

March 27, 1991

Mr. Larry Seto
Division of Hazardous Materials
Department of Environmental Health
80 Swan Way, Room 200
Oakland, California 94621

Dear Mr. Seto:

QUARTERLY GROUNDWATER MONITORING REPORT, EMERY BAY MARKETPLACE, EMERYVILLE, CALIFORNIA

Attached is the letter report "Quarterly Groundwater Monitoring Report, Emery Bay Marketplace, Emeryville, California," March 5, 1991. The report summarizes the quarterly groundwater monitoring activities performed at the Emery Bay Marketplace property during the months of November and December 1990 and January 1991 in accordance with the "Work Plan for Groundwater Monitoring and Free Product Removal at the Marketplace Site, Emeryville, California," July 6, 1990 (Work Plan). The Work Plan was submitted to address recommendations made in the report "Groundwater Characterization, Emery Bay Marketplace," June 19, 1990.

If you have any questions, please call me.

Sincerely,

Julie S. Menack, RG #4440

Day R. Firste for

Senior Hydrogeologist

cc: Lynn Tolin

0116RN3

15

QUARTERLY GROUNDWATER
MONITORING REPORT
EMERY BAY MARKETPLACE
EMERYVILLE, CALIFORNIA

MARCH 5, 1991

March 5, 1991

Ms. Lynn Tolin Christie Avenue Partners-JS 6475 Christie Avenue, Suite 500 Emeryville, California 94608

Dear Ms. Tolin:

QUARTERLY GROUNDWATER MONITORING REPORT, EMERY BAY MARKETPLACE, EMERYVILLE, CALIFORNIA

This letter report documents the results of the quarterly monitoring activities conducted at the Emery Bay Marketplace property during the months of November and December 1990 and January 1991. This is the third quarterly report submitted in accordance with the "Work Plan for Groundwater Monitoring and Free Product Removal at the Marketplace Site, Emeryville, California," July 6, 1990 (Work Plan) (McLaren, 1990b). The Work Plan was submitted to address recommendations made in the report "Groundwater Characterization, Emery Bay Marketplace," June 19, 1990 (Groundwater Characterization Report) (McLaren, 1990a).

The following activities were proposed in the Work Plan:

- Obtain groundwater elevation measurements at all monitoring wells on a quarterly basis (July and October 1990; January and April 1991) and prepare groundwater elevation maps;
- Sample groundwater from six downgradient wells (Wells W-7, W-13, W-14, W-19, W-20, and W-24) on a quarterly basis (July and October 1990; January and April 1991) to verify that petroleum hydrocarbons in groundwater are confined to the Marketplace property and have not migrated off-site. Analyze samples for total petroleum hydrocarbons as diesel (TPH/D) and motor oil (TPH/MO) by modified EPA Method 8015;
- Remove free product from Well W-5 on a bi-weekly basis for four months and on a monthly basis for eight months; and
- Abandon Well W-10 which cannot be used for sampling.

This letter presents the results of the depth to groundwater measurements and the groundwater quality sampling and analyses performed during the month of January 1991. The activities associated with the free product removal from Well W-5 are summarized. Well W-10 was abandoned on October 1, 1990 and the abandonment activities were described in the last Quarterly Report dated November 28, 1990 (McLaren/Hart, 1990b).

GROUNDWATER ELEVATIONS

Depths to groundwater in all existing wells at the Emery Bay Marketplace property were measured with a Solinist electronic water level indicator on January 3, 1991. A Marine Moisture Control Company oil-water interface probe was used to measure depth to oil and depth to groundwater in wells where free product occurs (Wells W-5 and W-16). Hydrologic data sheets are provided in Attachment A. A summary of historical depth to groundwater measurements, monitoring well surface casing elevations, and calculated groundwater surface elevations is presented in Table 1.

The January 3, 1991 groundwater surface elevation contours for the artificial fill are presented in Figure 1. Groundwater elevations from wells completed only in the native material which underlies the artificial fill (Wells W-15, W-16, and W-22), were not used to construct the map because it was determined in the Groundwater Characterization Report (McLaren, 1990a) that confined or semi-confined conditions may exist in the native material. The groundwater elevations observed in January for wells completed in the native material are consistent with previous measurements and support this conclusion (Table 1). The groundwater elevation for Well W-5 was not used because the product which occurs in the well may affect the groundwater elevation.

The groundwater flow map for the artificial fill (Figure 1) is consistent with previously presented groundwater flow maps (McLaren, 1990a; McLaren/Hart, 1990a, 1990b) and indicates that groundwater flow is toward the west-southwest. As suggested in the Groundwater Characterization Report (McLaren, 1990a) local variations in groundwater flow near Wells W-4 and W-8 may be caused by a slurry wall installed to a depth of 35 feet on the adjacent upgradient property.

The groundwater samples were analyzed for TPH/D and TPH/MO by Modified EPA Method 8015. Groundwater samples were sent under chain-of-custody to McLaren/Hart Analytical Laboratory (MAL) in Rancho Cordova, California. One travel blank was sent on each day of sampling as a Quality Assurance (QA) sample. The analytical laboratory data sheets, QA laboratory results, chain-of-custody records, and sampling data sheets are included in Appendix B. The analytical results are summarized and presented with the historical analytical data in Table 2.

The analyses of the groundwater samples show the following results:

- TPH/D was detected in groundwater from Well W-7 at 4000 parts per billion (ppb) and TPH/MO was detected at 12,000 ppb. TPH/D previously has been detected at similar concentrations and TPH/MO previously has been detected at concentrations ranging from 2000 to 7500 ppb. It is unlikely that the higher concentration of TPH/MO detected at Well W-7 in January 1991, is indicative of a change in groundwater conditions.
- TPH/D and TPH/MO were not detected in groundwater from Well W-19. However, smears of dark brown product were observed on the bailer when the well was sampled both this quarter and last quarter. TPH/D previously has not been detected, or has been detected at very low concentrations. TPH/MO analyses have only been performed on two previous occasions and TPH/MO was detected at 8000 ppb on July 27, 1990 and 3000 ppb on October 3, 1990. Future sampling of Well W-19 will establish whether TPH/MO concentrations in groundwater are decreasing or whether the different concentrations detected are the result of sampling variability.
- TPH/D and TPH/MO were not detected in groundwater samples from Wells W-13, W-14, W-20 and W-24. These constituents previously have not been detected in groundwater from these four wells. The results from the January 1991 sampling event confirm that petroleum hydrocarbons do not occur downgradient of Wells W-7 and W-19.

FREE PRODUCT REMOVAL FROM WELL W-5

Free product has been removed from Well W-5 on a biweekly basis from July through October 1990 and on a monthly basis since October 1990. It was recommended in the Work Plan that free product be removed from Well W-5 on a biweekly basis for a period of four months and on a monthly basis thereafter for a period of eight months. Free product will continue to be removed from Well W-5 on a monthly basis through June 1991.

The free product thickness is measured with an oil-water interface probe prior to removal. Product is then removed with a disposable bailer or a peristaltic pump. The product thickness, both before and after product removal, and an estimate of the volume of fluid removed, is recorded in Table 3. It should be noted that the volume of fluid removed includes an undetermined amount of water.

During this quarter, product has been removed from Well W-5 on a monthly basis. Product thickness was 1.30 feet, 0.71 feet and 0.99 feet prior to removal in November and December 1990, and January 1991, respectively (Table 3). The product thickness measured during this quarter when product has been removed on a monthly basis, is similar to the product thickness measured previously when product was removed on a biweekly basis from August 8 through October 31, 1990 (1.04 to 1.24 feet). Product was thicker in Well W-5 (2.12 feet) when it was initially removed on July 25, 1990.

CONCLUSIONS

In summary, the results from the November 1990 through January 1991 quarterly monitoring activities conducted at the Emery Bay Marketplace property are as follows:

- The January 1991 groundwater flow map for the artificial fill (Figure 1) is consistent with previous groundwater flow maps (McLaren, 1990a; McLaren/Hart, 1990a, 1990b), and shows that groundwater flow is toward the west-southwest.
- The January 1991 groundwater sampling event confirms the conclusion from the Groundwater Characterization Report that petroleum hydrocarbons do not occur downgradient of Wells W-7 and W-19.

Free product has been removed from Well W-5 on a biweekly basis from July through October 1990 and on a monthly basis since October 1990. The average product thickness prior to removal has decreased from 2.12 feet the first time product was removed to 0.79 to 1.30 feet on all subsequent occasions. The product thickness does not appear to have changed significantly since product has been removed on a monthly basis rather than a biweekly basis.

If you have any questions regarding this report, please do not hesitate to call.

Sincerely,

Julie S. Menack, RG #4440

Senior Hydrogeologist

Say R. Foote

Senior Geologist

REFERENCES

McLaren. (1989) Free Product Subsurface Investigation, Marketplace Site, Emeryville, California, October 19, 1989.

McLaren. (1990a) Groundwater Characterization, Emery Bay Marketplace, June 19,1990.

McLaren. (1990b) Work Plan for Groundwater Monitoring and Free Product Removal at the Marketplace Site, Emeryville, California, July 6, 1990.

McLaren/Hart. (1990a) Quarterly Groundwater Monitoring Report, Emery Bay Marketplace, Emeryville, California, October 3, 1990.

McLaren/Hart. (1990b) Quarterly Groundwater Monitoring Report, Emery Bay Marketplace, Emeryville, California, November 28, 1990.

TABLE 1
GROUNDWATER DEPTHS AND ELEVATIONS
EMERY BAY MARKETPLACE SITE

Top of Casing Well Number (Feet)		Date	Depth to Groundwater (Feet)	Groundwater Elevation (Feet)	Product Thickness (Feet			
W-1 ^a	11.47	8-7-81	4.30	6.20 ^b 6.10 ^b 6.08 ^b				
	11.47	9-10-81	4.40	6-10b				
		5-6-87	6	6 08b				
		8-20-89	5.60	5.87				
		10-11-89	5.63	5.84				
		2-22-90	4.92	6.55				
		2-28-90	5.02	6.45				
		4-9-90	5.44	6.03				
		6-7-90	5.37	6.10				
		7-25-90	5.26	6.21				
		10-3-90	5.43	6.04				
		1-3-91	5.69	5.78				
W-4	9.96	8-7-81	4.30	6.20 ^b 6.10 ^b 8.00 ^b				
		9-10-81	4.40	6.10 _b				
		1-18-82 3-27/28-85	2.50	8.65				
		8-20-89	c 3.95	6.01				
		10-11-89	3.87	6.09				
		2-22-90	2.0	7.96				
		2-28-90	2.39	7.57				
		4-9-90	3.17	6.79				
		6-7-90	2.73	7.23				
		7-25-90	3.71	6.25				
		10-3-90	4.18	5.78				
		1-3-91	3.64	6.32				
W-5	11.41	8-7-81	4.70	7.50 ^b 7.30 ^b 9.60 ^b	с			
		9-10-81	4.90	7.30	С			
		1-18-82	2.50	9.60 ^b	С			
		3-27/28-85	C	9.28	c			
		10-11-89	4.43	6.98	0.71			
		2-22-90	3.80	7.61	0.88			
		2-28-90	4.43	6.98	1.65			
		4-9-90	4.73	6.68	1.82			
		6-7-90	4.30	7-11	1.80			
		7-25-90	5.10	6.31	2.12			
		10-3-90 1-3-91	4.90 4.77	6.51 6.64	1.11 0.85			
W-7 ^a	9.05	5-6-87	3	6.88 ^b				
	,	8-20-89	3.59	5.46				
		10-11-89	3.08	5.97				
		2-22-90	1.75	7.30				
		2-28-90	1.31	7.74				
		4-9-90	2.42	6.63				
		6-7-90	1.21	7.84				
		7-25-90	2.76	6.29				
		10-3-90	3.22	5.83				
		1-3-91	3.17	5.88				
W-8	10.43	5-6-87	5.5	6.88 ^b				
		8-20-89	3.59	6.84				
		2-22-90	1.5	8.93				
		2-28-90	1.78	8.65				
		4-9-90	3.12	7.31				
		6-7-90 	2.90	7.53				
		7-27-90 ^d	3.33	7.10				
		10-3-90 1-3-91	3.65 3.46	6.78 6.97				
W-13	8.15	8-20-89	4.64	3.51				
n 12	0.15	10-11-89	4.60	3.55				
		2-22-90	3.85	4.30				
		2-28-90	4.18	3.97				
		4-9-90	4.31	3.84				
		6-7-90	3.93	4.22				
		7-25-90	4.40	3.75				
		10-3-90	4.67	3.48				
		1-3-91	4.43	3.72				
0116RN3		1-2-31	4.43	3.12				

TABLE 1

GROUNDWATER DEPTHS AND ELEVATIONS EMERY BAY MARKETPLACE SITE (Continued)

Top of Casing Well Number (Feet)		Date	Depth to Groundwater (Feet)	Groundwater Elevation (Feet)	Product Thickness (Feet
W-14	7.97	8-20-90 2-22-90 2-28-90 4-9-90	5.02 4.19 4.46 4.36	2.95 3.78 3.51 3.61	
		6-7-90 7-25-90 10-3-90 1-3-91	5.29 4.83 5.09 4.32	2.68 3.14 2.88 3.65	
W-15	11.53	8-20-89 10-11-89	3.43 4.26	8.10 7.27	
		2-22-90 2-28-90 4-9-90 6-7-90	2.58 2.53 2.48 4.54	8.95 9.00 9.05 6.99	
		7-25-90 10-3-90 1-3-91	4.00 3.46 2.97	7.53 8.07 8.56	
W-16	10.94	10-11-89 2-22-90 2-28-90	4.81 3.92 3.88	6.13 7.02 7.06	0.07 NM NM
		4-9-90 6-7-90 7-27-90 f	7.81 6.19 4.44	3.13 4.75 6.50	NM NM NM
U-17	12 1/	10-3-90 1-3-91	4.38 4.67	6.56 6.27	0.02 0.02
W-17	12.14	10-11-89 2-22-90 2-28-90 4-9-90 6-7-90	9.12 5.42 5.35 5.72 9	3.02 6.72 6.79 6.42	
		7-26-90 10-3-90 1-3-91	5.59 5.72 6.28	6.55 6.42 5.86	
W-18	11.34	10-11-89 2-22-90 2-28-90 4-9-90	5.52 4.42 4.77 5.24	5.82 6.92 6.57 6.10	
		6-7-90 7-25-90 10-3-90 1-3-91	4.28 4.98 5.44 5.84	7.06 6.36 5.90 5.50	
W-19	10.27	4-9-90 6-7-90 7-25-90 10-3-90 1-3-91	5.11 4.77 4.93 4.95 5.95	5.16 5.50 5.34 5.32 4.32	
W-20	6.82	4-9-90 6-7-90 7-25-90 10-3-90 1-3-91	4.08 3.79 4.00 4.03 4.12	2.74 3.03 2.82 2.79 2.70	
W-21	9.48	4-9-90 6-7-90 7-25-90 10-3-90 1-3-91	5.21 4.84 5.05 5.18 5.47	4.27 4.64 4.43 4.30 4.01	
W-22	11.67	4-9-90 6-7-90 7-25-90 10-3-90 1-3-91	7.50 7.36 7.49 7.68 7.88	4.17 4.31 4.18 3.99 3.79	

GROUNDWATER DEPTHS AND ELEVATIONS EMERY BAY MARKETPLACE SITE (Continued)

Well Number	Top of Casing (Feet)	Date	Depth to Groundwater (Feet)	Groundwater Elevation (Feet)	Product Thickness (Feet
W-23	9.16	4-9-90	1.51	7.65	
		6-7-90	1.78	7.38	
		7-27-90 ^T	2.63	6.53	
		10-3-90	3.20	5.96	
		1-3-91	2.36	6.80	
W-24	8.72	6-7-90	4.75	3.97	
		7-25-90	5.02	3.70	
		10-3-90	5.00	3.72	
		1-3-91	5.25	3.47	

Nielson Property

Data not available. d

e f

g

b Groundwater elevation taken from earlier reports; may not agree with calculated elevation using current top of casing. c

Well W-8 was not accessible on 7-25-90 and 7-26-90. It was sounded on 7-27-90.

NM indicates product thickness not measurable.
Wells W-16 and W-23 were under pressure when sounded in 7-25-90. The wells were allowed to equilibrate and were resounded on 7-27-90.
Well W-17 not accessible on 6-7-90.

TABLE 2
HYDROCARBONS IN GROUNDMATER
EMERY BAY MARKETPLACE SITE

Number	Sample	TPH/D Concentration	TPH/MO Concentration	
ell	Date	(ppb)	Concentration (ppb)	
4				
-1	4-14-87	<5,000 ^a ,b	c	
	2-28-90	<500		
	4-11-90	<100	570	
-2 ^d	4-15-87	<1,000 ^b	•••	
-3 ^d		***		
₁₋₄ d	4-14-87	<5,000 ^b		
1-4	3-01-90			
1.4	4-10-90	<500 <100	<250	
1-5 ^e	9-27-89	20,000	•••	
3-5 ^d				
I-5A ^d	4-16-87	<1,000 ^f	<1000 ^f	
1-6 _q	4-16-87	<1,000 ^f	<1000 ^f	
1-7	9-26-89	1,100		
	2-28-90	<500 ⁹		
	4-11-90	5,600	7,500	
	7-30-90	2,600	2,000	
	10-4-90 1-4-91	5,000 4,000	6,000 12,000	
			12,000	
1-8	4-17-87	10,000 ^h		
	9-26-89	7,100		
	3-01-90	4.500	•••	
	4-18-90	5,300		
-13	2-28-90	<500		
	4-12-90	<500		
	7-27-90	<500	<1,000	
	10-4-90	<500	<1,000	
	1-3-91	<500	<1,000	
-14	2-28-90	<500		
	4-11-90	<100	<250	
	7-30-90	<600	<1,000	
	10-4-90	<500	<1,000	
	1-4-91	<500	<1,000	
1-15	9-25-89	1,200		
	4-13-90	1,500	***	
-16	9-27-89	4,700		
	2-28-90	22,000		
	4-13-90	9,000	***	
-17	9-25-89	700		
	4-13-90	1,600	•••	
I-18	9-26-89	3,100		
	4-13-90	5,100	•••	
1-19	4-12-90	1,100		
	4-16-90	<500 ¹		50
	7-27-90	<1,000	8,000	
	10-3-90	<500 J	3,000	
	1-3-91	<500	<1,000	

TABLE 2 (Continued)

HYDROCARBONS IN GROUNDWATER EMERY BAY MARKETPLACE SITE

Number Well	Sample Date	TPH/D Concentration (ppb)	TPH/MO Concentration (ppb)	
d-20	4-12-90	<500		
	4-16-90	<500		
	7-30-90	<500	<1,000	
	10-3-90	<500	<1,000	
	1-4-91	<500	<1,000	
<i>I</i> -21	4-12-90	1,400		
	4-18-90	1,700		
1-22	4-12-90	<500		
	4-18-90	<500		
1-23	4-12-90	2,000		
	4-18-90	3,600		
1-24	6-7-90	<500		
	7-27-90	<500	<1,000	
	10-3-90	<500	<1,000	
	1-3-91	<500	<1,000	

TABLE 3
PRODUCT THICKNESS DATA FOR WELL W-5
EMERY BAY MARKETPLACE SITE

epth o Oil 1 uct Rem 2.98 3.56 3.56		Product Thickness 2.12	Depth to Oil	Depth to Water	Product Thickness	(Gal.)
uct Rem 2.98 3.56	oval 5.10	2.12	to Oil	to Water	Thickness	(Gal.)
2.98 3.56	5.10		*	*		
3.56			*	we we		
	4.72				*	0.72**
3.56		1.16	4.43	4.47	0.04	0.96**
	4.80	1.24	4.94	4.94	0.00	0.50
3.62	4.83	1.21	4.58	4.79	0.21	0.33**
3.72	4.93	1.21	4.44	4.54	0.10	0.40**
3.84	4.94	1.10	3.24	3.96	0.72	0.33
3.92	4.96	1.04	3.94	3.96	0.02	0.22
4.06	5.24	1.18	4.65	4.72	0.07	0.40
ct Remo	val					
4.34	5.64	1.30	5.64	5.65	0.01	1.50
3.97	4.68	0.71	5.46	5.48	0.02	2.00
3.65	4.64	0.99	5.22	5.25	0.03	2.00
	ct Remo 4.34 3.97	ct Removal 4.34 5.64 5.97 4.68	ct Removal 4.34 5.64 1.30 3.97 4.68 0.71	ct Removal 4.34 5.64 1.30 5.64 3.97 4.68 0.71 5.46	ct Removal 4.34 5.64 1.30 5.64 5.65 3.97 4.68 0.71 5.46 5.48	ct Removal 4.34

*Product thickness not measured after product was removed on 7/25/90.

MKT-PROD.XLS

^{**}Product removed with a bailer.

ATTACHMENT A HYDROLOGIC DATA SHEETS

HYDRODATA

DATE: 1-3-94

PRO	JECT: Mark	etp	be	CEVENT:	Soundina	SAM	MPLER: OMS	_
NO.I	WELL OR LOCATION	DA [*]	_	TIME	MEASUREMENT	CODE	COMMENTS	
1	WI	13	191	830	5.69	Lowe	- Horded	
2	W4		i	730	3,04	SAUL	,	
3	W5		!	8 20	392	OIL	477 DINI	
4	W7			9 DD	3.47	SWL		
5	WB		•	1735	3.40	FAWL		
6	WID		:			-	apandoned	
7	WIS			1920	4.43	SWL	4.44 400	ded
8	WI4			915	4.32	FAUL	4.42	
9	WIS			745	2.97	SWL	333	
10	WILD	į	İ	7:40	4.65	OL	467 OWI	
11	WIT			7150	6.29	SWL	L 12:30	_
12	WIB			7155	5.84	Fall	- bentonite	
13	WI9			9/10	5.95	SANI		
14	W20	ļļ		10125	4.12	SWL	· 4.D	
15	WZI			9:00	5,41	FOWL	5A2 flood	
16	W22			815	7.88	SWL	7.607	
17	W23			835	2.36	SWL	238	_
18	W24		/	9/30	5.25	SWC	bentonite F	5,25
19					·			_
20							٥	

CODES:

*SWL - Static Water Level (Feet)

*IWL - Instant Water Level; Non-Static (Feet)

'OIL - OII Level (Feet)

*OWI - Oll/Water Interface (Feet)

*MTD - Measured Total Depth (Feet)

FLO - Flow Rate (Gallons/Minute)

CUM - Cumulative (Gallons)

HRS - Total (Hours)

PSI - Pressure (ps!)2

pH - 1 to 14

Ec - Conductivity (µm HOS)

TMP - Temperature (°C)

TRB - Turbidity (NTU)

_____ (Additional Code)

*Negative pressure (Vacuum) pai a approx. «(1/2 x mmHg)-

4

^{*}All levels are depth from inner casing - describe any other reference points in comments column; when in doubt, describe reference point.

Note in comments column if well is not: properly tabeled, locked, or able to be locked. Describe corrective action. Note flooding of vault box, odor, access problems.

ATTACHMENT B

LABORATORY ANALYTICAL DATA SHEETS, QA LABORATORY RESULTS, CHAIN-OF-CUSTODY FORMS, AND SAMPLING DATA SHEETS

KECETVED JULI 2 L DVI Mo LAKEK/HART

Date: January 18, 1991

LP #: 3955

Julie Menack McLaren/Hart 1135 Atlantic Avenue Alameda, CA 94501

Dear Ms. Menack:

Enclosed are the laboratory results for the four samples submitted by you to the McLaren Analytical Laboratory on January 4, 1991, for the project Marketplace.

The analysis you requested is:

Mod. EPA 8015 (4 - Water)

The report consists of the following sections:

- 1. A copy of the chain of custody
- 2. Quality Control Report
- 3. Comments
- 4. Analytical results
- Copy of final billing submitted to accounting.

Unless otherwise instructed by you, samples will be disposed of two weeks from the date of this letter.

Thank you for choosing McLaren Analytical Laboratory. We are looking forward to serving you in the future. Should you have any questions concerning this analytical report or the analytical methods employed, please do not hesitate to call.

Sincerely,

Anthony S. Mong, Ph.D. O

Director, Laboratory/Managing Principal

CHAIN OF CUSTODY RECORD

FOR LABORATORY USE ONLY	
Laboratory Project No.:	Secured
Storage Refrigerator ID:	Yes
	A.1 -

	1	1	COLODI																		Oto	ugo .	.002	01 10	
Project Name:	Ma	VKE	HJace Proje	ct #:	5	9	8	24	1		s	amp	ler:	6	0	1+ (Prin	eled Na	ame)	h	e	L	_<	1	10k	ti shelly
Relinquished by: (Sign	nature and Pri	nted Name)	My COLETT	F C	A	1	Recei	ed b	y: (Sig	nature	and Pri	nted Na	ame)											Date:	Time:
Relinquished by: (sign	nature and Pri	nted Name)	May C. VIETT			V.1	Recei								- 100000									Date:	Time:
Relinquished by: (Sign	nature and Pri	nted Name)					Receiv	ed b	y: (Sig	nature	and Pri	nted Na	ame)											Date:	Time:
Relinquished by: (Sign	ature and Pri	nted Name)					Receiv	ed b	/: (Sign	nature	and Prin	nted Na	ıme)											Date:	Time:
SHIP TO: McLaren Analyti 11101 White Rox Rancho Cordova (916) 638-3696 FAX (916) 638-2	ck Road , CA 9567		Method of Shipment: FECT = X Shipment ID:	An	rcle or A alysis(e equested	s)	10 10 10 10 10 10 10 10 10 10 10 10 10 1	6				() () () () () () () () () ()			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 00 00 00 00 00 00 00 00 00 00 00 00	, iso / s					*//	a) Identify specific metals requested under Special Instructions
Sample ID		Samp	le Description] ,	\$\\\ \$\\\\\$	V S			ARON S					710		8/	18		\$ \$ \ \$ \		\supset	//	Con	tainer(s)	FOR LABORATORY USE ONLY
Number	Date	Time	Description	1	~\@\\	8/	8/6	%	1/6	V/2	Z ?	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8	7	20	100	∕♂	10	/9	1		TAT	#	Туре	Lab ID
1 K9410364	1/2/01	0800	TrioBlank						26				V						,	$\sqrt{}$		4	2	A	
2 A94105-1de	-	1215	W-19										\checkmark							1		4	2	A	
3 149467-108		1775	(H-14)	h	1-1	3	7						V						,	\sqrt{L}	4	4	2	A	·····/·····/·····/·····/······/······
4 49469-70		431	WI - A	F									V	\Box					1			4	0	A	
5	-¥-	1000	W T			+	1									T	1					-			
6							1																		
7				\vdash		+	\top	Г											\neg						
8				\top		T																			////
9				T		\dagger	1		T										T	T					
10				T		\dagger		Г																	
Special Instructions/Comments: Sample Archive/Disposal: Laboratory Standard						i. I	TAT (Analytical Turn-Around Times) 1 = 24 hours 2 = 48 hours 3 = 1 week 4 = 2 weeks Container Types: B=Brass Tube, V=VOA Vial, A=1-Liter Amber, G=Glass Jar, C=Cassette, O = Other																		
						_	_ 0	iner						S	END	DOC Proje	CUM ct M	ENT.	ATIC er/O	ON AN	ND F	RESL	LTS	TO (Chec	* one): Merror k
FOR LABORATO	DRY USE	ONLY.	Sample Condition Upon Re	ceipt		2000000		**********	000000000000000000000000000000000000000	**************************************			Project Manager/Office:												
															(Comp	any	:	\bowtie		S	X	9		LOKE ALL M
			ALLEN SELECTION OF THE		25 555										-	Addre	ess:		2	2		71		111	Ave, Nomed
												1				Thom		1	16 -	7	. /	1 2	-	7 100) Fay:

QUALITY CONTROL REPORT

METHOD BLANK RESULTS: A method blank (MB) is a laboratory generated sample free of any contamination. The method blank assesses the degree to which the laboratory operations and procedures cause false-positive analytical results for your samples. The method blank results associated with your samples are attached.

LABORATORY CONTROL SPIKES

The LCS Program:

The laboratory control spike is a well characterized matrix (organic pure type II water for water samples and contamination free sand for soil samples) which is spiked with certain target parameters and analyzed in duplicate at approximately 10% of the sample load in order to assure the accuracy and precision of the analytical method. The results of the laboratory control spike associated with your samples are attached.

Accuracy is measured using percent recovery, i.e.:

Precision is measured using the relative percent difference (RPD) from duplicate tests, i.e.:

Control limits for accuracy and precision are different for different methods. They may also vary with the different sample matrices. They are based on laboratory average historical data and EPA limits which are approved by the Quality Assurance Department. McLaren Analytical Laboratory reanalyzes samples if the precision or accuracy is out of acceptance control limits.

QUALITY CONTROL REPORT

Method: Mod. EPA 8015 Units: ug/ml (ppm) Date Analyzed: 01/15/91 Date Extracted: 01/04/91 Batch Number: 910104-0303

METHOD BLANK

Compounds	Reporting <u>Limits</u>	Results of the MB
Gasoline Range	0.5	BRL
Jet Fuel/Kerosene Range	0.5	BRL
Diesel Range	0.5	BRL
Motor Oil Range	1.	BRL

LABORATORY CONTROL SPIKE

	Conce	ntration	Accuracy	Precision	Acceptance Limits ^a			
Compounds	Spiked	Measured	% Recovery	RPD	% Recovery	RPD		
Diesel Range	2.5	1.8	72	20	43 - 152	<25		

a Acceptance limits were obtained statistically from McLaren quality control data.

(DC3-CN3955)

ABBREVIATIONS USED IN THIS REPORT

BRL	Below Reporting Limit
MB	Method Blank
MS	Matrix Spike
MSD	Matrix Spike Duplicate
LCS	Laboratory Control Spike
LCSD	Laboratory Control Spike Duplicate
RPD	Relative Percent Difference

COMMENTS

Test methods may include minor modifications of published EPA methods (e.g., reporting limits or parameter lists). Reporting limits are adjusted to reflect dilution of the sample when appropriate. Solids and waste are analyzed with no correction made for moisture content. Blank results are reported in the Case Narrative.

Values for total petroleum hydrocarbons were calculated based only on detected peaks.

Gasoline and diesel standard obtained from local Chevron station. Gasoline is sold commercially as unleaded gasoline and diesel as diesel fuel #2.

Kerosene standard obtained from Post Jeff Chevron/Mobil Products. It is sold commercially as jet fuel and kerosene. Other jet fuel sources may produce different instrument responses and contain different hydrocarbon chains. The kerosene standard contains the same hydrocarbon chain as commercial jet fuel.

Motor oil standard obtained from local automotive store. Manufacturer and motor oil type are Pennzoil SAE 10W-40.

Results are reported on the attached data sheets.

(DC3-CN3955)

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Project Name: Marketplace Number: 59804

Sample Lab Project-

Description: Trip Blank ID Number: 3955-001

Sample Date

Number: 149463 Sampled: 01/03/91

Date Date

Received: 01/04/91 Extracted: 01/04/91

Date Batch

Analyzed: 01/14/91 Number: 910104-0303

PETROLEUM HYDROCARBONS	CONCENTRATION ug/ml (ppm)	REPORTING LIMIT ug/ml (ppm)
Gasoline Range Jet Fuel/Kerosene Range Diesel Range Motor Oil Range	BRL BRL BRL BRL	0.5 0.5 0.5
Total Petroleum Hydrocarbons	BRL	1.0

Dilution: None

Comments: {a} Derived from EPA 8015. Gas Chromatograph with flame ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum

fraction instead of non-halogenated volatile compounds.

Approved By: C. Fong Date: 1/x/91

The cover letter and attachments are integral parts of this report

Mclaren Hart 12/06/90

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Project

Name: Marketplace Number: 59804

Sample Lab Project-

Description: W-19 ID Number: 3955-002

Sample Date

Number: 149465 Sampled: 01/03/91

Date Date

Received: 01/04/91 Extracted: 01/04/91

Date Batch

Analyzed: 01/14/91 Number: 910104-0303

PETROLEUM HYDROCARBONS	CONCENTRATION ug/ml (ppm)	REPORTING LIMIT ug/ml (ppm)
Gasoline Range Jet Fuel/Kerosene Range Diesel Range Motor Oil Range	BRL BRL BRL BRL	0.5 0.5 0.5
Total Petroleum Hydrocarbons	BRL	1.0

Dilution: None

Comments: {a} Derived from EPA 8015. Gas Chromatograph with flame

ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.

Approved By: C. Fong Date: (|21/91

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Project

Name: Marketplace Number: 59804

Sample Lab Project-

Description: W-13 {b} ID Number: 3955-003

Sample Date

Number: 149467 Sampled: 01/03/91

Date Date

Received: 01/04/91 Extracted: 01/04/91

Date Batch

Analyzed: 01/14/91 Number: 910104-0303

PETROLEUM HYDROCARBONS	CONCENTRATION ug/ml (ppm)	REPORTING LIMIT ug/ml (ppm)
Gasoline Range	BRL	0.5
Jet Fuel/Kerosene Range	BRL	0.5
Diesel Range	BRL	0.5
Motor Oil Range	BRL	1.

Dilution: None

Comments: {a} Derived from EPA 8015. Gas Chromatograph with flame

ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.

{b} Revised 02/05/91.

Approved By: William Swaff. For Date: 2/5/91

The cover letter and attachments are integral parts of this report.

MClaren Hart 12/06/90

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Project

Name: Marketplace Number: 59804

Sample Lab Project-

Description: W-24 ID Number: 3955-004

Sample Date

Number: 149469 Sampled: <u>01/03/91</u>

Date Date

Received: 01/04/91 Extracted: 01/04/91

Date Batch

Analyzed: 01/14/91 Number: 910104-0303

PETROLEUM HYDROCARBONS	CONCENTRATION ug/ml (ppm)	REPORTING LIMIT ug/ml (ppm)				
Gasoline Range Jet Fuel/Kerosene Range Diesel Range Motor Oil Range	BRL BRL BRL BRL	0.5 0.5 0.5				
Total Petroleum Hydrocarbons	BRL	1.0				

Dilution: None

Comments: {a} Derived from EPA 8015. Gas Chromatograph with flame

ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.

Approved By: C. Fong Date: 1 21 91

Date: January 18, 1991

LP #: 3970

Julie Menack McLaren/Hart 1135 Atlantic Avenue Alameda, CA 94501

Dear Ms. Menack:

Enclosed are the laboratory results for the four samples submitted by you to the McLaren Analytical Laboratory on January 8, 1991, for the project Marketplace.

The analyses you requested are:

Mod. EPA 8015 (4 - Water)

The report consists of the following sections:

- 1. A copy of the chain of custody
- 2. Quality Control Report
- Comments
- 4. Analytical results
- 5. Copy of final billing submitted to accounting.

Unless otherwise instructed by you, samples will be disposed of two weeks from the date of this letter.

Thank you for choosing McLaren Analytical Laboratory. We are looking forward to serving you in the future. Should you have any questions concerning this analytical report or the analytical methods employed, please do not hesitate to call.

Sincerely,

Anthony S. Wong, Ph.D.

Director, Laboratory/Managing Principal

CHAIN OF CUSTODY RECORD

FOR LABORATORY USE ONLY
Laboratory Project No.: 3970 Secured:
Storage Refrigerator ID: 4-6 Yes ✓

CHAL	NC)r C	03101	נוט	XL		JI	L	,											Sto	orage	Freez	zer ID:			N	0
Project Name:	Mar	ket	place	Projec	ct #: _	5										(Print	ed Nar		rel	14			lett	(Signature)	rel	rej	
Relinquished by: (si Relinquished by: (si	gnature and P	rinted Name)	My COH	ette - Ex	4	nel	4	1	Lety.	(Signal	ture and i	Panted	Name	£	d	E	×	E	3ri	av	J	D(Date: Date: Date: Date:	-7-91	Time: Time: Time:	4:t0 10	130
Relinquished by: (Sig	gnature and P	rinted Name)					Re	ceive	ed by:	(Signati	ure Ind F	rinted	Name)	Sh	1/1	12	Z	-	-				Date:	1-8-91	Time:	12:0	SOpm
SHIP TO: McLaren Analy 11101 White Re Rancho Cordov (916) 638-3696 FAX (916) 638-	ick Road a, CA 956		Method of Shi Fed E Shipment ID:	Ex	Ana	cle or Aalysis(equested	dd s)	NO UNI							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							requ		cific meta nder Spe	
Sample ID Number	Date	Samp	ole Description Description	n .	X. R							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					18 / C	8/8/ 18/8/		X	TAT		tainer(s)	FOR LAE	BORATO Lab		ONLY
1 149471				nk	8	7		7	7	7	Ť	7	J			Ť	Ť	Ť	1		4	2	A	3970			·/
2 199475-7	1 11	1200	W20			1	\Box					1	V						V	1	4	2	A	7	-00/2	7	7
3 49475-71		1310											V						V		4	2	A	/	-003	<u></u>	<i></i>
4 494-77-76	1	1540		14						1			1/								4	2	· A	/	-004		<i></i>
5																								/	·····/		<i></i>
6																								/	/	······	<i>.</i>
7								ı	par												7			/	/	/	<i>.</i> /
8												T												/	/	/	<i>.</i> [
9								- 1												T				/	/	/	·/
10												T												/	/	/	<i>.</i>
Special Instructions/Comments: Sample Archive/Disposal Laboratory Standard						ai.	TAT (Analytical Turn-Around Times) 1 = 24 hours 2 = 48 hours 3 = 1 week 4 = 2 weeks Container Types: B=Brass Tube, V=VOA Vial, A=1-Liter Amber, G=Glass Jar, C=Cassette, O = Other SEND DOCUMENTATION AND RESULTS TO (Check one): Project Manager/Office:																				
FOR LABORATE	7477	ONLY. Broken	Sample Condition	Upon Rec	eipt:		*************************************	1					1		□ c c	lient ompa ddres	Nam any: ss: _	e: M 112	KJ 5	- Δ	ve Ha	n	-+	·		∍me	'da

QUALITY CONTROL REPORT

METHOD BLANK RESULTS: A method blank (MB) is a laboratory generated sample free of any contamination. The method blank assesses the degree to which the laboratory operations and procedures cause false-positive analytical results for your samples. The method blank results associated with your samples are attached.

LABORATORY CONTROL SPIKES

The LCS Program:

The laboratory control spike is a well characterized matrix (organic pure type II water for water samples and contamination free sand for soil samples) which is spiked with certain target parameters and analyzed in duplicate at approximately 10% of the sample load in order to assure the accuracy and precision of the analytical method. The results of the laboratory control spike associated with your samples are attached.

Accuracy is measured using percent recovery, i.e.:

Precision is measured using the relative percent difference (RPD) from duplicate tests, i.e.:

Control limits for accuracy and precision are different for different methods. They may also vary with the different sample matrices. They are based on laboratory average historical data and EPA limits which are approved by the Quality Assurance Department. McLaren Analytical Laboratory reanalyzes samples if the precision or accuracy is out of acceptance control limits.

(DC1-CN3970)

QUALITY CONTROL REPORT

Method: Mod. EPA 8015 Units: ug/ml (ppm) Date Analyzed: 01/16/91 Date Extracted: 01/08/91 Batch Number: 910108-2001

METHOD BLANK

Compounds	Reporting <u>Limits</u>	Results of the MB			
Gasoline Range	0.5	BRL			
Jet Fuel/Kerosene Range	0.5	BRL			
Diesel Range	0.5	BRL			
Motor Oil Range	1.	BRL			

LABORATORY CONTROL SPIKE

	Conce	ntration	Accuracy	Precision	Acceptance Limits ^a			
Compounds	<u>Spiked</u>	Measured	<pre>% Recovery</pre>	RPD	<pre>% Recovery</pre>	RPD		
Diesel Range	2.5	1.6	66	9	43 - 152	<25		

^a Acceptance limits were obtained statistically from McLaren quality control data.

(DC1-CN3970)

ABBREVIATIONS USED IN THIS REPORT

BRL	Below Reporting Limit
MB	Method Blank
MS	Matrix Spike
MSD	Matrix Spike Duplicate
LCS	Laboratory Control Spike
LCSD	Laboratory Control Spike Duplicate
RPD	Relative Percent Difference

COMMENTS

Test methods may include minor modifications of published EPA methods (e.g., reporting limits or parameter lists). Reporting limits are adjusted to reflect dilution of the sample when appropriate. Solids and waste are analyzed with no correction made for moisture content. Blank results are reported in the Case Narrative.

Values for total petroleum hydrocarbons were calculated based only on detected peaks.

Gasoline and diesel standard obtained from local Chevron station. Gasoline is sold commercially as unleaded gasoline and diesel as diesel fuel #2.

Kerosene standard obtained from Post Jeff Chevron/Mobil Products. It is sold commercially as jet fuel and kerosene. Other jet fuel sources may produce different instrument responses and contain different hydrocarbon chains. The kerosene standard contains the same hydrocarbon chain as commercial jet fuel.

Motor oil standard obtained from local automotive store. Manufacturer and motor oil type are Pennzoil SAE 10W-40.

Results are reported on the attached data sheets.

(DC1-CN3970)

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project

<u>Marketplace</u>

Project Number:

59804

Name: Sample

Lab Project-

Description: Trip Blank

ID Number: 3970-001

Sample

Number:

<u> 149471</u>

Date

Sampled: <u>01/04/91</u>

Date

Received:

01/08/91

Date

Extracted: 01/08/91

Date

Analyzed: <u>01/16/91</u>

Batch

Number: 910108-2001

PETROLEUM HYDROCARBONS	CONCENTRATION ug/ml (ppm)	REPORTING LIMIT ug/ml (ppm)
Gasoline Range Jet Fuel/Kerosene Range Diesel Range Motor Oil Range	BRL BRL BRL BRL	0.5 0.5 0.5 1.
Total Petroleum Hydrocarbons	BRL	1.0

Dilution: _None

Comments: {a} Derived from EPA 8015. Gas Chromatograph with flame ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.

The cover letter and attachments are integral parts of this report.

Mclaren

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Project

Name: <u>Marketplace</u> Number: <u>59804</u>

Sample Lab Project-

Description: W20 ID Number: 3970-002

Sample Date

Number: <u>149473</u> Sampled: <u>01/04/91</u>

Date Date

Received: 01/08/91 Extracted: 01/08/91

Date Batch

Analyzed: 01/16/91 Number: 910108-2001

PETROLEUM HYDROCARBONS	CONCENTRATION ug/ml (ppm)	REPORTING LIMIT ug/ml (ppm)			
Gasoline Range Jet Fuel/Kerosene Range Diesel Range Motor Oil Range	BRL BRL BRL BRL	0.5 0.5 0.5 1.			
Total Petroleum Hydrocarbons	BRL	1.0			

Dilution: None

Comments: {a} Derived from EPA 8015. Gas Chromatograph with flame

ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.

Approved By: C. Fong Date: 1/2/91

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Project Name: Marketplace Number: 59804

Sample Lab Project-

Description: W7 ID Number: 3970-003

Sample Date

Number: <u>149475</u> Sampled: <u>01/04/91</u>

Date

Received: 01/08/91 Extracted: 01/08/91

Date Batch

Analyzed: 01/16/91 Number: 910108-2001

PETROLEUM HYDROCARBONS	<pre>CONCENTRATION ug/ml (ppm)</pre>	REPORTING LIMIT ug/ml (ppm)
Gasoline Range Jet Fuel/Kerosene Range Diesel Range Motor Oil Range	BRL BRL 4. 12.	2. 2. 2. 4.
Total Petroleum Hydrocarbons	16.	4.

Dilution: 1:4

Comments: {a} Derived from EPA 8015. Gas Chromatograph with flame

ionization detector is used to perform the analysis. Modification is due to the quantitation of petroleum fraction instead of non-halogenated volatile compounds.

Approved By: Date: 1/2/91

Analytical Method: Modified EPA 8015 {a} Preparation Method: EPA 3510

Project Name:	<u>Marketplace</u>	Project Number:	59804
Sample Description:	W14	Lab Projec ID Number:	
Sample Number:	149478	Date Sampled:	01/04/91

Date Date

Received: 01/08/91 Extracted: 01/08/91

Date Batch

Analyzed: 01/16/91 Number: 910108-2001

PETROLEUM HYDROCARBONS	CONCENTRATION ug/ml (ppm)	REPORTING LIMIT ug/ml (ppm)
Gasoline Range Jet Fuel/Kerosene Range Diesel Range Motor Oil Range	BRL BRL BRL BRL	0.5 0.5 0.5 1.
Total Petroleum Hydrocarbons	BRL	1.0

Dilution: None

Comments: {a} Derived from EPA 8015. Gas Chromatograph with flame

ionization detector is used to perform the analysis.

Modification is due to the quantitation of petroleum
fraction instead of non-halogenated volatile compounds.

Approved By: C. Fong Date: (/1/91

(fill out completely)

McLaren	()	,,	WELL OR LOC	CATION Z	W.
PROJECT MONEO	PAL EVENTOUNIE	SAMPLE		1	491
Well / Hydi	rologic statistics	Action	Time	Pump rate	(low yield)
	Well type	Start pump / 8	Begin 1230	\	
	(MW, EW, etc.)				
<u> </u>	d (diameter 2			74.6	ae
$\sim sw. 3.17$	equais Qgal/ft, casing		,		
(If above screen)		Stop	1255	/	4.32
packer intake ft.		Sampled (Final IWL)	1310		
bailer deoth (circle one)	O.STOP		Purge ca	iculation	1 —
SWL	_i		7.3 t. = 1.5	_	gais.
(if in screen)		SWL pack	to BOP or one cer to BOP volum		e voiume- casings
	90P		lead purge calcu		oniv)
T.D.	12. T.D. (as built)		ft."=	and the second of the second o	
	ting Method / Description of Event		ctual gallons purg	ged 👍	5
Dira bail	ric used to p er used to se	and a A	ctuai voiumes pu		5
		, N	Vell yield	<u>M'</u>	<u> </u>
		<u> `</u>	coc # =	224715	,
0-9-	5 2		Sample I.D.	Analysis	MA/
Additional comments:			149475 8 1494710 1	Motor Dil	- WE
water dar	L yellow/brown	in	7-17-17-0		
ador, Stro	ma priduct av	nesi, j-			
		-			
Gallons purged *	TEMP °C (°F') EC	PH -	TURBIDITY		
	(circle one) (µs / cm)		(NTU)		
1. 1.5	59.9 5830 U2.3 UU40	(e.42)	15.2		
3. 4.5	(03.7 7280	6.20	19.5		
4.					
5.	O HV. Minimat MV. M/I dans an	in to purpo 2	Y - Able to purge 3	VLY - Mir	nimai recnarge -
* Take measurement at approximately each		ing one sitting	volumes by retu	rning un	able to purge
casing volume purged.	by reducing I	pump rate or	later or next day		

(fill out completely)

<u>McLaren</u>		WELL OR LO	CATION	U-13
PROJECT MOVEL DOCE EVENT OF	Marterly SAMPI	LER CM	DATE	-2-91
Well / Hydrologic statistics	Actio	n Time	Pump rate	(low yield)
Well type			-1	gal
(MW, EW, etc.)		11:45	3/	,
$\frac{1}{d}$ (diameter $\frac{2}{d}$	1			
$-\text{swl} = \frac{4.42}{\text{equais} \cdot 100}$				
(if above screen)	Stop	II'AE		
packer ft.	Sampled	12:34	2	
bailer depth (circle one)	(Final IWL)	Purge c	aiculation	
	, 10 gavit.	·5/64.=8.9	gais x 3 =	gais.
(if in screen)	S S	WL to BOP or one		ge volume- casings
10 BOP		Head purge calc	ulation (Airlift	oniy)
T.D. (as	built)	packer to SWL	gais:	
Equipment Used / Sampling Method / Descripti	on of Event:	Actual gallons pu	rged	5.5
peristatic used to purge		Actual volumes purged		
3 casing volumes.	nple	Well yield ⊕ (see below)	· ·	1/
		COC #	224714	-
		Sample I.D.	Analysis	11\lamb
Additional comments:		149469	8015t	1/
	Source	191100	710013121	
PID ->0 -> ppm st.	ng zone			
0000	/ a i			
Gallons purged • TEMP C/F E		TUDDIOTO		
Gallotis purged	C PH	TURBIDITY (NTU)		
1.	00 7.02	9.3		
2 2 51.0 17 3. 3 53.9 17	120 75	10.9		
4. 4 54.0 17	11D 7.18	93		
5. 5 53.5 19	60 7.32	5.7	2 VIV A4:	nimai rachamo -
approximately each W.L. drop	WL drop - able to purge 3 volumes during one sitting	LY - Able to purge	turning ur	nimal recharge -
casing volume purged.	by reducing pump rate or	later or next da	ay. 3	volumes.

PHOSEST TO THE STATE OF THE STA		3-91D (low yield)		
Well / Hydrologic statistics Addition	mp rate			
Well type MW Start pump / Begin 1325				
(MW, EW, etc.)				
d (diameter 2"	>775	gallone		
(if above screen) equais 110 gal/ft. casing	7 2.15			
packer of the Sampled 1540 (Final IWL) 5,00				
bailer depth (circle one) TOP Purge calcula , Ugal/ft 5,5ft , 5 gals		2,65gais.		
(if in screen) SWL to BOP or one packer to BOP volume	. 3	ge volume- casings		
measured 9.7 T.D. (as built) Head purge calculation gal/ft.* ft.* gal packer to SWE	on (Airlift) is:	oniy)		
Equipment Used / Sampling Method / Description of Event:				
Peristaltic used to purge, Actual volumes purged Well yield (see below)	M	\		
- Carries -	4715 alvsis 015+	<u>Lab</u> MAL		
Additional comments: Additional comments: Additional comments: Additional comments: Additional comments				
80% rednage = 5,60				
Gallons purged * TEMP °C °F EC PH TURBIDITY (NTU)				
1. 1 57.7 5030 (e.90 offered) 2. 2 54.1 5950 7.29 20.8				
2. 2 54.1 5950 7.29 20.8 3. 3 53.4 5970 7.42 4.7				
4.				
5. Somple Hir bidita	VI Y - Mi	nimai recharge -		
* Take measurement at approximately each casing volume purged. * Take measurement at approximately each casing volume purged. * Take measurement at approximately each casing volumes by reducing one sitting by reducing pump rate or cycling pump. * Take measurement at approximately each casing volumes by reducing pump rate or cycling pump.	ur	nable to purge volumes.		

11

(fill out completely)

McLaren (fill out completely) WELL OR LOCATION					
PROJECT MOVE CT PROCEVENT QUARTER USAMPLER WYS DATE 1-3-90					
	irologic statistics	Action	Time	Pump rate	(low yield)
	Well type MU (MW, EW, etc.)	Start pump / Beg	gin 115)4g2	
			1120	,4 a	
	d J diameter 2"		1130	7-7-6	
(if above screen)	equais: Gal/ft. casing		1100		
		Stop Sampled	1125	sacr.	
bailer depth (circle one)	25 _{TOP}	(Final IWL)	Purge ca	iculation	
Sw. 595		, Ogavít. • _2			
(if in screen)		packer	BOP or one	ne 3	e volume- casings
measured 12.8	80P	Hes gal/it.*	ed purge calcu		-)1117
T.D. 100	T.D. (as built)		ser to SWL	- 6	3
centrifuas	pting Method / Description of Event	max Im	uai gallons purg	17	,
3025mg	footunes. L	200 . Act	ual volumes pu	rgeo	<u></u>
used to	somple.		e below)	1071711	
1	at source	Sa	OC # = = ample I.D.	Analysis	Lab
Additional comments:	n breathing 2	11-	194105 E	3015 t	MAC
SWLENS	of dark brong	7	-	<u> </u>	
product t	on boiler off	-er			
2090 =	7.6	-			
Gallons purged *	TEMP °C (°F) EC (µs / cm)	РН π	URBIDITY (NTU)		
1. 4	Le0.0 5430	7.03	8.5		
2. 5.5 3. 8	588 5270	(e.72 c	11.3		
4.	3111 35100	12:170	1016		
5. * Take measurement at	⊕ HY- Minimat MY - WL droop - ac	ple to purge 3 LY	- Able to purge 3		nimai recharge -
approximately each casing volume purged.	W.L. drop volumes dui	ing one sitting pump rate or	volumes by retu later or next day	ming un	able to purge volumes.
	cycling pum	D.			

(fill out completely)

McLaren McLaren		9 SEON	WELL OR LOC	EATION	<u> </u>
PROJECT MONCE !	DCO EVENT QUARTE	ALL SAMPLER	cm6	_ DATE	4-91
Well / Hydro	plogic statistics	Action	Time	Pump rate	(low yield)
	Well type(MW, EW, etc.)	Start pump / Be	egin 1050		
				(U.5 a5	n l
_	d J diameter 2"			121390	21
(if above screen)	equals 10 gal/ft. casing				
packer 15 ft.		Stop Sampled	1200	estr.	
bailer depth (circle one)	2.5 _{TOP}	(Final IWL)	Purge ca	culation	
_sw14.10			3.4 H. = 2.14	gais x 3 =	2.5 gais.
(if in screen)	17.5 _{BOP}	packe	to BOP or one or to BOP volum	ne 3	e volume- casings
measured 17.3	17.5 T.D. (as built)	He gal/it:	ead purge calcu	iation (Airlift) gais.	oniy)
T.D		pac	ker to SWL		
Equipment Used / Samplin	ng Method / Description of Even	ti d to Ac	tuai gailons purg	1	5
purge. T	C pump use Disp boiler	r used AC	tual volumes pur	rged	<u> </u>
to somp	le.	(Se	ell yield ① ee below)		
		1	COC # 2 Sample I.D.	224715 Analysis	Lab
		K	19473 8	2015+	MAL
Additional comments:	*	1-1	49474	MOTOrD:1	
	4.5	_			
		_			
	EMP °C /°F EC	PH T	URBIDITY		
1. 2	(circle one) (µs / cm)		(NTU)		
2. 4	60.5 BLOOD	Le.10	1.5		
3. (0	59.8 9620	(0.28)	23		
5.					
approximately each		ring one sitting	 Able to purge 3 volumes by returned later or next day 	ming uni	imai recharge - able to purge olumes.
casing volume purged.	cycling num	pump rate or	STEE OF HEAT CAN		

McLaren McLaren	(fill out	completely)	WELL OR L	OCATION	N24	
PROJECT MONCE PER CONS DATE 1-3-90						
Weil / Hyo	irologic statistics	Actio	n Time	Pump rate	(low yield)	
	Well type	Start pump	Begin 135	0	a *	
	(MW, EW, etc.)					
-	d (diameter 21			1)4,5		
swL —	equais U gai/ft. ca	using		1/		
(if above screen)		Stop	AIF	2		
packer 2 ft.	2=	(Final IWL)	14.3			
i	TOP	110	<u>Purge</u> • <u>8.3</u> ft. = <u>1</u> .	Calculation	4 cais.	
_sw_5,25		1 1 -	WL to BOP or on	e pur	e voiume-	
(if in screen)	13.50p	pa	Marion to a -	iume 3 culation (Airlift	casings only)	
measured 13.3	3.5 _{T.D.} (as built)	gai/	t. t.	gala;		
			packer to SWL	1	5	
peristalt	Equipment Used / Sampling Method / Description of Event: Actual gallons purged 3					
Peristatic used to pural 3 cossing volumes. Died boiler used to sample. Well yield (see below)				Æi		
boilerus	sed to som	ple.	(see below)	⊕ ∓□		
			COC # Sample I.D.	Analysis	Lab	
			14914-109	9005 T	MAL	
Additional comments:	(*)		49470	MotorDi		
	, E					
	TEMP 'C (°F) FC					
Gallons purged *	(circle one) EC (us/cm)	PH	TURBIDITY (NTU)			
1. 2	58.9 4570	7.07	0.9			
2. 3 3. 4	59.6 378	D 6,96	1.3			
4.			1			
5. * Take measurement at	⊕ HY- Minimai MY - WL dro	pp - apie to purge 3	LY - Able to purge		nimai recharge -	
approximately each casing volume purged.	W.L. drop volume by red	es during one sitting ucing pump rate or	volumes by r	eturning	nable to purge volumes.	
	cycline	pump.				