NR	NR	70-158	NR	20
Hexachloroethane	NR	NR	0.050	ND<0.050	NR	NR	80-160	NR	20
2-Hexanone	NR	NR	0.050	ND<0.050	NR	NR	41-116	NR	20
Isopropylbenzene	NR	NR	0.050	ND<0.050	NR	NR	77-146	NR	20
4-Isopropyl toluene	NR	NR	0.050	ND<0.050	NR	NR	96-159	NR	20
Methyl-t-butyl ether (MTBE)	NR	NR	0.050	ND<0.050	NR	NR	58-122	NR	20
Methylene chloride	NR	NR	0.050	ND<0.050	NR	NR	58-135	NR	20
4-Methyl-2-pentanone (MIBK)	NR	NR	0.050	ND<0.050	NR	NR	40-112	NR	20
Naphthalene	NR	NR	0.050	ND<0.050	NR	NR	23-73	NR	20
n-Propyl benzene	NR	NR	0.050	ND<0.050	NR	NR	82-160	NR	20
Styrene	NR	NR	0.050	ND<0.050	NR	NR	68-124	NR	20
1,1,1,2-Tetrachloroethane	NR	NR	0.050	ND<0.050	NR	NR	70-128	NR	20
1,1,2,2-Tetrachloroethane	NR	NR	0.050	ND<0.050	NR	NR	57-111	NR	20
Tetrachloroethene	NR	NR	0.050	ND<0.050	NR	NR	73-145	NR	20
Toluene	NR	NR	0.050	0.2603	NR	NR	76-130	NR	20
1,2,3-Trichlorobenzene	NR	NR	0.050	ND<0.050	NR	NR	43-72	NR	20
1,2,4-Trichlorobenzene	NR	NR	0.050	ND<0.050	NR	NR	47-95	NR	20
1,1,1-Trichloroethane	NR	NR	0.050	ND<0.050	NR	NR	60-141	NR	20
1,1,2-Trichloroethane	NR	NR	0.050	ND<0.050	NR	NR	62-118	NR	20
Trichloroethene	NR	NR	0.050	ND<0.050	NR	NR	72-132	NR	20
Trichlorofluoromethane	NR	NR	0.050	ND<0.050	NR	NR	43-135	NR	20
1,2,3-Trichloropropane	NR	NR	0.050	ND<0.050	NR	NR	57-122	NR	20
1,2,4-Trimethylbenzene	NR	NR	0.050	ND<0.050	NR	NR	81-152	NR	20
1,3,5-Trimethylbenzene	NR	NR	0.050	ND<0.050	NR	NR	78-160	NR	20
Vinyl Chloride	NR	NR	0.050	ND<0.050	NR	NR	42-131	NR	20
Xylenes, Total	NR	NR	0.15	0.1642	NR	NR	70-130	NR	20

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17

Date Analyzed: 8/2/17 - 8/3/17 **Instrument:** GC10, GC16

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143053

Extraction Method: SW5030B

TI---24.

Analytical Method: SW8260B

Unit:

mg/kg

Sample ID:

MB/LCS-143053

1708098-001AMS/MSD

QC Summary Report for SW8260B										
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit	
Surrogate Recovery										
Dibromofluoromethane	NR	NR	0.12		NR	NR	70-130	NR	20	
Toluene-d8	NR	NR	0.12		NR	NR	70-130	NR	20	
4-BFB	NR	NR	0.012		NR	NR	70-130	NR	20	
Benzene-d6	NR	NR	0.10		NR	NR	60-140	NR	20	
Ethylbenzene-d10	NR	NR	0.10		NR	NR	60-140	NR	20	
1,2-DCB-d4	NR	NR	0.10		NR	NR	60-140	NR	20	

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/3/17 Date Analyzed: 8/4/17

GC21 **Instrument:**

Matrix:

Project:

Soil

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143132

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Sample ID:

MB/LCS-143132

QC Summary	Report for SW	/82/0C (Low	Level) w/ GPC

Analyte	MB Result	LCS Result	MDL	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acenaphthene	ND	3.19	0.14	0.25	5	-	64	32-118
Acenaphthylene	ND	3.32	0.14	0.25	5	-	66	32-122
Acetochlor	ND	_	0.25	0.25	-	-	-	-
Anthracene	ND	3.30	0.14	0.25	5	-	66	36-125
Benzidine	ND	0.773	0.23	1.3	5	-	15	4-83
Benzo (a) anthracene	ND	3.36	0.050	0.050	5	-	67	35-117
Benzo (a) pyrene	ND	4.60	0.0025	0.0025	5	-	92	42-138
Benzo (b) fluoranthene	ND	4.15	0.012	0.012	5	-	83	37-125
Benzo (g,h,i) perylene	ND .	4.47	0.15	0.25	5	-	89	45-146
Benzo (k) fluoranthene	ND	4.54	0.16	0.25	5	-	91	39-124
Benzyl Alcohol	ND	3.50	0.51	1.3	5	-	70	5-105
1,1-Biphenyl	ND	-	0.15	0.25	-	•	-	-
Bis (2-chloroethoxy) Methane	ND	3.13	0.14	0.25	5	-	63	35-115
Bis (2-chloroethyl) Ether	ND	3.16	0.0012	0.0012	5	-	63	35-105
Bis (2-chloroisopropyl) Ether	ND	3.37	0.0012	0.0012	5	-	67	34-119
Bis (2-ethylhexyl) Adipate	ND	3.68	0.25	0.25	5	-	74	27-117
Bis (2-ethylhexyl) Phthalate	ND	3.96	0.13	0.25	5	-	79	34-124
4-Bromophenyl Phenyl Ether	ND	3.41	0.16	0.25	5	-	68	33-112
Butylbenzyl Phthalate	ND	3.86	0.13	0.25	5	-	77	35-127
4-Chloroaniline	ND	1.85	0.0012	0.0012	5	-	37	12-77
4-Chloro-3-methylphenol	ND	3.52	0.12	0.25	5	-	70	35-123
2-Chloronaphthalene	ND	3.09	0.16	0.25	5	•	62	28-109
2-Chlorophenol	ND	3.27	0.0050	0.0050	5	-	65	38-116
4-Chlorophenyl Phenyl Ether	ND	3.41	0.15	0.25	5	-	68	33-122
Chrysene	ND	3.70	0.14	0.25	5	-	74	37-116
Dibenzo (a,h) anthracene	ND	4.58	0.0025	0.0025	5		92	43-141
Dibenzofuran	ND	3.23	0.13	0.25	5	-	65	33-117
Di-n-butyl Phthalate	ND	3.30	0.13	0.25	5	-	66	38-126
1,2-Dichlorobenzene	ND	3.32	0.12	0.25	5	-	66	34-105
1,3-Dichlorobenzene	ND	3.37	0.14	0.25	5	-	67	33-104
1,4-Dichlorobenzene	ND	2.91	0.025	0.025	5	-	58	31-102
3,3-Dichlorobenzidine	ND	2.94	0.0050	0.0050	5	_	59	14-84
2,4-Dichlorophenol	ND	3.66	0.0025	0.0025	5	-	73	31-124
Diethyl Phthalate	ND	3.19	0.0025	0.0025	5	-	64	35-118
2,4-Dimethylphenol	ND	3.64	0.025	0.025	5	-	73	30-120
Dimethyl Phthalate	ND	3.15	0.0025	0.0025	5	-	63	33-118
4,6-Dinitro-2-methylphenol	ND	2.26	0.13	1.3	5		45	12-126

(Cont.) NELAP 4033ORELAP

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/3/17

Date Analyzed: 8/4/17 **Instrument:** GC21

Matrix: Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143132

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Sample ID:

MB/LCS-143132

QC Summary Report for SW8270C (Low Level) w/ GPC

Analyte	MB Result	LCS Result	MDL	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
2,4-Dinitrophenol	ND	1.19	0.62	0.62	5	-	24	8-130
2,4-Dinitrotoluene	ND	2.41	0.025	0.025	5	-	48	38-117
2,6-Dinitrotoluene	ND	3.00	0.14	0.25	5	•	60	35-121
Di-n-octyl Phthalate	ND	4.06	0.14	0.50	5	-	81	42-150
1,2-Diphenylhydrazine	ND	3.21	0.16	0.25	5	-	64	0-117
Fluoranthene	ND	3.35	0.13	0.25	5	-	67	38-126
Fluorene	ND	3.29	0.14	0.25	5	-	66	34-118
Hexachlorobenzene	ND	3.38	0.025	0.025	5	_	68	30-130
Hexachlorobutadiene	ND	3.43	0.025	0.025	5	_	69	33-121
Hexachlorocyclopentadiene	ND	1.86	0.73	1.3	5	-	37	8-89
Hexachloroethane	ND	3.07	0.14	0.25	5	-	61	32-106
Indeno (1,2,3-cd) pyrene	ND	4.44	0.012	0.012	5	-	89	43-138
Isophorone	ND	2.73	0.12	0.25	5	-	55	26-92
2-Methylnaphthalene	ND	3.50	0.025	0.025	5	-	70	30-121
2-Methylphenol (o-Cresol)	ND	3.49	0.14	0.25	5	-	70	34-114
3 & 4-Methylphenol (m,p-Cresol)	ND	3.21	0.12	0.25	5	-	64	26-130
Naphthalene	ND	3.30	0.0025	0.0025	5	-	66	33-113
2-Nitroaniline	ND	2.81	0.62	1.3	5	-	56	29-115
3-Nitroaniline	ND	2.27	0.59	1.3	5		45	25-93
4-Nitroaniline	ND	3.14	0.55	1.3	5		63	31-108
Nitrobenzene	ND	3.55	0.14	0.25	5	-	71	33-122
2-Nitrophenol	ND	2.69	0.64	1.3	5	-	54	32-121
4-Nitrophenol	ND	2.82	0.41	1.3	5	-	56	27-102
N-Nitrosodiphenylamine	ND	-	0.16	0.25		-	-	-
N-Nitrosodi-n-propylamine	ND	3.23	0.012	0.012	5	-	65	25-108
Pentachlorophenol	ND	2.39	0.32	1.3	5	-	48	28-134
Phenanthrene	ND	3.11	0.14	0.25	5	_	62	36-123
Phenol	ND	3.03	0.0050	0.0050	5	-	61	33-107
Pyrene	ND	3.74	0.13	0.25	5	-	75	38-124
Pyridine	ND	4.26	0.25	0.25	5	-	85	30-130
1,2,4-Trichlorobenzene	ND	3.57	0.14	0.25	5	-	71	34-121
2,4,5-Trichlorophenol	ND	3.39	0.012	0.012	5	-	68	31-126
2,4,6-Trichlorophenol	ND	3.22	0.012	0.012	5		64	32-128

(Cont.) **NELAP 4033ORELAP**

QA/QC Officer

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/3/17

Date Analyzed: 8/4/17 **Instrument:** GC21

Matrix:

Project:

Soil

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143132

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Sample ID:

MB/LCS-143132

Analyte	MB Result	LCS Result	MDL	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surregate Becovery		VARIAGO I MONTO, INCOMO VA VOTO I VARIAGO VA VIDA VA V	N. Administration of the Company of					and developed in the second in
Surrogate Recovery	2.670	2.40			5	74	60	24.400
2-Fluorophenol	3.678	3.46					69	31-108
Phenol-d5	3.468	3.41			5	69	68	32-106
Nitrobenzene-d5	3.624	3.49			5	72	70	27-109
2-Fluorobiphenyl	3.37	3.46			5	67	69	26-100
2,4,6-Tribromophenol	2.23	2.82			5	45	56	25-106
4-Terphenyl-d14	3.851	3.93			5	77	79	27-113

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17 Date Analyzed: 8/3/17

Instrument:

ICP-MS3

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143084

Extraction Method: SW3050B

Analytical Method: SW6020

Unit:

mg/Kg

Sample ID:

MB/LCS-143084

1708141-001AMS/MSD

	QC Sun	nmary Report	for Metals				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Antimony	ND	51.8	0.50	50	-	104	75-125
Arsenic	ND	51.1	0.50	50	-	102	75-125
Barium	ND	518	5.0	500	-	104	75-125
Beryllium	ND	50.0	0.50	50	-	100	75-125
Cadmium	ND	50.0	0.25	50	-	100	75-125
Chromium	ND	50.3	0.50	50	-	101	75-125
Cobalt	ND	49.9	0.50	50	-	100	75-125
Copper	ND	50.2	0.50	50	-	100	75-125
Lead	ND	50.2	0.50	50	-	100	75-125
Mercury	ND	1.23	0.050	1.25	-	99	75-125
Molybdenum	ND	50.6	0.50	50	-	101	75-125
Nickel	ND	49.8	0.50	50	-	100	75-125
Selenium	ND	47.3	0.50	50	-	95	75-125
Silver	ND	48.8	0.50	50	-	98	75-125
Thallium	ND	49.1	0.50	50	-	98	75-125
Vanadium	ND	50.3	0.50	50	-	101	75-125
Zinc	ND	497	5.0	500	-	99	75-125
Surrogate Recovery							
Terbium	543.1	548		500	109	110	70-130

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17 **Date Analyzed:** 8/3/17 **Instrument:** ICP-MS3

Matrix:

Soil

Project:

.

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143084

Extraction Method: SW3050B **Analytical Method:** SW6020

Unit:

mg/Kg

Sample ID:

MB/LCS-143084

1708141-001AMS/MSD

QC Summary Report for Metals

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Antimony	52.0	53.0	50	ND	103	105	75-125	1.90	20
Arsenic	57.9	59.9	50	6.269	103	107	75-125	3.46	20
Barium	678	699	500	152.3	105	109	75-125	3.01	20
Beryllium	48.7	49.2	50	ND	97	98	75-125	0.940	20
Cadmium	50.2	51.2	50	0.6208	99	101	75-125	1.93	20
Chromium	84.2	86.3	50	36.66	95	99	75-125	2.45	20
Cobalt	60.5	62.3	50	10.23	101	104	75-125	2.92	20
Copper	67.0	69.1	50	15.71	103	107	75-125	3.06	20
Lead	60.1	61.5	50	9.521	101	104	75-125	2.30	20
Mercury	1.30	1.30	1.25	ND	103	103	75-125	0	20
Molybdenum	51.4	52.7	50	0.8597	101	104	75-125	2.59	20
Nickel	71.8	75.1	50	20.95	102	108	75-125	4.51	20
Selenium	48.3	49.8	50	ND	96	99	75-125	2.98	20
Silver	48.6	49.5	50	ND	97	99	75-125	1.86	20
Thallium	49.2	50.8	50	ND	98	101	75-125	3.32	20
Vanadium	118	120	50	66.89	101	107	75-125	2.52	20
Zinc	565	580	500	64.57	100	103	75-125	2.62	20
Surrogate Recovery			PERSON STREET, SE PRANTE MINISTER AND						****************
Terbium	553	563	500		111	113	70-130	1.90	20

Analyte	DLT Result	DLTRef Val	%D %I Lim
Antimony	ND<2.5	ND	
Arsenic	6.56	6.269	4.64
Barium	164	152.3	7.68 2
Beryllium	ND<2.5	ND	-
Cadmium	ND<1.2	0.6208	
Chromium	40.4	36.66	10.2 2
Cobalt	11.5	10.23	12.4
Copper	16.7	15.71	6.30 2
Lead	10.2	9.521	7.13
Mercury	ND<0.25	ND	•
Molybdenum	ND<2.5	0.8597	-
Nickel	22.5	20.95	7.40 2
Selenium	ND<2.5	ND	=

(Cont.)
CDPH ELAP 1644 • NELAP 4033ORELAP

SH QA/QC Officer

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17 Date Analyzed: 8/3/17

Instrument: ICP-MS3

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143084

Extraction Method: SW3050B

Analytical Method: SW6020

Unit:

mg/Kg

Sample ID:

MB/LCS-143084

1708141-001AMS/MSD

	QC Summary I	Report for Metals	
Analyte	DLT Result	DLTRef Val	%D %E Lim
Silver	ND<2.5	ND	_
Thallium	ND<2.5	ND	-
Vanadium	74.0	66.89	10.6 2
Zinc	71.1	64.57	10.1

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17

Date Analyzed: 8/3/17

Instrument:

GC19, GC7

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143074

Extraction Method: SW5030B

Analytical Method: SW8021B/8015Bm

Unit:

mg/Kg

Sample ID:

MB/LCS-143074

	QC Summary	Report for S'	W8021B/8015	Bm			
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.550	0.40	0.60	-	92	82-118
MTBE	ND	0.0853	0.050	0.10	-	85	61-119
Benzene	ND	0.0915	0.0050	0.10	•	91	77-128
Toluene	ND	0.0979	0.0050	0.10	-	98	74-132
Ethylbenzene	ND	0.102	0.0050	0.10	-	102	84-127
Xylenes	ND	0.319	0.015	0.30	-	106	86-129
Surrogate Recovery				MICHAEL COMPANY COMMENT AND TOTAL COMPANY AND			
2-Fluorotoluene	0.08481	0.0844		0.10	85	84	75-134

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 8/2/17 Date Analyzed: 8/3/17

Instrument: GC11A

Matrix:

Soil

Project:

8059; P7 Engineered Fill

WorkOrder:

1708141

BatchID:

143070

Extraction Method: SW3550B/3630C

Analytical Method: SW8015B

Unit:

mg/Kg

Sample ID:

MB/LCS-143070

1708101-002AMS/MSD

Analyte	MB Result	LCS Result		RL	SPK Val			CS REC	LCS Limits
TPH-Diesel (C10-C23)	ND	38.1		1.0	40	-	g	5	79-133
TPH-Motor Oil (C18-C36)	ND	-		5.0	-	-	-		-
Surrogate Recovery									edichteid affalg Little intervalvar andere van aug 1999/
C9	24.38	22.4			25	98	9	0	77-109
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MS/ Limits	O RPD	RPE Limi
TPH-Diesel (C10-C23)	37.9	38.6	40	ND	95	96	59-150	1.66	30
Surrogate Recovery									
C9	25.5	25.4	25		102	102	78-109	0	30

lnc)
/fical_l	
Angly	
nphell	2
Cam	5
2	,

Pittsburg, CA 94565-1701 (925) 252-9262

☐ WriteOn WaterTrax

WorkOrder: 1708141 Excel EDF

ClientCode: SCQ ✓ Email

■ EQuIS

Detection Summary

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

ThirdParty

∏ J-flag

HardCopy

1 day;

Requested TAT:

7

÷

10

ڻ

œ

9

Ŋ

4

က

8

_

Collection Date Hold

Matrix

Client ID

Lab ID

Date Received: Date Logged:

08/02/2017 08/02/2017

Dry-Weight

Accounts Payable/ Rich Voss 12100 Stevens Canyon Road Stevens Creek Quarry awarner@scqinc.com Cupertino, CA 95014

ProjectNo: 8059; P7 Engineered Fill

mmallin@scqinc.com

cc/3rd Party: Email:

P0.

12100 Stevens Canyon Road

Cupertino, CA 95014

Stevens Creek Quarry

Mark Mallin

Report to:

FAX:

(408) 640-8578

Requested Tests (See legend below)

⋖ 4 ⋖ ⋖ ⋖ ⋖ ⋖ 8/2/2017 10:00 Soil 8059 1708141-001

Test Legend:

|--|

8081PCB_ESL_S [J]	G-MBTEX_S	
7	9	10

8260B_S	TPH(DMO)WSG_S	
က	7	11

8270_SCSM_S [J]		
4	8	12

Prepared by: Alexandra Iniguez

The following SampID: 001A contains testgroup Multi RangeWSG_S.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Client Name: STEVENS CREEK Q Client Contact: Mark Mallin Contact's Email: mmallin@scqinc.com Lab ID Client ID 1708141-001A 8059

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission). - MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

nts MUST disclose any dangerous chemicals known to be present in the n air, sample handling by MAI staff. Non-disclosure incurs an immedia affay. Date: Time: Received By: A By: Date: Time: Received By: A By: Date: Time: Received By:	CREEK OILE	1 TOSAN
00.01	# Containers #	CHAIN OF CAMPAGE Andlytical Inc. 1000 100
Mail		Campbell Analytical, Inc. Willow Pass Rd. / Pittsburg, Ca. 94565-1701 Note an political incomposition of the contraction of t
Containers Con		

Acetochlor and a second and a s	
34256-82-1 120-12-7 120-12-7 120-12-7 120-12-7 120-12-7 120-12-7 120-12-7 120-12-7 120-12-7 120-12-7 120-12-7 120-12-8 111-21-1 111-21-1 111-21-1 111-31-1 111-31-1 111-31-1 111-31-1 111-31-1 111-31-1 111-3-	0.14
34.296-82-1 120-12-7 92-87-5 ene 56-55-3 50-32-8 ene 207-08-9 100-51-6 92-52-4 111-91-1 Ether 101-51-1 dipate 111-91-1 Inhalate 111-81-7 anyl Ether 103-23-1 henol 105-7-8 95-50-7 e 95-50-1 e 95-50-1 e 541-73-1 ne 91-94-1 120-83-2 84-66-2 130-64-9 106-46-7 106-46-7	
120-12-7 92-87-5 ene 56-55-3 ene 205-99-2 ene 191-24-2 ene 100-51-6 92-52-4 chinglate 111-91-1 fithalate 111-91-1 henol 103-23-1 henol 106-47-8 e 91-58-7 e 91-58-7 e 95-50-1 e 541-73-1 e 541-73-1 e 541-73-1 e 541-73-1 e 541-73-1 e 541-73-1 e 541-73-1 e 541-73-1 e 541-73-1 e 106-46-7 ne 106-46-7	0.25
92-87-5 ene 56-55-3 ene 205-99-2 ene 191-24-2 ene 191-24-2 ene 100-51-6 92-52-4) Methane 111-91-1 dipate 103-23-1 hthalate 103-23-1 henol 106-47-8 e 91-58-7 enyl Ether 7005-72-3 acene 591-50-1 e 541-73-1 e 106-46-7	0.14 2.85
Feb. 55-3 Fene 56-55-3 Fene 205-99-2 Fene 207-08-9 For 191-24-2 For 100-51-6 92-52-4 For 111-91-1 Fithalate 111-91-1 Fithalate 103-23-1 Fithalate 101-55-3 For 106-47-8 For 106-47-8 For 106-47-8 For 106-46-7 For 106-47-8 For 106-46-7 For 106-47-8 For 106-47-8 For 106-46-7 For 106-46-8 For 106-46-8 For 106-46-8 For	0.23
50-32-8 ene 205-99-2 ene 207-08-9 ene 207-08-9 100-51-6 92-52-4 100-51-6 92-52-4 11-91-1 Ether 111-91-1 Inthalate 111-91-7 enyl) Ether 103-23-1 Inthalate 103-23-1 Inthalate 105-3 ene 59-50-7 ene 91-58-7 sacene 53-70-3 e 53-70-3 e 53-70-3 e 541-73-1 e 95-50-1 e 95-50-1 e 91-94-1 120-83-2 84-66-2 131-11-3	
ene 205-99-2 ene 191-24-2 ene 191-24-2 ene 207-08-9 100-51-6 92-52-4 pyl) Ether 111-44-4 pyl) Ether 103-23-1 hthalate 117-81-7 enyl Ether 103-23-1 henol 106-47-8 ene 59-50-7 enyl Ether 7005-72-3 enyl Ether 7005-72-3 enyl Ether 7005-72-3 enyl Ether 106-47-8 e 91-58-7 enyl Ether 7005-72-3 enyl Ether 106-47-8 e 91-54-1 e 95-50-1 e 95-50-1 e 91-94-1 e 120-83-2 e 84-66-2 e 84-74-3	
ene 191-24-2 ene 207-08-9 100-51-6 92-52-4) Methane 111-91-1 dipate 111-44-4 pyl) Ether 108-60-1 dipate 117-81-7 anyl Ether 101-55-3 te 59-50-7 henol 59-50-7 anyl Ether 7005-72-3 acene 53-70-3 acene 54-1-73-1 e 54-1-73-1 e 54-1-73-1 e 54-1-73-1 e 120-83-2 84-66-2 131-11-3	
ene 207-08-9 100-51-6 92-52-4 y) Methane 111-91-1 Ether 108-60-1 dipate 117-81-7 hthalate 103-23-1 hthalate 117-81-7 henol 106-47-8 ne 95-50-7 le 95-57-8 acene 53-70-3 122-64-9 le 541-73-1 le 120-83-2 84-66-2 131-11-3	
100-51-6 92-52-4 9y) Methane 111-91-1 Ether 111-44-4 pyl) Ether 108-60-1 dipate 117-81-7 inhalate 117-81-7 inhalate 101-55-3 ite 85-68-7 henol 106-47-8 ite 85-68-7 henol 106-47-8 acene 59-50-7 132-64-9 ite 95-50-1	0.16
92-52-4) Methane 111-91-1 Ether 111-94-4 pyl) Ether 108-60-1 dipate 117-81-7 inthalate 117-81-7 inthalate 101-55-3 ite 85-68-7 henol 106-47-8 ite 85-50-7 henol 106-47-8 acene 53-70-3 acene 53-70-3 132-64-9 ite 95-50-1	
ther 111-91-1 Ether 111-44-4 pyl) Ether 108-60-1 dipate 103-23-1 hthalate 117-81-7 anyl Ether 101-55-3 acene 59-50-7 acene 53-70-3 acene 53-70-3 132-64-9 e 95-50-1 e 95-50-1 e 91-94-1 110-83-2 84-66-2 131-11-3	0.15
Ether 111-44-4 pyl) Ether 108-60-1 dipate 103-23-1 Inthalate 117-81-7 anyl Ether 101-55-3 Ite 85-68-7 Henol 59-50-7 Ite 95-57-8 acene 53-70-3 132-64-9 ie 95-50-1 ie 95-50-1 ie 91-94-1 120-83-2 84-66-2 131-11-3 105-67-9	
dipate 108-60-1 dipate 103-23-1 fithalate 117-81-7 fithalate 117-81-7 fithalate 117-81-7 fithalate 117-81-7 fithalate 117-81-7 fithalate 110-55-3 fithalate 1106-47-8 fithalate 1106-47-8 fithalate 1106-47-8 fithalate 1106-46-7 fithalate 1106-46-7 fithalate 1106-46-7 fithalate 1106-67-9	0.00125
Adipate 103-23-1 hthalate 117-81-7 enyl Ether 101-55-3 ite 85-68-7 henol 106-47-8 e 91-58-7 e 91-58-7 acene 53-70-3 acene 53-70-3 132-64-9 ie 95-50-1 e 541-73-1 e 541-73-1 e 110-83-2 84-66-2 111-1-3	0.00125 0.00386
hthalate 117-81-7 anyl Ether 101-55-3 ite 85-68-7 henol 59-50-7 ite 91-58-7 acene 95-57-8 acene 53-70-3 ite 95-50-1 ite 95-50-1	
anyl Ether 101-55-3 Ite 85-68-7 Ite 85-68-7 Ite 106-47-8 Ite 95-50-7 Ite 95-57-8 Ite 95-50-1 Ite 95-50	0.13
te 85-68-7 henol 59-50-7 henol 106-47-8 ne 91-58-7 scene 53-70-3 acene 53-70-3 acene 53-70-3 acene 53-70-3 132-64-9 ne 95-50-1 ne 91-94-1 120-83-2 84-66-2 131-11-3	
henol 59-50-7 106-47-8 1e 91-58-7 195-57-8 195-57-8 218-01-9 3cene 53-70-3 132-64-9 1e 95-50-1 1e 541-73-1 1e 91-94-1 110-83-2 131-11-3 105-67-9	0.13
106-47-8 106-47-8 91-58-7 95-57-8 218-01-9 acene 53-70-3 132-64-9 le 95-50-1 le 95-50-1 le 91-94-1 120-83-2 84-66-2 1131-11-3	0.12
ne 91-58-7 95-57-8 anyl Ether 7005-72-3 acene 53-70-3 132-64-9 le 541-73-1 e 541-73-1 ne 91-94-1 120-83-2 84-66-2 131-11-3	0.00125 0.00387
95-57-8 anyl Ether 7005-72-3 acene 53-70-3 132-64-9 ie 95-50-1 ie 95-50-1 ie 91-94-1 in 91-94-1 120-83-2 84-66-2 131-11-3	
aryl Ether 7005-72-3 acene 53-70-3 acene 53-70-3 132-64-9 le 95-50-1 le 541-73-1 le 106-46-7 le 91-94-1 120-83-2 84-66-2 131-11-3	0.005
218-01-9 acene 53-70-3 132-64-9 le 95-50-1 le 541-73-1 le 106-46-7 le 91-94-1 120-83-2 84-66-2 131-11-3	
acene 53-70-3 132-64-9 le 95-50-1 le 541-73-1 le 106-46-7 ne 91-94-1 120-83-2 84-66-2 131-11-3	
132-64-9 le 95-50-1 le 541-73-1 le 106-46-7 le 91-94-1 120-83-2 84-66-2 131-11-3 105-67-9	0.0025 0.0157
e 541-73-1 e 541-73-1 le 106-46-7 ne 91-94-1 120-83-2 84-66-2 131-11-3 105-67-9	
e 541-73-1 e 106-46-7 ne 91-94-1 120-83-2 84-66-2 131-11-3 105-67-9	
ne 106-46-7 ne 91-94-1 120-83-2 84-66-2 131-11-3 105-67-9	
ne 91-94-1 120-83-2 84-66-2 131-11-3 105-67-9	
120-83-2 84-66-2 131-11-3 105-67-9	
84-66-2 131-11-3 105-67-9	
131-11-3 105-67-9 84.74-2	
105-67-9	0.0025
84_74_2	
2-1/-10	

0.00178	60.4 8.94 0.339 0.681	1.1 0.157 0.255	0.033	1.02 10.7 0.0756 85.1 1.52 0.177
0.13 0.025 0.14 0.14 0.16	0.13 0.14 0.025 0.73	0.14 0.125 0.12 0.12 0.12	0.0025 0.62 0.59 0.55 0.14 0.41 0 0.0125	3231 0.14 0.05 0.13 0.25 0.14 0.15
			0.0025 0. 1.3 1.3 1.3 0.25 1.3 1.3 0.0125 0.	
534-52-1 51-28-5 121-14-2 606-20-2 117-84-0	206-44-0 86-73-7 118-74-1 87-68-3 77-47-4		91-20-3 88-74-4 99-09-2 100-01-6 98-95-3 88-75-5 100-02-7 621-64-7 86-30-6	87-86-5 85-01-8 108-95-2 129-00-0 110-86-1 120-82-1 95-95-4 88-06-2
4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octyl Phthalate 1,2-Diphenylhydrazine	Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene	Hexachloroethane Indeno (1,2,3-cd) pyrene Isophorone 2-Methylnaphthalene 3 & 4-Methylphenol (m,p-Cresol) 2-Methylphenol (o-Cresol)	Naphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene 2-Nitrophenol 4-Nitrosodimethylamine N-Nitrosodin-propylamine N-Nitrosodihenylamine	Pentachlorophenol Phenanthrene Phenol Pyrene Pyridine 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol

RegLimit_ExportQry

Soil Lowest ESL (mg/kg) 16.3 12.7 2.85 0.157	0.157 2.5 1.57 0.0000798 0.00386	3.84 0.0157 0.0123 0.299 0.0349	0.00178 60.4 8.94 1.1 0.157	0.255 0.033 10.7 0.0756 85.1 0.211
	0.0016 0.0069 0.0017 0.001 0.0019	0.0014 0.0068 0.0017 0.0013	0.0014 0.0014 0.0031 0.00073 0.013 0.0023 0.00096	0.0012 0.002 0.0013 0.0034 0.0013
0.01 0.01 0.01 0.01 0.01	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.04 0.04
Pal				
CAS 83-32-9 208-96-8 120-12-7 cer 56-55-3 50-32-8	ith: 205-99-2 ylei 191-24-2 ith: 207-08-9 i) E 111-44-4 rop: 108-60-1	218-01-9 thrs 53-70-3 idit 91-94-1 ol 120-83-2 84-66-2 te 131-11-3	at 21-14-2 b 606-20-2 ate 117-84-0 206-44-0 86-73-7 e 67-72-1 p) 193-39-5 en 90-12-0	en 91-57-6 91-20-3 85-01-8 108-95-2 129-00-0 en 88-06-2
Analyte CAS Acenaphthene 83-32-9 Acenaphthylene 208-96- Anthracene 120-12- Benzo (a) anthracer 56-55-3 Benzo (a) pyrene 50-32-8	Benzo (b) fluorantht 205-99-2 Benzo (g,h,i) perylel 191-24-2 Benzo (k) fluorantht 207-08-9 Bis (2-chloroethyl) E 111-44-4 Bis (2-chloroisoprop 108-60-1 Bis (2-ethylhexyl) Pl 117-81-7	Chrysene 218-01-Dibenzo (a,h) anthra 53-70-3 3,3-Dichlorobenzidir 91-94-1 2,4-Dichlorophenol 120-83-Diethyl Phthalate 84-66-2 Dimethyl Phthalate 131-11-Dimethyl Phthalate 24-74-2	2,4-Dinitrotoluene 121-14-2 2,6-Dinitrotoluene 606-20-2 Di-n-octyl Phthalate 117-84-0 Fluoranthene 206-44-0 Fluorene 86-73-7 Hexachloroethane 67-72-1 Indeno (1,2,3-cd) py 193-39-5	2-Methyinaphthalen 91-57-6 Naphthalene 91-20-3 Phenanthrene 85-01-8 Phenol 108-95-7 Pyrene 129-00-0

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project Name:	Stevens Creek Quarry 8059; P7 Engineered Fill			Date and Date Logo Received	-	8/2/2017 19:00 8/2/2017 Alexandra Iniguez
WorkOrder №: Carrier:	1708141 Matrix: <u>Soil</u> Benjamin Yslas (MAI Courier)			Logged by	y:	Alexandra Iniguez
	Chain of C	ustody	/ (COC) Info	mation		
Chain of custody	present?	Yes	✓	No 🗆		
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample labels?	Yes	✓	No 🗔		
Sample IDs noted	by Client on COC?	Yes	✓	No 🗆		
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗌		
Sampler's name r	noted on COC?	Yes	•	No 🗌		
	Sampl	e Rece	ipt Informat	ion		
Custody seals inta	act on shipping container/cooler?	Yes	✓	No 🗌	1	NA 🗆
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌		
Samples in proper	r containers/bottles?	Yes	✓	No 🗌		
Sample containers	s intact?	Yes	✓	No 🗌		
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌		
	Sample Preservation	on and	Hold Time (I	HT) Information	n	
All samples receiv	ved within holding time?	Yes	•	No 🗆		NA 🗌
Sample/Temp Bla	nk temperature		Temp: 5.2	2°C		NA 🗌
Water - VOA vials	have zero headspace / no bubbles?	Yes		No 🗌	ĺ	NA 🗸
Sample labels che	ecked for correct preservation?	Yes	✓	No 🗌		
pH acceptable upo	on receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗆	1	NA 🗹
Samples Received	d on Ice?	Yes	✓	No 🗌		
	(Ice Type	: WE	TICE)			
UCMR Samples: Total Chlorine to	ested and acceptable upon receipt for EPA 522?	Yes		No 🗌	1	NA 🗹
	sted and acceptable upon receipt for EPA 218.7,			No 🗆		NA 🗹

July 27, 2017

Mr. John McDaniel Dirt Movers 1930 W. Fremont Street Stockton, CA 95203-20441

Re: City Ventures Oakland 2- Stevens Creek Quarry (Sheridan) Native 3" Minus Engineered Fill

To whom it may concern.

Stevens Creek Quarry 3" Minus Engineered Fill out of our Sheridan Plant located in Sunol California originates from the harvesting of onsite natural site Sandstone embankments as noted in the attached photo. A second attachment includes sample material results related to asbestos testing. These results are typical for our Sheridan Road location.

Feel contact me if you have any questions.

Sincerely.

Mark Idemoto

Sales Department Stevens Creek Quarry, Inc. 12100 Stevens Canyon Road Cupertino, CA 95014

Office (408) 253-2512, ext. 247 Fax (408) 257-4614 Mob (408) 640-9378 <u>Midemoto@scqinc.com</u>

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:

1703788

Report Created for:

Stevens Creek Quarry

12100 Stevens Canyon Road

Cupertino, CA 95014

Project Contact:

Mark Mallin

Project P.O.:

Project Name:

8052; Engineered Fill

Project Received:

03/15/2017

Analytical Report reviewed & approved for release on 03/17/2017 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 • NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: Stevens Creek Quarry Project: 8052; Engineered Fill

WorkOrder: 1703788

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

e2 diesel range compounds are significant; no recognizable pattern

e7 oil range compounds are significant

Glossary of Terms & Qualifier Definitions

Client:

Stevens Creek Quarry

Project:

8052; Engineered Fill

WorkOrder:

1703788

Quality Control Qualifiers

F10

MS/MSD outside control limits. Physical or chemical interferences exist due to sample matrix.

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 3/15/17 20:00

Date Prepared: 3/15/17

Project:

8052; Engineered Fill

WorkOrder:

1703788

Extraction Method: SW3060A

Analytical Method: SW7199

Unit:

mg/Kg

Hexavalent chromium by Alkaline Digestion and IC Analysis

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
8052	1703788-001A	Soil	03/14/20)17 14:30 IC2	135670
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Hexavalent chromium	ND		4.0	1	03/16/2017 14:01

Analyst(s): AO

Analytical Report

Client: Stevens Creek Quarry

Date Received: 3/15/17 20:00 **Date Prepared:** 3/15/17

Project: 8052; Engineered Fill

WorkOrder: 1703788

Extraction Method: SW3550B/3620B **Analytical Method:** SW8081A/8082

Unit: mg/kg

Organochlorine Pesticides + PCBs w/ Florisil Clean-up

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
8052	1703788-001A	Soil	03/14/20	17 14:30	GC23	135649
Analytes	Result		RL	DF		Date Analyzed
Aldrin	ND		0.0010	1		03/16/2017 15:10
a-BHC	ND		0.0010	1		03/16/2017 15:10
b-BHC	ND		0.0010	1		03/16/2017 15:10
d-BHC	ND		0.0010	1		03/16/2017 15:10
g-BHC	ND		0.0010	1		03/16/2017 15:10
Chlordane (Technical)	ND		0.025	1		03/16/2017 15:10
a-Chlordane	ND		0.0010	1		03/16/2017 15:10
g-Chlordane	ND		0.0010	1		03/16/2017 15:10
p,p-DDD	ND		0.0010	1		03/16/2017 15:10
p,p-DDE	ND		0.0010	1		03/16/2017 15:10
p,p-DDT	ND		0.0010	1		03/16/2017 15:10
Dieldrin	ND		0.0010	1		03/16/2017 15:10
Endosulfan I	ND		0.0010	1		03/16/2017 15:10
Endosulfan II	ND		0.0010	1		03/16/2017 15:10
Endosulfan sulfate	ND		0.0010	1		03/16/2017 15:10
Endrin	ND		0.0010	1		03/16/2017 15:10
Endrin aldehyde	ND		0.0010	1		03/16/2017 15:10
Endrin ketone	ND		0.0010	1		03/16/2017 15:10
Heptachlor	ND		0.0010	1		03/16/2017 15:10
Heptachlor epoxide	ND		0.0010	1		03/16/2017 15:10
Hexachlorobenzene	ND		0.010	1		03/16/2017 15:10
Hexachlorocyclopentadiene	ND		0.020	1		03/16/2017 15:10
Methoxychlor	ND		0.0010	1		03/16/2017 15:10
Toxaphene	ND		0.050	1		03/16/2017 15:10
Aroclor1016	ND		0.050	1		03/16/2017 15:10
Aroclor1221	ND		0.050	1		03/16/2017 15:10
Aroclor1232	ND		0.050	1		03/16/2017 15:10
Aroclor1242	ND		0.050	1		03/16/2017 15:10
Aroclor1248	ND		0.050	1		03/16/2017 15:10
Aroclor1254	ND		0.050	1		03/16/2017 15:10
Aroclor1260	ND		0.050	1		03/16/2017 15:10
PCBs, total	ND		0.050	1		03/16/2017 15:10
Surrogates	REC (%)		<u>Limits</u>		AND	mmemmemmemmemmemmemmemmemmemmemmemmemme
Decachlorobiphenyl	97		70-130			03/16/2017 15:10
Analyst(s): CK						

Analytical Report

Client: Stevens Creek Quarry

Date Received: 3/15/17 20:00 **Date Prepared:** 3/15/17

Project: 8052; Engineered Fill

WorkOrder: 1703788

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
8052	1703788-001A	Soil	03/14/20	17 14:30	GC18	135659
<u>Analytes</u>	Result		RL	DF		Date Analyzed
Acetone	ND		0.10	1		03/16/2017 14:59
tert-Amyl methyl ether (TAME)	ND		0.0050	1		03/16/2017 14:59
Benzene	ND		0.0050	1		03/16/2017 14:59
Bromobenzene	ND		0.0050	1		03/16/2017 14:59
Bromochloromethane	ND		0.0050	1		03/16/2017 14:59
Bromodichloromethane	ND		0.0050	1		03/16/2017 14:59
Bromoform	ND		0.0050	1		03/16/2017 14:59
Bromomethane	ND		0.0050	1		03/16/2017 14:59
2-Butanone (MEK)	ND		0.020	1		03/16/2017 14:59
t-Butyl alcohol (TBA)	ND		0.050	1		03/16/2017 14:59
n-Butyl benzene	ND		0.0050	1		03/16/2017 14:59
sec-Butyl benzene	ND		0.0050	1		03/16/2017 14:59
tert-Butyl benzene	ND		0.0050	1		03/16/2017 14:59
Carbon Disulfide	ND		0.0050	1	· · · · · · · · · · · · · · · · · · ·	03/16/2017 14:59
Carbon Tetrachloride	ND	,	0.0050	1		03/16/2017 14:59
Chlorobenzene	ND		0.0050	1		03/16/2017 14:59
Chloroethane	ND		0.0050	1		03/16/2017 14:59
Chloroform	ND		0.0050	1		03/16/2017 14:59
Chloromethane	ND		0.0050	1		03/16/2017 14:59
2-Chlorotoluene	ND		0.0050	1		03/16/2017 14:59
4-Chlorotoluene	ND		0.0050	1		03/16/2017 14:59
Dibromochloromethane	ND		0.0050	1		03/16/2017 14:59
1,2-Dibromo-3-chloropropane	ND		0.0040	1		03/16/2017 14:59
1,2-Dibromoethane (EDB)	ND		0.0040	1		03/16/2017 14:59
Dibromomethane	ND		0.0050	1		03/16/2017 14:59
1,2-Dichlorobenzene	ND		0.0050	1		03/16/2017 14:59
1,3-Dichlorobenzene	ND		0.0050	1		03/16/2017 14:59
1,4-Dichlorobenzene	ND		0.0050	1		03/16/2017 14:59
Dichlorodifluoromethane	ND		0.0050	1		03/16/2017 14:59
1,1-Dichloroethane	ND		0.0050	1		03/16/2017 14:59
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		03/16/2017 14:59
1,1-Dichloroethene	ND		0.0050	1		03/16/2017 14:59
cis-1,2-Dichloroethene	ND		0.0050	1		03/16/2017 14:59
trans-1,2-Dichloroethene	ND		0.0050	1		03/16/2017 14:59
1,2-Dichloropropane	ND		0.0050	1		03/16/2017 14:59
1,3-Dichloropropane	ND		0.0050	1		03/16/2017 14:59

(Cont.)

NELAP 4033ORELAP

Analytical Report

Client: Stevens Creek Quarry

Date Received: 3/15/17 20:00 **Date Prepared:** 3/15/17

Project: 8052; Engineered Fill

WorkOrder: 1703788

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: mg/kg

Volatile Organics

Client ID	Lab ID	Matrix	Date Co	llected Instrume	nt Batch ID
8052	1703788-001A	Soil	03/14/201	7 14:30 GC18	135659
Analytes	Result		RL	DE	Date Analyzed
1,1-Dichloropropene	ND		0.0050	1	03/16/2017 14:59
cis-1,3-Dichloropropene	ND		0.0050	1	03/16/2017 14:59
trans-1,3-Dichloropropene	ND		0.0050	1	03/16/2017 14:59
Diisopropyl ether (DIPE)	ND		0.0050	1	03/16/2017 14:59
Ethylbenzene	ND		0.0050	1	03/16/2017 14:59
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	03/16/2017 14:59
Freon 113	ND		0.0050	1	03/16/2017 14:59
Hexachlorobutadiene	ND		0.0050	1	03/16/2017 14:59
Hexachloroethane	ND		0.0050	1	03/16/2017 14:59
2-Hexanone	ND		0.0050	1	03/16/2017 14:59
Isopropylbenzene	ND		0.0050	1	03/16/2017 14:59
4-Isopropyl toluene	ND		0.0050	1	03/16/2017 14:59
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	03/16/2017 14:59
Methylene chloride	ND	,	0.0050	1	03/16/2017 14:59
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	03/16/2017 14:59
Naphthalene	ND		0.0050	1	03/16/2017 14:59
n-Propyl benzene	ND		0.0050	1	03/16/2017 14:59
Styrene	ND		0.0050	1	03/16/2017 14:59
1,1,1,2-Tetrachloroethane	ND		0.0050	1	03/16/2017 14:59
1,1,2,2-Tetrachloroethane	ND		0.0050	1	03/16/2017 14:59
Tetrachloroethene	ND		0.0050	1	03/16/2017 14:59
Toluene	ND		0.0050	1	03/16/2017 14:59
1,2,3-Trichlorobenzene	ND		0.0050	1	03/16/2017 14:59
1,2,4-Trichlorobenzene	ND		0.0050	1	03/16/2017 14:59
1,1,1-Trichloroethane	ND		0.0050	1	03/16/2017 14:59
1,1,2-Trichloroethane	ND		0.0050	1	03/16/2017 14:59
Trichloroethene	ND		0.0050	1	03/16/2017 14:59
Trichlorofluoromethane	ND		0.0050	1	03/16/2017 14:59
1,2,3-Trichloropropane	ND		0.0050	1	03/16/2017 14:59
1,2,4-Trimethylbenzene	ND		0.0050	1	03/16/2017 14:59
1,3,5-Trimethylbenzene	ND		0.0050	1	03/16/2017 14:59
Vinyl Chloride	ND		0.0050	1	03/16/2017 14:59
Xylenes, Total	ND		0.0050	1	03/16/2017 14:59

(Cont.) NELAP 4033ORELAP

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 3/15/17 20:00

Date Prepared: 3/15/17

Project:

8052; Engineered Fill

WorkOrder:

1703788

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit:

mg/kg

Volatile Organics							
Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch II		
8052	1703788-001A	Soil	03/14/20	17 14:30 GC18	135659		
<u>Analytes</u>	Result		RL	DE	Date Analyzed		
Surrogates	REC (%)		Limits				
Dibromofluoromethane	103		70-130		03/16/2017 14:59		
Toluene-d8	105		70-130		03/16/2017 14:59		
4-BFB	102		70-130		03/16/2017 14:59		
Benzene-d6	92		60-140		03/16/2017 14:59		
Ethylbenzene-d10	102		60-140		03/16/2017 14:59		
1,2-DCB-d4	75		60-140		03/16/2017 14:59		

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 3/15/17 20:00

Date Prepared: 3/16/17

Project:

8052; Engineered Fill

WorkOrder:

1703788

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Semi-Volatile Organics w/ GPC Clean Up

Client ID	Lab ID Matrix		Date Collected Instrument			Batch ID
8052	1703788-001A	Soil	03/14/2	017 14:30	GC21	135681
<u>Analytes</u>	Result		RL	DF		Date Analyzed
Acenaphthene	ND		0.25	1		03/16/2017 18:04
Acenaphthylene	ND		0.25	1		03/16/2017 18:04
Acetochlor	ND		0.25	1		03/16/2017 18:04
Anthracene	ND		0.25	1		03/16/2017 18:04
Benzidine	ND		1.3	1		03/16/2017 18:04
Benzo (a) anthracene	ND		0.25	1		03/16/2017 18:04
Benzo (b) fluoranthene	ND		0.25	1		03/16/2017 18:04
Benzo (k) fluoranthene	ND		0.25	1		03/16/2017 18:04
Benzo (g,h,i) perylene	ND		0.25	1		03/16/2017 18:04
Benzo (a) pyrene	ND		0.25	1		03/16/2017 18:04
Benzyl Alcohol	ND		1.3	1		03/16/2017 18:04
1,1-Biphenyl	ND		0.25	1		03/16/2017 18:04
Bis (2-chloroethoxy) Methane	ND		0.25	1		03/16/2017 18:04
Bis (2-chloroethyl) Ether	ND		0.25	1		03/16/2017 18:04
Bis (2-chloroisopropyl) Ether	ND		0.25	1		03/16/2017 18:04
Bis (2-ethylhexyl) Adipate	ND		0.25	1		03/16/2017 18:04
Bis (2-ethylhexyl) Phthalate	ND		0.25	1		03/16/2017 18:04
4-Bromophenyl Phenyl Ether	ND		0.25	1		03/16/2017 18:04
Butylbenzyl Phthalate	ND		0.25	1		03/16/2017 18:04
4-Chloroaniline	ND		0.25	1		03/16/2017 18:04
4-Chloro-3-methylphenol	ND		0.25	1		03/16/2017 18:04
2-Chloronaphthalene	ND		0.25	1		03/16/2017 18:04
2-Chlorophenol	ND		0.25	1		03/16/2017 18:04
4-Chlorophenyl Phenyl Ether	ND		0.25	1		03/16/2017 18:04
Chrysene	ND		0.25	1		03/16/2017 18:04
Dibenzo (a,h) anthracene	ND		0.25	1		03/16/2017 18:04
Dibenzofuran	ND		0.25	1		03/16/2017 18:04
Di-n-butyl Phthalate	ND		0.25	1		03/16/2017 18:04
1,2-Dichlorobenzene	ND		0.25	1		03/16/2017 18:04
1,3-Dichlorobenzene	ND		0.25	1		03/16/2017 18:04
1,4-Dichlorobenzene	ND		0.25	1		03/16/2017 18:04
3,3-Dichlorobenzidine	ND		0.50	1		03/16/2017 18:04
2,4-Dichlorophenol	ND		0.25	1		03/16/2017 18:04
Diethyl Phthalate	ND		0.25	1		03/16/2017 18:04
2,4-Dimethylphenol	ND		0.25	1		03/16/2017 18:04
Dimethyl Phthalate	ND		0.25	1		03/16/2017 18:04
4,6-Dinitro-2-methylphenol	ND		1.3	1		03/16/2017 18:04

(Cont.)

NELAP 4033ORELAP

Angela Rydelius, Lab Manager

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 3/15/17 20:00

Date Prepared: 3/16/17

Project:

8052; Engineered Fill

WorkOrder:

1703788

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Semi-Volatile Organics w/ GPC Clean Up								
Client ID	Lab ID	Matrix	Date (Collected Instrument	Batch ID			
8052	1703788-001A	Soil	03/14/2	017 14:30 GC21	135681			
Analytes	Result		RL	DF	Date Analyzed			
2,4-Dinitrophenol	ND		6.3	1	03/16/2017 18:04			
2,4-Dinitrotoluene	ND		0.25	1	03/16/2017 18:04			
2,6-Dinitrotoluene	ND		0.25	1	03/16/2017 18:04			
Di-n-octyl Phthalate	ND		0.50	1	03/16/2017 18:04			
1,2-Diphenylhydrazine	ND		0.25	1	03/16/2017 18:04			
Fluoranthene	ND		0.25	1	03/16/2017 18:04			
Fluorene	ND		0.25	1	03/16/2017 18:04			
Hexachlorobenzene	ND		0.25	1	03/16/2017 18:04			
Hexachlorobutadiene	ND		0.25	1	03/16/2017 18:04			
Hexachlorocyclopentadiene	ND		1.3	1	03/16/2017 18:04			
Hexachloroethane	ND		0.25	1	03/16/2017 18:04			
Indeno (1,2,3-cd) pyrene	ND		0.25	1	03/16/2017 18:04			
Isophorone	ND		0.25	1	03/16/2017 18:04			
2-Methylnaphthalene	ND		0.25	1	03/16/2017 18:04			
2-Methylphenol (o-Cresol)	ND		0.25	1	03/16/2017 18:04			
3 & 4-Methylphenol (m,p-Cresol)	ND		0.25	1	03/16/2017 18:04			
Naphthalene	ND		0.25	1	03/16/2017 18:04			
2-Nitroaniline	ND		1.3	1	03/16/2017 18:04			
3-Nitroaniline	ND	-	1.3	1	03/16/2017 18:04			
4-Nitroaniline	ND		1.3	1	03/16/2017 18:04			
Nitrobenzene	ND		1.3	1	03/16/2017 18:04			
2-Nitrophenol	ND		1.3	1	03/16/2017 18:04			
4-Nitrophenol	ND		1.3	1	03/16/2017 18:04			
N-Nitrosodiphenylamine	ND		0.25	1	03/16/2017 18:04			
N-Nitrosodi-n-propylamine	ND		0.25	1	03/16/2017 18:04			
Pentachlorophenol	ND		1.3	1	03/16/2017 18:04			
Phenanthrene	ND		0.25	1	03/16/2017 18:04			
Phenol	ND		0.25	1	03/16/2017 18:04			
Pyrene	ND		0.25	1	03/16/2017 18:04			
1,2,4-Trichlorobenzene	ND		0.25	1	03/16/2017 18:04			
2,4,5-Trichlorophenol	ND		0.25	1	03/16/2017 18:04			
2,4,6-Trichlorophenol	ND		0.25	1	03/16/2017 18:04			

(Cont.) **NELAP 4033ORELAP**

Angela Rydelius, Lab Manager

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 3/15/17 20:00

Date Prepared: 3/16/17

Project:

8052; Engineered Fill

WorkOrder:

1703788

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch II
8052	1703788-001A	Soil	03/14/2017 14:30 GC21	135681
Analytes	Result		<u>RL DF</u>	Date Analyzed
Surrogates	REC (%)		<u>Limits</u>	
2-Fluorophenol	105		30-130	03/16/2017 18:04
Phenol-d5	99		30-130	03/16/2017 18:04
Nitrobenzene-d5	98		30-130	03/16/2017 18:04
2-Fluorobiphenyl	93		30-130	03/16/2017 18:04
2,4,6-Tribromophenol	97		10-130	03/16/2017 18:04
4-Terphenyl-d14	102		30-130	03/16/2017 18:04

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 3/15/17 20:00

Date Prepared: 3/15/17

Project:

8052; Engineered Fill

WorkOrder:

1703788

Extraction Method: SW3050B

Analytical Method: SW6020

Unit:

mg/Kg

CAM / CCR 17 Metals

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
8052	1703788-001A	Soil	03/14/20)17 14:30 ICP-MS3	135650
Analytes	Result		<u>RL</u>	DE	Date Analyzed
Antimony	ND		0.50	1	03/16/2017 12:25
Arsenic	6.8		0.50	1	03/16/2017 12:25
Barium	130		5.0	1	03/16/2017 12:25
Beryllium	ND		0.50	1	03/16/2017 12:25
Cadmium	0.59		0.25	1	03/16/2017 12:25
Chromium	37		0.50	1	03/16/2017 12:25
Cobalt	14		0.50	1	03/16/2017 12:25
Copper	17		0.50	1	03/16/2017 12:25
Lead	9.5		0.50	1	03/16/2017 12:25
Mercury	ND		0.050	1	03/16/2017 12:25
Molybdenum	0.80		0.50	1	03/16/2017 12:25
Nickel	24		0.50	1	03/16/2017 12:25
Selenium	ND		0.50	1	03/16/2017 12:25
Silver	ND		0.50	1	03/16/2017 12:25
Thallium	ND		0.50	1	03/16/2017 12:25
Vanadium	68		0.50	1	03/16/2017 12:25
Zinc	72		5.0	1	03/16/2017 12:25
Surrogates	REC (%)		<u>Limits</u>		
Terbium	110		70-130		03/16/2017 12:25
Analyst(s): DVH					

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 3/15/17 20:00

Date Prepared: 3/15/17

Project:

Ethylbenzene

8052; Engineered Fill

WorkOrder:

1703788

Extraction Method: SW5030B

Analytical Method: SW8021B/8015Bm

Unit:

0.0050

62-126

1

mg/Kg

Gasoline Ra	inge (C6-C12) Volatile	e (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE						
Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID			
8052	1703788-001A	1703788-001A Soil		017 14:30 GC19	135636			
<u>Analytes</u>	Result		RL	DF	Date Analyzed			
TPH(g) (C6-C12)	ND		1.0	1	03/16/2017 03:59			
MTBE			0.050	1	03/16/2017 03:59			
Benzene	•••		0.0050	1	03/16/2017 03:59			
Toluene			0.0050	1	03/16/2017 03:59			

Xylenes		0.015
Surrogates	REC (%)	<u>Limits</u>

91

2-Fluorotoluene Analyst(s): IA

03/16/2017 03:59

03/16/2017 03:59

03/16/2017 03:59

Analytical Report

Client:

Stevens Creek Quarry

Date Received: 3/15/17 20:00

Date Prepared: 3/15/17

Project:

8052; Engineered Fill

WorkOrder:

1703788

Extraction Method: SW3550B/3630C

Analytical Method: SW8015B

Unit:

mg/Kg

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up								
Client ID	Lab ID	Matrix	Date	Collected Instrument	Batch ID			
8052	1703788-001A	1703788-001A Soil		2017 14:30 GC11A	135648			
Analytes	Result		<u>RL</u>	DF	Date Analyzed			
TPH-Diesel (C10-C23)	1.4		1.0	1	03/16/2017 02:44			
TPH-Motor Oil (C18-C36)	9.5		5.0	1	03/16/2017 02:44			
Surrogates	REC (%)		Limits					
C9	98		78-109		03/16/2017 02:44			
Analyst(s): TK			Analytical Cor	nments: e7.e2				

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 3/15/17 Date Analyzed: 3/16/17 **Instrument:**

Matrix:

IC2

Project:

Soil

8052; Engineered Fill

WorkOrder:

1703788

BatchID:

135670

Extraction Method: SW3060A

Analytical Method: SW7199

Unit:

mg/Kg

Sample ID:

MB/LCS-135670

1703661-001AMS/MSD

QC Summary Report for SW7199 (Hexavalent chromium)

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Hexavalent chromium	ND	199	4.0	200	-	100	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Hexavalent chromium	182	177	200	ND	91	89	70-130	2.67	20

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 3/15/17

Date Analyzed: 3/15/17 - 3/16/17

Instrument:

GC22, GC23

Matrix:

Soil

Project:

8052; Engineered Fill

WorkOrder:

1703788

BatchID:

135649

Extraction Method: SW3550B/3620B

Analytical Method: SW8081A/8082

Unit:

mg/kg

Sample ID:

MB/LCS/LCSD-135649

QC Summary Report OC Pesticides+PCBs w/ Florisil

a-BHC ND 0.0010	Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
D-BHC ND 0.0010	Aldrin	ND	0.0010	-	-	-
d-BHC	a-BHC	ND	0.0010	-	-	-
g-BHC ND 0.0010 - - - Chlordane (Technical) ND 0.025 - - - a-Chlordane ND 0.0010 - - - g-Chlordane ND 0.0010 - - - p.p-DDD ND 0.0010 - - - p.p-DDT ND 0.0010 - - - Dieldrin ND 0.0010 - - - Endosulfan I ND 0.0010 - - - Endosulfan II ND 0.0010 - - - Endosulfan sulfate ND 0.0010 - - - Endrin kefone ND 0.0010 - - - Endrin kefone ND 0.0010 - - - Endrin kefone ND 0.0010 - - - Heptachlor epoxide ND 0.0010 <t< td=""><td>b-BHC</td><td>ND</td><td>0.0010</td><td>-</td><td>-</td><td>-</td></t<>	b-BHC	ND	0.0010	-	-	-
Chlordane (Technical) ND	d-BHC	ND	0.0010	_	-	===
a-Chlordane ND 0.0010	g-BHC	ND	0.0010	-	•	無印
Section Sect	Chlordane (Technical)	ND	0.025	-	-	:#X
Pip-DDD	a-Chlordane	ND	0.0010	-	=	(4)
p.p-DDE ND 0.0010 - - - p.p-DDT ND 0.0010 - - - Dieldrin ND 0.0010 - - - Endosulfan I ND 0.0010 - - - Endosulfan II ND 0.0010 - - - Endosulfan sulfate ND 0.0010 - - - Endrin ND 0.0010 - - - Endrin aldehyde ND 0.0010 - - - Endrin ketone ND 0.0010 - - - Endrin ketone ND 0.0010 - - - Heptachlor ND 0.0010 - - - Heptachlor ND 0.0010 - - - Hexachlorocyclopentadiene ND 0.010 - - - Methoxychlor ND 0.050	g-Chlordane	ND	0.0010	-	-	3 0
p.p-DDT ND 0.0010 - - - Dieldrin ND 0.0010 - - - Endosulfan I ND 0.0010 - - - Endosulfan III ND 0.0010 - - - Endosulfan sulfate ND 0.0010 - - - - Endosulfan sulfate ND 0.0010 - <td>p,p-DDD</td> <td>ND</td> <td>0.0010</td> <td>-</td> <td>-</td> <td>-</td>	p,p-DDD	ND	0.0010	-	-	-
Dieldrin ND	p,p-DDE	ND	0.0010	-	•	
ND	p,p-DDT	ND	0.0010	-	-	-
Endosulfan II ND 0.0010 Endosulfan sulfate ND 0.0010 Endosulfan sulfate ND 0.0010	Dieldrin	ND	0.0010	-	-	
Endosulfan sulfate ND 0,0010 Endrin ND 0,0010	Endosulfan I	ND	0.0010	_	-	-
Endrin ND 0.0010 Endrin aldehyde ND 0.0010	Endosulfan II	ND	0.0010	-	-	
Endrin aldehyde ND 0.0010 - - - Endrin ketone ND 0.0010 - - - Heptachlor ND 0.0010 - - - Heptachlor epoxide ND 0.0010 - - - Hexachlorobenzene ND 0.010 - - - - Hexachlorocyclopentadiene ND 0.020 - - - - Methoxychlor ND 0.0010 - - - - Toxaphene ND 0.050 - - - - Aroclor1016 ND 0.050 - - - - Aroclor1221 ND 0.050 - - - - Aroclor1232 ND 0.050 - - - - Aroclor1248 ND 0.050 - - - - Aroclor1260 ND 0.050	Endosulfan sulfate	ND	0.0010	-	-	-
Endrin ketone ND 0.0010 -	Endrin	ND	0.0010	-	-	-
Heptachlor	Endrin aldehyde	ND	0.0010	-	-	
Heptachlor epoxide	Endrin ketone	ND	0.0010	-	-	
Hexachlorobenzene ND 0.010 - - - Hexachlorocyclopentadiene ND 0.020 - - - Methoxychlor ND 0.0010 - - - Toxaphene ND 0.050 - - - Aroclor1016 ND 0.050 - - - Aroclor1221 ND 0.050 - - - Aroclor1232 ND 0.050 - - - Aroclor1242 ND 0.050 - - - Aroclor1248 ND 0.050 - - - Aroclor1254 ND 0.050 - - - Aroclor1260 ND 0.050 - - - PCBs, total ND 0.050 - - - Surrogate Recovery	Heptachlor	ND	0.0010	-	-	+
Hexachlorocyclopentadiene ND 0.020 - - - Methoxychlor ND 0.0010 - - - Toxaphene ND 0.050 - - - Aroclor1016 ND 0.050 - - - Aroclor1221 ND 0.050 - - - Aroclor1232 ND 0.050 - - - Aroclor1242 ND 0.050 - - - Aroclor1248 ND 0.050 - - - Aroclor1254 ND 0.050 - - - Aroclor1260 ND 0.050 - - - PCBs, total ND 0.050 - - - Surrogate Recovery	Heptachlor epoxide	ND	0.0010	-	-	=
Methoxychlor ND 0.0010 - - - Toxaphene ND 0.050 - - - Aroclor1016 ND 0.050 - - - Aroclor1221 ND 0.050 - - - Aroclor1232 ND 0.050 - - - Aroclor1242 ND 0.050 - - - Aroclor1248 ND 0.050 - - - Aroclor1254 ND 0.050 - - - Aroclor1260 ND 0.050 - - - PCBs, total ND 0.050 - - - Surrogate Recovery	Hexachlorobenzene	ND	0.010	-	-	-
Toxaphene ND 0.050 - - - Aroclor1016 ND 0.050 - - - Aroclor1221 ND 0.050 - - - Aroclor1232 ND 0.050 - - - Aroclor1242 ND 0.050 - - - Aroclor1248 ND 0.050 - - - Aroclor1254 ND 0.050 - - - Aroclor1260 ND 0.050 - - - PCBs, total ND 0.050 - - - Surrogate Recovery	Hexachlorocyclopentadiene	ND	0.020	-	-	-
Aroclor1016 ND 0.050 - - - Aroclor1221 ND 0.050 - - - Aroclor1232 ND 0.050 - - - Aroclor1242 ND 0.050 - - - Aroclor1248 ND 0.050 - - - Aroclor1254 ND 0.050 - - - Aroclor1260 ND 0.050 - - - PCBs, total ND 0.050 - - - Surrogate Recovery	Methoxychlor	ND	0.0010	-	-	+
Aroclor1221 ND 0.050	Toxaphene	ND	0.050	-	-	-
Aroclor1232 ND 0.050	Aroclor1016	ND	0.050	-	-	-
Aroclor1242 ND 0.050	Aroclor1221	ND	0.050	-	-	-
Aroclor1248 ND 0.050 -	Aroclor1232	ND	0.050	-	-	:=
Aroclor1254 ND 0.050 Aroclor1260 ND 0.050	Aroclor1242	ND	0.050	-	•	275
Aroclor1260 ND 0.050 -	Aroclor1248	ND	0.050	-	-	191
PCBs, total ND 0.050 Surrogate Recovery	Aroclor1254	ND	0.050	•	-	N=
Surrogate Recovery	Aroclor1260	ND	0.050	-	-	88
	PCBs, total	ND	0.050	-	-	X .
Decachlorobiphenyl 0.05247 0.050 105 70-	Surrogate Recovery		от пот в том се и пот от в обит о от тор остат и то то от в органо основного на от неселение с Зак (1) от в органова основного на от неселение с Зак (1) от в органова основного	West of the section o	министрация по при	thermonophilips (Market Sale — Elly And Chill Philips And Chill Bed Sales Announce in Augustian go
	Decachlorobiphenyl	0.05247		0.050	105	70-130

(Cont.) NELAP 4033ORELAP

QA/QC Officer

Page 16 of 32

Quality Control Report

Client:

Stevens Creek Quarry

8052; Engineered Fill

Date Prepared: 3/15/17

Date Analyzed: 3/15/17 - 3/16/17 **Instrument:** GC22, GC23

Matrix:

Project:

Soil

WorkOrder:

1703788

BatchID:

135649

Extraction Method: SW3550B/3620B

Analytical Method: SW8081A/8082

Unit:

mg/kg

Sample ID:

MB/LCS/LCSD-135649

QC Summary Report OC Pesticides+PCBs w/ Florisil

LCS/LCSD Limits	RPD	RPD Limit
70-130	-	-
70-130	-	
70-130	-	
70-130	_	
70-130	-	
70-130	-	
70-130	0.792	20
70-130	4.50	20
rammatan kali menduk menduksi akutan dekalang dekalan "Tembupun menangang anggal", anggang	TOTAL METER - SETT ESSANS AND A CONTROL OF THE PROPERTY WAS THE PROPERTY W	ander bostonskoop til planenge
70-130	6.82	20
-	70-130	70-130 4.50

Quality Control Report

Client: Stevens Creek Quarry

Date Prepared: 3/15/17 Date Analyzed: 3/16/17 **Instrument:** GC18 Matrix:

Project:

Soil

8052; Engineered Fill

WorkOrder:

1703788

BatchID: 135659

Extraction Method: SW5030B Analytical Method: SW8260B

Unit:

mg/kg

Sample ID:

MB/LCS-135659

1703788-001AMS/MSD

QC Summary Report for SW8260B

Benzene ND 0.0549 0.0050 0.0500 - 110 63-137 Bromobenzene ND - 0.0050 -	Analyte	MB Resuit	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Benzene ND 0,0549 0,0050 0,050 - 110 63-137 Bromobenzene ND - 0,0050 -<	Acetone	ND	-	0.10	-	-	-	-
Bromoblenzene ND -	tert-Amyl methyl ether (TAME)	ND	0.0442	0.0050	0.050	-	88	53-116
Bromochloromethane	Benzene	ND	0.0549	0.0050	0.050	-	110	63-137
Bromodichloromethane ND - 0.0050 - - - - Bromoform ND - 0.0050 - - - - Eromomethane ND - 0.0050 - - - - 2-Butlanone (MEK) ND 0.168 0.050 0.20 - 84 41.135 -Butyl benzene ND - 0.0050 -	Bromobenzene	ND	-	0.0050	-	-	-	-
Bromoform ND - 0.0050 - - - Bromomethane ND - 0.0050 - - - 2-Butanone (MEK) ND - 0.020 - - - 1-Butyl alcohol (TBA) ND 0.168 0.050 0.20 - 84 41-135 n-Butyl benzene ND - 0.0050 - - - - sec-Butyl benzene ND - 0.0050 - - - - Carbon Disuffde ND - 0.0050 - - - - Carbon Disuffde ND - 0.0050 - - - - Carbon Tetrachlorde ND - 0.0050 - - - - Chlorobenzene ND 0.0535 0.0050 - - - - Chlorobenzene ND - 0.0050 - - - -	Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromomethane ND - 0.0050 - - - 2-Butanone (MEK) ND - 0.020 - - - 1-Butyl alcohol (TBA) ND 0.168 0.050 - 84 41-135 1-Butyl benzene ND - 0.0050 - - - 8ec-Butyl benzene ND - 0.0050 - - - 2etter-Butyl benzene ND - 0.0050 - - - Carbon Tetrachloride ND - 0.0050 - - - Carbon Tetrachloride ND - 0.0050 - - - - Chlorobenzene ND 0.0535 0.0050 - - - - Chlorobethane ND - 0.0050 - - - - Chlorotoluene ND - 0.0050 - - - - 2-Chlorotoluene	Bromodichloromethane	ND	-	0.0050	-	•	-	-
2-Butanone (MEK) ND - 0.020	Bromoform	ND	-	0.0050	-	•	-	-
L-Butyl alcohol (TBA) ND 0.168 0.050 0.20 - 84 41-135 n-Butyl benzene ND - 0.0050 - - - - sec-Butyl benzene ND - 0.0050 - - - - Carbon Disulfide ND - 0.0050 - - - - Carbon Disulfide ND - 0.0050 - - - - Carbon Disulfide ND - 0.0050 - - - - Carbon Tetrachloride ND - 0.0050 - - - - Chlorodename ND - 0.0050 - - - - - Chlorodename ND - 0.0050 - - - - - - - - - - - - - - - - - - - <	Bromomethane	ND	-	0.0050	-	-	-	-
ND	2-Butanone (MEK)	ND	-	0.020	-	-	-	-
sec-Butyl benzene ND - 0.0050 -	t-Butyl alcohol (TBA)	ND	0.168	0.050	0.20	•	84	41-135
tert-Butyl benzene ND - 0.0050 - - - - Carbon Disulfide ND - 0.0050 - - - - - Carbon Tetrachloride ND 0.0053 0.0050 - - - - - Chlorobenzene ND 0.0535 0.0050 0.050 - 107 77-121 Chlorotelhane ND - 0.0050 - - - - - Chlorotelhane ND - 0.0050 - <t< td=""><td>n-Butyl benzene</td><td>ND</td><td>-</td><td>0.0050</td><td>-</td><td>-</td><td>•</td><td>-</td></t<>	n-Butyl benzene	ND	-	0.0050	-	-	•	-
Carbon Disulfide ND - 0.0050 - - - - Carbon Tetrachloride ND - 0.0050 -	sec-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride ND - 0.0050 - - - - Chlorobenzene ND 0.0535 0.0050 0.050 - 107 77-121 Chloroethane ND - 0.0050 - - - - Chloromethane ND - 0.0050 - - - - Chloromethane ND - 0.0050 - - - - Chloromethane ND - 0.0050 - - - - 2-Chlorotoluene ND - 0.0050 - - - - 4-Chlorotoluene ND - 0.0050 - - - - - 4-Chlorotoluene ND - 0.0050 - - - - - 4-Chlorotoluene ND - 0.0050 - - - - 1,2-Dibnomethane (EDB) ND 0.047	tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Chlorobenzene ND 0.0535 0.0050 0.050 - 107 77-121 Chloroethane ND - 0.0050 - - - - Chloroform ND - 0.0050 - - - - Chloromethane ND - 0.0050 - - - - 2-Chlorotoluene ND - 0.0050 - - - - 4-Chlorotoluene ND - 0.0050 - - - - 1,2-Dibromoethane ND - 0.0050 - - - - 1,2-Dichlorobenzene ND - 0.0050 -	Carbon Disulfide	ND		0.0050	-	-	-	•
Chloroethane ND - 0.0050 - - - - Chloroform ND - 0.0050 - - - - Chloromethane ND - 0.0050 - - - - 2-Chlorotoluene ND - 0.0050 - - - - 4-Chlorotoluene ND - 0.0040 - - - - - 1,2-Dibromoethane (EDB) ND 0.0473 0.0040 0.050 - 95 67-119 Dibromomethane ND - 0.0050 <td>Carbon Tetrachloride</td> <td>ND</td> <td>•</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Carbon Tetrachloride	ND	•	0.0050	-	-	-	-
Chloroform ND - 0.0050 - - - - Chloromethane ND - 0.0050 - - - - 2-Chlorotoluene ND - 0.0050 - - - - 4-Chlorotoluene ND - 0.0050 - - - - 1,2-Distoromethane ND - 0.0040 0.050 - 95 67-119 Dibromomethane ND - 0.0050 - - - - - 1,2-Dichlorobenzene ND - 0.0050 - - - - - 1,4-Dichlorothane ND -	Chlorobenzene	ND	0.0535	0.0050	0.050	-	107	77-121
Chloromethane ND - 0.0050 - - - - 2-Chlorotoluene ND - 0.0050 - - - - 4-Chlorotoluene ND - 0.0050 - - - - Dibromochloromethane ND - 0.0050 - - - - 1,2-Dibromo-3-chloropropane ND - 0.0040 - - - - 1,2-Dibromoethane (EDB) ND 0.0473 0.0040 0.050 - 95 67-119 Dibromomethane ND - 0.0050 - - - - - 1,2-Dichlorobenzene ND - 0.0050 - - - - - 1,4-Dichlorobenzene ND - 0.0050 - - - - - - - - - - - - - - - - -	Chloroethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene ND - 0.0050 - - - 4-Chlorotoluene ND - 0.0050 - - - - Dibromochloromethane ND - 0.0050 - - - - 1,2-Dibromo-3-chloropropane ND - 0.0040 - - - - 1,2-Dibromoethane (EDB) ND 0.0473 0.0040 0.050 - 95 67-119 Dibromomethane (EDB) ND - 0.0050 - - - - - 1,2-Dichlorobenzene ND - 0.0050 - - - - - 1,4-Dichlorobenzene ND - 0.0050 - - - - - Dichlorodifluoromethane ND - 0.0050 - - - - 1,1-Dichloroethane ND - 0.0050 - - - - 1,2-Dichlor	Chloroform	ND	-	0.0050	-	-	-	-
4-Chlorotoluene ND - 0.0050 - - - - Dibromochloromethane ND - 0.0050 - - - - 1,2-Dibromo-3-chloropropane ND - 0.0040 - - - - 1,2-Dibromoethane (EDB) ND 0.0473 0.0040 0.050 - 95 67-119 Dibromomethane ND - 0.0050 - - - - - 1,2-Dichlorobenzene ND - 0.0050 - <t< td=""><td>Chloromethane</td><td>ND</td><td>-</td><td>0.0050</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	Chloromethane	ND	-	0.0050	-	-	-	-
Dibromochloromethane ND - 0.0050 - - - - 1,2-Dibromo-3-chloropropane ND - 0.0040 - - - - - 1,2-Dibromoethane (EDB) ND 0.0473 0.0040 0.050 - 95 67-119 Dibromomethane (EDB) ND - 0.0050 - - - - - 1,2-Dichlorobenzene ND - 0.0050 - - - - - 1,3-Dichlorobenzene ND - 0.0050 -	2-Chlorotoluene	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane ND - 0.0040 -	4-Chlorotoluene	ND	-	0.0050	-	-	-	-
1,2-Dibromoethane (EDB) ND 0.0473 0.0040 0.050 - 95 67-119 Dibromomethane ND - 0.0050 - - - - 1,2-Dichlorobenzene ND - 0.0050 - - - - 1,3-Dichlorobenzene ND - 0.0050 - - - - 1,4-Dichlorobenzene ND - 0.0050 - - - - Dichlorodifluoromethane ND - 0.0050 - - - - 1,1-Dichloroethane ND - 0.0050 - - - - 1,2-Dichloroethane (1,2-DCA) ND 0.0510 0.0050 - 102 58-135 1,1-Dichloroethene ND 0.0519 0.0050 - - 104 42-145 cis-1,2-Dichloroethene ND - 0.0050 - - - - - trans-1,2-Dichloroethene ND - 0.0050 - - - - -	Dibromochloromethane	ND	-	0.0050	-	-	-	-
Dibromomethane ND - 0.0050 - - - - 1,2-Dichlorobenzene ND - 0.0050 - - - - 1,3-Dichlorobenzene ND - 0.0050 - - - - 1,4-Dichlorobenzene ND - 0.0050 - - - - - Dichlorodifluoromethane ND - 0.0050 - <td>1,2-Dibromo-3-chloropropane</td> <td>ND</td> <td>-</td> <td>0.0040</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dichlorobenzene ND - 0.0050 - - - - 1,3-Dichlorobenzene ND - 0.0050 - - - - 1,4-Dichlorobenzene ND - 0.0050 - - - - Dichlorodifluoromethane ND - 0.0050 - - - - 1,1-Dichloroethane ND - 0.0050 - - - - 1,2-Dichloroethane (1,2-DCA) ND 0.0510 0.0040 0.050 - 102 58-135 1,1-Dichloroethene ND 0.0519 0.0050 0.050 - 104 42-145 cis-1,2-Dichloroethene ND - 0.0050 - - - - trans-1,2-Dichloroethene ND - 0.0050 - - - - 1,2-Dichloropropane ND - 0.0050 - - - - 1,3-Dichloropropane <td>1,2-Dibromoethane (EDB)</td> <td>ND</td> <td>0.0473</td> <td>0.0040</td> <td>0.050</td> <td>-</td> <td>95</td> <td>67-119</td>	1,2-Dibromoethane (EDB)	ND	0.0473	0.0040	0.050	-	95	67-119
1,3-Dichlorobenzene ND - 0.0050 - - - - 1,4-Dichlorobenzene ND - 0.0050 - - - - - Dichlorodifluoromethane ND - 0.0050 - - - - - 1,1-Dichloroethane ND - 0.0050 - <td>Dibromomethane</td> <td>ND</td> <td>•</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Dibromomethane	ND	•	0.0050	-	-	-	-
1,4-Dichlorobenzene ND - 0.0050 - <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane ND - 0.0050 - - - - 1,1-Dichloroethane ND - 0.0050 - - - - - 1,2-Dichloroethane (1,2-DCA) ND 0.0510 0.0040 0.050 - 102 58-135 1,1-Dichloroethene ND 0.0519 0.0050 0.050 - 104 42-145 cis-1,2-Dichloroethene ND - 0.0050 - - - - - trans-1,2-Dichloroethene ND - 0.0050 - - - - - 1,2-Dichloropropane ND - 0.0050 - - - - - 1,3-Dichloropropane ND - 0.0050 - - - - - -	1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane ND - 0.0050 - <td>1,4-Dichlorobenzene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA) ND 0.0510 0.0040 0.050 - 102 58-135 1,1-Dichloroethene ND 0.0519 0.0050 0.050 - 104 42-145 cis-1,2-Dichloroethene ND - 0.0050 - - - - trans-1,2-Dichloroethene ND - 0.0050 - - - - 1,2-Dichloropropane ND - 0.0050 - - - - 1,3-Dichloropropane ND - 0.0050 - - - - -	Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethene ND 0.0519 0.0050 0.050 - 104 42-145 cis-1,2-Dichloroethene ND - 0.0050 - - - - - trans-1,2-Dichloroethene ND - 0.0050 - - - - - 1,2-Dichloropropane ND - 0.0050 - - - - - 1,3-Dichloropropane ND - 0.0050 - - - - -	1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
cis-1,2-Dichloroethene ND - 0.0050 - - - - trans-1,2-Dichloroethene ND - 0.0050 - - - - - 1,2-Dichloropropane ND - 0.0050 - - - - - 1,3-Dichloropropane ND - 0.0050 - - - - -	1,2-Dichloroethane (1,2-DCA)	ND	0.0510	0.0040	0.050	-	102	58-135
trans-1,2-Dichloroethene ND - 0.0050 - - - - 1,2-Dichloropropane ND - 0.0050 - - - - - - 1,3-Dichloropropane ND - 0.0050 - - - - - -	1,1-Dichloroethene	ND	0.0519	0.0050	0.050	-	104	42-145
1,2-Dichloropropane ND - 0.0050 - - - - 1,3-Dichloropropane ND - 0.0050 - - - -	cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane ND - 0.0050	trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
	1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
	1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
		ND	5	0.0050	-	-	-	-

(Cont.) **NELAP 4033ORELAP**

QA/QC Officer

Quality Control Report

Client: Stevens Creek Quarry

Date Prepared: 3/15/17
Date Analyzed: 3/16/17
Instrument: GC18
Matrix: Soil

Project: 8052; Engineered Fill

WorkOrder:

1703788

BatchID: 135659

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit:

mg/kg

Sample ID: MB/L

MB/LCS-135659 1703788-001AMS/MSD

QC Summary Report for SW8260B

California ND		Community Report for 5 11 0200B								
cis-1,3-Dichloropropene ND 0.0050 - - - cirans-1,3-Dichloropropene ND 0.0054 0.0050 - - - Dissopropyl ether (DIPE) ND 0.0524 0.0050 - - - Ethyl ten-butyl ether (ETBE) ND 0.0500 0.0050 - - - Feen 113 ND - 0.0050 - - - - Hexachlorobutadiene ND - 0.0050 - - - - Hexachloroethane ND - 0.0050 - - - <	Analyte			RL						
Name	1,1-Dichloropropene	ND	-	0.0050	-	-	-	-		
Discorporyl ether (DIPE) ND 0.0524 0.0050 0.050 - 105 52-129	cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-		
Ethylbenzene ND - 0.0050	trans-1,3-Dichloropropene	ND	-	0.0050	-	-	_	-		
Ethyl tert-butyl ether (ETBE) ND 0.0500 0.0500 0.050 - 100 53-125 Freen 113 ND - 0.0050 - - - - Hexachlorobutadiene ND - 0.0050 - - - - Hexachlorobutadiene ND - 0.0050 - - - - Hexachlorobutadiene ND - 0.0050 - - - - E-bexachlorobutadiene ND - 0.0050 - <td< td=""><td>Diisopropyl ether (DIPE)</td><td>ND</td><td>0.0524</td><td>0.0050</td><td>0.050</td><td>•</td><td>105</td><td>52-129</td></td<>	Diisopropyl ether (DIPE)	ND	0.0524	0.0050	0.050	•	105	52-129		
ND	Ethylbenzene	ND	-	0.0050	_	-	-	-		
Freen 113	Ethyl tert-butyl ether (ETBE)	ND	0.0500	0.0050	0.050	-	100	53-125		
ND	Freon 113	ND	-	0.0050	-	-	-			
ND	Hexachlorobutadiene	ND	-	0.0050	-		-	-		
Sopropylbenzene ND -	Hexachloroethane	ND	-	0.0050	-		-	-		
ND	2-Hexanone	ND	*	0.0050	-	-	-	-		
Methyl-t-butyl ether (MTBE) ND 0.0479 0.0500 0.0500 - 96 58-122 Methylene chloride ND - 0.0050 - - - - 4-Methyl-2-pentanone (MIBK) ND - 0.0050 - - - - Naphthalene ND - 0.0050 - - - - NP-Propyl benzene ND - 0.0050 - - - - Styrene ND - 0.0050 - - - - Al,1,2,2-Tetrachloroethane ND - 0.0050 - - - - Incertachloroethane ND	Isopropylbenzene	ND	-	0.0050	_	-	-	-		
Methylene chloride ND - 0.0050	4-Isopropyl toluene	ND	_	0.0050	-	-	-	_		
Methylene chloride ND - 0.0050 - - - - 4-Methyl-2-pentanone (MIBK) ND - 0.0050 - - - - Naphthalene ND - 0.0050 - - - - N-Propyl benzene ND - 0.0050 - - - - Styrene ND - 0.0050 - - - - - 1,1,2-Tetrachloroethane ND - 0.0050 -	Methyl-t-butyl ether (MTBE)	ND	0.0479	0.0050	0.050	-	96	58-122		
Name ND - 0.0050 - - - - A-Propyl benzene ND - 0.0050 - - - - Styrene ND - 0.0050 - - - - I,1,2-Tetrachloroethane ND - 0.0050 - - - - I,1,2,2-Tetrachloroethane ND - 0.0050 - - - - I,1,2,2-Tetrachloroethane ND - 0.0050 - - - - Ioluene ND - 0.0050 - - - - I,2,3-Trichlorobenzene ND - 0.0050 - - - - I,2,4-Trichloroethane ND - 0.0050 - - - - I,1,2-Trichloroethane ND - 0.0050 - - - - I,1,2-Trichloroethane ND - 0.0050	Methylene chloride	ND	-	0.0050		-	-			
ND	4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-		
ND ND ND ND ND ND ND ND	Naphthalene	ND	-	0.0050	-	-		_		
1,1,2-Tetrachloroethane	n-Propyl benzene	ND		0.0050	-		•	-		
1,1,2,2-Tetrachloroethane	Styrene	ND	•	0.0050	-	-	-	-		
Tetrachloroethene ND - 0.0050 -	1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-		
Toluene ND 0.0558 0.0050 0.050 - 112 76-130 1,2,3-Trichlorobenzene ND - 0.0050 - - - - - 1,2,4-Trichlorobenzene ND - 0.0050 - - - - - 1,1,1-Trichloroethane ND - 0.0050 - - - - - - 1,1,2-Trichloroethane ND - 0.0050 -	1,1,2,2-Tetrachloroethane	ND	*	0.0050	-	-	-	_		
1,2,3-Trichlorobenzene	Tetrachloroethene	ND	-	0.0050	-	-	-	-		
1,2,4-Trichlorobenzene	Toluene	ND	0.0558	0.0050	0.050	-	112	76-130		
1,1,1-Trichloroethane	1,2,3-Trichlorobenzene	ND	*	0.0050	-	-	-	-		
1,1,2-Trichloroethane	1,2,4-Trichlorobenzene	ND	•	0.0050	-	-	-	-		
Frichloroethene ND 0.0572 0.0050 0.050 - 114 72-132 Trichlorofluoromethane ND - 0.0050 - - - - ,2,3-Trichloropropane ND - 0.0050 - - - - ,2,4-Trimethylbenzene ND - 0.0050 - - - - ,3,5-Trimethylbenzene ND - 0.0050 - - - - /inyl Chloride ND - 0.0050 - - - -	1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-		
Trichlorofluoromethane ND - 0.0050 -	1,1,2-Trichloroethane	ND		0.0050	-	-	-	-		
Trichlorofluoromethane ND - 0.0050 - - - - ,2,3-Trichloropropane ND - 0.0050 - - - - - ,2,4-Trimethylbenzene ND - 0.0050 - - - - - ,3,5-Trimethylbenzene ND - 0.0050 - - - - - /inyl Chloride ND - 0.0050 - - - - -	Trichloroethene	ND	0.0572	0.0050	0.050	-	114	72-132		
,2,4-Trimethylbenzene ND - 0.0050 - - - ,3,5-Trimethylbenzene ND - 0.0050 - - - - /inyl Chloride ND - 0.0050 - - - -	Trichlorofluoromethane	ND	-	0.0050	-	-	-			
,2,4-Trimethylbenzene ND - 0.0050 - - - ,3,5-Trimethylbenzene ND - 0.0050 - - - - /inyl Chloride ND - 0.0050 - - - -	1,2,3-Trichloropropane	ND	-		-	-	-			
ND - 0.0050 - - - /inyl Chloride ND - 0.0050 - - -	1,2,4-Trimethylbenzene	ND	-		-	_	-	_		
/inyl Chloride ND - 0.0050	1,3,5-Trimethylbenzene	ND	-		-		_	-		
	Vinyl Chloride	ND	-		-	-	-	-		
	Xylenes, Total	ND	:#:		-	is:	(*)	(#1		

(Cont.) NELAP 4033ORELAP QA/QC Officer

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 3/15/17 **Date Analyzed:** 3/16/17 **Instrument:** GC18

Matrix:

Soil

Project:

8052; Engineered Fill

WorkOrder:

1703788

BatchID: 135659

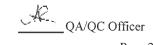
Extraction Method: SW5030B

Unit:

Analytical Method: SW8260B

~ - -

mg/kg


Sample ID:

MB/LCS-135659

1703788-001AMS/MSD

	QC Sumi	QC Summary Report for SW8260B								
Analyte	MB Result	LCS Result		RL	SPK Val			LCS %REC	LCS Limits	
Surrogate Recovery			- Political Service Communication of	The second secon					Attribut see V resourcessansans	
Dibromofluoromethane	0.124	0.128			0.12	99		102	70-130	
Toluene-d8	0.1346	0.136			0.12	10	8	109	70-130	
4-BFB	0.01228	0.0123			0.012	98		99	70-130	
Benzene-d6	0.08657	0.102			0.10	87		102	60-140	
Ethylbenzene-d10	0.09868	0.117			0.10	99		117	60-140	
1,2-DCB-d4	0.07481	0.0882			0.10	75		88	60-140	
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MS	D RPD	RPD Limit	
tert-Amyl methyl ether (TAME)	0.0428	0.0427	0.050	ND	86	85	53-116	0.216	20	
Benzene	0.0523	0.0511	0.050	ND	105	102	63-137	2.18	20	

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0428	0.0427	0.050	ND	86	85	53-116	0.216	20
Benzene	0.0523	0.0511	0.050	ND	105	102	63-137	2.18	20
t-Butyl alcohol (TBA)	0.175	0.165	0.20	ND	88	82	41-135	6.35	20
Chlorobenzene	0.0512	0.0503	0.050	ND	102	101	77-121	1.67	20
1,2-Dibromoethane (EDB)	0.0451	0.0450	0.050	ND	90	90	67-119	0	20
1,2-Dichloroethane (1,2-DCA)	0.0482	0.0478	0.050	ND	96	96	58-135	0	20
1,1-Dichloroethene	0.0493	0.0484	0.050	ND	99	97	42-145	1.79	20
Diisopropyl ether (DIPE)	0.0497	0.0488	0.050	ND	99	98	52-129	1.90	20
Ethyl tert-butyl ether (ETBE)	0.0482	0.0477	0.050	ND	96	95	53-125	1.01	20
Methyl-t-butyl ether (MTBE)	0.0456	0.0460	0.050	ND	91	92	58-122	0.884	20
Toluene	0.0530	0.0513	0.050	ND	106	103	76-130	3.14	20
Trichloroethene	0.0552	0.0534	0.050	ND	110	107	72-132	3.39	20
Surrogate Recovery	MOVEMBER (SECTION AND SECTION AND SECTION AND SECTION ASSESSMENT (SECTION ASSESSMENT)	STATEMENT STATEM	# 100 + 100 AND WALL PRINCE VALUE	* Mail: Discontinue (Aprilla - Aprilla * Compact) (V pr.) piquetti (V pretty); (* rep	The state of the s	nam (una main) (unu mpakannung-pipapa) pr	n (1.74) valantiista kalkalaista kalkalaista kalkalaista ja kalkalaista ja kalkalaista kalkalaista kalkalaista	primatily (cm to 20 mars moves, authorize Newsaute	ET. BAST TOPPED TOPPED TO THE TOP TO
Dibromofluoromethane	0.128	0.129	0.12		103	103	70-130	0	20
Toluene-d8	0.134	0.134	0.12		107	107	70-130	0	20
4-BFB	0.0123	0.0131	0.012		98	105	70-130	6.77	20
Benzene-d6	0.0974	0.0962	0.10		97	96	60-140	1.30	20
Ethylbenzene-d10	0.109	0.108	0.10		109	108	60-140	1.03	20
1,2-DCB-d4	0.0848	0.0850	0.10		85	85	60-140	0	20

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 3/16/17 Date Analyzed: 3/16/17

Instrument: GC21

Matrix:

Soil

Project:

8052; Engineered Fill

WorkOrder:

1703788

BatchID:

135681

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Sample ID:

MB/LCS-135681

QC Summary Report for SW8270C (SVOCs w/ GPC)

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acenaphthene	ND	4.26	0.25	5	-	85	32-113
Acenaphthylene	ND		0.25			-	=
Acetochlor	ND	19 3	0.25	-	-		-
Anthracene	ND	35 0	0.25	-	-		4
Benzidine	ND	 .	1.3	¥	*	ш	2
Benzo (a) anthracene	ND	(10)	0.25	¥	_		2
Benzo (b) fluoranthene	ND	H:	0.25	*	-		
Benzo (k) fluoranthene	ND		0.25	+	*	×	-
Benzo (g,h,i) perylene	ND		0.25	-	-	4	-
Benzo (a) pyrene	ND	-	0.25	-	=	2	=
Benzyl Alcohol	ND		1.3	-	*	=	-
1,1-Biphenyl	ND	*	0.25		-	+	-
Bis (2-chloroethoxy) Methane	ND	-	0.25		-	-	:4:
Bis (2-chloroethyl) Ether	ND	-	0.25	100	-	-	74
Bis (2-chloroisopropy!) Ether	ND	-	0.25	(m)	: *	-	24
Bis (2-ethylhexyl) Adipate	ND		0.25	()		-	0,40
Bis (2-ethylhexyl) Phthalate	ND	•	0.25	0=	100	0.0	(%)
4-Bromophenyl Phenyl Ether	ND	-	0.25	-	:=	100	-
Butylbenzyl Phthalate	ND	-	0.25		. +	196	-
4-Chloroaniline	ND	m	0.25		.=	((=)	100
4-Chloro-3-methylphenol	ND	3.96	0.25	5		79	35-126
2-Chloronaphthalene	ND	-	0.25				•
2-Chlorophenol	ND	3.82	0.25	5	5. 	76	38-117
4-Chlorophenyl Phenyl Ether	ND	-	0.25	:=:			-
Chrysene	ND	:#	0.25		161		-
Dibenzo (a,h) anthracene	ND	2#C	0.25	5 # 3	(*)	i e)=)
Dibenzofuran	ND	0.99	0.25	3.60	-		
Di-n-butyl Phthalate	ND	:: 	0.25	-		· ·	-
1,2-Dichlorobenzene	ND	() 	0.25	::E:	(=((a)	
1,3-Dichlorobenzene	ND	3.0	0.25	1982	(=)	-	
1,4-Dichlorobenzene	ND	3.38	0.25	5	(*)	68	31-101
3,3-Dichlorobenzidine	ND	-	0.50	-	-	-	- 03/1 03/11
2,4-Dichlorophenol	ND	-	0.25	-	-	-	_
Diethyl Phthalate	ND	-	0.25	-		•	_
2,4-Dimethylphenol	ND	-	0.25	-	-		-
Dimethyl Phthalate	ND	-	0.25		_	_	-
4,6-Dinitro-2-methylphenol	ND		1.3	-			-

(Cont.) **NELAP 4033ORELAP**

QA/QC Officer

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 3/16/17 Date Analyzed: 3/16/17

Instrument:

GC21

Matrix:

Soil

Project:

8052; Engineered Fill

WorkOrder:

1703788

BatchID:

135681

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Sample ID:

MB/LCS-135681

QC Summary Report for SW8270C (SVOCs w/ GPC)

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
2,4-Dinitrophenol	ND		6.3	-	_		_
2,4-Dinitrotoluene	ND	4.96	0.25	5	<u> </u>	99	38-131
2,6-Dinitrotoluene	ND	-	0.25				-
Di-n-octyl Phthalate	ND		0.50			_	_
1,2-Diphenylhydrazine	ND	•	0.25		-	-	-
Fluoranthene	ND	-	0.25	-			_
Fluorene	ND	-	0.25		-	-	_
Hexachlorobenzene	ND	-	0.25	-		_	-
Hexachlorobutadiene	ND	-	0.25	-		_	-
Hexachlorocyclopentadiene	ND		1.3	-	_	-	-
Hexachloroethane	ND	-	0.25	-	_	•	-
Indeno (1,2,3-cd) pyrene	ND	-	0.25	-	-	-	-
Isophorone	ND	-	0.25	-	-	-	~
2-Methylnaphthalene	ND	_	0.25	•	•	-	-
2-Methylphenol (o-Cresol)	ND	-	0.25	-		-	-
3 & 4-Methylphenol (m,p-Cresol)	ND	•	0.25	-	-	-	-
Naphthalene	ND	-	0.25	-	-	_	-
2-Nitroaniline	ND	-	1.3	_	-	-	-
3-Nitroaniline	ND	_	1.3	-	-	-	-
4-Nitroaniline	ND	-	1.3	-	-	-	-
Nitrobenzene	ND	-	1.3	-	-		_
2-Nitrophenol	ND	-	1.3	_	-	-	•
4-Nitrophenol	ND	4.04	1.3	5	-	81	27-127
N-Nitrosodiphenylamine	ND	· •	0.25	-	-	-	-
N-Nitrosodi-n-propylamine	ND	3.93	0.25	5	-	79	25-116
Pentachlorophenol	ND	3.67	1.3	5	-	73	28-135
Phenanthrene	ND		0.25	_	-	-	_
Phenol	ND	3.77	0.25	5	-	75	33-113
Pyrene	ND	4.64	0.25	5	•	93	38-133
1,2,4-Trichlorobenzene	ND	3.86	0.25	5	-	77	34-117
2,4,5-Trichlorophenol	ND	-	0.25	-	-	-	-
2,4,6-Trichlorophenol	ND	-	0.25	-	_	-	-

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 3/16/17 Date Analyzed: 3/16/17

Instrument: GC21

Matrix:

Soil

Project:

8052; Engineered Fill

WorkOrder:

1703788

BatchID:

135681

Extraction Method: SW3550B/3640A

Analytical Method: SW8270C

Unit:

mg/Kg

Sample ID:

MB/LCS-135681

QC Summary Report for SW8270C (SVOCs w/ GPC)								
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits	
Surrogate Recovery							es a secure assumes very a security of	
2-Fluorophenol	4.36	4.60		5	87	92	31-108	
Phenol-d5	3.988	4.44		5	80	89	32-106	
Nitrobenzene-d5	4.091	4.57		5	82	91	27-109	
2-Fluorobiphenyl	4.098	4.32		5	82	87	26-100	
2,4,6-Tribromophenol	4.218	4.19		5	84	84	25-106	
4-Terphenyl-d14	4.19	4.72	7.7.	5	84	94	27-113	

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 3/15/17 Date Analyzed: 3/17/17 **Instrument:**

ICP-MS3

Matrix:

Soil

Project:

8052; Engineered Fill

WorkOrder:

1703788

BatchID:

135650

Extraction Method: SW3050B

Analytical Method: SW6020

Unit:

mg/Kg

Sample ID:

MB/LCS-135650

1703780-001AMS/MSD 1703780-001APDS

OC Summary Report for Metals

Analyte	MB	LCS	DI	ODK	MDOO	1.00	1.00
Analyte	Result	Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Antimony	ND	48.4	0.50	50	-	97	75-125
Arsenic	ND	50.9	0.50	50	-	102	75-125
Barium	ND	501	5.0	500	-	100	75-125
Beryllium	ND	50.0	0.50	50	-	100	75-125
Cadmium	ND	49.4	0.25	50	-	99	75-125
Chromium	ND	48.6	0.50	50	-	97	75-125
Cobalt	ND	49.8	0.50	50	-	100	75-125
Copper	ND	50.0	0.50	50	-	100	75-125
Lead	ND	49.7	0.50	50	-	99	75-125
Mercury	ND	1.24	0.050	1.25	-	100	75-125
Molybdenum	ND	49.1	0.50	50	-	98	75-125
Nickel	ND	50.2	0.50	50	-	100	75-125
Selenium	ND	50.2	0.50	50	-	100	75-125
Silver	ND	49.2	0.50	50	-	98	75-125
Thallium	ND	48.0	0.50	50	-	96	75-125
Vanadium	ND	48.1	0.50	50	-	96	75-125
Zinc	ND	508	5.0	500	-	102	75-125
Surrogate Recovery			all heliologic in the heliologic in the second common and the seco	E-MERCHANICA CONTRACTOR CONTRACTO		This more control of the first Control of the formation of the first control of the first con	MMN - India - Minyardhau - Yay ir anaddy'i yw wydd
Terbium	492.7	506		500	99	101	70-130

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 3/15/17 Date Analyzed: 3/17/17 **Instrument:** ICP-MS3

Soil

Matrix: **Project:**

8052; Engineered Fill

WorkOrder:

1703788

BatchID:

135650

Extraction Method: SW3050B

Analytical Method: SW6020

Unit:

mg/Kg

Sample ID:

MB/LCS-135650

1703780-001AMS/MSD 1703780-001APDS

QC Summary Report for Metals

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Antimony	50.1	50.2	50	0.57	99	99	75-125	0	20
Arsenic	55.9	58.4	50	6.7	98	103	75-125	4.37	20
Barium	686	705	500	180	102	106	75-125	2.76	20
Beryllium	49.7	50.3	50	0.64	98	99	75-125	1.04	20
Cadmium	50.5	50.1	50	ND	101	100	75-125	0.815	20
Chromium	77.8	78.8	50	41	74,F10	76	75-125	1.33	20
Cobalt	60.5	62.7	50	13	96	100	75-125	3.52	20
Copper	76.6	76.7	50	33	88	88	75-125	0	20
Lead	63.0	63.1	50	14	98	98	75-125	0	20
Mercury	1.43	1.65	1.25	0.19	99	116	75-125	14.0	20
Molybdenum	51.0	51.2	50	0.73	100	101	75-125	0.392	20
Nickel	96.5	91.6	50	45	103	93	75-125	5.19	20
Selenium	50.8	50.1	50	ND	101	100	75-125	1.33	20
Silver	50.0	49.5	50	ND	100	99	75-125	0.945	20
Thallium	49.0	48.8	50	ND	98	98	75-125	0	20
Vanadium	92.0	86.6	50	49	85	74,F10	75-125	6.10	20
Zinc	569	570	500	61	101	102	75-125	0.211	20
Surrogate Recovery	эт этэх эхээх хэвэг гэр хэр хэвэг хэр	4	and the second s	ninc imministrative etc 1 de arcturalescensumes, y2 o	Gella Mighine convention of the personal assessment	THE CONTRACTOR OF CONTRACTOR OF CONTRACTOR C	olimiki ajridi mila Musicusti e sprace e — himouron ancessages — agga-	VIEW 0000 Proof of the Horse Continues	TO SHIP TO ST. HERVE, MARKE, A. X.
Terbium	529	527	500		106	105	70-130	0.303	20
Analyte	PDS Result		SPK Val	SPKRef Val	PDS %REC		PDS Limits		
Chromium	90.8		50	41	100	<u></u>	75-125		
Vanadium	99.6		50	49	100		75-125		
Analyte	DLT Result			DLTRef Val				%D	%D Limit
Antimony	ND<2.5			0.57				-	0.00
A 1 -									

6.7

180

0.64

ND

41

13

6.48

178

43.8

13.5

ND<2.5

ND<1.2

(Cont.) CDPH ELAP 1644 • NELAP 4033ORELAP

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

QA/QC Officer

3.28

1.11

6.83

3.85

20

20

20

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 3/15/17 Date Analyzed: 3/17/17

ICP-MS3

Instrument: Matrix:

Soil

Project:

8052; Engineered Fill

WorkOrder:

1703788

BatchID:

135650

Extraction Method: SW3050B

Analytical Method: SW6020

Unit:

mg/Kg

Sample ID:

MB/LCS-135650

1703780-001AMS/MSD

1703780-001APDS

QC Summary Report for Metals

Analyte	DLT Result	DLTRef Val	%D	%D Limit
Copper	34.1	33	3.33	20
Lead	14.4	14	2.86	20
Mercury	ND<0.25	0.19		
Molybdenum	ND<2.5	0.73	*	
Nickel	46.5	45	3.33	20
Selenium	ND<2.5	ND		
Silver	ND<2.5	ND	+	
Thallium	ND<2.5	ND		
Vanadium	52.4	49	6.94	20
Zinc	62.1	61	1.80	

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 3/15/17 Date Analyzed: 3/16/17 Instrument: GC19

Matrix:

Soil

Project:

8052; Engineered Fill

WorkOrder:

1703788

BatchID:

135636

Extraction Method: SW5030B

Analytical Method: SW8021B/8015Bm

Unit:

mg/Kg

Sample ID:

MB/LCS-135636

1703766-001AMS/MSD

QC Summary	Report	for	SW8021B/8015Bm
------------	--------	-----	----------------

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.600	0.40	0.60		100	82-118
MTBE	ND	0.0953	0.050	0.10		95	61-119
Benzene	ND	0.122	0.0050	0.10	-	122	77-128
Toluene	ND	0.124	0.0050	0.10	-	125	74-132
Ethylbenzene	ND	0.124	0.0050	0.10	-	123	84-127
Xylenes	ND	0.351	0.015	0.30		117	86-129
Surrogate Recovery					deliterativa (in a proportion of the common		
2-Fluorotoluene	0.09428	0.102		0.10	94	102	75-134

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	NR	NR		ND	NR	NR	-	NR	
MTBE	NR	NR		ND	NR	NR	•	NR	
Benzene	NR	NR		ND	NR	NR	-	NR	
Toluene	NR	NR		ND	NR	NR	-	NR	
Ethylbenzene	NR	NR		ND	NR	NR	_	NR	
Xylenes	NR	NR		ND	NR	NR	-	NR	
Surrogate Recovery	menne men de servoule 1960 de handre documente esta des des professions de 1885 y possibles en de mandre de la constitutado . Auto des des	PARTITION OF THE PARTITION OF T	or investment of the state of t	Market Trans Charlet Anna year Transcount of Statement Court	P - EPANEZZENIA SEONYE EUROSE SEESTING ANALYSIS			C PROFESSION 9 AMERICAN AND AND AND AND AND AND AND AND AND A	Manager approxime measure it
2-Fluorotoluene	NR	NR			NR	NR	-	.NR	-

Quality Control Report

Client:

Stevens Creek Quarry

Date Prepared: 3/15/17

Date Analyzed: 3/16/17 **Instrument:** GC9a

Matrix:

Soil

Project:

8052; Engineered Fill

WorkOrder:

1703788

BatchID:

135648

Extraction Method: SW3550B/3630C

Analytical Method: SW8015B

Unit:

mg/Kg

Sample ID:

MB/LCS-135648

QC Report for SW8015B w/ Silica Gel Clean-Up								
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits	
TPH-Diesel (C10-C23)	ND	33.6	1.0	40	-	84	79-133	
TPH-Motor Oil (C18-C36)	ND	-	5.0	-	-	-	-	
Surrogate Recovery								
C9	23.02	23.0		25	92	92	77-109	

	(ز
	ì	_
	_	
-	=	
	(ر
	7(1)7	ر
•	È	
	5	>
-	_	
	C)
	C	Ξ
	_	7
	_	١.
=		=
-	a)
	Ē	5
-	Ξ	₹
1	L	2
- 1	۲	_
- 1	_	
i	C	5
(١
	,	<
1		ر

1534 Willow Pass Rd
Pittsburg, CA 94565-1701 (925) 252-9262

ProjectNo: 8052; Engineered Fill cc/3rd Party: Email: PO: 12100 Stevens Canyon Road FAX: Stevens Creek Quarry Cupertino, CA 95014 (408) 640-8578 Mark Mallin Report to:

mmallin@scqinc.com

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

ClientCode: SCQ WorkOrder: 1703788

✓ Email ■ EQuIS

Excel

EDF

☐ WriteOn

ThirdParty HardCopy

☐ J-flag

1 day;

Requested TAT:

Bill to:

Accounts Payable/ Rich Voss

Date Logged:

03/15/2017 03/15/2017 Date Received:

12100 Stevens Canyon Road Stevens Creek Quarry awarner@scqinc.com Cuperfino, CA 95014

Requested Tests (See legend below)

Test Legend:

7199_TTLC_S	CAM17MS_TTLC_S	
-	က	6

G-MBTEX_S		
ဖ	10	

8260B_S	TPH(DMO)WSG_S	
က	7	7

8270_ESL_S		
4	80	12

Prepared by: Briana Cutino

The following SampID: 001A contains testgroup Multi RangeWSG_S.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

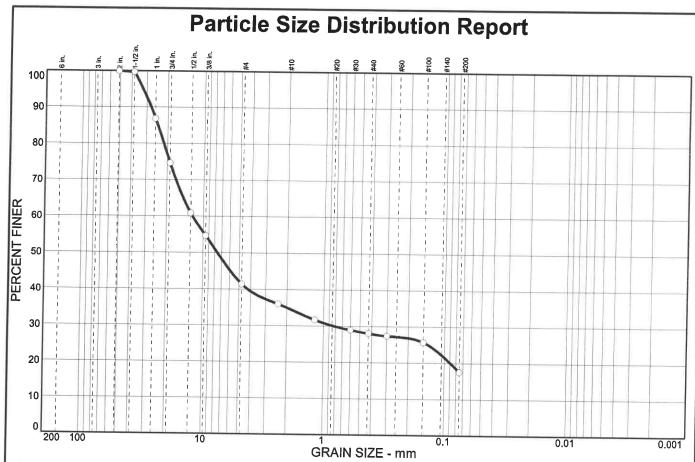
"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269
http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: STEVENS Client Contact: Moule Mollin	STEVENS CREEK QUARRY		Project:	Project: 8052; Engineered Fill	gineered Fill			Work Or	Work Order: 1703788
Contact's Email: mmallin@scqinc.com	allin@scqinc.com		Comments:	S:				QC Le Date Log	QC Level: LEVEL 2 Date Logged: 3/15/2017
	WaterTrax	☐ WriteOn	EDF Excel		☐ Fax	HardCol	☐ HardCopy ☐ ThirdParty ☐ J-flag	∏ J-fÎag	
Cab ID Client ID		Matrix Test Name	0 9	Containers /Composites	Containers Bottle & Preservative	De- C	Collection Date	TAT Sedi	TAT Sediment Hold SubOut Content
703788-001A 8052	Soil	Multi-Range TPH(g,d,mo) w/ S.G. Clean-Up	no) w/ S.G.	-	Stainless Steel tube 2"x6"		3/14/2017 14:30	1 day	
		SW6020 (CAM 17)						1 day	
		SW8270C (SVOCs) ESLs	Ls					1 day	
		SW8260B (VOCs)						1 day	
		SW8081A/8082 (OC Pesticides+PCBs) ESLs	esticides+PCBs)					1 day	
		SW7199 (Hexavalent chromium)	hromium)					1 day	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission). - MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.


Report To: WARK MALLIN Bill To: Company: Grand Prison Grand Policy Company: Grand Malling Composition and Bill To: Company: Grand Malling Malling Company: Grand Malling Company: Grand Malling Malling Company: Grand Malling	Ilytical, Inc. CHAIN OF CUSTODY RECORD	Campbell.com 252-9269 Effluent Sample Requiring "J" flag UST Clean Up Fund Project []; Claim #	Analysis Request	(42)	161 6 36 8 10 15 15 15 15 15 15 15 15 15 15 15 15 15	(8250) (8	As Grander Great Grander Great Grander Great Grander Great Grander Gra	PRESERVED 17 17 17 17 17 17 17 17 17 17 17 17 17	Sea Water Sea Water Sea Water Soil	X X X			loi en lo	liate \$250 surcharge and the	COMMENTS: GOOD CONDITION HEAD SPACE ABSENT PECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB	VOAS O&G METALS OTHER HAZADROHE
	ampbell And	ow Pass Rd / Pittsburg. ampbell.com / main@i ne: (877) 252-9262 / Fax.	4	1 2040		Steel And Project	SAMPLING		# Containers	1 02:1 p/E			ngerous chemicals known to be n	MAI staff. Non-disclosure incurs	7 1420 Time:	Time:

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name: Project Name:	Stevens Creek Quar 8052; Engineered Fi	•		Date and Time F Date Logged: Received by:	Received	3/15/2017 20:00 3/15/2017 Briana Cutino		
WorkOrder №:	1703788	Matrix: Soil			Logged by:		Briana Cutino	
Carrier:	Benjamin Yslas (MAI	Courier)						
		Chain of C	ustod	y (COC) Info	rmation			
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	hed and received?	Yes	•	No 🗌			
Chain of custody	agrees with sample la	bels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	✓	No 🗆			
Date and Time of	collection noted by Cl	ient on COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗌			
		Samp	le Reci	eipt Informat	ion			
Custody seals into	act on shipping contair	ner/cooler?	Yes		No 🗌	١	NA 🗸	
Shipping containe	r/cooler in good condi	tion?	Yes	✓	No 🗌			
Samples in prope	r containers/bottles?		Yes	✓	No 🗌			
Sample containers	s intact?		Yes	✓	No 🗌			
Sufficient sample	volume for indicated to	est?	Yes	✓	No 🗔			
		Sample Preservation	on and	Hold Time (i	HT) Information			
All samples receiv	ed within holding time	?	Yes	✓	No 🗆	1	NA 🗌	
Sample/Temp Bla	nk temperature			Temp: 3.4	I °C	١	NA 🗌	
Water - VOA vials	have zero headspace	/ no bubbles?	Yes		No 🗌	N	IA 🗹	
Sample labels che	ecked for correct prese	ervation?	Yes	✓	No 🗌			
pH acceptable upo	on receipt (Metal: <2;	522: <4; 218.7: >8)?	Yes		No 🗆	٨	JA 🗸	
Samples Received	d on Ice?		Yes	✓	No 🗆			
UOMBO O		(Ice Type	e: WE	TICE)				
UCMR3 Samples: Total Chlorine te	•	upon receipt for EPA 522?	Yes		No 🗆	N	A 🗹	
Free Chlorine te	sted and acceptable u	pon receipt for EPA 218.7,			No 🗌		A 🗹	
300.1, 537, 5391	(
								EG#

% GRAVEL	% SAND	% SILT	% CLAY	USCS	AASHTO	PL	LL
58.6	23.9	17.5		GM		26	31
	58.6	58.6 23.9	58.6 23.9 17	58.6 23.9 17.5	50.6	50.6	50.6

	SIEVE	PE	RCENT FI	NER
	inches size	0		
	2 1.5" 1" 3/4" 1/2" 3/8"	100.0 99.7 86.8 74.6 60.8 54.6		
	><	(GRAIN SIZI	Ξ
	D ₆₀	12.3		
1	D ₃₀	0.813		
	D ₁₀			
	><	CC	EFFICIEN	TS
1	C _c			
L	Cu			

SIEVE	PE	RCENT FI	VER
number size	0		
#4 #8 #16 #30 #40 #50 #100 #200	41.4 36.0 31.7 29.0 28.1 27.4 25.7 17.5		

SOIL DESCRIPTION
Olive Brown Silty GRAVEL w/ San

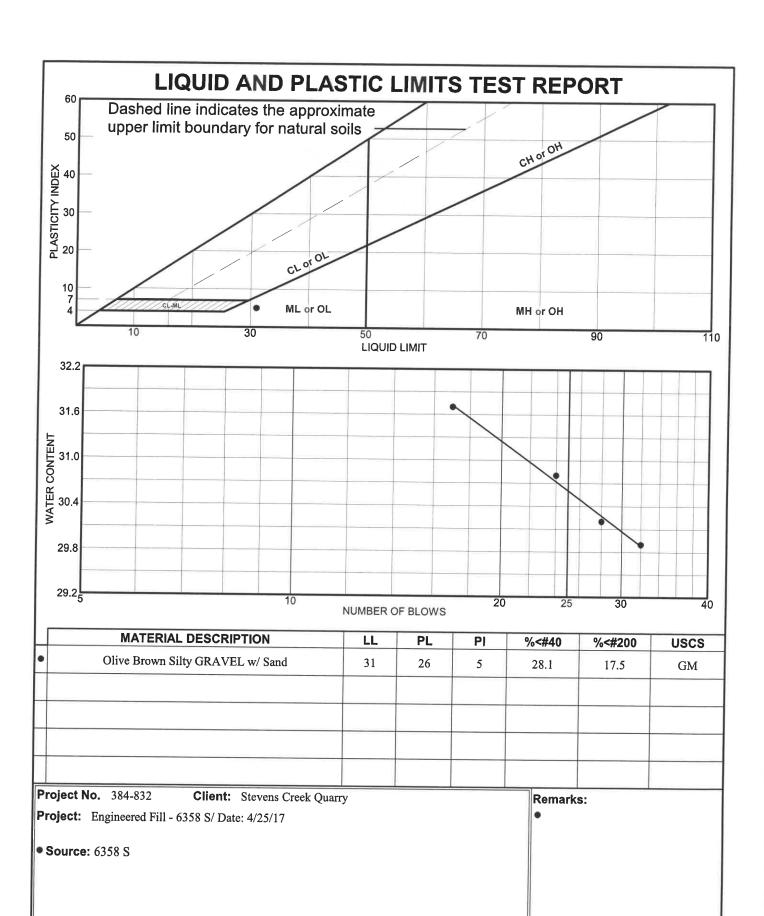
REMARKS:

O Source: 6358 S

COOPER TESTING LABORATORY

Client: Stevens Creek Quarry

Project: Engineered Fill - 6358 S/ Date: 4/25/17


Project No.: 384-832

Figure

Expansion Index ASTM D-4829-07 X

OTI I I I			E III WAR IN THE		THE REAL PROPERTY.			
CTL Job No.:		4-832	_Boring:			_Date:	4/26/2017	
Client:		Creek Quarry		63	58 S	By:	PJ	
Project Name:		eered Fill	Depth:					3
Project No:		358 S	_					
Visual Description	on:	Olive Brow	n Silty GR	AVEL w/ Sa	<u>nd</u>			
		Processin	ıg:			Moistu	re Calcs	15.25
Percent Passing	#4 Sieve					-	Initial	Final
Total Air Dry Weig	ht:	N/A				Tare #		
Wt. Retained on #	4 Sieve:	N/A	-		Wet Wt. +	Tare, (gm)	684.7	715.1
% Retained		N/A	-			Tare, (gm)	643.7	643.7
% Passing #4 Siev	e:	N/A	-		Tare Wt.,	(gm)	308.6	308.6
	Sample	Dimension	าร		Wt. Of Wa		41.0	71.4
Height (in.)=	1.001	Dia	ameter (in.) =	4.017	% Water	(3)	12.2	21.3
				Remolding			RO STELLER	ETTE A TEN
Tamp t	wo lifts, 1	5 blows/lift	@ slightly	below opti	mum mois	ture conten	t	
			0 0 0	Initial	Final	1	•	
Ring 8	& Sample:			572.6	603.0	grams		
Ring:	·			196.5	196.5	grams		
	Ided Wet V	Vt.:		376.1	406.5	grams		
Wet De	ensity			112.9	120.5	pcf		
Dry De				100.6	99.3	pcf		
,		(2.7)(dry dei	ns)(m/c)		00.0	4.	n range 49-51%	
% Sa	168.48 - (dr	y dens.)	49.0	82 6		on range 48-52%	<u> </u>	
A PARTY OF THE PAR		. TSB IN SERVICE	Expan	sion Test:		The First Cutarus	on range 40-02 /	
		Date	Time	Dial	Delta h, %	Tested wit	th 1 psi Surch	orgo
		4/24/2017	17:05	0.0000	0.000	rested wit	Remarks:	large
		4/24/2017	18:11	-0.0121	1.209		Kemarks.	
		4/25/2017	11:40	-0.0133	1.329			
		4/25/2017	13:08	-0.0133	1.329			
			10.00	0.0100	1.020			
			120 100 100	Total Dial	1.3			
Expansion Index			Res					
nitial dial - final dial			1762	uits	This t	test is a simplif	ied index test a	nd
_	x 10	000	FI T	10	may i	not show the function and/or sh	ili potential for Irinkage. Use re	eult with
nitial sample height		L	EI =	13	cautio	on! See ASTM I	D 3877 or D4546	Suit With
		_						
								į.

LIQUID AND PLASTIC LIMITS TEST REPORT

COOPER TESTING LABORATORY

Figure

SCHNEIDER LABORATORIES GLOBAL

2512 W. Cary Street • Richmond, Virginia • 23220-5117 804-353-6778 • 800-785-LABS (5227) • (FAX) 804-359-1475

Over 25 Years of Excellence in Service and Technology LABORATORY ANALYSIS REPORT

Asbestos Identification by PLM Point Count using EPA 600/R-93-116/Carb 435

ACCOUNT #:

193-14-2702

CUSTOMER: ADDRESS:

KELLCO SERVICES INC 3137 DIABLO AVENUE

HAYWARD, CA 94545-2701

JOB LOCATION: Sunol. CA

PROJECT NAME: Sheradan Road

PROJECT NO .:

1408-14 140821D

PO NO.:

SampleType:

DATE COLLECTED:

DATE RECEIVED:

DATE ANALYZED:

DATE REPORTED:

Bulk

Customer Sample

SLI

Sample

Sample/ Layer ID Identification/ **Layer Name**

PLM Analysis Results Asbestos Fibers

Other Materials

8/20/2014

8/22/2014

8/22/2014

8/22/2014

No. 01

SCQ P7 Engineered Fill 32288486

Layer 1:

Brown, Granular, Homogenous

None Detected

100% NON FIBROUS MATERIAL

Stacking

Riham Hashim

Reviewed By:

Hind Eldanaf, Microscopy Supervisor

Total Number of Pages in Report: 1

Analyst:

Results relate only to samples as received by the laboratory.

Visit www.slabinc.com for current certifications.

Accrediting bodies: AIHA-LAP, LLC 100527, NVLAP 101150-0, VELAP/NELAC 460135 - Call laboratory for current national and state certifications. Samples analyzed by the EPA Point Count test method. Samples analyzed by the EPA Test Method are subject to the inherent limitations of polarized light microscopy including matrix interference. This method has a reporting limit of <0.25% for friable samples. The limit for non-friable, organically bound samples is <0.01%. This report must not be reproduced except in full with the approval of the lab, and must not be used to claim NVLAP or other government agency endorsement.

		<u> </u>		1								 7	*	7						
×	Marie M.		70	*					01	NUMBER	CHAIN OF CUSTODY & SAMPLE SUBMITAL FORM	NOTES & COMMENTS:	# SAMPLES REC'D	PLM LEAD PAINT	CIR	CA	Cupertino	12100 Stevens Canyon Road	Stevens Crook Owers I	CLIENT
ā	2/2				¥.			2	SCQ P7 Engineered Fill	LOCATION (bidg, m#, area) - ;;	DY & SAMPLE SU		1 ANALY	LEAD WIPE NO	CIRCLE TYPE OF	95014		Road		
	PATE TIME	5					2				BMITAL FORM		ANALYZE TO FIRST POSITIVE	NON VIABLE MOLD	BULK ANALYSIS	CA.	Sunol	Sheradan Road in Sunol	Stevens Creek Organi #7	JOBSITE
· · · · · · · · · · · · · · · · · · ·	ME XX				ŀ				Brown Dirt	COLOR	m -		IVE YES NO	VIABLE MOLD	SIS			Ol Talk	Diant #7	
	RECEIVED BY	ä	4	·						MATERIAL of SUBSTRATE (fr. w/ size mastic tic etc.)	OF 1		(eCOLI OTHER	אבבטבט פו	RESULTS	TURN AROUND TIME:	,mi l	COLLECTED BY: M	NELLCO Selvices JOB# 1400-14
1	- PATE	**		<	WorkOrd		`				KELLCO Ser Stevens Cree		REPORT RESULTS TO PROJECT MANAGER	CARB 435 Soil	,		<u></u>	ugust 20, 2014	Mark Mallin	3
Ind	74 953		a	1022 \ 1022485	lerXey					NOTES: Like condition; damage, guantity, inside what- beneath what? direction in building (N.S.E.W) etc.)	KELLCO Services JOB#: 1408-14 Stevens Creek Quarry Plant #7	it.		CARB 435 Soil Sample Analysis			4 8 (24) 48			LAB LUGIIN #
70	\			0	e Ag	\				nside what W) etc.)		45					5-DAY			

Please Reply To:

AMERI SCI

AmeriSci Los Angeles

24416 S. Main Street, Ste 308 Carson, California 90745 TEL: (310) 834-4868 • FAX: (310) 834-4772

FACSIMILE TELECOPY TRANSMISSION

To: Mr. Fanelli

From:

Miguel Orozco

Environmental Remediation Tech.

AmeriSci Job #:

912071452

Fax #:

Subject:

PLM-Bulk-Qualitative rush Results

Client Project:

1207-78WI; Plant 7; Sheridan Rd.

Sunol, CA.

info@ertinc.com,rfanelli@ertinc.com,skalbag@comc

Date: Tuesday, July 17, 2012

Number of Pages:

(including cover sheet)

Time: 10:12:27 Comments:

CONFIDENTIALITY NOTICE: Unless otherwise indicated, the information contained in this communication is confidential information intended for use of the individual named above. If the reader of this communication is not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is prohibited. If you have received this communication in error, please immediately notify the sender by telephone and return the original message to the above address via the US Postal Service at our expense. Preliminary data reported here will be verified before final report is issued. Samples are disposed of in 60 days or unless otherwise instructed by the protocol or special instructions in writing. Thank

AmeriSci Job #: 912071452

Client Name: Environmental Remediation Tech.

Table I Summary of Bulk Asbestos Analysis Results

1207-78WI; Plant 7; Sheridan Rd. Sunol, CA.

Asbestos by TEM NA
Asbestos by PLM/DS NVA
(B)
Insoluble Non-Asbestos Inorganic %
Acid Soluble Inorganic %
Heat Sensitive Organic %
Sample Weight (gram)
HG Area
Client Sample# 1 ank Run
AmeriSci Sample # 01 Location: Bi

; Date Analyzed; 7/17/2012 : Analyzed By: Miguel Orozco

Reviewed By:

Qualitative Analysis: Asbestos analysis results of "Present" or "NVA = No Visible Asbestos" represent Qualitative PLM (polarized light microscopy) or Qualitative TEM (transmission electron microscopy)
Analysis for confirmation of asbestos presence and identification only, following selections of EPA 600/R-93/116 (method not covered by NVLAP asbestos accreditation); NA = not analyzed; this report relates ONLY to the items tested.

Warning Note: PLM limitation, only TEM will resolve fibers <0.25 micrometers in diameter.

912071452

Analytical and Environmental Services

Cusmacr Code Required Turn Around Time 24 Hour this COC. Thank You than what 2 Days48 Hour 3 Days72 Hour 5+ Days7126 Hour Comments /Area Sectal Security # or Layers DISPOSAL Analyze Page___of have OTHER (Explain) Samples Симотся MACS listed Don't More Metals (TCLR, CAMI7, STLC) Mail ANALYSIS REQUIRED Mould - Viable / Non Viable Ait / Bulk Drinking Water Asbestos*/Lead TEM (Air, Bulk) - AIRRANNAMAILLEATH FedEx Lead (Wipes, Air, Paint, Soil) brw (Bulk) . 10 CFR - Chap, 1, Per 76, **BCM (YIL) - MIOSH 1400** Job #: 1207-782 Received Cold: Yes / No TOTAL FLOWRATES
TIME START STOP Date Sampled 7/16/12 Chain of Custody Record Comments: Please composite analyze When Mound Fax No: PROJECT INFORMATION SHERLOAN RD Phone No: 403 253 2512 TIME ME MACIN. 4 大 2015 Samples Preserved: New / No TIME Date 7 /18 Sample Description / Type of Work Site Contact: Site Address: City, State, Zip: Sampled By Project Name PUZ Email: info@ertinc.com Ave Zip: 95120 Phone No: 408-866-4141 Fax No: 408-866-4186 BANK Camden BILLED TO City: San Jose Address: 6472 ab Report Number(s) Name: ERT State: CA Sample # .: Relinguished W. Cell Na: 3

٠,

ć