

By Alameda County Environmental Health 8:58 am, Mar 23, 2016

March 4, 2016

Mr. Mark Detterman Alameda County LOP 1131 Harbor Bay Pkwy. Alameda, California 94502

Re: Indoor Air Sampling Report (Report #5031)

Four Seasons Cleaners; Cleanup Program # RO0003155 13778 Doolittle Ave., San Leandro, California

Dear Mr. Detterman:

At the request of Mr. Ernest Lee of the Marina Faire Shopping Center, WellTest, Inc. (WTI) has prepared this *Indoor Air Sampling Report* for the above-referenced solvent release case. The purpose of this investigation was to 1) Confirm initial indoor air sampling data from within the former dry cleaner suite; 2) Assess indoor air conditions in the four commercial suites immediately adjoining the dry cleaner suite (with the HVAC units both on and off); and 3) Prepare a detailed map of the interior of the adjoining tenant spaces. In general, the investigation consisted of collecting a total of eight indoor air samples from the former dry cleaner suite and the adjoining tenant spaces.

Recent regulatory directive letters are presented as Attachment A, background information is presented as Attachment B, and laboratory analytical reports are presented as Attachment C. Additional supporting documentation is presented within Tables 1 through 4 and Figures 1 through 4.

Site Description

The site is located in a mixed commercial and residential area of San Leandro, California. The site parcel is approximately 5.05 acres and is improved with a multi-tenant strip mall and separate restaurant building. The dry cleaning unit is located within the strip mall and is associated with 13778 Doolittle Drive. The site lies at an elevation of approximately 15 feet above sea level and is relatively flat. The property is bounded by Doolittle Drive to the west, Fairway Drive to the north, Catalina Drive to the east and a commercial property to the south. A Site Vicinity Map is included in Figure 1.

Field Investigation

<u>Map Preparation.</u> As part of this investigation WTI created a detailed map of the former dry cleaner suite (now vacant) and the immediately adjoining tenant spaces. A copy of the map is presented in Figure 4.

Indoor Air Sampling. Prior to conducting indoor air sampling activities, as requested by the ACPWA, an Indoor Air Building Survey was conducted. Due to accessibility issues, the indoor air sampling events were conducted on February 13, 14, and 18, 2016. Samples were collected with both the HVAC systems turned on and off. The sampling events were conducted in general accordance with the DTSC's July 2015 *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* and the RWQCB's October 2014 *Interim Framework for Assessment of Vapor Intrusion at TCE-Contaminated Site in the San Francisco Bay Region*. A total of eight indoor air samples (IA-3-off through IA-9-off) were collected during the investigation. The sample locations are shown on Figures 3 and 4. Each sample was collected using an evacuated SUMA® canister (6-L) equipped with

a 24-hour flow regulator. Each canister was placed within the breathing zone (approximately 3 to 5 feet above ground surface) and care was taken to deploy the canisters away from the direct influence of any forced air emanating from air conditioners, furnaces, or heaters. The canister vacuum was measured using an integrated vacuum gauge immediately prior to and following the 24-hour sampling period. At the end of the sample period the canister valve was fully closed and the time recorded. Additional data, including: outside and interior temperatures, equipment serial numbers, sampler name, and other comments were also recorded. The air samples were analyzed at a California State-certified laboratory for VOCs (including PCE) by Test Method TO-15.

Analytical Results

In total, eight indoor air samples were collected and submitted for laboratory analysis. A summary of the current analytical results, along with historical sampling data, is presented in Table 1. The complete laboratory data sheets are presented in Appendix B. A brief summary of the analytical data is presented as follows:

- **PCE** was detected above laboratory detection limits in two of the eight samples submitted for analysis at concentrations of 560 μg/m³ and 190 μg/m³ in samples IA-9 and IA-9-off, respectively;
- TCE was not detected above laboratory detection limits in any of the samples submitted for analysis;
- **cis-1,2DCE** was not detected above laboratory detection limits in any of the samples submitted for analysis;
- Vinyl chloride was not detected above laboratory detection limits in any of the samples submitted for analysis;
- Benzene was not detected above laboratory detection limits in any of the samples submitted for analysis;
- Toluene was not detected above laboratory detection limits in any of the samples submitted for analysis;
- Ethylbenzene was not detected above laboratory detection limits in any of the samples submitted for analysis;
- **Xylenes** (total) were not detected above laboratory detection limits in any of the samples submitted for analysis;
- No other constituents of concern were detected at concentrations exceeding laboratory detection limits.

Discussion of Analytical Results

The only contaminants of concern (COCs), detected at concentrations exceeding laboratory detection limits during this current investigation, was PCE at $560 \mu g/m^3$ (IA-9) and $190 \mu g/m^3$ (IA-9-off) in the two samples collected from within the dentist office. The dentist office is located immediately adjacent to the former dry cleaner unit to the north. Sample IA-9 was collected over a 24-hour period with the HVAC system on and IA-9-off was collected with the HVAC system off. The detected concentrations of PCE significantly exceed the commercial/industrial environmental screening level (ESL) for PCE of $2.1 \mu g/m^3$.

No other COCs, including PCE, were detected above laboratory detection limits in any of the other samples submitted for analysis during this investigation. It should be noted, however, that the method detection limits (MDLs) used by the analytical laboratory during analysis are significantly higher than the corresponding environmental ESLs for several of the COCs. For example, the MDL for PCE used by the laboratory during this sampling event ranged from $20 \,\mu\text{g/m}^3$ to $50 \,\mu\text{g/m}^3$ while the commercial/industrial ESL for PCE is only $2.1 \,\mu\text{g/m}^3$. Additionally, sample IA-8, was located within the former dry cleaner directly adjacent to historical indoor air sampling point IND-2 (see Figure 4). PCE was detected in IND-2 in October 2015 at a concentration of 18,000 $\,\mu\text{g/m}^3$, while PCE was not detected ($<50 \,\mu\text{g/m}^3$) in current sample IA-8 (see Table 1). Since sample IND-2 was collected, the dry cleaner facility has ceased operation and the unit has been vacated. It is unclear, at this juncture, if the difference in PCE concentrations is due to the closure of active dry cleaner operations or a difference in sampling methods (IA-8 was collected over 24 hours, IND-2 was collected over 8 hours).

Project No. 5031 2 March 4, 2016

Conclusions

The purpose of this investigation was 1) Confirm initial indoor air sampling data from within the former dry cleaner suite; 2) Assess indoor air conditions in the four commercial suites immediately adjoining the dry cleaner suite (with the HVAC units both on and off); and 3) Prepare a detailed map of the interior of the adjoining tenant spaces. Based upon the results of the investigation, and a review of historical data, WTI makes the following conclusions:

- A detailed site map of the former four seasons dry cleaner unit and the adjoining tenant spaces has been prepared and is presented as Figure 4.
- PCE was detected at concentrations of 560 μg/m³ (IA-9) and 190 μg/m³ (IA-9-off) in the two indoor air samples collected from within the dentist office, which is located directly adjacent to the former dry cleaner unit to the north. Sample IA-9 was collected over a 24-hour period with the HVAC system on and IA-9-off was collected with the HVAC system off. The detected concentrations of PCE significantly exceed the commercial/industrial ESL for PCE of 2.1μg/m³.
- No contaminants of concern were detected at concentrations exceeding laboratory detection limits in any of the indoor air samples collected from the other tenant spaces immediately adjoining the former dry cleaner. However, the method detection limits (MDLs) used by the analytical laboratory during analysis are significantly higher than the corresponding environmental ESLs for several of the COCs. For example, the MDL for PCE used by the laboratory during this sampling event ranged from 20 µg/m³ to 50 µg/m³ while the commercial/industrial ESL for PCE is only 2.1 µg/m³.
- Previous indoor air sampling results found during the initial indoor air investigation conducted in October 2015, were <u>not</u> confirmed by this current investigation. Sample IA-8, collected during this current investigation, was located within the former dry cleaner directly adjacent to historical indoor air sampling point IND-2 (see Figure 4). PCE was detected in IND-2 at a concentration of 18,000 μg/m³, while PCE was not detected (<50 μg/m³) in current sample IA-8 (see Table 1). Since sample IND-2 was collected, the dry cleaner facility has ceased operation and the unit has been vacated. It is unclear if the difference in PCE concentrations is due to the closure of active dry cleaner operations or a difference in sampling methods (IA-8 was collected over 24-hours, IND-2 was collected over 8-hours).

Recommendations

Based on the data collected during this investigation, review of historical information, and the above conclusions, WTI makes the following recommendations:

• Another round of indoor air sampling should be conducted within the now vacated former dry cleaner unit and the neighboring dentist office. The purpose of the sampling will be to 1) confirm the results of the samples collected from the dentist office during this current event, and 2) reconcile the differences in detected contamination concentrations between the current sampling event and the one conducted in October 2015. Sampling should be conducted over both 8-hour and 24-hour intervals. Additionally, the samples should be analyzed using EPA Test Method TO-15 SIM, instead of the previously used standard TO-15 test method. The TO-15 SIM Test Method will greatly reduce the detection limits used by the analytical laboratory. Also, care should be taken to ensure that the correct flow regulators are used on the sample canisters allowing for collection of full samples.

Project No. 5031 3 March 4, 2016

Certification

To the best of our knowledge, all statements made in this Report are true and correct. This Report is based on data provided by the client and others, site conditions observed, samples collected and analytical data. No warranty whatsoever is made that this report addresses all contamination found on the site. If you have any questions or comments, please contact WellTest, Inc. at (408) 287-2175. A copy of the client-authorization transmittal letter is provided in Attachment D.

ONAL GA

FORREST N. COOK

No. 8201

Summary of Current Indoor & Outdoor Air Analytical Data

Respectfully submitted, WELLTEST, INC.

Forrest N. Cook Associate Geologist

Table 1

California Professional Geologist #8201 (expires 9/16/2016)

List of Tables, Figures, and Attachments

Table I	Summary of Current indoor & Outdoor All Anarytical Data
Table 2	Summary of Historical Soil Vapor Analytical Data
Table 2	Summary of Historical Soil Analytical Data
Table 3	Summary of Historical Groundwater Analytical Data
Figure 1	Site Vicinity Map
Figure 2	Extended Site Map Showing Boring DP-1 Through DP-8 (02/18/15)
Figure 3	Generalized Site Map Showing the Former Dry Cleaner Business Unit, Adjacent Businesses,
	and Current Indoor Air Sample Locations
Figure 4	Generalized Site Map Showing Current and Historical Sampling Locations

Attachment A Recent Regulatory Directive Letter

Attachment B Background Information
Attachment C Laboratory Data Sheets
Attachment D Client Transmittal Letter

Distribution List

Mr. Ernest Lee Marina Faire Shopping Center 3271 S. Highland Dr., Ste. #704 Las Vegas, Nevada 89109

Mr. Mark Detterman Alameda County LOP 1131 Harbor Bay Pkwy. Alameda, California 94502

Project No. 5031 4 March 4, 2016

Limitations

This report is based upon a limited specific scope of work per the request of Marina Faire Shopping Center. This report is intended only for the use of WTI's client and those listed in the distribution section of the report. WTI does not accept liability for unauthorized reliance or use by any other third party. WTI makes no express or implied warranty in regards to the contents of this report.

This report is the property of WellTest, Inc. Copyright © 2016 WellTest, Inc. All rights reserved.

Project No. 5031 5 March 4, 2016

List of Acronyms

Bgs below ground surface

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

btoc Below top of casing 1,2-DCA 1,2-Dichloroethane

DHS State of California Department of Health Services

DO Dissolved oxygen DTW Depth to water

DWR Department of Water Resources

DIPE Di-isopropyl ether

ELAP Environmental Laboratory Accreditation Program

EC Electrical conductivity
EDB 1,2-dibromoethane
ETBE Ethyl tert butyl ether

Eth Ethanol
ft foot or feet
ft/ft feet per feet
FTU Field Turbidity Unit

GW Groundwater IPA Isopropyl Alcohol

MCL Maximum Contaminant Level

Meth Methanol
MSL Mean Sea Level
MTBE Methyl-t-butyl-ether
mg/L milligram per liter
mV millivolts
MW Monitoring Well

NGVD National Geodetic Vertical Datum of 1929

NA Not Analyzed NM Not Measured

ORP Oxidation reduction potential

PCE Tetrachloroethylene
P.G. Professional Geologist
ppmv parts per million by volume
QA/QC Quality Assurance/Quality Control

SCCDEH Santa Clara County Department of Environmental Health

SCVWD Santa Clara Valley Water District

TAME Tert amyl methyl ether TBA Tert butyl alcohol TDS Total dissolved solids

TOC Top of casing

TPHg Gasoline range (C6-C12) Volatile hydrocarbons as gasoline

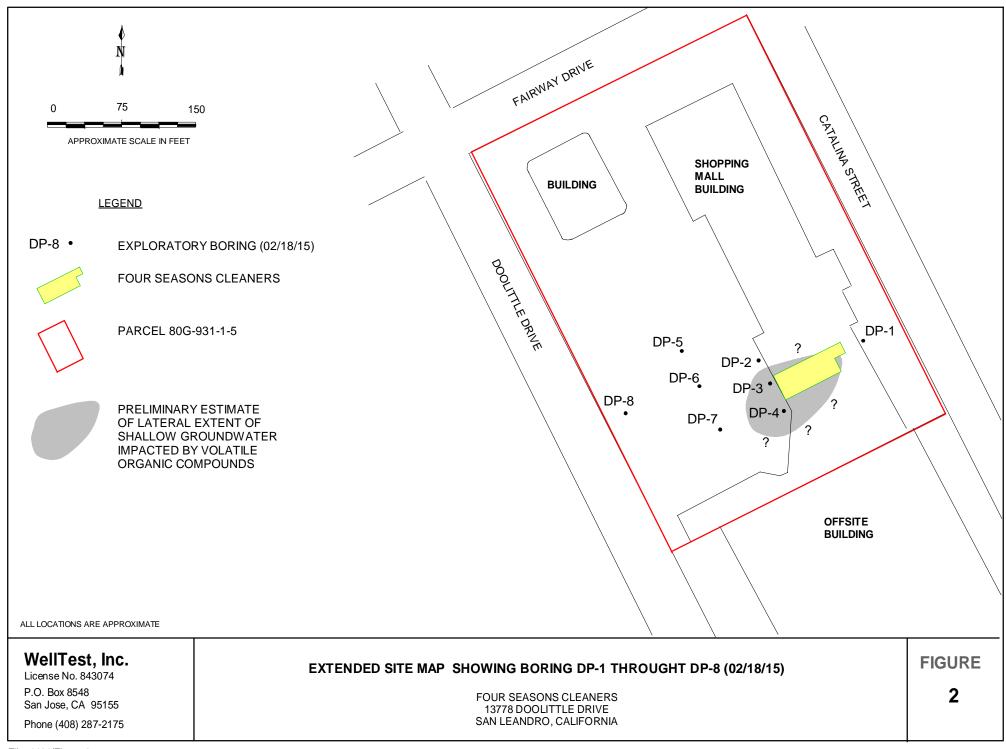

ug/L micrograms per liter uS micro Siemens

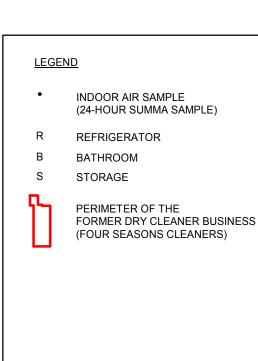
UST Underground storage tank VOC Volatile Organic Compound

WELLTEST WellTest, Inc.

°F - °C degrees Fahrenheit - degrees Celsius

TABLES




13778 DOOLITTLE AVE. SAN LEANDRO, CALIFORNIA

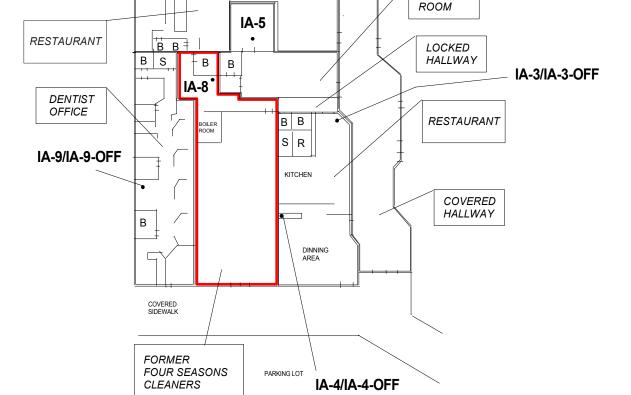
SITE VICINITY MAP

FIGURE

1

APPROXIMATE SCALE IN FEET

ALL LOCATIONS ARE APPROXIMATE. BASEMAP FROM MEASUREMENTS TAKING BY WELLTEST (FEBRUARY 2016)


WellTest, Inc.

License No. 843074 P.O. Box 8548 San Jose, CA 95155

Phone (408) 287-2175

GENERALIZED SITE MAP SHOWING THE FORMER DRY CLEANER BUSINESS UNIT,

FOUR SEASONS CLEANERS 13778 DOOLITTLE AVENUE SAN LEANDRO, CALIFORNIA

PARKING LOT

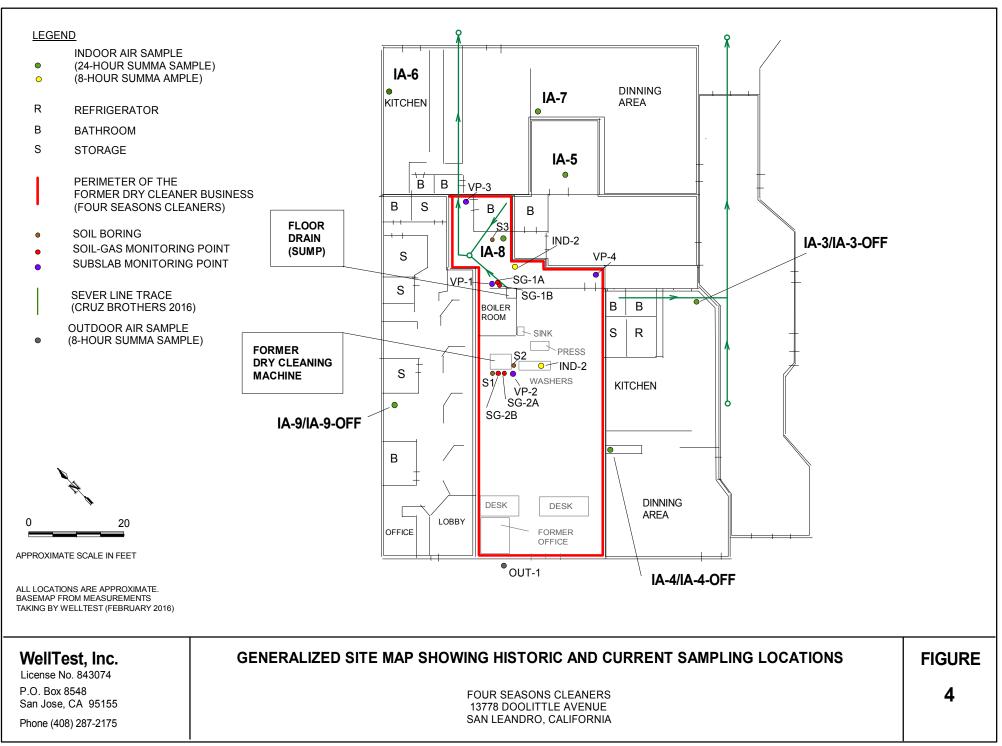
SIDEWALK

DINNING

STORAGE

IA-7

IA-6


● KITCHEN

ADJACENT BUSINESSES, AND CURRENT SAMPLING LOCATIONS

FIGURE

3

File: 5031/Drafting/Figure 3

File: 5031/Drafting/Figure 4

FIGURES

TABLE 1 SUMMARY OF CURRENT & HISTORICAL INDOOR & OUTDOOR AIR ANALYTICAL DATA 13778 DOOLITTLE DRIVE, SAN LEANDRO, CA

Sample I	Sample D Date	Β (μg/m³)	T (μg/m³)	E (μg/m³)	o-Xyl (μg/m³)	p&m-Xyl (μg/m³)	PCE (μg/m ³)	TCE (μg/m³)	cis-1,2DCE (μg/m ³)	VC (μg/m³)	IPA (μg/m³)
OUT-1	10/30/15	ND<11	ND<8.6	ND<7.6	ND<6.7	ND<17	1,500	32	ND<10	ND<13	ND<13
IND-1	10/30/15	ND<13	ND<10	ND<6.9	ND<7.9	ND<19	220	ND<22	ND<12	ND<15	ND<15
IND-2	10/30/15	ND<12	ND<9.2	ND<8.1	ND<7.2	ND<18	18,000	240	49	ND<14	ND<14
IA-3-off	02/14/16	ND<9.8	ND<7.5	ND<6.6	ND<5.8	ND<14	ND<22	ND<16	ND<9.1	ND<11	ND<11
IA-4	02/13/16	ND<9.8	ND<7.5	ND<6.6	ND<5.8	ND<14	ND<22	ND<16	ND<9.1	ND<11	ND<11
IA-4-off	02/14/16	ND<11	ND<8.5	ND<7.4	ND<6.6	ND<16	ND<25	ND<19	ND<10	ND<13	ND<12
IA-5	02/13/16	ND<8.9	ND<6.8	ND<6.0	ND<5.3	ND<13	ND<20	ND<15	ND<8.3	ND<10	ND<10
IA-7	02/18/16	ND<9.1	ND<6.9	ND<6.0	ND<5.4	ND<13	ND<21	ND<15	ND<8.4	ND<11	ND<10
IA-8	02/13/16	ND<22	ND<17	ND<15	ND<13	ND<32	ND<50	ND<37	ND<20	ND<26	ND<25
IA-9 ¹	02/23/16	ND<18	ND<14	ND<12	ND<11	ND<37	560	ND<30	ND<17	ND<21	ND<20
IA-9-off	02/24/16	ND<11	ND<8.0	ND<7.0	ND<6.3	ND<15	190	ND<18	ND<9.8	ND<12	1,700
	ESLs Comm/Ind.	0.42	1,300	4.9	4	40	2.1	3.0	35	0.16	NA

^{--- =} Parameter not analyzed

PCE = Tetrachloroethene

cis-1,2DCE = cis-1,2-Dichloroethene

TCE = Trichloroethene VC = Vinyl Chloride

IPA = Isopropyl Alcohol

MtBE = Methyl-t-butyl ether

<0.5 / ND = Not present at or above reporting detection limit

ug/m³ = micrograms per cubic meter = ppmv ESLs = Environmental Screening Levels, Directi Exposure - Feb 2016

off = sample collected with HVAC system turned off

B = Benzene

T = Toluene

^{1 =} dichlorodifluoromethane @ 2,100 ug/m3, 1,2-Dicholo-1,1,2,2-tetrafluoroethane @ 490 ug/m3, and Trichlorofluoromethane @ 240 ug/m3

E = Ethylbenzene

Xyl = Xylenes

TABLE 2 SUMMARY OF HISTORICAL SOIL VAPOR ANALYTICAL DATA 13778 DOOLITTLE DRIVE, SAN LEANDRO, CA

Sample ID	Sample Depth (ft)	Sample Date	Β (μg/m³)	T (μg/m³)	E (μg/m³)	o-Xyl (μg/m³)	p&m-Xyl (μg/m³)	PCE (μg/m³)	TCE (μg/m³)	cis-1,2DCE (μg/m³)	VC (μg/m³)	IPA (μg/m³)
S1 Air	0.5	08/10/14	ND	ND	ND	ND	ND	63,000	890	ND<320	ND<210	NA
S2 Air	0.5	08/10/14	ND	ND	ND	ND	ND	240,000	16,000	ND<960	ND<620	NA
S3 Air	0.5	08/10/14	ND	ND	ND	ND	ND	4,500,000	92,000	ND<20,000	ND<13,000	NA
SG-1A	5.0	10/30/15	590	1,800	ND<43	ND<38	ND<94	20,000,000	810,000	170,000	ND<75	3,900
SG-2A	5.0	10/30/15	ND<67	ND<51	ND<45	ND<40	ND<98	1,300,000	180,000	50,000	ND<78	ND<75
VP-1	subslab	10/30/15	ND<69	ND<52	ND<46	ND<41	ND<100	2,900,000	140,000	18,000	ND<80	ND<77
VP-2	subslab	10/30/15	ND<63	ND<48	ND<42	ND<38	ND<92	180,000	12,000	220	ND<74	370,000
VP-3	subslab	10/30/15	ND<63	ND<48	ND<42	ND<38	ND<92	470,000	5,400	ND<58	ND<74	ND<71
VP-4	subslab	10/30/15	ND<56	ND<43	ND<38	ND<34	ND<83	160,000	7,300	200	ND<66	27,000

^{--- =} Parameter not analyzed

CHHSL Comm/Ind. = California Human Health Screening Level, January 2005

MtBE = Methyl-t-butyl ether

PCE = Tetrachloroethene

TCE = Trichloroethene

VC = Vinyl Chloride

cis-1,2DCE = cis-1,2-Dichloroethene

IPA = Isopropyl Alcohol

<0.5 / ND = Not present at or above reporting detection limit

ug/m³ = micrograms per cubic meter = ppmv ESLs = Environmental Screening Levels, May 2013

B = Benzene

T = Toluene

E = Ethylbenzene

Xyl = Xylenes

TABLE 3 SUMMARY OF HISTORICAL SOIL ANALYTICAL DATA 13778 DOOLITTLE DRIVE, SAN LEANDRO, CA

Sample ID	Sample Depth (ft)	Sample Date	TPHd (mg/Kg)	B (mg/Kg)	T (mg/Kg)	E (mg/Kg)	o-Xyl (mg/Kg)	p&m-Xyl (mg/Kg)	PCE (mg/Kg)	TCE (mg/Kg)	cis-1,2DCE (mg/Kg)	VC (mg/Kg)	Other VOCs (mg/Kg)
S1 d 0.5'	0.5	08/10/14	3.2	ND	ND	ND	ND	ND	0.056	ND	ND	ND	All ND
S2 d 0.5'	0.5	08/10/14	2.6	ND	ND	ND	ND	ND	0.045	ND	ND	ND	All ND
S3 d 0.5'	0.5	08/10/14	2.1	ND	ND	ND	ND	ND	0.1	ND	ND	ND	All ND
S3 d 2'	2.0	08/10/14	ND<1.0	ND	ND	ND	ND	ND	20	ND	ND	ND	All ND
S3 d 5'	5.0	08/10/14	ND<1.0	ND	ND	ND	ND	ND	2.4	ND	ND	ND	All ND
DP-1d15.0	15.0	02/18/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	All ND
DP-2d14.5	14.5	02/18/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	All ND
DP-3d14.0	14.0	02/18/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	All ND
DP-4d14.5	14.5	02/18/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	All ND
DP-5d8.0	8.0	02/18/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	All ND
DP-6d15.0	15.0	02/18/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	All ND
DP-7d15.0	15.0	02/18/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	All ND
DP-8d15.0	15.0	02/18/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	All ND
SG-1Ad2.0	2.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	65	0.32	0.13	ND<0.005	All ND
SG-1Ad5.0	5.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	18	0.24	0.13	ND<0.005	All ND
SG-2Ad2.0	2.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	1.9	0.07	0.0021	ND<0.005	All ND
SG-2Ad5.0	5.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.37	0.046	0.02	ND<0.005	All ND
SG-1Bd2.0	2.0	10/13/15		ND<0.005	0.0015	ND<0.005	ND<0.005	ND<0.005	160	1.2	0.14	ND<0.005	All ND
SG-1Bd5.0	5.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	40	0.26	0.11	ND<0.005	All ND
SG-1Bd7.0	7.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	2.2	0.2	0.15	ND<0.005	All ND
SG-2Bd2.0	2.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.77	0.029	ND<0.005	ND<0.005	All ND
SG-2Bd5.0	5.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.25	0.014	0.0045	ND<0.005	All ND
SG-2Bd8.5	8.5	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.16	0.024	0.018	ND<0.005	All ND
	ESL	Comm/Ind.	500	0.044	2.9	3.3	2	.3	0.7	0.46	0.19	0.032	varies

^{--- =} Parameter not analyzed

ESLs = Environmental Screening Levels, May 2013

B = Benzene MtBE = Methyl-t-butyl ether

T = Toluene

E = Ethylbenzene

Xyl = Xylenes

PCE = Tetrachloroethene TCE = Trichloroethene

VC = Vinyl Chloride

cis-1,2DCE = cis-1,2-Dichloroethene

<0.5 / ND = Not present at or above reporting detection limit mg/Kg = milligrams per kilogram = ppm

TABLE 4
SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL DATA
13778 DOOLITTLE DRIVE, SAN LEANDRO, CA

Sample	ID Sample Date	Β (μg/L)	T (μg/L)	E (μg/L)	χ (μg/L)	MtBE (μg/L)	PCE (μg/L)	TCE (μg/L)	cis- 1,2DCE (µg/L)	trans- 1,2DCE (μg/L)	νc _{(μ} g/L)	Other VOCs (µg/L)
S-3*	08/10/14						750	51	7.6	ND<7.1	ND<7.1	All ND
DP-1	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
DP-2	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	0.55	ND<0.50	0.69	ND<0.50	ND<0.50	ND<0.50	All ND
DP-3	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	160	35	6.6	ND<0.50	ND<0.50	All ND
DP-4	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	12,000	2,100	610	11	ND<0.50	All ND
DP-5	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	0.61	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
DP-6	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	1.6	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
DP-7	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	0.77	ND<0.50	ND<0.50	ND<0.50	All ND
DP-8	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	0.84	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
SG-1E	10/13/15	0.18	0.38	ND<0.50	ND<1.0	ND<0.50	2,200	130	88	4.3	ND<0.50	All ND ¹
SG-2B	10/13/15	0.43	0.15	ND<0.50	ND<1.0	ND<0.50	1,500	480	280	22	0.34	All ND ²
	ESLs Comm/Ind.	1.0	40.0	30.0	20.0	5.0	5.0	5.0	6.0	10.0	0.5	varies

^{--- =} Parameter not analyzed

mg/Kg = milligrams per kilogram = ppm

ESLs = Environmental Screening Levels, May 2013

B = Benzene MtBE = Methyl-t-butyl ether PCE = Tetrachloroethene
T = Toluene
E = Ethylbenzene VC = Vinyl Chloride

Xyl = Xylenes (total) cis-1,2DCE = cis-1,2-Dichloroethene

1 = chlorobenzene @ 0.25 ug/L and chloroform @ 1.2 ug/L 2 = chlorobenzene @ 0.51 ug/L and chloroform @ 0.19 ug/L

<0.5 / ND = Not present at or above reporting detection limit

ATTACHMENT A

Recent Regulatory Directive Letter

ALAMEDA COUNTY HEALTH CARE SERVICES

REBBECA GEBHART, Acting Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

February 10, 2016

Mr. Ernie Lee Marina Faire, Shopping Center 3271 South Highland Drive, Suite 704 Las Vegas, NV 89109 (Sent via email to ernestlee@gmail.com)

Subject:

Conditional Work Plan Approval; Site Cleanup Program Case No. RO0003155 and Geotracker Global ID T10000006425, Four Seasons Cleaners, 13778 Doolittle Drive, San Leandro, CA 94577

Dear Mr. Lee:

Alameda County Department of Environmental Health (ACDEH) staff has reviewed the case file including the *Indoor Air Sampling Work Plan*, dated February 5, 2016 (submitted February 10, 2016). The work plan was prepared and submitted on your behalf by Well Test, Inc (WTI). Thank you for submitting the work plan. Thank you for also submitting documentation that the former dry cleaner suite tenant has vacated the premises. The work plan proposed the collection of at least five indoor air vapor samples in the four commercial suites surrounding the former dry cleaner location as an initial step in assessing vapor intrusion risks to adjacent suites at the shopping center.

Based on ACDEH staff review of the work plan, the proposed scope of work is conditionally approved for implementation provided that the technical comments below are incorporated during the proposed work. Submittal of a revised work plan or a work plan addendum is not required unless an alternate scope of work outside that described in the work plan or these technical comments is proposed. We request that you address the following technical comments, perform the proposed work, and send us the report described below. Please provide at least a 24-hour advance written notification to this office (e-mail preferred to: mark.detterman@acgov.org) prior to the start of field activities.

TECHNICAL COMMENTS

- Work Plan Modifications The referenced work plan proposes a series of actions with which ACDEH is in general agreement of undertaking; however, ACDEH requests several modifications to the approach. Please submit a report by the date specified below.
 - a. Dry Cleaner Suite Indoor Air Confirmation Resampling Figure 3 of the referenced work plan does not indicate that indoor air at the dry cleaner suite will be resampled to confirm the initial analytical data. The resampling of this suite will additionally provide initial information on concentration variability at the suite. Therefore, ACDEH requests the inclusion of one sampling location in the dry cleaner suite, at the location of IND-2 to capture worst case concentrations.
 - b. Deli / Restaurant Indoor Air Sampling In order to capture variability within a suite, especially within individually partitioned rooms, it appears appropriate to request a second indoor air sample in the "back" area of the suite identified as a deli / restaurant. ACDEH is not aware of tenant suite configurations, but anticipates that the "back" area of this suite has been partitioned off from the main restaurant area and is closest to the boiler room of the dry cleaner suite.
 - c. Tenant Suite Mapping Please include, at a minimum, a sketch map of tenant suite partitioning for each of the five tenant suites with analytical data to be submitted by February 26, 2016, as requested below, and as previously requested. Please be aware that the

Mr. Ernie Lee RO0003155 February 10, 2016, Page 2

primary intent of this work effort is to quickly obtain indoor air analytical at adjacent suites; the tenant suite map should not delay the primary focus of data collection, but may allow an initial understanding of the indoor air sampling results.

- d. HVAC System The referenced work plan indicates that a second indoor air sample will be collected at any suite with a Heating, Ventilation, Air Conditioning (HVAC) system. In order to ensure comparability, please initially collect all suites in a similar manner (HVAC off or on), and then repeat with indoor air sampling with the HVAC system on or off (the reverse). This can allow an initial determination of HVAC methods to minimize the intrusion of vapors from the subsurface into a tenant suite.
- 2. Utility Conduit Locations Initial partial utility run locations have been mapped out on report and work plan figures. Please additionally consult any building plans held internally or at the City in order to quickly determine utility runs for subsequent confirmation. As noted above, this request is not intended to delay the submittal of indoor air sample analytical data, but provide a known forward path for utility location determinations at the site.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACDEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the specified file naming convention below, according to the following schedule:

- February 12, 2016 Indoor Air Sampling
- To Be Determined Preliminary Data Submittal Email to Case Worker upon Receipt
- February 26, 2016 Vapor Intrusion Report
 File to be named: RO3155 SWI R yyyy-mm-dd

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Online case files are available for review at the following website: http://www.acgov.org/aceh/index.htm.

If you have any questions, please do not hesitate to call me at (510) 567-6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Digitally signed by Mark Detterman DN: cn=Mark Detterman, o=ACEH,

ou=ACEH,

email=mark.detterman@acgov.org, c=US Date: 2016.02.10 17:43:26 -08'00'

Mark E. Detterman, PG, CEG Senior Hazardous Materials Specialist

Enclosures: Attachment 1 - Responsible Party (ies) Legal Requirements / Obligations

Electronic Report Upload (ftp) Instructions

cc: Ms. Julie D'Hondt, Marina Faire, LP, 3271 S. Highland Drive, Suite 704, Las Vegas, NV 89109 (Sent via email to highlandofficelv3@gmail.com)

Mr. Ernie Lee RO0003155 February 10, 2016, Page 3

Bill Dugan, Well Test, Inc; P.O. Box 8548, San Jose, CA 95115 (Sent via E-mail to: dugan@welltest.biz)

Forrest Cook, Well Test, Inc; P.O. Box 8548, San Jose, CA 95115 (Sent via E-mail to: Cook@welltest.biz)

Dilan Roe, ACDEH, (Sent via electronic mail to dilan.roe@acgov.org)

Mark Detterman, ACDEH, (sent via electronic mail to mark.detterman@acgov.org)

Electronic File, GeoTracker

ATTACHMENT B

Background Information

ATTACHMENT B

Site Description, Background, and Geology/Hydrogeology Details

13778 Doolittile Drive, San Leandro, CA Case # RO0003155

A description of the site, the history of the site and project, and the hydrogeologic characteristics of the site are summarized in the following subsections.

Site Description: The site is located in a mixed commercial and residential area of San Leandro, California. The site parcel is approximately 5.05 acres and is improved with a multi-tenant strip mall and separate restaurant building. The dry cleaning unit is located within the strip mall and is associated with 13778 Doolittle Drive. The site lies at an elevation of approximately 15 feet above sea level and is relatively flat. The property is bounded by Doolittle Drive to the west, Fairway Drive to the north, Catalina Drive to the east and a commercial property to the south.

Previous Site Investigations: A Limited Phase II Soil, Water, and Soil Vapor Investigation prepared by PIERS Environmental Services, Inc. (PIERS) for the subject site in August 2014. The results of the PIERS report indicated that the subsurface at the subject site has been significantly impacted by the common dry cleaning solvent tetrachloroethylene (PCE) and its breakdown products trichloroethene (TCE) and cis-1,2-dichloroethen (cis-1,2DCE). The likely source of the identified impacts is the on-site dry cleaner which, reportedly, historically used and stored these solvents. Based upon the results of the PIERS investigation, WTI prepared a Soil and Water Investigation Work Plan for the subject site, which outlined a specific set of tasks to further define the scope and extent of subsurface soil and water contamination. The Work Plan was submitted to the Alameda County Health Care Services Agency (ACHCSA), the local oversight program, and was approved (with comments) in their January 15, 2015 Directive Letter. WTI implemented the scope of the Work Plan in February 2015, which included the collection of soil and grab groundwater samples from eight temporary borings. The results of the investigation are presented in WTI's Soil and Water Investigation Report and Vapor Assessment Work Plan, dated March 6, 2015.

ATTACHMENT C

Laboratory Data Sheets

Date of Report: 03/02/2016

Bill Dugan

Well Test, Inc. 1180 Delmas Ave. San Jose, CA 95125

Client Project: Four Seasons Cleaners

Air Samples **BCL Project:** 1605144 **BCL Work Order:** B228454 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 2/19/2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Misty Orton

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	6
Sample Results	
1605144-02 - IA-3-off SN 801/03893	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	7
1605144-03 - IA-4 SN 804/0302	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	10
1605144-04 - IA-4-off SN C8340/03662	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	13
1605144-05 - IA-5 SN 482/03657	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	16
1605144-06 - IA-8 SN 5524/03791	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	19
Quality Control Reports	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	
Method Blank Analysis	22
Laboratory Control Sample	
Notes	
Notes and Definitions	25

Report ID: 1000454821

Chain of Custody and Cooler Receipt Form for 1605144 Page 1 of 3 Chain of Custody Ιū ANALYSIS REQUESTED 2/10/10 NEC (30) 3/19/16 2130 RET 2-19-16 1545 PIA# Packing Material: \$ 100° TO-15 VOCs including PCE 因の FAX * #408 287-2176 Y N N REL. May Bogon T10000006425 Received by (Signature and Print Name) EPA Received by (Signature and Print Name Payment Received at Delivery 的地 WET BLUE NONE Merced Co Tulare Co CDHS Fresno Co Regulatory Compliance Electronic Data Transfer: System No. * Comments / Station Code SO = Solid 中半中 dugan@welltest.biz Results in ug/m3 Carbon Copies: Results in ug/m3 CWW = Chorinated Waste Water BW = Bottled Water ste Water SW = Storm Water DW = Drinking Water Phone * #: 408 287-2175 Other: 4100 Atlas Court Bakersfield, Ca. 93308 (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Cooling Method: The PSY OSTD \$\int Day** \Bullet 2 Day** \Bullet 1 Day* Matrix * 95155-8548 E-mail: Time Time 03874 16 12 Hg Air Ąį Ą ķ ĄiĻ Result Request ** Surcharge 15,49 16 Ho E. I. 20° Hg 25.0g/c 17"H3 2.19.16 1830 REC. (Sep. Date Date 5035 Note: Sample Names to be used as Field Point Names BCL Quote # 03662 03657 03893 Mail Only 0302 122 241 WW = Waste Water PO# Company
WellTest, Inc. SN C8340/ CAO UPS GSO WALK-IN SIVC FED EX OTHER SN 482 Note: All samples in 6L Summa Canisters S 918 NS SN 5524 How would you like your completed results sent? [7] E-Mail [7] Fax [7] EDD STD Level II SN 801 SN 804 = Clorinated Finished Water Bill Dugan 541 Leandro, CA Sample Description / Location * QC Request CFW = Clorinated Finis FW = Finished Water San Jose 10/11 man 150-9/ LABORATORIES Çity 9:09 p m | IA-3-off IA-4-off eccived for Lab by: (Signature and Printed Name) ¥-3 IA-5 IA-8 RSW = Raw Surface Water RGW = Raw Ground Water Relinquished by: (Signature and Printed Name) 9:08pm Four Seasons Cleaners 11:37 11:38 12:16 -12:24 Time Sampler Name Printed / Signature NER 2/13/16 2/14/16 WellTest, Inc. 2/13/16 2/14/16 2/13/16 Date 2/13/16 P.O. Box 8548 Client/Company Name Project Information: Shipping Method: 6L l et 79 / 7 Bill Dugan Required Fields 2 Ç Matrix Types:

Chain of Custody and Cooler Receipt Form for 1605144 Page 2 of 3

BC LABORATORIES INC.	(1)		COOLER	RECEIP	FORM	The second	***************************************	Pag	e	Of /2
Submission #: 1 () _ () SHIPPING INFORM Fed Ex UPS Ontrac BC Lab Field Service Other	TATION Ha	nd Delive	ry 🗆	Ice Ch	iest 🗆	G CONTA None □ pecify)	Box 🕽	0	FREE LIC	
Refrigerant: Ice ☐ Blue Ice ☐	Nor	пе 🕽	Other 🗆	Com	ments:					
[10년 10년 10년 10년 10년 10년 10년 10년 10년 10년		ners □ s □ No □	1	⊱ Con	nments:			A-11 - 14 - 14 - 14 - 14 - 14 - 14 - 14		
All samples received? Yes \ No □ All	ll sample	s containe	rs intact?	rest No		Descri	otion(s) mat	ch COC2	vac No	
COC Pagained Emis	civity		Containor	Same.	Thomas	mata ID.	Stion(a) mac	1	11.0	2100
							• °C			2009
					SAMPI	LE NUMBERS	}			1
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10
QT PE UNPRES	ļ									
4oz / 8oz / 16oz PE UNPRES	 			<u> </u>						
2oz Cr*6	<u> </u>			ļ			_			
QT INORGANIC CHEMICAL METALS				-	ļ		_			
INORGANIC CHEMICAL METALS 40z / 80z / 160z	ļ			ļ			<u> </u>			
PT CYANIDE	ļ			ļ	_					
PT NITROGEN FORMS	ļ				 					
PT TOTAL SULFIDE	*				ļ	-				
loz. NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON					ļ		<u> </u>			
T CHEMICAL OXYGEN DEMAND					ļ		ļ			
PIA PHENOLICS			-	ļ						
0ml VOA VIAL TRAVEL BLANK					<u> </u>	-	ļ			
0ml VOA VIAL			ļ				ļ			
YT EPA 1664			ļ		<u> </u>					
T ODOR						<u> </u>			***************************************	
ADIOLOGICAL						 				
ACTERIOLOGICAL						<u> </u>				
0 ml VOA VIAL- 504					ļ					
T EPA 508/608/8080		-	-			ļ				
T EPA 515.1/8150		-	-			<u> </u>				
T EPA 525	······································		-			 				
T EPA 525 TRAVEL BLANK		 				 				
Oml EPA 547		+				 				
omi EPA 531.1		 	-			 				
Z EPA 548		 	 			<u> </u>				
T EPA 549		 	 				ļI			
T EPA 8015M		-	 			 				
T EPA 8270		 				-				
z / 160z / 320z AMBER		 								
z/16oz/32oz JAR	***************************************	 				 				
DIL SLEEVE CB VIAL			 							
ASTIC BAG		 	 			ļ				
EDLAR BAG		 								
CROUS IRON		 								
ICORE		 	 							
		 				V) 2-2	0			
IART KIT	a /1	dΛ	11		A	n				
MMA CANISTER								- 1		

Chain of Custody and Cooler Receipt Form for 1605144

Submission #: / () - () S SHIPPING INFOR Fed Ex UPS Ontrac BC Lab Field Service Other	MATION Hand	d Deliver	y 🗆	lice Ch	est 🗆	G CONTA None □ pecify)	Box 🔽	0 -	FREE LIO		
Refrigerant: Ice Blue Ice] None	78-	Other 🗆	Com	nents:						
Custody Seals Ice Chest □	Containe	rs 🗆 :		Con			Marin in management	***************************************	***************************************		
All samples received? Yes ☑ No □ All samples containers intact? Yes □ No □ Description(s) match COC? Yes ☑ No □											
COC Received Emissivity: Container; Summer Thermometer ID: Date/Time 2/19 2/159 Temperature: (A L COM °C / (C) TOTH °C Analyst Init DD P											
SAMPLE CONTAINERS	_	T	T		T	PLE NUMBERS	7				
QT PE UNPRES	1 1	2	3	1 4	5	6	7	8 	9	10	
4oz/8oz/16oz PE UNPRES	1			<u> </u>	1						
20z Cr*6											
QT INORGANIC CHEMICAL METALS					 		 		 		
INORGANIC CHEMICAL METALS 40z / 80z / 160z						1					
PT CYANIDE											
PT NITROGEN FORMS											
PT TOTAL SULFIDE	,										
20z. NITRATE / NITRITE						1					
PT TOTAL ORGANIC CARBON											
PT CHEMICAL OXYGEN DEMAND											
PIA PHENOLICS											
40ml VOA VIAL TRAVEL BLANK											
40ml VOA VIAL											
QT EPA 1664											
PT ODOR											
RADIOLOGICAL											
BACTERIOLOGICAL						·					
40 ml VOA VIAL- 504											
QT EPA 508/608/8080											
QT EPA 515.1/8150											
QT EPA-525						7 f 100 ; 100 (100 (100) 100)					
QT EPA 525 TRAVEL BLANK						4					
0ml EPA 547											
Oml EPA 531.1											
oz EPA 548											
OT EPA 549											
OT EPA 8015M											
T EPA-8270											
oz/16oz/32oz AMBER											
oz / 16oz / 32oz JAR											
OIL SLEEVE											
CB VIAL											
LASTIC BAG											
EDLAR BAG									<u> </u>		
ERROUS IRON NCORE											
MART KIT						<u></u>					
MMA CANISTER				L	<u>/</u>	1+-1					
mments:				Date/Time:							

Well Test, Inc. 1180 Delmas Ave. San Jose, CA 95125

03/02/2016 14:49 Reported: Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
1605144-01	COC Number:		Receive Date:	02/19/2016 21:30
	Project Number:	Four Seasons Cleaners	Sampling Date:	02/13/2016 11:37
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-3 SN 816/03874	Lab Matrix:	Air
	Sampled By:	Bill Dugan of WTI	Sample Type:	Gas Chromatography
1605144-02	COC Number:		Receive Date:	02/19/2016 21:30
	Project Number:	Four Seasons Cleaners	Sampling Date:	02/14/2016 21:09
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-3-off SN 801/03893	Lab Matrix:	Air
	Sampled By:	Bill Dugan of WTI	Sample Type:	Gas Chromatography
1605144-03	COC Number:		Receive Date:	02/19/2016 21:30
	Project Number:	Four Seasons Cleaners	Sampling Date:	02/13/2016 11:38
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-4 SN 804/0302	Lab Matrix:	Air
	Sampled By:	Bill Dugan of WTI	Sample Type:	Gas Chromatography
1605144-04	COC Number:		Receive Date:	02/19/2016 21:30
	Project Number:	Four Seasons Cleaners	Sampling Date:	02/14/2016 21:08
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-4-off SN C8340/03662	Lab Matrix:	Air
	Sampled By:	Bill Dugan of WTI	Sample Type:	Gas Chromatography
1605144-05	COC Number:		Receive Date:	02/19/2016 21:30
	Project Number:	Four Seasons Cleaners	Sampling Date:	02/13/2016 12:16
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-5 SN 482/03657	Lab Matrix:	Air
	Sampled By:	Bill Dugan of WTI	Sample Type:	Gas Chromatography
1605144-06	COC Number:		Receive Date:	02/19/2016 21:30
	Project Number:	Four Seasons Cleaners	Sampling Date:	02/13/2016 12:24
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-8 SN 5524/03791	Lab Matrix:	Air
	Sampled By:	Bill Dugan of WTI	Sample Type:	Gas Chromatography

Page 6 of 25 Report ID: 1000454821

Well Test, Inc. 03/02/2016 14:49 Reported: Project: Air Samples 1180 Delmas Ave. San Jose, CA 95125

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	05144-02	Client Sampl	e Name:	Four Seasons Cleaners, IA-3-off SN 801/03893, 2/14/2016 9:09:00PM, Bill Dugan					
Constituent		Dogult	Heite	PQL	MDL	Mathad	MB	Lab	D #
Constituent Acetone		Result ND	Units ug/m3	120	7.3	Method EPA-TO-15	Bias ND	Quals A01	Run # 1
Acrylonitrile		ND	ug/m3	47	8.2	EPA-TO-15	ND	A01	<u>·</u> 1
Allyl chloride		ND	ug/m3	47	6.8	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	47	9.8	EPA-TO-15	ND	A01	<u>·</u> 1
Benzyl chloride		ND	ug/m3	230	6.1	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	120	19	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	230	15	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	47	15	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	47	9.4	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	47	8.9	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	120	26	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	120	19	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	47	15	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	120	17	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	47	9.4	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	47	6.6	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	120	33	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	120	22	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	120	7.3	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	120	8.2	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	120	7.3	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	120	26	EPA-TO-15	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	120	13	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	120	12	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	120	15	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	47	9.1	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	47	12	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	120	16	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	120	6.1	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	120	7.7	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluo	roethane	ND	ug/m3	120	23	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	120	47	EPA-TO-15	ND	A01	1
1,4-Dioxane		ND	ug/m3	47	10	EPA-TO-15	ND	A01	1

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 7 of 25 Report ID: 1000454821

Reported: 03/02/2016 14:49 Project: Air Samples 1180 Delmas Ave.

San Jose, CA 95125 Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	05144-02 Client	Sample Name:	Four Sea	sons Cleaners, I	A-3-off SN 801/0389	93, 2/14/2016 9:09	00PM, Bill Dugan	
Constituent	Res	sult Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Ethanol	N	D ug/m3	47	14	EPA-TO-15	ND	A01	1
Ethyl acetate	N	D ug/m3	47	11	EPA-TO-15	ND	A01	1
Ethylbenzene	N	D ug/m3	120	6.6	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene	N	D ug/m3	120	11	EPA-TO-15	ND	A01	1
n-Heptane	N	D ug/m3	47	12	EPA-TO-15	ND	A01	1
Hexachlorobutadiene	N	D ug/m3	230	13	EPA-TO-15	ND	A01	1
Hexane	N	D ug/m3	120	11	EPA-TO-15	ND	A01	1
2-Hexanone	N	D ug/m3	120	4.9	EPA-TO-15	ND	A01	1
Isopropyl alcohol	N	D ug/m3	47	11	EPA-TO-15	ND	A01	1
Methylene chloride	N	D ug/m3	230	17	EPA-TO-15	ND	A01	1
Methyl ethyl ketone	N	D ug/m3	47	6.3	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone	N	D ug/m3	120	13	EPA-TO-15	ND	A01	1
Methyl t-butyl ether	N	D ug/m3	47	6.1	EPA-TO-15	ND	A01	1
Propylene	N	D ug/m3	47	6.6	EPA-TO-15	ND	A01	1
Styrene	N	D ug/m3	120	5.1	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane	N	D ug/m3	120	14	EPA-TO-15	ND	A01	1
Tetrachloroethene	N	D ug/m3	47	22	EPA-TO-15	ND	A01	1
Tetrahydrofuran	N	D ug/m3	47	8.4	EPA-TO-15	ND	A01	1
Toluene	N	D ug/m3	47	7.5	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene	N	D ug/m3	230	170	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane	N	D ug/m3	120	19	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane	N	D ug/m3	120	21	EPA-TO-15	ND	A01	1
Trichloroethene	N	D ug/m3	47	16	EPA-TO-15	ND	A01	1
Trichlorofluoromethane	N	D ug/m3	120	37	EPA-TO-15	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoroe	ethane N	D ug/m3	120	23	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene	N	D ug/m3	120	5.8	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene	N	D ug/m3	120	7.7	EPA-TO-15	ND	A01	1
Vinyl acetate	N	D ug/m3	47	12	EPA-TO-15	ND	A01	1
Vinyl chloride	N	D ug/m3	47	11	EPA-TO-15	ND	A01	1
o- & m-Xylenes	N	D ug/m3	120	14	EPA-TO-15	ND	A01	1
o-Xylene	N	D ug/m3	120	5.8	EPA-TO-15	ND	A01	1
Total Xylenes	N	D ug/m3	230	20	EPA-TO-15	ND	A01	1
4-Bromofluorobenzene (Surro	ogate) 75	5.6 %	70 - 130 (LCL - UCL)	EPA-TO-15			1

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 8 of 25 Report ID: 1000454821

1180 Delmas Ave. San Jose, CA 95125 Reported: 03/02/2016 14:49
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample II	D : 1605144-02	Client Sar	ent Sample Name: Four Seasons Cleaners, IA-3-off SN 801/03893, 2/14/2016 9:09:00PM, Bill Dugan						
Run #	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID		
1	EPA-TO-15	02/29/16	02/29/16 15:06	MJB	MS-A1	23.400	BZB2858		

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 9 of 25

Well Test, Inc.

Reported: 03/02/2016 14:49
1180 Delmas Ave.

Project: Air Samples

San Jose, CA 95125 Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	05144-03	Client Sample Name:		Four Seasons Cleaners, IA-4 SN 804/0302, 2/13/2016				3 11:38:00AM, Bill Dugan		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
Acetone		ND	ug/m3	120	7.3	EPA-TO-15	ND	A01	1	
Acrylonitrile		ND	ug/m3	47	8.2	EPA-TO-15	ND	A01	1	
Allyl chloride		ND	ug/m3	47	6.8	EPA-TO-15	ND	A01	1	
Benzene		ND	ug/m3	47	9.8	EPA-TO-15	ND	A01	1	
Benzyl chloride		ND	ug/m3	230	6.1	EPA-TO-15	ND	A01	1	
Bromodichloromethane		ND	ug/m3	120	19	EPA-TO-15	ND	A01	1	
Bromoform		ND	ug/m3	230	15	EPA-TO-15	ND	A01	1	
Bromomethane		ND	ug/m3	47	15	EPA-TO-15	ND	A01	1	
1,3-Butadiene		ND	ug/m3	47	9.4	EPA-TO-15	ND	A01	1	
Carbon disulfide		ND	ug/m3	47	8.9	EPA-TO-15	ND	A01	1	
Carbon tetrachloride		ND	ug/m3	120	26	EPA-TO-15	ND	A01	1	
Chlorobenzene		ND	ug/m3	120	19	EPA-TO-15	ND	A01	1	
Chloroethane		ND	ug/m3	47	15	EPA-TO-15	ND	A01	1	
Chloroform		ND	ug/m3	120	17	EPA-TO-15	ND	A01	1	
Chloromethane		ND	ug/m3	47	9.4	EPA-TO-15	ND	A01	1	
Cyclohexane		ND	ug/m3	47	6.6	EPA-TO-15	ND	A01	1	
Dibromochloromethane		ND	ug/m3	120	33	EPA-TO-15	ND	A01	1	
,2-Dibromoethane		ND	ug/m3	120	22	EPA-TO-15	ND	A01	1	
,2-Dichlorobenzene		ND	ug/m3	120	7.3	EPA-TO-15	ND	A01	1	
,3-Dichlorobenzene		ND	ug/m3	120	8.2	EPA-TO-15	ND	A01	1	
,4-Dichlorobenzene		ND	ug/m3	120	7.3	EPA-TO-15	ND	A01	1	
Dichlorodifluoromethane		ND	ug/m3	120	26	EPA-TO-15	ND	A01	1	
,1-Dichloroethane		ND	ug/m3	120	13	EPA-TO-15	ND	A01	1	
,2-Dichloroethane		ND	ug/m3	120	12	EPA-TO-15	ND	A01	1	
,1-Dichloroethene		ND	ug/m3	120	15	EPA-TO-15	ND	A01	1	
cis-1,2-Dichloroethene		ND	ug/m3	47	9.1	EPA-TO-15	ND	A01	1	
rans-1,2-Dichloroethene		ND	ug/m3	47	12	EPA-TO-15	ND	A01	1	
,2-Dichloropropane		ND	ug/m3	120	16	EPA-TO-15	ND	A01	1	
sis-1,3-Dichloropropene		ND	ug/m3	120	6.1	EPA-TO-15	ND	A01	1	
rans-1,3-Dichloropropene		ND	ug/m3	120	7.7	EPA-TO-15	ND	A01	1	
,2-Dichloro-1,1,2,2-tetrafluor	oethane	ND	ug/m3	120	23	EPA-TO-15	ND	A01	1	
,1-Difluoroethane		ND	ug/m3	120	47	EPA-TO-15	ND	A01	1	
1,4-Dioxane		ND	ug/m3	47	10	EPA-TO-15	ND	A01	1	

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 10 of 25

1180 Delmas Ave. San Jose, CA 95125 Reported: 03/02/2016 14:49
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	05144-03 Clie	Client Sample Name:		easons Cleaners, I	A-4 SN 804/0302, 2	2/13/2016 11:38:00/	16 11:38:00AM, Bill Dugan		
Constituent	R	esult Uni	s PQL	MDL	Method	MB Bias	Lab Quals	Run#	
Ethanol		ND ug/m		14	EPA-TO-15	ND	A01	1	
Ethyl acetate		ND ug/m	3 47	11	EPA-TO-15	ND	A01	1	
Ethylbenzene		ND ug/m	3 120	6.6	EPA-TO-15	ND	A01	1	
1-Ethyl-4-methylbenzene		ND ug/m	3 120	11	EPA-TO-15	ND	A01	1	
n-Heptane		ND ug/m	3 47	12	EPA-TO-15	ND	A01	1	
Hexachlorobutadiene		ND ug/m	3 230	13	EPA-TO-15	ND	A01	1	
Hexane		ND ug/m	3 120	11	EPA-TO-15	ND	A01	1	
2-Hexanone		ND ug/m	3 120	4.9	EPA-TO-15	ND	A01	1	
Isopropyl alcohol		ND ug/m	3 47	11	EPA-TO-15	ND	A01	1	
Methylene chloride		ND ug/m	3 230	17	EPA-TO-15	ND	A01	1	
Methyl ethyl ketone		ND ug/m	3 47	6.3	EPA-TO-15	ND	A01	1	
Methyl isobutyl ketone		ND ug/m	3 120	13	EPA-TO-15	ND	A01	1	
Methyl t-butyl ether		ND ug/m	3 47	6.1	EPA-TO-15	ND	A01	1	
Propylene		ND ug/m	3 47	6.6	EPA-TO-15	ND	A01	1	
Styrene		ND ug/m	3 120	5.1	EPA-TO-15	ND	A01	1	
1,1,2,2-Tetrachloroethane		ND ug/m	3 120	14	EPA-TO-15	ND	A01	1	
Tetrachloroethene		ND ug/m	3 47	22	EPA-TO-15	ND	A01	1	
Tetrahydrofuran		ND ug/m	3 47	8.4	EPA-TO-15	ND	A01	1	
Toluene		ND ug/m	3 47	7.5	EPA-TO-15	ND	A01	1	
1,2,4-Trichlorobenzene		ND ug/m	3 230	170	EPA-TO-15	ND	A01	1	
1,1,1-Trichloroethane		ND ug/m	3 120	19	EPA-TO-15	ND	A01	1	
1,1,2-Trichloroethane		ND ug/m	3 120	21	EPA-TO-15	ND	A01	1	
Trichloroethene		ND ug/m	3 47	16	EPA-TO-15	ND	A01	1	
Trichlorofluoromethane		ND ug/m	3 120	37	EPA-TO-15	ND	A01	1	
1,1,2-Trichloro-1,2,2-trifluoroe	ethane	ND ug/m	3 120	23	EPA-TO-15	ND	A01	1	
1,2,4-Trimethylbenzene		ND ug/m	3 120	5.8	EPA-TO-15	ND	A01	1	
1,3,5-Trimethylbenzene		ND ug/m	3 120	7.7	EPA-TO-15	ND	A01	1	
/inyl acetate		ND ug/m	3 47	12	EPA-TO-15	ND	A01	1	
Vinyl chloride		ND ug/m	3 47	11	EPA-TO-15	ND	A01	1	
o- & m-Xylenes		ND ug/m	3 120	14	EPA-TO-15	ND	A01	1	
o-Xylene		ND ug/m	3 120	5.8	EPA-TO-15	ND	A01	1	
Total Xylenes		ND ug/m	3 230	20	EPA-TO-15	ND	A01	1	
4-Bromofluorobenzene (Surro	ogate)	80.6 %	70 - 130	(LCL - UCL)	EPA-TO-15			1	

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 11 of 25

1180 Delmas Ave. San Jose, CA 95125 **Reported:** 03/02/2016 14:49

Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	D : 1605144-03	Client Sar	mple Name:	Four Seasons Cle	aners, IA-4 SN 804/	0302, 2/13/2016	11:38:00AM, Bill Dug	jan
Run#	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15	02/29/16	02/29/16 15:38	B MJB	MS-A1	23.400	BZB2858	

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 12 of 25

1180 Delmas Ave.

Reported: 03/02/2016 14:49
Project: Air Samples

San Jose, CA 95125 Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	05144-04	Client Sample Name:		Four Seasons Cleaners, IA-4-off SN C8340/03662, 2/14/2016 9:08:00PM, Bill Dugan					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		ND	ug/m3	130	8.2	EPA-TO-15	ND	A01	1
Acrylonitrile		ND	ug/m3	53	9.3	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	53	7.7	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	53	11	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	260	6.9	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	130	21	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	260	17	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	53	17	EPA-TO-15	ND	A01	1
,3-Butadiene		ND	ug/m3	53	11	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	53	10	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	130	29	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	130	22	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	53	17	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	130	20	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	53	11	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	53	7.4	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	130	37	EPA-TO-15	ND	A01	1
,2-Dibromoethane		ND	ug/m3	130	25	EPA-TO-15	ND	A01	1
,2-Dichlorobenzene		ND	ug/m3	130	8.2	EPA-TO-15	ND	A01	1
,3-Dichlorobenzene		ND	ug/m3	130	9.3	EPA-TO-15	ND	A01	1
,4-Dichlorobenzene		ND	ug/m3	130	8.2	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	130	29	EPA-TO-15	ND	A01	1
,1-Dichloroethane		ND	ug/m3	130	15	EPA-TO-15	ND	A01	1
,2-Dichloroethane		ND	ug/m3	130	14	EPA-TO-15	ND	A01	1
,1-Dichloroethene		ND	ug/m3	130	17	EPA-TO-15	ND	A01	1
sis-1,2-Dichloroethene		ND	ug/m3	53	10	EPA-TO-15	ND	A01	1
rans-1,2-Dichloroethene		ND	ug/m3	53	14	EPA-TO-15	ND	A01	1
,2-Dichloropropane		ND	ug/m3	130	19	EPA-TO-15	ND	A01	1
is-1,3-Dichloropropene		ND	ug/m3	130	6.9	EPA-TO-15	ND	A01	1
rans-1,3-Dichloropropene		ND	ug/m3	130	8.7	EPA-TO-15	ND	A01	1
,2-Dichloro-1,1,2,2-tetrafluor	oethane	ND	ug/m3	130	26	EPA-TO-15	ND	A01	1
,1-Difluoroethane		ND	ug/m3	130	53	EPA-TO-15	ND	A01	1
I,4-Dioxane		ND	ug/m3	53	12	EPA-TO-15	ND	A01	1

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 13 of 25

Reported: 03/02/2016 14:49
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	605144-04	Client Sample	e Name:	Four Season	s Cleaners, I	A-4-off SN C8340/036	62, 2/14/2016 9:0	08:00PM, Bill Dugan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Ethanol		ND	ug/m3	53	16	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	53	12	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	130	7.4	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	130	12	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	53	13	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	260	14	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	130	12	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	130	5.6	EPA-TO-15	ND	A01	1
Isopropyl alcohol		ND	ug/m3	53	12	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	260	19	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	53	7.2	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	130	14	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	53	6.9	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	53	7.4	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	130	5.8	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	130	15	EPA-TO-15	ND	A01	1
Tetrachloroethene		ND	ug/m3	53	25	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	53	9.5	EPA-TO-15	ND	A01	1
Toluene		ND	ug/m3	53	8.5	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	260	190	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	130	22	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	130	23	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	53	19	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	130	42	EPA-TO-15	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	130	26	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	130	6.6	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	130	8.7	EPA-TO-15	ND	A01	1
Vinyl acetate		ND	ug/m3	53	13	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	53	13	EPA-TO-15	ND	A01	1
p- & m-Xylenes		ND	ug/m3	130	16	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	130	6.6	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	260	23	EPA-TO-15	ND	A01	1
4-Bromofluorobenzene (Surr	ogate)	74.2	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 14 of 25

Reported: 03/02/2016 14:49
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample II	D : 1605144-04	Client Sar	Client Sample Name: Four Seasons Cleaners, IA-4-off SN C8340/03662, 2/14/2016 9:08:00PM, Bill D					/l, Bill Dugan
Run #	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15	02/29/16	02/29/16 16:10) MJB	MS-A1	26.500	BZB2858	

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 15 of 25

1180 Delmas Ave.

Reported: 03/02/2016 14:49
Project: Air Samples

San Jose, CA 95125 Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	05144-05	Client Sampl	e Name:	Four Season	s Cleaners, IA	A-5 SN 482/03657, 2/	13/2016 12:16:00	PM, Bill Dugan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		ND	ug/m3	110	6.6	EPA-TO-15	ND	A01	1
Acrylonitrile		ND	ug/m3	43	7.5	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	43	6.2	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	43	8.9	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	210	5.5	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	110	17	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	210	14	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	43	13	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	43	8.5	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	43	8.1	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	110	23	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	110	18	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	43	14	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	110	16	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	43	8.5	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	43	6.0	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	110	30	EPA-TO-15	ND	A01	1
,2-Dibromoethane		ND	ug/m3	110	20	EPA-TO-15	ND	A01	1
,2-Dichlorobenzene		ND	ug/m3	110	6.6	EPA-TO-15	ND	A01	1
,3-Dichlorobenzene		ND	ug/m3	110	7.5	EPA-TO-15	ND	A01	1
,4-Dichlorobenzene		ND	ug/m3	110	6.6	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	110	23	EPA-TO-15	ND	A01	1
,1-Dichloroethane		ND	ug/m3	110	12	EPA-TO-15	ND	A01	1
,2-Dichloroethane		ND	ug/m3	110	11	EPA-TO-15	ND	A01	1
,1-Dichloroethene		ND	ug/m3	110	14	EPA-TO-15	ND	A01	1
sis-1,2-Dichloroethene		ND	ug/m3	43	8.3	EPA-TO-15	ND	A01	1
rans-1,2-Dichloroethene		ND	ug/m3	43	11	EPA-TO-15	ND	A01	1
,2-Dichloropropane		ND	ug/m3	110	15	EPA-TO-15	ND	A01	1
is-1,3-Dichloropropene		ND	ug/m3	110	5.5	EPA-TO-15	ND	A01	1
rans-1,3-Dichloropropene		ND	ug/m3	110	7.0	EPA-TO-15	ND	A01	1
,2-Dichloro-1,1,2,2-tetrafluor	roethane	ND	ug/m3	110	21	EPA-TO-15	ND	A01	1
,1-Difluoroethane		ND	ug/m3	110	43	EPA-TO-15	ND	A01	1
1,4-Dioxane		ND	ug/m3	43	9.4	EPA-TO-15	ND	A01	1

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 16 of 25

1180 Delmas Ave. San Jose, CA 95125 Reported: 03/02/2016 14:49 Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	05144-05	Client Sampl	e Name:	Four Season	s Cleaners, I	A-5 SN 482/03657, 2/	13/2016 12:16:00	PM, Bill Dugan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Ethanol		ND	ug/m3	43	13	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	43	10	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	110	6.0	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	110	10	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	43	11	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	210	12	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	110	9.8	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	110	4.5	EPA-TO-15	ND	A01	1
Isopropyl alcohol		ND	ug/m3	43	10	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	210	16	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	43	5.8	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	110	12	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	43	5.5	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	43	6.0	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	110	4.7	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	110	12	EPA-TO-15	ND	A01	1
Tetrachloroethene		ND	ug/m3	43	20	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	43	7.7	EPA-TO-15	ND	A01	1
Toluene		ND	ug/m3	43	6.8	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	210	150	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	110	17	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	110	19	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	43	15	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	110	34	EPA-TO-15	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoroe	ethane	ND	ug/m3	110	21	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	110	5.3	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	110	7.0	EPA-TO-15	ND	A01	1
Vinyl acetate		ND	ug/m3	43	11	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	43	10	EPA-TO-15	ND	A01	1
p- & m-Xylenes		ND	ug/m3	110	13	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	110	5.3	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	210	18	EPA-TO-15	ND	A01	1
4-Bromofluorobenzene (Surro	ogate)	71.2	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 17 of 25

Reported: 03/02/2016 14:49
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample II	D : 1605144-05	Client Sar	Client Sample Name: Four Seasons Cleaners, IA-5 SN 482/03657, 2/13/2016 12:16:00PM, Bill Dugan					
Run #	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15	02/29/16	02/29/16 16:42	2 MJB	MS-A1	21.300	BZB2858	

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 18 of 25

1180 Delmas Ave.

Reported: 03/02/2016 14:49
Project: Air Samples

San Jose, CA 95125 Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	05144-06	Client Sampl	e Name:	Four Seasor	s Cleaners, IA	A-8 SN 5524/03791, 2	//13/2016 12:24:0	0PM, Bill Dugan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		ND	ug/m3	260	16	EPA-TO-15	ND ND	A01	1
Acrylonitrile		ND	ug/m3	100	18	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	100	15	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	100	22	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	520	14	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	260	42	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	520	33	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	100	33	EPA-TO-15	ND	A01	1
,3-Butadiene		ND	ug/m3	100	21	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	100	20	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	260	58	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	260	43	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	100	33	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	260	39	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	100	21	EPA-TO-15	ND	A01	1
cyclohexane		ND	ug/m3	100	15	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	260	73	EPA-TO-15	ND	A01	1
,2-Dibromoethane		ND	ug/m3	260	49	EPA-TO-15	ND	A01	1
,2-Dichlorobenzene		ND	ug/m3	260	16	EPA-TO-15	ND	A01	1
,3-Dichlorobenzene		ND	ug/m3	260	18	EPA-TO-15	ND	A01	1
,4-Dichlorobenzene		ND	ug/m3	260	16	EPA-TO-15	ND	A01	1
ichlorodifluoromethane		ND	ug/m3	260	58	EPA-TO-15	ND	A01	1
,1-Dichloroethane		ND	ug/m3	260	30	EPA-TO-15	ND	A01	1
,2-Dichloroethane		ND	ug/m3	260	28	EPA-TO-15	ND	A01	1
,1-Dichloroethene		ND	ug/m3	260	33	EPA-TO-15	ND	A01	1
is-1,2-Dichloroethene		ND	ug/m3	100	20	EPA-TO-15	ND	A01	1
rans-1,2-Dichloroethene		ND	ug/m3	100	27	EPA-TO-15	ND	A01	1
,2-Dichloropropane		ND	ug/m3	260	37	EPA-TO-15	ND	A01	1
is-1,3-Dichloropropene		ND	ug/m3	260	14	EPA-TO-15	ND	A01	1
rans-1,3-Dichloropropene		ND	ug/m3	260	17	EPA-TO-15	ND	A01	1
,2-Dichloro-1,1,2,2-tetrafluor	oethane	ND	ug/m3	260	51	EPA-TO-15	ND	A01	1
,1-Difluoroethane		ND	ug/m3	260	100	EPA-TO-15	ND	A01	1
,4-Dioxane		ND	ug/m3	100	23	EPA-TO-15	ND	A01	1

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 19 of 25

1180 Delmas Ave. San Jose, CA 95125 Reported: 03/02/2016 14:49 Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	05144-06	Client Sampl	e Name:	Four Season	s Cleaners, I	A-8 SN 5524/03791, 2	/13/2016 12:24:0	0PM, Bill Dugan	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Ethanol		ND	ug/m3	100	32	EPA-TO-15	ND ND	A01	1
Ethyl acetate		ND	ug/m3	100	25	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	260	15	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	260	25	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	100	26	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	520	28	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	260	24	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	260	11	EPA-TO-15	ND	A01	1
Isopropyl alcohol		ND	ug/m3	100	25	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	520	38	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	100	14	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	260	28	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	100	14	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	100	15	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	260	12	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	260	30	EPA-TO-15	ND	A01	1
Tetrachloroethene		ND	ug/m3	100	50	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	100	19	EPA-TO-15	ND	A01	1
Toluene		ND	ug/m3	100	17	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	520	380	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	260	43	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	260	46	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	100	37	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	260	84	EPA-TO-15	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	260	52	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	260	13	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	260	17	EPA-TO-15	ND	A01	1
Vinyl acetate		ND	ug/m3	100	26	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	100	26	EPA-TO-15	ND	A01	1
p- & m-Xylenes		ND	ug/m3	260	32	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	260	13	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	520	45	EPA-TO-15	ND	A01	1
4-Bromofluorobenzene (Surro	ogate)	74.0	%	70 - 130 (LC	L - UCL)	EPA-TO-15			1

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 20 of 25

1180 Delmas Ave. San Jose, CA 95125 Reported: 03/02/2016 14:49
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID	D : 1605144-06	Client Sar	mple Name:	Four Seasons Cle	aners, IA-8 SN 5524	Dugan		
Run#	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15	02/29/16	02/29/16 17:13	B MJB	MS-A1	52.300	BZB2858	

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 21 of 25

Reported: 03/02/2016 14:49
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZB2858						
Acetone	BZB2858-BLK1	ND	ug/m3	5.0	0.31	
Acrylonitrile	BZB2858-BLK1	ND	ug/m3	2.0	0.35	
Allyl chloride	BZB2858-BLK1	ND	ug/m3	2.0	0.29	
Benzene	BZB2858-BLK1	ND	ug/m3	2.0	0.42	
Benzyl chloride	BZB2858-BLK1	ND	ug/m3	10	0.26	
Bromodichloromethane	BZB2858-BLK1	ND	ug/m3	5.0	0.81	
Bromoform	BZB2858-BLK1	ND	ug/m3	10	0.64	
Bromomethane	BZB2858-BLK1	ND	ug/m3	2.0	0.63	
1,3-Butadiene	BZB2858-BLK1	ND	ug/m3	2.0	0.40	
Carbon disulfide	BZB2858-BLK1	ND	ug/m3	2.0	0.38	
Carbon tetrachloride	BZB2858-BLK1	ND	ug/m3	5.0	1.1	
Chlorobenzene	BZB2858-BLK1	ND	ug/m3	5.0	0.83	
Chloroethane	BZB2858-BLK1	ND	ug/m3	2.0	0.64	
Chloroform	BZB2858-BLK1	ND	ug/m3	5.0	0.74	
Chloromethane	BZB2858-BLK1	ND	ug/m3	2.0	0.40	
Cyclohexane	BZB2858-BLK1	ND	ug/m3	2.0	0.28	
Dibromochloromethane	BZB2858-BLK1	ND	ug/m3	5.0	1.4	
1,2-Dibromoethane	BZB2858-BLK1	ND	ug/m3	5.0	0.93	
1,2-Dichlorobenzene	BZB2858-BLK1	ND	ug/m3	5.0	0.31	
1,3-Dichlorobenzene	BZB2858-BLK1	ND	ug/m3	5.0	0.35	
1,4-Dichlorobenzene	BZB2858-BLK1	ND	ug/m3	5.0	0.31	
Dichlorodifluoromethane	BZB2858-BLK1	ND	ug/m3	5.0	1.1	
1,1-Dichloroethane	BZB2858-BLK1	ND	ug/m3	5.0	0.57	
1,2-Dichloroethane	BZB2858-BLK1	ND	ug/m3	5.0	0.53	
1,1-Dichloroethene	BZB2858-BLK1	ND	ug/m3	5.0	0.64	
cis-1,2-Dichloroethene	BZB2858-BLK1	ND	ug/m3	2.0	0.39	
trans-1,2-Dichloroethene	BZB2858-BLK1	ND	ug/m3	2.0	0.52	
1,2-Dichloropropane	BZB2858-BLK1	ND	ug/m3	5.0	0.70	
cis-1,3-Dichloropropene	BZB2858-BLK1	ND	ug/m3	5.0	0.26	
trans-1,3-Dichloropropene	BZB2858-BLK1	ND	ug/m3	5.0	0.33	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	BZB2858-BLK1	ND	ug/m3	5.0	0.98	
1,1-Difluoroethane	BZB2858-BLK1	ND	ug/m3	5.0	2.0	
1,4-Dioxane	BZB2858-BLK1	ND	ug/m3	2.0	0.44	
Ethanol	BZB2858-BLK1	ND	ug/m3	2.0	0.61	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1000454821 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 22 of 25

Reported: 03/02/2016 14:49 Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZB2858						
Ethyl acetate	BZB2858-BLK1	ND	ug/m3	2.0	0.47	
Ethylbenzene	BZB2858-BLK1	ND	ug/m3	5.0	0.28	
1-Ethyl-4-methylbenzene	BZB2858-BLK1	ND	ug/m3	5.0	0.47	
n-Heptane	BZB2858-BLK1	ND	ug/m3	2.0	0.50	
Hexachlorobutadiene	BZB2858-BLK1	ND	ug/m3	10	0.54	
Hexane	BZB2858-BLK1	ND	ug/m3	5.0	0.46	
2-Hexanone	BZB2858-BLK1	ND	ug/m3	5.0	0.21	
Isopropyl alcohol	BZB2858-BLK1	ND	ug/m3	2.0	0.47	
Methylene chloride	BZB2858-BLK1	ND	ug/m3	10	0.73	
Methyl ethyl ketone	BZB2858-BLK1	ND	ug/m3	2.0	0.27	
Methyl isobutyl ketone	BZB2858-BLK1	ND	ug/m3	5.0	0.54	
Methyl t-butyl ether	BZB2858-BLK1	ND	ug/m3	2.0	0.26	
Propylene	BZB2858-BLK1	ND	ug/m3	2.0	0.28	
Styrene	BZB2858-BLK1	ND	ug/m3	5.0	0.22	
1,1,2,2-Tetrachloroethane	BZB2858-BLK1	ND	ug/m3	5.0	0.58	
Tetrachloroethene	BZB2858-BLK1	ND	ug/m3	2.0	0.95	
Tetrahydrofuran	BZB2858-BLK1	ND	ug/m3	2.0	0.36	
Toluene	BZB2858-BLK1	ND	ug/m3	2.0	0.32	
1,2,4-Trichlorobenzene	BZB2858-BLK1	ND	ug/m3	10	7.2	
1,1,1-Trichloroethane	BZB2858-BLK1	ND	ug/m3	5.0	0.82	
1,1,2-Trichloroethane	BZB2858-BLK1	ND	ug/m3	5.0	0.88	
Trichloroethene	BZB2858-BLK1	ND	ug/m3	2.0	0.70	
Trichlorofluoromethane	BZB2858-BLK1	ND	ug/m3	5.0	1.6	
1,1,2-Trichloro-1,2,2-trifluoroethane	BZB2858-BLK1	ND	ug/m3	5.0	1.0	
1,2,4-Trimethylbenzene	BZB2858-BLK1	ND	ug/m3	5.0	0.25	
1,3,5-Trimethylbenzene	BZB2858-BLK1	ND	ug/m3	5.0	0.33	
Vinyl acetate	BZB2858-BLK1	ND	ug/m3	2.0	0.50	
Vinyl chloride	BZB2858-BLK1	ND	ug/m3	2.0	0.49	
p- & m-Xylenes	BZB2858-BLK1	ND	ug/m3	5.0	0.61	
o-Xylene	BZB2858-BLK1	ND	ug/m3	5.0	0.25	
Total Xylenes	BZB2858-BLK1	ND	ug/m3	10	0.86	
4-Bromofluorobenzene (Surrogate)	BZB2858-BLK1	84.8	%	70 - 13	0 (LCL - UCL)	

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 23 of 25 Report ID: 1000454821

Reported: 03/02/2016 14:49 Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Laboratory Control Sample

							Control	inait-	
			-					<u>-imits</u>	Lab
OC Sample ID	Type	Rosult	•	Unite		RPN		RPD	
	турс	resuit	Level	Onito	Recovery	1(1)	Recovery		Quais
BZB2858-BS1	LCS	16.849	15.974	ug/m3	105		70 - 130		
BZB2858-BSD1	LCSD	17.271	15.974	ug/m3	108	2.5	70 - 130	30	
BZB2858-BS1	LCS	27.147	24.413	ug/m3	111		70 - 130		
BZB2858-BSD1	LCSD	27.689	24.413	ug/m3	113	2.0	70 - 130	30	
BZB2858-BS1	LCS	22.861	21.711	ug/m3	105		70 - 130		
BZB2858-BSD1	LCSD	23.699	21.711	ug/m3	109	3.6	70 - 130	30	
BZB2858-BS1	LCS	38.796	33.913	ug/m3	114		70 - 130		
BZB2858-BSD1	LCSD	39.434	33.913	ug/m3	116	1.6	70 - 130	30	
BZB2858-BS1	LCS	22.415	18.842	ug/m3	119		70 - 130		
BZB2858-BSD1	LCSD	22.626	18.842	ug/m3	120	0.9	70 - 130	30	
BZB2858-BS1	LCS	31.463	26.869	ug/m3	117		70 - 130		
BZB2858-BSD1	LCSD	31.952	26.869	ug/m3	119	1.5	70 - 130	30	
BZB2858-BS1	LCS	33.418	28.092	ug/m3	119		70 - 130		
BZB2858-BSD1	LCSD	33.873	28.092	ug/m3	121	1.4	70 - 130	30	
BZB2858-BS1	LCS	42.234	38.318	ug/m3	110		70 - 130		
BZB2858-BSD1	LCSD	42.817	38.318	ug/m3	112	1.4	70 - 130	30	
BZB2858-BS1	LCS	49.769	43.421	ug/m3	115		70 - 130		
BZB2858-BSD1	LCSD	51.354	43.421	ug/m3	118	3.1	70 - 130	30	
BZB2858-BS1	LCS	25.158	21.711	ug/m3	116		70 - 130		
BZB2858-BSD1	LCSD	26.118	21.711	ug/m3	120	3.7	70 - 130	30	
BZB2858-BS1	LCS	74.928	65.132	ug/m3	115		70 - 130		
BZB2858-BSD1	LCSD	77.472	65.132	ug/m3	119	3.3	70 - 130	30	
B7B2858-BS1			71.6		103		70 - 130		
BZB2858-BSD1	LCSD	73.4	71.6	ug/m3	103	1.5	70 - 130		
	BZB2858-BSD1 BZB2858-BSD1	BZB2858-BS1 LCS BZB2858-BSD1 LCSD BZB2858-BSD1 LCSD	BZB2858-BS1 LCS 27.147 BZB2858-BSD1 LCSD 27.689 BZB2858-BSD1 LCSD 27.689 BZB2858-BSD1 LCSD 27.689 BZB2858-BSD1 LCSD 23.699 BZB2858-BSD1 LCSD 23.699 BZB2858-BSD1 LCSD 39.434 BZB2858-BSD1 LCSD 39.434 BZB2858-BSD1 LCSD 39.434 BZB2858-BSD1 LCSD 31.463 BZB2858-BSD1 LCSD 31.952 BZB2858-BSD1 LCSD 31.952 BZB2858-BSD1 LCSD 33.873 BZB2858-BSD1 LCSD 33.873 BZB2858-BSD1 LCSD 33.873 BZB2858-BSD1 LCSD 42.234 BZB2858-BSD1 LCSD 42.817 BZB2858-BSD1 LCSD 51.354 BZB2858-BSD1 LCSD 51.354 BZB2858-BSD1 LCSD 51.354 BZB2858-BSD1 LCSD 26.118 BZB2858-BSD1 LCSD 77.472	BZB2858-BS1 LCS 16.849 15.974 BZB2858-BSD1 LCSD 17.271 15.974 BZB2858-BSD1 LCSD 27.689 24.413 BZB2858-BSD1 LCSD 27.689 24.413 BZB2858-BSD1 LCSD 23.699 21.711 BZB2858-BSD1 LCSD 23.699 21.711 BZB2858-BSD1 LCSD 39.434 33.913 BZB2858-BSD1 LCSD 39.434 33.913 BZB2858-BSD1 LCSD 22.626 18.842 BZB2858-BSD1 LCSD 22.626 18.842 BZB2858-BSD1 LCSD 31.952 26.869 BZB2858-BSD1 LCSD 31.952 26.869 BZB2858-BSD1 LCSD 33.873 28.092 BZB2858-BSD1 LCSD 33.873 28.092 BZB2858-BSD1 LCSD 42.234 38.318 BZB2858-BSD1 LCSD 42.817 38.318 BZB2858-BSD1 LCSD 42.817 38.318 BZB2858-BSD1 LCSD 51.354 43.421 BZB2858-BSD1 LCSD 51.354 43.421 BZB2858-BSD1 LCSD 26.118 21.711 BZB2858-BSD1 LCSD 77.472 65.132	QC Sample ID Type Result Level Units BZB2858-BS1 LCS 16.849 15.974 ug/m3 BZB2858-BSD1 LCSD 17.271 15.974 ug/m3 BZB2858-BS1 LCSD 27.147 24.413 ug/m3 BZB2858-BSD1 LCSD 27.689 24.413 ug/m3 BZB2858-BS1 LCS 22.861 21.711 ug/m3 BZB2858-BSD1 LCSD 23.699 21.711 ug/m3 BZB2858-BSD1 LCSD 38.796 33.913 ug/m3 BZB2858-BSD1 LCSD 39.434 33.913 ug/m3 BZB2858-BSD1 LCSD 22.415 18.842 ug/m3 BZB2858-BSD1 LCSD 22.626 18.842 ug/m3 BZB2858-BSD1 LCSD 31.463 26.869 ug/m3 BZB2858-BSD1 LCSD 33.418 28.092 ug/m3 BZB2858-BSD1 LCSD 33.873 28.092 ug/m3 BZB2858-BSD1 LCSD	QC Sample ID Type Result Level Units Recovery BZB2858-BS1 LCS 16.849 15.974 ug/m3 105 BZB2858-BSD1 LCSD 17.271 15.974 ug/m3 108 BZB2858-BSD1 LCS 27.147 24.413 ug/m3 111 BZB2858-BSD1 LCSD 27.689 24.413 ug/m3 113 BZB2858-BSD1 LCSD 23.699 21.711 ug/m3 105 BZB2858-BSD1 LCSD 38.796 33.913 ug/m3 114 BZB2858-BSD1 LCSD 39.434 33.913 ug/m3 116 BZB2858-BSD1 LCSD 39.434 33.913 ug/m3 116 BZB2858-BSD1 LCSD 31.463 26.869 ug/m3 120 BZB2858-BSD1 LCSD 31.463 26.869 ug/m3 117 BZB2858-BSD1 LCSD 33.418 28.092 ug/m3 119 BZB2858-BSD1 LCSD 33.873	QC Sample ID Type Result Level Units Recovery RPD BZB2858-BS1 LCS 16.849 15.974 ug/m3 105 2.5 BZB2858-BSD1 LCSD 17.271 15.974 ug/m3 108 2.5 BZB2858-BSD1 LCSD 27.147 24.413 ug/m3 111 3.0 BZB2858-BSD1 LCSD 27.689 24.413 ug/m3 105 3.0 BZB2858-BSD1 LCSD 22.861 21.711 ug/m3 105 3.6 BZB2858-BSD1 LCSD 23.699 21.711 ug/m3 109 3.6 BZB2858-BSD1 LCSD 38.796 33.913 ug/m3 114 1.6 BZB2858-BSD1 LCSD 39.434 33.913 ug/m3 116 1.6 BZB2858-BSD1 LCSD 22.626 18.842 ug/m3 119 1.6 BZB2858-BSD1 LCSD 31.952 26.869 ug/m3 117 1.5 <	QC Sample ID Type Result Spike Level Units Percent Recovery RPD Percent Recovery BZB2858-BS1 LCS 16.849 15.974 ug/m3 105 70 - 130 BZB2858-BSD1 LCSD 17.271 15.974 ug/m3 108 2.5 70 - 130 BZB2858-BSD1 LCSD 27.147 24.413 ug/m3 111 70 - 130 BZB2858-BSD1 LCSD 27.689 24.413 ug/m3 113 2.0 70 - 130 BZB2858-BSD1 LCSD 22.861 21.711 ug/m3 105 70 - 130 BZB2858-BSD1 LCSD 23.699 21.711 ug/m3 109 3.6 70 - 130 BZB2858-BSD1 LCSD 38.796 33.913 ug/m3 114 70 - 130 BZB2858-BSD1 LCSD 39.434 33.913 ug/m3 116 1.6 70 - 130 BZB2858-BSD1 LCSD 22.626 18.842 ug/m3 119 70 - 130 BZB2	QC Sample ID Type Result Level Units Recovery RPD Recovery RPD BZB2858-BS1 LCS 16.849 15.974 ug/m3 105 70 - 130 30 BZB2858-BSD1 LCSD 17.271 15.974 ug/m3 108 2.5 70 - 130 30 BZB2858-BSD1 LCSD 27.689 24.413 ug/m3 111 70 - 130 30 BZB2858-BSD1 LCSD 27.689 24.413 ug/m3 113 2.0 70 - 130 30 BZB2858-BSD1 LCSD 23.699 21.711 ug/m3 105 70 - 130 30 BZB2858-BSD1 LCSD 38.796 33.913 ug/m3 114 70 - 130 30 BZB2858-BSD1 LCSD 39.434 33.913 ug/m3 116 1.6 70 - 130 30 BZB2858-BSD1 LCSD 22.415 18.842 ug/m3 119 70 - 130 30 BZB2858-BSD1 LCSD 31.

Report ID: 1000454821 Page 24 of 25

03/02/2016 14:49 Reported:

Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Notes And Definitions

Well Test, Inc.

1180 Delmas Ave. San Jose, CA 95125

MDL Method Detection Limit ND Analyte Not Detected

PQL Practical Quantitation Limit

A01 Detection and quantitation limits are raised due to sample dilution.

Page 25 of 25 Report ID: 1000454821

Date of Report: 03/04/2016

Bill Dugan

Well Test, Inc. 1180 Delmas Ave. San Jose, CA 95125

Client Project: Four Seasons Cleaners

BCL Project: Air Samples
BCL Work Order: 1605160
Invoice ID: B228690

Enclosed are the results of analyses for samples received by the laboratory on 2/19/2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Misty Orton

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	5
Sample Results	
1605160-02 - IA-7 SN 442/03892	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	6
Quality Control Reports	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	
Method Blank Analysis	9
Laboratory Control Sample	11
Notes	
Notes and Definitions	12

Report ID: 1000455656

WellTest, Inc. Bill Dugan Faper Attention Faper Attention	Set Q Chain of Custody	Matrix	Company Company Date Time Date Date Time Date Date Time Date Time Date Time Date Time Date Date Time Date Date Time Date Date Date Time Date Date
---	----------------------------	--------	--

Report ID: 1000455656

Chain of Custody and Cooler Receipt Form for 1605160 Page 2 of 2

Submission #: \(\begin{align*} \(\begin{align*} \cong \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	IATION Han			7						
Refrigerant: Ice □ Blue Ice □	∃ (Specify	d Deliver	у 🗆	Ice Ch	HIPPING est □ er □ (Spe	None	NER Box 💢	-	FREE LIC YES	
Welfert vir include the Virginia (Virginia (Vi	None)K	Other 🗆	Comr	nents:					
	Contain		None	□ Com	ments:					
All samples received? Yes ☑ No □ A	ll samples	container	s intact? Y	es 6 No		Descrin	tion(s) mate	h COC?	Yes 🗹 No.	П
COC Received Emis	sivity:			Sumple	Thermon				ne 2/19	
						NUMBERS				
SAMPLE CONTAINERS	1	· 2	3	4	5	6	7	8	T 9	10
QT PE UNPRES 4oz / 8oz / 16oz PE UNPRES										
20z Cr*6			 				 		<u> </u>	
OT INORGANIC CHEMICAL METALS						 	1		 	†
NORGANIC CHEMICAL METALS 40z / 80z / 160z										1
T CYANIDE							1			1
T NITROGEN FORMS										
T TOTAL SULFIDE										
oz. NITRATE / NITRITE				***************************************						
T TOTAL ORGANIC CARBON										
T CHEMICAL OXYGEN DEMAND		ļ								
1A PHENOLICS						***************************************				
0ml VOA VIAL TRAVEL BLANK										
0ml VOA VIAL		ļ	ļi					*****		
T EPA 1664					·					
TODOR										
ADIOLOGICAL										
ACTERIOLOGICAL										
0 ml VOA VIAL- 504						****		***************************************		
T EPA 508/608/8080										
T EPA 515.1/8150 /										
T EPA 525										
T EPA 525 TRAVEL BLANK										
ml EPA 547										
ml EPA 531.1										
z EPA 548										
Г ЕРА 549										
Γ ΕΡΑ 8015M										
ΓΕΡΑ 8270										
z/16oz/32oz AMBER										
z / 16oz / 32oz JAR										
DIL SLEEVE CB VIAL										
ASTIC BAG										
EDLAR BAG										
ERROUS IRON										
CORE										
IART KIT										
	$\overline{}$	A								
MMA CANISTER	/1_	71 1				-20-				

03/04/2016 9:53 Reported: Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
1605160-01	COC Number:		Receive Date:	02/19/2016 21:30
	Project Number:	 	Sample Double	02/18/2016 10:31
	Sampling Location: Sampling Point:	IA-6 SN 5525/03809	Sample Depth: Lab Matrix:	Air
	Sampled By:		Sample Type:	Gas Chromatography
1605160-02	COC Number:		Receive Date:	02/19/2016 21:30
	Project Number:		Sampling Date:	02/18/2016 10:29
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-7 SN 442/03892	Lab Matrix:	Air
	Sampled By:		Sample Type:	Gas Chromatography

Page 5 of 12 Report ID: 1000455656

1180 Delmas Ave. San Jose, CA 95125 Reported: 03/04/2016 9:53
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	05160-02	Client Sampl	e Name:	IA-7 SN 4	142/03892,	2/18/2016 10:29	9:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Acetone		ND	ug/m3	110	6.7	EPA-TO-15	ND	A01	1
Acrylonitrile		ND	ug/m3	43	7.6	EPA-TO-15	ND	A01	1
Allyl chloride		ND	ug/m3	43	6.3	EPA-TO-15	ND	A01	1
Benzene		ND	ug/m3	43	9.1	EPA-TO-15	ND	A01	1
Benzyl chloride		ND	ug/m3	220	5.6	EPA-TO-15	ND	A01	1
Bromodichloromethane		ND	ug/m3	110	17	EPA-TO-15	ND	A01	1
Bromoform		ND	ug/m3	220	14	EPA-TO-15	ND	A01	1
Bromomethane		ND	ug/m3	43	14	EPA-TO-15	ND	A01	1
1,3-Butadiene		ND	ug/m3	43	8.6	EPA-TO-15	ND	A01	1
Carbon disulfide		ND	ug/m3	43	8.2	EPA-TO-15	ND	A01	1
Carbon tetrachloride		ND	ug/m3	110	24	EPA-TO-15	ND	A01	1
Chlorobenzene		ND	ug/m3	110	18	EPA-TO-15	ND	A01	1
Chloroethane		ND	ug/m3	43	14	EPA-TO-15	ND	A01	1
Chloroform		ND	ug/m3	110	16	EPA-TO-15	ND	A01	1
Chloromethane		ND	ug/m3	43	8.6	EPA-TO-15	ND	A01	1
Cyclohexane		ND	ug/m3	43	6.0	EPA-TO-15	ND	A01	1
Dibromochloromethane		ND	ug/m3	110	30	EPA-TO-15	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	110	20	EPA-TO-15	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	110	6.7	EPA-TO-15	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	110	7.6	EPA-TO-15	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	110	6.7	EPA-TO-15	ND	A01	1
Dichlorodifluoromethane		ND	ug/m3	110	24	EPA-TO-15	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	110	12	EPA-TO-15	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	110	11	EPA-TO-15	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	110	14	EPA-TO-15	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	43	8.4	EPA-TO-15	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	43	11	EPA-TO-15	ND	A01	1
1,2-Dichloropropane		ND	ug/m3	110	15	EPA-TO-15	ND	A01	1
cis-1,3-Dichloropropene		ND	ug/m3	110	5.6	EPA-TO-15	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	110	7.1	EPA-TO-15	ND	A01	1
1,2-Dichloro-1,1,2,2-tetrafluor	oethane	ND	ug/m3	110	21	EPA-TO-15	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	110	43	EPA-TO-15	ND	A01	1
1,4-Dioxane		ND	ug/m3	43	9.5	EPA-TO-15	ND	A01	1

Report ID: 1000455656 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 6 of 12

Well Test, Inc.

Reported: 03/04/2016 9:53

1180 Delmas Ave.

Project: Air Samples

San Jose, CA 95125 Project Number: Four Seasons Cleaners

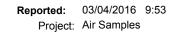
Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID:	1605160-02	Client Sampl	e Name:	IA-7 SN 4	442/03892	, 2/18/2016 10:29	9:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Ethanol		ND	ug/m3	43	13	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	43	10	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	110	6.0	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	110	10	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	43	11	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	220	12	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	110	9.9	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	110	4.5	EPA-TO-15	ND	A01	1
Isopropyl alcohol		ND	ug/m3	43	10	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	220	16	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	43	5.8	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	110	12	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	43	5.6	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	43	6.0	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	110	4.8	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	110	13	EPA-TO-15	ND	A01	1
Tetrachloroethene		ND	ug/m3	43	21	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	43	7.8	EPA-TO-15	ND	A01	1
Toluene		ND	ug/m3	43	6.9	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	220	160	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	110	18	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	110	19	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	43	15	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	110	35	EPA-TO-15	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluo	oroethane	ND	ug/m3	110	22	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	110	5.4	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	110	7.1	EPA-TO-15	ND	A01	1
Vinyl acetate		ND	ug/m3	43	11	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	43	11	EPA-TO-15	ND	A01	1
p- & m-Xylenes		ND	ug/m3	110	13	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	110	5.4	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	220	19	EPA-TO-15	ND	A01	1
4-Bromofluorobenzene (S	urrogate)	81.6	%	70 - 130 (LC	CL - UCL)	EPA-TO-15			1

Report ID: 1000455656 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 7 of 12

1180 Delmas Ave. San Jose, CA 95125 Reported: 03/04/2016 9:53
Project: Air Samples


Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID) : 1605160-02	Client Sar	mple Name:	IA-7 SN 442/0	03892, 2/18/201	6 10:29:00A	М	
Run#	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15	03/02/16	03/02/16 12:56	MJB	MS-A1	21.600	BZC0158	

Report ID: 1000455656 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 8 of 12

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZC0158						
Acetone	BZC0158-BLK1	ND	ug/m3	5.0	0.31	
Acrylonitrile	BZC0158-BLK1	ND	ug/m3	2.0	0.35	
Allyl chloride	BZC0158-BLK1	ND	ug/m3	2.0	0.29	
Benzene	BZC0158-BLK1	ND	ug/m3	2.0	0.42	
Benzyl chloride	BZC0158-BLK1	ND	ug/m3	10	0.26	
Bromodichloromethane	BZC0158-BLK1	ND	ug/m3	5.0	0.81	
Bromoform	BZC0158-BLK1	ND	ug/m3	10	0.64	
Bromomethane	BZC0158-BLK1	ND	ug/m3	2.0	0.63	
1,3-Butadiene	BZC0158-BLK1	ND	ug/m3	2.0	0.40	
Carbon disulfide	BZC0158-BLK1	ND	ug/m3	2.0	0.38	
Carbon tetrachloride	BZC0158-BLK1	ND	ug/m3	5.0	1.1	
Chlorobenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.83	
Chloroethane	BZC0158-BLK1	ND	ug/m3	2.0	0.64	
Chloroform	BZC0158-BLK1	ND	ug/m3	5.0	0.74	
Chloromethane	BZC0158-BLK1	ND	ug/m3	2.0	0.40	
Cyclohexane	BZC0158-BLK1	ND	ug/m3	2.0	0.28	
Dibromochloromethane	BZC0158-BLK1	ND	ug/m3	5.0	1.4	
1,2-Dibromoethane	BZC0158-BLK1	ND	ug/m3	5.0	0.93	
1,2-Dichlorobenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.31	
1,3-Dichlorobenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.35	
1,4-Dichlorobenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.31	
Dichlorodifluoromethane	BZC0158-BLK1	ND	ug/m3	5.0	1.1	
1,1-Dichloroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.57	
1,2-Dichloroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.53	
1,1-Dichloroethene	BZC0158-BLK1	ND	ug/m3	5.0	0.64	
cis-1,2-Dichloroethene	BZC0158-BLK1	ND	ug/m3	2.0	0.39	
trans-1,2-Dichloroethene	BZC0158-BLK1	ND	ug/m3	2.0	0.52	
1,2-Dichloropropane	BZC0158-BLK1	ND	ug/m3	5.0	0.70	
cis-1,3-Dichloropropene	BZC0158-BLK1	ND	ug/m3	5.0	0.26	
trans-1,3-Dichloropropene	BZC0158-BLK1	ND	ug/m3	5.0	0.33	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.98	
1,1-Difluoroethane	BZC0158-BLK1	ND	ug/m3	5.0	2.0	
1,4-Dioxane	BZC0158-BLK1	ND	ug/m3	2.0	0.44	
Ethanol	BZC0158-BLK1	ND	ug/m3	2.0	0.61	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1000455656 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 9 of 12

Reported: 03/04/2016 9:53
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZC0158						
Ethyl acetate	BZC0158-BLK1	ND	ug/m3	2.0	0.47	
Ethylbenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.28	
1-Ethyl-4-methylbenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.47	
n-Heptane	BZC0158-BLK1	ND	ug/m3	2.0	0.50	
Hexachlorobutadiene	BZC0158-BLK1	ND	ug/m3	10	0.54	
Hexane	BZC0158-BLK1	ND	ug/m3	5.0	0.46	
2-Hexanone	BZC0158-BLK1	ND	ug/m3	5.0	0.21	
Isopropyl alcohol	BZC0158-BLK1	ND	ug/m3	2.0	0.47	
Methylene chloride	BZC0158-BLK1	ND	ug/m3	10	0.73	
Methyl ethyl ketone	BZC0158-BLK1	ND	ug/m3	2.0	0.27	
Methyl isobutyl ketone	BZC0158-BLK1	ND	ug/m3	5.0	0.54	
Methyl t-butyl ether	BZC0158-BLK1	ND	ug/m3	2.0	0.26	
Propylene	BZC0158-BLK1	ND	ug/m3	2.0	0.28	
Styrene	BZC0158-BLK1	ND	ug/m3	5.0	0.22	
1,1,2,2-Tetrachloroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.58	
Tetrachloroethene	BZC0158-BLK1	ND	ug/m3	2.0	0.95	
Tetrahydrofuran	BZC0158-BLK1	ND	ug/m3	2.0	0.36	
Toluene	BZC0158-BLK1	ND	ug/m3	2.0	0.32	
1,2,4-Trichlorobenzene	BZC0158-BLK1	ND	ug/m3	10	7.2	
1,1,1-Trichloroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.82	
1,1,2-Trichloroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.88	
Trichloroethene	BZC0158-BLK1	ND	ug/m3	2.0	0.70	
Trichlorofluoromethane	BZC0158-BLK1	ND	ug/m3	5.0	1.6	
1,1,2-Trichloro-1,2,2-trifluoroethane	BZC0158-BLK1	ND	ug/m3	5.0	1.0	
1,2,4-Trimethylbenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.25	
1,3,5-Trimethylbenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.33	
Vinyl acetate	BZC0158-BLK1	ND	ug/m3	2.0	0.50	
Vinyl chloride	BZC0158-BLK1	ND	ug/m3	2.0	0.49	
p- & m-Xylenes	BZC0158-BLK1	ND	ug/m3	5.0	0.61	
o-Xylene	BZC0158-BLK1	ND	ug/m3	5.0	0.25	
Total Xylenes	BZC0158-BLK1	ND	ug/m3	10	0.86	
4-Bromofluorobenzene (Surrogate)	BZC0158-BLK1	71.8	%	70 - 13	0 (LCL - UCL)	

Report ID: 1000455656 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 10 of 12

Reported: 03/04/2016 9:53 Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Laboratory Control Sample

							0 4 - 1 1	114	
					_			<u> imits</u>	Lab
OC Sample ID	Tuno	Dogult	•	Unite		DDD		DDD	
QC Sample ID	туре	Result	Level	Units	Recovery	KPU	Recovery	KPU	Quais
BZC0158-BS1	LCS	16.549	15.974	ug/m3	104		70 - 130		
BZC0158-BSD1	LCSD	17.194	15.974	ug/m3	108	3.8	70 - 130	30	
BZC0158-BS1	LCS	27.069	24.413	ug/m3	111		70 - 130		
BZC0158-BSD1	LCSD	27.767	24.413	ug/m3	114	2.5	70 - 130	30	
BZC0158-BS1	LCS	23.808	21.711	ug/m3	110		70 - 130		
BZC0158-BSD1	LCSD	24.611	21.711	ug/m3	113	3.3	70 - 130	30	
BZC0158-BS1	LCS	39.515	33.913	ug/m3	117		70 - 130		
BZC0158-BSD1	LCSD	40.641	33.913	ug/m3	120	2.8	70 - 130	30	
BZC0158-BS1	LCS	22.803	18.842	ug/m3	121		70 - 130		
BZC0158-BSD1	LCSD	23.609	18.842	ug/m3	125	3.5	70 - 130	30	
BZC0158-BS1	LCS	32.549	26.869	ug/m3	121		70 - 130		
BZC0158-BSD1	LCSD	33.597	26.869	ug/m3	125	3.2	70 - 130	30	
BZC0158-BS1	LCS	31.620	28.092	ug/m3	113		70 - 130		
BZC0158-BSD1	LCSD	31.968	28.092	ug/m3	114	1.1	70 - 130	30	
BZC0158-BS1	LCS	38.908	38.318	ug/m3	102		70 - 130		
BZC0158-BSD1	LCSD	39.974	38.318	ug/m3	104	2.7	70 - 130	30	
BZC0158-BS1	LCS	52.592	43.421	ug/m3	121		70 - 130		
BZC0158-BSD1	LCSD	54.007	43.421	ug/m3	124	2.7	70 - 130	30	
BZC0158-BS1	LCS	26.313	21.711	ug/m3	121		70 - 130		
BZC0158-BSD1	LCSD	27.125	21.711	ug/m3	125	3.0	70 - 130	30	
BZC0158-BS1	LCS	78.905	65.132	ug/m3	121		70 - 130		
BZC0158-BSD1	LCSD	81.133	65.132	ug/m3	125	2.8	70 - 130	30	
BZC0158-BS1	LCS	70.5	71.6	ug/m3	98 4		70 - 130		
BZC0158-BSD1	LCSD	70.2	71.6	ug/m3	98.1	0.3	70 - 130		
	BZC0158-BSD1 BZC0158-BS1 BZC0158-BSD1 BZC0158-BSD1	BZC0158-BS1 LCS BZC0158-BSD1 LCSD BZC0158-BSD1 LCSD	BZC0158-BS1 LCS 16.549 BZC0158-BSD1 LCSD 17.194 BZC0158-BSD1 LCSD 27.069 BZC0158-BSD1 LCSD 27.767 BZC0158-BSD1 LCSD 27.767 BZC0158-BSD1 LCSD 24.611 BZC0158-BSD1 LCSD 24.611 BZC0158-BSD1 LCSD 40.641 BZC0158-BSD1 LCSD 40.641 BZC0158-BSD1 LCSD 23.609 BZC0158-BSD1 LCSD 33.597 BZC0158-BSD1 LCSD 33.597 BZC0158-BSD1 LCSD 31.620 BZC0158-BSD1 LCSD 31.968 BZC0158-BSD1 LCSD 31.968 BZC0158-BSD1 LCSD 39.974 BZC0158-BSD1 LCSD 39.974 BZC0158-BSD1 LCSD 52.592 BZC0158-BSD1 LCSD 54.007 BZC0158-BSD1 LCSD 54.007 BZC0158-BSD1 LCSD 57.125 BZC0158-BSD1 LCSD 78.905 BZC0158-BSD1 LCSD 81.133 BZC0158-BSD1 LCSD 81.133 BZC0158-BSD1 LCSD 81.133	BZC0158-BS1 LCS 16.549 15.974 BZC0158-BSD1 LCSD 17.194 15.974 BZC0158-BSD1 LCSD 27.069 24.413 BZC0158-BSD1 LCSD 27.767 24.413 BZC0158-BSD1 LCSD 27.767 24.413 BZC0158-BSD1 LCSD 24.611 21.711 BZC0158-BSD1 LCSD 24.611 21.711 BZC0158-BSD1 LCSD 40.641 33.913 BZC0158-BSD1 LCSD 40.641 33.913 BZC0158-BSD1 LCSD 23.609 18.842 BZC0158-BSD1 LCSD 23.609 18.842 BZC0158-BSD1 LCSD 33.597 26.869 BZC0158-BSD1 LCSD 33.597 26.869 BZC0158-BSD1 LCSD 31.968 28.092 BZC0158-BSD1 LCSD 31.968 28.092 BZC0158-BSD1 LCSD 39.974 38.318 BZC0158-BSD1 LCSD 39.974 38.318 BZC0158-BSD1 LCSD 54.007 43.421 BZC0158-BSD1 LCSD 54.007 43.421 BZC0158-BSD1 LCSD 27.125 21.711 BZC0158-BSD1 LCSD 81.133 65.132 BZC0158-BSD1 LCSD 81.133 65.132 BZC0158-BSD1 LCSD 81.133 65.132	QC Sample ID Type Result Level Units BZC0158-BS1 LCS 16.549 15.974 ug/m3 BZC0158-BSD1 LCSD 17.194 15.974 ug/m3 BZC0158-BS1 LCS 27.069 24.413 ug/m3 BZC0158-BSD1 LCSD 27.767 24.413 ug/m3 BZC0158-BS1 LCS 23.808 21.711 ug/m3 BZC0158-BSD1 LCSD 24.611 21.711 ug/m3 BZC0158-BSD1 LCSD 24.611 21.711 ug/m3 BZC0158-BSD1 LCSD 39.515 33.913 ug/m3 BZC0158-BSD1 LCSD 40.641 33.913 ug/m3 BZC0158-BSD1 LCSD 23.609 18.842 ug/m3 BZC0158-BSD1 LCSD 32.549 26.869 ug/m3 BZC0158-BSD1 LCSD 31.620 28.092 ug/m3 BZC0158-BSD1 LCSD 31.968 28.092 ug/m3 BZC0158-BSD1 LCSD	QC Sample ID Type Result Level Units Recovery BZC0158-BS1 LCS 16.549 15.974 ug/m3 104 BZC0158-BSD1 LCSD 17.194 15.974 ug/m3 108 BZC0158-BS1 LCS 27.069 24.413 ug/m3 111 BZC0158-BSD1 LCSD 27.767 24.413 ug/m3 114 BZC0158-BS1 LCS 23.808 21.711 ug/m3 110 BZC0158-BSD1 LCSD 24.611 21.711 ug/m3 113 BZC0158-BSD1 LCSD 39.515 33.913 ug/m3 120 BZC0158-BSD1 LCSD 40.641 33.913 ug/m3 120 BZC0158-BSD1 LCSD 23.609 18.842 ug/m3 125 BZC0158-BSD1 LCSD 33.597 26.869 ug/m3 121 BZC0158-BSD1 LCSD 31.968 28.092 ug/m3 113 BZC0158-BSD1 LCSD 39.974	QC Sample ID Type Result Level Units Recovery RPD BZC0158-BS1 LCS 16.549 15.974 ug/m3 104 3.8 BZC0158-BSD1 LCSD 17.194 15.974 ug/m3 108 3.8 BZC0158-BS1 LCS 27.069 24.413 ug/m3 111 2.5 BZC0158-BSD1 LCSD 27.767 24.413 ug/m3 110 2.5 BZC0158-BSD1 LCSD 23.808 21.711 ug/m3 110 3.3 BZC0158-BSD1 LCSD 24.611 21.711 ug/m3 117 3.3 BZC0158-BS1 LCS 39.515 33.913 ug/m3 120 2.8 BZC0158-BS1 LCSD 40.641 33.913 ug/m3 120 2.8 BZC0158-BS1 LCS 22.803 18.842 ug/m3 121 2.8 BZC0158-BS1 LCS 32.549 26.869 ug/m3 121 2.2 BZC015	QC Sample ID Type Result Spike Level Units Percent Recovery RPD Percent Recovery BZC0158-BS1 LCS 16.549 15.974 ug/m3 104 70 - 130 BZC0158-BSD1 LCSD 17.194 15.974 ug/m3 108 3.8 70 - 130 BZC0158-BSD1 LCSD 27.069 24.413 ug/m3 111 70 - 130 BZC0158-BSD1 LCSD 27.767 24.413 ug/m3 114 2.5 70 - 130 BZC0158-BSD1 LCSD 23.808 21.711 ug/m3 110 70 - 130 BZC0158-BSD1 LCSD 24.611 21.711 ug/m3 113 3.3 70 - 130 BZC0158-BSD1 LCSD 24.611 21.711 ug/m3 117 70 - 130 BZC0158-BSD1 LCSD 39.515 33.913 ug/m3 120 2.8 70 - 130 BZC0158-BSD1 LCSD 23.609 18.842 ug/m3 121 70 - 130 BZC0	QC Sample ID Type Result Level Units Recovery RPD Recovery RPD BZC0158-BS1 LCS 16.549 15.974 ug/m3 104 70 - 130 30 BZC0158-BSD1 LCSD 17.194 15.974 ug/m3 108 3.8 70 - 130 30 BZC0158-BSD1 LCSD 27.069 24.413 ug/m3 111 70 - 130 30 BZC0158-BSD1 LCSD 27.767 24.413 ug/m3 111 2.5 70 - 130 30 BZC0158-BSD1 LCSD 24.611 21.711 ug/m3 110 70 - 130 30 BZC0158-BSD1 LCSD 24.611 21.711 ug/m3 117 70 - 130 30 BZC0158-BSD1 LCSD 24.611 21.711 ug/m3 117 70 - 130 30 BZC0158-BSD1 LCSD 39.515 33.913 ug/m3 117 70 - 130 30 BZC0158-BSD1 LCSD 23.609

Report ID: 1000455656 Page 11 of 12 Well Test, Inc. Reported: 03/04/2016 9:53 Project: Air Samples 1180 Delmas Ave.

San Jose, CA 95125 Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Notes And Definitions

PQL

MDL Method Detection Limit ND Analyte Not Detected

Practical Quantitation Limit

A01 Detection and quantitation limits are raised due to sample dilution.

Page 12 of 12 Report ID: 1000455656

Date of Report: 03/04/2016

Bill Dugan

Well Test, Inc. 1180 Delmas Ave. San Jose, CA 95125

Client Project: 5031 - Four Seasons Cleaners

BCL Project: Air Samples
BCL Work Order: 1605653
Invoice ID: B228752

Enclosed are the results of analyses for samples received by the laboratory on 2/24/2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Misty Orton

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample	e Information	
	Chain of Custody and Cooler Receipt form	3
	Laboratory / Client Sample Cross Reference	5
Sample	e Results	
	1605653-01 - IA-9	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	6
	1605653-02 - IA-9-off	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	9
Quality	y Control Reports	
	Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)	
	Method Blank Analysis	. 12
	Laboratory Control Sample	14
Notes		
	Notes and Definitions	. 15

Page 2 of 15 Report ID: 1000455884

Chain of Custody and Cooler Receipt Form for 1605653 Page 1 of 2 (20C) Oil & Grease Same day other (bleff ent ni) n Preservative: HCL = Hydrochloric acid, N = Nitric acid, C = 40 C 275 Page_ 2 etection) (7000/6010) **CHAIN OF CUSTODY FORM** nonty Pollutant Metals (low 3/2/ ___2 day ___1 day Metals (Cadmium, Chromiun (0/Z8) \$.00AS WEDNESDAY 1AOCs (8010) $\frac{10 \text{ day}}{7 \text{ day}}$ $\overline{X} \quad 5 \text{ day}$ OC2 (85e0) K PHd, TPHk, TPHmo (8015M) onfirm MTBE by GC/MS NA BES 8560B) RP46/BTEX/5 Fuel Oxy's Turnaround Time: (working days) RUSH (8.002 yd nZ bns ,g, Metals (Cd, Cr, Cu, Ni, Pb, PHg/8TEX/MT8E (TO-3) 2.22:16 (TO-15) ARI + SOOV III Send report and EDF to dugan@welltest.biz Results must be in (ug/m3) Received By: Received By: Received By: ield Point Name San as Sample ID (Y/N) Comments Yes Yes Container Type: V = 40 ml vial, L = 1 liter amber bottle, 500 ml = 500 milliliter bottle, T = tube (B - brass, S - stailess steel, P - placitic) 1830 Cooler Temp Preservative 9021 Dark Box Dark Box Container Information 2/24/16 230 TOO BE 6 summa Type P.Ó. Box 8548 San Jose, CA 95155 Main Line: (408) 287-2175 Facsimile: (408) 287-2176 T10000006425
13778 Doolittle Avenue, San Leandro, CA
13778 Doolittle Avenue, San Leandro, CA
BC Laboratories, Inc.
Contact: Peter Bins
4100 Atlas Court, Bakersfield, CA (800) 877-4911 Date/Time: Date/Time: Date/Time: ŝ Š. Refrigerated ? Yes ____ Email: Phone: KEL. (ARD) Matrix Water Soil Additional Comments: Invoice to WellTest, Inc. Seasons Cleaners 10:50 10:47 Sample Information Bill Dugan (408) 460-1884 Wills 02/23/16 02/24/16 Date WellTest, Inc. Contractor License No. 843074 Sample Condition: Good? Yes. Relinquished By: Relinquished By: Relinquished By: Project Manager: PM Phone Number: Sampler: Lab Address/Phone: Geotracker EDF Project Name: Project Number: Global I.D.: Project Address: Sample ID 7 IA-9-off A-9 Laboratory: FORM 1C

Report ID: 1000455884 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Chain of Custody and Cooler Receipt Form for 1605653 Page 2 of 2

BC LABORATORIES INC.	~~~		С	OOLE	RECE	PT FOR	RM				Page	(Of
Submission #: 10-05													
SHIPPING INFO Fed Ex UPS Ontra BC Lab Field Service Other		land Del				SHIPP Chest 🗆 ther 🗆		CONTA None [cify)	AINER Box	AD)		REE LI	QUID NO 🗆
Refrigerant: Ice □ Blue Ice	□ N ∈	one 🕍	0	ther [Co	nments							
Custody Seals Ice Chest □ Intact? Yes □ No □		iners □			e 🗗 Co				***************************************		***************************************		
All samples received? Yes No 🗆	All samp	les contai	iners i	ntact?	Yes 🗹 I	No 🗆		Descri	intion(s) r	natch CO	C2 Va	e PT No	
COC Received E	missivity: Temperate	0.9	_ Cc	ntainer	: <u>Sum</u>	<u>~~</u> \ The	rmom	eter ID:	20 8"	_ Dat	e/Time	2/24	2257
	Temperati	ire: (A)	10	078 (°C					Ana	lyst in	it DI) P
SAMPLE CONTAINERS	1		. T	3	4			NUMBER					_
T PE UNPRES			丁			5	\dashv	6	1 7	+-	8 +	9	10
z/8oz/16oz PE UNPRES							$\neg \uparrow$			_	\dashv		
z Cr ¹⁶							$\neg \uparrow$	***************************************		_	\dashv		
I INORGANIC CHEMICAL METALS			\Box				$\neg \uparrow$		1		\dashv	<u> </u>	1
ORGANIC CHEMICAL METALS 40z / 80z / 160	z		$oldsymbol{ol}}}}}}}}}}}}}}}}$				$\neg \uparrow$		† • •		\dashv		
CYANIDE											_		
NITROGEN FORMS	_								1	1	-		
TOTAL SULFIDE									T		_		
. NITRATE / NITRITE										_			
TOTAL ORGANIC CARBON													
CHEMICAL OXYGEN DEMAND		<u> </u>									_		
PHENOLICS											$\neg \vdash$	***************************************	
I VOA VIAL TRAVEL BLANK	_												
I VOA VIAL	<u> </u>											***************************************	
EPA 1664						<u> </u>						***************************************	
DDOR					************								
DIOLOGICAL	<u> </u>												
TERIOLOGICAL	 							•			_		
I VOA VIAL- 504	<u> </u>							. ``					
EPA 508/608/8080	<u> </u>												
EPA 515.1/8150	 	ļ											
PA 525													
PA 525 TRAVEL BLANK	<u> </u>	<u> </u>	4				\perp						
EPA 547		 											
EPA 531.1	 	 	4								1		$\neg \neg$
PA 548				L									
PA 549													
PA 8015M											T		
PA 8270			-										
60z/32oz AMBER						······································					$oxed{oxed}$		
60z / 32oz JAR			-								$oxed{oxed}$		
SLEEVE	······		 										
TAL			 										
FIC BAG			 				_						
AR BAG	-		 										
OUS IRON			 										
RE			<u> </u>										
r Kit		<u>, , , , , , , , , , , , , , , , , , , </u>									1		
A CANISTER	4	A		T			T				1		
nts:			<u>-</u>										

03/04/2016 14:02 Reported: Project: Air Samples

Project Number: 5031 - Four Seasons Cleaners

Project Manager: Bill Dugan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
1605653-01	COC Number:		Receive Date:	02/24/2016 18:30
	Project Number:	Four Seasons Cleaners	Sampling Date:	02/23/2016 10:47
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-9	Lab Matrix:	Air
	Sampled By:	Wills of WTI	Sample Type:	Vapor or Air
1605653-02	COC Number:		Receive Date:	02/24/2016 18:30
	Project Number:	Four Seasons Cleaners	Sampling Date:	02/23/2016 10:50
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-9-off	Lab Matrix:	Air
	Sampled By:	Wills of WTI	Sample Type:	Vapor or Air

Page 5 of 15 Report ID: 1000455884

Well Test, Inc.

Reported: 03/04/2016 14:02
1180 Delmas Ave.

Project: Air Samples

San Jose, CA 95125 Project Number: 5031 - Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 160	05653-01 Cli	ent Sampl	e Name:	Four Seas	sons Clean	ers, IA-9, 2/23/20	2/23/2016 10:47:00AM, Wills				
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#		
Acetone		ND ND	ug/m3	210	13	EPA-TO-15	ND	A01	1		
Acrylonitrile		ND	ug/m3	85	15	EPA-TO-15	ND	A01	<u>·</u> 1		
Allyl chloride		ND	ug/m3	85	12	EPA-TO-15	ND	A01	<u>·</u> 1		
Benzene		ND	ug/m3	85	18	EPA-TO-15	ND	A01	1		
Benzyl chloride		ND	ug/m3	430	11	EPA-TO-15	ND	A01	1		
Bromodichloromethane		ND	ug/m3	210	35	EPA-TO-15	ND	A01	1		
Bromoform		ND	ug/m3	430	27	EPA-TO-15	ND	A01	1		
Bromomethane		ND	ug/m3	85	27	EPA-TO-15	ND	A01	1		
1,3-Butadiene		ND	ug/m3	85	17	EPA-TO-15	ND	A01	1		
Carbon disulfide		ND	ug/m3	85	16	EPA-TO-15	ND	A01	1		
Carbon tetrachloride		ND	ug/m3	210	47	EPA-TO-15	ND	A01	1		
Chlorobenzene		ND	ug/m3	210	35	EPA-TO-15	ND	A01	1		
Chloroethane		ND	ug/m3	85	27	EPA-TO-15	ND	A01	1		
Chloroform		ND	ug/m3	210	32	EPA-TO-15	ND	A01	1		
Chloromethane		ND	ug/m3	85	17	EPA-TO-15	ND	A01	1		
Cyclohexane		ND	ug/m3	85	12	EPA-TO-15	ND	A01	1		
Dibromochloromethane		ND	ug/m3	210	60	EPA-TO-15	ND	A01	1		
1,2-Dibromoethane		ND	ug/m3	210	40	EPA-TO-15	ND	A01	1		
1,2-Dichlorobenzene		ND	ug/m3	210	13	EPA-TO-15	ND	A01	1		
1,3-Dichlorobenzene		ND	ug/m3	210	15	EPA-TO-15	ND	A01	1		
1,4-Dichlorobenzene		ND	ug/m3	210	13	EPA-TO-15	ND	A01	1		
Dichlorodifluoromethane		2100	ug/m3	210	47	EPA-TO-15	ND	A01	1		
1,1-Dichloroethane		ND	ug/m3	210	24	EPA-TO-15	ND	A01	1		
1,2-Dichloroethane		ND	ug/m3	210	23	EPA-TO-15	ND	A01	1		
1,1-Dichloroethene		ND	ug/m3	210	27	EPA-TO-15	ND	A01	1		
cis-1,2-Dichloroethene		ND	ug/m3	85	17	EPA-TO-15	ND	A01	1		
rans-1,2-Dichloroethene		ND	ug/m3	85	22	EPA-TO-15	ND	A01	1		
1,2-Dichloropropane		ND	ug/m3	210	30	EPA-TO-15	ND	A01	1		
cis-1,3-Dichloropropene		ND	ug/m3	210	11	EPA-TO-15	ND	A01	1		
rans-1,3-Dichloropropene		ND	ug/m3	210	14	EPA-TO-15	ND	A01	1		
1,2-Dichloro-1,1,2,2-tetrafluo	roethane	490	ug/m3	210	42	EPA-TO-15	ND	A01	1		
1,1-Difluoroethane		ND	ug/m3	210	85	EPA-TO-15	ND	A01	1		
1,4-Dioxane		ND	ug/m3	85	19	EPA-TO-15	ND	A01	1		

Report ID: 1000455884 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 6 of 15

Reported: 03/04/2016 14:02 Project: Air Samples

Project Number: 5031 - Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	605653-01	Client Sampl	e Name:	Four Seasons Cleaners, IA-9, 2/23/2016 10:47:00AM, Wills					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Ethanol		ND	ug/m3	85	26	EPA-TO-15	ND	A01	1
Ethyl acetate		ND	ug/m3	85	20	EPA-TO-15	ND	A01	1
Ethylbenzene		ND	ug/m3	210	12	EPA-TO-15	ND	A01	1
1-Ethyl-4-methylbenzene		ND	ug/m3	210	20	EPA-TO-15	ND	A01	1
n-Heptane		ND	ug/m3	85	21	EPA-TO-15	ND	A01	1
Hexachlorobutadiene		ND	ug/m3	430	23	EPA-TO-15	ND	A01	1
Hexane		ND	ug/m3	210	20	EPA-TO-15	ND	A01	1
2-Hexanone		ND	ug/m3	210	8.9	EPA-TO-15	ND	A01	1
Isopropyl alcohol		ND	ug/m3	85	20	EPA-TO-15	ND	A01	1
Methylene chloride		ND	ug/m3	430	31	EPA-TO-15	ND	A01	1
Methyl ethyl ketone		ND	ug/m3	85	12	EPA-TO-15	ND	A01	1
Methyl isobutyl ketone		ND	ug/m3	210	23	EPA-TO-15	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	85	11	EPA-TO-15	ND	A01	1
Propylene		ND	ug/m3	85	12	EPA-TO-15	ND	A01	1
Styrene		ND	ug/m3	210	9.4	EPA-TO-15	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	210	25	EPA-TO-15	ND	A01	1
Tetrachloroethene		560	ug/m3	85	40	EPA-TO-15	ND	A01	1
Tetrahydrofuran		ND	ug/m3	85	15	EPA-TO-15	ND	A01	1
Toluene		ND	ug/m3	85	14	EPA-TO-15	ND	A01	1
1,2,4-Trichlorobenzene		ND	ug/m3	430	310	EPA-TO-15	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	210	35	EPA-TO-15	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	210	37	EPA-TO-15	ND	A01	1
Trichloroethene		ND	ug/m3	85	30	EPA-TO-15	ND	A01	1
Trichlorofluoromethane		240	ug/m3	210	68	EPA-TO-15	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	210	43	EPA-TO-15	ND	A01	1
1,2,4-Trimethylbenzene		ND	ug/m3	210	11	EPA-TO-15	ND	A01	1
1,3,5-Trimethylbenzene		ND	ug/m3	210	14	EPA-TO-15	ND	A01	1
Vinyl acetate		ND	ug/m3	85	21	EPA-TO-15	ND	A01	1
Vinyl chloride		ND	ug/m3	85	21	EPA-TO-15	ND	A01	1
p- & m-Xylenes		ND	ug/m3	210	26	EPA-TO-15	ND	A01	1
o-Xylene		ND	ug/m3	210	11	EPA-TO-15	ND	A01	1
Total Xylenes		ND	ug/m3	430	37	EPA-TO-15	ND	A01	1
4-Bromofluorobenzene (Surr	ogate)	86.7	%	70 - 130 (LC	CL - UCL)	EPA-TO-15			1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 7 of 15 Report ID: 1000455884

Reported: 03/04/2016 14:02

Project: Air Samples
Project Number: 5031 - Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID): 1605653-01	Client Sar	Client Sample Name: Four Seasons Cleaners, IA-9, 2/23/2016 10:47:00AM, Wills						
Run#	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID		
1	EPA-TO-15	03/02/16	03/04/16 11:25	MJB	MS-A1	42.600	BZC0158		

Report ID: 1000455884 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 8 of 15

Reported: 03/04/2016 14:02 Project: Air Samples

Project Number: 5031 - Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	05653-02	Client Sampl	e Name:	Four Seas	Four Seasons Cleaners, IA-9-off, 2/23/2016 10:50:00AM, Wills						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#		
Acetone		ND	ug/m3	130	7.8	EPA-TO-15	ND	A01	1		
Acrylonitrile		ND	ug/m3	50	8.8	EPA-TO-15	ND	A01	1		
Allyl chloride		ND	ug/m3	50	7.3	EPA-TO-15	ND	A01	1		
Benzene		ND	ug/m3	50	11	EPA-TO-15	ND	A01	1		
Benzyl chloride		ND	ug/m3	250	6.5	EPA-TO-15	ND	A01	1		
Bromodichloromethane		ND	ug/m3	130	20	EPA-TO-15	ND	A01	1		
Bromoform		ND	ug/m3	250	16	EPA-TO-15	ND	A01	1		
Bromomethane		ND	ug/m3	50	16	EPA-TO-15	ND	A01	1		
1,3-Butadiene		ND	ug/m3	50	10	EPA-TO-15	ND	A01	1		
Carbon disulfide		ND	ug/m3	50	9.5	EPA-TO-15	ND	A01	1		
Carbon tetrachloride		ND	ug/m3	130	28	EPA-TO-15	ND	A01	1		
Chlorobenzene		ND	ug/m3	130	21	EPA-TO-15	ND	A01	1		
Chloroethane		ND	ug/m3	50	16	EPA-TO-15	ND	A01	1		
Chloroform		ND	ug/m3	130	19	EPA-TO-15	ND	A01	1		
Chloromethane		ND	ug/m3	50	10	EPA-TO-15	ND	A01	1		
Cyclohexane		ND	ug/m3	50	7.0	EPA-TO-15	ND	A01	1		
Dibromochloromethane		ND	ug/m3	130	35	EPA-TO-15	ND	A01	1		
1,2-Dibromoethane		ND	ug/m3	130	23	EPA-TO-15	ND	A01	1		
1,2-Dichlorobenzene		ND	ug/m3	130	7.8	EPA-TO-15	ND	A01	1		
1,3-Dichlorobenzene		ND	ug/m3	130	8.8	EPA-TO-15	ND	A01	1		
1,4-Dichlorobenzene		ND	ug/m3	130	7.8	EPA-TO-15	ND	A01	1		
Dichlorodifluoromethane		ND	ug/m3	130	28	EPA-TO-15	ND	A01	1		
1,1-Dichloroethane		ND	ug/m3	130	14	EPA-TO-15	ND	A01	1		
1,2-Dichloroethane		ND	ug/m3	130	13	EPA-TO-15	ND	A01	1		
1,1-Dichloroethene		ND	ug/m3	130	16	EPA-TO-15	ND	A01	1		
cis-1,2-Dichloroethene		ND	ug/m3	50	9.8	EPA-TO-15	ND	A01	1		
trans-1,2-Dichloroethene		ND	ug/m3	50	13	EPA-TO-15	ND	A01	1		
1,2-Dichloropropane		ND	ug/m3	130	18	EPA-TO-15	ND	A01	1		
cis-1,3-Dichloropropene		ND	ug/m3	130	6.5	EPA-TO-15	ND	A01	1		
trans-1,3-Dichloropropene		ND	ug/m3	130	8.3	EPA-TO-15	ND	A01	1		
1,2-Dichloro-1,1,2,2-tetrafluor	oethane	ND	ug/m3	130	25	EPA-TO-15	ND	A01	1		
1,1-Difluoroethane		ND	ug/m3	130	50	EPA-TO-15	ND	A01	1		
1,4-Dioxane		ND	ug/m3	50	11	EPA-TO-15	ND	A01	1		

Report ID: 1000455884 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 9 of 15

1180 Delmas Ave.

Well Test, Inc.

San Jose, CA 95125 Project Number: 5031 - Four Seasons Cleaners

Project Manager: Bill Dugan

Project: Air Samples

03/04/2016 14:02

Reported:

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample ID: 16	605653-02	Client Sampl	e Name:	Four Seas	sons Clean	ners, IA-9-off, 2/23/2016 10:50:00AM, Wills				
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #	
Ethanol		ND	ug/m3	50	15	EPA-TO-15	ND	A01	1	
Ethyl acetate		ND	ug/m3	50	12	EPA-TO-15	ND	A01	1	
Ethylbenzene		ND	ug/m3	130	7.0	EPA-TO-15	ND	A01	1	
1-Ethyl-4-methylbenzene		ND	ug/m3	130	12	EPA-TO-15	ND	A01	1	
n-Heptane		ND	ug/m3	50	13	EPA-TO-15	ND	A01	1	
Hexachlorobutadiene		ND	ug/m3	250	14	EPA-TO-15	ND	A01	1	
Hexane		ND	ug/m3	130	12	EPA-TO-15	ND	A01	1	
2-Hexanone		ND	ug/m3	130	5.3	EPA-TO-15	ND	A01	1	
Isopropyl alcohol		1700	ug/m3	50	12	EPA-TO-15	ND	A01	1	
Methylene chloride		ND	ug/m3	250	18	EPA-TO-15	ND	A01	1	
Methyl ethyl ketone		ND	ug/m3	50	6.8	EPA-TO-15	ND	A01	1	
Methyl isobutyl ketone		ND	ug/m3	130	14	EPA-TO-15	ND	A01	1	
Methyl t-butyl ether		ND	ug/m3	50	6.5	EPA-TO-15	ND	A01	1	
Propylene		ND	ug/m3	50	7.0	EPA-TO-15	ND	A01	1	
Styrene		ND	ug/m3	130	5.5	EPA-TO-15	ND	A01	1	
1,1,2,2-Tetrachloroethane		ND	ug/m3	130	15	EPA-TO-15	ND	A01	1	
Tetrachloroethene		190	ug/m3	50	24	EPA-TO-15	ND	A01	1	
Tetrahydrofuran		ND	ug/m3	50	9.0	EPA-TO-15	ND	A01	1	
Гoluene		ND	ug/m3	50	8.0	EPA-TO-15	ND	A01	1	
1,2,4-Trichlorobenzene		ND	ug/m3	250	180	EPA-TO-15	ND	A01	1	
1,1,1-Trichloroethane		ND	ug/m3	130	21	EPA-TO-15	ND	A01	1	
1,1,2-Trichloroethane		ND	ug/m3	130	22	EPA-TO-15	ND	A01	1	
Trichloroethene		ND	ug/m3	50	18	EPA-TO-15	ND	A01	1	
Trichlorofluoromethane		ND	ug/m3	130	40	EPA-TO-15	ND	A01	1	
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	130	25	EPA-TO-15	ND	A01	1	
1,2,4-Trimethylbenzene		ND	ug/m3	130	6.3	EPA-TO-15	ND	A01	1	
1,3,5-Trimethylbenzene		ND	ug/m3	130	8.3	EPA-TO-15	ND	A01	1	
Vinyl acetate		ND	ug/m3	50	13	EPA-TO-15	ND	A01	1	
Vinyl chloride		ND	ug/m3	50	12	EPA-TO-15	ND	A01	1	
o- & m-Xylenes		ND	ug/m3	130	15	EPA-TO-15	ND	A01	1	
o-Xylene		ND	ug/m3	130	6.3	EPA-TO-15	ND	A01	1	
Total Xylenes		ND	ug/m3	250	22	EPA-TO-15	ND	A01	1	
1-Bromofluorobenzene (Surr	ogate)	89.9	%	70 - 130 (LC	CL - UCL)	EPA-TO-15			1	

Report ID: 1000455884 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 10 of 15

1180 Delmas Ave.

03/04/2016 14:02 Reported: Project: Air Samples

San Jose, CA 95125 Project Number: 5031 - Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

BCL Sample I	D : 1605653-02	Client Sa	mple Name:	Four Seasons	lls			
Run #	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-TO-15	03/02/16	03/04/16 11:57		MS-A1	25.100	BZC0158	

Page 11 of 15 Report ID: 1000455884

Reported: 03/04/2016 14:02 Project: Air Samples

Project Number: 5031 - Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZC0158						
Acetone	BZC0158-BLK1	ND	ug/m3	5.0	0.31	
Acrylonitrile	BZC0158-BLK1	ND	ug/m3	2.0	0.35	
Allyl chloride	BZC0158-BLK1	ND	ug/m3	2.0	0.29	
Benzene	BZC0158-BLK1	ND	ug/m3	2.0	0.42	
Benzyl chloride	BZC0158-BLK1	ND	ug/m3	10	0.26	
Bromodichloromethane	BZC0158-BLK1	ND	ug/m3	5.0	0.81	
Bromoform	BZC0158-BLK1	ND	ug/m3	10	0.64	
Bromomethane	BZC0158-BLK1	ND	ug/m3	2.0	0.63	
1,3-Butadiene	BZC0158-BLK1	ND	ug/m3	2.0	0.40	
Carbon disulfide	BZC0158-BLK1	ND	ug/m3	2.0	0.38	
Carbon tetrachloride	BZC0158-BLK1	ND	ug/m3	5.0	1.1	
Chlorobenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.83	
Chloroethane	BZC0158-BLK1	ND	ug/m3	2.0	0.64	
Chloroform	BZC0158-BLK1	ND	ug/m3	5.0	0.74	
Chloromethane	BZC0158-BLK1	ND	ug/m3	2.0	0.40	
Cyclohexane	BZC0158-BLK1	ND	ug/m3	2.0	0.28	
Dibromochloromethane	BZC0158-BLK1	ND	ug/m3	5.0	1.4	
1,2-Dibromoethane	BZC0158-BLK1	ND	ug/m3	5.0	0.93	
1,2-Dichlorobenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.31	
1,3-Dichlorobenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.35	
1,4-Dichlorobenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.31	
Dichlorodifluoromethane	BZC0158-BLK1	ND	ug/m3	5.0	1.1	
1,1-Dichloroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.57	
1,2-Dichloroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.53	
1,1-Dichloroethene	BZC0158-BLK1	ND	ug/m3	5.0	0.64	
cis-1,2-Dichloroethene	BZC0158-BLK1	ND	ug/m3	2.0	0.39	
trans-1,2-Dichloroethene	BZC0158-BLK1	ND	ug/m3	2.0	0.52	
1,2-Dichloropropane	BZC0158-BLK1	ND	ug/m3	5.0	0.70	
cis-1,3-Dichloropropene	BZC0158-BLK1	ND	ug/m3	5.0	0.26	
trans-1,3-Dichloropropene	BZC0158-BLK1	ND	ug/m3	5.0	0.33	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.98	
1,1-Difluoroethane	BZC0158-BLK1	ND	ug/m3	5.0	2.0	
1,4-Dioxane	BZC0158-BLK1	ND	ug/m3	2.0	0.44	
Ethanol	BZC0158-BLK1	ND	ug/m3	2.0	0.61	

Report ID: 1000455884 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 12 of 15

Reported: 03/04/2016 14:02 Project: Air Samples

Project Number: 5031 - Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZC0158						
Ethyl acetate	BZC0158-BLK1	ND	ug/m3	2.0	0.47	
Ethylbenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.28	
1-Ethyl-4-methylbenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.47	
n-Heptane	BZC0158-BLK1	ND	ug/m3	2.0	0.50	
Hexachlorobutadiene	BZC0158-BLK1	ND	ug/m3	10	0.54	
Hexane	BZC0158-BLK1	ND	ug/m3	5.0	0.46	
2-Hexanone	BZC0158-BLK1	ND	ug/m3	5.0	0.21	
Isopropyl alcohol	BZC0158-BLK1	ND	ug/m3	2.0	0.47	
Methylene chloride	BZC0158-BLK1	ND	ug/m3	10	0.73	
Methyl ethyl ketone	BZC0158-BLK1	ND	ug/m3	2.0	0.27	
Methyl isobutyl ketone	BZC0158-BLK1	ND	ug/m3	5.0	0.54	
Methyl t-butyl ether	BZC0158-BLK1	ND	ug/m3	2.0	0.26	
Propylene	BZC0158-BLK1	ND	ug/m3	2.0	0.28	
Styrene	BZC0158-BLK1	ND	ug/m3	5.0	0.22	
1,1,2,2-Tetrachloroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.58	
Tetrachloroethene	BZC0158-BLK1	ND	ug/m3	2.0	0.95	
Tetrahydrofuran	BZC0158-BLK1	ND	ug/m3	2.0	0.36	
Toluene	BZC0158-BLK1	ND	ug/m3	2.0	0.32	
1,2,4-Trichlorobenzene	BZC0158-BLK1	ND	ug/m3	10	7.2	
1,1,1-Trichloroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.82	
1,1,2-Trichloroethane	BZC0158-BLK1	ND	ug/m3	5.0	0.88	
Trichloroethene	BZC0158-BLK1	ND	ug/m3	2.0	0.70	
Trichlorofluoromethane	BZC0158-BLK1	ND	ug/m3	5.0	1.6	
1,1,2-Trichloro-1,2,2-trifluoroethane	BZC0158-BLK1	ND	ug/m3	5.0	1.0	
1,2,4-Trimethylbenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.25	
1,3,5-Trimethylbenzene	BZC0158-BLK1	ND	ug/m3	5.0	0.33	
Vinyl acetate	BZC0158-BLK1	ND	ug/m3	2.0	0.50	
Vinyl chloride	BZC0158-BLK1	ND	ug/m3	2.0	0.49	
p- & m-Xylenes	BZC0158-BLK1	ND	ug/m3	5.0	0.61	
o-Xylene	BZC0158-BLK1	ND	ug/m3	5.0	0.25	
Total Xylenes	BZC0158-BLK1	ND	ug/m3	10	0.86	
4-Bromofluorobenzene (Surrogate)	BZC0158-BLK1	71.8	%	70 - 13	0 (LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1000455884 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Reported: 03/04/2016 14:02 Project: Air Samples

Project Number: 5031 - Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 at STP)

Quality Control Report - Laboratory Control Sample

								Control Limits		
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BZC0158										
Benzene	BZC0158-BS1	LCS	16.549	15.974	ug/m3	104		70 - 130		
	BZC0158-BSD1	LCSD	17.194	15.974	ug/m3	108	3.8	70 - 130	30	
Chloroform	BZC0158-BS1	LCS	27.069	24.413	ug/m3	111		70 - 130		
	BZC0158-BSD1	LCSD	27.767	24.413	ug/m3	114	2.5	70 - 130	30	
Ethylbenzene	BZC0158-BS1	LCS	23.808	21.711	ug/m3	110		70 - 130		
	BZC0158-BSD1	LCSD	24.611	21.711	ug/m3	113	3.3	70 - 130	30	
Tetrachloroethene	BZC0158-BS1	LCS	39.515	33.913	ug/m3	117		70 - 130		
	BZC0158-BSD1	LCSD	40.641	33.913	ug/m3	120	2.8	70 - 130	30	
Toluene	BZC0158-BS1	LCS	22.803	18.842	ug/m3	121		70 - 130		
	BZC0158-BSD1	LCSD	23.609	18.842	ug/m3	125	3.5	70 - 130	30	
Trichloroethene	BZC0158-BS1	LCS	32.549	26.869	ug/m3	121		70 - 130		
	BZC0158-BSD1	LCSD	33.597	26.869	ug/m3	125	3.2	70 - 130	30	
Trichlorofluoromethane	BZC0158-BS1	LCS	31.620	28.092	ug/m3	113		70 - 130		
	BZC0158-BSD1	LCSD	31.968	28.092	ug/m3	114	1.1	70 - 130	30	
1,1,2-Trichloro-1,2,2-trifluoroethane	BZC0158-BS1	LCS	38.908	38.318	ug/m3	102		70 - 130		
	BZC0158-BSD1	LCSD	39.974	38.318	ug/m3	104	2.7	70 - 130	30	
p- & m-Xylenes	BZC0158-BS1	LCS	52.592	43.421	ug/m3	121		70 - 130		
	BZC0158-BSD1	LCSD	54.007	43.421	ug/m3	124	2.7	70 - 130	30	
o-Xylene	BZC0158-BS1	LCS	26.313	21.711	ug/m3	121		70 - 130		
	BZC0158-BSD1	LCSD	27.125	21.711	ug/m3	125	3.0	70 - 130	30	
Total Xylenes	BZC0158-BS1	LCS	78.905	65.132	ug/m3	121		70 - 130		
	BZC0158-BSD1	LCSD	81.133	65.132	ug/m3	125	2.8	70 - 130	30	
4-Bromofluorobenzene (Surrogate)	BZC0158-BS1	LCS	70.5	71.6	ug/m3	98.4		70 - 130		
	BZC0158-BSD1	LCSD	70.2	71.6	ug/m3	98.1	0.3	70 - 130		

Report ID: 1000455884 Page 14 of 15 Well Test, Inc. Reported: 03/04/2016 14:02 Project: Air Samples 1180 Delmas Ave.

San Jose, CA 95125 Project Number: 5031 - Four Seasons Cleaners

Project Manager: Bill Dugan

Notes And Definitions

Practical Quantitation Limit

MDL Method Detection Limit ND Analyte Not Detected

PQL

A01 Detection and quantitation limits are raised due to sample dilution.

Report ID: 1000455884

ATTACHMENT D

Client Transmittal Letter

Project No. 5031 WELLTEST, INC.

March 4, 2016

Mr. Mark Detterman Alameda County LOP 1131 Harbor Bay Parkway Alameda, California 94502

Re: Indoor Air Sampling Report (Report #5031)

Four Seasons Cleaners; Cleanup Program # RO0003155 13778 Doolittle Ave., San Leandro, California

Dear Mr. Detterman:

Attached for your review is a technical report (Indoor Air Sampling Report – WTI #5031) for the above referenced case. The report was prepared by WellTest, Inc. at my request.

I declare under the penalty of perjury that information and/or recommendations contained in the attached report are true and correct, to the best of your knowledge.

If you should have any questions or comments, please do not hesitate to contact me, or the WellTest project manager, Bill Dugan at (408) 287-2175.

Sincerely,

Mr. Ernest Lee

Marina Faire Shopping Center 3271 S. Highland Dr., Ste. #704

Las Vegas, NV 89109

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_REPORT FILE

SUCCESS

Your GEO_REPORT file has been successfully submitted!

Submittal Type: GEO_REPORT

Report Title: Indoor Air Sampling Report (Report #5031)

Report Type: Soil and Water Investigation Report

Report Date: 3/4/2016

Facility Global ID: T10000006425

Facility Name: Four Seasons Cleaners

File Name: RO3155_SWI_R_2016_03_04.pdf

Organization Name: WellTest, Inc.
Username: WellTest, Inc.
IP Address: 70.214.8.188

Submittal Date/Time: 3/22/2016 12:51:42 PM

Confirmation Number: 5148016393

Copyright © 2016 State of California