PHASE II SITE ASSESSMENT

PHASE II ENVIRONMENTAL SITE ASSESSMENT BOTW NO. 09-0510-02 GENO'S COUNTRY STORE, INC. 1000 NORTH VASCO ROAD LIVERMORE, CALIFORNIA 94511

Project No. 014-09073 September 28, 2009

Prepared for:
Ms. Georgine Dannatt
Bank of the West
1450 Treat Boulevard
MS: NC-TRE-03-G
Walnut Creek, California 94597
(925) 942-8691

Prepared by: Krazan & Associates, Inc. 215 West Dakota Clovis, California 93612 (559) 348-2200

TABLE OF CONTENTS

Project No. 014-09073

1.0	INTRODUCTION
2.0	SITE DESCRIPTION
3.0	BRIEF ENVIRONMENTAL SITE BACKGROUND2
4.0	LOCAL GEOLOGY AND HYDROGEOLOGY4
5.0 5.1 5.2 5.3	OBJECTIVE AND SCOPE 4 Pre-field Activities 5 Soil Sampling 5 Groundwater Sampling 6
6.0	APPLICABLE REGULATORY AGENCY REFERENCES
7.0 7.1	FIELD OBSERVATIONS
8.0 8.1 8.2	SAMPLE ANALYTICAL RESULTS
9.0	CONCLUSIONS
10.0	LIMITATIONS
11.0	CLOSING 11
Tables	
Tuolur	s

GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION

September 28, 2009 Project No. 014-09073

PHASE II ENVIRONMENTAL SITE ASSESSMENT GENO'S COUNTRY STORE, INC. 1000 NORTH VASCO ROAD LIVERMORE, CALIFORNIA

1.0 INTRODUCTION

In accordance with your request and authorization, Krazan & Associates, Inc. (Krazan) conducted Phase II Environmental Site Assessment (ESA) activities at the referenced site (subject site). At the time of this assessment, the subject site was occupied by a restaurant and two associated outbuildings that appear to be an automotive shop and a storage warehouse. Krazan conducted a Phase I ESA for the subject site dated April 3, 2009, and concluded that environmental conditions were identified at the subject site.

The area of concern for this assessment is the subsurface condition beneath existing underground storage tanks (USTs) and associated fuel dispensers, sumps, and dry wells located on site. As part of this Phase II ESA, Krazan collected soil samples from the referenced areas of concern. Additionally, one groundwater sample was collected from one of three on-site groundwater monitoring wells. Two of the three groundwater wells were dry; water table levels appeared to be below the bottom of the well screens and did not intersect screens. This report summarizes the soil and groundwater sampling Krazan conducted at the subject site in September 2009.

2.0 <u>SITE DESCRIPTION</u>

The subject site is located northwest of the intersection of Northfront Road and North Vasco Road in Livermore, California. The subject site consists of one irregular-shaped parcel approximately 5.81 acres in size. The subject site includes one restaurant building, one warehouse/storage building, one automobile tire and service building, one former drive-thru car wash, associated parking areas, and approximately 1.87 acres of vacant land. The Alameda County Assessor's Parcel Number (APN) associated with the subject site is 099B-5075-006-08 with the addresses of 1000 North Vasco Road.

3.0 BRIEF ENVIRONMENTAL SITE BACKGROUND

Krazan conducted a Phase I ESA of the subject site in conformance with the scope and limitations of the ASTM E 1527-05 Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process. Any deviations from this practice were previously described in the Phase I ESA report. Krazan's findings of the Phase I ESA revealed evidence of the following RECs, potential environmental concerns (PECs), and Historical RECs (HRECs) in connection with the subject site:

RECs

- At the time of Krazan's March 26, 2009 site reconnaissance, five former gasoline dispenser islands were observed east of the restaurant building and four former diesel dispenser islands were observed north of the restaurant building. Krazan observed evidence of three current USTs at the subject site to the northeast and north of the restaurant building. According to Mr. Macedo, the owner of the subject site, and regulatory records on file with the Livermore Pleasanton Fire Department (LPFD), the USTs consist of two, 15,000-gallon gasoline USTs and one, 12,000gallon diesel UST. LPFD is the lead regulatory agency concerning current and historical USTs and hazardous materials storage and handling for the subject site. The current USTs, dispenser islands, and associated piping were installed in 1994. According to LPFD records, the dispensers were removed, piping sealed, and USTs temporarily abandoned in place in July 2008. LPFD records included numerous non-compliance violations concerning the current USTs dating from 2003 to 2008. Violations ranged from non-submittal of tank/piping monitoring results to nonsubmittal of hazardous materials business plans. According to Mr. Macedo, the planned use of the subject site will no longer include retail sales of gasoline or diesel fuel. Based on their planned discontinued use, the USTs should be properly removed under the guidance and direction of the LPFD and the Alameda County Department of Environmental Health Services. Based on the unknown condition and potential of impacts to soil and groundwater, the USTs, piping, and dispenser islands represent a recognized environmental condition in connection with the subject site.
- Four storm water drains were observed in the parking lot areas of the subject site. According to Mr. Macedo, the drains are located over dry wells and are not connected to the municipal stormwater system. Mr. Macedo indicated the four dry wells were installed in 1994 at the time of paving of the subject site areas surrounding the restaurant and east of the storage warehouse and automotive shop buildings. Mr. Macedo indicated that the dry wells are four to six feet in diameter and approximately 15 feet deep below ground surface (bgs). Based on the use of a portion of the subject site as an automotive repair shop, the former use of the east portion of the site as a gasoline station, shallow depth of groundwater (estimated at 7 to 10 feet bgs), and their 15 year existence, the dry wells represent a recognized environmental condition in connection with the subject site.

PECs

- Approximately 200 waste tires were observed at the west exterior of the tire automobile service and repair shop. The accumulation of tires is not considered an environmental condition, however, is considered a code compliance issue and potential regulatory environmental concern.
- According to Environmental Data Resources, Inc. (EDR) the subject site address is listed as an ERNS and CHMIRS location due to a January 1999 listed complaint. According to EDR, the LPFD received a citizen's complaint of oil in the north adjoining creek. According to EDR,

LPFD responded to the complaint in 1999 and identified a sheen approximately one mile long. According to Danielle Stefani, Hazardous Materials Coordinator with the LPFD, records for spills and incidence reports are kept for seven years and the 1999 predates current records. Ms. Stefani did not recall any remedial action concerning the adjoining creek during the era of the 1999 incident. Krazan contacted the Office of Emergency Services (OES) regarding information concerning the incident; however, the OES has not responded to the information request. According to Mr. Macedo, a gasoline tanker truck owned by Chevron making deliveries to the east adjoining Chevron station, overturned while attempting a U-turn east of the subject site on North Vasco Road and stated that this may have been the reported incident. Mr. Macedo was not aware of any oil or gasoline release attributed to the subject site that has impacted the north adjoining creek. Records pertaining to a release of the adjacent creek were not identified at the Livermore Fire Dept (for the last seven years). Consequently, the status or condition of the adjacent creek relative to a petroleum release is unknown. Any pertinent information will be forwarded to Bank of the West upon receipt.

HREC

- Krazan reviewed an Underground Storage Tank Removal Report dated December 28, 1994, prepared by Grayland Environmental (Grayland) for Mr. Michael Walton on file with the Alameda County Department of Environmental Health Services (ACDEHS). According to the report, three 10,000-gallon gasoline USTs, one 10,000-gallon diesel UST, piping, and fuel dispensers were removed from the subject site on October 6, 1994. According to the report, the USTs had been installed in 1978 with locations described as three gasoline USTs on the eastern portion of the site and a single diesel UST on the northeastern portion of the site. The USTs were described as consisting of fiberglass construction with no visible perforations. Groundwater was present in both excavations at seven and nine feet below grade. Over-excavation of the tank pits was conducted based on visual observations of stained soil and petroleum odors. Soil samples were collected from the pit sidewalls and approximately ten feet below the former product piping lines and dispensers. Groundwater samples were collected from each tank pit. Laboratory analysis of soil samples collected from the side walls and beneath the fuel dispensers indicated elevated concentrations of total petroleum hydrocarbons as gasoline (TPH-G), total petroleum hydrocarbons as diesel (TPH-D), and benzene, toluene, ethylbenzene, and xylenes (BTEX). Groundwater analysis indicated elevated levels of TPH-G, TPH-D, and BTEX. Analysis of samples for the fuel oxygenate methyl tert-butyl ether (MTBE) was not conducted. Grayland returned to the subject site on October 19, 1994 during additional over-excavation of the tank pits. Based on soil sampling analysis, Grayland stated that the bulk of contaminated soil had been removed from the tank pits. Based on the identified impacts to groundwater, Grayland recommended groundwater monitoring wells be installed to evaluate the extent of groundwater contamination.
- Krazan reviewed a Soil Sampling Monitoring Well Installation and Initial Groundwater Sampling Report dated August 16, 1995, prepared by H2OGEOL for the subject site owner. According to the report, three groundwater monitoring wells (MWs) were installed to assess impacts to groundwater by the former gasoline and diesel USTs which were removed in 1994. At the time of installation of the MWs, soil sampling was conducted at the three MW locations at a depth of seven feet below grade. The MWs were installed at a depth of approximately 15 feet below grade. Groundwater depth was noted to range from 7.60 to 8.68 feet below grade in the three MWs. Minor concentrations of TPH-D were identified in only one soil sample and in the area of the former diesel UST. No additional contaminants of concern were identified in the soil samples collected. TPH-D at a concentration of 910 milligrams per kilogram (mg/kg) was detected in MW-1 adjacent to the former diesel UST and TPH-G at concentration of 60 mg/kg was detected in MW-3 west of the former gasoline USTs. No contaminants of concern were identified in

groundwater samples. H2OGEOL recommended the three MWs should be monitored quarterly for TPH-D, TPH-G, and BTEX. Additional groundwater monitoring well sampling events were conducted in November 1995, February 1996 and May 1996. TPH-D concentrations at 228 parts per billion (ppb) were identified in MW-1 in May 1996. No other contaminant of concern was identified. H2OGEOL stated that the TPH-D identified in MW-1 during the May 1996 sampling event was not consistent with the pattern of their diesel standard and was likely a result of organic acids or other biodegradation of other naturally occurring substances. Based on the results of the four groundwater sampling events, H2OGEOL recommended no further groundwater monitoring be conducted at the site. Up to 160 mg/kg of gasoline and diesel and 0.34 mg/kg of benzene exists in the soil beneath the subject site.

- Based on removal of the four USTs in 1994, over-excavation of soils in the tank pits, and results
 of four groundwater monitoring events, the ACDEHS issued a remedial action completion
 certification letter for the subject site on May 22, 2000.
- Based on Krazan's current site observations and LPFD closure documentation, the former USTs are considered a HREC and do not require further assessment at this time. However, during Krazan's site reconnaissance, it was noted that the three monitoring wells from the 1996 investigation were still present.

4.0 LOCAL GEOLOGY AND HYDROGEOLOGY

The subject site area is located in the eastern portion of the San Francisco Bay Area. The subject site is located within the Coast Ranges Geomorphic Province of California, which is characterized by northwest-trending structural features, including faults and geologic units. The subject site is reportedly underlain by Holocene medium-grained alluvium, which is described as unconsolidated, poorly sorted clay, silt, sand and gravel. The groundwater in the area is reported to be first encountered at a depth of approximately 7 to 10 feet bgs; however, at the time of this assessment, groundwater was encountered around 8.5 feet bgs. According to available data, groundwater flow direction in the area of the subject site is generally towards the northwest.

5.0 OBJECTIVE AND SCOPE

The objective of this project was to perform a Phase II ESA, in general accordance with the recommendations in the Phase I ESA and in collaboration with Bank of the West Environmental Risk Management team. Soil borings were advanced and samples collected beneath the on-site USTs and associated fuel dispensers, sumps, and dry wells in order to assess the presence or absence of constituents of concern (COC) for each area. Additionally, a groundwater sample was collected from one of three groundwater monitoring wells (MW-3) formerly installed, and located on the subject site. Krazan attempted to sample the other two wells (MW-1 and MW-2), however, the wells were found to be dry; the

water table appeared to be below the bottom of the screens. Groundwater monitoring well MW-3 was sampled in order to assess the presence or absence of COCs in groundwater beneath the subject site.

The scope of work for this assessment was conducted in accordance with industry standards. This assessment was also conducted in general accordance with local, State, and Federal guidelines for soil and groundwater sampling. The components of the scope of work for the assessment are summarized below.

5.1 Pre-field Activities

- A Site Health & Safety Plan (SHSP) was developed to accompany the field activities conducted
 at the site. The SHSP identifies potential hazards to personnel working at the site, protocol for
 environmental monitoring, personal protective equipment, medical surveillance requirements, site
 control measures, and emergency procedures.
- The proposed boring and sampling locations were marked with white paint and Underground Service Alert (USA) was contacted several days prior to the start of fieldwork so that any underground utilities within the right-of-way associated with USA's subscribers could be identified.
- A drilling permit was obtained from Alameda County Zone 7 Water Agency. A copy of the permit is attached (Appendix B).
- Before drilling, each boring location was hand augured to a depth of five feet bgs in order to confirm that no utilities were present in the upper 5-feet of soil.

5.2 Soil Sampling

- On September 2, 2008, a total of 17 borings were advanced at the subject site utilizing a truck-mounted drilling rig equipped with hollow stem auger.
- Four soil borings (B-3, B-4, B-6, and B-11) were advanced to a depth of 20 feet bgs in the locations of the USTs and samples collected at 15 and 20 feet bgs. Seven soil borings (B-1, B-2, B-5, B-12, B-13, B-14, and B-15) were advanced to a depth of 15 feet bgs in the locations of the fuel dispensers and soil samples collected at 10 and 15 feet bgs. Six soil borings (B-7, B-8, B-9, B-10, B-16, and B-17) were advanced to a depth of five feet bgs in the locations of dry wells and sumps, and a sample collected at five feet bgs. Refer to Figure 2 for sample locations and other pertinent site features.
- During drilling of the soil borings, the drill cuttings (soil) and samples were subjectively analyzed
 for PHC odor and discoloration. Additionally, the soil was field-screened with a portable
 photo-ionization detector (PID). The PID readings were recorded on field notes. The PID is a
 direct reading real-time analyzer that can detect most of the volatile PHCs present in the vapor
 phase of petroleum-affected soils. The units are expressed in parts per million (ppm) of total
 volatile organic compounds (VOCs).
- Soil samples collected for laboratory analyses were obtained by means of a split-spoon Modified California Sampler containing three 6-inch-long by 1.5-inch-diameter stainless steel liners. Once collected, the ends of each sample liner were covered with Teflon® film, capped with plastic end caps, appropriately labeled, placed into a plastic bag, sealed, and then placed into a thermal chest cooled with ice for delivery to a State-certified analytical laboratory.

Project No. 014-09073 Page No. 6

- Soil sampling was conducted in accordance with Appendix C of the March 1998 version of the Leaking Underground Fuel Tank (LUFT) Field Manual published by the State of California Water Resources Control Board.
- Equipment used for the advancement of soil borings and collection of soil samples was decontaminated before arriving on site, between each boring and/or sampling interval, before leaving the site each day, and as necessary to reduce the chances of cross-contamination.
- Field work was conducted by individuals meeting Occupational Safety and Health Administration requirements for hazardous waste work including 40-hour health and safety training and medical monitoring. The work was completed under the standards set forth by the industry and deemed acceptable by various regulatory agencies. Hard hats, protective eyewear, steel-toe boots, protective clothing, and respiratory devices were worn by Krazan personnel when deemed appropriate by the field geologist present on site.
- Selected soil samples, collected in the vicinity of the USTs and/or dispensers, were chemically analyzed for total petroleum hydrocarbons as gasoline (TPH-g) by EPA Method 8015B, for benzene, toluene, ethylbenzene, benzene (BTEX) and methyl tertiary butyl ether (MTBE) per EPA Method 8021B, and for total petroleum hydrocarbons as diesel (TPH-d) per EPA Method 8015B.
- Selected soil samples collected in the vicinity of the on-site sumps and dry wells were chemically
 analyzed for total extractable petroleum hydrocarbons (TEPH) per EPA Method 8015B, for
 volatile organic compounds (76) per EPA Method 8260, and for CAM-17 Metals per various
 EPA methods.
- The borings were appropriately backfilled with 6-sack neat cement to near surface grade and capped appropriately.

5.3 Groundwater Sampling

- Existing groundwater monitoring well MW-3 was sampled at the time the fieldwork was being conducted for the soil sampling. Groundwater monitoring wells MW-1 and MW-2 were found to be dry at the time of this subsurface assessment.
- Prior to collecting a groundwater sample, a minimum of three well volumes were purged from the well. Once pH, electrical conductivity (EC), and temperature stabilized to within a range of 10 percent between two purge volumes, the well was sampled. Purging and sampling was conducted using a low-flow submersible pump and a disposable bailer, respectively.
- Groundwater samples were collected into the appropriate preserved containers, appropriately
 labeled, placed into a plastic bag, sealed, and then placed into a thermal chest cooled with ice for
 delivery to a state-certified analytical laboratory.
- The groundwater sample was chemically analyzed at a State-certified laboratory for TPH-g, BTEX, MTBE, and TPH-d per the appropriate EPA methods.

6.0 APPLICABLE REGULATORY AGENCY REFERENCES

Krazan's evaluation of the results and findings associated with the soil sampling included referencing the September 2008 U.S. EPA Region 9 Regional Screening Levels (RSLs) for the Industrial Direct Contact Exposure Pathway and the November 2007 San Francisco Regional Water Quality Control Board's

(RWQCB) technical document titled, Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater. RSLs are risk-based concentrations that are intended to assist risk assessors and others in initial screening level evaluations of environmental measurements. The intended future use of the site is commercial/industrial; RSLs that are the most conservative are the Residential Direct Contact Exposure Pathway.

According to the RWQCB 2007 document, Environmental Screening Levels (ESLs) are considered to be conservative. Under most circumstances and within limits described by the RWQCB, the presence of a chemical in soil, soil-gas, or groundwater at concentrations below the corresponding ESL can be assumed not to pose a significant, long-term (chronic) threat to human health and the environment. Additional evaluation will generally be necessary at sites where a chemical is present at concentrations above the corresponding ESL. Active remediation may or may not be required, however, depending on site-specific conditions and considerations. As stated by the RWQCB, the ESL document may be especially beneficial for use at sites with limited impacts, where the preparation of a formal environmental assessment may not be warranted or feasible due to time and cost constraints.

For the purposes of evaluating specific metals, Krazan also referred to the January 2005 technical document prepared by the California Environmental Protection Agency (Cal/EPA) titled Use of California Human Health Screening Levels in Evaluation of Contaminated Properties. The California Human Health Screening Levels (CHHSLs) are concentrations of 54 hazardous chemicals in soil, shallow soil gas, and indoor air that the Cal/EPA considers to be below thresholds of concern for risks to human health. The CHHSLs were developed by the Office of Environmental Health Hazard Assessment (OEHHA) on behalf of Cal/EPA, and are contained in a Cal/EPA report titled Human-Exposure-Based Screening Numbers Developed to Aid Estimation of Cleanup Costs for Contaminated Soil. The thresholds of concern used to develop the CHHSLs are an excess lifetime cancer risk of one-in-a-million (10-6) and a hazard quotient of 1.0 for noncancer health effects. The CHHSLs were developed using standard exposure assumptions and chemical toxicity values published by the U.S. EPA and Cal/EPA.

CHHSLs can be used to screen sites for potential human health concerns where releases of hazardous chemicals to soils have occurred. Under most circumstances, and within the limitations described in the January 2005 document, the presence of a chemical in soil, shallow soil gas, or indoor air at concentrations below the corresponding CHHSLs can be assumed to not pose a significant health risk to people who may live (residential CHHSLs) or work (commercial/industrial CHHSLs) at the site.

7.0 FIELD OBSERVATIONS

7.1 Drilling and Soil Sampling

At the time of this assessment, no obvious soil discoloration was observed in the boring and sampling locations. Slight petroleum hydrocarbon odors were noted in the areas assessed near the USTs and fuel dispensers. Low concentrations of VOCs were detected as high as 3.7 ppm from the PID during the drilling and soil sampling activities. The soil encountered consisted predominantly of clays and sandy clays to a depth of approximately 10 feet bgs and silty and clayey sand from 10 to 20 feet bgs, the maximum depth explored. No hardpan was encountered during the drilling and sampling procedures. Groundwater was encountered at a depth of approximately 10 feet bgs in the areas assessed.

8.0 SAMPLE ANALYTICAL RESULTS

8.1 Soil Sampling

According to the laboratory analytical report (Appendix C), diesel range hydrocarbons (TPH-d) were detected in boring B-1 in the 10 and 15-foot soil samples at concentrations of 11 and 6.3 mg/kg, respectively. Soil boring B-1 was advanced near the northeast corner of the northernmost dispenser island. TPH-d was also detected in boring B-15 in the 10-foot sample at a concentration of 9.0 mg/kg. Boring B-15 was advanced near the southeast corner of the southernmost dispenser island. No gasoline constituents, including benzene or MTBE, were detected in the soil samples collected for this subsurface assessment.

In general, the metals arsenic, barium, beryllium, chromium, cobalt, copper, lead, molybdenum, nickel, vanadium, and zinc were detected in soil samples collected beneath the sumps and dry wells. The metal arsenic was detected in the soil samples collected beneath the sumps and dry wells at concentrations as high as 5.9 mg/kg. However, these concentrations of arsenic appear to be representative of naturally occurring concentrations of arsenic in local soils. No TEPH or VOCs were detected in the soil samples collected beneath the existing sumps and dry wells.

8.2 Groundwater Sampling

According to the laboratory analytical report, the gasoline constituent MTBE was detected in the groundwater sample collected from existing monitoring well MW-3 at a concentration of 2.2 micrograms per liter (μ g/L). No other gasoline constituents or diesel constituents were detected in the groundwater sample. The other two existing groundwater monitoring wells, MW-1 and MW-2, were dry at the time of this assessment.

Project No. 014-09073 Page No. 9

9.0 <u>CONCLUSIONS</u>

Only trace concentrations of diesel constituents were detected in the soil samples collected for this

subsurface assessment in the vicinity of the existing UST fueling systems. The detected diesel

concentrations are well below the ESL for middle distillates (Shallow Soil Screening Levels,

Commercial/Industrial Land Use Where Groundwater is a Current or Potential Drinking Water Source).

There is no RSL and CHHSL for the total diesel range constituents. No gasoline constituents were

detected in the soil samples collected in the vicinity of the existing UST fueling systems.

The metals barium, beryllium, chromium, cobalt, copper, lead, molybdenum, nickel, vanadium, and zinc

were detected at concentrations less than pertinent regulatory agency action levels. These detected levels

appear to be representative of naturally occurring concentrations of metals in local/regional soils in the

vicinity of the subject site.

The metal arsenic was detected in the soil samples collected beneath the sumps and dry wells at

concentrations as high as 5.9 mg/kg. The RSL, ESL, and CHHSL for the arsenic constituent are 1.6, 1.6,

and 0.24 mg/kg, respectively. However, these concentrations of arsenic appear to be representative of

naturally occurring concentrations of arsenic in local soils.

According to the U.S. Department of Health and Human Services, Agency for Toxic Substances and

Disease Registry (circa 1997), "background" levels of arsenic in the United States range from 1 mg/kg to

97 mg/kg and are conservatively estimated to range from 0.59 mg/kg to 11 mg/kg in the State of

California. In addition, according to the January 2005 CHHSLs document, naturally occurring

background concentrations of arsenic, beryllium, cadmium, chromium and other metals in soils may

exceed their respective soil CHHSLs. Cal/EPA generally does not require cleanup of soil to below

background levels. This issue is frequently encountered in California with the presence of naturally-

occurring arsenic in soil; natural background concentrations of arsenic in California are often well above

the health-based, direct-exposure goals in soil of 0.07 mg/kg for residential land use and 0.24 mg/kg for

commercial/industrial land use.

No TEPH or VOCs were detected in the soil samples collected beneath the existing sumps and dry wells.

The constituent MTBE was detected at a concentration of 2.2 µg/L in the groundwater sample collected

from monitoring well MW-3, which is below the ESL (groundwater) and RSL (tapwater) of 5.0 µg/L and

12 µg/L for the constituent, respectively. The source of the MTBE in groundwater appears to be

representative of an off-site source.

KRAZAN & ASSOCIATES, INC.
With Offices Serving the Western United States

Based on the results cited herein, it is Krazan's opinion that no further subsurface assessment appears warranted at the subject site in the areas investigated or for the COCs analyzed in association with this assessment. This Phase II ESA conducted at the subject site was not intended to characterize or define the extent of possible impact beneath the site; rather, this work was conducted to assess the presence or absence of the COCs. It is not known whether the source of the MTBE in groundwater is from the subject site or an off-site facility. Although only low concentrations of petroleum hydrocarbons were detected in soil and trace concentrations of MTBE in groundwater, Krazan recommends that any subsurface detection of contaminants should be reported to the local regulatory agency and a copy of this report may be filed.

If the UST systems are non-operational, Krazan recommends removing the systems in accordance with local and State guidelines. If not in use, the three groundwater monitoring wells, sumps, and dry wells should also be properly abandoned in accordance with local and State guidelines.

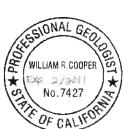
10.0 <u>LIMITATIONS</u>

The findings of this report were based upon the results of our field and laboratory investigations, along with the interpretation of subsurface conditions associated with our soil and soil gas samples and borings. Therefore, the data are accurate only to the degree implied by review of the data obtained and by professional interpretation.

The exploratory soil samples and borings were located in the field by review of available maps and by tape measurement from existing landmarks. Therefore, the location of the soil samples and borings should be considered accurate only to the degree implied by the methods used to locate them. Chemical testing was done by laboratories certified by the State of California Department of Health Services. The results of the chemical testing are accurate only to the degree of care of ensuring the testing accuracy and the representative nature of the soil samples obtained.

This subsurface investigation of the subject site has been limited in scope. This type of assessment is undertaken with the calculated risk that the presence, full nature, and extent of contamination would not be revealed by methods employed. Although the work was conducted in accordance with industry standards and employing a professional standard of care, no warranty is given, either expressed or implied, that hazardous material contamination or buried structures, which would not have been disclosed through this investigation, do not exist at the subject site. Therefore, the data obtained are clear and accurate only to the degree implied by the sources and methods used.

The findings presented herewith are based on professional interpretation using state of the art methods and equipment and a degree of conservatism deemed proper as of this report date. It is not warranted that such data cannot be superseded by future geotechnical, environmental, or technical developments.


This assessment and report were authorized by and prepared for the exclusive use of our client. Unauthorized use of or reliance on the information contained in this report without the expressed written consent of Krazan & Associates, Inc. is strictly prohibited.

11.0 CLOSING

If you have any questions or if we may be of further assistance, please do not hesitate to contact our office at (559) 348-2200.

CAMPUEL REAL TORONG PORT OF CAMPUEL PROPERTY AND THE OF CA

Respectfully submitted, Krazan & Associates, Inc.

Alexander J. Cantwell, M.S. Sr. Environmental Project Manager California REA No. 8085

William R. Cooper

Registered Geologist No. 7427

AJC/WRC/klm

TABLE I

Soil Sample Analytical Results Phase II ESA

Petroleum Hydrocarbon Constituents and VOCs

Geno's Country Store, Inc.

Livermore, California September 2, 2009 Sampling

(Concentrations are expressed as milliorans per kilogram [ma/ka])

Soil Boring No.	Sample ID	Depth (ft. bgs)	TPH-g	MTBE	B	T	E	X	TPH-d
B-1	B1@10	10	ND	ND	ND	ND	ND	ND	11
	B1@15	15	ND	ND	ND	ND	ND	ND	6.3
B-2	B2@10	10	ND	ND	ND	ND	ND	ND	ND
	B2@15	15	ND	ND	ND	ND	ND	ND	ND
B-3	B3@15	15	ND	ND	ND	ND	ND	ND	ND
	B3@20	20	ND	ND	ND	ND	ND	ND	ND
B-4	B4@15	15	ND	ND	ND	ND	ND	ND	ND
	B4@20	20	ND	ND	ND	ND	ND	ND	ND
B-5	B5@10	10	ND	ND	ND	ND	ND	ND	ND
	B5@15	15	ND	ND	ND	ND	ND	ND	ND
B-6	B6@15	15	ND	ND	ND	ND	ND	ND	ND
	B6@20	20	ND	ND	ND	ND	ND	ND	ND
B-11	B11@15	15	ND	ND	ND	ND	ND	ND	ND
	B11@20	20	ND	ND	ND	ND	ND	ND	ND
B-12	B12@10	10	ND	ND	ND	ND	ND	ND	ND
	B12@15	15	ND	ND	ND	ND	ND	ND	ND
B-13	B13@10	10	ND	ND	ND	ND	ND	ND	ND
	B13@15	15	ND	ND	ND	ND	ND	ND	ND
B-14	B14@10	10	ND	ND	ND	ND	ND	ND	ND
	B14@15	15	ND	ND	ND	ND	ND	ND	ND
B-15	B15@10	10	ND	ND	ND	ND	ND	ND	9.0
	B15@15	15	ND	ND	ND	ND	ND	ND	ND
		RSL		190	5.6	46,000	29	2600	
		ESL	83	0.023	0.044	2.9	3.3	2.3	83

ft. bgs = Feet below ground surface.

TPH-g = Total petroleum hydrocarbons as gasoline by EPA Method 8015B.

TPH-d = Total petroleum hydrocarbons as diesel by EPA Method 8015B.

MTBE = Methyl tertiary butyl ether by EPA Method 8021B.

BTEX = Benzene, toluene, ethyl benzene, xylenes by EPA Method 8021B.

ND = Not detected at or above practical quantitation limits noted on laboratory reports.

--- = Not analyzed.

TABLE II

Soil Sample Analytical Results
Phase II ESA
Detected CAM-17 Metals
Geno's Country Store, Inc.
Livermore, California
September 2, 2009 Sampling

(Concentrations are expressed as milligrams per kilogram [mg/kg])

Boring No.	Sample ID	Ar	Ва	Ве	Cr	Со	Cu	Pb	Mo	Ni	V	Zn
B-7	B7@5	4.1	140	ND	30	8.1	10	5.2	0.55	32	42	36
B-8	B8@5	4.5	110	ND	33	9.3	14	5.4	ND	31	42	38
B-9	B9@5	5.3	290	0.56	48	11	21	7.4	ND	46	57	55
B-10	B10@5	5.9	340	0.53	42	16	26	7.8	ND	44	61	62
B-16	B16@5	4.1	160	ND	38	8.7	15	5.9	ND	33	49	45
B-17	B17@5	4.9	210	ND	37	9.1	17	6.2	ND	40	46	44
	RSL	1.6	190,000	2000	1400	300	41,000	800	5100	~-	7200	310,000
	ESL	1.6	1500	8.0	2500	2500	2500	2500	2500	2500	2500	2500
	CHHSL	0.24	63,000	1700	100,037	3200	38,000	3500	4800	16,000	6700	100,000

Ar, Ba, Be, Cr, Co, Cu, Pb, Mo, Ni, V, Zn = arsenic, barium, beryllium, chromium, cobalt, copper, lead, molybdenum, nickel, vanadium, zinc

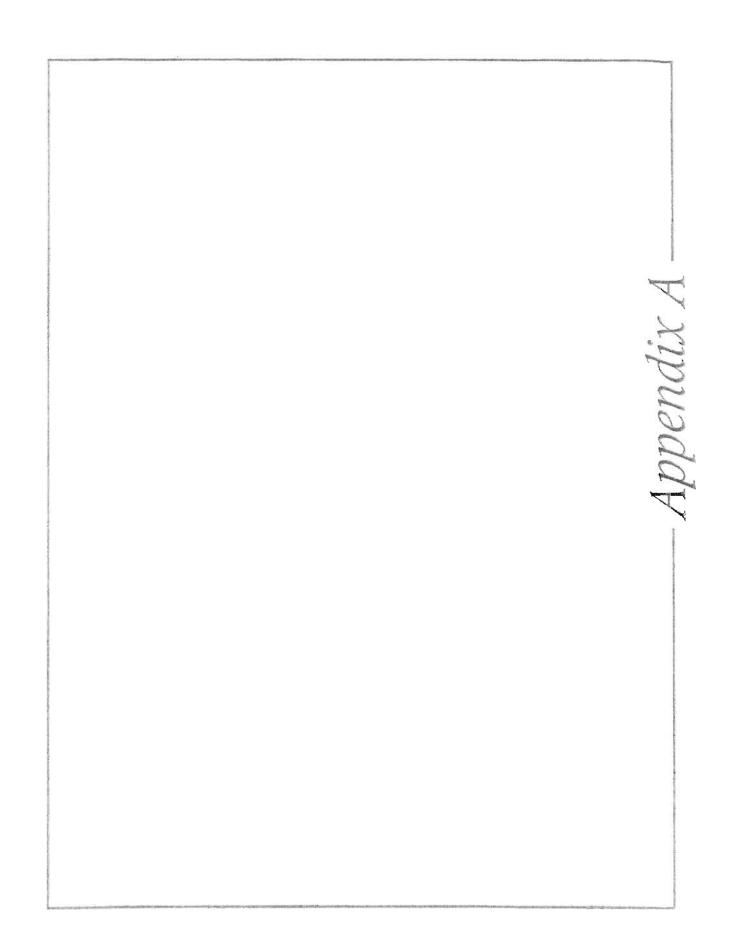
ckel, vanadiur	m, zinc	
CHHSL	=	California Human Health Screening Level, Cal/EPA, January 2005, Commercial
		Land Use, Organic Neutral and Inorganic Chemicals.
ESL	=	Environmental Screening Level, San Francisco RWQCB, November 2007,
		commercial/industrial land use for shallow soil screening levels (≤3m bgs) where
		water is a current or potential source of drinking water.
RSL	=	Regional Screening Level, Region 9 U.S. EPA, September 2008, Industrial Soil,
		Direct Contact Exposure Pathways.

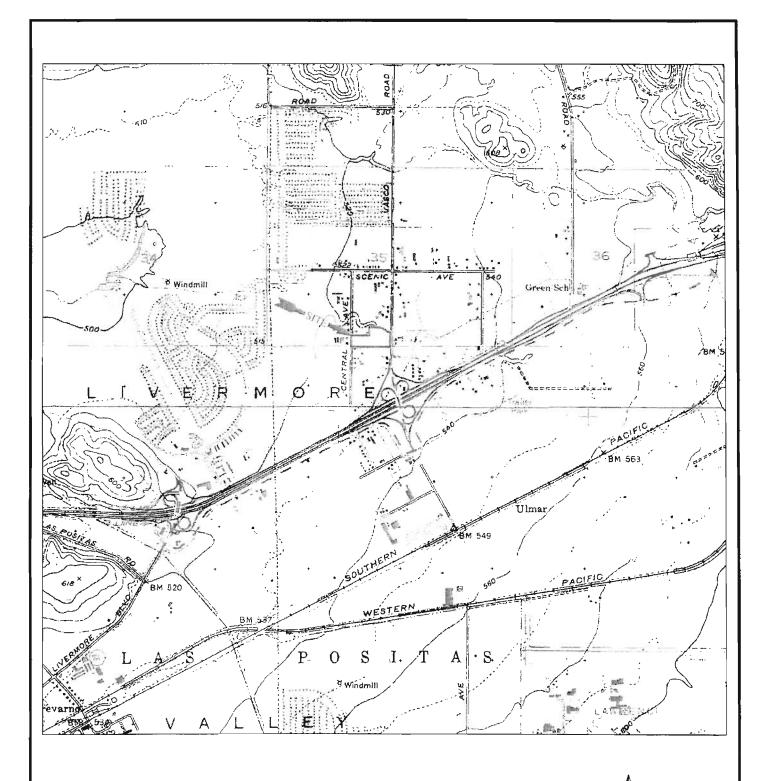
Note: Please refer to laboratory analytical report for full suite of analytes and more detailed information.

TABLE III

Soil Sample Analytical Results Phase II ESA

Petroleum Hydrocarbon Constituents and VOCs


Geno's Country Store, Inc. Livermore, California


September 2, 2009 Sampling

(Concentrations are expressed as micrograms per liter $[\mu g/L]$)

Soil Bori No.	ng	Sample ID	Depth (ft. bgs)	TPH-g	MTBE	В	T	E	X	TPH-d
MW-3		MW-3	10	ND	2.2	ND	ND	ND	ND	ND
			RSL		190	5.6	46,000	29	2600	
			ESL	83	0.023	0.044	2.9	3.3	2.3	83
ft. bgs	=	Feet belo	w ground surj	face.						
TPH-g	=		roleum hydrod		asoline by El	PA Method	8015B.			
TPH-d	=	Total pet	roleum hydrod	carbons as d	iesel by EPA	Method 80	015B.			
MTBE	-	Methyl te	rtiary butyl et	her by EPA.	Method 8021	B.				
BTEX	=	Benzene,	toluene, ethyl	benzene, xy	lenes by EPA	Method 8	021B.			
ND	=	Not detec	ted at or abov	e practical d	quantitation l	imits noted	l on laborate	ory report	S.	
ESL	1000		nental Scree ial/industrial i r potential sov	land use for			_			,
RSL	=		Screening Lo Exposure Path		9 U.S. EP.	A, Septem	ber 2008, I	ndustrial	Soil, Direc	ct

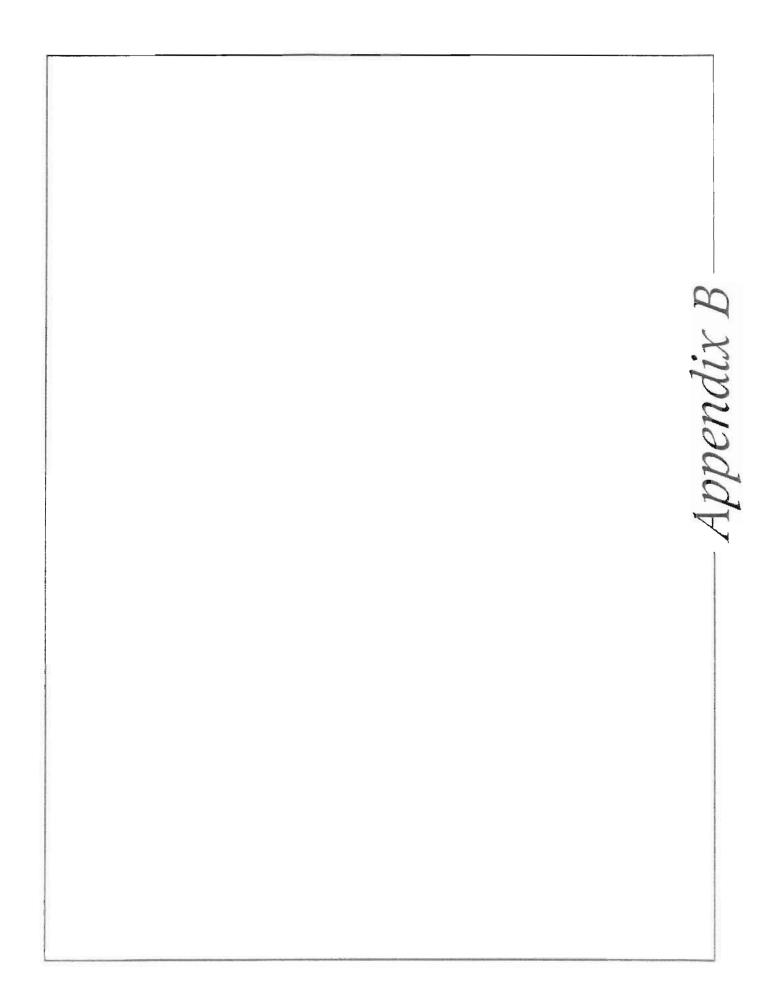
Note: Please refer to laboratory analytical report for full suite of analytes and more detailed information.

MAP SOURCE: 7.5 MINUTE SERIES U.S.G.S. TOPOGRAPHIC MAP LIVERMORE, CA DATED 1961 PHOTOREVISED 1980 MAP SOURCE: 7.5 MINUTE SERIES U.S.G.S. TOPOGRAPHIC MAP ALTAMONT, CA DATED 1953 PHOTOREVISED 1981

۲	\mathbf{T}	\mathbf{C}	N	П	$\Gamma \mathbf{Y}$	M	AP

BOTW No. 09-0510-02 GENO'S COUNTRY STORE, INC. 1000 NORTH VASCO ROAD LIVERMORE, CALIFORNIA 94551

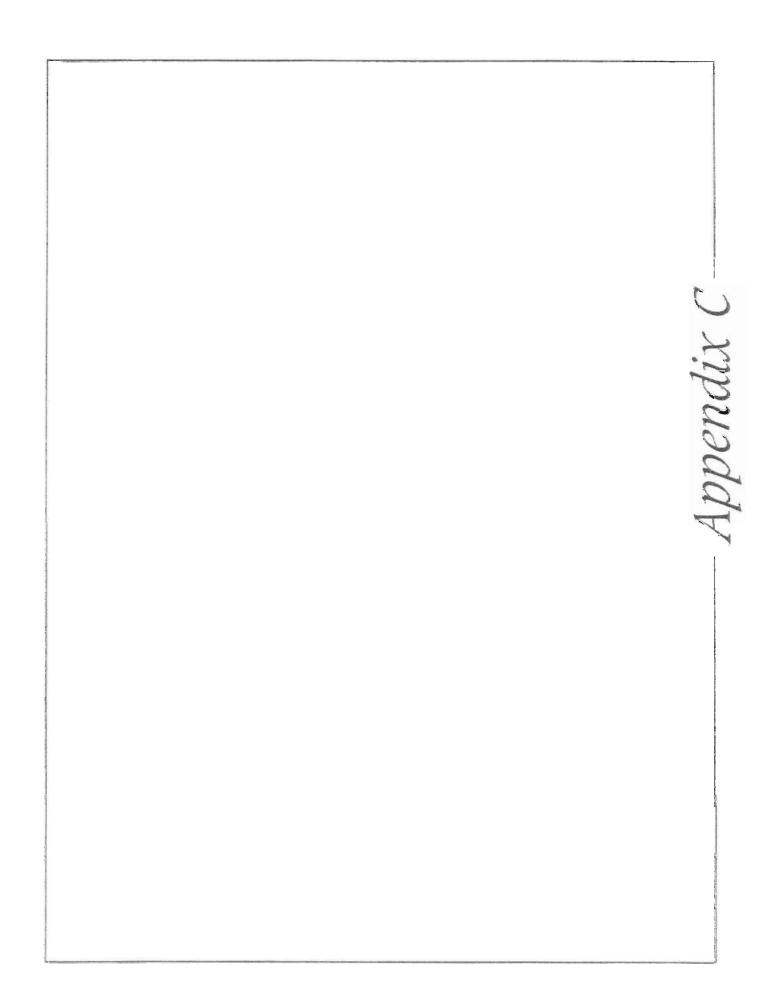
2006	DO CE
AS SHOWN	9/09
Drawn by:	Approved by:
S. A.	A, C,
Project No.	Figure No.
014-09073	1


- FUEL ISLAND/NO DISPENSERS
- STORMWATER DRAIN WITH DRY WELL
- 4 BORING/SAMPLE LOCATION

*ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE

SITE MAP	Scale	Date	T
53.1.3.174.74	N. T. S.	9/09	
BOTW No. 09-0510-02	Drawn by:	Approved by	
GENO'S COUNTRY STORE, INC.	S. A.	A. C.	-
1000 NORTH VASCO ROAD	Project No.	A, C, Figure No.	
LIVERMORE, CALIFORNIA 94551	014-09073	2	

CORE


ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whomstoping7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 1000 N Vasio Rel	000/0
	PERMIT NUMBER 29049
December 1	WELL NUMBER
Coordinates Source ft. Accuracy ft.	APN 099B-5075-006-08
APN 099 B-5075-006-08	PERMIT CONDITIONS
CLIENT	(Circled Permit Requirements Apply)
Name 2008 of the West - GODA, MR VANNUTT Address 1950 I creat 12/12 Phone 915, 942 BG9 City William Creak 70 94597	A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting data. 2. Submit to Zone 7 within 60 days after completion of permitted and the property of the Propert
APPLICANT Name Kn. Zun + Asseriation - Alex Court Well Email of & Court Twell & Kollinster Court Address 115 W Darkota AVP Phone 757.348. 220 City Tresno CIA Zip 93612	
/	WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the
TYPE OF PROJECT: Well Construction 9 Geotechnical Investigation 9 Well Destruction 9 Contamination Investigation 9 Cathodic Protection 9 Other ITELIAL SWENTER(S)	 Well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and Irrigation wells unless a feaser depth is specially approved.
PROPOSED WELL USE: Domestic 9 Irrigation 9 Municipal Remediation 9 Industrial Groundwaler Monitoring 9 Dewatering 9 Other 9	 Grout placed by tremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the wellhead.
DRILLING METHOD: Mud Rotary 9 Air Rotary 9 Hollow Stem Auger 9 Ceble Tool 9 Direct Push 9 Other Straight 9 DRILLING COMPANY Krazaan.	C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater than the well or plezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremia.
WELL SPECIFICATIONS: Drill Hote Diameter in. Maximum Casing Diameter in. Depth Surface Said Depth ft. Number	D. GEOTECHNICAL. Backfill bore hole with compected cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, trained cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings	 CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE JULY 18 2009 ESTIMATED COMPLETION DATE JULY 1 2009	F. WELL DESTRUCTION, See attached.
I hereby agree to comply with all requirements of this permit and Atameda County Ordinance No. 73-68.	G. SPECIAL CONDITIONS, Submit to Zone 7 within 60 days after compilation of permitted work the well installation report including all soil and water laboratory engines results.
APPLICANTS Date 7/21/09	Approved Wayman Hong Date 7/27/09 Wyman Hong

ATTACH SITE PLAN OR SKETCH

Environmental Testing Services Certificate No. 2480 2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, CA 93612

Attn: Alex Cantwell

Client Project ID: 01409073 Client Project Name: Livermore Lab Reference Number: 0909054 Sample Description: Water

Received: 09-09-09 Extracted: 09-11-09 Analyzed: 09-11-09 Reported: 09-17-09

Sampled: 09-02-09

Sample Prep/Analysis Method: EPA 5030/8015B, 8021B Lab Numbers: 0909054-01

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT (ug/L)	SAMPLE ID MW-3 (ug/L)	
мтве	0.50	2.2	
BENZENE	0.50	ND	
TOLUENE	0.50	ND	
ETHYL BENZENE	0.50	ND	
TOTAL XYLENES	0.50	ND	
GASOLINE RANGE HYDROCARBONS	50	ND	
Report Limit Multiplication Fact	or:	1	

Surrogate % Recovery: Instrument ID:	FID MISM/PID PLISM HP-GC1	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services

2333 Shuttle Drive, Atwater, CA 95301

Certificate # 2480

Phone: (209) 384-2930 Fax: (209) 384-1507

Method: EPA 5030/8015M,8020

Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, CA 93612 Altn: Alex Cantwell

Client Project ID: 01409073 Client Project Name; Livermore Lab Reference Number: 0909054 Sample Description: Water

Extracted: 09-11-09 Analyzed: 09-11-09

Instrument ID: HP-GC1

Analyst: Jim Phillips

Reported: 09-17-09

QUALITY CONTROL DATA REPORT

ANALYTE	Gasoline	MTBE	Benzene	Toluene	Ethyl Benzene	Total Xylenes
Spike Concentration:	220	5.44	2.72	21.2	4.18	21.5
Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
LCS Batch #:	VW-9119BHP2	VW-9119BHP2	VW-9119BHP2	VW-9119BHP2	VW-9119BHP2	VW-9119BHP2
LCS % Recovery: Surrogate Recovery:	89.6% 103%	107% 110%	97.6% 110%	88.7% 110%	106% 110%	109% 110%
Control Limits:	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %
MS/MSD Batch #:	VW-9119BHP2	VW-91198HP2	VW-9119BHP2	VW-9119BHP2	VW-9119BHP2	VW-9119BHP2
Spike Concentration:	220	5.44	2.72	21.2	4.18	21.5
MS % Recovery: Surrogate Recovery:	82.5% 94.2%	113% 105%	101% 105%	89.0% 105%	102% 105%	103% 105%
MSD % Recovery: Surrogate Recovery:	87.6% 98.2%	118% 110%	106% 110%	95.6% 110%	109% 110%	111% 110%
Relative % Difference:	5.83%	3.84%	5.03%	7.14%	7.32%	7.27%
Method Blank Surrogate Recovery:	N D 92.8%	N D 103%	ND 103%	ND 103%	ND 103%	ND 103%

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

APPROVED BY:

Environmental Testing Services

Krazan & Associates, Inc.

215 West Dakota Avenue Clovis, CA 93612

Attn: Alex Cantwell

2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax. (209) 384-1507

Certificate # 2480

Client Project ID: 01409073 Client Project Name: Livermore

Client Project Name; Livermore Lab Reference Number; 0909054

Sample Description: Soil Sample Prep/Analysis Method: EPA 5030/8015B, 8021B

Lab Numbers: 0909054-02, 03, 04, 05, 06

Sampled: 09-02-09 Received: 09-09-09 Extracted: 09-10-09 Analyzed: 09-10-09

Reported: 09-17-09

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT (mg/kg)	SAMPLE ID B1@10' (mg/kg)	SAMPLE ID B1@15' (mg/kg)	SAMPLE ID B2@10' (mg/kg)	SAMPLE ID B2@15' (mg/kg)	SAMPLE ID B3@15' (mg/kg)	
MTBE	0.010	ND	ND	ND	ND	ND	
BENZENE	0.0050	ND	ND	ND	ND	ND	
TOLUENE	0.0050	ND	ND	ND	ND	ND	
ETHYLBENZENE	0.0050	ND	ND	ND	ND	ND	
TOTAL XYLENES	0.0050	ND	ND	ND	ND	ND	
GASOLINE RANGE HYDROCARBONS	1.0	ND	ND	ND	ND	ND	
Report Limit Multiplication Fac	łor.	4	1	1	1	1	

Surrogate % Recovery: Fig at any PRD as the Fig at the PRD at at the	87.8% FID 72.5% PID 78.7% FID 84.3% PID 91.6% 1 VAR-GC1 VAR-GC1
---	--

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services Certificate # 2480 2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, CA 93612 Attn: Alex Cantwell Client Project ID: 01409073 Client Project Name: Livermore Lab Reference Number: 0909054

Sample Description: Soil Sample Prep/Analysis Method: EPA 5030/8015B, 8021B

Sample Prep/Analysis Method: EPA 5030/8015E

Lab Numbers: 0909054-07, 08, 09, 10, 11

Sampled: 09-02-09 Received: 09-09-09 Extracted: 09-10-09

Analyzed: 09-10-09 Reported: 09-17-09

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT (mg/kg)	SAMPLE ID B3@20' (mg/kg)	SAMPLE ID B4@15' (mg/kg)	SAMPLE ID B4@20' (mg/kg)	SAMPLE ID B5@10' (mg/kg)	SAMPLE ID B5@15' (mg/kg)	
MTBE	0.010	ND	ND	ND	ND	ND	
BENZENE	0.0050	ND	ND	ND	ND	ND	
TOLUENE	0.0050	ND	ND	ND	ND	ND	
ETHYLBENZENE	0.0050	ND	ND	ND	ND	ND	
TOTAL XYLENES	0.0050	ND	ND	ND	ND	ND	
GASOLINE RANGE HYDROCARBONS	1.0	ND	ND	ND	ND	ND	
Report Limit Multiplication Fac	lor:	1	1	1	1	1	

Surrogate % Recovery:	FID \$1.4% / PID \$1.3%	F(0: 83 0% / P(0)H 0%	FID 82.2% / PID 92.8%	FID 82 3%/ PIO 92 4%	FID 04.4%/PID 92.5%
	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1	VAR-GC1
Instrument ID.	VAN-GOT	VAR-GC1	VAN-GC1	VAR-GC1	VAR-GU!

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services

2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

Certificate # 2480

Krazan & Associates, Inc 215 West Dakota Avenue

Clovis, CA 93612 Attn: Alex Cantwell Client Project ID: 01409073 Client Project Name: Livermore Lab Reference Number: 0909054

Sample Description: Soil

Sample Prep/Analysis Method: EPA 5030/8015B, 8021B

Lab Numbers: 0909054-12, 13, 18, 19, 20

Sampled: 09-02-09 Received: 09-09-09 Extracted: 09-10-09 Analyzed: 09-10-09

Reported: 09-17-09

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT (mg/kg)	SAMPLE ID B6@15' (mg/kg)	SAMPLE ID B6@20' (mg/kg)	SAMPLE ID B11@15' (mg/kg)	SAMPLE ID B11@20' (mg/kg)	SAMPLE ID B12@10' (mg/kg)	
MTBE	0.010	ND	ND	ND	ND	DN	
BENZENE	0.0050	ND	ND	ND	ND	ND	
TOLUENE	0.0050	ND	ND	ND	ND	ND	
ETHYLBENZENE	0.0050	ND	ND	ND	ND	ND	
TOTAL XYLENES	0.0050	ND	ND	ND	ND	ND	
GASOLINE RANGE HYDROCARBONS	1.0	ND	ND	ND	ND	ND	
Report Limit Multiplication Factor:		1	1	1	1	1	

 Surrogate % Recovery:
 FID 79.2% / PID 56.5%
 FID 75.4% / PID 62.7%
 FID 79.8% / PID 69.8%
 FID 77.3% / PID 67.4%
 FID 50.0% / PID 68.2%

 Instrument ID:
 VAR-GC1
 VAR-GC1
 VAR-GC1
 VAR-GC1
 VAR-GC1

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services

Krazan & Associates, Inc.

215 West Dakota Avenue

2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

Certificate # 2480

Clovis, CA 93612 Attn: Alex Cantwell Client Project ID: 01409073 Client Project Name: Livermore

Lab Reference Number: 0909054 Sample Description: Soil

Sample Prep/Analysis Method: EPA 5030/8015B, 8021B

Lab Numbers: 0909054-21, 22, 23, 24, 25

Sampled: See Below Received: 09-09-09 Extracted: 09-10-09 Analyzed: 09-10-09 Reported: 09-17-09

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT (mg/kg)	SAMPLE ID B12@15 (mg/kg)	SAMPLE ID B13@10' (mg/kg)	SAMPLE ID B13@15' (mg/kg)	SAMPLE ID B14@10' (mg/kg)	SAMPLE ID 814@15' (mg/kg)	
MTBE	0.010	ND	ND	ND	ND	ND	
BENZENE	0.0050	ND	ND	ND	ND	ND	
TOLUENE	0.0050	ND	ND	ND	ND	ND	
ETHYLBENZENE	0.0050	ND	ND	ND	ND	ND	
TOTAL XYLENES	0.0050	ND	ND	ND	ND	ND	
GASOLINE RANGE HYDROCARBONS	1.0	ND	ND	ND	ND	ND	
Report Limit Multiplication Fa	octor.	1	1	1	1	1	
Date Sampled:		09-02-09	09-03-09	09-03-09	09-03-09	09-03-09	

Surrogate % Recovery: Instrument ID:	FIO 72.4%/PIO 60 1% VAR-GC1	FIO 86 0% / PIO 95 3% VAR-GC1	FID. 78.5% / PID. 89.9% VAR-GC1	FID 783% (PID. 89 1% VAR-GC1	VAR-GC1	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY

Environmental Testing Services

Krazan & Associates, Inc.

215 West Dakota Avenue

2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

Certificate # 2480

Clovis, CA 93612

Attn: Alex Cantwell

Client Project ID: 01409073

Client Project Name: Livermore Lab Reference Number: 0909054

Sample Description: Soil
Sample Pren/Analysis Method: EPA 5030/8015B

Sample Prep/Analysis Method: EPA 5030/8015B, 8021B Lab Numbers: 0909054-26, 27 Extracted: 09-11-09 Analyzed: 09-11-09

Reported: 09-17-09

Sampled: 09-03-09

Received: 09-09-09

TOTAL PETROLEUM HYDROCARBONS - GASOLINE WITH BTEX DISTINCTION

ANALYTE	REPORTING LIMIT	SAMPLE ID B15@10'	SAMPLE ID B15@15'
	(mg/kg)	(mg/kg)	(mg/kg)
MTBE	0.010	ND	ND
BENZENE	0.0050	ND	ND
TOLUÉNE	0.0050	ND	ND
ETHYLBENZENE	0.0050	ND	ND
TOTAL XYLENES	0.0050	ND	ND
GASOLINE RANGE HYDROCARBONS	1.0	ND	ND
Report Limit Multiplication F	actor:	1	1

Surrogate % Recovery: Instrument ID:	FIQ 83 7% (PIQ 82 3% PIQ 87 3% (PIQ 87 4% VAR-GC1 VAR-GC1	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services Certificate #2480 2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, CA 93612 Attn: Alex Cantwell Client Project ID: 01409073 Client Project Name: Livermore Lab Reference Number: 0909054

Matrix: Soil

Analyst: Clari Cone

Method: EPA 5030/8015M,8020

Instrument ID: HP-GC1 Extracted: 09-10-09 Analyzed: 09-10-09 Reported: 09-17-09

QUALITY CONTROL DATA REPORT

ANALYTE	Gasoline	MTBE	Benzene	Toluene	Ethyl Benzene	Total Xylenes
Spike Concentration:	4.40	109	54.4	423	83.6	429
Units:	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
LCS Batch #:	VS-9109HP2	VS-9109HP2	VS-9109HP2	VS-9109HP2	VS-9109HP2	VS-9109HP2
LCS % Recovery: Surrogate Recovery:	87.6% 106%	108% 108%	99.8% 108%	87.0% 108%	99.2% 108%	101% 108%
Control Limits:	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %
LCSA/LCSB Batch #:	VS-9109HP2	VS-9109HP2	VS-9109HP2	VS-9109HP2	VS-9109HP2	VS-9109HP2
LCSA % Recovery: Surrogate Recovery:	50.9% 72.8%	80. 4 % 76.4%	74.3% 76.4%	63.7% 76.4%	69.9% 76.4%	51.9% 76.4%
LCSB % Recovery: Surrogate Recovery:	52.7% 72.9%	78.0% 76.5%	72.2% 76.5%	64.4% 76.5%	72.3% 76.5%	74.1% 76,5%
Relative % Difference:	3.19%	3.02%	2.81%	1.18%	3.24%	35.2%
Methanol Blank : Surrogate Recovery:	N D 106.9%	ND 112%	ND 112%	ND 112%	ND 112%	ND 112%

Please Note:

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

APPROVED BY:

Environmental Testing Services Certificate #2480 2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, CA 93612 Attn: Alex Cantwell Client Project ID: 01409073 Client Project Name: Livermore

Lab Reference Number: 0909054 (26, 27)

Matrix: Soil Analyst: Clari Cone Method: EPA 5030/8015M,8020

Instrument ID: HP-GC1 Extracted: 09-11-09 Analyzed: 09-11-09 Reported: 09-17-09

QUALITY CONTROL DATA REPORT

ANALYTE	Gasoline	MTBE	Benzene	Toluene	Ethyl Benzene	Total Xylenes
Spike Concentration:	4.40	109	54.4	423	83.6	429
Units:	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
LCS Batch #:	VS-9119HP2	VS-9119HP2	VS-9119HP2	VS-9119HP2	VS-9119HP2	VS-9119HP2
LCS % Recovery: Surragate Recovery:	84.4% 104%	107% 108%	81. 4% 108%	61.3% 108%	97.2 % 108%	101% 108%
Control Limits:	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %
LCSA/LCSB Batch #:	VS-9119HP2	VS-9119HP2	VS-9119HP2	VS-9119HP2	VS-9119HP2	VS-9119HP2
LCSA % Recovery: Surrogate Recovery:	78.6% 95.8%	104% 98.4%	93.7% 98.4%	83.3% 98.4%	94.7% 98.4%	95.9% 98.4%
LCSB % Recovery: Surrogale Recovery:	78.7% 95.2%	116% 97.6%	90.5% 97.6%	73.6% 97.6%	93.7% 97.6%	93.8% 97.6%
Relative % Difference:	0.196%	10.5%	3.45%	12.3%	1.08%	2.15%
Methanol Blank . Surrogale Recovery:	ND 92.5%	ND 105%	ND 105%	ND 105%	ND 105%	ND 105%

Please Note:

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

APPROVED BY

Environmental Testing Services 2333 Shuttle Drive, Atwater, CA 95301 Phone: (209) 384-2930 Certificate No. 2480 Fax: (209) 384-1507 Client Project ID: 01409073 Krazan & Assoicates, Inc. Sampled: 09-02-09 Client Project Name: Livermore 215 West Dakota Avenue Received: 09-09-09 Reference Number, 0909054 Clovis, CA 93612 Extracted: 09-14-09 Sample Description: Water Attn. Alex Cantwell Analyzed: 09-17-09 Sample Prep/Analysis Method: LUFT/EPA 8015B Reported: 09-18-09 Lab Numbers: 0909054-01

TOTAL PETROLEUM HYDROCARBONS - DIESEL RANGE

ANALYTE	REPORTING LIMIT	SAMPLE ID MW-3 (µg/L)	
DIESEL RANGE HYDROCARBONS C10->C28	50	ND	
Report Limit Multiplication F	actor.	1	

Instrument ID ²	HP-GC1

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services Certificate No. 2480 2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930

Fax: (209) 384-1507

Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, CA 93612 Attn Alex Cantwell Client Project ID: 01409073 Client Project Name: Livermore Reference Number: 0909054

Matrix: Water Analyst: Jim Phillips Method: LUFT/EPA 8015B Instrument ID: HP-GC1 Extracted: 09-14-09 Analyzed: 09-17-09 Reported: 09-18-09

QUALITY CONTROL DATA REPORT

ANALYTE	TPH-Diesel
Spike Concentration	250
Units:	ug/L
Batch #.	TPHDW-9149
Method Blank:	ND
LCSA % Recovery.	101%
LCSB % Recovery	82.9%
Control Limits:	55-130 %
Relative % Difference:	20.1%
MS/MSD Batch #.	TPHDW-9149
MS % Recovery:	See Note
MSD % Recovery:	See Note
Relative % Difference:	See Note

Note: Insufficient sample material to prepare MS/MSD samples. LCS samples prepared in duplicate.

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

APPROVED BY:

Environmental Testing Services 2333 Shuttle Drive, Atwater, CA 95301 Phone: (209) 384-2930 Certificate No. 2480 Fax: (209) 384-1507

Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, CA 93612 Attn: Alex Cantwell Client Project ID: 01409073 Client Project Name: Livermore Lab Reference Number: 0909054 Sample Description: Soil Sample Prep/Analysis Method: LUFT/EPA 8015B Lab Numbers: 0909054-02, 03, 04, 05, 06 Sampled: 09-02-09 Received: 09-09-09 Extracted: 09-10-09 Analyzed: 09-11-09 Reported: 09-17-09

TOTAL PETROLEUM HYDROCARBONS - DIESEL RANGE

ANALYTE	REPORTING LIMIT	SAMPLE ID B1@10'	SAMPLE ID B1@15'	SAMPLE ID B2@10'	SAMPLE ID B2@15'	SAMPLE ID B3@15'
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
DIESEL RANGE HYDROCARBONS C10-C28	1.0	11	6.3	ND	ND	ND
Report Limit Multiplication Fact	tor.	1	1	1	1	1

|--|

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit \times Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services 2333 Shuttle Drive, Atwater, CA 95301 Phone: (209) 384-2930 Certificate No. 2480 Fax: (209) 384-1507

Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, CA 93612 Attn: Alex Cantwell Client Project ID: 01409073 Client Project Name: Livermore Lab Reference Number: 0909054 Sample Description: Soil Sample Pren/Apalysis Method: LUI

Sample Prep/Analysis Method: LUFT/EPA 8015B Lab Numbers: 0909054-07, 08, 09, 10, 11 Sampled: 09-02-09 Received: 09-09-09 Extracted: 09-10-09 Analyzed: 09-12-09 Reported: 09-17-09

TOTAL PETROLEUM HYDROCARBONS - DIESEL RANGE

ANALYTE	REPORTING LIMIT (mg/kg)	SAMPLE ID B3@20' (mg/kg)	SAMPLE ID B4@15' (mg/kg)	SAMPLE ID B4@20' (mg/kg)	SAMPLE ID B5@10' (mg/kg)	SAMPLE ID B5@15' (mg/kg)
DIESEL RANGE HYDROCARBONS C10-C28	1.0	ND	ND ND	ND ND	ND	ND
Report Limit Multiplication Factor	or;	1	1	1	1	1

Instrument ID:	HP-GC1	HP-GC1	HP-GC1	HP-GC1	HP-GC1	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services 2333 Shuttle

Certificate No. 2480

2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, CA 93612 Attn: Alex Cantwell Client Project ID: 01409073 Client Project Name: Livermore Lab Reference Number: 0909054 Sample Description: Soil

Sample Prep/Analysis Method: LUFT/EPA 8015B Lab Numbers: 0909054-12, 13, 18, 19, 20 Sampled: 09-02-09 Received: 09-09-09 Extracted: 09-10-09 Analyzed: 09-12-09 Reported: 09-17-09

TOTAL PETROLEUM HYDROCARBONS - DIESEL RANGE

ANALYTE	REPORTING LIMIT	SAMPLE ID B6@15'	SAMPLE ID B6@20'	SAMPLE ID B11@15'	SAMPLE ID B11@20'	SAMPLE ID B12@10'
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
DIESEL RANGE HYDROCARBONS C10-C28	1.0	ND	ND	NO	ND	ND
Report Limit Multiplication Facto	r:	1	1	1	1	1

Instrument ID:	HP-GC1	HP-GC1	HP-GC1	HP-GC1	HP-GC1

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services Certificate No. 2480 2333 Shuttle Drive, Atwater, CA 95301

Phone. (209) 384-2930 Fax. (209) 384-1507

Krazan & Associates, Inc. 215 West Dakola Avenue Clovis, CA 93612 Attn. Alex Cantwell Client Project ID: 01409073 Client Project Name: Livermore Lab Reference Number: 0909054

Sample Description: Soil

Sample Prep/Analysis Method: LUFT/EPA 8015B

Lab Numbers: 0909054-21, 22, 23, 24, 25

Sampled: See Below Received: 09-09-09 Extracted: 09-10-09 Analyzed: 09-12-09

Reported: 09-17-09

TOTAL PETROLEUM HYDROCARBONS - DIESEL RANGE

ANALYTE	REPORTING LIMIT	SAMPLE ID B12@15	SAMPLE ID B13@10'	SAMPLE ID B13@15'	SAMPLE ID B14@10'	SAMPLE ID B14@15'
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
DIESEL RANGE HYDROCARBONS C10-C28	1.0	ND	ND	ND	ND	ND
Report Limit Multiplication Faci	tor:	1	1	1	1	1
Date Sampled:		09-02-09	09-03-09	09-03-09	09-03-09	09-03-09

Instrument ID:	HP-GC1	HP-GC1	HP-GC1	HP-GC1	HP-GC1	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services 2333 Shuttle Drive, Atwater, CA 95301 Phone: (209) 384-2930 Certificate No. 2480 Fax: (209) 384-1507 Client Project ID: 01409073 Krazan & Associates, Inc. Sampled: 09-03-09 215 West Dakota Avenue Client Project Name: Livermore Received: 09-09-09 Lab Reference Number: 0909054 Clovis, CA 93612 Extracted: 09-11-09 Altn Alex Cantwell Sample Description: Soil Analyzed: 09-12-09 Sample Prep/Analysis Method: LUFT/EPA 8015B Reported: 09-17-09 Lab Numbers: 0909054-26, 27

TOTAL PETROLEUM HYDROCARBONS - DIESEL RANGE

ANALYTE	REPORTING LIMIT (mg/kg)	SAMPLE ID B15@10' (mg/kg)	SAMPLE ID B15@15' (mg/kg)	
DIESEL RANGE HYDROCARBONS C10-C28	1.0	9.0	ND	
Report Limit Multiplication Factor	or	1	1	

Limeron		_		
-	Instrument ID:	HP-GC1	HP-GC1	

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services Certificate No. 2480 2333 Shuttle Drive, Atwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

Krazan & Associates, Inc 215 West Dakota Avenue Clovis, CA 93612 Attn: Alex Cantwell Client Project ID: 01409073 Client Project Name: Livermore Lab Reference Number: 0909054 Sample Description: Soil

Sample Prep/Analysis Method: LUFT/EPA 8015B

Lab Numbers: 0909054-14, 15, 16, 17, 28

Sampled: See Below Received. 09-09-09 Extracted: 09-11-09 Analyzed: 09-12-09 Reported: 09-17-09

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

ANALYTE	REPORTING LIMIT (mg/kg)	SAMPLE ID B7@5' (mg/kg)	SAMPLE ID B8@5' (mg/kg)	SAMPLE ID B9@5' (mg/kg)	SAMPLE ID B10@5' (mg/kg)	SAMPLE ID B16@5' (mg/kg)
DIESEL RANGE HYDROCARBONS C10-C22	1.0	ND	ND	ND	ND	ND
MOTOR OIL RANGE HYDROCARBONS C22-C40	2.0	ND	ND	ND	ND	ND
Report Limit Multiplication Fact	or	1	1	1	1	1
Date Sampled:		09-02-09	09-02-09	09-02-09	09-02-09	09-03-09

Instrument ID	HP-GC1	HP-GC1	HP-GC1	HP-GC1	HP-GC1

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services 2333 Shuttle Drive, Atwater, CA 95301 Phone: (209) 384-2930 Certificate No. 2480 Fax: (209) 384-1507 Krazan & Associates, Inc. Client Project ID: 01409073 Sampled: 09-03-09 Client Project Name: Livermore 215 West Dakota Avenue Received: 09-09-09 Clovis, CA 93612 Lab Reference Number: 0909054 Extracted: 09-11-09 Attn: Alex Cantwell Sample Description: Soil Analyzed: 09-12-09 Sample Prep/Analysis Method: LUFT/EPA 8015B Reported: 09-17-09 Lab Numbers: 0909054-29

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

ANALYTE	REPORTING LIMIT	SAMPLE ID
	(mg/kg)	B17@5' (mg/kg)
DIESEL RANGE HYDROCARBONS		
C10-C22	1.0	ND
MOTOR OIL RANGE		
HYDROCARBONS C22-C40	2.0	ND
Report Limit Multiplication Facto		

-		 	
Instrument ID:	HP-GC1		

Analytes reported as ND were not detected or below the Practical Quantitation Limit Practical Quantitation Limit = Reporting Limit x Report Limit Multiplication Factor

APPROVED BY:

Environmental Testing Services Certificate No. 2480 2333 Shuttle Drive, Alwater, CA 95301

Phone: (209) 384-2930 Fax: (209) 384-1507

Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, CA 93612 Altn: Alex Cantwell Client Project ID: 01409073 Client Project Name; Livermore

Lab Reference Number: 0909054 (2-13, 18-25)

Matrix: Soil Analyst: Clari Cone Method: TPH-Diesel Instrument ID: HP-GC1 Extracted: 09-10-09 Analyzed: 09-11-09 Reported: 09-17-09

QUALITY CONTROL DATA REPORT

ANALYTE	TPH-Diesel
Spike Concentration:	5.00
Units:	mg/kg
Batch #.	TPHDS-9109
Method Blank:	ND
LCS % Recovery	90.2%
Control Limits:	60-130 %
MS/MSD Batch #:	TPHDS-9109
MS % Recovery:	NA*
MSD % Recovery:	NA*
Relative % Difference:	NA*

Please Note:

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

APPROVED BY:

^{*}Recoveries not calculated due to high matrix value.

Environmental Testing Services Certificate No. 2480 2333 Shuttle Drive, Atwater, CA 95301

Phone. (209) 384-2930 Fax: (209) 384-1507

Krazan & Associates, Inc. 215 West Dakota Avenue Clovis, CA 93612

Attn: Alex Cantwell

Client Project ID: 01409073 Client Project Name: Livermore

Lab Reference Number: 0909054 (14-17, 28-29)

Matrix: Soil Analyst: Clari Cone Method: TPH-Diesel Instrument ID: HP-GC1 Extracted: 09-11-09 Analyzed: 09-13-09 Reported: 09-17-09

QUALITY CONTROL DATA REPORT

ANALYTE	TPH-Diesel
Spike Concentration:	5.00
Units:	mg/kg
Batch #;	TPHDS-9119
Method Blank:	ND
LCS % Recovery:	82.3%
Control Limits:	60-130 %
MS/MSD Batch #.	TPHDS-9119
MS % Recovery:	63.0%
MSD % Recovery:	73.3%
Relative % Difference:	15.1%

Please Note:

The LCS (Laboratory Check Sample) is a control sample of known, interferent free matrix that is fortified with representative analytes and analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery is used for validation of sample batch results. Due to matrix effects, the QC limits and recoveries for MS/MSD's are advisory only and are not used to accept or reject batch results.

APPROVED BY

 Environmental Testing Services
 2333 Shuttle Drive, Atwater, CA 95301
 Phone: (209) 384-2930

 Certificate #2480
 Fax: (209) 384-1507

 Krazan & Associates, Inc.
 Client Project ID: 01409073
 Sampled: 09-02-09

 215 West Dakota Avenue
 Client Project Name: Livermore
 Received: 09-09-09

 Clovis, CA 93612
 Sample Description: Spil
 Extracted: 09-15-09

 Attn: Alex Cantwell
 Sample Prep/Analysis Method: EPA 5030/8260
 Analyzed: 09-15-09

 Lab Numbers: 0909054-14
 Reported: 09-17-09

 Sample ID: B7@5'
 Reported: 09-17-09

VOLATILE ORGANICS - EPA METHOD 8260 GC/MS

	REPORTING	PQL	SAMPLE		REPORTING	PQL	SAMPLE
ANALYTE	LIMIT		RESULT	ANALYTE	LIMIT	1	RESULT
	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.010	0.010	ND	1,1-Dichloropropene	0.010	0.010	ND
Bromobenzene	0.010	0.010	ND	cis-1,3-Dichloropropene	0.010	0.010	ND
Bromochloromethane	0.010	0.010	ND	trans-1,3-Dichloropropene	0.010	0.010	ND
Bromodichloromethane	0.010	0.010	ND	Ethylbenzene	0.010	0.010	ND
Bromoform	0.010	0.010	ND	Hexachlorobutadiene	0.010	0.010	ND
Bromomethane	0.010	0.010	ND	Isopropylbenzene	0.010_	0.010	ND
n-Butylbenzene	0.010	0.010	ND	p-Isopropyltoluene	0.010	0.010	ND
sec-Butylbenzene	0.010	0.010	ND	Methylene chloride	0.020	0.020	ND
tert-Butylbenzene	0.010	0.010	ND	Napthalene	0.020	0.020	ND
Carbon tetrachloride	0.010	0.010	ND	n-Propylbenzene	0.010	0.010	ND
Chlorobenzene	0.010	0.010	ND	Styrene	0.010	0.010	NĎ
Chlorodibromomethane	0.010	0.010	ND	1,1,1,2-Tetrachloroethane	0.010	0.010	ND
Chloroethane	0.010	0.010	ND	1,1,2,2,-Tetrachlorethane	0.010	0.010	ND
Chloroform	0.010	0.010	ND	Tetrachloroethene	0.010	0.010	ND
Chioromethane	0.010	0.010	ND	Toluene	0.010	0.010	ND
2-Chiorotoluene	0.010	0.010	ND	1,2,3-Trichlorobenzene	0.010	0.010	ND
4-Chlorotoluene	0.010	0.010	ND	1,2,4-Trichlorobenzene	0.010	0.010	ND
1,2-Dibromo-3-chloropropane	0.020	0.020	ND	1,1,1-Trichloroethane	0.010	0.010	ND
1.2-Dibromoethane (EDB)	0.010	0.010	ND	1,1,2-Trichloroethane	0.010	0.010	ND
Dibromomethane	0.010	0.010	ND	Trichloroethene	0.010	0.010	ND
1,2-Dichlorobenzene	0.010	0.010	ND	Trichlorofluoromethane	0.010	0,010	ND
1,3-Dichlorobenzene	0.010	0.010	ND	1,2,3-Trichloropropane	0.010	0.010	ND
1,4-Dichlorobenzene	0.010	0.010	ND	1,2,4-Trimethylbenzene	0.010	0.010	ND
Dichlorodifluoromethane	0.010	0.010	ND	1,3,5-Trimethylbenzene	0.010	0.010	ND
1,1-Dichloroethane	0.010	0.010	ND	Vinyl Chloride	0.010	0.010	ND
1,2-Dichloroethane (1,2-DCA)	0.010	0.010	ND	Xylenes, total	0.010	0.010	ND
1,1-Dichtoroethene	0.010	0.010	ND	Oxygenates			
cis-1,2-Dichloroethene	0.010	0.010	ND	tert-Butyl Alcohol (tBA)	0,80	0.80	ND
trans-1,2-Dichloroethene	0.010	0,010	ND	Methyl tert-Butyl Ether (MTBE)	0.010	0.010	ND
1,2-Dichloropropane	0.010	0.010	ND	Di-Isopropyl Ether (DIPE)	0.010	0.010	ND
1,3-Dichloropropane	0.010	0.010	ND	Ethyl tert-Butyl Ether (EtBE)	0.010	0.010	ND
2,2-Dichloropropane	0.010	0.010	ND	tert-Amyl Methy Ether (tAME)	0,010	0.010	ND

		Surrogate Recoveries		
Dibromofluoromethane	101%	Toluene-d8	107%	
1,2-Dichloroethane-d4	105%	p-Bromofluorobenzene	108%	

Instrument ID: VARIAN MS

Analytes reported as ND were not detected or below the Practical Quantitation Limit.

Practical Quantitation Limit (PQL) = Reporting Limit x Dilution Factor

(mg/kg) = milligrams per kilogram or parts per million (ppm)

APPROVED BY:

Environmental Testing Services 2333 Shuttle Drive, Atwater, CA 95301 Phone: (209) 384-2930 Certificate #2480 Fax: (209) 384-1507

 Krazan & Associates, Inc.
 Client Project ID: 01409073
 Sampled: 09-02-09

 215 West Dakota Avenue
 Client Project Name: Livermore
 Received: 09-09-09

 Clovis, CA 93612
 Sample Description: Soil
 Extracted: 09-15-09

 Attn. Alex Cantwell
 Sample Prep/Analysis Method: EPA 5030/8260
 Analyzed: 09-15-09

 Lab Numbers: 0909054-15
 Reported: 09-17-09

 Sample ID: B8@5"
 Reported: 09-17-09

VOLATILE ORGANICS - EPA METHOD 8260 GC/MS

							to make
	REPORTING	PQL	SAMPLE		REPORTING	PQL	SAMPLE
ANALYTE	LIMIT		RESULT	ANALYTE	LIMIT	1	RESULT
	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.010	0.010	ND	1,1-Dichloropropene	0.010	0.010	ND
Bromobenzene	0.010	0.010	ND	cis-1,3-Dichloropropene	0.010	0.010	ND
Bromochloromethane	0.010	0.010	ND	trans-1,3-Dichloropropene	0.010	0.010	ND
Bromodichloromethane	0.010	0.010	ND	Ethylbenzene	0.010	0.010	ND
Bramoform	0.010	0.010	ND	Hexachlorobutadiene	0.010	0.010	ND
Bromomethane	0.010	0.010	ND	Isopropylbenzene	0.010	0.010	ND
n-Bulylbenzene	0.010	0.010	ND	p-Isopropyltoluene	0.010	0.010	ND
sec-Butylbenzene	0.010	0.010	ND	Methylene chloride	0.020	0.020	ND
tert-Butylbenzene	0.010	0.010	ND	Napthalene	0.020	0.020	ND
Carbon tetrachloride	0.010	0.010	ND	n-Propylbenzene	0.010	0.010	ND
Chlorobenzene	0.010	0.010	ND	Styrene	0.010	0.010	ND
Chlorodibromomethane	0.010	0.010	ND	1,1,1,2-Tetrachloroethane	0.010	0.010	ND
Chloroethane	0.010	0.010	ND	1,1,2,2,-Tetrachlorethane	0.010	0.010	ND
Chloroform	0.010	0.010	ND	Tetrachloroethene	0.010	0.010	ND
Chloromethane	0.010	0.010	ND	Toluene	0.010	0.010	ND
2-Chiorotoluene	0.010	0.010	ND	1,2,3-Trichlorobenzene	0.010	0.010	ND
4-Chlorotoluene	0.010	0.010	NO	1,2,4-Trichlorobenzene	0.010	0.010	ND
1,2-Dibromo-3-chloropropane	0.020	0,020	ND	1,1,1-Trichloroethane	0.010	0.010	ND
1,2-Dibromoethane (EDB)	0.010	0.010	ND	1,1,2-Trichloroethane	0.010	0.010	ND
Dibromomethane	0.010	0.010	ND	Trichloroethene	0.010	0.010	ND
1,2-Dichlorobenzene	0.010	0.010	ND	Trichlorofluoromethane	0.010	0.010	ND
1,3-Dichlorobenzene	0.010	0.010	ND	1,2,3-Trichloropropane	0.010	0.010	ND
1,4-Dichlorobenzene	0.010	0.010	ND	1,2,4-Trimethylbenzene	0.010	0.010	ND
Dichlorodifluoromethane	0.010	0.010	ND	1,3,5-Trimethylbenzene	0.010	0.010	ND
1,1-Dichloroelhane	0.010	0.010	ND	Vinyl Chloride	0.010	0.010	ND
1,2-Dichloroethane (1,2-DCA)	0.010	0.010	ND	Xylenes, total	0.010	0.010	ND
1,1-Dichloroethene	0.010	0.010	ND	Oxygenates			
cis-1,2-Dichloroethene	0.010	0.010	ND	tert-Butyl Alcohol (tBA)	0.80	0.80	ND
trans-1,2-Dichloroethene	0.010	0.010	ND	Methyl tert-Bulyl Ether (MTBE)	0.010	0.010	ND
1,2-Dichloropropane	0.010	0.010	ND	Di-Isopropyl Ether (DIPE)	0.010	0.010	ND
1,3-Dichloropropane	0.010	0.010	ND	Ethyl tert-Butyl Ether (EtBE)	0.010	0.010	ND
2.2-Dichloropropane	0.010	0.010	ND	tert-Amyl Methy Ether (tAME)	0.010	0.010	ND

		Surrogate Recoveries		
Dibromofluoromethane	99.6%	Toluene-d8	110%	
1,2-Dichloroethane-d4	99.5%	p-Bromofluorobenzene	113%	

Instrument ID: VARIAN MS

Analytes reported as ND were not detected or below the Practical Quantitation Limit.

Practical Quantitation Limit (PQL) = Reporting Limit x Dilution Factor

(mg/kg) = milligrams per kilogram or parts per million (ppm)

APPROVED BY:

Environmental Testing Services 2333 Shuttle Drive, Atwater, CA 9530: Phone: (209) 384-2930 Certificate #2480 Fax: (209) 384-1507

 Krazan & Associates, Inc.
 Client Project ID: 01409073
 Sampled: 09-02-09

 215 West Dakota Avenue
 Client Project Name: Livermore
 Received: 09-09-09

 Clovis, CA 93612
 Sample Description: Soil
 Extracted: 09-15-09

 Attn: Alex Cantwell
 Sample Prep/Analysis Method: EPA 5030/8260
 Analyzed: 09-15-09

 Lab Numbers: 0909054-16
 Reported: 09-17-09

 Sample ID: B9@5'

VOLATILE ORGANICS - EPA METHOD 8260 GC/MS

	REPORTING	PQL	SAMPLE		REPORTING	PQL	SAMPLE
ANALYTE	LIMIT		RESULT	ANALYTE	LIMIT		RESULT
	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.010	0.010	ND	1,1-Dichloropropene	0.010	0.010	ND
Bromobenzene	0.010	0.010	ND	cis-1,3-Dichloropropene	0.010	0.010	ND
Bromochloromethane	0.010	0.010	ND	trans-1,3-Dichloropropene	0.010	0.010	ND
Bromodichloromethane	0.010	0.010	ND	Ethylbenzene	0.010	0.010	ND
Bromoform	0.010	0.010	ND	Hexachlorobutadiene	0.010	0.010	ND
Bromomethane	0.010	0.010	ND	Isopropylbenzene	0.010	0.010	ND
n-Butylbenzene	0.010	0.010	ND	p-Isopropyltoluene	0.010	0.010	ND
sec-Butylbenzene	0.010	0.010	ND	Methylene chloride	0.020	0.020	ND
tert-Butylbenzene	0.010	0.010	ND	Napthalene	0.020	0.020	ND
Carbon tetrachloride	0.010	0.010	ND	n-Propylbenzene	0.010	0.010	ND
Chlorobenzene	0.010	0.010	ND	Styrene	0.010	0.010	ND
Chlorodibromomethane	0.010	0.010	ND	1,1,1,2-Tetrachloroethane	0.010	0.010	ND
Chloroethane	0.010	0.010	ND	1,1,2,2,-Tetrachlorethane	0.010	0.010	ND
Chloroform	0.010	0.010	ND	Tetrachioroethene	0.010	0.010	ND
Chloromethane	0.010	0.010	ND	Toluene	0.010	0.010	ND
2-Chlorotoluene	0.010	0.010	ND	1,2,3-Trichlorobenzene	0.010	0.010	ND
4-Chlorotoluene	0.010	0.010	ND	1,2,4-Trichlorobenzene	0.010	0.010	ND
1,2-Dibromo-3-chloropropane	0.020	0.020	ND	1,1,1-Trichloroethane	0.010	0.010	ND
1,2-Dibromoethane (EDB)	0.010	0,010	ND	1,1,2-Trichloroethane	0.010	0.010	ND
Dibromomethane	0.010	0.010	ND	Trichloroethene	0.010	0.010	ND
1.2-Dichlorobenzene	0.010	0.010	ND	Trichlorofluoromethane	0.010	0.010	ND
1,3-Dichlorobenzene	0.010	0.010	ND	1,2,3-Trichloropropane	0.010	0.010	ND
1,4-Dichlorobenzene	0.010	0.010	ND	1,2,4-Trimethylbenzene	0.010	0.010	ND
Dichlorodifluoromethane	0.010	0.010	ND	1,3,5-Trimethylbenzene	0.010	0,010	ND
1.1-Dichloroethane	0.010	0.010	ND	Vinyl Chloride	0.010	0.010	ND
1,2-Dichloroethane (1,2-DCA)	0.010	0.010	ND	Xylenes, total	0.010	0.010	ND
1,1-Dichloroethene	0.010	0.010	ND	Oxygenates			
cis-1,2-Dichloroethene	0.010	0.010	ND	tert-Butyl Alcohol (IBA)	0.80	0.80	ND
trans-1,2-Dichloroethene	0.010	0.010	ND	Methyl tert-Butyl Ether (MTBE)	0.010	0.010	ND
1,2-Dichloropropane	0.010	0.010	ND	Di-Isopropyl Ether (DIPE)	0.010	0.010	ND
1,3-Dichloropropane	0.010	0.010	ND	Ethyl tert-Butyl Ether (EtBE)	0.010	0.010	ND
2.2-Dichloropropane	0.010	0.010	ND	tert-Amy! Methy Ether (tAME)	0.010	0.010	ND

		Surrogate Recoveries		
Dibromoflucromethane	104%	Toluene-d8	109%	
1,2-Dichloroethane-d4	116%	p-Bromofluorobenzene	114%	

hastrument ID: VARIAN MS

Analytes reported as ND were not detected or below the Practical Quantitation Limit.

Practical Quantitation Limit (PQL) = Reporting Limit x Dilution Factor

(mg/kg) = milligrams per kilogram or parts per million (ppm)

APPROVED BY.

Environmental Testing Services 2333 Shutlle Drive, Atwater, CA 95301 Phone: (209) 384-2930 Certificate #2480 Fax: (209) 384-1507

 Krazan & Associates, Inc.
 Client Project ID: 01409073
 Sampled: 09-02-09

 215 West Dakota Avenue
 Client Project Name: Livermore
 Received: 09-09-09

 Clovis, CA 93612
 Sample Description: Soil
 Extracted: 09-15-09

 Attn: Alex Cantwell
 Sample Prep/Analysis Method: EPA 5030/8260
 Analyzed: 09-15-09

 Lab Numbers: 0909054-17
 Reported: 09-17-09

 Sample ID: B10@5:
 Reported: 09-17-09

VOLATILE ORGANICS - EPA METHOD 8260 GC/MS

	REPORTING	PQL	SAMPLE		REPORTING	PQL	SAMPLE
ANALYTE	LIMIT		RESULT	ANALYTE	LIMIT		RESULT
	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.010	0.010	ND	1,1-Dichloropropene	0.010	0.010	ND
Bromobenzene	0.010	0.010	ND	cis-1,3-Dichloropropene	0.010	0,010	ND
Bromochloromethane	0.010	0.010	ND	trans-1,3-Dichloropropene	0.010	0.010	ND
Bromodichloromethane	0.010	0.010	ND	Ethylbenzene	0.010	0.010	ND
Bromoform	0.010	0.010	ND	Hexachlorobutadiene	0.010	0.010	ND
Bromomethane	0.010	0.010	NO	Isopropylbenzene	0.010	0.010	ND
n-Butylbenzene	0:010	0.010	ND	p-Isopropyltoluene	0.010	0.010	ND
sec-Butylbenzene	0.010	0,010	NO	Methylene chloride	0.020	0.020	ND
tert-Butylbenzene	0.010	0.010	ND	Napthalene	0.020	0.020	ND
Carbon tetrachloride	0.010	0.010	ND	n-Propylbenzene	0.010	0.010	NO
Chlorobenzene	0.010	0.010	ND	Styrene	0.010	0.010	NO_
Chlorodibromomethane	0.010	0.010	ND	1,1,1.2-Tetrachloroethane	0.010	0.010	ON
Chloroethane	0.010	0.010	ND	1,1,2,2,-Tetrachlorethane	0.010	0,010	ND
Chloroform	0.010	0.010	ND	Tetrachloroethene	0.010	0.010	ND
Chloromethane	0.010	0.010	ND	Toluene	0.010	0.010	ND
2-Chlorotoluene	0,010	0.010	ND	1.2.3-Trichlorobenzene	0.010	0.010	ND
4-Chlorotoluene	0.010	0.010	ND	1,2,4-Trichlorobenzene	0.010	0.010	NO
1,2-Dibromo-3-chloropropane	0.020	0.020	ND	1,1,1-Trichloroethane	0.010	0.010	ND
1,2-Dibromoethane (EDB)	0,010	0.010	ND	1,1,2-Trichloroethane	0.010	0.010	ND
Dibromomethane	0.010	0.010	ND	Trichloroethene	0.010	0.010	ND
1,2-Dichlorobenzene	0.010	0.010	ND	Trichlorofluoromethane	0.010	0.010	ND
1,3-Dichlorobenzene	0.010	0.010	ND	1,2,3-Trichloropropane	0.010	0.010	ND
1,4-Dichlorobenzene	0.010	0.010	ND	1,2,4-Trimethylbenzene	0.010	0.010	ND
Dichlorodifluoromethane	0.010	0.010	D	1,3,5-Trimethylbenzene	0.010	0.010	ND
1.1-Dichloroethane	0.010	0.010	DA	Vinyl Chloride	0.010	0.010	ND
1,2-Dichloroethane (1,2-DCA)	0.010	0.010	ND	Xylenes, total	0.010	0.010	ND
1.1-Dichloroethene	0.010	0.010	ND	Oxygenates			2.70
cis-1,2-Dichloroethene	0.010	0.010	ND	tert-Butyl Alcohol (tBA)	0.80	0.80	ND
trans-1,2-Dichloroethene	0.010	0.010	ND	Methyl tert-Butyl Ether (MTBE)	0.010	0.010	ND
1,2-Dichloropropane	0.010	0.010	ND	Di-Isopropyl Ether (DIPE)	0.010	0.010	ND
1,3-Dichloropropane	. 0.010	0.010	ND	Ethyl tert-Bulyl Ether (EtBE)	0.010	0.010	_ ND
2,2-Dichloropropane	0.010	0.010	ND	tert-Amyl Methy Ether (tAME)	0.010	0.010	ND

		Surrogate Recoveries		
Dibromofluoromethane	91.5%	Taluene-d8	101%	
1,2-Dichloroethane-d4	102%	p-Bromofluorobenzene	118%	

Instrument ID: VARIAN MS

Analytes reported as ND were not detected or below the Practical Quantitation Limit.

Practical Quantitation Limit (PQL) = Reporting Limit x Dilution Factor

(mg/kg) = milligrams per kilogram or parts per million (ppm)

APPROVED BY:

Attn: Alex Cantwell

Certificate #2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax: (209) 384-1507
Krazan & Associates, Inc.	Client Project ID: 01409073	Sampled: 09-03-09
215 West Dakota Avenue	Client Project Name: Livermore	Received: 09-09-09
Clovis, CA 93612	Sample Description: Soil	Extracted: 09-15-09

VOLATILE ORGANICS - EPA METHOD 8260 GC/MS

Sample Prep/Analysis Method: EPA 5030/8260

Analyzed: 09-15-09

Reported: 09-17-09

Lab Numbers: 0909054-28

Sample ID: 816@5

	REPORTING	PQL	SAMPLE		REPORTING	PQL	SAMPLE
ANALYTE	LIMIT		RESULT	ANALYTE	LIMIT		RESULT
	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg) _
Benzene	0.010	0.010	DN	1,1-Dichloropropene	0.010	0.010	ND
Bromobenzene	0.010	0.010	ND	cis-1,3-Dichloropropene	0.010	0.010	ND
Bromochloromethane	0.010	0.010	ND	trans-1,3-Dichloropropene	0.010	0.010	ND
Bromodichloromethane	0.010	0.010	ND	Ethylbenzene	0.010	0.010	ND
Bromoform	0.010	0.010	ND	Hexachlorobutadiene	0.010	0.010	ND
Bromomethane	0.010	0,010	NO	Isopropyibenzene	0.010	0.010	ND
n-Bulylbenzene	0.010	0.010	ND	p-Isapropyltaluene	0.010	0.010	ND
sec-Butylbenzene	0.010	0.010	ND	Methylene chloride	0.020	0.020	ND
tert-Butylbenzene	0.010	0.010	ND	Napthalene	0.020	0.020	ND
Carbon tetrachloride	0.010	0.010	ND	n-Propyibenzene	0.010	0.010	ND
Chlorobenzene	0.010	0.010	ND	Styrene	0.010	0.010	ND
Chlorodibromomethane	0.010	0.010	ND	1,1,1,2-Tetrachloroethane	0.010	0.010	ND
Chloroethane	0,010	0.010	ND	1.1,2,2,-Tetrachlorethane	0.010	0.010	ND
Chloroform	0.010	0.010	ND	Tetrachloroethene	0.010	0.010	ND
Chloromethane	0.010	0.010	ND	Toluene	0.010	0.010	ND
2-Chlorotoluene	0.010	0.010	ND	1.2,3-Trichlorobenzene	0.010	0.010	ND
4-Chlorotoluene	0,010	0.010	ND	1,2,4-Trichlorobenzene	0.010	0.010	ND
1.2-Dibromo-3-chloropropane	0.020	0.020	ND	1,1,1-Trichloroethane	0.010	0.010	ND
1,2-Dibromoethane (EDB)	0.010	0.010	ND	1,1,2-Trichloroethane	0.010	0.010	ND
Dibromomethane	0.010	0.010	ND	Trichloroethene	0.010	0.010	ND
1,2-Dichlorobenzene	0.010	0.010	ND	Trichlorofluoromethane	0.010	0.010	ND
1,3-Dichlorobenzene	0.010	0.010	ND	1,2,3-Trichloropropane	0.010	0.010	ND
1,4-Dichlorobenzene	0.010	0.010	ND	1,2,4-Trimethylbenzene	0.010	0.010	ND
Dichlorodifluoromethane	0.010	0.010	ND	1,3,5-Trimethylbenzene	0.010	0.010	ND
1,1-Dichloroethane	0.010	0.010	ND	Vinyl Chloride	0.010	0.010	ND
1,2-Dichloroethane (1,2-DCA)	0.010	0.010	ND	Xylenes, total	0.010	0.010	ND
1,1-Dichloroethene	0.010	0.010	ND	Oxygenates			
cis-1,2-Dichloroethene	0.010	0.010	ND	tert-Butyl Alcohol (tBA)	0.80	0.80	ND
trans-1,2-Dichloroethene	0.010	0.010	ND	Methyl tert-Butyl Ether (MTBE)	0.010	0.010	ND
1,2-Dichloropropane	0.010	0.010	ND	Di-Isopropyl Ether (DIPE)	0.010	0.010	ND
1,3-Dichloropropane	0.010	0.010	ND	Ethyl tert-Butyl Ether (EtBE)	0.010	0.010	ND
2,2-Dichloropropane	0.010	0.010	ND	tert-Amyl Methy Ether (tAME)	0.010	0.010	ND

Dibromofluoromethane 99.6%	Toluene-d8	106%
1,2-Dichloroethane-d4 101%	p-Bromofluorobenzene	111%

Instrument ID, WARIAN MS

Analytes reported as ND were not detected or below the Practical Quantitation Limit

Practical Quantitation Limit (PQL) = Reporting Limit x Dilution Factor

(mg/kg) = milligrams per kilogram or parts per million (ppm)

APPROVED BY:

Environmental Testing Services Certificate #2480	2333 Shuttle Drive, Atwater, CA 95301	Phone: (209) 384-2930 Fax. (209) 384-1507

 Krazan & Associates, Inc.
 Client Project ID: 01409073
 Sampled: 09-03-09

 215 West Dakota Avenue
 Client Project Name: Livermore
 Received: 09-09-09

 Clovis, CA 93612
 Sample Description: Soil
 Extracted: 09-15-09

 Attn: Alex Cantwell
 Sample Prep/Analysis Method: EPA 5030/8260
 Analyzed: 09-15-09

 Lab Numbers: 0909054-29
 Reported: 09-17-09

 Sample ID: B17@5'
 Sample Prep/Analysis Method: EPA 5030/8260

VOLATILE ORGANICS - EPA METHOD 8260 GC/MS

	REPORTING	PQL	SAMPLE		REPORTING	PQL	SAMPLE
ANALYTE	LIMIT		RESULT	ANALYTE	LIMIT		RESULT
	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.010	0.010	ND	1,1-Dichloropropene	0.010	0.010	ND
Bromobenzene	0.010	0.010	ND	cis-1,3-Dichloropropene	0.010	0.010	ND
Bromochloromethane	0.010	0.010	ND	trans-1,3-Dichloropropene	0.010	0.010	ND
Bromodichloromethane	0.010	0.010	ND	Ethylbenzene	0.010	0.010	ND
Bromoform	0.010	0.010	ND	Hexachlorobutadiene	0.010	0.010	ND
Bromomethane	0.010	0.010	ND	Isopropylbenzene	0.010	0.010	ND
n-Butylbenzene	0.010	0.010	NO	p-Isopropyltoluene	0.010	0.010	ND
sec-Butylbenzene	0.010	0.010	ND	Methylene chloride	0.020	0.020	ND
tert-Butylbenzene	0.010	0.010	NO	Napthalene	0.020	0.020	ND
Carbon tetrachloride	0.010	0.010	ND	n-Propylbenzene	0.010	0.010	ND
Chlorobenzene	0.010	0.010	ND	Styrene	0.010	0,010	ND
Chlorodibromomethane	0.010	0.010	ND	1,1,1,2-Tetrachloroethane	0,010	0.010	ND
Chloroethane	0.010	0.010	ND	1,1,2,2,-Tetrachlorethane	0.010	0.010	ND
Chloroform	0.010	0.010	ND	Tetrachloroethene	0.010	0.010	ND
Chloromethane	0,010	0.010	ND	Toluene	0.010	0.010	ND
2-Chlorotoluene	0.010	0.010	ND	1,2,3-Trichlorobenzene	0.010	0.010	ND
4-Chlorololuene	0.010	0.010	ND	1,2,4-Trichlorobenzene	0.010	0.010	ND
1,2-Dibromo-3-chloropropane	0.020	0.020	ND	1,1,1-Trichloroethane	0.010	0.010	ND
1,2-Dibromoethane (EDB)	0.010	0.010	ND	1,1,2-Trichloroethane	0.010	0.010	ND
Dibromomethane	0.010	0.010	ND	Trichloroethene	0.010	0.010	ND
1,2-Dichlorobenzene	0.010	0.010	ND	Trichlorofluoromethane	0.010	0.010	ND
1,3-Dichlorobenzene	0.010	0.010	ND	1,2,3-Trichtoropropane	0.010	0.010	ND
1.4-Dichlorobenzene	0.010	0.010	ND	1,2,4-Trimethylbenzene	0.010	0.010	ND
Dichlorodifluoromethane	0.010	0.010	ND	1,3,5-Trimethylbenzene	0.010	0.010	ND
1.1-Dichloroethane	0.010	0.010	ND	Vinyl Chloride	0,010	0.010	ND
1,2-Dichloroethane (1,2-DCA)	0.010	0.010	ND	Xylenes, total	0.010	0.010	ND
1,1-Dichloroethene	0.010	0.010	ND	Oxygenates			
cis-1,2-Dichloroethene	0.010	0.010	DN	tert-Butyl Alcohol (tBA)	0.80	0.80	ND
trans-1,2-Dichloroethene	0.010	0.010	ND	Methyl tert-Butyl Ether (MTBE)	0.010	0.010	ND
1,2-Dichloropropane	0.010	0.010	ND	Di-Isopropyl Ether (DIPE)	0.010	0.010	ND
1,3-Dichloropropane	0.010	0.010	ND	Ethyl tert-Butyl Ether (EtBE)	0.010	0.010	ND
2.2-Dichloropropane	0.010	0.010	ND	tert-Amyl Methy Ether (tAME)	0.010	0.010	ND

Surrogate Recoveries									
Dibromofluoromethane	95.3%	Toluene-d8	99.0%						
1,2-Dichloroethane-d4	98.4%	p-Bromofluorobenzene	108%						

Instrument ID: VARIAN MS

Analytes reported as ND were not detected or below the Practical Quantitation Limit.

Practical Quantitation Limit (PQL) = Reporting Limit x Dilution Factor

(mg/kg) = milligrams per kilogram or parts per million (ppm)

APPROVED BY

Environmental Testing Services 2333 Shuttle Drive, Atwater, CA 95301 Phone: (209) 384-2930 Certificate #2480 Fax: (209) 384-1507

Krazan & Associates, Inc. Client Project ID: 01409073 Method: EPA 5030/8260 Client Project Name: Livermore Instrument ID: VARIAN MS 215 West Dakota Avenue Lab Reference Number: 0909054 09-15-09 Clovis, CA 93612 Prepared: Sample Description: Soil Analyzed: 09-15-09 Attn: Alex Cantwell Sample Prep/Analysis Method: EPA 5030/8260B Reported: 09-17-09 Analyst: C. Cone

QUALITY CONTROL DATA REPORT

SPIKE ID: VSMS-9159

	Reporting	BLANK	Spiking	Control	%R
	Limit	Result	Level	Spike	Limits
	mg/Kg	mg/Kg	mg/Kg	%R	
COMPOUNDS					
I-Butyl Alcohol (t-BA)	0.80	ND	3.0	113%	45.9 - 164.2
Methyl t-butyl ether (MTBE)	0.010	ND	0.10	118%	52.7 - 143.2
Diisopropyl ether (DIPE)	0.010	ND	0.10	119%	50.0 - 152.9
Ethyl t-Butyl ether (ETBE)	0.010	ND	0.10	112%	42.0 - 155.8
t-Amyl methyl ether (TAME)	0.010	ND	0.10	118%	39.5 ~ 154.3
1,2-Dichloroethane (1,2-DCA)	0.010	ND	0.10	105%	49.6 - 166.5
Ethylene dibromide (EDB)	0.010	ND	0.10	110%	68.2 - 134.0
1,1-Dichloroethene (1,1,DCE)	0.010	ND	0.10	106%	50.9 - 160.7
Benzene	0.010	ND	0.10	106%	66.6 - 144.6
Trichloroethene (TCE)	0.010	ND	0.10	100%	65.8 - 150.0
Toluene	0.010	ND	0.10	102%	72.7 - 138.3
Chlorobenzene	0.010	ND	0.10	103%	66.5 - 142.2
Surrogate:					
Dibromofluoromethane	0.010	99.1%	0,40	96.5%	59.1 - 167.9
1,2-Dichloroethane-d4	0.010	104%	0.40	102%	65.2 - 148.6
Toluene-d8	0.010	107%	0.40	107%	74.3 - 141.2
4-Bromofluorobenzene	0.010	110%	0.40	96.3%	79.7 - 128.9

	Spiking Level mg/Kg	MATRIX SPIKE %R	MATRIX SPIKE DUP %R	%R Limits	%RPD
COMPOUNDS					
t-Butyl Alcohol (t-BA)	3.0	120%	127%	35.7 - 169.9	5.56%
Methyl t-butyl ether (MTBE)	0.10	91.2%	108%	46.6 - 144.2	17.2%
Diisopropyl ether (DIPE)	0.10	90.0%	115%	56.5 ~ 125.2	24.2%
Ethyl t-Butyl ether (ETBE)	0.10	89.2%	115%	57.1 - 127.9	25.1%
t-Amyl methyl ether (TAME)	0.10	95.6%	113%	54.9 - 117.2	16.5%
1,2-Dichloroethane (1,2-DCA)	0.10	76.0%	91.2%	48.1 - 144.3	18.2%
Ethylene dibromide (EOB)	0.10	98.0%	106%	53.3 - 132.8	7.47%
1,1-Dichloroethene (1,1,DCE)	0.10	100%	116%	22.0 - 158.9	14.0%
Benzene	0.10	92.0%	110%	61 1 - 124.9	17.0%
Trichloroethene (TCE)	0.10	126%	156%	52.7 - 142.3	21.0%
Toluene	0.10	87.6%	104%	56.2 - 122.3	16.4%
Chlorobenzene	0.10	82.4%	101%	53.8 - 132.7	19.9%
Surrogate:					
Dibromofluoromethane	0.40	98.2%	101%	52.0 - 154.4	3.01%
1,2-Dichloroethane-d4	0.40	110%	100%	55.7 - 147.1	9.41%
Toluene-d8	0.40	104%	114%	61.0 - 134.2	9.21%
4-Bromofluorobenzene	0.40	105%	101%	47.9 - 144.0	3.97%

APPROVED BY:

 Castle Analytical Labs
 Client Project ID: #0909054/Livermore
 Date Sampled: 09/02/09-09/03/09

 2333 Shuttle Drive Bldg 908/909
 Date Received 09/11/09

 Client Contact: Clari Cone
 Date Extracted 09/11/09

 Atwater. CA 95301
 Client P.O.:
 Date Analyzed 09/15/09

CAM / CCR 17 Metals*

Lab ID	0909317-001A	0909317-002A	0909317-003A	0909317-004A	Reporting Lin	uit for DF -1,
Client ID	B7:@5'	B8@5'	B9@5'	B10@5'	ND means i above the re	
Matrix	S	S	S	S	S	w
Extraction Type	TOTAL	TOTAL	TOTAL	TOTAL	mg/Kg	mg/L

ICP-MS Metals, Concentration*

Analytical Method: 6020A	Extr.	ection Method: SW30.	50B		Work Order	0909317
Dilution Factor	1	1	l l		1	1
Antimony	ND	ND	0.50	ND	0.5	NA
Arsenic	4 }	4.5	5.3	59	0.5	NA
Barium	140	011	290	340	5.0	NA
Beryllium	ND	ND	0 56	0.53	0.5	NA
Cadmium	ND	ND	ND	ND	0.25	NA
Chromium	30	33	48	42	0.5	NA
Cobalt	8 !	9.3	11	16	0.5	NA
Copper	10	14	21	26	0.5	NA
Lead	5.2	5.4	7.4	7 8	0.5	NA
Mercury	ND	ND	מא	ND	0.05	NA
Molybdegum	0.55	ND	ND	ND	0.5	NA
Nickel	32	31	46	. 44	0.5	NA
Selenium	ИD	ND	ND	ND	0.5	NA
Silver	ND	ND	ND	ND	0.5	NA
Thallium	ND	ND	ND	ND	0.5	NA
Vanadium	42_	42	57	61	U 5	NA
7.inc	36	38	55	62	5.0	NA
%SS	102	107	(02	106		

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range, ND means not detected above the reporting limit, N/A means not applicable to this sample or instrument

TOTAL = acid digestion

WET = Waste Extraction Test (STLC)

DI WET = Waste Extraction Test using de-ionized water.

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web. www mccampbell.com E-mail: man@mccampbell.com
Telephone 877-252-9262 Fax: 925-252-9269

Castle Analytical Labs	Client Project ID: #0909054/Livermore	Date Sampled: 09/02/09-09/03/09
2333 Shuttle Drive Bldg 908/909		Date Received 09/11/09
2.155 Silutte Diffe Blag 700/707	Client Contact: Clari Cone	Date Extracted 09/11/09
Atwater, CA 95301	Client P.O.:	Date Analyzed 09/15/09

CAM / CCR 17 Metals*

Lab ID	0909317-005A	0909317-006A	Reporting Limit for DF =1 ND means not detected			
Client ID	B16@5'	B17@5'	ND means i above the re			
Matrix	S	S	- 5	W		
Extraction Type	TOTAL	TOTAL	mg/Kg	mg/L		

ICP-MS Metals, Concentration*

Analytical Method 6020A		raction Method SW3050B	Work Order:	0909317	
Dilution Factor	1	1		l	
Antimony	ND	ND	0.5	NΛ	
Arsenic	4.1	4 9	0.5	NA	
Barron	160	210	5.0	NA	
Beryllium	ND	ИĎ	0.5	NA	
Cadmium	ИD	ND	0.25	NA	
Chromium	38	37	0.5	NA	
Cohalt	8 7	9.1	0.5	ΝA	
Copper	15	17	0.5	NA	
Lead	5 9	6.2	0.5	NA	
Mercury	ND	ND	0.05	NA	
Mulybdenum	ND	ND	0.5	NA	
Nickel	33	40	U 5	NA	
Selenium	ND	ND	0.5	NA	
Silver	ND	ND	0.5	NA	
Thalliam	ND	ND	0.5	NA	
Vanadium	49	46	0.5	NA	
Zinc	45	44	5.0	NA	
%\$\$	103	108			

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter

TOTAL = acid digestion.

WET = Waste Extraction Test (STLC)

DI WET - Waste Extraction Test using de-ionized water

[#] means surrogate diluted out of range; ND means not detected above the reporting limit, N/A means not applicable to this sample or instrument

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web www.mccampbell.com E-mail.main@mccampbell.com
Telephone 877-252-9262 Fax, 925-252-9269

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0909317

EPA Method 6020A	-		Extrac	lion SW	3050B		BatchII	: 45767	Splk	ed Sample	ID:	0909310-00	7A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%)
/ indiyio	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS/MSD	RPD	LCS/LCSD	RPD
Antimony	ND	5()	97.2	98 7	1 54	10	98 3	98.7	0 467	75 - 125	20	75 - 125	20
Arsenic	5.0	50	95 6	98 4	2 60	10	79 4	88	10.2	75 - 125	20	75 - 125	20
Bartum	150	500	92.4	94 3	1.50	100	911	91.4	0 329	75 - 125	20	75 - 125	20
Beryllium	ND	50	100	100	0	10	106	106	0	75 - 125	20	75 - 125	20
Cadmium	ND	50	96 4	96 9	0 495	10	100	100	0	75 - 125	20	75 - 125	20
Chromium	46	50	92.5	97 6	2 74	10	104	104	o	75 - 125	20	75 - 125	20
Cobalt	11	50	95.3	95.3	U	10	102	102	0	75 - 125	20	75 - 125	20
Copper	27	50	96.4	101	2.86	0.1	92.6	98.6	6.38	75 - 125	20	75 - 125	20
Lead	20	50	97 1	99 8	1.90	10	101	92.2	8.86	75 - 125	20	75 - 125	20
Mercury	0.10	1.25	97 2	98 9	1.58	0.25	116	109	6.35	75 - 125	20	75 - 125	20
Molybdenum	ND	50	95 5	9 7 4	2 00	TO	97 6	97.4	0.256	75 - 125	20	75 - 125	20
Nickel	63	50	NR	NR	NR	10	84 1	92 5	9 50	75 - 125	20	75 - 125	20
Selenium	ND	50	96 8	102	4 79	10	98.5	93	5 78	75 - 125	20	75 - 125	20
Silver	ND	50	93 5	94.5	1 09	10	98.1	98.3	0.224	75 - 125	20	75 - 125	20
Thallium	ND	50	101	102	0.963	10	101	94 8	6 44	75 - 125	20	75 - 125	20
Vanadium	54	50	NR	NR	NR	10	106	106	0	75 - 125	20	75 - 125	20
Zinc	53	500	96 9	99.5	2 39	100	82 4	90 1	8 92	75 - 125	20	75 - 125	20
%\$\$	102	250	102	103	0.701	250	102	102	0	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

BATCH 45767 SUMMARY

Lab (D	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0909317-001A	09/02/09 12:30 PM	09/11/09	09/15/09 1.43 AM	0909317-002A	09/02/09 1 30 PM	09/11/09	09/15/09 1:51 AM
0909317-003A	09/02/09 1 50 PM	09/11/09	09/15/09 1.59 AM	0909317-004A	09/02/09 2.00 PM	09/11/09	09/15/09 2.08 AM
0909317-005A	09/03/09 11 05 AM	09/11/09	09/15/09 2 16 AM	0909317-006A	09/03/09	09/11/09	09/15/09 2 24 AM

MS = Matrix Spike, MSD = Matrix Spike Displicate; LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate, RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked), RPD = 100 * (MS - MSD) / ((MS + MSD) / 2)

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

Comments

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web. www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax 925-252-9269

Sample Receipt Checklist

Client Name	Castle Analytical				Date and Time Received: 9/11/2009 11:01:51 AM							
Project Name:	#0909054/Livermo	re				Checki	list c	ompleted and r	eviewed by:	Melissa Valles		
WorkOrder N°	0909317	Matrix	Soil			Саглег	Τ.	<u>UPS</u>				
			Chain	of Cus	stody (CC	C) Informati	tion					
Chain of custody	present?			Yes	V	No 🗆						
	signed when relinquis	hed and	received?	Yes	¥	No 🗆						
	agrees with sample la			Yes	>	No 🗆						
	by Client on COC?			Yes	$\overline{\mathbf{Y}}$	No 🗆						
Date and Time of	collection noted by Clie	nt on Co	OC?	Yes	V	No 🗆						
Sampler's name r				Yes		No 🗹						
Sample Receipt Information												
Custody seals inf	act on shipping contai	ner/cool	er?	Yes		No 🗆			NA 🔽			
Shipping container/cooler in good condition?				Yes	\checkmark	No 🗔						
	er containers/bottles?			Yes	~	No 🗆						
Sample containe	rs inlacl?			Yes	\checkmark	No 🗆						
Sufficient sample	volume for indicated t	est?		Yes	\checkmark	No 🗆						
		Sa	mple Preser	vation	and Hole	d Time (HT)	Info	rmation				
Ali samples recei	ved within holding (Ime	?		Yes	V	No 🗌						
Container/Temp 8	Blank lemperature			Coole	r Temp:				NA 🗹			
Water - VOA vial	s have zero headspac	e / no b	ubbles?	Yes		No 🗆	No V	VOA vials subm	nitted 🗹			
Sample labels ch	ecked for correct pres	ervalion	17	Yes	✓	No 🗌						
TTLC Metal - pH	acceptable upon receij	ot (pH<2)?	Yes		No □			NA 🗹			
Samples Receive	ed on Ice?			Yes		No 🗹						
*NOTE If the "N	ło" box is checked, se	e comm	ents below									
			=====			====						
Client contacted:			Date contact	e d.				Contacted	t by:			

McCampbell Analytical, Inc.	ical, Inc.			CH	U-NI	F-CI	CHAIN-OF-CUSTONY REGORD	RECO	E E	Pag	Page 1 of 3	
1534 Willow Pass Rd Pittsburg, CA 94565-1701						r) rough make Other M]			
(925) 242-9262				0 *1	rkOrder	020731		Chenicode: Cala	-ALA			
	☐ WaterTrax	× WriteOn	EDF	☐ Excel		Fax	Email	Hari	☐ HardCopy [☐ ThirdParty	🔲 J-ใเลย	
Report to:		•			Bill to:				Reque	Requested TAT:	5 days	
Clari Cone	Email:	castlelab@vtlnet.com	net.com		Ac	Accounts Payable	yable					
Caslle Analytical Labs 2333 Shuttle Drive Bldg 908/909	:003 CC:				Ca 23	istle Analy 33 Shuttle	Castle Analytical Laboratory 2333 Shuttle Drive Bldg 908/909	۶/909	Date	Received:	Date Received: 09/11/2009	
Atwater, CA 95301 (209) 384-2930 FAX (20	ProjectNo: (209) 384-1507	#0909054/Livermore	ermore		Ah	Atwater, CA 95301	95301		Date	Date Printed:	09/11/2009	
				-			Requested Tests (See legend below)	sts (See le	gend bel) WC		
Lab ID	Cllent ID	Matrix	Collection Date Hold	Hold 1	2	3	2	6 7	80	9 10	11 12	T
0909317-001	B7@5'	Soil	9/2/2009 12:30		1							
0909317-002	B8@5'	Soil	9/2/2009 13:30	ч П								
0909317-003	B9@5'	Soil	9/2/2009 13:50	\ \ \								$\neg \neg$
0909317-00+	B10@5'	Soil	9/2/2009 14:00	< □								$\overline{}$
0909317-005	816@5'	Soil	9/3/2009 11:05	< □				-				7
0909317-006	B17@5'	Soil	9/3/2009	Ч П								
Test Legend:												
CAMITMS S	2 7		E 8			4 6			10			
	[12]											

Comments:

NOTE: Soit samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Melissa Valles

BUDYLEAST ORDI

Prener the 0909054 Assertment CQCC 31 7

SUSPECTABLE COR.	V.		RECEIVEN	ARCHATORY	
To all to Studies of the Studies of			Mich amphel) 1554 Willow J Julisburg UA Phone (877) Lax (925)	fasi Rome 01565 85-9565	
south as Charle	AL.				
and the second s					
Yitabayis		Expuss		Lomments	
-ample His Remark	Smil	Sample at 109.02.0	9 12 30 Tat-H1 199000	54 14	
7 +1 ml (sm; ()3					
ample 119 168 pr 51	4114	Sampled 19702 0	alian implication	21.14	
E zapeton total ty					
mba tij Bata e.	2001	Simple) than a	r 13-50 1.a) ID 19000	74-10	
			•		
Lagrange Contact		nii i i i i i i i i i i i i i i i i i i			
mpo the Blook	Section	Sangued 192 02-19	9 (4:00 Lab II), 1900-00	F1 ["	
			ş¢		
10.1 Har (B)					
s. angli: 11) 1116 at 5	Section	Sampled 100.03 B	u (1:05 Lab II) ngngu	54-28	
ar a facilis alla					

Data Personal Po

SUBCOSTRACTORDER

Castle Analytical Laborators Project ID: 0909054 Livermore

VII.SENNE		‡ xgure.	* simments	
sounder [11 R1] a 4	******	Sampled 09 05 09 00:00 Lab 10. (юния (1.24)	
		a p**		
n South Strong				

SPACE FOR STANKEN

was fall apple

Krazan

CHAIN-OF-CUSTODY RECORD

OF

PAGE

DATE: 9/8/09

Method of Shipment/Delivery: Total Number of Containers Scientified to Leberatory Turn Around Time 5 Days 10 Days 24 Hrs. 48 Hrs. (Circle Choice) Remarks As Contracted cru: th 1811 Lab Quote No. P.O. Number ice Chest No. Laboratory REQUESTED ANALYSES Company Name Metals 10 2 Call $\frac{\times}{\times}$ TEPH (#nænHenixolQ) D8S8 A9∃ (PentachlorophenoVCreosote) EPA 525.2 200 mm ban 6 E EE EE DEC COM md ma 02800 empm 1.814 AYEPA 418.1 IPH-Diesel BTEX/TPH-Gasoline/MTBE Containers to redmuM 9/6/0 Date (YearNo) Sample Preserved? oberpatG⊏(] Sample Туре С≕Слар С≖Сопроэйе 0≃Other アンジャン NN XiniaM elqma2 3 N S NN N N Printed Name "Oring Sample Description OME Report Attention: Project Name; (optional) Comments: [0.65] 10:20 10:24 5h-01 9.50 10.37 8.0 11.20 11:35 13:10 KRAZAN & ASSOCIATES, INC. 215 WEST DAKOTA AVENUE Date Sampled 27.E Groth Project No.: 0/4/0/3073 CLOVIS, CA 93612 Krazan Sample No. Month 1346151 Received for Laboratory by: BG 8201 (559) 348-2200 VOICE B1@10' R1015 B2@ 10' B2@151 B3@151 1336201 B4@20 25015 B6@15 850 D 138@51 NN-3 12705 (559) 348-2201 FAX Relinquished by: Relinquished by: Relinquished by -03 3 909054-01 10--09 9 Received by: Sampler Name Lab Sample (D.# Received by: (Printed):

COC5 VSD 02-01-01

CHAIN-OF-CUSTODY RECORD

KRAZAN & ASSOCIATES, INC.	Comments:		REQ	REQUESTED ANALYSES	P.O. Number.
215 WEST DAKOTA AVENUE	nout human				
CLOVIS, CA 93612		The state of the s			Ice Chest No
(559) 348-2200 VOICE					
(559) 348-2201 FAX				(su	Laboratory:
Project No. 0/4070 73	4 ∀ =∀	-	1.811	ST. S	Lab Quote No.:
Sampler Name Wasty Corette	Matrix Sesoul	Present (y EPA ∙	/	Method of Shipment/Detivery.
Las Sample Krazan Date Time	Sample Description	DSI/Le(MO-H9	PA 62 TE	Counter
08965 (4/2/17)	ky.	9	L L		Kemarks
1 21065' 14:00				XXXX	
18 1211615' 1420			×		
19 31620' 14.30			×		
R12@16'			X		
>			X		
1813@10 9/03/09 0º			×		
-23 (130.15)		The state of the s	×		
-24 BIYERDT 10 10			×		
75 BINE ET 10.15			×		
26 B15610' 15 30			XX		
-27 BILLOIS			X		
-28 B (605) 11:09				××	
V-29 BITE				XXX	
	7	*			
auntengis C	Printed Name	Date	Time	Company Name	Submitted to Laboratory
Relinquished by	19/ex Countrell	9/5/09	asad manpan	Krazan)	Turn Around Time
Received by: "		6/9/05	Ozas empon	Castle Shalf I	(Circle Choloe)
Relinquished by:			am par	>	24 Hrs. 48 Hrs.
Received by:			dig par		F Dave 10 Dave
Relinguished by:			und wa		
Received an Laboratory by:			an par		As Contracted
White Lab Yellow - Policy File Pink - C.O.C. Binder	linder				COC5 VSD 02:01-01