

Carryl MacLeod

Project Manager, Marketing Business Unit

Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 RECEIVED

By Alameda County Environmental Health 10:39 am, Nov 06, 201

Re: Former Texaco Service Station No. 359766

2700 23rd Avenue Oakland, California ACEH Case RO0003098

I have read and acknowledge the content, recommendations and/or conclusions contained in the attached *Third Quarter 2017 Groundwater Monitoring and Sampling Report* submitted on my behalf to ACDEH's FTP server and the SWRCB's GeoTracker website.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge

Sincerely,

Carryl MacLeod Project Manager

Attachment: Third Quarter 2017 Groundwater Monitoring and Sampling Report

November 2, 2017 Reference No. 062086

Ms. Karel Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Third Quarter 2017 Groundwater Monitoring and Sampling Report Former Texaco Service Station 359766
2700 23rd Avenue
Oakland, California
ACEH Case RO0003098

Dear Ms. Detterman:

GHD is submitting this *Third Quarter 2017 Groundwater Monitoring and Sampling Report* for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company (CEMC). Groundwater monitoring and sampling was performed by Blaine Tech Services (Blaine Tech) of San Jose, California and their *Third Quarter 2017 Monitoring Report* is included as Attachment A. Eurofins Calscience's *Analytical Results* report is included as Attachment B. Current and historical groundwater monitoring and sampling data are summarized in Table 1 and current data are presented on Figure 2.

Please contact the CEMC Project Manager, Carryl MacLeod at (925) 842-3201 or GHD Project Manager, Kiersten Hoey at (510) 420-3347 if you have any questions or require additional information.

Greg Barclay PG 6260

GREG BARCLA

Cordially,

GHD

Kiersten Hoey

KH/cw/16 Encl.

Figure 1 Vicinity Map

Figure 2 Groundwater Elevation Contour and Hydrocarbon Concentration Map

Table 1 Groundwater Monitoring and Sampling Data

Attachment A Monitoring Data Package
Attachment B Laboratory Analytical Report

cc: Ms. Carryl MacLeod, Chevron EMC (electronic copy)

Pedro and Maria Pulildo, Property Owner

062086-RPT16-3Q17 2

Figures

FORMER TEXACO STATION 359766 2700 23rd AVENUE OAKLAND, CALIFORNIA Oct 25, 2017

VICINITY MAP

FIGURE 1

GHD

FORMER TEXACO STATION 359766 2700 23rd AVENUE OAKLAND, CALIFORNIA

Nov 2, 2017

GROUNDWATER ELEVATION CONTOUR AND HYDROCARBON CONCENTRATION MAP - SEPTEMBER 7, 2017

Table

Table 1

Groundwater Monitoring and Sampling Data
Former Texaco Service Station 359766 (Ed's Liquors)
2700 23rd Avenue
Oakland, California

						mnoc:-		1												1
	Г	1		1	HY	DROCARBO	JNS	1	1	1	1				VOCS		1		1	
Location	Date	TOCª	DTW	GWE	трн-мо	TPH-DRO	TPH-GRO	В	т	E	x	MTBE by SW8260	Naphthalene	ТВА	DIPE	ETBE	TAME	1,2-DCA	EDB	ADDITIONAL
	Units	ft	ft	ft-amsl	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-1	11/18/2010 ¹ 02/14/2012 ¹	168.84 168.84	7.93 7.31	160.91 161.53	<250	<50 <50	 <50	 <0.50	 <0.50	 <0.50	 <0.50	1.3	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	03/13/2015	168.90	12.11	156.79																
	06/19/2015	168.90	11.31	157.59																
	09/29/2015	168.90	10.83	158.07																
	12/22/2015	168.90	6.44	162.46																
	03/28/2016	168.90	6.08	162.82																
	06/19/2016	168.90	5.41	163.49																_
	09/08/2016	168.90	5.79	163.11																
	12/16/2016	168.90	7.72	161.18																
	03/07/2017	168.90	5.20	163.70			<100	4	0.6 J	<1	0.6 J	0.9 J								
	06/20/2017	168.90	4.98	163.92	<120	<100	<100	<1	<1	<1	<1	0.8 J								
	09/07/2017	168.90	5.81	163.09	<250	47 J	<100	<0.50	<1.0	<1.0	<1.0	0.53 J		-	-	-	-			
MW-2	11/18/2010 ¹	170.33	7.52	162.81	<250	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	ND
	02/14/2012 ¹	170.33	6.37	163.96		<50	<50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50								
	03/13/2015	170.41	8.10	162.31																
	06/19/2015	170.41	6.92	163.49																-
	09/29/2015	170.41	7.95	162.46																-
	12/22/2015	170.41	4.49	165.92																
	03/28/2016	170.41	3.83	166.58																
	06/19/2016	170.41	3.71	166.70																-
	09/08/2016	170.41	4.77	165.64																
	12/16/2016	170.41	5.92	164.49																
	03/07/2017	170.41	2.94	167.47			<100	<1	<1	<1	<1	<1								
	06/20/2017	170.41	3.71	166.70	<120	<100	<100	<1	<1	<1	<1	<1								
	09/07/2017	170.41	4.23	166.18	<250	54	<100	<0.50	<1.0	<1.0	<1.0	<1.0		-	-	-	-	-	-	
MW-3	11/18/2010 ¹	168.67	5.14	161.15	<250	2,100	3,700	<0.5	<0.5	<0.5	0.84	<0.5	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	3.0 ^g 0.68 ^d 2.0 ^e 2.2 ^h 6.6 ^f
	02/14/2012 ¹	168.67	4.98	163.69		<1,500	3,400	<0.50	<0.50	1.2	<0.50	<0.50								
	03/13/2015	168.71	6.50	162.21																
	06/19/2015	168.71	5.93	162.78																
	09/29/2015	168.71	6.98	161.73																_
	12/22/2015	168.71	8.01	160.70																
	03/28/2016	168.71	7.04	161.67																
	06/19/2016	168.71	7.14	161.57																
	09/08/2016	168.71	9.81	158.90																
	12/16/2016	168.71	8.97	159.74																
	03/07/2017	168.71	5.13	163.58			4,400	0.5 J	0.7 J	3	1	<1								_
	00/01/2011	100.71	0.10	100.00			.,	00	•	Ü		•••								

Table 1

Groundwater Monitoring and Sampling Data
Former Texaco Service Station 359766 (Ed's Liquors)
2700 23rd Avenue
Oakland, California

					ЦV	DROCARBO	ONIS	I							VOCS					1
		1	1		HY	DROCARBO	JNO I			l		l	1	1	v003	1		1	I	
Location	Date	TOC ^a	DTW	GWE	ТРН-МО	TPH-DRO	TPH-GRO	В	т	E	×	MTBE by SW8260	Naphthalene	ТВА	DIPE	ETBE	ТАМЕ	1,2-DCA	EDB	ADDITIONAL
	Units	ft	ft	ft-amsl	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	06/20/2017 09/07/2017	168.71 168.71	5.93 8.05	162.78 160.66	<120 64 J	980 1,900	5,100 1,200	0.7 J 0.58	1 J 0.69 J	5 3.8	3 2.2 J	<1 <1.0			-			-	-	
MW-4	11/18/2010 ¹ 02/14/2012 ¹ 03/13/2015	168.40 168.40 168.47	 6.45 10.70	 161.95 157.77	<250 	2,800 <3,000	26,000 27,000 	2,800 1,500 	1,500 660 	550 520 	3,100 1,500 	<0.5 <5.0	210 	<200 	<50 	<50 	<50 	<50 	<50 	790 ⁱ 210 ^j
	06/19/2015 09/29/2015 12/22/2015	168.47 168.47 168.47	9.63 11.04 10.31	158.84 157.43 158.16	 	 		 	 	 	 		 	 	 			 		
	03/28/2016 06/19/2016 09/08/2016	168.47 168.47 168.47	9.32 8.38 8.60	159.15 160.09 159.87	 	 		 	 	 	 		 	 		 				
	12/16/2016 03/07/2017 06/20/2017	168.47 168.47 168.47	10.21 6.70 5.72	158.26 161.77 162.75	 <120	 670	 16,000 9,000	 1,300 1,000	 220 140	 380 210	 560 250	 <10 <10	 	 	 	 	 	 	 	
	09/07/2017	168.47	6.78	161.69	62 J	2,400	1,500	840	91	160	190	<1.0			-	-	-		-	
MW-5	02/26/2015 ² 03/13/2015 06/19/2015	162.42 162.42 162.42	17.81 16.48 10.92	144.61 145.94 151.50	 	 	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	 	 					 	
	09/29/2015 12/22/2015 03/28/2016	162.42 162.42 162.42	12.29 13.46 8.22	150.13 148.96 154.20	 	 	<50 <50 <100	<0.5 <0.5 <1	<0.5 <0.5 <1	<0.5 <0.5 <1	<0.5 <0.5 <1	<0.5 <0.5 <1	 	 	 	- - -	 	 	 	
	06/19/2016 09/08/2016 12/16/2016	162.42 162.42 162.42	9.18 10.78 10.99	153.24 151.64 151.43	 	 	<100 <100 <100	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	<1 <1 <1	 	 	 	 	 	 	- - -	-
	03/07/2017 06/20/2017 09/07/2017	162.42 162.42 162.42	10.85 10.34 9.92	151.57 152.08 152.50	 <120 <250	 <110 38 J	<100 <100 <100	<1 <1 <0.50	<1 <1 <1.0	<1 <1 <1.0	<1 <1 <1.0	<1 <1 <1.0	 	 	 	 -	 -	- - -	 -	
QA	09/07/2017	-	-	-	-	-	<100	<0.50	<1.0	<1.0	<1.0	<1.0		-	-	-		-	-	

Table 1

Groundwater Monitoring and Sampling Data Former Texaco Service Station 359766 (Ed's Liquors) 2700 23rd Avenue Oakland, California

					HY	DROCARBO	NS								VOCS					
Location	Date	TOCª	DTW	GWE	трн-мо	TPH-DRO	TPH-GRO	В	Т	E	x	MTBE by SW8260	Naphthalene	ТВА	DIPE	ETBE	ТАМЕ	1,2-DCA	EDB	ADDITIONAL
	Units	ft	ft	ft-amsl	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L

Abbreviations and Notes:

- -- = Not analyzed
- <x and ND = Not detected above the method detection limit x.

Total purgeable petroleum hydrocarbons (TPPH) by EPA Method 8260B

Total petroleum hydrocarbons as motor oil (TPHmo) and TPH as diesel (TPHd) by modified EPA Method 8015B with silica gel cleanup

Total petroleum hydrocarbons as gasoline (TPHg) by modified EPA Method 8015B

Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8260B

Methyl tertiary butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), 1,2 dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), tertiary butyl alcohol (TBA), naphthalene by EPA Method 8260B

Volatile organic copmounds (VOCs) by EPA Method 8260B

a = Top of casing elevation was surveyed by Morrow Surveying on February 24, 2015; coordinates are California State Plan Zone 3, from GPS observation using CSDS virtual survey network, coordinate datum is NAD 83, reference geoid is GEOID03, and vertical datus is NAVD 88 from GPS observations. Prior to 2015, a survey was completed by licensed surveyor Ty Hawkins on December 20, 2010; based on California Coordinate System NAD 83, Zone III (2002.00), and elevations based on NAVD 88.

- b = n-butyl benzene
- c = 4-isopropyl toluene
- d = Sec-butyl benzene
- e = Isopropylbenzene
- f = n-propyl benzene
- g = 2-butanone
- h = 4-methyl-2-pentanone
- i = 1,2,4-trimethylbenzene
- j = 1,3,5-trimethylbenzene
- 1 = Sampled by previous consultant
- 2 = Well development

Attachment A Monitoring Data Package

WELL GAUGING DATA

Project # 110	907-1	vw(Date _	5-7	~(7	Client <u>CHEURON</u>
					•	
Site <u>Wo</u>	2300	AUE,	OAK	AND,	LA	

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscible s Removed (ml)	Depth to water (ft.)	bottom (ft.)	Survey Point: TOB or	Notes
MW-1	1127	2	!	T 1 1 2 2			5.81	1968	1	1
Mw-2	1120	2		† † 1 1		1 1 1	-1.23	19.48		
Mm-3	1121	2	:	1 1 1 1			४. <i>७५</i>	1972		2 : : : : : : : : : : : : : : : : : : :
Mw-4	1126	飞	: : : :				6.78	19.36		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MW-4 MW-5	1200	2			.		9,92	19.82	1	
	# t t t t t t t t t t t t t t t t t t t		1 1 2 2 3	1		9 2 3				
	1 1 1 1			2 2 8 6 1	8 3 8 8 8	1	8 8 9 7	; ; ;		
t t 1 1 1 t				3 1 1	3 3 4 3 0 6					
		2 2 3 3 5 5		1		5 5 5				3
				:						
\$			2 2 4 6 1	:	: : :					**************************************
		1	:		5	:				£
				1		0 2 2 1 1				
		İ	2 2 6 5 2			1 1 2 3 3			1 2 3 4 2	
1 1 1 1			8 9 2 2 3	1	1	\$ \$ \$ \$	1		1 3 4 4	
	; ; ; ;			1 1 1 1	1		1 2 2 3 5			
:	3 3 4 2 4				\$ \$ \$ \$ \$;

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Project #:	170907	-6-41		Station #	: 35 - 9	766		
Sampler:	ww			Start Date	: 9-7-	(7		
Well I.D.:	Mw-1			Well Dian	meter: (2)	3 4	6 8	
Total Well	Depth: 1	9.68		Depth to	Water: 5	.81		
Depth to F	ree Product				of Free P	***************************************	et):	
Reference	d to:	PVC	Grade		r: YS1		ως	
Peristaltic Bladder Pump Electric Submersib Flow Rate:		1 20 ml	Sampling Me Dedicated Tubing New Tubing		Instruments Myron L Ultran Durham Geoslo GeoTech Interface MMC Interface Pump Dept	pe Indicator Y: ace Probe Y Probe O	HACH Turbidimeter SI-536 Flow-Thru Cell SI 550 DO Meter ther:	pro ous
Time	Temp.	pН	Cond. (mS or μ S)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water
1247	22.5	7.96	7:00	29	0-71	-14.0	300	5.89
1250	22,4	7.96	397	21	0.65	-183	600	5.97
M53	23.2	7.94	839	19	0.56	-23.9		6.05
1256	23.3	7.89	839	11	0.44	-24.2	1200	6.13
1259	23,4	7.84	815	۵۱.	0.43	-227	150	6.13
1302	23.3	7.79	814	10	0.43	-20.1	1200	6.13
Did well de			No)		Amount a	ctually ev	acuated: বি	oo ml
****	ime: 130				Sampling	Date: 9.	-7-t7	
Sample I.D.	: Mw-1	-W-17	১7০ গ		Laborator			
Analyzed fo	or:	TPH-G	BTEX MTB	E TPH-D	(F11-m0)	Other:		
Equipment l	Blank I.D.:		@ Time		Duplicate	I.D.:		

Project #:	170907	1-1-1-1-1		Station #	:35-9		J DATA SHE	·K I
Sampler:	un	1 0000		1	e: 4 -7 -			
j	: Mw-Z				meter:			
	ll Depth: [942			Water: 4		6 8	
	Free Produc							
Reference		Pyc)	Grade		s of Free P			
Purge Metho		<u> </u>	Sampling Me	DO Meter		PRO PU	<u> </u>	ī.,
Peristaltic Bladder Pump Electric Submersil Flow Rate:		lvo mi	Dedicated Tubing New Tubing		Instrument Myron L Ultrar Ourham Geosle GeoTech Interface MMC Interface Pump Dept	ppe Indicator Y Y ace Probe Y Probe O	ACH Turbidimeter SI-556 Flow-Thru Cell SI 550 DO Meter ther:	PRO PWI
Time	Temp.	рН	Cond. (mS or (uS))	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nL)	Depth to Water
1213	23.0	8.22	977	33	0,96	-184	300	4.39
1216	23.5	3.16	981	29	0.32	-21.6	600	4.65
1219	24.7	2.05	981	28	0.61	-24.5		4,65
1222	24.8	8.00	960	.26		-28.1	1200	4.65
1225	24.7	7.97	956	2:7		-30.5	1500	4.65
						,,,,		7,63
						•		
oid well de	water?	Yes (No		Amount or	otually over	cuated: 15°	0 .
ampling Ti	ime: (23		·					· ml
			70709		Sampling]			
nalyzed for		TPH ² G		TPH-D	Laboratory	Other TP	61	
quipment E			@				1-mo	
	h Service	c les de	Time		Duplicate 1	.D.:		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

			,	20 11 11 <u>D</u>	DU MOM	LIOIGING	DAIA SILE.	E I
Project #:	170907	HWWZ		Station #	: 35-9	766		
Sampler:	CR			Start Date	: 9/7/1	7	***************************************	
Well I.D.:	MW-3			Well Diar	neter: 🔼	3 4	6 8	
Total Well	Depth:	9.72		Depth to	Water: 8	,05		***************************************
Depth to F	ree Product			Thickness	of Free Pr	coduct (fee	et): '	
Referenced	i to:	(PVC)	Grade	DO Meter				-
Purge Method	i:		Sampling Me		Instruments Myron L Ultram	neter (ACH Turbidimeter	
Peristaltic Bladder Pump			Oedicated Tubing) <			SI 556 Flow-Thru Cell	
Electric Submersib	la.		New Tubing		GeoTech Interfa	•••	SI 550 DO Meter	
	100 ml/	<u> </u>			MMC Interface	101	ther:	
Flow Kate:	100 MUII	nia			Pump Deptl	h: <u> </u>		
Time	Temp.	рН	Cond. (mS or (18)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or(mL)	Depth to Water
1303	22.3	6.87	541	15	0.75	-109.4	300	8.13
1306	25.8	6.60	537	14	0.58	-111.7	600	8.16
1309	728	6.57	537	12	0.46	-114.3	900	8.18
1312	728	6.52	535	12	0.48	-116.1	1200	8,21
1315	22.8	6.50	534	10	0.45		1500	8.24

Did well de	water?	Yes (No)		Amount a	ctually eva	acuated: 190i	o mL
Sampling T	ime: \3\6	<u>`</u>			Sampling		<u> </u>	
Sample I.D.	: MW-3-1	w-17071	Pc					
Analyzed fo	or:	TPH-G	BTEX MTB	E TPH-D	Laboratory	Other: Se	e. Cac	
Equipment l	Blank I.D.:		@ Time		Duplicate 1		3 000	

T		(2.1027-01	11) 110 TT X	CON ME	DE MON	TOMITO	DAIASHE	
Project #:	170907.	-600 1		Station # :	:35-0	7766		
Sampler:				}	: 9-7-1	•		
Well I.D.:	Mw-4			Well Dian	neter: 🛭) 3 4	6 8	***
Total Well	Depth: (7.36		Depth to V	Water: 6.	18		
Depth to F	ree Product			Thickness	of Free Pr	oduct (fee		
Referenced	l to:	PVC)	Grade	DO Meter	: YS1	PRO P	ius	
Purge Method	l:		Sampling Me	thod:	Instruments	-		
Peristaltie Bladder Pump Electric Submersibl			Dedicated Tubing New Tubing	> <	Myron L Ultram Durham Geoslor GeoTech Interfac MMC Interface	pe Indicator YS ce Probe YS Probe Ot	IACH Turbidimeter SI 556 -Flow-Thru Cell f SI 550 DO Meter ther:	ore pus
Flow Rate:		100 ml/n	<u>n'i</u> n		Pump Depth	n: 18'		
Time	Temp.	pН	Cond. (mS or (LS)	Turbicity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or max)	Depth to Water
1318	20.8	7,50	1471	26	0.98	-69.8		6.93
1321	71.8	7.46	1476	21	0.97	-71,5	600	7.(0
1324	22.6	7.37	14/81	20	00	-71.5	900	7.10
ひれて	22.7	7.36	1478	19	1.05	-70.6	1200	7.10
			· · · · · ·		,		÷.	
					,			
,								
			,					777
Did well de	water?	Yes (No		Amount a	ctually ev	acuated: 17:	o mi
Sampling T	ime: 137	, 0		***************************************	Sampling			
Sample I.D.	:: Mw-4.	-W-17	5789		Laborator			***************************************
Analyzed fo		TPH-G	втех мтв		TPH-mo			***************************************
Equipment 1	Blank I.D.:		@ Time		Duplicate			

	CILEVICO	. 1 (1101. C			TATOTAT	TOKING	DATA SHE	K;
Project #:	170907			T	: 35-9			
Sampler:	ir			Start Date	e: 9/7/	17		
Well I.D.:	MW-5			Well Dia	meter: ②	3 4	6 8	
Total Well	Depth: /	9-82		Depth to	Water: 9.	92		
Depth to F	ree Product			Thickness	s of Free Pr	oduct (fee	et): —	
Referenced	i to:	(PVC)	Grade	DO Meter				
Purge Method	1:		Sampling Me	thod:	Instruments	American Contract of the Contr		
Peristaltic Bladder Pump Electric Submersib	. 1	lmin	Dedicated <u>Tubing</u> New Tubing		Durham Geoslop GeoTech Interface MMC Interface Pump Depth	ce Probe YS	ACH Turbidimeter 1 556 Flow-Thru Cell SI 550 DO Meter her:	
Time	Temp.	рН	Cond. (mS or (aS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	Depth to Water
1216	21.7	7.68	1012	5	1.04	-42.5	. 300	10.03
1219	220	7.52	1006	6	0.52	-63,9	600	10.06
1333	220	7-48	998	6	0,48	-70,4	900	10.10
1225	72 Z	7,46	995	4	0.43	-75.5	1200	10.12
1228	22.4	7.45	143	4	0.41	-78.2	1900	10,14
	·					,		

Did well de	water?	Yes (No)		Amount a	ctually eva	acuated: 1506	mL
Sampling T	ime: \J2	9			Sampling			
Sample I.D.	: MW-5-	W-170	709					
Analyzed fo	or:	TPH-G	BTEX MTB	E TPH-D	Laboratory	Other: See	CEC	
Equipment 1	Blank I.D.:		@ Time		Duplicate	·		

, ho		Preservation Codes	H=HCL T= Thiosulfate	N =HNO ₃ B = NaOH	S = H ₂ SO ₄ O =	Other			Special	Must meet lowest	detection limits	compounds.	Run TPH-D and TPH-MO with silica	gel cleanup	· · · · · · · · · · · · · · · · · · ·								72		
94583 COC	EQUIF																						Turnaround Time: Standarded Time: Otherid To Standarded Otherid To Standarded Standarde	eck by lab on arrival)	1 emp: COC #
San Ramon. CA	1 1									7	Þ	O-Hd.	L	910	8 A4∃	d 4	メ	メメ	X	×			Turnaround Time: Standarde 19724 I Hours Other®	Sample Integrity: (Ch	milaci.
AIVI 1 Rd. II S						כם	ОЛН	U	SƏTA	KGEN		.bH-G EX W2	8IM	X	.8 A93 (X378 (8 A93	× ×	×	メメ	メメ	×	× ×		()	035)
ried of Coston Form		eryville, CA		7.	-12221	ervices	WONG		Temp. Blank Check Time Temp.	1105 4°C	1 1				Contz'ner Type	Varyane				-	MCL UDAS		Date/Time Q - 7	Date/Time 9/8/17	ше
any = 6111 Bo	tant: GHD	5900 Hollis St., Suite A, Emeryville, CA	act: Kiersten Hoey	hone No. <u>510-420-3347</u>	act No. 170 9 07	any: <u>Blaine Tech S</u>	(Print): William 1	re: WN	Other Lab						# of Containers	0/	9	01	10	21	7		Busher Eren Strawn CES	Company <u>ÉCl</u>	Company
Chevron Environmental Management Company # 6111 Bollinger Canyon Rd.	Chevron Consultant: GHD	Address: 5900 H	Consultant Contact: Kiersten Hoey	Consultant Phor	Consultant Project No. いつののアーレンショ	Sampling Company: Blaine Tech Services	Sampled By (Pri	Sampler Signature:	Calscience	区 Garden Grove, CA Lab Contact: Vikas	rate	7440 Lincoln Way, Garden Grove, CA	92841 Phone No: (717)895-5494	F0.000(11.1)	Sample Time	(305)	1230	1316	1330	1229	1105			Relinquished To	Relinquished To
onmental Mar			kland, CA			aol (Us			AL WBS	REMEDIATION IMPLEMENTATION: R5L	E & MONITORING: M1L	IUST BE FILLED OUT TELY.	,45626		Date (yymmdd)	17090T1	•				7		Date/Time:	9-8-17 / 1035	Date/Time
on Envir	99	000004218	23 rd Ave., Oal		790-3964	ess Unit (RTE			de: NWRTB-0098247-0-OML NWRTB 00SITE NUMBER-0-WBS	TION IMPLEMENT	ON WAINTENANC	<u>ALL</u> FIELDS N ID COMPLET	CHEVRON MULTILINE SO: 0015245626	SAMPLE ID	Too Depth										Company
Chevr	nber: 3597	oal ID: <u>T060</u>	ress: 2700	yl MacLeod	ne No.: (925	ninal Busine	etail Job		WRTB-00:			OCUMENT.	N MULTILIN	SAMF	"Aatrix	3	ا	g	N	→	80		BURINE COMPANY SEANITE	Company RAINE	Com
	Chevron Site Number: 359766	Chevron Site Global ID: <u>T060000004218</u>	Chevron Site Address: 2700 23" Ave., Oakland, CA	Chevron PM: Carryl MacLeod	Chevron PM Phone No.: (925) 790-3964	⊠ Retail and Terminal Business Unit (RTBU) Job	K Construction/K		Charge Code: NWRTB-0098247-0-OML NWRTB 00SITE NUMBER-0-W	WBS ELEMENTS: SITE ASSESSMENT: A1L	STIE WONLORING: ON	THIS IS A LEGAL DOCUMENT. <u>ALL</u> FIELDS MUST BE FILLED OUT CORRECTLY AND COMPLETELY.	CHEVRO		it.'d Point Name	POTOTI-W-1-WM	PM/2-5-14-170109	Paroll-W-5- wm	Potol-w-12109	PG(OL)-W-/> WIFE	BOP-W-LJOIOG		a a	Relinquished By R. M. M.	Relinquished By

CHAIN OF CUSTODY FORM

WELLHEAD INSPECTION CHECKLIST

Page ____t of ____

Client CHA	EURON				Date	9-7-07)	
Site Address	2700 2320	AVE	Offer	AND C	- A			
Job Number	170907-1	VVu (Tech		mo cr		
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
mw.2	×.							
MW 3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
MW-4	7							
MW-5	حر							
*P 1								

NOTES:								
				······································				

SOURCE RECORD BILL OF LADING
FOR PURGEWATER RECOVERED FROM
GROUNDWATER WELLS AT CHEVRON FACILITIES IN
THE STATE OF CALIFORNIA. THE PURGE- WATER
WHICH HAS BEEN RECOVERED FROM GROUNDWATER WELLS IS COLLECTED BY THE CONTRACTOR
AND HAULED TO THEIR FACILITY IN SAN JOSE,
CALIFORNIA FOR TEMPORARILY HOLDING PENDING
TRANSPORT BY OTHERS TO FINAL DESTINATION.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BLAINE TECH), 1680 Rogers Ave. San Jose CA (408) 573-0555). BLAINE TECH. is authorized by Chevron Environmental Management Company (CHEVRON EMC) to recover, collect, apportion into loads, and haul the purgewater that is drawn from wells at the CHEVRON EMC facility indicated below and to deliver that purgewater to BLAINE TECH for temporarily holding. Transport routing of the purgewater may be direct from one CHEVRON EMC facility to BLAINE TECH; from one CHEVRON EMC facility to BLAINE TECH via another CHEVRON EMC facility; or any combination thereof. The well purgewater is and remains the property of CHEVRON EMC.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

35-976	6 c	ARRYL.	MACLEOD		
CHEVRON#	Chevron Engineer				
2200 5360	AVE CARUANT	, CA			
street number	street name	city	state		

WELL I.D. GALS.	WELL I.D. GALS.
MW-1 1 0.5 (0)	
mw-2 10.4	
MW-3 10.4	/
mw-4, 0-3	/_
MW-5 10.4	/
/	/
added equip. Z-9	/ any other adjustments_/
TOTAL GALS. RECOVERED	loaded onto BTS vehicle # 1 O
BTS event # time いつつつールルし Transporter signature	
**************************************	**************** time date /500 9 / 7 / / /

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME 2700 2500	S ANE, OAKLAN	D,CA	PROJECT NUMBER (70907 - LLW)					
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	ТЕМР.	INITIALS		
ysi ppo	10802050	9-9-17	pr:4,7,00	PM: 7.00/10.000 M.JO Cond: 251 00 MS	400	21.0°C	in		
+ (((((ORP: 240 my Do: jumgil elooys	0 RP: 240 mV 00:10 00 mg/C @10090	Yes	21.0°C	in		
						·	<i>t</i>		
				_					

Permit To Work

C	Sliont: 60.6 as for Chevron EMC Sites				
Si	Client: Cheuron 23 RD AVE	Date _	9-7-1	J	
J.	lob Number: 170907-www2 Technician(s): www CR				
1	Pre-Job Safety Review				
1.	. JMP reviewed, site restrictions and parking/access issues addressed.		Rev	iewed	· 图
۷.	. Special Permit Required Task Review				
Αı	re there any conditions or tasks that would require:	Yes	. No		
	Confined space entr				
	Working at heigh				
	Lock-out/Tag-ou		·		
	Excavations greater than 4 feet dee				
	Excavations within 3 feet of a buried active electrical line or product piping	a —	9		
	or within 10 feet of a high pressure gas line Use of overhead equipment within 15 feet of an overhead electrical powe	•	4		
	line or pole supporting one		Ø		
	Hot wor	k \square	Ø		
lf "`	Yes" was the answer to any of the Special Permit Required Tasks above, the Pro-	oject M	Tanager wil	ll cont	act
	e client and arrange to modify the Scope of Work so that the Special Permit Require performed by Blaine Tech Services employees.	ired T	asks are no	ot requ	uired
	provided by Blaine real dervices employees.	***************************************			
3.	Is a Traffic Control Permit required for today's work?			Yes	No
					8
		it in th	o foldor?		
	11 30 13		e folder?		
		ls it	current?		
······································	Do you understand the Traffic Control Plan and what equipmen	ls it	current?		
1.	Do you understand the Traffic Control Plan and what equipmen On site Pre-Job Safety Review	ls it	current?	0	
	Do you understand the Traffic Control Plan and what equipmen On site Pre-Job Safety Review Reviewed and signed the site specific HASP.	ls it	current?	0	
	Do you understand the Traffic Control Plan and what equipmen On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood.	Is it t you w	current?		
2.	Do you understand the Traffic Control Plan and what equipmen On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood.	Is it t you w	current?		
2.	Do you understand the Traffic Control Plan and what equipmen On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood. Reviewed "Groundwater Monitoring Well Sampling General Job Safety Analysi in the HASP. Exceptional circumstances today that are not covered by the HASP. JSA or JIM	Is it t you w	current? vill need?		
2. 3. 4.	Do you understand the Traffic Control Plan and what equipment On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood. Reviewed "Groundwater Monitoring Well Sampling General Job Safety Analysis in the HASP. Exceptional circumstances today that are not covered by the HASP, JSA or JM been addressed and mitigated.	Is it t you w s inclu	current? vill need?		
2. 3.	Do you understand the Traffic Control Plan and what equipment On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood. Reviewed "Groundwater Monitoring Well Sampling General Job Safety Analysis in the HASP. Exceptional circumstances today that are not covered by the HASP, JSA or JM been addressed and mitigated. Understands procedure to follow, if site circumstances change to address new	Is it t you w s inclu	current? vill need?		
 2. 3. 4. 5. 	Do you understand the Traffic Control Plan and what equipment On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood. Reviewed "Groundwater Monitoring Well Sampling General Job Safety Analysis in the HASP. Exceptional circumstances today that are not covered by the HASP, JSA or JM been addressed and mitigated. Understands procedure to follow, if site circumstances change, to address new hazards.	Is it t you w s inclu IP have	current? vill need? ded		
2. 3. 4.	Do you understand the Traffic Control Plan and what equipmen On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood. Reviewed "Groundwater Monitoring Well Sampling General Job Safety Analysi in the HASP. Exceptional circumstances today that are not covered by the HASP, JSA or JN been addressed and mitigated. Understands procedure to follow, if site circumstances change, to address new hazards. There are no unexpected conditions which would make your task a Special Per	Is it t you w s inclu IP have	current? vill need? ded		
 2. 3. 4. 5. 	On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood. Reviewed "Groundwater Monitoring Well Sampling General Job Safety Analysi in the HASP. Exceptional circumstances today that are not covered by the HASP, JSA or JN been addressed and mitigated. Understands procedure to follow, if site circumstances change, to address new hazards. There are no unexpected conditions which would make your task a Special Per Required Task. If there is, contact your Project Manager.	Is it you was inclused a sinclusive site	current? vill need? ded		
 2. 3. 4. 5. 6. 7. 	On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood. Reviewed "Groundwater Monitoring Well Sampling General Job Safety Analysis in the HASP. Exceptional circumstances today that are not covered by the HASP, JSA or JM been addressed and mitigated. Understands procedure to follow, if site circumstances change, to address new hazards. There are no unexpected conditions which would make your task a Special Pel Required Task. If there is, contact your Project Manager. All site hazards have been communicated to all necessary onsite personnel dusafety meeting.	Is it you was inclused a sinclusive site	current? vill need? ded		
 2. 3. 4. 5. 7. 8. 	Do you understand the Traffic Control Plan and what equipment On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood. Reviewed "Groundwater Monitoring Well Sampling General Job Safety Analysis in the HASP. Exceptional circumstances today that are not covered by the HASP, JSA or JM been addressed and mitigated. Understands procedure to follow, if site circumstances change, to address new hazards. There are no unexpected conditions which would make your task a Special Per Required Task. If there is, contact your Project Manager. All site hazards have been communicated to all necessary onsite personnel du safety meeting. After lunch tailgate safety meeting refresher conducted.	Is it you was inclused a sinclusive site	current? vill need? ded		
 2. 3. 4. 5. 7. 8. 	On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood. Reviewed "Groundwater Monitoring Well Sampling General Job Safety Analysis in the HASP. Exceptional circumstances today that are not covered by the HASP, JSA or JM been addressed and mitigated. Understands procedure to follow, if site circumstances change, to address new hazards. There are no unexpected conditions which would make your task a Special Pel Required Task. If there is, contact your Project Manager. All site hazards have been communicated to all necessary onsite personnel dusafety meeting.	Is it you was inclused a sinclusive site	current? vill need? ded		
 2. 3. 4. 5. 7. 8. 	Do you understand the Traffic Control Plan and what equipment On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood. Reviewed "Groundwater Monitoring Well Sampling General Job Safety Analysis in the HASP. Exceptional circumstances today that are not covered by the HASP, JSA or JM been addressed and mitigated. Understands procedure to follow, if site circumstances change, to address new hazards. There are no unexpected conditions which would make your task a Special Per Required Task. If there is, contact your Project Manager. All site hazards have been communicated to all necessary onsite personnel du safety meeting. After lunch tailgate safety meeting refresher conducted.	Is it you was inclused a sinclusive site	current? vill need? ded		
2. 3. 4. 5. 6. 7.	Do you understand the Traffic Control Plan and what equipment On site Pre-Job Safety Review Reviewed and signed the site specific HASP. Route to hospital understood. Reviewed "Groundwater Monitoring Well Sampling General Job Safety Analysis in the HASP. Exceptional circumstances today that are not covered by the HASP, JSA or JM been addressed and mitigated. Understands procedure to follow, if site circumstances change, to address new hazards. There are no unexpected conditions which would make your task a Special Pel Required Task. If there is, contact your Project Manager. All site hazards have been communicated to all necessary onsite personnel du safety meeting. After lunch tailgate safety meeting refresher conducted. Checklist Task cannot be completed, explain:	Is it you was inclused a sinclusive site	current? vill need? ded		

Attachment B Laboratory Analytical Report

Calscience

WORK ORDER NUMBER: 17-09-0614

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: GHD

Client Project Name: 359766

Attention: Kiersten Hoey

5900 Hollis Street

Suite A

Emeryville, CA 94608-2008

Vikas Patel

Approved for release on 09/19/2017 by:

Vikas Patel Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: 359766 Work Order Number: 17-09-0614

1	Work Order Narrative	3
2	Sample Summary	4
3	Detections Summary	5
4	Client Sample Data. 4.1 EPA 8015B (M) TPH Diesel SGC (Aqueous). 4.2 EPA 8015B (M) TPH Motor Oil (Aqueous). 4.3 EPA 8015B (M) TPH Gasoline (Aqueous). 4.4 EPA 8260B BTEX/MTBE (Aqueous).	6 8 10 12
5	Quality Control Sample Data.5.1 MS/MSD.5.2 LCS/LCSD.5.2 LCS/LCSD.	17 17 20
6	Sample Analysis Summary	25
7	Glossary of Terms and Qualifiers	26
8	Chain-of-Custody/Sample Receipt Form	27

Work Order Narrative

Work Order: 17-09-0614 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/09/17. They were assigned to Work Order 17-09-0614.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

 Client:
 GHD
 Work Order:
 17-09-0614

 5900 Hollis Street, Suite A
 Project Name:
 359766

Emeryville, CA 94608-2008 PO Number:

Date/Time 09/09/17 09:10

Received:

Number of 52

Containers:

Attn: Kiersten Hoey

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
MW-1-W-170709	17-09-0614-1	09/07/17 13:05	10	Aqueous
MW-2-W-170709	17-09-0614-2	09/07/17 12:30	10	Aqueous
MW-3-W-170709	17-09-0614-3	09/07/17 13:16	10	Aqueous
MW-4-W-170709	17-09-0614-4	09/07/17 13:30	10	Aqueous
MW-5-W-170709	17-09-0614-5	09/07/17 12:29	10	Aqueous
QA-W-170709	17-09-0614-6	09/07/17 11:05	2	Aqueous

Detections Summary

Client: GHD

Work Order:

17-09-0614

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Project Name: Received: 359766 09/09/17

Attn: Kiersten Hoey

Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
MW-1-W-170709 (17-09-0614-1)						
TPH as Diesel	47	SG,HD,J	8.0*	ug/L	EPA 8015B (M)	EPA 3510/SG 10
Methyl-t-Butyl Ether (MTBE)	0.53	J	0.31*	ug/L	EPA 8260B	EPA 5030C
MW-2-W-170709 (17-09-0614-2)						
TPH as Diesel	54	HD,SG	50	ug/L	EPA 8015B (M)	EPA 3510/SG 10
MW-3-W-170709 (17-09-0614-3)						
TPH as Gasoline	1200	HD	200	ug/L	EPA 8015B (M)	EPA 5030C
TPH as Motor Oil	64	SG,HD,J	53*	ug/L	EPA 8015B (M)	EPA 3510/SG 10
TPH as Diesel	1900	HD,SG	50	ug/L	EPA 8015B (M)	EPA 3510/SG 10
Benzene	0.58		0.50	ug/L	EPA 8260B	EPA 5030C
Ethylbenzene	3.8		1.0	ug/L	EPA 8260B	EPA 5030C
Toluene	0.69	J	0.24*	ug/L	EPA 8260B	EPA 5030C
p/m-Xylene	1.8		1.0	ug/L	EPA 8260B	EPA 5030C
o-Xylene	0.47	J	0.23*	ug/L	EPA 8260B	EPA 5030C
Xylenes (total)	2.2	JA	1.0	ug/L	EPA 8260B	EPA 5030C
MW-4-W-170709 (17-09-0614-4)						
TPH as Gasoline	1500	HD	200	ug/L	EPA 8015B (M)	EPA 5030C
TPH as Motor Oil	62	SG,HD,J	53*	ug/L	EPA 8015B (M)	EPA 3510/SG 10
TPH as Diesel	2400	HD,SG	50	ug/L	EPA 8015B (M)	EPA 3510/SG 10
Benzene	840		5.0	ug/L	EPA 8260B	EPA 5030C
Ethylbenzene	160		1.0	ug/L	EPA 8260B	EPA 5030C
Toluene	91		1.0	ug/L	EPA 8260B	EPA 5030C
p/m-Xylene	170		1.0	ug/L	EPA 8260B	EPA 5030C
o-Xylene	18		1.0	ug/L	EPA 8260B	EPA 5030C
Xylenes (total)	190		1.0	ug/L	EPA 8260B	EPA 5030C
MW-5-W-170709 (17-09-0614-5)						
TPH as Diesel	38	SG,HD,J	8.0*	ug/L	EPA 8015B (M)	EPA 3510/SG 10

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 3510/SG 10

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: 359766 Page 1 of 2

Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-1-W-170709	9	17-09-0614-1-I	09/07/17 13:05	Aqueous	GC 45	09/13/17	09/18/17 11:47	170913B06
Comment(s):	- Results were evaluated t	o the MDL (DL), con	centrations >=	to the MDL (DL	but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		<u>Resu</u>	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
TPH as Diesel		47		50	8.0	1.00	S	SG,HD,J
Surrogate		Rec.	<u>(%)</u>	Control Limits	Qualifiers	i		
Decanoic Acid		0		0-1				
n-Octacosane		92		50-150				

MW-2-W-17070	9 17-09-0614-	·2-I 09/07/17 12:30	Aqueous	GC 45		09/15/17 170913B06 01:29
Comment(s):	- Results were evaluated to the MDL (DL	.), concentrations >	= to the MDL (DL	.) but < RL (L0	OQ), if found, are q	ualified with a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	Qualifiers
TPH as Diesel		54	50	8.0	1.00	HD,SG
<u>Surrogate</u>		Rec. (%)	Control Limits	Qualifier	<u>S</u>	
Decanoic Acid		0	0-1			
n-Octacosane		69	50-150			

MW-3-W-17070	9 17	'-09-0614-3-I	09/07/17 13:16	Aqueous	GC 45	09/13/17	09/18/17 12:09	170913B06
Comment(s):	- Results were evaluated to the	e MDL (DL), conce	entrations >= to	the MDL (DL)	but < RL (LOQ), if found, are q	ualified with a	"J" flag.
<u>Parameter</u>		<u>Result</u>	<u>R</u>	<u>L</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>ualifiers</u>
TPH as Diesel		1900	50	0	8.0	1.00	Н	D,SG
<u>Surrogate</u>		<u>Rec. (9</u>	<u>%)</u> <u>C</u>	ontrol Limits	<u>Qualifiers</u>			
Decanoic Acid		0	0-	-1				
n-Octacosane		87	50	0-150				

MW-4-W-170709	9 17-09-0	614-4-I	09/07/17 13:30	Aqueous	GC 45	09/13/17	09/15/17 02:12	170913B06
Comment(s):	- Results were evaluated to the MDL	(DL), conce	entrations >=	to the MDL (DL) but < RL (L	OQ), if found, are o	qualified with a	a "J" flag.
<u>Parameter</u>		Result		<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
TPH as Diesel		2400		50	8.0	1.00	ŀ	HD,SG
<u>Surrogate</u>		<u>Rec. (</u> 9	<u>%)</u>	Control Limits	<u>Qualifie</u>	<u>rs</u>		
Decanoic Acid		0		0-1				
n-Octacosane		69		50-150				

Analytical Report

GHD Date Received: 09/09/17 5900 Hollis Street, Suite A Work Order: 17-09-0614 EPA 3510/SG 10 Emeryville, CA 94608-2008 Preparation: Method: EPA 8015B (M)

> Units: ug/L

Project: 359766 Page 2 of 2

Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-5-W-170709	9	17-09-0614-5-I	09/07/17 12:29	Aqueous	GC 45	09/13/17	09/18/17 12:31	170913B06
Comment(s):	- Results were evaluated to	o the MDL (DL), cond	centrations >=	to the MDL (DL	.) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
TPH as Diesel		38		50	8.0	1.00	;	SG,HD,J
<u>Surrogate</u>		Rec.	<u>(%)</u>	Control Limits	Qualifiers	i		
Decanoic Acid		0		0-1				
n-Octacosane		86		50-150				

Method Blank	099-15-392-1	09 N/A	Aqueous	GC 45	09/13/17	09/18/17 11:24	170913B06
Comment(s):	- Results were evaluated to the MDL (DL)	concentrati	ions >= to the MDL (DL)) but < RL (Le	OQ), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	MDL	<u>DF</u>		<u>Qualifiers</u>
TPH as Diesel		ND	50	8.0	1.00		
<u>Surrogate</u>		Rec. (%)	Control Limits	Qualifier	<u>rs</u>		
Decanoic Acid		0	0-1				
n-Octacosane		99	50-150				

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 3510/SG 10

 Method:
 EPA 8015B (M)

 Units:
 ug/L

 Project: 359766
 Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-1-W-170709	17-09-0614-1-I	09/07/17 13:05	Aqueous	GC 45	09/13/17	09/18/17 11:47	170913B07S
Comment(s): - Results were evaluated t	o the MDL (DL), con-	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
TPH as Motor Oil	ND		250	53	1.00	5	SG
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
Decanoic Acid	0		0-1				
n-Octacosane	92		68-140				

MW-2-W-170709	17-09-0614-2	2-I 09/07/17 12:30	Aqueous	GC 45	09/13/17	09/15/17 17091 01:29	13B07S
Comment(s): - Re	esults were evaluated to the MDL (DL)), concentrations >=	to the MDL (DL)) but < RL (LOC	Q), if found, are	qualified with a "J" flag.	
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>	
TPH as Motor Oil		ND	250	53	1.00	SG	
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>			
Decanoic Acid		0	0-1				
n-Octacosane		69	68-140				

MW-3-W-170709	17-09-0614-3-I	09/07/17 13:16	Aqueous	GC 45	09/13/17	09/18/17 12:09	170913B07S
Comment(s): - Results were evaluated to	the MDL (DL), conce	entrations >= to	the MDL (DL	.) but < RL (L	OQ), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>R</u>	<u>L</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
TPH as Motor Oil	64	2	50	53	1.00		SG,HD,J
<u>Surrogate</u>	Rec. (<u>%)</u> <u>C</u>	Control Limits	<u>Qualifie</u>	<u>rs</u>		
Decanoic Acid	0	0	-1				
n-Octacosane	87	6	8-140				

MW-4-W-170709	17-09-0614-4-I	09/07/17 13:30	Aqueous	GC 45	09/13/17	09/15/17 02:12	170913B07S
Comment(s): - Results were evaluated t	o the MDL (DL), cond	centrations >= 1	to the MDL (DL) but < RL (L0	OQ), if found, are o	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
TPH as Motor Oil	62		250	53	1.00	S	G,HD,J
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	Qualifier	<u>s</u>		
Decanoic Acid	0		0-1				
n-Octacosane	69		68-140				

Page 2 of 2

Project: 359766

Analytical Report

GHD Date Received: 09/09/17 5900 Hollis Street, Suite A Work Order: 17-09-0614 EPA 3510/SG 10 Emeryville, CA 94608-2008 Preparation: Method: EPA 8015B (M)

Units: ug/L

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-5-W-170709	17-09-0614-5-I	09/07/17 12:29	Aqueous	GC 45	09/13/17	09/18/17 12:31	170913B07S
Comment(s): - Results were evaluated t	to the MDL (DL), con-	centrations >= t	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
TPH as Motor Oil	ND		250	53	1.00	S	SG
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
Decanoic Acid	0		0-1				
n-Octacosane	86		68-140				

Method Blank	099-15-534-152 N/A	Aqueous	GC 45	09/13/17	09/18/17 170913B07S 11:24
Comment(s): - Results were evaluated to	the MDL (DL), concentration	ons >= to the MDL (DL	_) but < RL (L0	OQ), if found, are	qualified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
TPH as Motor Oil	ND	250	53	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifier	<u>s</u>	
Decanoic Acid	0	0-1			
n-Octacosane	99	68-140			

1.00

TPH as Gasoline

Analytical Report

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: 359766 Page 1 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-1-W-17070	09	17-09-0614-1-E	09/07/17 13:05	Aqueous	GC 42	09/13/17	09/13/17 19:16	170913L052
Comment(s):	- Results were evaluated	to the MDL (DL), con	centrations >= 1	to the MDL (D	L) but < RL (LC	Q), if found, are	e qualified with a	a "J" flag.
Parameter		Resi	ult	RL	MDL	DF	(Qualifiers

100

48

Surrogate Rec. (%) Control Limits Qualifiers

ND

1,4-Bromofluorobenzene 70 38-134

MW-2-W-170709	17-09-0614-2	-E 09/07/17 12:30	Aqueous	GC 42	09/13/17	09/13/17 21:36	170913L052
Comment(s): -	Results were evaluated to the MDL (DL),	concentrations >=	to the MDL (DL) but < RL (LOC), if found, are o	qualified with a '	J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u> ı	<u>ualifiers</u>
TPH as Gasoline		ND	100	48	1.00		

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Bromofluorobenzene 70 38-134

MW-3-W-170709	17-09-0614-3-E	09/07/17 13:16	Aqueous	GC 42	09/13/17	09/14/17 1 04:34	70913L052
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >= t	o the MDL (DL) but < RL (L	OQ), if found, are	qualified with a "J" f	lag.
<u>Parameter</u>	Resu	<u>lt</u> <u></u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Quali</u>	<u>fiers</u>
TPH as Gasoline	1200	:	200	96	2.00	HD	
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifie</u>	<u>rs</u>		
1,4-Bromofluorobenzene	81	;	38-134				

MW-4-W-17070	9	17-09-0614-4-E	09/07/17 13:30	Aqueous	GC 42	09/13/17	09/14/17 05:09	170913L052
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	centrations >=	to the MDL (DI	_) but < RL	(LOQ), if found, are	qualified with	a "J" flag.
D 1		D	.te	D.I	MOI	55		O 1'f'

ParameterResultRLMDLDFQualifiersTPH as Gasoline1500200962.00HD

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Bromofluorobenzene 68 38-134

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8015B (M)

 Units:
 ug/L

Project: 359766 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix Ins			Date/Time Analyzed	QC Batch ID
MW-5-W-170709	17-09-0614-5-E	09/07/17 12:29	Aqueous G	C 42 09		09/13/17 22:11	170913L052
Comment(s): - Results v	were evaluated to the MDL (DL), con-	centrations >= to tl	he MDL (DL) bu	ut < RL (LOQ),	f found, are qu	alified with a "J	" flag.
<u>Parameter</u>	Resu	<u>ılt RL</u>		<u>MDL</u>	<u>DF</u>	Qua	<u>alifiers</u>
TPH as Gasoline	ND	100)	48	1.00		

Surrogate Rec. (%) Control Limits Qualifiers

1,4-Bromofluorobenzene 69 38-134

QA-W-170709	17-09-0614-6-B	09/07/17 Aqueo 11:05	ous GC 42		9/13/17 170913L052 1:01
Comment(s): - Results were evalua	ted to the MDL (DL), conce	ntrations >= to the MDI	L (DL) but < RL (LC	DQ), if found, are qua	alified with a "J" flag.
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
TPH as Gasoline	ND	100	48	1.00	
<u>Surrogate</u>	<u>Rec. (9</u>	<u>6)</u> <u>Control Li</u>	mits Qualifier	<u>s</u>	

1,4-Bromofluorobenzene 65 38-134

Method Blank		099-15-704-1856	N/A A	Aqueous GC	42 (09/13/17 18:41	170913L052
Comment(s):	- Results were evaluated to t	he MDL (DL), conc	entrations >= to th	e MDL (DL) but	t < RL (LOQ),	if found, are qu	ualified with a "J	" flag.
<u>Parameter</u>		<u>Resul</u>	t RL		<u>MDL</u>	<u>DF</u>	<u>Qua</u>	<u>alifiers</u>
TPH as Gasoline	e	ND	100		48	1.00		
Curromata		Dog ((n/) Con	trol Limits	Ouglifiana			
<u>Surrogate</u>		<u>Rec. (</u>	<u>%)</u> <u>Con</u>	ITOI LIMIUS	<u>Qualifiers</u>			
1,4-Bromofluorol	benzene	58	38-1	34				

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: 359766 Page 1 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-1-W-170709	17-09-0614-1-A	09/07/17 13:05	Aqueous	GC/MS XX	09/11/17	09/11/17 18:13	170911L009
Comment(s): - Results were evalu	ated to the MDL (DL), con	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers
Benzene	ND		0.50	0.14	1.00		
Ethylbenzene	ND		1.0	0.14	1.00		
Toluene	ND		1.0	0.24	1.00		
p/m-Xylene	ND		1.0	0.30	1.00		
o-Xylene	ND		1.0	0.23	1.00		
Xylenes (total)	ND		1.0	0.23	1.00		
Methyl-t-Butyl Ether (MTBE)	0.53		1.0	0.31	1.00	J	l
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	96		77-120				
Dibromofluoromethane	103		80-128				
1,2-Dichloroethane-d4	124		80-129				
Toluene-d8	98		80-120				

MW-2-W-170709		/07/17 Aqueous :30	GC/MS XX	09/11/17	09/11/17 170911L009 18:46
Comment(s): - Results were evaluate	ed to the MDL (DL), concentra	ations >= to the MDL (D	L) but < RL (LC	Q), if found, are	qualified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Benzene	ND	0.50	0.14	1.00	
Ethylbenzene	ND	1.0	0.14	1.00	
Toluene	ND	1.0	0.24	1.00	
p/m-Xylene	ND	1.0	0.30	1.00	
o-Xylene	ND	1.0	0.23	1.00	
Xylenes (total)	ND	1.0	0.23	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers	<u> </u>	
1,4-Bromofluorobenzene	95	77-120			
Dibromofluoromethane	104	80-128			
1,2-Dichloroethane-d4	125	80-129			
Toluene-d8	99	80-120			

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: 359766 Page 2 of 5

Client Sample Number	Lab Sample	Date/Time	Matrix	Instrument	Date	Date/Time	QC Batch ID
	Number	Collected			Prepared	Analyzed	
MW-3-W-170709	17-09-0614-3-A	09/07/17 13:16	Aqueous	GC/MS XX	09/11/17	09/11/17 19:18	170911L009
Comment(s): - Results were evaluated	to the MDL (DL), con	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Benzene	0.58		0.50	0.14	1.00		
Ethylbenzene	3.8		1.0	0.14	1.00		
Toluene	0.69		1.0	0.24	1.00	J	
p/m-Xylene	1.8		1.0	0.30	1.00		
o-Xylene	0.47		1.0	0.23	1.00	J	
Xylenes (total)	2.2		1.0	0.23	1.00	J.	A
Methyl-t-Butyl Ether (MTBE)	ND		1.0	0.31	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	102		77-120				
Dibromofluoromethane	96		80-128				
1,2-Dichloroethane-d4	112		80-129				
Toluene-d8	105		80-120				

MW-4-W-170709	17-09-0614-4-A	09/07/17 13:30	Aqueous GC/	MS XX 09/1	1/17 09/11 19:51	
Comment(s): - Results were evalu	ated to the MDL (DL), cond	entrations >= to	the MDL (DL) but	< RL (LOQ), if for	ound, are qualifie	d with a "J" flag.
<u>Parameter</u>	Resu	<u>lt RL</u>	<u>.</u> !	MDL_	<u>DF</u>	Qualifiers
Ethylbenzene	160	1.0) (0.14	1.00	
Toluene	91	1.0) (0.24	1.00	
p/m-Xylene	170	1.0) (0.30	1.00	
o-Xylene	18	1.0) (0.23	1.00	
Xylenes (total)	190	1.0) (0.23	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0) (0.31	1.00	
Surrogate	Rec.	(%) <u>Co</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	99	77	-120			
Dibromofluoromethane	94	80	-128			
1,2-Dichloroethane-d4	109	80	-129			
Toluene-d8	104	80	-120			

Analytical Report

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: 359766 Page 3 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-4-W-170709	17-09-0614-4-B	09/07/17 13:30	Aqueous	GC/MS XX	09/12/17	09/12/17 17:22	170912L014
Comment(s): - Results were evaluated to	to the MDL (DL), cond	centrations >=	to the MDL (DL	_) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Benzene	840		5.0	1.4	10.0		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	98		77-120				
Dibromofluoromethane	93		80-128				
1,2-Dichloroethane-d4	106		80-129				
Toluene-d8	100		80-120				

MW-5-W-170709		9/07/17 Aqueous 2:29	GC/MS XX	09/12/17	09/12/17 170912L014 21:10
Comment(s): - Results were evaluated	to the MDL (DL), concen	trations >= to the MDL (D	DL) but < RL (LC	Q), if found, are	qualified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Benzene	ND	0.50	0.14	1.00	
Ethylbenzene	ND	1.0	0.14	1.00	
Toluene	ND	1.0	0.24	1.00	
p/m-Xylene	ND	1.0	0.30	1.00	
o-Xylene	ND	1.0	0.23	1.00	
Xylenes (total)	ND	1.0	0.23	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00	
Surrogate	<u>Rec. (%</u>	<u>Control Limits</u>	<u>Qualifiers</u>	<u> </u>	
1,4-Bromofluorobenzene	95	77-120			
Dibromofluoromethane	103	80-128			
1,2-Dichloroethane-d4	123	80-129			
Toluene-d8	99	80-120			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: 359766 Page 4 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
QA-W-170709	17-09-0614-6-A	09/07/17 11:05	Aqueous	GC/MS XX	09/11/17	09/11/17 16:03	170911L009
Comment(s): - Results were evaluated	to the MDL (DL), con-	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	ualifiers
Benzene	ND		0.50	0.14	1.00		
Ethylbenzene	ND		1.0	0.14	1.00		
Toluene	ND		1.0	0.24	1.00		
p/m-Xylene	ND		1.0	0.30	1.00		
o-Xylene	ND		1.0	0.23	1.00		
Xylenes (total)	ND		1.0	0.23	1.00		
Methyl-t-Butyl Ether (MTBE)	ND		1.0	0.31	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	94		77-120				
Dibromofluoromethane	103		80-128				
1,2-Dichloroethane-d4	122		80-129				
Toluene-d8	99		80-120				

Method Blank	099-14-001-24060 N/A	Aqueous	GC/MS XX	09/11/17	09/11/17 170911L009 12:15
Comment(s): - Results were evaluate	ed to the MDL (DL), concentrations >=	to the MDL (DL	but < RL (LO	Q), if found, are	qualified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Benzene	ND	0.50	0.14	1.00	
Ethylbenzene	ND	1.0	0.14	1.00	
Toluene	ND	1.0	0.24	1.00	
p/m-Xylene	ND	1.0	0.30	1.00	
o-Xylene	ND	1.0	0.23	1.00	
Xylenes (total)	ND	1.0	0.23	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.31	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	95	77-120			
Dibromofluoromethane	101	80-128			
1,2-Dichloroethane-d4	119	80-129			
Toluene-d8	98	80-120			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

 Units:
 ug/L

Project: 359766 Page 5 of 5

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-001-24074	N/A	Aqueous	GC/MS XX	09/12/17	09/12/17 11:56	170912L014
Comment(s): - Results were evaluated	to the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>ualifiers</u>
Benzene	ND		0.50	0.14	1.00		
Ethylbenzene	ND		1.0	0.14	1.00		
Toluene	ND		1.0	0.24	1.00		
p/m-Xylene	ND		1.0	0.30	1.00		
o-Xylene	ND		1.0	0.23	1.00		
Xylenes (total)	ND		1.0	0.23	1.00		
Methyl-t-Butyl Ether (MTBE)	ND		1.0	0.31	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers	i		
1,4-Bromofluorobenzene	95		77-120				
Dibromofluoromethane	102		80-128				
1,2-Dichloroethane-d4	120		80-129				
Toluene-d8	98		80-120				

Quality Control - Spike/Spike Duplicate

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8015B (M)

Project: 359766 Page 1 of 3

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
MW-1-W-170709	Sample		Aqueou	s G	C 42	09/13/17	09/13/17	19:16	170913S026	
MW-1-W-170709	Matrix Spike		Aqueou	s G	C 42	09/13/17	09/13/17	19:51	170913S026	
MW-1-W-170709	Matrix Spike	Duplicate	Aqueou	s G	C 42	09/13/17	09/13/17	20:26	170913S026	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	ND	2000	2094	105	2027	101	68-122	3	0-18	

Quality Control - Spike/Spike Duplicate

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: 359766 Page 2 of 3

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	llyzed	MS/MSD Ba	tch Number
17-09-0562-2	Sample		Aqueou	ıs GC	/MS XX	09/11/17	09/11/17	12:48	170911S006	3
17-09-0562-2	Matrix Spike		Aqueou	us GC	/MS XX	09/11/17	09/11/17	13:20	170911S006	
17-09-0562-2	Matrix Spike	Duplicate	Aqueou	us GC	/MS XX	09/11/17	09/11/17	13:53	170911S006	
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Benzene	ND	50.00	45.51	91	44.34	89	75-125	3	0-20	
Ethylbenzene	ND	50.00	49.62	99	48.36	97	75-129	3	0-20	
Toluene	ND	50.00	46.71	93	45.20	90	75-125	3	0-20	
p/m-Xylene	ND	100.0	102.9	103	100.2	100	75-133	3	0-20	
o-Xylene	ND	50.00	51.77	104	50.67	101	75-134	2	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	41.41	83	42.59	85	64-136	3	0-20	

Quality Control - Spike/Spike Duplicate

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: 359766 Page 3 of 3

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number
17-09-0571-4	Sample		Aqueou	us GC	MS XX	09/12/17	09/12/17	12:29	170912S020)
17-09-0571-4	Matrix Spike		Aqueou	us GC	MS XX	09/12/17	09/12/17	14:07	170912S020)
17-09-0571-4	Matrix Spike	Duplicate	Aqueou	us GC	MS XX	09/12/17	09/12/17	14:39	1709128020)
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Benzene	5.033	50.00	53.35	97	46.14	82	78-120	14	0-20	
Ethylbenzene	ND	50.00	53.21	106	45.77	92	73-127	15	0-20	
Toluene	ND	50.00	52.58	105	45.03	90	72-126	15	0-20	
p/m-Xylene	6.275	100.0	108.4	102	92.75	86	70-130	16	0-30	
o-Xylene	ND	50.00	55.10	110	47.62	95	70-130	15	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	49.85	100	43.33	87	69-123	14	0-20	

Quality Control - LCS/LCSD

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 3510/SG 10

 Method:
 EPA 8015B (M)

Project: 359766 Page 1 of 5

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-15-392-109	LCS	Aqı	ieous	GC 45	09/13/17	09/14	4/17 23:40	170913B06	
099-15-392-109	LCSD	Aqι	ieous	GC 45	09/13/17	09/1	5/17 00:01	170913B06	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
TPH as Diesel	2000	2069	103	2099	105	69-123	1	0-30	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 3510/SG 10

 Method:
 EPA 8015B (M)

Project: 359766	Page 2 of 5

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared D	ate Analyzed	LCS/LCSD Ba	tch Number
099-15-534-152	LCS	Aqu	ieous	GC 45	09/13/17	0	9/15/17 00:24	170913B07S	
099-15-534-152	LCSD	Aqu	ieous	GC 45	09/13/17	0	9/15/17 00:45	170913B07S	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. 0	CL RPD	RPD CL	Qualifiers
TPH as Motor Oil	2000	1537	77	1555	78	69-123	1	0-30	

Quality Control - LCS

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8015B (M)

Project: 359766 Page 3 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-704-1856	LCS	Aqueous	GC 42	09/13/17	09/13/17 18:06	170913L052
Parameter		Spike Added	Conc. Recove	red LCS %R	tec. %Rec	. CL Qualifiers
TPH as Gasoline		2000	2086	104	78-12	0

Quality Control - LCS

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: 359766 Page 4 of 5

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-14-001-24060	LCS	Aqueous	GC/MS XX 0	9/11/17	09/11/17 10:26	170911L009
Parameter		Spike Added	Conc. Recovered	d LCS %Re	ec. %Rec	. CL Qualifiers
Benzene		50.00	43.36	87	79-12	1
Ethylbenzene		50.00	48.16	96	80-12	0
Toluene		50.00	44.30	89	80-12	0
p/m-Xylene		100.0	99.83	100	80-12	2
o-Xylene		50.00	49.96	100	80-12	8
Methyl-t-Butyl Ether (MTBE)		50.00	40.64	81	69-12	3

Quality Control - LCS

 GHD
 Date Received:
 09/09/17

 5900 Hollis Street, Suite A
 Work Order:
 17-09-0614

 Emeryville, CA 94608-2008
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: 359766 Page 5 of 5

Quality Control Sample ID	Туре	Matrix	Instrument D	Date Prepared	Date Analyzed	LCS Batch Number
099-14-001-24074	LCS	Aqueous	GC/MS XX 0	9/12/17	09/12/17 10:05	170912L014
Parameter		Spike Added	Conc. Recovered	d LCS %Re	ec. %Rec	. CL Qualifiers
Benzene		50.00	43.45	87	79-12	1
Ethylbenzene		50.00	47.41	95	80-12	0
Toluene		50.00	44.70	89	80-12	0
p/m-Xylene		100.0	98.09	98	80-12	2
o-Xylene		50.00	49.03	98	80-12	8
Methyl-t-Butyl Ether (MTBE)		50.00	41.61	83	69-12	3

Sample Analysis Summary Report

Work Order: 17-09-0614				Page 1 of 1	
Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location	
EPA 8015B (M)	EPA 5030C	1063	GC 42	2	
EPA 8015B (M)	EPA 3510/SG 10	682	GC 45	1	
EPA 8260B	EPA 5030C	1135	GC/MS XX	2	

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 17-09-0614 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike

- concentration by a factor of four or greater.

 SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Return to Contents

COC 35-9766, 09/06/17

N =HNO3 B = NaOH Preservation Codes Run TPH-D and TPH-MO with silica gel cleanup Cotes/Counments detection limits possible for 8260 compounds. Instructions Must meet lowest $S = H_2SO_4 O = Other$ Special H =HCL T= Thiosulfate 72 48 hours□ ၁၀၁ ANALYSES REQUIRED Temp: # 000 Chevron Environmental Management Company ■ 6111 Bollinger Canyon Rd.■ San Ramon, CA 94583 On Ice: da X ΣΕΥ OM-H9T EPA 8015 ⊀, Intact: メ X a-H9T E-2A 8015 🕱 ә-нчт X × EPA 8015 メ 1035 25 EPA 8260B/GC/MS BTEX **X** MTBE **y** MTBE 🕱 ()-/-HVOC [OXYGENATES × メ 人 × × Temp. Blank Check Time Temp Container Type Date/Time 0 オクノ しゅん Date/Time Varrous 2 Consultant Project No. 1799 07-0001 Address: 5900 Hollis St., Suite A, Emeryville, CA 203 Sampling Company: Blaine Tech Services Ö Rushing year Consultant Phone No. 510-420-3347 # of Containers Consultant Contact: Kiersten Hoey Company Sampled By (Print): Wilkiwar Sompany Other Lab Chevron Consultant: GHD 9 2 0 9 2 4 Sampler Signature: 🤳 Garden Grove, CA 区 Garden Grove, C/ Lab Contact: Vikas Patel Sample Time Celinduished To 7440 Lincoln Way, Garden Grove, CA Relinquished To Calscience Phone No: (717)895-5494 Relinquished 1230 1305 330 3.6 522 105 1730 00 5501 (WBS ELEMENTS:
SITE ASSESSMENT: A1L REMEDIATION IMPLEMENTATION: R5L
SITE MONITORING: OML OPERATION MAINTENANCE & MONITORING: M1L THIS IS A LEGAL DOCUMENT. <u>ALL</u> FIELDS MUST BE FILLED OUT CORRECTLY AND COMPLETELY. 1709071 Date (yymmdd) Date/Time: Date/Time 6-8-17 Chevron Site Address: 2700 23rd Ave., Oakland, CA CHEVRON MULTILINE SO: 0015245626 NWRTB 00SITE NUMBER-0-WBS Charge Code: NWRTB-0098247-0-OML Top Depuh Chevron Site Global ID: T06000004218 Chevron PM Phone No.: (925) 790-3964 SAMPLE ID BAINE BUALLUE TELM Company 5 ENVICUES Chevron Site Number: 359766 .∕latrix 3 Chevron PM: Carryl MacLeod MW-4-W-1767UM POPON- 5-W170709 POTO(1)-W-3-WM BOP-W-CJOING POW-2-W-17009 POLOTI-W-1-WM it id Point Name selinquished By Relinguished By و.

CHAIN OF CUSTODY FORM

800-322-5555 www.gso.com

Ship From

CAL SCIENCE- CONCORD ALAN KEMP 5063 COMMERCIAL CIRCLE CONCORD, CA 94520

Ship To CEL SAMPLE RECEIVING 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00 Weight: 0 lb(s) Reference: BTS (GHD), CARDNO ERI **Delivery Instructions:**

Signature Type: REQUIRED

Tracking #: 537544002

SDS

GARDEN GROVE

D92845A

71977537

Print Date: 9/8/2017 3:41 PM

Package 1 of 2

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer. Securely attach this label to your package, do not cover the barcode.

Calscience

WORK ORDER NUMBER: 17-

SAMPLE RECEIP	CHECKLIST	C	OOLER	()F	
CLIENT: (3HD		DATE	:: <u>09 /</u>	091	2017	
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sedical control of the sedical con	O°C (w/ CF):s by:) chilled on same day c	1	/		Sample	
Ambient Temperature: ☐ Air ☐ Filter			Checked	d by:		
CUSTODY SEAL: Cooler Present and Intact Present but Not Intact Sample(s) Present and Intact Present but Not Intact	☐ Not Present ☑ Not Present	□ N/A □ N/A	Checked Checked		,	
SAMPLE CONDITION:			Yes	No	N/A	
Chain-of-Custody (COC) document(s) received with samples						
COC document(s) received complete			Ø			
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of ☐ No analysis requested ☐ Not relinquished ☐ No relinquis	containers					
Sampler's name indicated on COC			ď			
Sample container label(s) consistent with COC	. ,	,	₽⁄			
Sample container(s) intact and in good condition			7			
Proper containers for analyses requested			P			
Sufficient volume/mass for analyses requested			Ø			
Samples received within holding time	ď					
Aqueous samples for certain analyses received within 15-minu	ute holding time				_	
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfide ☐ Dissolved			ď			
Proper preservation chemical(s) noted on COC and/or sample container						
Unpreserved aqueous sample(s) received for certain analyses	3					
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals						
Acid/base preserved samples - pH within acceptable range					8	
Container(s) for certain analysis free of headspace			. p			
☑ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Disso	olved Oxygen (SM 45	500)				
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐	Hydrogen Sulfide (H	ach)			_	
Tedlar™ bag(s) free of condensation					Ø	
CONTAINER TYPE: Aqueeus: VOA VOAh VOAna2 100PJ 100PJna2 125AGB 250CGB 250CGBs (pH_2) 250PB 250PBn (pH_2) 1AGBs (O&G) 1PB 1PSolid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCores®	GB	DAGJ 🗆 500AG	B □ 125P 6Js (pH2	B znna (?) □ 50	pH9) 0PB	
Air: ☐ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ Oth						
Container: A = Amber B = Bottle C = Clear F = Envelope G = Glass J = Jar P = Plastic, and Z = Ziploc/Resealable Bag						

Preservative: b = buffered, f = filtered, h = HCl, n = HNO₃, na = NaOH, na_2 = Na₂S₂O₃, p = H₃PO₄,

 $s = H_2SO_4$, u = ultra-pure, $x = Na_2SO_3+NaHSO_4$. H_2O , $znna = Zn (CH_3CO_2)_2 + NaOH$

Labeled/Checked by: 1017

Reviewed by: