

23.MM:22 FM:11:27

June 14, 1993

Mr. Brian Oliva Alameda County Division of Hazardous Materials Department of Environmental Health 80 Swan Way, Room 200 Oakland, California 94621

Dear Mr. Oliva:

QUARTERLY GROUNDWATER MONITORING REPORTS, FIRST AND SECOND QUARTERS 1993, EMERY BAY MARKETPLACE, EMERYVILLE, CALIFORNIA

Enclosed are the letter reports "Quarterly Groundwater Monitoring Report First Quarter 1993, Emery Bay Marketplace, Emeryville, California, March 15, 1993 and "Quarterly Groundwater Monitoring Report, Second Quarter 1993," June 14, 1993. The reports summarize the quarterly groundwater monitoring activities performed at the Emery Bay Marketplace property during January and April 1993 in accordance with the "Work Plan for Groundwater Monitoring and Free Product Removal at the Marketplace Site, Emeryville California," July 6, 1990 (Work Plan). The Work Plan was submitted to address recommendations made in the report "Groundwater Characterization, Emery Bay Marketplace", June 19, 1990.

The purpose of the quarterly groundwater monitoring program is to confirm that petroleum hydrocarbons are confined within the Marketplace property and have not migrated to the downgradient edge of the property. Groundwater has been monitored on the Marketplace property on a quarterly basis since the first quarter of 1990 (with the exception of the third quarter of 1990). The enclosed Quarterly Groundwater Monitoring Reports support the conclusion that groundwater conditions beneath the site are stable. Specifically, the subsurface conditions beneath the site are as described below:

- The groundwater flow direction across the site has been consistently towards the west since the inception of the quarterly groundwater monitoring program. This indicates that wells W-13, W-14, W-20, and W-24 are in the verified downgradient direction.
- Hydrocarbons quantified as motor oil were detected in the four wells located on the downgradient side of the site (wells W-13, W-14, W-20, and W-24) less than 0.4 ppm in both January and April 1993. The January and April 1993 analyses were conducted using lower detection limits (0.05 ppm), as requested by the ACDEH in a letter to the Martin Group dated August 5, 1992. The chromatographic pattern of the TPH/MO at all four of these locations did not match the standard chromatograph, indicating that the source of TPH/MO at these locations is not the same as the source at wells W-7 and W-19.

Mr. Brian Oliva June 14, 1993 Page Two

> Wells W-7 and W-19 have shown consistent levels of hydrocarbons throughout the groundwater monitoring program.

If you have any questions regarding this report, please call me at (510) 521-5200.

Sincerely,

Julie S. Menack, CEG Supervising Geoscientist

Enclosure (1)

cc:

Lynn Tolin, Martin Group Richard Hyatt, Regional Water Quality Control Board

QUARTERLY GROUNDWATER MONITORING REPORT SECOND QUARTER 1993 EMERY BAY MARKETPLACE EMERYVILLE, CALIFORNIA

JUNE 14, 1993

June 14, 1993

Ms. Lynn Tolin Christie Avenue Partners - JS 5800 Shellmound Avenue, Suite 210 Emeryville, California 94608

Dear Ms. Tolin:

QUARTERLY GROUNDWATER MONITORING REPORT SECOND QUARTER 1993, EMERY BAY MARKETPLACE, EMERYVILLE, CALIFORNIA

This letter report documents the results of the quarterly monitoring activities conducted at the Emery Bay Marketplace (Marketplace) property during April 1993. This is the eleventh quarterly report submitted in accordance with the "Work Plan for Groundwater Monitoring and Free Product Removal at the Marketplace Site, Emeryville, California," July 6, 1990 (Work Plan) (McLaren, 1990b). The Work Plan was submitted to address recommendations made in the report "Groundwater Characterization, Emery Bay Marketplace," June 19, 1990 (Groundwater Characterization Report) (McLaren, 1990a).

This letter report presents the results of the depth to groundwater measurements and the groundwater quality sampling and analyses performed during the month of April 1993. The data evaluation compares data collected during this quarter to historic data collected at the site.

FIELD METHODS

Depths to groundwater in all existing wells at the Marketplace property were measured with a Solinist electronic water level indicator on April 29, 1993. A Marine Moisture Control Company oil-water interface probe was used to measure depth to oil and depth to groundwater in the well where free product was present (Well W-5). Hydrologic data sheets with original field water level data are provided in Attachment A. A summary of historic depth to groundwater measurements, monitoring well surface casing elevations, and calculated groundwater surface elevations is presented in Table 1.

A peristaltic pump was used to purge groundwater prior to sampling with a disposable bailer on April 29, 1993. Groundwater was purged until a minimum of three casing volumes of groundwater were removed, turbidity readings were below 50 NTUs and temperature, conductivity and pH readings were stabilized. Groundwater samples were collected in one-liter amber bottles.

Groundwater samples from wells W-7, W-13, W-14, W-19, W-20, and W-24 were analyzed for TPH/D and TPH/MO by EPA Method 8015 Modified. For this quarter, groundwater samples were also analyzed for gasoline and kerosene by EPA Method 8015 Modified. McLaren/Hart specifically requested lower detection limits of 0.05 ppm for all compounds analyzed. These samples were sent under chain-of-custody to McLaren/Hart Analytical Laboratory (MAL) in Rancho Cordova, California. One travel blank was sent as a Quality Assurance (QA) sample on each day of sampling. The analytical laboratory data sheets, QA laboratory results, chain-of-custody records, and sampling data sheets are included in Attachment B. The analytical results are summarized and presented with the historic analytical data in Table 2.

DATA EVALUATION

The data which are evaluated consist of: 1) groundwater surface elevations, as determined by the April 29, 1993 depth to groundwater measurements; 2) groundwater flow directions, as determined from the groundwater surface contour map that has been prepared based on the groundwater elevations; and 3) groundwater quality data obtained in April 1993.

Groundwater Elevations

The April 29, 1993 groundwater surface elevation contours for the artificial fill material beneath the site are presented in Figure 1. Elevations from the following wells were omitted from the preparation of groundwater surface elevation contours for the reasons described:

- Elevations from Wells W-15, W-16, and W-22 were not used to construct the map because these wells are completed in the native material below the artificial fill material.
- The groundwater elevation for Well W-5 was not used because the free product which occurs in this well is likely to affect the measured groundwater elevation.
- The elevation from Well W-7 was not used because it is significantly higher than elevations in adjacent wells. The higher elevation at Well W-7 has consistently been observed when water elevations have previously been measured. As discussed in the Groundwater Characterization Report, perched groundwater conditions may occur within the artificial fill material at this location.

Groundwater Flow Direction

The groundwater elevation map for wells completed in the native material is consistent with previous groundwater flow maps and indicates that groundwater flows in a westerly to southwesterly direction, toward Christie Avenue. The April 1993 water levels were generally lower than those measured in January 1993. As discussed in the Groundwater Characterization Report (McLaren, 1990a), local variations in groundwater flow near Wells W-4 and W-8 may be caused by the slurry wall that is installed to a depth of 35 feet on the upgradient property. Well W-8 was not accessible on this date.

Groundwater Quality

Groundwater samples were collected on April 29, 1993 from six wells within and on the downgradient side of the property (W-7, W-13, W-14, W-19, W-20, and W-24). All groundwater samples collected in April 1993 were analyzed for total petroleum hydrocarbons (TPH) as diesel (TPH/D), motor oil (TPH/MO), kerosene (TPH/K), and as gasoline (TPH/G) by EPA Method 8015 Modified, with a detection limit of 0.05, where possible. The analytical results are summarized in Table 2 and presented in Figure 1. The following discussion focuses on the results of the analyses in the quarterly monitoring program.

The purpose of the quarterly monitoring program is to confirm that total petroleum hydrocarbons (TPH) are confined to within the Marketplace property and have not migrated off-site. The six wells (W-7, W-13, W-14, W-19, W-20 and W-24) that were sampled during this quarter, have been sampled since 1989 (W-7) and since 1990 (W-13, W-14, W-19, W-20, and W-24). The following is a summary of the past as well as present analytical results for each of the six downgradient wells.

- Well W-7 is located in the center of the site. TPH/D has been detected in groundwater at levels ranging from less than 0.5 (non-detect) to 5.6 ppm. The TPH/D result from the April 1993 sampling was 1.6 ppm. Prior to the April 1993 sampling event, TPH/MO had been detected at levels between 2 and 12 ppm. The April 1993 TPH/MO result was 1.7 ppm, slightly lower than the lowest concentration perviously detected. Therefore, in the April 1993 sampling, both TPH/D and TPH/MO results were confirmed within the past range of results or a similar concentration to groundwater sampled from this well.
- Well W-13 is located on the downgradient, central side of the site. TPH had never been detected in groundwater from this well prior to the January 1993 sampling event, when TPH as motor oil was detected at 0.11 ppm. The April 1993 sampling result of 0.12 ppm confirmed the January 1993 data. As in January, the April laboratory data sheet indicated that the gas chromatographic pattern for motor oil in the sample did not exactly match the

standard chromatograph. TPH/MO was detected in this well for the first time in January because the detection limits for TPH were reduced from 0.5 to 0.05.

- Well W-14 is located on the downgradient, southern side of the site. Similar to well W-13, TPH had never been detected in groundwater from this well prior to the January 1993 sampling event, when TPH as motor oil was detected at 0.13 ppm. The April 1993 sampling result of 0.15 ppm confirmed the January 1993 data. As in January, the laboratory data sheet indicated that the gas chromatographic pattern for motor oil in the sample did not exactly match the standard chromatograph. TPH/MO was detected because the detection limits for TPH were reduced from 0.5 to 0.05.
- Well W-19 is located within the site upgradient of W-7 on the northwestern side of the site. The TPH/D detected in April 1990 and January 1993 was not confirmed in April 1993. TPH/MO has been detected in the past in groundwater sampled from well W-19 at levels ranging from less than one (the detection limit) to 34 ppm. The April 1993 TPH/MO result was within this range at 8.2 ppm. The analytical results indicate that TPH/MO present in this well match the standard chromatograph.
- Well W-20 is located on the far downgradient side of the site. TPH/D has never been detected in groundwater from this well. TPH/MO detected in groundwater sampled from well W-20 in April 1991 at 2.3 ppm and in January 1993 at 0.42 ppm was confirmed in April 1993 at 0.38 ppm. It is likely that TPH/MO has always been present in this well below the detection limits which have ranged from 0.5 to 1 ppm. The laboratory data sheet indicated that the gas chromatographic pattern for motor oil in the sample did not exactly match the standard chromatograph.
- Well W-24 is located on the downgradient side of the site. TPH/D has not been detected in the groundwater sampled from well W-24 in either the previous or the most recent sampling events. The TPH/MO detected in April 1991 at 1.1 ppm, and in January 1993 at 0.2 ppm was confirmed in April 1993 at 0.14 ppm. It is likely that TPH/MO has always been present in this well below the detection limits which have ranged from 0.5 to 1 ppm. The laboratory data sheet indicated that the gas chromatographic pattern for motor oil in the sample did not exactly match the standard chromatograph.

Product thickness has been measured in wells W-5 and W-16 since October 1989. Product thickness in well W-5 has not changed very much since the free product removal program ended in June 1991. Product thickness in the most recent five quarters has ranged between 0.80 and 1.5 feet in well W-5. Prior to the end of monthly product removal for well W-5, product thickness had ranged between 0.71 and 2.12 feet. Prior to October 1991, the

product thickness in well W-16 ranged between not detected and 0.07 feet. Product has not been measurable in well W-16 since October 1991.

SUMMARY AND CONCLUSIONS

The results from the ongoing quarterly monitoring activities conducted at the Emery Bay Marketplace property are summarized as follows:

- The April 1993 groundwater flow map for the artificial fill (Figure 1) is consistent with previous groundwater flow maps, and shows that groundwater flow is toward the west-southwest.
- TPH as gasoline and kerosene were not detected in any wells above the detection limit of 0.05 ppm, consistent with previous results.
- TPH/MO has been confirmed in wells W-7 and W-19 and TPH/D has been confirmed in well W-7, where previously detected. The chromatographic patterns for TPH/D and TPH/MO matched the standard chromatographic range.
- Hydrocarbons quantified as TPH/MO are present at concentrations less than 0.4 ppm in the four wells located on the downgradient side of the site (wells W-13, W-14, W-20, and W-24). Hydrocarbons were detected previously in two of these wells one time in April 1991, and in all of these wells in January 1993, when the analysis was done with lower detection limits. The chromatographic pattern of the TPH/MO detected at all four of these locations did not match the standard chromatograph, indicating that the source of TPH/MO on the downgradient side of the site is not the same as the source at wells W-7 and W-19.

These results confirm the analytical results of January 1993, which first indicated that the TPH/D and TPH/MO detected in wells W-7 and W-19 are from a different source than the TPH/MO detected in wells W-13, W-14, W-20, and W-24, all of which are located on the downgradient side of the site. Based upon the site use history, it is likely that the source of TPH in W-7 and W-19 is the former Nielsen Trucking facility which was in the vicinity of these wells. The site use history for the Marketplace property indicates that an asphalt producing facility was formerly in the vicinity of the Marketplace building and that a tar-like substance is distributed throughout the fill beneath this and adjacent properties.

Because TPH/MO was detected in the four downgradient wells when the EPA Method 8015 analysis was performed with low detection limits (as requested by the Alameda County of Environmental Health), it can be inferred that TPH/MO is present in this area wherever fill is present at these low concentrations.

If you have any questions regarding this report, please call me at (510) 521-5200. Sincerely,

Julie S. Menack, CEG
Supervising Geoscientist

cc: Brian Oliva, Alameda County Department of Environmental Health Richard Hyatt, Regional Water Quality Control Board

REFERENCES

McLaren. (1990a). Groundwater Characterization, Emery Bay Marketplace, June 19,1990.

McLaren. (1990b). Work Plan for Groundwater Monitoring and Free Product Removal at the Marketplace Site, Emeryville, California, July 6, 1990.

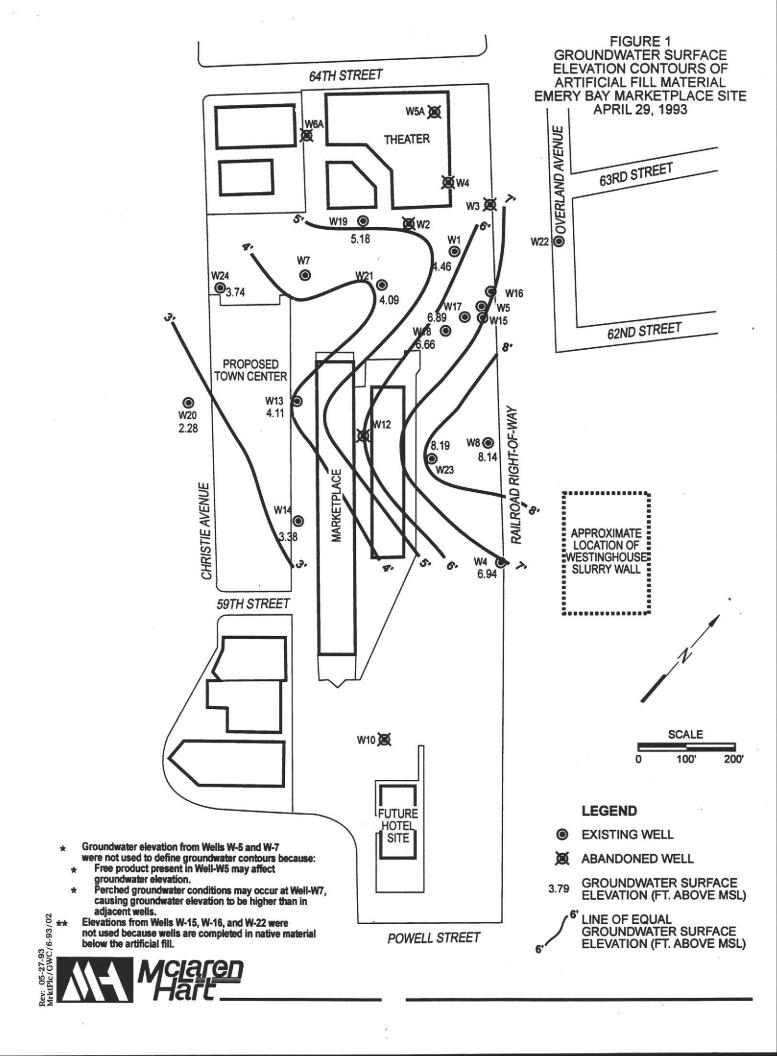


TABLE 1

GROUNDWATER DEPTHS AND ELEVATIONS EMERY BAY MARKETPLACE SITE

Well Number (Feet)	Top of Casing (Feet)	Date	Depth to Groundwater (Feet)	Groundwater Elevation (Feet)	Product Thickness
W-1*	11.47	08-07-81 09-10-81 05-06-87 08-20-89 10-11-89 02-22-90 02-28-90 04-09-90 06-07-90 07-25-90 10-03-91 04-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93	4.30 4.40 6 5.60 5.63 4.92 5.02 5.44 5.37 5.26 5.43 5.69 4.74 5.22 4.88 4.98 5.16 5.79 4.82 6.01	6.20° 6.10° 6.08° 5.87 5.84 6.55 6.45 6.03 6.10 6.21 6.04 5.78 6.73 6.25 6.59 6.49 6.31 5.68 6.65 5.46	
W-4	9.96	08-07-81 09-10-81 01-18-82 03-27-85 08-20-89 10-11-89 02-22-90 02-28-90 04-09-90 06-07-90 07-25-90 10-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93	4.30 4.40 2.50 <u>?c</u> 3.95 3.87 2.0 2.39 3.17 2.73 3.71 4.18 3.64 1.45 4.29 2.56 2.80 4.03 4.03 4.50 1.52 3.02	6.20° 6.10° 8.00° 8.65 6.01 6.09 7.96 7.57 6.79 7.23 6.25 5.78 6.32 8.51 5.67 7.40 7.16 5.93 5.46 8.44 6.94	
W-5	11.41	08-07-81 09-10-81 01-18-82 03-27-85 10-11-89 02-22-90 02-28-90 04-09-90 06-07-90 07-25-90 10-03-90 01-03-91 04-03-91 10-25-91 01-15-92 04-23-92	4.70 4.90 2.50 7c 4.43 3.80 4.43 4.73 4.30 5.10 4.90 4.77 2.42 5.47 3.21	7.50 ^b 7.30 ^b 9.60 ^b 9.28 6.98 7.61 6.98 6.68 7.11 6.31 6.51 6.51 8.64 8.99 5.94 8.2	c c c 0.71 0.88 1.65 1.82 1.80 2.12 1.11 0.85 0.03 1.18 0.80

TABLE 1
GROUNDWATER DEPTHS AND ELEVATIONS

EMERY BAY MARKETPLACE SITE (continued)

Well Number (Feet)	Top of Casing (Feet)	Date	Depth to Groundwater (Feet)	Groundwater Elevation (Feet)	Product Thickness
		07-21-92 10-22-92 01-26-93 04-29-93	3.55 4.28 3.28 2.60	7.86 7.13 8.13 8.81	1.50 1.45 1.24 NM
W-7° 9.05		08-20-89 10-11-89 02-22-90 02-28-90 04-09-90 06-07-90 07-25-90 10-03-91 04-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93	3 3.59 3.08 1.75 1.31 2.42 1.21 2.76 3.22 3.17 1.18 3.47 3.88 3.20 3.65 4.58 1.12 2.90	6.88° 5.46 5.97 7.30 7.74 6.63 7.84 6.29 5.83 5.88 7.87 5.59 5.17 5.85 5.40 4.77 7.93 6.15	
₩-8 ³	10.43	05-06-87 08-20-89 02-22-90 02-28-90 04-09-90 06-07-90 07-27-90° 10-03-91 10-03-91 10-25-91 01-15-92 04-24-92 07-21-92 10-22-92 04-29-93	5.5 3.59 1.5 1.78 3.12 2.90 3.33 3.65 3.46 1.47 3.54 2.98 3.01 3.41 4.23 2.29	6.88° 6.84 8.93 8.65 7.31 7.53 7.10 6.78 6.97 8.96 6.89 7.45 7.42 7.02 6.20 8.14	
W-13	8.15	08-20-89 10-11-89 02-22-90 02-28-90 04-09-90 06-07-90 07-25-90 10-03-91 04-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93	4.64 4.60 3.85 4.18 4.31 3.93 4.40 4.67 4.63 3.64 4.54 3.82 4.12 4.44 4.42 3.10	3.51 3.55 4.30 3.97 3.84 4.22 3.75 3.48 3.72 4.51 3.72 4.33 4.03 3.71 3.73 5.05 4.11	

TABLE 1 GROUNDWATER DEPTHS AND ELEVATIONS EMERY BAY MARKETPLACE SITE (Continued)

Well Number (Feet)	Top of Casing (Feet)	Date	Depth to Groundwater (Feet)	Groundwater Elevation (Feet)	Product Thickness
W-14	7.97	08-20-90 02-22-90 02-28-90 04-09-90 06-07-90 07-25-90 10-03-91 04-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93	5.02 4.19 4.46 4.36 5.29 4.83 5.09 4.32 4.31 4.41 4.18 4.93 4.57 5.28 3.94 4.59	2.95 3.78 3.51 3.61 2.68 3.14 2.88 3.65 3.66 3.79 3.04 3.40 2.69 4.03 3.38	
W-15	11.53	08-20-89 10-11-89 02-22-90 02-28-90 04-09-90 06-07-90 07-25-90 10-03-90 10-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93	3.43 4.26 2.58 2.53 2.48 4.54 4.00 3.46 2.97 3.05 2.88 3.54 2.78 2.67 2.67 2.67 2.65 2.47	8.10 7.27 8.95 9.00 9.05 6.99 7.53 8.07 8.56 8.48 8.65 7.99 8.75 8.86 8.88 9.06 8.97	
₩-16'	10.94	10-11-89 02-22-90 02-28-90 04-09-90 06-07-90 07-27-90' 10-03-90 01-03-91 04-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93	4.81 3.92 3.88 7.81 6.19 4.44 4.38 4.67 3.50 4.64 4.11 3.89 4.28 NA 2.47	6.13 7.02 7.06 3.13 4.75 6.50 6.56 6.27 7.48 6.30 6.83 7.05 6.66 NA	O.O7 NM NM NM NM O.O2 O.O2 O.O2 NM NM NM
W-17	12.14	10-11-89 02-22-90 02-28-90 04-09-90 06-07-90 07-26-90 10-03-90 01-03-91 04-03-91	9.12 5.42 5.35 5.72 5.59 5.72 6.28 4.69	3.02 6.72 6.79 6.42 ° 6.55 6.42 5.86 7.45	

TABLE 1 GROUNDWATER DEPTHS AND ELEVATIONS EMERY BAY MARKETPLACE SITE (Continued)

Well Number	Top of Casing (Feet)	Date	Depth to Groundwater (Feet)	Groundwater Elevation (Feet)	Product Thickness
(Feet)					
		10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93	6.00 5.57 5.17 5.54 6.10 4.45 5.25	6.14 6.57 6.97 6.60 6.04 7.69 6.89	
W-18 11.34 10-11-89 02-22-90 02-28-90 04-09-90 06-07-90 10-03-91 04-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93		02-22-90 02-28-90 04-09-90 06-07-90 07-25-90 10-03-91 04-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 10-22-92	5.52 4.42 4.77 5.24 4.28 4.98 5.84 4.94 5.55 5.24 4.81 5.01 5.55 4.72 4.68	5.82 6.92 6.57 6.10 7.06 6.36 5.90 5.50 6.40 5.79 6.10 6.53 6.33 5.79 6.62 6.66	
J- 19	10.27	04-09-90 06-07-90 07-25-90 10-03-90 01-03-91 04-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93	5.11 4.77 4.93 4.95 5.95 5.39 5.47 5.18 5.34 5.08 5.31 4.82 5.09	5.16 5.50 5.34 5.32 4.32 4.88 4.80 5.09 4.93 5.19 4.96 5.45 5.18	
W-20	6.82	04-09-90 06-07-90 07-25-90 10-03-90 01-03-91 04-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93	4.08 3.79 4.00 4.03 4.12 3.84 4.07 3.75 4.08 4.02 4.07 3.30 4.00	2.74 3.03 2.82 2.79 2.70 2.98 2.75 3.07 2.74 2.80 2.75 3.52	
W-21	9.48	04-09-90 06-07-90 07-25-90 10-03-90 01-03-91 04-03-91 10-25-91	5.21 4.84 5.05 5.18 5.47 4.80 5.04	4.27 4.64 4.43 4.30 4.01 4.68 4.44	

TABLE 1

GROUNDWATER DEPTHS AND ELEVATIONS EMERY BAY MARKETPLACE SITE (Continued)

Well Number (Feet)	Top of Casing (Feet)	Date	Depth to Groundwater (Feet)	Groundwater Elevation (Feet)	Product Thickness
		01-15-92 04-23-92 07-21-90 10-22-92 01-26-93 04-29-93	4.95 5.17 5.07 5.28 4.46 5.39	4.53 4.31 4.41 4.20 5.02 4.09	
₩-22	11.67	04-09-90 06-07-90 07-25-90 10-03-90 01-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93	7.50 7.36 7.49 7.68 7.88 7.64 6.69 7.61 7.21 7.69 7.82 7.40 7.71	4.17 4.31 4.18 3.99 3.79 4.03 4.98 4.06 4.46 3.98 3.85 4.27	
w-23	9.16	04-09-90 06-07-90 07-27-90' 10-03-90 01-03-91 04-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93	1.51 1.78 2.63 3.20 2.36 0.60° 2.36 1.62 1.18 2.17 2.17 2.76 0.39 0.97	7.65 7.38 6.53 5.96 6.80 8.56 6.80 7.54 7.98 6.99 6.40 8.77	
₩-24	8.72	06-07-90 07-25-90 10-03-90 01-03-91 04-03-91 10-25-91 01-15-92 04-23-92 07-21-92 10-22-92 01-26-93 04-29-93	4.75 5.02 5.00 5.25 4.56 5.09 4.82 4.94 5.00 5.13 3.38	3.97 3.70 3.72 3.47 4.16 3.63 3.90 3.78 3.72 3.59 5.34 3.74	

Nielson Property

Data not available.

Well W-17 not accessible on 6-7-90. g

a Groundwater elevation taken from earlier reports; may not agree with calculated elevation using current top of casing elevation.

d Well W-8 was not accessible on 7-25-90 and 7-26-90. It was sounded on 7-27-90.

NM indicates product thickness not measurable.
Wells W-16 and W-23 were under pressure when sounded in 7-25-90. The wells were allowed to equilibrate and were resounded on 7-27-90. e

Depth to groundwater measured with tape measure because water level was too shallow to measure with oil-water interface probe. Well W-16 not accessible on 10-22-92. Well W-8 not accessible on 01-26-93

TABLE 2
HYDROCARBONS IN GROUNDWATER
EMERY BAY MARKETPLACE SITE

Number Well	Sample Date	TPH/D Concentration (ppm)	TPH/MO Concentration (ppm)	
₩-1	04-14-87 02-28-90 04-11-90	* <0.5 <0.1	<5 ⁶ 0.57	
W-2 ^d	04-15-87	<1	•••	
N-3 ^d		•••	•••	
4- 4⁴	04-14-87		<5°	
d-4	03-01-90 04-10-90	<0.5 <0.1	<0.25	
I-5°	09-27-89	20	•••	
3-5⁴				
√-5A ^d	04-16-87	<1°	<1'	
1- 5"	10-25-91	HFA: Crude Oil or Waste Oil		
1-6°	04-16-87	<1 ^f	<1"	
u-7	09-26-89 02-28-90 04-11-90 07-30-90 10-04-90 01-04-91 04-03-91 10-25-91	1.1 <0.5° 5.6 2.6 5 4 <1.0° 1.4 HFA: Biogenic or highly degraded material	7.5 2 6 12 3.2 2.3	
	01-16-92 04-24-92 07-23-92 10-23-92 ^{1, °} 01-27-93 04-29-93	1.6 3.3 2.6 3.8 <0.5 1.6	3.6 4.9 4.0 4.2 8.0' 1.7'	
d-8	04-17-87 09-26-89 03-01-90 04-18-90	10 ¹ 7-1 4-5 5-3	::: :::	
√-13	02-28-90 04-12-90 07-27-90 10-04-90 01-03-91 04-04-91 10-25-91 01-16-92 04-24-92 07-22-92 10-23-92 01-27-93 04-29-93	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1 <1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 <0.5	

TABLE 2

HYDROCARBONS IN GROUNDWATER EMERY BAY MARKETPLACE SITE (Continued)

Number Well	Sample Date	TPH/D Concentration (ppm)	TPH/MO Concentration (ppm)	
w-14	02-28-90 04-11-90 07-30-90 10-04-90 01-04-91 04-04-91 10-25-91 01-16-92 04-24-92 07-22-92 10-23-92 01-27-93 04-29-93	<0.5 <0.1 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre><0.25 <1 <1 <1 <1 <1 <1 <0.5 <0.5 <0.5 <0.5 0.13¹ 0.15¹</pre>	
W-15	09-25-89 04-13-90	1.2 1.5		
₩-16	09-27-89 02-28-90 04-13-90	4.7 22 9		
W-17	09-25-89 04-13-90	0.7 1.6	•••	
₩-18	09-26-89 04-13-90	3.1 5.1	•••	
₩-19	04-12-90 04-16-90 07-27-90 10-03-90 01-03-91 04-03-91 10-25-91" 10-25-91 01-17-92 04-23-92 07-23-92 10-22-92' 01-26-93 04-29-93	1.1 <0.5 ¹ <1 <0.5 ^k <0.5 <2.5 ^h <0.5 HFA: Motor Oil <10.0 <2.0 <0.1 <10 0.79 <0.05	8 3 <1 8.4 34 29 7.1 7.3 28 35 8.2	· ·
W-20	04-12-90 04-16-90 07-30-90 10-03-90 01-04-91 04-04-91	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<pre> <1 <1 <1 <1 2.3'</pre>	
	10-25-91" 10-25-91" 01-17-92 04-24-92 07-22-92 10-22-92 01-27-93 04-29-93	<pre><0.5 HFA: Volatiles and Semi-Volatiles not detected <0.5 <0.5 <0.5 <0.5 <0.10 <0.05</pre>	<0.5 <0.5 <0.5 <0.5 <0.5 0.42'	
⊌-21	04-12-90 04-18-90	1.4 1.7	•••	

TABLE 2

HYDROCARBONS IN GROUNDWATER EMERY BAY MARKETPLACE SITE

Number Well	Sample Date	TPH/D Concentration (ppm)	TPH/MO Concentration (ppm)	
		4		
W-22	04-12-90	<0.5	•••	
	04-18-90	<0.5	•••	
W-23	04-12-90	2.9	•••	
	04-18-90	2.9 3.6	***	
1-24	06-07-90	<0.5		
	07-27-90	<0.5	<1	
	10-03-90	<0.5	<1 <1 1.1' <1	
	01-03-91	<0.5	<1.	
	04-03-91	<0.5	1.1'	
	10-25-91"	<0.5	<1	
	10-25-91"	HFA: Volatiles and		
		Semi-Volaties not detected		
	01-17-92	<0.5	<0.5	
612	04-24-92	<0.5	<0.5	
	07-23-92	<0.5	<0.5	
	10-22-92	<0.5	<0.5	
	01-26-93	<0.05	0.20	
	04-29-93	<0.05	<0.5 <0.5 0.20' 0.14'	

Footnotes:

a	indicates no analysis made for constituent.
b	< indicates constituent not detected above this level.
С	Grease also not detected above 5 ppm in Wells W-1 and W-4 (Nielson)
d	Abandoned well on Nielson property.
е	Free product in Well W-5.
f	Indicates total gasoline, diesel, and motor oil also not detected above 1 ppm in wells W-5A and W-6.
g	Review of gas chromatograph indicated TPH/D present at 0.3 ppm in Well W-7 on 2-28-90.
h	Reporting limits increased from 0.5 ppm to 1.0 ppm (W-7) and 2.5 ppm (W-19) TPH/D on 4-3-91 because
	samples were diluted due to presence of motor oil.
i	Semiquantified results include gasoline, diesel, and some oil and grease in well W-8.
j	Review of gas chromatograph indicated TPH/D present at 0.4 ppm in Well W-19 on 4-16-90.
k	Review of gas chromatograph indicated TPH/D present at 0.3 ppm in Well W-19 on 10-3-90.
L	The chromatographic pattern in the sample does not exactly match the motor oil standard chromatograph.
m	BTEX analyzed 10/25/91, not detected.
n	Hydrocarbon Fingerprinting Analysis (HFA)
0	The chromatographic pattern in the sample does not exactly match the diesel standard chromatograph.

ATTACHMENT A HYDROLOGIC DATA SHEETS

INSTRUMENT CALIBRATION LOG

Client Name and Site:	Project Manager:	Task Number:
= MARKET PACE /EMPRYVILLE	J. MENACK	04.0059805.000
Calibration		V.1. 0037 pos. 110
Person Calibration:	Livent.	Date: 1/20/0-
Instrument Type:	Calibration Gas: 72	4/29/93
Model: 5 80 19	Calibration Gas: TSO But IFN	E IN AIR
Canal di	Concentration (ppm): / 0 0	
ZOO Calibrator Model: ————————————————————————————————————	94.2	
Calibrator Model: TEDLAR BAG	Adjusted Reading (If Necessary)	UA //
		White
Person Calibrating:		Date:
Instrument Type;	Calibration Gas:	
Model:	Calibration Gas Concentration (com):	
Senai 8:	Reading (ppm):	
Calibrator Model:	Adjusted Resign	
Comments:	(If Necessary)	
Person Calibrating:		Cam:
Instrument Type:	Calibration Gas:	
Model:	Calibration Gas	
Sonal 8:	Concentration (ppm):	
Calibrator Model;	Reading (ppm):	
Commens;	Adjusted Reading (If Necessary)	
Person Calibrating:		
		Date: ,
ristrument Type:	Calibration Gas:	
Accel:	Calibration Gas Concernstion (ppm):	
enau et	Reading (ppm):	
Calibrator Model:	Adjusted Reading	
Commerces:	(If Necessary)	
erson Calibrating:		Coate:
estrument Type:	Calbration Gas:	
lodec	Calbrason Ges	
enal F:	Concentration (ppm): Reading (ppm):	
afficient Model:		
	Adjusted Reading (If Necessary)	
ommeres:		
	* :	

NOTE: Return to REHSC Upon Completion of Site Work.

DIRECT READING REPORT

Client Name and Site:			Project Manager:		Number:	Date:
MARKET 1	PLACE EMERYUI	ll e	J. MIENITO	K 04.0	059805.000	4/29/93
CITIDIOYUU. /	Title:	Weather	Conditions/			
D.WISTTS	Asst. Eur. Sci.	_ Wind Spe	Conditions/ ons: <u>CLEPT</u> , Si ed: <u>TRACE</u> Wir	nd Direction:	Temper	ature: <u>74 F</u>
		Direct I	Reading Data			
Location:	Task Description (Drilling, Sampling, etc.)	Time	instrument Type (& lamp size if applicable)	Substance/ Agent	Concentration	Source: S Breatteng Zone: B
W-4	SAMPLING	0951	OVM 582A	Voc	0/0	5/13
W-8		1008	11000	1	21/0	1
W-17		1014			0/0	
W-15		1024			0/0	
W-15 W-5		1034			17/0	
W-1		1055			0/0	
W-22		1059			0/0	
W-18		1105			1.5/0	
W-23		11/1			8.2/0	
W-14		1/20			0/0	
W-13		1/27			0/0	
W-7		1129			0/0	
N-19		1134			2/0	
		1139			0/0	1
W-21		1142			0/0	
W-20	•	1149			4.4/0	Ψ.
	,	1				
		+				
		+ +				
		-				
-		+ +				
		1 1				
		-				
Comments:						

DATE: 4/29/93

	PRO	JECT: MARKE	T Place	_ EVENT: _	Ganatiraly	SA	MPLER: D. WATT
	NO.	WELL OR LOCATION	DATE MOI DAIYR	TIME HR I MIN	MEASUREMENT	CODE	COMMENTS
	1	W-1	4 29 93	10 55	6.01	SWL	VAULT BOX FLOCPED.
c	2	W-4	1111	0958	3.02	1	
و	3	W-5		10 34	2.60	OIL	VALLY BOX FLEEDED.
	4	พ-า		10 14	2.90 5.25		4
c	5	W - 8		1010	2,29		
c	6	W-13		10 27	4.04		
4	7	W-14		10 24	(4.59) 2.56c		VAULT BOX FLOWDED. A
ح	8	W-15		10 25	2,56	+	Viguet Box FLOODED.
	9	W-16					BURLED /MACCESSIBLE
c	10	U-17		10 15	5,25	SWL	/
	11	U-18		11 05	4,68	1	VAULT REX FLOCOSO
	12	W-19		11 34	5.09		
c	13	W-20		11 49	4.00		
	14	W-21		11 39	<i>5.</i> 39		
	15	W-22		10 59	7.71		
	16	W- 23		11/11	0.97		
	17	W-24	446	11 42	4.98	+	
	18						
	19						
	20						
	2005	_					

CODES:

'SWL - Static Water Level (Feet)

*IWL - Instant Water Level; Non-Static (Feet)

*OIL - Oil Level (Feet)

*OWI - Oil/Water Interface (Feet)

*MTD - Measured Total Depth (Feet)

FLO - Flow Rate (Gallons/Minute)

CUM - Cumulative (Gallons)

HRS - Total (Hours)

PSI - Pressure (psi)2

pH - 1 to 14

Ec - Conductivity (um HOS)

TMP - Temperature (°C)

TRB - Turbidity (NTU)

___ - ____(Additional Code)

^{*}All levels are depth from inner casing - describe any other reference points in comments column; when in doubt, describe reference point.

Note in comments column if well is not: properly labeled, locked, or able to be locked. Describe corrective action. Note flooding of vault box, odor, access problems.

^{*}Negative pressure (Vacuum) psi s approx -(1/2 x mmHg)

SAMPLING EVENT DATA SHEET

(fill our completely)

McLaren				WELL	OR LO	CATION	1-20
PROJECT MARKET	PACE E	PENT Quart	Thy SAM	PLER D.	WATE	DATE _4	129/93
Well / H	vdrologie statis	tics	Act	ten	Time	Pump rate	(low viek
		po MW	Start purn	p / Begin	1723		
	(MW.	EW, etc.)			1232	1.25 6Pm	14.68
				THE RESERVE AND ADDRESS OF THE PARTY.	1243	1.23 GPM	
	diame	Z"			1252	125 GPM	4.94
SWL —	.	.1) 		
(if above screen)	equais	. / 6 gaint. cas	ng				
		1	Stop	1/	253	1 4	1 4.94
intake			Sampled	. !/	1302	-:	1/20
batter depth (circle one)	2.5	TOP	(Final IWL				1 4.37
4.00	1000		14			gais x 3 =	/
SWL-7.00							
(if in screen)		_		SWL to BOP o			e volume- casings
	17.5	BOP	,			lation (Airlift	
measured 16.65	125		gai		-	gais:	
T.D. 70.63	111111111111111111111111111111111111111	T.D. (as built)		packer to SV		L ·	
Equipment Used / Sam	pting Method / D	escription of Evi	ent:	A manual model		ed 6.7	5
De Per, Q				Actual gallo	-		12
USED DESIGN				Actual voiu	mes pun	ged <u>3.0</u>	
	early discounts.	· · · · · · · · · · · · · · · · · · ·		Well yield	⊕	<u>H</u>	<u>Y</u>
				(see below)	9	
				COC #	3	7024	•
				Sample I.	100	Anatysis	Lab
				735631-	32 8	015 MODER) MBT
Additional comments:				235633-	34 2	TO15 MOD.	
50% RETELERY:	16.05						
,	, , ,						
80% Receivery!	6.70 Sa	afte Turbe	0.6: 842				
	TEMP C	EC PAROL	PH	7,000	v T		
Gasona pungeu	(circle one)	(us / cm)	PM	TURBIDIT (NTU)	Y		
1. 5,25	73.0	9400	6.43	10.02			
2 4.50	72.4	8960	6.37	1.35			
2 6.75	72.0	8800	6.41	0.96			
4.				0.70	\dashv		
5.							
	⊕ HY- Minima	MY - WL dran - a	pie to pume 3	LY - Abia to s	surpe 3	VLY - Minis	mai recharge -
approximately each	W.L drop	volumes du	iring one sitting	volumes	by return	ing una	ble to purge
casing volume purged.		cycling our		later or n	ext day.	3 70	Miles.
* Take measurement at	⊕ <u>HY-</u> Minima W.L. drop	by reducing	ring one sitting pump rate or	LY - Abie to produmes later or n	by return	ing una	mai recharge - ble to purge lumes.

SAMPLING EVENT DATA SHEET

(fill out completely)

WELL OR LOCATION W-13

Well / Hydrologic statistics Mest type MW Start pump / Begin 1357 125 6/m C.05 1406 125 6/m 4.05 1406	PROJECT MARK	ET PLACE E	VENT QUARTER	ySAM	PLER D. WA	DATE .	4/29/93
Start pump / Begin 1357 C C S C S	Well / H	ydrologic statis	tics.	Act	ion II	ne Pump ra	
Equipment Used / Sampling Method / Description of Event: ### Colon of the Colon of Event: ### Colon of the Colon of Event: ### Colon	SWL (if above screen) packer 9.8 ft. batter deputs (circle one) SWL (if in screen)	d diame	ter 2" TOP BOP	Stop Sampled (Final IWL	140 140 140 140 141 142 142 142 142 142 142 143 144	2 .17 6f	(low viek
Additional commerts: 235637-38 7015 map m87	Equipment Used / San	npting Method / D	Description of Event	:	Actual gailons (Actual volumes Well yield (see below)	purged	
Gallons purged • TEMP °C 1 °F EC PH TURBIDITY (NTU) 1. 69.0 1/30 7.14 4.09 2. 2 68.1 1050 7.20 32.6 3. 3 67.9 1510 7.24 10.24 4. 5. Take measurement at approximately each casing volumes during one sitting by reducing pump rate or later or next day. W.L. drop by reducing pump rate or later or next day.		702			-		
1. 69.0 1/30 7.14 4.09 2. 2 68.1 1050 7.20 32.6 3. 3 67.9 1010 7.24 10.24 4. 5. Take measurement at approximately each casing volumes during one sitting by reducing pump rate or later or next day. W.L. drop by reducing pump rate or later or next day.	80%. ZETOVERY	, 5,23 S,	EC	Control Control			
2. 2 68.1 1050 720 32.6 3. 3 67.9 1010 7.24 10.24 4. 5. Take measurement at approximately each casing volumes during one sitting by reducing pump rate or later or next day. W.L. drop by reducing pump rate or later or next day. 32.6 LY - Able to purge 3 volumes by returning later or next day. 3 volumes.	1. /			714	ļ		
Take measurement at approximately each casing volume ourged. W.L. drop volumes during one sitting by reducing pump rate or later or next day. We have measurement at approximately each casing volumes by returning by reducing pump rate or later or next day.							
Take measurement at approximately each casing volume oursed. W.L. drop W.L. drop by reducing one sitting by reducing pump rate or later or next day. W.L. drop by reducing pump rate or later or next day.	3						
Take measurement at approximately each casing volume ourged. W.L. drop W.L. drop by reducing one sitting by reducing pump rate or later or next day. W.L. drop by reducing pump rate or later or next day.			, , ,	2,-1	70.01		
approximately each W.L. drop volumes during one sitting volumes by returning unable to burge by reducing pump rate or later or next day. 3 volumes.	5.						
IF 57: .15	approximately each	W.L. drop	valumes dufin by reducing pr cycling pump.	g one sitting Imp rate or	volumes by n	sturning u	nable to purge

SAMPLING EVENT DATA SHEET (fill out completely)

McLaren		(fill out cor	ngistely)	WEL	L OR LO	CATION W	-14
PROJECT MARKE	T Place EV	ENT Unnet	ERLY SAM	PLER D		DATE 4/	29/93
Well / H	ivdrologic statist	ics	Acti	lon.	lime	Pump rate	(low viek
	Weil ty	De mu	Start pum	p / Begin	1328		
	(MW, I	EW, etc.)			1332	-1,216Pm	17.65
	diamen	2"					
-sw 4.59	,	.1					
(if above screen)	equais	· / b gal/ft casing					
02000			Stop		1334	+	DRY
intake 7.6 tt			(Final IWL)	\	11150	- 3	6.95
baller depth (Circle one)	5	TOP	(1 1116111445		Pilma c	alculation	16.73
			16			gais x 3 = 2	.5
swL		1		SWL to BOP			
(if in screen)		()		sacer to 80			e volume- casings
	10	BOP	.5%.	Head Du	roe calc	ulation (Airlift (onty)·
measured 9.68	10		gab	fit::	1	gais	
T.D. 7.62		T.D. (as built)		packer to S	WE	. i	
Equipment Used / Sal	Q Dispo	SABLE BA	LER.	Actual ga	Fil II	1,-	2
LISTU MILTIS	LINED 1.L	CALCULA		Well yield (see below		<u> </u>	<u>/_</u>
				COC	# _	37024	•
				Sample		Anatysis	Lab
				235 635	-36	8015 moD.	MBT
Additional comments:							
507, TECCVE	724:113	·					
807, RECEVET	,	PLE THRIPLO	. L:385				
Gallons purged *	TEMP C (F)	EC (us / cm)	PH	TURBIDI	TY		
1	74.7		6.84	34.6			
	1		- 1	1			
<u>2.</u> 3.							
					1	1.0	
<u>.</u> 5.		8					
* Take measurement at	HY- Minimal	MY - WL drop - and	e in pume 3	LY - Able to	Dume 3	VLY - Mini	mai recharge
approximately each casing volume purged.	W.L. drap	volumes during p	ng one sitting	volume	next day	ning una	ble to purge dumes.

SAMPLING EVENT DATA SHEET (fill our completely)

McLaren		(fill out o	completely)	WEI	L OR LO	CATION	N-19
PROJECT MARK	ET PHOE EV	ENT QUAR	terly SAM	PLER D	, WATT	DATE 4	29/93
Well / H	vdrologie statisi	tics	Act	on.	Ilme	Pump rate	(low viek
=	Wail to	mw_	Start pum	p / Begin	11522	1	
	(MW, I	EW, etc.)			11527	13 GPM	15.11
					1533	1.25 GPM	CONTRACTOR OF STREET
		-11			1539	.25 GPM	5.14
	d diamen	ter 7					
-sw -		.16					i e
(if above screen)	equais	gai/it. cas			1		
	388		Stop		1540	7	15,14
intakett.		9	Sampled		1548		
batter depth (circle one)	2.5		(Final IWL)	1555	E wk. K	5.05
5.09		TOP	.16 man	. 8.91	Purge cal	gais x 3 =	15 cais.
- SWL	188	į		SWL to BOP		Section Contraction	
(if in screen)				packer to 80			e volume- casings
	14	BOP				ation (Airlift	
TRASTIFED 12 Up					1	gais:	-
T.D. 13.40	14	T.D. (as built)		packer to S			(8.37)
				packer to a	3WC		
DC PERI Q D			ent:		illons purg	4	<u>>_</u>
The state of the s				Actual vo	lumes pun	ged	
USED DESIGN	T.D. FOR	Purhe C	Alculation.	Well yiek		H >	/
						10.011	
]				COC		7024	,
				Sample		Analysis	Lab
				23563	9-40	8015 MOD	MBI
Additional comments:	1						
PRODUCT IN WE	IL/ OIL SH	EEN ON	WATER				
5070 RECOVERY	1: 9.54	36)					
80% RECOVERY	: 6.87 5	Ample Tux	Bioity: 12.12				
Gallons purged *	TEMP C (F)	EC (us / cm)	PH	TURBID			
1. 1.5	72.4	4640	6.73	5.29			
2 3.0	71.5	2990	6.62	1.89			
2 4.5	70.6	2900	6.48	3,50)		
4.							
5.							8
* Take measurement at approximately each casing volume purged.	⊕ <u>HY-</u> Minimas W.L. drop	MY - WL drop - volumes d by reducin cycling pur	uring one sitting g pump rate or		o purge 3 se by return r next day.	ing uni	mai recharge - bie to purge plumes.
	IF	57:	. 15				

SAMPLING EVENT DATA SHEET

(fill our completely)

McLaren			WELL	OR LO	CATION	1-'1
PROJECT MARKET PLACE	VENT CHARLER	ly SAM	PLER D	WAITS	_ DATE 4/	29/93
Well / Hydrologic stati		Acti	on.	Ilme	Pump rate	(low viek
Weil	type MW	Start purm	o / Begin	16/6	1	
(MW	. EW. etc.)			1622	.25 68m	15.83
			1	1628	.25 6 Pm	
d diam	eter 2			1635	, 23 9FM	10.78
SWL 2,90 diam						-
(if above screen) equa	de / b gal/ft. casing					
packer ; /	.	Stop	- 1/	16501		10.78
intake / tt.	-	(Final IWL)	1	1655		1 5.81
7,3	TOP			urge cal		1
		./6 gairt	. 9 6 H.	- 1.6	gats x 3 = 4	. 80 gais.
(if in screen)			WL to BOP of			e volume-
12.5	- 80P	Р	acker to 80P			casings
1			<u> </u>		ation (Airlift s	onty)
T.D. 12.2	T.D. (as built)	100000			gais:	
Engineer Hood / Samura Marked	5		packer to SW	/C:	11	0
Equipment Used / Sampling Method /	Description of Event	:	Actual gaile	ns purge	$\frac{4}{2}$	7
DC PER, Q DISPESABL	Bullet.	,	Actual volu	mes purg	$\frac{3}{\sqrt{3}}$	
USED PESIGN T.D. FoI	2 Turge Cal	culation.	Well yield	⊕	HY/m	4
	ÿ.		(see below			
			COC #	3	7024	
			Sample I.	D	Anatysis	Lab
			235641-	42 8	DIS MED .	MBT
Additional comments:		ж				
50% RECOVERY: 7.70						
30% Racincy 1. (0						
8070 RECOVERY: 4.82	SAMPLE TURBIDI	h: 66.71				
Gallons purged • TEMP °C (°F)	EC (us / cm)	PH	TURBIDIT	Y		
1. 1.5 75.7	2890	6.07	26.3			
2 3.25 72.8	6800	6.00	52.6			•
2 4.80 72.0	7000	5,88	42.1			
4.						
5.						
*Take measurement at ⊕ HY- Minimal	MY - WL drop - apie	to purge 3	LY - Able to p			nat recharge -
approximately each W.L. dro casing volume purped.	by reducing po	amp rate or	volumes later or n	by returni ext day.		tunes.
	cycling pump.	•				

SAMPLING EVENT DATA SHEET

(fill out computate) WELL OR LOCATION 1V-24 PROJECT MARKET PLACE EVENT WYNTERLY SAMPLER D. WATH DATE 4 Time Pump rate Well / Hydrotogic statistics Action. (low vield Weil type MW (MW. EW, etc.) Start pump / Begin 201.23 GPm 5.08 1/726 1,23 6Pm equals 1/6 galift casing (if above screen) Stop Sampled 15.03 (Final IWL) Purge calculation 16 gairt. 8,52 tt. = 1.4 gais x3 = 4.2 SWL to BOP or оле purge volume-(if in screen) packer to BOP volume 3 casinos 13.5 BOP Head purge calculation (Airlift only) ft. gal/it. Dacker to SWL... Equipment Used / Sampling Method / Description of Event: Actual gallons purged PERI Q DISPOSITURE BAILER. Actual volumes purged USED DISIGN T.D. FOR PURKE CALCULATION. Well yield (see below) 37024 COC # Sample I.D. Analysis 8015 MOD 235643-49 Additional comments: 507: RECOVERY: 9.24 80% KHEOVERY. 6.68 SAMPLE TURBIDITY: 26.2 Gallons purged * TURBIDITY (us / cm) 2210 2190 2100

HY- Minimal

W.L. drop

Take measurement at

casing volume purged

approximately each

LY - Abie to purpe 3

volumes by returning

later or next day.

MY - WL drop - able to purge 3

cycling pump.

volumes during one sitting

by reducing pump rate or

VLY - Minimal recharge -

3 volumes.

unable to purge

en"
L

CHAIN OF CUSTODY RECORD

37024

SEE SIDE 2 FOR COMPLETE INSTRUCTIONS

										4				-	A. C.			-			-	
Ship To: MBT	ENV.	LAG	يك	Proje	ect Name	· mi	4RKE	T		HOE				FOR .	LABOI	ATOR	RY USI	ONL	Y			Common Analytical Methods
Address 3083	6040	CANA	CAWAL UR. Project Number: 04.0059						805	Laboratory Project #:								413.1 413.2 Long Method				
Knuctto Cor	DOVA,	CA 9	5670		ct Locat			- 1	CA					Storage Refrigerator ID: Storage Freezer ID:							_	413.2 Long Method 413.2 Short Method '418.1 Long Method 418.1 Short Method
				1100	/ /	ioii. (ot	atc/							Storag	e Freez	er ID:		•			-	420.1 502.2 503E
Sampler Name	WAT	U		Signature	11,1	171			PPI	Worn	in Field											503E 503.1 524.2
Relinquished By:	11.10			Date//im	193	170	^		Rec	cived	By or Meth	nod of	Shipr	nent/Sh	ipment	.D.		, , Da	te/Vin	pe		601 602
Relinquished By:	NUS (1/10		Date/Time		7.70	-		Rec	cived I	Sy or Meth	od of	Shipr	nent/Sh	ipment	.D.		4/3 Da	le/Tin		1700	- 601 602 604 - 608 610
Relinquished By:		-		Date/Time	-						By or Meth						71.33	Da		30.0		624 625
Total quisitos by:				Date/Tulk					Rec	cived i	y or Men	iou oi	Snipi	iidiyəl	: -			, 1				8010 8015
Sample Disposal		Level of (~ IX	lı П	2 🔲 3	□4	□ 5	Г	76A						AN	ALY	SES	RE	QU	EST	ΓED	8020 8021 8040
(check one)	72	(see Side	~		6C [] 6I	100000000000000000000000000000000000000		_			Write i			-	*			1	1	-		8040 8080 8100
Laboratory Stand	dard						<u> </u>			Aı	nalysis M	letho	d 		Mob							8150 8150 8240
Other					SAMP	LE IN	FOR	MA	TIO	N					E							8270 8310
FOR LARANAMANUEZ OUTV						Descript	ion	T	Contain	er(s)					915							Acidity Alkalinity BTEX
FOR LABORATORY USE ONLY Lab ID	Samp Nun		Date	Time	Loca	tor	Depth	+		уре	Matrix Type		res. ype	TAT	80				П			Chloride CLP (see Side 2) COD
1		3/- 32			TRIP	Black	•			4	H20	X	•	4/	V	+	\vdash	-	\vdash	_	+	Color Conductivity
2	23563		1		mw.			+		1	1	1	Ť	1	X	+	\vdash	+-	Н		+	Corrosivity Cyanide Flashpoint
3		15 - 36			MW.			Ħ					\vdash	\top	X		\vdash	1	H		\top	Fluoride Fluoride General Mineral
4		37-38		1425	mW-	13		П							X				П		1	Hex. Chromium Ion Balance
5		39-40			mw-			П							X							Metals (write specific metal & method #)* Metals 6010*
6		41-42	1		mW.		1	11							X				Ш			Metals PP* Metals Title 22:
7	23564	13-44	_ A _	1140	mW-	24	V	13	1	7	4	-	<u>A</u>	4	X	_	\vdash		Н	_		TTLC Level STLC Level
8								╀	+			-			\vdash	+	\vdash	-	$\vdash\vdash$		+	(see Side 2) Nitrate Nitrite
9								+	+-			┼			\vdash	+	\vdash	+	H	-	+	Odor Org. Lead
10	L							_	т													Org. Mercury Percent Moleture Percent Solid
Special Instructions/Comm	ents:	FIEL M	two	motor	OIL				Con B=F	tainer Brass T	Types:		A=1 I C=Ca	Liter A	mber	TAT ((Analy 4 hours	ical T	urn A 2 = 4	round 8 hou	Time)	Perchicrate bH
PLOMSE USE L	DWER	DETE	+ tion	Lin	115)				G=0	Glass J Other	ar		P=Pol	yethyl a Vial	ene		week		4 = 2	week	s	Phosphates Phosphorus Bullate
PLEASE KETURN			SAP)						0=0	Juler _			V = VO	a viai		0=0	uner					Suffices TCLP:
FOR LABORATORY USE C	ONLY San	nple Condit	ion Upor	n Receipt:					SEN	ID DO	CUMEN et Manage	TAT	ION A	AND R	ESULT	STO	(Check	one):		~		VOA Semivos Metals
									1								UMCI	44	LM	mED	n	Pesticide TDS
									1 -		Name: _	OF THE PARTY OF										Total Hardness Total Solids
											any:											TPH/D TPH/G TSS
									1		ess:											Turbidity
									,	Phone	::				F/	\X:						* Specify Total or Dissolved

ATTACHMENT B

LABORATORY ANALYTICAL DATA SHEETS, QA LABORATORY RESULTS, CHAIN-OF-CUSTODY FORMS, AND SAMPLING DATA SHEETS

MBT Environmental Laboratories

3083 Gold Canal Drive Rancho Cordova CA 95670 Phone 916/852-6600 Fax 916/852-7292

Date: May 11, 1993

LP #: 7489

Julie Menack McLaren/Hart Environmental Engineering 1135 Atlantic Avenue Alameda, CA 94501

Dear Ms. Menack:

Enclosed are the laboratory results for the seven samples submitted by you to the MBT Environmental Laboratories on May 1, 1993, for the project Market Place.

The analysis you requested is:

EPA 8015 Modified (7 - Water)

The report consists of the following sections:

- 1. A copy of the Chain-of-Custody
- 2. Quality Control Definitions and Report
- Abbreviations and Comments
- Analytical results

Unless otherwise instructed by you, samples will be disposed of two weeks from the date of this letter.

Thank you for choosing MBT Environmental Laboratories. We are looking forward to serving you in the future. Should you have any questions concerning this analytical report or the analytical methods employed, please do not hesitate to call.

Sincerely,

Shakoora Azimi

Laboratory Director, Principal Scientist

CHAIN OF CUSTODY RECORD

SEE SIDE 2 FOR
COMPLETE
INSTRUCTIONS

Environmental Engineering Corporation												Internetion	
Ship To: MBT ENV.	LABS CANALDR CA 95170	Project Name: Project Number	er: 04.005	9805. CA	eE 000	_	Laborate Storage	ory Projec Refrigera	ORY USE et #: tor ID: D:	489		Common Analytical Metho 413.1 413.2 Long Metho 413.2 Short Metho 418.1 Long Metho 418.1 Short Metho 420.1	d d d
Relinquished By: Relinquished By: Relinquished By: Relinquished By:	Path.	Date/Fime Date/Time Date/Time	1700	Recei	orn in Field Ped By or Metho Ped By or Metho Ved By or Metho Ved By or Metho	od of Shiph	nent/Ship	ment I.D.	3	Date/Ti	me //3(me	503E 503E 503.1 524.2 601 602 604 608 610 624 625 8010 8015 8015 Mod.	
Sample Disposal (check one) Laboratory Standard Other	Level of QC (see Side 2)	6B 6C 6D		□6A ATION	Write in Analysis Mo		-	ANAI	YSES	REQU	JESTE 	8020 8021 8040 8080 8100 8150 8240 8270 8310 Acidity	
FOR LABORATORY USE ONLY Lab ID Sam	pple ID Date 31-32 4/29/9	Time Locate		Containe # Typ	Matrix Type	Pres. Type	TAT	\$008 X				Alkalinity BTEX Chloride CLP (see Side 2) COD Color Conductivity	AGAMBA.
2 - 002 2356 3 - 003 2356 4 - 004 2356 5 - 05 2356 6 - 006 2356	33 - 34 35 - 36 (37 - 38 (39 - 40	1258 MW - 1442 MW - 1425 MW - 1548 MW - 1650 MW -	20 14 13 19					X X X				Corrosivity Cyanide Flashpoint Fluoride General Mineral Hex. Chromium Ion Balance Metals (write spec metal & metl Metals 6010* Metals PP* Metals Title 22: TTLC Level	
8 9 10	43 14	1.140 MW >	27									STLC Level (see Side 2) Nitrate Nitrite Odor Org. Lead Org. Mercury Percent Moisture Percent Solid	
Special Instructions/Comments: - GASCHNE, KERESENE, D. - PLEASE USE LOWER - PLEASE REFURN Cock FOR LABORATORY USE ONLY SPECIAL COMMENTS.	DETECTION ASAP)		Scholes LAD	B=B G=G O=O	D DOCUMEN	C=Ca P=Po V=Ve	Liter Ar assette olyethyle oa Vial	ene 3 0	AT (Analy = 24 hours = 1 week = Other	2 = 4 = k one):	48 hours 2 weeks	pH Phosphates Phosphorus Sultate Sultides TCL P: VOA Semivoa	
	•				Project Manag Client Name: Company: Address:						TAN I-DY	Metals Pesticide TDS Total Hardness Total Solids TPH/D TPH/G TSS Turbidity Specify Total of	or Dissol

QUALITY CONTROL DEFINITIONS

METHOD BLANK RESULTS: A method blank (MB) is a laboratory generated sample free of any contamination. The method blank assesses the degree to which the laboratory operations and procedures cause false-positive analytical results for your samples.

LABORATORY CONTROL SPIKES

The LCS Program:

The laboratory control spike is a well-characterized matrix (organic pure type II water for water samples and contamination-free sand for soil samples) which is spiked with certain target parameters, and analyzed in duplicate at approximately 5% of the sample load, in order to assure the accuracy and precision of the analytical method.

Control limits for accuracy and precision are different for different methods and may vary with the different sample matrices. They are based on laboratory average historical data and EPA limits which are approved by the Quality Assurance Department.

(DC2-CN7489)

QUALITY CONTROL REPORT

METHOD BLANK

Method: Mod. EPA 8015 Units: mg/L (ppm)

Date Analyzed: 05/07/93 Date Extracted: 05/04/93 Batch Number: 930504-1903

Petroleum Fraction	Carbon Range	Reporting <u>Limit</u>	Concentration
Gasoline Range Kerosene Range Diesel Range Motor Oil Range	C7 - C14 C12 - C18 C12 - C22 C22 - C32	0.050 0.050 0.050 0.050	BRL BRL BRL BRL
Total Petroleum Hydrocarbons		0.050	BRL

(DC2-CN7489)

Laboratory Control Sample/Laboratory Control Sample Duplicate Method 8015 - Modified

LP#: 7489

Analyst: EB

Batch #: 930504-1903

Date Of Analysis: 05/07/93

Spike Sample ID: LCSW/LCSDW #54

Column: DB-1

Spike ID Code: <u>W2-1565</u>, <u>W2-1556</u>

Instrument #: PGC #4

Surrogate ID Code: NA

Matrix: Water Units:mg/L

COMPOUNDS	(a) SAMPLE CONC.	(b) SPIKE CONC.	(c) SAMPLE + SPIKE CONC.	(d) SPIKE REC. %	(e) SAMPLE DUP. + SPIKE CONC.	(f) SPIKE DUP. REC. %	(g)	ACCEPT LIMI % REC	
Gasoline	0	2.50	1.33	53	0.97	39	31 ^a	26 - 90	≤ 25
Diesel	0	2.50	2.28	91	2.22	89	3	43 - 152	≤ 25

^a The RPD recovery is beyond advisory acceptance limits. The calibration data associated with this laboratory project for the same instrument on the same day were within acceptance limits.

ABBREVIATIONS USED IN THIS REPORT

BRL	Below Reporting Limit
MB	Method Blank
MS	Matrix Spike
MSD	Matrix Spike Duplicate
LCS	Laboratory Control Spike
LCSD	Laboratory Control Spike Duplicate
RPD	Relative Percent Difference
NS	Not Specified
NA	Not Applicable

COMMENTS

Test methods may include minor modifications of published EPA methods (e.g., reporting limits or parameter lists). Reporting limits are adjusted to reflect dilution of the sample when appropriate. Solids and waste are analyzed with no correction made for moisture content.

Values for total petroleum hydrocarbons were calculated based only on detected peaks.

The gasoline standard was obtained from a local BP station. Gasoline is sold commercially as unleaded gasoline.

The diesel standard was obtained from a local Chevron station. Diesel is sold commercially as Diesel Fuel #2.

The kerosene standard was obtained from Post Jeff Chevron/Mobil Products. Kerosene is sold commercially as jet fuel and kerosene. Other jet fuel sources may produce different instrument responses and contain different hydrocarbon chains. The kerosene standard contains the same hydrocarbon chain as commercial jet fuel.

The motor oil standard was obtained from a local automotive store. Manufacturer and motor oil type are Pennzoil SAE 10W-40.

The laboratory reported result for Total Petroleum Hydrocarbons is a summation result of the individual analytes.

A reporting limit of 0.05~mg/L (ppm) was requested by the client, which is lower than the established reporting limit of 0.50~mg/L (ppm). As a result, 1000~mLs of sample were extracted and concentrated to a final volume of 1.0~mL, causing the established reporting limit to be lowered by a factor of 10.

(DC2-CN7489)

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Project

Name: Market Place Number: 04.0059805.000

Sample Lab Project-

Description: Trip Blank ID Number: 7489-001

Sample Date

Number: <u>235631</u> Sampled: <u>04/29/93</u>

Date

Received: 05/01/93 Extracted: 05/04/93

Date Batch

Analyzed: 05/07/93 Number: 930504-1903

PETROLEUM FRACTION	CARBON RANGE	CONCENTRATION mg/L (ppm)	REPORTING LIMIT mg/L (ppm)
Gasoline Range Kerosene Range Diesel Range Motor Oil Range	C7 - C14 C12 - C18 C12 - C22 C22 - C32	BRL BRL BRL BRL	0.050 0.050 0.050 0.050
Total Petroleum Hydrocarbons		BRL	0.050

Comments:

{a} Derived from EPA 8015. Gas Chromatograph with flame ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.

Only the requested petroleum fractions are reported.

Approved By: Mallum, Jou. Date: 5/11/93
Nancy McDonald, Quality Control Chemist

The cover letter and attachments are integral parts of this report.

0127938015MODW

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Project

Name: Market Place Number: 04.0059805.000

Sample Lab Project-

Description: MW-20 ID Number: 7489-002

Sample Date

Number: 235633 Sampled: 04/29/93

Date Date

Received: <u>05/01/93</u> Extracted: <u>05/04/93</u>

Date Batch

Analyzed: 05/10/93 Number: 930504-1903

PETROLEUM FRACTION	CARBON RANGE	CONCENTRATION mg/L (ppm)	REPORTING LIMIT mg/L (ppm)
Gasoline Range Kerosene Range Diesel Range Motor Oil Range	C7 - C14 C12 - C18 C12 - C22 C22 - C32	BRL BRL BRL 0.38 {b}	0.050 0.050 0.050 0.050
Total Petroleum Hydrocarbons		0.38	0.050

Comments:

- {a} Derived from EPA 8015. Gas Chromatograph with flame ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.
- {b} The chromatographic pattern of motor oil in the sample does not exactly match the standard chromatograph.

Only the requested petroleum fractions are reported.

Approved By: Malturen for: Date: 5/11/93
Nancy McDonald, Quality Control Chemist

The cover letter and attachments are integral parts of this report.

0127938015MODW

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Project

Name: Market Place Number: 04.0059805.000

Sample Lab Project-

Description: MW-14 ID Number: 7489-003

Sample Date

Number: 235635 Sampled: 04/29/93

Date

Received: <u>05/01/93</u> Extracted: <u>05/04/93</u>

Date Batch

Analyzed: 05/07/93 Number: 930504-1903

PETROLEUM FRACTION	CARBON RANGE	CONCENTRATION mg/L (ppm)	REPORTING LIMIT mg/L (ppm)
Gasoline Range Kerosene Range Diesel Range Motor Oil Range	C7 - C14 C12 - C18 C12 - C22 C22 - C32	BRL BRL BRL 0.15 {b}	0.050 0.050 0.050 0.050
Total Petroleum Hydrocarbons		0.15	0.050

Comments:

- {a} Derived from EPA 8015. Gas Chromatograph with flame ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.
- {b} The chromatographic pattern of motor oil in the sample does not exactly match the standard chromatograph.

Only the requested petroleum fractions are reported.

Approved By: Malleson Jon: Date: 5/11/93

Nancy McDonald, Quality Control Chemist

The cover letter and attachments are integral parts of this report.

0127938015MODW

Analytical Method: Modified EPA 8015 (a) Preparation Method: EPA 3510

Project Project

Name: Market Place Number: 04.0059805.000

Sample Lab Project-

Description: MW-13 ID Number: 7489-004

Sample Date

Number: <u>235637</u> Sampled: <u>04/29/93</u>

Date Date

Received: 05/01/93 Extracted: 05/04/93

Date Batch

Analyzed: 05/07/93 Number: 930504-1903

PETROLEUM FRACTION	CARBON RANGE	CONCENTRATION mg/L (ppm)	REPORTING LIMIT mg/L (ppm)
Gasoline Range Kerosene Range Diesel Range Motor Oil Range	C7 - C14 C12 - C18 C12 - C22 C22 - C32	BRL BRL BRL 0.12 {b}	0.050 0.050 0.050 0.050
Total Petroleum Hydrocarbons		0.12	0.050

Comments:

- {a} Derived from EPA 8015. Gas Chromatograph with flame ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.
- {b} The chromatographic pattern of motor oil in the sample does not exactly match the standard chromatograph.

Only the requested petroleum fractions are reported.

Approved By: Charles Jon: Date: 5/11/93

Nancy McDonald, Quality Control Chemist

The cover letter and attachments are integral parts of this report.

0127938015MODW

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Project

Name: Market Place Number: 04.0059805.000

Sample Lab Project-

Description: MW-19 ID Number: 7489-005

Sample Date

Number: <u>235639</u> Sampled: <u>04/29/93</u>

Date

Received: 05/01/93 Extracted: 05/04/93

Date Batch

Analyzed: 05/07/93 Number: 930504-1903

PETROLEUM FRACTION	CARBON RANGE	CONCENTRATION mg/L (ppm)	REPORTING LIMIT mg/L (ppm)
Gasoline Range Kerosene Range Diesel Range Motor Oil Range	C7 - C14 C12 - C18 C12 - C22 C22 - C32	BRL BRL BRL 8.2	0.50 0.50 0.50 0.50
Total Petroleum Hydrocarbons		8.2	0.50

Comments:

(a) Derived from EPA 8015. Gas Chromatograph with flame ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.

The sample was diluted 10 fold to bring target petroleum fractions within linear working range.

Only the requested petroleum fractions are reported.

The cover letter and attachments are integral parts of this report.

0127938015MODW

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Name: Market Place

Project Number: 04.0059805.000

Sample

Description: MW-7

Lab Project-

ID Number: 7489-006

Sample

Number: _235641 Date

Sampled: 04/29/93

Date

Received: 05/01/93 Date

Extracted: 05/04/93

Date

Analyzed: _05/08/93 Batch

Number: 930504-1903

PETROLEUM FRACTION	CARBON RANGE	CONCENTRATION mg/L (ppm)	REPORTING LIMIT mg/L (ppm)
Gasoline Range Kerosene Range Diesel Range Motor Oil Range	C7 - C14 C12 - C18 C12 - C22 C22 - C32	BRL BRL 1.6 1.7	0.50 0.50 0.50 0.50
Total Petroleum Hydrocarbons		3.3	0.50

Comments:

{a} Derived from EPA 8015. Gas Chromatograph with flame ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.

The sample was diluted 10 fold to bring target petroleum fractions within linear working range.

Only the requested petroleum fractions are reported.

The cover letter and attachments are integral parts of this report.

0127938015MODW

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Project

Name: Market Place Number: 04.0059805.000

Sample Lab Project-

Description: MW-24 ID Number: 7489-007

Sample Date

Number: <u>235643</u> Sampled: <u>04/29/93</u>

Date

Received: 05/01/93 Extracted: 05/04/93

Date Batch

Analyzed: 05/08/93 Number: 930504-1903

PETROLEUM FRACTION	CARBON RANGE	CONCENTRATION mg/L (ppm)	REPORTING LIMIT mg/L (ppm)
Gasoline Range Kerosene Range Diesel Range Motor Oil Range	C7 - C14 C12 - C18 C12 - C22 C22 - C32	BRL BRL BRL 0.14 {c}	0.050 0.050 0.050 0.050
Total Petroleum Hydrocarbons		0.14	0.050

Comments:

- {a} Derived from EPA 8015. Gas Chromatograph with flame ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.
- {c} The chromatographic pattern of motor oil in the sample does not exactly match the standard chromatograph.

Only the requested petroleum fractions are reported.

Approved By: Watterson Ja: Date: 5/11/93
Nancy McDonald, Quality Control Chemist

The cover letter and attachments are integral parts of this report.

0127938015MODW

