CITY OF PIEDMONT

CALIFORNIA

RECEIVED

5:50 pm, Jun 21, 2012

Alameda County Environmental Health

June 19, 2012

Mr. Mark Detterman Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: RO0003047- City of Piedmont UST Remediation at 120 Vista Avenue

Piedmont, California

Dear Mr. Detterman:

Attached please find a copy of the final report for the above referenced site. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

&incerely,

John Wanger City Engineer

CC Chester Nakahara – Public Works Director

Robert Kitay - ASE

June 18, 2012

SOIL AND GROUNDWATER ASSESSMENT REPORT ASE JOB NO. 4458

at City of Piedmont 120 Vista Avenue Piedmont, California

Prepared by:
AQUA SCIENCE ENGINEERS, INC.
55 Oak Court, Suite 220
Danville, CA 94526
(925) 820-9391

1.0 INTRODUCTION

This report presents the methods and findings of Aqua Science Engineer's, Inc. (ASE) soil and groundwater assessment at the City of Piedmont property located at 120 Vista Avenue in Piedmont, California (Figures 1 through 3). The site assessment activities were initiated by The City of Piedmont in response to a letter from the Alameda County Health Care Services Agency (ACHCSA) dated June 29, 2011.

2.0 SITE BACKGROUND AND HISTORY

The subject site is the City of Piedmont City Hall. The former and current underground storage tanks (USTs) lie in a narrow alley between the Fire Department and Police Department buildings, immediately adjacent to the wall of the Fire Department building. An additional UST was formerly located south of the Police Department building.

2.1 May 1988 UST Removal

In May 1988, ASE removed three USTs from the site. These USTs consisted of a 285-gallon diesel UST and a 550-gallon gasoline UST in one excavation, and a 1,000-gallon gasoline UST in a second excavation. Soil samples collected from the excavation that contained the two smaller USTs contained up to 250 parts per million (ppm) total petroleum hydrocarbons (TPH). Two new 1,000-gallon USTs were installed in the excavation that previously contained the smaller USTs. These new USTs remain in service.

2.2 July 1989 Soil and Groundwater Sampling

In July 1989, Aqua Terra Technologies (ATT) drilled six soil borings at the site using a hollow-stem auger (Figure 3). The drill rig experienced refusal in all of the borings except B3 and B4, which were terminated in gravel backfill of the existing USTs. Water in these two borings contained petroleum hydrocarbon odors and a sheen. A water sample collected from the tank backfill in B4 contained 650,000 parts per billion (ppb) total petroleum hydrocarbons as gasoline (TPH-G). This sample was not analyzed for benzene, toluene, ethyl benzene, or xylenes (BTEX) or methyl tertiary butyl ether (MTBE). No TPH-G or organic lead was detected in soil samples collected from 10-feet below ground surface (bgs) in boring B1, 5-feet bgs in boring B5 and 4-feet bgs in boring B6, other than 0.013 ppm toluene in B6. These sample depths represent the depth where bedrock was encountered. Refusal was encountered at 2-feet bgs in boring B2, and no soil sample could be collected from this boring. ATT concluded that the water encountered in borings B3 and B4 was in the UST backfill only and that it was unlikely that the contamination extended beyond the UST excavation.

2.3 June 2011 Alameda County Health Care Services Agency Request for Workplan

On June 29, 2011, the ACHCSA requested a workplan to assess the extent of soil and groundwater contamination at the site. The directive also requested that an irrigation well located in Piedmont Park, near the site, be sampled. A workplan was prepared by ASE on

February 1, 2012, which was subsequently conditionally approved by the ACHCSA on March 30, 2012.

3.0 SCOPE OF WORK (SOW)

The purpose of this assessment was to determine whether contaminated soil or groundwater is present beneath the site related to a release from the former USTs. And to determine whether a nearby irrigation well in Piedmont Park may have been impacted from the pervious fuel release at the site. The specific scope of work was as follows:

- 1) Obtain a drilling permit from the Alameda County Public Works Agency.
- 2) Notify Underground Service Alert (USA) of the drilling and have drilling locations cleared of subsurface utility lines by a private subsurface utility line locating company.
- 3) Drill three soil borings at the site to a depth of approximately 40-feet bgs and collect soil and groundwater samples for analysis.
- 4) Collect groundwater samples from the irrigation well in Piedmont Park.
- Analyze at least three soil and one groundwater sample from each boring, as well as groundwater samples collected from the off-site irrigation well, at a CAL-EPA certified analytical laboratory for TPH-G, total petroleum hydrocarbons as diesel (TPH-D), BTEX, fuel oxygenates, and lead scavengers by EPA Method 8260B.
- 6) Backfill each boring with neat cement.
- 7) Dispose of all investigation derived waste.
- 8) Prepare a report presenting the methods and findings of this assessment.

4.0 DRILL SOIL BORINGS AND COLLECT SAMPLES

4.1 Workplan and Permit Preparation

ASE prepared a workplan for this project dated February 1, 2012, which was subsequently conditionally approved by the ACHCSA on March 30, 2012.

Prior to drilling, ASE obtained a drilling permit from the Alameda County Public Works Agency. A copy of the permit is presented in Appendix A.

ASE also notified Underground Service Alert (USA) to have public underground utility lines marked in the site vicinity. A private underground utility line locating service, Subtronic Corporation of Concord, California, was also contracted to clear each boring location of underground utility lines.

4.2 Drilling and Soil and Groundwater Sample Collection

The ACHCSA conditional approval letter indicated a preference of using a sonic drill rig rather than the proposed mud-rotary drilling. Based on that recommendation, ASE contacted Cascade Drilling and RSI Drilling (recently merged and one of the largest drilling companies offering sonic drilling in California) regarding their experience and recommendations for drilling in the Piedmont area with a sonic drilling rig. They confirmed sonic would not be an appropriate drilling method in areas where bedrock is present. They recommended an HQ coring system (uses water to cool the drilling bit) or mud rotary. The HQ coring system will only work if the rock is unfractured and water circulation can be maintained, which is why ASE's workplan recommended mud rotary. Based on this information, ASE conducted the drilling using mudrotary.

On May 16 and 17, 2012, V&W Drilling of Stockton, California drilled soil borings BH-A and BH-B adjacent to the smaller former, and current, USTs between the fire station and police station. Boring BH-C was drilled in the former location of the 1,000-gallon UST behind the police station. All drilling operations were conducted using mud-rotary drilling. ASE senior geologist Robert E. Kitay, P.G. directed the drilling.

The initial drilling was conducted using a hand-auger until refusal was encountered at the depth where bedrock was encountered, between approximately 4.5 to 5-feet bgs. Soil samples were collected periodically within this material. These samples were contained in laboratory supplied glass jars, sealed, labeled and chilled in an ice chest with wet ice for transport to Kiff Analytical under chain of custody documentation.

Between a few inches and a couple feet of perched water was present on top of the bedrock. Water samples were collected from this water using new, unused polyethylene bailers. The samples were contained in 40-ml volatile organic analysis (VOA) vials, preserved with hydrochloric acid, and sealed without headspace. The samples were then labeled and chilled in an ice chest with wet ice for transport to Kiff Analytical under chain of custody documentation.

Soil, or in most cases rock, samples were collected at 5-foot intervals as drilling progressed using a split-barrel drive sampler advanced by repeated blows from a 140-lb. hammer dropped 18-inches. The split-barrel sampler was lined with stainless-steel tubes. Samples to be retained for analysis were immediately removed from the sampler, trimmed, sealed with Teflon tape and plastic caps, and labeled with the site location, sample designation, date and time the sample was collected, and the initials of the person collecting the sample. In some cases, there was no sample recovery in the liner, but there was rock in the sampler shoe. In these cases, the rock was removed and placed into a laboratory supplied glass jar, sealed and labeled. The samples were placed into an ice chest containing wet ice for delivery under chain of custody to a CAL-DHS certified analytical laboratory under chain of custody documentation.

The remaining soil/rock was then described by the site geologist using the Unified Soil Classification System (USCS) and was screened for volatile compounds using a photo ionization detector (PID). The soil was screened by emptying soil into a plastic bag. The bag was then sealed and placed in the sun for approximately 10 minutes. After the volatile compounds were

allowed to volatilize, the PID measured the vapor in the bag through a small hole punched in the bag. PID readings are used as a screening tool only, since the procedures are not as rigorous as those used in the laboratory. The PID readings are shown on the boring logs presented in Appendix B.

4.3 French Drain and Park Irrigation Well Sample Collection

In addition to water samples collected from the borings, water samples were collected from two other locations.

A French Drain is located along the north end of City Hall, west of the former and current USTs, in a potential downgradient direction. This French Drain is 12 to 16-feet deep and collects water that otherwise could flood the city hall basement. Water is then pumped out of the deepest part of the French Drain and then released out of a drain on the curb into the street. While ASE was present, the water coming out of the drain in the curb was noted as having an organic odor. Although ASE would not classify the organic odor as a gasoline or diesel-like odor, ASE collected a sample from the deepest portion of the French Drain using a bailer. During the sampling, the water was noted as containing an abundance of rotted vegetation that may have been responsible for the odor. Water samples were collected from French Drain using a new, unused polyethylene bailer. The samples were contained in 40-ml VOA vials, preserved with hydrochloric acid, and sealed without headspace. The samples were then labeled and chilled in an ice chest with wet ice for transport to Kiff Analytical under chain of custody documentation.

On May 22, ASE collected a water sample from the irrigation well located in the nearby city park. It is our understanding that this well is not currently in use. The well was sealed and not accessible for sampling with a bailer. However, a faucet that was connected to the well was opened to allow the well to drain. After approximately 10 minutes, the well pump turned on. After the pump operated for approximately 10 more minutes, water samples were collected. The groundwater samples were contained in 40-ml VOA vials, preserved with hydrochloric acid, and sealed without headspace. The samples were then labeled and chilled in an ice chest with wet ice for transport to Kiff Analytical under chain of custody documentation.

4.4 Decontamination and Borehole Backfilling

Drilling equipment was cleaned with an Alconox solution between sampling intervals and between borings to prevent potential cross-contamination. Following collection of the soil and groundwater samples, each boring was backfilled with neat cement to the ground surface.

4.5 Subsurface Lithology and Hydrogeology

Sediments and rock encountered during drilling generally consisted of sand, silty sand, or gravelly sand from beneath the concrete or asphalt surface to approximately 4.5-feet below bgs, where bedrock was encountered. Bedrock below approximately 4.5-feet bgs consisted of siltstone, shale, chert and greywacke sandstone. These rocks are all common within the Franciscan Formation that is present beneath the East Bay Hills. All of the drilling was extremely hard. Refusal was encountered in borings BH-A and BH-B at 30-feet bgs, and in

boring BH-C at 29-feet. No obvious fractures were present in either BH-A or BH-B based on drill rig reaction. Numerous fractures were present in boring BH-C below 13-feet bgs, although the fractures were likely filled since there was no loss of drilling fluids. There were no obvious signs of contamination in any of the soil, rock, or water encountered in any of the borings based on odors, staining, or PID readings. However, black shale was present at some depths that had the appearance of oil shale. Perched groundwater was encountered between approximately 1 to 4-feet bgs. Boring logs are presented as Appendix B.

4.6 Disposal of Investigation Derived Waste

Drilling mud and steam-cleaning water were contained in sealed and labeled 55-gallon drums and temporarily stored on-site. After receipt of the laboratory results, the waste was profiled for disposal as non-hazardous waste with Filter Recycling Services. On June 15, 2012, Evergreen Environmental Services of Hayward, California transported the drums to Filter Recycling's facility in Hayward, California where the drums were transferred to Environmental Logistics, Inc for transport to Filter Recycling Services facility in Bloomington, California for disposal. The manifest is attached in Appendix E.

5.0 ANALYTICAL RESULTS FOR SOIL AND ROCK

One soil sample from the capillary zone in each boring, as well as a rock sample from 10-feet bgs in each boring (below the depth of the USTs), and one deeper sample (either 20 or 30-feet bgs) was analyzed by Kiff Analytical, LLC of Davis, California (ELAP certification #08263CA) for TPH-D by modified EPA Method 8015 (with silica gel cleanup), and TPH-G, BTEX, five oxygenates, and lead scavengers by EPA Method 8260B. The analytical results are tabulated in Table One, and the certified analytical report and chain of custody record are included in Appendix C.

No TPH-G, BTEX, oxygenates, or lead scavengers were detected in any of the soil/rock samples analyzed. Relatively low TPH-D concentrations were detected in all of the soil and rock samples analyzed. However, none of the TPH-D concentrations detected exceeded Environmental Screening Levels (ESLs) for commercial and industrial soil in areas where groundwater is a current or potential source of drinking water. These ESLs are presented in Table A of the "Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) dated May 2008.

6.0 ANALYTICAL RESULTS FOR GROUNDWATER

The water samples were analyzed by Kiff Analytical, LLC of Davis, California (ELAP certification #08263CA) for TPH-D by modified EPA Method 8015 (with silica gel cleanup), and TPH-G, BTEX, five oxygenates, and lead scavengers by EPA Method 8260B. The analytical results are tabulated in Table Two, and the certified analytical report and chain of custody record are included in Appendix C. The park well analytical report and chain of custody are included in Appendix D.

The only TPH-G, BTEX, oxygenate or lead scavenger concentration detected that exceeded a drinking water ESLs was 5.5 parts per billion (ppb) MTBE in the water sample collected from boring BH-A. Although this concentration slightly exceeds the drinking water ESL of 5.0 ppb, this concentration is still considered relatively low and does not exceed the non-drinking water ESL of 12 ppb. No further investigation or remediation should be expected for MTBE at this concentration in areas where drinking water wells are not immediately threatened.

Although not exceeding the ESL, ASE contacted the laboratory regarding the TPH-G concentration of 52 ppb in the park irrigation well, since the well would not be expected to be impacted due to it's depth and location. The laboratory checked the chromatogram and reported to ASE that the TPH-G concentration was due to chloroform present in the sample. Chloroform is a breakdown of chlorine, which is used to treat municipal water. It is likely that the chloroform impacted the well from municipal water used to water the park or from leaky water lines or sewers. Since the ESL for chloroform in drinking water is 70 ppb, the presence of the chloroform should not be considered an environmental concern.

TPH-D was present in all of the samples collected from the borings and from the French Drain at concentration ranging from 2,100 ppb to 17,000 ppb. All of these concentrations, except BH-C, were flagged as higher boiling point than typical diesel fuel. ASE discussed these results with the laboratory who checked the chromatograms to see if the laboratory could determine what compounds may be responsible for these concentrations. The laboratory stated that it appeared that these concentrations were likely related to lubrication oil and not diesel fuel. Since there are no sources of lubrication oil in the site vicinity, including no automotive repair areas other than potentially at the very bottom of the slope that the site sits on (downgradient of all borings and French Drains), the source of these hydrocarbons is unknown. Since (a) these hydrocarbons do not appear to be related to an on-site source, (b) these are heavy range hydrocarbons that are non-volatile, and (c) are only in what appears to be a thin perched water zone just on the top of bedrock, these hydrocarbons do not appear to be a threat to human health or the environment. It may, however, be prudent to treat water from the French Drain prior to releasing this water to the curb/street where it cold enter the storm water system and enter the San Francisco Bay.

7.0 CONCLUSIONS

None of the soil or rock samples contained hydrocarbons at concentrations exceeding ESLs for drinking water.

The only TPH-G, BTEX, oxygenate or lead scavenger concentration detected that exceeded a drinking water ESL was 5.5 ppb MTBE in the water sample collected from boring BH-A. Although this concentration slightly exceeds the drinking water ESL of 5.0 ppb, this concentration is still considered relatively low and does not exceed the non-drinking water ESL of 12 ppb.

TPH-D was present in all of the water samples collected from the borings and from the French Drain at concentration ranging from 2,100 ppb to 17,000 ppb. The majority of these TPH-D results were flagged as higher boiling point than typical diesel fuel. ASE discussed these results with the laboratory. The laboratory stated that it appeared that these concentrations were likely

related to lubrication oil and not diesel. Since there are no sources of lubrication oil in the site vicinity, the source of these hydrocarbons is unknown.

Since (a) these hydrocarbons do not appear to be related to an on-site source, (b) these are heavy range hydrocarbons that are non-volatile, and (c) are only in what appears to be a thin perched water zone just on the top of bedrock, these hydrocarbons do not appear to be a threat to human health or the environment. It may, however, be prudent to treat water from the French Drain prior to releasing this water to the curb where it could enter the storm water system and enter the San Francisco Bay.

8.0 RECOMMENDATIONS

ASE recommends that the ACHCSA issue a "No Further Action" letter for this case. ASE does not recommend any further assessment or remediation related to the minor MTBE concentrations and TPH-D range hydrocarbons that do not appear to be related to an on-site source detected in water samples from the borings and the French Drain at the site.

ASE does believe, however, that it would be prudent to treat water from the French Drain prior to releasing this water to the curb where it could enter the storm water system and eventually the bay.

9.0 REPORT LIMITATIONS

The results presented in this report represent conditions at the time of the soil, rock and groundwater sampling, at the specific locations at which the samples were collected, and for the specific parameters analyzed by the laboratory.

This report does not fully characterize the site for contamination resulting from unknown sources or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of an independent CAL-EPA certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity provide environmental consulting services for this project. Should you have any questions or comments, please feel free to call us at (925) 820-9391.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Pm C. Kitry

Robert E. Kitay, P.G., R.E.A. Senior Geologist

Attachments: Figures 1 through 4

Tables One and Two Appendices A through E

FIGURES

SITE LOCATION MAP

City of Piedmont 120 Vista Avenue Piedmont, California

DATE: 02/02/12

AQUA SCIENCE ENGINEERS, INC.

FIGURE 1

NORTH NOT TO SCALE

SITE LOCATION MAP

City of Piedmont 120 Vista Avenue Piedmont, California

Aqua Science Engineers

Figure 2

NORTH NOT TO SCALE

PARK IRRIGATION WELL LOCATION MAP

City of Piedmont 120 Vista Avenue Piedmont, California

Aqua Science Engineers

Figure 4

TABLES

TABLE ONE

Summary of Analytical Results of SOIL Samples Petroleum Hydrocarbons, Fuel Oxygenates and Lead Scavengers City of Piedmont, 120 Vista Avenue, Piedmont, California Results are in parts per million (ppm)

Well/	Sample	TPH	TPH			Ethyl	Total							1,2-
Boring	Depth	Gasoline	Diesel	Benzene	Toluene	Benzene	Xylenes	MTBE	TAME	DIPE	ETBE	TBA	EDB	DCA
ВН-А	4.5	< 1.0	1.8*	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
	10.0	< 1.0	2.2*	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
	30.0	< 1.0	8.6*	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
ВН-В	5.5	< 1.0	3.2*	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
	10.0	< 1.0	7.9*	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
	30.0	< 1.0	6.9*	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
ВН-С	2.5	< 1.0	<i>8</i> 1	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
	10.0	< 1.0	9.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
	20.0	< 1.0	5.4*	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
ESL		83	83	0.044	2.9	3.3	2.3	0.023	NE	NE	NE	0.075	0.00033	0.0045

Notes:

Non-detectable concentrations are noted by the less than symbol (<) followed by the detection limit.

Detectable concentrations in **BOLD**

ESL = Environmental Screening Levels for deep soil at sites where groundwater is a current or potential source of drinking water as presented in the "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) dated May 2008.

DIPE - diisopropyl ether

MTBE - methyl tertiary butyl ether

ETBE - ethyl-t-butyl ether

TAME - tert-amyl methyl ether

TBA -tert butanol

EDB - ethylene dibromide or 1,2-dibromoethane

TPH - total petroleum hydrocarbons

DCA - dichloroethane

^{* =} Hydrocarbons are not typical of diesel fuel

TABLE TWO

Summary of Analytical Results of Groundwater Samples Petroleum Hydrocarbons, Fuel Oxygenates and Lead Scavengers City of Piedmont, 120 Vista Avenue, Piedmont, California Results are in parts per billion (ppb)

Well/	TPH	TPH			Ethyl	Total							1,2-
Boring	Gasoline	Diesel	Benzene	Toluene	Benzene	Xylenes	MTBE	TAME	DIPE	ETBE	TBA	EDB	DCA
ВН-А	< 50	2,100*	< 0.50	< 0.50	< 0.50	< 0.50	5.5	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50
ВН-В	99	17,000*	< 0.50	< 0.50	< 0.50	< 0.50	0.63	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50
ВН-С	< 50	4,900	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50
Drain	< 50	5,200*	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50
Park Well	52**	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50
ESL	100	100	1	40	30	20	5	NE	NE	NE	12.000	0.05	0.5

Notes:

Non-detectable concentrations are noted by the less than symbol (<) followed by the detection limit.

Detectable concentrations in **BOLD**

ESL = Environmental Screening Levels for drinking water as presented in the "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) dated May 2008.

DIPE - diisopropyl ether

MTBE - methyl tertiary butyl ether

ETBE - ethyl-t- butyl ether

TAME - tert-amyl methyl ether

TBA -tert butanol

EDB - ethylene dibromide or 1,2-dibromoethane

TPH - total petroleum hydrocarbons

DCA - dichloroethane

^{* =} Hydrocarbons are not typical of diesel fuel

^{** =} Hydrocarbons are not typical of gasoline

APPENDIX A

Drilling Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 05/11/2012 By jamesy

Permit Numbers: W2012-0324 Permits Valid from 05/16/2012 to 05/18/2012

Application Id:1336059327117City of Project Site: PiedmontSite Location:120 Vista Avenue

Project Start Date: 05/16/2012 Completion Date:05/18/2012

Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org

Applicant: Aqua Science Engineers - Robert Kitay Phone: 925-820-9391

55 Oak Court, Suite 220, Danville, CA 94526

Property Owner: City of Piedmont 120 Vista Avenue, Piedmont, CA 94611

Client: ** same as Property Owner **

Total Due: \$265.00
Receipt Number: WR2012-0144 Total Amount Paid: \$265.00

Payer Name : Aqua Science Engineers Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 3 Boreholes

Driller: V&W Drilling - Lic #: 720904 - Method: mud Work Total: \$265.00

Specifications

Permit Issued Dt Expire Dt # Hole Diam Max Depth

Number Boreholes

W2012- 05/11/2012 08/14/2012 3 5.00 in. 40.00 ft

0324

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 5. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least

Alameda County Public Works Agency - Water Resources Well Permit

five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX B

Boring Logs

	OOIL BORING	LOG		IVIO	NIT	KING	3 WELL (. COMPLETION DETAILS BORING: BH-A						
Projec	t Name: City	of Piec	lmon [.]	t		Proje	ct Locatio	on: 120	Vista Avenue, Pie	edmont,	CA	Page 1 of 1		
Driller	: V&W Drilling					Гуре	of Rig: Mı	ud Rot	ary Size	e of Drill	: 4.0" Diameter			
Logge	ed By: Robert	E. Kita	ay, P.	G.	I	Date	Drilled: M	May 16, 2012 Checked By: Robert E. Kitay, P.G.						
WATER	R AND WELL D	<u>ATA</u>						Total Depth of Well Completed: NA						
Depth	of Water First	Encou	intere	ed: 4	.5'			Well	Screen Type and Di	iameter:	: NA			
Static I	Depth of Wate	er in W	ell: N	A				Well Screen Slot Size: NA						
Total D	Depth of Boring	g: 30'						Туре	Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler					
et			SOI	L/RC	OCK S	SAMP	LE DATA	Feet	DEG	SCDIDTI		nCV		
Depth in Feet	BORING DETAIL	Description	Interval	Blow Counts	OVM (ppmv)	Water Level	Graphic Log	Depth in Fe	DESCRIPTION OF LITHOLOGY standard classification, texture, relative moistu density, stiffness, odor-staining, USCS designat					
•0 •10 •10 •10 •10 •15 •10 •15 •15 •15 •16 •17 •18 •18 •18 •18 •18 •18 •18 •18 •18 •18	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			50/6" 50/2" 50/2" 50/0"	0 0	<u> </u>		- 0	Concrete Silty CLAY (ML); of 70% silt; 30% clatestimated K; no of Silty SAND (SM); 70% fine sand; 30 no odor SHALE; grey; hard CHERT; grey; hard CHERT; grey; hard chert and jasper standard saper standard saper standard saper standard saper	ay; mode odor yellow I o% silt; d, slight d	erate plasticity; vorown; medium donon-plastic; high ly weathered E; grey; hard; no o	ery low ense; dry; estimated K; odor		
- 30	M			50/1"	0		<u> </u>	30	GREYWACKE SAN		E; grey; hard; no End of boring at			
							l	<u> </u>			CE ENGINEERS, IN			

					Т				ETION DETA		BORING: BH			
Proj	ect Name: City	of Piec	dmon	it		Proje	ct Locatio	n: 120	O Vista Avenue	e, Piedn	nont, CA	Page 1 of 1		
Drill	er: V&W Drilling					Гуре	of Rig: Mu	ud Rota	ary	Size o	f Drill: 4.0" Diame	eter		
Log	ged By: Robert	E. Kita	ay, P.	.G.	I	Date	Drilled: M	May 16, 2012 Checked By: Robert E. Kitay, P.G.						
WAT	ER AND WELL D	<u>ATA</u>						Total Depth of Well Completed: NA						
Dept	h of Water First	Encou	ınter	ed: 4	.5'			Well :	Screen Type a	nd Dian	neter: NA			
Stati	c Depth of Wate	er in W	ell: N	IA				Well Screen Slot Size: NA						
Tota	l Depth of Boring	a: 30.1	1'					Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler						
				IL/RO	OCK S	SAMP	LE DATA				RIPTION OF LITH			
n Feet	BORING	tion		ınts	mv)	ıvel	0	n Feet	standard		cation, texture, re			
Depth in	DETAIL	Description	Interval	Blow Counts	OVM (ppmv)	Water Level	Graphic Log	Depth in			s, odor-staining, U			
Ğ		De	<u>=</u>	Blov	N/O	Wat	J Ū	De						
0	N							- 0	Asphalt					
-								_	SAND (SP); yellow brown; loose; dry; 100% fine san non-plastic; high estimated K; no odor					
-			\bowtie						non-piastic; i	nign est	timated K; no odor			
			\Rightarrow	50/6"	0	Ţ		_ - 5						
• 5 -							//////////////////////////////////////	- 3	SILTSTONE;	grey; ha	ard; no odor			
-	eme							_						
- -	Portland Cement													
- 10	ortla			50/2"	0			- 10	no odor					
-														
-								-						
•15								− - 15	no odor					
•				50/2"	0									
-								_						
20				50/1"	0			- 20	no odor					
_							XXXX		GREYWACKE	SANDS	STONE; grey; hard;	no odor		
-	N N							-						
- •25				50/1"	•			- 25						
-				55/1	0			-						
- -														
-	M							-	SHALE; black		no odor			
- 30	<u> 171</u>			50/4"	0			- 30			ısal - End of boring	at 30.1'		
			•	•		-	•			AQUA S	CIENCE ENGINEERS	S, INC.		

Project Name: City of Piedmont Driller: V&W Drilling Type of Rig: Mud Rotary Size of Drill: 4.0" Diameter Logged By: Robert E. Kitay, P.G. Date Drilled: May 17, 2012 Checked By: Robert E. Kitay, P.G. WATER AND WELL DATA Depth of Water First Encountered: 1' Static Depth of Water in Well: NA Total Depth of Boring: 28' Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler BORING DETAIL BORIN	;	SOIL BORING LOG AND MONITORING WELL COMPLETION DETAILS BORING: BH-C											
Logged By: Robert E. Kitay, P.G. MATER AND WELL DATA Depth of Water First Encountered: 1' Static Depth of Water in Well: NA Total Depth of Boring: 28' BORING DETAIL B	Project	t Name: City o	of Piec	lmon	t	ı	Proje	ct Locatio	on: 120) Vista Avenu	e, Piedmont	, CA	Page 1 of 1
WATER AND WELL DATA Depth of Water First Encountered: 1' Static Depth of Water in Well: NA Total Depth of Water in Well: NA Total Depth of Boring: 28' Solution Depth of Well Completed: NA Well Screen Type and Diameter: Na Well Screen Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler DESCRIPTION OF LITHOLOGY Standard Gassification, texture, relative moisture, density, stiffness, odor-staining, USCS designation. Figure 1	Driller:	: V&W Drilling				-	Гуре	of Rig: Mı	ud Rot	ary	Size of Dri	ll: 4.0" Diameter	
Depth of Water First Encountered: 11 Static Depth of Water in Well: NA Total Depth of Boring: 28' Solit_ROCK SAMPLE DATA BORING DETAIL DESCRIPTION OF LITHOLOGY Standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation. DESCRIPTION OF LITHOLOGY Standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation. Asphalt Gravelly SAND (SW); grey; hard; moist; 60% medium to course sand; 40% gravel to 1.5" diameter; high estimated k; no odor wet at 1' SILTSTONE; grey; hard; no odor Fractures between 13 and 15' - 15 - 20 - 20 - 25 - 25 SHATE; black (in cuttings)	Logge	d By: Robert	E. Kita	ay, P.	.G.	ı	Date	Drilled: M	May 17, 2012 Checked By: Robert E. Kitay, P.G.				
Static Depth of Water in Well: NA Total Depth of Boring: 28' SOIL/ROCK SAMPLE DATA BORING DETAIL D	WATER	AND WELL D	<u>ATA</u>						Total Depth of Well Completed: NA				
Total Depth of Boring: 28' Type and Size of Soil Sampler: 2.0" I.D. Macro Sampler DESCRIPTION OF LITHOLOGY standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation. Asphalt Gravelly SAND (SW); grey; hard; moist; 60% medium to course sand; 40% gravel to 1.5" diameter; high estimated k, no odor wet at 1' SILTSTONE; grey; hard; no odor fractures between 13 and 15' no recovery at 15' > fracture at 17' fracture at 17' fracture; no odor at 20' - 25 - 25 - 25 - 26 - 27 - 28 - 30 - 40 -	Depth o	of Water First	Encou	inter	ed: 1	'			Well	Screen Type a	and Diamete	r: NA	
BORING DETAIL Solid Solid	Static [Depth of Wate	r in W	ell: N	IA				Well	Screen Slot Si	ze: NA		
BORING DETAIL Standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation. Standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation. Asphalt Gravelly SAND (SW); grey; hard; moist; 60% medium to course sand; 40% gravel to 1.5" diameter; high estimated k; no odor wet at 1' SILTSTONE; grey; hard; no odor	Total Depth of Boring: 28'					Туре	and Size of So	oil Sampler:	2.0" I.D. Macro Sa	mpler			
-0 -0 -10 -10 -10 -10 -10 -10 -10 -10 -1	1 Q 1				LE DATA	eet		DESCRIPT	TION OF LITHOLO)GY			
Asphalt Gravelly SAND (SW); grey; hard; moist; 60% medium to course sand; 40% gravel to 1.5" diameter; high estimated K; no odor wet at 1" SILTSTONE; grey; hard; no odor fractures between 13 and 15' no recovery at 15' > fracture at 17' fracture at 18.5' fracture; no odor at 20' -25 SHALE; black (in cuttings)	Depth in F		Descriptio	Interval	low Count	VM (ppmv	/ater Leve	Graphic Log	Depth in F				
AQUA SCIENCE ENGINEERS, INC.	5				9 10 9 50/6" 50/6"	0			_ 5 _ 5 _ 10 _ 15 _ 20 _ 25 _ 25	Gravelly SAN course sand K; no odor wet at 1' SILTSTONE; fractures be < no recove fracture at fracture; no < no recove SHALE; blace	grey; hard; grey; hard; tween 13 a ry at 15' > 17' 18.5' odor at 20' ry at 25' > k (in cutting Refusal -	no odor no 15' End of boring at 2	r; high estimated
										,	AQUA SCIEN	ICE ENGINEERS, IIV	.

APPENDIX C

Certified Analytical Report and Chain of Custody Documentation For Soil, Rock and Water Samples

Date: 05/30/2012

Laboratory Results

Robert Kitay Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526

Subject: 9 Soil Samples and 4 Water Samples

Project Name: City of Piedmont

Project Number:

Dear Mr. Kitay,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the National Environmental Laboratory Accreditation Program (NELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy Turpen

Troy D. Turpen

Date: 05/30/2012

Subject: 9 Soil Samples and 4 Water Samples

Project Name: City of Piedmont

Project Number:

Case Narrative

All soil samples were reported on a total weight (wet weight) basis.

Date: 05/30/2012

Project Name: City of Piedmont

Project Number:

Sample: **BH-A 4.5'** Matrix: Soil Lab Number: 81303-01

		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:09
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:09
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:09
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:09
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:09
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:09
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:09
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:09
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:09
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	05/22/12 04:09
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:09
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:09
1,2-Dichloroethane-d4 (Surr)	104		% Recovery	EPA 8260B	05/22/12 04:09
Toluene - d8 (Surr)	99.6		% Recovery	EPA 8260B	05/22/12 04:09
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling that	1.8 an typical Diesel	1.0 Fuel.)	mg/Kg	M EPA 8015	05/29/12 16:14
Octacosane (Silica Gel Surr)	110		% Recovery	M EPA 8015	05/29/12 16:14

Date: 05/30/2012

Project Name : City of Piedmont

Project Number:

Sample : **BH-A 10.0'** Matrix : Soil Lab Number: 81303-02

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:46
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:46
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:46
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:46
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:46
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:46
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:46
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:46
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:46
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	05/22/12 04:46
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:46
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 04:46
1,2-Dichloroethane-d4 (Surr)	105		% Recovery	EPA 8260B	05/22/12 04:46
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	05/22/12 04:46
TPH as Diesel (Silica Gel) (Note: Some hydrocarbons lower-boiling,	2.2 some higher-bo	1.0 iling than Die	mg/Kg esel.)	M EPA 8015	05/29/12 08:54
Octacosane (Silica Gel Surr)	104		% Recovery	M EPA 8015	05/29/12 08:54

Date: 05/30/2012

Project Name: City of Piedmont

Project Number:

Sample: BH-A 30.0' Matrix: Soil Lab Number: 81303-04

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 05:22
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 05:22
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 05:22
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 05:22
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 05:22
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 05:22
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 05:22
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 05:22
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 05:22
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	05/22/12 05:22
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 05:22
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 05:22
1,2-Dichloroethane-d4 (Surr)	104		% Recovery	EPA 8260B	05/22/12 05:22
Toluene - d8 (Surr)	99.8		% Recovery	EPA 8260B	05/22/12 05:22
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling th	8.6 an typical Diese	1.0 el Fuel.)	mg/Kg	M EPA 8015	05/29/12 10:51
Octacosane (Silica Gel Surr)	121		% Recovery	M EPA 8015	05/29/12 10:51

Date: 05/30/2012

Project Name: City of Piedmont

Project Number:

Sample: **BH-B 5.5'** Matrix: Soil Lab Number: 81303-06

		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:06
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:06
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:06
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:06
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:06
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:06
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:06
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:06
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:06
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	05/22/12 06:06
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:06
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:06
1,2-Dichloroethane-d4 (Surr)	107		% Recovery	EPA 8260B	05/22/12 06:06
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	05/22/12 06:06
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling that	3.2 an typical Diesel	1.0 Fuel.)	mg/Kg	M EPA 8015	05/29/12 18:00
Octacosane (Silica Gel Surr)	115		% Recovery	M EPA 8015	05/29/12 18:00

Date: 05/30/2012

Project Name : City of Piedmont

Project Number:

Sample: **BH-B 10.0'** Matrix: Soil Lab Number: 81303-07

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:43
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:43
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:43
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:43
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:43
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:43
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:43
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:43
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:43
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	05/22/12 06:43
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:43
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 06:43
1,2-Dichloroethane-d4 (Surr)	103		% Recovery	EPA 8260B	05/22/12 06:43
Toluene - d8 (Surr)	94.6		% Recovery	EPA 8260B	05/22/12 06:43
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling th	7.9 an typical Diese	1.0 el Fuel.)	mg/Kg	M EPA 8015	05/29/12 18:34
Octacosane (Silica Gel Surr)	108		% Recovery	M EPA 8015	05/29/12 18:34

Date: 05/30/2012

Project Name : City of Piedmont

Project Number:

Sample: BH-B 30.0' Matrix: Soil Lab Number: 81303-11

		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 23:53
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 23:53
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 23:53
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 23:53
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 23:53
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 23:53
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 23:53
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 23:53
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 23:53
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	05/22/12 23:53
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 23:53
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 23:53
1,2-Dichloroethane-d4 (Surr)	103		% Recovery	EPA 8260B	05/22/12 23:53
Toluene - d8 (Surr)	98.2		% Recovery	EPA 8260B	05/22/12 23:53
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling that	6.9 an typical Diesel	1.0 Fuel.)	mg/Kg	M EPA 8015	05/29/12 12:49
Octacosane (Silica Gel Surr)	123		% Recovery	M EPA 8015	05/29/12 12:49

Date: 05/30/2012

Project Name : City of Piedmont

Project Number:

Sample: **BH-C 2.5'** Matrix: Soil Lab Number: 81303-13

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 12:46
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 12:46
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 12:46
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 12:46
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 12:46
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 12:46
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 12:46
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 12:46
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 12:46
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	05/22/12 12:46
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 12:46
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 12:46
1,2-Dichloroethane-d4 (Surr)	102		% Recovery	EPA 8260B	05/22/12 12:46
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	05/22/12 12:46
TPH as Diesel (Silica Gel)	81	10	mg/Kg	M EPA 8015	05/29/12 16:49
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	05/29/12 16:49

Date: 05/30/2012

Project Name : City of Piedmont

Project Number:

Sample: **BH-C 10.0'** Matrix: Soil Lab Number: 81303-15

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:20
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:20
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:20
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:20
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:20
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:20
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:20
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:20
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:20
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	05/22/12 13:20
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:20
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:20
1,2-Dichloroethane-d4 (Surr)	102		% Recovery	EPA 8260B	05/22/12 13:20
Toluene - d8 (Surr)	99.9		% Recovery	EPA 8260B	05/22/12 13:20
TPH as Diesel (Silica Gel)	9.0	1.0	mg/Kg	M EPA 8015	05/29/12 17:24
Octacosane (Silica Gel Surr)	115		% Recovery	M EPA 8015	05/29/12 17:24

Date: 05/30/2012

Project Name : City of Piedmont

Project Number:

Sample: **BH-C 20.0'** Matrix: Soil Lab Number: 81303-16

Sample Date :05/17/2012

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:55
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:55
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:55
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:55
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:55
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:55
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:55
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:55
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:55
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	05/22/12 13:55
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:55
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/12 13:55
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	05/22/12 13:55
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	05/22/12 13:55
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling th	5.4 an typical Diese	1.0 el Fuel.)	mg/Kg	M EPA 8015	05/29/12 15:39
Octacosane (Silica Gel Surr)	118		% Recovery	M EPA 8015	05/29/12 15:39

Date: 05/30/2012

Project Name : City of Piedmont

Project Number:

Sample: **BH-A Water** Matrix: Water Lab Number: 81303-17

Sample Date :05/16/2012

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 13:27
Toluene	< 0.50	0.50	ug/L ug/L	EPA 8260B	05/23/12 13:27
Ethylbenzene	< 0.50	0.50	ug/L ug/L	EPA 8260B	05/23/12 13:27
•	< 0.50	0.50	•	EPA 8260B	05/23/12 13:27
Total Xylenes	< 0.50	0.50	ug/L	EFA 0200D	03/23/12 13.27
Methyl-t-butyl ether (MTBE)	5.5	0.50	ug/L	EPA 8260B	05/23/12 13:27
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 13:27
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 13:27
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 13:27
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	05/23/12 13:27
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	05/23/12 13:27
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 13:27
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 13:27
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	05/23/12 13:27
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	05/23/12 13:27
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling th	2100 an typical Diese	50 I Fuel.)	ug/L	M EPA 8015	05/23/12 17:03
Octacosane (Silica Gel Surr)	96.0		% Recovery	M EPA 8015	05/23/12 17:03

Date: 05/30/2012

Project Name : City of Piedmont

Project Number:

Sample: BH-B Water Matrix: Water Lab Number: 81303-18

Sample Date :05/16/2012

		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 12:53
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 12:53
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 12:53
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 12:53
Methyl-t-butyl ether (MTBE)	0.63	0.50	ug/L	EPA 8260B	05/23/12 12:53
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 12:53
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 12:53
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 12:53
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	05/23/12 12:53
TPH as Gasoline	99	50	ug/L	EPA 8260B	05/23/12 12:53
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 12:53
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 12:53
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	05/23/12 12:53
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	05/23/12 12:53
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling the	17000 an typical Diese	500 I Fuel.)	ug/L	M EPA 8015	05/30/12 13:15
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	05/30/12 13:15

Date: 05/30/2012

Project Name : City of Piedmont

Project Number:

Sample: **BH-C Water** Matrix: Water Lab Number: 81303-19

Sample Date :05/17/2012

Cample Date .03/17/2012	Measured	Method Reporting		Analysis	Date/Time
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:34
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:34
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:34
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:34
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:34
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:34
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:34
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:34
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	05/23/12 14:34
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	05/23/12 14:34
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:34
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:34
1,2-Dichloroethane-d4 (Surr)	100		% Recovery	EPA 8260B	05/23/12 14:34
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	05/23/12 14:34
TPH as Diesel (Silica Gel)	4900	500	ug/L	M EPA 8015	05/30/12 13:51
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	05/30/12 13:51

Date: 05/30/2012

Project Name : City of Piedmont

Project Number:

Sample : **Drain** Matrix: Water Lab Number: 81303-20

Sample Date :05/16/2012

Sample Date .03/10/2012		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:00
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:00
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:00
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:00
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:00
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:00
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:00
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:00
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	05/23/12 14:00
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	05/23/12 14:00
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:00
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	05/23/12 14:00
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	05/23/12 14:00
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	05/23/12 14:00
TPH as Diesel (Silica Gel) (Note: Hydrocarbons are higher-boiling th	5200 an typical Diese	50 I Fuel.)	ug/L	M EPA 8015	05/23/12 16:56
Octacosane (Silica Gel Surr)	120		% Recovery	M EPA 8015	05/23/12 16:56

Date: 05/30/2012

QC Report : Method Blank Data

Project Name : City of Piedmont

Parameter	Measured Value	Method Reporting Limit] Units	Analysis Method	Date Analyzed
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	05/29/2012
Octacosane (Silica Gel Surr)	111	1.0	%	M EPA 8015	05/29/2012
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	05/23/2012
Octacosane (Silica Gel Surr)	101		%	M EPA 8015	05/23/2012
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	05/23/2012
Octacosane (Silica Gel Surr)	111		%	M EPA 8015	05/23/2012
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/21/2012
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/21/2012
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/21/2012
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/21/2012
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/21/2012
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/21/2012
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/21/2012
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/21/2012
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/21/2012
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	05/21/2012
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/21/2012
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/21/2012
1,2-Dichloroethane-d4 (Surr)	110		%	EPA 8260B	05/21/2012
Toluene - d8 (Surr)	99.5		%	EPA 8260B	05/21/2012

Parameter	Measured Value	Method Reporti Limit		Analysis Method	Date Analyzed
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/2012
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/2012
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/2012
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/2012
Diisopropyl ether (DIPE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/2012
Ethyl-t-butyl ether (ETBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/2012
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/2012
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/2012
Tert-amyl methyl ether (TAME)	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/2012
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	05/22/2012
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/2012
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	05/22/2012
1,2-Dichloroethane-d4 (Surr)	106		%	EPA 8260B	05/22/2012
Toluene - d8 (Surr)	102		%	EPA 8260B	05/22/2012
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/23/2012
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/23/2012
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/23/2012
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	05/23/2012
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/2012
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/2012
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	05/23/2012
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	05/23/2012
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/23/2012
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	05/23/2012
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	05/23/2012
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	05/23/2012
1,2-Dichloroethane-d4 (Surr)	100		%	EPA 8260B	05/23/2012
Toluene - d8 (Surr)	100		%	EPA 8260B	05/23/2012

Date: 05/30/2012

Project Name : City of Piedmont

QC Report : Matrix Spike/ Matrix Spike Duplicate

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.		Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH-D (Si Gel)									7		110001.			
II II-D (Ol Gel)	81248-02	1.9	19.1	19.9	19.8	18.6	mg/Kg	M EPA 8015	5/29/12	93.5	83.8	10.9	60-140	25
TPH-D (Si Gel)														
, ,	BLANK	<50	1000	1000	883	821	ug/L	M EPA 8015	5/23/12	88.3	82.1	7.26	70-130	25
TPH-D (Si Gel)														
,	BLANK	<50	1000	1000	827	855	ug/L	M EPA 8015	5/23/12	82.7	85.5	3.30	70-130	25
1,2-Dibromoeth	ane													
	81318-01	<0.0050	0.0395	0.0399	0.0392	0.0440	mg/Kg	EPA 8260B	5/21/12	99.2	110	10.4	67.2-121	25
1,2-Dichloroeth	ane						0 0							
	81318-01	<0.0050	0.0396	0.0400	0.0384	0.0399	mg/Kg	EPA 8260B	5/21/12	97.1	99.8	2.77	64.0-124	25
Benzene														
	81318-01	<0.0050	0.0396	0.0400	0.0366	0.0375	mg/Kg	EPA 8260B	5/21/12	92.3	93.8	1.64	67.9-120	25
Diisopropyl ethe	er													
	81318-01	<0.0050	0.0391	0.0395	0.0399	0.0406	mg/Kg	EPA 8260B	5/21/12	102	103	0.818	65.2-122	25
Ethyl-tert-butyl	ether													
	81318-01	<0.0050	0.0394	0.0398	0.0383	0.0394	mg/Kg	EPA 8260B	5/21/12	97.0	98.9	1.94	64.6-122	25

Date: 05/30/2012

Project Name : City of Piedmont

QC Report : Matrix Spike/ Matrix Spike Duplicate

				Spike	Spiked	Duplicate Spike				Spiked Sample	Duplicate Spiked Sample	Relative		Relative Percent
Parameter	Spiked Sample	Sample Value	Spike Level	Dup. Level	Sample Value	Sample Value	Units	Analysis Method	Date Analyzed	Percent	Percent Recov.	Percent Diff.	Recov. Limit	Diff. Limit
Ethylbenzene														
	81318-01	<0.0050	0.0396	0.0400	0.0349	0.0362	mg/Kg	EPA 8260B	5/21/12	88.1	90.6	2.82	65.5-127	25
Methyl-t-butyl e	ther													
	81318-01	<0.0050	0.0396	0.0400	0.0388	0.0413	mg/Kg	EPA 8260B	5/21/12	98.0	103	5.25	57.0-122	25
P + M Xylene														
Tank Bustanial	81318-01	<0.0050	0.0396	0.0400	0.0337	0.0360	mg/Kg	EPA 8260B	5/21/12	85.2	89.9	5.37	62.5-124	25
Tert-Butanol	04040.04	.0.0050	0.000	0.000	0.404	0.407		EDA 0000D	E/04/40	07.0	07.5	0.000	04.0.400	0.5
Tert-amyl-meth	81318-01	<0.0050	0.200	0.202	0.194	0.197	mg/Kg	EPA 8260B	5/21/12	97.2	97.5	0.322	64.3-122	25
ren-amyi-mem		<0.0050	0.0205	0.0000	0.0406	0.0400		EDA 0260B	E/04/40	102	100	2.04	64.0.400	0.5
Toluene	81318-01	<0.0050	0.0395	0.0399	0.0406	0.0423	mg/Kg	EPA 8260B	5/21/12	103	106	2.94	64.9-122	25
Tolderic	81318-01	<0.0050	0.0396	0.0400	0.0364	0.0382	ma/Ka	EPA 8260B	5/21/12	92.0	95.4	3.71	65.7-120	25
	01010-01	\0.0030	0.0030	0.0400	0.0304	0.0302	mg/rtg	LI A 0200B	5/21/12	32.0	95.4	5.71	03.7-120	25
1,2-Dibromoeth	ane													
	81343-06	<0.0050	0.0368	0.0386	0.0362	0.0399	mg/Kg	EPA 8260B	5/22/12	98.4	103	4.89	67.2-121	25
1,2-Dichloroeth	ane						0 0							
	81343-06	<0.0050	0.0368	0.0387	0.0345	0.0373	mg/Kg	EPA 8260B	5/22/12	93.7	96.4	2.89	64.0-124	25
Benzene														
	81343-06	<0.0050	0.0368	0.0387	0.0316	0.0346	mg/Kg	EPA 8260B	5/22/12	85.9	89.6	4.13	67.9-120	25

Date: 05/30/2012

Project Name : City of Piedmont

QC Report : Matrix Spike/ Matrix Spike Duplicate

	Online	0 1 -	Out illus	Spike	Spiked	Duplicate Spike		Ameliante	Data	Spiked Sample	Duplicate Spiked Sample	Relative		Relative Percent
Parameter	Spiked Sample	Sample Value	Spike Level	Dup. Level	Sample Value	Sample Value	Units	Analysis Method	Date Analyzed	Percent Recov.	Percent Recov.	Percent Diff.	Recov. Limit	Diff. Limit
Diisopropyl ethe	er													_
	81343-06	<0.0050	0.0364	0.0382	0.0334	0.0373	mg/Kg	EPA 8260B	5/22/12	91.8	97.6	6.05	65.2-122	25
Ethyl-tert-butyl	ether													
	81343-06	<0.0050	0.0367	0.0385	0.0314	0.0347	mg/Kg	EPA 8260B	5/22/12	85.6	90.1	5.05	64.6-122	25
Ethylbenzene														
	81343-06	<0.0050	0.0368	0.0387	0.0321	0.0354	mg/Kg	EPA 8260B	5/22/12	87.1	91.6	4.97	65.5-127	25
Methyl-t-butyl e	ther													
	81343-06	<0.0050	0.0368	0.0387	0.0326	0.0358	mg/Kg	EPA 8260B	5/22/12	88.5	92.5	4.40	57.0-122	25
P + M Xylene														
	81343-06	<0.0050	0.0368	0.0387	0.0316	0.0346	mg/Kg	EPA 8260B	5/22/12	85.8	89.4	4.13	62.5-124	25
Tert-Butanol														
	81343-06	<0.0050	0.186	0.195	0.154	0.175	mg/Kg	EPA 8260B	5/22/12	82.8	89.9	8.27	64.3-122	25
Tert-amyl-meth														
	81343-06	<0.0050	0.0368	0.0386	0.0349	0.0379	mg/Kg	EPA 8260B	5/22/12	94.9	98.2	3.45	64.9-122	25
Toluene														
	81343-06	<0.0050	0.0368	0.0387	0.0328	0.0355	mg/Kg	EPA 8260B	5/22/12	88.9	91.8	3.24	65.7-120	25
1,2-Dibromoeth	ane													
.,_ 2.0.00011	81332-04	<0.50	39.9	39.9	42.1	41.1	ug/L	EPA 8260B	5/23/12	105	103	2.23	80-120	25
	01332-04	~0.50	33.3	33.3	4 ∠. I	4 1. i	ug/L	LF A 0200D	3/23/12	105	103	۷.۷۵	00-120	20

Date: 05/30/2012

Project Name : City of Piedmont

QC Report : Matrix Spike/ Matrix Spike Duplicate

	Spikad	Comple	Cniko	Spike	Spiked	Duplicate Spike	e ed	Analysis	Data	Spiked Sample	Duplicat Spiked Sample	Relative	Spiked Sample Percent	Relative Percent
Parameter	Spiked Sample	Sample Value	Spike Level	Dup. Level	Sample Value	Sample Value	Units	Analysis Method	Date Analyzed	Recov.	Percent Recov.	Percent Diff.	Limit	Diff. Limit
1,2-Dichloroeth	ane													
	81332-04	<0.50	40.0	40.0	40.8	40.0	ug/L	EPA 8260B	5/23/12	102	99.9	2.16	75.7-122	25
Benzene														
	81332-04	<0.50	40.0	40.0	41.7	40.2	ug/L	EPA 8260B	5/23/12	104	100	3.70	80-120	25
Diisopropyl ethe	er													
	81332-04	<0.50	39.5	39.5	42.9	41.4	ug/L	EPA 8260B	5/23/12	108	105	3.64	80-120	25
Ethyl-tert-butyl	ether													
	81332-04	<0.50	39.8	39.8	40.4	39.4	ug/L	EPA 8260B	5/23/12	102	98.9	2.55	76.5-120	25
Ethylbenzene														
	81332-04	<0.50	40.0	40.0	42.6	41.0	ug/L	EPA 8260B	5/23/12	107	102	3.87	80-120	25
Methyl-t-butyl e	ther													
	81332-04	<0.50	40.0	40.0	37.8	36.9	ug/L	EPA 8260B	5/23/12	94.5	92.4	2.32	69.7-121	25
P + M Xylene														
	81332-04	0.64	40.0	40.0	42.3	41.1	ug/L	EPA 8260B	5/23/12	104	101	2.90	76.8-120	25
Tert-Butanol														
	81332-04	<5.0	202	202	204	205	ug/L	EPA 8260B	5/23/12	101	102	0.357	80-120	25
Tert-amyl-methy	yl ether													
	81332-04	<0.50	39.9	39.9	40.6	39.3	ug/L	EPA 8260B	5/23/12	102	98.3	3.39	78.9-120	25
Toluene														
	81332-04	0.63	40.0	40.0	42.4	40.6	ug/L	EPA 8260B	5/23/12	104	99.9	4.41	80-120	25

Date: 05/30/2012

Project Name : City of Piedmont

QC Report : Laboratory Control Sample (LCS)

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
TPH-D (Si Gel)	20.0	mg/Kg	M EPA 8015	5/29/12	95.3	70-130
1,2-Dibromoethane	0.0391	mg/Kg	EPA 8260B	5/21/12	110	67.2-121
1,2-Dichloroethane	0.0392	mg/Kg	EPA 8260B	5/21/12	102	64.0-124
Benzene	0.0392	mg/Kg	EPA 8260B	5/21/12	94.4	67.9-120
Diisopropyl ether	0.0388	mg/Kg	EPA 8260B	5/21/12	103	65.2-122
Ethyl-tert-butyl ether	0.0390	mg/Kg	EPA 8260B	5/21/12	95.4	64.6-122
Ethylbenzene	0.0392	mg/Kg	EPA 8260B	5/21/12	95.5	65.5-127
Methyl-t-butyl ether	0.0392	mg/Kg	EPA 8260B	5/21/12	98.0	57.0-122
P + M Xylene	0.0392	mg/Kg	EPA 8260B	5/21/12	93.1	62.5-124
Tert-Butanol	0.198	mg/Kg	EPA 8260B	5/21/12	96.8	64.3-122
Tert-amyl-methyl ether	0.0392	mg/Kg	EPA 8260B	5/21/12	102	64.9-122
Toluene	0.0392	mg/Kg	EPA 8260B	5/21/12	96.6	65.7-120
1,2-Dibromoethane	0.0381	mg/Kg	EPA 8260B	5/22/12	110	67.2-121
1,2-Dichloroethane	0.0382	mg/Kg	EPA 8260B	5/22/12	103	64.0-124
Benzene	0.0382	mg/Kg	EPA 8260B	5/22/12	94.2	67.9-120
Diisopropyl ether	0.0377	mg/Kg	EPA 8260B	5/22/12	102	65.2-122
Ethyl-tert-butyl ether	0.0380	mg/Kg	EPA 8260B	5/22/12	93.8	64.6-122
Ethylbenzene	0.0382	mg/Kg	EPA 8260B	5/22/12	96.8	65.5-127
Methyl-t-butyl ether	0.0382	mg/Kg	EPA 8260B	5/22/12	98.0	57.0-122
P + M Xylene	0.0382	mg/Kg	EPA 8260B	5/22/12	94.4	62.5-124

QC Report : Laboratory Control Sample (LCS)

Project Name : City of Piedmont

Parameter	Spike	Linita	Analysis	Date	LCS Percent	LCS Percent Recov.
Tert-Butanol	Lével 0.192	Units mg/Kg	Method EPA 8260B	Analyzed 5/22/12	Recov. 97.8	Limit 64.3-122
Tert-amyl-methyl ether	0.0381	mg/Kg	EPA 8260B	5/22/12	104	64.9-122
Toluene	0.0382	mg/Kg	EPA 8260B	5/22/12	96.4	65.7-120
1,2-Dibromoethane	40.1	ug/L	EPA 8260B	5/23/12	104	80-120
1,2-Dichloroethane	40.2	ug/L	EPA 8260B	5/23/12	101	75.7-122
Benzene	40.2	ug/L	EPA 8260B	5/23/12	102	80-120
Diisopropyl ether	39.7	ug/L	EPA 8260B	5/23/12	105	80-120
Ethyl-tert-butyl ether	40.0	ug/L	EPA 8260B	5/23/12	99.4	76.5-120
Ethylbenzene	40.2	ug/L	EPA 8260B	5/23/12	104	80-120
Methyl-t-butyl ether	40.2	ug/L	EPA 8260B	5/23/12	92.0	69.7-121
P + M Xylene	40.2	ug/L	EPA 8260B	5/23/12	103	76.8-120
TPH as Gasoline	507	ug/L	EPA 8260B	5/23/12	102	70.0-130
Tert-Butanol	202	ug/L	EPA 8260B	5/23/12	99.5	80-120
Tert-amyl-methyl ether	40.1	ug/L	EPA 8260B	5/23/12	99.5	78.9-120
Toluene	40.2	ug/L	EPA 8260B	5/23/12	102	80-120

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

81303

SAMPLER (SIGNATURE)								NAME		city	a f	Pia	d m.	in t		\ \	PAG JOB		101	£ 2-
ANALYSIS REQUEST					\perp	ADD	RESS	120	V.3	ita	Alle	, β,	redn	7011	501	1		-		
SPECIAL INSTRUCTIONS:					TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	1015) Cel Chung	FPH-DIESEL & MOTOR OIL EPA 3510/8015)	ETALS F7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TOTAL or DISSOLVED) (EPA 6010)	·ro	ENATES	PURGEABLE HALOCARBONS (EPA 601/8010)	US OXYS (β b 30 8260) Sec. J	MULTHRANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	IGANICS 0/8260)	S (5) 200)	4:1		9
SAMPLE ID. BH-A 4.5	DATE	TIME	MATRIX	- QUANTITY		TPH-DIESEL (EPA 3510/8015) C	TPH-DIESE (EPA 3510/8	CAM 17 METALS (EPA 6010+7000)	SEMI-VOLA (EPA 625/82	Pb (TOTAL (EPA 6010)	PESTICIDES (EPA 8081)	FUEL OXYGENATES (EPA 8260)	PURGEABL (EPA 601/80	TPH-G/BTEX/5 OXYS (EPA METHOD 8260)	MULTHRANG HYDROCARI GEL CLEANI	VOLATILE ORGANICS (EPA 624/8240/8260)	LUFT METALS (5) (EPA 6010+7000)	COMPOSITE 4:1	EDF	HOL
BH-A 10.00	514-12	1124	5	-	2	<u> </u>								X	*				×	
BH-A 25.0'	+	1238	+	H	19	X		-						X					<u>አ</u>	
BH-A 300	+-+	1300	+	╫	5	X		<u> </u>		 -			<u> </u>	ļ 	ļ					×
BH-B 4.8°		1410		$\dag \uparrow$	1						<u> </u>	<u> </u>		X			<u> </u>		X	
BH-B 5.5'		1425		H	X	X							<u> </u>				<u> </u>			X
BH-B 10.0°		1518			X	X								X				ļ	X	
BH-B 15.0°		1541											 	1			-		X	
BH-B 200°	1-	1613		Ц									 					<u> </u>		X
BH-B 25-0° BH-B 300°	1	1642			/															$\frac{\lambda}{\lambda}$
	I W	17/5	V	V	X	X								X					λ.	/
(signature) (time) (s Robert E. Kitay (printed name) (date) (p	eceive)	/	(tim		(sigr	INQUIS	SHED B	Y:		(sign	Jz_ nature)	less	BORAT	122 1812		2.5	JRN AR	OUND	TIME Hr 72Hr
Bompany-ASE, INC.	ompany	' -				Cøm	pany-			•				Lol	4 Jeal	7 0	HER.] - "	10	/2/11

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

81303

SAMPLER (SIGNATURE) Ru L & Kling								NAME 120		ity		Pied	mon	t		<u> </u>		E NO		
ANALYSIS REQUEST				_		ADD O	HESS		, V,	<i>31</i> ~	Ave	<u>-, γ</u>	udm	ont,	CA					
SPECIAL INSTRUCTIONS:					TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	TPH-DIESEL イメンド へ	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	ETALS +7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TOTAL or DISSOLVED) (EPA 6010)	· 83	SENATES	PURGEABLE HALOCARBONS (EPA 601/8010)	TPH-G/BTEX/5 OXYS $/\!\!f$ b (EPA METHOD 8260) S_{ccc}	MULTHRANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	HGANICS 40/8260)	.s (5) .000)	4:1		03
SAMPLE ID.	DATE	TIME	MATRIX.	QUANTITY	TPH-GAS (EPA 5030)	TPH-DIESE (EPA 3510/	TPH-DIESE (EPA 3510/	CAM 17 METALS (EPA 6010+7000)	SEMI-VOL (EPA 625/8	Pb (TOTAI (EPA 6010)	PESTICIDES (EPA 8081)	FUEL OXYGENATES (EPA 8260)	PURGEAB (EPA 601/8	TPH-G/BTE (EPA METH	MULTI-RAN HYDROCAF GEL CLEAN	VOLATILE ORGANICS (EPA 624/8240/8260)	LUFT METALS (5) (EPA 6010+7000)	COMPOSITE 4:1	EDF	Hor
BH-C 2.5	5-17-12	858	5	1				<u> </u>												~
3H-C 4.5'		10 20	\vdash			×		<u> </u>	-	ļ				×		,			×	
BH-C 10.0		1035	\vdash	+		×					<u> </u>	ļ								λ
3H C 200	4	1113	1	4		\\ \times \								×	ļ				λ	
						-					ļ		<u> </u>	X			<u> </u>		×	
BH-A Water	5-1612	954	W	5		X		<u> </u>												
311-B Water	5-16-12	1420		1		×		<u> </u>		<u> </u>				<u>×</u> ×					X	
3H-C Water	5-17-12					>			 					\times					7	
Drain	5-16-12	900	V	V		X		,						×					×	
ELINQUISHED BY: 10 E Khy 10 (time) 10 String (date)	RECEIVED BY: (signature) (time) (printed name) (date)					(sigr	INQUIS	SHED B	(tim		E (Sign	Janure) Grda	less	BORAT SA Z (tim	2 1812		\sim	RN AR	OUND	
ompany-ASE, INC.	Company-	•			,		pany-	110)	. (dat	(e)	l l	ted nar		(da Laly	/ 5 /		ANDAR HER:	D 241	dr 48	Hr 72H

SAMPLE RECEIPT CHECKLIST

RECEIVER	
Es	
Initials	

SRG#: 8(303 Date: 057817	Initials
Project ID: City of Piedmant	
Method of Receipt: Courier Over-the-counter Shipper	
COC Inspection Is COC present? Custody seals on shipping container? Is COC Signed by Relinquisher? Is sampler name legibly indicated on COC? Is analysis or hold requested for all samples? Yes No No Yes No No No	□ Not present ☑N/A
Is the turnaround time indicated on COC? Is COC free of whiteout and uninitialed cross-outs? Yes No, WI	hiteout No, Cross-outs
Are there samples matrices other than soil, water, air or carbon? Are any sample containers broken, leaking or damaged? Yes No	U''''
Are the Sample ID's indicated: On COC On sample container(s) If Sample ID's are listed on both COC and containers, do they all match? Is the Project ID indicated: On COC On sample container(s) If project ID is listed on both COC and containers, do they all match? Are the sample collection dates indicated: On COC On sample container(s) If collection dates are listed on both COC and containers, do they all match? Are the sample collection times indicated: On COC On sample container(s) If collection times are listed on both COC and containers, do they all match? Are the sample collection times indicated: On COC On sample container(s) If collection times are listed on both COC and containers, do they all match? If collection times are listed on both COC and containers, do they all match? If collection times are listed on both COC and containers, do they all match? If collection times are listed on both COC and containers, do they all match? If collection times are listed on both COC and containers, do they all match? If collection times are listed on both COC and containers, do they all match? If collection times are listed on both COC and containers, do they all match? If collection times are listed on both COC and containers, do they all match?	N/A Not indicated N/A The property of the Not indicated N/A Not indicated N/A Not indicated N/A Not indicated N/A
on the ID labels East 0.7812 0922	- presentation
The following samples may have insuffice -08, -04, -09, -10. Utros 2/12-1122	

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220, Danville, CA 94526 (925) 820-9391 - Fax (925) 837-4853 - www.aquascienceengineers.com

APPENDIX D

Certified Analytical Report and Chain of Custody Documentation For Park Irrigation Well Water Sample

Date: 05/29/2012

Laboratory Results

Robert Kitay Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526

Subject: 1 Water Sample

Project Name: City of Piedmont

Project Number:

Dear Mr. Kitay,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the National Environmental Laboratory Accreditation Program (NELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy Turpen

Troy D. Turpen

Date: 05/29/2012

Project Name : City of Piedmont

Project Number:

Sample: Park Well Matrix: Water Lab Number: 81347-01

Sample Date :05/22/2012

Sample Date .05/22/2012		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/25/12 01:27
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/25/12 01:27
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/25/12 01:27
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	05/25/12 01:27
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	05/25/12 01:27
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/25/12 01:27
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/25/12 01:27
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/25/12 01:27
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	05/25/12 01:27
TPH as Gasoline	52	50	ug/L	EPA 8260B	05/25/12 01:27
(Note: Primarily compounds not found in ty	ypical Gasoline)				
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	05/25/12 01:27
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	05/25/12 01:27
1,2-Dichloroethane-d4 (Surr)	98.8		% Recovery	EPA 8260B	05/25/12 01:27
Toluene - d8 (Surr)	89.8		% Recovery	EPA 8260B	05/25/12 01:27
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	05/26/12 02:29
Octacosane (Silica Gel Surr)	92.4		% Recovery	M EPA 8015	05/26/12 02:29

Date: 05/29/2012

QC Report : Method Blank Data

Project Name : City of Piedmont

Parameter	Measured Value	Method Reporting Limit	l Units	Analysis Method	Date Analyzed
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	05/25/2012
Octacosane (Silica Gel Surr)	99.6		%	M EPA 8015	05/25/2012
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/24/2012
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/24/2012
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/24/2012
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	05/24/2012
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/24/2012
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/24/2012
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	05/24/2012
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	05/24/2012
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/24/2012
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	05/24/2012
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	05/24/2012
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	05/24/2012
1,2-Dichloroethane-d4 (Surr)	98.4		%	EPA 8260B	05/24/2012
Toluene - d8 (Surr)	98.5		%	EPA 8260B	05/24/2012

		Method		
	Measured	Reporting	Analysis	Date
<u>Parameter</u>	Value	Limit Units	Method	Analyzed

Date: 05/29/2012

Project Name : City of Piedmont

QC Report : Matrix Spike/ Matrix Spike Duplicate

				Spike	Spiked	Duplicate Spike	ed			Spiked Sample	Duplicat Spiked Sample	Relative	Spiked Sample Percent	Relative Percent
Parameter	Spiked Sample	Sample Value	Spike Level	Dup. Level	Sample Value	Samble Value	Units	Analysis Method	Date Analyzed	Percent Recov.	Percent Recov.	Percent Diff.	Recov. Limit	Diff. Limit
TPH-D (Si Gel)														
	BLANK	<50	1000	1000	857	825	ug/L	M EPA 8015	5/25/12	85.7	82.5	3.76	70-130	25
1,2-Dibromoeth	ane													
	81323-03	<0.50	39.9	39.9	40.4	40.1	ug/L	EPA 8260B	5/24/12	101	100	0.812	80-120	25
1,2-Dichloroeth	ane													
	81323-03	4.2	40.0	40.0	45.7	44.7	ug/L	EPA 8260B	5/24/12	104	101	2.49	75.7-122	25
Benzene														
	81323-03	<0.50	40.0	40.0	40.4	39.5	ug/L	EPA 8260B	5/24/12	101	98.8	2.28	80-120	25
Diisopropyl ethe	er													
	81323-03	<0.50	39.5	39.5	40.5	39.8	ug/L	EPA 8260B	5/24/12	102	101	1.66	80-120	25
Ethyl-tert-butyl	ether													
	81323-03	<0.50	39.8	39.8	38.5	38.2	ug/L	EPA 8260B	5/24/12	96.6	95.9	0.692	76.5-120	25
Ethylbenzene														
	81323-03	<0.50	40.0	40.0	39.8	39.0	ug/L	EPA 8260B	5/24/12	99.6	97.4	2.19	80-120	25
Methyl-t-butyl e	ther													
	81323-03	0.89	40.0	40.0	43.0	42.6	ug/L	EPA 8260B	5/24/12	105	104	0.940	69.7-121	25
P + M Xylene							-							
	81323-03	<0.50	40.0	40.0	39.6	39.1	ug/L	EPA 8260B	5/24/12	99.0	97.8	1.20	76.8-120	25

Date: 05/29/2012

Project Name : City of Piedmont

QC Report : Matrix Spike/ Matrix Spike Duplicate

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	ed Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.		Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Tert-Butanol														
	81323-03	<5.0	202	202	204	205	ug/L	EPA 8260B	5/24/12	101	102	0.238	80-120	25
Tert-amyl-methy	yl ether													
	81323-03	<0.50	39.9	39.9	39.5	38.9	ug/L	EPA 8260B	5/24/12	98.9	97.3	1.62	78.9-120	25
Toluene														
	81323-03	<0.50	40.0	40.0	39.9	39.1	ug/L	EPA 8260B	5/24/12	99.9	97.9	2.04	80-120	25

Date: 05/29/2012

Project Name : City of Piedmont

QC Report : Laboratory Control Sample (LCS)

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
1,2-Dibromoethane	40.0	ug/L	EPA 8260B	5/24/12	100	80-120
1,2-Dichloroethane	40.1	ug/L	EPA 8260B	5/24/12	104	75.7-122
Benzene	40.1	ug/L	EPA 8260B	5/24/12	101	80-120
Diisopropyl ether	39.6	ug/L	EPA 8260B	5/24/12	100	80-120
Ethyl-tert-butyl ether	39.9	ug/L	EPA 8260B	5/24/12	97.7	76.5-120
Ethylbenzene	40.1	ug/L	EPA 8260B	5/24/12	98.0	80-120
Methyl-t-butyl ether	40.1	ug/L	EPA 8260B	5/24/12	106	69.7-121
P + M Xylene	40.1	ug/L	EPA 8260B	5/24/12	97.8	76.8-120
TPH as Gasoline	502	ug/L	EPA 8260B	5/24/12	100	70.0-130
Tert-Butanol	202	ug/L	EPA 8260B	5/24/12	102	80-120
Tert-amyl-methyl ether	40.0	ug/L	EPA 8260B	5/24/12	98.5	78.9-120
Toluene	40.1	ug/L	EPA 8260B	5/24/12	100	80-120

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

81347

SAMPLER (SIGNATURE)					Т	······································					PAG	E	1 of								
Pul Citty						PRO ADD	JECT RESS	NAME	$\frac{c}{\sqrt{i}}$	Sto	Au	Vied	mor	1-	· · ·		JOB	NO		-	
ANALYSIS REQUEST									T	7,50	110				F_{ℓ}	C14					
SPECIAL INSTRUCTIONS:					ĔŽ.	15.lica Car Cleanup	ROIL		ANICS	VED)			ARBONS	166	14 SILIC/						
					MTBE & B 3015-8020)	1. 4/5.1/ 3015) C.I.	L & MOTO 2015)	ETALS +7000)	TILE ORG 270)	or DISSOI	်တ	SENATES	E HALOC 010)	X/5 OXYS OD 8260)	GE BONS WIT UP (EPA 80	RGANICS t0/8260)	.s (5) (000)	4:1			
SAMPLE ID.	DATE	TIME	MATRIX	QUANTITY	TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	TPH-DIESEL -//. (EPA 3510/8015)	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	CAM 17 METALS (EPA 6010+7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TOTAL or DISSOLVED) (EPA 6010)	PESTICIDES (EPA 8081)	FUEL OXYGENATES (EPA 8260)	PURGEABLE HALOCARBONS (EPA 601/8010)	TPH-G/BTEX/5 OXYS $/\ell^b$ (EPA METHOD 8260) $5 c_{\alpha} V_{\gamma}$	MULTHRANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	DLATILE O	LUFT METALS (5) (EPA 6010+7000)	COMPOSITE 4:1	EDF		
Park Well	5.22.12	10 30	W	5		×								7	210	>.e.		Ö	X		0
			-	-			<u> </u>			ļ											
		-	-				-					ļ		ļ							
			╁	╁╌	-	-				 	<u> </u>		-	-		ļ		 			
					 			-	 					-			<u> </u>	-			1
								1.						 	 			 	<u> </u>		-
			<u> </u>	1_														+			1
		ļ	 	_		<u> </u>	ļ	<u> </u>													1
		-	┼-	—	<u> </u>		 	ļ	<u> </u>	ļ	ļ										
BELINOUISHED BY	DEOE!! #		ļ		<u></u>	1	<u>L</u>									<u> </u>					
60 Ell 5221	RECEIVE	D BY:				RE	-INQUI	SHED	3Y:		RE	CEIVE	BYL	ABORA	TORY:		OMMEN	ITS:			
RELINQUISHED BY: 5-22/17 (signature) (dime) 13 0/ Choby t E Kity (printed name) (date)	(signature) (time)			(sig	nature)		(tin	ne)		nature)		(tir	ue) 30	ᅱ							
	†									Leuroberts 052212						TURN AROUND TIME				1	
<u> </u>	(printèd n	•		(da	te)	(printed name) (date)						(printed name) (date) ST						TANDARD 24Hr 48Hr 72Hr			
Company-ASE, INC.	Company-					Company						Company- Ki (FAnalytica) 01									

SAMPLE RECEIPT CHECKLIST

S 1347

Date: 052212

RECEIVER						
Ini	tials					

5KG#: 6 1 3 1 7	Date:	032272
Project ID: CITY OF	Piedmont	
Method of Receipt: Zourier	Over-the-counter	Shipper
COC Inspection Is COC present? Custody seals on shipping container? Is COC Signed by Relinquisher? Is sampler name legibly indicated on COC? Is analysis or hold requested for all samples? Is the turnaround time indicated on COC? Is COC free of whiteout and uninitialed cross-outs?	Dated? Yes Dated? Yes Yes Yes Yes Yes Yes Yes Yes	□ No □ Broken □ Not present □ N/A □ No
Sample Inspection Coolant Present: Temperature °C Therm. ID# Temperature Storage Therm. ID# Therm.	Date/Time Intact COC lists absent sample(s) bon? Yes Yes tainers Yes, on COC Yes Yes uested? Yes	Broken Not present No, Extra sample(s) present No
Quicklog Are the Sample ID's indicated:	sample container(s) On all match? Yes No On sample container(s) o they all match? Yes On sample container(s)	No N/A Both Not indicated N/A On Both Not indicated NO NO NO N/A On Both Not indicated
COMMENTS:	,	
		- 4

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220, Danville, CA 94526 (925) 820-9391 - Fax (925) 837-4853 - www.aquascienceengineers.com

APPENDIX E

Manifest for Waste Disposal

	T	1 Consented ID North		1		-			The second secon		
A	NON-HAZARDOUS 1. Generator ID Number 2. Page 1 of 3. Emergency Response Phone					4. Waste Tracking Number					
	800-925-4994										
S. C.	CITY OF PIEDMONT 120 VISTA AVENUE PIEDMONT, CA 94520 USA Generator's Phone: 925-413-8504										
	6. Transporter 1 Company I	lame			300		U.S. EPA ID	Number			
256		EVERGREEN ENVIR	RONMENTAL SERVICE	CES			1	CAD982413262			
	7 Transporter 2 Company N	lame						U.S. EPA ID Number			
1000		EUTAL LOGIS	Mes INC	•			1 CAR	(AR 000317513			
	8. Designated Facility Name and Site Address FILTER RECYCLING SERVICES, INC. 180 WEST MONTE FILTER RECYCLING SERVICES, INC.						U.S. EPA ID	U.S. EPA ID Number CAD982444481			
				-10° - 20° - 20°	10. Cont.	ainers	11. Total	12. Unit		-	
	9. Waste Shipping Na	ame and Description			No.	Туре	Quantity	Wt./Vol.			
GENERATOR -	1. NON-HAZA	RDOUS WASTE, SOLID	(DRILLING MUD)	100	007	74	350	G			
ENE	2.		50 W.C		007	Divi	<u> </u>			2706	
9											
	3.			70-2-1-1							
Ш											
П											
	4.										
								1			
	W 0 0 0 0	tions and Additional Information						20.0			
П	LINE ITEM 9.1)	PROFILE	<u></u>	GALLON DR	UMS WE	AR APPR	OPRIATE P	PE WHE	N HANDING		
Ш	JIS 6904										
П											
	14. GENERATOR'S CERTIE	ICATION: I certify the materials desc	ribad about an this					1. 12.5		_	
	Generator's/Offeror's Printed	Typed Name		are not subject to Signa	ture A	reporting proj	per disposal of H	azardous Wa	ste.	_	
4	SUSAN RIGNAL	DEN, DECON ENVIRO	NMONTAL	1	MM NAWY	den D	ECON IM I	behille	Wast 00 15 1	2	
بر	15. International Shipments				(1)	27,0	Clify	of RYD	many vivis 17	2	
INT	Transporter Signature (for ex	Import to U.S.		Export from U.S				7	*	_	
_	16. Transporter Acknowledge				Date leav	ing U.S.:				-	
TRANSPORTER	Transporter 1 Printed/Typed I			Signa	ture /		0		Month Day Y	ear	
950	Rennefl	2 E. WILL	Han S	1 -	1	= 1	19			2	
AN	Transporter 2 Printed/Typed I			Signa	ture	-		$\overline{}$		ear	
쁘	MIKKI i	Dasnington	\supset	1	Milcel	100	hingto		106/18/12	_	
A	17. Discrepancy					(A)(N)	10. 410		10010112	\dashv	
	17a. Discrepancy Indication S	pace Quantity	Туре		Residue	1	Partial Rej	nation	Full Rejection		
					riesidae		— ramai nej	ECHON	L ruii nejection	1000	
1	175 Albert 5 19 / 6		(C)		Manifest Reference N	lumber:				1	
Ė	17b. Alternate Facility (or Generator)						U.S.*EPA ID I	U.S.*EPA ID Number			
4CII		96						*		0.000	
DE	Facility's Phone:	-ilih. (Ct-)				-					
ATE	17c. Signature of Alternate Fa	cuity (or Generator)		T.					Month Day Ye	ear	
GN					-					The state	
DESIGNATED FACILITY										1	
										No.	
1	18 Designated Equilibrium	or Operator C - 15 - 1					Mark San		电视程序 化		
1	Printed/Typed Name	or Operator: Certification of receipt of	or materials covered by the m							STATE OF THE PERSON	
4				Signat I	ure		*•.		Month Day Ye	ear	
,				1					I I I	12	