August 31, 2016

Ms. Anne Jurek
Alameda County Health Care Services Agency
1131 Harbor Bay Parkway, Ste. 250
Alameda, CA 94502-6577
anne.jurek@acgov.org

Subject:

Groundwater Investigation Report, Well Survey, and Request for Closure

357 105th Avenue, Oakland, CA

Fuel Leak Case No. RO0003156; Global ID T10000006426

Dear Ms. Jurek

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached *Groundwater Investigation Report, Well Survey, and Request for Closure* for the above referenced property prepared by Almar Environmental are true and correct to the best of my knowledge.

Sincerely,

Mr. Dan Neishi

Responsible Party Representative

Groundwater Investigation Report, Well Survey, And Request for Closure

357 105th Avenue Oakland, California

August 26, 2016

Prepared for:

Neishi Brothers Nursery c/o Dan S. Neishi Trust & Mitsugi Neishi Heirs of Estate 357 105th Avenue Oakland, CA 94603

Prepared by:

Almar Environmental 407 Almar Avenue Santa Cruz, California 95060

TABLE	OF CONTENTS	Page No.
1.0	INTRODUCTION	1
2.0	SITE INFORMATION	1
2.1	Physical Setting	1
3.0	GROUNDWATER INVESTIGATION	2
3.1	Regulatory Liaison, Permitting, and Project Management	3
3.2	Drilling and Soil Sampling	3
3	.2.1 Encountered Subsurface Materials	3
3.3	Groundwater Sampling	3
3.4	Backfilling of Borings	3
4.0	SAMPLE ANALYSIS AND RESULTS	3
4.1	Laboratory Analytical Methods	4
4.2	Grab Groundwater Analytical Results	4
4.3	Discussion of Analytical Results	∠
5.0	WELL SURVEY	4
6.0	UPDATED LTCP DATA GAP ANALYSIS	4
6.1	General Criteria	4
6.2	Media-Specific Criteria	5
7.0	CONCLUSIONS AND RECOMMENDATIONS	6
7.1	Conclusions	6
7.2	Recommendations	7
8.0	CERTIFICATION AND DISTRIBUTION	7
9.0	REFERENCES	8

FIGURES

- Figure 1 Site Vicinity Map
- Figure 2 Aerial Photograph of Site Area
- Figure 3 Site Map Showing Current and Historical Boring Locations
- Figure 4 Site Map Showing Current Groundwater Concentrations (9/18/15)
- Figure 5 TPHg Isoconcentration Map
- Figure 6 Benzene Isoconcentration Map
- Figure 7 Naphthalene Isoconcentration Map
- Figure 8 Aerial Photograph Showing Wells Within 1,000 Ft. Radius of Subject Site

TABLES

- Table 1 Summary of Historical Soil Analytical Data
- Table 2 Summary of Historical Tank Removal Soil Analytical Data
- Table 3 Summary of Current & Historical Groundwater Analytical Data
- Table 4 Summary of Historical Soil Gas Analytical Data

APPENDICES

- Appendix A ACHCSA Directive Letter June 28, 2016
- Appendix B Drilling Permit ACPWA
- Appendix C Boring Logs
- Appendix D Laboratory Data Sheets
- Appendix E Well Survey

1.0 INTRODUCTION

Almar Environmental (Almar) appreciates the opportunity to work on the 357 105th Avenue project in Oakland, California (Figures 1 through 3). Almar has been retained by the Dan S. Neishi Trust & Mitsugi Neishi Heirs of Estate to prepare this *Groundwater Investigation Report, Well Survey, and Request for Closure for* the subject site. On April 6, 2016 Almar prepared a Site *Investigation Workplan* for the site. The Workplan proposed, in general, to advance three (3) temporary borings at the subject site to further define the extent of known groundwater contamination. The Alameda County health Care Services Agency (ACHCSA) reviewed the Workplan and issued a directive letter (Appendix A) approving (with comments) the proposed scope of work. As such, the Workplan was implemented in August 2016. The details and results of the investigation are presented, herein. A formal well survey is also presented within this report.

2.0 SITE INFORMATION

The project site is located at 357 105th Avenue in the city of Oakland, California (Figure 1). The site consists of roughly rectangular residential/commercial property associated with Alameda County Assessor's parcel number 45-5370-9-2. An Aerial Photograph of the Site Area is included as Figure 2 and a detailed Site Map showing current and historical sampling locations is included as Figure 3.

2.1 Physical Setting

Based on the U.S. Geological Survey San Leandro, California Quadrangle 7.5 Minute Series Topo Map, the subject property is approximately 20 feet (ft) above mean sea level (msl). The topographic slope of the subject property and surrounding areas is generally to the west, towards the San Francisco Bay (Figure 1).

According to the *Preliminary Geologic Map Emphasizing Bedrock Formations in Alameda County, California*, the site lies upon Holocene and Pleistocene surficial undivided sediments (Qu) (Graymer, Jones, Brabb, 1996). Site specific soils, encountered during this current investigation were described as predominantly Silty Clay (CL). A more detailed description of the encountered subsurface materials is presented in Section 3.2.1.

The nearest surface water to the site is San Leandro Creek, located approximately 1,000 feet south of the subject site, and the San Francisco Bay which is located approximately 2.0 miles southwest of the site (Figure 1). Based upon topography of the area, regional groundwater flow is expected to be to the west/southwest (towards the San Francisco Bay and San Leandro Creek). Site specific groundwater conditions encountered during this current investigation are presented in Section 3.2.1.

2.2 Site Background and Summary of Previous Environmental Investigations

UST Removal – November, 2014

On November 25, 2014, one, approximately 1,000 gallon underground storage tank (UST), was removed under permit from the Oakland Fire Department (OFD) by Environmental Restoration Services, a licensed hazardous materials removal contractor. The tank was originally believed to have contained diesel but during the removal activities was found to contain gasoline. As required by the removal permit and under direction from the OFD inspector, ERS collected two soil samples, one from below either end of the tank, at approximately 7.5 to 8.0 feet bgs. One additional, sample was also collected

from below the former dispenser at approximately 3.0 feet bgs. Elevated concentrations of Total Petroleum Hydrocarbons as gasoline (TPHg) (up to 497 mg/Kg), ethylbenzene (up to 10.6 mg/Kg), and total xylenes (up to 48.3 mg/Kg) were reported in the samples collected from below the tank. Excavated overburden soil and clean imported baserock was compacted back into the tank pit following sampling. A full summary of the historical soil analytical data from the tank removal is presented in Table 2. Based upon these results, a leaking underground fuel tank (LUFT) case was opened by the ACHCSA and a directive letter was issued requesting a workplan be prepared to further assess the extent of contamination at the subject site and to characterize the case.

Soil, Water, and Soil Gas Investigation Workplan – July, 2015

On July 20th, 2015 Almar prepared a Revised *Soil, Water, and Soil Gas Investigation Workplan and Site Conceptual Model* for the site. This Workplan proposed, in general, to advance up to eight (8) temporary borings in areas around the former tank location and in the assumed up and down gradient groundwater flow directions and collect soil and "grab" groundwater samples from each boring. The Workplan also proposed installing and collecting soil gas samples from four (4) temporary soil gas sampling points.

Soil, Water, and Soil Gas Investigation Report – November, 2015

On November 6, 2015, Almar prepared a *Soil, Water, and Soil Gas Investigation Report* for the site. This report documented the installation and sampling of four temporary soil gas points (SG-1 through SG-4) and the collection of soil and "grab" groundwater samples from eight temporary borings (DP-1 through DP-8). The results of the investigation found, in part, that the lateral extent of the shallow groundwater contamination plume at the site remains undefined in areas west and southwest of the former tank location. Based upon these results, Almar recommended an additional groundwater investigation be conducted to fully define the lateral extent of groundwater contamination in these unbounded directions. The local oversight agency, the ACHCSA, reviewed the report and agreed with Almar's recommendation and requested a Workplan be prepared to further define the extent of shallow groundwater contamination at the site. Additionally, the ACHCSA requested a formal well survey be conducted to determine if the site meets the groundwater-specific criteria under scenario 4 of the RWQCB's LTCP.

Site Investigation Workplan - April, 2016

Based on the recommendations outlined above, Almar prepared a Site Investigation Workplan for the site on April 6, 2016. The Workplan proposed, in general, to advance three (3) temporary borings to further define the extent of known groundwater contamination at the site. The Workplan was approved (with comments) by the ACHCSA in a Directive Letter dated June 28, 2016 (Appendix A). As such, the Workplan was implemented in August 2016, the details of which are presented in the following sections.

3.0 GROUNDWATER INVESTIGATION

Field activities involving soil borings and grab groundwater sampling were performed on August 4, 2016. Almar advanced a total of three (3) temporary borings (DP-9 through DP-11) and collected soil and grab groundwater samples from each of the borings. The specific details of the investigation are presented below. All project activities were completed under the direction of a State of California Professional Geologist.

3.1 Regulatory Liaison, Permitting, and Project Management

Almar represented the client with regulatory agencies in meetings and/or communications. A representative of Almar also coordinated, oversaw, and/or conducted all activities detailed in this Workplan. Additionally, Almar obtained the appropriate subsurface drilling permit from the Alameda County Public Works Agency (ACPWA) (Appendix B). As required by law, Almar marked the subject property and notified Underground Service Alert (USA) to clear the boring locations of underground utilities prior to drilling activities.

3.2 Drilling and Soil Sampling

Soil borings were advanced by a C-57 licensed driller (Environmental Restoration Services, Lic # 589652), under the direction of a licensed State of California Professional Geologist. Each boring was advanced using a three-inch diameter hand auger to the total depths explored (approximately 10 feet bgs). Encountered soils were logged using the Unified Soil Classification System (USCS). No signs of soil contamination were noted in the field with the photoionization detector (PID). Therefore, as outlined in the Workplan, no soil samples were retained for laboratory analysis.

3.2.1 Encountered Subsurface Materials

Site specific soils encountered during this investigation were identified as predominately Silty Clay (CL) of varying consistency and plasticity from the ground surface to approximately 9 feet bgs (12 to 13 feet bgs). Coarser grained materials described as Clayey Sand (SC) were encountered below the Clay from approximately 9 feet bgs to the total depths explored (10 to 10.5 feet bgs). Groundwater was first encountered within these coarser grained materials and subsequently rose to static levels between 7 and 8 feet bgs, indicative of a confined aquifer. Detailed boring logs depicting the encountered subsurface materials are presented in Appendix C.

3.3 Groundwater Sampling

Once groundwater was encountered in each of the borings a temporary flush threaded ¾-inch schedule 40 polyvinyl chloride (PVC) casing was placed within the boring. The bottom cap was flush threaded and the screened casing was 0.010-inch slots. Groundwater samples were then collected from the temporary casing using a peristaltic pump. Each groundwater sample was collected in laboratory supplied EPA Testing Method approved containers, labeled, sealed in individual plastic bags, and placed in a pre-chilled ice chest with ice to remain at 4 degrees Celsius (°C) until they arrive at the lab. A discussion of the groundwater sampling analytical results is presented in Section 4.3.

3.4 Backfilling of Borings

Once all grab groundwater samples were collected, each boring was backfilled from the bottom of the boring to ground surface with neat cement grout. The neat cement grout was composed of a mix consistency of one 94 pound bag of Portland cement to five gallons of water. The grouting activities were witnessed by a representative of the ACPWA, per the conditions described in the drilling permit (Appendix A).

4.0 SAMPLE ANALYSIS AND RESULTS

During the field activities, grab groundwater samples for laboratory analysis were collected in the methods described in the previous sections. The analytical results are summarized below.

4.1 Laboratory Analytical Methods

Once all groundwater samples were collected and appropriately packed, they were transported by courier observing chain-of-custody procedures to BC Laboratories, Inc. (State of California-certified testing laboratory #1186) for analysis. All groundwater samples were analyzed for Total Petroleum Hydrocarbons as gasoline (TPHg) by EPA Test Method 8015B/Fuel Finger Print and for benzene, toluene, ethylbenzene, xylenes (BTEX), MtBE, and naphthalene by EPA Test Method 8260b.

4.2 Grab Groundwater Analytical Results

None of the constituents of concern described above were detected at concentrations exceeding laboratory detection limits in any of the three samples submitted for analysis. A summary of the current groundwater sample resulted is presented, along with historical data, in Table 3. The complete laboratory data sheets are presented in Appendix C.

4.3 Discussion of Analytical Results

The purpose of this investigation was to further delineate the extent of contaminants of concern (TPHg, benzene, and naphthalene) in groundwater in previously undefined directions (ie, southwest to northwest). A total of three grab groundwater samples were collected and submitted for laboratory analysis as part of this investigation. None of the contaminants of concern were detected above laboratory detection limits in any of the samples submitted for analysis. As illustrated on Figures 4 through 7, the lateral extent of groundwater contamination appears to now be sufficiently delineated in all directions. Based upon these isoconcetration maps, the plume length appears to be less than 100 feet long.

5.0 WELL SURVEY

In an effort to determine the nearest water supply well to the plume, and as requested by the ACHCSA in their most recent directive letter (Appendix A), a formal well survey was performed. The well survey consisted of a search of the well database on file with the ACPWA. The results of the search found a total of 16 wells in the general vicinity of the subject site (Appendix E). Three of the wells were determined to be within a 1,000 foot radius of the subject site. The approximate locations of each of these three wells are shown on Figure 8. One of the wells is located on the subject property and is less than 250 feet from the edge of the contamination plume. This well is listed as a "monitoring well" within the ACPWA database but is known to have been used by the former onsite nursery as a source of water for irrigation.

6.0 UPDATED LTCP DATA GAP ANALYSIS

Based upon the results of this investigation, Almar believes this case may potentially qualify for closure under the State Water Resource Control Board's (SWRCB's) Low Threat Closure Policy (LTCP). In order for the case to qualify for closure, all general and media-specific criteria of the policy must be met. In the following sections each criteria of the LTCP is addressed and remaining data gaps are identified (if any).

6.1 General Criteria

There are eight specific general criteria (identified as a through h) of the LTCP that must be satisfied prior to closure. The following is a list of each of these eight criteria and whether they have been satisfied or not:

a. The unauthorized release is located within the service area of a public water system.

- **Yes,** this criteria has been met.
- b. The unauthorized release consists only of petroleum.
 - Yes, this criteria has been met. The main constituent of concern (COC) appears to be
 TPHg, and to a lesser extent benzene and naphthalene.
- c. The unauthorized ("primary") release from the UST system has been stopped.
 - **Yes,** this criteria has been met. All known USTs and associated pipes and appurtenant structures have been removed.
- d. Free product has been removed to the maximum extent practicable.
 - **Yes**, this criteria appears has been met. No free product was encountered during tank removal activities or during this initial soil and water investigation.
- e. A conceptual site model that assesses the nature, extent, and mobility of the release has been developed.
 - Yes, an initial site conceptual model (SCM) was prepared for the site. The SCM was prepared and presented as part of Almar's Revised Soil, Water, and Soil Gas Investigation Workplan and Site Conceptual Model document. A copy of this document can be found on file with the ACHCSA and online within the SWRCB's Geotracker database at the following link:

http://geotracker.waterboards.ca.gov/esi/uploads/geo report/4202234625/T10000006426.PDF

- f. Secondary source has been removed to the extent practicable.
 - Yes, this criteria appears has been met. "Secondary source" is defined as petroleumimpacted soil or groundwater located at or immediately beneath the point of release from the primary source. Based upon the results of this investigation, little to no secondary source remains in the subsurface soils and groundwater at the site.
- g. Soil and groundwater have been tested for MtBE and results reported in accordance with Health and Safety Code section 25296.15.
 - Yes, this criteria appears has been met. Soil and groundwater samples collected during this current investigation were tested for MtBE. MtBE was not detected above laboratory test limits in any of the samples submitted for analysis (Table 1 and 3).
- h. Nuisance as defined by Water Code section 13050 does not exist at the site.
 - Yes, this criteria appears has been met, as no nuisances as defined by the policy are known to exist at the site.

6.2 Media-Specific Criteria

To simplify implementation, the LTCP has identified three media-specific criteria which must be addressed and satisfied. The three media-specific criteria are: 1.) Groundwater, 2.) Vapor Intrusion to Indoor Air, and 3.) Direct Contact and Outdoor Air Exposure. Each of these three criteria are addressed below.

1.) Groundwater-Specific Criteria

To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of groundwater sites listed in the LTCP. Which of the five classes the site falls under is determined by plume length, free product status, the location of the nearest water supply well or surface water body, and the dissolved concentrations of benzene and MtBE. Based upon the results of this current investigation and a review of historical data, the site qualifies for closure under scenario 1 because:

- a. The contaminant plume that exceeds water quality objectives is less than 100 feet in length.
- b. There is no free product.
- c. The nearest existing water supply well or surface water body is greater than 250 feet from the defined plume boundary.

2.) Petroleum Vapor Intrusion to Indoor Air

Exposure to petroleum vapors migrating from soil or groundwater to indoor air may pose unacceptable human health risks. Because buildings for human occupancy (residential) are reasonably expected to be constructed in the future, the vapor intrusion risks to indoor air must be addressed. These vapor intrusion concerns were addressed as part of this current investigation. Based upon the results of this investigation, the site appears to meet the criteria of Scenario 4 (Appendix 4) of the LTCP. The site meets this criteria because: 1.) a bioattenuation zone (as defined by the LTCP) is present and 2.) all measured soil gas concentrations are less than the minimum required concentrations for benzene, ethylbenzene, and naphthalene (see Table 4). Therefore, this media-specific criteria has been met.

3.) <u>Direct Contact and Outdoor Air Exposure</u>

The LTCP describes conditions where direct contact with contaminated soil or inhalation of contaminants volatized to outdoor air poses a low threat to human health. Table 1 of the LTCP describes concentrations of constituents (specifically, benzene, ethylbenzene, naphthalene, and PAHs) in soil that will have no significant risk of adversely affecting human health. A total of 20 soil samples from various depths were collected during this current investigation and analyzed for the contaminants of concern. None of the subsurface samples were found to contain concentrations exceeding those described in Table 1 of the LTCP (see tables 1A). Therefore, this condition of the LTCP has been satisfied.

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The following conclusions are based upon review of historical environmental reports, interpretation of analytical data, and field measurements collected during August 2016:

- The primary contaminants of concern (COCs) at the site are TPHg, benzene, and naphthalene;
- The vertical and lateral extent of COCs in subsurface soils appear to be fully defined;
- Little (if any) secondary source appears to remain in the subsurface at the subject site. This indicates that secondary source has been removed to the extent practical.
- The lateral extent of COCs in shallow groundwater appear to be fully defined and the length of the plume is less than 100 feet;

- A formal well survey, which consisted of a search of the well database on file with the ACPWA, was performed. The results of the search found a total of 16 wells in the general vicinity of the subject site. Three of the wells were determined to be within a 1,000 foot radius of the subject site. The approximate locations of each of these three wells are shown on Figure 8. One of the wells is located on the subject property and is less than 250 feet from the edge of the contamination plume. This well is listed as a "monitoring well" within the ACPWA database but is known to have been used by the former onsite nursery as a source of water for irrigation;
- The site meets all eight (identified as a through h) of the general criteria of the LTCP;
- The site meets the media-specific criteria of the LTCP for petroleum vapor intrusion to indoor air;
- The site meets the media-specific criteria of the LTCP for direct contact and outdoor air exposure;
- If the onsite well identified during the well survey is destroyed, the site would qualify for closure under scenario 1 of the groundwater-specific criteria of the LTCP.

7.2 Recommendations

Based on the data collected during this investigation and the above conclusions, Almar makes the following recommendations:

• The onsite well identified during the formal well survey should be destroyed and the site should be reviewed for closure by the local oversight agency.

8.0 CERTIFICATION AND DISTRIBUTION

To the best of our knowledge, all statements made in this report are true and correct. This report is based on data provided by the client and others, site conditions observed, samples collected and analytical data. No warranty whatsoever is made that this report addresses all contamination found on the site.

ONAL GE

FORREST N COOK

No. 8201

Respectfully submitted,

Forrest N. Cook

Owner/Principal Scientist

Almar Environmental

California Professional Geologist #8201 (exp 9/18)

cc:

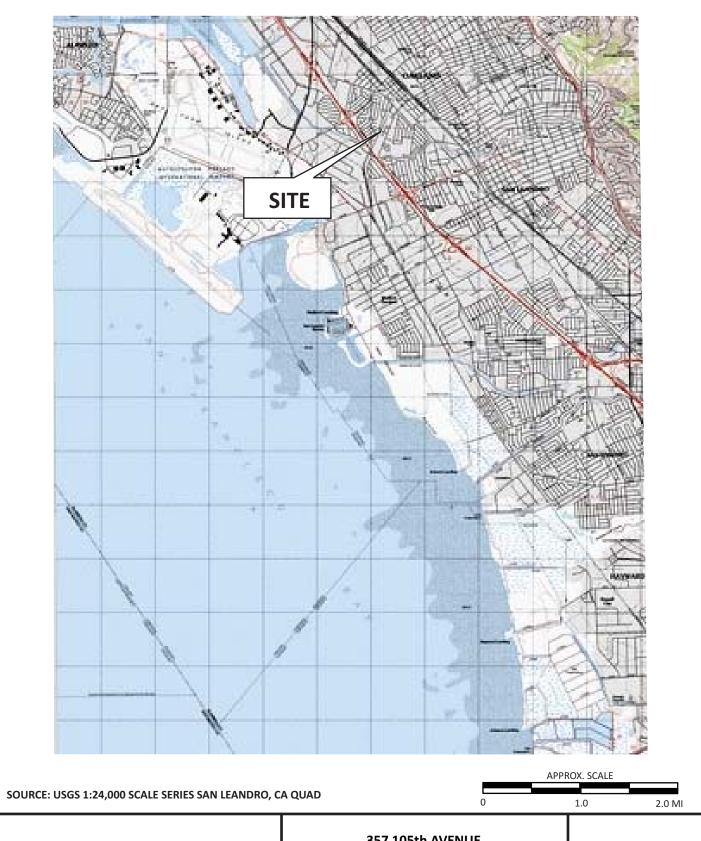
Ms. Anne Jurek
Alameda County Health Care Services Agency
1131 Harbor Bay Parkway, Ste. 250
Alameda, CA 94502-6577
ann.jurek@acgov.org

9.0 REFERENCES

Almar Environmental. May 4, 2015. *Initial Soil and Water Investigation Workplan and Site Conceptual Model*. 357 105th Ave., Oakland, CA.

Almar Environmental. July 21, 2015. *Revised Initial Soil and Water Investigation Workplan and Site Conceptual Model*. 357 105th Ave., Oakland, CA.

Brabb, E.E., Graymer, R.W., and Jones, D.L., 1996, *Preliminary Geologic Map Emphasizing Bedrock Formations in Alameda County, California: Derived from the Digital Database Open-File 96-252*. U.S. Geological Survey, Menlo Park, CA.

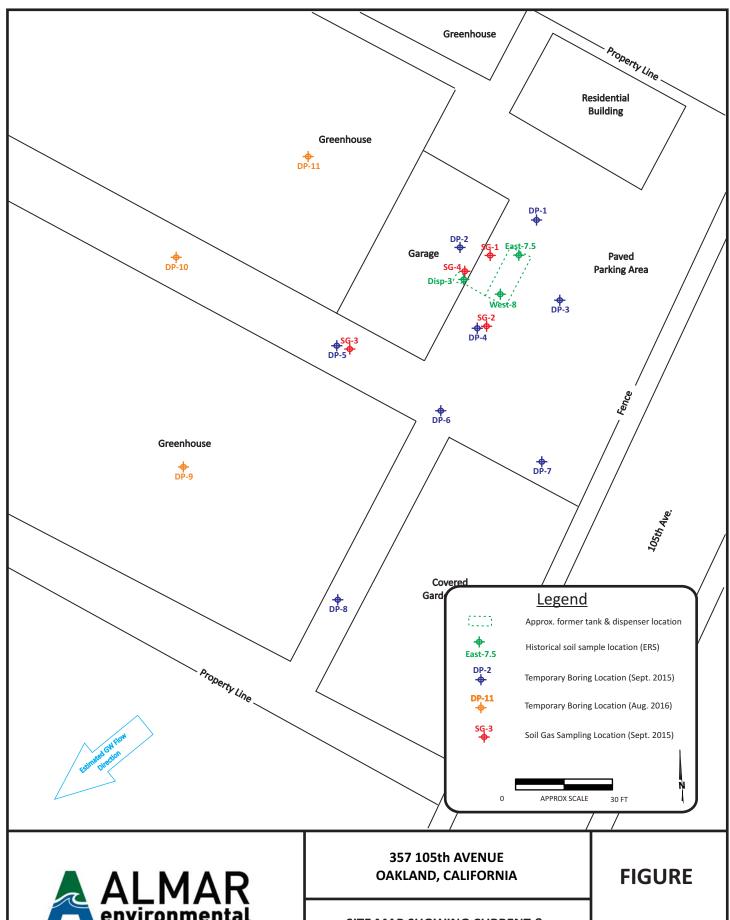

Environmental Restoration Services. November 15, 2014. *Underground Tank Technical Closure Report.* 357 105th Avenue, Oakland, California.

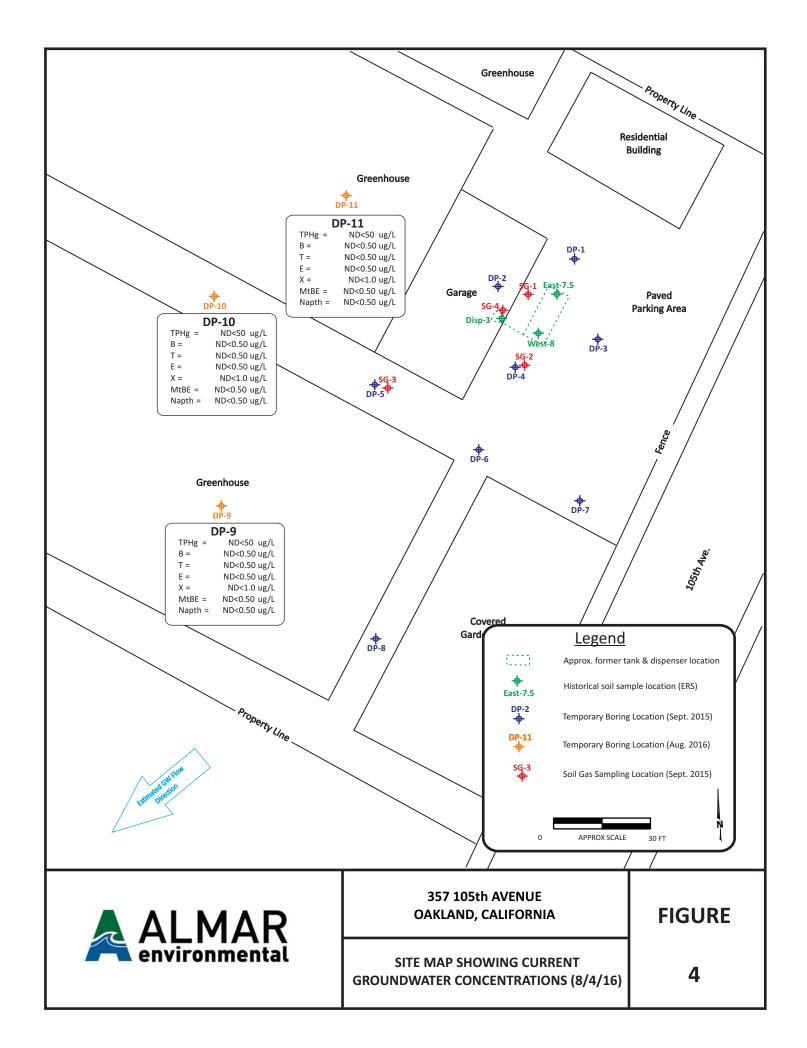
United States Department of the Interior Geologic Survey (USGS). 1954, Revised 1994. San Leandro, California 7.5-Minute Quadrangle.

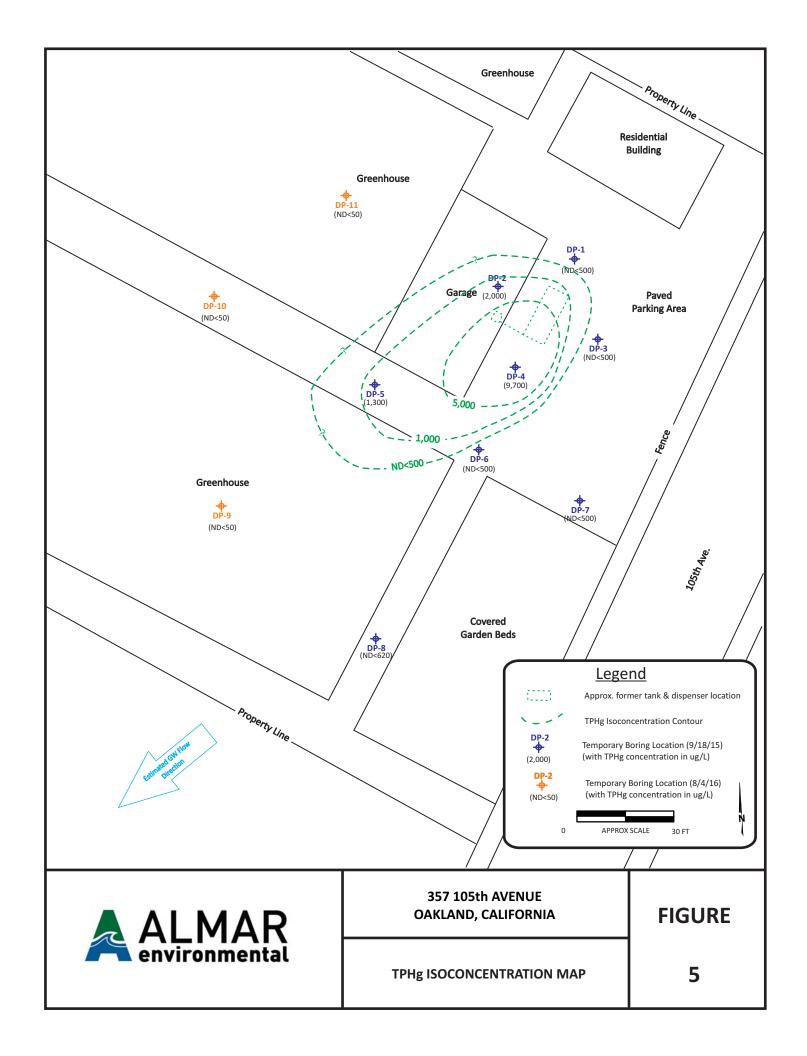
FIGURES

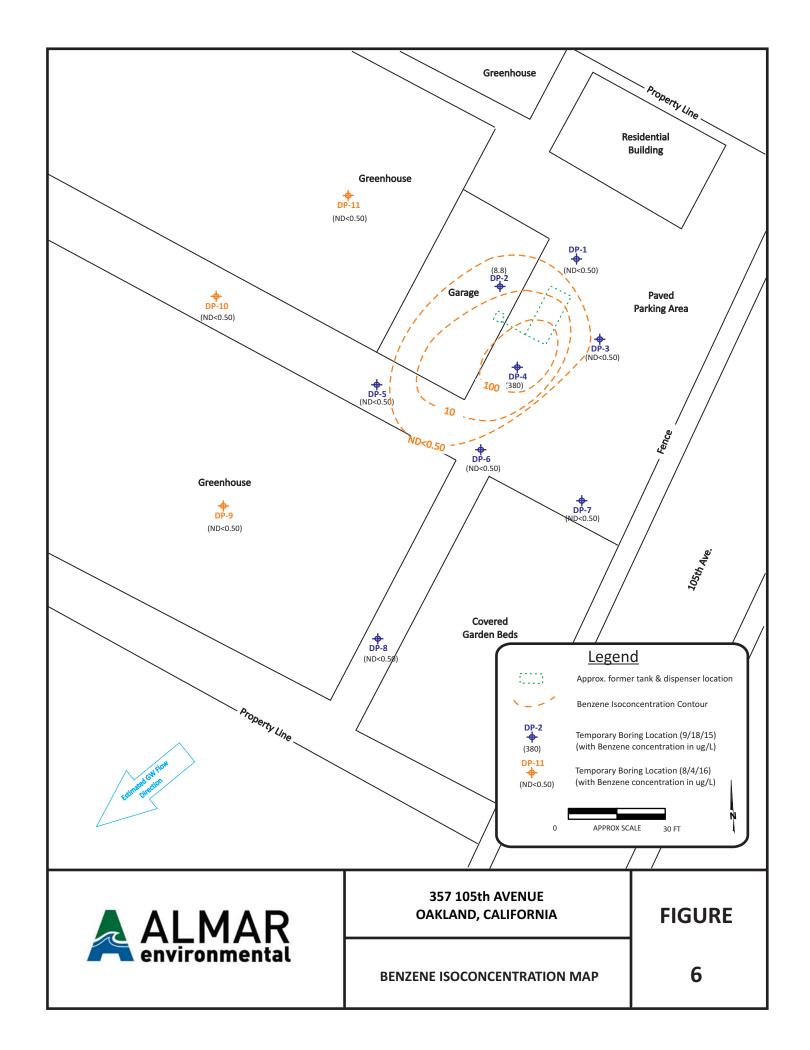
357 105th AVENUE OAKLAND, CALIFORNIA

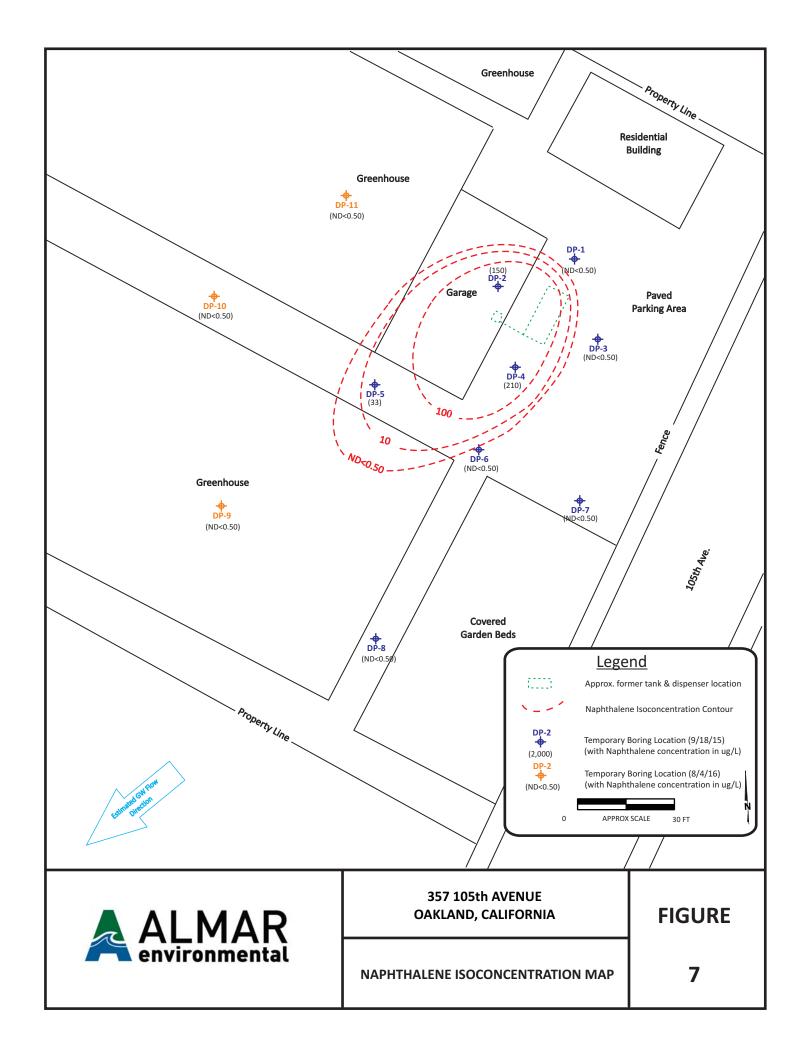
SITE VICINITY TOPO MAP

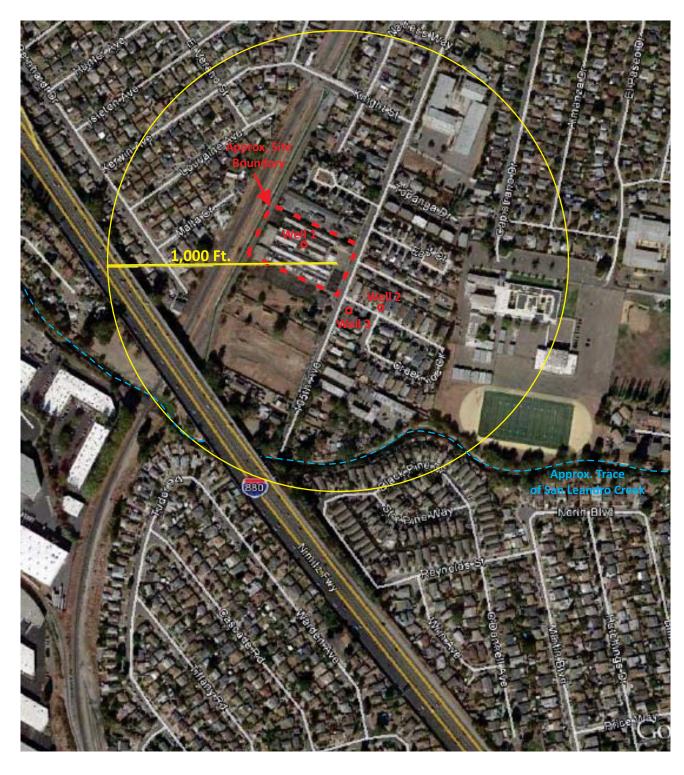

FIGURE


357 105th AVENUE OAKLAND, CALIFORNIA


AERIAL PHOTOGRAPH OF SITE AREA **FIGURE**






SITE MAP SHOWING CURRENT & HISTORICAL BORING LOCATIONS

SOURCE: Google Earth, 2016

357 105th AVENUE OAKLAND, CALIFORNIA

AERIAL PHOTOGRAPH SHOWING WELLS WITHIN 1,000 FT RADIUS OF SUBJECT SITE **FIGURE**

TABLES

TABLE 1 **SUMMARY OF HISTORICAL SOIL ANALYTICAL DATA** 359 105th Avenue Oakland, California

	Oukland, Camornia												
Sample ID	Sample	Sample	TPHg	TPHd	В	T	E	Х	MtBE	Naphth.			
Sample 1D	Depth (ft.)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)			
DP-1d5.0	5.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
DP-1d10.0	10.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
DP-2d5.0	5.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
DP-2d10.0	10.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	0.016	ND<0.005	ND<0.005			
DP-3d5.0	5.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
DP-3d10.0	10.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
DP-4d5.0	5.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	0.072			
DP-4d10.0	10.0	09/18/15	ND<20	ND<10	0.049	1.6	1.7	8.2	ND<0.005	1.3			
DP-5d5.0	5.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
DP-5d10.0	10.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	0.045			
DP-6d5.0	5.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
DP-6d10.0	10.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
DP-7d5.0	5.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
DP-7d10.0	10.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
DP-8d5.0	5.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
DP-8d10.0	10.0	09/18/15	ND<20	ND<10	ND<0.005	ND<0.005	ND<0.005	ND<0.010	ND<0.005	ND<0.005			
ESI	L Residential		100	100	0.044	2.9	3.3	2.3	0.023	1.2			
	sidential (0' to	•			1.9		21.0			9.7			
LTCP Res	idential (5' to	10')			2.8		32.0			9.7			

Notes:

--- = Parameter not analyzed

<0.5 / ND = Not present at or above reporting detection limit

mg/Kg = milligrams per kilogram = parts per million = ppm

ESLs = RWQCB Environmental Screening Levels shallow soil (Table A: Potential source of drinking water)

LTCP = Low Threat Closure Policy - Table 1: Concentrations of Petroleum Constituents in soil

MtBE = Methyl-t-butyl ether

that will have no significant risk of adversly affecting human health

TPHg = Total Petroleum Hydrocarbons as gasoline

TPHd = Total Petroleum Hydrocarbons as diesel

B = Benzene Naphth. = Naphthalene **Bolded Value** = detected concentration T = Toluene

Shaded Value = concentration excedes either ESL or LTCP value

E = Ethylbenzene

X = Total Xylenes

Page 1 of 4 Table 1

TABLE 2

SUMMARY OF HISTORICAL TANK REMOVAL SOIL ANALYTICAL DATA 359 105th Avenue Oakland, California

	,													
Sample ID	Sample	Sample	TPHg	В	T	E	Х	MtBE	DIPE	TAME	TBA	Lead		
Sample 1D	Depth (ft.)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)		
EAST-7.5	7.5	11/25/14	497	ND<0.630	ND<0.630	10.6	48.3	ND<1.3	ND<0.630	ND<0.630	ND<13	5.1		
WEST-8	8.0	11/25/14	165	ND<0.190	ND<0.190	2.12	9.92	ND<3.8	ND<0.190	ND<0.190	ND<3.80	7.2		
DISP-3	3.0	11/25/14	ND<0.049	ND<0.0005	ND<0.0005	ND<0.0005	ND<0.001	ND<0.001	ND<0.0005	ND<0.0005	ND<0.01	6.2		
ES	L Residential		100	0.044	2.9	3.3	2.3	0.023			0.075	80		
	sidential (0' to			1.9		21.0								
LTCP Res	sidential (5' to	10')		2.8		32.0								

Notes:

11/25/14 samples collected by ERS

--- = Parameter not analyzed

<0.5 / ND = Not present at or above reporting detection limit

mg/Kg = milligrams per kilogram = parts per million = ppm

ESLs = RWQCB Environmental Screening Levels shallow soil (Table A: Potential source of drinking water)

LTCP = Low Threat Closure Policy - Table 1: Concentrations of Petroleum Constituents in soil

that will have no significant risk of adversly affecting human health

TPHg = Total Petroleum Hydrocarbons as diesel

B = Benzene

DIPE = Di-isopropyl ether

T = Toluene E = Ethylbenzene TAME = Tert-Amyl Methyl ether

X = Total Xylenes TBA = Tert Butyl Alcohol

MtBE = Methyl-t-butyl ether

Bolded Value = detected concentration

Shaded Value = concentration excedes either ESL or LTCP value

Page 2 of 4 Table 2

TABLE 3 SUMMARY OF CURRENT & HISTORICAL GROUNDWATER ANALYTICAL DATA 359 105th Avenue Oakland, California

Sample ID	Sample	TPHg	TPHd	В	Т	E	Х	MtBE	Naphth.
Sample 1D	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
DP-1	09/18/15	ND<500	ND<200	ND<0.50	1.5	ND<0.50	9.0	ND<0.50	ND<0.50
DP-2	09/18/15	2,000	400	8.8	15	220	690	ND<0.50	150
DP-3	09/18/15	ND<500	ND<200	ND<0.50	ND<0.50	ND<0.50	2.2	ND<0.50	ND<0.50
DP-4	09/18/15	9,700	ND<2,900	380	2,800	1,100	4,700	ND<0.50	210
DP-5	09/18/15	1,300	ND<200	ND<0.50	ND<0.50	2.8	ND<1.0	ND<0.50	33
DP-6	09/18/15	ND<500	ND<200	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
DP-7	09/18/15	ND<500	ND<200	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
DP-8	09/18/15	ND<620	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
DP-9	08/04/16	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
DP-10	08/04/16	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
DP-11	08/04/16	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50
ESL Resid	lential	100	100	1.0	40.0	30.0	20.0	5.0	6.2

Notes:

Samples DP-1 thru DP-8 collected as "grab" groundwater samples

--- = Parameter not analyzed

<0.5 / ND = Not present at or above reporting detection limit

ug/L = micrograms per Liter = parts per billioni = ppb

ESLs = RWQCB Environmental Screening Levels shallow soil (Table A: Potential source of drinking water)

LTCP = Low Threat Closure Policy - Table 1: Concentrations of Petroleum Constituents in soil

that will have no significant risk of adversly affecting human health

TPHg = Total Petroleum Hydrocarbons as gasoline

TPHd = Total Petroleum Hydrocarbons as diesel

B = Benzene Naphth. = Naphthalene

T = Toluene MtBE = Methyl-t-butyl ether

Bolded Value =detected concentration

Shaded Value = concentration excedes either ESL or LTCP value

E = Ethylbenzene

X = Total Xylenes

Page 3 of 4 Table 3

TABLE 4 SUMMARY OF HISTORICAL SOIL GAS ANALYTICAL DATA 359 105th Avenue Oakland, California

SAMPLE ID	Sample Depth (ft.)	Sample Date	Oxygen (O ₂)	Helium	^{ββ} / _ω TPHg (C6-C12)	Pcrolin (μg/m³)	Acetone (mg/m ³)	න් ූ රික්රි (arbon Disulfide	n-Hexane (mg/m³)	2-Butanone	Chloroform (m2/m ₃)	Cyclohexane	Benzene	n-Heptane	Toluene	Ethylbenzene	Xylenes (total)	Naphthalene ("%")	Other VOCs
SG-1	5.0	09/21/15	12	0.27	270,000	320	1,100	190	22,000	900	120	13,000	3,800	8,800	ND<80	ND<92	ND<184	ND<450	<mdl< td=""></mdl<>
SG-2	5.0	09/21/15	9.0	0.51	340,000	610	1,000	230	12,000	810	ND<120	25,000	5,900	3,600	100	ND<99	ND<198	ND<480	<mdl< th=""></mdl<>
SG-3	5.0	09/21/15	7.5	ND<0.21	26,000	68	320	140	78	230	42	99	12	78	24	170	537	ND<130	<mdl<sup>1</mdl<sup>
SG-4	5.0	09/21/15	13	0.33	680,000	ND<1100	ND<1200	ND<380	43,000	ND<360	ND<600	33,000	18,000	32,000	ND<470	5,400	1,600	ND<2600	<mdl< th=""></mdl<>
R	esidential E	SL	NA	NA	150,000	NA	1.6E+07	NA	NA	NA	230	NA	42	NA	160,000	490	52,000	36	Varies
Res	sidential CH	HSL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	85	NA	320,000	1,100	NA	93	Varies
LTCP w/Bioattenuation			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	85,000	NA	NA	1,000,000	NA	93,000	Varies
LTCP w	v/o Bioatten	uation	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	85	NA	NA	1,100	NA	93	Varies

Notes:

--- = Parameter not Sampled

NA = Not analyzed or Not established

<0.5 / ND = Not present at or above reporting detection limit

ug/m3 = micrograms per cubic meter = ppmv

ESLs = RWQCB established environmental screening levels, May 2013

CHHSL = California Human Health Screening Level - January 2005

LTCP = Low Threat Closure Policy (Appendix 4 - Scenerio 4)

<MDL¹ = 4-Methyl-2-Pentanone at 30 ug/m3

Bold = detected concentration

= value detected above corresponding ESL or CHHSL

APPENDIX A

Directive Letter

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

Rebecca Gebhart, Acting Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

June 28, 2016

Neishi Brothers Nursery c/o: Dan S. Neishi Trust & Mitsugi Neishi Heirs of Estate et al. 357 105th Avenue Oakland, CA 94603

Subject: Conditional Work Plan Approval for Fuel Leak Case No. No. RO0003156 and GeoTracker Global ID T10000006426, Neishi Brothers Nursery, 357 105th Avenue, Oakland, CA 94603

Dear Neishi Brothers Nursery:

Alameda County Department of Environmental Health (ACDEH) staff has reviewed the case file for the above referenced site including the recently submitted a work plan entitled, "Site Investigation Workplan," dated April 6, 2016. The Work Plan, which was prepared on your behalf by Almar Environmental, presents plans for soil and groundwater sampling. The Revised Work Plan was prepared to address the technical comments in our June 10, 2015 directive letter.

The proposed scope of work is conditionally approved and may be implemented provided that the technical comments below are addressed and incorporated during the proposed investigation. Submittal of a revised Work Plan is not required unless an alternate scope of work outside that described in the Work Plan and technical comments below is proposed. We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

TECHNICAL COMMENTS

- Soil borings. Please submit a table documenting a rationale for each of the proposed boring locations of DP-9 to DP-11 in Figure 8 of the work plan. Also, we recommend a step-out approach whereby DP-9 be advanced approximately 75 feet to the northeast of its currently proposed location, and that borings be advanced further to the southeast based on the visual, olfactory, and PID screening findings of sampling at DP-9.
- 2. **Well Survey**. The water supply well survey be completed for the site using records from Alameda County Public Works and the California Department of Water Resources.
- GeoTracker Compliance. A review of the State Water Resources Control Board's (State Water Board)
 GeoTracker website indicates that analytical data for soil, groundwater and vapor, boring logs, and site
 maps have not yet been uploaded.

Pursuant to California Code of Regulations, Title 23, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1, beginning September 1, 2001, all analytical data, including monitoring well samples, submitted in a report to a regulatory agency as part of the UST or LUST program, must be transmitted electronically to the State Water Board GeoTracker system via the internet. Also, beginning January 1, 2002, all permanent monitoring points utilized to collect groundwater samples (i.e. monitoring wells) and submitted in a report to a regulatory agency, must be surveyed (top of casing) to mean sea level and latitude and longitude to sub-meter accuracy using NAD 83. A California licensed surveyor may be required to perform this work. In September 2004, the SWRCB adopted regulations that require

Responsible Parties RO0003156 June 28, 2016 Page 2

electronic submittal of information for all groundwater cleanup programs, including SLIC programs. Additionally, pursuant to California Code of Regulations, Title 23, Division 3, Chapter 30, Articles 1 and 2, Sections 3893, 3894, and 3895, beginning July 1, 2005, the successful submittal of electronic information (i.e. report in PDF format) shall replace the requirement for the submittal of a paper copy. Please claim your site and upload all future submittals to GeoTracker and ACEH's ftp server by the date specified below. Electronic reporting is described below on the attachments.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACDEH ftp site (Anne Jurek), and to the State Water Resources Control Board's GeoTracker website according to the following schedule and file-naming convention:

August 26, 2016 – Site Investigation Report
 File to be named: SWI R yyyy-mm-dd RO3156

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

If you have any questions, please call me at 510-567-6721 or send me an electronic mail message at anne.jurek@acgov.org. Online case files are available for review at the following website: http://www.acgov.org/aceh/index.htm. If your email address does not appear on the cover page of this notification, ACDEH is requesting you provide your email address so that we can correspond with you quickly and efficiently regarding your case.

Sincerely,

Dh: cn=Anne Jurek, o, ou, email=anne Jurek@acgov.org, c=US Date: 2016.06.28 19:23:22-07:00'

Anne Jurek, M.S.

Professional Technical Specialist II (Geology)

Attachments: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACDEH Electronic Report Upload (ftp) Instructions

cc: Forrest Cook, Almar Environmental, 407 Almar Avenue, Santa Cruz, CA 95060 (Sent via E-mail to: cook.forrest@gmail.com)

Anne Jurek, ACDEH (Sent via E-mail to: anne.jurek@acgov.org)

GeoTracker, eFile

Attachment 1 Responsible Party(ies) Legal Requirements/Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic submittal/report rqmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

ISSUE DATE: July 5, 2005

REVISION DATE: March 27, 2009

PREVIOUS REVISIONS: December 16, 2005,

October 31, 2005

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp)

Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF)
 with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password. Documents
 with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO# Report Name Year-Month-Date (e.g., RO#5555 WorkPlan 2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in **Excel** format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to dehloptoxic@acgov.org

O

- ii) Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.
- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO# use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

Drilling Permit - ACPWA

Alameda County Public Works Agency - Water Resources Well Permit

Project Start Date:

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 08/01/2016 By jamesy

Permits Valid from 08/10/2016 to 08/10/2016

City of Project Site:Oakland

Application Id: 1469638613224 **Site Location:** 357-359 105th Street

08/10/2016 Completion Date:08/10/2016

Assigned Inspector: Contact Minh Ngo at (510) 670-5759 or Minh@acpwa.org

Applicant: Almar Environmental - Forrest Cook Phone: 831-420-7923

407 Almar Avenue, Santa Cruz, CA 95060

Property Owner: Dan Neishi 1564 Darius Ct., San Leandro, CA 94577

Client: ** same as Property Owner **

Contact: Forrest Cook Phone: 831-420-7923

Cell: --

Total Due: \$265.00

Receipt Number: WR2016-0382 Total Amount Paid: \$265.00

Payer Name : Forrest N Cook Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 3 Boreholes

Driller: Environmental Restoration Services - Lic #: 589652 - Method: Hand Work Total: \$265.00

Specifications

Permit Issued Dt Expire Dt # Hole Diam Max Depth

Number Boreholes

W2016- 08/01/2016 11/08/2016 3 3.00 in. 15.00 ft

0549

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Alameda County Public Works Agency - Water Resources Well Permit

- 5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 7. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

8. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX C

Boring Logs

	FIELD	LOCATION	OF BOR	ING:					PROJECT: No. 1076		DATES DRILLED: _	8/4/16
										os. Nursery	DRILLER:E	RS (C-57 #589652)
									SITE ADDRESS:	<u> </u>		
								PAGE <u>1</u> OF <u>1</u>	357 105th Ave., Oakla	nd, CA	LOGGED BY: _	Forrest Cook PG#8201
	DRI AN	LLING METH D EQUIPMENT	OD [:	3" Dia	ımeter Hand	Auger				LEVEL	G	TIME
Depth	le					logy			1st Encountered Static	9.0' 7.90'	Start Finish	
(Feet)	Sample	Sample ID	Blow Count	PID (ppm)	Well Const.	Lithology	USCS		SOIL DESCR		111101	
						///		Concrete slab + Ba	aserock			
— 1 —												
2						V//						
				0.0		Y///	CL	SILTY CLAY (CL):	Black (GLEY 1 2.5/N), estimated o	damp,	
3					ut		CL	estimated soft to	o firm, estimated m	edium plastic	ity. Very exp	ansive.
— 4—					ceme	V//						
5	-				leat (Y ///						
6					/ith r							
- 0-					Backfilled with neat cement	Y///						
7-				0.0	ackfil			Gradational colo	r change to Greenis	sh Black (GLEY	′ 1 2.5/1)	
<u> </u>					B	V//	_	Static water = 7.90'				
9							Z	First encountered v		I FV 2 F /1\		
40				0.0			SC		C): Greenish Gray (G to medium dense, s			
10—									BOH = 10'			
—11—												
—12—												
—13—												
10												
14												
—15—												
16												
——17—												
''												
 18												
 19												
20												
 21												
1												
22												
—23—												
24												
25												
WELL / B		G CONSTRU										
Ва	ckfill	ed with ne	eat ce	ment	(Portlan	d I/II)						
								357 105th AVE.				BORING
		Λ١	M	۱۸	D			OAKLAND, CALIFORNIA				
	R	AL	.0n.	ner	tal							DP-9
"												

	FIELD	LOCATION (OF BOR	ING:					PROJECT: No. 1076E		DATES DRILLED:	8/4/16					
									CLIENT: Neishi Br	os. Nursery	DRILLER: EF	RS (C-57 #589652)					
									SITE ADDRESS:								
								PAGE <u>1</u> OF <u>1</u>	357 105th Ave., Oaklar	LOGGED BY: _	Forrest Cook PG#8201						
	DRI AN	LLING METH DEQUIPMENT	OD [:	3" Dia	ameter Hand	l Auger			WATER 1st Encountered	LEVEL 9.0'	Start	TIME					
Depth	ple	Sample	Blow	PID	Well	Lithology	LIGGO		Static	8.20'	Finish						
(Feet)	Sample	ID		(ppm)	Const.	Lith	USCS		SOIL DESCR	RIPTION							
								Concrete slab + Ba									
								FILL - SAND (SW): Strong brown (7.5YR4/6), estimated damp, estimated loose, sand is coarse.									
2								estimated loose, s	and is coarse.								
3				0.0		7//											
					nent	$\mathbb{Y}///$											
					at cer		CL	SILTY CLAY (CL): Black (GLEY 1 2.5/N), estimated damp, estimated soft to firm, estimated medium plasticity. Very expansive.									
					h ne	V///		estimated soft to mini, estimated medium plasticity. Very expansive.									
— 6—					d wit												
				0.0	Backfilled with neat cement	V//,											
8					Bacl		_	- Ct-tit 0.20	,								
								Static water = 8.20First encountered v									
9-				0.0			SC	CLAYEY SAND (SO): Greenish Gray (G								
—10— •				0.0		<u> </u>		estimated loose	to medium dense, s BOH = 10'	and is coarse).						
11									BOH - 10								
——12—																	
40																	
13—																	
—14—																	
—15—																	
16																	
——17—																	
17—																	
 18																	
 19																	
20																	
<u>—21</u>																	
22																	
—23—																	
<u>24</u>																	
<u>25</u>																	
		G CONSTRU				9 1/II/											
Ва	ickfill	ed with ne	at ce	ment	rordan	iu i/il)					-						
								357 105th AVE.				BORING					
10	A	AL	M	Δ	R		L	OAKLAND, CALIFORNIA									
1		envir	onr	ner	tal				BORING LOG			DP-10					

	FIELD	LOCATION	OF BOR	ING:					PROJECT: No. 1076		DATES DRILLED:	8/4/16
									CLIENT: Neishi Bı	os. Nursery	DRILLER:E	RS (C-57 #589652)
									SITE ADDRESS:			
								PAGE <u>1</u> OF <u>1</u>	357 105th Ave., Oakla	nd, CA	LOGGED BY: _	Forrest Cook PG#8201
	DRI AN	ILLING METH D EQUIPMENT	OD	3" Dia	meter Hand	Auger				LEVEL		TIME
Depth	le					logy			1st Encountered Static	9.0' 7.37'	Start Finish	
(Feet)	Sample	Sample ID	Blow Count	PID (ppm)	Well Const.	Lithology	USCS		SOIL DESCR		Tillish	
						///		Exposed soil surfa	ce			
— 1 —												
2						V//						
				0.0		Y///	CL	SILTY CLAY (CL):	Black (GLEY 1 2.5/N), estimated	damp,	
					ut		CL	estimated soft to	o firm, estimated m	edium plastic	city. Very exp	ansive.
— 4 —					Seme	V//						
5	-				leat (Y ///						
					/ith r							
- 0-					led w	V//						
7-				0.0	Backfilled with neat cement		_	Static water = 7.37'				
— 8—					Bell	V//						
9							Z	First encountered w		2157 2 5 (1)		
40				0.0			SC		C): Greenish Gray (G to medium dense, s			
10—									BOH = 10'			
—11—												
——12—	-											
—13—												
14												
 15												
16												
—17—	-											
——18—												
1												
 19												
2 0												
<u>—21</u>												
22												
23												
24												
—25— WELL / B	ORIN	G CONSTRU	CTION	DFTA	ILS:							
		led with ne				d I/II)						
							1				ı	
	_				_			_	357 105th AVE			BORING
19	ALMAR environmental						<u> </u>	0	AKLAND, CALIFOI	KINIA		DD 44
		envir	onr	ner	ital				BORING LOG			DP-11
							1		DOMING LOG			

APPENDIX D

Laboratory Data Sheets

Date of Report: 08/10/2016

Forrest Cook

Almar Environmental 407 Almar Avenue Santa Cruz, CA 95060

Client Project: Neishi Bros **Ground Water BCL Project:**

BCL Work Order: 1621688 B242770 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 8/5/2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Sandoval

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	5
Sample Results	
1621688-01 - DP-9	
Volatile Organic Analysis (EPA Method 8260B)	6
1621688-02 - DP-10	
Volatile Organic Analysis (EPA Method 8260B)	7
1621688-03 - DP-11	
Volatile Organic Analysis (EPA Method 8260B)	8
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260B)	
Method Blank Analysis	
Laboratory Control Sample	10
Precision and Accuracy	11
Notes	
Notes and Definitions	13

Report ID: 1000509145

Chain of Custody and Cooler Receipt Form for 1621688 Page 1 of 2 ا اخ City:* Santa Cruz State:* CA ☐ Yes ✓ No 0 = Other Client:* Almar Environmental Address:* 407 Almar Avenue Notes BC Laboratories, Inc. 4100 Atlas Court – Bakersfield CA 93308 (661) 327 – 4911 Fax: (661) 327 – 1918 www.bclabs.com M = Miscellaneous Billing Normal (10 - Days) L = Liquid TOTE + 87EX + We philosolene. Chain of Custody Form GW = Groundwater \searrow 3-5 Day Rush *Additional Charges May Apply WW = Wastewater Matrix* Project Neish, Bas GW Sampler (s):* Forrest Cook Project Code:* O766 48 Hr Rush 17:18 24:01 Time Geotracker 2 File 8.4-16 Other (Specify) Date DW = Drinking Water CVX RCRA MBU Site 24 Hr Rush Zip:* 95060 Laboratories, Inc. Sample Description St. = Sludge DISTRIBUTION Fax#: (Turnaround # of working days:* SUB-OUT nail Address: cook.forrest@gmail.com State:* CA 21688 01-10 Street Address:* 407 Almar Ave. S = Soil Report To: Client:* Almar Environmental , 7923 Lab TAT Approval: hone#:*(831) 420 Attn:* Forrest Cook Matrix Types: city:* Santa Cruz Comments: Required Fields Sample # HK BY

Chain of Custody and Cooler Receipt Form for 1621688 Page 2 of 2

Submission #:\(\(\mu - \)2\(\omega \)8 SHIPPING INFOR Fed Ex \(\mu\) UPS \(\mu\) Ontrac	□ Han	ıd Deliver	y 🗆	Ice Che	est	CONTAI	NER Box 🗆		FREE LIQ	10 D
BC Lab Field Service ☐ Other	(Specify	1) (7 ?)	Othe	er 🗆 (Spe	cify)		-	(W)/	S
Refrigerant: Ice Blue Ice] None	е 🗆	Other 🗆	Comm	nents:	***************************************	Participation of the Control of the	***************************************	***************************************	MATERIA STATE OF THE STATE OF T
Custody Seals Ice Chest □	Contain Intact? Yes	ers.□		Comi				,		
All samples received? Yes ☐ No ☐	All samples	container	s intact? \	res No		Descrip	tion(s) mate	ch COC?	es No	0
COC Received Em	issivity: _(97	Container:	20201	Thermon	neter ID:	208	· r · · · · · · · · · · · · · · · · · ·	1e 8 · 5	
YES NO T	emperature:	; (A)	3.2	°C /	(c) 3.	3	°C	Analyst		0.4
The Controlling					SAMPLE	NUMBERS			1	
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10
QT PE UNPRES		 	-			ļ		 		
40z / 80z / 160z PE UNPRES 20z Cr*6		 	-	 					-	
QT INORGANIC CHEMICAL METALS	1	-	1							\dagger
INORGANIC CHEMICAL METALS INORGANIC CHEMICAL METALS 40z / 80z / 160z										1
PT CYANIDE										
PT NITROGEN FORMS										
PT TOTAL SULFIDE										
Poz. NITRATE / NITRITE				*						
PT TOTAL ORGANIC CARBON	_									
PT CHEMICAL OXYGEN DEMAND	<u> </u>	-	ļ							
PIA PHENOLICS	-	-	 							
10ml VOA VIAL TRAVEL BLANK	Amc	ADC	ABC					6.7		
Oml VOA VIAL PT EPA 1664	177.00	1111	712					ă,	<u>د.</u> این ۱	\vdash
T ODOR	1	 							<u>f</u>	
ADIOLOGICAL										
ACTERIOLOGICAL		<u>.</u>								
0 ml VOA VIAL- 504	<u> </u>									
T EPA 508/608/8080	<u> </u>	-	L							
T EPA 515.1/8150										<u> </u>
T EPA 525	ļ									
T EPA 525 TRAVEL BLANK	!									
Imi EPA 547										
ml EPA 531.1 z EPA 548										
T EPA 549										
Г EPA 8015M										
CEPA 8270										
z/16oz/32oz AMBER										
z / 160z / 320z JAR										
IL SLEEVE										
B VIAL	 									
ASTIC BAG	ļ								· · · · · · · · · · · · · · · · · · ·	
DLAR BAG										
RROUS IRON CORE										
ART KIT										
MMA CANISTER		1								

Reported: 08/10/2016 13:15 Project: Ground Water Project Number: Neishi Bros Project Manager: Forrest Cook

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1621688-01 **COC Number:**

> **Project Number:** Neishi Bros.

Sampling Location: Sampling Point: DP-9

Sampled By:

Forrest Cook of ALSC

Receive Date:

08/05/2016 10:40

Sampling Date:

08/04/2016 11:15

Sample Depth:

Lab Matrix: Water

Groundwater Sample Type:

Delivery Work Order: Global ID: T0608700288 Location ID (FieldPoint): DP-9

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1621688-02 **COC Number:**

> **Project Number:** Neishi Bros.

Sampling Location: **DP-10** Sampling Point:

Sampled By:

Forrest Cook of ALSC

Receive Date:

08/05/2016 10:40

08/04/2016 10:45 Sampling Date:

Sample Depth: Lab Matrix: Water Groundwater

Sample Type: Delivery Work Order:

Global ID: T0608700288 Location ID (FieldPoint): DP-10

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1621688-03 COC Number:

Project Number:

Sampling Location: Sampling Point:

Sampled By:

Neishi Bros.

DP-11

Forrest Cook of ALSC

Receive Date:

08/05/2016 10:40

Sampling Date:

08/04/2016 11:50

Sample Depth: Water Lab Matrix: Groundwater Sample Type:

Delivery Work Order: Global ID: T0608700288 Location ID (FieldPoint): DP-11

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

Report ID: 1000509145

Page 5 of 12

Reported: 08/10/2016 13:15
Project: Ground Water

Project Number: Neishi Bros Project Manager: Forrest Cook

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1621688-01	Client Sampl	e Name:	Neishi Bro	os., DP-9, 8	3/4/2016 11:15:0	0AM, Forrest	Cook	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	0.083	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	0.098	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	0.11	EPA-8260B	ND		1
Naphthalene		ND	ug/L	0.50	0.36	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	0.093	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	0.36	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	9.4	EPA-8260B	ND		1
p- & m-Xylenes		ND	ug/L	0.50	0.28	EPA-8260B	ND		1
o-Xylene		ND	ug/L	0.50	0.082	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	7.2	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	105	%	75 - 125 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		102	%	80 - 120 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	84.1	%	80 - 120 (LC	L - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	08/05/16	08/09/16 12:42	JPT	MS-V13	1	BZH0648

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, eparation, detachment or third party interpretation.

Report ID: 1000509145 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 6 of 12

Reported: 08/10/2016 13:15
Project: Ground Water

Project Number: Neishi Bros Project Manager: Forrest Cook

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 16	21688-02	Client Sampl	e Name:	Neishi Bro	s., DP-10,	8/4/2016 10:45	:00AM, Forres	t Cook	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	0.083	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	0.098	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	0.11	EPA-8260B	ND		1
Naphthalene		ND	ug/L	0.50	0.36	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	0.093	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	0.36	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	9.4	EPA-8260B	ND		1
p- & m-Xylenes		ND	ug/L	0.50	0.28	EPA-8260B	ND		1
o-Xylene		ND	ug/L	0.50	0.082	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	7.2	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	122	%	75 - 125 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	80 - 120 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	ogate)	87.8	%	80 - 120 (LC	L - UCL)	EPA-8260B			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	08/05/16	08/09/16 12:18	JPT	MS-V13	1	BZH0648

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, detachment or third party interpretation.

Report ID: 1000509145 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 7 of 12

Reported: 08/10/2016 13:15 Project: Ground Water Project Number: Neishi Bros

Project Manager: Forrest Cook

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1621688-03	Client Sampl	e Name:	Neishi Bro	os., DP-11,	8/4/2016 11:50:	00AM, Forres	t Cook	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	0.083	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	0.098	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	0.11	EPA-8260B	ND		1
Naphthalene		ND	ug/L	0.50	0.36	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	0.093	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	0.36	EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10	9.4	EPA-8260B	ND		1
p- & m-Xylenes		ND	ug/L	0.50	0.28	EPA-8260B	ND		1
o-Xylene		ND	ug/L	0.50	0.082	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	7.2	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	111	%	75 - 125 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		100	%	80 - 120 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	80.0	%	80 - 120 (LC	L - UCL)	EPA-8260B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	08/05/16	08/09/16 13:07	JPT	MS-V13	1	BZH0648	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 8 of 12 Report ID: 1000509145

Reported: 08/10/2016 13:15
Project: Ground Water

Project Number: Neishi Bros Project Manager: Forrest Cook

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZH0648						
Benzene	BZH0648-BLK1	ND	ug/L	0.50	0.083	
Ethylbenzene	BZH0648-BLK1	ND	ug/L	0.50	0.098	
Methyl t-butyl ether	BZH0648-BLK1	ND	ug/L	0.50	0.11	
Naphthalene	BZH0648-BLK1	ND	ug/L	0.50	0.36	
Toluene	BZH0648-BLK1	ND	ug/L	0.50	0.093	
Total Xylenes	BZH0648-BLK1	ND	ug/L	1.0	0.36	
t-Butyl alcohol	BZH0648-BLK1	ND	ug/L	10	9.4	
p- & m-Xylenes	BZH0648-BLK1	ND	ug/L	0.50	0.28	
o-Xylene	BZH0648-BLK1	ND	ug/L	0.50	0.082	
Total Purgeable Petroleum Hydrocarbons	BZH0648-BLK1	ND	ug/L	50	7.2	
1,2-Dichloroethane-d4 (Surrogate)	BZH0648-BLK1	100	%	75 - 12	25 (LCL - UCL)	
Toluene-d8 (Surrogate)	BZH0648-BLK1	97.7	%	80 - 12	20 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BZH0648-BLK1	88.0	%	80 - 12	(LCL - UCL)	

Report ID: 1000509145 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 9 of 12

Reported: 08/10/2016 13:15 Project: Ground Water Project Number: Neishi Bros Project Manager: Forrest Cook

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Laboratory Control Sample

								Control L	imits	
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BZH0648										
Benzene	BZH0648-BS1	LCS	25.330	25.000	ug/L	101		70 - 130		
Toluene	BZH0648-BS1	LCS	25.180	25.000	ug/L	101		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BZH0648-BS1	LCS	10.080	10.000	ug/L	101		75 - 125		
Toluene-d8 (Surrogate)	BZH0648-BS1	LCS	10.160	10.000	ug/L	102		80 - 120		
4-Bromofluorobenzene (Surrogate)	BZH0648-BS1	LCS	9.8500	10.000	ug/L	98.5		80 - 120		

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 10 of 12 Report ID: 1000509145

Reported: 08/10/2016 13:15
Project: Ground Water
Project Number: Neishi Bros

Project Number: Neishi Bros Project Manager: Forrest Cook

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Precision & Accuracy

					•	•	•	•	Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BZH0648	Use	d client samp	le: N								
Benzene	MS	1621392-06	ND	24.220	25.000	ug/L		96.9		70 - 130	
	MSD	1621392-06	ND	25.400	25.000	ug/L	4.8	102	20	70 - 130	
Toluene	MS	1621392-06	ND	24.280	25.000	ug/L		97.1		70 - 130	
	MSD	1621392-06	ND	24.490	25.000	ug/L	0.9	98.0	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1621392-06	ND	9.9900	10.000	ug/L		99.9		75 - 125	
	MSD	1621392-06	ND	10.460	10.000	ug/L	4.6	105		75 - 125	
Toluene-d8 (Surrogate)	MS	1621392-06	ND	10.210	10.000	ug/L		102		80 - 120	
	MSD	1621392-06	ND	10.180	10.000	ug/L	0.3	102		80 - 120	
4-Bromofluorobenzene (Surrogate)	MS	1621392-06	ND	9.9800	10.000	ug/L		99.8		80 - 120	
	MSD	1621392-06	ND	10.150	10.000	ug/L	1.7	102		80 - 120	

Report ID: 1000509145 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 11 of 12

Reported: 08/10/2016 13:15 Project: Ground Water Project Number: Neishi Bros Project Manager: Forrest Cook

Notes And Definitions

MDL Method Detection Limit ND Analyte Not Detected PQL Practical Quantitation Limit

Report ID: 1000509145

APPENDIX E

Well Survey

<u>Permit</u>	<u>Tr</u>	Section	Address	Longcity	<u>Owner</u>	<u>Update</u>	Xcoord
	2S/3W	27K 1	Bergedo St.	Oakland	Caterpillar Inc.	8/31/1990	122175810
	2S/3W	27L 1	342 105th Avenue	Oakland	Verl's Construction	5/30/1990	122180287
	2S/3W	27L 2	342 105th Avenue	Oakland	Verl's Construction	5/30/1990	122180287
	2S/3W	27L 3	342 105th Avenue	Oakland	Verl's Construction	5/30/1990	122180287
	2S/3W	27L 4	359 105th Av	Oakland	Caterpillar, Inc	9/11/1997	122180296
	2S/3W	27L 5	359 105th Av	Oakland	Caterpillar, Inc	9/11/1997	122180296
	2S/3W	27L 6	348 105th Av	Oakland	Caterpillar, Inc	9/11/1997	122180180
	2S/3W	27L 7	359 105th Av	Oakland	Caterpillar, Inc	9/11/1997	122180282
87001	2S/3W	27P	2050 REYNOLDS ST	San Leandro	CITATION HOMES	3/5/1987	122178780
	2S/3W	27P 2	553 Warden Ave	San Leandro	Caterpillar Inc.	5/29/1990	122181474
	2S/3W	27P 3	720 Warden Ave.	San Leandro	Caterpillar Inc.	5/29/1990	122180187
96825	2S/3W	27P 4	788 Wrin Av	San Leandro	Caterpillar	12/26/1997	122178232
96836	2S/3W	27P 5	811 O'Donnell Av	San Leandro	Caterpillar	12/26/1997	122178048
95761	2S/3W	27P 6	O'Donnell Av	San Leandro	Caterpillar	3/12/1998	122178086
95761	2S/3W	27P 7	O'Donnell Av	San Leandro	Caterpillar	3/12/1998	122178086
	2S/3W	27Q 1	921 HUTCHINGS DR	San Leandro	BRIDGEMAN	8/1/1984	122176106
	2S/3W	27Q 2	935 HUCHINGS DR	San Leandro	V. BLACK	8/1/1984	122176100
	2S/3W	27Q 3	979 BILLING BLVD	San Leandro	HOLMES	8/1/1984	122175012
	2S/3W	27Q 4	993 BILLING BLVD	San Leandro	D.M. HARDIN	8/1/1984	122174997
	2S/3W	27Q 5	922 HUTCHINGS DR	San Leandro	?	8/1/1984	122175884
	2S/3W	27Q 6	909 MARTIN BLVD	San Leandro	KLOBUCHER	8/1/1984	122176860
	2S/3W	27Q 7	701 DONOVAN DR.	San Leandro	CATERPILLAR INC.	11/6/1989	122174830
	2S/3W	27Q 8	DONOVAN & BROOKSIDE	San Leandro	CATERPILLAR	1/11/1990	122174900
	2S/3W	27Q 9	860 Donovan Drive	San Leandro	Caterpillar Inc.	5/29/1990	122174332
96826	2S/3W	27Q10	846 O'Donnell Av	San Leandro	Caterpillar	12/26/1997	122177782
96837	2S/3W	27Q11	824 O'Donnell Av	San Leandro	Caterpillar	12/26/1997	122177812
96827	2S/3W	27Q12	846 O'Donnell Ave	San Leandro	Caterpillar	7/30/1998	122177782

Ycoord	Matchlevel	<u>Tsrqq</u>	Rec code	<u>Phone</u>	<u>City</u>	<u>Drilldate</u>	Elevation	<u>Totaldepth</u>	Waterdepth	<u>Diameter</u>	<u>Use</u>	
37725883	9	2S/3W 27K	846	0	OAK	May-90	0	55	8	2	MON	D
37726750	0	2S/3W 27L	72	0	OAK	2/90	0	25	19	4	MON	G
37726750	0	2S/3W 27L	73	0	OAK	2/90	0	25	18	4	MON	G
37726750	0	2S/3W 27L	74	0	OAK	2/90	0	25	18	4	MON	G
37727130	1	2S/3W 27L	0	0	OAK	7/94	0	50	7	2	MON	D
37727130	1	2S/3W 27L	0	0	OAK	7/94	0	44	7	2	MON	D
37726924	1	2S/3W 27L	0	0	OAK	7/94	0	46	7	2	MON	D
37727139	1	2S/3W 27L	0	0	OAK	7/94	0	55	7	2	MON	D
37723695	0	2S/3W 27P	3486	0	SLE	Jan-87	0	0	0	0	DES	D
37723370	0	2S/3W 27P	31	0	SLE	Oct-89	0	60	10	2	MON	D
37721972	0	2S/3W 27P	32	0	SLE	Oct-89	0	59	10	2	MON	D
37722543	1	2S/3W 27P	0	0	SLE	Dec-96	0	55	6	6	EXT	D
37722297	1	2S/3W 27P	0	0	SLE	Dec-96	0	66	8	1	PIE	D
37723544	1	2S/3W 27P	0	0	SLE	Nov-95	0	74	10	2	TES	D
37723544	1	2S/3W 27P	0	0	SLE	Nov-95	0	107	0	2	TES	D
37721458	0	2S/3W 27Q	3487	0	SLE	?	0	20	18	3	IRR	?
37721437	2	2S/3W 27Q	3488	0	SLE	?	0	0	0	6	IRR	?
37721100	2	2S/3W 27Q	3489	0	SLE	?	0	22	6	7	ABN	?
37721037	2	2S/3W 27Q	3490	0	SLE	/51	0	23	5	6	ABN	?
37721407	0	2S/3W 27Q	3491	0	SLE	/57	0	15	0	0	IRR	?
37721432	0	2S/3W 27Q	3492	0	SLE	/53	0	27	0	8	IRR	?
37723717	0	2S/3W 27Q	3493	0	SLE	Apr-89	0	52	11	2	TES	D
37724300	0	2S/3W 27Q	3494	0	SLE	Apr-89	0	53	17	2	MON	D
37722737	0	2S/3W 27Q	33	0	SLE	Oct-89	0	54	15	2	MON	D
37722151	1	2S/3W 27Q	0	0	SLE	Dec-96	0	79	6	6	EXT	D
37722271	1	2S/3W 27Q	0	0	SLE	Dec-96	0	66	8	1	PIE	D
37722125	1	2S/3W 27Q	0	0	SLE	Dec-96	0	79	6	6	EXT	D

0	0	0	0	D	Bergedo	St.			
1	0	0		D	342	105th Avenue			
1	0	0	0	D	342	105th Avenue			
1	0	0	0	D	342	105th Aver	nue		
0	0	0	0	D	359	105th Av			
0	0	0	0	D	359	105th Av			
0	0	0	0	D	348	105th Av			
0	0	0	0	D	359	105th Av			
0	0	0	0	L	2050	REYNOLDS	0010B915.	179521	
0	0	0	0	D	553	Warden Av	/e		
0	0	0	0	D	720	Warden Av	e.		
0	0	0	0	D	788	Wrin Av			
0	0	0	0	D	811	O'Donnell	Av		
0	0	0	0	D	O'Donnell	Av			
0	0	0	0	D	O'Donnell	Av			
0	1	0	0	L	921	HUTCHING	0010B918.	TIF	
0	0	0	0	L	935	HUCHINGS	0010B919.	TIF	
0	1	0	0	L	979	BILLING BL	0010B91A.	TIF	
0	1	0	0	L	993	BILLING BL 0010B91B.TIF		TIF	
0	0	0	0	L	922	HUTCHING 0010B91C.TIF			
0	1	0	0	L	909	MARTIN BL	0010B91D.	TIF	
0	0	0	0	L	701	DONOVAN	0010B91E.	TIF	
0	0	0	0	L	DONOVAN	& BROOKSIDE			
0	0	0	0	D	860	Donovan Drive			
0	0	0	0	D	846	O'Donnell Av			
0	0	0	0	D	824	O'Donnell Av			
0	0	0	0	D	846	O'Donnell Ave			