April 21, 2015

RECEIVED By Alameda County Environmental Health 12:33 pm, May 11, 201

Ms. Dilan Roe Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94501-6577

Subject: Third and Fourth Quarter 2014 Groundwater Monitoring Report Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California Site Cleanup Program Case No. RO0003014

Dear Ms. Roe:

Enclosed please find the *Third and Fourth Quarter 2014 Groundwater Monitoring Report* for the Crown Chevrolet Cadillac Isuzu site at 7544 Dublin Boulevard, Dublin, California (Fuel Leak Case No. RO0003014, GeoTracker Global ID T10000001616). This document was prepared by Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), on behalf of Crown Chevrolet Cadillac Isuzu.

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Please contact me at (408) 680-4938 or Avery Whitmarsh of Amec Foster Wheeler at 510-663-4154 if you have any questions regarding this report.

Sincerely yours,

Sean P. Murphy Dublin Apartment Properties LLC BWD Dublin LLC

Attachment: Third and Fourth Quarter 2014 Groundwater Monitoring Report

cc: Tondria Hendrix, Zurich North American Insurance Thomas L. Vormbrock, Rimkus Consulting Group, Inc.

THIRD AND FOURTH QUARTER 2014 GROUNDWATER MONITORING REPORT

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Prepared for:

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 180 Grand Avenue, Suite 1100 Oakland, California 94612

April 2015

Project No. OD10160070

THIRD AND FOURTH QUARTER 2014 GROUNDWATER MONITORING REPORT Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

April 21, 2015 Project OD10160070

This report was prepared by the staff of Amec Foster Wheeler Environment & Infrastructure, Inc., under the supervision of the Geologist whose seal and signature appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

AVERY WHITMADE 1ST No. 8541 . . WIE OF CALIFORNIE

Avery Whitmarsh, PG #8541 Senior Geologist

TABLE OF CONTENTS

		•
1.0	BACKGROUND	1
2.0	 GROUNDWATER MONITORING ACTIVITIES 2.1 GROUNDWATER ELEVATION GAUGING 2.2 MONITORING WELL SAMPLING 2.3 LABORATORY ANALYTICAL METHODS 2.4 INVESTIGATION DERIVED WASTE MANAGEMENT 2.5 DATA QUALITY REVIEW 	3 3 4 4 4
3.0	 RESULTS 3.1 GROUNDWATER ELEVATIONS, FLOW DIRECTIONS, AND GRADIENTS. 3.2 GROUNDWATER ANALYTICAL RESULTS 3.2.1 First Water-Bearing Zone 3.2.2 Second Water-Bearing Zone 3.2.3 Third Water-Bearing Zone 	5 5 6 7 7 8
4.0	SUMMARY OF TRENDS	
5.0	NEXT STEPS	9
6.0	REFERENCES	10

TABLES

Table 1	Well Construction Details
Table 2	Groundwater Elevations
Table 3	Volatile Organic Compounds in Groundwater from Monitoring Wells

FIGURES

- Figure 1 Site Location Map
- Figure 2 Potentiometric Surface in the First Water-Bearing Zone, July 2014
- Figure 3 Potentiometric Surface in the First Water-Bearing Zone, October 2014
- Figure 4 Potentiometric Surface in the First Water-Bearing Zone, December 2014
- Figure 5 Potentiometric Surface in the Third Water-Bearing Zone, July 2014
- Figure 6 Potentiometric Surface in the Third Water-Bearing Zone, October 2014
- Figure 7 Selected VOCs in the First Water-Bearing Zone, July and October 2014
- Figure 8 Selected VOC Concentration Trends in the First Water-Bearing Zone
- Figure 9 Chlorobenzene and 1,2-DCB Concentration Trends in MW-03

APPENDICES

- Appendix A Well Sampling Field Records
- Appendix B Laboratory Analytical Reports
- Appendix C Data Qualify Review

Page

THIRD AND FOURTH QUARTER 2014 GROUNDWATER MONITORING REPORT

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler),¹ has prepared this *Third and Fourth Quarter 2014 Groundwater Monitoring Report* ("monitoring report") on behalf of the Betty J. Woolverton Trust and Crown Chevrolet Cadillac Isuzu (collectively, Crown) for the property located at 7544 Dublin Boulevard in Dublin, California (the site; Figure 1). The groundwater monitoring was performed at the request of Alameda County Department of Environmental Health (ACDEH).

On July 30 and October 6, 2014, Amec Foster Wheeler performed the quarterly groundwater elevation gauging and groundwater sampling for the monitoring wells installed at the site. Additional gauging was conducted on December 18, 2014. This report presents the results of the quarterly groundwater monitoring events and the additional gauging event.

1.0 BACKGROUND

A brief discussion of site background is presented below. A more complete discussion of background, including a site conceptual model, is presented in the *Final Feasibility Study and Corrective Action Plan* (FS/CAP; AMEC, 2014).

The site was developed in 1968 as Crown Chevrolet, a car dealership with auto body shops, on land that was likely previously used for agriculture. At that time, the three main site buildings (Buildings A, B, and C) were constructed. Building A was later expanded. Building D was reportedly constructed in 1994. Operations as a car dealership and auto body shop continued from 1968 through mid-2013. The property was sold to BWD Dublin LLC in the fall of 2014, and the site buildings were demolished in December 2014 in preparation for redevelopment.

The site consists of an approximately 4.97-acre parcel (ACDEH Case No. RO0003014). A separate 1.36-acre parcel is also present to the south at 6707 Golden Gate Drive and was decoupled from the ACDEH case for the 4.97-acre parcel in December 2013. Case No. RO0003130 was opened for the Crown Chevrolet South Parcel at that time. No groundwater impacts have been identified in the 1.36-acre parcel, and the case was closed on August 4, 2014.

¹ AMEC Environment & Infrastructure, Inc. (AMEC), became Amec Foster Wheeler Environment & Infrastructure, Inc., effective January 1, 2015.

Multiple investigations have been conducted at the site; these investigations have been performed to address regulatory concerns as well as in support of transactional and potential redevelopment activities. Based on the previous investigations, two areas of groundwater impacts were identified:

- Volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and trichloroethene (TCE), are present in shallow groundwater throughout the northern portion of the site (within the area shown on Figure 2). The PCE and TCE are attributed to an off-site source; the specific source has not been identified (AMEC, 2012b).
- Chlorobenzenes and related compounds (e.g., 1,2-dichlorobenzene and 1,4-dichlorobenzene) are present in groundwater and soil vapor at a former sump within Building B (Building B and the former sump are shown on Figure 2). Remediation was performed in October 2011 at the former sump and included removal of soil and VOC-affected water; however, some impacted soil remained beneath building walls (AMEC, 2011).

A summary of the results from the previous investigations is included in Amec Foster Wheeler's *Soil, Groundwater, and Soil Vapor Investigation Report* (AMEC, 2012b). Site redevelopment is planned, and the FS/CAP describes the corrective action objectives (CAOs) for the site and outlines plans to meet the CAOs and mitigate the impacts discussed above (AMEC, 2014). A *Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report* is currently in preparation that will provide detailed information regarding the design of the corrective actions proposed in the FS/CAP. Additionally, after the site buildings were demolished in December 2014, more impacted soil was removed from around the former sump in February 2015; the soil removal activities will be documented in a forthcoming *Post-Demolition Investigation and Remediation Report*, which is expected to be submitted to ACDEH in May or June 2015, following completion of the demolition and remedial activities.

In order to monitor groundwater conditions at the site, seven monitoring wells (with a total of 15 well ports at varying depths) were installed at the site in September 2012. An initial round of sampling was conducted at that time, and the well installation activities and results were reported in the *Soil, Groundwater, and Soil Vapor Investigation Report* (AMEC, 2012b). Beginning in January 2013, the site wells were sampled once each quarter, and the results documented in monitoring reports prepared by Amec Foster Wheeler on a quarterly or semiannual basis. Three additional piezometers were installed in August 2014 as part of a investigation to support the design of the permeable reactive barrier. A summary of the piezometer installation, including field methods, will be included in the *Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report*.

In the second half of 2014, in preparation for site redevelopment, the site monitoring wells were destroyed. Monitoring well MW-03 was destroyed in August 2014 prior to the demolition of Building B. The remaining monitoring wells and the three piezometers were destroyed in

December 2014. A summary of the well destruction activities, including field methods, will be included in the *Post-Demolition Investigation and Remediation Report.*

A summary of the field and laboratory methods and results for the third and fourth quarter 2014 monitoring events, conducted at the site on July 30, 2014 (when all monitoring wells were present), and October 6, 2014 (following the destruction of monitoring well MW-03), is presented in this monitoring report.

2.0 GROUNDWATER MONITORING ACTIVITIES

The following sections describe the work performed in association with the groundwater monitoring activities at the site. The sampling methodologies and analytical suite are consistent with the methods presented in the *Soil, Groundwater and Soil Vapor Investigation Work Plan* (AMEC, 2012a).

On July 30, 2014, groundwater samples were collected from 15 wells and well ports at the site. On October 6, 2014, groundwater samples were collected from 14 monitoring wells and well ports and water levels were measured in piezometers PZ-01, PZ-02, and PZ-03. During the July 2014 monitoring event, the monitoring well network at the site consisted of three shallow groundwater monitoring wells screened in the first water-bearing zone; and four continuous multichannel tubing (CMT) wells, each with three ports (in the first water-bearing zone and in two deeper zones). During the October 2014 monitoring event, the monitoring well network consisted of one less monitoring well screened in the shallow water-bearing zone (monitoring well MW-03 had been destroyed). The wells and piezometers were additionally gauged in December 2014, prior to destruction. Construction details for the monitoring wells, piezometers, and the CMT wells are presented in Table 1.

2.1 GROUNDWATER ELEVATION GAUGING

Prior to collecting depth-to-groundwater measurements, the well cap was first removed from each well and the water levels were allowed to equilibrate. Equilibration was considered complete when two depth-to-groundwater measurements collected within several minutes at a well were equivalent. The depth-to-groundwater measurements were made to an accuracy of 0.01 foot with an electric sounder. The depth to groundwater at each well was recorded on a water level monitoring record. Copies of the well level monitoring records from July, October, and December 2014 are included in Appendix A.

2.2 MONITORING WELL SAMPLING

Following the water level measurements and prior to sample collection, each well was purged using a low-flow technique at flow rates ranging from 30 to 200 milliliters per minute (mL/min). During purging, the following field measurements were recorded and documented on field records: dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance. Copies of the well sampling field records are included in Appendix A. Purging

was considered complete when these parameters had stabilized (three consecutive readings within the following limits: \pm 3 percent change in conductivity, \pm 0.2 pH units, \pm 0.2 mg/l for dissolved oxygen, \pm 20 mV for oxidation-reduction potential, and turbidity is \pm 10 percent or <10 NTU). However, due to slow recharge, several ports at monitoring wells MP-01 through MP-04, and MW-03 were purged dry and then sampled once they recharged with groundwater; the field parameters did not stabilize. During the third and fourth quarters, a sample was collected at port MP-03-2 prior to purging dry and before stabilization due to a history of slow recharge at that well. No sample was collected from MP-02-1 in October due the port being dry.

Following purging, groundwater samples were collected from each well into laboratoryprovided volatile organic analysis (VOA) containers preserved with hydrochloric acid, using a peristaltic pump. Each sample was immediately labeled with a unique identifier and the sample collection time, and then stored in an ice-chilled cooler pending transport to the analytical laboratory under Amec Foster Wheeler chain-of-custody procedures. The purge water generated during the sampling activities was placed in a labeled Department of Transportation-approved container and temporarily stored at the site pending disposal (see Section 2.4).

One blind field duplicate groundwater sample was collected during each of the monitoring events from monitoring well MW-01. The duplicate samples were collected and stored in the same manner as the primary samples and submitted to the laboratory for analysis of the same suite of constituents. A discussion of data quality is included below, in Section 2.5.

2.3 LABORATORY ANALYTICAL METHODS

The groundwater samples were delivered to TestAmerica Laboratories, Inc. (TestAmerica), of Pleasanton, California, a California Department of Public Health-accredited laboratory (Certificate No. 2496). The groundwater samples were analyzed for VOCs (including total petroleum hydrocarbons quantified as gasoline [TPHg]) using U.S. EPA Method 8260B. Copies of the laboratory analytical reports are included in Appendix B.

2.4 INVESTIGATION DERIVED WASTE MANAGEMENT

The decontamination, rinse, and purge water generated during the groundwater monitoring events was stored at the site in an appropriately–labeled 55-gallon drum pending off-site disposal.

2.5 DATA QUALITY REVIEW

Amec Foster Wheeler evaluated the analytical data generated during the third and fourth quarter groundwater monitoring events using guidelines set forth in the U.S. Environmental Protection Agency's (EPA's) USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (U.S. EPA, 2013). The complete data

Amec Foster Wheeler

quality review, which was reviewed and acknowledged by an Amec Foster Wheeler quality assurance/quality control (QA/QC) senior technical reviewer, is included in Appendix C, and is summarized below.

Quality assurance procedures for groundwater samples collected during the quarterly groundwater monitoring program included the collection and analysis of one blind field duplicate sample and one matrix spike/matrix spike duplicate (MS/MSD) sample per event; laboratory analysis of method blank samples, surrogate spikes, and of laboratory control spike/laboratory control spike duplicate (LCS/LCSD) samples; and evaluation of the analytical results.

Data accuracy was assessed by the analysis of LCS/LCSD samples, MS/MSD samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy. Data precision was evaluated by comparing analytical results from duplicate sample pairs and evaluating the calculated relative percent difference (RPD) between the data sets. The results for LCS/LCSD, MS/MSD, and field duplicate sample pairs (as available) were evaluated to assess the precision of the analytical methods for the water sample data.

All detectable concentrations of TPHg (reported by the analytical laboratory as gasoline range organics) in both sampling events were identified by the laboratory to be the result of discrete peaks (caused by one or more compounds including PCE, TCE, and cis-1,2-dichloroethene). Therefore, these TPHg results were qualified with "R" to indicate that they are rejected.

No other data quality deficiencies were identified during the data quality review. With the exception of the rejected data, all laboratory results are valid and usable.

3.0 RESULTS

The following section presents the results of the third and fourth quarter 2014 groundwater monitoring activities.

3.1 GROUNDWATER ELEVATIONS, FLOW DIRECTIONS, AND GRADIENTS

Depths to groundwater were measured on July 30, 2014, in monitoring wells MW-01 through MW-03, and MP-01 through MP-04. Depths to groundwater were measured on October 6 and December 18, 2014, in monitoring wells MW-01, MW-02, MP-01 through MP-04, and piezometers PZ-01 though PZ-03. The depths to groundwater and calculated groundwater surface elevations are presented in Table 2.

Amec Foster Wheeler has identified and collected groundwater samples from three water bearing zones at the site. Based on the observed lithology and water level elevations, the first and third water-bearing zones appear to represent generally well-connected water-bearing zones. Lithologic observations and water level elevations in second water-bearing zone indicate that it may not have the same degree of connectivity.

In the first water-bearing zone at the site, groundwater moves in an approximately easterly direction and the magnitude of the lateral hydraulic gradient was approximately 0.0020 feet per foot on July 30, 2014, and 0.0019 feet per foot on October 6, 2014. In the third water-bearing zone at the site, groundwater moves in an approximately northeasterly direction and the magnitude of the lateral hydraulic gradient was approximately 0.0056 feet per foot on July 30, 2014, and 0.0067 feet per foot on October 6, 2014. Note that the wells in the second and third water-bearing zones are located close to an east-west trending line, making it difficult to gauge the precise direction of groundwater movement. Lateral gradients were not evaluated for the second water-bearing zone, as the depth to water measured in the second deepest port of one well (MP-03-2) does not appear to be representative of the potentiometric surface and not enough additional data are available to evaluate the direction of groundwater movement. The potentiometric surface maps for first and third water-bearing zones during the third and fourth quarters of 2014 are presented on Figures 2 through 6. Rose diagrams also appear on Figures 2 through 6 to summarize the variation in the direction of the groundwater gradient observed since monitoring began in 2012.

Vertical hydraulic gradients were calculated for the intervals between the first and second water-bearing zones (i.e., from approximately 15 to 45 feet bgs) and between the second and third water-bearing zones (i.e., from approximately 45 to 60 feet bgs) in multi-port wells MP-01 through MP-04. For the approximately 15- to 45-foot interval, vertical gradients ranged from 0.014 to 0.047 feet per foot downward on July 30, 2014, and from 0.040 to 0.047 feet downward to on October 6, 2014 (excluding the gradient in MP-02, because MP-02-1 was dry). For the approximately 45- to 60-foot interval, vertical gradients ranged from 0.082 to 0.124 feet per foot downward on July 30, 2014, and from 0.081 to 0.123 feet downward on October 6, 2014. Vertical gradients were not calculated for monitoring well MP-03, as the depth to water measured in the second port (MP-03-2) does not appear to be representative of the potentiometric surface.

3.2 **GROUNDWATER ANALYTICAL RESULTS**

As discussed above, 15 groundwater samples were collected during the July quarterly monitoring event and 14 groundwater samples were collected during the October quarterly monitoring event. The groundwater samples were analyzed for VOCs, including TPHg. The analytical results are summarized in Table 3, and concentrations of selected VOCs in the first water-bearing zone are presented on Figure 7.

For discussion purposes, the groundwater analytical results from July and October 2014 monitoring were compared to water environmental screening levels (ESLs) for groundwater that is assumed to be a potential drinking water resource, published by the California Regional

Amec Foster Wheeler

Water Quality Control Board, San Francisco Bay Region (Regional Water Board; Regional Water Board, 2013). Drinking water ESLs are not an established cleanup goal for the site; however, they provide a frame of reference for discussing analytical results.

A summary of the July and October 2014 monitoring results is presented in the following sections.

3.2.1 First Water-Bearing Zone

In July 2014, PCE and TCE were detected in groundwater samples collected from all monitoring wells screened within the first water-bearing zone. Additionally, cis-1,2-dichloroethene (cis-1,2-DCE) was detected in groundwater from five monitoring wells (MP-01-1, MP-02-1, MP-03-1, MP-04-1, and MW-02), and trans-1,2-dichloroethene (trans-1,2-DCE) was detected in groundwater from monitoring well MP-02-1. Chlorobenzene and 1,2-dichlorobenzene (1,2-DCB) were detected in groundwater from monitoring well MW-03, located near the former sump within Building B. No other VOCs were detected.

In October 2014, PCE and TCE were detected in groundwater samples collected from all monitoring wells screened within the first water-bearing zone (excluding MP-02-1 which was dry). Cis-1,2-DCE was detected in groundwater from monitoring wells MP-01-1, MP-03-1, MP-04-1, and MW-02. No other VOCs were detected.

Some concentrations of PCE and TCE were greater than their respective ESLs for drinking water. During the July 2014 monitoring event, PCE was detected in groundwater samples collected from five of the seven wells in the first water-bearing zone at concentrations greater than the ESL of 5 μ g/L (at a maximum concentration of 100 μ g/L in MW-01). During the October 2014 monitoring event, PCE was detected in groundwater samples collected from three of the six wells in the first water-bearing zone at concentrations greater than the ESL (at a maximum concentration of 90 μ g/L in MW-01). TCE was detected in groundwater samples from five of the seven wells in the first water-bearing zone in July 2014 and three of the six wells in October 2014 at concentrations greater than the ESL of 5 μ g/L (at a maximum concentration of 51 μ g/L in MP-02-1 in July 2014 and a maximum concentration of 17 μ g/L in MP-01-1 in October 2014). Only one other VOC was detected at a concentration greater than its respective ESL (cis-1,2-DCE detected at 7.2 μ g/L in MP-02-1 in July 2014).

3.2.2 Second Water-Bearing Zone

TCE was detected at concentrations less than the ESL in the groundwater sample collected from MP-02-2 in October 2014. In both July and October 2014, cis-1,2-DCE was detected in groundwater from monitoring wells MP-01-2 and MP-02-2 (at a maximum concentration in MP-02-2 of 72 μ g/L in July and 85 μ g/L in October); all of the detected concentrations were greater than the ESL of 6 μ g/L. Additionally, in October 2014 cis-1,2-DCE was detected in

groundwater from monitoring well MP-04 at a concentration less than the ESL. No other VOCs were detected in the second water-bearing zone.

3.2.3 Third Water-Bearing Zone

Cis-1,2-DCE was detected in groundwater samples collected from MP-01-3 and MP-02-3 in July 2014, at a maximum concentration in MP-01-3 of 7.4 µg/L. Acetone was also detected in groundwater from monitoring well MP-02-3 in July 2014 (acetone is a common laboratory contaminant and is not a constituent of concern for the site). In October 2014, cis-1,2-DCE was detected in MP-01-3 and MP-02-3 with a maximum concentration of 29 µg/L in MP-02-3. Trans-1,2-DCE was detected in groundwater from monitoring well MP-02-3. No other VOCs were detected in the third water-bearing zone.

4.0 SUMMARY OF TRENDS

Conclusions and a summary of VOC results for the third and fourth quarter 2014 groundwater monitoring are presented in the following sections.

4.1 GROUNDWATER ELEVATIONS

The measured depths to groundwater in the first water-bearing zone (Table 2) were an average of approximately 1.6 feet lower in July 2014 than in April 2014. The measured depths to groundwater were an average of 0.6 feet lower in October 2014 than in July 2014. The July and October 2014 groundwater elevations were at or near the lowest measured to date, likely resulting from lower-than-average rainfall during the 2013-2014 rainy season. The measured depths to groundwater in December 2014 were an average of 2.3 feet higher than in October 2014 following several significant rainfall events.

4.2 FIRST WATER-BEARING ZONE

As of October 2014, nine groundwater monitoring events had been conducted, allowing for assessment of concentration trends over a period of more than two years. PCE and TCE, the primary constituents of concern, have been consistently detected throughout the first water-bearing zone in the northern portion of the site, and their concentrations, in addition to cis-1,2-DCE, are plotted over time on Figure 8.

In general, PCE concentrations in the first water-bearing zone have decreased slightly. TCE concentrations have remained relatively stable, although two wells (MP-01-1 and MP-02-1) show an increasing trend in TCE concentrations. This trend may be indicative of degradation of PCE to TCE. Concentration trends for cis-1,2-DCE are generally similar to those for TCE.

Monitoring well MW-03 was located downgradient of the former sump in order to evaluate groundwater concentration trends associated with residual impacts in that area. The main constituents of concern associated with the former sump are chlorobenzene and related compounds. Concentration trends for chlorobenzene and 1,2-DCB at MW-03 are plotted over

time on Figure 9. Both chlorobenzene and 1,2-DCB have been consistently detected; the concentrations have remained relatively stable and are less than the ESLs. No other related constituents (including benzene) have been detected in MW-03.

4.3 SECOND WATER-BEARING ZONE

TCE and cis-1,2-DCE were both detected in the second water-bearing zone in the second half of 2014. With the exception of July 2014, TCE has been consistently detected at low concentrations (less than the ESL) in monitoring well MP-02-2. Cis-1,2-DCE has been detected at increasing concentrations in MP-01-2 and MP-02-2 since 2013, with recent concentrations greater than the ESL. Cis-1,2-DCE was detected in MP-04-2 for the first time in October 2014. Other VOCs previously detected in the second water-bearing zone were not detected in the second half of 2014.

4.4 THIRD WATER-BEARING ZONE

Concentrations of cis-1,2-DCE have been increasing in wells MP-01-3 and MP-02-3 since April 2014.Detected concentrations in July (MP-01-3) and October (both MP-01-3 and MP-02-3) are greater than the ESL. Trans-1,2-DCE was detected in the groundwater sample collected from monitoring well MP-04-3 for the first time in October 2014.

5.0 NEXT STEPS

As noted above, monitoring well MW-03 was destroyed in late August 2014 and the remaining monitoring wells and piezometers at the site were destroyed in December 2014. New monitoring wells to evaluate potential groundwater impacts are planned to be installed after site redevelopment is complete, currently estimated for 2016, and routine groundwater monitoring and reporting will resume at that time.

6.0 REFERENCES

- AMEC Environment & Infrastructure, Inc. (AMEC), 2011, Remediation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, Fuel Leak Case No. RO003014, December 21.
- AMEC, 2012a, Soil, Groundwater, and Soil Vapor Investigation Work Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, August 16.
- AMEC, 2012b, Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, October 19.
- AMEC, 2014, Final Draft Feasibility Study and Corrective Action Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, May 1.
- California Regional Water Quality Control Board, San Francisco Region (Regional Water Board), 2013, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final, December.
- U.S. Environmental Protection Agency, 2013, USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, February.

WELL CONSTRUCTION DETAILS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

					Survey Data					Construction Information ¹								
					Ground													
					Surface	Top Of Casing				Depth	Top of	Bottom of		Casing	Well Screen			
	Monitoring		Date	Date	Elevation	Surveyed				Drilled	Screen	Screen	Well Depth	Diameter	Slot Size			
Well Type	Well ID	Port	Installed	Destroyed	(feet)	Elevation (feet)	Northing	Easting	Datum	(feet bgs)	(feet bgs)	(feet bgs)	(feet bgs)	(inches)	(inches)	Filter Pack		
Pre-pack	MW-01		8/30/2012	12/19/2014	344.58	344.24	2081925.24	6148339.55	NAD 83/NAVD 88	22	16.2	20.9	21.17	0.75	0.010	#20/40 and 2/12 sand		
groundwater	MW-02		8/30/2012	12/18/2014	340.41	340.24	2082055.96	6148450.40	NAD 83/NAVD 88	20.2	15.2	19.9	19.92	0.75	0.010	#20/40 and 2/12 sand		
well	MW-03		8/31/2012	8/26/2014	343.95	343.77	2081890.72	6148566.71	NAD 83/NAVD 88	20	14.4	19.1	19.35	0.75	0.010	#20/40 and 2/12 sand		
	PZ-01		8/21/2014	12/19/2014	343.18	328.44	2081792.36	6148269.44	NAD 83/NAVD 88	20	15.3	19.7	20.29	2.00	0.010	#20/40 and 2/12 sand		
Piezometer	PZ-02		8/22/2014	12/19/2014	342.93	328.54	2081986.53	6148237.08	NAD 83/NAVD 88	20	15.5	19.9	20.44	2.00	0.010	#20/40 and 2/12 sand		
	PZ-03		8/22/2014	12/19/2014	342.10	328.38	2082005.33	6148289.18	NAD 83/NAVD 88	20	15.1	19.6	20.16	2.00	0.010	#20/40 and 2/12 sand		
	MP-01	MP-01-1				343.20	2081915.18		NAD 83/NAVD 88		17.3	17.6		0.375	0.010	#2/12 sand		
	MP-01	MP-01-2	8/29/2012	12/18/2014	343.37			6148233.76	NAD 83/NAVD 88	60	43.2	43.5	59.3	0.375	0.010	#2/12 sand		
	MP-01	MP-01-3							NAD 83/NAVD 88		58.1	58.4		0.375	0.010	#2/12 sand		
	MP-02	MP-02-1						6148472.05	NAD 83/NAVD 88	12.6	12.6	12.9		0.375	0.010	#2/12 sand		
CMT multi-	MP-02	MP-02-2	8/30/2012	12/18/2014	341.32	341.15	2082008.13		NAD 83/NAVD 88	60	36.4	36.7	59.7	0.375	0.010	#2/12 sand		
port	MP-02	MP-02-3							NAD 83/NAVD 88	-	57.5	57.8		0.375	0.010	#2/12 sand		
groundwater	MP-03	MP-03-1							NAD 83/NAVD 88		14.3	14.6		0.375	0.010	#2/12 sand		
well	MP-03	MP-03-2	8/30/2012	12/18/2014	342.31	342.21	2081948.36	6148500.44	NAD 83/NAVD 88	60	42.9	43.2	59.8	0.375	0.010	#2/12 sand		
	MP-03	MP-03-3							NAD 83/NAVD 88		57.8	58.1		0.375	0.010	#2/12 sand		
	MP-04	MP-04-1	8/31/2012 12/18/2014					NAD 83/NAVD 88		15.4	15.7		0.375	0.010	#2/12 sand			
	MP-04	MP-04-2		341.48	341.22	2081993.43	6148600.32	NAD 83/NAVD 88	60.5	41.4	41.7	60.5	0.375	0.010	#2/12 sand			
	MP-04	MP-04-3							NAD 83/NAVD 88		58.3	58.6		0.375	0.010	#2/12 sand		

Note

1. Pre-pack well casing materials are Schedule 40 PVC. The multi-port well casing materials are Solinst 3-channel CMT.

Abbreviations

-- = not applicable

feet bgs = below ground surface

CMT = continuous multi-channel tubing

NAD = North American Datum

NAVD = North American Vertical Datum

GROUNDWATER ELEVATIONS

		Top-of-Casing	Depth to	Groundwater				
		Elevation ¹	Groundwater	Elevation ¹				
Sample Location	Date	(feet)	(feet BTOC)	(feet)				
First Water-Bearin	g Zone							
	9/10/2012		13.33	329.87				
	1/29/2013		11.49	331.71				
	5/29/2013		12.53	330.67				
	7/30/2013		13.09	330.11				
MP-01-1	10/28/2013	3/13 20	14.03	329.17				
IVII -01-1	2/5/2014	040.20	14.09	329.11				
	4/16/2014		12.27	330.93				
	7/30/2014		14.02	329.18				
	10/6/2014		14.80	328.40				
	12/18/2014		12.30	330.90				
	9/10/2012		11.83	329.32				
	1/29/2013		10.30	330.85				
	5/29/2013		11.11	330.04				
	7/30/2013		11.65	329.50				
MD 02 1	10/28/2013	2/1 15	12.44	328.71				
IVIF -02- I	2/5/2014	541.15	12.48	328.67				
	4/16/2014		10.87	330.28				
	7/30/2014		12.48	328.67				
	10/6/2014		dry					
	12/18/2014		10.74	330.41				
	9/10/2012		12.94	329.27				
	1/29/2013		11.33	330.88				
	5/29/2013		12.21	330.00				
	7/30/2013		12.74	329.47				
MP-03-1	10/28/2013	342 21	13.48	328.73				
IVIF -03-1	2/5/2014	542.21	13.48	328.73				
	4/16/2014		11.99	330.22				
	7/30/2014		13.58	328.63				
	10/6/2014		14.20	328.01				
	12/18/2014		11.83	330.38				
	9/10/2012		12.41	328.81				
	1/29/2013		10.77	330.45				
	5/29/2013		11.51	329.71				
	7/30/2013		12.11	329.11				
	10/28/2013	241.00	12.61	328.61				
IVIE-04-1	2/5/2014	341.22	12.77	328.45				
	4/16/2014		11.28	329.94				
	7/30/2014		12.82	328.40				
	10/6/2014		13.40	327.82				
	12/18/2014		11.30	329.92				

GROUNDWATER ELEVATIONS

		Top-of-Casing	Depth to	Groundwater				
		Elevation ¹	Groundwater	Elevation ¹				
Sample Location	Date	(feet)	(feet BTOC)	(feet)				
	9/10/2012		14.64	329.60				
	1/29/2013		12.96	331.28				
	5/29/2013		13.89	330.35				
	7/30/2013		14.44	329.80				
MW 01	10/28/2013	244.24	15.24	329.00				
	2/5/2014	544.24	15.28	328.96				
	4/16/2014		13.65	330.59				
	7/30/2014		15.37	328.87				
	10/6/2014		16.00	328.24				
	12/18/2014		13.61	330.63				
	9/10/2012		10.90	329.34				
	1/29/2013		9.35	330.89				
	5/29/2013		10.20	330.04				
	7/30/2013		10.72	329.52				
M\\/_02	10/28/2013	340.24	11.49	328.75				
10100-02	2/5/2014	540.24	11.52	328.72				
	4/16/2014		9.98	330.26				
	7/30/2014		11.56	328.68				
	10/6/2014		12.02	328.22				
	12/18/2014		9.84	330.40				
	9/10/2012		14.62	329.15				
	1/29/2013		14.53	329.24				
	5/29/2013		13.90	329.87				
	7/30/2013		14.37	329.40				
M\\/_03	10/28/2013	3/3 77	14.72	329.05				
10100-03	2/5/2014	343.77	15.20	328.57				
	4/16/2014		13.67	330.10				
	7/30/2014		15.29	328.48				
	10/6/2014 ²							
	12/18/2014							
P7₋01	P7-01 10/6/2014		14.45	328.44				
F Z= 01	12/18/2014	542.03	12.01	330.88				
P7-02	PZ-02 10/6/2014 12/18/2014		14.10	328.54				
FZ-02			11.74	330.90				
PZ-03 10/6/2014		3/1 78	13.40	328.38				
F Z= 03	12/18/2014	541.70	11.04	330.74				

GROUNDWATER ELEVATIONS

		Top-of-Casing	Depth to	Groundwater				
		Elevation ¹	Groundwater	Elevation ¹				
Sample Location	Date	(feet)	(feet BTOC)	(feet)				
Second Water-Bea	aring Zone							
	9/10/2012		14.38	328.82				
	1/29/2013		12.59	330.61				
	5/29/2013		13.67	329.53				
	7/30/2013		14.26	328.94				
MP-01-2	10/28/2013	343 20	15.08	328.12				
MF -01-2	2/5/2014	343.20	15.11	328.09				
	4/16/2014		13.57	329.63				
	7/30/2014		15.11	328.09				
	10/6/2014		15.84	327.36				
	12/18/2024		13.91	329.29				
	9/10/2012		13.93	327.22				
	1/29/2013		10.67	330.48				
	5/29/2013		11.50	329.65				
	7/30/2013		10.07	331.08				
	10/28/2013	2/1 15	12.84	328.31				
WIF -02-2	2/5/2014	541.15	12.87	328.28				
	4/16/2014		11.26	329.89				
	7/30/2014		12.82	328.33				
	10/6/2014		13.53	327.62				
	12/18/2024		11.30	329.85				
	9/10/2012		39.76	302.45				
	1/29/2013		15.00	327.21				
	5/29/2013		15.93	326.28				
	7/30/2013		22.15	320.06				
	10/28/2013	242.21	19.03	323.18				
WIF -03-2	2/5/2014	542.21	16.92	325.29				
	4/16/2014		17.21	325.00				
	7/30/2014		15.51	326.70				
	10/6/2014		17.01	325.20				
	12/18/2024		16.26	325.95				
	9/10/2012		13.83	327.39				
	1/29/2013		11.95	329.27				
	5/29/2013		12.77	328.45				
	7/30/2013		13.31	327.91				
MP-04-2	10/28/2013	3/1 22	13.94	327.28				
IVIF-04-2	2/5/2014	341.22	13.91	327.31				
	4/16/2014		12.60	328.62				
	7/30/2014		14.05	327.17				
	10/6/2014		14.63	326.59				
	12/18/2024		13.03	328.19				

GROUNDWATER ELEVATIONS

		Top-of-Casing	Depth to	Groundwater
		Elevation ¹	Groundwater	Elevation ¹
Sample Location	Date	(feet)	(feet BTOC)	(feet)
Third Water-Bearing	ng Zone			
	9/10/2012		15.63	327.57
	1/29/2013		14.19	329.01
	5/29/2013		15.08	328.12
	7/30/2013		15.67	327.53
MP-01-3	10/28/2013	3/13 20	16.43	326.77
WII -01-3	2/5/2014	545.20	16.34	326.86
	4/16/2014		14.89	328.31
	7/30/2014		16.33	326.87
	10/6/2014		17.04	326.16
	12/18/2024		15.53	327.67
	9/10/2012		14.88	326.27
	1/29/2013		13.38	327.77
	1/29/2013		14.24	326.91
	7/30/2013		14.61	326.54
MP-02-3	10/28/2013	3/1 15	15.39	325.76
1011 -02-5	2/5/2014	541.15	15.32	325.83
	4/16/2014		13.92	327.23
	7/30/2014		15.43	325.72
	10/6/2014		16.13	325.02
	12/18/2024		15.54	325.61
	9/10/2012		15.66	326.55
	1/29/2013		14.28	327.93
	5/29/2013		15.12	327.09
	7/30/2013		15.74	326.47
MP-03-3	10/28/2013	342 21	16.33	325.88
IVIE -00-0	2/5/2014	JHZ.Z I	16.21	326.00
	4/16/2014		14.80	327.41
	7/30/2014		16.30	325.91
	10/6/2014		16.88	325.33
	12/18/2024		15.47	326.74

GROUNDWATER ELEVATIONS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

		Top-of-Casing Elevation ¹	Depth to Groundwater	Groundwater Elevation ¹
Sample Location	Date	(feet)	(feet BTOC)	(feet)
	9/10/2012		15.12	326.10
	1/29/2013		13.78	327.44
	5/29/2013		14.65	326.57
	7/30/2013		15.25	325.97
MP-04-3	10/28/2013	3/1 22	15.83	325.39
wii -0 4 -3	2/5/2014	571.22	15.73	325.49
	4/16/2014		14.50	326.72
	7/30/2014		15.92	325.30
	10/6/2014		16.54	324.68
	12/18/2024		15.13	326.09

Note

1. Elevation datum is NAVD 88.

Abbreviations

BTOC = below top of casing NAVD 88 = North American Vertical Datum of 1988

X:\16000s\160070\4000\2015_04_Q3_Q4_Monitoring_Report\02_tables\Table 2_GW Elevations.xls

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

										,							
					Bromo-			Dibromo-	1,2-	1,1-	cis-1,2-	trans-1,2-					
					dichloro-	Chloro-	Chloro-	chloro-	Dichloro-	Dichloro-	Dichloro-	Dichloro-	2-Hex-				All Other
Location	Sample ID	Sample Type	Date	Acetone	methane	benzene	form	methane	benzene	ethene	ethene	ethene	anone	PCE	TCE	TPHg	VOCs
First Water-B	earing Zone																
	MP-01-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	120	<0.50	110 R	ND
	MP-01-1	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	0.80	150 R	ND
	MP-01-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	190	1.6	120 R	ND
	MP-01-1	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	150	1.8	140 R	ND
MP-01	MP-01-1	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	140	5.1	120 R	ND
	MP-01-1	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.1	<0.50	<50	100	8.6	86 R	ND
	MP-01-1	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.6	<0.50	<50	140 J	13 J	140 R	ND
	MP-01-1	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	3.0	<0.50	<50	77	15	91 R	ND
	MP-01-1	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	4.4	<0.50	<50	58	17	64 R	ND
	MP-02-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.1	<0.50	<50	1.2	15	<50	ND
	MP-02-10	Duplicate	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.3	<0.50	<50	1.6	19	<50	ND
	MP-02-1	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	4.4	0.80	<50	6.6	61	100 R	ND
	MP-02-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	8.2	0.88	<50	1.0	43	94 R	ND
MP-02	MP-02-1	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	4.8	0.65	<50	3.0	55	<50	ND
	MP-02-1	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	5.9	0.92	<50	0.53	56	70 R	ND
	MP-02-1	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	5.4	0.52	<50	2.8	49	<50	ND
	MP-02-1	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	0.54	8.0	1.1	<50	4.9 J	78 J	85 R	ND
	MP-02-1	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	0.54	7.2	1.0	<50	0.86	51	64 R	ND
	MP-03-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	120	6.4	140 R	ND
	MP-03-1	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.63	<0.50	<50	150	11	230 R	ND
	MP-03-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.55	<0.50	<50	170	13	140 R	ND
	MP-03-1	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	10	170 R	ND
MP-03	MP-03-1	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.64	<0.50	<50	120	12	150 R	ND
	MP-03-1	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.62	<0.50	<50	120	11	140 R	ND
	MP-03-1	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.63	<0.50	<50	98 J	8.3 J	110 R	ND
	MP-03-1	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.74	<0.50	<50	94	9.5	110 R	ND
	MP-03-1	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.63	<0.50	<50	22	4.0	<50	ND
	MP-04-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	4.0	1.3	<50	ND
	MP-04-1	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	20	8.4	<50	ND
	MP-04-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.67	<0.50	<50	26	13	52 R	ND
	MP-04-1	Primary	7/30/2013	240	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.76	<0.50	<50	24	13	<50	ND
MP-04	MP-04-1	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.3	<0.50	<50	31	24	65 R	ND
	MP-04-1	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.0	<0.50	<50	3.4	13	<50	ND
	MP-04-1	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.7	<0.50	<50	21 J	57 J	80 R	ND
	MP-04-1	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.2	<0.50	<50	0.86	9.2	<50	ND
	MP-04-1	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.2	<0.50	<50	0.76	12	<50	ND

Concentrations reported in micrograms per liter (µg/L)

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Location	Sample ID	Sample Type	Date	Acetone	Bromo- dichloro- methane	Chloro- benzene	Chloro- form	Dibromo- chloro- methane	1,2- Dichloro- benzene	1,1- Dichloro- ethene	cis-1,2- Dichloro- ethene	trans-1,2- Dichloro- ethene	2-Hex- anone	PCE	TCE	TPHg	All Other VOCs
	MW-01-(17-22)-GW ¹	Primary	8/30/2012	<50 UJ	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	150	1.1	150 R	ND
	MW-01	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	150	1.2	120 R	ND
	MW-10	Duplicate	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	1.3	140 R	ND
	MW-01	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	1.1	160 R	ND
	MW-100	Duplicate	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	1.1	160 R	ND
	MW-01	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	170	1.1	100 R	ND
	MW-01	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	1.5	120 R	ND
	MW-100	Duplicate	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	210	1.6	140 R	ND
MW-01	MW-01	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	150	1.9	150 R	ND
	MW-100	Duplicate	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	150	1.8	160 R	ND
	MW-01	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	120	1.5	93 R	ND
	MW-01	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	120 J	1.2 J	110 R	ND
	MW-100	Duplicate	4/16/2014	<100	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<100	190 J	1.7 J	170 R	ND
	MW-01	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	100	0.89	100 R	ND
	MW-100	Duplicate	7/30/2014	<100	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<100	100	<1.0	110 R	ND
	MW-01	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	82	0.95	66 R	ND
	MW-100	Duplicate	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	90	0.97	72 R	ND
	MW-02-(15-20)-GW ¹	Primary	8/30/2012	<50 UJ	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.6	<0.50	<50	18	9.2	<50	ND
	MW-02	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	16	6.9	<50	ND
	MW-02	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.6	0.54	<50	19	15	<50	ND
	MW-02	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.0	<0.50	<50	20	26	51 R	ND
	MW-200	Duplicate	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.0	<0.50	<50	15	23	<50	ND
MW-02	MW-02	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.8	<0.50	<50	19	21	<50	ND
	MW-02	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.58	<0.50	<50	10	6.6	<50	ND
	MW-02	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.6	<0.50	<50	5.9	5.3	<50	ND
	MW-02	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.9	<0.50	<50	15 J	12 J	<50	ND
	MW-02	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	3.0	<0.50	<50	5.4	13	<50	ND
	MW-02	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.8	<0.50	<50	4.7	9.1	<50	ND
	MW-03-(15-20)-GW ¹	Primary	8/31/2012	<50 UJ	<0.50	<0.50	<1.0	<0.50	1.1	<0.50	<0.50	<0.50	<50	9.3	0.59	<50	ND
	MW-03	Primary	9/10/2012	<50	1.4	<0.50	2.1	0.92	<0.50	<0.50	<0.50	<0.50	<50	3.2	<0.50	<50	ND
	MW-03	Primary	1/29/2013	<50	<0.50	4.8	<1.0	<0.50	1.7	<0.50	0.6	<0.50	<50	11	1.1	<50	ND
	MW-03	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	0.86	<0.50	<0.50	<0.50	<50	7.5	0.85	<50	ND
MW/ 03	MW-03	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	1.4	<0.50	0.62	<0.50	<50	11	1.1	<50	ND
10100-03	MW-03	Primary	10/28/2013	<50	<0.50	0.96	<1.0	<0.50	1.6	<0.50	<0.50	<0.50	<50	6.9	0.63	<50	ND
	MW-03	Primary	2/5/2014	<50	<0.50	1.5 J	<1.0	<0.50	5.0 J	<0.50	0.56	<0.50	<50	15 J	1.0 J	<50	ND
	MW-300	Duplicate	2/5/2014	<50	<0.50	0.86 J	<1.0	<0.50	2.7 J	<0.50	<0.50	<0.50	<50	9.0 J	0.67 J	<50	ND
	MW-03	Primary	4/16/2014	<50	<0.50	1.9	<1.0	<0.50	3.0	<0.50	1.8	<0.50	<50	30 J	17 J	<50	ND
	MW-03	Primary	7/30/2014	<50	<0.50	1.3	<1.0	<0.50	2.1	<0.50	<0.50	<0.50	<50	9.4	0.62	<50	ND

Concentrations reported in micrograms per liter (µg/L)

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

	Concentrations reported in micrograms per liter (µg/L)																
Location	Sample ID	Sample Type	Date	Acetone	Bromo- dichloro- methane	Chloro- benzene	Chloro- form	Dibromo- chloro- methane	1,2- Dichloro- benzene	1,1- Dichloro- ethene	cis-1,2- Dichloro- ethene	trans-1,2- Dichloro- ethene	2-Hex- anone	PCE	TCE	TPHg	All Other VOCs
Second Wate	r-Bearing Zone																
	MP-01-2	Primary	9/10/2012	130	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	1/29/2013	62	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	120	<0.50	<0.50	<50	ND
	MP-01-2	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-01	MP-01-2	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	14	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	28	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	65	<0.50	<50	<0.50	<0.50	56 R	ND
	MP-01-2	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	49	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	43	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-2	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-2	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.52	<0.50	<50	<0.50	1.2	<50	ND
	MP-02-2	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.77	<50	ND
	MP-02-2	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	1.3	<50	ND
MP-02	MP-02-2	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.64	<0.50	<50	<0.50	1.9	<50	ND
	MP-02-2	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.5	<0.50	<50	<0.50	2.8	<50	ND
	MP-02-2	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	58	<0.50	<50	<0.50	2.3	52 R	ND
	MP-02-2	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	72	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-2	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	0.54	85	<0.50	<50	<50	0.61	53 R	ND
	MP-03-2	Primary	1/29/2013	68	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	58	<0.50	<0.50	<50	ND
	MP-03-2	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-2	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-03	MP-03-2	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-2	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.58	<50	ND
	MP-03-2	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-2	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

					Bromo- dichloro-	Chloro-	Chloro-	Dibromo- chloro-	1,2- Dichloro-	1,1- Dichloro-	cis-1,2- Dichloro-	trans-1,2- Dichloro-	2-Hex-				All Other
Location	Sample ID	Sample Type	Date	Acetone	methane	benzene	form	methane	benzene	ethene	ethene	ethene	anone	PCE	TCE	TPHg	VOCs
	MP-04-2	Primary	9/10/2012	100	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	53	<0.50	<0.50	<50	ND
	MP-04-2	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	0.53	<0.50	<50	ND
MP-04	MP-04-2	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.3	<0.50	<50	<0.50	<0.50	<50	ND
Third Water-E	Bearing Zone																
	MP-01-3	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	59	<0.50	<0.50	<50	ND
	MP-01-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-01	MP-01-3	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.1	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	7.4	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	8.8	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	9/10/2012	130	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.54	<50	ND
	MP-02-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	7/30/2013	77	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-02	MP-02-3	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.76	<50	ND
	MP-02-3	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.97	<50	ND
	MP-02-3	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.7	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	7/30/2014	180	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	5.2	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	29	<0.50	<50	<0.50	<0.50	<50	ND

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

					Bromo-	Chloro-	Chloro-	Dibromo-	1,2- Dichloro-	1,1- Dichloro-	cis-1,2- Dichloro-	trans-1,2- Dichloro-	2-Hex-				All Other
Location	Sample ID	Sample Type	Date	Acetone	methane	benzene	form	methane	benzene	ethene	ethene	ethene	anone	PCE	TCE	TPHg	VOCs
MP-03	MP-03-3	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	10/28/2013	75	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-04	MP-04-3	Primary	9/10/2012	150	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	86	ND
	MP-04-3	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	1.0	<50	<0.50	<0.50	<50	ND
Environmental Screening Level (groundwater is a potential or current drinking water resource) ²				1,500	100	25	70	80	10	6.0	6.0	10		5.0	5.0	100	

Concentrations reported in micrograms per liter (µg/L)

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Notes

- 1. Results are shown for grab groundwater samples collected from borings MW-01 through MW-03 before the pre-pack monitoring wells were installed.
- 2. California Regional Water Quality Control Board, San Francisco Region, 2013, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table F-1a, Groundwater Screening Levels (groundwater is a current or potential drinking water source), May. The selected screening value is the lowest of those among drinking water goals, aquatic habitat goals, taste and odor considerations, evaluation of potential vapor intrusion into buildings.

Results shown in **bold** indicate a detection.

Results shown in **bold** and in a shaded cell exceed their respective Environmental Screening Levels.

Abbreviations

< = not detected at or above the laboratory reporting limit shown

-- = not applicable

J = the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample

PCE = tetrachloroethene

R = the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria; the presence or absence of the analyte cannot be verified TCE = trichloroethene

 μ g/L = micrograms per liter

UJ = the analyte was not detected at a level greater than or equal to the quantitation limit shown; the quantitation limit is approximate and may be inaccurate or imprecise

U.S. EPA = U.S. Environmental Protection Agency

VOCs = volatile organic compounds

X:\16000s\160070\4000\2015_04_Q3_Q4_Monitoring_Report\02_tables\Table 3_VOCs_GW.xlsx

FIGURES

07. fig AR14\ 0210_ 00008\15_ OD10\160070\task

ċr

APPENDIX A

Well Sampling Field Records

	am	ed	9		Project Name Crown Chevrol	: et				
M		ING W			Project/Task OD10160070.00	#: 0008A/B	Sai {	mpled By: D. Allbet	Dat 71	e: 30/14
Well Num	ber/ID:			Sampl	e ID:			Duplicate ID	:	
MI	N-01				MW-01			MU	-100	*****
Method of	F Purging:	tubino	si	Metho	d of Sampling	nethod		Intake Dept	1:	
16.1.1			7		Field Fr	uinmont		1	9	
					Field Eq	upment	D	ate		o 11 - i - i
Equi	pment	1	Mode	el	Serial #/Ren	tal ID	Received	/Serviced	Date	Calibrated
Multi-Probe	2		YSI-5	56	12610422	23	7-2	9-14	7-3	0-14
Turbidimet	er		N/A		N/A	N/A N/A				N/A
				Ca	sing Purge Vol	ume Calcu	lations			
A. Depth to	Water = 15.3	7_ft.	D. Wa	ter Column (E	B-A) = <u>5.8</u>	ft.	Depth to	o Water After San	npling = 15.4	<u>10</u> ft.
B. Well Tota	I Depth = 21.	<u>17 ft.</u>	E. 1 W	ell Volume (C	$x^2 \times 0.0408 \times D) =$	<u>0.13</u> gal.	Actual V	olume Purged (fr	rom below) = $\frac{1}{2}$	gal m.
C. Well Diam	neter = 0.79	5in.	F. 3 W	'ell Volumes (3 x E) = <u>0.39</u>	gal.	(If applic	able, see pumping s	system volume cal	culation below)
Pump and	Flow Cell Volu	ime	V _p	= N/A	ml		Pumpir	ng System Vol	lume Calcula	ition
Tubing Insi	ide Diameter		D	= N/A	in.		Pi	umping System	Volume (V _S)	*******
Tubing Len	gth	******	L	= N/A	in.		$V_{\rm S} = V$	$V_{\rm P} + \pi * D^2 / 4 *$	* L * 16.39 ml	/in ³
Conversion	from Inches ³	to ml	1 in ³	= 16.39	ml		= (_) + (3.1415 * _	<u> </u>	() * 16.
	Purging Data	1		Water Qu	ality Parameters	s (within ra	nge for 3	consecutive rea	adings if low-	flow sampling)
Time (24 hr)	Purge Volume	Flow Ra	ate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	d pH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
	Li yai terini	Exchanger	St	abilization ⁽¹⁾ :	± 3%	± 0.2 mg/l	L ± 0.2	± 20 mV	±10% or <10 NTU	
1123	Initial	001		22.2	1291	0.12	6.70	0.7	NA	clear
1125	350	1		22.6	1290	0.16	6.75	-3.3	1	
1127	550			22-8	1291	0,32	6.7-	7 -5.4		
1129	750			23.0	1290	0.59	6.71	-7-5		
1131	950			23.2	1289	0.29	6.71	1 -13.0	T	
1133	1150			22.9	1299	0.12	6.7	3 - 14.0		
1135	1350			22.6	1292	0.09	6.77	2 -16.1		
unanna tha an Alaithnanna an				,,						
Remarks:	1135	Sa	mple	S. Col	lected B-	HCI Ve	DAS.	Duplica	le time =	1140
		****	,	51111111111111111111111111111111111111	1499-1499-1499-1499-1499-1499-1499-1499					11111111111111111111111111111111111111
				11111111111111111111111111111111111111						
(1) Based or	n EPA low-flow	sampling	guidelir	ies.						
Signature	· 0 ~) F	pl	1.1		Checked	Bv:			

Page)	of	1
		÷.	

eler.	am	ec	9	Project Name Crown Chevro	e: llet				
N S	IONITOR AMPLE COL	ING WI	LL	Project/Task OD10160070.0	#: 0008A/B	Sar	npled By: RDP	Da	te: 7-30-14
Well Num	ber/ID:		Samp	le ID:			Duplicate ID	:	
Method of	Puraina:		Metho	d of Sampling	1		Intake Dept	h: ,	
Pe	KI PUM	p	P	Zri DUN	rP		1	7.5	
		ļ		Field Eq	uipment	1			
Equi	oment	1	lodel	Serial #/Ren	tal ID	Da Received	ate /Serviced	Date	Calibrated
Multi-Probe		Y	SI-556	#6		7-30-	14	7-3	0-14
Turbidimete	er		N/A	N/A		N	/A		N/A
			Ca	sing Purge Vo	lume Calcu	lations			
A. Depth to V	Water = 11.5	56 ft. D	. Water Column (I	B-A) = <u>8.36</u>	_ft.	Depth to	Water After Sar	npling = 1	56 ft.
B. Well Total	Depth = 19 .	<u>92</u> ft. E	1 Well Volume ($C^2 \times 0.0408 \times D) =$	= <u> </u>	Actual V	olume Purged (fr	rom below) =	2.200 gal/10
C. Well Diam	neter =7	<u>5</u> in. F.	3 Well Volumes ((3 x E) =	gal.	(If applica	ible, see pumping s	system volume ca	alculation below)
Pump and I	Flow Cell Volu	ıme V _r	, = N/A	ml		Pumpin	ig System Vo	lume Calcul	ation
Tubing Insi	de Diameter	D	= N/A	in.		Ρι	Imping System	Volume (V _S)	
Tubing Len	gth	L	= N/A	in.		$V_{S} = V$	$_{\rm P} + \pi * D^2 / 4 *$	* L * 16.39 m	าl/in ³
Conversion	from Inches ³	toml 1	$in^3 = 16.39$	ml	Vs =	= () + (3.1415 * _	<u> </u>	* () * 16.3
	Purging Data	3	Water Qu	ality Parameter	s (within ra	nge for 3	consecutive rea	adings if low	-flow sampling)
Time (24 hr)	Purge Volume	Flow Rate	e Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
			Stabilization ⁽¹⁾	± 3%	_± 0.2 mg/L	. ± 0.2	± 20 mV	±10% or <10 NTU	0001, 000)
0736	Initial	120	20.42	952	3.98	648	57.6	NIA	clead
0740		125	20.96	1007	2.96	6.92	23.6		11
0743		.0	21.09	10219	2.70	7.09	7.4		11
07416		71	21.05	1065	2.75	7.14	3.3		11
0749		4	21.03	1081	2.75	7.13	1.0		11
0752		11	21.12	1106	2.74	7.13	2.9		11
0755		11	21.15	1110	2.68	7.13	1.9	T	11
0758		Source	ne.		-				
Remarks:									
	****			907147937-16011-00-00-00-00-00-00-00-00-00-00-00-00-					
⁽¹⁾ Based or	n EPA low-flow	sampling gu	idelines.						
Signature	:				Checked E	By:			

	am)ec	0		Project Name Crown Chevro	e: blet					
N		ING		LL	Project/Task OD10160070.0	#: 0008A/B		San	npled By:	Dat	te: 7/30/14
Well Num	ber/ID:			Sampl	e ID:	e ID: Duplicate ID:					
MU	-03				MW-03						
Method o	f Purging:	. to 10.	20	Metho	d of Sampling	1			Intake Depth	1:	
10. npo	ings face.	10.01	. w]	54	re purge n	rethod			18	1.0 - 12.	0
		1			Field Eq	uipment					
Equi	pment		Mo	odel	Serial #/Ren	tal ID	Rec	Di	/Serviced	Date	Calibrated
Multi-Probe	9		YSI	-556	1261042	23		7/2	9/14	71	30/14
Turbidimet	er		N	/A	N/A			N	/A		N/A
				Ca	sing Purge Vo	lume Calc	ulati	ons			
A. Depth to	Water = <u>15</u> ,	29 ft.	D. \	Water Column (E	B-A) = 4.06	_ ft.	D	epth to	Water After San	npling = <u>15</u>	<u>, 65</u> ft.
B. Well Tota	I Depth = 19 .	<u>35 ft</u> .	E. 1	Well Volume (C	2 ² x 0.0408 x D) =	0.09gal.	A	ctual Vo	olume Purged (fr	om below) = $\frac{1}{2}$	200 galat
C. Well Dian	heter = 0.7	<u>s</u> in.	F. 3	Well Volumes (3 x E) = <u>0.2</u>	₹gal.	(II	f applica	ble, see pumping s	ystem volume ca	lculation below)
Pump and	Flow Cell Volu	ime	Vp	= N/A	ml		Pu	Impin	g System Vol	ume Calcul	ation
Tubing Ins	ide Diameter		D	= N/A	in.			Pu	mping System	Volume (V _S)	
Tubing Len	igth	, ,	L	= N/A	in.		V	$V_{\rm S} = V_{\rm I}$	$h_{\rm D} + \pi * D^2 / 4 *$	L * 16.39 m	l/in ³
Conversion	from Inches ³	to ml	1 in	$^{3} = 16.39$	ml	Vs	= (_	-) + (3.1415 *	²/4)*	· () * 16.39
	Purging Data	1	1	Water Qu	ality Parameter	s (within r	ange	for 3 d	consecutive rea	adings if low-	flow sampling)
Time (24 hr)	Purge Volume	Flow I	Rate n	Temp (°C)	Specific Conductance (µS/cm)	Dissolve Oxyger (mg/L)	ed N	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
	Liyanyanni			Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg	'L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
1202	Initial	10	0	22.6	1290	5.02	4	e. 71	47.9	NIA	tan, clady
1204	350			22.6	1293	5.39		6.73	49.7		
1206	550			22.4	1298	5.77	6	6.74	52.9		
1208	750			22.0	1299	4.27	4	6.59	51.0		
1210	950			21.9	1301	3.39	6	6.63	49.6		
1212	1150			23-7	1293	4.94	(6.78	\$ 53.2		
1214	1100			Dewater	ed at	1200 m	1				
	N 41 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				200000000000000000000000000000000000000		********				
Remarks:	1330	Sam	pic	d. Cal	rected .	3-Hc(VC	As-			
⁽¹⁾ Based o	n EPA low-flow	sampling	g guide	elines.							
Signature	: 0 ~	d A	41	11		Checked	By:				

N			LL og	Project Name Crown Chevro Project/Task OD10160070.0	#: 0008A/B	San	npled By: RD P	Di	nte: 7-30-14	
Well Num	ber/ID:		Sampl	e ID:			Duplicate ID			
M	P-01-1			mp-01-	- (
Method o	f Purging:		Metho	d of Sampling		Intake Depth: /				
	per, p	UNIC		Field En	winment			11.1		
						Da	ate	Det	Calibratial	
Equi	pment	M	odel	Serial #/Ken	tal ID R	eceived	/Serviced	Dat	e Calibrated	
Multi-Probe	9	YS	I-556	#6		7-3	10-14	7-3	30-14	
Turbidimet	er	l	N/A	N/A		N	/A		N/A	
			Ca	sing Purge Vo	lume Calcula	ations				
A. Depth to	Water = 14	02 ft. D.	Water Column (E	B-A) = 3.58	ft.	Depth to	Water After San	$npling = \underline{14}.$	02 ft.	
B. Well Tota	Depth = 17.4	<u>6</u> ft. E.	1 Well Volume (C	² x 0.0408 x D) =	- <u> </u>	Actual Vo	olume Purged (fr	om below) =	2350 gal/ml.	
C. Well Dian	neter = 0,375	5_in. F.	3 Well Volumes (3 x E) =	gal.	(If applica	ble, see pumping s	ystem volume (calculation below)	
Pump and	Flow Cell Volu	ime V _p	= N/A	ml		Pumpin	g System Vol	ume Calcu	lation	
Tubing Ins	ide Diameter	D	= N/A	in.	*****	Pu	mping System	Volume (Vs)	
Tubing Ler	ngth	L	= N/A	in.		$\gamma - \gamma$	$+ - * D^2 / 4 *$	1 * 16 20 -	nl/in ³	
			-	2		$v_{\rm S} = v_{\rm F}$	$\sigma = \pi \cdot D / = \cdot$	F., 10'281	111/111	
Conversion	from Inches ³	to ml 1 i	$n^3 = 16.39$	ml	V_s =	$v_{\rm S} = v_{\rm F}$) + (3.1415 * _	$\frac{10.391}{2}$	* () * 16.3	
Conversion	from Inches ³ Purging Data	to ml 1 i	n ³ = 16.39 Water Qu	ml	V _S =	$v_{\rm S} = v_{\rm F}$ (ge for 3 c) + (3.1415 * _	² /4)	* () * 16.:	
Conversion Time (24 hr)	Purging Data Purge Volume	Flow Rate	n ³ = 16.39 Water Qu Temp (°C)	ml ality Parameter Specific Conductance (μS/cm)	V _S = S (within rand Dissolved Oxygen (mg/L)	v _S = v _P (ge for 3 c pH) + (3.1415 * _ consecutive real Oxidation Reduction Potential (mV)	2/4) adings if low Turbidity (NTU)	* () * 16 -flow sampling) Remarks (DTW, color,	
Conversion Time (24 hr)	Purging Data Purge Volume gal ml	Flow Rate	n ³ = 16.39 Water Qu Temp (°C) Stabilization ⁽¹⁾ :	ml ality Parameter Specific Conductance (μS/cm) ± 3%	V _S = S (within rand) Dissolved Oxygen (mg/L) ± 0.2 mg/L	v _S = v _F (ge for 3 c pH ± 0.2) + (3.1415 * consecutive real Oxidation Reduction Potential (mV) ± 20 mV	2 / 4) adings if low Turbidity (NTU) ±10% or <10 NTU	* () * 16.: flow sampling) Remarks (DTW, color, odor, etc)	
Time (24 hr)	Purging Data Purge Volume gal Initial	to ml 1 in Flow Rate gpm ml/min 1 50	n ³ = 16.39 Water Qu Temp (°C) Stabilization ⁽¹⁾ :	ml ality Parameter Specific Conductance (μS/cm) ± 3%	V _S = s (within ran Dissolved Oxygen (mg/L) ± 0.2 mg/L 2 . 25	v _s = v _r (ge for 3 c pH ± 0.2) + (3.1415 * consecutive real Oxidation Reduction Potential (mV) ± 20 mV - 8 [- 2/4) adings if low Turbidity (NTU) ±10% or <10 NTU N/A	* () * 16 r-flow sampling) Remarks (DTW, color, odor, etc) C\COS	
Time (24 hr) 1131 1134	Purging Data Purge Volume gal Initial	to ml 1 in Flow Rate gpm ml/min 1 50 ($n^3 = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44	ml ality Parameter Specific Conductance (μS/cm) ± 3% 1334 1334	V _s = s (within ran Dissolved Oxygen (mg/L) ± 0.2 mg/L 2.25 2.13	v _s = v _r (ge for 3 c pH ± 0.2 7.14 6.94) + (3.1415 * _ consecutive rea Oxidation Reduction Potential (mV) ± 20 mV - 8 - 54	2/4) adings if low Turbidity (NTU) ±10% or <10 NTU N/A	* () * 16 r-flow sampling) Remarks (DTW, color, odor, etc) C\COS	
Time (24 hr) 1131 1134 1134	Purging Data Purge Volume gal Initial	to ml 1 in Flow Rate gpm ml/min 1.50 (1.25	$n^{3} = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44 23.03	ml ality Parameter Specific Conductance $(\mu S/cm)$ $\pm 3\%$ 1334 1334 1324 1324 1324	V _s = s (within rand) Dissolved Oxygen (mg/L) ± 0.2 mg/L 2 . 25 2.13 2.35	v _s = v _r (ge for 3 c pH ± 0.2 7.14 6.94 6.82) + (3.1415 * _ consecutive rea Oxidation Reduction Potential (mV) ± 20 mV - 8 1 - 54 - 44	2/4) adings if low Turbidity (NTU) ±10% or <10 NTU N/A	* () * 16.: r-flow sampling) Remarks (DTW, color, odor, etc) C\CCC 11 11	
Time (24 hr) 1131 1134 1134 1134	Purging Data Purge Volume gal Initial	to ml 1 in Flow Rate gpm ml/min 150 (125 1	$n^{3} = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44 23.03 22.96	ml ality Parameter Specific Conductance (μS/cm) ± 3% 1334 1324 1324 1324 1323 1323	V _s = s (within ran Dissolved Oxygen (mg/L) ± 0.2 mg/L 2 ⋅ 25 2 ⋅ 13 2 ⋅ 35 2 ⋅ 35 2 ⋅ 40	v _s = v _r (ge for 3 c pH ± 0.2 7.14 6.94 6.82 6.78) + (3.1415 *	2/4) adings if low Turbidity (NTU) ±10% or <10 NTU N/A	* () * 16 r-flow sampling) Remarks (DTW, color, odor, etc) C\COS L1 17	
Time (24 hr) 1131 1134 1134 1134 1137 11437	Purging Data	to ml 1 in Flow Rate gpm gpm ml/min 150 ((125 (1) 11 (1)	$n^{3} = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44 23.03 22.96 23.02	ml ality Parameter Conductance (μS/cm) ± 3% 1334 1324 1324 1322 1329 1309 1299	$V_{s} = \frac{V_{s}}{s}$ (within random of the second	v _s = v _r (ge for 3 c pH ± 0.2 7.14 6.94 6.94 6.78 6.78) + (3.1415 *	2/4) adings if low Turbidity (NTU) ±10% or <10 NTU N/A	* () * 16.: r-flow sampling) Remarks (DTW, color, odor, etc) C)COC L1 11 11	
Conversion Time (24 hr) 1131 1134 1137 1140 1143 1146	Purging Data	to ml 1 in Flow Rate gpm ml/min 150 (125 11 11 11	$n^{3} = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44 23.03 22.96 23.02 23.11	ml ality Parameter Specific Conductance (μS/cm) ± 3% 13324 1324 1324 1322 1329 1309 1309 1296	$V_s =$ s (within ran Dissolved Oxygen (mg/L) $\pm 0.2 \text{ mg/L}$ $2 \cdot 25$ $2 \cdot 13$ $2 \cdot 35$ $2 \cdot 40$ $2 \cdot 28$ $2 \cdot 31$	$v_{s} = v_{f}$ ($\begin{array}{c} + 1.4 \\ + 1.1415 \\ + 1.141$	2/4) adings if low Turbidity (NTU) ±10% or <10 NTU N/A	* () * 16 r-flow sampling) Remarks (DTW, color, odor, etc) C\COC 11 11	
Conversion Time (24 hr) 1131 1134 1134 1137 1140 1143 1146 1146	Purging Data Purge Volume gal Initial	to ml 1 in Flow Rate gpm gpm ml/min 1 25 (1 1 25 (1 11 (1	$n^{3} = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44 23.03 22.96 23.02 23.11 23.11 23.11	ml ality Parameter Specific Conductance (μS/cm) ± 3% 13324 1324 1324 1324 1322 1329 1299 1296 1294	$V_s =$ s (within ran Dissolved Oxygen (mg/L) $\pm 0.2 \text{ mg/L}$ 2.25 2.13 2.35 2.40 2.28 2.28 2.31 2.33	$v_{s} = v_{f}$ () + (3.1415 *	2/4) adings if low Turbidity (NTU) ±10% or <10 NTU N/A	* () * 16. r-flow sampling) Remarks (DTW, color, odor, etc) C\COC 11 17	
Conversion Time (24 hr) 1131 1134 1134 1137 1140 1143 1140 1143 1146 1146 1146	Purging Data Purge Volume gal Initial	to ml 1 in Flow Rate gpm gpm ml/min 150 ((125 (1) 11 (1) 11 (1) 11 (1)	$n^{3} = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44 23.03 22.96 23.03 22.96 23.11 23.11 23.11 23.11	ml ality Parameter Conductance (μS/cm) ± 3% 1334 1324 1324 1324 1324 1327 1327 1327 1327 1329 1296 1294	$V_{s} = \frac{V_{s}}{s} \frac{V_{s}}$	$v_{s} = v_{f}$ ($) + (3.1415 *{-3}) + (3.1415 * _{-3}) + (3.1415 * _{-3}) + (3.1415 * _{-3}) + (3.1415 * _{-3}) + (3.1$	2/4) adings if low Turbidity (NTU) ±10% or <10 NTU N/A	* () * 16 r-flow sampling) Remarks (DTW, color, odor, etc) C)CC 11 17	
Conversion Time (24 hr) 1131 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1137 1136 1136 1136 1136 1136 1137 1136 1137 1136 1137 1136 1137 1136 1137 1137 1136 1137 11437 11437 11440 11440 11449 11449 114537	Purging Data Purge Volume gal Initial	to ml 1 in Flow Rate gpm gpm ml/min 150 ((125 (1) 11 (1) 11 (1) 13 (1) 14 (1)	$n^{3} = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44 23.03 22.96 23.02 23.11 23.11 23.11 mp(R	ml ality Parameter Conductance (μS/cm) ± 3% 1334 1324 1324 1324 1324 1324 1324 1324	$V_s =$ s (within ran Dissolved Oxygen (mg/L) $\pm 0.2 mg/L$ 2.25 2.13 2.35 2.40 2.28 2.40 2.28 2.31 2.33	$v_{s} = v_{f}$ ($) + (3.1415 *{-3.1415 *$	2/4) adings if low Turbidity (NTU) ±10% or <10 NTU N/A	* () * 16. 	
Conversion Time (24 hr) 1131 1134 1134 1134 1134 1134 1134 1146 1146 1149 1149 1153 Remarks:	Purging Data Purging Data Purge Volume gal Initial	to ml 1 in Flow Rate gpm gpm ml/min 125 (1) 11 11 11 11 11 50	$n^{3} = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44 23.03 22.96 23.03 22.96 23.01 23.11 23.11 23.11 23.11	ml ality Parameter Conductance (μS/cm) ± 3% 1334 1324 1324 1324 1324 1324 1324 1324	$V_s =$ s (within ran Dissolved Oxygen (mg/L) $\pm 0.2 \text{ mg/L}$ 2.25 2.13 2.35 2.40 2.28 2.31 2.33	$v_{s} = v_{f}$ () + (3.1415 *	" 10.39 f " " " " 2 / 4) adings if low Turbidity (NTU) ±10% or <10 NTU N/A N/A	* () * 16.: r-flow sampling) Remarks (DTW, color, odor, etc) C\COC 11 17	
Conversion Time (24 hr) 1131 1134 1134 1134 1134 1137 1440 143 1440 1443 1440 1443 1440 1453 Remarks:	Purging Data Purge Volume gal Initial	to ml 1 in Flow Rate gpm ml/min 1 25 11 11 11 125 11 11 11 13 14 50	$n^{3} = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44 23.03 22.96 23.02 23.11 23.11 23.11 mp(e)	ml ality Parameter Conductance (μS/cm) ± 3% 1334 1324 1324 1324 1324 1322 1309 1299 1296 1294	$V_s =$ s (within ram Dissolved Oxygen (mg/L) $\pm 0.2 \text{ mg/L}$ 2.25 2.13 2.35 2.40 2.28 2.31 2.33 2.31 2.33	$v_{s} = v_{f}$ () + (3.1415 *	- 2/4) adings if low Turbidity (NTU) ±10% or <10 NTU N/A	* () * 16 r-flow sampling) Remarks (DTW, color, odor, etc) C\COC 11 17	
Conversion Time (24 hr) 1131 1134 1134 1137 1440 1437 1440 1437 1440 1437 1440 1437 1440 1437 1440 1437 1440 1437 1440 1453 Remarks:	Purging Data Purging Data Purge Volume gal Initial	to ml 1 in Flow Rate gpm ml/min 1 25 11 11 11 11 11 11 11 11 13 14 15	$n^{3} = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44 23.03 22.96 23.02 23.11 23.11 23.11 mp(R)	ml ality Parameter Conductance (μS/cm) ± 3% 13324 1324 1324 1323 1309 1299 1296 1294	$V_s =$ s (within random Dissolved Oxygen (mg/L) $\pm 0.2 \text{ mg/L}$ 2.25 2.13 2.35 2.40 2.28 2.31 2.33	v _s = v _r (ge for 3 c pH ± 0.2 7.14 6.94 6.94 6.78 6.79 6.90 6.80 6.82	$\begin{array}{c} + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5$	Turbidity (NTU) ±10% or × 10.39 f × 10 NTU × 10 NTU × 10 NTU	* () * 16 r-flow sampling) Remarks (DTW, color, odor, etc) C\COC 11 11	
Conversion Time (24 hr) 1131 1134 1134 1137 1140 1143 1146 1149 1440 1443 1440 1443 1446 1443 1446 1443 1446 1453 Remarks: (1) Based o	n from Inches ³ Purging Data Purge Volume gal Initial Initial Initial	to ml 1 in Flow Rate gpm gpm ml/min 1 25 (1) /1)) /1 (1)	$n^{3} = 16.39$ Water Qu Temp (°C) Stabilization ⁽¹⁾ : 24.10 23.44 23.03 22.96 23.02 23.11 23.11 23.11 mp(R) delines.	ml ality Parameter Conductance (μS/cm) ± 3% 13324 1324 1324 1323 1309 1299 1296 1294	$V_s =$ s (within ram Dissolved Oxygen (mg/L) $\pm 0.2 mg/L$ 2.25 2.13 2.35 2.40 2.28 2.31 2.33	v _s = v _r (ge for 3 c pH ± 0.2 7.14 6.94 6.94 6.78 6.79 6.30 6.82	$\begin{array}{c} + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5 + 1.4 + 1.5$	Turbidity (NTU) ±10% or × 10.39 f × 10 NTU × 10 NTU × 10 NTU	* () * 16 r-flow sampling) Remarks (DTW, color, odor, etc) C\COC 11 11	

Page	1	of)

	an			Project Name Crown Chevro	e: olet				
N	40NITOR	RING WE	LL	Project/Task OD10160070.0	#: 0008A/B	Sar	npled By:	Dat	
S Mall Norm	AMPLE COL	LECTION L	.OG	- 10-		•	RUT		-30-14
	10er/10: P-01-2		Samp	P. AL 7			Duplicate ID	:	
Method o	f Purging:		Metho	d of Sampling	1		Intake Dept	~ h:	1
D	eri pu	mp	Ŧ	DET DUN	² P			43.4	/
1	ţ	ų.		Field Ec	uipment				
Equi	pment	M	lodel	Serial #/Ren	tal ID	D Received	ate I/Serviced	Date	Calibrated
Multi-Probe	5	YS	SI-556	#6		7-3	5-14	7-30	5-14
Turbidimet	er		N/A	N/A		N	/ A		N/A
			Ca	sing Purge Vo	lume Calcul	lations			
A. Depth to	Water = <u>15.1</u>	1ft. D.	Water Column (B	$(3-A) = 28 \cdot 39$	_ ft.	Depth to	Water After Sar	npling = 38	6] ft.
B. Well Tota	Depth = 42	<u>5.5</u> ft. E.	1 Well Volume (C	C ² x 0.0408 x D) =	:gal.	Actual V	olume Purged (fr	om below) = _	750 gal/ml.
C. Well Diam	neter = <u>0.37</u>	5 _in. F.	3 Well Volumes (3 x E) =	gal.	(If applica	able, see pumping s	system volume ca	lculation below)
Pump and	Flow Cell Volu	ume V _p	= N/A	ml		Pumpin	ng System Vo	lume Calcul	ation
Tubing Insi	de Diameter	D	= N/A	in.		Ρι	Imping System	Volume (V _s)	
Tubing Len	gth	L	= N/A	in.		$V_{S} = V$	_P + π * D ² / 4 *	* L * 16.39 m	l/in ³
Conversion	from Inches	³ to ml 1 i	$n^3 = 16.39$	ml	V_s =	= () + (3.1415 * _	<u>^</u> 2/4)*	() * 16.39
	Purging Data	a	Water Qu	ality Parameter	s (within ran	ige for 3	consecutive rea	adings if low-	flow sampling)
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
			Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	ouor, etc)
1210	Initial	100	28.99	932	5.37	8.30	-65	NIA	cleas
1212		100	28.86	1077	3.10	8.12	-224		1/
1214		190	28.29	1150	2.01	8.02	-232		11
1215		102	29.05	1172	1.70	8.02	254		17
1218		100	29.82	1191	1.49	8.01	-262		dewater
1220		100	28.34	1206	1.66	7.90	-258		
1230		001	30.88	1228	1.69	7.90	-252		
1251		Samp	le						
	<u><u><u></u></u></u>						·		
Remarks:	1								
		11))))))))))))))))))))))))))))))))))))							
(1) Deer d	EDA Jour Se	compliant	delines					****	
Signature		sampling gui	Jeines.		Checked P	v			
signature				1	Checked B	y:			

	am	ec	9	Project Name Crown Chevro	: let				
N	IONITOR	ING W	ELL	Project/Task OD10160070.0	#: 0008A/B	Sam Ş	pled By: 2DR	Da	nte: 7-30-14
Well Num	ber/ID:		Samp	le ID:		1	Duplicate ID	:	
n	nP-01-	3	<u> </u>	<u>NP-01-3</u>	•	-		-	
Method o	f Purging:	lima	Meth	od of Sampling			Intake Depti	1:	
	Jean p	wit		Field Ed	Field Equipment			8,3	
						Da	te		
Equi	pment		Model	Serial #/Ren	tal ID R	eceived/	Serviced	Dat	e Calibrated
Multi-Probe	9		YSI-556	#6		7-30	- 14	7-3	30-14
Turbidimet	er		N/A	N/A	*******	N/	Α		N/A
			Ca	asing Purge Vo	ume Calcul	ations			
A. Depth to	Water = [6.3	<u>3</u> ft. 1	D. Water Column ((B-A) = <u>42.07</u>	ft.	Depth to	Water After Sar	npling = 43	.0] ft.
B. Well Tota	I Depth = 58	<u>,4 ft</u> . 1	E. 1 Well Volume ($(C^2 \times 0.0408 \times D) =$	gal.	Actual Vo	lume Purged (fr	om below) =	640 gal/ml.
C. Well Dian	neter = <u>0.37</u>	5 in. 1	3 Well Volumes	(3 x E) =	gal.	(If applicat	ole, see pumping s	system volume o	calculation below)
Pump and	Flow Cell Volu	me \	/ _p = N/A	ml		Pumping	g System Vo	lume Calcu	lation
Tubing Ins	ide Diameter	[= N/A	in.		Pur	mping System	Volume (Vs)
Tubing Ler	ath	Į	= N/A	in.		$V_{S} = V_{P}$	$+\pi * D^2 / 4 *$	* L * 16.39 r	nl/in ³
Conversion	from Inches ³	to ml 1	$in^3 = 16.39$	ml	Vc =	() + (3 1415 *	- ² /4)	*()*1639
	Dunging Data		Water 0	uality Daramotor	's			/ ·/	() iolos
	Purging Data		water Q		Discolved	ge for 5 c	Oxidation		-now sampling)
Time (24 hr)	Purge Volume	Flow Ra	te Temp . (°C)	Conductance (µS/cm)	Oxygen (mg/L)	рH	Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color, odor, etc)
(24 hr)): ±3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	
1305	Initial	100	29.04	1136	2.21	7.72	-174	NIA	clapty
1308		100	31.35	1129	2.05	7.84	-170	1	11
1371		100	29.98	1112	1.68	7.81	-152		11
1313		100	27.10	1110	1.83	7.62	-143		17
1315		Ø	29.11	1109	1.74	7.39	-129		
1317		70	29.98	1107	1.78	7.44	-132		dewater
1350			Samol	¢					
1000	1		T						
Pomarke	L						I	I	
Remarks:			1944/14/12/14/1979-1944/14/13/14/1949/14/1949/14/14/14/14/14/14/14/14/14/14/14/14/14/						
(1) D ====d ==	EDA Jour flour	compliant -	uidolinoc	******					
Based o	n EPA IOW-flow	sampling g	uidelines.		Charler J 2				****
				1	- nonkod Di				

÷

	1		1	
Page _	1	of	1	

	an	nec ⁽		Project Name Crown Chevro	e: llet				
M S	IONITOR AMPLE COL	LECTION L	ELL .og	Project/Task OD10160070.0	#: 0008A/B	Sai	npled By: RDR	Da 7	te: -30-)4
Well Num	ber/ID: NP-D	2-1	Sampl	le ID: 作中-02-	}		Duplicate ID	:	
Method of	Purging:		Metho	d of Sampling			Intake Dept	n: ,	
Per	i pump	>	P	eri pumi	P		12.4	8	
				Field Ec	uipment		_	1	
Equip	pment	M	lódel	Serial #/Ren	tal ID	D	ate I/Serviced	Date	Calibrated
Multi-Probe		YS	SI-556	#6		7-30	-124	7-3	0-14
Turbidimete	er		N/A	N/A		N	/A		N/A
			Ca	sing Purge Vo	lume Calcu	lations			
A. Depth to V	Water = 12.	48 ft. D.	Water Column (E	B-A) = 0.42	_ ft.	Depth to	Water After Sar	npling =	-18 _ft.
B. Well Total	Depth = 12 .	. 9 _ft. E.	1 Well Volume (C	$C^2 \times 0.0408 \times D) =$	gal.	Actual V	olume Purged (fr	rom below) = _	810 gal/ml.
C. Well Diam	eter = 0.37	5_ in. F.	3 Well Volumes (3 x E) =	gal.	(If applica	able, see pumping s	system volume ca	lculation below)
Pump and F	low Cell Volu	ıme V _p	= N/A	ml	-	Pumpir	ig System Vo	lume Calcul	ation
Tubing Insi	de Diameter	D	= N/A	in.		Ρι	Imping System	Volume (V _S)	
Tubing Leng	gth	L	= N/A	in.		$V_{S} = V$	$p + \pi * D^2 / 4 *$	* L * 16.39 m	l/in ³
Conversion	from Inches ³	to ml 1 i	$n^3 = 16.39$	ml	Vs	= () + (3.1415 * _	<u> </u>	* () * 16.39
	Purging Data	3	Water Qu	ality Parameter	s (within ra	nge for 3	consecutive rea	adings if low	flow sampling)
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	d _{рн}	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
	⊔ gal ⊔ ml		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/	L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
1020	Initial	70	25.59	1349	293	7.15	-102	NIA	clarge.
1023		100	25.80	1351	3.16	7.08	-70		dewater
1026		100	2600	1351	2.12	7.01	-67		11
1028		100	25.99	1350	1.97	6.90	7 -68		10
JO30		100	25.66	1354	2.06	6.98	1-64		3 (
1032		100	25.59	1355	1.96	6.94	-63		11-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
1034		100	25.25	1351	2.05	692	-53		
1041		Sar	nple						
Remarks:									
*****		4.1111111111111111111111111111111111111							
(1) Based on	EPA low-flow	sampling guid	delines.					*****	
Signature					Cnecked	sy:			

Page	l	of	1	
				-

	PC	9		Project Name Crown Chevro	e: Diet				
ONITOR	ING W	ELL LOG		Project/Task OD10160070.0	#: 0008A/B	Sam	pled By: RDP	Dat	te: 7-30-14
er/ID:			Sampl	e ID:		E	Duplicate ID		
2-02-	2		vv	1P-02-2	2 -				
Purging:			Metho	d of Sampling	:	I	ntake Depth		
er, pr	may	_	Ţ	Der Du	mp	31111111111111111111111111111111111111	-	36.6	
				Field Ec	luipment	Dat	to		
nent	I	Model		Serial #/Ren	tal ID R	eceived/	Serviced	Date	Calibrated
Probe YSI-556 #6						7-32	>-14	7-30	>-14
		N/A		N/A		N/	Α		N/A
			Cas	sing Purge Vo	lume Calcula	ations			
ater = j2.9	<u>32_</u> ft. D	. Water (Column (E	B-A) = 23.98	_ft.	Depth to 1	Water After San	npling = 35.	71 ft.
epth = <u>36</u>	.7_ft. E	. 1 Well V	Volume (C	² x 0.0408 x D) =	= <u> </u>	Actual Vol	ume Purged (fr	om below) = _	750 gal/ml.
er = 0.31	5_ in. F	. 3 Well \	/olumes (3 x E) =	gal.	(If applicab	le, see pumping s	ystem volume ca	lculation below)
ow Cell Volu	me V	o =	N/A	ml		Pumping	System Vol	ume Calcul	ation
e Diameter	D	=	N/A	in.		Pun	nping System	Volume (V _S)	
:h	L	=	N/A	in.		$V_{\rm S} = V_{\rm P}$	+ π * D ² / 4 *	L * 16.39 m	l/in ³
om Inches ³	to ml 1	in ³ =	16.39	ml	V_s =	()	+ (3.1415 * _	²/4)*	· () * 16.39
urging Data	1	v	Vater Qu	ality Parameter	s (within rang	ge for 3 co	onsecutive rea	dings if low-	flow sampling)
Purge Volume	Flow Rat	e	Г етр (°С)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
∟ gai ∟ mi	L mi/min	Stabil	ization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
Initial	150	22	1.86	874	6.20	8.44	-96	NIA	dewaterc
*********	100	25	5.16	1090	4.43	7.70	-213		15
	70	24	1.30	1208	3.40	7.54	- 230))
	70	24	. 85	1237	2.80	7.47	-231		31
	70	24	.68	1242	2.81	7.41	-233		
	600	24	.86	1249	2.79	7.30	-231		
	70	24	.76	1247	2.35	7.22	-231		
	70	24	.57	1245	2.36	7.23	-228	l.	
	Som	ple							
	$\frac{2}{2} - \frac{2}{2} - \frac{2}$	Purging: volume gal purging: purging:	Anent Model Purging: Purp ment Model YSI-556 N/A atter = $\mathbf{j} 2 \cdot 32 + \mathbf{ft}$. D. Water (I epth = 36.7 ft. E. 1 Well (I er = 0.315 in. F. 3 Well (I) ow Cell Volume Vp ww Cell Volume Vp D = and the state 1 in ³ = urging Data V Purge Flow Rate 0 gpm ml/min gal [] ml ''50 1 24 70 24 70 24 70 24 70 24 70 24 70 24 70 24 70 24 70 24 70 24 70 24 70 24 70 24 70 24	ProductModelProductMethoProductModelProductYSI-556N/AN/AProduct<	Purge Purge Purge Purging:ModelSerial #/RenModelSerial #/RenYSI-556## 6N/AN/AN/AN/ACasing Purge Votter = $j2.82$ ft.D. Water Column (B-A) = 13.9 % epth = 36.7 ft.E. 1 Well Volume (C ² x 0.0408 x D) =er = 0.375 in.F. 3 Well Volumes (3 x E) =w Cell VolumeVpN/AminimizeDw Cell VolumeVpN/Ain.LN/Ain.in.com Inches ³ to ml1 in ³ = 16.39gal mlInitial15024.967024.307024.857024.857024.687024.767024.767024.767024.767024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.75707070707070707070707070707070707070 <td< th=""><th>ArrowNANAParticleMethod of Sampling:247.DWPParticleParticleParticleDWPField EquipmentnentModelSerial #/Rental IDN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AStating Purge Volume Calculationiter = $j2.82$.ft.D. Water Column (B-A) = 23.95.ft.epth = 36.7 .ft.E. 1 Well Volumes ($3 \times E$) =gal.er = 0.315 in.F. 3 Well Volumes ($3 \times E$) =gal.w Cell VolumeVp= N/Ain.D= N/Ain.L= N/Ain.in.chines to ml1 in³ = 16.39ml ml/minTemp (°C)stabilization(3):± 3%± 0.2 mg/LInitial$150$24.8287446.207024.8257024.857024.857024.857024.857024.777024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.7570<t< th=""><th>Product Imple dot Purging: Method of Sampling: I Port DWR Field Equipment Field Equipment Defi DWR Field Equipment Defi DWR Field Equipment Defi DWR Field Equipment Defi DWR YSI-556 # Got Model YSI-556 # Got Model Depth to Date YSI-556 # Got Model N/A N/A N/A N/A N/A N/A N/A Purge Model Output Purge Model Volume Question (Date Model Velow P Output Purge Volume Purge Volume Purge (C) Specific Conductance (LSCM) Dissolved Oxygen (mg/L) Purge Volume Qall In Im Temp (°C) Conductance (LSCM) Purge (°C) Specific Conductance</th><th>Product of Sample 10: Display of the second of Sampling: Intake Depth Product of Sampling: Date product of Sampling: Intake Depth product of Sampling: Intake Depth product of Sampling: Date Intake Depth product of Sampling: Date Intake Depth product of Sampling:<!--</th--><th>Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20:</th></th></t<></th></td<>	ArrowNANAParticleMethod of Sampling:247.DWPParticleParticleParticleDWPField EquipmentnentModelSerial #/Rental IDN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AStating Purge Volume Calculationiter = $j2.82$.ft.D. Water Column (B-A) = 23.95 .ft.epth = 36.7 .ft.E. 1 Well Volumes ($3 \times E$) =gal.er = 0.315 in.F. 3 Well Volumes ($3 \times E$) =gal.w Cell VolumeVp= N/Ain.D= N/Ain.L= N/Ain.in.chines to ml1 in ³ = 16.39ml ml/minTemp (°C)stabilization(3):± 3%± 0.2 mg/LInitial 150 24.8287446.207024.8257024.857024.857024.857024.857024.777024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.757024.7570 <t< th=""><th>Product Imple dot Purging: Method of Sampling: I Port DWR Field Equipment Field Equipment Defi DWR Field Equipment Defi DWR Field Equipment Defi DWR Field Equipment Defi DWR YSI-556 # Got Model YSI-556 # Got Model Depth to Date YSI-556 # Got Model N/A N/A N/A N/A N/A N/A N/A Purge Model Output Purge Model Volume Question (Date Model Velow P Output Purge Volume Purge Volume Purge (C) Specific Conductance (LSCM) Dissolved Oxygen (mg/L) Purge Volume Qall In Im Temp (°C) Conductance (LSCM) Purge (°C) Specific Conductance</th><th>Product of Sample 10: Display of the second of Sampling: Intake Depth Product of Sampling: Date product of Sampling: Intake Depth product of Sampling: Intake Depth product of Sampling: Date Intake Depth product of Sampling: Date Intake Depth product of Sampling:<!--</th--><th>Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20:</th></th></t<>	Product Imple dot Purging: Method of Sampling: I Port DWR Field Equipment Field Equipment Defi DWR Field Equipment Defi DWR Field Equipment Defi DWR Field Equipment Defi DWR YSI-556 # Got Model YSI-556 # Got Model Depth to Date YSI-556 # Got Model N/A N/A N/A N/A N/A N/A N/A Purge Model Output Purge Model Volume Question (Date Model Velow P Output Purge Volume Purge Volume Purge (C) Specific Conductance (LSCM) Dissolved Oxygen (mg/L) Purge Volume Qall In Im Temp (°C) Conductance (LSCM) Purge (°C) Specific Conductance	Product of Sample 10: Display of the second of Sampling: Intake Depth Product of Sampling: Date product of Sampling: Intake Depth product of Sampling: Intake Depth product of Sampling: Date Intake Depth product of Sampling: Date Intake Depth product of Sampling: </th <th>Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20:</th>	Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20: Product 20:

	an	ned	0		Project Name Crown Chevro	e: let	19.70 - 1	<u>.</u>					
N	IONITOR AMPLE COL	ING V	VELI N LOG		Project/Task #: OD10160070.00008A/B			npled By: RDP		Date: 7-30-14			
Well Num	ber/ID: -02-3			Sampl vv	e ID: P-02-3			Duplicate ID	:				
Method o	f Purging: Dexi PL)mp		Metho D	d of Sampling	: VRP		Intake Depti	n: 57.	7'			
				· ·	Field Eq	uipment				-00			
Equi	pment	****	Mod	el	Serial #/Ren	tal ID	D Received	ate I/Serviced		Date	Calibrated		
Multi-Probe	2		YSI-5	56	#6		7-30.	-144		7-3	0-14		
Turbidimet	er		N//	A	N/A		N	/A			N/A		
				Cas	sing Purge Vol	lume Calcu	lations		•				
A. Depth to	Water = 15.4	3_ ft.	D. Wa	ter Column (B	-A) = <u>42.37</u>	. ft.	Depth to	Water After San	npling	= 49	1)2ft.		
B. Well Tota	I Depth = 57.	8 _ft.	E. 1 V	/ell Volume (C	² x 0.0408 x D) =	gal.	Actual V	olume Purged (fr	om bel	low) = _	700 gal/@		
C. Well Diam	neter = <u>0.37</u>	5_ in.	F. 3 W	/ell Volumes (3	3 x E) =	gal.	(If applica	able, see pumping s	system v	olume ca	iculation below)		
Pump and	Flow Cell Volu	ime	Vp	= N/A	ml		Pumpir	g System Vo	lume	Calcul	ation		
Tubing Ins	ide Diameter		D	= N/A	in.	*****	Ρι	Pumping System Volume (V _S)					
Tubing Len	gth		L	= N/A	in.		$V_{S} = V$	$_{\rm P} + \pi * D^2 / 4 *$	۲×۱	6.39 m	l/in ³		
Conversion	from Inches ³	to ml	1 in ³	= 16.39	ml	Vs =	= () + (3.1415 * _	-	_ ² /4)*	· () * 16.39		
	Purging Data	3		Water Qua	ality Parameter	s (within rar	nge for 3	consecutive rea	adings	if low-	flow sampling)		
Time (24 hr)	Purge Volume	Flow Ra	Rate Temp n (°C)		ate Temp (°C)		Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Tur (N	bidity ITU)	Remarks (DTW, color,
			SI	abilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10 <10)% or) NTU	odor, etc)		
0848	Initial	120		22.98	1101	3.93	7.28	- 181	N	۱A	clear		
0851		200		22.58	1123	2.58	7.88	-195			dewood		
0856		100		22.37	1133	2 29	7.97	- 201			11		
0859		00	2	2.38	1141	2.37	7.90	-198			51		
0902		70	0	12.81	1151	2.32	7.79	-196)1		
0906		70	ç	13:35	1156	2.27	7.79	-193		Ļ	51		
1330	\$	sang	sle										
						F							
Remarks:											<u> </u>		

⁽¹⁾ Based or	ו EPA low-flow	sampling g	guidelir	ies.									
Signature						Checked B	y:						

Page _	١	of	1	

	am	ec	0		Project Name Crown Chevro	e: let					
N		ING V	VELL N LOG		Project/Task #: OD10160070.00008A/B			mpled By:).Allbut	Da	Date: 7130/14	
Well Num	ber/ID:			Sampl	e ID:			Duplicate II	D:		
MP-0	23-1			MP	-03-1				-		
Method of	f Purging:			Metho	d of Sampling	:		Intake Dept	th: 19.6		
		1			Field Eq	uipment			1		
Equi	pment		Mode	el	Serial #/Ren	tal ID	E Receive	oate d/Serviced	Date	Calibrated	
Multi-Probe	2		YSI-55	56	12610422	-3	7	129/14	7	30/14	
Turbidimet	er		N/A	1. 1.	N/A		I	N/A		N/A	
				Cas	sing Purge Vol	ume Calcu	lations				
A. Depth to	Water = <u>13.</u>	58_ft.	D. Wate	er Column (B	-A) = 1.02	. ft.	Depth t	o Water After Sa	mpling = $/\mathcal{U}$.	<u>12_</u> ft.	
B. Well Tota	Depth = 15	<u>6</u> ft.	E. 1 We	ell Volume (C	² x 0.0408 x D) =	0.006gal.	Actual \	/olume Purged (from below) = $_{-}$	1550 gal/m	
C. Well Diam	neter = 0.37	<u>15 in.</u>	F. 3 We	ell Volumes (3 x E) =	<u>18</u> gal.	(If applic	able, see pumping	system volume ca	alculation below)	
Pump and	Flow Cell Volu	ime	V _p =	= N/A	ml		Pumpi	ng System Vo	olume Calcul	ation	
Tubing Insi	ide Diameter		D =	= N/A	in.		Ρ	umping Systen	n Volume (V _s)	******	
Tubing Len	gth		L :	= N/A	in. $V_{\rm S} = V_{\rm P} + \pi * D^2 / 4 * L * 16.39 {\rm ml/in^3}$						
Conversion	from Inches ³	to ml	1 in ³ =	= 16.39	ml	Vs	= (_) + (3.1415 *	<u> </u>	* () * 16.39	
	Purging Data	1		Water Qu	ality Parameter	s (within ra	nge for 3	consecutive re	adings if low	-flow sampling)	
Time (24 hr)	Purge Volume	Flow R	ate	Temp (°C)	Specific Conductance (μS/cm) Dissolved Οxygen (mg/L)			Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
			Sta	abilization ⁽¹⁾ :	± 3%	± 0.2 mg/l	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1051	Initial	100	4	23 - 8	1341	0.97	6.74	-21.6	NIA	cloudy	
1053	350		e de la companya de	23.7	1356	0.57	6.70	- 33.3	1	clearing	
1055	550			23.8	1362	01.38 0-0A	6.65	30.8			
1057	750			23.7	1359	0.84	6.65	3 - 32.4			
1059	950			23.4	1359	0.36	6.6	5 - 33.9		clear	
1101	1150			23.6	1354	0.13	5 6.6	7 -35.0		1	
1103	1350		-	23.7	1359	0.01	6.6	7 -35.9			
1105	1550	1	7	23-9	13501	0.01	6.65	8 -36.3)	
Remarks:	1(0	5 0	<u>Sam</u>	pred.	Collecte	d t	3-HC1	Veas			

(1) Based o	n EPA low-flow	sampling	guideline	es.					EL.12.00000000000000000000000000000000000		
	-	101	11.								

	1		ſ	
Page	(of		

	am	e	0		Project Name Crown Chevro	: let				
M S/	ONITOR MPLE COL	ING N	NEL N LO	.L G	Project/Task #: OD10160070.00008A/B			mpled By:). Allbet	Da *7	te: -/30/14
Vell Num	per/ID:			Sampl	e ID:			Duplicate ID	:	,
MP-03.	-2	****			MP-03-2			ç		
penipen	Purging: p + Ded	· Tubi	ng	Metho ج هو	d of Sampling 2 proje me	ethod		Intake Dept	h: 43.1	
					Field Eq	uipment				
Equip	ment		Мо	del	Serial #/Ren	tal ID	D Received	ate I/Serviced	Date	e Calibrated
1ulti-Probe			YSI-	-556	1261042	23	7/29	elu	713	oly
urbidimete	r		N	/A	N/A	************	N	/ A		N/A
				Cas	sing Purge Vol	ume Calcu	lations		•	
. Depth to V	vater = 15.5	<u>1</u> ft.	D. W	/ater Column (B	B-A) = 27-69	ft.	Depth to	Water After Sar	mpling = <u>43</u>	<u>://</u> ft.
. Well Total	Depth = $\frac{H_{3}}{15}$	St RA	E. 1	Well Volume (C	² x 0.0408 x D) =	O.16 gal.	Actual V	olume Purged (fr	rom below) =	2 <i>00</i> gal/ml.
. Well Diame	eter = <u>@375</u>	in.	F. 3	Well Volumes (3 x E) =0.44	3gal.	(If applica	able, see pumping s	system volume c	alculation below)
ump and F	low Cell Volu	me	V_{p}	= N/A	ml		Pumpir	ng System Vo	lume Calcu	lation
ubing Insid	le Diameter		D	= N/A	in.		Pu	Imping System	Volume (V _S)	
ubing Leng	jth		L	= N/A	in.			$T_{P} + \pi * D^{2} / 4 *$	* L * 16.39 m	าl/in ³
Conversion	from Inches ³	to ml	1 in ³	³ = 16.39	ml	Vs =	= () + (3.1415 * _	<u> </u>	* () * 16.3
1	Purging Data	1		Water Qu	ality Parameter	s (within rar	nge for 3	consecutive rea	adings if low	-flow sampling)
Time (24 hr)	Purge Volume	Flow R	tate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
	⊔ gar ps mi			Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	0001, etc)
0950	Initial	100	-1	26-6	1737	3.11	8.12	-286.4	NIA	clear; H2S odor

	am	ec	9		Project Name Crown Chevro	:: let					
N		ING W	ELL		Project/Task #: OD10160070.00008A/B			San Ø.	npled By: Allbert	Da 7	te: 130/14
Well Num	ber/ID:			Sample	e ID:				Duplicate ID:		
MP-0	3-3			MP	-03-3						
Method o Peristal	F Purging:	+ ded.		Metho	d of Sampling	: had		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Intake Depth	:	
		tubine	1	3.42	pugemen			and the second se	57-7		
		1	~*		Field Eq	uipment		D	ato		
Equi	pment		Mode		Serial #/Ren	tal ID	Re	ceived	/Serviced	Date	Calibrated
Multi-Probe	2		YSI-55	6	1261047	123		712	29/14	713	0/14
Turbidimet	er		N/A		N/A			N	/Å		N/A
		alter a		Cas	ing Purge Vol	ume Calo	ulat	ions			
A. Depth to	Water = 16 -	<u>30 ft.</u>	D. Wate	er Column (B	-A) = 41.5	ft.	C	Depth to	Water After Sam	pling = $\frac{30}{30}$	93 ft.
B. Well Tota	Depth = 57.9	ð ft.	E. 1 We	ell Volume (C	$^{2} \times 0.0408 \times D) =$	0.24 gal	. 4	Actual Vo	lume Purged (fr	om below) =	9.50 galmin
C Well Dian	r = 0.370	in	F 3 We	ll Volumes ($3 \times F = 0.72$		(If applica	hle see numning s	vstem volume ca	lculation below)
C. Weir Didit			1.5			gui.		in applied	ole, see pumping s		
Pump and	Flow Cell Volu	ime	Vp =	= N/A	mı		Р	umpin	g System Vol	ume Calcul	ation
Tubing Ins	ide Diameter		D =	= N/A	in.			Pu	mping System	Volume (V _S)	
Tubing Len	igth		L =	= N/A	in.			$V_{\rm S} = V_{\rm F}$	$h + \pi * D^2 / 4 *$	L * 16.39 m	l/in ³
Conversion	from Inches ³	to ml	1 in ³ =	= 16.39	ml	V	s = () + (3.1415 * _	<u> </u>	* () * 16.39
	Purging Data	1		Water Qu	ality Parameter	s (within r	ange	e for 3 c	onsecutive rea	dings if low-	flow sampling)
Time (24 hr)	Purge Volume	Flow Ra	ite	Temp (°C)	Specific Conductance (µS/cm)	Dissolve Oxyge (mg/L)	ed n	pН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
	⊔ gai y⊴ mi	jsc. mi/m	Sta	bilization ⁽¹⁾ :	± 3%	± 0.2 mg	/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
0914	Initial	100		21.7	1019	0.63	>	7.98	-253.8	NIA	H2S odov
0916	350		4.0000-00-00-00-00-00-00-00-00-00-00-00-0	22.0	1010	0.14	<	8.03	-257.8		1
0918	550			23.2	1024	0.03		7.49	-254.2		
0920	750			24.1	1026	0.0	Part and a second	7.43	-246.4		
0977	950			23.4	1032	0.0		7.34	- 239.8	1	
Remarks:	0925	5a.	mple	d. C.	orrected	3-140		IOAS			
						111700000000000000000000000000000000000				******	
⁽¹⁾ Based of Signature	n EPA low-flow	sampling g		es.		Checked	By:	******			

Page	of	1

	am	ec	0)	Project Name Crown Chevrol	et	1.17				
N	4ONITOR	ING LECTIC		_L)G	Project/Task #: OD10160070.00008A/B			mpled By:	Dat 7(e: 30114	
Well Num	ber/ID:			Sampl	e ID:			Duplicate ID);		
MP-C)4-1		****	ł	1P=04-1					******	
Method of	f Purging:	e ded	. t	bine Metho	d of Sampling:	Hund		Intake Dept	h:		
[Collinear	TC FTT				Eiold Ea			150	6		
Equi	pment		Mc	odel	Serial #/Ren	tal ID	E	Date	Date	Calibrated	
Multi-Probe	P	-	YSI	-556	136 10(177	~	Receive	d/Servicea	7/3	Mil	
Turbidimet	ter		N	/A	N/A	5	+10	N/A		N/A	
		-		Ca	sing Purge Vol	ume Calc	ulations			-	
A. Depth to	Water =	<u>82</u> ft.	D. V	Nater Column (E	3-A) = <u>2,88</u>	ft.	Depth t	o Water After Sa	mpling = 15 .	59 ft.	
B. Well Tota	al Depth = <u>15</u>	<u>.7_ft</u> .	E. 1	. Well Volume (C	2 ² x 0.0408 x D) =	0-016 gal	. Actual	Volume Purged (f	rom below) = $\frac{L}{2}$	1 CC gal (m).	
C. Well Dian	neter = 0.3°	<u>75</u> in.	F. 3	Well Volumes (3 x E) =	<u>\$</u> gal.	(If applie	cable, see pumping	system volume cal	culation below)	
Pump and	Flow Cell Volu	ıme	Vp	= N/A	ml		Pumpi	ng System Vo	lume Calcula	ition	
Tubing Ins	ide Diameter		D	= N/A	in.	in. Pumping System Volume (V _S)					
Tubing Ler	ıgth		L	= N/A	in.		$V_{S} = V$	$V_{\rm P} + \pi * D^2 / 4^2$	* L * 16.39 ml	/in ³	
Conversion	1 from Inches ³	to ml	1 in	$^{3} = 16.39$	ml	V	5 = (_) + (3.1415 * _	<u> </u>	() * 16.3	
	Purging Data	3		Water Qu	ality Parameter	s (within r	ange for 3	consecutive re	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow I	Rate n	Temp (°C)	Specific Conductance (µS/cm)	Dissolve Oxyger (mg/L)	ed pH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
		E26-1111/	118111	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg	/L ± 0.2	± 20 mV	±10% or <10 NTU	0001, 6007	
0839	Initial	100	>	22.6	1342	0.79	6.8	1 -158.6	cloudy		
0841	350	1		22.2	1357	3.70	6.9	1 - 127.4			
0842	400	we	eill.	dewatere	L						
****			*****								
		10000				12			712 		
******	****	****	····						442 (4441411)))))))))))))))))))))))))))))))		
						1					
Domarke	·	<u> </u>		<u> </u>		7	1				
Keinai ka.	[5]5	San	pler	J. Co	Rected	3-14-01	VOAc			10117993034444444444444444449997777777777777	

(4)					Ramon a la desta de alternation de la desta de la d		1,111,171,177,187,194,194,194,194,194,194,194,194,194,194				
(1) Based of	n EPA low-flow	sampling	g guide	elines.						1717778888888888888888897777788888888777778	
Signature	a: D	LA J	1	lit		Checked	By:				

	an	nec	9	Project Name Crown Chevro	e: llet				
l	MONITOR SAMPLE COL	LECTION	ELL .OG	Project/Task OD10160070.0	#: 0008A/B	Sar	npled By: D.AI	Da 7	te: 30 14
Well Nun	nber/ID:		Samp	le ID:			Duplicate ID);	
MP-1	04 - 2			41-04-2			500 <u>0</u>		
Method of Peristalt	f Purging:	ded. ht	Metho	see purge	: method		Intake Dept	h: 1.6	
				Field Eq	uipment				
Equi	pment	, N	lodel	Serial #/Ren	tal ID	D: Received	ate /Serviced	Date	Calibrated
Multi-Prob	е	Y	61-556	1261042	23	7129	14	71	30/14
Turbidime	er		N/A	N/A		N	/A		N/A
			Ca	sing Purge Vol	ume Calcul	ations		39.9	2
A. Depth to	Water = <u>14.0</u>	<u>ft.</u> D.	Water Column (I	$B-A) = \frac{27.65}{}$	ft.	Depth to	Water After Sar	mpling = 44	404 ft.
B. Well Tota	I Depth = 41.	7_ft. E.	1 Well Volume ($C^2 \times 0.0408 \times D) =$	0.16 gal.	Actual V	olume Purged (f	rom below) =	600 gal/m
C. Well Diar	neter = 0.37	<u>5</u> in. F.	3 Well Volumes ($(3 \times E) = 0.43$	gal.	(If applica	ble, see pumping :	system volume ca	lculation below)
Pump and	Flow Cell Volu	ime V _p	= N/A	ml		Pumpin	g System Vo	lume Calcul	ation
Tubing Ins	ide Diameter	D	= N/A	in.	Pumping System Volume (V _s)				
Tubing Ler	ıgth	L	= N/A	in.		$V_{S} = V_{I}$	$h_{0} + \pi * D^{2} / 4^{3}$	* L * 16.39 m	l/in ³
Conversior	from Inches ³	toml 1 i	$n^3 = 16.39$	ml	V_s =	() + (3.1415 *	- ² /4)*	*(-)*1
	Purging Data	1	Water Qu	ality Parameter	s (within ran	ge for 3 g	consecutive re	adings if low-	flow sampling
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remark (DTW, cold
			Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc
0824	Initial	100	21.3	1235	0.15	7.68	-265.2	grayj	Hzs odo
0826	350		21.1	1220	0.11	7.66	-264.2	1	1
0828	550	l	22.1	1204	0.07	7-65	-263.8	l	
0820	600	we	1 denate	red	1				
				1974/1481194794794794794794794794797777777777	-	*****	****		
	ł					*****			a <u>3</u>
Remarks:	1255	Sample	d. Cotty	icked 3-1-	tel Vol	ł <u>s</u> ,		1	
	**********				*				
(1) -	EDA Laur flaur	بالربية المستقلة	1 12						

	1	1
Page	of	-

	am	e	0		Project Name Crown Chevrol	et					
M	IONITOR AMPLE COLI	ING		L G	Project/Task #: OD10160070.00008A/B			mpled By:	D	Date: 7 13 0/14	
Well Num	ber/ID:			Sampl	e ID:			Duplicate ID):		
MP-OL	1-3				4P-04-3						
Method of Peri pum	f Purging: p + ded. h	ubing	7	Metho	d of Sampling see purge	method	(Intake Dept ≶	h: \$.4		
					Field Eq	uipment					
Equi	pment		Мо	del	Serial #/Ren	tal ID	D Received	ate I/Serviced	Dat	e Calibrated	
Multi-Probe	2	1	YSI	-556	1261042	23		7/29/14	e=	7130/14	
Turbidimet	er		N	/A	N/A		Ν	I/A		N/A	
				Cas	sing Purge Vol	ume Calcu	lations				
A. Depth to	Water = <u>15.</u>	<u>12</u> ft.	D. V	Vater Column (B	B-A) = <u>42.68</u>	ft.	Depth to	o Water After Sa	mpling = 32	<u>• 43</u> ft.	
B. Well Tota	Depth = <u>58.0</u>	<u>6</u> ft.	E. 1	Well Volume (C	$2^{2} \times 0.0408 \times D) =$	0.25 gal.	Actual V	olume Purged (f	from below) =	1000 gal	
C. Well Diam	neter = <u>0.37</u>	<u>5</u> in.	F. 3	Well Volumes (3 x E) = <u>0.75</u>	gal.	(If applic	able, see pumping	system volume	calculation below)	
Pump and	Flow Cell Volu	ime	Vp	= N/A	ml		Pumpi	ng System Vo	olume Calcu	lation	
Tubing Insi	ide Diameter		D	= N/A	in. Pumping System Volume (V _S)				.)		
Tubing Len	gth	94 gaya 69	L	= N/A	in.		$V_{\rm S} = V$	$I_{\rm P} + \pi * D^2 / 4$	* L * 16.39	ml/in ³	
Conversion	from Inches ³	to ml	1 in	³ = 16.39	ml	Vs	= (_) + (3.1415 * _	<u>-</u> ² /4)	* () * 16.39	
	Purging Data	1	1	Water Qu	ality Parameter	s (within ra	nge for 3	consecutive re	adings if lov	v-flow sampling)	
Time (24 hr)	Purge Volume	Flow	Rate m	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	d pH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
(,	∐ gal ⊯ mi	D¥ ml/	min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/l	L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0755	Initial	100	3	21.9	1013	1.08	7.7	2 -184.7	cibidy	H2S odor	
0757	200		******	21.4	1009	0.45	7.6	1-178.9			
0759	400		******	21.6	948	0.17	7.58	5 - 173.8			
0801	600		****	21.8	954	0.11	7.40	9 -165.0			
0803	800		****	21.6	957	0.01	7.30	- 151.0			
0805	1000			21.9	960	0.01	17.4	1 -156.6			
0807-	1200-04			*	-						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
										a construction of the second se	
Remarks:	0805	Sam	pled	, Collect	kd 3-4	LI VOA	\$				
			1								
					01(71)(44444)(541)4444/00110001000000000000000000000000			94444944411111111111111111111111111111			
(1) Based o	n EPA low-flow	samplin	g guide	elines.					100510110000000000000000000000000000000		

	1	1
Page	of	

	am	ec	0		Project Name Crown Chevrol	: let						
N	IONITOR	ING V			Project/Task OD10160070.00	#: 0008A	Sai P	npled By: . Aibしt	Dat 18	e: l6/14		
Well Num	ber/ID:			Sample	e ID:	D: Duplicate ID:						
ML	1-01				MW-01		Mu-100					
Method o Peri. p.n	f Purging: yp + ded.h	bing		Metho	d of Sampling see parg	e method	/	Intake Depti	9'			
		1			Field Eq	uipment						
Equi	pment		Mod	el	Serial #/Ren	tal ID	D Received	ate I/Serviced	Date	Calibrated		
Multi-Probe	2		YSI-5	56	12510169	8	101:	1114	101	6/14		
Turbidimet	er		N/A	Ň.	N/A	<u></u>	· N	/A		N/A		
		<u>.</u>		Cas	sing Purge Vol	ume Calcu	lations					
A. Depth to	Water = ///	00 ft.	D. Wa	ter Column (B	-A) = <u>4.90</u>	ft.	Depth to	Water After San	npling = $\frac{16}{6}$	2_ft.		
B. Well Tota	I Depth = 20.0	a _{ft.}	E. 1 W	/ell Volume (C	² x 0.0408 x D) =	gal.	Actual V	olume Purged (fr	om below) =	1650 gal (m)		
C. Well Dian	neter = 0.75	in.	F. 3 W	/ell Volumes (3 x E) =	gal. (If applicable, see pumping system volume calculation be						
Pump and	Flow Cell Volu	me	V.	= N/A	ml		Pumpir	g System Vol	ume Calcula	ition		
Tubing Ins	ide Diameter		тр П	- N/A	in		Pi	imping System	Volume (Va)			
Tubing Los			ט ו	- N/A		$\frac{1}{1}$						
			L	= N/A	If I.		$v_{\rm S} = v$	p + π * U / 4 *	· L · · 10.39 IIII	/==		
Conversion	from Inches	tomi	1 in ⁻	= 16.39	mi	Vs =	= (.) + (3.1415 *	^ ~/ 4) *	() * 16		
	Purging Data	-	· .	Water Qu	ality Parameter	s (within rai	nge for 3	Consecutive rea	adings if low-	flow sampling)		
Time (24 hr)	Purge Volume	Flow R	ate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,		
	🗆 gal 😼 mi	k⊈ mi/n	nin st	abilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
210 00	Initial	65		22.3	12.77	3.27	6.94	1 72.7		Clear		
1201	450	1		22.1	1220	1.72	6.88	24.0	· · · ·			
1210	650			22.9	1265	1.05	6 8	79.4	-			
1213	850			22.5	1264	0.78	6.8	5 79.5				
17.16	1050			22.8	1262	0.57	6.8	79.8				
1210	1350			22.6	1267_	0.47	6.81	79.9	6			
1207	165			772	1760	0.42	6.20	79.9				
1000	10.00			6617	1000		9.7	1-[+-1				
	÷											
Remarks:	inne	e	in I	Call	octed 1	ilei sin	Ar C	t DIP) al	1730			
	1200	Lawly	Predi		we v	MUI	PU	יא כוטע ו	1030			
				******				1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*****		
(1) -		a -										
⁽¹⁾ Based o	n EPA low-flow	sampling	guidelir	nes.								
	()	(2)	r 11		1							

	1		1	
Page		of		

	am		9	Project Name Crown Chevro	e: let			<u></u>		
M		ING W		Project/Task OD10160070.0	#: 0008A	San	RDP	Dat	Date: 10-6-14	
Well Num	ber/ID: MW-C	2	Samp	Ie ID: MW-(32		Duplicate ID:			
Method of	F Purging:	Gm	Metho	od of Sampling	: MJ		Intake Depth	" 18'	***************	
	po		<u> </u>	Field Eq	uipment	a strange				
Equi	oment	1	Model	Serial #/Ren	tal ID F	Da Received	ate /Serviced	Date	Calibrated	
Multi-Probe		Y	SI-556	*********************	10-3-14 10-6				6-14	
Turbidimete	er	uluuunnanaana	N/A	N/A		N	/A		N/A	
			Ca	sing Purge Vo	lume Calcul	ations				
A. Depth to	Water = 12.	01 ft. D	. Water Column (I	B-A) =	_ ft.	Depth to	Water After San	npling = 12.0	05 ft.	
B. Well Total	Depth = 19	92-ft. E	. 1 Well Volume (C ² x 0.0408 x D) =	= <u> </u>	Actual Vo	olume Purged (fr	om below) =	3 <u>6 00</u> gal/ml.	
C. Well Diam	eter = 0.7	5_ in. F	. 3 Well Volumes	(3 x E) =	gal. (If applicable, see pumping system volume calculation belo					
Pump and I	Flow Cell Volu	ime V	p = N/A	ml		Pumpin	g System Vol	lume Calcula	ation	
Tubing Insi	de Diameter	D	= N/A	in.	Pumping System Volume (V _s)					
Tubing Len	gth	L	= N/A	in.		$V_{S} = V_{F}$	$h_{0} + \pi * D^{2} / 4 *$	⁴ L * 16.39 ml	/in ³	
Conversion	from Inches ³	to ml 1	$in^3 = 16.39$	ml	Vs =	: () + (3.1415 *	² /4)*	() * 16.39	
*****	Purging Data		Water Qu	ality Parameter	s (within ran	nge for 3 o	consecutive rea	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow Rat	e Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
	🗆 gai 🗆 mi		Stabilization ⁽¹⁾	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0820	Initial	175	21.5	1047	1.76	7.70	1.8		cleax	
0823		- [(21.7	1089	201	7.60	2 -18		.11	
0826		11	21.8	1099	1.80	7.61	-18		12	
0829		11	22.0	1108	1.90	7.49	-15		1/	
0832		11	21.8	6114	2.10	7.48	-13		11	
0835		1	21.9	1120	2.03	7.49	-10		1.	
0838)1	21.9	1123	2.05	7.48	5-8		11	
0840		Sam	ple					Sanahalalalala)))(4))))))))))))))))))))))))))		
Remarks:	<u> </u>									

(1) Based or	EPA low-flow	sampling gu	idelines.		Ohan har har					
Signature					спескеа В	y:				

	am	ec)	Project Name Crown Chevro	et let		-				
M S	IONITOR AMPLE COL	ING WE	ELL .og	Project/Task OD10160070.0	#: 0008A	San	RDP	Dat	e:]-6-14		
Well Num	ber/ID:	- 1	Samp	le ID: NP-01-1			Duplicate ID	:			
Method of	Puraina:	-	Metho	od of Sampling			Intake Depti	1: 1			
Pe	ri puw	Cr.	<u>ل</u>	zri pun	17.5						
	1	V	1	Field Eq	uipment						
Equi	pment	M	lodel	Serial #/Ren	tal ID	Da Received	nte /Serviced	Date	Calibrated		
Multi-Probe		YS	SI-556		10-3-	.14	10-6	-14			
Turbidimete	er		N/A	N/A N/A N/A							
			Ca	sing Purge Vol	lume Calcu	lations					
A. Depth to \	Water = 14.4	30 ft. D.	Water Column (I	B-A) =	ft.	Depth to	Water After San	npling = 14.4	5 ft.		
B. Well Total	Depth = 59	 E.	1 Well Volume ($C^2 \times 0.0408 \times D) =$) =gal. Actual Volume Purged (from below) = 290				900 gal @		
C. Well Diam	eter = <u>0.37</u>	5 in. F.	3 Well Volumes ((3 x E) =	gal.	(If applica	ble, see pumping s	system volume cal	culation below)		
Pump and F	-low Cell Volu	ime V _p	= N/A	ml		Pumpin	g System Vol	lume Calcula	ntion		
Tubing Insi	de Diameter	D	= N/A	in.		Pu	mping System	Volume (V _S)			
Tubing Len	ath	L	= N/A	in.		$V_{s} = V_{p}$	$+\pi * D^2 / 4 *$	^c L * 16.39 ml	/in ³		
Conversion	from Inches ³	toml 1 i	$n^3 = 16.39$	ml	Vs =	= () + (3.1415 *	² /4)*	() * 16.39		
	Purging Data		Water Ou	ality Parameter	s (within rai	nge for 3 c	onsecutive rea	adings if low-	flow sampling)		
Time	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential	Turbidity (NTU)	Remarks (DTW, color,		
(23 111)	🗆 gal 🗆 ml	□ ml/min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	. ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
12.12	Initial	125	25.5	1373	2.76	7.59	-149		CLEBY		
1215		F1	24.7	1375	1.91	7.54	-146		11		
1218		11.	24.5	1368	1.87	7.49	-142		1/		
1221		11	25.0	1353	1.73	7.49	-139		17		
1224		-17	24.9	1333	1.79	7.48	-136		11		
1227			24.8	1319	1.89	7.48	~133				
1230			24.8	1309	1.86	7.48	-132				
1235		50	mple				1				
10-7-2											
Remarks:	I	<u>i</u>	1		1	1					

(1) Based on		sampling qui	delines								
Signature		samping gui			Checked P	lv:			******		
Signature					checked b						

	am	e	0		Project Name Crown Chevro	let					
M		ING N		L G	Project/Task OD10160070.0	#: 0008A	Sa	RDP	Dat	Date: 10-6-14	
Well Num	per/ID:			Sampl	e ID:	_		Duplicate II):		
mp	-01-2			jr.	1P-01-2	2					
Method of	Purging:	0		Metho	d of Sampling	:		Intake Dept	h: 」マン		
PE	ri pou	T	-	F	Field Eq	uipment			17.1		
Equip	ment		Мо	del	Serial #/Ren	tal ID	Receive	Date d/Serviced	Date	Calibrated	
Multi-Probe	ulti-Probe YSI-556						10-	3-14	10-6	-14	
Turbidimeter N/A					N/A			N/A		N/A	
				Ca	sing Purge Vol	ume Calc	ulations		3·		
A. Depth to \	Vater = 15.9	34 ft.	D. V	Vater Column (E	3-A) =	ft.	Depth	to Water After Sa	mpling = <u>39</u>	61 ft.	
B. Well Total Depth = 59.3 ft. E. 1 Well Volume ($C^2 \times 0.0^2$						(a) = qal. Actual Volume Purged (from below) = 900 ga					
C. Well Diameter = 0.375 in. F. 3 Well Volume (C.					3 x E) =	gal. (If applicable, see pumping system volume calculation belo					
Pump and F	low Cell Volu	me	Vp	= N/A	ml		Pumpi	ng System Vo	olume Calcul	ation	
Tubing Insi	le Diameter		D	= N/A	in.	5	F	umping System	volume (V _s)		
Tubina Len	ath		L	= N/A	in.		V ₅ =	$V_{P} + \pi * D^{2} / 4$	* L * 16.39 m	l/in ³	
Conversion	from Inches ³	to ml	1 in	$^{3} = 16.39$	ml	V	s = () + (3.1415 *	² /4)*	() * 16.3	
	Purging Data	1	-	Water Ou	ality Parameter	s (within r	ange for 3	consecutive re	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow F	tate	Temp (°C)	Specific Conductance (μS/cm)	Specific ductance (μS/cm) Dissolved Oxygen (mg/L)		Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
, y	Li gai Li mi		min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg	/L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1248	Initial	10	0	29.2	999	3.95	8.0	2-213		cloudy	
1251		10	σ	30.4	1172	2.01	8.0	1 -267		11	
1254	31	100	5	29.9	1231	1.75	8.0	8-293		11	
1257		11.		29.4	1246	1.68	8.11	-297		11	
1300		1)		30.1	1252	1.55	8.0	6 - 302		4	
1303		11		29.9	1257	1.66	8.0	3 - 297		1)	
1308		11		31.8	1270	1.45	7.9	7 -289		17	
1313		11		31.7	1289	1.29	7.9	3-269			
1325	30		50	onple							
Remarks:											
⁽¹⁾ Based or	EPA low-flow	sampling	guide	elines.							
Signature						Checked	By:				

	arr	e	0)	Project Name Crown Chevro	e: blet					
ľ	MONITOR	ING		LL DG	Project/Task OD10160070.0	#: 0008A	Sa	RDP	Dat l	te: 0-6-14	
Well Num	iber/ID:	2		Samp	le ID:	2		Duplicate ID);		
Method o	f Purging:	- 2	******	Meth	MIC-UN			Intake Dent	h:		
P	er pi	Junt		P	ex pum	- ND		58	.3		
		·····			Field Eq	uipment				_	
Equi	pment		Me	odel	Serial #/Ren	tal ID	C Receive	ate d/Serviced	Date	Calibrated	
Multi-Probe	9		YSI	-556	****	10-3-14 10-6-14				5-14	
Turbidimet	er		N	/A	N/A		1	N/A		N/A	
				Ca	ising Purge Vo	lume Calc	ulations				
A. Depth to	Water = 17.	94 ft.	D. \	Water Column (B-A) =	ft.	Depth t	o Water After Sar	mpling = 49	. 14 ft.	
B. Well Tota	Depth = <u>59</u>	• <u>3</u> ft.	E. 1	. Well Volume ($C^2 \times 0.0408 \times D) =$	gal.	Actual \	/olume Purged (fi	rom below) =	850 gal/ml.	
C. Well Diameter = 0.375_in. F. 3 Well Volumes (3 x E) =						gal.	(If applic	able, see pumping s	system volume ca	lculation below)	
Pump and	Flow Cell Volu	ime	Vp	= N/A	ml		Pumpi	ng System Vo	lume Calcul	ation	
Tubing Ins	ide Diameter		D	= N/A	in.		Ρ	umping System	Volume (V _s)	371111111111111111111111111111111111111	
Tubing Ler	igth	*****	L	= N/A	in.	in. $V_{\rm S} = V_{\rm P} + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Conversion	from Inches ³	to ml	1 in	$^{3} = 16.39$	ml	Vs	; = (_) + (3.1415 * _	²/4)*	· () * 16.39	
	Purging Data	1	<u>.</u>	Water Qu	ality Parameter	s (within r	ange for 3	consecutive re	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow I	Rate n	Тетр (°С)	Specific Conductance (µS/cm)	Dissolve Oxyger (mg/L)	d pH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
			1 3 61 (1	Stabilization ⁽¹⁾	± 3%	± 0.2 mg/	L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1350	Initial	150	5	28.9	819	5.20	8.20	1-192		c'souchy	
1353		100	>	28.8	792	5.14	8.20	1-155		V	
1356		11		28.85	950	3.61	8.20	0-157		1'	
1359		12		28.4	1110	2.41	8.14	-175		f '	
1402		11		28.5	1141	1.95	8.10	-182		17	
1405		11		30.0	1145	1.87	8.0	1-181		11	
1408		11		36.7	1151	1.80	8.04	1-181		(1	
1411		11		30.45	1149	1.81	8.0	-179		11	
1420				sampl	e						
Remarks:											
	*****									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
							10,010101010101000000000000000000000000		(/)>	Mea)111111111111111111111111111111111111	
(1) Based or	n EPA low-flow	sampling	guide	elines.							
Signature	:					Checked	By:				

	am	ec	0		Project Name Crown Chevro	let					
ľ	MONITOR	ING		.L G	Project/Task OD10160070.00	#: 0008A		Sam	RPP	Da	te: 0-6-14
Well Num	ber/ID: P-02-	1		Sampl 171	e ID: RP-02-	١		Duplicate ID:			
Method o	f Purging:	HARE	0	Metho	d of Sampling		5	Intake Depth:			
+	sen p	UNIT	T		Field Fa	uinment				100.0	
Equi	pment		Мо	del	Serial #/Ren	tal ID	Por	Da	te (Serviced	Date	e Calibrated
Multi-Prob	9		YSI	-556				0-3-	- 122	10-6-14	
Turbidimet	er		N	/A	N/A	N/A N/A N/A					
	20	V		Ca	sing Purge Vol	ume Cal	culati	ions			
A. Depth to	Water =	3 n	D. V	Vater Column (E	3-A) =	ft.	D	epth to	Water After San	npling =	ft.
B. Well Tota	B. Well Total Depth = 59.7 ft. E. 1 Well Volume				$(C^2 \times 0.0408 \times D) =gal.$ Add			Actual Volume Purged (from below) = gal/ml.			
C. Well Dian	neter = <u>0.31</u>	Well Volumes ((3 × E) = gal. (If a			(If applicable, see pumping system volume calculation below)					
Pump and	Flow Cell Volu	me	Vp	= N/A	ml		Р	umping	System Vol	ume Calcu	lation
Tubing Inside Diameter D = N/A					in.	Pumping System Volume (V _s)					
Tubing Length L = N/A					in.		`	$V_{\rm S} = V_{\rm P}$	$+\pi * D^{2}/4 *$	L * 16.39 n	ıl/in ³
Conversion	from Inches ³	to ml	1 in	³ = 16.39	ml	V	/s = (_) + (3.1415 * _	²/4)	* () * 16.39
	Purging Data	1		Water Qu	ality Parameter	s (within	range	for 3 c	onsecutive rea	adings if low	-flow sampling)
Time (24 hr)	Purge Volume	Flow F	Rate n	Temp (°C)	Specific Conductance (μS/cm)Dissolved Oxygen (mg/L)		ed n)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
			min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg	I/L	± 0.2	± 20 mV	±10% or <10 NTU	ouor, etc)
	Initial										
			C	vell is	Dry						

		4	*****								
Remarks											
⁽¹⁾ Based o Signature	n EPA low-flow	sampling	ı guide	lines.		Checked	By:				

	am	ec	0		Project Name Crown Chevro	let						
M	ONITOR MPLE COL	ING V		L G	Project/Task OD10160070.0	#: 0008A		Sam	pled By: RDP	Dat }5	e:)-6-127	
Well Num	per/ID:	-		Sampl	e ID:	0			Duplicate ID:			
JV (4.02	52		Matha	12.02	-2						
Method of	DZY1	PUW	27		Deri Dump 36.6					>		
	•		-+		Field Eq	uipment	:					
Equip	ment		Mo	del	Serial #/Ren	tal ID	R	Da eceived/	te Serviced	Date	Calibrated	
Multi-Probe			YSI-	556				10-3	3-14	10-6	s-14	
Turbidimete	r		N/	'A	N/A			N/	Α		N/A	
				Cas	sing Purge Vo	lume Cal	cula	tions	****	****		
A. Depth to V	Vater = 13.5	5 <u>3</u> .ft.	D. W	/ater Column (B	S-A) =	ft.		Depth to	Water After San	npling = 36 .	3_ ft.	
B. Well Total Depth = 59.7 ft. E. 1 Well Volume					[C ² x 0.0408 x D) =gal. Actu			Actual Vol	ume Purged (fr	om below) = 🛓	gal m	
C. Well Diameter = 0.375 in. F. 3 Well Volume					3 x E) =	gal. (If applicable, see pumping system volume calculat			culation below)			
Pump and F	low Cell Volu	ime	Vp	= N/A	ml			Pumping	System Vol	ume Calcula	ition	
Tubing Insid	le Diameter		D	= N/A	in.	adoorooddaadaadarooddoorood	***********	Pur	nping System	Volume (V _S)		
Tubing Leng	jth		L	= N/A	in.			$V_{S} = V_{P}$	+ π * D ² / 4 *	L * 16.39 ml	/in ³	
Conversion	from Inches ³	to ml	1 in ³	= 16.39	ml		V _S =	()	+ (3.1415 * _	² /4)*	() * 16.39	
	Purging Data	1	1	Water Qu	ality Parameter	s (within	rang	je for 3 co	onsecutive rea	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow B	ate	Тетр (°С)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)		рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
	Li gai Li mi	A mile	****	Stabilization ⁽¹⁾ :	± 3%	± 0.2 m	g/L	± 0.2	± 20 mV	±10% or <10 NTU	0001, etc)	
0917	Initial	150	>	22.2	955	5.70	L	7.81	-195		cloudy	
0920		150		22.6	1201	3.2	7	7:74	-252		11	
0923		150		23.5	1251	2.70	7	7.74	-269		1	
0926	******	150		23.4	1270	2.50	Y	7.70	-278		11	
0929		150	>	23.2	1274	2.2	١	7.67	-281		11	
0932		150	-	23.3	1278	2.2	4	7.64	-286		· 11 .	
0935		S	an	sple							12	
		17		V						- 11))/)////////////////////////////////		
Remarks:			1									
⁽¹⁾ Based on	EPA low-flow	sampling	guide	lines.					######################################			
Signature						Checke	d By	1				

	am			Project Name Crown Chevro	e: let					
M		ING WE	LL .og	Project/Task OD10160070.0	#: 0008A	San	RDP	Dal)	te: 0-6-14	
Well Num	ber/ID:	3	Sampl	e ID: 1P-02-	З		Duplicate ID:			
Method of	Purging:	un	Metho	d of Sampling	: m.2		Intake Depth: 57.7			
```	`	1	- Al	Field Eq	uipment					
Equip	oment	M	lodel	Serial #/Ren	ntal ID Received/Service			Date	Calibrated	
Multi-Probe		Y	SI-556			10-	3-14	10-	6-14	
Turbidimete	er		N/A	N/A		N	/A		N/A	
			Ca	sing Purge Vo	lume Calci	ulations				
A. Depth to	Water = 16.1	<u>3_ft.</u> D	Water Column (E	3-A) =	_ ft.	Depth to	Water After San	npling = <u>51</u>	<b>.06</b> ft.	
B. Well Total	Depth = 59.	7ft. E.	1 Well Volume (C	$C^2 \ge 0.0408 \ge D$ =	gal.	Actual Vo	olume Purged (fr	rom below) =	100 gal	
C. Well Diam	eter = <u>0.37</u>	<u>S</u> in. F.	3 Well Volumes (	3 x E) =	gal.	(If applica	ble, see pumping s	system volume ca	lculation below)	
Pump and I	Flow Cell Volu	me V _r	= N/A	ml	Pumping System Volume Calculation					
Tubing Insi	de Diameter	D	= N/A	in.	. Pumping System Volume (V _s )					
Tubing Len	gth	L	= N/A	in.		$V_{S} = V_{I}$	$h_{0} + \pi * D^{2} / 4 *$	* L * 16.39 m	l/in ³	
Conversion	from Inches ³	to ml 1	$in^3 = 16.39$	ml	Vs	= (	) + (3.1415 * _	² /4)*	· ( ) * 16.39	
	Purging Data	]	Water Qu	ality Parameter	s (within ra	ange for 3 d	consecutive rea	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow Rate	• Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	d pH	Oxidation Reduction Potential (mV)	<b>Turbidity</b> (NTU)	Remarks (DTW, color,	
()	🗆 gai 🗆 mi	Li mi/œwn	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/	L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0958	Initial	150	24.3	1170	3.30	7.68	-294		Claroly	
1001		100	23.7	1191	2.67	7.81	-296	a teastaningan ang ang ang ang ang ang ang ang ang	Clease	
1004		100	24.1	1168	2.55	7.98	-298		clark	
1007	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	24.0	1157	2.08	8.13	-295		1/	
010		100	24.1	1161	2.05	8.22	-283		17	
1015		100	24.8	1175	2.00	8.25	1-266		ц Ц	
1018		100	24.5	1193	1.87	8-13	-262	-	11	
1021		100	24.2	1210	1.85	8.03	3-258		11	
1026		100	24.7	1214	1.92	7.94	-247			
Remarks:										
	314/1])····((5544)4444444444444)))//44444444444		1							
for La Calanda ann an Anna La Calanda ann an Anna Anna Anna Anna Anna Ann		NALI MARTINE COLORIZE CONTRACTOR DE LA COLORIZA DE	***************************************							
(1) Based or	EPA low-flow	sampling gu	delines.	1222 (1222) 11111111555 111555 11555 11777 # 4442 (1111) 54446 (144555555555	111111111111111111111111111111111111111					
Signature	**************************		9999999979944479795666695444745669949755669994974746666945414614		Checked	By:				

Page _____ of _____

Purging/	Sampling [	Date: 10	-6-14			Well Nu	mber:ſY	1P-02-	3
	1	A	DDITIONAL (	FIELD PARA	METER CO	LLECTIC de)	ON LOG		
	Purging Data		Water Qu	ality Parameters	s (within rang	ge for 3 co	nsecutive rea	adings if low	-flow sampling)
<b>Time</b> (24 hr)	ime Purge Flow Rate Volume □ gpm 24 hr) □ gal □ ml □ ort/min		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	<b>Turbidity</b> (NTU)	Remarks (DTW, color, odor, etc)
_	- <b>5</b>		Stabilization ⁽¹⁾ :	± 3%	$\pm$ 0.2 mg/L	± 0.2	$\pm$ 20 mV	±10% or <10 NTU	
1034		100	25.5	1227	1.80	7.85	-22.8		cloubly
1044		100	26.0	1229	1.50	7.83	-210		11
1105			soon	DIO.					
				1		1			
						1		-	
_		()				1			
								1	· · · · · · · · · · · · · · · · · · ·
					คราวสังสมาร์ เอง เรา เรา (ว่า เอง นั่นไม่ได้ กำรุงครูสุดสะย) 	1			
						<u></u>			
						1			
					pro-		in the second	.K	
			- 1.		-	1			
			- 13 (			1			
		1							24
			- 1						1.0
			-						
							-		1.05
		1 11 11 11 11 11 11 11 11 11 11 11 11 1							10
				1	1-				
Remarker		-	1			1			
									หมายน้ำมากระบบคุณสนับสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังสุดหลังส
								1	
(1)									
(1) Based on	EPA low-flow s	ampling guidel	ines.						

	arr	nec	0		Project Name Crown Chevro	e: olet							
1	MONITOR SAMPLE COL	ING		L G	Project/Task OD10160070.0	#: 0008A		San D	npled By: Alber	Dat 70	Date: 10/6/14		
Well Nun	nber/ID:			Sampl	e ID:				Duplicate ID	:	· · · · · · · · · · · · · · · · · · ·		
MP-0	3-1				MP-03.	- 1	*****		-				
Method o	f Purging:	L 1.*		Metho	nod of Sampling: Intake Depth:								
l'eri-pin	p + dea.	riverne	7		see prog	e met	100			1-110	······································		
				1	Field Ec	uipment		Da	to				
Equi	pment		Mo	del	Serial #/Ren	ital ID	Re	eceived	/Serviced	Date	Calibrated		
Multi-Prob	9		YSI	-556	1251016	98		10/3/	14	10/0	0/14		
Turbidimet	er		N	/A	N/A	/A N/A N/A					N/A		
				Ca	sing Purge Vo	lume Cal	cula	tions					
A. Depth to	Water = 14.2	0 ft.	D. V	Vater Column (E	B-A) = 0.40	ft.		Depth to	Water After San	npling =	ft.		
B. Well Tota	I Depth = $l^{\mu}$	1-6 ft.	E. 1	Well Volume (C	$(C^2 \times 0.0408 \times D) =gal.$ Ac			Actual Volume Purged (from below) = gal/ml.					
C. Well Diameter = $0.375$ in. F. 3 Well Volum					(3 x E) = gal. (If			(If applicable, see pumping system volume calculation below)					
Pump and	Flow Cell Volu	ime	Vp	= N/A	ml	Pumping System Volume Calculation					ation		
Tubing Inside Diameter $D = N/A$ in.							Pu	mping System	Volume (V _S )				
Tubing Ler	ngth		L	= N/A	in.	$V_{S} = V_{P} + \pi * D^{2} / 4 * L * 16.39 ml/in^{3}$					/in ³		
Conversior	from Inches ³	to ml	1 in	³ = 16.39	ml	ę	√s = (	(	) + (3.1415 *	<u> </u>	() * 16.39		
	Purging Data	)		Water Qu	ality Parameter	rs (within	rang	e for 3 c	onsecutive rea	adings if low-	flow sampling)		
Time (24 hr)	Purge Volume	Flow I	<b>Rate</b> n	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	ved en .)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,		
()	⊔ gal (≱rmi	j⊠rmi/	min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 m	g/L	± 0.2	± 20 mV	±10% or	odor, etc)		
1021	Initial	35		27.1	137-4	6.2	Z	2.40	-07-	-	clear		
1004	150	Í		22.12	1727-	67	0	110	- 72.6				
1077	207			27 5	1784	6 8	0	1.71	254				
1001	450			27.6	1219	1 9		791	111 1	~			
1030	150			is ml	1407	6-0	(	7-01	76.1				
10 20	150	æ	wa	HEN CA		÷							
		1			-								
Remarks:	1115	Samp	led.	· Collec	ted 3-1	teri	10A	tc					
									*****				
⁽¹⁾ Based o	n EPA low-flow	sampling	) guide	lines.									
Signature	: Q	0	10	Mart	i	Checked	By:						

	1		1
Page	1	OT	

	an	nec	0		Project Name Crown Chevro	e: blet		· · · · · · · · · · · · · · · · · · ·			
	MONITOR SAMPLE COL	LECTIC		LL	Project/Task #: S OD10160070.00008A			Sampled By: D. Allast		Date: 1016/14	
Well Nur	nber/ID:			Samp	le ID:			Duplicate ID	):		
MP-0	3-2				MP-03-2	-		-			
Method o	of Purging:	him		Metho	od of Sampling	):		Intake Dept	h:		
respond	up i meni iv	Sing			see punger	nethod		43.	2		
		1			Field Ec	quipment			1		
Equipment Model			odel	Serial #/Ren	ital ID	D Received	ate I/Serviced	Date	Calibrated		
Multi-Probe YSI-556			-556	12310169	8	10/3	114	10	16/14		
Turbidimeter N/A				N/A		N	/ <b>A</b>		N/A		
				Ca	sing Purge Vo	lume Calcu	lations				
A. Depth to	Water = 17-0	<u> </u>	D. \	Vater Column (I	3-A) =	_ ft.	Depth to	Water After Sar	mpling = $\frac{43.2}{2}$	<u>lo</u> ft.	
B. Well Total Depth = $43.2$ ft. E. 1 We			Well Volume (	C ² x 0.0408 x D) =	=gal.	Actual V	olume Purged (fr	from below) = $\frac{1}{2}$	35 gal/mD		
C. Well Diameter = <u>0.375</u> in. F. 3 We			Well Volumes (	3 x E) =	gal.	(If applica	able, see pumping s	system volume ca	lculation below)		
Pump and Flow Cell Volume $V_p = N/J$					ml	Pumping System Volume Calculation					
Tubing Inside Diameter D = N/A					in.	. Pumping System Volume (V _s )					
Tubing Ler	ngth		L	= N/A	in.		$V_{S} = V_{I}$	$_{\rm P} + \pi * D^2 / 4 *$	^{&lt;} L * 16.39 m	l/in ³	
Conversior	n from Inches ³	to ml	1 in	³ = 16.39	ml	Vs =	= (	) + (3.1415 * _	~ ² /4)*	( ) * 16.39	
	Purging Data	1		Water Qu	ality Parameter	s (within ran	nge for 3 d	consecutive rea	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow R	ate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
		jæj 11 n/1	11111	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0835	Initial	1-15	uff	icient u	rater for	parame	ter rea	ding	~	Hzs odori clear )	
						-		J			
	1										
					ý						
	1	1									
Remarks:											
(1) Based of	n EPA low-flow	sampling	guide	lines.							
Signature	0 1	A 0	0.	)		Checked B	v:				

	1		1
Page		of	

	am	ec	9	Project Name Crown Chevro	e: vlet					
N	MONITOR	ING W	ELL LOG	Project/Task OD10160070.0	<b>Project/Task #:</b> OD10160070.00008A			Dai /	te: 0[6[14	
Well Num	ber/ID:		Sam	ple ID:			Duplicate ID:			
MP	-03-3			MP-03-3			~			
Method o	f Purging:		Met	hod of Sampling	1: 	1	Intake Depth	1		
eri. po	impt ded	- the no		see purge	- method	-	58		1811 (B. J. 2018)	
		1		Field Ed	uipment	Da	to			
Equi	pment		Model	Serial #/Ren	tal ID	Received/	Serviced	Date	Calibrated	
Multi-Probe YSI-556				1251016	98	10/3/	14	10/6/	14	
Turbidimet	er		N/A	N/A		N/	A		N/A	
			(	Casing Purge Vo	lume Calcul	ations				
A. Depth to	Water = 16-9	8 <u>8 ft</u> . I	D. Water Column	(B-A) = <u>41.22</u>	_ ft.	Depth to	Water After Sam	pling = $28$	<u>າຮ</u> _{ft.}	
B. Well Tota	I Depth = <u>58</u>	<u>_ft.</u> I	E. 1 Well Volume	(C ² x 0.0408 x D) =	= <u> </u>	Actual Vol	lume Purged (fro	om below) = _	1650 gal/1	
C. Well Dian	neter = <u>0.375</u>	in.   I	3 Well Volume	s (3 x E) =	gal.	(If applicab	le, see pumping sy	/stem volume ca	lculation below)	
Pump and	Flow Cell Volu	me V	/p = N/A	ml		Pumping	J System Vol	ume Calcul	ation	
Tubing Ins	ide Diameter		) = N/A	in.		Pur	nping System	Volume (V _s )		
Tubing Len	ath		= N/A	in	$V_{s} = V_{P} + \pi * D^{2} / 4 * L * 16.39 ml/in^{3}$					
Conversion	from Inches ³	to ml 1	$in^3 - 16.20$	0 ml	- V	· 5 · P	± (3 1/15 *	2/113	×/	
CONVENSION	mont mones.		11 - 10.3	2 · · · · · · · · · · · · · · · · · · ·	vs -	1/	· (2'TTT2	/ Ţ) '	10.3	
	Dunning Date		Maton	Quality Davamento	o (mithin was	6 2		dince if low	flow operating)	
	Purging Data		Water	Quality Parameter	s (within ran	ge for 3 co	onsecutive rea	dings if low-	flow sampling)	
<b>Time</b> (24 hr)	Purging Data Purge Volume	Flow Rat	Water ( Temp (°C)	Quality Parameter Specific Conductance (µS/cm)	rs (within ran Dissolved Oxygen (mg/L)	ge for 3 a	Onsecutive rea Oxidation Reduction Potential (mV)	dings if low- Turbidity (NTU)	flow sampling) Remarks (DTW, color,	
<b>Time</b> (24 hr)	Purging Data Purge Volume gal 28-ml	Flow Rat gpm ml/min	Water ( ce Temp (°C) Stabilization	Quality Parameter Specific Conductance (µS/cm) ± 3%	rs (within ran Dissolved Oxygen (mg/L) ± 0.2 mg/L	ge for 3 co pH ± 0.2	Onsecutive real Oxidation Reduction Potential (mV) ± 20 mV	tings if low- Turbidity (NTU) ±10% or <10 NTU	flow sampling) Remarks (DTW, color, odor, etc) gray	
<b>Time</b> (24 hr) १ <i>७</i> ३९	Purging Data Purge Volume gal 28-ml Initial	Flow Rat gpm M ml/min 65	Water ( Temp (°C) Stabilization	Quality Parameter Specific Conductance (µS/cm) ± 3%	rs (within ran Dissolved Oxygen (mg/L) ± 0.2 mg/L 1.57	ge for 3 co pH ± 0.2 7-88	Onsecutive real Oxidation Reduction Potential (mV) ± 20 mV	tings if low- Turbidity (NTU) ±10% or <10 NTU	flow sampling) Remarks (DTW, color, odor, etc) gray gray brain, cloc	
Time (24 hr) 1039 1042	Purging Data Purge Volume gal & ml Initial 450	Flow Rat	Water ( Temp (°C) Stabilization 23.5 23.7	Specific Conductance (μS/cm)           (1):         ± 3%           / 029         / 028	s (within ran Dissolved Oxygen (mg/L) ± 0.2 mg/L 1.57 0.79	ge for 3 co pH ±0.2 7-88 7.88	Onsecutive real Oxidation Reduction Potential (mV) ± 20 mV - 14 5.9 - 195.9	tings if low- Turbidity (NTU) ±10% or <10 NTU	flow sampling) Remarks (DTW, color, odor, etc) gray gray	
<b>Time</b> (24 hr) 1039 1042 1045	Purging Data Purge Volume gal &ml Initial 450 650	Flow Rat gpm ml/min ' GS	Water ( Temp (°C) Stabilization 23.5 23.7 24.7	Quality Parameter Specific Conductance (μS/cm) ± 3% / 029 / 029 / 029 / 029 / 029	S (within ran         Dissolved         Oxygen         (mg/L)         ± 0.2 mg/L         1.57         0.79         0.61	ge for 3 co pH ± 0.2 7-88 7-88 7-66	Onsecutive real Oxidation Reduction Potential (mV) ± 20 mV - 14 5.9 - 195.9 - 227.5	dings if low- Turbidity (NTU) ±10% or <10 NTU	flow sampling) Remarks (DTW, color, odor, etc) gray gray clock classing	
Time (24 hr) 1039 1042 1045 1048	Purging Data Purge Volume gal &ml Initial 450 650 850	Flow Rat gpm M ml/min ' 65	Water ( Temp (°C) Stabilization 2-3.5 2-3.7 24.7 25.0	Quality Parameter           Specific Conductance (μS/cm)           (a):         ± 3%           / 02.9           / 02.8           / 034           / 034	S (within ran         Dissolved         Oxygen         (mg/L)         ± 0.2 mg/L         1.57         0.79         0.6 (         0.53	ge for 3 co pH ± 0.2 7-88 7-88 7-66 7.36	Oxidation           Reduction           Potential           (mV)           ± 20 mV           -14 5.9           -195.4           -227.5           -216.6	dings if low- Turbidity (NTU) ±10% or <10 NTU	flow sampling) Remarks (DTW, color, odor, etc) gray gray classing classing	
Time (24 hr) 1039 1042 1045 1045 1048	Purging Data Purge Volume gal B-ml Initial 450 650 850 050	Flow Rat	Water ( ce Temp (°C) Stabilization 2.3.5 2.3.7 24.7 24.7 25.0 24.9	Quality Parameter           Specific Conductance (μS/cm)           (1):         ± 3%           / 02.9           / 02.8           / 03.4           / 03.8           / 03.9	S (within ran         Dissolved         Oxygen         (mg/L)         ± 0.2 mg/L         1.57         0.79         0.61         0.53         0,50	ge for 3 co pH ±0.2 7.88 7.88 7.88 7.66 7.36 7.24	Oxidation         Reduction         Potential         (mV)         ± 20 mV         -14 5.9         -195.4         -227.5         -216.6         -201.0	dings if low- Turbidity (NTU) ±10% or <10 NTU - - - - -	flow sampling) Remarks (DTW, color, odor, etc) gray/ brown, cloc c baring	
Time (24 hr) 1039 1042 1045 1045 1051	Purging Data Purge Volume gal &ml Initial 450 650 850 1050 1250	Flow Rat gpm grml/min s	Water ( Temp (°C) Stabilization 23.5 23.7 24.7 24.7 25.0 24.9 24.9	Quality Parameter           Specific Conductance (μS/cm)           1029           1028           1034           1039           1039	S (within ran         Dissolved         Oxygen         (mg/L)         ± 0.2 mg/L         1.57         0.79         0.61         0.53         0,50         0,50	ge for 3 co pH ±0.2 7.88 7.88 7.66 7.36 7.24 ~7.20	onsecutive real Oxidation Reduction Potential (mV) $\pm 20 mV$ -145.9 -195.9 -227.5 -216.6 -201.0 -165.0	dings if low- Turbidity (NTU) ±10% or <10 NTU - - - - - - - - - - - - -	flow sampling) Remarks (DTW, color, odor, etc) gray gray color c leaving	
Time (24 hr) 1032 1042 1045 1045 1051 1054	Purging Data Purge Volume □ gal ☞ml Initial 450 650 850 1050 1250 1450	Flow Rat	Water ( re Temp (°C) Stabilization 23.5 23.7 24.7 24.7 25.0 24.9 24.9 24.9 24.9	Quality Parameter           Specific Conductance (µS/cm)           (1):         ± 3%           1029           1028           1034           1638           1039           1039           1039           1039           1039           1039           1039	s (within ran Dissolved 0xygen (mg/L) $\pm 0.2 mg/L$ 1.57 0.79 0.61 0.53 0.50 0.50 0.50	ge for 3 co pH ± 0.2 7-88 7-88 7-88 7-88 7-88 7-88 7-88 7-8	$\begin{array}{c} \text{Oxidation} \\ \text{Reduction} \\ \text{Reduction} \\ \text{Potential} \\ (mV) \\ \pm 20 \text{ mV} \\ \hline 145.9 \\ -195.9 \\ -227.5 \\ -216.6 \\ -201.0 \\ \hline -165.0 \\ -159.7 \end{array}$	dings if low- Turbidity (NTU) ±10% or <10 NTU - - - - - - - - - - - - -	flow sampling) Remarks (DTW, color, odor, etc) gray gray cloc	
Time (24 hr) 1039 1042 1045 1045 1051 1051 1054 1057	Purging Data Purge Volume □ gal Ørml Initial 450 650 850 1250 1250 1450 1650	Flow Rat	Water ( Temp (°C) Stabilization 2.3.5 2.3.7 24.7 24.7 25.0 24.9 24.9 24.9 25.0 25.0 25.0	Quality Parameter           Specific Conductance (μS/cm)           (μS/cm)           ± 3%           / 02.9           / 02.9           / 02.8           / 03.4           / 03.9           L 03.9           L 03.9           L 03.9           L 03.9	s (within ran Dissolved 0xygen (mg/L) $\pm 0.2 mg/L$ 1.57 0.79 0.61 0.53 0.50 0.50 0.50 0.50 0.50 0.46	ge for 3 co pH ± 0.2 7-88 7-88 7-86 7-88 7-66 7.36 7-24 -7.20 7-17 7-17	$\begin{array}{c} \text{Oxidation} \\ \text{Reduction} \\ \text{Reduction} \\ \text{Potential} \\ (mV) \\ \pm 20 \text{ mV} \\ \hline 145.9 \\ -195.9 \\ -227.5 \\ -216.6 \\ -201.0 \\ \hline -165.0 \\ -159.7 \\ -159.7 \\ -147.2 \end{array}$	dings if low- Turbidity (NTU) ±10% or <10 NTU - - - - - - - - - - - - -	flow sampling) Remarks (DTW, color, odor, etc) gray gray cloc claring	
Time (24 hr) 1039 1042 1045 1045 1051 1051 1057 100	Purging Data Purge Volume □ gal  Pml Initial 450 650 850 1250 1250 1450 1650	Flow Rat	Water (           Temp (°C)           Stabilization           23.5           23.7           24.7           25.0           24.9           25.0           25.0           25.0           25.0	Quality Parameter           Specific Conductance (µS/cm)           1029           1028           1034           1039           1039           1038           1038	s (within ran Dissolved 0xygen (mg/L) $\pm 0.2 mg/L$ 1.57 0.79 0.61 0.53 0.50 0.50 0.50 0.50 0.50 0.46	ge for 3 co pH ±0.2 7.88 7.88 7.66 7.36 7.24 ~7.20 7.17 7.15	$\begin{array}{c} \text{Onsecutive real} \\ \text{Oxidation} \\ \text{Reduction} \\ \text{Potential} \\ (mV) \\ \pm 20 \text{ mV} \\ \hline \\ \hline \\ -145.9 \\ -227.5 \\ -216.6 \\ \hline \\ -201.0 \\ \hline \\ \hline \\ -165.0 \\ \hline \\ -159.7 \\ \hline \\ -147.3 \\ \end{array}$	dings if low- Turbidity (NTU) ±10% or <10 NTU - - - - - - - - - - - - -	flow sampling) Remarks (DTW, color, odor, etc) gray/ brown, cloc c karing	
Time (24 hr) 1039 1042 1045 1045 1051 1054 1057 100	Purging Data Purge Volume □ gal ☞ml Initial 450 650 850 1050 1250 1450 1650	Flow Rat	Water ( re Temp (°C) Stabilization 23.5 23.7 24.7 24.7 25.0 24.9 24.9 24.9 25.0 25.1	Quality Parameter Specific Conductance (µS/cm) (1): ±3% / 029 / 029 / 029 / 029 / 029 / 029 / 029 / 029 / 034 / 039 / 039 / 039 / 039	S (within ran         Dissolved         Oxygen         (mg/L)         ± 0.2 mg/L         1.57         0.79         0.61         0.53         0.50         0.50         0.50         0.46	ge for 3 co pH ± 0.2 7.88 7.88 7.88 7.66 7.36 7.36 7.36 7.29 -7.20 7.17 7.15	$\begin{array}{c} \text{Oxidation} \\ \text{Reduction} \\ \text{Potential} \\ (mV) \\ \pm 20 \text{ mV} \\ \hline 145.9 \\ -195.9 \\ -227.5 \\ -216.6 \\ -201.0 \\ \hline 165.0 \\ -159.7 \\ -147.3 \\ \end{array}$	dings if low- Turbidity (NTU) ±10% or <10 NTU          -	flow sampling) Remarks (DTW, color, odor, etc) graup graup classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing classing	
Time (24 hr) 1039 1042 1045 1045 1051 1051 1057 100 Remarks:	Purging Data Purge Volume □ gal ☞ml Initial 4 \$ 0 6 50 8 50 12 50 14 50 14 50 16 50 11000	Flow Rat	Water ( re Temp (°C) Stabilization 23.5 23.7 24.7 24.7 25.0 24.9 24.9 24.9 25.0 25.1	Quality Parameter           Specific Conductance (μS/cm)           ± 3%           / 029           / 029           / 029           / 029           / 034           / 039           L 039           L 039           L 038           1038	S (within ran         Dissolved         Oxygen         (mg/L)         ± 0.2 mg/L         1.57         0.79         0.61         0.53         0.50         0.50         0.50         0.46	ge for 3 cc pH ± 0.2 7-88 7-88 7-66 7.36 7-24 -7.20 7-17 7-15	Dissecutive real Oxidation Reduction Potential (mV) $\pm 20 mV$ -145.q -195.4 -227.5 -216.6 -201.0 -165.0 -159.7 -147.3	dings if low- Turbidity (NTU) ±10% or <10 NTU - - - - - - - - - - - -	flow sampling) Remarks (DTW, color, odor, etc) gray gray c baring	
Time (24 hr) 1039 1042 1045 1045 1051 1051 1057 100 Remarks:	Purging Data Purge Volume □ gal 2+ml Initial 450 650 850 1250 1250 1450 1650 1650	Flow Rat	Water ( Temp (°C) Stabilization 23.5 23.7 24.7 24.7 25.0 24.9 24.9 24.9 25.0 25.1	Quality Parameter Specific Conductance (µS/cm) (1): ±3% / 029 / 034 / 039 / 039 / 038	s (within ran Dissolved 0xygen (mg/L) $\pm 0.2 mg/L$ 1.57 0.79 0.61 0.53 0.50 0.50 0.50 0.50 0.50	ge for 3 co pH ± 0.2 7.88 7.88 7.88 7.66 7.36 7.24 ~7.20 7.17 7.15	Dissecutive real Oxidation Reduction Potential (mV) $\pm 20 mV$ -145.q -195.4 -227.5 -216.6 -201.0 -165.0 -159.7 -147.3	dings if low- Turbidity (NTU) ±10% or <10 NTU - - - - - - - - - - - - -	flow sampling) Remarks (DTW, color, odor, etc) gray control c karing	
Time (24 hr) 1032 1042 1045 1045 1051 1051 1057 100 Remarks:	Purging Data Purge Volume □ gal 2+ml Initial 450 650 850 1050 1250 1450 1650 1000	Flow Rat	Water ( re Temp (°C) Stabilization 23.5 23.7 24.7 24.7 24.9 24.9 24.9 24.9 25.0 25.1	Quality Parameter Specific Conductance (µS/cm) (1): ±3% / 029 / 034 / 039 / 039 / 038	S (within ran         Dissolved         Oxygen         (mg/L)         ± 0.2 mg/L         1.57         0.79         0.61         0.53         0.50         0.50         0.50         0.46	ge for 3 co pH ± 0.2 7.88 7.88 7.88 7.66 7.36 7.36 7.36 7.17 7.17 7.15	Onsecutive real         Oxidation         Reduction         Potential $(mV)$ $\pm 20 \text{ mV}$ $-195.9$ $-195.9$ $-227.5$ $-216.6$ $-201.0$ $-165.0$ $-197.7$ $-147.3$	dings if low- Turbidity (NTU) ±10% or <10 NTU          -	flow sampling) Remarks (DTW, color, odor, etc) gray Grave, cloco	
Time (24 hr) 1032 1042 1045 1045 1051 1051 1057 100 Remarks:	Purging Data Purge Volume □ gal ☞ml Initial 450 650 850 1250 1250 1450 1650 1000	Flow Rat	Water of Temp (°C) Stabilization 23.5 23.7 24.7 24.7 24.7 24.9 24.9 24.9 25.0 25.0 25.1 up ed	Quality Parameter           Specific Conductance (μS/cm)           1029           1028           1034           1039           1039           1039           1039           1039           1039           1039           1039	S (within ran         Dissolved         Oxygen         (mg/L)         ± 0.2 mg/L         1.57         0.79         0.61         0.53         0.50         0.50         0.50         0.50         0.466	ge for 3 co pH ± 0.2 7-88 7-88 7-66 7.36 7-24 -7.20 7-17 7-17 7-15	Onsecutive real         Oxidation         Reduction         Potential         (mV)         ± 20 mV         ~14 5.9         - 195.4         - 227.5         - 216.6         - 201.0         ~165.0         ~159.7         ~147.3	dings if low- Turbidity (NTU) ±10% or <10 NTU          -	flow sampling) Remarks (DTW, color, odor, etc) gray control co	

	1	/
Page	of	f

	an	nec	0		Project Name Crown Chevro	: let						
1	MONITOR SAMPLE COL	ING		LL	<b>Project/Task #:</b> OD10160070.00008A			Sampled By:		Date: 10/6/14		
Well Nun	nber/ID:			Samp	le ID:			Duplicate ID	:			
MP	-04-1			r	11-04-1							
Method o	of Purging:	1 2 2 3		Metho	od of Sampling		,	Intake Dept	<b>1:</b>			
Peri. 1	smpt de	d. Nor	no		see purge	ee purge method 15.7						
		1			Field Eq	uipment			1			
Equi	pment		Mo	odel	Serial #/Ren	tal ID	Da Received	Ate /Serviced	Date	Calibrated		
Multi-Probe YSI-556			-556	12510169	8	10/3	114	10	16/14			
Turbidimeter N/A			N/A		N	/A		N/A				
				Ca	sing Purge Vol	ume Calcu	lations					
A. Depth to	Water = <u>13.4</u>	0_ft.	D. \	Nater Column (E	B-A) = <u>2-3</u>	ft.	Depth to	Water After San	npling =	ft.		
B. Well Total Depth = 15.7 _ft. E. 1 Well Volume				Well Volume (	$C^2 \times 0.0408 \times D) =$	gal.	Actual V	olume Purged (fr	rom below) = _	gal/ml.		
C. Well Diameter = $0.375$ in. F. 3 Well Volume				Well Volumes (	(3 x E) =	gal.	(If applica	ble, see pumping s	ystem volume ca	alculation below)		
Pump and	Flow Cell Volu	ime	Vp	= N/A	ml		Pumpin	g System Vo	ume Calcul	ation		
Tubing Inside Diameter D = N			= N/A	in.		Pumping System Volume (V _S )						
Tubing Length L			= N/A	in.		$V_{S} = V_{I}$	$V_{S} = V_{P} + \pi * D^{2} / 4 * L * 16.39 \text{ ml/in}^{3}$					
Conversior	n from Inches ³	to ml	1 in	$^{3} = 16.39$	mlV_s = ( ) + (3.1415 * ² /4) * (					* ( ) * 16.3		
	[*] Purging Data		<u> </u>	Water Ou	ality Parameter	s (within rai	nge for 3 (	consecutive rea	adings if low-	-flow sampling)		
<b>Time</b> (24 hr)	Purge Volume	Flow I	Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential	Turbidity (NTU)	Remarks (DTW, color,		
(2111)	□ gal 🖗 mi	j⊼ ml/	min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
0858	Initial	35		21.1	1340	1.74	6.11	6.1	-	cloudy		
2901	200	35	-	21.3	1364	2.93	6.86	-15.1	-			
5901	weil	den	Jale	red at	200 ml				-			
1240 0	A											
							farran c					
Remarks:	1240	Sam	per	d. Colle	used 2-HC	U VOAS	4					
		*****										
(1) Based o	n EPA low-flow	sampling	guide	elines.								
⁽¹⁾ Based o	n EPA low-flow	sampling	guide	elines.		Checked B	Sy:					

Page	
raye	

MONITORING WELL SAMPLE COLLECTION LOGInduct of Marging Particle of Y Dublishoor 20.00008ADAInduct of I I DADate I I I DADate I I I DADate I I I D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D <th></th> <th>am</th> <th>nec</th> <th>0</th> <th></th> <th>Project Name Crown Chevro</th> <th>et</th> <th></th> <th>Sam</th> <th>plad Ry</th> <th>Dai</th> <th></th>		am	nec	0		Project Name Crown Chevro	et		Sam	plad Ry	Dai	
SAMPLE COLLECTION LOGClerk in the colspan="4">Clerk in the colspan="4"Well Nume K-1D: Method of Purging: Sample ID: Method of Sampling: Sample ID: Sample ID: Sample ID: 	N	IONITOR	ING	WEL	L	OD10160070.0	#: 0008A		Sdii		Da	
Matheway 10.       Matheway 10. <th< td=""><td>Moll Num</td><td>AMPLE COL</td><td>LECTIO</td><td>ON LO</td><td>G</td><td></td><td></td><td></td><td></td><td>Dunlicate ID:</td><td></td><td>10111</td></th<>	Moll Num	AMPLE COL	LECTIO	ON LO	G					Dunlicate ID:		10111
Method of Sampling: See purge welfundIntake Depth: y1,7Field EquipmentDate Received/ServicedDate Calibrati 	M	-04-2			M	1P-04-2				Supricate ID.		
Peri. pump + ded. WorkingSee pumpe method $H1, T$ Field EquipmentEquipmentModelSerial #/Rental IDDate Received/ServicedDate Calibratic Pare CalibraticMulti-ProbeYSI-556 $I_2 \subseteq IoIb 4 \in S_1$ $(G) \leq I_1 \sqcup I = Ib < I_1 H = Ib < I_2 = Ib < Ib$	Method o	f Purging:			Metho	d of Sampling	1		1	Intake Depth	1	
Field EquipmentDate Received/ServicedDate CalibrationMulti-ProbeYSI-556 $12 \bigcirc 10 \lfloor 0 \lfloor 0 + 4 \\ N/A \\$	Peri. pur	np+ded.	hbin	9	9	see purge	method	(		E	1.7	
EquipmentModelSerial #/Rental IDDate Calibratic Received/ServicedDate Calibratic Received/ServicedMulti-ProbeYSI-556 $(2,7)(c16,6,8)$ $(0,7)3   1/4$ $10 6 1/4$ Multi-ProbeN/AN/AN/AN/AA trubidimeterN/AN/AN/AN/AN/AA cubidimeterN/AN/AN/AA bepth to Water = $(-1, 2, 3, 1)$ D. Water Column (B-A) =ft.Depth to Water After Sampling = $(-1, 2, 5)$ , ft.B. Well Total Depth = $(-1, 2, 3, 1)$ F. 3 Well Volume ( $^{2} \times 0.0408 \times D$ ) =gal.Actual Volume Purged (from below) = $(-5, 2, 0, 9)$ C. Well Diameter = $(-2, 3, 2, 1)$ .F. 3 Well Volumes ( $3 \times E$ ) =gal.Actual Volume Purged (from below) = $(-5, 2, 0, 9)$ Pumping System Volume ( $2^{2} \times 0.0408 \times D$ ) =gal.Actual Volume Purged (from below) = $(-5, 2, 0, 9)$ Pumping System Volume ( $2^{2} \times 0.0408 \times D$ ) =gal.Actual Volume Purged (from below) = $(-5, 2, 0, 9)$ Pumping System Volume ( $2^{2} \times 0.0408 \times D$ ) =gal.Pumping System Volume caculation belowPumping DiameterD = N/A in.Pumping System Volume ( $V_{0}$ )Tubing LengthL = N/A in.Pumping System Volume ( $V_{0}$ )Conversion from Inches ² to ml1 in ³ = 16.39mlPurging DataPurging DataTurbidityPurging DataPurging DataPurging DataQ (12 Initial $3^{2} \times 2.2^{2}$ I(16)Q (12 Initial $3^{2} \times 2.2^{2}$ I(16)Q (12						Field Eq	uipment					
Multi-ProbeYSI-55612.5 101648(1) 3 1410/6/14TurbidimeterN/AN/AN/AN/ACasing Purge Volume CalculationCasing Purge Volume CalculationA. Depth to Water = $[4].63$ ft.D. Water Column (B-A) =ft.Depth to Water After Sampling = $\frac{41.50}{10.50}$ ft.B. Well Total Depth = $\frac{41.7}{10.50}$ ft.E. 1 Well Volume (C ² x 0.0408 x D) =gal.Actual Volume Purged (from below) = $5 \le 0.9$ C. Well Diameter = $0.325$ in.F. 3 Well Volume (C ² x 0.0408 x D) =gal.Matter Volume Purged (from below) = $5 \le 0.9$ Purgn and Flow Cell VolumeVp = N/AmlPurmping System Volume CalculationTubing Inside DiameterD = N/Ain.Purging System Volume (Vs)Tubing LengthL = N/Ain.Purging System Volume (Vs)Conversion from Inches ³ to ml1 in ³ = 16.39ml $-^{-7}$ vs = (	Equi	pment		Мо	del	Serial #/Ren	tal ID	Rece	Da eived/	te /Serviced	Date	Calibrated
Turbidimeter       N/A       N/A       N/A       N/A       N/A         Turbidimeter       N/A       N/A       N/A       N/A         A Depth to Water = $[H_1 & G_1 + C_1 + $	Multi-Probe YSI-556			-556	123101	698	((	913	14	1010	5/14	
Casing Purge Volume Calculation         A. Depth to Water = $\left[ 4/L, \frac{2}{3}, \frac{1}{5}, \frac{1}{5} \right]$ D. Water Column (B-A) =	Turbidimeter N/A			/A	N/A			N/	A		N/A	
A. Depth to Water = $[44.63]$ ft.       D. Water Column (B-A) =ft.       Depth to Water After Sampling = $[41.52]$ ft.         B. Well Total Depth = $[41.72]$ ft.       E. 1 Well Volume (C ² x 0.0408 x D) =gal.       Actual Volume Purged (from below) = $5 \le 0$ g         C. Well Diameter = $0.1375$ in.       F. 3 Well Volumes (3 x E) =gal.       (If applicable, see pumping system volume calculation bed         Pump and Flow Cell Volume       Vp       = N/A       ml       Pumping System Volume Calculation         Tubing Length       L       = N/A       in.       Pumping System Volume (Vs)       Vs = Vp + $\pi \times D^2/4 \times L \times 16.39 ml/in^3$ Conversion from Inches ³ to ml       1 in ³ = 16.39       ml					Cas	sing Purge Vo	lume Cal	culatio	ons			
Actual Volume $4! \cdot ? + r$ .       E. 1 Well Volume $(C^2 \times 0.0408 \times D) =$	A. Depth to	Water = 14.	<u>63</u> ft.	D. W	/ater Column (B	-A) =	ft.	De	pth to	Water After Sam	pling = $41$ .	50 ft.
C. Well Diameter = $0.3.75$ in.       F. 3 Well Volumes (3 x E) =gal.       (If applicable, see pumping system volume calculation below for the pumping system volume calculation below for the pumping system volume (Vs)         Pump and Flow Cell Volume       Vp       = N/A       min.       Pumping System Volume (Vs)         Tubing Length       L       = N/A       in.       Pumping System Volume (Vs)         Conversion from Inches ³ to ml       1 in ³ = 16.39       ml ${Vs} = () + (3.1415 *2/4) * ($	B. Well Total Depth = $41.7$ ft. E. 1				Well Volume (C	² x 0.0408 x D) =	ga	al. Ac	tual Vo	lume Purged (fr	om below) = _	550 gal/M.
Pump and Flow Cell Volume       Vp       =       N/A       mi       Pump in System Volume Calculation         Tubing Inside Diameter       D       =       N/A       in. $V_S = V_P + \pi \cdot D^2/4 + L \cdot 16.39 m / m^3$ Tubing Larger       L       =       N/A       in. $V_S = V_P + \pi \cdot D^2/4 + L \cdot 16.39 m / m^3$ Conversion From Inches ³ to m       1m ³ =       16.39       min $V_S = V_P + \pi \cdot D^2/4 + L \cdot 16.39 m / m^3$ Conversion From Inches ³ to m       Temp of Infant       Specific Conductance (µS/Cm)       Dissolved Oxygen (mg/L)       PH       Oxidation Reduction Potentiation (mV)       Rem (NTU) (mV)         (24 hr)       Purge og ISM       Flow Rate (VS/Cm)       116%       1.02       120 mV       110% of (mTU) (mV)       110%	C. Well Diameter = <u>0.375</u> in. F				Well Volumes (3	3 x E) =	gal.	(If	applicab	le, see pumping s	/stem volume ca	lculation below)
Tubing Inside DiameterD=N/Ain.Pumping System Volume (V_S)Tubing LengthL=N/Ain. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 ml/in^3$ Conversion from Inches ³ to ml1 in ³ =16.39ml $-V_S = () + (3.1415 * - 2^2/4) * ()$ Purging DataWater Quality Parameters (within range for 3 concentrating if low-flow sample (24 hr)Purging DataPurge Volume (24 hr)Flow Rate (24 hr)Temp (°C)Specific Conductance (µS/Cm)Dissolved Oxygen (mg/L)pHOxidation Reduction Reduction Reduction Reduction (15);Reme(DTW) (NTU) (NTU) (NTU) (NTU)Reme(DTW) odor (10 NTU)04 (2Initial $\Re S$ 22.11(8b $1.24$ $7.50$ $-184.9$ $$ $4^{12}S concentration (15);$ 04 (3)1nitial $\Re S$ 22.11(23 i $0.31$ $7-64$ $-289.1$ $$ $4^{12}S concentration (15);$ 04 (3)45022.1123 i $0.31$ $7-64$ $-289.1$ $$ $4^{12}S concentration (15);$ 04 (3)45022.11212 $0.38$ $7-65$ $-309.9$ $$ $4^{12}S concentration (15);$ 04 (3) $$ $$ $$ $$ $$ $$ $$ $4^{12}S concentration (15);$ 04 (3) $$ $$ $$ $$ $$ $$ $$ $$ 04 (3) $$ $$ $$ $$ $$ $$ $$ 04 (3) $$ $$ $$ $$ $$ $$ $-$	Pump and Flow Cell Volume $V_p = N/$					ml	Pumping System Volume Calculation					ation
Tubing Length       L       =       N/A       in.         Conversion from Inches ³ to ml       1 in ³ =       16.39       ml $-V_5 = () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + (3.1415 * - 2/4) * () + () + (3.1415 * - 2/4) * () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + () + (-$	Tubing Inside Diameter D = N					in.	. Pumping System Volume (V _s )					
Conversion from Inches ³ to ml       I in ³ = 16.39       ml $-V_S = () + (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * (3.1415 * - 2/4) * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * () * ($	Tubing Len	gth		L	= N/A	in.		V	$_{\rm S} = V_{\rm P}$	$+ \pi * D^2 / 4 *$	L * 16.39 m	l/in ³
Purging DataWater Quality Parameters (within range for 3 consecutive readings if low-flow sample for 3 consecutive readeness if low-flow sampl	Conversion	from Inches ³	to ml	1 in ³	³ = 16.39	ml	-	√s = (	- )	) + (3.1415 *	<u> </u>	· ( ) * 16.
Time (24 hr)Purge Volume g gd $\[Sel]$ ml/minFlow Rate g ggm (°C)Temp (°C)Specific 		Purging Data	a		Water Qu	ality Parameter	s (within	range f	or 3 c	onsecutive rea	dings if low-	flow sampling)
China gal fami       Imi/min       Stabilization(1): $\pm 3\%$ $\pm 0.2 \text{ mg/L}$ $\pm 0.2$ $\pm 20 \text{ mV}$ $\pm 10\% \text{ or}$ oddr         09(12       Initial       85       22.2       1(8b $1.24$ $7.50$ $-184.9$ $ H_{250}$ 09(15       250       22.1       1231 $0.31$ $7.64$ $-289.1$ $ grau$ 09(18       450       22.9       1212 $0.38$ $7.65$ $-309.9$ $ grau$ 09(20       550       deuvalered. $     -$ 10920       550       deuvalered. $                                           -$	Time (24 hr)	Purge Volume	Flow I	Rate n	Temp (°C)	Specific Conductance (µS/cm)	Dissolv Oxyge (mg/l	ved en )	рН	Oxidation Reduction Potential	Turbidity (NTU)	Remarks (DTW, color,
0912       Initial       85       22.2       1186       1.24       7.50       -184.9       -       claud         0915       250       22.1       1231       0.31       7.64       -289.1       -       grau         0918       450       22.9       1212       0.38       7.65       -309.9       -       -       grau         0920       550       dewatered.       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	(2)	□ gal 🖗 ml	🗆 ml/	'min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 m	g/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
0915       250       22.1       1231       0.31       7-64       -289.1       -       9row         0918       450       22.9       1212       0.38       7-65       - 309.9       -       -       -       -       9row         0918       450       22.9       1212       0.38       7-65       - 309.9       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td>0912</td><td>Initial</td><td>85</td><td></td><td>22.2</td><td>1186</td><td>1.24</td><td>7</td><td></td><td>-184.9</td><td></td><td>H250dor</td></td<>	0912	Initial	85		22.2	1186	1.24	7		-184.9		H250dor
0918       450       22.9       1212       0.38       7.65       - 309.9       -         0920       550       dewatered.	0915	250			22.1	1231	0.31	Ţ	1-64	-289.1		group "
0920 550 dematered.	0918	450	1		22.9	1212	0-38	7	-65	- 309.9	-	
Remarks: 1250 Sampled.	0920	550	de	ia	ered.		-					
Remarks: 1250 Sampled.												
Remarks: 1250 Sampled.												
Remarks: 1250 Sampled.									_			
Remarks: 1250 Sampled.												
Remarks: 1250 Sampled.												
	Remarks:	1250 9	Samo	ind.								τ
		aa	h	00						****************		
		*****							*****	****	********	
⁽¹⁾ Based on EPA low-flow sampling guidelines.	⁽¹⁾ Based o	n FPA low-flow	sampling	anide	lines.							
	Signature				0		Chooko	d Dve				

	1		
Page		of	

	am		0		Project Name Crown Chevrol	et						
N	MONITORING WELL SAMPLE COLLECTION LOG					Project/Task #: Sa OD10160070.00008A			npled By: DA	Dai	ate: 10/6/14	
Well Num	ber/ID:	+		Sample	e ID:				Duplicate ID:			
MP-0	04-3		<u> </u>	10-04-3				1.g				
Method o Peri.pun	f Purging: up + ded. ]	hbiho		Metho	d of Sampling	meth	od		Intake Depth	:		
			-	<u> </u>	Field Eq	uipmen	t		500	, 		
Equipment Model				el	Serial #/Ren	tal ID	R	Da	nte /Serviced	Date	Calibrated	
Multi-Probe YSI-556			56	1271016	90		inl	2 14	1A1	61		
Turbidimeter N/A				N/A	67	*****	N	/A		N/A		
		1		Cas	ing Purge Vol	ume Ca	lcula	tions	l			
A. Depth to	Water = $16.5$	54 ft.	D. Wa	ter Column (B	-A) =	ft.		Depth to	Water After Sam	pling = $\frac{2l}{l}$	56 ft.	
B. Well Total Depth = $58.6$ ft. E. 1 Well Volum					² x 0.0408 x D) =	g	al.	Actual Vo	olume Purged (fro	om below) = _	8 SZ galen	
C. Well Diameter = <u>0.375</u> in. F. 3 Well Vol					3 x E) =	gal.		(If applica	ble, see pumping sy	stem volume ca	lculation below)	
Pump and Flow Cell Volume $V_p = N/I$					ml	mi Pumping System Volume Calculation					ation	
Tubing Inside Diameter D = N/A					in.	in. Pumping System Volume (V _S )						
Tubing Len	gth		L	= N/A	in.			$V_{\rm S} = V_{\rm F}$	$h_{0} + \pi * D^{2} / 4 *$	L * 16.39 m	l/in ³	
Conversion	from Inches ³	to ml	1 in ³	= 16.39	ml		Vs =	(	) + (3.1415 *	2/4) ×	· ( ) * 16.39	
	Purging Data	1		Water Qua	ality Parameters	s (within	rang	ge for 3 d	onsecutive rea	dings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow I	Rate Temp (°C)		Specific Conductance (µS/cm)	Dissol Oxyg (mg/	<b>ved</b> en L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
		<b>7</b> 5 mi/	St	abilization ⁽¹⁾ :	± 3%	± 0.2 m	g/L	± 0.2	± 20 mV	±10% or <10 NTU	ouor, etc)	
0923	Initial	50	,	21.6	992	2.10	5	7-8	-282.2	-	gray	
0926	300	· I		21.2	1020	1.4	7	7.78	-294.0	-		
0929	450			21.5	1015	D.E	99	7-81	- 309.6			
0932	650			21.8	1025	0.5	57	7.69	-308.7	-		
0935	850			22.1	1028	0.5	5	7.60	- 301.8			
									1			
Remarks:												
								****				
		******							-			
(1) Based of	n EPA low-flow	sampling	guidelir	ies.								
Signature	: 1	1 1	01	1.		Chacka	d Ru					

5

	1		1
Page		of	

-

ired by: AR Instrument(s) Used:	FS
insudnen(s) osed.	<u>L0</u>
nvenience, the following abbreviations may be used.	
D = Dedicated Pump IP = Interfa WL = Water Level	ace Probe
C DTW Groundwater	
tion Measurement Elevation	
t) (feet) (feet) Remarks	-
24 15.61	
24 9.89	
20 13.91	
20 15.) 5	
15 11.30	
15 15.54	
21 11.83	
21 16.26 Measured 2x	<u></u>
21 18.97 Measured 2x	
²² <u>11.36</u>	
22 15.13	
11.04	
11.74	
12.01	

Page (	of
--------	----



APPENDIX B

Laboratory Analytical Reports



THE LEADER IN ENVIRONMENTAL TESTING

## **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc. TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-58973-1 Client Project/Site: Crown Chevrolet Cadillac Isuzu

## For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Alan file

Authorized for release by: 8/6/2014 2:54:32 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.testamericainc.com

..... LINKS .....

Review your project results through

Total Access

Have a Question?

Ask

The

Expert

2

## **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	14
QC Association Summary	24
Lab Chronicle	25
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30
# **Definitions/Glossary**

#### Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

3

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

#### Job ID: 720-58973-1

#### Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-58973-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 7/30/2014 3:55 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.6° C.

#### GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

# Detection Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu TestAmerica Job ID: 720-58973-1

Client Sample ID: MP-04-1					Lab Sample ID: 720-58973-1
Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D Method Prep Type
cis-1,2-Dichloroethene	1.2		0.50	ug/L	1 8260B/CA_LUFT Total/NA
Totachian	0.00		0.50		MS Tetel(NA
letrachioroethene	0.86		0.50	ug/L	MS
Trichloroethene	9.2		0.50	ug/L	1 8260B/CA_LUFT Total/NA
the set of the					MS
Client Sample ID: MP-04-2					Lab Sample ID: 720-58973-2
No Detections			1.67		and the second se
Client Sample ID: MP-04-3					Lab Sample ID: 720-58973-3
No Detections.					
Client Sample ID: TB073014-1			-		Lab Sample ID: 720-58973-4
No Detections.					
His I is the					
Client Sample ID: TB073014-2					Lab Sample ID: 720-58973-5
No Detections.					

#### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MP-04-1 Date Collected: 07/30/14 13:15							Lab Sample ID: 720-58973-1 Matrix: Water		
Date Received: 07/30/14 15:55	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Methyl tert-butyl ether	ND		0.50		ug/L			07/31/14 13:37	1
Acetone	ND		50		ug/L			07/31/14 13:37	1
Benzene	ND		0.50		ug/L			07/31/14 13:37	1
Dichlorobromomethane	ND		0.50		ua/L			07/31/14 13:37	1
Bromobenzene	ND		1.0		ua/L			07/31/14 13:37	1
Chiorobromomethane	ND		1.0		ug/L			07/31/14 13:37	1
Bromoform	ND		1.0		ua/L			07/31/14 13:37	1
Bromomethane	ND		1.0		ua/L			07/31/14 13:37	1
2-Butanone (MEK)	ND		50		ug/L			07/31/14 13:37	1
n-Butvibenzene	ND		1.0		ug/L			07/31/14 13:37	1
sec-Butylbenzene	ND		1,0		ug/L			07/31/14 13:37	1
tert-Butylbenzene	ND		1.0		ug/L			07/31/14 13:37	1
Carbon disulfide	ND		5.0		ua/L			07/31/14 13:37	1
Carbon tetrachioride	ND		0.50		ug/L			07/31/14 13:37	1
Chlorobenzene	ND		0.50		ug/L			07/31/14 13:37	1
Chloroethane	ND		1.0		ug/L			07/31/14 13:37	1
Chloroform	ND		1.0		ug/L			07/31/14 13:37	1
Chloromethane	ND		1.0		ug/L			07/31/14 13:37	1
2-Chlorotoluene	ND		0.50		ug/L			07/31/14 13:37	1
4-Chlorotoluene	NĐ		0.50		ug/L			07/31/14 13:37	1
Chlorodibromomethane	ND		0,50		ug/L			07/31/14 13:37	1
1.2-Dichlorobenzene	ND		0.50		ua/L			07/31/14 13:37	1
1 3-Dichlorohanzana	ND		0.50		ua/L			07/31/14 13:37	1
1.4-Dichlorobenzene	ND		0.50		ua/L			07/31/14 13:37	1
1.3-Dichleropropane	ND		1.0		ua/L			07/31/14 13:37	1
1 1=Dichloropropene	ND		0.50		ug/L			07/31/14 13:37	1
1.2-Dibromo-3-Chloropropane	ND		1.0		ug/L			07/31/14 13:37	1
Ethviene Dibromide	ND		0.50		ug/L			07/31/14 13:37	1
Dibromomethane	ND		0.50		ua/L			07/31/14 13:37	1
Dishlorodifluoromethane	ND		0.50		ua/L			07/31/14 13:37	1
1.1=Dichloroethane	ND		0,50		ug/L			07/31/14 13:37	1
1.2-Dichloroethane	ND		0.50		ua/L			07/31/14 13:37	1
1.1=Dichloraethene	ND		0,50		ug/L			07/31/14 13:37	1
cis-1 2-Dichloroethene	1.2		0,50		ua/L			07/31/14 13:37	1
trans=1.2=Dichloroethene	ND		0.50		ua/L			07/31/14 13:37	1
1.2-Dichloropropane	ND		0.50		ug/L			07/31/14 13:37	1
eis=1.3=Dichloropropene	ND		0.50		ug/L			07/31/14 13:37	1
trans-1.3-Dichloropropene	ND		0,60		ug/L			07/31/14 13:37	1
Ethylbenzene	ND		0,60		ug/L			07/31/14 13:37	1
Hexachlorobutadiene	ND		1.0		ug/L			07/31/14 13:37	1
2-Hexanone	ND		50		ug/L			07/31/14 13:37	1
isopropylbenzene	ND		0.50		ug/L			07/31/14 13:37	1
4-isopropyltoluene	ND		1.0		ug/L			07/31/14 13:37	1
Methylene Chloride	ND		5.0		ug/L			07/31/14 13:37	1
4-Methyl-2-pentanone (MIBK)	ND		60		ug/L			07/31/14 13:37	1
Naphthalene	ND		1.0		ug/L			07/31/14 13:37	1
N=Preavibenzene	ND		1.0		ug/L			07/31/14 13:37	1
Styrene	ND		0.50		ug/L			07/31/14 13:37	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			07/31/14 13:37	1

**TestAmerica** Pleasanton

TestAmerica Job ID: 720-58973-1

5 6

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-1							Lab	Sample ID: 720-	58973-1
Date Collected: 07/30/14 13:15								Matrix	x: Water
Date Received: 07/30/14 15:55									
Analyte	Result	Qualifier	RL	MDL Uni	1	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50	ug/l				07/31/14 13:37	1
Tetrachloroethene	0.86		0.50	ug/l				07/31/14 13:37	1
Toluene	ND		0.50	ug/l	1.9			07/31/14 13:37	1
1,2,3-Trichlorobenzene	ND		1.0	ug/l				07/31/14 13:37	1
1,2,4-Trichlorobenzene	ND		1.0	ug/l				07/31/14 13:37	1
1,1,1-Trichloroethane	ND		0.50	ug/l				07/31/14 13:37	1
1,1,2-Trichloroethane	ND		0.50	ug/l				07/31/14 13:37	1
Trichloroethene	9.2		0.50	ug/I				07/31/14 13:37	1
Trichlorofiuoromethane	ND		1.0	ug/I				07/31/14 13:37	1
1,2,3-Trichloropropane	ND		0.50	ug/1				07/31/14 13:37	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/I				07/31/14 13:37	1
1,2,4-Trimethylbenzene	ND		0.50	ug/I				07/31/14 13:37	1
1,3,5-Trimethylbenzene	ND		0.50	ug/1				07/31/14 13:37	1
Vinyl acetate	ND		10	ug/l				08/01/14 15:16	1
Vinyl chloride	ND		0.50	ug/l				07/31/14 13:37	1
Xylenes, Total	ND		1.0	ug/I				07/31/14 13:37	1
2,2-Dichloropropane	ND		0.50	ug/i				07/31/14 13:37	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/l				07/31/14 13:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130			-		07/31/14 13:37	1
4-Bromofluorobenzene	100		67 - 130					08/01/14 15:16	1
1,2-Dichloroethane-d4 (Surr)	105		72 - 130					07/31/14 13:37	1
1,2-Dichloroethane-d4 (Surr)	108		72 - 130					08/01/14 15:16	1
Toluene-d8 (Surr)	100		70 - 130					07/31/14 13:37	1
Toluene-d8 (Surr)	101		70 - 130					08/01/14 15:16	1

#### Client Sample ID: MP-04-2 Date Collected: 07/30/14 12:55 Date Received: 07/30/14 15:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			07/31/14 14:06	1
Acetone	ND		50		ug/L			07/31/14 14:06	1
Benzene	ND		0.50		ug/L			07/31/14 14:06	1
Dichlorobromomethane	ND		0.50		ug/L			07/31/14 14:06	1
Bromobenzene	ND		1.0		ug/L			07/31/14 14:06	1
Chlorobromomethane	ND		1.0		ug/L			07/31/14 14:06	1
Bromoform	ND		1.0		ug/L			07/31/14 14:06	1
Bromomethane	ND		1.0		ug/L			07/31/14 14:06	1
2-Butanone (MEK)	ND		50		ug/L			07/31/14 14:06	1
n-Butylbenzene	ND		1.0		ug/L			07/31/14 14:06	1
sec-Butylbenzene	ND		1.0		ug/L			07/31/14 14:06	1
tert-Butylbenzene	ND		1.0		ug/L			07/31/14 14:06	1
Carbon disulfide	ND		5.0		ug/L			07/31/14 14:06	1
Carbon tetrachloride	ND		0.50		ug/L			07/31/14 14:06	1
Chlorobenzene	ND		0.50		ug/L			07/31/14 14:06	1
Chloroethane	ND		1.0		ug/L			07/31/14 14:06	1
Chloreform	ND		1.0		ug/L			07/31/14 14:06	1
Chloromethane	ND		1.0		ug/L			07/31/14 14:06	1

**TestAmerica** Pleasanton

Lab Sample ID: 720-58973-2

Matrix: Water

TestAmerica Job ID: 720-58973-1

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-2					Lab Sample ID: 720-589			
Date Collected: 07/30/14 12:55							Matrix	c: Water
Date Received: 07/30/14 15:55								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorotoluene	ND		0.50	ug/L			07/31/14 14:06	1
4-Chlorotoluene	ND		0.50	ug/L			07/31/14 14:06	1
Chlorodibromomethane	ND		0.50	ug/L			07/31/14 14:06	1
1,2-Dichlorobenzene	ND		0.50	ug/L			07/31/14 14:06	1
1,3-Dichlorobenzene	ND	2	0.50	ug/L			07/31/14 14:06	1
1,4-Dichlorobenzene	ND		0.50	ug/L			07/31/14 14:06	1
1,3-Dichloropropane	ND		1.0	ug/L			07/31/14 14:06	1
1,1-Dichloropropene	ND		0.50	ug/L			07/31/14 14:06	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			07/31/14 14:06	1
Ethylene Dibromide	ND		0.50	ug/L			07/31/14 14:06	1
Dibromomethane	ND		0.50	ug/L			07/31/14 14:06	1
Dichlorodifluoromethane	ND		0.50	ug/L			07/31/14 14:06	1
1.1-Dichloroethane	ND		0,50	ug/L			07/31/14 14:06	1
1.2-Dichloroethane	ND		0.50	ug/L			07/31/14 14:06	1
1.1-Dichloroethene	ND		0.50	ug/L			07/31/14 14:06	1
cia-1,2-Dichloroethene	ND		0.50	ug/L			07/31/14 14:06	1
trans-1.2-Dichloroethene	ND		0.50	ug/L		157	07/31/14 14:06	1
1.2-Dichloropropane	ND		0.50	ua/L			07/31/14 14:06	1
cis-1 3-Dichloropropene	ND		0.50	ug/L			07/31/14 14:06	1
trans_1.3-Dichloropropene	ND		0.50	ug/L			07/31/14 14:06	1
Ethylkenzene	ND		0.50	ug/L			07/31/14 14:06	1
Hevenhorobutadiana	ND		1.0	ug/L			07/31/14 14:06	1
2.Hevenene	ND		50	ug/L			07/31/14 14:06	1
leostopy/benzene	ND		0.50	ug/L			07/31/14 14:06	1
	ND		1.0	ug/L			07/31/14 14:06	1
Activities Chloride	ND		5.0	ug/L			07/31/14 14:06	1
A Mathul 2 centenane (MIRK)	ND		50	ug/l			07/31/14 14:06	1
4=Wethyl=z-pentanone (WIBR)	ND		1.0	ug/L			07/31/14 14:06	1
Naphinalene			1.0	ug/L			07/31/14 14:06	1
N-Propyipenzene	ND		0.50	ug/L			07/31/14 14:08	1
Styrene	ND		0.50	ug/L			07/31/14 14:06	1
	ND		0.50	ug/L			07/31/14 14:06	1
	ND		0.50	ug/L			07/31/14 14:06	1
Teluene	ND		0.50				07/31/14 14:06	1
I oluene	ND		1.0	ug/L			07/31/14 14:06	1
	ND		1.0	ug/L			07/31/14 14:06	1
	ND		0.50	ug/L			07/31/14 14:06	1
	ND		0.50	ug/L			07/31/14 14:06	1
1,1,2-I richloroethane	ND		0.50	ug/L			07/31/14 14:08	1
	ND		0.50	ug/L			07/31/14 14:06	1
	ND		0.60	ug/L			07/34/14 14:08	1
1,2,3= I richloropropane	ND		0.50	ug/L			07/34/14 14:08	1
1,1,2-Inchloro-1,2,2-trifluoroethane	ND		0.50	ug/c			07/34/14 14:06	1
	ND		0.50	ug/L			07/31/14 14:06	1
1,9,9= i rimetnyipenzene	ND		10.00	ug/h			08/01/14 15:46	1
	ND		10	ug/L			07/31/44 44:00	4
	ND		0.50	ug/L			07/31/14 14:00	4
Aylenes, iotal	ND		1.0	ug/L			07/31/14 14:00	4
2,2-Dichloropropane	ND		0.50	ug/L			07/01/14 14:00	1
Gasoline Range Organics (GRO) =C5-C12	ND		50	ug/L			07/31/14 14:06	1

#### TestAmerica Job ID: 720-58973-1

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

1 Bur sell ambessages (04 89 466	07/31/14 14:06 1
4=Bromonuoropenzene 101 67 = 130	01101111100
4-Bramofluorobenzene 101 67 - 130	08/01/14 15:45 1
1.2-Dichloroethane-d4 (Surr) 104 72 - 130	07/31/14 14:08 1
1.2-Dichloroethane-d4 (Surr) 109 72 = 130	08/01/14 15:45 1
Toluene-d8 (Surr) 100 70 - 130	07/31/14 14:06 1
Toluene-dB (Surr) 101 70 - 130	08/01/14 15:45 1
Client Sample ID: MP-04-3	Lab Sample ID: 720-58973-3
Date Collected: 07/30/14 08:05	Matrix: Water
Date Received: 07/30/14 15:55	
Analyte Result Qualifier RL MDL Unit	D Prepared Analyzed Dil Fac
Methyl tert-butyl ether ND 0.50 ug/L	07/31/14 14:35 1
Acetone ND 50 ug/L	07/31/14 14:35 1
Benzene ND 0.50 ug/L	07/31/14 14:35 1
Dichlorobromomethane ND 0.50 ug/L	07/31/14 14:35 1
Bromobenzene ND 1.0 ug/L	07/31/14 14:35 1
Chlorobromomethane ND 1.0 ug/L	07/31/14 14:35 1
Bromoform ND 1.0 ug/L	07/31/14 14:35 1
Bromomethane ND 1.0 ug/L	07/31/14 14:35 1
2=Butanone (MEK) ND 50 ug/L	07/31/14 14:35 1
n=Butylbenzene ND 1.0 ug/L	07/31/14 14:35 1
sec-Butylbenzene ND 1.0 ug/L	07/31/14 14:35 1
tert-Butylbenzene ND 1.0 ug/L	07/31/14 14:35 1
Carbon disulfide ND 5.0 ug/L	07/31/14 14:35 1
Carbon tetrachloride ND 0.50 ug/L	07/31/14 14:35 1
Chlorobenzene ND 0.50 ug/L	07/31/14 14:35 1
Chloroethane ND 1.0 ug/L	07/31/14 14:35 1
Chloroform ND 1.0 ug/L	07/31/14 14:35 1
Chloromethane ND 1.0 ug/L	07/31/14 14:35 1
2-Chlorotoluene ND 0.50 ug/L	07/31/14 14:35 1
4-Chlorotoluene ND 0.50 ug/L	07/31/14 14:35 1
Chloradibromomethane ND 0.50 ug/L	07/31/14 14:35 1
1.2-Dichlorobenzene ND 0.50 ug/L	07/31/14 14:35 1
1.3=Dichlarobenzene ND 0.50 ug/L	07/31/14 14:35 1
1.4=Dichlarobenzene ND 0.50 ug/L	07/31/14 14:35 1
1.3=Dichloropropane ND 1.0 ug/L	07/31/14 14:35 1
1.1=Dichlaropropene ND 0.50 ug/L	07/31/14 14:35 1
1.2-Dibromo-3-Chloropropane ND 1.0 ug/L	07/31/14 14:35 1
Ethylene Dibromide ND 0.50 ug/L	07/31/14 14:35 1
Dibromomethane ND 0.50 ug/L	07/31/14 14:36 1
Dichloradifluoromethane ND 0.50 ug/L	07/31/14 14:35 1
1.1=Dichloraethane ND 0.50 ug/L	07/31/14 14:35 1
1.2=Dichloroethane ND 0.50 ug/L	07/31/14 14:35 1
1.1=Dichlaroethene ND 0.50 ug/L	07/31/14 14:35 1
ais=1.2=Dichlaraethene ND 0.50 ua/L	07/31/14 14:35 1
trans-1,2=Dicklaraethene ND 0.50 ua/L	07/31/14 14:35 1
1.2=Dichloropropage ND 0.50 uo/L	07/31/14 14:35 1
ais=1.3=Dichloropropene ND 0.50 uo/L	07/31/14 14:35 1
trans_1_3_Dichloropropens ND 0.50 uo/L	07/31/14 14:35 1
Ethulkansana ND 0.60 ua/l	07/31/14 14:35 1
Hevenhlandene ND 1.0 un/	07/31/14 14:35 1
ладанноговааанста инэ инэ инэ 9-Немалаааста ND £ñ не//	07/31/14 14:35 1

TestAmerica Job ID: 720-58973-1

6

#### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-3							Lab	Sample ID: 720- Matrix	58973-3 c: Water
Date Conected: 07/30/14 00:05								inder 12	. mator
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		0.50		ug/L			07/31/14 14:35	1
4-Isopropyltoluene	ND		1.0		ug/L			07/31/14 14:35	1
Methylene Chloride	ND		5.0		ug/L			07/31/14 14:35	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			07/31/14 14:35	1
Naphthalene	ND		1.0		ug/L			07/31/14 14:35	1
N-Propylbenzene	ND		1.0		ug/L			07/31/14 14:35	1
Styrene	ND		0,50		ug/L			07/31/14 14:35	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			07/31/14 14:35	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			07/31/14 14:35	1
Tetrachloroethene	ND		0.50		ug/L			07/31/14 14:35	1
Toluene	ND		0.50		ug/L			07/31/14 14:35	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			07/31/14 14:35	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			07/31/14 14:35	1
1,1,1-Trichloroethane	ND		0.50		ug/L			07/31/14 14:35	1
1,1,2-Trichloroethane	ND		0.50		ug/L			07/31/14 14:35	1
Trichloroethene	ND		0.50		ug/L			07/31/14 14:35	1
Trichlorofluoromethane	ND		1.0		ug/L			07/31/14 14:35	1
1,2,3-Trichloropropane	ND		0.50		ug/L			07/31/14 14:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			07/31/14 14:35	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			07/31/14 14:35	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			07/31/14 14:35	1
Vinyl acetate	ND		10		ug/L			08/01/14 16:14	1
Vinyl chloride	ND		0.50		ug/L			07/31/14 14:35	1
Xylenes, Total	ND		1.0		ug/L			07/31/14 14:35	1
2,2-Dichioropropane	ND		0.50		ug/L			07/31/14 14:35	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			07/31/14 14:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		67 - 130					07/31/14 14:35	1
4-Bromofluorobenzene	100		67 - 130					08/01/14 16:14	1
1,2-Dichloroethane-d4 (Surr)	105		72 - 130					07/31/14 14:35	1

1,2-Dichloroethane-d4 (Surr)	
Toluene-d8 (Surr)	
Toluene-d8 (Surr)	

#### Client Sample ID: TB073014-1

#### Date Collected: 07/30/14 07:30 Date Received: 07/30/14 15:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			07/31/14 11:14	1
Acetone	ND		50		ug/L			07/31/14 11:14	1
Benzene	ND		0.50		ug/L			07/31/14 11:14	1
Dichlorobromomethane	ND		0.50		ug/L			07/31/14 11:14	1
Bromobenzene	ND		1.0		ug/L			07/31/14 11:14	1
Chlorobromomethane	ND		1.0		ug/L			07/31/14 11:14	1
Bromoform	ND		1.0		ug/L			07/31/14 11:14	1
Bromomethane	ND		1.0		ug/L			07/31/14 11:14	1
2-Butanone (MEK)	ND		50		ug/L			07/31/14 11:14	1
n-Butylbenzene	ND		1.0		ug/L			07/31/14 11:14	1

72 - 130

70 - 130

70 - 130

109

102

100

**TestAmerica** Pleasanton

08/01/14 16:14

07/31/14 14:35

08/01/14 16:14

Lab Sample ID: 720-58973-4

Matrix: Water

1

1

TestAmerica Job ID: 720-58973-1

6

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB073014-1					Lab Sample ID: 720-58973-4			
Date Collected: 07/30/14 07:30						Matrix	x: Water	
Date Received: 07/30/14 15:55		-						
Analyte	Result	Qualifier	RL	MDL Unit	 Prepared	Analyzed	Dil Fac	
sec-Butylbenzene	NU		1.0	ug/L		07/31/14 11:14	1	
tert-Butylbenzene	ND		1.0	ug/L		07/31/14 11:14		
Carbon disulfide	ND		5.0	ug/L		07/31/14 11:14	1	
Carbon tetrachloride	ND		0.50	ug/L		07/31/14 13:14	1	
Chlorobenzene	ND		0.50	ug/L		07/31/14 11:14	1	
Chloroethane	ND		1.0	ug/L		07/31/14 11:14		
Chlerotorm	ND		1.0	ug/L		07/31/14 11:14	1	
Chloromethane	UN ND		1.0	ug/L		07/31/14 11:14		
2-Chlorotoluene	ND		0.50	ug/L		07/31/14 11:14	1	
4-Chlorotoluene	ND		0.50	ug/L		07/31/14 11:14	1	
Chlorodibromomethane	ND		0.50	ug/L		07/31/14 11:14	1	
1,2-Dichlorobenzene	ND		0.50	ug/L		07/31/14 11:14	1	
1,3-Dichlorobenzene	ND		0.50	ug/L		07/31/14 11:14	1	
1,4-Dichlorobenzene	ND		0.50	ug/L		07/31/14 11:14	1	
1,3-Dichloropropane	ND		1.0	ug/L		07/31/14 11:14	1	
1,1-Dichloropropene	ND		0.50	ug/L		07/31/14 11:14	1	
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		07/31/14 11:14	1	
Ethylene Dibromide	ND		0.50	ug/L		07/31/14 11:14	1	
Dibromomethane	ND		0.50	ug/L		07/31/14 11:14	1	
Dichlorodifluoromethane	ND		0.50	ug/L		07/31/14 11:14	1	
1,1-Dichloroethane	ND		0.50	ug/L		07/31/14 11:14	1	
1,2-Dichloroethane	ND		0.50	ug/L		07/31/14 11:14	1	
1,1-Dichloroethene	ND		0.50	ug/L		07/31/14 11:14	1	
cis=1,2=Dichloroethene	ND		0.50	ug/L		07/31/14 11:14	1	
trans-1,2-Dichloroethene	ND		0.50	ug/L		07/31/14 11:14	1	
1,2-Dichloropropane	ND		0.50	ug/L		07/31/14 11:14	1	
cis=1,3-Dichloropropene	ND		0.50	ug/L		07/31/14 11:14	1	
trans=1,3-Dichloropropene	ND		0.50	ug/L		07/31/14 11:14	1	
Ethylbenzene	ND		0.50	ug/L		07/31/14 11:14	1	
Hexachlorobutadiene	ND		1.0	ug/L		07/31/14 11:14	1	
2-Hexanone	ND		50	ug/L		07/31/14 11:14	1	
Isopropylbenzene	ND		0.50	ug/L		07/31/14 11:14	1	
4-Isopropyltoluene	ND		1.0	ug/L		07/31/14 11:14	1	
Methylene Chloride	ND		5.0	ug/L		07/31/14 11:14	1	
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		07/31/14 11:14	1	
Naphthalene	ND		1.0	ug/L		07/31/14 11:14	1	
N-Propylbenzene	ND		1.0	ug/L		07/31/14 11:14	1	
Styrene	ND		0.50	ug/L		07/31/14 11:14	1	
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L		07/31/14 11:14	1	
1.1.2.2-Tetrachloroethane	ND		0.50	ug/L		07/31/14 11:14	1	
Tetrachloroethene	ND		0.50	ug/L		07/31/14 11:14	1	
Toluene	ND		0.50	ug/L		07/31/14 11:14	1	
1.2.3-Trichlorobenzene	ND		1.0	ua/L		07/31/14 11:14	1	
1.2.4-Trichlorobenzene	ND		1.0	ua/L		07/31/14 11:14	1	
1.1.1=Trichloroethane	ND		0.50	ua/L		07/31/14 11:14	1	
1.1.2-Trichloroethane	ND		0.50	ua/L		07/31/14 11:14	1	
Triablarasthana	ND		0.50	ua/i		07/31/14 11:14	1	
Trichlorofluoromethane	ND		1.0	ua/L		07/31/14 11:14	1	
1 2 3-Trichloropropane	ND		0.50	ua/L		07/31/14 11:14	1	

TestAmerica Job ID: 720-58973-1

#### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB073014-1 Date Collected: 07/30/14 07:30								Lab	Sample ID: 720- Matrix	58973-4 : Water
Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L	1			07/31/14 11:14	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L				07/31/14 11:14	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L				07/31/14 11:14	1
Vinyl acetate	ND		10		ug/L				08/01/14 16:43	1
Vinyl chloride	ND		0.50		ug/L				07/31/14 11:14	1
Xylenes, Total	ND		1.0		ug/L				07/31/14 11:14	1
2,2-Dichloropropane	ND		0.50		ug/L				07/31/14 11:14	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L				07/31/14 11:14	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101	Los Partir a la companya de la compa	67 - 130		07/31/14 11:14	1
4-Bromofluorobenzene	99		67 - 130		08/01/14 16:43	1
1,2-Dichloroethane-d4 (Surr)	102		72 - 130		07/31/14 11:14	1
1,2-Dichloroethane-d4 (Surr)	107		72 - 130		08/01/14 16:43	1
Toluene-d8 (Surr)	100		70 - 130		07/31/14 11:14	1
Toluene-d8 (Surr)	100		70 - 130		08/01/14 16:43	1

RL

MDL Unit

#### Client Sample ID: TB073014-2 Date Collected: 07/30/14 07:25

#### Date Received: 07/30/14 15:55 Result Qualifier Analyte

Methyl tert-butyl ether	ND	0.50	ug/L	07/31/14 11:43	1
Acetone	ND	50	ug/L	07/31/14 11:43	1
Benzene	ND	0.50	ug/L	07/31/14 11:43	1
Dichlorobromomethane	ND	0.50	ug/L	07/31/14 11:43	1
Bromobenzene	ND	1.0	ug/L	07/31/14 11:43	1
Chlorobromomethane	ND	1.0	ug/L	07/31/14 11:43	1
Bromoform	ND	1.0	ug/L	07/31/14 11:43	1
Bromomethane	ND	1.0	ug/L	07/31/14 11:43	1
2-Butanone (MEK)	ND	50	ug/L	07/31/14 11:43	1
n-Butylbenzene	ND	1.0	ug/L	07/31/14 11:43	1
sec-Butylbenzene	ND	1.0	ug/L	07/31/14 11:43	1
tert-Butylbenzene	ND	1.0	ug/L	07/31/14 11:43	1
Carbon disulfide	ND	5.0	ug/L	07/31/14 11:43	1
Carbon tetrachloride	ND	0.50	ug/L	07/31/14 11:43	1
Chlorobenzene	ND	0.50	ug/L	07/31/14 11:43	1
Chloroethane	ND	1.0	ug/L	07/31/14 11:43	1
Chloroform	ND	1.0	ug/L	07/31/14 11:43	1
Chloromethane	ND	1.0	ug/L	07/31/14 11:43	1
2-Chlorotoluene	ND	0.50	ug/L	07/31/14 11:43	1
4-Chlorotoluene	ND	0.50	ug/L	07/31/14 11:43	1
Chlorodibromomethane	ND	0.50	ug/L	07/31/14 11:43	1
1,2-Dichlorobenzene	ND	0.50	ug/L	07/31/14 11:43	1
1,3-Dichlorobenzene	ND	0.50	ug/L	07/31/14 11:43	1
1,4-Dichlorobenzene	ND	0.50	ug/L	07/31/14 11:43	1
1,3-Dichloropropane	ND	1.0	ug/L	07/31/14 11:43	1
1,1-Dichloropropene	ND	0.50	ug/L	07/31/14 11:43	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L	07/31/14 11:43	1
Ethylene Dibromide	ND	0.50	ug/L	07/31/14 11:43	1

**TestAmerica** Pleasanton

#### Analyzed **Dil Fac**

Matrix: Water

Lab Sample ID: 720-58973-5

Prepared

D

TestAmerica Job ID: 720-58973-1

5 6

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB073014-2 Date Collected: 07/30/14 07:25 Date Received: 07/30/14 15:55	ple ID: TB073014-2 cted: 07/30/14 07:25 ved: 07/30/14 15:55						Lab Sample ID: 720-58973-5 Matrix: Water			
Analyte	Result	Qualifier	RL	MDL Un	it	D	Prepared	Analyzed	Dil Fac	
Dibromomethane	ND		0.50	ug/	Ľ			07/31/14 11:43	1	
Dichlorodifluoromethane	ND		0.50	ug/	Ľ			07/31/14 11:43	1	
1,1-Dichloroethane	ND		0.50	ug/	Ľ.			07/31/14 11:43	1	
1,2-Dichloroethane	ND		0.50	ug/	L			07/31/14 11:43	1	
1,1-Dichloroethene	ND		0.50	ug/	L			07/31/14 11:43	1	
cis-1,2-Dichloroethene	ND		0.50	ug/	Ľ			07/31/14 11:43	1	
trans-1,2-Dichloroethene	ND		0.50	ug/	L			07/31/14 11:43	1	
1,2-Dichloropropane	ND		0.50	ug/	L			07/31/14 11:43	1	
cis-1,3-Dichloropropene	ND		0.50	ug/	L			07/31/14 11:43	1	
trans-1,3-Dichloropropene	ND		0.50	ug/	L			07/31/14 11:43	1	
Ethylbenzene	ND		0.50	ug/	L			07/31/14 11:43	1	
Hexachlorobutadiene	ND		1.0	ug/	L			07/31/14 11:43	1	
2-Hexanone	ND		50	ug/	L			07/31/14 11:43	1	
isopropylbenzene	ND		0,50	ug/	L			07/31/14 11:43	1	
4-Isopropyltoluene	ND		1.0	ug/	L			07/31/14 11:43	1	
Methylene Chloride	ND		5.0	ug/	L			07/31/14 11:43	1	
4-Methyl-2-pentanone (MIBK)	ND		50	ug/	L			07/31/14 11:43	1	
Naphthalene	ND		1.0	ug/	L			07/31/14 11:43	1	
N-Propylbenzene	ND		1.0	ug/	L			07/31/14 11:43	1	
Styrene	ND		0.50	ug/	L			07/31/14 11:43	1	
1,1,1,2-Tetrachloroethane	ND		0.50	ug/	L			07/31/14 11:43	1	
1,1,2,2-Tetrachloroethane	ND		0.50	ug/	L			07/31/14 11:43	1	
Tetrachloroethene	ND		0.50	ug/	L			07/31/14 11:43	1	
Toluene	ND		0.50	ug/	L			07/31/14 11:43	1	
1,2,3-Trichlorobenzene	ND		1.0	ug/	Ľ			07/31/14 11:43	1	
1.2.4-Trichlorobenzene	ND		1.0	ug/	L			07/31/14 11:43	1	
1,1,1-Trichloroethane	ND		0.50	ug/	L			07/31/14 11:43	1	
1,1,2-Trichloroethane	ND		0.50	ug/	L			07/31/14 11:43	1	
Trichloroethene	ND		0.50	ug/	L			07/31/14 11:43	1	
Trichlorofluoromethane	ND		1.0	ug/	L			07/31/14 11:43	1	
1.2.3-Trichloropropane	ND		0.50	ug/	Ľ			07/31/14 11:43	1	
1.1.2-Trichloro-1.2.2-trifluoroethane	ND		0.50	ug/	L			07/31/14 11:43	1	
1.2.4-Trimethylbenzene	ND		0.50	ug/	L			07/31/14 11:43	1	
1.3.5-Trimethylbenzene	ND		0.50	ug/	L			07/31/14 11:43	1	
Vinvl acetate	ND		10 🛸	ug/	L			08/01/14 17:12	1	
Vinyl chloride	ND		0.50	ug/	L			07/31/14 11:43	1	
Xvienes, Total	ND		1.0	ug/	L			07/31/14 11:43	1	
2,2-Dichloropropane	ND		0.50	ug/	L			07/31/14 11:43	1	
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/	L			07/31/14 11:43	1	
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fac	

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		72 - 130
1,2-Dichloroethane-d4 (Surr)	106		72 - 130
Toluene-d8 (Surr)	101		70 - 130
Toluene-d8 (Surr)	100		70 - 130

Analyzed	Dil Fac
 07/31/14 11:43	1
08/01/14 17:12	1
07/31/14 11:43	1
08/01/14 17:12	1
07/31/14 11:43	1
08/01/14 17:12	1

Styrene

#### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-164110/4 Matrix: Water							Client S	ample ID: Metho Prep Type: T	d Blank otal/NA
Analysis Batch: 164110									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			07/31/14 08:51	1
Acetone	ND		50		ug/L			07/31/14 08:51	1
Benzene	ND		0.50		ug/L			07/31/14 08:51	1
Dichlorobromomethane	ND		0.50		ug/L			07/31/14 08:51	1
Bromobenzene	ND		1.0		ug/L			07/31/14 08:51	1
Chlorobromomethane	ND		1.0		ug/L			07/31/14 08:51	1
Bromoform	ND		1.0		ug/L			07/31/14 08:51	1
Bromomethane	ND		1.0		ug/L			07/31/14 08:51	1
2-Butanone (MEK)	ND		50		ug/L			07/31/14 08:51	1
n-Butylbenzene	ND		1.0		ug/L			07/31/14 08:51	1
sec-Butylbenzene	ND		1.0		ug/L			07/31/14 08:51	1
tert-Butylbenzene	ND		1.0		ug/L			07/31/14 08:51	1
Carbon disulfide	ND		5.0		ug/L			07/31/14 08:51	1
Carbon tetrachloride	ND		0.50		ug/L			07/31/14 08:51	1
Chlorobenzene	ND		0.50		ug/L			07/31/14 08:51	1
Chloroethane	ND		1.0		ug/L			07/31/14 08:51	1
Chloroform	ND		1.0		ug/L			07/31/14 08:51	1
Chloromethane	ND		1.0		ug/L			07/31/14 08:51	1
2-Chlorotoluene	ND		0.50		ug/L			07/31/14 08:51	1
4-Chlorotoluene	ND		0:50		ug/L			07/31/14 08:51	1
Chlorodibromomethane	ND		0.50		ug/L			07/31/14 08:51	1
1.2-Dichlorobenzene	ND		0.50		ug/L			07/31/14 08:51	1
1,3-Dichlorobenzene	ND		0.50		ug/L			07/31/14 08:51	1
1.4-Dichlorobenzene	ND		0.50		ug/L			07/31/14 08:51	1
1.3-Dichloropropane	ND		1.0		ug/L			07/31/14 08:51	1
1.1-Dichloropropene	ND		0.50		ug/L			07/31/14 08:51	1
1.2-Dibromo-3-Chloropropane	ND		1.0		ug/L			07/31/14 08:51	1
Ethylene Dibromide	ND		0.50		ug/L			07/31/14 08:51	1
Dibromomethane	ND		0.50		ug/L			07/31/14 08:51	1
Dichlorodifluoromethane	ND		0.50		ug/L			07/31/14 08:51	1
1.1-Dichloroethane	ND		0.50		ug/L			07/31/14 08:51	1
1.2-Dichloroethane	ND		0.50		ug/L			07/31/14 08:51	1
1.1-Dichloroethene	ND		0.50		ug/L			07/31/14 08:51	1
cis-1.2-Dichloroethene	ND		0.50		ug/L			07/31/14 08:51	1
trans-1.2-Dichloroethene	ND		0.50		ug/L			07/31/14 08:51	1
1.2-Dichloropropane	ND		0.50		ua/L			07/31/14 08:51	1
cis-1 3-Dichloropropene	ND		0.50		uo/L			07/31/14 08:51	1
trans-1 3-Dichloropropene	ND		0.50		ua/L			07/31/14 08:51	1
Ethylbenzene	ND		0.50		ug/L			07/31/14 08:51	1
Hexachlorobutadiene	ND		1.0		ua/L			07/31/14 08:51	1
2-Hexanone	ND		50		ua/L			07/31/14 08:51	1
Isopropylbenzene	ND		0.50		ua/L			07/31/14 08:51	1
4-Isopropyltoluene	ND		1.0		ug/L			07/31/14 08:51	1
Methylene Chloride	ND		5.0		ua/L			07/31/14 08:51	1
4-Methyl-2-pentanone (MIRK)	ND		50		ua/L			07/31/14 08:51	1
Nanhthalene			10		ua/L			07/31/14 08:51	1
N-Pronvlbenzene	ND		1.0		ug/L			07/31/14 08:51	1
Styrene	ND		0.50		ug/L			07/31/14 08:51	1

8

#### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-164110/4	ab Sample ID: MB 720-164110/4							Client Sample ID: Method Blank				
Matrix: Water									Prep Type: 1	Total/NA		
Analysis Batch: 164110												
	MB	MB										
Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,1,1,2-Tetrachloroethane	ND			0.50		ug/L			07/31/14 08:51	1		
1,1,2,2-Tetrachloroethane	ND			0.50		ug/L			07/31/14 08:51	1		
Tetrachloroethene	ND			0.50		ug/L			07/31/14 08:51	1		
Toluene	ND			0.50		ug/L			07/31/14 08:51	1		
1,2,3-Trichlorobenzene	ND			1.0		ug/L			07/31/14 08:51	1		
1,2,4-Trichlorobenzene	ND			1.0		ug/L			07/31/14 08:51	1		
1,1,1-Trichloroethane	ND			0.50		ug/L			07/31/14 08:51	1		
1,1,2-Trichloroethane	ND			0.50		ug/L			07/31/14 08:51	1		
Trichloroethene	ND			0.50		ug/L			07/31/14 08:51	1		
Trichlorofluoromethane	ND			1.0		ug/L			07/31/14 08:51	1		
1,2,3-Trichloropropane	ND			0.50		ug/L			07/31/14 08:51	1		
1,1,2-Trichloro-1,2,2-trifluoroethane	ND			0.50		ug/L			07/31/14 08:51	1		
1,2,4-Trimethylbenzene	ND			0.50		ug/L			07/31/14 08:51	1		
1,3,5-Trimethylbenzene	ND			0.50		ug/L			07/31/14 08:51	1		
Vinyl chloride	ND			0.50		ug/L			07/31/14 08:51	1		
Xylenes, Total	ND			1.0		ug/L			07/31/14 08:51	1		
2,2-Dichloropropane	ND			0.50		ug/L			07/31/14 08:51	1		
Gasoline Range Organics (GRO)	ND			50		ug/L			07/31/14 08:51	1		
-C5-C12												

	INB	WB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130		07/31/14 08:51	1
1,2-Dichloroethane-d4 (Surr)	100		72 - 130		07/31/14 08:51	1
Toluene-d8 (Surr)	100		70 - 130		07/31/14 08:51	1

#### Lab Sample ID: LCS 720-164110/5 Matrix: Water

-		-		
Ana	vsis	Batch:	164110	

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
Methyl tert-butyl ether	25.0	24.8		ug/L	99	62 - 130
Acetone	125	122		ug/L	98	26 - 180
Benzene	25.0	25.7		ug/L	103	79 - 130
Dichlorobromomethane	25.0	24.8		ug/L	99	70 - 130
Bromobenzene	25.0	24.6		ug/L	98	70 - 130
Chlorobromomethane	25.0	24.4		ug/L	98	70 - 130
Bromoform	25.0	25.7		ug/L	103	68 - 136
Bromomethane	25.0	21.8		ug/L	87	43 - 151
2-Butanone (MEK)	125	123		ug/L	99	54 - 130
n-Butylbenzene	25.0	28.2		ug/L	113	70 - 142
sec-Butylbenzene	25.0	27.4		ug/L	110	70 - 134
tert-Butylbenzene	25.0	26.7		ug/L	107	70 - 135
Carbon disulfide	25.0	25.8		ug/L	103	58 - 130
Carbon tetrachloride	25.0	25.0		ug/L	100	70 - 146
Chlorobenzene	25.0	25.2		ug/L	101	70 - 130
Chloroethane	25.0	21.9		ug/L	88	62 - 138
Chloroform	25.0	24.8		ug/L	99	70 - 130
Chloromethane	25.0	22.3		ug/L	89	52 - 175

**TestAmerica** Pleasanton

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

#### Lab Sample ID: LCS 720-164110/5 Matrix: Water Analysis Batch: 164110

Analysis batom routin	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
2-Chlorotoluene	25.0	27.1	ug/L	109	70 - 130
4-Chlorotoluene	25.0	27.2	ug/L	109	70 - 130
Chlorodibromomethane	25.0	25.0	ug/L	100	70 - 145
1,2-Dichlorobenzene	25.0	24.8	ug/L	99	70 - 130
1,3-Dichlorobenzene	25.0	25.3	ug/L	101	70 - 130
1,4-Dichlorobenzene	25.0	25.2	ug/L	101	70 - 130
1,3-Dichloropropane	25.0	25.3	ug/L	101	70 - 130
1,1-Dichloropropene	25.0	27.7	ug/L	111	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	27.0	ug/L	108	70 - 136
Ethylene Dibromide	25.0	25.4	ug/L	102	70 - 130
Dibromomethane	25.0	24.9	ug/L	100	70 - 130
Dichlorodifluoromethane	25.0	21.0	ug/L	84	34 - 132
1,1-Dichloroethane	25.0	25.9	ug/L	104	70 - 130
1,2-Dichloroethane	25.0	24.6	ug/L	98	61 - 132
1,1-Dichloroethene	25.0	22.1	ug/L	88	64 - 128
cis-1,2-Dichloroethene	25.0	25.9	ug/L	104	70 - 130
trans-1,2-Dichloroethene	25.0	24.7	ug/L	99	68 - 130
1,2-Dichloropropane	25.0	26.1	ug/L	104	70 - 130
cis-1,3-Dichloropropene	25.0	26.8	ug/L	107	70 - 130
trans-1,3-Dichloropropene	25.0	28.9	ug/L	116	70 - 140
Ethylbenzene	25.0	26.1	ug/L	104	80 - 120
Hexachlorobutadiene	25.0	25.1	ug/L	100	70 - 130
2-Hexanone	125	135	ug/L	108	60 - 164
Isopropylbenzene	25.0	26.4	ug/L	105	70 - 130
4-Isopropyltoluene	25.0	26.5	ug/L	106	70 - 130
Methylene Chloride	25.0	24.2	ug/L	97	70 - 147
4-Methyl-2-pentanone (MIBK)	125	138	ug/L	110	58 - 130
Naphthalene	25.0	27.4	ug/L	110	70 - 130
N-Propylbenzene	25.0	28.0	ug/L	112	70 - 130
Styrene	25.0	26.1	ug/L	104	70 - 130
1,1,1,2-Tetrachloroethane	25.0	24.4	ug/L	97	70 - 130
1,1,2,2-Tetrachloroethane	25.0	27.4	ug/L	110	70 - 130
Tetrachloroethene	25.0	24.2	ug/L	97	70 - 130
Toluene	25.0	25.7	ug/L	103	78 - 120
1,2,3-Trichlorobenzene	25.0	24.6	ug/L	99	70 - 130
1,2,4-Trichlorobenzene	25.0	25.4	ug/L	102	70 - 130
1,1,1-Trichloroethane	25.0	26.4	ug/L	105	70 - 130
1,1,2-Trichloroethane	25.0	25.5	ug/L	102	70 - 130
Trichloroethene	25.0	24.3	ug/L	97	70 - 130
Trichlorofluoromethane	25.0	26.1	ug/L	104	66 - 132
1,2,3-Trichloropropane	25.0	26.7	ug/L	107	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.9	ug/L	91	42 - 162
ne 1.2.4 Trimethylhonzone	05.0	07.0		100	70 132
	25.0	27.0	ug/L	108	70 - 132
	25.0	21.5	ug/L	110	54 135
vinyi chloride	25.0	21.4	ug/L	40	04 - 100 70 140
m-xyiene & p-xyiene	25.0	20.4	ug/L	106	10 - 142 70 - 120
o-Xyiene	25.0	26.6	ug/L	106	70 - 130

#### TestAmerica Job ID: 720-58973-1

#### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

101

Lab Sample ID: LCS 720-164 Matrix: Water Analysis Batch: 164110	110/5	-					Clien	t Sample	e ID: Lab Control Sample Prep Type: Total/NA
,, <b>, .</b>			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
2,2-Dichloropropane			25.0	29.8	100.2 0	ug/L		119	70 - 140
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene	104		67 - 130						
1,2-Dichloroethane-d4 (Surr)	95		72 - 130						
Toluene-d8 (Surr)	101		70 - 130						
Lab Sample ID: LCS 720-164	110/7						Clien	t Sample	e ID: Lab Control Sample
Matrix: Water									Prep Type: Total/NA
Analysis Batch: 164110									
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)			500	556		ug/L		111	62 - 120
-C5-C12									
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene	104	A 144 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	67 - 130						
1 2-Dichloroethane-d4 (Surr)	100		72 - 130						

70 - 130

## Lab Sample ID: LCSD 720-164110/6 Matrix: Water

#### Analysis Batch: 164110

Toluene-d8 (Surr)

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	23.3		ug/L		93	62 - 130	6	20
Acetone	125	110		ug/L		88	26 - 180	10	30
Benzene	25.0	25.6		ug/L		102	79 - 130	0	20
Dichlorobromomethane	25.0	24.4		ug/L		98	70 - 130	2	20
Bromobenzene	25.0	24.3		ug/L		97	70 - 130	1	20
Chlorobromomethane	25.0	23.8		ug/L		95	70 - 130	3	20
Bromoform	25.0	24.1		ug/L		97	68 - 136	6	20
Bromomethane	25.0	21.2		ug/L		85	43 - 151	3	20
2-Butanone (MEK)	125	111		ug/L		89	54 - 130	10	20
n-Butylbenzene	25.0	28.6		ug/L		114	70 - 142	1	20
sec-Butylbenzene	25.0	27.4		ug/L		109	70 - 134	0	20
tert-Butylbenzene	25.0	26.4		ug/L		106	70 - 135	1	20
Carbon disulfide	25.0	25.8		ug/L		103	58 - 130	0	20
Carbon tetrachloride	25.0	24.9		ug/L		99	70 - 146	0	20
Chlorobenzene	25.0	25.0		ug/L		100	70 - 130	1	20
Chloroethane	25.0	21.5		ug/L		86	62 - 138	2	20
Chloroform	25.0	24.7		ug/L		99	70 - 130	0	20
Chloromethane	25.0	22.1		ug/L		88	52 - 175	1	20
2-Chlorotoluene	25.0	27.3		ug/L		109	70 - 130	1	20
4-Chlorotoluene	25.0	27.4		ug/L		110	70 - 130	1	20
Chlorodibromomethane	25.0	24.0		ug/L		96	70 - 145	4	20
1,2-Dichlorobenzene	25.0	24.6		ug/L		98	70 - 130	1	20
1,3-Dichlorobenzene	25.0	25.3		ug/L		101	70 - 130	0	20

**TestAmerica** Pleasanton

# Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-164	4110/6					Clie	ent San	nple ID:	Lab Contro	Sampl	e Dup
Matrix: Water									Prep I	ype: 10	al/NA
Analysis Batch: 164110				1.000	1000				Ø/ Dec		PPD
			Spike	LUSD	LUSD		-	0/ D	%Rec.	000	Limit
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene			25.0	25.1		ug/L		100	70 - 130	0	20
1,3-Dichloropropane			25.0	24.6		ug/L		98	70 - 130	3	20
1,1-Dichloropropene			25.0	27.5		ug/L		110	70 _ 130	1	20
1,2-Dibromo-3-Chloropropane			25.0	24.3		ug/L		97	70 - 136	10	20
Ethylene Dibromide			25.0	24.2		ug/L		97	70 - 130	5	20
Dibromomethane			25.0	23.9		ug/L		96	70 - 130	4	20
Dichlorodifluoromethane			25.0	20.7		ug/L		83	34 - 132	1	20
1,1-Dichloroethane			25.0	25.9		ug/L		104	70 - 130	0	20
1,2-Dichloroethane			25.0	24.0		ug/L		96	61 - 132	2	20
1,1-Dichloroethene			25.0	21.9		ug/L		88	64 - 128	1	20
cis-1,2-Dichloroethene			25.0	25.5		ug/L		102	70 - 130	1	20
trans-1,2-Dichloroethene			25.0	24.8		ug/L		99	68 - 130	1	20
1,2-Dichloropropane			25.0	25.7		ug/L		103	70 - 130	1	20
cis-1,3-Dichloropropene			25.0	26.4		ug/L		105	70 - 130	2	20
trans-1.3-Dichloropropene			25.0	28.2		ug/L		113	70 - 140	3	20
Ethylbenzene			25.0	26.1		ug/L		105	80 - 120	0	20
Hexachlorobutadiene			25.0	25.9		ug/L		104	70 - 130	3	20
2-Hexanone			125	115		ug/L		92	60 - 164	16	20
Isopropylbenzene			25.0	26.4		ug/L		106	70 - 130	0	20
			25.0	26.6		ua/L		106	70 - 130	0	20
4-isopropyiloidene			25.0	23.9		ug/L		96	70 - 147	1	20
			125	110		ug/L		95	58 130	15	20
4-Methyl-2-pentanone (MIBK)			25.0	26.3		ug/L		105	70 130	4	20
Naphthalene			25.0	20.0		ug/L		112	70 130	0	20
N-Propylbenzene			25.0	20.0		ug/L		105	70 130	0	20
Styrene			25.0	20.2		uy/L		105	70 - 130	2	20
1,1,1,2-Tetrachloroethane			25.0	24.0		ug/L		90	70 - 130	2	20
1,1,2,2-Tetrachloroethane			25.0	25.3		ug/L		101	70 - 130	0	20
Tetrachloroethene			25.0	24.1		ug/L		96	70 - 130	1	20
Toluene			25.0	25.9		ug/L		104	78 - 120	1	20
1,2,3-Trichlorobenzene			25.0	24.3		ug/L		97	70 - 130	1	20
1,2,4-Trichlorobenzene			25.0	26.0		ug/L		104	70 - 130	2	20
1,1,1-Trichloroethane			25.0	26.5		ug/L		106	70 - 130	0	20
1,1,2-Trichloroethane			25.0	24.4		ug/L		98	70 - 130	5	20
Trichloroethene			25.0	24.2		ug/L		97	70 - 130	0	20
Trichlorofluoromethane			25.0	25.8		ug/L		103	66 - 132	- 1	20
1,2,3-Trichloropropane			25.0	24.4		ug/L		98	70 - 130	9	20
1,1,2-Trichloro-1,2,2-trifluoroetha			25.0	22.3		ug/L		89	42 - 162	2	20
1,2,4-Trimethylbenzene			25.0	26.8		ug/L		107	70 - 132	0	20
1,3,5-Trimethylbenzene			25.0	27.5		ug/L		110	70 - 130	0	20
Vinyl chloride			25.0	21.1		ug/L		84	54 _ 135	2	20
m-Xylene & p-Xylene			25.0	26.4		ug/L		106	70 - 142	0	20
o-Xylene			25.0	26.4		ug/L		106	70 - 130	1	20
2.2-Dichloropropane			25.0	30.6		ug/L		122	70 - 140	3	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	104		67 - 130								
1,2-Dichloroethane-d4 (Surr)	95		72 - 130								

#### TestAmerica Job ID: 720-58973-1

### Method: 8260B/CA LUFTMS - 8260B / CA LUFT MS (Continued)

Analysis Batch: 164110       LESD LCSD 720-164110/8 Matrix: Water       Client Sample D: LCSD 720-164110/8 Matrix: Water       Client Sample D: LCSD 720-164110/8 Matrix: Water       Added     Receiver 0     Value 0 <th colspa="&lt;/th"><th>Lab Sample ID: LCSD 720-16 Matrix: Water</th><th>64110/6</th><th></th><th></th><th></th><th></th><th>C</th><th>lient Sam</th><th>ple ID:</th><th>Lab Contro Prep T</th><th>ol Sampl</th><th>le Dup tal/NA</th></th>	<th>Lab Sample ID: LCSD 720-16 Matrix: Water</th> <th>64110/6</th> <th></th> <th></th> <th></th> <th></th> <th>C</th> <th>lient Sam</th> <th>ple ID:</th> <th>Lab Contro Prep T</th> <th>ol Sampl</th> <th>le Dup tal/NA</th>	Lab Sample ID: LCSD 720-16 Matrix: Water	64110/6					C	lient Sam	ple ID:	Lab Contro Prep T	ol Sampl	le Dup tal/NA
LCSD     LCSD     LCSD     LCSD     Latifier     Limits       Surogate     '%Recovery     Qualifier     Limits     Calination     Surogate	Analysis Batch: 164110									i iop i	Jperio		
Sampa is in the construct of the	, maryone Baterin Territe							1					
Surrogate     NRecovery     Countre J     Total Surrow       Lab Sample DD LCSD 720-164110/8 Matrix: Water     Client Sample DD: LCSD 720-164110/8 Matrix: Water     Client Sample DD: LCSD 720-164110/8 Matrix: Water     Client Sample DD: LCSD 720-164110/8 Matrix: Water     Spike     LCSD LCSD     KRec.     R R       Casoline Range Organics (GRO)     500     501     ugit.     112     62-120     1       Casoline Range Organics (GRO)     500     501     ugit.     112     62-120     1     1       Casoline Range Organics (GRO)     500     501     ugit.     112     62-120     1     1       Cloend Glamme     100     72-130     70-130     70-130     70-130     70-130       Lab Sample ID: 720-58974-A-3 MS     Sample     Sample     MS     MS     NS     NRec     Limits       Analysis Batch: 164110     Sample     Sample     Added     Result     Qualifier     Added     Result     Qualifier     NRec     Limits     Prep Type: TotalN       Analysis Batch: 164110     Sample ID: 720-58974-A-3 MS     Samodedis     Qualitis     NRec </th <th></th> <th>LCSD</th> <th>LCSD</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		LCSD	LCSD										
Standard Signing     Totol     7/2-130       Lab Sample D: LCS D7 20-164110/8 Matrix: Water Analysis Batch: 164110     Client Sample D: Lab Control Sample D: Prep Type: Total/N       Analysis Batch: 164110     Spike     LCSD     LCSD     LCSD     Vike:     RP       Calorine Range Organics (CRO)     500     501     ugl.     112     52.120     1       Co-C12     LCSD     LCSD     LCSD     501     ugl.     112     52.120     1     1       Addiedd (CRO)     500     571     ugl.     112     52.120     1     1       Jabchondininoe (Sam)     100     72.130     Totane-d8 (Sam)     70     70.130       Lab Sample ID: 720-58974.A-3 MS     Matrix: Spik     Matrix: Spik     Prep Type: Total/N       Analyte     Result     Added     Result     Qualifier     406     101     10     10     56.138       Analyte     Result     Added     Result     Qualifier     406     101     10     60.138     100     100     100     100     100     100 <t< th=""><th>Surrogate</th><th>%Recovery</th><th>Qualifier</th><th>Limits</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Surrogate	%Recovery	Qualifier	Limits									
Client Sample ID: LoSD 720-164110/8     Ref Colspan=10: LoSD 720-164110/8     Pre 7 total N       Analysis Batch: 164110     Splie     LOSD LOSD     Matrix: Water     Name of the span of	Toluene-d8 (Surr)	100		70 - 130									
Satist: Water Analysis Batch:: 164110     Spike (Bacine Regard Organics (GRO)     Name (Bacine Regard Organics (GRO)     Name (Crossec Crossec	Lab Sample ID: LCSD 720-16	64110/8					С	lient Sam	ple ID:	Lab Contro	ol Sampl	e Dup	
Anayte     Spike     LCSD     Spike     LUSD     Spike     Lunits     RPD     Lin       Gasoline Range Organics (GRO)     500     501     ug/L     112     62-120     1     1       CSD1     LCSD     LCSD     LCSD     LCSD     Second     112     62-120     1     1       Adomofunitomeznene     100     72-130     Second     Second <td< td=""><td>Matrix: Water</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Prep T</td><td>ype: To</td><td>tal/NA</td></td<>	Matrix: Water									Prep T	ype: To	tal/NA	
AnalytoAdded ResultQualifie ResultUnit ResultD%Rec V%Ref VLink LinkUnit VD%Ref VLink VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV <th< td=""><td>Analysis Batch: 164110</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Analysis Batch: 164110												
Analyo     Added     Result     Qualifier     Unit     D     %Rec     Limits     RPD     Lin       Gaschine Range Organics (GRO)     501     961     ug/L     112     62.120     1     2       -05-C12     LCSD     LCSD     Surgate     ug/L     62.120     1     2       -05-C12     LCSD     Qualifier     Lmits     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     <				Spike	LCSD	LCSD				%Rec.		RPD	
Gaodine Range Organics (GRO)     500     501     ug/L     112     82 - 120     1     :       -C5-C12     LCSD     LCSD     LCSD     LINRs	Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
LCSD SurrogateLCSD Version 1000SurrogateNetworkColspan=1000 Colspan=1000CSDSurrogateNetworkColspan=1000 Colspan=1000CSDColspan=1000 Colspan=1000CSDLab Sample ID: 720-58974-A-3 MS Matrix: WaterSampleSampleSampleSampleSampleSampleColspan=10000 Colspan=10000Colspan=100000 Colspan=100000Colspan=1000000000Colspan=1000000000000000000000000000000000000	Gasoline Range Organics (GRO) -C5-C12			500	561		ug/L		112	62 - 120	1	20	
Surrogate     Sine over 106     CP : 130       4-dividuandenzene (Surr)     100     CP : 130       12-bidhordehnezene 64 (Surr)     101     70 : 130       Lab Sample ID: 720-58974-A-3 MS Matrix: Water     Surrogate     Surrogate     Surrogate     Prep Type: Total/N Prep Type: Total/N       Analysis Batch: 16410     Sample     Sample     Spike     MS     MS     MS     V     Vice     Vice       Analyse     Resul     Califer     Add     Resul     Califer     MB     MS     MS     Vice		LCSD	LCSD										
4.Bromofluoroberizane   106   67 · 130     1,2.DichoredRisne-of (Surr)   100   72 · 130     Talkene-BG (Surr)   101   70 · 130     Lab Sample ID: 720-58974-A-3 MS   Structure   Structure     Analysis Elatch:   164110   Structure   Structure     Analysis Elatch:   164110   No   25.0   26.6   ug/L   106   60 · 138     Actaine   ND   25.0   26.6   ug/L   106   60 · 138     Actione   ND   25.0   26.5   ug/L   106   60 · 138     Benzene   ND   25.0   26.5   ug/L   106   60 · 140     Biomobenzene   ND   25.0   26.5   ug/L   108   60 · 140     Biomobenzene   ND   25.0   26.4   ug/L   108   60 · 140     Biomobenzene   ND   25.0   26.4   ug/L   108   60 · 140     Biomobenzene   ND   25.0   26.2   ug/L   108   60 · 140     Biomobenzene   ND   25.0   26.1   ug/L   108   <	Surrogate	%Recoverv	Qualifier	Limits									
1,2-Dichloroethane-04 (Surr)     100     72.130       Tolune-off (Surr)     101     70.130       Lab Sample (Surr)     Sample     MS     MS     Sample     Sample     Sample     Sample     Sample     MS     MS     Sample     Sample     Sample     Sample     MS     MS     Sample     Sample     Sample     Sample     MS     MS     Sample     Sample     Sample     MS     Sample	4-Bromofluorobenzene	106		67 - 130									
Totowne-d8 (Sum)   Tot   70-139     Lab Sample (D: 720-58974-A-3 MS Matrix: Water Analysis Batch: 164110   Sumble Sample   Subscience	1,2-Dichloroethane-d4 (Surr)	100		72 - 130									
Bab Sample ID: 720-58974.A-3 MS Matrix: Water Analysis Batch: 164110     Sample Sample Sample Spike     Matrix Spike Analysis Batch: 164110       Analysis Batch: 164110     Sample Sample Qualifier     Added     Result     Qualifier     Ms     MS     Vistor     Note     Limits       Analysis Batch: 164110     Sample Sample Qualifier     Added     Result     Qualifier     Unit     D     %Rec.     Limits       Analyse Method     ND     250     25.8     ug/L     108     60.140       Benzene     ND     25.0     25.8     ug/L     103     60.140       Dichlorobromomethane     ND     25.0     25.8     ug/L     103     60.140       Smonotenzene     ND     25.0     25.8     ug/L     103     60.140       Smonotentane     ND     25.0     25.8     ug/L     103     60.140       Semonotentane     ND     25.0     25.1     ug/L     104     60.140       Semonotentane     ND     25.0     24.7     ug/L     90     60.140 <	Toluene-d8 (Surr)	101		70 - 130									
Lab Sample ID: 720-58974-A-3 MS     Client Sample ID: Matrix Split       Matrix: Water     Sample     Sample     Sample     Sample     Sample     Sample ID: Matrix Split       Analysis Batch: 164110     Sample     Sample     Sample     Sample     Sample     Sample ID: Matrix Split       Analysis Batch: 164110     Result     Qualifier     Mit     D     %Rec.     Limits       Methyl tert-butyl etter     ND     25.0     26.6     ug/L     106     60 - 140       Benzene     ND     25.0     26.5     ug/L     103     60 - 140       Dicholorbornomethane     ND     25.0     25.8     ug/L     103     60 - 140       Bromobezene     ND     25.0     25.8     ug/L     103     60 - 140       Bromomethane     ND     25.0     25.8     ug/L     103     60 - 140       Bromotorm     ND     25.0     25.4     ug/L     103     60 - 140       Semotorm     ND     25.0     26.1     ug/L     101     60 - 140 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Matrix: Water     Prep Type: Total/N       Analysis Batch: 164110       Matrix: Water     ND     25.0     Definition of the text of	Lab Sample ID: 720-58974-A	-3 MS							Client	Sample ID	: Matrix	Spike	
Analysis Batch: 164110     Sample     Sample     Sample     Sample     Spike     MS     MS     VI     D     %Rec.       Analyte     Result     Qualifier     Added     Result     Qualifier     Unit     D     %Rec.     Limits       Methy Intributy ether     ND     25.0     26.6     ug/L     103     60.140       Benzene     ND     25.0     25.8     ug/L     103     60.140       Dichlorobromomethane     ND     25.0     26.5     ug/L     108     60.140       Bromobenzene     ND     25.0     26.5     ug/L     108     60.140       Bromotorm     ND     25.0     26.4     ug/L     108     60.140       Bromotorm     ND     25.0     26.1     ug/L     101     60.140       Bromotorm     ND     25.0     26.1     ug/L     104     60.140       Semotorm     ND     25.0     26.1     ug/L     104     60.140       Bromotorm     ND	Matrix: Water									Prep T	ype: To	tal/NA	
Sample     Sample     Spike     Ms     Table       Analyte     Result     Qualifier     Adde     Result     Qualifier     Unit     D     %Rec       Methyl tert-butyl ether     ND     125     107     ug/L     106     60.138       Acetone     ND     125     107     ug/L     103     60.140       Benzene     ND     25.0     26.5     ug/L     106     60.140       Dichtorbornomethane     ND     25.0     26.4     ug/L     103     60.140       Bromobenzene     ND     25.0     26.4     ug/L     102     56.140       Bromothane     ND     25.0     26.4     ug/L     101     60.140       Bromorethane     ND     25.0     26.1     ug/L     104     60.140       Semone (MEK)     ND     125     112     ug/L     104     60.140       Semone fusition     ND     25.0     26.1     ug/L     104     60.140       Semonerethane     ND <td>Analysis Batch: 164110</td> <td></td>	Analysis Batch: 164110												
Analyte     Result     Qualitier     Note     Version     Unit     D     Week     Limits       Methyl terti-butyl tetter     ND     25.0     26.6     ug/L     106     60.138       Acatone     ND     125     107     ug/L     103     60.140       Benzene     ND     25.0     26.5     ug/L     106     60.138       Bromobenzene     ND     25.0     26.5     ug/L     103     60.140       Chiorobromomethane     ND     25.0     25.8     ug/L     103     60.140       Bromobenzene     ND     25.0     25.4     ug/L     102     56.140       Bromomethane     ND     25.0     26.1     ug/L     104     60.140		Sample	Sample	Spike	MS	MS				%Rec.			
Methy leth-bury lether     ND     25.0     26.0     Up     100     60     138       Acetone     ND     125     107     up/L     86     60.140       Benzene     ND     25.0     26.5     up/L     108     60.140       Bromobenzene     ND     25.0     26.5     up/L     103     60.140       Bromobenzene     ND     25.0     26.4     up/L     102     56.140       Bromobenzene     ND     25.0     25.4     up/L     102     56.140       Bromobentane     ND     25.0     26.1     up/L     104     60.140       2-Butanone (MEK)     ND     25.0     26.1     up/L     104     60.140       sec-Butylbenzene     ND     25.0     26.1     up/L     97     60.140       Carbon tetrachloride     ND     25.0     24.7     up/L     97     60.140       Chlorobenzene     ND     25.0     24.7     up/L     97     60.140       Chlorobenzene <td>Analyte</td> <td>Result</td> <td>Qualifier</td> <td>Added</td> <td>Result</td> <td>Qualifier</td> <td>Unit</td> <td>D</td> <td>%Rec</td> <td>Limits</td> <td></td> <td></td>	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			
Acetone     ND     123     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107     107<	Methyl tert-butyl ether	ND		25.0	20.0		ug/L		106	60 - 138			
Benzene     ND     25.0     25.0     Ug/L     10.3     50.140       Bromobenzene     ND     25.0     26.5     Ug/L     106     60.140       Bromobenzene     ND     25.0     25.8     Ug/L     103     60.140       Chlorobromomethane     ND     25.0     25.8     Ug/L     103     60.140       Bromotonzene     ND     25.0     25.4     Ug/L     103     60.140       Bromotorm     ND     25.0     20.2     Ug/L     81     23.140       Sectence (MEK)     ND     125     112     Ug/L     104     60.140       -Butance (MEK)     ND     25.0     26.1     Ug/L     104     60.140       -Butylbenzene     ND     25.0     24.7     Ug/L     99     60.140       Carbon disulfide'     ND     25.0     24.1     Ug/L     97     38.140       Carbon tetrachloride     ND     25.0     25.0     Ug/L     100     60.140       Chlorobenzene	Acetone	ND		125	107		ug/L		100	60 - 140			
Dichlosofordingementen     ND     25.0     25.0     25.0     UpL     100     80.140       Bromobenzene     ND     25.0     25.8     Ug/L     103     60.140       Bromobenzene     ND     25.0     25.4     Ug/L     102     56.140       Bromoberthane     ND     25.0     25.4     Ug/L     81     23.140       2-Butanone (MEK)     ND     125     112     Ug/L     104     60.140       sec-Butylbenzene     ND     25.0     26.1     Ug/L     104     60.140       est-Butylbenzene     ND     25.0     25.3     Ug/L     101     60.140       carbon disulfde     ND     25.0     25.3     Ug/L     99     60.140       Carbon disulfde     ND     25.0     25.0     24.1     Ug/L     97     38.140       Carbon disulfde     ND     25.0     25.0     Ug/L     105     60.140       Chiorobrand     ND     25.0     25.0     Ug/L     105     60.140 <	Benzene	ND		25.0	20.0		ug/L		105	60 140			
Bromobenzene     ND     25.0     24.6     Up/L     95     60 - 140       Chlorobromomethane     ND     25.0     25.8     Ug/L     103     60 - 140       Bromoform     ND     25.0     25.4     Ug/L     102     56.140       Bromoform     ND     25.0     20.2     Ug/L     81     23 - 140       2-Butanone (MEK)     ND     125     112     Ug/L     90     60 - 140       aco-Butylbenzene     ND     25.0     26.1     Ug/L     104     60 - 140       sec-Butylbenzene     ND     25.0     26.1     Ug/L     104     60 - 140       carbon disulfide     ND     25.0     24.7     Ug/L     99     60 - 140       Carbon disulfide     ND     25.0     24.1     Ug/L     97     38 - 140       Chlorobenzene     ND     25.0     23.7     Ug/L     100     60 - 140       Chlorobenzene     ND     25.0     25.0     Ug/L     102     60 - 140       Chlorobe	Dichloropromomethane	ND		25.0	20.5		ug/L		106	60 - 140			
Christophonomethane     ND     25.0     25.5     ug/L     103     60     140       Bromotrm     ND     25.0     25.4     ug/L     102     55.140       Bromothane     ND     25.0     26.2     ug/L     81     22.140       2-Butanone (MEK)     ND     125     112     ug/L     90     60.140       sec-Butylbenzene     ND     25.0     25.3     ug/L     101     60.140       sec-Butylbenzene     ND     25.0     25.3     ug/L     99     60.140       Carbon disulfide     ND     25.0     24.1     ug/L     97     38.140       Carbon disulfide     ND     25.0     23.7     ug/L     95     60.140       Chiorobenzene     ND     25.0     25.0     ug/L     100     60.140       Chiorobenzene     ND     25.0     25.0     ug/L     102     60.140       Chiorobenzene     ND     25.0     26.2     ug/L     105     60.140       Chioroben	Bromobenzene	ND		25.0	24.0		ug/L		102	60 140			
Distribution     ND     25.0     25.4     ug/L     102     30     140       Bromomethane     ND     25.0     20.2     ug/L     81     23.140       Semomethane     ND     125     112     ug/L     104     60.140       n-Butylbenzene     ND     25.0     26.1     ug/L     101     60.140       sec-Butylbenzene     ND     25.0     25.3     ug/L     99     60.140       Carbon disulfide     ND     25.0     24.7     ug/L     97     38.140       Carbon disulfide     ND     25.0     23.7     ug/L     95     60.140       Chlorobenzene     ND     25.0     23.7     ug/L     95     60.140       Chlorothane     ND     25.0     25.0     ug/L     100     60.140       Chlorothane     ND     25.0     25.0     ug/L     102     60.140       Chlorothane     ND     25.0     26.1     ug/L     105     60.140       Chlorothane	Chlorobromomethane	ND		25.0	25.0		ug/L		103	60 - 140 56 140			
Biolinetitatie     ND     25.0     20.2     10/2     10/2     10/2       2-Butanone (MEK)     ND     125     112     ug/L     90     60-140       sec-Butylbenzene     ND     25.0     26.1     ug/L     104     60-140       sec-Butylbenzene     ND     25.0     25.3     ug/L     99     60-140       Carbon disulfide     ND     25.0     24.1     ug/L     97     38-140       Carbon disulfide     ND     25.0     24.1     ug/L     97     38-140       Carbon disulfide     ND     25.0     23.7     ug/L     95     60-140       Chorobenzene     ND     25.0     23.7     ug/L     102     60-140       Chloroform     ND     25.0     25.0     ug/L     102     60-140       Chloroform     ND     25.0     25.6     ug/L     102     60-140       Chlorofoluene     ND     25.0     26.5     ug/L     105     60-140       1_2-Dichlorobenzene	Bromomothene			25.0	20.4		ug/L		81	23 140			
2-bitalibile (MEN)     ND     120     112     102     102     102     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     00     100     100     00 <td>2 Butenene (MEK)</td> <td></td> <td></td> <td>125</td> <td>112</td> <td></td> <td>ug/L</td> <td></td> <td>90</td> <td>60 140</td> <td></td> <td></td>	2 Butenene (MEK)			125	112		ug/L		90	60 140			
In Boty (belizence)   ND   25.0   25.1   ug/L   104   60 - 140     sec-Butylbenzene   ND   25.0   25.3   ug/L   99   60.140     Carbon disulfide '   ND   25.0   24.7   ug/L   97   38.140     Carbon disulfide '   ND   25.0   23.7   ug/L   95   60.140     Carbon disulfide '   ND   25.0   25.0   ug/L   100   60.140     Chlorobenzene   ND   25.0   25.0   ug/L   82   51.140     Chlorobenzene   ND   25.0   25.6   ug/L   102   60.140     Chloroform   ND   25.0   25.6   ug/L   102   60.140     Chlorobluene   ND   25.0   25.6   ug/L   102   60.140     2-Chlorobluene   ND   25.0   26.2   ug/L   105   60.140     4-Chlorobluene   ND   25.0   26.2   ug/L   106   60.140     1,2-Dichlorobenzene   ND   25.0   26.9   ug/L   108   60.140		ND		25.0	26.1		ug/L		104	60 140			
Sec-Bijliderizerie     ND     25.0     25.3     Ug/L     101     60.2140       tert-Butylbenzene     ND     25.0     24.7     Ug/L     99     60.140       Carbon disulfide     ND     25.0     24.1     Ug/L     97     38.140       Carbon disulfide     ND     25.0     23.7     Ug/L     95     60.140       Chlorobenzene     ND     25.0     25.0     ug/L     100     60.140       Chlorobenzene     ND     25.0     25.6     ug/L     102     60.140       Chlorobenzene     ND     25.0     25.6     ug/L     102     60.140       Chlorobenzene     ND     25.0     25.6     ug/L     102     60.140       Chlorobluene     ND     25.0     26.5     ug/L     105     60.140       Chlorobluene     ND     25.0     26.5     ug/L     106     60.140       1,2-Dichlorobenzene     ND     25.0     25.1     ug/L     108     60.140       1,3-Dichloroben		ND		25.0	20.1		ug/L		104	60 140			
Iter regrigited regristion     ND     25.0     24.7     ug/L     55     60 - 140       Carbon disulfide     ND     25.0     24.1     ug/L     97     38 - 140       Carbon tetrachloride     ND     25.0     23.7     ug/L     95     60 - 140       Chlorobenzene     ND     25.0     25.0     ug/L     100     60 - 140       Chlorobenzene     ND     25.0     25.0     ug/L     82     51 - 140       Chlorobenzene     ND     25.0     25.6     ug/L     79     52 - 140       Chloroform     ND     25.0     25.0     19.6     ug/L     79     52 - 140       2-Chlorotoluene     ND     25.0     26.2     ug/L     105     60 - 140       4-Chlorotoluene     ND     25.0     26.5     ug/L     106     60 - 140       1,2-Dichlorobenzene     ND     25.0     25.1     ug/L     108     60 - 140       1,3-Dichlorobenzene     ND     25.0     25.1     ug/L     108     60	tect Butylbenzene			25.0	20.0		ug/L		00	60 140			
Carbon distinct     ND     23.0     24.1     ug/L     37     50 = 140       Carbon tetrachloride     ND     25.0     23.7     ug/L     95     60 = 140       Chlorobenzene     ND     25.0     25.0     ug/L     100     60 = 140       Chlorobenzene     ND     25.0     25.0     ug/L     82     51 = 140       Chlorobenzene     ND     25.0     25.6     ug/L     102     60 = 140       Chlorobenzene     ND     25.0     25.6     ug/L     102     60 = 140       Chlorobenzene     ND     25.0     25.6     ug/L     102     60 = 140       Chlorobenzene     ND     25.0     26.2     ug/L     105     60 = 140       2-Chlorobluene     ND     25.0     26.2     ug/L     106     60 = 140       1.2-Dichlorobenzene     ND     25.0     25.1     ug/L     108     60 = 140       1.3-Dichlorobenzene     ND     25.0     25.1     ug/L     101     60 = 140				25.0	24.7		ug/L		99	38 140			
Calibri Herachionae     ND     25.0     25.7     ug/L     55     66 - 140       Chlorobenzene     ND     25.0     25.0     ug/L     100     60 - 140       Chlorobenzene     ND     25.0     20.5     ug/L     82     51 - 140       Chlorobenzene     ND     25.0     25.6     ug/L     102     60 - 140       Chlorobenzene     ND     25.0     25.6     ug/L     79     52 - 140       Chlorobenzene     ND     25.0     26.2     ug/L     105     60 - 140       2-Chlorobluene     ND     25.0     26.5     ug/L     106     60 - 140       4-Chlorobluene     ND     25.0     26.5     ug/L     108     60 - 140       1,2-Dichlorobenzene     ND     25.0     25.1     ug/L     108     60 - 140       1,3-Dichlorobenzene     ND     25.0     25.1     ug/L     101     60 - 140       1,3-Dichloropenzene     ND     25.0     25.3     ug/L     101     60 - 140	Carbon disulide	ND		25.0	24.1		ug/L		97	60 140			
Chloroberizene     ND     25.0     25.0     40/L     100     60 - 140       Chloroothane     ND     25.0     20.5     ug/L     82     51 - 140       Chloroothane     ND     25.0     25.6     ug/L     102     60 - 140       Chloroothane     ND     25.0     25.6     ug/L     79     52 - 140       Chloroothuene     ND     25.0     26.2     ug/L     105     60 - 140       2-Chlorotoluene     ND     25.0     26.5     ug/L     106     60 - 140       4-Chlorotoluene     ND     25.0     26.5     ug/L     108     60 - 140       1,2-Dichlorobenzene     ND     25.0     25.1     ug/L     108     60 - 140       1,3-Dichlorobenzene     ND     25.0     25.1     ug/L     101     60 - 140       1,4-Dichlorobenzene     ND     25.0     25.3     ug/L     101     60 - 140       1,3-Dichloropropane     ND     25.0     25.3     ug/L     101     60 - 140 <tr< td=""><td>Chlorobonzono</td><td>ND</td><td></td><td>25.0</td><td>25.7</td><td></td><td>ug/L</td><td></td><td>100</td><td>60 140</td><td></td><td></td></tr<>	Chlorobonzono	ND		25.0	25.7		ug/L		100	60 140			
Chloroderlane     ND     25.0     26.3     dg/L     0.2     61.140       Chloroform     ND     25.0     25.6     ug/L     102     60 - 140       Chloromethane     ND     25.0     19.6     ug/L     79     52 - 140       2-Chlorotoluene     ND     25.0     26.2     ug/L     105     60 - 140       4-Chlorotoluene     ND     25.0     26.5     ug/L     106     60 - 140       4-Chlorodibromomethane     ND     25.0     26.9     ug/L     108     60 - 140       1,2-Dichlorobenzene     ND     25.0     25.1     ug/L     108     60 - 140       1,3-Dichlorobenzene     ND     25.0     25.1     ug/L     101     60 - 140       1,4-Dichlorobenzene     ND     25.0     25.3     ug/L     101     60 - 140       1,3-Dichloropropane     ND     25.0     25.3     ug/L     101     60 - 140       1,1-Dichloropropane     ND     25.0     27.1     ug/L     108     60 - 140	Chloroothana	ND		25.0	20.5		ug/L		82	51 140			
Chlorodnin   ND   25.0   25.0   102   102   002   102     Chloromethane   ND   25.0   19.6   ug/L   79   52 - 140     2-Chlorotoluene   ND   25.0   26.2   ug/L   105   60 - 140     4-Chlorotoluene   ND   25.0   26.2   ug/L   106   60 - 140     Chlorodibromomethane   ND   25.0   26.5   ug/L   108   60 - 140     1,2-Dichlorobenzene   ND   25.0   25.1   ug/L   108   60 - 140     1,3-Dichlorobenzene   ND   25.0   25.1   ug/L   101   60 - 140     1,4-Dichlorobenzene   ND   25.0   25.2   ug/L   101   60 - 140     1,3-Dichloropropane   ND   25.0   25.3   ug/L   101   60 - 140     1,3-Dichloropropane   ND   25.0   27.1   ug/L   108   60 - 140     1,1-Dichloropropane   ND   25.0   26.1   ug/L   104   60 - 140     1,2-Dibromo-3-Chloropropane   ND   25.0   26.1 <td< td=""><td>Chloroform</td><td></td><td></td><td>25.0</td><td>20.0</td><td></td><td>ug/L</td><td></td><td>102</td><td>51 - 140 60 - 140</td><td></td><td></td></td<>	Chloroform			25.0	20.0		ug/L		102	51 - 140 60 - 140			
Chlordellaria   ND   25.0   15.0   19.0   19.0   100   100     2-Chlorotoluene   ND   25.0   26.2   ug/L   105   60 - 140     4-Chlorotoluene   ND   25.0   26.5   ug/L   106   60 - 140     Chlorodibromomethane   ND   25.0   26.9   ug/L   108   60 - 140     1,2-Dichlorobenzene   ND   25.0   25.1   ug/L   100   60 - 140     1,3-Dichlorobenzene   ND   25.0   25.2   ug/L   101   60 - 140     1,4-Dichlorobenzene   ND   25.0   25.3   ug/L   101   60 - 140     1,4-Dichloropropane   ND   25.0   27.1   ug/L   108   60 - 140     1,3-Dichloropropane   ND   25.0   27.1   ug/L   108   60 - 140     1,1-Dichloropropane   ND   25.0   26.1   ug/L   104   60 - 140     1,2-Dibromo-3-Chloropropane   ND   25.0   26.1   ug/L   104   60 - 140     1,2-Dibromo-3-Chloropropane   ND   25.0 <td< td=""><td>Chloromethane</td><td>ND</td><td></td><td>25.0</td><td>19.6</td><td></td><td>ug/L</td><td></td><td>79</td><td>52 140</td><td></td><td></td></td<>	Chloromethane	ND		25.0	19.6		ug/L		79	52 140			
2-Chlorodolucie   ND   25.0   26.1   ug/L   100   00-140     4-Chlorodoluce   ND   25.0   26.5   ug/L   106   60 - 140     Chlorodoluce   ND   25.0   26.9   ug/L   108   60 - 140     1,2-Dichlorobenzene   ND   25.0   25.1   ug/L   100   60 - 140     1,3-Dichlorobenzene   ND   25.0   25.2   ug/L   101   60 - 140     1,4-Dichlorobenzene   ND   25.0   25.2   ug/L   101   60 - 140     1,4-Dichlorobenzene   ND   25.0   25.3   ug/L   101   60 - 140     1,3-Dichloropropane   ND   25.0   27.1   ug/L   108   60 - 140     1,1-Dichloropropane   ND   25.0   26.1   ug/L   104   60 - 140     1,2-Dibromo-3-Chloropropane   ND   25.0   26.1   ug/L   98   60 - 140     1,2-Dibromo-3-Chloropropane   ND   25.0   24.6   ug/L   98   60 - 140	2-Chlorotoluene	ND		25.0	26.2		ug/L		105	60 140			
Chlorodidicitie   ND   25.0   26.9   ug/L   100   60.2 140     Chlorodibromomethane   ND   25.0   26.9   ug/L   108   60.2 140     1,2-Dichlorobenzene   ND   25.0   25.1   ug/L   100   60.2 140     1,3-Dichlorobenzene   ND   25.0   25.1   ug/L   101   60.2 140     1,4-Dichlorobenzene   ND   25.0   25.2   ug/L   101   60.2 140     1,4-Dichlorobenzene   ND   25.0   25.3   ug/L   101   60.2 140     1,3-Dichloropropane   ND   25.0   27.1   ug/L   108   60.2 140     1,1-Dichloropropane   ND   25.0   26.1   ug/L   104   60.2 140     1,2-Dibromo-3-Chloropropane   ND   25.0   24.6   ug/L   98   60.2 140		ND		25.0	26.5		ug/L		106	60 - 140			
Childrabionionentane     ND     25.0     25.1     ug/L     100     60 - 140       1,2-Dichlorobenzene     ND     25.0     25.1     ug/L     100     60 - 140       1,3-Dichlorobenzene     ND     25.0     25.2     ug/L     101     60 - 140       1,4-Dichlorobenzene     ND     25.0     25.3     ug/L     101     60 - 140       1,4-Dichlorobenzene     ND     25.0     25.3     ug/L     101     60 - 140       1,3-Dichloropropane     ND     25.0     27.1     ug/L     108     60 - 140       1,1-Dichloropropane     ND     25.0     26.1     ug/L     104     60 - 140       1,2-Dibromo-3-Chloropropane     ND     25.0     24.6     ug/L     98     60 - 140	Chlorodibromomethane	ND		25.0	20.0		ug/L		108	60 140			
ND   25.0   25.1   ug/L   100   000   140     1,3-Dichlorobenzene   ND   25.0   25.2   ug/L   101   60 - 140     1,4-Dichlorobenzene   ND   25.0   25.3   ug/L   101   60 - 140     1,3-Dichloropropane   ND   25.0   27.1   ug/L   108   60 - 140     1,3-Dichloropropane   ND   25.0   26.1   ug/L   108   60 - 140     1,1-Dichloropropane   ND   25.0   26.1   ug/L   104   60 - 140     1,2-Dibromo-3-Chloropropane   ND   25.0   24.6   ug/L   98   60 - 140	1.2 Dichlorobenzene			25.0	25.0		ug/L		100	60 140			
ND 25.0 25.2 tig/t 101 60 - 140   1,4-Dichlorobenzene ND 25.0 25.3 ug/L 101 60 - 140   1,3-Dichloropropane ND 25.0 27.1 ug/L 108 60 - 140   1,1-Dichloropropane ND 25.0 26.1 ug/L 104 60 - 140   1,2-Dibromo-3-Chloropropane ND 25.0 24.6 ug/L 98 60 - 140	1.2 Dichlorobenzene			25.0	25.1		ug/L		101	60 140			
1,3-Dichloropropane     ND     25.0     27.1     ug/L     108     60 - 140       1,1-Dichloropropane     ND     25.0     26.1     ug/L     108     60 - 140       1,1-Dichloropropane     ND     25.0     26.1     ug/L     104     60 - 140       1,2-Dibromo-3-Chloropropane     ND     25.0     24.6     ug/L     98     60 - 140	1 4-Dichlombenzene			25.0	25.2		ug/L		101	60 - 140			
ND     25.0     27.1     ug/L     100     60 - 140       1,1-Dichloropropene     ND     25.0     26.1     ug/L     104     60 - 140       1,2-Dibromo-3-Chloropropane     ND     25.0     24.6     ug/L     98     60 - 140				25.0	20.0		ug/L		109	60 140			
1,2-Dibromo-3-Chloropropane     ND     25.0     26.1     ug/L     104     60 - 140       1,2-Dibromo-3-Chloropropane     ND     25.0     24.6     ug/L     98     60 - 140				25.0	21.1		ug/L		104	60 140			
T,2-Distontio-o-onitiophopaile IND 25.0 24.0 UV/L 90 00 - 140		ND		25.0	20.1		ug/L		04	60 140			
	Ethylong Dibromide	ND		20.0	24.0		ug/L		107	60 140			

**Client Sample ID: Matrix Spike** 

Prep Type: Total/NA

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

## Lab Sample ID: 720-58974-A-3 MS Matrix: Water

Analysis Batch: 164110										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dibromomethane	ND		25.0	25.9		ug/L		103	60 - 140	
Dichlorodifluoromethane	ND		25.0	18.8		ug/L		75	38 - 140	
1,1-Dichloroethane	ND		25.0	26.0		ug/L		104	60 - 140	
1,2-Dichloroethane	ND		25.0	25.9		ug/L		103	60 - 140	
1,1-Dichloroethene	ND		25.0	21.0		ug/L		84	60 - 140	
cis-1,2-Dichloroethene	3.0		25.0	29.4		ug/L		105	60 - 140	
trans-1,2-Dichloroethene	ND		25.0	24.4		ug/L		97	60 - 140	
1,2-Dichloropropane	ND		25.0	27.6		ug/L		110	60 - 140	
cis-1,3-Dichloropropene	ND		25.0	28.4		ug/L		114	60 - 140	
trans-1,3-Dichloropropene	ND		25.0	30.9		ug/L		124	60 - 140	
Ethylbenzene	ND		25.0	24.9		ug/L		100	60 - 140	
Hexachlorobutadiene	ND		25.0	23.7		ug/L		95	60 - 140	
2-Hexanone	ND		125	125		ug/L		100	60 - 140	
Isopropylbenzene	ND		25.0	24.9		ug/L		100	60 - 140	
4-isopropyltoluene	ND		25.0	24.8		ug/L		99	60 - 140	
Methylene Chloride	ND		25.0	24.8		ug/L		99	40 - 140	
4-Methyl-2-pentanone (MIBK)	ND		125	129		ug/L		103	58 - 130	
Naphthalene	ND		25.0	26.8		ug/L		107	56 - 140	
N-Propylbenzene	ND		25.0	25.9		ug/L		103	60 - 140	
Styrene	ND		25.0	26.5		ug/L		106	60 - 140	
1,1,1,2-Tetrachloroethane	ND		25.0	24.9		ug/L		100	60 - 140	
1,1,2,2-Tetrachloroethane	ND		25.0	26.0		ug/L		104	60 - 140	
Tetrachloroethene	5.4		25.0	27.6		ug/L		89	60 - 140	
Toluene	ND		25.0	24.8		ug/L		99	60 - 140	
1,2,3-Trichlorobenzene	ND		25.0	25.4		ug/L		102	60 - 140	
1,2,4-Trichlorobenzene	ND		25.0	26.3		ug/L		105	60 - 140	
1,1,1-Trichloroethane	ND		25.0	25.2		ug/L		101	60 - 140	
1,1,2-Trichloroethane	ND		25.0	27.0		ug/L		108	60 - 140	
Trichloroethene	13		25.0	35.3		ug/L		91	60 - 140	
Trichlorofluoromethane	ND		25.0	23.6		ug/L		94	60 - 140	
1,2,3-Trichloropropane	ND		25.0	25.1		ug/L		100	60 - 140	
1 1 2-Trichloro-1 2 2-trifluoroetha	ND		25.0	21.1		ug/L		84	60 - 140	
ne										
1,2,4-Trimethylbenzene	ND		25.0	26.3		ug/L		105	60 - 140	
1,3,5-Trimethylbenzene	ND		25.0	26.2		ug/L		105	60 - 140	
Vinyl chloride	ND		25.0	19.4		ug/L		78	58 - 140	
m-Xylene & p-Xylene	ND		25.0	25.6		ug/L		102	60 - 140	
o-Xylene	ND		25.0	26.2		ug/L		105	60 - 140	
2,2-Dichloropropane	ND		25.0	26.9		ug/L		107	60 - 140	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene	106		67 - 130							
1,2-Dichloroethane-d4 (Surr)	101		72 - 130							
Toluene-d8 (Surr)	102		70 - 130							

6 7 8

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-A-3 MSD						Clie	ent Sa	ample ID	): Matrix S	pike Dup	licate
Matrix: Water									Prep 1	ype: Tot	al/NA
Analysis Batch: 164110											
and the second se	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND		25.0	27.4		ug/L		110	60 - 138	3	20
Acetone	ND		125	112		ug/L		90	60 - 140	5	20
Benzene	ND		25.0	26.1		ug/L		104	60 - 140	1	20
Dichlorobromomethane	ND		25.0	26.8		ug/L		107	60 - 140	1	20
Bromobenzene	ND		25.0	24.6		ug/L		98	60 - 140	0	20
Chlorobromomethane	ND		25.0	26.0		ug/L		104	60 - 140	1	20
Bromoform	ND		25.0	26.1		ug/L		104	56 - 140	2	20
Bromomethane	ND		25.0	20.1		ug/L		80	23 - 140	1	20
2-Butanone (MEK)	ND		125	116		ug/L		92	60 - 140	3	20
n-Butylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	1	20
sec-Butylbenzene	ND		25.0	25.1		ug/L		100	60 - 140	1	20
tert-Butylbenzene	ND		25.0	24.8		ug/L		99	60 _ 140	0	20
Carbon disulfide	ND		25.0	24.5		ug/L		98	38 - 140	1	20
Carbon tetrachloride	ND		25.0	23.9		ug/L		96	60 - 140	1	20
Chlorobenzene	ND		25.0	25.0		ug/L		100	60 - 140	0	20
Chloroethane	ND		25.0	20.7		ug/L		83	51 - 140	1	20
Chloroform	ND		25.0	25.8		ug/L		103	60 - 140	1	20
Chloromethane	ND		25.0	19.6		ug/L		78	52 - 140	0	20
2-Chlorotoluene	ND		25.0	25.8		ug/L		103	60 - 140	2	20
4-Chlorotoluene	ND		25.0	26.3		ug/L		105	60 - 140	1	20
Chlorodibromomethane	ND		25.0	27.2		ug/L		109	60 - 140	1	20
1,2-Dichlorobenzene	ND		25.0	25.3		ug/L		101	60 - 140	1	20
1,3-Dichlorobenzene	ND		25.0	25.0		ug/L		100	60 - 140	1	20
1,4-Dichlorobenzene	ND		25.0	25.1		ug/L		100	60 - 140	1	20
1,3-Dichloropropane	ND		25.0	27.4		ug/L		110	60 - 140	1	20
1,1-Dichloropropene	ND		25.0	26.4		ug/L		106	60 - 140	1	20
1,2-Dibromo-3-Chloropropane	ND		25.0	25.4		ug/L		102	60 - 140	3	20
Ethylene Dibromide	ND		25.0	27.2		ug/L		109	60 - 140	2	20
Dibromomethane	ND		25.0	26.2		ug/L		105	60 - 140	1	20
Dichlorodifluoromethane	ND		25.0	18.9		ug/L		75	38 - 140	0	20
1,1-Dichloroethane	ND		25.0	26.2		ug/L		105	60 - 140	1	20
1,2-Dichloroethane	ND		25.0	26.2		ug/L		105	60 - 140	1	20
1,1-Dichloroethene	ND		25.0	21.2		ug/L		85	60 - 140	1	20
cis-1,2-Dichloroethene	3.0		25.0	29.9		ug/L		107	60 - 140	2	20
trans-1,2-Dichloroethene	ND		25.0	24.7		ug/L		98	60 - 140	1	20
1,2-Dichloropropane	ND		25.0	27.7		ug/L		111	60 - 140	1	20
cis-1.3-Dichloropropene	ND		25.0	28.9		ug/L		115	60 - 140	2	20
trans-1.3-Dichloropropene	ND		25.0	31.6		ug/L		126	60 - 140	2	20
Ethylbenzene	ND		25.0	24.8		ug/L		99	60 - 140	0	20
Hexachlorobutadiene	ND		25.0	24.2		ua/L		97	60 - 140	2	20
2-Hexanone	ND		125	132		ua/L		105	60 - 140	5	20
Isonropylbenzene	ND		25.0	25.0		<u>9</u>		100	60 - 140	0	20
	ND		25.0	24.7		ug/L		99	60 140	0	20
	ND		25.0	25.1		ug/l		100	40 - 140	1	20
	ND		125	135		ug/L		108	58 130	4	20
			25.0	27 6		ug/L		110	56 140	7	20
			25.0	21.0		ug/L		103	60 140	0	20
N-Propyidenzene	ND		25.0	20.8		ug/L		105	60 140	4	20
Styrene	ND		25.0	20.3		ug/L		105	00 - 140	1	20

7

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-A-3	MSD						<b>Client S</b>	ample ID	D: Matrix Sp	oike Dup	licate
Matrix: Water									Prep T	ype: Tot	tal/NA
Analysis Batch: 164110											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	24.7		ug/L		99	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND		25.0	26.5		ug/L		106	60 - 140	2	20
Tetrachloroethene	5.4		25.0	28.9		ug/L		94	60 - 140	5	20
Toluene	ND		25.0	24.7		ug/L		99	60 - 140	0	20
1,2,3-Trichlorobenzene	ND		25.0	26.0		ug/L		104	60 - 140	2	20
1,2,4-Trichlorobenzene	ND		25.0	26.5		ug/L		106	60 - 140	1	20
1,1,1-Trichloroethane	ND		25.0	25.7		ug/L		103	60 - 140	2	20
1,1,2-Trichloroethane	ND		25.0	27.5		ug/L		110	60 - 140	2	20
Trichloroethene	13		25.0	36.9		ug/L		97	60 - 140	4	20
Trichlorofluoromethane	ND		25.0	23.9		ug/L		96	60 - 140	1	20
1,2,3-Trichloropropane	ND		25.0	25.6		ug/L		102	60 - 140	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	21.4		ug/L		86	60 - 140	2	20
ne											
1,2,4-Trimethylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	1	20
1,3,5-Trimethylbenzene	ND		25.0	26.1		ug/L		104	60 - 140	1	20
Vinyl chloride	ND		25.0	19.2		ug/L		77	58 - 140	1	20
m-Xylene & p-Xylene	ND		25.0	25.5		ug/L		102	60 - 140	0	20
o-Xylene	ND		25.0	26.2		ug/L		105	60 - 140	0	20
2,2-Dichloropropane	ND		25.0	26.9		ug/L		108	60 - 140	0	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	107		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		72 - 130
Toluene-d8 (Surr)	102		70 - 130

#### Lab Sample ID: MB 720-164180/4 Matrix: Water

#### Analysis Batch: 164180

	INB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl acetate	ND		10		ug/L			08/01/14 09:03	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104		67 - 130					08/01/14 09:03	1
1,2-Dichloroethane-d4 (Surr)	104		72 - 130					08/01/14 09:03	1
Toluene-d8 (Surr)	102		70 - 130					08/01/14 09:03	1

#### Lab Sample ID: LCS 720-164180/5 Matrix: Water Analysis Batch: 164180

Analysis Baton. Torrist			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl acetate			25.0	20.5		ug/L		82	43 - 163	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene	104		67 _ 130							
1,2-Dichloroethane-d4 (Surr)	96		72 - 130							

**TestAmerica** Pleasanton

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

#### TestAmerica Job ID: 720-58973-1

Lab Sample ID: LCS 720-164	180/5				8		Client	Sample	D: Lab Co	ontrol S	ample
Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 164180											
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
Toluene-d8 (Surr)	102		70 - 130								
ab Sample ID: LCSD 720-16	4180/6					Cli	ent San	nple ID:	Lab Contro	Sampl	e Dur
Matrix: Water									Prep T	vne: To	al/NA
Analysis Batch: 164180											
analysis Batem Terret			Spike	LCSD	LCSD				%Rec.		RPE
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
/inyl acetate			25.0	22.5		ug/L		90	43 - 163	9	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	106		67 - 130								
2-Dichloroethane-d4 (Surr)	97		72 - 130								
Toluene-d8 (Surr)	102		70 - 130								
ab Sample ID: 720-58896-B-	2 MS							Client	Sample ID	: Matrix	Spike
Watrix: water									Prep I	ype: 10	
Analysis Batch: 164180	Comple	Comula	Spike	MC	MC				9/ Boo		
A we have	Sample	Sample	Spike	Boouit	Qualifier	Unit		% Baa	/onec.		
(inclusion of the sectors)	Result	Quaimer	F0000	46000	Quanner			/onec	40 140		
Inyl acetate	ND		50000	40000		ugri		92	40 - 140		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
I-Bromofluorobenzene	104	-	67 - 130								
,2-Dichloroethane-d4 (Surr)	100		72 - 130								
Foluene-d8 (Surr)	102		70 - 130								
ah Sample ID: 720-58896-B-	2 MSD						Client S:	amnle iF	). Matrix Sr	nike Dun	licate
Matrix: Wator	LINOD							inpie in	Pron T	vne: Tot	al/NA
Analysis Batch: 16/180									Tiebi	ype. io	
Analysis Batch. 104100	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
/inyl acetate	ND		50000	44900		ug/L		90	40 - 140	2	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
-Bromofluorobenzene	104		67 - 130								
,2-Dichloroethane-d4 (Surr)	98		72 - 130								
Foluene-d8 (Surr)	101		70 - 130								

2 8 9

## GC/MS VOA

Analysis Batch: 16411	0				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Pr	rep Batch
720-58973-1	MP-04-1	Total/NA	Water	8260B/CA_LUFT MS	
720-58973-2	MP-04-2	Total/NA	Water	8260B/CA_LUFT MS	
720-58973-3	MP-04-3	Total/NA	Water	8260B/CA_LUFT MS	
720-58973-4	TB073014-1	Total/NA	Water	8260B/CA_LUFT MS	
720-58973-5	TB073014-2	Total/NA	Water	8260B/CA_LUFT MS	
720-58974-A-3 MS	Matrix Spike	Total/NA	Water	8260B/CA_LUFT MS	
720-58974-A-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/CA_LUFT MS	
LCS 720-164110/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT MS	
LCS 720-164110/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT MS	
LCSD 720-164110/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT MS	
LCSD 720-164110/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT MS	
MB 720-164110/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	

#### Analysis Batch: 164180

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-58896-B-2 MS	Matrix Spike	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58896-B-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58973-1	MP-04-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58973-2	MP-04-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58973-3	MP-04-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58973-4	TB073014-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58973-5	TB073014-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-164180/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-164180/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-164180/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

Matrix: Water

Matrix: Water

Matrix: Water

<b>Client Samp</b>	le ID: MP-04	I-1						Lab Sample	ID: 720-58973-1
Date Collected	: 07/30/14 13:	15							Matrix: Water
Date Received	: 07/30/14 15:5	55							
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 13:37	ASC	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164180	08/01/14 15:16	PDR	TAL PLS	
Client Comp		1.2		-				Lab Cample	ID: 720 59072 2

#### Client Sample ID: MP-04-2 Date Collected: 07/30/14 12:55 Date Received: 07/30/14 15:55

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS	EII IODI	1	164110	07/31/14 14:06	ASC	TAL PLS	-
Total/NA	Analysis	8260B/CA_LUFTMS		1	164180	08/01/14 15:45	PDR	TAL PLS	

#### Client Sample ID: MP-04-3 Date Collected: 07/30/14 08:05 Date Received: 07/30/14 15:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 14:35	ASC	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	164180	08/01/14 16:14	PDR	TAL PLS

## Client Sample ID: TB073014-1

Date Collected: 07/30/14 07:30 Date Received: 07/30/14 15:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 11:14	ASC	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	164180	08/01/14 16:43	PDR	TAL PLS

## Client Sample ID: TB073014-2 Date Collected: 07/30/14 07:25

# Lab Sample ID: 720 59072 5

Date Received: 07/30/14 15:55

Lap	Sample	ID:	120-30	910-0
			Matrix:	Water

Lab Sample ID: 720-58973-3

Lab Sample ID: 720-58973-4

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 11:43	ASC	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	164180	08/01/14 17:12	PDR	TAL PLS

#### Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

#### TestAmerica Job ID: 720-58973-1

10

# Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
California	State Prog	ram	9	2496	01-31-16
	Drag Mathad	Motrix	Applic	to	

#### TestAmerica Job ID: 720-58973-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			
Protocol Referen	nces:		

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

# Sample Summary

#### Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

12

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-58973-1	MP-04-1	 Water	07/30/14 13:15	07/30/14 15:55
720-58973-2	MP-04-2	Water	07/30/14 12:55	07/30/14 15:55
720-58973-3	MP-04-3	Water	07/30/14 08:05	07/30/14 15:55
720-58973-4	TB073014-1	Water	07/30/14 07:30	07/30/14 15:55
720-58973-5	TB073014-2	Water	07/30/14 07:25	07/30/14 15:55

		Crown the	volet	- C	adi	110	ac	ls.	122							DATE:	7130	lig		PA	PAGE   OF /			
01010164	0070.0	BES.B	£	LABO	RAIORY	TA ADDE	-00.			CLIE	CLIENT INFORMATION AMEL			REPORTING R	REPORTING REQUIREMENTS:			15530			155303			
tavid a	libute	amer. com	re *com	LABO	RAIORY	ADDRE	-55:	_			Dai	rid	All	but	-	71	LEQ	9	7	2_				
	stand	ard		1.1.50	DATODY	0.0117	07			_	510	-91	17-	84	11	10	10		1.			à.		
Dol	who co d	hlab		LABO	RATURY	CONTA	ACT.										GEOTRACKER	REQU	RED				YES	NO
Ver	iveree	10 100		DIDO		TION			_					_			SITE SPECIFIC	GLOB	AL ID NO	SL	720	56	41	24
0~	ERS (	SIGNATURE) UUIF	):	CBN9					NAL	YSE	ES							ater (W), or Other (O)	for sum of	e Type		-	lainers	
DATE	TIME	SAMPLE NUMBER		vocst												CON TYPE	ITAINER AND SIZE	Soil (S), W	Filtered	Preservativ	Cooled	MS/MSD	No. of Con	ADDITIONAL COMMENTS
130/14	1315	MP-04-1		×												Floint	VDA	to		HEI	Y	_	3	
1	1255	MP-04-2		×												1		1		1	Í	-	Í	
	0805	MP-04-3		4														11		1				
	0730	TB073014-1		X														1					11	
1	077.5	18073014 - Z		X			1										l	1		1-	1		1	
																	720-5	8973	Chain	of Custo	ody		un	
															Í			1	L I		1 1	-1		
ELINQU	SHED F	BY: DATE	TIME	RE	CEIV	ED E	3Y:			D	ATE	TIN	ЛE	TOTA	LNUM	IBER OF CON	TAINERS:	141						
GNATURE	000	+ FBO/14	Ind	SIGN	ATURE	712	. 1	11.6	10.		1			SAME	LING	COMMENTS:								
DMPANY:	filbert IEr		1555	PRIN		AME:	L	le	4	_7	30/	10		P	0#	cor:	2203331	!						
GNATURE:	n u			SIGN	ATURE	i	(4	n	m		1.4	12	~>		~		_	٢	11	0				
NAM	E,			PRIN	TED NA	AMÊ:	-	_		_			~						7.6	c				
MPANY.				COM	PANY;								F									-		
				CION	471100							-												

# Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

## Job Number: 720-58973-1

14

#### List Source: TestAmerica Pleasanton

Login Number: 58973 List Number: 1 Creator: Bullock, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc. TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-58974-1 Client Project/Site: Crown Chevrolet Cadillac Isuzu

# For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Akanaf Sal )

Authorized for release by: 8/6/2014 3:13:47 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

LINKS







This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

# **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	28
QC Association Summary	47
Lab Chronicle	49
Certification Summary	52
Method Summary	53
Sample Summary	54
Chain of Custody	55
Receipt Checklists	56

# **Definitions/Glossary**

#### Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

#### TestAmerica Job ID: 720-58974-1

3

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

#### Job ID: 720-58974-1

#### Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-58974-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 7/30/2014 3:55 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.6° C.

#### GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following samples is due to the presence of discrete peaks: MP-01-1 (720-58974-5), MW-01 (720-58974-1), MW-100 (720-58974-2). PCE

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample MP-02-1 (720-58974-8) is due to the presence of discrete peaks: TCE

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sampleMP-03-1(720- 58974-11) is due to the presence of discrete peaks: PCE

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### TestAmerica Job ID: 720-58974-1

## Lab Sample ID: 720-58974-1

Lab Sample ID: 720-58974-2

Lab Sample ID: 720-58974-3

Lab Sample ID: 720-58974-4

Lab Sample ID: 720-58974-5

Lab Sample ID: 720-58974-6

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	100		0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Trichloroethene	0.89		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) C5-C12	100	R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA

#### **Client Sample ID: MW-100**

**Client Sample ID: MW-01** 

Analyte	Result Q	Qualifier	RL	MDL Unit	Dil Fac D	Method	Ргер Туре
Tetrachloroethene	100		1.0	ug/L	2	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	110	R	100	ug/L	2	8260B/CA_LUFT MS	Total/NA

#### **Client Sample ID: MW-02**

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	3.0		0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	5.4		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	13		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA

#### Client Sample ID: MW-03

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	) Method	Ргер Туре
Chlorobenzene	1.3	0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
1,2-Dichlorobenzene	2.1	0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	9.4	0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Trichloroethene	0.62	0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA

#### Client Sample ID: MP-01-1

Analyte	Result	Qualifier		RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	3.0			0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Tetrachioroethene	77			0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	15			0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) C5-C12	91		R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA

#### Client Sample ID: MP-01-2

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	49	0.50		ug/L	1	5	8260B/CA_LUFT	Total/NA
							MS	

This Detection Summary does not include radiochemical test results.

## **Detection Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu TestAmerica Job ID: 720-58974-1

Total/NA

Total/NA

Total/NA

Lab Sample ID: 720-58974-9

Lab Sample ID: 720-58974-10

Lab Sample ID: 720-58974-11

Lab Sample ID: 720-58974-12

Lab Sample ID: 720-58974-13

5

Client Sample ID: MP-0	1-3					La	ab	Sample ID: 7	20-58974-7
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	7.4		0.50	2	ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-0	2-1					La	ab	Sample ID: 7	20-58974-8
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	7.2		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
trans-1,2-Dichloroethene	1.0		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA

Tetrachloroethene	0.86		0.50	ug/L	1 8260B/0 MS	A_LUFT
Trichloroethene	51		0.50	ug/L	1 8260B/0 MS	A_LUFT
Gasoline Range Organics (GRO) -C5-C12	64	R	50	ug/L	1 8260B/0 MS	A_LUFT

#### Client Sample ID: MP-02-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
cis-1,2-Dichloroethene	72		0.50		ug/L	1		8260B/CA_LUFT	Total/NA
								MS	

Client Sample ID: MP-02-	ent Sample ID:	: MP-02-3
--------------------------	----------------	-----------

Analyte	Result Q	ualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Acetone	180	50	- 11	ug/L	1	-	8260B/CA_LUFT MS	Total/NA	
cis-1,2-Dichloroethene	5.2	0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA	

#### Client Sample ID: MP-03-1

Analyte	Result	Qualifier		RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.74			0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	94			0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	9.5			0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	110		R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA

#### Client Sample ID: MP-03-2

No Detections.

#### **Client Sample ID: MP-03-3**

No Detections.

This Detection Summary does not include radiochemical test results.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MW-01					Lab Sample ID: 720-58974-1			
Date Collected: 07/30/14 11:35							Matrix	k: Water
Date Received: 07/30/14 15:55	-	Sec. 78	-					
Analyte	Result	Qualifier	RL	MDL Unit	. D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			07/31/14 15:03	1
Acetone	ND		50	ug/L			07/31/14 15:03	1
Benzene	ND		0.50	ug/L			07/31/14 15:03	1
Dichlorobromomethane	- ND		0.50	ug/L			07/31/14 15:03	1
Bromobenzene	ND		1.0	ug/L			07/31/14 15:03	1
Chlorobromomethane	ND		1.0	ug/l			07/31/14 15:03	1
Bromoform	ND		1.0	ug/L			07/31/14 15:03	1
Bromomethane	ND		1.0	ug/L			07/31/14 15:03	1
2-Butanone (MEK)	ND		50	ug/L			07/31/14 15:03	1
n-Butylbenzene	ND		1.0	ug/L			07/31/14 15:03	1
sec-Butylbenzene	ND		1.0	ug/L			07/31/14 15:03	1
tert-Butylbenzene	ND		1.0	ug/L			07/31/14 15:03	1
Carbon disulfide	ND		5.0	ug/L			07/31/14 15:03	1
Carbon tetrachloride	ND		0.50	ug/L			07/31/14 15:03	1
Chlorobenzene	ND		0.50	ug/L			07/31/14 15:03	1
Chloroethane	ND		1.0	ug/L			07/31/14 15:03	1
Chloroform	ND		1.0	ug/L			07/31/14 15:03	1
Chloromethane	ND		1.0	ug/L	1.00		07/31/14 15:03	1
2-Chlorotoluene	ND		0.50	ug/L			07/31/14 15:03	1
4-Chlorotoluene	ND		0.50	ug/L			07/31/14 15:03	1
Chlorodibromomethane	ND		0.50	ug/L			07/31/14 15:03	1
1,2-Dichlorobenzene	ND		0.50	ug/L			07/31/14 15:03	1
1,3-Dichlorobenzene	ND		0.50	ug/L			07/31/14 15:03	1
1,4-Dichlorobenzene	ND		0.50	ug/L	100		07/31/14 15:03	1
1,3-Dichloropropane	ND		1.0	ug/L			07/31/14 15:03	1
1.1-Dichloropropene	ND		0.50	ug/L			07/31/14 15:03	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			07/31/14 15:03	1
Ethylene Dibromide	ND		0.50	ug/L			07/31/14 15:03	1
Dibromomethane	ND		0.50	ug/L			07/31/14 15:03	1
Dichlorodifluoromethane	ND		0.50	ug/L			07/31/14 15:03	1
1 1-Dichloroethane	ND		0.50	ug/L	0.0		07/31/14 15:03	1
1 2-Dichloroethane	ND		0.50	ug/l			07/31/14 15:03	1
1 1-Dichloroethene	ND		0.50	ug/L			07/31/14 15:03	1
cis-1.2-Dichloroethene	ND		0.50	ug/L			07/31/14 15:03	1
trans-1 2-Dichloroethene	ND		0.50	ua/l			07/31/14 15:03	1
1 2-Dichloropropane	ND		0.50	ua/l	1.0		07/31/14 15:03	1
cis-1 3-Dichloropropene	ND		0.50	ua/l			07/31/14 15:03	1
trans-1 3-Dichloropropene	ND		0.50	ua/l	02		07/31/14 15:03	1
Ethylbenzene	ND		0.50	ug/L			07/31/14 15:03	1
Hexachlorobutadiene	ND		1.0	ua/L			07/31/14 15:03	1
2-Hexanone	ND		50	ua/l	1.00		07/31/14 15:03	1
Isopropylenzene	ND		0.50	ug/l			07/31/14 15:03	1
4-Isopropyitoluene	ND		1.0	-9/- ua/l			07/31/14 15:03	1
			5.0	ug/l			07/31/14 15:03	1
A-Methyl-2-pentanone (MIRK)	ND		50	ug/l			07/31/14 15:03	1
Herbitholopo			1.0	ug/L			07/31/14 15:03	1
			1.0	ug/L			07/31/14 15:03	1
N-Propyidenzene	ND		1.0	ug/L			07/31/14 15:03	1
Styrene	ND		0.50	ug/L			07/31/14 15:03	1
1,1,1,2-1 etrachloroethane	ND		0.50	ug/L			07/31/14 15:03	1

TestAmerica Pleasanton

TestAmerica Job ID: 720-58974-1

6

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-01 Date Collected: 07/30/14 11:35							Lab Sample ID: 720-58974- Matrix: Watr			
Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			07/31/14 15:03	1	
Tetrachloroethene	100		0.50		ug/L			07/31/14 15:03	1	
Toluene	ND		0.50		ug/L			07/31/14 15:03	1	
1,2,3-Trichlorobenzene	ND		1.0		ug/L			07/31/14 15:03	1	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			07/31/14 15:03	1	
1,1,1-Trichloroethane	ND		0.50		ug/L			07/31/14 15:03	1	
1,1,2-Trichloroethane	ND		0.50		ug/L			07/31/14 15:03	1	
Trichloroethene	0.89		0.50		ug/L			07/31/14 15:03	1	
Trichlorofluoromethane	ND		1.0		ug/L			07/31/14 15:03	1	
1,2,3-Trichloropropane	ND		0.50		ug/L			07/31/14 15:03	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			07/31/14 15:03	1	
1,2,4-Trimethylbenzene	ND		0.50		ug/L			07/31/14 15:03	1	
1,3,5-Trimethylbenzene	ND		0.50		ug/L			07/31/14 15:03	1	
Vinyl acetate	ND		10		ug/L			08/04/14 15:12	1	
Vinyl chloride	ND		0.50		ug/L			07/31/14 15:03	1	
Xylenes, Total	ND		1.0		ug/L			07/31/14 15:03	1	
2,2-Dichloropropane	ND		0.50		ug/L			07/31/14 15:03	1	
Gasoline Range Organics (GRO) -C5-C12	100		50		ug/L			07/31/14 15:03	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 _ 130		07/31/14 15:03	1
4-Bromofluorobenzene	101		67 - 130		08/04/14 15:12	1
1,2-Dichloroethane-d4 (Surr)	105		72 - 130		07/31/14 15:03	1
1,2-Dichloroethane-d4 (Surr)	118		72 - 130		08/04/14 15:12	1
Toluene-d8 (Surr)	101		70 - 130		07/31/14 15:03	1
Toluene-d8 (Surr)	99		70 - 130		08/04/14 15:12	1

#### Client Sample ID: MW-100 Date Collected: 07/30/14 11:40 Date Received: 07/30/14 15:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		1.0		ug/L			07/31/14 15:32	2
Acetone	ND		100		ug/L			07/31/14 15:32	2
Benzene	ND		1.0		ug/L			07/31/14 15:32	2
Dichlorobromomethane	ND		1.0		ug/L			07/31/14 15:32	2
Bromobenzene	ND		2.0		ug/L			07/31/14 15:32	2
Chlorobromomethane	ND		2.0		ug/L			07/31/14 15:32	2
Bromoform	ND		2.0		ug/L			07/31/14 15:32	2
Bromomethane	ND		2.0		ug/L			07/31/14 15:32	2
2-Butanone (MEK)	ND		100		ug/L			07/31/14 15:32	2
n-Butylbenzene	ND		2.0		ug/L			07/31/14 15:32	2
sec-Butylbenzene	ND		2.0		ug/L			07/31/14 15:32	2
tert-Butylbenzene	ND		2.0		ug/L			07/31/14 15:32	2
Carbon disulfide	ND		10		ug/L			07/31/14 15:32	2
Carbon tetrachloride	ND		1.0		ug/L			07/31/14 15:32	2
Chlorobenzene	ND		1.0		ug/L			07/31/14 15:32	2
Chloroethane	ND		2.0		ug/L			07/31/14 15:32	2
Chloroform	ND		2.0		ug/L			07/31/14 15:32	2
Chloromethane	ND		2.0		ug/L			07/31/14 15:32	2

**TestAmerica** Pleasanton

Lab Sample ID: 720-58974-2

Matrix: Water
TestAmerica Job ID: 720-58974-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-100						Lab	Sample ID: 720-	-58974-2
Date Collected: 07/30/14 11:40							Matri	x: Water
Date Received: 07/30/14 15:55	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorotoluene	ND		1.0	ug/L			07/31/14 15:32	2
4-Chlorotoluene	ND		1.0	ug/L			07/31/14 15:32	2
Chlorodibromomethane	ND		1.0	ug/L			07/31/14 15:32	2
1 2-Dichlorobenzene	ND		1.0	ug/L			07/31/14 15:32	2
1 3-Dichlorobenzene	ND		1.0	ug/L			07/31/14 15:32	2
1.4-Dichlorobenzene	ND		1.0	ug/L			07/31/14 15:32	2
1 3-Dichloropropane	ND		2.0	ug/L			07/31/14 15:32	2
1 1-Dicbloropropene	ND		1.0	ug/L			07/31/14 15:32	2
1 2-Dibromo-3-Chloropropane	ND		2.0	ug/L			07/31/14 15:32	2
Ethylene Dibromide	ND		1.0	ug/L			07/31/14 15:32	2
Dibromomethane	ND		1.0	ua/L			07/31/14 15:32	2
Dichlorodifluoromethane	ND		1.0	ug/L			07/31/14 15:32	2
1 1-Dichloroethane	ND		1.0	ua/L			07/31/14 15:32	2
1.2-Dichloroethane	ND		1.0	ug/L			07/31/14 15:32	2
	ND		1.0	ua/L			07/31/14 15:32	2
cis-1 2-Dichloroethene	ND		1.0	ua/L			07/31/14 15:32	2
trans_1 2-Dichloroethene	ND		1.0	ug/L			07/31/14 15:32	2
1 2-Dichloropropage	ND		1.0	ug/L			07/31/14 15:32	2
cis-1 3-Dichloropropene	ND		1.0	ug/L			07/31/14 15:32	2
trans_1_3_Dichloropropene	ND		1.0	ug/L			07/31/14 15:32	2
Ethylbenzene	ND		1.0	ug/L			07/31/14 15:32	2
Heyschlorobutadiene	ND		2.0	ug/l			07/31/14 15:32	2
	ND		100	ug/l			07/31/14 15:32	2
Isopropylbenzene	ND		1.0	ug/L			07/31/14 15:32	2
	ND		2.0	ug/L			07/31/14 15:32	2
4-isopropylicidene	ND		10	ug/L			07/31/14 15:32	2
Methylene Chlonde	ND		100	ug/L			07/31/14 15:32	2
4-Methyl-2-pertanone (MIBR)	ND		2.0	ug/L			07/31/14 15:32	2
N Brenvilhenzono	ND		2.0	ug/l			07/31/14 15:32	2
N-Propyidenzene	ND		1.0	ug/L			07/31/14 15:32	2
1 1 1 2 Tetrachleraethana	ND		1.0	ug/L			07/31/14 15:32	2
	ND		1.0	ug/L			07/31/14 15:32	2
	100		1.0	ug/L			07/31/14 15:32	2
Tetrachioroethene	ND		1.0	ug/L			07/31/14 15:32	2
1 0 2 Tricklershanzens	ND		1.0	ug/L			07/31/14 15:32	2
1,2,3-Thenlorobenzene	ND		2.0	ug/L			07/31/14 15:32	2
			1.0	ug/L			07/31/14 15:32	2
1,1,1-Trichloroethane	ND		1.0	ug/L			07/31/14 15:32	2
1,1,2-I richloroethane	ND		1.0	ug/L			07/31/14 15:32	2
	ND		1.0	ug/L			07/31/14 15:32	2
	ND		2.0	ug/L			07/31/14 15:32	2
1,2,3-Trichlers 4.0.0 trifficenethere	ND		1.0	ug/L			07/31/14 15:32	2
1,1,2-1 nchioro-1,2,2-trifluoroethane	ND		1.0	ug/L			07/31/14 15:32	2
	ND		1.0	ug/L			07/31/14 15:32	2
1,3,5-1 nmethylbenzene	ND		1.0	ug/L			07/31/14 15:32	2
Vinyi acetate	ND		20	ug/L			07/31/14 15:20	2
Vinyl chloride	ND		1.0	ug/L			07/31/14 15:32	2
Xylenes, Total	ND		2.0	ug/L			07/24/14 15:32	2
2,2-Dichloropropane	ND		1.0	ug/L			07/31/14 15:32	2
Gasoline Range Organics (GRO) -C5-C12	110		100	ug/L			07/31/14 15:32	2

#### TestAmerica Job ID: 720-58974-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130		-		07/31/14 15:32	2
4-Bromofluorobenzene	105		67 - 130				08/04/14 15:41	2
1,2-Dichloroethane-d4 (Surr)	106		72 - 130				07/31/14 15:32	2
1,2-Dichloroethane-d4 (Surr)	119		72 - 130				08/04/14 15:41	2
Toluene-d8 (Surr)	99		70 - 130				07/31/14 15:32	2
Toluene-d8 (Surr)	99		70 - 130				08/04/14 15:41	2
Client Sample ID: MW-02						Lab	Sample ID: 720-	58974-3
Date Collected: 07/30/14 07:58							Matrix	k: Water
Date Received: 07/30/14 15:55								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			07/31/14 13:08	1
Acetone	ND		50	ug/L			07/31/14 13:08	1
Benzene	ND		0.50	ug/L			07/31/14 13:08	1
Dichlorobromomethane	ND		0.50	ug/L			07/31/14 13:08	1
Bromobenzene	ND		1.0	ug/L			07/31/14 13:08	1
Chlorobromomethane	ND		1.0	ug/L			07/31/14 13:08	1
Bromoform	ND		1.0	ug/L			07/31/14 13:08	1
Bromomethane	ND		1.0	ug/L			07/31/14 13:08	1
2-Butanone (MEK)	ND		50	ua/L			07/31/14 13:08	1
n-Butvlbenzene	ND		1.0	ua/L			07/31/14 13:08	1
sec-Butylbenzene	ND		1.0	ug/L			07/31/14 13:08	1
tert-Butylbenzene	ND		1.0	ua/L			07/31/14 13:08	1
Carbon disulfide	ND		5.0	ug/L			07/31/14 13:08	1
Carbon tetrachloride	ND		0.50	ug/l			07/31/14 13:08	1
Chlorobenzene	ND		0.50	ug/L			07/31/14 13:08	1
Chloroethane	ND		1.0	ug/L			07/31/14 13:08	1
Chloroform	ND		1.0	ug/L			07/31/14 13:08	1
Chloromethane	ND		1.0	ug/L			07/31/14 13:08	1
2-Chlorotoluene	ND		0.50	ug/L			07/31/14 13:08	1
4-Chlorotoluene	ND		0.50	ug/L			07/31/14 13:08	1
Chlorodibromomethane	ND		0.50	ug/L			07/31/14 13:08	1
1 2-Dichlorobenzene	ND		0.50	ug/L			07/31/14 13:08	1
1 3-Dichlorobenzene	ND		0.50	ug/L			07/31/14 13:08	1
1.4 Dichlorobenzene	ND		0.50	ug/L			07/31/14 13:08	1
1.3 Dichloropropage	ND		1.0	ug/L			07/31/14 13:09	1
1.1 Dichloropropane	ND		0.50	ug/L			07/31/14 13:09	1
1.2-Dibromo-3-Chloropropane	ND		1.0	ug/L			07/31/14 13:08	1
Ethylono Dibromido			0.50	ug/L			07/31/14 13:08	1
	ND		0.50	ug/L			07/31/14 13:08	1
Diphonometriane			0.50	ug/L			07/31/14 13:08	1
1.1 Dichleroethana	ND		0.50	ug/L			07/31/14 13:08	1
1.2 Dichloroethane			0.50	ug/L			07/31/14 13:08	1
1.1 Dichloroethane			0.50	ug/L			07/31/14 13:08	1
			0.50	ug/L			07/31/14 13:08	1
trans 1.2 Dishloroothese	3.0		0.50	ug/L			07/24/14 13:08	1
	ND		0.50	ug/L			07/31/14 13:08	1
	ND		0.50	ug/L			07/31/14 13:08	1
	ND		0.50	ug/L			07/31/14 13:08	1
	ND		0.50	ug/L			07/31/14 13:08	1
	ND		0.50	ug/L			07/31/14 13:08	1
	ND		1.0	ug/L			07/31/14 13:08	1
2-Hexanone	ND		50	ug/L			07/31/14 13:08	1

TestAmerica Job ID: 720-58974-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-02						Lab Sample ID: 720-58974			
Date Collected: 07/30/14 07:58							Watrb	k: water	
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Isopropylbenzene	ND		0.50	ug/L			07/31/14 13:08	1.	
4-isopropyltoluene	ND		1.0	ug/L			07/31/14 13:08	1	
Methylene Chloride	ND		5.0	ug/L			07/31/14 13:08	1	
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			07/31/14 13:08	1	
Naphthalene	ND		1.0	ug/L			07/31/14 13:08	1	
N-Propylbenzene	ND		1.0	ug/L	19		07/31/14 13:08	1	
Styrene	ND		0.50	ug/L			07/31/14 13:08	1	
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 13:08	1	
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 13:08	1	
Tetrachloroethene	5.4		0.50	ug/L			07/31/14 13:08	1	
Toluene	ND		0.50	ug/L			07/31/14 13:08	1	
1,2,3-Trichlorobenzene	ND		1.0	ug/L			07/31/14 13:08	1	
1,2,4-Trichlorobenzene	ND		1.0	ug/L			07/31/14 13:08	1	
1,1,1-Trichloroethane	ND		0.50	ug/L			07/31/14 13:08	1	
1,1,2-Trichloroethane	ND		0.50	ug/L			07/31/14 13:08	1	
Trichloroethene	13		0.50	ug/L			07/31/14 13:08	1	
Trichlorofluoromethane	ND		1.0	ug/L			07/31/14 13:08	1	
1,2,3-Trichloropropane	ND		0.50	ug/L			07/31/14 13:08	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			07/31/14 13:08	1	
1,2,4-Trimethylbenzene	ND		0.50	ug/L			07/31/14 13:08	1	
1,3,5-Trimethylbenzene	ND		0.50	ug/L			07/31/14 13:08	1	
Vinyl acetate	ND		10	ug/L			08/04/14 14:14	1	
Vinyl chloride	ND		0.50	ug/L			07/31/14 13:08	1	
Xylenes, Total	ND		1.0	ug/L			07/31/14 13:08	1	
2,2-Dichloropropane	ND		0.50	ug/L			07/31/14 13:08	- 1	
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L	а.		07/31/14 13:08	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	105		67 - 130		07/31/14 13:08	1
4-Bromofluorobenzene	101		67 - 130		08/04/14 14:14	. 1
1,2-Dichloroethane-d4 (Surr)	108		72 - 130		07/31/14 13:08	1
1,2-Dichloroethane-d4 (Surr)	115		72 - 130		08/04/14 14:14	1
Toluene-d8 (Surr)	103		70 - 130		07/31/14 13:08	1
Toluene-d8 (Surr)	99		70 - 130		08/04/14 14:14	1

#### Client Sample ID: MW-03

#### Date Collected: 07/30/14 13:30 Date Received: 07/30/14 15:55

Date Hebelifed. Official folio									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			07/31/14 16:01	1
Acetone	ND		50		ug/L			07/31/14 16:01	1
Benzene	ND		0.50		ug/L			07/31/14 16:01	1
Dichlorobromomethane	ND		0.50		ug/L			07/31/14 16:01	1
Bromobenzene	ND		1.0		ug/L			07/31/14 16:01	1
Chlorobromomethane	ND		1.0		ug/L			07/31/14 16:01	1
Bromoform	ND		1.0		ug/L			07/31/14 16:01	1
Bromomethane	ND		1.0		ug/L			07/31/14 16:01	1
2-Butanone (MEK)	ND		50		ug/L			07/31/14 16:01	1
n-Butylbenzene	ND		1.0		ug/L			07/31/14 16:01	1

TestAmerica Pleasanton

Lab Sample ID: 720-58974-4

Matrix: Water

TestAmerica Job ID: 720-58974-1

5

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-03 Date Collected: 07/30/14 13:30						Lab Sample ID: 720-58974-4 Matrix: Water			
Date Received: 07/30/14 15:55	Result	Qualifier	RI	MDI Unit	D	Prenared	Analyzed	Dil Fac	
sec-Butylbenzene	ND	quanter	1.0			Toparou	07/31/14 16:01	1	
tert-Butylbenzene	ND		1.0	ug/L			07/31/14 16:01	1	
Carbon disulfide	ND		5.0	ug/l			07/31/14 16:01	1	
Carbon tetrachloride	ND		0.50	ug/L			07/31/14 16:01	1	
Chlorobenzene	13		0.50	ug/L			07/31/14 16:01	1	
Chloroethane	ND		1.0	ug/L			07/31/14 16:01	1	
Chloroform	ND		1.0	ug/L			07/31/14 16:01	1	
Chloromethane	ND		1.0	ug/L			07/31/14 16:01	1	
2-Chlorotoluene	ND		0.50	ug/L			07/31/14 16:01	1	
4-Chlorotoluene	ND		0.50	ug/L			07/31/14 16:01	1	
Chlorodibromomethane	ND		0.50	ug/L			07/31/14 16:01	1	
1.2 Dichlorobonzono	2.1		0.50	ug/L			07/31/14 16:01	1	
1.3-Dichlorobenzene	2.1		0.50	ug/L			07/31/14 16:01	1	
1 4-Dichlorobenzene	ND		0.50	ug/L			07/31/14 16:01	1	
1.2 Dichloropropopo	ND		1.0	ug/L			07/31/14 16:01	1	
1.1 Dichloropropopo	ND		0.50	ug/L			07/31/14 16:01	1	
	ND		1.0	ug/L			07/31/14 16:01	1	
Fiz-Dibiomo-3-Chiloropropane	ND		0.50	ug/L			07/31/14 16:01	1	
	ND		0.50	ug/L			07/31/14 16:01	1	
	ND		0.50	ug/L			07/31/14 16:01	1	
	ND		0.50	ug/L			07/31/14 10:01	1	
	ND		0.50	ug/L			07/31/14 16:01	1	
	ND		0.50	ug/L			07/31/14 16.01	1	
	ND		0.50	ug/L			07/31/14 16:01	1	
cis-1,2-Dichloroethene	ND		0.50	ug/L			07/31/14 16:01	1	
trans-1,2-Dichloroethene	ND		0.50	ug/L			07/31/14 16:01	1	
1,2-Dichloropropane	ND		0.50	ug/L			07/31/14 16:01	1	
cis-1,3-Dichloropropene	ND		0.50	ug/L			07/31/14 16:01	1	
trans-1,3-Dichloropropene	ND		0.50	ug/L			07/31/14 16:01	1	
Ethylbenzene	ND		0.50	ug/L			07/31/14 16:01	1	
Hexachlorobutadiene	ND		1.0	ug/L			07/31/14 16:01	1	
2-Hexanone	ND		50	ug/L			07/31/14 16:01	1	
Isopropylbenzene	ND		0.50	ug/L			07/31/14 16:01	1	
4-Isopropyltoluene	ND		1.0	ug/L			07/31/14 16:01	1	
Methylene Chloride	ND		5.0	ug/L			07/31/14 16:01	1	
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			07/31/14 16:01	1	
Naphthalene	ND		1.0	ug/L			07/31/14 16:01	1	
N-Propylbenzene	ND		1.0	ug/L			07/31/14 16:01	1	
Styrene	ND		0.50	ug/L			07/31/14 16:01	1	
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 16:01	1	
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 16:01	1	
Tetrachloroethene	9.4		0.50	ug/L			07/31/14 16:01	1	
Toluene	ND		0.50	ug/L			07/31/14 16:01	1	
1,2,3-Trichlorobenzene	ND		1.0	ug/L			07/31/14 16:01	1	
1,2,4-Trichlorobenzene	ND		1.0	ug/L			07/31/14 16:01	1	
1,1,1-Trichloroethane	ND		0.50	ug/L			07/31/14 16:01	1	
1,1,2-Trichloroethane	ND		0.50	ug/L			07/31/14 16:01	1	
Trichloroethene	0.62		0.50	ug/L			07/31/14 16:01	1	
Trichlorofluoromethane	ND		1.0	ug/L			07/31/14 16:01	1	
1,2,3-Trichloropropane	ND		0.50	ug/L			07/31/14 16:01	1	

TestAmerica Job ID: 720-58974-1

Lab Sample ID: 720-58974-5

**Matrix: Water** 

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-03						Lab	Sample ID: 720-	58974-4
Date Collected: 07/30/14 13:30							Matrix	k: Water
Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L	_		07/31/14 16:01	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			07/31/14 16:01	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			07/31/14 16:01	1
Vinyl acetate	ND		10	ug/L			08/04/14 16:10	1
Vinyl chloride	ND		0.50	ug/L			07/31/14 16:01	1
Xylenes, Total	ND		1.0	ug/L			07/31/14 16:01	. 1
2,2-Dichloropropane	ND		0.50	ug/L			07/31/14 16:01	1
Gasoline Range Organics (GRO)	ND		50	ug/L			07/31/14 16:01	1
-C5-C12								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130				07/31/14 16:01	1
4-Bromofluorobenzene	102		67 - 130				08/04/14 16:10	1
1,2-Dichloroethane-d4 (Surr)	106		72 - 130				07/31/14 16:01	1
1,2-Dichloroethane-d4 (Surr)	121		72 - 130				08/04/14 16:10	1
Toluene-d8 (Surr)	100		70 - 130				07/31/14 16:01	1
Toluene-d8 (Surr)	99		70 - 130				08/04/14 16:10	1

#### Client Sample ID: MP-01-1 Date Collected: 07/30/14 11:53 Date Received: 07/30/14 15:55

Analyte	Result	Qualifier	RL	MDL Un	it	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/	۲L			07/31/14 16:30	1
Acetone	ND		50	ug/	'L			07/31/14 16:30	1
Benzene	ND		0.50	ug/	Ľ			07/31/14 16:30	1
Dichlorobromomethane	ND		0.50	·ug/	۲L			07/31/14 16:30	1
Bromobenzene	ND		1.0	ug/	ſL			07/31/14 16:30	1
Chlorobromomethane	ND		1.0	ug/	۲L			07/31/14 16:30	1
Bromoform	ND		1.0	ug/	'L			07/31/14 16:30	1
Bromomethane	ND		1.0	ug/	Ľ			07/31/14 16:30	1
2-Butanone (MEK)	ND		50	ug/	Ľ			07/31/14 16:30	1
n-Butylbenzene	ND		1.0	ug/	ïL			07/31/14 16:30	1
sec-Butylbenzene	ND		1.0	ug/	۲L			07/31/14 16:30	1
tert-Butylbenzene	ND		1.0	ug/	ïL			07/31/14 16:30	1
Carbon disulfide	ND		5.0	ug/	'L			07/31/14 16:30	1
Carbon tetrachloride	ND		0.50	ug/	'L			07/31/14 16:30	1
Chlorobenzene	ND		0.50	ug/	'L			07/31/14 16:30	1
Chloroethane	ND		1.0	ug/	Ľ			07/31/14 16:30	1
Chloroform	ND		1.0	ug/	'L			07/31/14 16:30	1
Chloromethane	ND		1.0	ug/	'L			07/31/14 16:30	1
2-Chlorotoluene	ND		0.50	ug/	Ľ			07/31/14 16:30	1
4-Chlorotoluene	ND		0.50	ug/	۲L			07/31/14 16:30	1
Chlorodibromomethane	ND		0.50	ug/	Ľ			07/31/14 16:30	1
1,2-Dichlorobenzene	ND		0.50	ug/	Ľ			07/31/14 16:30	1
1,3-Dichlorobenzene	ND		0.50	ug/	۲L			07/31/14 16:30	1
1,4-Dichlorobenzene	ND		0.50	ug/	'L			07/31/14 16:30	1
1,3-Dichloropropane	ND		1.0	ug/	۲L			07/31/14 16:30	1
1,1-Dichloropropene	ND		0.50	ug/	'L			07/31/14 16:30	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/	ïL			07/31/14 16:30	1
Ethylene Dibromide	ND		0.50	ug/	'L			07/31/14 16:30	1

TestAmerica Job ID: 720-58974-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-1						Lab	Sample ID: 720-	58974-5
Date Collected: 07/30/14 11:55							Interes in	t. mater
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		0.50	ug/L			07/31/14 16:30	1
Dichlorodifluoromethane	ND		0.50	ug/L			07/31/14 16:30	1
1,1-Dichloroethane	ND		0.50	ug/L			07/31/14 16:30	1
1,2-Dichloroethane	ND		0.50	ug/L			07/31/14 16:30	1
1,1-Dichloroethene	ND		0.50	ug/L			07/31/14 16:30	1
cis-1,2-Dichloroethene	3.0		0.50	ug/L			07/31/14 16:30	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			07/31/14 16:30	1
1,2-Dichloropropane	ND		0.50	ug/L			07/31/14 16:30	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			07/31/14 16:30	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			07/31/14 16:30	1
Ethylbenzene	ND		0.50	ug/L			07/31/14 16:30	1
Hexachlorobutadiene	ND		1.0	ug/L			07/31/14 16:30	1
2-Hexanone	ND		50	ug/L			07/31/14 16:30	1
Isopropylbenzene	ND		0.50	ug/L			07/31/14 16:30	1
4-Isopropyltoluene	ND		1.0	ug/L			07/31/14 16:30	1
Methylene Chloride	ND		5.0	ug/L			07/31/14 16:30	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			07/31/14 16:30	1
Naphthalene	ND		1.0	ug/L			07/31/14 16:30	1
N-Propylbenzene	ND		1.0	ug/L			07/31/14 16:30	1
Styrene	ND		0.50	ug/L			07/31/14 16:30	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 16:30	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 16:30	1
Tetrachloroethene	77		0.50	ug/L			07/31/14 16:30	1
Toluene	ND		0.50	ug/L			07/31/14 16:30	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			07/31/14 16:30	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			07/31/14 16:30	1
1,1,1-Trichloroethane	ND		0.50	ug/L			07/31/14 16:30	1
1,1,2-Trichloroethane	ND		0.50	ug/L			07/31/14 16:30	1
Trichloroethene	15		0.50	ug/L			07/31/14 16:30	1
Trichlorofluoromethane	ND		1.0	ug/L			07/31/14 16:30	1
1,2,3-Trichloropropane	ND		0.50	ug/L			07/31/14 16:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			07/31/14 16:30	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			07/31/14 16:30	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			07/31/14 16:30	• 1
Vinyl acetate	ND		10	ug/L			08/04/14 16:40	-1
Vinyl chloride	ND		0.50	ug/L			07/31/14 16:30	1
Xylenes, Total	ND		1.0	ug/L			07/31/14 16:30	1
2,2-Dichloropropane	ND		0.50	ug/L			07/31/14 16:30	1
Gasoline Range Organics (GRO)	91		50	ug/L			07/31/14 16:30	1

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	99	-	67 - 130
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		72 - 130
1,2-Dichloroethane-d4 (Surr)	122		72 - 130
Toluene-d8 (Surr)	101		70 - 130
Toluene-d8 (Surr)	99		70 - 130

Prepared	Analyzed	Dil Fac
	07/31/14 16:30	1
	08/04/14 16:40	1
	07/31/14 16:30	1
	08/04/14 16:40	1
	07/31/14 16:30	1
	08/04/14 16:40	1

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MP-01-2 Date Collected: 07/30/14 12:51						Lab Sample ID: 720-58974-6 Matrix: Water					
Date Received: 07/30/14 15:55	Result	Qualifier	RI	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Methyl tert-hutyl ether	ND	duamen	0.50			Toparcu	07/31/14 16:59	1			
	ND		50	ug/L			07/31/14 16:59	1			
Benzene	ND		0.50	ug/L			07/31/14 16:59	1			
Dichlorobromomethane	ND		0.50	ug/L			07/31/14 16:59	1			
Bromohenzene	ND		1.0	ug/L			07/31/14 16:59	1			
Chlorobromomethane	ND		1.0	ua/L			07/31/14 16:59	1			
Bromoform	ND		10	ug/L			07/31/14 16:59	1			
Bromomethane	ND		1.0	ua/L			07/31/14 16:59	1			
2-Butanone (MEK)	ND		50	ug/L			07/31/14 16:59	1			
n-Butylbenzene	ND		1.0	ug/L			07/31/14 16:59	1			
sec-Butylbenzene	ND		1.0	ug/L			07/31/14 16:59	1			
tert-Butylbenzene	ND		1.0	ua/L			07/31/14 16:59	1			
Carbon disulfide	ND		5.0	ug/L			07/31/14 16:59	1			
Carbon tetrachloride	ND		0.50	ug/L			07/31/14 16:59	1			
Chlorobenzene	ND		0.50	ua/L			07/31/14 16:59	1			
Chloroethane	ND		1.0	ug/L			07/31/14 16:59	1			
Chloroform	ND		1.0	ug/L			07/31/14 16:59	1			
Chloromethane	ND		1.0	ua/L			07/31/14 16:59	1			
2-Chlorotoluene	ND		0.50	ua/L			07/31/14 16:59	1			
4-Chlorotoluene	ND		0.50	ua/L			07/31/14 16:59	1			
Chlorodibromomethane	ND		0.50	ua/L			07/31/14 16:59	1			
1 2-Dichlorohenzene	ND		0.50	ug/l			07/31/14 16:59	1			
1 3-Dichlorobenzene	ND		0.50	ua/L			07/31/14 16:59	1			
1 4-Dichlorobenzene	ND		0.50	ua/L			07/31/14 16:59	1			
1 3-Dichloropropage	ND		1.0	ua/L			07/31/14 16:59	1			
1 1-Dichloropropene	ND		0.50	ua/L		- A)	07/31/14 16:59	1			
1 2-Dibromo-3-Chioropropane	ND		1.0	ua/L			07/31/14 16:59	1			
Ethylene Dibromide	ND		0.50	ua/L			07/31/14 16:59	1			
Dibromomethane	ND		0.50	ua/L			07/31/14 16:59	1			
Dichlorodifluoromethane	ND		0.50	ug/L			07/31/14 16:59	1			
1 1-Dichloroethane	ND		0.50	ua/L			07/31/14 16:59	1			
1 2-Dichloroethane	ND		0.50	ug/L			07/31/14 16:59	1			
1 1-Dichloroethene	ND		0.50	ug/L			07/31/14 16:59	1			
cis-1 2-Dichloroethene	49		0.50	ua/L			07/31/14 16:59	1			
trans-1.2-Dichloroethene	ND		0.50	ug/L			07/31/14 16:59	1			
1.2-Dichloropropane	ND		0.50	ug/L			07/31/14 16:59	1			
cis-1 3-Dichloropropene	ND		0.50	ug/L			07/31/14 16:59	1			
trans-1 3-Dichloropropene	ND		0.50	ug/L	÷.		07/31/14 16:59	1			
Ethylbenzene	ND		0.50	ug/L			07/31/14 16:59	1			
Hexachlorobutadiene	ND		1.0	ug/L			07/31/14 16:59	1			
2-Hexanone	ND		50	ug/L			07/31/14 16:59	1			
Isopropylbenzene	ND		0.50	ug/L			07/31/14 16:59	1			
4-Isopropyltoluene	ND		1.0	ug/L			07/31/14 16:59	1			
Methylene Chloride	ND		5.0	ug/L			07/31/14 16:59	1			
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			07/31/14 16:59	1			
Naphthalene	ND		1.0	ug/L			07/31/14 16:59	1			
N-Propylbenzene	ND		1.0	ug/L			07/31/14 16:59	1			
Styrene	ND		0.50	ug/L			07/31/14 16:59	1			
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 16:59	1			

TestAmerica Job ID: 720-58974-1

5

6

TestAmerica Job ID: 720-58974-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-2 Date Collected: 07/30/14 12:51							Lab	Sample ID: 720- Matrix	58974-6 <: Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			07/31/14 16:59	1
Tetrachloroethene	ND		0.50		ug/L			07/31/14 16:59	1
Toluene	ND		0.50		ug/L			07/31/14 16:59	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			07/31/14 16:59	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			07/31/14 16:59	1
1,1,1-Trichloroethane	ND		0.50		ug/L			07/31/14 16:59	1
1,1,2-Trichloroethane	ND		0.50		ug/L			07/31/14 16:59	1
Trichloroethene	ND		0.50		ug/L			07/31/14 16:59	1
Trichlorofluoromethane	ND		1.0		ug/L			07/31/14 16:59	1
1,2,3-Trichloropropane	ND		0.50		ug/L			07/31/14 16:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			07/31/14 16:59	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			07/31/14 16:59	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			07/31/14 16:59	1
Vinyl acetate	ND		10		ug/L			08/04/14 17:09	1
Vinyl chloride	ND		0.50		ug/L			07/31/14 16:59	1
Xylenes, Total	ND		1.0		ug/L			07/31/14 16:59	1
2,2-Dichloropropane	ND		0.50		ug/L			07/31/14 16:59	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			07/31/14 16:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130					07/31/14 16:59	1

Surrogate %Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene 100		67 - 130		07/31/14 16:59	1
4-Bromofluorobenzene 102		67 - 130		08/04/14 17:09	1
1,2-Dichloroethane-d4 (Surr) 105		72 - 130		07/31/14 16:59	1
1,2-Dichloroethane-d4 (Surr) 121		72 - 130		08/04/14 17:09	1
Toluene-d8 (Surr) 100		70 - 130		07/31/14 16:59	1
Toluene-d8 (Surr) 100		70 - 130		08/04/14 17:09	1

#### Client Sample ID: MP-01-3 Date Collected: 07/30/14 13:50 Date Received: 07/30/14 15:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L	-		07/31/14 17:28	1
Acetone	ND		50		ug/L			07/31/14 17:28	1
Benzene	ND		0.50		ug/L			07/31/14 17:28	1
Dichlorobromomethane	ND		0.50		ug/L			07/31/14 17:28	1
Bromobenzene	ND		1.0		ug/L			07/31/14 17:28	1
Chlorobromomethane	ND		1.0		ug/L			07/31/14 17:28	1
Bromoform	ND		1.0		ug/L			07/31/14 17:28	1
Bromomethane	ND		1.0		ug/L			07/31/14 17:28	1
2-Butanone (MEK)	ND		50		ug/L			07/31/14 17:28	1
n-Butylbenzene	ND		1.0		ug/L			07/31/14 17:28	1
sec-Butylbenzene	ND		1.0		ug/L			07/31/14 17:28	1
tert-Butylbenzene	ND		1.0		ug/L			07/31/14 17:28	1
Carbon disulfide	ND		5.0		ug/L			07/31/14 17:28	1
Carbon tetrachloride	ND		0.50		ug/L			07/31/14 17:28	1
Chlorobenzene	ND		0.50		ug/L			07/31/14 17:28	1
Chloroethane	ND		1.0	,	ug/L			07/31/14 17:28	1
Chloroform	ND		1.0		ug/L			07/31/14 17:28	1
Chloromethane	ND		1.0		ug/L			07/31/14 17:28	1

**TestAmerica** Pleasanton

Lab Sample ID: 720-58974-7

Matrix: Water

TestAmerica Job ID: 720-58974-1

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-3						Lab	Sample ID: 720-	58974-7
Date Collected: 07/30/14 13:50							Matrix	x: Water
Date Received: 07/30/14 15:55								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorotoluene	ND		0.50	ug/L			07/31/14 17:28	1
4-Chlorotoluene	ND		0.50	ug/L			07/31/14 17:28	1
Chlorodibromomethane	ND		0.50	ug/L			07/31/14 17:28	1
1,2-Dichlorobenzene	ND		0.50	ug/L			07/31/14 17:28	1
1,3-Dichlorobenzene	ND		0.50	ug/L			07/31/14 17:28	1
1,4-Dichlorobenzene	ND		0.50	ug/L			07/31/14 17:28	1
1,3-Dichloropropane	ND		1.0	ug/L			07/31/14 17:28	1
1,1-Dichloropropene	ND		0.50	ug/L			07/31/14 17:28	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			07/31/14 17:28	1
Ethylene Dibromide	ND		0.50	ug/L			07/31/14 17:28	1
Dibromomethane	ND		0.50	ug/L			07/31/14 17:28	1
Dichlorodifluoromethane	ND		0.50	ug/L			07/31/14 17:28	1
1,1-Dichloroethane	ND		0.50	ug/L			07/31/14 17:28	1
1,2-Dichloroethane	ND		0.50	ug/L			07/31/14 17:28	1
1,1-Dichloroethene	ND		0.50	ug/L			07/31/14 17:28	1
cis-1,2-Dichloroethene	7.4		0.50	ug/L			07/31/14 17:28	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			07/31/14 17:28	1
1,2-Dichloropropane	ND		0.50	ug/L		10 i	07/31/14 17:28	1
cis-1.3-Dichloropropene	ND		0.50	ug/L			07/31/14 17:28	1
trans-1.3-Dichloropropene	ND		0.50	ug/L			07/31/14 17:28	1
Ethylbenzene	ND		0.50	ug/L			07/31/14 17:28	1
Hexachlorobutadiene	ND		1.0	ug/L			07/31/14 17:28	1
2-Hexanone	ND		50	ug/L			07/31/14 17:28	1
Isopropylbenzene	ND		0.50	ug/L			07/31/14 17:28	1
4-isopropyltoluene	ND		1.0	ug/L			07/31/14 17:28	1
Methylene Chloride	ND		5.0	ug/L			07/31/14 17:28	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L	20		07/31/14 17:28	1
Naphthalene	ND		1.0	ug/L			07/31/14 17:28	1
N-Propylbenzene	ND		1.0	ug/L			07/31/14 17:28	1
Styrene	ND		0.50	ug/L			07/31/14 17:28	1
1 1 1 2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 17:28	1
1 1 2 2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 17:28	1
Tetrachloroethene	ND		0.50	ug/L			07/31/14 17:28	1
Toluene	ND		0.50	ua/L			07/31/14 17:28	1
1 2 3-Trichlorobenzene	ND		1.0	ug/L			07/31/14 17:28	1
1.2.4-Trichlorobenzene	ND		1.0	ua/L			07/31/14 17:28	1
1 1 1-Trichloroethane	ND		0.50	ua/L			07/31/14 17:28	1
1 1 2-Trichloroethane	ND		0.50	ua/L			07/31/14 17:28	1
Trichlorgethene	ND		0.50	ua/L			07/31/14 17:28	1
Trichlorofluoromethene	ND		1.0	ua/L			07/31/14 17:28	1
1.2.3-Trichloropropage	ND		0.50	ug/L			07/31/14 17:28	1
1 1 2-Trichloro-1 2 2-trifluoroethane	ND		0.50	ug/L			07/31/14 17:28	1
1.2.4-Trimethylbenzene	ND		0.50	ug/L			07/31/14 17:28	1
1.3.5-Trimethylbenzene	ND		0.50	ug/L			07/31/14 17:28	1
Vinvl acetate	ND		10	ua/L			08/01/14 22:21	1
Vinyl chloride	ND		0.50	ua/L			07/31/14 17:28	1
Yvlenes Total	ND		1.0	ug/L			07/31/14 17:28	1
2 2-Dichloronronane	ND		0.50	ua/1			07/31/14 17:28	1
			50	ug/l		22 B	07/31/14 17:28	1
-C5-C12				49, E				

#### TestAmerica Job ID: 720-58974-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130				07/31/14 17:28	1
4-Bromofluorobenzene	102		67 - 130				08/01/14 22:21	1
1,2-Dichloroethane-d4 (Surr)	103		72 - 130				07/31/14 17:28	1
1,2-Dichloroethane-d4 (Surr)	102		72 - 130				08/01/14 22:21	1
Toluene-d8 (Surr)	100		70 - 130				07/31/14 17:28	1
Toluene-d8 (Surr)	101		70 - 130				08/01/14 22:21	1
Client Sample ID: MP-02-1						Lab	Sample ID: 720-	58974-8
Date Collected: 07/30/14 10:41							Matrix	x: Water
Date Received: 07/30/14 15:55								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			08/01/14 23:47	1
Acetone	ND		50	ug/L			08/01/14 23:47	1
Benzene	ND		0.50	ug/L			08/01/14 23:47	1
Dichlorobromomethane	ND		0.50	ug/L			08/01/14 23:47	1
Bromobenzene	ND		1.0	ug/L			08/01/14 23:47	1
Chlorobromomethane	ND		1.0	ug/L			08/01/14 23:47	1
Bromoform	ND		1.0	ug/L			08/01/14 23:47	1
Bromomethane	ND		1.0	ug/L			08/01/14 23:47	1
2-Butanone (MEK)	ND		50	ug/L			08/01/14 23:47	1
n-Butylbenzene	ND		1.0	ug/L			08/01/14 23:47	1
sec-Butylbenzene	ND		1.0	ug/L			08/01/14 23:47	1
tert-Butylbenzene	ND		1.0	ug/L			08/01/14 23:47	1
Carbon disulfide	ND		5.0	ug/L			08/01/14 23:47	1
Carbon tetrachloride	ND		0.50	ug/L			08/01/14 23:47	1
Chiorobenzene	ND		0.50	ug/L			08/01/14 23:47	1
Chloroethane	ND		1.0	ug/L			08/01/14 23:47	1
Chloroform	ND		1.0	ug/L			08/01/14 23:47	1
Chloromethane	ND		1.0	ug/L			08/01/14 23:47	1
2-Chlorotoluene	ND		0.50	ug/L			08/01/14 23:47	1
4-Chlorotoluene	ND		0.50	ug/L			08/01/14 23:47	1
Chlorodibromomethane	ND		0.50	ug/L			08/01/14 23:47	1
1,2-Dichlorobenzene	ND		0.50	ug/L			08/01/14 23:47	1
1,3-Dichlorobenzene	ND		0.50	ug/L			08/01/14 23:47	1
1,4-Dichlorobenzene	ND		0.50	ug/L			08/01/14 23:47	1
1,3-Dichloropropane	ND		1.0	ug/L			08/01/14 23:47	1
1,1-Dichloropropene	ND		0.50	ug/L			08/01/14 23:47	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			08/01/14 23:47	1
Ethylene Dibromide	ND		0.50	ug/L			08/01/14 23:47	1
Dibromomethane	ND		0.50	ug/L			08/01/14 23:47	1
Dichlorodifluoromethane	ND		0.50	ug/L			08/01/14 23:47	1
1,1-Dichloroethane	ND		0.50	ug/L			08/01/14 23:47	1
1,2-Dichloroethane	ND		0.50	ug/L			08/01/14 23:47	1
1,1-Dichloroethene	ND		0.50	ug/L			08/01/14 23:47	1
cis-1.2-Dichloroethene	7.2		0.50	ug/L			08/01/14 23:47	1
trans-1.2-Dichloroethene	1.0		0.50	ug/L			08/01/14 23:47	1
1,2-Dichloropropane	ND		0.50	ug/L			08/01/14 23:47	1
cis-1.3-Dichloropropene	ND		0.50	ua/L			08/01/14 23:47	1
trans-1,3-Dichloropropene	ND		0.50	ua/L			08/01/14 23:47	1
Ethylbenzene	ND		0.50	ug/L			08/01/14 23:47	1
Hexachlorobutadiene	ND		1.0	ua/L			08/01/14 23:47	1
2-Hexanone	ND		50	ug/L			08/01/14 23:47	1

TestAmerica Job ID: 720-58974-1

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-1 Date Collected: 07/30/14 10:41							Lab	b Sample ID: 720-58974- Matrix: Wate		
Date Received: 07/30/14 15:55	Booult	Qualifier	PI	MDI Unit		D	Propared	Applyrod	Dil Enc	
Analyte	Result	Quamer	RL		_	<u> </u>	Frepareu	Analyzeu	DIFAC	
Isopropylbenzene	ND		0.50	ug/L				00/01/14 23.47		
4-Isopropyltoluene	ND		1.0	ug/L				08/01/14 23:47	1	
Methylene Chloride	ND		5.0	ug/L				08/01/14 23:47	1	
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L				08/01/14 23:47	1	
Naphthalene	ND		1.0	ug/L				08/01/14 23:47	1	
N-Propylbenzene	ND		1.0	ug/L				08/01/14 23:47	1	
Styrene	ND		0.50	ug/L				08/01/14 23:47	1	
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L				08/01/14 23:47	1	
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L				08/01/14 23:47	1	
Tetrachloroethene	0.86		0.50	ug/L				08/01/14 23:47	1	
Toluene	ND		0.50	ug/L				08/01/14 23:47	1	
1,2,3-Trichlorobenzene	ND		1.0	ug/L				08/01/14 23:47	1	
1,2,4-Trichlorobenzene	ND		1.0	ug/L				08/01/14 23:47	1	
1,1,1-Trichloroethane	ND		0.50	ug/L				08/01/14 23:47	1	
1,1,2-Trichloroethane	ND		0.50	ug/L				08/01/14 23:47	1	
Trichloroethene	51		0.50	ug/L				08/01/14 23:47	1	
Trichlorofluoromethane	ND		1.0	ug/L				08/01/14 23:47	1	
1,2,3-Trichloropropane	ND		0.50	ug/L				08/01/14 23:47	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L				08/01/14 23:47	1	
1,2,4-Trimethylbenzene	ND		0.50	ug/L				08/01/14 23:47	1	
1,3,5-Trimethylbenzene	ND		0.50	ug/L				08/01/14 23:47	1	
Vinyl acetate	ND		10	ug/L				08/01/14 23:47	1	
Vinyl chloride	ND		0.50	ug/L				08/01/14 23:47	1	
Xylenes, Total	ND		1.0	ug/L				08/01/14 23:47	1	
2,2-Dichloropropane	ND		0.50	ug/L				08/01/14 23:47	1	
Gasoline Range Organics (GRO) -C5-C12	64		50	ug/L				08/01/14 23:47	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130		08/01/14 23:47	1
1,2-Dichloroethane-d4 (Surr)	101		72 - 130		08/01/14 23:47	1
Toluene-d8 (Surr)	102		70 - 130		08/01/14 23:47	1

## Client Sample ID: MP-02-2

Date Collected: 07/30/14 10:01 Date Received: 07/30/14 15:55

Date Recourse in the second							
Analyte	<b>Result Qualifier</b>	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L			08/02/14 00:15	1
Acetone	ND	50	ug/L			08/02/14 00:15	1
Benzene	ND	0.50	ug/L			08/02/14 00:15	1
Dichlorobromomethane	ND	0.50	ug/L			08/02/14 00:15	1
Bromobenzene	ND	1.0	ug/L			08/02/14 00:15	1
Chlorobromomethane	ND	1.0	ug/L			08/02/14 00:15	1
Bromoform	ND	1.0	ug/L			08/02/14 00:15	1
Bromomethane	ND	1.0	ug/L			08/02/14 00:15	1
2-Butanone (MEK)	ND	50	ug/L			08/02/14 00:15	1
n-Butylbenzene	ND	1.0	ug/L			08/02/14 00:15	1
sec-Butylbenzene	ND	1.0	ug/L			08/02/14 00:15	1
tert-Butylbenzene	ND	1.0	ug/L			08/02/14 00:15	1
Carbon disulfide	ND	5.0	ug/L			08/02/14 00:15	1

TestAmerica Pleasanton

## 1 Lab Sample ID: 720-58974-9

Matrix: Water

5

TestAmerica Job ID: 720-58974-1

5 6 7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-2 Date Collected: 07/30/14 10:01						Lab Sample ID: 720-58974-9 Matrix: Water				
Date Received: 07/30/14 15:55	Posult	Qualifier	RI	MDI	linit	D	Prenared	Analyzed	Dil Fac	
Carbon tetrachloride	ND	Guanner	0.50	mere	uo/l	 -	Toparou	08/02/14 00:15	1	
Chlorohonzene	ND		0.50		ua/t			08/02/14 00:15	1	
Chloroothana	ND		1.0	1.1.1	ug/L			08/02/14 00:15	1	
Chloroform			1.0		ug/L			08/02/14 00:15	1	
Chloremethane			1.0		ug/L			08/02/14 00:15	1	
			0.50		ug/L			08/02/14 00:15	1	
2-Chlorotoluene			0.50		ug/L			08/02/14 00:15	1	
4-Chlorotoluene			0.50		ug/L			08/02/14 00:15	1	
Chlorodibromomethane	ND		0.50		ug/L			08/02/14 00:15	1	
1,2-Dichlorobenzene	ND		0.50		ug/L			08/02/14 00:15	1	
1,3-Dichlorobenzene	ND		0.50		ug/L			08/02/14 00:15	1	
1,4-Dichlorobenzene	ND		0.50		ug/L			08/02/14 00:15	1	
1,3-Dichloropropane	ND		1.0		ug/L			08/02/14 00.15	1	
1,1-Dichloropropene	ND		0.50		ug/L			08/02/14 00.15	1	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/02/14 00:15	1	
Ethylene Dibromide	ND		0.50		ug/L			08/02/14 00:15	1	
Dibromomethane	ND		0.50		ug/L			08/02/14 00:15	1	
Dichlorodifluoromethane	ND		0.50		ug/L			08/02/14 00:15	1	
1,1-Dichloroethane	ND		0.50		ug/L			08/02/14 00:15	1	
1,2-Dichloroethane	ND		0.50		ug/L			08/02/14 00:15	1	
1,1-Dichloroethene	ND		0.50		ug/L			08/02/14 00:15	1	
cis-1,2-Dichloroethene	72		0.50		ug/L			08/02/14 00:15	1	
trans-1,2-Dichloroethene	ND		0.50		ug/L			08/02/14 00:15	1	
1,2-Dichloropropane	ND		0.50		ug/L			08/02/14 00:15	1	
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/02/14 00:15	1	
trans-1,3-Dichloropropene	ND		0.50		ug/L			08/02/14 00:15	1	
Ethylbenzene	ND		0.50		ug/L			08/02/14 00:15	1	
Hexachlorobutadiene	ND		1.0		ug/L			08/02/14 00:15	1	
2-Hexanone	ND		50		ug/L			08/02/14 00:15	1	
Isopropylbenzene	ND		0.50		ug/L			08/02/14 00:15	1	
4-Isopropyitoluene	ND		1.0		ug/L			08/02/14 00:15	1	
Methylene Chloride	ND		5.0		ug/L			08/02/14 00:15	1	
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/02/14 00:15	1	
Naphthalene	ND		1.0		ug/L			08/02/14 00:15	1	
N-Propylbenzene	ND		1.0		ug/L			08/02/14 00:15	1	
Styrene	ND		0.50		ug/L			08/02/14 00:15	1	
1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/02/14 00:15	1	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/02/14 00:15	1	
Tetrachloroethene	ND		0.50		ug/L			08/02/14 00:15	1	
Toluene	ND		0.50		ug/L			08/02/14 00:15	1	
1.2.3-Trichlorobenzene	ND		1.0		ug/L			08/02/14 00:15	1	
1.2.4-Trichlorobenzene	ND		1.0		ug/L			08/02/14 00:15	1	
1.1.1-Trichloroethane	ND		0.50		ug/L			08/02/14 00:15	1	
1.1.2-Trichloroethane	ND		0.50		ug/L			08/02/14 00:15	1	
Trichloroethene	ND		0.50		ug/L			08/02/14 00:15	1	
Trichlorofluoromethane	ND		1.0		ug/L			08/02/14 00:15	1	
1 2 3-Trichloropropane	ND		0.50		ug/L			08/02/14 00:15	1	
1 1 2-Trichloro-1.2.2-trifluoroethane	ND		0.50		ug/L			08/02/14 00:15	1	
1 2 4-Trimethylbenzene	ND		0.50		ua/L			08/02/14 00:15	1	
1.3.5-Trimethylbenzene	ND		0.50		ug/L			08/02/14 00:15	1	
.,_,					-					

TestAmerica Job ID: 720-58974-1

Lab Sample ID: 720-58974-10

Matrix: Water

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-2 Date Collected: 07/30/14 10:01						Lab	Sample ID: 720- Matrix	58974-9 c: Water
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Vinyl acetate	ND		10	ug/L			08/02/14 00:15	1
Vinyl chloride	ND		0.50	ug/L			08/02/14 00:15	1
Xylenes, Total	ND		1.0	ug/L			08/02/14 00:15	1
2,2-Dichloropropane	ND		0.50	ug/L			08/02/14 00:15	1
Gasoline Range Organics (GRO)	ND		50	ug/L			08/02/14 00:15	1
-C5-C12								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		67 - 130				08/02/14 00:15	1
1,2-Dichloroethane-d4 (Surr)	104		72 - 130				08/02/14 00:15	1
Toluene-d8 (Surr)	101		70 - 130				08/02/14 00:15	1

#### Client Sample ID: MP-02-3 Date Collected: 07/30/14 13:30 Date Received: 07/30/14 15:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0,50		ug/L			08/02/14 00:44	1
Acetone	180		50		ug/L			08/02/14 00:44	1
Benzene	ND		0.50		ug/L			08/02/14 00:44	1
Dichlorobromomethane	ND		0.50		ug/L			08/02/14 00:44	1
Bromobenzene	ND		1.0		ug/L			08/02/14 00:44	1
Chlorobromomethane	ND		1.0		ug/L			08/02/14 00:44	1
Bromoform	ND		1.0		ug/L			08/02/14 00:44	1
Bromomethane	ND		1.0		ug/L			08/02/14 00:44	1
2-Butanone (MEK)	ND		50		ug/L			08/02/14 00:44	1
n-Butylbenzene	ND		1.0		ug/L			08/02/14 00:44	1
sec-Butylbenzene	ND		1.0		ug/L			08/02/14 00:44	1
tert-Butylbenzene	ND		1.0		ug/L			08/02/14 00:44	1
Carbon disulfide	ND		5.0		ug/L			08/02/14 00:44	1
Carbon tetrachloride	ND		0.50		ug/L			08/02/14 00:44	1
Chlorobenzene	ND		0.50		ug/L			08/02/14 00:44	1
Chloroethane	ND		1.0		ug/L			08/02/14 00:44	1
Chloroform	ND		1.0		ug/L			08/02/14 00:44	1
Chloromethane	ND		1.0		ug/L			08/02/14 00:44	1
2-Chlorotoluene	ND		0.50		ug/L			08/02/14 00:44	1
4-Chlorotoluene	ND		0.50		ug/L			08/02/14 00:44	1
Chlorodibromomethane	ND		0.50		ug/L			08/02/14 00:44	1
1,2-Dichlorobenzene	ND		0.50		ug/L			08/02/14 00:44	1
1,3-Dichlorobenzene	ND		0.50		ug/L			08/02/14 00:44	1
1,4-Dichlorobenzene	ND		0.50		ug/L			08/02/14 00:44	1
1,3-Dichloropropane	ND		1.0		ug/L			08/02/14 00:44	1
1,1-Dichloropropene	ND ND		0.50		ug/L			08/02/14 00:44	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/02/14 00:44	1
Ethylene Dibromide	ND		0.50		ug/L			08/02/14 00:44	1
Dibromomethane	ND		0.50		ug/L			08/02/14 00:44	1
Dichlorodifluoromethane	ND		0.50		ug/L			08/02/14 00:44	1
1,1-Dichloroethane	ND		0.50		ug/L			08/02/14 00:44	1
1,2-Dichloroethane	ND		0.50		ug/L			08/02/14 00:44	1
1,1-Dichloroethene	ND		0.50		ug/L			08/02/14 00:44	1
cis-1,2-Dichloroethene	5.2		0.50		ug/L			08/02/14 00:44	1

TestAmerica Pleasanton

TestAmerica Job ID: 720-58974-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-3 Date Collected: 07/30/14 13:30							Lab S	ample ID: 720-5 Matrix	8974-10 x: Water
Date Received: 07/30/14 15:55								10100 01 17	ti bector
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		0.50		ug/L	-		08/02/14 00:44	1
1,2-Dichloropropane	ND		0.50		ug/L			08/02/14 00:44	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/02/14 00:44	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			08/02/14 00:44	1
Ethylbenzene	ND		0.50		ug/L			08/02/14 00:44	1
Hexachlorobutadiene	ND		1.0		ug/L			08/02/14 00:44	1
2-Hexanone	ND		50		ug/L			08/02/14 00:44	1
Isopropylbenzene	ND		0.50		ug/L			08/02/14 00:44	1
4-Isopropyltoluene	ND		1.0		ug/L			08/02/14 00:44	1
Methylene Chloride	ND		5.0		ug/L			08/02/14 00:44	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/02/14 00:44	1
Naphthalene	ND		1.0		ug/L			08/02/14 00:44	1
N-Propylbenzene	ND		1.0		ug/L			08/02/14 00:44	1
Styrene	ND		0.50		ug/L			08/02/14 00:44	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/02/14 00:44	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/02/14 00:44	1
Tetrachloroethene	ND		0.50		ug/L			08/02/14 00:44	1
Toluene	ND		0.50		ug/L			08/02/14 00:44	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/02/14 00:44	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/02/14 00:44	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/02/14 00:44	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/02/14 00:44	1
Trichloroethene	ND		0.50		ug/L			08/02/14 00:44	1
Trichlorofluoromethane	ND		1.0		ug/L			08/02/14 00:44	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/02/14 00:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/02/14 00:44	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/02/14 00:44	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/02/14 00:44	1
Vinyl acetate	ND		10		ug/L			08/02/14 00:44	1
Vinyl chloride	ND		0.50		ug/L			08/02/14 00:44	1
Xylenes, Total	ND		1.0		ug/L			08/02/14 00:44	1
2,2-Dichloropropane	ND		0.50		ug/L			08/02/14 00:44	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			08/02/14 00:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130					08/02/14 00:44	1
1,2-Dichloroethane-d4 (Surr)	100		72 - 130					08/02/14 00:44	1
Toluene-d8 (Surr)	101		70 - 130					08/02/14 00:44	1

#### Client Sample ID: MP-03-1 Date Collected: 07/30/14 11:05 Date Received: 07/30/14 15:55

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.50		ug/L			08/02/14 01:12	1
ND		50		ug/L			08/02/14 01:12	1
ND		0.50		ug/L			08/02/14 01:12	1
ND		0.50		ug/L			08/02/14 01:12	1
ND		1.0		ug/L			08/02/14 01:12	1
ND		1.0		ug/L			08/02/14 01:12	1
	Result ND ND ND ND ND	Result Qualifier ND	Result         Qualifier         RL           ND         0.50           ND         50           ND         0.50           ND         0.50           ND         0.50           ND         1.0           ND         1.0	Result         Qualifier         RL         MDL           ND         0.50            ND         50            ND         0.50            ND         0.50            ND         0.50            ND         1.0	Result         Qualifier         RL         MDL         Unit           ND         0.50         ug/L           ND         50         ug/L           ND         0.50         ug/L           ND         0.50         ug/L           ND         0.50         ug/L           ND         0.50         ug/L           ND         1.0         ug/L           ND         1.0         ug/L	Result         Qualifier         RL         MDL         Unit         D           ND         0.50         ug/L         ug/L           ND         50         ug/L           ND         0.50         ug/L           ND         0.50         ug/L           ND         0.50         ug/L           ND         1.0         ug/L           ND         1.0         ug/L	Result         Qualifier         RL         MDL         Unit         D         Prepared           ND         0.50         ug/L         ug/L <td< td=""><td>Result         Qualifier         RL         MDL         Unit         D         Prepared         Analyzed           ND         0.50         ug/L         08/02/14 01:12         08/02/14 01:12           ND         50         ug/L         08/02/14 01:12         08/02/14 01:12           ND         0.50         ug/L         08/02/14 01:12           ND         0.50         ug/L         08/02/14 01:12           ND         0.50         ug/L         08/02/14 01:12           ND         1.0         ug/L         08/02/14 01:12           ND         1.0         ug/L         08/02/14 01:12</td></td<>	Result         Qualifier         RL         MDL         Unit         D         Prepared         Analyzed           ND         0.50         ug/L         08/02/14 01:12         08/02/14 01:12           ND         50         ug/L         08/02/14 01:12         08/02/14 01:12           ND         0.50         ug/L         08/02/14 01:12           ND         0.50         ug/L         08/02/14 01:12           ND         0.50         ug/L         08/02/14 01:12           ND         1.0         ug/L         08/02/14 01:12           ND         1.0         ug/L         08/02/14 01:12

TestAmerica Pleasanton

Lab Sample ID: 720-58974-11

Matrix: Water

TestAmerica Job ID: 720-58974-1

5

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-1							Lab S	Sample ID: 720-5	8974-11
Date Collected: 07/30/14 11:05								Matri	x: Water
Date Received: 07/30/14 15:55									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromoform	ND	174	1.0		ug/L	 -		08/02/14 01:12	1
Bromomethane	ND		1.0		ug/L			08/02/14 01:12	1
2-Butanone (MEK)	ND		50		ug/L			08/02/14 01:12	.1
n-Butylbenzene	ND		1.0		ug/L			08/02/14 01:12	1
sec-Butylbenzene	ND		1.0		ug/L			08/02/14 01:12	1
tert-Butylbenzene	ND		1.0		ug/L			08/02/14 01:12	1
Carbon disulfide	ND		5.0		ug/L			08/02/14 01:12	1
Carbon tetrachloride	ND		0.50		ug/L			08/02/14 01:12	1
Chlorobenzene	ND		0.50		ug/L			08/02/14 01:12	1
Chloroethane	ND		1.0		ug/L			08/02/14 01:12	1
Chloroform	ND		1.0		ug/L			08/02/14 01:12	1
Chioromethane	ND		1.0		ug/L			08/02/14 01:12	1
2-Chlorotoluene	ND		0.50		ug/L			08/02/14 01:12	1
4-Chiorotoluene	ND		0.50		ug/L			08/02/14 01:12	1
Chlorodibromomethane	ND		0.50		ug/L			08/02/14 01:12	1
1,2-Dichlorobenzene	ND		0.50		ug/L			08/02/14 01:12	1
1,3-Dichlorobenzene	ND		0.50		ug/L			08/02/14 01:12	1
1.4-Dichlorobenzene	ND		0.50		ug/L			08/02/14 01:12	1
1.3-Dichloropropane	ND		1.0		ug/L			08/02/14 01:12	1
1.1-Dichloropropene	ND		0.50		ug/L			08/02/14 01:12	1
1.2-Dibromo-3-Chloropropane	ND		1.0		ua/L			08/02/14 01:12	1
Ethylene Dibromide	ND		0.50		ua/L			08/02/14 01:12	1
Dibromomethane	ND		0.50		ua/l			08/02/14 01:12	1
Dichlorodifluoromethane	ND		0.50		ua/l			08/02/14 01:12	1
1 1-Dichloroethane	ND		0.50		ua/L			08/02/14 01:12	1
1 2-Dichloroethane	ND		0.50		ug/L			08/02/14 01:12	1
1 1-Dichlomethene	ND		0.50					08/02/14 01:12	1
cis 1 2 Dichloroethene	0.74		0.50		ua/l			08/02/14 01:12	1
trans_1 2-Dichloroethene	ND		0.50		ug/L			08/02/14 01:12	1
1 2-Dichloropropage	ND		0.50		ug/L			08/02/14 01:12	1
cis 1 3-Dichloropropene	ND		0.50	1 Q	ug/L			08/02/14 01:12	1
trans 1.3 Dichloropropene	ND		0.50		ug/L			08/02/14 01:12	1
Ethylbonzene	ND		0.50		ug/L			08/02/14 01:12	1
	ND		1.0		ug/L			08/02/14 01:12	1
			50		ug/L			08/02/14 01:12	1
			50		ug/L			08/02/14 01.12	
			0.50		ug/L			08/02/14 01:12	1
4-Isopropyitoluene			1.0		ug/L			08/02/14 01:12	1
			5.0		ug/L			08/02/14 01:12	
4-wetnyl-2-pentanone (MIBK)	ND		50		ug/L			08/02/14 01:12	- 1
Naphthalene	ND		1.0		ug/L			08/02/14 01:12	1
N-Propylbenzene	ND		1.0		ug/L			08/02/14 01:12	1
Styrene	ND		0.50	I	ug/L			08/02/14 01:12	1
1,1,1,2-l etrachloroethane	ND		0.50	l	ug/L			08/02/14 01:12	1
1,1,2,2- I etrachloroethane	ND		0.50	1 A 1	ug/L			08/02/14 01:12	1
Tetrachloroethene	94		0.50		ug/L			08/02/14 01:12	1
Toluene	ND		0.50		ug/L			08/02/14 01:12	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/02/14 01:12	1
1,2,4-Trichlorobenzene	ND		1.0	4	ug/L			08/02/14 01:12	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/02/14 01:12	1

TestAmerica Job ID: 720-58974-1

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-1 Date Collected: 07/30/14 11:05						Lab Sample ID: 720-58974 Matrix: Wa			
Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
1,1,2-Trichloroethane	ND		0.50	ug/L			08/02/14 01:12	1	
Trichloroethene	9.5		0.50	ug/L			08/02/14 01:12	1	
Trichlorofluoromethane	ND		1.0	ug/L			08/02/14 01:12	1	
1,2,3-Trichloropropane	ND		0.50	ug/L			08/02/14 01:12	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/02/14 01:12	1	
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/02/14 01:12	1	
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/02/14 01:12	1	
Vinyl acetate	ND		10	ug/L			08/02/14 01:12	1	
Vinyl chloride	ND		0.50	ug/L			08/02/14 01:12	1	
Xylenes, Total	ND		1.0	ug/L			08/02/14 01:12	1	
2,2-Dichloropropane	ND		0.50	ug/L			08/02/14 01:12	1	
Gasoline Range Organics (GRO) -C5-C12	110		50	ug/L			08/02/14 01:12	1	
Surrogate	%Recoverv	Qualifier	Limits			Prepared	Analyzed	Dil Fac	

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed
4-Bromofluorobenzene	99	67 - 130	08/02/14 01:12
1,2-Dichloroethane-d4 (Surr)	100	72 - 130	08/02/14 01:12
Toluene-d8 (Surr)	101	70 - 130	08/02/14 01:12

## Client Sample ID: MP-03-2

#### Date Collected: 07/30/14 09:45 Date Received: 07/30/14 15:55

Analysis         Net and Analysis         No.	Date Received. 07/30/14 13.33	Popult	Qualifier	PI	MDI Lipit	D	Prenared	Analyzed	Dil Fac
Methy terberty i ether         ND         0.50         ug/L         08/02/14 01/41         1           Acetone         ND         0.50         ug/L         08/02/14 01/41         1           Benzene         ND         0.50         ug/L         08/02/14 01/41         1           Dichlorobromorethane         ND         1.0         ug/L         08/02/14 01/41         1           Bromoform         ND         1.0         ug/L         08/02/14 01/41         1           Bromoform         ND         1.0         ug/L         08/02/14 01/41         1           Bromoform         ND         1.0         ug/L         08/02/14 01/41         1           Bromorethane         ND         1.0         ug/L         08/02/14 01/41         1           Bromorethane         ND         1.0         ug/L         08/02/14 01/41         1           2-Butaone (MEK)         ND         5.0         ug/L         08/02/14 01/41         1           2-Butaone (MEK)         ND         1.0         ug/L         08/02/14 01/41         1           2-Butaone (MEK)         ND         1.0         ug/L         08/02/14 01/41         1           Carbon disulfide         ND         5.	Analyte	Result	Quaimer				Fiepareu	09/02/14 01:41	
Acetone         ND         50         ug/L         08/02/14 01:41         1           Benzene         ND         0.50         ug/L         08/02/14 01:41         1           Benzene         ND         0.50         ug/L         08/02/14 01:41         1           Bromobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chiorobromomethane         ND         1.0         ug/L         08/02/14 01:41         1           Bromoferm         ND         1.0         ug/L         08/02/14 01:41         1           Bromoferm         ND         1.0         ug/L         08/02/14 01:41         1           Schutphenzene         ND         1.0         ug/L         08/02/14 01:41         1           Schutphenzene         ND         1.0         ug/L         08/02/14 01:41         1           Schutphenzene         ND         1.0         ug/L         08/02/14 01:41         1           Carbon distifie         ND         5.0         ug/L         08/02/14 01:41         1           Carbon distifie         ND         0.50         ug/L         08/02/14 01:41         1           Chiorobenzene         ND         0.50 <t< td=""><td>Methyl tert-butyl ether</td><td>ND</td><td></td><td>0.50</td><td>ug/L</td><td></td><td></td><td>06/02/14 01.41</td><td></td></t<>	Methyl tert-butyl ether	ND		0.50	ug/L			06/02/14 01.41	
Benzene         ND         0.50         ug/L         08/02/14 01:41         1           Dichorobromomethane         ND         0.50         ug/L         08/02/14 01:41         1           Dichorobromomethane         ND         1.0         ug/L         08/02/14 01:41         1           Bromobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Sec-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         1.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         0.50         ug/L         08/02/14 01:41         1           Chiorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chiorobenzene         ND	Acetone	ND		50	ug/L			08/02/14 01:41	1
Dicklorobromomethane         ND         0.50         ug/L         08/02/14 01:41         1           Bromobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chlorobromomethane         ND         1.0         ug/L         08/02/14 01:41         1           Bromoferm         ND         1.0         ug/L         08/02/14 01:41         1           Bromomethane         ND         1.0         ug/L         08/02/14 01:41         1           2-Butanone (MEK)         ND         50         ug/L         08/02/14 01:41         1           2-Butanone (MEK)         ND         50         ug/L         08/02/14 01:41         1           n-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           cabon disulfide         ND         5.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         5.0         ug/L         08/02/14 01:41         1           Chlorobtane         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobtane         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobtoromethane         ND </td <td>Benzene</td> <td>ND</td> <td></td> <td>0.50</td> <td>ug/L</td> <td></td> <td></td> <td>08/02/14 01:41</td> <td>1</td>	Benzene	ND		0.50	ug/L			08/02/14 01:41	1
Bromobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chiorobromomethane         ND         1.0         ug/L         08/02/14 01:41         1           Bromoform         ND         1.0         ug/L         08/02/14 01:41         1           Bromoform         ND         1.0         ug/L         08/02/14 01:41         1           Bromomethane         ND         1.0         ug/L         08/02/14 01:41         1           -Butanone (MEK)         ND         50         ug/L         08/02/14 01:41         1           n-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           carbon disulfide         ND         1.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         5.0         ug/L         08/02/14 01:41         1           Chiorobrane         ND         5.0         ug/L         08/02/14 01:41         1           Chiorobrane         ND         0.50         ug/L         08/02/14 01:41         1           Chiorobrane         ND         1.0         ug/L         08/02/14 01:41         1           Chiorobrane         ND         1.0	Dichlorobromomethane	ND		0.50	ug/L			08/02/14 01:41	1
Chlorobromomethane         ND         1.0         ug/L         08/02/14 01:41         1           Bromoform         ND         1.0         ug/L         08/02/14 01:41         1           Bromomethane         ND         1.0         ug/L         08/02/14 01:41         1           2-Butanone (MEK)         ND         50         ug/L         08/02/14 01:41         1           2-Butanone (MEK)         ND         1.0         ug/L         08/02/14 01:41         1           sec-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           carbon disulfide         ND         1.0         ug/L         08/02/14 01:41         1           Carbon tetrachloride         ND         5.0         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         5.0         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobluene         ND <td>Bromobenzene</td> <td>ND</td> <td></td> <td>1.0</td> <td>ug/L</td> <td></td> <td></td> <td>08/02/14 01:41</td> <td>1</td>	Bromobenzene	ND		1.0	ug/L			08/02/14 01:41	1
Bromotorm         ND         1.0         ug/L         08/02/14 01:41         1           Bromomethane         ND         1.0         ug/L         08/02/14 01:41         1           2-Butanone (MEK)         ND         50         ug/L         08/02/14 01:41         1           2-Butanone (MEK)         ND         1.0         ug/L         08/02/14 01:41         1           n-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           sec-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           carbon disulfide         ND         5.0         ug/L         08/02/14 01:41         1           Carbon tetrachloride         ND         5.0         ug/L         08/02/14 01:41         1           Chiorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chiorobethane         ND         1.0         ug/L         08/02/14 01:41         1           Chiorobethane         ND         0.50         ug/L         08/02/14 01:41         1           2-Chiorobluene         ND         0.50         ug/L         08/02/14 01:41         1           1.2-Dichiorobenzene	Chlorobromomethane	ND		1.0	ug/L			08/02/14 01:41	1
Bromomethane         ND         1.0         ug/L         08/02/14 01:41         1           2-Butanone (MEK)         ND         50         ug/L         08/02/14 01:41         1           n-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           sec-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           sec-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         5.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         5.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         0.50         ug/L         08/02/14 01:41         1           Charbon fearchinge         ND         0.50         ug/L         08/02/14 01:41         1           Chiorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chiorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chiorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chiorobinomethane	Bromoform	ND		1.0	ug/L			08/02/14 01:41	1
2-Butanone (MEK)         ND         50         ug/L         08/02/14 01:41         1           n-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           sec-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           tert-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         1.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         5.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         0.50         ug/L         08/02/14 01:41         1           Chiorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chiorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chiorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chiorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chiorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           2-Chiorobenzene	Bromomethane	ND		1.0	ug/L			08/02/14 01:41	1
n-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           sec-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           tert-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         5.0         ug/L         08/02/14 01:41         1           Carbon tetrachloride         ND         5.0         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chlorobiure         ND         0.50         ug/L         08/02/14 01:41         1           2-Chlorobiure         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene <t< td=""><td>2-Butanone (MEK)</td><td>ND</td><td></td><td>50</td><td>ug/L</td><td></td><td></td><td>08/02/14 01:41</td><td>1</td></t<>	2-Butanone (MEK)	ND		50	ug/L			08/02/14 01:41	1
sec-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           tert-Butylbenzene         ND         1.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         5.0         ug/L         08/02/14 01:41         1           Carbon tetrachloride         ND         5.0         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chlorobluene         ND         0.50         ug/L         08/02/14 01:41         1           2-Chlorobluene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene	n-Butylbenzene	ND		1.0	ug/L			08/02/14 01:41	1
ND         1.0         ug/L         08/02/14 01:41         1           Carbon disulfide         ND         5.0         ug/L         08/02/14 01:41         1           Carbon tetrachloride         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         1.0         ug/L         08/02/14 01:41         1           Chloroform         ND         1.0         ug/L         08/02/14 01:41         1           Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           2-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0	sec-Butylbenzene	ND		1.0	ug/L			08/02/14 01:41	1
Carbon disulfide         ND         5.0         ug/L         08/02/14 01:41         1           Carbon tetrachloride         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chloroethane         ND         1.0         ug/L         08/02/14 01:41         1           Chloroethane         ND         1.0         ug/L         08/02/14 01:41         1           Chloroethane         ND         1.0         ug/L         08/02/14 01:41         1           Chlorooform         ND         1.0         ug/L         08/02/14 01:41         1           Chloroofulene         ND         0.50         ug/L         08/02/14 01:41         1           2-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropropane <td>tert-Butylbenzene</td> <td>ND</td> <td></td> <td>1.0</td> <td>ug/L</td> <td></td> <td></td> <td>08/02/14 01:41</td> <td>1</td>	tert-Butylbenzene	ND		1.0	ug/L			08/02/14 01:41	1
Carbon tetrachloride         ND         0.50         ug/L         08/02/14 01:41         1           Chlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chloroethane         ND         1.0         ug/L         08/02/14 01:41         1           2-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           4-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,4-Dichloropenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,4-Dichloroprop	Carbon disulfide	ND		5.0	ug/L			08/02/14 01:41	1
Chlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           Chloroethane         ND         1.0         ug/L         08/02/14 01:41         1           Chloroform         ND         1.0         ug/L         08/02/14 01:41         1           Chloroform         ND         1.0         ug/L         08/02/14 01:41         1           Chlorotoluene         ND         1.0         ug/L         08/02/14 01:41         1           2-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           4-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloro	Carbon tetrachloride	ND		0.50	ug/L			08/02/14 01:41	1
ND         1.0         ug/L         08/02/14 01:41         1           Chloroform         ND         1.0         ug/L         08/02/14 01:41         1           Chloroform         ND         1.0         ug/L         08/02/14 01:41         1           Chloroform         ND         1.0         ug/L         08/02/14 01:41         1           2-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           4-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,1-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane	Chlorobenzene	ND		0.50	ug/L			08/02/14 01:41	1
ND         1.0         ug/L         08/02/14 01:41         1           Chloroform         ND         1.0         ug/L         08/02/14 01:41         1           2-Chlorofoluene         ND         0.50         ug/L         08/02/14 01:41         1           4-Chlorofoluene         ND         0.50         ug/L         08/02/14 01:41         1           4-Chlorofoluene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,4-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropropane         ND         1.0         ug/L         08/02/14 01:41         1           1,1-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         1.0         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropa	Chloroethane	ND		1.0	ug/L			08/02/14 01:41	1
Chloromethane         ND         1.0         ug/L         08/02/14 01:41         1           2-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           4-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorodibromomethane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,4-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,1-Dichloropropane         ND         1.0         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         1.0         ug/L         08/02/14 01:41         1	Chloroform	ND		1.0	ug/L			08/02/14 01:41	1
2-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           4-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,4-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropenzene         ND         1.0         ug/L         08/02/14 01:41         1           1,3-Dichloropropene         ND         1.0         ug/L         08/02/14 01:41         1           1,1-Dichloropropene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         1.0         ug/L         08/02/14 01:41         1 <td>Chloromethane</td> <td>ND</td> <td></td> <td>1.0</td> <td>ug/L</td> <td></td> <td></td> <td>08/02/14 01:41</td> <td>1</td>	Chloromethane	ND		1.0	ug/L			08/02/14 01:41	1
A-Chlorotoluene         ND         0.50         ug/L         08/02/14 01:41         1           Chlorodibromomethane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,4-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,4-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropropane         ND         1.0         ug/L         08/02/14 01:41         1           1,1-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         1.0         ug/L         08/02/14 01:41         1	2-Chlorotoluene	ND		0.50	ug/L			08/02/14 01:41	1
ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,4-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,4-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropropane         ND         1.0         ug/L         08/02/14 01:41         1           1,1-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         1.0         ug/L         08/02/14 01:41         1	4-Chlorotoluene	ND		0.50	ug/L			08/02/14 01:41	1
ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,4-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropropane         ND         1.0         ug/L         08/02/14 01:41         1           1,1-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         1.0         ug/L         08/02/14 01:41         1	Chlorodibromomethane	ND		0.50	ug/L			08/02/14 01:41	1
ND         0.50         ug/L         08/02/14 01:41         1           1,4-Dichlorobenzene         ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropropane         ND         1.0         ug/L         08/02/14 01:41         1           1,1-Dichloropropane         ND         1.0         ug/L         08/02/14 01:41         1           1,1-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         1.0         ug/L         08/02/14 01:41         1	1,2-Dichlorobenzene	ND		0.50	ug/L			08/02/14 01:41	1
ND         0.50         ug/L         08/02/14 01:41         1           1,3-Dichloropropane         ND         1.0         ug/L         08/02/14 01:41         1           1,1-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,1-Dichloropropane         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         1.0         ug/L         08/02/14 01:41         1	1,3-Dichlorobenzene	ND		0.50	ug/L			08/02/14 01:41	1
ND         1.0         ug/L         08/02/14 01:41         1           1,1-Dichloropropene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         1.0         ug/L         08/02/14 01:41         1	1,4-Dichlorobenzene	ND		0.50	ug/L			08/02/14 01:41	1
1,1-Dichloropropene         ND         0.50         ug/L         08/02/14 01:41         1           1,2-Dibromo-3-Chloropropane         ND         1.0         ug/L         08/02/14 01:41         1	1,3-Dichloropropane	ND		1.0	ug/L			08/02/14 01:41	1
1,2-Dibromo-3-Chloropropane         ND         1.0         ug/L         08/02/14 01:41         1	1,1-Dichloropropene	ND		0.50	ug/L			08/02/14 01:41	1
	1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			08/02/14 01:41	1

**TestAmerica** Pleasanton

#### Lab Sample ID: 720-58974-12 Matrix: Water

6

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

TestAmerica Job ID: 720-58974-1

5

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-2						Lab S	ample ID: 720-5	8974-12
Date Collected: 07/30/14 09:45							Matrix	x: Water
Date Received: 07/30/14 15:55								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ethylene Dibromide	ND		0.50	ug/L	_		08/02/14 01:41	1
Dibromomethane	ND		0.50	ug/L			08/02/14 01:41	1
Dichlorodifluoromethane	ND		0.50	ug/L			08/02/14 01:41	1
1,1-Dichloroethane	ND		0.50	ug/L			08/02/14 01:41	1
1,2-Dichloroethane	ND		0.50	ug/L			08/02/14 01:41	1
1,1-Dichloroethene	ND		0.50	ug/L			08/02/14 01:41	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			08/02/14 01:41	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			08/02/14 01:41	1
1,2-Dichloropropane	ND		0.50	ug/L			08/02/14 01:41	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			08/02/14 01:41	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			08/02/14 01:41	1
Ethylbenzene	ND		0.50	ug/L			08/02/14 01:41	1
Hexachlorobutadiene	ND		1.0	ug/L			08/02/14 01:41	1
2-Hexanone	ND		50	ug/L			08/02/14 01:41	- 1
Isopropylbenzene	ND		0.50	ug/L			08/02/14 01:41	1
4-Isopropyltoluene	ND		1.0	ug/L			08/02/14 01:41	1
Methylene Chloride	ND		5.0	ug/L			08/02/14 01:41	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/02/14 01:41	1
Naphthalene	ND		1.0	ug/L			08/02/14 01:41	1
N-Propylbenzene	ND		1.0	ug/L			08/02/14 01:41	1
Styrene	ND		0.50	ug/L			08/02/14 01:41	1
1 1 1 2-Tetrachloroethane	ND		0.50	ua/L			08/02/14 01:41	1
1 1 2 2-Tetrachloroethane	ND		0.50	ua/L			08/02/14 01:41	1
Tetrachloroethene	ND		0.50	ug/L			08/02/14 01:41	1
Toluene	ND		0.50	ug/l			08/02/14 01:41	1
1 2 3-Trichlorobenzene	ND		1.0	ug/L			08/02/14 01:41	1
1.2.4-Trichlorobenzene	ND		1.0	ug/L			08/02/14 01:41	1
1 1 1 Trichlorosthane	ND		0.50	ug/L			08/02/14 01:41	1
	ND		0.50	ug/L			08/02/14 01:41	1
Trichlereethene	ND		0.50	ug/L			08/02/14 01:41	1
Trichlorofucromethana	ND		1.0	ug/L			08/02/14 01:41	1
	ND		1.0	ug/L			08/02/14 01:41	1
1,2,3-Thenioropropane	ND		0.50	ug/L			08/02/14 01:41	1
1,1,2-Thenloro-1,2,2-thnuoroethane	ND		0.50	ug/L			08/02/14 01:41	1
1,2,4- I rimetnyibenzene	ND		0.50	ug/L			08/02/14 01:41	1
1,3,5-1 rimethylbenzene	ND		0.50	ug/L			08/02/14 01:41	1
Vinyl acetate	ND		10	ug/L			08/02/14 01:41	1
Vinyl chloride	ND		0.50	ug/L			08/02/14 01:41	1
Xylenes, Total	ND		1.0	ug/L			08/02/14 01:41	1
2,2-Dichloropropane	ND		0.50	ug/L			08/02/14 01:41	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L			08/02/14 01:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130				08/02/14 01:41	1

08/02/14 01:41	1
08/02/14 01:41	1
08/02/14 01:41	1

TestAmerica Pleasanton

72 - 130

70 - 130

104

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MP-03-3 Date Collected: 07/30/14 09:25						Lab Sample ID: 720-58974-13 Matrix: Water			
Date Received: 07/30/14 15:55	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Methyl tert-butyl ether	ND		0.50	ug/L			08/02/14 02:10	1	
Acetone	ND		50	ug/L			08/02/14 02:10	1	
Benzene	ND		0.50	ug/L			08/02/14 02:10	1	
Dichlorobromomethane	ND		0.50	ua/L			08/02/14 02:10	1	
Bromobenzene	ND		1.0	ua/L			08/02/14 02:10	1	
Chlorobromomethane	ND		1.0	ug/L			08/02/14 02:10	1	
Bromoform	ND		1.0	ug/L			08/02/14 02:10	1	
Bromomethane	ND		1.0	ug/L			08/02/14 02:10	1	
2-Butanone (MEK)	ND		50	ug/L			08/02/14 02:10	1	
n-Butylbenzene	ND		1.0	ug/L			08/02/14 02:10	1	
sec-Butylbenzene	ND		1.0	ug/L			08/02/14 02:10	1	
tert-Butylbenzene	ND		1.0	ug/L			08/02/14 02:10	1	
Carbon disulfide	ND		5.0	ug/L			08/02/14 02:10	1	
	ND		0.50	ug/L			08/02/14 02:10	1	
	ND		0.50	ug/L			08/02/14 02:10	1	
Chloroethane	ND		1.0	ug/l			08/02/14 02:10	1	
Chloroform	ND		1.0	ug/i			08/02/14 02:10	1	
Chloromethane	ND		1.0	ug/L			08/02/14 02:10	1	
2 Chlorotolueze	ND		0.50	ug/L			08/02/14 02:10	1	
	ND		0.50	ug/L			08/02/14 02:10	1	
Chloradibromomethane	ND		0.50	ug/L			08/02/14 02:10	1	
	ND		0.50	ug/L			08/02/14 02:10	1	
1.2 Dichlorobenzene	ND		0.50	ug/L			08/02/14 02:10	1	
	ND		0.50	ug/i			08/02/14 02:10	1	
1.3 Dichloropropage	ND		1.0	ug/L			08/02/14 02:10	1	
1.1 Dichloropropene	ND		0.50	ug/L			08/02/14 02:10	1	
	ND		1.0	ug/L			08/02/14 02:10	1	
Ethylene Dibromide	ND		0.50	ug/L			08/02/14 02:10	1	
	ND		0.50	ug/L			08/02/14 02:10	1	
Diblomomethane	ND		0.50	ug/L			08/02/14 02:10	1	
	ND		0.50	ug/L			08/02/14 02:10	1	
	ND		0.50	ug/L			08/02/14 02:10	1	
	ND		0.50	ug/L			08/02/14 02:10	1	
	ND		0.50	ug/L			08/02/14 02:10	1	
trans 1.2 Dichloroothono	ND		0.50	ug/L			08/02/14 02:10	1	
1.2 Diobloropropago	ND		0.50	ug/L			08/02/14 02:10	1	
cic 1.3 Dichloropropene	ND		0.50	ug/L			08/02/14 02:10	1	
trans 1.3 Dichloropropene	ND		0.50	ug/L			08/02/14 02:10	1	
Ethylhoppop	ND		0.50	ug/L			08/02/14 02:10	1	
Environterization	ND		1.0	ug/L			08/02/14 02:10	1	
	ND		50	ug/L			08/02/14 02:10	1	
	ND		0.50	ug/L			08/02/14 02:10	1	
	ND		1.0	ug/L			08/02/14 02:10	1	
			5.0	ug/L			08/02/14 02:10	1	
	ND		5.0	ug/L			08/02/14 02:10	1	
Handthalana			10	ug/L			08/02/14 02:10	1	
			1.0	ug/L			08/02/14 02:10	1	
N-Fropyidenzene			0.50	ug/L			08/02/14 02:10	1	
1 1 1 2 Tetrachloroethane			0.50	ug/L			08/02/14 02:10	1	

**TestAmerica** Pleasanton

Lab Sample ID: 720-58974-13

TestAmerica Job ID: 720-58974-1

5

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-3							Lab S	ample ID: 720-5	8974-13
Date Collected: 07/30/14 09:25								Matrix	c: Water
Date Received: 07/30/14 15:55		1.2						THE ADDRESS OF	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/02/14 02:10	1
Tetrachloroethene	ND		0.50		ug/L			08/02/14 02:10	1
Toluene	ND		0.50		ug/L			08/02/14 02:10	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/02/14 02:10	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/02/14 02:10	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/02/14 02:10	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/02/14 02:10	1
Trichloroethene	ND		0.50		ug/L			08/02/14 02:10	1
Trichlorofluoromethane	ND		1.0		ug/L			08/02/14 02:10	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/02/14 02:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/02/14 02:10	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/02/14 02:10	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/02/14 02:10	1
Vinyl acetate	ND		10		ug/L			08/02/14 02:10	1
Vinyl chloride	ND		0.50		ug/L			08/02/14 02:10	1
Xylenes, Total	ND		1.0		ug/L			08/02/14 02:10	1
2,2-Dichloropropane	ND		0.50		ug/L			08/02/14 02:10	1
Gasoline Range Organics (GRO)	ND		50		ug/L			08/02/14 02:10	1
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits	04			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100	1	67 - 130			-		08/02/14 02:10	1
1,2-Dichloroethane-d4 (Surr)	100		72 - 130					08/02/14 02:10	1
Toluene-d8 (Surr)	100		70 - 130					08/02/14 02:10	1

TestAmerica Job ID: 720-58974-1

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-164110/4						<b>Client S</b>	ample ID: Metho	d Blank
Matrix: Water							Prep Type: 1	otal/NA
Analysis Batch: 164110								
American	MB	MB	DI	MIDI	Unit	Proposed	Analyzad	Dil Ess
Mathul tart hutul athan	ND	Quaimer	0.50	MDC	Unit	 Flepaleu	07/21/14 09:51	
Applement	ND		0.50		ug/L		07/31/14 08:51	1
Acetone	ND		50		ug/L		07/31/14 08:51	4
Benzene	ND		0.50		ug/L		07/31/14 08:51	- 1
Dichlorobromomethane	ND		0.50		ug/L		07/31/14 08.51	
Bromobenzene	ND		1.0		ug/L		07/31/14 08:51	1
Chlorobromomethane	ND		1.0		ug/L		07/31/14 08:51	
Bromoform	ND		1.0		ug/L		07/31/14 08:51	1
Bromomethane	ND		1.0		ug/L		07/31/14 08:51	1
2-Butanone (MEK)	ND		50		ug/L		07/31/14 08:51	1
n-Butylbenzene	ND		1.0		ug/L		07/31/14 08:51	1
sec-Butylbenzene	ND		1.0		ug/L		07/31/14 08:51	1
tert-Butylbenzene	ND		1.0		ug/L		07/31/14 08:51	1
Carbon disulfide	ND		5.0		ug/L		07/31/14 08:51	1
Carbon tetrachloride	ND		0.50		ug/L		07/31/14 08:51	1
Chlorobenzene	ND		0.50		ug/L		07/31/14 08:51	1
Chloroethane	ND		1.0		ug/L		07/31/14 08:51	1
Chloroform	ND		1.0		ug/L		07/31/14 08:51	1
Chloromethane	ND		1.0		ug/L		07/31/14 08:51	1
2-Chlorotoluene	ND		0.50		ug/L		07/31/14 08:51	1
4-Chlorotoluene	ND		0.50		ug/L		07/31/14 08:51	1
Chlorodibromomethane	ND		0.50		ug/L		07/31/14 08:51	1
1,2-Dichlorobenzene	ND		0.50		ug/L		07/31/14 08:51	1
1,3-Dichlorobenzene	ND		0.50		ug/L		07/31/14 08:51	1
1,4-Dichlorobenzene	ND		0.50		ug/L		07/31/14 08:51	1
1,3-Dichloropropane	ND		1.0		ug/L		07/31/14 08:51	1
1,1-Dichloropropene	ND		0.50		ug/L		07/31/14 08:51	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L		07/31/14 08:51	1
Ethylene Dibromide	ND		0.50		ug/L		07/31/14 08:51	1
Dibromomethane	ND		0.50		ug/L		07/31/14 08:51	1
Dichlorodifluoromethane	ND		0.50		ug/L		07/31/14 08:51	1
1,1-Dichloroethane	ND		0.50		ug/L		07/31/14 08:51	1
1,2-Dichloroethane	ND		0.50		ug/L		07/31/14 08:51	1
1,1-Dichloroethene	ND		0.50		ug/L		07/31/14 08:51	1
cis-1,2-Dichloroethene	ND		0.50		ug/L		07/31/14 08:51	1
trans-1,2-Dichloroethene	ND		0.50		ug/L		07/31/14 08:51	1
1.2-Dichloropropane	ND		0.50		ug/L		07/31/14 08:51	1
cis-1.3-Dichloropropene	ND		0.50		ug/L		07/31/14 08:51	1
trans-1.3-Dichloropropene	ND		0.50		ua/L		07/31/14 08:51	1
Ethylbenzene	ND		0.50		ua/l		07/31/14 08:51	1
Hexachlorobutadiene	ND		1.0		ua/L		07/31/14 08:51	1
2-Hexanone	ND		50		ug/l		07/31/14 08:51	1
Isopropylbenzene	ND		0.50		ua/l		07/31/14 08:51	1
4-Isopropyltoluene	ND		1.0		ug/L		07/31/14 08:51	1
Methylene Chloride			5.0		ug/L		07/31/14 08:51	1
A-Methyl-2-pentanone (MIRK)			50		ug/L		07/31/14 08:51	1
-meany-z-pentanone (MIDR)			1.0		ug/L		07/31/14 08:51	1
			1.0		ug/l		07/31/14 08:51	1
Shirono			1.0		ug/L		07/31/14 00.01	1
Stylelle	ND		0.50		ug/L		0//31/14 00.51	

#### TestAmerica Job ID: 720-58974-1

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-164110/4 Matrix: Water							Client S	ample ID: Metho Prep Type: 1	d Blank fotal/NA
Analysis Batch: 164110								1	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			07/31/14 08:51	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			07/31/14 08:51	1
Tetrachloroethene	ND		0.50		ug/L			07/31/14 08:51	1
Toluene	ND		0.50		ug/L			07/31/14 08:51	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			07/31/14 08:51	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			07/31/14 08:51	1
1,1,1-Trichloroethane	ND		0.50		ug/L			07/31/14 08:51	1
1,1,2-Trichloroethane	ND		0.50		ug/L			07/31/14 08:51	1
Trichloroethene	ND		0.50		ug/L			07/31/14 08:51	1
Trichlorofluoromethane	ND		1.0		ug/L			07/31/14 08:51	1
1,2,3-Trichloropropane	ND		0.50		ug/L			07/31/14 08:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			07/31/14 08:51	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			07/31/14 08:51	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			07/31/14 08:51	1
Vinyl chloride	ND		0.50		ug/L			07/31/14 08:51	1
Xylenes, Total	ND		1.0		ug/L			07/31/14 08:51	1
2,2-Dichloropropane	ND		0.50		ug/L			07/31/14 08:51	1
Gasoline Range Organics (GRO)	ND		50		ug/L			07/31/14 08:51	1

	NB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130		07/31/14 08:51	1
1,2-Dichloroethane-d4 (Surr)	100		72 - 130		07/31/14 08:51	1
Toluene-d8 (Surr)	100	1.1	70 - 130		07/31/14 08:51	1

#### Lab Sample ID: LCS 720-164110/5 Matrix: Water

#### Analysis Batch: 164110

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	24.8		ug/L		99	62 - 130	
Acetone	125	122		ug/L		98	26 - 180	
Benzene	25.0	25.7		ug/L		103	79 - 130	
Dichlorobromomethane	25.0	24.8		ug/L		99	70 - 130	
Bromobenzene	25.0	24.6		ug/L		98	70 _ 130	
Chlorobromomethane	25.0	24.4		ug/L		98	70 - 130	
Bromoform	25.0	25.7		ug/L		103	68 - 136	
Bromomethane	25.0	21.8		ug/L		87	43 - 151	
2-Butanone (MEK)	125	123		ug/L		99	54 - 130	
n-Butylbenzene	25.0	28.2		ug/L		113	70 - 142	
sec-Butylbenzene	25.0	27.4		ug/L		110	70 - 134	
tert-Butylbenzene	25.0	26.7		ug/L		107	70 - 135	
Carbon disulfide	25.0	25.8		ug/L		103	58 - 130	
Carbon tetrachloride	25.0	25.0		ug/L		100	70 - 146	
Chlorobenzene	25.0	25.2		ug/L		101	70 - 130	
Chloroethane	25.0	21.9		ug/L		88	62 - 138	
Chloroform	25.0	24.8		ug/L		99	70 - 130	
Chloromethane	25.0	22.3		ug/L		89	52 - 175	

**TestAmerica** Pleasanton

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-164110/5				Client	Sample	D: Lab Co	ntrol Sample
Matrix: Water						Prep Ty	pe: Total/NA
Analysis Batch: 164110							
	Spike	LCS L	CS	_	0/ 5	%Rec.	
Analyte	Added	Result G	uaimer Unit	D	%Rec		
2-Chlorotoluene	25.0	27.1	ug/L		109	70 - 130	
4-Chiorotoluene	25.0	27.2	ug/L		109	70 - 130	
Chlorodibromomethane	25.0	25.0	ug/L		100	70 - 145	
1,2-Dichlorobenzene	25.0	24.8	ug/L		99	70 - 130	
1,3-Dichlorobenzene	25.0	25.3	ug/L		101	70 - 130	
1,4-Dichlorobenzene	25.0	25.2	ug/L		101	70 - 130	
1,3-Dichloropropane	25.0	25.3	ug/L		101	70 - 130	
1,1-Dichloropropene	25.0	27.7	ug/L		111	70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	27.0	ug/L		108	70 - 136	
Ethylene Dibromide	25.0	25.4	ug/L		102	70 - 130	
Dibromomethane	25.0	24.9	ug/L		100	70 - 130	
Dichlorodifluoromethane	25.0	21.0	ug/L		84	34 - 132	
1,1-Dichloroethane	25.0	25.9	ug/L	0	104	70 - 130	
1,2-Dichloroethane	25.0	24.6	ug/L		98	61 - 132	
1,1-Dichloroethene	25.0	22.1	ug/L		88	64 - 128	
cis-1,2-Dichloroethene	25.0	25.9	ug/L		104	70 - 130	
trans-1,2-Dichloroethene	25.0	24.7	ug/L		99	68 - 130	
1,2-Dichloropropane	25.0	26.1	ug/L		104	70 - 130	
cis-1,3-Dichloropropene	25.0	26.8	ug/L		107	70 - 130	
trans-1,3-Dichloropropene	25.0	28.9	ug/L		116	70 - 140	
Ethylbenzene	25.0	26.1	ug/L		104	80 - 120	
Hexachlorobutadiene	25.0	25.1	ug/L		100	70 - 130	
2-Hexanone	125	135	ug/L		108	60 - 164	
Isopropylbenzene	25.0	26.4	ug/L		105	70 - 130	
4-Isopropyltoluene	25.0	26.5	ug/L		106	70 - 130	
Methylene Chloride	25.0	24.2	ug/L		97	70 - 147	
4-Methyl-2-pentanone (MIBK)	125	138	ug/L		110	58 - 130	
Naphthalene	25.0	27.4	ug/L		110	70 - 130	
N-Propylbenzene	25.0	28.0	ug/L		112	70 - 130	
Styrene	25.0	26.1	ug/L		104	70 - 130	
1,1,1,2-Tetrachloroethane	25.0	24.4	ug/L		97	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	27.4	ug/L		110	70 - 130	
Tetrachloroethene	25.0	24.2	ug/L		97	70 _ 130	
Toluene	25.0	25.7	ug/L		103	78 - 120	
1,2,3-Trichlorobenzene	25.0	24.6	ug/L		99	70_130	
1,2,4-Trichlorobenzene	25.0	25.4	ug/L		102	70 - 130	
1,1,1-Trichloroethane	25.0	26.4	ug/L		105	70 - 130	
1,1,2-Trichloroethane	25.0	25.5	ug/L		102	70 - 130	
Trichloroethene	25.0	24.3	ug/L		97	70 - 130	
Trichlorofluoromethane	25.0	26.1	ug/L		104	66 - 132	
1.2.3-Trichloropropane	25.0	26.7	ug/L		107	70 - 130	
1 1 2-Trichloro-1 2 2-trifluoroetha	25.0	22.9	ug/L		91	42 - 162	
ne							
1,2,4-Trimethylbenzene	25.0	27.0	ug/L		108	70 - 132	
1,3,5-Trimethylbenzene	25.0	27.5	ug/L		110	70 - 130	
Vinyl chloride	25.0	21.4	ug/L		86	54 - 135	
m-Xylene & p-Xylene	25.0	26.4	ug/L		106	70 - 142	
o-Xylene	25.0	26.6	ug/L		106	70 - 130	

#### TestAmerica Job ID: 720-58974-1

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-1641	10/5						Client	t Sample	ID: Lab Control Sa	ample
Matrix: Water									Prep Type: Tot	al/NA
Analysis Batch: 164110										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,2-Dichloropropane	-		25.0	29.8		ug/L		119	70 - 140	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene	104		67 - 130							
1,2-Dichloroethane-d4 (Surr)	95		72 - 130							
Toluene-d8 (Surr)	101		70 - 130							
Lab Sample ID: LCS 720-1641	10/7						Client	t Sample	ID: Lab Control Sa	ample
Matrix: Water									Prep Type: Tot	al/NA
Analysis Batch: 164110										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)			500	556		ug/L		111	62 - 120	
-C5-C12										

LUS	200	
%Recovery	Qualifier	Limits
104		67 - 130
100		72 - 130
101		70 - 130
	203 %Recovery 104 100 101	%Recovery Qualifier 104 100 101

#### Lab Sample ID: LCSD 720-164110/6 Matrix: Water

#### Analysis Batch: 164110

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	23.3		ug/L		93	62 - 130	6	20
Acetone	125	110		ug/L		88	26 - 180	10	30
Benzene	25.0	25.6		ug/L		102	79 - 130	0	20
Dichlorobromomethane	25.0	24.4		ug/L		98	70 - 130	2	20
Bromobenzene	25.0	24.3		ug/L		97	70 - 130	1	20
Chlorobromomethane	25.0	23.8		ug/L		95	70 - 130	3	20
Bromoform	25.0	24.1		ug/L		97	68 - 136	6	20
Bromomethane	25.0	21.2		ug/L		85	43 - 151	3	20
2-Butanone (MEK)	125	111		ug/L		89	54 - 130	10	20
n-Butylbenzene	25.0	28.6		ug/L		114	70 - 142	1	20
sec-Butylbenzene	25.0	27.4		ug/L		109	70 - 134	0	20
tert-Butylbenzene	25.0	26.4		ug/L		106	70 - 135	1	20
Carbon disulfide	25.0	25.8		ug/L		103	58 - 130	0	20
Carbon tetrachloride	25.0	24.9		ug/L		99	70 - 146	0	20
Chlorobenzene	25.0	25.0		ug/L		100	70 - 130	1	20
Chloroethane	25.0	21.5		ug/L		86	62 - 138	2	20
Chloroform	25.0	24.7		ug/L		99	70 - 130	0	20
Chloromethane	25.0	22.1		ug/L		88	52 - 175	1	20
2-Chlorotoluene	25.0	27.3		ug/L		109	70 - 130	1	20
4-Chlorotoluene	25.0	27.4		ug/L		110	70 - 130	1	20
Chlorodibromomethane	25.0	24.0		ug/L		96	70 - 145	4	20
1,2-Dichlorobenzene	25.0	24.6		ug/L		98	70 - 130	1	20
1,3-Dichlorobenzene	25.0	25.3		ug/L		101	70 - 130	0	20

**TestAmerica** Pleasanton

## Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Analysis Batch:: 164110         Spie         LCSD         LCSD         Vinit         P         Name	Lab Sample ID: LCSD 720-16 Matrix: Water	64110/6					CI	lient San	nple ID:	Lab Contro Prep T	ol Sampl	e Dup tal/NA
Spike         LCSD         LCSD         View         PP           Aabye         Result         Quilter         init         P         SRec         IP           1.4 Dichotopopane         25.5         25.1         ugl.         100         70.130         0         20           1.5 Dichotopopane         25.5         24.5         ugl.         100         70.130         12         20           1.2 Dictoropopane         25.0         24.2         ugl.         97         70.130         65         20           1.2 Dictorofucomentane         25.0         24.2         ugl.         97         70.130         65         20           Dictorofucomentane         25.0         23.9         ugl.         98         7.0         12         20           1.1 Dictorofucomentane         25.0         23.8         ugl.         10.2         20         20           1.1 Dictorofucomentane         25.0         24.8         ugl.         10.1         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20	Analysis Batch: 164110											
AnalyaAddeaPace PaceIntPNewIntPNewNewPNew1.5 Dethndwarpagnam25025194.694.694.870.1303201.5 Dethndwarpagnam25024.694.894.870.13010201.5 Dethndwarpagnam25024.394.297.1301020Ehlylen Elbornde25024.394.297.1301020Dichorddhuromehame25025.794.197.13010201.2 Dektnowarpagnam25.025.794.197.13010201.2 Dektnowarpagnam25.025.794.197.10070.13010201.2 Dektnowarpagnama	,, o.o			Spike	LCSD	LCSD				%Rec.		RPD
14-Dehtosophenere       250       261       upf.       00       0-130       0       20         1, Dehtosophene       250       275       upl.       10       0-130       1       20         1, Dehtosophene       250       275       upl.       10       0-130       1       20         1, Dehtosophene       250       243       upl.       97       70.135       10       20         1, Dehtosophene       250       242       upl.       97       70.130       5       20         Dipromentane       250       240       upl.       83       34.122       1       20         Dipromentane       250       259       upl.       04       70.130       1       20         1, Dehtosophene       250       250       250       upl.       102       70.130       1       20         1, Dehtosophene       250       257       upl.       103       70.130       1       20         1, Dehtosophene       250       264       upl.       103       70.130       1       20         1, Dehtosophene       250       261       140       101       105       70.130       1       20 </th <th>Analyte</th> <th></th> <th></th> <th>Added</th> <th>Result</th> <th>Qualifier</th> <th>Unit</th> <th>D</th> <th>%Rec</th> <th>Limits</th> <th>RPD</th> <th>Limit</th>	Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.3-Dehromopopane25024.0ug/L9770.1303201.3-Dehromos-3-Ohtoropropane25024.3ug/L9770.1305201.3-Dehromos-3-Ohtoropropane25024.3ug/L9770.130520Dichorodificoronofhane25024.9ug/L9834.132120Dichorodificoronofhane250250ug/L9834.1321201.3-Dehromoshane250255ug/L9886.1321201.3-Dehromoshane250255ug/L9888.1321201.3-Dehromoshane250254ug/L9888.1321201.3-Dehromoshane250264ug/L10070.1331201.3-Dehromoshane250264ug/L10070.1332201.3-Dehromoshane250264ug/L10070.1332201.3-Dehromoshane250264ug/L10070.1332201.3-Dehromoshane250264ug/L10070.1332201.3-Dehromoshane250264ug/L10070.1332201.3-Dehromoshane250264ug/L10070.13310201.3-Dehromoshane250264ug/L10070.13310201.3-Dehromoshane250264ug/L10070.1331	1,4-Dichlorobenzene			25.0	25.1		ug/L		100	70 - 130	0	20
1Dechappropene25027.5upd.1070.1070.1312201.2-Debromob-Chloropropene25024.2upd.9770.1301220Dioromote25024.2upd.9770.1301220Dioromotematine25024.3upd.8841.9212201.1-Debrotematine25025.9upd.8861.13221201.1-Debrotematine25027.9upd.8861.13212201.1-Debrotematine25025.5upd.9868.1301201.2-Debrotematine25025.7upd.10070.1302201.2-Debrotematine25025.7upd.10070.1302201.2-Debrotematine25.025.9upd.10070.1302201.2-Debrotematine25.025.9upd.10070.1302201.2-Debrotematine25.025.9upd.10070.13020201.2-Debrotematine25.025.9upd.10070.13020201.2-Debrotematine25.026.8upd.10070.13020201.2-Debrotematine25.026.8upd.10070.13020201.2-Debrotematine25.026.8upd.10070.13020201.2-Debrotematine25.026.13upd.10 <td>1,3-Dichloropropane</td> <td></td> <td></td> <td>25.0</td> <td>24.6</td> <td></td> <td>ug/L</td> <td></td> <td>98</td> <td>70 - 130</td> <td>3</td> <td>20</td>	1,3-Dichloropropane			25.0	24.6		ug/L		98	70 - 130	3	20
1.2-Discons-2-Chineoprogram       250       24.3       upL       97       7.0       10       20         Enlylene Disconde       250       23.9       upL       98       70       13       4       20         Discincenditatione diffusione finane       250       23.9       upL       98       70       13       20       20         1.2-Discince finane       250       23.9       upL       98       61.732       2       20       20         1.2-Discince finane       250       24.0       upL       98       61.732       1       20         1.2-Discince finane       250       25.5       upL       98       81.30       1       20         1.2-Discince finane       250       25.7       upL       10.7       70.130       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20	1,1-Dichloropropene			25.0	27.5		ug/L		110	70 - 130	1	20
Environmentane         250         24.2         ugl         97         77.193         5         20           Dibromomentane         25.0         23.0         ugl         66         70.130         4         20           Dibromomentane         25.0         20.7         ugl         66         70.130         0         20           1.1-Dichtorethene         25.0         25.9         ugl         66         61.15.2         1         20           1.1-Dichtorethene         25.0         25.5         ugl         10.2         70.130         1         20           1.2-Dichtorethene         25.0         25.5         ugl         10.2         70.130         1         20           1.2-Dichtorethene         25.0         25.4         ugl         10.3         70.10         3         20           1.2-Dichtorethene         25.0         25.1         ugl         10.3         70.10         3         20           1.2-Dichtorethene         25.0         25.1         ugl         10.2         10.2         10         10.2         10         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2 </td <td>1,2-Dibromo-3-Chloropropane</td> <td></td> <td></td> <td>25.0</td> <td>24.3</td> <td></td> <td>ug/L</td> <td></td> <td>97</td> <td>70 - 136</td> <td>10</td> <td>20</td>	1,2-Dibromo-3-Chloropropane			25.0	24.3		ug/L		97	70 - 136	10	20
Dipplomentane         25.0         23.9         uplL         96         70-190         4         20           Dipplomentane         25.0         23.7         uplL         83         34.132         1         20           1.3-Diphlomethane         25.0         23.7         uplL         86         61.132         2.2         20           1.3-Diphlomethane         25.0         25.5         uplL         96         61.32         2.2           1.3-Diphlomethane         25.0         25.5         uplL         10.5         70.130         1         20           1.3-Diphlomethane         25.0         25.6         uplL         10.5         70.130         1         20           1.3-Diphlomethane         25.0         25.6         uplL         10.5         70.130         2.0           1.5-Diphlomethane         25.0         25.0         25.9         uplL         10.5         70.130         3         20           1.5-Diphlomethane         25.0         25.0         25.0         10.0         10.0         20           1.5-Diphlomethane         25.0         25.0         25.0         10.0         10.0         20           1.6-Diphlomethane         25.0 <td>Ethylene Dibromide</td> <td></td> <td></td> <td>25.0</td> <td>24.2</td> <td></td> <td>ug/L</td> <td></td> <td>97</td> <td>70 - 130</td> <td>5</td> <td>20</td>	Ethylene Dibromide			25.0	24.2		ug/L		97	70 - 130	5	20
Dichlorightupomentane         250         207         upl.         83         34.192         1         20           1.1-Dichlorosthane         260         259         upl.         104         70.130         0         20           1.1-Dichlorosthane         260         240         upl.         86         61.132         1         20           1.1-Dichlorosthane         260         255         upl.         102         70.130         1         20           1.2-Dichlorosthane         250         257         upl.         103         70.100         70.130         2         20           1.2-Dichlorosthane         250         252         upl.         103         70.140         3         20           1.2-Dichlorosthane         250         252         upl.         104         70.130         0         20           1.2-Dichlorosthane         250         258         upl.         106         70.130         0         20           Engenpryletare         250         256         upl.         106         70.130         0         20           Aldsprophylotare         250         250         250         upl.         106         70.130         12	Dibromomethane			25.0	23.9		ug/L		96	70 - 130	4	20
1.1-Dichloroethane25.025.9ug/L0470.1300201.2-Dichloroethane25.024.0ug/L9661.1322200.1.1.2-Dichloroethane25.025.5ug/L9861.1322200.1.2-Dichloroethane25.025.5ug/L9861.1322201.2-Dichloroethane25.025.7ug/L10870.1301201.2-Dichloroethane25.025.7ug/L10870.1302201.2-Dichloroethane25.025.7ug/L10870.1302201.2-Dichloroethane25.025.7ug/L10870.1302201.2-Dichloroethane25.025.7ug/L10870.1303201.2-Dichloroethane25.025.8ug/L10870.1303201.2-Dichloroethane25.025.9ug/L10870.1300202-Hexanone25.026.8ug/L10870.1301202-Hexanone25.026.8ug/L10870.1301202-Hexanone25.026.8ug/L10870.1301202-Hexanone25.026.3ug/L10870.1301202-Hexanone25.026.3ug/L10870.1301202-Hexanone25.026.3ug/L10870.130120 </td <td>Dichlorodifluoromethane</td> <td></td> <td></td> <td>25.0</td> <td>20.7</td> <td></td> <td>ug/L</td> <td></td> <td>83</td> <td>34 - 132</td> <td>1</td> <td>20</td>	Dichlorodifluoromethane			25.0	20.7		ug/L		83	34 - 132	1	20
1.2-Dichlorocethane       25.0       24.0       ug/L       96       61.132       2       20         1.1-Dichlorocethane       25.0       21.9       ug/L       88       64.128       1       20         tina.1-Dichlorocethane       25.0       24.8       ug/L       10.9       70.130       1       20         cis-1.3-Dichloropropane       25.0       24.8       ug/L       105       70.130       2       20         cis-1.3-Dichloropropane       25.0       26.4       ug/L       105       70.130       3       20         Dichloropropane       25.0       26.2       ug/L       105       70.130       3       20         Etylpierzine       25.0       26.2       ug/L       106       70.130       0       20         Hexachorobundine       25.0       26.4       ug/L       106       70.130       0       20         Hexachorobundine       25.0       26.4       ug/L       106       70.130       0       20         Alsoprophilolene       25.0       26.2       ug/L       106       70.130       10       20         Nephthalene       25.0       26.2       ug/L       106       70.130	1,1-Dichloroethane			25.0	25.9		ug/L		104	70 - 130	0	20
1,1-Dickloroethene         25.0         21.9         ug/L         88         64.128         1         20           cish 1,2-Dickloroethene         25.0         25.5         ug/L         102         70.130         1         20           1,2-Dickloroethene         25.0         25.7         ug/L         103         70.130         1         20           1,2-Dickloroethene         25.0         25.7         ug/L         103         70.130         1         20           cish.1.3-Dickloroephoene         25.0         25.7         ug/L         105         70.130         2         20           Lish.1.3-Dickloroephoene         25.0         25.2         ug/L         105         70.130         3         20           Lishylopropione         25.0         25.9         ug/L         106         70.130         0         20           2Hexanoro         25.0         25.8         ug/L         106         70.130         0         20           4laeproprivione         25.0         26.8         ug/L         106         70.130         0         20           Alsporenkionen         25.0         26.3         ug/L         108         70.130         0         20     <	1,2-Dichloroethane			25.0	24.0		ug/L		96	61 - 132	2	20
be 1,2 Ocholoroschene 25.0 25.5 ug/L 102 70.130 1 20 trans 1,2 Ocholoropone 25.0 24.8 ug/L 103 70.130 1 20 cis 1,3 Ocholoropone 25.0 25.7 ug/L 103 70.130 2 20 Ehyberzene 25.0 25.0 25.9 ug/L 105 80.120 0 20 Hexachlorobulatelene 25.0 25.9 ug/L 105 80.120 0 20 Hexachlorobulatelene 25.0 25.9 ug/L 106 70.130 0 20 Lebxanone 25.0 25.0 25.0 ug/L 106 70.130 0 20 Lebxanone 25.0 25.0 25.0 ug/L 106 70.130 0 20 Lebxanone 25.0 25.0 25.0 ug/L 106 70.130 0 20 Lebxanone 25.0 25.0 ug/L 105 70.130 0 20 Lebxanone 25.0 25.0 ug/L 101 70.130 8 20 Lebxanone 25.0 25.0 ug/L 104 77.0.130 1 20 Lebxanone 25.0 25.0 ug/L 104 77.0.130 2 20 L1,12-Treixohoroshane 25.0 25.0 ug/L 104 77.0.130 2 20 L1,2-Treixohoroshane 25.0 25.0 ug/L 104 70.130 2 20 L1,2-Treixohoroshane 25.0 25.0 ug/L 104 70.130 2 20 L1,2-Treixohoroshane 25.0 25.0 ug/L 105 70.130 0 20 Tichloroshane 25.0 25.0 ug/L 104 77.130 0 20 L2,2-Treixohoroshane 25.0 25.0 ug/L 104 77.130 0 20 L2,2-Treixohoroshane 25.0 25.0 ug/L 105 70.130 0 20 Tichloroshane 25.0 25.0 ug/L 104 70.130 2 20 L,2-Treixohoroshane 25.0 25.0 ug/L 105 70.130 0 20 Tichloroshane 25.0 25.0 ug/L 105 70.130 0 20 Tichloroshane 25.0 25.0 ug/L 107 70.132 0 20 L2,2-Treixohoroshane 25.0 25.0 ug/L 107 70.130 0 20 Tichloroshane 25.0 25.0 ug/L 107 70.130 0 20 Tichloroshane 25.0 25.0 ug/L 10	1,1-Dichloroethene			25.0	21.9		ug/L		88	64 - 128	1	20
trans.1,2-Dichloroethene       25.0       24.8       up/L       99       68.130       1       20         1,2-Dichloroptopane       25.0       25.7       up/L       105       70.130       2       20         tans.1,3-Dichloroptopane       25.0       28.2       up/L       105       70.130       2       20         tans.1,3-Dichloroptopane       25.0       28.1       up/L       105       80.120       0       20         texachlorobulateine       25.0       25.0       28.4       up/L       104       70.130       20         2-Hexanone       25.0       28.4       up/L       106       70.130       0       20         Alsoptopylibenzene       25.0       28.4       up/L       106       70.130       0       20         Alsoptopylibenzene       25.0       28.0       up/L       106       70.130       0       20         Neptopylibenzene       25.0       28.0       up/L       105       70.130       0       20         Neptopylibenzene       25.0       28.0       up/L       105       70.130       10       20         Neptopylibenzene       25.0       28.0       up/L       105       70.	cis-1,2-Dichloroethene			25.0	25.5		ug/L		102	70 - 130	1	20
1.2-Dichloropropene       25.0       25.7       ug/L       103       70.130       1       20         1.3-Dichloropropene       25.0       28.4       ug/L       105       70.130       2       20         Ethylbenzene       25.0       28.2       ug/L       105       80.120       0       20         Ethylbenzene       25.0       25.9       ug/L       104       70.130       3       20         2Hearane       25.0       26.4       ug/L       106       70.130       0       20         Isopropylbanzene       25.0       26.4       ug/L       106       70.130       0       20         44stryopylbulene       25.0       26.5       28.9       ug/L       106       70.130       0       20         44stryopylbulene       25.0       26.3       ug/L       105       70.130       0       20         Naphtalene       25.0       26.0       26.1       ug/L       105       70.130       0       20         Naphtalene       25.0       28.0       ug/L       105       70.130       0       20         1.1,2.7 Ertachorophane       25.0       25.0       26.2       ug/L       101	trans-1,2-Dichloroethene			25.0	24.8		ug/L		99	68 - 130	1	20
cis-1,3-Dichloropropene       25.0       26.4       ug/L       105       70.130       2       20         trans.1,3-Dichloropropene       25.0       26.1       ug/L       105       70.130       3       20         Havachlorobutadiene       25.0       25.0       25.1       ug/L       104       70.130       3       20         Havachlorobutadiene       25.0       25.0       25.0       ug/L       104       70.130       0       20         Alsoproylfoluene       25.0       26.6       ug/L       106       70.130       0       20         Alsoproylfoluene       25.0       26.6       ug/L       106       70.147       1       20         Alsoproylfoluene       25.0       26.0       ug/L       106       70.147       1       20         Mathylene Chloride       25.0       26.0       ug/L       105       70.130       4       20         N-Proylbenzene       25.0       26.0       26.0       ug/L       105       70.130       2       20         1,1,2-Tricthorochane       25.0       26.0       26.0       ug/L       106       70.130       2       20         1,2-Tricthorochanee       25.	1,2-Dichloropropane			25.0	25.7		ug/L		103	70 - 130	1	20
trans-1.3-Dichloropropene 25.0 28.2 ug/L 113 70.140 3 20 Ethylenzene 25.0 28.9 ug/L 106 80.120 0 20 Hexachlorobladiene 25.0 25.9 ug/L 106 70.130 0 20 Lisopropylbenzene 25.0 28.4 ug/L 106 70.130 0 20 Alsopropylbenzene 25.0 28.6 ug/L 106 70.130 0 20 Methylene Chloride 25.0 28.9 ug/L 96 70.147 1 20 Methylene Chloride 25.0 28.0 ug/L 96 70.130 0 20 Nephylaenzene 25.0 28.0 ug/L 96 70.130 0 20 Nephylaenzene 25.0 28.0 ug/L 96 70.130 0 20 Nephylaenzene 25.0 28.0 ug/L 105 70.130 0 20 Nephylaenzene 25.0 28.0 ug/L 105 70.130 0 20 Nill 2.7 crisio 20 Nephylaenzene 25.0 28.0 ug/L 105 70.130 0 20 Nill 2.7 crisio 20 Nephylaenzene 25.0 28.0 ug/L 101 70.130 0 20 Nill 2.7 crisio 20	cis-1,3-Dichloropropene			25.0	26.4		ug/L		105	70 - 130	2	20
Ethylbenzene       25.0       26.1       ug/L       105       80.120       0       20         Hexankorobutadiene       25.0       25.9       ug/L       104       70.130       0       20         2-Hexanore       25.0       26.4       ug/L       106       70.130       0       20         Leiporpylbrezne       25.0       26.6       ug/L       96       70.130       0       20         Methylene Chloride       25.0       25.6       ug/L       96       70.147       1       20         Methylene Chloride       25.0       26.0       28.3       ug/L       96       70.147       1       20         N-Propylbanzene       25.0       28.0       28.3       ug/L       105       70.130       4       20         N-Propylbanzene       25.0       28.0       28.0       ug/L       105       70.130       0       20         1,1,2-Tetrachloroethane       25.0       26.0       26.0       ug/L       101       70.130       1       20         1,1,2-Tetrachloroethane       25.0       25.9       ug/L       104       78.120       1       20         1,2,4-Trichlorobenzene       25.0       26.	trans-1.3-Dichloropropene			25.0	28.2		ug/L		113	70 - 140	3	20
Hexachlorobutadiene       25.0       25.9       ug/L       104       70.130       3       20         2-Hexanone       125       115       ug/L       92       60.164       16       20         lapprop/benzene       25.0       26.4       ug/L       106       70.130       0       20         disprop/benzene       25.0       26.6       ug/L       166       70.130       0       20         disprop/benzene       25.0       26.0       28.0       ug/L       65       70.130       4       20         Anethyl-2-pentanone (MIBK)       125       26.0       26.0       ug/L       105       70.130       4       20         N-Propybenzene       25.0       26.0       28.0       ug/L       105       70.130       4       20         N-Propybenzene       25.0       26.0       28.0       ug/L       105       70.130       2       20         1,1,2-Tetrachloroethane       25.0       26.0       24.1       ug/L       16       70.130       1       20         1,2,2-Trichloroethane       25.0       26.0       24.3       ug/L       104       70.130       1       20         1,2,4-Trichloroeth	Ethylbenzene			25.0	26.1		ug/L		105	80 - 120	0	20
2.Hexanone       125       115       ug/L       92       60.164       16       20         1sopropylbenzene       25.0       26.4       ug/L       106       70.130       00       20         4laspropylbune       25.0       26.6       ug/L       106       70.130       00       20         4hethyl-2-pentanone (MIBK)       125       119       ug/L       95       58.130       15       20         Naphthalene       25.0       26.3       ug/L       105       70.130       0       20         N-Propylbenzene       25.0       26.2       ug/L       105       70.130       0       20         Styrene       25.0       26.2       ug/L       105       70.130       0       20         11.1.2.Tetrachloroethane       25.0       26.3       ug/L       101       70.130       0       20         12.2.Tetrachloroethane       25.0       25.3       ug/L       101       70.130       1       20         12.2.Tetrachloroethane       25.0       25.9       ug/L       104       70.130       1       20         12.4.Trichloroethane       25.0       26.0       ug/L       104       70.130       0 </td <td>Hexachlorobutadiene</td> <td></td> <td></td> <td>25.0</td> <td>25.9</td> <td></td> <td>ug/L</td> <td></td> <td>104</td> <td>70 - 130</td> <td>3</td> <td>20</td>	Hexachlorobutadiene			25.0	25.9		ug/L		104	70 - 130	3	20
isopropylenzene       25.0       26.4       ug/L       106       70.130       0       20         44:sopropylenzene       25.0       26.6       ug/L       106       70.130       0       20         Methylene Chloride       25.0       23.9       ug/L       96       70.147       1       20         Methylene Chloride       25.0       26.3       ug/L       105       70.130       4       20         Nerpopylenzene       25.0       26.0       26.0       ug/L       105       70.130       0       20         Styrene       25.0       26.0       26.0       ug/L       105       70.130       0       20         1,1,2-Tetrachloroethane       25.0       26.0       26.1       ug/L       105       70.130       10       20         1,1,2-Tetrachloroethane       25.0       26.0       26.1       ug/L       104       78.120       11       20         1,2,2-Tetrachloroethane       25.0       26.0       24.3       ug/L       97       70.130       1       20         1,2,2-Tetrachloroethane       25.0       26.0       24.4       ug/L       98       70.130       1       20         1,2,4	2-Hexanone			125	115		ug/L		92	60 - 164	16	20
Alsopropylatiuane         25.0         26.6         ug/L         106         70.130         0         20           Methylene Chloride         25.0         23.9         ug/L         95         70.147         1         20           4.Methyl-2-pentanone (MBK)         125         119         ug/L         95         58.130         15         20           N-Propylbenzene         25.0         26.3         ug/L         106         70.130         0         20           Syrene         25.0         26.0         ug/L         105         70.130         0         20           1.1,2_2-Tetrachloroethane         25.0         26.2         ug/L         96         70.130         0         20           1.1,2_2-Tetrachloroethane         25.0         25.3         ug/L         96         70.130         1         20           1.2_2-Trichloroethane         25.0         26.1         ug/L         96         70.130         1         20           1.2_2-Trichloroethane         25.0         26.3         ug/L         97         70.130         1         20           1.2_2-Trichloroethane         25.0         26.4         ug/L         98         70.130         2         20 <td>Isopropylbenzene</td> <td></td> <td></td> <td>25.0</td> <td>26.4</td> <td></td> <td>ug/L</td> <td></td> <td>106</td> <td>70 - 130</td> <td>0</td> <td>20</td>	Isopropylbenzene			25.0	26.4		ug/L		106	70 - 130	0	20
Methylen Chloride         25.0         23.9         ug/L         96         70.147         1         20           4.Methyl-2-pentanone (MIBK)         125         119         ug/L         95         58.130         15         20           Naphthalene         25.0         26.3         ug/L         105         70.130         4         20           N-Proybenzene         25.0         26.2         ug/L         105         70.130         0         20           Styrene         25.0         26.2         ug/L         105         70.130         0         20           1,1,2-Tetrachloroethane         25.0         26.3         ug/L         101         70.130         1         20           1,2,2-Tetrachloroethane         25.0         25.3         ug/L         101         70.130         1         20           1,2,2-Trichlorobenzene         25.0         24.1         ug/L         96         70.130         1         20           1,3-Trichlorobenzene         25.0         24.3         ug/L         97         70.130         1         20           1,3-Trichloroethane         25.0         26.5         ug/L         104         70.130         0         20 <td>4-isopropyltoluene</td> <td></td> <td></td> <td>25.0</td> <td>26.6</td> <td></td> <td>ug/L</td> <td></td> <td>106</td> <td>70 - 130</td> <td>0</td> <td>20</td>	4-isopropyltoluene			25.0	26.6		ug/L		106	70 - 130	0	20
4-Methyl-2-pentanone (MIBK)       125       119       ug/L       95       58.130       15       20         Naphthalene       25.0       26.3       ug/L       105       70.130       4       20         N-Propyblenzene       25.0       26.0       ug/L       112       70.130       0       20         Styrene       25.0       26.0       ug/L       105       70.130       0       20         1.1,2-Tetrachloroethane       25.0       24.0       ug/L       96       70.130       2       20         1.1,2-Tetrachloroethane       25.0       25.3       ug/L       101       70.130       1       20         1.2.3-Trichlorobenzene       25.0       26.0       26.3       ug/L       96       70.130       1       20         1.2.4-Trichlorobenzene       25.0       26.0       26.0       ug/L       97       70.130       1       20         1.1,2-Trichlorobenzene       25.0       26.0       26.0       ug/L       97       70.130       1       20         1.2.3-Trichlorobenzene       25.0       26.0       24.4       ug/L       98       70.130       0       20         1.1.2-Trichloroethane       2	Methylene Chloride			25.0	23.9		ug/L		96	70 - 147	1	20
Naphthalene         25.0         26.3         ug/L         105         70.130         4         20           NPropylbenzene         25.0         28.0         ug/L         112         70.130         0         20           Styrene         25.0         26.2         ug/L         105         70.130         0         20           1,1,2.7 Etrachloroethane         25.0         24.0         ug/L         96         70.130         2         20           1,1,2.7 Etrachloroethane         25.0         25.3         ug/L         101         70.130         2         20           1,2.2.7 Etrachloroethane         25.0         25.9         ug/L         104         78.120         1         20           1,2.4.7 Tichlorobenzene         25.0         26.0         ug/L         104         70.130         1         20           1,2.4.7 Tichlorobenzene         25.0         26.0         ug/L         104         70.130         2         20           1,1.4.7 Tichlorobenzene         25.0         26.5         ug/L         106         70.130         2         20           1,2.4.7 Tichlorobenzene         25.0         26.5         ug/L         106         70.130         2         <	4-Methyl-2-pentanone (MIBK)			125	119		ug/L		95	58 - 130	15	20
N-Propylbenzene       250       280       ug/L       112       70.130       0       20         Styrene       250       28.0       ug/L       105       70.130       0       20         1,1,2.7 Tetrachloroethane       250       26.0       26.2       ug/L       06       70.130       0       20         1,1,2.7 Tetrachloroethane       250       25.0       24.0       ug/L       06       70.130       1       20         Totachloroethane       25.0       24.1       ug/L       06       70.130       1       20         Totachloroethene       25.0       25.9       ug/L       104       78.120       1       20         1,2.4.Trichlorobenzene       25.0       26.0       24.3       ug/L       104       78.120       1       20         1,1.2.Trichlorobenzene       25.0       26.5       ug/L       104       70.130       2       20         1,1.2.Trichloroethane       25.0       26.5       ug/L       106       70.130       0       20         1,1.2.Trichloroethane       25.0       24.4       ug/L       98       70.130       0       20         1,2.4.Trichloroethane       25.0       26.0 <td>Naphthalene</td> <td></td> <td></td> <td>25.0</td> <td>26.3</td> <td></td> <td>ug/L</td> <td></td> <td>105</td> <td>70 - 130</td> <td>4</td> <td>20</td>	Naphthalene			25.0	26.3		ug/L		105	70 - 130	4	20
Styrene         25.0         26.2         ug/L         105         70.130         0         20           1,1,2Tetrachloroethane         25.0         24.0         ug/L         96         70.130         2         20           1,1,2Tetrachloroethane         25.0         25.3         ug/L         101         70.130         8         20           Tetrachloroethane         25.0         25.3         ug/L         101         70.130         1         20           Toluene         25.0         25.0         24.1         ug/L         96         70.130         1         20           1,2.3-Trichlorobenzene         25.0         26.0         ug/L         104         78.120         10         20           1,2.4-Trichlorobenzene         25.0         26.0         ug/L         104         70.130         2         20           1,1.1-Trichlorobenzene         25.0         26.5         ug/L         106         70.130         0         20           1,1.2-Trichloroethane         25.0         26.5         ug/L         106         70.130         0         20           1,2.3-Trichloroethane         25.0         26.8         ug/L         103         66.132         10<	N-Propylbenzene			25.0	28.0		ug/L		112	70 - 130	0	20
1,1,2-Tetrachloroethane       25.0       24.0       ug/L       96       70.130       2       20         1,1,2-Tetrachloroethane       25.0       25.3       ug/L       101       70.130       8       20         Tetrachloroethane       25.0       25.3       ug/L       101       70.130       1       20         Toluene       25.0       25.9       ug/L       96       70.130       1       20         1,2,3-Trichlorobenzene       25.0       25.0       24.3       ug/L       97       70.130       1       20         1,2,4-Trichlorobenzene       25.0       26.0       26.0       ug/L       97       70.130       2       20         1,1,2-Trichlorobenzene       25.0       26.5       ug/L       106       70.130       2       20         1,1,2-Trichloroethane       25.0       26.5       ug/L       98       70.130       0       20         1,1,2-Trichloroethane       25.0       26.5       ug/L       97       70.130       0       20         1,2-Trichloroethane       25.0       26.5       ug/L       98       70.130       0       20         1,2-Trichloroethane       25.0       26.8	Styrene			25.0	26.2		ug/L		105	70 - 130	0	20
1,1,2,2-Tetrachloroethane       25.0       25.3       ug/L       101       70.130       8       20         Tetrachloroethane       25.0       25.0       25.9       ug/L       104       78.120       1       20         Toluene       25.0       25.0       25.9       ug/L       104       78.120       1       20         1,2,3-Trichloroethane       25.0       25.0       26.0       ug/L       104       70.130       1       20         1,2,3-Trichloroethane       25.0       26.0       26.0       ug/L       104       70.130       2       20         1,1,1-Trichloroethane       25.0       26.0       ug/L       104       70.130       2       20         1,1,2-Trichloroethane       25.0       26.0       ug/L       104       70.130       2       20         1,1,2-Trichloroethane       25.0       26.0       24.4       ug/L       98       70.130       0       20         1,2,3-Trichloroethane       25.0       24.4       ug/L       98       70.130       0       20         1,2,3-Trichloroethane       25.0       26.0       27.5       ug/L       103       66.132       1       20	1 1.1.2-Tetrachloroethane			25.0	24.0		ug/L		96	70 - 130	2	20
Tetrachiorcetheme         25.0         24.1         ug/L         96         70 - 130         1         20           Toluene         25.0         25.9         ug/L         104         78 - 120         1         20           1,2,3-Trichlorobenzene         25.0         25.0         24.3         ug/L         97         70 - 130         1         20           1,2,4-Trichlorobenzene         25.0         26.0         ug/L         104         70 - 130         2         20           1,1,1-Trichlorobenzene         25.0         26.5         ug/L         106         70 - 130         0         20           1,1,2-Trichlorobethane         25.0         26.5         ug/L         98         70 - 130         0         20           1,2,3-Trichloromethane         25.0         24.4         ug/L         98         70 - 130         0         20           1,2,3-Trichloromethane         25.0         24.4         ug/L         98         70 - 130         9         20           1,2,3-Trichloronethane         25.0         26.4         ug/L         98         70 - 130         0         20           1,2,3-Trichloronethane         25.0         26.8         ug/L         107         7	1.1.2.2-Tetrachloroethane			25.0	25.3		ug/L		101	70 - 130	8	20
Toluence       25.0       25.9       ug/L       104       78.120       1       20         1,2,3-Trichlorobenzene       25.0       24.3       ug/L       97       70.130       1       20         1,2,4-Trichlorobenzene       25.0       26.0       ug/L       104       70.130       2       20         1,1,1-Trichlorobenzene       25.0       26.5       ug/L       106       70.130       0       20         1,1,2-Trichlorobethane       25.0       26.5       ug/L       106       70.130       0       20         1,1,2-Trichlorobethane       25.0       24.4       ug/L       98       70.130       0       20         1,2,3-Trichlorobethane       25.0       24.2       ug/L       97       70.130       0       20         1,2,3-Trichlorobethane       25.0       24.4       ug/L       98       70.130       0       20         1,2,2-Trichlorobethane       25.0       24.4       ug/L       98       70.130       9       20         1,2,2-Trichlorobethane       25.0       26.8       ug/L       107       70.132       0       20         1,2,2-Trichlorobethane       25.0       26.8       ug/L       107 <td>Tetrachloroethene</td> <td></td> <td></td> <td>25.0</td> <td>24.1</td> <td></td> <td>ug/L</td> <td></td> <td>96</td> <td>70 - 130</td> <td>1</td> <td>20</td>	Tetrachloroethene			25.0	24.1		ug/L		96	70 - 130	1	20
1.2.3-Trichlorobenzene       25.0       24.3       ug/L       97       70.130       1       20         1.2.3-Trichlorobenzene       25.0       26.0       ug/L       104       70.130       2       20         1.1.1-Trichloroethane       25.0       26.5       ug/L       106       70.130       0       20         1.1.2-Trichloroethane       25.0       26.5       ug/L       98       70.130       0       20         1.1.2-Trichloroethane       25.0       24.4       ug/L       98       70.130       0       20         1.1.2-Trichloroethane       25.0       24.4       ug/L       98       70.130       0       20         1.1.2-Trichloroethane       25.0       24.4       ug/L       98       70.130       0       20         1.2.3-Trichloroethane       25.0       25.8       ug/L       103       66.132       1       20         1.2.3-Trichloroethane       25.0       26.4       ug/L       98       70.130       0       20         1.2.2-Trichloroethane       25.0       26.1       24.4       ug/L       107       70.130       0       20         1.2.2-Trichloroethane       25.0       26.4       ug	Toluepe			25.0	25.9		ug/L		104	78 - 120	1	20
1,2,4-Trichlorobenzene       26.0       26.0       ug/L       104       70 - 130       2       20         1,1,1-Trichlorobethane       25.0       26.5       ug/L       106       70 - 130       0       20         1,1,2-Trichlorobethane       25.0       24.4       ug/L       98       70 - 130       0       20         Trichlorobethene       25.0       24.2       ug/L       97       70 - 130       0       20         1,2-Trichlorobethane       25.0       25.8       ug/L       103       66 - 132       1       20         1,2-Trichlorobenzene       25.0       24.4       ug/L       98       70 - 130       0       20         1,2-Trichlorobenzene       25.0       24.4       ug/L       98       70 - 130       9       20         1,2-Trichloro-1,2,2-trifluorobetha       25.0       26.8       ug/L       107       70 - 132       0       20         1,1,2-Trichloro-1,2,2-trifluorobetha       25.0       27.5       ug/L       100       70 - 132       0       20         1,3,5-Trimethylbenzene       25.0       27.5       ug/L       106       70 - 142       0       20         Vinyl chloride       25.0       26.4<	1 2 3-Trichlorobenzene			25.0	24.3		ug/L		97	70 - 130	1	20
1,1,1-Trichloroethane       25.0       26.5       ug/L       106       70-130       0       20         1,1,2-Trichloroethane       25.0       24.4       ug/L       98       70-130       0       20         Trichloroethane       25.0       24.4       ug/L       97       70-130       0       20         Trichloroethane       25.0       24.2       ug/L       97       70-130       0       20         Trichlorofluoromethane       25.0       25.8       ug/L       103       66-132       1       20         1,2-Trichloropropane       25.0       24.4       ug/L       98       70-130       9       20         1,1,2-Trichloro-1,2,2-trifluoroetha       25.0       24.4       ug/L       98       70-132       2       20         ne       25.0       26.8       ug/L       107       70-132       0       20         1,3-Trimethylbenzene       25.0       26.4       ug/L       100       70-130       0       20         1,3-Trimethylbenzene       25.0       26.8       ug/L       107       70-132       0       20         Vinyl chloride       25.0       26.4       ug/L       106       70-142 <td>1 2 4-Trichlorobenzene</td> <td></td> <td></td> <td>25.0</td> <td>26.0</td> <td></td> <td>ug/L</td> <td></td> <td>104</td> <td>70 - 130</td> <td>2</td> <td>20</td>	1 2 4-Trichlorobenzene			25.0	26.0		ug/L		104	70 - 130	2	20
1,1,2-Trichloroethane       25.0       24.4       ug/L       98       70 - 130       5       20         Trichloroethane       25.0       24.2       ug/L       97       70 - 130       0       20         Trichloroethane       25.0       24.2       ug/L       97       70 - 130       0       20         Trichlorofluoromethane       25.0       25.8       ug/L       103       66 - 132       1       20         1,2,3-Trichloropane       25.0       24.4       ug/L       98       70 - 130       9       20         1,1,2-Trichloro-1,2,2-trifluoroetha       25.0       24.4       ug/L       98       70 - 130       9       20         1,1,2-Trichloro-1,2,2-trifluoroetha       25.0       26.8       ug/L       107       70 - 132       0       20         ne       13,5-Trimethylbenzene       25.0       26.8       ug/L       107       70 - 132       0       20         1,3,5-Trimethylbenzene       25.0       26.1       ug/L       106       70 - 142       0       20         vilyl chloride       25.0       26.4       ug/L       106       70 - 130       1       20         o-Xylene       25.0       26.4	1 1 1-Trichloroethane			25.0	26.5		ua/L		106	70 - 130	0	20
Trichloroethane       25.0       24.2       ug/L       97       70 - 130       0       20         Trichlorofluoromethane       25.0       25.8       ug/L       103       66 - 132       1       20         1,2,3-Trichloropropane       25.0       25.0       24.4       ug/L       98       70 - 130       9       20         1,2,3-Trichloropropane       25.0       22.3       ug/L       98       70 - 132       2       20         ne       1       25.0       26.8       ug/L       107       70 - 132       0       20         1,2,4-Trimethylbenzene       25.0       26.6       27.5       ug/L       110       70 - 132       0       20         1,3,5-Trimethylbenzene       25.0       27.5       ug/L       110       70 - 132       0       20         Vinyl chloride       25.0       26.4       ug/L       106       70 - 142       0       20         n-Xylene & p-Xylene       25.0       26.4       ug/L       106       70 - 130       1       20         2,2-Dichloropropane       25.0       26.4       ug/L       106       70 - 130       1       20         2,2-Dichloropropane       25.0       <	1 1 2-Trichloroethane			25.0	24.4		ug/L		98	70 - 130	5	20
Trichlorofluoromethane       25.0       25.8       ug/L       103       66 - 132       1       20         1,2,3-Trichloroppane       25.0       24.4       ug/L       98       70 - 130       9       20         1,1,2-Trichloro-1,2,2-trifluoroetha       25.0       22.3       ug/L       89       42 - 162       2       20         ne       12,4-Trimethylbenzene       25.0       26.8       ug/L       107       70 - 132       0       20         1,3,5-Trimethylbenzene       25.0       26.8       ug/L       100       70 - 130       0       20         1,3,5-Trimethylbenzene       25.0       26.8       ug/L       110       70 - 130       0       20         Vinyl chloride       25.0       27.5       ug/L       110       70 - 132       0       20         vinyl chloride       25.0       26.4       ug/L       106       70 - 142       0       20         o-Xylene       25.0       26.4       ug/L       106       70 - 130       1       20         2,2-Dichloropropane       25.0       30.6       ug/L       122       70 - 140       3       20         2,2-Dichloropropane       26.0       30.6       <	Trichloroethene			25.0	24.2		ug/L		97	70 - 130	0	20
1,2,3-Trichloropropane       25.0       24.4       ug/L       98       70 - 130       9       20         1,1,2-Trichloro-1,2,2-trifluoroetha       25.0       22.3       ug/L       89       42 - 162       2       20         ne       25.0       25.0       26.8       ug/L       107       70 - 132       0       20         1,3,5-Trimethylbenzene       25.0       27.5       ug/L       110       70 - 130       0       20         1,3,5-Trimethylbenzene       25.0       27.5       ug/L       110       70 - 130       0       20         Vinyl chloride       25.0       27.5       ug/L       106       70 - 142       0       20         m-Xylene & p-Xylene       25.0       26.4       ug/L       106       70 - 130       1       20         o-Xylene       25.0       26.4       ug/L       106       70 - 130       1       20       20         o-Xylene       25.0       30.6       ug/L       106       70 - 130       1       20         2,2-Dichloropropane       25.0       30.6       ug/L       122       70 - 140       3       20         LCSD LCSD       Limits <tr< td=""><td>Trichlorofluoromethane</td><td></td><td></td><td>25.0</td><td>25.8</td><td></td><td>ug/L</td><td></td><td>103</td><td>66 - 132</td><td>1</td><td>20</td></tr<>	Trichlorofluoromethane			25.0	25.8		ug/L		103	66 - 132	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha       25.0       22.3       ug/L       89       42 - 162       2       20         ne       1,2,4-Trimethylbenzene       25.0       26.8       ug/L       107       70 - 132       0       20         1,3,5-Trimethylbenzene       25.0       27.5       ug/L       110       70 - 130       0       20         Vinyl chloride       25.0       26.4       ug/L       84       54 - 135       2       20         m-Xylene & p-Xylene       25.0       26.4       ug/L       106       70 - 142       0       20         o-Xylene       25.0       26.4       ug/L       106       70 - 130       1       20         2,2-Dichloropropane       25.0       26.4       ug/L       106       70 - 130       1       20         2,2-Dichloropropane       25.0       30.6       ug/L       122       70 - 140       3       20         LCSD LCSD         Surrogate       %Recovery       Qualifier       Limits         4       70       40       67       130       1       20	1.2.3-Trichloropropane			25.0	24.4		ug/L		98	70 - 130	9	20
ne       1,2,4-Trimethylbenzene       25.0       26.8       ug/L       107       70 - 132       0       20         1,3,5-Trimethylbenzene       25.0       27.5       ug/L       110       70 - 130       0       20         Vinyl chloride       25.0       21.1       ug/L       84       54 - 135       2       20         m-Xylene & p-Xylene       25.0       26.4       ug/L       106       70 - 142       0       20         o-Xylene       25.0       26.4       ug/L       106       70 - 130       1       20         2,2-Dichloropropane       25.0       30.6       ug/L       102       70 - 140       3       20         LCSD LCSD         Surrogate       %Recovery       Qualifier       Limits         4       70 - 104       3       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20	1 1 2-Trichloro-1 2 2-trifluoroetha			25.0	22.3		ug/L		89	42 - 162	2	20
1,2,4-Trimethylbenzene       25.0       26.8       ug/L       107       70-132       0       20         1,3,5-Trimethylbenzene       25.0       27.5       ug/L       110       70-130       0       20         Vinyl chloride       25.0       21.1       ug/L       84       54-135       2       20         m-Xylene & p-Xylene       25.0       26.4       ug/L       106       70-142       0       20         o-Xylene       25.0       26.4       ug/L       106       70-142       0       20         o-Xylene       25.0       26.4       ug/L       106       70-130       1       20         2,2-Dichloropropane       25.0       30.6       ug/L       122       70-140       3       20         LCSD LCSD         Surrogate       %Recovery       Qualifier       Limits         4       67       130       1       20	ne						-					
1,3,5-Trimethylbenzene       25.0       27.5       ug/L       110       70-130       0       20         Vinyl chloride       25.0       21.1       ug/L       84       54.135       2       20         m-Xylene & p-Xylene       25.0       26.4       ug/L       106       70-142       0       20         o-Xylene       25.0       26.4       ug/L       106       70-130       1       20         2,2-Dichloropropane       25.0       30.6       ug/L       106       70-140       3       20         LCSD LCSD         Surrogate       %Recovery       Qualifier       Limits         67, 130       67, 130       10       57, 130       10       20	1,2,4-Trimethylbenzene			25.0	26.8		ug/L		107	70 - 132	0	20
Vinyl chloride       25.0       21.1       ug/L       84       54.135       2       20         m-Xylene & p-Xylene       25.0       26.4       ug/L       106       70.142       0       20         o-Xylene       25.0       26.4       ug/L       106       70.142       0       20         2,2-Dichloropropane       25.0       26.4       ug/L       106       70.130       1       20         2,2-Dichloropropane       25.0       30.6       ug/L       122       70.140       3       20         LCSD LCSD         Surrogate       %Recovery       Qualifier       Limits       57.130       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10	1,3,5-Trimethylbenzene			25.0	27.5		ug/L		110	70 - 130	0	20
m-Xylene & p-Xylene       25.0       26.4       ug/L       106       70 - 142       0       20         o-Xylene       25.0       26.4       ug/L       106       70 - 130       1       20         2,2-Dichloropropane       25.0       30.6       ug/L       122       70 - 140       3       20         LCSD LCSD         Surrogate       %Recovery       Qualifier       Limits                                                                                        <	Vinyl chloride			25.0	21.1		ug/L		84	54 - 135	2	20
o-Xylene       25.0       26.4       ug/L       106       70 - 130       1       20         2,2-Dichloropropane       25.0       30.6       ug/L       122       70 - 140       3       20         LCSD       LCSD       LCSD       Limits       Employed	m-Xylene & p-Xylene			25.0	26.4		ug/L		106	70 - 142	0	20
2,2-Dichloropropane 25.0 30.6 ug/L 122 70 - 140 3 20 LCSD LCSD Surrogate %Recovery Qualifier Limits 4. Bromofiliorphanzene 104 67, 130	o-Xylene			25.0	26.4		ug/L		106	70 - 130	1	20
LCSD LCSD Surrogate %Recovery Qualifier Limits	2,2-Dichloropropane			25.0	30.6		ug/L		122	70 - 140	3	20
Surrogate %Recovery Qualifier Limits			1000									
Surrogare %Kecovery Quaimer Limits	2	LUSD	CUSD	1 inclus								
	Surrogate	%recovery	Quantier	67 120								

1 Bronnadi adi adani 20110		
1,2-Dichloroethane-d4 (Surr)	95	72 - 130

#### TestAmerica Job ID: 720-58974-1

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-1641 Matrix: Water	10/6					Clie	ent Sam	nple ID:	Lab Contro Prep T	l Sample Dup ype: Total/NA
Analysis Batch: 164110										
	1000	1000								
Surrogata	%Recovery	Qualifier	l imite							
	100	Quanner	70 130							
Toluene-do (Sun)	100		70-150							
Lab Sample ID: LCSD 720-1641	10/8					Clie	ent San	nple ID:	Lab Contro	Sample Dup
Matrix: Water									Prep T	vpe: Total/NA
Analysis Batch: 164110										
			Spike	LCSD	LCSD				%Rec.	RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD Limit
Gasoline Range Organics (GRO) -C5-C12			500	561		ug/L		112	62 - 120	1 20
	LCSD	LCSD								
Surrogate	%Recoverv	Qualifier	Limits							
4-Bromofluorobenzene	106		67 - 130							
1.2-Dichloroethane-d4 (Surr)	100		72 - 130							
Toluene-d8 (Surr)	101		70 - 130							
Lab Sample ID: 720-58974-3 MS Matrix: Water	1								Client Sam Prep T	ple ID: MW-02 ype: Total/NA
Analysis Batch: 164110										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	ND		25.0	26.6		ug/L		106	60 - 138	
Acetone	ND		125	107		ug/L		86	60 - 140	
Benzene	ND		25.0	25.8		ug/L		103	60 - 140	
Dichlorobromomethane	ND		25.0	26.5		ug/L		106	60 - 140	
Bromobenzene	ND		25.0	24.6		ug/L		98	60 - 140	
Chlorobromomethane	ND		25.0	25.8		ug/L		103	60 - 140	
Bromoform	ND		25.0	25.4		ug/L		102	56 - 140	
Bromomethane	ND		25.0	20.2		ug/L		81	23 - 140	
2-Butanone (MEK)	UN		125	112		ug/L		90	60 - 140	
n-Butylbenzene	ND		25.0	26.1		ug/L		104	60 140	
sec-Butylbenzene	ND		25.0	20.0		ug/L		101	60 140	
			25.0	24.7		ug/L		99	38 140	
Carbon disulfide			25.0	24.1		ug/L		95	60 140	
Carbon tetrachionde			25.0	25.0		ug/L		100	60 140	
Chlorophana	ND		25.0	20.0		ug/L		82	51 140	
Chloroform	ND		25.0	25.6		ug/L		102	60 140	
Chloromethane	ND		25.0	19.6		ug/L		79	52 - 140	
	ND		25.0	26.2		ug/L		105	60 - 140	
A-Chlorotoluene	ND		25.0	26.5		ug/L		106	60 - 140	
Chlorodibromomethane	ND		25.0	26.9		ua/L		108	60 - 140	
1 2-Dichlorobenzene	ND		25.0	25.1		ua/L		100	60 - 140	
1 3-Dichlorobenzene	ND		25.0	25.2		ug/L		101	60 - 140	
1.4-Dichlorobenzene	ND		25.0	25.3		ug/L		101	60 - 140	
1 3-Dichloropropane	ND		25.0	27.1		ug/L		108	60 - 140	
1.1-Dichloropropene	ND		25.0	26.1		ug/L		104	60 - 140	
1.2-Dibromo-3-Chloropropane	ND		25.0	24.6		ug/L		98	60 - 140	
Ethylene Dibromide	ND		25.0	26.6		uo/I		107	60 - 140	

Client Sample ID: MW-02

Prep Type: Total/NA

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

# Lab Sample ID: 720-58974-3 MS

Analysis Batch: 164110	Consta	0	Outline	NO					% Dee	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dibromomethane	ND		25.0	25.9		ug/L		103	60 - 140	
Dichlorodifluoromethane	ND		25.0	18.8		ug/L		75	38 - 140	
1,1-Dichloroethane	ND		25.0	26.0		ug/L		104	60 _ 140	
1,2-Dichloroethane	ND		25.0	25.9		ug/L		103	60 - 140	
1,1-Dichloroethene	ND		25.0	21.0		ug/L		84	60 - 140	
cis-1.2-Dichloroethene	3.0		25.0	29.4		ug/L		105	60 - 140	
trans-1,2-Dichloroethene	ND		25.0	24.4		ug/L		97	60 - 140	
1.2-Dichloropropane	ND		25.0	27.6		ug/L		110	60 - 140	
cis-1.3-Dichloropropene	ND		25.0	28.4		ug/L		114	60 - 140	
trans-1.3-Dichloropropene	ND		25.0	30.9		ug/L		124	60 - 140	
Ethylbenzene	ND		25.0	24.9		ug/L		100	60 - 140	
Hexachlorobutadiene	ND		25.0	23.7		ug/L		95	60 - 140	
2-Hexanone	ND		125	125		ua/L		100	60 - 140	
Isopropylbenzene	ND		25.0	24.9		ua/L		100	60 - 140	
4-isopropyltoluene	ND		25.0	24.8		ua/L		99	60 - 140	
Methylene Chloride	ND		25.0	24.8		ua/L		99	40 - 140	
4-Methyl-2-pentanone (MIBK)	ND		125	129		ug/L		103	58 - 130	
Naphthalene	ND		25.0	26.8		ug/L		107	56 - 140	
N-Propylbenzene	ND		25.0	25.9		ua/L		103	60 - 140	
Styrene	ND		25.0	26.5		ug/L		106	60 - 140	
1 1 1 2-Tetrachloroethane	ND		25.0	24.9		ug/L		100	60 - 140	
1 1 2 2-Tetrachloroethane	ND		25.0	26.0		ug/L		104	60 - 140	
	5.4		25.0	27.6		ug/L		89	60 - 140	
Toluene	ND		25.0	24.8		ug/L		99	60 - 140	
1.2.3-Trichlorobenzene	ND		25.0	25.4		ug/l		102	60 - 140	
1.2.4-Trichlorobenzene	ND		25.0	26.3		ug/l		105	60 - 140	
1 1 1-Trichloroethane	ND		25.0	25.2		ug/L		101	60 - 140	
1 1 2-Trichloroethane	ND		25.0	27.0		ug/L		108	60 . 140	
Trichloroethene	13		25.0	35.3		ug/L		91	60 - 140	
Trichlorofluoromethane			25.0	23.6		ug/L		94	60 140	
1.2.3-Trichloropropage	ND		25.0	25.1		ug/l		100	60 - 140	
1.1.2 Trichloro 1.2.2 trifluoroetha	ND		25.0	21.1		ug/l		84	60 - 140	
ne	ND .		20.0			49.1		•		
1,2,4-Trimethylbenzene	ND		25.0	26.3		ug/L		105	60 - 140	
1,3,5-Trimethylbenzene	ND		25.0	26.2		ug/L		105	60 - 140	
Vinyl chloride	ND		25.0	19.4		ug/L		78	58 - 140	
m-Xylene & p-Xylene	ND		25.0	25.6		ug/L		102	60 - 140	
o-Xylene	ND		25.0	26.2		ug/L		105	60 - 140	
2,2-Dichloropropane	ND		25.0	26.9		ug/L		107	60 - 140	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene	106		67 - 130							
1.2-Dichloroethane-d4 (Surr)	101		72 - 130							
Toluene-d8 (Surr)	102		70_130							

Client Sample ID: MW-02 Prep Type: Total/NA

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-3 M	ISD
Matrix: Water	
Analysis Batch: 164110	

Analysis Baton. 104110	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND		25.0	27.4		ug/L		110	60 - 138	3	20
Acetone	ND		125	112		ug/L		90	60 - 140	5	20
Benzene	ND		25.0	26.1		ug/L		104	60 - 140	1	20
Dichlorobromomethane	ND		25.0	26.8		ug/L		107	60 - 140	1	20
Bromobenzene	ND		25.0	24.6		ug/L		98	60 - 140	0	20
Chlorobromomethane	ND		25.0	26.0		ug/L		104	60 - 140	1	20
Bromoform	ND		25.0	26.1		ug/L		104	56 - 140	2	20
Bromomethane	ND		25.0	20.1		ug/L		80	23 - 140	1	20
2-Butanone (MEK)	ND		125	116		ug/L		92	60 - 140	3	20
n-Butylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	1	20
sec-Butylbenzene	ND		25.0	25.1		ug/L		100	60 - 140	1	20
tert-Butylbenzene	ND		25.0	24.8		ug/L		99	60 - 140	0	20
Carbon disulfide	ND		25.0	24.5		ug/L		98	38 - 140	1	20
Carbon tetrachloride	ND		25.0	23.9		ug/L		96	60 - 140	1	20
Chlorobenzene	ND		25.0	25.0		ug/L		100	60 - 140	0	20
Chloroethane	ND		25.0	20.7		ug/L		83	51 - 140	1	20
Chloroform	ND		25.0	25.8		ug/L		103	60 - 140	1	20
Chloromethane	ND		25.0	19.6		ug/L		78	52 - 140	0	20
2-Chlorotoluene	ND		25.0	25.8		ug/L		103	60 - 140	2	20
4-Chlorotoluene	ND		25.0	26.3		ug/L		105	60 - 140	1	20
Chlorodibromomethane	ND		25.0	27.2		ug/L		109	60 - 140	1	20
1,2-Dichlorobenzene	ND		25.0	25.3		ug/L		101	60 - 140	1	20
1,3-Dichlorobenzene	ND		25.0	25.0		ug/L		100	60 - 140	1	20
1,4-Dichlorobenzene	ND		25.0	25.1		ug/L		100	60 - 140	1	20
1,3-Dichloropropane	ND		25.0	27.4		ug/L		110	60 - 140	1	20
1,1-Dichloropropene	ND		25.0	26.4		ug/L		106	60 - 140	1	20
1,2-Dibromo-3-Chloropropane	ND		25.0	25.4		ug/L		102	60 - 140	3	20
Ethylene Dibromide	ND		25.0	27.2		ug/L		109	60 - 140	2	20
Dibromomethane	ND		25.0	26.2		ug/L		105	60 - 140	1	20
Dichlorodifluoromethane	ND		25.0	18.9		ug/L		75	38 - 140	0	20
1,1-Dichloroethane	ND		25.0	26.2		ug/L		105	60 - 140	1	20
1,2-Dichloroethane	ND		25.0	26.2		ug/L		105	60 - 140	1	20
1,1-Dichloroethene	ND		25.0	21.2		ug/L		85	60 - 140	1	20
cis-1,2-Dichloroethene	3.0		25.0	29.9		ug/L		107	60 - 140	2	20
trans-1,2-Dichloroethene	ND		25.0	24.7		ug/L		98	60 - 140	1	20
1,2-Dichloropropane	ND		25.0	27.7		ug/L		111	60 - 140	1	20
cis-1,3-Dichloropropene	ND		25.0	28.9		ug/L		115	60 - 140	2	20
trans-1,3-Dichloropropene	ND		25.0	31.6		ug/L		126	60 - 140	2	20
Ethylbenzene	ND		25.0	24.8		ug/L		99	60 - 140	0	20
Hexachlorobutadiene	ND		25.0	24.2		ug/L		97	60 - 140	2	20
2-Hexanone	ND		125	132		ug/L		105	60 - 140	5	20
lsopropylbenzene	ND		25.0	25.0		ug/L		100	60 _ 140	0	20
4-Isopropyltoluene	ND		25.0	24.7		ug/L		99	60 - 140	0	20
Methylene Chloride	ND		25.0	25.1		ug/L		100	40 - 140	1	20
4-Methyl-2-pentanone (MIBK)	ND		125	135		ug/L		108	58 - 130	4	20
Naphthalene	ND		25.0	27.6		ug/L		110	56 - 140	3	20
N-Propylbenzene	ND		25.0	25.8		ug/L		103	60 - 140	0	20
Styrene	ND		25.0	26.3		ug/L		105	60 - 140	1	20

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-3 MSD Matrix: Water									Client Sam Prep T	ple ID: M ype: Tot	IW-02 tal/NA
Analysis Batch: 164110	Comula	Comula	Califo	MCD	MCD				% Poo		PPD
	Sample	Sample	Spike	Wab	WISD				/onec.	-	NPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	24.7		ug/L		99	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND		25.0	26.5		ug/L		106	60 - 140	2	20
Tetrachloroethene	5.4		25.0	28.9		ug/L		94	60 - 140	5	20
Toluene	ND		25.0	24.7		ug/L		99	60 - 140	0	20
1,2,3-Trichlorobenzene	ND		25.0	26.0		ug/L		104	60 - 140	2	20
1,2,4-Trichlorobenzene	ND		25.0	26.5		ug/L		106	60 - 140	1	20
1,1,1-Trichloroethane	ND		25.0	25.7		ug/L		103	60 - 140	2	20
1,1,2-Trichloroethane	ND		25.0	27.5		ug/L		110	60 - 140	2	20
Trichloroethene	13		25.0	36.9		ug/L		97	60 _ 140	4	20
Trichlorofluoromethane	ND		25.0	23.9		ug/L		96	60 - 140	1	20
1,2,3-Trichloropropane	ND		25.0	25.6		ug/L		102	60 _ 140	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	21.4		ug/L		86	60 - 140	2	20
ne											
1,2,4-Trimethylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	1	20
1,3,5-Trimethylbenzene	ND		25.0	26.1		ug/L		104	60 - 140	1	20
Vinyl chloride	ND		25.0	19.2		ug/L		77	58 - 140	1	20
m-Xylene & p-Xylene	ND		25.0	25.5		ug/L		102	60 - 140	0	20
o-Xylene	ND		25.0	26.2		ug/L		105	60 - 140	0	20
2,2-Dichloropropane	ND		25.0	26.9		ug/L		108	60 - 140	0	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	107		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		72 - 130
Toluene-d8 (Surr)	102		70 - 130

#### Lab Sample ID: MB 720-164220/4 Matrix: Water

## Analysis Batch: 164220

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/01/14 19:58	1
Acetone	ND		50		ug/L			08/01/14 19:58	1
Benzene	ND		0.50		ug/L			08/01/14 19:58	1
Dichlorobromomethane	ND		0.50		ug/L			08/01/14 19:58	1
Bromobenzene	ND		1.0		ug/L			08/01/14 19:58	1
Chlorobromomethane	ND		1.0		ug/L			08/01/14 19:58	1
Bromoform	ND		1.0		ug/L			08/01/14 19:58	1
Bromomethane	ND		1.0		ug/L			08/01/14 19:58	1
2-Butanone (MEK)	ND		50		ug/L			08/01/14 19:58	1
n-Butylbenzene	ND		1.0		ug/L			08/01/14 19:58	1
sec-Butylbenzene	ND		1.0		ug/L			08/01/14 19:58	1
tert-Butylbenzene	ND		1.0		ug/L			08/01/14 19:58	1
Carbon disulfide	ND		5.0		ug/L			08/01/14 19:58	1
Carbon tetrachloride	ND		0.50		ug/L			08/01/14 19:58	1
Chlorobenzene	ND		0.50		ug/L			08/01/14 19:58	1
Chloroethane	ND		1.0		ug/L			08/01/14 19:58	1
Chloroform	ND		1.0		ug/L			08/01/14 19:58	1
Chloromethane	ND		1.0		ug/L			08/01/14 19:58	1

**TestAmerica** Pleasanton

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-164220/4 Matrix: Water								Client S	ample ID: Metho Prep Type: T	d Blank otal/NA
Analysis Batch: 164220										
	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
2-Chlorotoluene	ND		 0.50	6	ug/L	1			08/01/14 19:58	1
4-Chiorotoluene	ND		0.50		ug/L				08/01/14 19:58	1
Chlorodibromomethane	ND		0.50		ug/L				08/01/14 19:58	1
1,2-Dichlorobenzene	ND		0.50		ug/L				08/01/14 19:58	1
1,3-Dichlorobenzene	ND		0.50		ug/L				08/01/14 19:58	1
1,4-Dichlorobenzene	ND		0.50		ug/L				08/01/14 19:58	1
1,3-Dichloropropane	ND		1.0		ug/L				08/01/14 19:58	1
1,1-Dichloropropene	ND		0.50		ug/L				08/01/14 19:58	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L				08/01/14 19:58	1
Ethylene Dibromide	ND		0.50		ug/L				08/01/14 19:58	1
Dibromomethane	ND		0.50		ug/L				08/01/14 19:58	1
Dichlorodifluoromethane	ND		0.50		ug/L				08/01/14 19:58	1
1,1-Dichloroethane	ND		0.50		ug/L				08/01/14 19:58	1
1,2-Dichloroethane	ND		0.50		ug/L				08/01/14 19:58	1
1,1-Dichloroethene	ND		0.50		ug/L	20			.08/01/14 19:58	1
cis-1,2-Dichloroethene	ND		0.50		ug/L				08/01/14 19:58	1
trans-1,2-Dichloroethene	ND		0.50		ug/L				08/01/14 19:58	1
1,2-Dichloropropane	ND		0.50		ug/L				08/01/14 19:58	1
cis-1,3-Dichloropropene	ND		0.50		ug/L				08/01/14 19:58	1
trans-1,3-Dichloropropene	ND		0.50		ug/L				08/01/14 19:58	1
Ethylbenzene	ND		0.50		ug/L				08/01/14 19:58	1
Hexachlorobutadiene	ND		1.0		ug/L				08/01/14 19:58	1
2-Hexanone	ND		50		ug/L				08/01/14 19:58	1
Isopropylbenzene	ND		0.50		ug/L				08/01/14 19:58	1
4-Isopropyltoluene	ND		1.0		ug/L				08/01/14 19:58	1
Methylene Chloride	ND		5.0		ug/L				08/01/14 19:58	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L				08/01/14 19:58	1
Naphthalene	ND		1.0		ug/L				08/01/14 19:58	1
N-Propylbenzene	ND		1.0		ua/L				08/01/14 19:58	1
Styrepe	ND		0.50		ua/L				08/01/14 19:58	1
1 1 1 2-Tetrachloroethane	ND		0.50		ua/L				08/01/14 19:58	1
1 1 2 2-Tetrachloroethane	ND		0.50		ua/L				08/01/14 19:58	1
	ND		0.50		ua/L				08/01/14 19:58	1
Toluene	ND		0.50		ua/l				08/01/14 19:58	1
1.2.3-Trichlorobenzene	ND		1.0		ug/l				08/01/14 19:58	1
1.2.4-Trichlorobenzene	ND		1.0		ug/l				08/01/14 19:58	1
1 1 1-Trichloroethane	ND		0.50		ug/l				08/01/14 19:58	1
1.1.2-Trichloroethane	ND		0.50		ug/L				08/01/14 19:58	1
	ND		0.50		ug/L				08/01/14 19:58	1
Trichlorofluoromethane	ND		1.0		ug/L				08/01/14 19:58	1
			0.50		ug/L				08/01/14 19:58	1
1.1.2. Trichloro 1.2.2 trifluorosthone			0.50		ug/L				08/01/14 10:58	1
1.2.4 Trimothylhonzene			0.50		ug/L				08/01/14 10:59	1
			0.50		ug/L				08/01/14 19:50	1
			10		ug/L				08/01/14 19.30	4
			0.50		ug/L				08/01/14 19:50	4
Viriyi chlonde	ND		1.0		ug/L				00/01/14 10:50	4
Aylenes, I otal	ND		0.50		ug/L				00/01/14 19:58	
2,2-Dichloropropane	ND		0.50		ug/L				08/01/14 19:58	1

#### TestAmerica Job ID: 720-58974-1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

8 7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

					Client Sa	ample ID: Metho Prep Type: T	d Blank otal/NA
MB							
Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	50		ug/L			08/01/14 19:58	1
MB							
Qualifier	Limits				Prepared	Analyzed	Dil Fac
	67 - 130			-		08/01/14 19:58	1
	72 - 130					08/01/14 19:58	1
	70 - 130					08/01/14 19:58	1
	MB Qualifier MB Qualifier	MB Qualifier RL 50 MB Qualifier Limits 67 - 130 72 - 130 70 - 130	MB Qualifier RL MDL 50 MB Qualifier Limits 67 - 130 72 - 130 70 - 130	MB         RL         MDL         Unit           50         ug/L           MB         Qualifier         Limits           67 - 130         72 - 130           70 - 130	MB         MDL         Unit         D           50         ug/L         -           MB         Qualifier         Limits         -           67 - 130         -         -         -           72 - 130         -         -         -           70 - 130         -         -         -	MB     D     Prepared       Qualifier     RL     MDL     Unit     D     Prepared       50     ug/L     Prepared       MB     Prepared       67 - 130     72 - 130       70 - 130	MB         D         Prepared         Analyzed           50         ug/L         08/01/14 19:58           MB         Qualifier         Limits         Prepared         Analyzed           67 - 130         08/01/14 19:58         08/01/14 19:58           72 - 130         08/01/14 19:58         08/01/14 19:58           70 - 130         08/01/14 19:58         08/01/14 19:58

#### Lab Sample ID: LCS 720-164220/5 Matrix: Water

#### Analysis Batch: 164220

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	25.4		ug/L	-	102	62 - 130	
Acetone	125	121		ug/L		97	26 - 180	
Benzene	25.0	25.5		ug/L		102	79 - 130	
Dichlorobromomethane	25.0	25.3		ug/L		101	70 - 130	
Bromobenzene	25.0	25.2		ug/L		101	70 - 130	
Chlorobromomethane	25.0	24.7		ug/L		99	70 _ 130	
Bromoform	25.0	23.6		ug/L		95	68 - 136	
Bromomethane	25.0	21.2		ug/L		85	43 - 151	
2-Butanone (MEK)	125	122		ug/L		98	54 - 130	
n-Butylbenzene	25.0	26.7		ug/L		107	70 - 142	
sec-Butylbenzene	25.0	26.6		ug/L		106	70 - 134	
tert-Butylbenzene	25.0	26.2		ug/L		105	70_135	
Carbon disulfide	25.0	23.7		ug/L		95	58 - 130	
Carbon tetrachloride	25.0	24.1		ug/L		96	70 - 146	
Chlorobenzene	25.0	25.1		ug/L		100	70 - 130	
Chloroethane	25.0	20.9		ug/L		84	62 - 138	
Chloroform	25.0	24.9		ug/L		100	70 - 130	
Chloromethane	25.0	21.1		ug/L		85	52 - 175	
2-Chlorotoluene	25.0	26.8		ug/L		107	70 - 130	
4-Chlorotoluene	25.0	26.8		ug/L		107	70 - 130	
Chlorodibromomethane	25.0	25.4		ug/L		102	70 - 145	
1,2-Dichlorobenzene	25.0	25.6		ug/L		102	70 - 130	
1,3-Dichlorobenzene	25.0	25.2		ug/L		101	70 - 130	
1,4-Dichlorobenzene	25.0	25.0		ug/L		100	70 - 130	
1,3-Dichloropropane	25.0	26.2		ug/L		105	70 - 130	
1,1-Dichloropropene	25.0	26.4		ug/L		106	70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	26.6		ug/L		106	70 - 136	
Ethylene Dibromide	25.0	26.0		ug/L		104	70 - 130	
Dibromomethane	25.0	25.1		ug/L		100	70 - 130	
Dichlorodifluoromethane	25.0	19.4		ug/L		78	34 - 132	
1,1-Dichloroethane	25.0	25.7		ug/L		103	70 - 130	
1,2-Dichloroethane	25.0	24.6		ug/L		98	61 - 132	
1,1-Dichloroethene	25.0	21.3		ug/L		85	64 - 128	
cis-1,2-Dichloroethene	25.0	25.6		ug/L		102	70 - 130	
trans-1,2-Dichloroethene	25.0	24.1		ug/L		97	68 - 130	

6 7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-164 Matrix: Water	220/5						Client	Sample	ID: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 164220									
			Spike	LCS	LCS	11		0/	%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	
1,2-Dichloropropane			25.0	26.6		ug/L		106	70 - 130
cis-1,3-Dichloropropene			25.0	26.7		ug/L		107	70 - 130
trans-1,3-Dichloropropene			25.0	28.8		ug/L		115	70 - 140
Ethylbenzene			25.0	25.0		ug/L		100	80 - 120
Hexachlorobutadiene			25.0	25.4		ug/L		102	70 - 130
2-Hexanone			125	132		ug/L		106	60 - 164
Isopropylbenzene			25.0	25.4		ug/L		102	70 - 130
4-Isopropyltoluene			25.0	25.7		ug/L		103	70 - 130
Methylene Chloride			25.0	24.4		ug/L		98	70 - 147
4-Methyl-2-pentanone (MIBK)			125	137		ug/L		109	58 - 130
Naphthalene			25.0	28.6		ug/L		114	70 - 130
N-Propylbenzene			25.0	26.8		ug/L		107	70 - 130
Styrene			25.0	25.8		ug/L		103	70 - 130
1,1,1,2-Tetrachloroethane			25.0	24.7		ug/L		99	70 - 130
1,1,2,2-Tetrachloroethane			25.0	26.9		ug/L		108	70 - 130
Tetrachloroethene			25.0	23.2		ug/L		93	70 - 130
Toluene			25.0	24.9		ug/L		99	78 - 120
1.2.3-Trichlorobenzene			25.0	26.2		ug/L		105	70 - 130
1 2 4-Trichlorobenzene			25.0	26.0		ug/L		104	70 - 130
1 1 1-Trichloroethane			25.0	25.3		ug/L		101	70 - 130
1 1 2-Trichloroethane			25.0	26.2		ua/L		105	70 - 130
Trichlorgethene			25.0	24.1		ua/L		96	70 - 130
Trichlorofluoromethane			25.0	24.9		-a		100	66 - 132
			25.0	26.4		ug/L		106	70 130
1,2,3-Trichloropropane			25.0	20.4		ug/L		86	42 162
1,1,2-Trichloro-1,2,2-trifluoroetha			25.0	21.5		ugre		00	42 - 102
1,2,4-Trimethylbenzene			25.0	26.6		ug/L		106	70 - 132
1.3.5-Trimethylbenzene			25.0	27.1		ug/L		109	70 - 130
Vinvl acetate			25.0	21.5		ug/L		86	43 - 163
Vinyl chloride			25.0	19.5		ug/L		78	54 - 135
m-Xylene & n-Xylene			25.0	25.5		ua/L		102	70 - 142
			25.0	26.2		ua/l		105	70 - 130
			25.0	26.1		ug/L		104	70 - 140
2,2-Dichiolopiopane			20.0	20.1		69/L			
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene	105		67 - 130						
1,2-Dichloroethane-d4 (Surr)	97		72 - 130						
Toluene-d8 (Surr)	101		70 - 130						
Lab Sample ID: LCS 720-164	220/7						Client	Sample	ID: Lab Control Sample
Matrix: Water									Prep Type: Total/NA
Analysis Batch: 164220									
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits

Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	535	ug/L		107	62 - 120	
-C5-C12							

#### TestAmerica Job ID: 720-58974-1

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

#### Lab Sample ID: LCS 720-164220/7 Matrix: Water Analysis Batch: 164220

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		67 - 130
1,2-Dichloroethane-d4 (Surr)	102		72 - 130
Toluene-d8 (Surr)	102		70 - 130

## Lab Sample ID: LCSD 720-164220/6

Matrix: Water Analysis Batch: 164220

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	26.3		ug/L		105	62 - 130	4	20
Acetone	125	121		ug/L		97	26 - 180	0	30
Benzene	25.0	25.3		ug/L		101	79 - 130	1	20
Dichlorobromomethane	25.0	25.5		ug/L		102	70 - 130	1	20
Bromobenzene	25.0	24.5		ug/L		98	70 - 130	3	20
Chlorobromomethane	25.0	24.9		ug/L		99	70 - 130	1	20
Bromoform	25.0	24.0		ug/L		96	68 - 136	1	20
Bromomethane	25.0	20.8		ug/L		83	43 - 151	2	20
2-Butanone (MEK)	125	122		ug/L		98	54 - 130	0	20
n-Butylbenzene	25.0	25.7		ug/L		103	70 - 142	4	20
sec-Butylbenzene	25.0	26.0		ug/L		104	70 - 134	2	20
tert-Butylbenzene	25.0	25.4		ug/L		102	70 - 135	3	20
Carbon disulfide	25.0	23.4		ug/L		94	58 - 130	1	20
Carbon tetrachloride	25.0	23.8		ug/L		95	70 - 146	1	20
Chlorobenzene	25.0	24.6		ug/L		98	70 - 130	2	20
Chloroethane	25.0	21.0		ug/L		84	62 - 138	0	20
Chloroform	25.0	24.9		ug/L		100	70 - 130	0	20
Chloromethane	25.0	20.5		ug/L		82	52 - 175	3	20
2-Chlorotoluene	25.0	26.2		ug/L		105	70 - 130	2	20
4-Chlorotoluene	25.0	26.3		ug/L		105	70 - 130	2	20
Chlorodibromomethane	25.0	25.5		ug/L		102	70 - 145	1	20
1,2-Dichlorobenzene	25.0	24.9		ug/L		100	70 - 130	3	20
1,3-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130	2	20
1,4-Dichlorobenzene	25.0	24.7		ug/L		99	70 - 130	1	20
1,3-Dichloropropane	25.0	26.4		ug/L		106	70 - 130	1	20
1,1-Dichloropropene	25.0	26.0		ug/L		104	70 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	26.5		ug/L		106	70 - 136	0	20
Ethylene Dibromide	25.0	26.3		ug/L		105	70 - 130	- 1	20
Dibromomethane	25.0	25.3		ug/L		101	70 - 130	1	20
Dichlorodifluoromethane	25.0	19.1		ug/L		77	34 - 132	1	20
1,1-Dichloroethane	25.0	25.6		ug/L		102	70 - 130	0	20
1,2-Dichloroethane	25.0	24.9		ug/L		99	61 - 132	1	20
1,1-Dichloroethene	25.0	21.0		ug/L		84	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	25.5		ug/L		102	70 - 130	0	20
trans-1,2-Dichloroethene	25.0	23.9		ug/L		96	68 - 130	1	20
1,2-Dichloropropane	25.0	26.5		ug/L		106	70 - 130	0	20
cis-1,3-Dichloropropene	25.0	26.9		ug/L		108	70 - 130	1	20
trans-1,3-Dichloropropene	25.0	28.9		ug/L		116	70 - 140	1	20
Ethylbenzene	25.0	24.7		ug/L		99	80 - 120	1	20

TestAmerica Pleasanton

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-1 Matrix: Water				Cli	ient Sar	nple ID: I	ab Contro Prep T	l Sampl	e Dup tal/NA	
Analysis Batch: 164220										
Analysis Baten. Totazo		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hexachlorobutadiene	A.1795	25.0	24.6		ug/L		98	70 - 130	3	20
2-Hexanone		125	140		ug/L		112	60 - 164	6	20
Isopropylbenzene		25.0	25.0		ug/L		100	70 - 130	2	20
4-Isopropyltoluene		25.0	25.0		ug/L		100	70 - 130	3	20
Methylene Chloride		25.0	24.4		ug/L		98	70 - 147	0	20
4-Methyl-2-pentanone (MIBK)		125	144		ug/L		115	58 - 130	5	20
Naphthalene		25.0	28.8		ug/L		115	70 - 130	1	20
N-Propylbenzene		25.0	26.2		ug/L		105	70 - 130	2	20
Styrene		25.0	25.8		ug/L		103	70 - 130	0	20
1,1,1,2-Tetrachloroethane		25.0	24.5		ug/L		98	70 - 130	1	20
1,1,2,2-Tetrachloroethane		25.0	26.8		ug/L		107	70 _ 130	0	20
Tetrachloroethene		25.0	23.0		ug/L		92	70 - 130	1	20
Toluene		25.0	24.4		ug/L		98	78 - 120	2	20
1,2,3-Trichlorobenzene		25.0	25.8		ug/L		103	70 - 130	2	20
1,2,4-Trichlorobenzene		25.0	25.6		ug/L		102	70 - 130	2	20
1,1,1-Trichloroethane		25.0	25.0		ug/L		100	70 - 130	1	20
1,1,2-Trichloroethane		25.0	26.5		ug/L		106	70 - 130	1	20
Trichloroethene		25.0	23.8		ug/L		95	70 - 130	1	20
Trichlorofluoromethane		25.0	24.6		ug/L		98	66 - 132	1	20
1,2,3-Trichloropropane		25.0	26.4		ug/L		106	70 - 130	0	20
1 1 2-Trichloro-1 2 2-trifluoroetha		25.0	20.9		ug/L		84	42 - 162	3	20
ne										
1,2,4-Trimethylbenzene		25.0	26.2		ug/L		105	70 - 132	1	20
1,3,5-Trimethylbenzene		25.0	26.5		ug/L		106	70 - 130	2	20
Vinyl acetate		25.0	22.0		ug/L		88	43 - 163	2	20
Vinyl chloride		25.0	19.2		ug/L		77	54 _ 135	2	20
m-Xylene & p-Xylene		25.0	25.1		ug/L		100	70 - 142	2	20
o-Xylene		25.0	25.7		ug/L		103	70 - 130	2	20
2,2-Dichloropropane		25.0	24.7		ug/L		99	70 - 140	5	20
	1000 1000									

	LUUD	LOOD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		67 - 130
1,2-Dichloroethane-d4 (Surr)	99		72 - 130
Toluene-d8 (Surr)	101		70 - 130

## Lab Sample ID: LCSD 720-164220/8 Matrix: Water

Analysis Batch: 164220									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	529		ug/L		106	62 - 120	1	20
-C5-C12									

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		67 - 130
1,2-Dichloroethane-d4 (Surr)	104		72 - 130
Toluene-d8 (Surr)	102		70_130

#### Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: MP-01-3

Prep Type: Total/NA

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

#### Lab Sample ID: 720-58974-7 MS Matrix: Water Analysis Batch: 164220

Analysis Baton. Totalo	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier I	Jnit	D	%Rec	Limits	
Methyl tert-butyl ether	ND		25.0	25.3		ig/L	-	101	60 - 138	
Acetone	ND		125	140	L	ig/L		85	60 - 140	
Benzene	ND		25.0	25.5	L	ig/L		102	60 - 140	
Dichlorobromomethane	ND		25.0	25.6	ι	ig/L		102	60 - 140	
Bromobenzene	ND		25.0	24.3	ι	ig/L		97	60 - 140	
Chlorobromomethane	ND		25.0	24.8	L	ig/L		99	60 - 140	
Bromoform	ND		25.0	24.1	ι	ig/L		96	56 - 140	
Bromomethane	ND		25.0	19.2	ι	ig/L		77	23 - 140	
2-Butanone (MEK)	ND		125	114	ι	ig/L		91	60 - 140	
n-Butylbenzene	ND		25.0	26.1	ι	ig/L		104	60 - 140	
sec-Butylbenzene	ND		25.0	25.3	ι	ig/L		101	60 - 140	
tert-Butylbenzene	ND		25.0	25.0	ι	ig/L		100	60 - 140	
Carbon disulfide	ND		25.0	24.4	ι	ig/L		98	38 - 140	
Carbon tetrachloride	ND		25.0	23.3	ι	ig/L		93	60 - 140	
Chlorobenzene	ND		25.0	24.9	ι	ig/L		100	60 - 140	
Chloroethane	ND		25.0	20.2	ι	Ig/L		81	51 - 140	
Chloroform	ND		25.0	25.1	ι	ig/L		100	60 - 140	
Chloromethane	ND		25.0	18.7	ι	g/L		75	52 - 140	
2-Chlorotoluene	ND		25.0	26.0	ι	ig/L		104	60 - 140	
4-Chlorotoluene	ND		25.0	26.3	ι	g/L		105	60 - 140	
Chlorodibromomethane	ND		25.0	25.5	L	g/L		102	60 - 140	
1,2-Dichlorobenzene	ND		25.0	24.8	ι	ig/L		99	60 - 140	
1,3-Dichlorobenzene	ND		25.0	24.6	ι	ig/L		98	60 - 140	
1,4-Dichlorobenzene	ND		25.0	24.9	ι	ig/L		100	60 - 140	
1,3-Dichloropropane	ND		25.0	25.7	L	g/L		103	60 - 140	
1,1-Dichloropropene	ND		25.0	26.0	ι	g/L		104	60 - 140	
1,2-Dibromo-3-Chloropropane	ND		25.0	23.3	L	g/L		93	60 - 140	
Ethylene Dibromide	ND		25.0	25.4	ι	g/L		102	60 - 140	
Dibromomethane	ND		25.0	24.7	L	g/L		99	60 - 140	
Dichlorodifluoromethane	ND		25.0	18.6	L	g/L		74	38 - 140	
1,1-Dichloroethane	ND		25.0	25.7	L	g/L		103	60 - 140	
1,2-Dichloroethane	ND		25.0	24.7	L	g/L		99	60 - 140	
1,1-Dichloroethene	ND		25.0	20.6	L	g/L		82	60 - 140	
cis-1,2-Dichloroethene	5.1		25.0	30.9	ι	g/L		103	60 - 140	
trans-1,2-Dichloroethene	ND		25.0	23.9	L	g/L		96	60 - 140	
1,2-Dichloropropane	ND		25.0	26.7	u	g/L		107	60 - 140	
cis-1,3-Dichloropropene	ND		25.0	26.9	U	g/L		108	60 - 140	
trans-1,3-Dichloropropene	ND		25.0	29.2	U	g/L		117	60 - 140	
Ethylbenzene	ND		25.0	24.9	u	g/L		99	60 - 140	
Hexachlorobutadiene	ND		25.0	24.7	L	g/L		99	60 - 140	
2-Hexanone	ND		125	123	u	g/L		98	60 - 140	
Isopropylbenzene	ND		25.0	25.0	u	g/L		100	60 - 140	
4-Isopropyltoluene	ND		25.0	24.9	u	g/L		100	60 - 140	
Methylene Chloride	ND		25.0	24.1	u	g/L		96	40 - 140	
4-Methyl-2-pentanone (MIBK)	ND		125	127	u	g/L		101	58 - 130	
Naphthalene	ND		25.0	26.7	u	g/L		107	56 - 140	
N-Propylbenzene	ND		25.0	25.8	u	g/L		103	60 - 140	
Styrene	ND		25.0	26.1	u	g/L		104	60 - 140	

TestAmerica Job ID: 720-58974-1

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-7 MS								С	lient Sample ID: MP-01-3 Pren Type: Total/NA
Analysis Batch: 164220	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	ND		25.0	24.5		ug/L		98	60 - 140
1,1,2,2-Tetrachloroethane	ND		25.0	24.8		ug/L		99	60 - 140
Tetrachloroethene	ND		25.0	23.1		ug/L		92	60 - 140
Toluene	ND		25.0	24.8		ug/L		99	60 - 140
1,2,3-Trichlorobenzene	ND		25.0	25.5		ug/L		102	60 - 140
1,2,4-Trichlorobenzene	ND		25.0	26.2		ug/L		105	60 - 140
1,1,1-Trichloroethane	ND		25.0	25.3		ug/L		101	60 - 140
1,1,2-Trichloroethane	ND		25.0	26.1		ug/L		104	60 - 140
Trichloroethene	ND		25.0	23.8		ug/L		95	60 - 140
Trichlorofluoromethane	ND		25.0	23.6		ug/L		94	60 - 140
1,2,3-Trichloropropane	ND		25.0	23.9		ug/L		96	60 - 140
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	20.7		ug/L		83	60 - 140
ne									
1,2,4-Trimethylbenzene	ND		25.0	26.0		ug/L		104	60 - 140
1,3,5-Trimethylbenzene	ND		25.0	26.1		ug/L		105	60 - 140
Vinyl acetate	ND		25.0	21.3		ug/L		85	40 - 140
Vinyl chloride	ND		25.0	18.8		ug/L		75	58 - 140
m-Xylene & p-Xylene	ND		25.0	25.4		ug/L		102	60 - 140
o-Xylene	ND		25.0	26.2		ug/L		105	60 - 140
2,2-Dichloropropane	ND		25.0	26.4		ug/L		106	60 - 140
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene	106		67 - 130						

100	07 - 150
97	72 - 130
102	70 - 130
	97 102

#### Lab Sample ID: 720-58974-7 MSD Matrix: Water Analysis Batch: 164220

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND		25.0	26.2		ug/L		105	60 - 138	4	20
Acetone	ND		125	147		ug/L		90	60 - 140	5	20
Benzene	ND		25.0	25.6		ug/L		103	60 - 140	1	20
Dichlorobromomethane	ND		25.0	25.8		ug/L		103	60 - 140	1	20
Bromobenzene	ND		25.0	24.6		ug/L		98	60 - 140	1	20
Chlorobromomethane	ND		25.0	25.0		ug/L		100	60 _ 140	1	20
Bromoform	ND		25.0	24.2		ug/L		97	56 - 140	0	20
Bromomethane	ND		25.0	19.1		ug/L		76	23 - 140	1	20
2-Butanone (MEK)	ND		125	119		ug/L		95	60 - 140	4	20
n-Butylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	0	20
sec-Butylbenzene	ND		25.0	25.5		ug/L		102	60 - 140	1	20
tert-Butylbenzene	ND		25.0	25.0		ug/L		100	60 _ 140	0	20
Carbon disulfide	ND		25.0	24.3		ug/L		97	38 - 140	0	20
Carbon tetrachloride	ND		25.0	23.3		ug/L		93	60 - 140	0	20
Chlorobenzene	ND		25.0	24.9		ug/L		100	60 - 140	0	20
Chloroethane	ND		25.0	20.3		ug/L		81	51 - 140	1	20
Chloroform	ND		25.0	25.2		ug/L		101	60 - 140	1	20

**TestAmerica** Pleasanton

Client Sample ID: MP-01-3

Prep Type: Total/NA

Client Sample ID: MP-01-3

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-7 MSD								C	lient Samp	le ID: MI	2-01-3
Watrix, Water									Fiebi	ype. to	
Analysis Batch: 164220	Sample	Sample	Spiko	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	ND		25.0	18.8		ug/L	 	75	52 - 140	1	20
2-Chlorotoluene	ND		25.0	26.1		ug/L		105	60 - 140	0	20
4-Chlorotoluene	ND		25.0	26.2		ua/L		105	60 _ 140	0	20
Chlorodibromomethane	ND		25.0	25.8		ug/L		103	60 - 140	1	20
1.2-Dichlorobenzene	ND		25.0	25.0		ug/L		100	60 - 140	1	20
1.3-Dichlorobenzene	ND		25.0	24.7		ug/L		99	60 - 140	1	20
1.4-Dichlorobenzene	ND		25.0	25.0		ug/L		100	60 - 140	0	20
1.3-Dichloropropane	ND		25.0	26.2		ug/L		105	60 - 140	2	20
1.1-Dichloropropene	ND		25.0	26.0		ug/L		104	60 - 140	0	20
1.2-Dibromo-3-Chloropropane	ND		25.0	24.7		ug/L		99	60 - 140	6	20
Ethylene Dibromide	ND		25.0	25.8		ua/L		103	60 - 140	2	20
Dibromomethane	ND		25.0	25.2		ua/L		101	60 - 140	2	20
Dichlorodifluoromethane	ND		25.0	18.5		ua/L		74	38 - 140	0	20
1 1-Dichloroethane	ND		25.0	25.7		ug/L		103	60 - 140	0	20
1.2-Dichloroethane	ND		25.0	25.2		ua/L		101	60 - 140	2	20
1 1-Dichloroethene	ND		25.0	20.7		ug/1		83	60 - 140	1	20
cis-1 2-Dichloroethene	5.1		25.0	31.0		ug/L		104	60 - 140	0	20
trans_1 2-Dichloroethene	ND		25.0	24.1		ug/L		97	60 - 140	1	20
1 2-Dichloropropage	ND		25.0	26.8		ug/L		107	60 140	0	20
	ND		25.0	27.5		ug/L		110	60 140	2	20
trans 1.3 Dichloropropene			25.0	20.3		ug/L		117	60 140	1	20
Ethylhonzono	ND		25.0	20.0		ug/L		98	60 140	1	20
	ND		25.0	24.0		ug/L		90	60 140	0	20
	ND		125	129		ug/L		103	60 140	5	20
			25.0	24.0		ug/L		100	60 140	0	20
			25.0	24.5		ug/L		100	60 140	0	20
4-isopropynolitene Methylene Chloride			25.0	24.5		ug/L		00	40 140	1	20
Methylene Chionde			25.0	429		ug/L		107	40 - 140 E9 130	5	20
4-Methyl-2-pentanone (MIBK)			125	27.4		ug/L		1107	56 140	2	20
Naphinalene	ND		25.0	27.4		ug/L		104	60 140	0	20
N-Propyidenzene	ND		25.0	20.9		ug/L		104	60 140	1	20
Styrene	ND		25.0	20.0		ug/L		103	60 140	1	20
1,1,1,2-Tetrachloroethane	ND		25.0	24.0		ug/L		102	60 140	2	20
	ND		25.0	25.0		ug/L		102	60 140	3	20
Tetrachioroethene	ND		25.0	22.9		ug/L		92	60 140	1	20
	ND		25.0	24.0		ug/L		99	60 140	1	20
1,2,3-Trichlorobenzene	ND		25.0	25.5		ug/L		102	60 - 140	0	20
1,2,4-Trichlereethere	ND		25.0	20.2		ug/L		105	60 140	1	20
	ND		25.0	20.7		ug/L		103	60 - 140	1	20
1,1,2-1 richloroethane	ND		25.0	26.4		ug/L		106	60 - 140	1	20
	ND		25.0	23.8		ug/L		95	60 - 140	1	20
	ND		25.0	23.8		ug/L		95	00 - 140		20
1,2,3-Trichloropropane	ND		25.0	24.8		ug/L		99	60 - 140	4	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	ND		25.0	20.9		ug/L		83	60 - 140	1	20
1,2,4-Trimethylbenzene	ND		25.0	26.1		ug/L		104	60 - 140	0	20
1,3,5-Trimethylbenzene	ND		25.0	26.2		ug/L		105	60 - 140	0	20
Vinyl acetate	ND		25.0	22.1		ug/L		89	40 - 140	4	20
Vinyl chloride	ND		25.0	18.9		ug/L		76	58 - 140	0	20
**Client Sample ID: Method Blank** 

**Client Sample ID: Lab Control Sample** 

**Client Sample ID: Lab Control Sample Dup** 

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

7

### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-7 MSI Matrix: Water	)							С	lient Samp Prep T	le ID: MF ype: Tot	P-01-3 tal/NA
Analysis Batch: 164220									front she		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	ND		25.0	25.3		ug/L		101	60 - 140	0	20
o-Xylene	ND		25.0	26.0		ug/L		104	60 - 140	1	20
2,2-Dichloropropane	ND		25.0	27.5		ug/L		110	60 - 140	4	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	105		67 - 130								
1,2-Dichloroethane-d4 (Surr)	99		72 - 130								
Toluene-d8 (Surr)	102		70 - 130								

#### Lab Sample ID: MB 720-164274/5 Matrix: Water

#### Analysis Batch: 164274

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl acetate	ND		10		ug/L	-		08/04/14 09:21	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	105		67 - 130					08/04/14 09:21	1
1,2-Dichloroethane-d4 (Surr)	117		72 - 130					08/04/14 09:21	1
Toluene-d8 (Surr)	101		70 - 130					08/04/14 09:21	1

#### Lab Sample ID: LCS 720-164274/6 Matrix: Water Analysis Ratah: 16/27/

Analysis Batch: 104274			Snike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl acetate			25.0	21.1		ug/L		85	43 - 163	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene	100		67 - 130							
1,2-Dichloroethane-d4 (Surr)	114		72 - 130							
Toluene-d8 (Surr)	102		70 - 130							

#### Lab Sample ID: LCSD 720-164274/7 Matrix: Water

Anal	voie	Potob-	464274
Anai	VSIS	Batch:	1042/4

Analysis Batom Total 4			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Vinyl acetate			25.0	20.4	<u> </u>	ug/L	1	81	43 - 163	4	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	98		67 - 130								
1,2-Dichloroethane-d4 (Surr)	114		72 - 130								
Toluene-d8 (Surr)	102		70 - 130								

#### TestAmerica Job ID: 720-58974-1

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-3 MS Matrix: Water									Client Sam Prep 1	ple ID: N Type: To	/IW-02 tal/NA
Analysis Batch: 164274	Sample	Campio	Cnike	MC	840				% Bee		
Analyte	Recult	Oualifior	Added	Recult	Qualifier	Unit	D	%Pec	/onec.		
Vinyl acetate	ND		25.0	22.1	Quaimer	ua/L		88	40 - 140		
		310				U					
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	130		67 - 130								
1,2-Dichloroethane-d4 (Surr)	120		72 - 130						16		
Toluene-d8 (Surr)	104		70 - 130								
Lab Sample ID: 720-58974-3 MSI	D								<b>Client Sam</b>	ple ID: N	/W-02
Matrix: Water									Prep 1	ype: To	tal/NA
Analysis Batch: 164274											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Vinyl acetate	ND		25.0	21.5		ug/L		86	40 - 140	3	20

MSD	MSD	
%Recovery	Qualifier	Limits
100		67 - 130
116		72 - 130
103		70 - 130
	MSD %Recovery 100 116 103	MSD MSD %Recovery Qualifier 100 116 103

### **GC/MS VOA**

Analy	sis	Batc	h: '	164	110	
-------	-----	------	------	-----	-----	--

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-58974-1	MW-01	Total/NA	Water	8260B/CA_LUFT	
720-58974-2	MW-100	Total/NA	Water	8260B/CA_LUFT	
720-58974-3	MW-02	Total/NA	Water	MS 8260B/CA_LUFT	
				MS	
720-58974-3 MS	MW-02	Total/NA	Water	8260B/CA_LUFT	
720-58974-3 MSD	MW-02	Total/NA	Water	8260B/CA_LUFT MS	
720-58974-4	MW-03	Total/NA	Water	8260B/CA_LUFT	
720-58974-5	MP-01-1	Total/NA	Water	MS 8260B/CA_LUFT	
720-58974-6	MP-01-2	Total/NA	Water	MS 8260B/CA_LUFT	
720-58974-7	MP-01-3	Total/NA	Water	MS 8260B/CA_LUFT	
LCS 720-164110/5	Lab Control Sample	Total/NA	Water	MS 8260B/CA_LUFT	
LCS 720-164110/7	Lab Control Sample	Total/NA	Water	MS 8260B/CA_LUFT	
LCSD 720-164110/6	Lab Control Sample Dup	Total/NA	Water	MS 8260B/CA_LUFT	
LCSD 720-164110/8	Lab Control Sample Dup	Total/NA	Water	MS 8260B/CA_LUFT	
MB 720-164110/4	Method Blank	Total/NA	Water	8260B/CA_LUFT MS	

### Analysis Batch: 164220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-58974-7	MP-01-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-7 MS	MP-01-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-7 MSD	MP-01-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-8	MP-02-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-9	MP-02-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-10	MP-02-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-11	MP-03-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-12	MP-03-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-13	MP-03-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-164220/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-164220/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-164220/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-164220/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	

## **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

8

### GC/MS VOA (Continued)

#### Analysis Batch: 164220 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batcl	h
MB 720-164220/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

#### Analysis Batch: 164274

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-58974-1	MVV-01	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-2	MVV-100	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-3	MW-02	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-3 MS	MW-02	Total/NA	Water	8260B/CA_LUFT	
S				MS	
720-58974-3 MSD	MW-02	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-4	MW-03	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-5	MP-01-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-6	MP-01-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-164274/6	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-164274/7	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-164274/5	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

TestAmerica Job ID: 720-58974-1

Lab Sample ID: 720-58974-4

Lab Sample ID: 720-58974-5

Lab Sample ID: 720-58974-6

Matrix: Water

Matrix: Water

Matrix: Water

<b>Client Sampl</b>	e ID: MW-0	1						Lab Sample I	D: 720-58974-1
Date Collected: Date Received:	07/30/14 11:3 07/30/14 15:5	35 55						- T-	Matrix: Water
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS	-	1	164274	08/04/14 15:12	PDR	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 15:03	ASC	TAL PLS	
Client Sampl	e ID: MW-1	00						Lab Sample I	D: 720-58974-2
Date Collected: Date Received:	07/30/14 11:4 07/30/14 15:5	40 55							Matrix: Water
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		2	164274	08/04/14 15:41	PDR	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		2	164110	07/31/14 15:32	ASC	TAL PLS	
Client Sampl	e ID: MW-0	2	100					Lab Sample I	D: 720-58974-3
Date Collected: Date Received:	07/30/14 07:	58							Matrix: Water
	Batch	Batch		Dilution	Batch	Prepared	0		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS	10	1	164274	08/04/14 14:14	PDR	TAL PLS	
Tetel/NIA	Apolysis	8260B/CA LUETMS		1	164110	07/31/14 13:08	ASC	TALPIS	

## Client Sample ID: MW-03

Date Collected: 07/30/14 13:30 Date Received: 07/30/14 15:55

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS	_	1	164274	08/04/14 16:10	PDR	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 16:01	ASC	TAL PLS

#### Client Sample ID: MP-01-1 Date Collected: 07/30/14 11:53 Date Received: 07/30/14 15:55

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164274	08/04/14 16:40	PDR	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 16:30	ASC	TAL PLS	

### Client Sample ID: MP-01-2 Date Collected: 07/30/14 12:51

Date Received: 07/30/14 15:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164274	08/04/14 17:09	PDR	TAL PLS

	ID. WIP-U	1-2						Lab Sample I	D: 720-58974-6
Date Collected: (	07/30/14 12:	51							Matrix: Wate
Date Received: (	1//30/14 15:	00							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 16:59	ASC	TAL PLS	
Client Sample	ID: MP-0	1-3	_					Lab Sample I	D: 720-58974-7
Date Collected: (	07/30/14 13:	50							Matrix: Wate
Date Received: 0	7/30/14 15:	55					19 Jacobia (19 Jacobia (19 Jacobia))		
	Batch	Batch		Dilution	Batch	Prepared			
Pren Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA LUFTMS		1	164110	07/31/14 17:28	ASC	TAL PLS	
Totality	/ indiyolo				101110	00/04/44 00 04	100	TAL DLO	
Total/NA _	Analysis	8260B/CA_LUFTMS		1	164220	08/01/14 22:21	ASC	TAL PLS	
Client Sample	ID: MP-02	2-1			10			Lab Sample I	D: 720-58974-8
Date Collected: (	07/30/14 10:4	41							Matrix: Wate
Date Received: 0	07/30/14 15:5	55							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
	Analysia						100	TAL DLO	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164220	08/01/14 23:47	ASC	TAL PLS	
Client Sample		8260B/CA_LUFTMS		1	164220	08/01/14 23:47	ASC	l ab Sample I	D: 720-58974-9
Client Sample	ID: MP-02	2260B/CA_LUFTMIS		1	164220	08/01/14 23:47	ASC	Lab Sample I	D: 720-58974-9
Client Sample Date Collected: ( Date Received: (	Analysis D: MP-02 07/30/14 10:0 07/30/14 15:5	2-2 01 55		1	164220	08/01/14 23:47	ASC	Lab Sample I	D: 720-58974-9 Matrix: Wate
Client Sample Date Collected: ( Date Received: (	Analysis D: MP-02 07/30/14 10:( 07/30/14 15:)	2-2 01 55		Dilution	164220	08/01/14 23:4/		Lab Sample I	D: 720-58974-5 Matrix: Wate
Client Sample Date Collected: ( Date Received: (	Analysis 1D: MP-02 07/30/14 10:( 07/30/14 15:5 Batch Tyme	2-2 01 55 Batch	Pue	Dilution	Batch	Prepared	Asc	Lab Sample I	D: 720-58974-{ Matrix: Wate
Client Sample Date Collected: ( Date Received: C Prep Type	Analysis D7/30/14 10:0 07/30/14 15:5 Batch Type	2-2 01 55 Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab Sample I	D: 720-58974-{ Matrix: Wate
Client Sample Date Collected: ( Date Received: ( Prep Type Total/NA	Analysis 1D: MP-02 07/30/14 10:( 07/30/14 15:§ Batch Type Analysis	2-2 01 55 Batch Method 8260B/CA_LUFTMS	Run	Dilution Factor	Batch Number 164220	Prepared or Analyzed 08/02/14 00:15	Analyst ASC	Lab Sample I	D: 720-58974-§ Matrix: Wate
Client Sample Date Collected: ( Date Received: ( Prep Type Total/NA Client Sample	Analysis 1D: MP-02 07/30/14 10:( 07/30/14 15:5 Batch Type Analysis 1D: MP-02	2-2 01 55 Batch Method 8260B/CA_LUFTMS 2-3	Run	Dilution Factor 1	Batch Number 164220	Prepared or Analyzed 08/02/14 00:15	Asc Analyst ASC	Lab Sample I Lab TAL PLS ab Sample ID	D: 720-58974-9 Matrix: Wate : 720-58974-10
Client Sample Date Collected: ( Date Received: ( Prep Type Total/NA Client Sample Date Collected: (	Analysis 1D: MP-02 07/30/14 10:( 07/30/14 15:5 Batch Type Analysis 1D: MP-02 07/30/14 13:3	2-2 01 55 Batch Method 8260B/CA_LUFTMS 2-3 30	Run	Dilution Factor	Batch Number 164220	Prepared or Analyzed 08/02/14 00:15	ASC Analyst ASC	Lab Sample I Lab TAL PLS ab Sample ID	D: 720-58974-\$ Matrix: Wate : 720-58974-10 Matrix: Wate
Client Sample Date Collected: ( Date Received: C Prep Type Total/NA Client Sample Date Collected: ( Date Received: C	Analysis D7/30/14 10:0 07/30/14 15:5 Batch Type Analysis D7/30/14 13:3 07/30/14 13:3	2-2 01 55 Batch Method 8260B/CA_LUFTMS 2-3 30 55	Run	Dilution Factor	Batch Number 164220	Prepared or Analyzed 08/02/14 00:15	Asc Analyst ASC	Lab Sample I Lab TAL PLS ab Sample ID	D: 720-58974-5 Matrix: Wate : 720-58974-10 Matrix: Wate
Client Sample Date Collected: ( Date Received: ( Prep Type Total/NA Client Sample Date Collected: ( Date Received: (	Analysis a ID: MP-02 07/30/14 10:( 07/30/14 15:5 Batch Type Analysis a ID: MP-02 07/30/14 13:5 07/30/14 15:5 Batch	2-2 01 55 Batch Method 8260B/CA_LUFTMS 2-3 30 55 Batch	Run	Dilution Factor 1 Dilution	Batch Number 164220 Batch	Prepared or Analyzed 08/02/14 00:15 Prepared	Analyst ASC L	Lab Sample I	D: 720-58974-5 Matrix: Wate : 720-58974-10 Matrix: Wate
Client Sample Date Collected: ( Date Received: ( Prep Type Total/NA Client Sample Date Collected: ( Date Received: ( Date Received: ( Prep Type	Analysis a ID: MP-02 07/30/14 10:( 07/30/14 15:5 Batch Type Analysis a ID: MP-02 07/30/14 13:5 07/30/14 15:5 Batch Type	2-2 01 55 Batch Method 8260B/CA_LUFTMS 2-3 30 55 Batch Method	Run	Dilution Factor 1 Dilution Factor	Batch Number 164220 Batch Number	Prepared or Analyzed 08/02/14 00:15 Prepared or Analyzed	Asc Analyst Asc L Analyst	Lab Sample I Lab TAL PLS ab Sample ID	D: 720-58974-5 Matrix: Wate : 720-58974-10 Matrix: Wate
Client Sample Date Collected: ( Date Received: ( Prep Type Total/NA Client Sample Date Collected: ( Date Received: ( Date Received: ( Prep Type Total/NA	Analysis a ID: MP-02 07/30/14 10:0 07/30/14 15:5 Batch Type Analysis a ID: MP-02 07/30/14 13:3 07/30/14 15:5 Batch Type Analysis	2-2 01 55 Batch Method 8260B/CA_LUFTMS 2-3 30 55 Batch Method 8260B/CA_LUFTMS	Run	Dilution     Factor     1       Dilution     Factor     1	Batch Number 164220 Batch Number 164220	Prepared or Analyzed 08/02/14 00:15 Prepared or Analyzed 08/02/14 00:44	Asc Analyst ASC L Analyst ASC	Lab Sample I Lab TAL PLS ab Sample ID Lab TAL PLS	D: 720-58974-5 Matrix: Wate : 720-58974-10 Matrix: Wate
Client Sample Date Collected: ( Date Received: C Prep Type Total/NA Client Sample Date Collected: ( Date Received: C Prep Type Total/NA Client Sample	Analysis 1D: MP-02 07/30/14 10:0 07/30/14 15:5 Batch Type Analysis 1D: MP-02 07/30/14 13:3 07/30/14 15:5 Batch Type Analysis 8 LD: MP-03	2-2 01 55 Batch Method 8260B/CA_LUFTMS 2-3 30 55 Batch Method 8260B/CA_LUFTMS 3-1	Run	Dilution Factor 1 Dilution Factor 1	Batch Number 164220 Batch Number 164220	Prepared or Analyzed 08/02/14 00:15 Prepared or Analyzed 08/02/14 00:44	Asc Analyst ASC L Analyst ASC	Lab Sample I Lab TAL PLS ab Sample ID Lab TAL PLS ab Sample ID	D: 720-58974-5 Matrix: Wate : 720-58974-10 Matrix: Wate : 720-58974-11
Client Sample Date Collected: ( Date Received: C Prep Type Total/NA Client Sample Date Collected: ( Date Received: C Prep Type Total/NA Client Sample Date Collected: (	Analysis D: MP-02 07/30/14 10:0 07/30/14 15:5 Batch Type Analysis D: MP-02 07/30/14 13:3 07/30/14 13:5 Batch Type Analysis Batch Type Analysis	2-2 01 55 Batch Method 8260B/CA_LUFTMS 2-3 30 55 Batch Method 8260B/CA_LUFTMS 3-1 05	Run	Dilution Factor 1 Dilution Factor 1	Batch Number 164220 Batch Number 164220	Prepared or Analyzed 08/02/14 00:15 Prepared or Analyzed 08/02/14 00:44	Asc Analyst ASC L Analyst ASC	Lab Sample I Lab TAL PLS ab Sample ID Lab TAL PLS ab Sample ID	D: 720-58974-5 Matrix: Wate : 720-58974-10 Matrix: Wate : 720-58974-11 Matrix: Wate
Client Sample Date Collected: ( Date Received: C Prep Type Total/NA Client Sample Date Collected: ( Date Received: C Prep Type Total/NA Client Sample Date Collected: ( Date Collected: ( Date Received: C	Analysis 1D: MP-02 07/30/14 10:0 07/30/14 15:5 Batch Type Analysis 1D: MP-02 07/30/14 13:5 Batch Type Analysis 1D: MP-03 07/30/14 11:0 07/30/14 15:5	2-2 01 55 Batch Method 8260B/CA_LUFTMS 2-3 30 55 Batch Method 8260B/CA_LUFTMS 3-1 05 55	Run	Dilution Factor 1 Dilution Factor 1	164220 Batch Number 164220 Batch Number 164220	Prepared or Analyzed 08/02/14 00:15 Prepared or Analyzed 08/02/14 00:44	ASC Analyst ASC L Analyst ASC L	Lab Sample I Lab TAL PLS ab Sample ID Lab TAL PLS ab Sample ID	D: 720-58974-5 Matrix: Wate : 720-58974-10 Matrix: Wate : 720-58974-11 Matrix: Wate
Client Sample Date Collected: ( Date Received: C Date Received: C Prep Type Total/NA Client Sample Date Collected: ( Prep Type Total/NA Client Sample Date Collected: ( Date Received: C	Analysis 1D: MP-02 07/30/14 10:( 07/30/14 15:5 Batch Type Analysis 1D: MP-02 07/30/14 13:3 07/30/14 13:5 Batch Type Analysis 1D: MP-03 07/30/14 11:( 07/30/14 15:5 Batch	2-2 01 55 Batch Method 8260B/CA_LUFTMS 2-3 30 55 Batch Method 8260B/CA_LUFTMS 3-1 05 55 Batch	Run	Dilution Factor 1 Dilution Factor 1	Batch Number 164220 Batch Number 164220 Batch	Prepared or Analyzed 08/02/14 00:15 Prepared or Analyzed 08/02/14 00:44	Asc Analyst ASC L Analyst ASC L	Lab Sample I Lab TAL PLS ab Sample ID Lab TAL PLS ab Sample ID	D: 720-58974-5 Matrix: Wate : 720-58974-10 Matrix: Wate : 720-58974-11 Matrix: Wate
Client Sample Date Collected: ( Date Received: C Prep Type Total/NA Client Sample Date Collected: ( Date Received: C Prep Type Total/NA Client Sample Date Collected: ( Date Received: C Date Received: C	Analysis 1D: MP-02 07/30/14 10:0 07/30/14 15:5 Batch Type Analysis 1D: MP-02 07/30/14 13:3 07/30/14 13:5 Batch Type Analysis 1D: MP-03 07/30/14 11:0 07/30/14 15:5 Batch Type	2-2 01 55 Batch Method 8260B/CA_LUFTMS 2-3 30 55 Batch Method 8260B/CA_LUFTMS 3-1 05 55 Batch Method 8260B/CA_LUFTMS	Run	Dilution       Factor       1       Dilution       Factor       1       Dilution       Factor       1	Batch Number 164220 Batch Number 164220 Batch Number	Prepared or Analyzed 08/02/14 00:15 Prepared 08/02/14 00:44 Prepared or Analyzed	Asc Analyst ASC L Analyst ASC L	Lab Sample I Lab TAL PLS ab Sample ID Lab TAL PLS ab Sample ID	D: 720-58974-5 Matrix: Wate : 720-58974-10 Matrix: Wate : 720-58974-11 Matrix: Wate

## Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu TestAmerica Job ID: 720-58974-1

Client Samp Date Collected Date Received	ie ID: MP-03 : 07/30/14 09:4 : 07/30/14 15:5	3-2 45 55					La	ab Sample II	D: 720-58974-12 Matrix: Water
Prep Type Total/NA	Batch Type Analysis	Batch Method 8260B/CA_LUFTMS	Run	Dilution Factor	Batch Number 164220	Prepared or Analyzed 08/02/14 01:41	Analyst ASC	Lab TAL PLS	
Client Samp Date Collected Date Received	le ID: MP-03 : 07/30/14 09:3 : 07/30/14 15:5	3-3 25 55					La	ab Sample II	D: 720-58974-13 Matrix: Water
Prep Type	Batch Type Analysis	Batch Method 8260B/CA_LUFTMS	Run	Dilution Factor	Batch Number 164220	Prepared or Analyzed 08/02/14 02:10	Analyst ASC	Lab TAL PLS	

#### Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

## TestAmerica Job ID: 720-58974-1

10

### Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
California	State Prog	gram	9	2496	01-31-16
Analysis Method	Prep Method	Matrix	Analy	te	

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
S			
Protocol Poforo			
SW846 = "Te	est Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986	And Its Updates.	
Laboratory Refe	rences:		
TAL PLS = T	estAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919		

TestAmerica J	ob ID:	720-58	974-1
---------------	--------	--------	-------

12

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-58974-1	MVV-01	Water	07/30/14 11:35	07/30/14 15:55
720-58974-2	MVV-100	Water	07/30/14 11:40	07/30/14 15:55
720-58974-3	MW-02	Water	07/30/14 07:58	07/30/14 15:55
720-58974-4	MW-03	Water	07/30/14 13:30	07/30/14 15:55
720-58974-5	MP-01-1	Water	07/30/14 11:53	07/30/14 15:55
720-58974-6	MP-01-2	Water	07/30/14 12:51	07/30/14 15:55
720-58974-7	MP-01-3	Water	07/30/14 13:50	07/30/14 15:55
720-58974-8	MP-02-1	Water	07/30/14 10:41	07/30/14 15:55
720-58974-9	MP-02-2	Water	07/30/14 10:01	07/30/14 15:55
720-58974-10	MP-02-3	Water	07/30/14 13:30	07/30/14 15:55
720-58974-11	MP-03-1	Water	07/30/14 11:05	07/30/14 15:55
720-58974-12	MP-03-2	Water	07/30/14 09:45	07/30/14 15:55
720-58974-13	MP-03-3	Water	07/30/14 09:25	07/30/14 15:55

PROJE	ECTI		own cherrolet	C	ad.	1200	= 1.	G 12	7.16		0	V		R	71	11	DATE: 7	130	114		P/	AGE	(	0F 1	
PROJECT	NUMBE	R. DETE.L	0.00.08.A	LABOR	RATORY	NAME:				CLIEI	NT INFC	ORMATI	ION	An	IEC		REPORTING RE	QUIRE	MENTS	3:	155302				
david	to a	very. whi Noutean	tmossheamec.com	LABOR	RATORY	ADDRES	3S				Da	vid	All	but.	•										
TURNARC	UND T	ME: Stand	lavd								510		347	-gi	111										
SAMPLES	SHIPME	NT METHOD:	ab	LABO	RATORY	CONTAG		0					GEOTRACKER REQUIRED NO					> NO							
oer	INC	rea it :		LABUR	AIORT	PHONE	NUMBE	PK					SITE SPECIFIC	GLOBA	AL ID N	0 5L	720	264	117	24					
SAM	IPL	ERS (S	IGNATURE):					AN	IALY	YSE	S	<u>r</u>													
0-		I Ael	ht	troug 60879														Water (W), 0. or Other (O)	1-1	ative Type			ontainers		
DAT	E	TIME	SAMPLE NUMBER	VOUS												CONT TYPE A	AINER	Soil (S), Vanor (V	Filtered	Preserva	Cooled	MS/MSE	No. of C	ADDITIONAL COMMENTS	
7/30/1	4	1135	MW-01	×												- 40,	ni Heiver	w		Hel	X		3		
		1140	MW-100	×													1	1					4		
		0758	MW-02	×						-							1					×	9	MS/MSD	
		1330	MW-03	×														1					3		
		1153	MP-01-1	×																			1		
		125)	MP-01-2	x																	11				
		1350	MP-01-3	*																			1		
		1041	MP-02-1	T																					
		1001	MP-02-2	×					_														4		
		1330	MP-02-3	*						_															
	_	1105	MP-03-1	4					_	_					_						1				
		0945	MP-03-2	7					_			_			-			11					Ц_		
3		0925	MP-03-3	1×				-				-			-		<u> </u>	1		*	4	-	1		
RELI	VQU	ISHED BY	: DATE TIME	RE	CEIV	ED B	SY:			D	ATE	TIN	ΛE	TOTAL		SER OF CONT	AINERS:								
	D NAM	Fibut	7150/14 1553	PRIN	TEDN	AME:	11	Lel o	20,	27	1301		-	SAMP		C C 1	70770	2	-						
COMPA AT SIGNAT	URE:			SIGN		al	A	m	a.		114	15	55						_	720-5	8974	Chair	n of C	Custody	
PRINTE	D NAM	ΛE:		PRIN	TED N	AME-							-				et	1.	<i>o</i> -						
COMPA	NY:			COM	PANY:		_			_			+					C						· · · · · · · · · · · · · · · · · · ·	

## Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

#### Login Number: 58974 List Number: 1

Creator: Bullock, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked	N/A	

Job Number: 720-58974-1

List Source: TestAmerica Pleasanton



THE LEADER IN ENVIRONMENTAL TESTING

## **ANALYTICAL REPORT**

TestAmerica Laboratories, Inc. TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-60396-1 Client Project/Site: Crown Chevrolet

## For:

..... LINKS .....

Review your project results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Ask

The

Expert

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Alenaf Sal )

Authorized for release by: 10/20/2014 4:15:54 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 720-60396-1

2

# **Table of Contents**

Cover Page 1	1
Table of Contents 2	2
Definitions/Glossary	3
Case Narrative	1
Detection Summary	5
Client Sample Results 8	3
QC Sample Results	34
QC Association Summary	52
Lab Chronicle	54
Certification Summary	57
Method Summary	58
Sample Summary	59
Chain of Custody	30
Receipt Checklists 6	53

#### TestAmerica Job ID: 720-60396-1

Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight ba	asis	
%R	Percent Recovery		
CFL	Contains Free Liquid		
CNF	Contains no Free Liquid		
DER	Duplicate error ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analy	ysis of the sample	
DLC	Decision level concentration		
MDA	Minimum detectable activity		
EDL	Estimated Detection Limit		
MDC	Minimum detectable concentration		
MDL	Method Detection Limit	-	
ML	Minimum Level (Dioxin)		
NC	Not Calculated		
ND	Not detected at the reporting limit (or MDL or EDL if shown)		
PQL	Practical Quantitation Limit		
QC	Quality Control		
RER	Relative error ratio		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		

TestAmerica Job ID: 720-60396-1

#### Job ID: 720-60396-1

#### Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-60396-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 10/6/2014 5:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.6° C and 3.2° C.

#### GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MW-01 (720-60396-1), MW-100 (720-60396-2). PCE

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MP-02-1 (720-60396-7). CIS-1,2-DCE

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MP-01-1 (720-60396-4). CIS-2,2DCE, TCE, PCE

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Job ID: 720-60396-1

Lab Sample ID: 720-60396-2

Lab Sample ID: 720-60396-3

Lab Sample ID: 720-60396-4

Lab Sample ID: 720-60396-5

5

Client Sample ID: MW-01						La	ab	Sample ID: 7	20-60396-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Tetrachloroethene	82		0.50	_	ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Trichloroethene	0.95		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	66	R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA

#### **Client Sample ID: MW-100**

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	90		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Trichloroethene	0.97		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	72	R	50		ug/L	1	8260B/CA_LUFT MS	Total/NA

#### Client Sample ID: MW-02

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	2.8		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	4.7		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	9.1		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA

### Client Sample ID: MP-01-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	4.4		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	58		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Trichloroethene	17		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	64	R	50		ug/L	1	8260B/CA_LUFT MS	Total/NA

### Client Sample ID: MP-01-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	43	0.50	ug/L	1	8260B/CA_LUFT	Total/NA
					MS	

Client Sample ID: MP-01-3						La	ab	Sample ID: 7	20-60396-6
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	8.8		0.50		ug/L	1	-	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-02-1						La	ab	Sample ID: 7	20-60396-7

## Client Sample ID: MP-02-1

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 720-60396-1

Lab Sample ID: 720-60396-9

Lab Sample ID: 720-60396-10

Lab Sample ID: 720-60396-11

Lab Sample ID: 720-60396-12

Lab Sample ID: 720-60396-13

Lab Sample ID: 720-60396-14

5

Client Sample ID: MP-02-1 (Co	ntinued)					Lat	Sample ID: 7	20-60396-7
Analyte	Result	Qualifier	RL	MDL Uni	t	Dil Fac	) Method	Prep Type
cis-1,2-Dichloroethene	85		0.50	ug/	L	1	8260B/CA_LUFT MS	Total/NA
Trichloroethene	0.61		0.50	ug/	L	1	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	53	R	50	ug/	L	1	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-02-3						La	o Sample ID: 7	20-60396-8

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	29		0.50	ug/L	1	8260B/CA_LUFT	Total/NA
						MS	

#### Client Sample ID: MP-03-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.63		0.50		ug/L	1	-	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	22		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	4.0		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA

#### Client Sample ID: MP-03-2

No Detections.

#### Client Sample ID: MP-03-3

No Detections.

#### Client Sample ID: MP-04-1

Analyte	Result Q	ualifier RL	MDL L	Jnit	Dil Fac	D	Method	Ргер Туре
cis-1,2-Dichloroethene	2.2	0.50	u	ıg/L	1	_	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	0.76	0.50	u	ıg/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	12	0.50	u	ıg/L	1		8260B/CA_LUFT MS	Total/NA

#### **Client Sample ID: MP-04-2**

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
cis-1,2-Dichloroethene	2.3		0.50		ug/L	1	_	8260B/CA_LUFT	Total/NA
								MS	

### Client Sample ID: MP-04-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
cis-1,2-Dichloroethene	1.0		0.50		ug/L	1		8260B/CA_LUFT	Total/NA

This Detection Summary does not include radiochemical test results.

## **Detection Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

## Client Sample ID: TB100614-1

No Detections.

#### Client Sample ID: TB100614-2

No Detections.

TestAmerica Job ID: 720-60396-1

### Lab Sample ID: 720-60396-15

Lab Sample ID: 720-60396-16

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MW-01 Date Collected: 10/06/14 12:25							Lab Sample ID: 720-60396-1 Matrix: Water			
Date Received: 10/06/14 17:40	Result	Qualifier	RL	MDL I	Jnit	D	Prepared	Analvzed	Dil Fac	
Methyl tert-butyl ether	ND	quanner	0.50		Ja/L		pairee	10/15/14 13:14	1	
Acetone	ND		50	L	Ja/L			10/15/14 13:14	1	
Benzene	ND		0.50	L	ua/L			10/15/14 13:14	1	
Dichlorohromomethane	ND		0.50		ua/L			10/15/14 13:14	1	
Bromobenzene	ND		1.0	L	ua/L			10/15/14 13:14	1	
Chlorobromomethane	ND		1.0	L	ug/L			10/15/14 13:14	1	
Bromoform	ND		1.0	L	ua/L			10/15/14 13:14	1	
Bromomethane	ND		1.0	ι	ug/L			10/15/14 13:14	1	
2-Butanone (MEK)	ND		50	L	ug/L			10/15/14 13:14	1	
n-Butvlbenzene	ND		1.0	ι	ug/L			10/15/14 13:14	1	
sec-Butylbenzene	ND		1.0	ι	ug/L			10/15/14 13:14	1	
tert-Butylbenzene	ND		1.0	L	ug/L			10/15/14 13:14	1	
Carbon disulfide	ND		5.0	L	ug/L			10/15/14 13:14	1	
Carbon tetrachloride	ND		0.50	L	ug/L			10/15/14 13:14	1	
Chlorobenzene	ND		0.50	ι	ug/L			10/15/14 13:14	1	
Chloroethane	ND		1.0	ι	ug/L			10/15/14 13:14	1	
Chloroform	ND		1.0	ι	ug/L			10/15/14 13:14	1	
Chloromethane	ND		1.0	ι	ug/L			10/15/14 13:14	1	
2-Chlorotoluene	ND		0.50	ι	ug/L			10/15/14 13:14	1	
4-Chlorotoluene	ND		0.50	ι	ug/L			10/15/14 13:14	1	
Chlorodibromomethane	ND		0.50	L	ug/L			10/15/14 13:14	1	
1.2-Dichlorobenzene	ND		0.50	ι	ug/L			10/15/14 13:14	1	
1.3-Dichlorobenzene	ND		0.50	L	ug/L			10/15/14 13:14	1	
1.4-Dichlorobenzene	ND		0.50	ł	ug/L			10/15/14 13:14	1	
1,3-Dichloropropane	ND		1.0	ı	ug/L			10/15/14 13:14	1	
1,1-Dichloropropene	ND		0.50	ι	ug/L			10/15/14 13:14	1	
1,2-Dibromo-3-Chloropropane	ND		1.0	ι	ug/L			10/15/14 13:14	1	
Ethylene Dibromide	ND		0.50	ι	ug/L			10/15/14 13:14	1	
Dibromomethane	ND		0.50	ι	ug/L			10/15/14 13:14	1	
Dichlorodifluoromethane	ND		0.50	L	ug/L			10/15/14 13:14	1	
1,1-Dichloroethane	ND		0.50	l	ug/L			10/15/14 13:14	1	
1,2-Dichloroethane	ND		0.50	L	ug/L			10/15/14 13:14	1	
1,1-Dichloroethene	ND		0.50	ı	ug/L			10/15/14 13:14	1	
cis-1,2-Dichloroethene	ND		0.50	L	ug/L			10/15/14 13:14	1	
trans-1,2-Dichloroethene	ND		0.50	ı	ug/L			10/15/14 13:14	1	
1,2-Dichloropropane	ND		0.50	ı	ug/L			10/15/14 13:14	1	
cis-1,3-Dichloropropene	ND		0.50	ı	ug/L			10/15/14 13:14	1	
trans-1,3-Dichloropropene	ND		0.50	ı	ug/L			10/15/14 13:14	1	
Ethylbenzene	ND		0.50	ı	ug/L			10/15/14 13:14	1	
Hexachlorobutadiene	ND		1.0	L	ug/L			10/15/14 13:14	1	
2-Hexanone	ND		50	ı	ug/L			10/15/14 13:14	1	
Isopropylbenzene	ND		0.50		ug/L			10/15/14 13:14	1	
4-Isopropyltoluene	ND		1.0	l l	ug/L			10/15/14 13:14	1	
Methylene Chloride	ND		5.0		ug/L			10/15/14 13:14	1	
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			10/15/14 13:14	1	
Naphthalene	ND		1.0		ug/L			10/15/14 13:14	1	
N-Propylbenzene	ND		1.0	1	ug/L			10/15/14 13:14	1	
Styrene	ND		0.50	1	ug/L			10/15/14 13:14	1	

TestAmerica Pleasanton

10/15/14 13:14

0.50

ug/L

ND

1,1,1,2-Tetrachloroethane

1

TestAmerica Job ID: 720-60396-1

TestAmerica Job ID: 720-60396-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-01 Date Collected: 10/06/14 12:25 Date Received: 10/06/14 17:40							Lab	Sample ID: 720- Matrix	-60396-1 x: Water
Analyte	Result	Qualifier	RL	MDL Unit		D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L	-			10/15/14 13:14	1
Tetrachloroethene	82		0.50	ug/L				10/15/14 13:14	- 1
Toluene	ND		0.50	ug/L				10/15/14 13:14	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L				10/15/14 13:14	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L				10/15/14 13:14	1
1,1,1-Trichloroethane	ND		0.50	ug/L				10/15/14 13:14	1
1,1,2-Trichloroethane	ND		0.50	ug/L				10/15/14 13:14	1
Trichloroethene	0.95		0.50	ug/L				10/15/14 13:14	1
Trichlorofluoromethane	ND		1.0	ug/L				10/15/14 13:14	1
1,2,3-Trichloropropane	ND		0.50	ug/L				10/15/14 13:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L				10/15/14 13:14	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L				10/15/14 13:14	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L				10/15/14 13:14	1
Vinyl acetate	ND		10	ug/L				10/15/14 13:14	1
Vinyl chloride	ND		0.50	ug/L				10/15/14 13:14	1
Xylenes, Total	ND		1.0	ug/L				10/15/14 13:14	1
2,2-Dichloropropane	ND		0.50	ug/L				10/15/14 13:14	1
Gasoline Range Organics (GRO) -C5-C12	66	R	50	ug/L				10/15/14 13:14	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	111		67 - 130		10/15/14 13:14	1
1,2-Dichloroethane-d4 (Surr)	97		72 - 130		10/15/14 13:14	1
Toluene-d8 (Surr)	93		70 - 130		10/15/14 13:14	1

#### Client Sample ID: MW-100 Date Collected: 10/06/14 12:30 Date Received: 10/06/14 17:40

Analyte Resu	It Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nethyl tert-butyl ether N	D	0.50	ug/L			10/15/14 13:43	1
Ncetone N	D	50	ug/L			10/15/14 13:43	1
Benzene N	D	0.50	ug/L			10/15/14 13:43	1
Dichlorobromomethane N	D	0.50	ug/L			10/15/14 13:43	1
Bromobenzene N	D	1.0	ug/L			10/15/14 13:43	1
Chlorobromomethane N	D	1.0	ug/L			10/15/14 13:43	1
Bromoform N	D	1.0	ug/L			10/15/14 13:43	1
Bromomethane N	D	1.0	ug/L			10/15/14 13:43	1
-Butanone (MEK) N	D	50	ug/L			10/15/14 13:43	1
-Butylbenzene N	D	1.0	ug/L			10/15/14 13:43	1
ec-Butylbenzene N	D	1.0	ug/L			10/15/14 13:43	1
ert-Butylbenzene N	D	1.0	ug/L			10/15/14 13:43	1
Carbon disulfide N	D	5.0	ug/L			10/15/14 13:43	1
Carbon tetrachloride N	D	0.50	ug/L			10/15/14 13:43	1
Chlorobenzene N	D	0.50	ug/L			10/15/14 13:43	1
Chloroethane N	D	1.0	ug/L			10/15/14 13:43	1
Chloroform N	D	1.0	ug/L			10/15/14 13:43	1
Chloromethane N	D	1.0	ug/L			10/15/14 13:43	1
-Chlorotoluene N	D	0.50	ug/L			10/15/14 13:43	1
-Chlorotoluene N	D	0.50	ug/L			10/15/14 13:43	1
Chlorodibromomethane N	D	0.50	ug/L			10/15/14 13:43	1

**TestAmerica** Pleasanton

Lab Sample ID: 720-60396-2

Matrix: Water

TestAmerica Job ID: 720-60396-1

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Date Scelevel:         1006/14 72:30         Mather         RL         MDL         Unit         D         Prepared         Anifyzed         Dil Fac           Anifys         Result         Gualifier         RL         MDL         Unit         D         Prepared         Anifyzed         Dil Fac           1.3-Dichobostname         ND         0.50         ugL         1015/11 42:43         1           1.3-Dichobostname         ND         10         ugL         1015/11 42:43         1           1.3-Dichostname         ND         0.50         ugL         1015/11 43:43         1           1.3-Dichostname         ND         0.50         ugL         1015/11 43:43         1           1.3-Dichostname <th>Client Sample ID: MW-100</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th colspan="4">Lab Sample ID: 720-60</th>	Client Sample ID: MW-100						Lab Sample ID: 720-60			
Date Received: 10/06/14/17:40         Result         Guilfier         RL         MUL         Unix         D         Perpend         Analyzad         Dil Pec           12-0010005000000         ND         0.00         upl.         10/16/17/13/43         1           12-001000500000         ND         0.00         upl.         10/16/17/13/43         1           14-001005000000         ND         0.00         upl.         10/16/17/13/43         1           13-0010050000000         ND         0.00         upl.         10/16/17/13/43         1           13-00100500000000         ND         0.00         upl.         10/16/17/13/43         1           13-0010050000000000000000000000000000000	Date Collected: 10/06/14 12:30							Matrix	c: Water	
Araya         Note         Califie         No.         Color         United         No.         Color         Color <t< th=""><th>Date Received: 10/06/14 17:40</th><th>Paquit</th><th>Qualifier</th><th>PI</th><th>MDI Lipit</th><th>D</th><th>Propared</th><th>Analyzed</th><th>Dil Eac</th></t<>	Date Received: 10/06/14 17:40	Paquit	Qualifier	PI	MDI Lipit	D	Propared	Analyzed	Dil Eac	
1.3-Dichlopanzame         HD         2.50         upL         1015/141343         1           1.4-Dichlopanzame         ND         2.50         upL         1015/141343         1           1.3-Dichlopanzame         ND         0.0         upL         1015/141343         1           1.3-Dichlopanzame         ND         0.0         upL         1015/141343         1           1.3-Dichlopanzame         ND         0.00         upL         1015/141343         1           Dichlopanzame         ND         0.00         upL         1015/141343         1           Dichlopanzame         ND         0.00         upL         1015/141343         1           1.4-Dichlopanzame         ND         0.50         upL         1015/141343         1           1.4-Dichlopanzame         ND         0.50         upL         1015/141343         1           1.4-Dichlopanzame         ND         0.50         upL         1015/141343         1           1.2-Dichlopanzame         ND         0.50         upL         1015/141343         1           1.2-Dichlopanzame         ND         0.50         upL         1015/141343         1           1.2-Dichlopanzame         ND <t< td=""><td></td><td>ND</td><td>Quaimer</td><td>0.50</td><td></td><td></td><td>riepaieu</td><td>10/15/14 13:43</td><td>1</td></t<>		ND	Quaimer	0.50			riepaieu	10/15/14 13:43	1	
1.4. Districtionspright         ND         0.50         ugL         1011511133         1           1.3. Districtionspright         ND         10         ugL         1011511133         1           1.3. Districtionspright         ND         0.55         ugL         1011511133         1           1.3. Districtions 3. Distri	1.3-Dichlorobenzene	ND		0.50	ug/L			10/15/14 13:43	1	
No.         HD         L0         HU         HU 15/14 13-43         1           1Dobinogropine         ND         0.50         upL         1015/14 13-43         1           1Dobinogropine         ND         0.50         upL         1015/14 13-43         1           Envise         Distromethane         ND         0.50         upL         1015/14 13-43         1           Distromethane         ND         0.50         upL         1015/14 13-43         1           1Dobinogropine	1 4-Dichlorobenzene	ND		0.50	ug/L			10/15/14 13:43	1	
1.1         Detailongspare         ND         0.50         upt         101/14/14/34         1           1.2.Dimons-2.Chiropsopare         ND         1.0         upt         101/5/14/13/3         1           1.2.Dimons-2.Chiropsopare         ND         0.50         upt         101/5/14/13/3         1           Dimonstratane         ND         0.50         upt         101/5/14/13/3         1           1.1.Dichonsthane         ND         0.50         upt         101/5/14/13/3         1           1.2.Dichonsthane         ND         0.50         upt         101/5/14/13/3         1 <td< td=""><td>1 3-Dichloropropane</td><td>ND</td><td></td><td>1.0</td><td>ug/L</td><td></td><td></td><td>10/15/14 13:43</td><td>1</td></td<>	1 3-Dichloropropane	ND		1.0	ug/L			10/15/14 13:43	1	
1.2.Dubron::Schoropopane         ND         1.0         up1         10/15/14/13-43         1           Envirent Diromide         ND         0.50         up1         10/15/14/13-43         1           Dirohoropitane         ND         0.50         up1         10/15/14/13-43         1           Dirohoropitane         ND         0.50         up1         10/15/14/13-43         1           1.2.Dirohoropitane         ND         0.50         up1         10/15/14/13-43         1           1.1.Dirohoropitane         ND         0.50         up1         10/15/14/13-43         1           1.2.Dirohoropitane         ND         0.50         up1         10/15/14/13-43         1           1.3.Dirohoropitane         ND         0.50         up1         10/15/14/13-43         1           1.4.apotyptitutane         ND         0.50         up1         10/15/14/13-43         1 <td< td=""><td>1 1-Dichloropropene</td><td>ND</td><td></td><td>0.50</td><td>ua/L</td><td></td><td></td><td>10/15/14 13:43</td><td>1</td></td<>	1 1-Dichloropropene	ND		0.50	ua/L			10/15/14 13:43	1	
Instrume model         ND         0.50         up1         01/5/14/13-43         1           Divionmentane         ND         0.50         up1         00/5/14/13-43         1           Divionmentane         ND         0.50         up1         00/5/14/13-43         1           1,1-Dictorethane         ND         0.50         up1         00/5/14/13-43         1           1,1-Dictorethane         ND         0.50         up1         00/5/14/13-43         1           1,1-Dictorethane         ND         0.50         up1         00/5/14/13-43         1           1,2-Dictorethane         ND <td>1.2-Dibromo-3-Chloropropane</td> <td>ND</td> <td></td> <td>1.0</td> <td>ug/L</td> <td></td> <td></td> <td>10/15/14 13:43</td> <td>1</td>	1.2-Dibromo-3-Chloropropane	ND		1.0	ug/L			10/15/14 13:43	1	
Labyland         ND         0.53         upL         1015/14 1343         1           Dichloroditucomsthane         ND         0.50         upL         1015/14 1343         1           1.2.Dichloroditucomsthane         ND         0.50         upL         1015/14 1343         1           1.2.Dichloropopane         ND         0.50         upL         1015/14 1343         1           1.2.Dichloropopane         ND         0.50         upL         1015/14 1343         1           Etrybezzane         ND         0.50         upL         1015/14 1343         1           1.2.bearane         ND         0.50         upL         1015/14 1343         1           1.2.bearane         ND         5.0         upL         1015/14 1343         1           1.2.bearane         ND         1.0         upL         1015/14 1343         1           1.2.bearane <td< td=""><td>Ethylene Dibromide</td><td>ND</td><td></td><td>0.50</td><td>ug/L</td><td></td><td></td><td>10/15/14 13:43</td><td>1</td></td<>	Ethylene Dibromide	ND		0.50	ug/L			10/15/14 13:43	1	
Dicknostilization         ND         D.50         upt         101/5/14/13/43         1           1,1-Dichlorodthare         ND         D.50         uplL         101/5/14/13/43         1           1,2-Dichlorodthare         ND         D.50         uplL         101/5/14/13/43         1           1,2-Dichlorodthare         ND         D.50         uplL         101/5/14/13/43         1           1,2-Dichlorodthare         ND         D.50         uplL         101/5/14/13/43         1           Edytbaczane         ND         D.50         uplL         101/5/14/13/43         1           Adeptic>penta	Dibromomethane	ND		0.50	ug/L			10/15/14 13:43	1	
Doublic definition         ND         Doublic definition           1.2-Definitionation and the set of the set	Dichlorodifluoromethane	ND		0.50	ug/L			10/15/14 13:43	1	
In Decisionalization         ND         Data         upL         Diffs/H 13.43         1           1,1-Dicklonoethane         ND         0.50         upL         10/15/H 13.43         1           1,1-Dicklonoethane         ND         0.50         upL         10/15/H 13.43         1           1,2-Dicklonoethane         ND         0.50         upL         10/15/H 13.43         1           1,2-Dicklonoptopane         ND         0.50         upL         10/15/H 13.43         1           1,2-Dicklonoptopane         ND         0.50         upL         10/15/H 13.43         1           1,1-Dicklonoptopane         ND         0.50         upL         10/15/H 13.43         1           1,2-Dicklonoptopane         ND         0.50         upL         10/15/H 13.43         1           1,4-bactrophytoplane         ND         1.0         upL         10/15/H 13.43         1           <	1 1-Dichloroethane	ND		0.50	ug/L			10/15/14 13:43	1	
In-Decknowskine         Int         Dots         Opt	1.3 Dichloroethane	ND		0.50	ug/L			10/15/14 13:43	1	
In Productation         Int         Loss         Lass         Lass <thlass< th="">         Lass         <thlass< th=""></thlass<></thlass<>	1 1 Dichloroethene	ND		0.50	ug/L			10/15/14 13:43	1	
Dark J. Zuchkurosehane         ND         D. 5.5         Dark         Diff H 13.43         1           1.2. Dichloropropane         ND         0.50         ug/L         10/15/14 13.43         1           1.3. Dichloropropane         ND         0.50         ug/L         10/15/14 13.43         1           tans-1.3. Dichloropropane         ND         0.50         ug/L         10/15/14 13.43         1           Entylemane         ND         0.50         ug/L         10/15/14 13.43         1           Entylemane         ND         0.50         ug/L         10/15/14 13.43         1           Lescrittorioutatiene         ND         1.0         ug/L         10/15/14 13.43         1           Naphthalene         ND         1.0         ug/L         10/15/14 13.43         1         1         1.1,2.2.Tetrachoroethane         ND         0.50         ug/L         10/15/14 13.43         1 <t< td=""><td>ris 1.2 Dichloroethene</td><td></td><td></td><td>0.50</td><td>ug/L</td><td></td><td></td><td>10/15/14 13:43</td><td>1</td></t<>	ris 1.2 Dichloroethene			0.50	ug/L			10/15/14 13:43	1	
Data P_2/Detropropen         ND         Dos         Data         Dist         Dist <thdist< th="">         Dist         Dist</thdist<>	trans 1.2 Dichloroethene			0.50	ug/L			10/15/14 13:43	1	
Inc.         Dot         Dot <thdot< th=""> <thdot< th=""></thdot<></thdot<>	1 3 Dichloropropago	ND		0.50	ug/L			10/15/14 13:43	1	
Date         Dots         Dots         Date         Distant 1.5.         Distant 1.5.           Ethylbenzene         ND         0.50         ug/L         10/15/14/13.43         1           Hexachlorobutadine         ND         0.50         ug/L         10/15/14/13.43         1           Hexachlorobutadine         ND         0.50         ug/L         10/15/14/13.43         1           Leproprivenzene         ND         0.50         ug/L         10/15/14/13.43         1           Leproprivenzene         ND         0.50         ug/L         10/15/14/13.43         1           Hethylee         ND         5.0         ug/L         10/15/14/13.43         1           Hethylee         ND         5.0         ug/L         10/15/14/13.43         1           Naphtalene         ND         1.0         ug/L         10/15/14/13.43         1           Naphtalene         ND         0.50         ug/L         10/15/14/13.43         1           Strene         ND         0.50         ug/L         10/15/14/13.43         1           1.1,1.2-Zetrachloroethane         ND         0.50         ug/L         10/15/14/13.43         1           1.1,2-Z-Triethoroethane         N	ria 1.2 Dishloropropono	ND		0.50	ug/L			10/15/14 13:43	1	
Data H. John Molpholene         ND         D.00         Data H. John Molpholene         Description           Hexablorobutatione         ND         1.0         ug/L         10/15/14/13.43         1           2-Hexanone         ND         5.0         ug/L         10/15/14/13.43         1           1 bispropylexane         ND         0.50         ug/L         10/15/14/13.43         1           4-Isopopylexane         ND         1.0         ug/L         10/15/14/13.43         1           Methylene Chloride         ND         5.0         ug/L         10/15/14/13.43         1           Naphthalene         ND         5.0         ug/L         10/15/14/13.43         1           Naphthalene         ND         1.0         ug/L         10/15/14/13.43         1           Styrene         ND         0.50         ug/L         10/15/14/13.43         1           1.1,2,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14/13.43         1           1.2,2-Trichloroethane         ND         0.50         ug/L         10/15/14/13.43         1           1.2,2-Trichloroethane         ND         0.50         ug/L         10/15/14/13.43         1           1.2,2-Trichl	trans 1.2 Dishloropropono	ND		0.50	ug/L			10/15/14 13:43	1	
Euryburshe         ND         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0	Ethylhopropo	ND		0.50	ug/L			10/15/14 13:43	1	
Instruction         Ind         Ind <thind< th="">         Ind         <thind< th=""> <thin< td=""><td>Earybenzene</td><td>ND</td><td></td><td>1.0</td><td>ug/L</td><td></td><td></td><td>10/15/14 13:43</td><td>1</td></thin<></thind<></thind<>	Earybenzene	ND		1.0	ug/L			10/15/14 13:43	1	
Zentration         ND         0.5         ug/L         10115/14 13:43         1           4-isopropylburzene         ND         1.0         ug/L         10/15/14 13:43         1           Methylene Chioride         ND         5.0         ug/L         10/15/14 13:43         1           Methylene Chioride         ND         5.0         ug/L         10/15/14 13:43         1           Naphthalene         ND         1.0         ug/L         10/15/14 13:43         1           N.Propylberzene         ND         1.0         ug/L         10/15/14 13:43         1           Styrene         ND         0.50         ug/L         10/15/14 13:43         1           1.1,2.2-tertachioroethane         ND         0.50         ug/L         10/15/14 13:43         1           1.1,2.2-tertachioroethane         ND         0.50         ug/L         10/15/14 13:43         1           1.2,2-Tritchioroethane         ND         0.50         ug/L         10/15/14 13:43         1           1.2,2-Tritchioroethane         ND         1.0         ug/L         10/15/14 13:43         1           1.2,2-Tritchioroethane         ND         0.50         ug/L         10/15/14 13:43         1		ND		50	ug/L			10/15/14 13:43	1	
Ischulpule Latie         ND         1.0         ug/L         1.015/H 13.43         1           4-lesproyNiculatie         ND         5.0         ug/L         1.015/H 13.43         1           4-lesproyNiculatie         ND         5.0         ug/L         1.015/H 13.43         1           Naphthalene         ND         1.0         ug/L         1.015/H 13.43         1           Naphthalene         ND         1.0         ug/L         1.015/H 13.43         1           N-PropVienzene         ND         0.50         ug/L         1.015/H 13.43         1           1,1,2.2-Tetrachioroethane         ND         0.50         ug/L         1.015/H 13.43         1           1,1,2.2-Tetrachioroethane         ND         0.50         ug/L         1.015/H 13.43         1           1,2.3-Trichioroethane         ND         0.50         ug/L         1.015/H 13.43         1           1,2.4-Trichioroethane         ND         1.0         ug/L         1.015/H 13.43         1           1,2.4-Trichioroethane         ND         1.0         ug/L         1.015/H 13.43         1           1,2.4-Trichioroethane         ND         0.50         ug/L         1.015/H 13.43         1		ND		0.50	ug/L			10/15/14 13:43	1	
Haspinghubulene         ND         1.0         ug/L         101514 13.43         1           4-Methyle-2-pentanone (MIBK)         ND         5.0         ug/L         101514 13.43         1           Naphthalene         ND         1.0         ug/L         101514 13.43         1           N-Propylenzene         ND         1.0         ug/L         101514 13.43         1           Styrene         ND         0.50         ug/L         101514 13.43         1           1,1,2-Tetrachioroethane         ND         0.50         ug/L         101514 13.43         1           1,1,2-Tetrachioroethane         ND         0.50         ug/L         101514 13.43         1           1,2,2-Tetrachioroethane         ND         0.50         ug/L         101514 13.43         1           1,2,2-Tetrachioroethane         ND         0.50         ug/L         101514 13.43         1           1,2,3-Trichiorobenzene         ND         1.0         ug/L         101514 13.43         1           1,1,2-Trichioroethane         ND         0.50         ug/L         101514 13.43         1           1,1,3-Trichioroethane         ND         0.50         ug/L         101514 13.43         1           <		ND		1.0	ug/L			10/15/14 13:43	1	
Methyler b findide         ND         3.0         ug/L         10/15/14/13/43         1           Naphhalene         ND         1.0         ug/L         10/15/14/13/43         1           Naphhalene         ND         1.0         ug/L         10/15/14/13/43         1           Styrene         ND         0.50         ug/L         10/15/14/13/43         1           1,1,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14/13/43         1           1,1,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14/13/43         1           1,1,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14/13/43         1           1,2,3-Trichlorobenzene         ND         0.50         ug/L         10/15/14/13/43         1           1,2,3-Trichlorobenzene         ND         1.0         ug/L         10/15/14/13/43         1           1,2,3-Trichlorobenzene         ND         0.50         ug/L         10/15/14/13/43         1           1,1,2-Trichlorobenzene         ND         0.50         ug/L         10/15/14/13/43         1           1,1,2-Trichlorobenzene         ND         0.50         ug/L         10/15/14/13/43         1	4-Isopropyitoluene	ND		5.0	ug/L			10/15/14 13:43	1	
Hameling-z-pertaintic (misk)         ND         1.0         ug/L         10/15/14 13:43         1           N-Propylberzene         ND         1.0         ug/L         10/15/14 13:43         1           Styrene         ND         0.50         ug/L         10/15/14 13:43         1           1,1,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,1,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,1,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,2,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,2,3-Trichloroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,2,4-Trichloroethane         ND         1.0         ug/L         10/15/14 13:43         1           1,1,1-Trichloroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,1,2-Trichloroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,1,2-Trichloroethane         ND         0.50         ug/L         10/15/14 13:43	A Mathul 2 pastanana (MIRK)	ND		50	ug/L			10/15/14 13:43	1	
Naphmaterie         ND         1.0         ug/L         10/16/14 (3:43         1           Styrene         ND         0.50         ug/L         10/15/14 (3:43         1           1,1,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14 (3:43         1           1,1,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14 (3:43         1           1,1,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14 (3:43         1           1,2,2-Trichloroethane         ND         0.50         ug/L         10/15/14 (3:43         1           1,2,3-Trichloroethane         ND         0.50         ug/L         10/15/14 (3:43         1           1,2,4-Trichloroethane         ND         1.0         ug/L         10/15/14 (3:43         1           1,1,2-Trichloroethane         ND         0.50         ug/L         10/15/14 (3:43         1           1,1,2-Trichloroethane         ND         0.50         ug/L         10/15/14 (3:43         1           1,2-Trichloroethane         ND         0.50         ug/L         10/15/14 (3:43         1           1,2-Trichloroethane         ND         0.50         ug/L         10/15/14 (3:43         1	4-Methyl-z-pentanone (MIBR)	ND		1.0	ug/L			10/15/14 13:43	1	
NP-Hopylatization         ND         1.0         up/L         101/15/14         13.43         1           Styrene         ND         0.50         ug/L         101/5/14         13.43         1           1,1,2-Tetrachloroethane         ND         0.50         ug/L         101/5/14         13.43         1           1,2,2-Tetrachloroethane         ND         0.50         ug/L         101/5/14         13.43         1           Toluene         ND         0.50         ug/L         101/5/14         13.43         1           1,2,3-Trichloroethane         ND         0.50         ug/L         101/5/14         13.43         1           1,2,3-Trichloroethane         ND         1.0         ug/L         101/5/14         13.43         1           1,1,2-Trichloroethane         ND         0.50         ug/L         101/5/14         13.43		ND		1.0	ug/L			10/15/14 13:43	1	
Stylene         ND         0.50         ug/L         10.11.1.0.10           1,1,2-Tetrachloroethane         ND         0.50         ug/L         10/15/14.13.43         1           Tetrachloroethane         ND         0.50         ug/L         10/15/14.13.43         1           Tetrachloroethane         ND         0.50         ug/L         10/15/14.13.43         1           Toluene         ND         0.50         ug/L         10/15/14.13.43         1           1,2,3-Trichlorobenzene         ND         1.0         ug/L         10/15/14.13.43         1           1,2,4-Trichlorobenzene         ND         1.0         ug/L         10/15/14.13.43         1           1,2,4-Trichlorobenzene         ND         0.50         ug/L         10/15/14.13.43         1           1,1,2-Trichloroethane         ND         0.50         ug/L         10/15/14.13.43         1           1,1,2-Trichloroethane         ND         0.50         ug/L         10/15/14.13.43         1           1,2,3-Trichloroethane         ND         0.50         ug/L         10/15/14.13.43         1           1,2,3-Trichloroethane         ND         0.50         ug/L         10/15/14.13.43         1           1	N-Propyidenzene	ND		0.50	ug/L			10/15/14 13:43	1	
1,1,2-Tertachologentarie         ND         0.50         ug/L         10/15/14 13:43         1           1,1,2-Tertachologentarie         ND         0.50         ug/L         10/15/14 13:43         1           Toluene         ND         0.50         ug/L         10/15/14 13:43         1           1,2,3-Trichloroethane         ND         1.0         ug/L         10/15/14 13:43         1           1,2,3-Trichloroethane         ND         1.0         ug/L         10/15/14 13:43         1           1,2,4-Trichloroethane         ND         1.0         ug/L         10/15/14 13:43         1           1,1,2-Trichloroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,2,3-Trichloroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,2,3-Trichloroethane         ND         0.50         ug/L         10/15/14 13:43	Styrene	ND		0.50	ug/L			10/15/14 13:43	1	
T.1,2,2-Trichomostheme         ND         0.50         ug/L         10/15/14 13:43         1           Tetrachloroetheme         90         0.50         ug/L         10/15/14 13:43         1           1,2,3-Trichlorobenzene         ND         1.0         ug/L         10/15/14 13:43         1           1,2,3-Trichlorobenzene         ND         1.0         ug/L         10/15/14 13:43         1           1,1,2-Trichlorobenzene         ND         0.50         ug/L         10/15/14 13:43         1           1,2,3-Trichlorobenzene         ND         0.50         ug/L         10/15/14 13:43         1           1,2,3-Trichloro-1,2,2-trifluoroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,2,3-Trichloro-1,2,2-trifluoroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,3,5-Trimethylbenzene         ND         0.50         ug/L	1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			10/15/14 13:43	1	
Totluene         90         0.50         ug/L         101/5/14 13:43         1           Toluene         ND         0.50         ug/L         10/15/14 13:43         1           1.2,3-Trichlorobenzene         ND         1.0         ug/L         10/15/14 13:43         1           1.2,3-Trichlorobenzene         ND         1.0         ug/L         10/15/14 13:43         1           1,1,1-Trichlorobenzene         ND         0.50         ug/L         10/15/14 13:43         1           1,1,2-Trichlorobethane         ND         0.50         ug/L         10/15/14 13:43         1           1,1,2-Trichloropethane         ND         0.50         ug/L         10/15/14 13:43         1           1,2,3-Trichloropropane         ND         1.0         ug/L         10/15/14 13:43         1           1,2,3-Trichloropropane         ND         0.50         ug/L         10/15/14 13:43         1           1,2,3-Trichloropropane         ND         0.50         ug/L         10/15/14 13:43         1           1,2,3-Trinethylbenzene         ND         0.50         ug/L         10/15/14 13:43         1           1,3,5-Trimethylbenzene         ND         0.50         ug/L         10/15/14 13:43         1 <td></td> <td>ND</td> <td></td> <td>0.50</td> <td>ug/L</td> <td></td> <td></td> <td>10/15/14 13:43</td> <td>1</td>		ND		0.50	ug/L			10/15/14 13:43	1	
Induene         ND         0.50         ug/L         101/16/14 13:43         1           1,2,3-Trichlorobenzene         ND         1.0         ug/L         10/15/14 13:43         1           1,1,1-Trichlorobenzene         ND         0.50         ug/L         10/15/14 13:43         1           1,1,2-Trichlorobenzene         ND         0.50         ug/L         10/15/14 13:43         1           1,1,2-Trichlorobenzene         ND         0.50         ug/L         10/15/14 13:43         1           1,1,2-Trichlorobenzene         ND         0.50         ug/L         10/15/14 13:43         1           1,2,2-Trichlorobenzene         ND         1.0         ug/L         10/15/14 13:43         1           1,2,2-Trichlorobenzene         ND         0.50         ug/L         10/15/14 13:43         1           1,2,2-Trichloro-1,2,2-trifluoroethane         ND         0.50         ug/L         10/15/14 13:43         1           1,2,4-Trinethylbenzene         ND         0.50         ug/L         10/15/14 13:43         1           1,3,5-Trimethylbenzene         ND         0.50         ug/L         10/15/14 13:43         1           Vinyl acetate         ND         0.50         ug/L         10/15/14 13:43<	Tetrachloroethene	90		0.50	ug/L			10/15/14 13:43	1	
1,2,3-11chlorobenzene       ND       1,0       ug/L       10/15/14 13:43       1         1,2,4-Trichlorobenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,1,2-Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         1,2,3-Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         1,2,3-Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         1,2,3-Trichloro-1,2,2-trifluoroethane       ND       0.50       ug/L       10/15/14 13:43       1         1,2,4-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,3,5-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,3,5-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl acetate       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl acetate       ND       1.0       ug/L <t< td=""><td></td><td>ND</td><td></td><td>0.50</td><td>ug/L</td><td></td><td></td><td>10/15/14 13:43</td><td>1</td></t<>		ND		0.50	ug/L			10/15/14 13:43	1	
1,2,4-Inchorobenzerie       ND       1,0       ug/L       10/15/14 13:43       1         1,1,1-Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         1,1,2-Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         Trichloroethane       ND       1.0       ug/L       10/15/14 13:43       1         1,2,3-Trichloropapae       ND       0.50       ug/L       10/15/14 13:43       1         1,2,3-Trichloropapae       ND       0.50       ug/L       10/15/14 13:43       1         1,2,4-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,2,4-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,3,5-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,3,5-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl acetate       ND       0.50       ug/L       10/15/14 13:43       1         2,2-Dichloropropane       ND       0.50       ug/L       10/15/14 1		ND		1.0	ug/L			10/15/14 13:43	1	
1,1,1-Inchoroemane       ND       0.50       ug/L       10/15/14 10.43       1         1,1,2-Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         1,2,3-Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         1,2,3-Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         1,2,3-Trichloroethane       ND       0.50       ug/L       10/15/14 13:43       1         1,2,4-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,2,4-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,3,5-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,3,5-Trimethylbenzene       ND       10       ug/L       10/15/14 13:43       1         Vinyl acetate       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl chloride       ND       1.0       ug/L       10/15/14 13:43       1         2,2-Dichloropropane       ND       0.50       ug/L       10/15/14 13:4	1,2,4-1 noniorobenzene	ND		0.50	ug/L			10/15/14 13:43	1	
1,1,2-Inchloroethane       ND       0.50       ug/L       10/15/14 13:43       1         Trichloroethane       0.97       0.50       ug/L       10/15/14 13:43       1         1,2,3-Trichloroptuoromethane       ND       1.0       ug/L       10/15/14 13:43       1         1,2,3-Trichloroptuoromethane       ND       0.50       ug/L       10/15/14 13:43       1         1,2,3-Trichloro-1,2,2-trifluoroethane       ND       0.50       ug/L       10/15/14 13:43       1         1,2,4-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,3,5-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl acetate       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl chloride       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl chloride       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl chloride       ND       0.50       ug/L       10/15/14 13:43       1         Zy-Dichloropropane       ND       0.50       ug/L       10/15/14 13:43       1         Gasoline Range Organics (GRO)       72       R       50	1,1,1-irichloroethane	ND		0.50	ug/L			10/15/14 13:43	1	
Trichloroethene         0.97         0.50         ug/L         10/15/14/13:43         1           Trichlorofluoromethane         ND         1.0         ug/L         10/15/14/13:43         1           1,2,3-Trichloroppane         ND         0.50         ug/L         10/15/14/13:43         1           1,1,2-Trichloro-1,2,2-trifluoroethane         ND         0.50         ug/L         10/15/14/13:43         1           1,2,4-Trimethylbenzene         ND         0.50         ug/L         10/15/14/13:43         1           1,3,5-Trimethylbenzene         ND         0.50         ug/L         10/15/14/13:43         1           1,3,5-Trimethylbenzene         ND         0.50         ug/L         10/15/14/13:43         1           Vinyl acetate         ND         10         ug/L         10/15/14/13:43         1           Vinyl chloride         ND         0.50         ug/L         10/15/14/13:43         1           Xylenes, Total         ND         1.0         ug/L         10/15/14/13:43         1           2,2-Dichloropropane         ND         0.50         ug/L         10/15/14/13:43         1           Gasoline Range Organics (GRO)         72         R         50         ug/L         10/15	1,1,2- i richloroethane	NU		0.50	ug/L			10/15/14 13:43	1	
Inchlorofluoromethane         ND         I.0         ug/L         I.0/10/14/15.43         I           1,2,3-Trichloropropane         ND         0.50         ug/L         10/15/14/13:43         1           1,2,3-Trichloro-1,2,2-trifluoroethane         ND         0.50         ug/L         10/15/14/13:43         1           1,2,4-Trimethylbenzene         ND         0.50         ug/L         10/15/14/13:43         1           1,3,5-Trimethylbenzene         ND         0.50         ug/L         10/15/14/13:43         1           1,3,5-Trimethylbenzene         ND         0.50         ug/L         10/15/14/13:43         1           Vinyl acetate         ND         10         ug/L         10/15/14/13:43         1           Vinyl chloride         ND         0.50         ug/L         10/15/14/13:43         1           Xylenes, Total         ND         1.0         ug/L         10/15/14/13:43         1           2,2-Dichloropropane         ND         0.50         ug/L         10/15/14/13:43         1           Gasoline Range Organics (GRO)         72         R         50         ug/L         10/15/14/13:43         1           -C5-C12        C5-C12        C5-C12        C5-C12 <td< td=""><td>Trichloroethene</td><td>0.97</td><td></td><td>0.50</td><td>ug/L</td><td></td><td></td><td>10/15/14 13:43</td><td>1</td></td<>	Trichloroethene	0.97		0.50	ug/L			10/15/14 13:43	1	
1,2,3-Thendoropropane       ND       0.50       ug/L       10/15/14 13:43       1         1,1,2-Trichloro-1,2,2-trifluoroethane       ND       0.50       ug/L       10/15/14 13:43       1         1,2,4-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,3,5-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl acetate       ND       10       ug/L       10/15/14 13:43       1         Vinyl acetate       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl acetate       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl chloride       ND       0.50       ug/L       10/15/14 13:43       1         Z,2-Dichloropropane       ND       0.50       ug/L       10/15/14 13:43       1         2,2-Dichloropropane       ND       0.50       ug/L       10/15/14 13:43       1         Gasoline Range Organics (GRO)       72       R       50       ug/L       10/15/14 13:43       1         -C5-C12		ND		1.0	ug/L			10/15/14 13:43	4	
1, 1, 2-1 Incinioro -1, 2, 2-trifluoroethane     ND     0.50     ug/L     10/15/14 13:43     1       1, 2, 4-Trimethylbenzene     ND     0.50     ug/L     10/15/14 13:43     1       1, 3, 5-Trimethylbenzene     ND     0.50     ug/L     10/15/14 13:43     1       Vinyl acetate     ND     10     ug/L     10/15/14 13:43     1       Vinyl acetate     ND     0.50     ug/L     10/15/14 13:43     1       Vinyl chloride     ND     0.50     ug/L     10/15/14 13:43     1       Xylenes, Total     ND     1.0     ug/L     10/15/14 13:43     1       2,2-Dichloropropane     ND     0.50     ug/L     10/15/14 13:43     1       Gasoline Range Organics (GRO)     72     R     50     ug/L     10/15/14 13:43     1       -C5-C12     -     -     -     -     10/15/14 13:43     1       Surrogate     %Recovery     Qualifier     Limits     Prepared     Analyzed     Dil Fac       4-Bromofluorobenzene     10/8     67 - 130     10/15/14 13:43     1	1,2,3-Trichloropropane	ND		0.50	ug/L			10/15/14 13:43	1	
1,2,4-1 mmethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         1,3,5-Trimethylbenzene       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl acetate       ND       10       ug/L       10/15/14 13:43       1         Vinyl acetate       ND       0.50       ug/L       10/15/14 13:43       1         Vinyl chloride       ND       0.50       ug/L       10/15/14 13:43       1         Xylenes, Total       ND       1.0       ug/L       10/15/14 13:43       1         2,2-Dichloropropane       ND       0.50       ug/L       10/15/14 13:43       1         Gasoline Range Organics (GRO)       72       R       50       ug/L       10/15/14 13:43       1         -C5-C12	1,1,2-1 fichloro-1,2,2-trimuoroethane	ND		0.50	ug/L			10/15/14 13:43	1	
ND         0.50         ug/L         10/15/14 13:43         1           Vinyl acetate         ND         10         ug/L         10/15/14 13:43         1           Vinyl chloride         ND         0.50         ug/L         10/15/14 13:43         1           Xylenes, Total         ND         1.0         ug/L         10/15/14 13:43         1           2,2-Dichloropropane         ND         0.50         ug/L         10/15/14 13:43         1           Gasoline Range Organics (GRO)         72         R         50         ug/L         10/15/14 13:43         1           -C5-C12         Prepared         Analyzed         Dil Fac           4-Bromofluorobenzene         108         67 - 130         10/15/14 13:43         1	1,2,4- I rimetnyibenzene			0.50	ug/L			10/15/14 13:43	1	
Vinyl acetate         ND	1,3,5- I rimetnyidenzene	ND		0.50	ug/L			10/15/14 13:43	1	
Vinyl chloride         ND         0.50         ug/L         10/15/14 13:43         1           Xylenes, Total         ND         1.0         ug/L         10/15/14 13:43         1           2,2-Dichloropropane         ND         0.50         ug/L         10/15/14 13:43         1           Gasoline Range Organics (GRO)         72         R         50         ug/L         10/15/14 13:43         1           -C5-C12         Surrogate         %Recovery         Qualifier         Limits         Prepared         Analyzed         Dil Fac           4-Bromofluorobenzene         108         67 - 130         67 - 130         10/15/14 13:43         1		ND		10	ug/L			10/15/14 13:43	1	
Xytenes, Total         ND         1.0         Ug/L         10/15/14 13.43         1           2,2-Dichloropropane         ND         0.50         ug/L         10/15/14 13:43         1           Gasoline Range Organics (GRO)         72         R         50         ug/L         10/15/14 13:43         1           -c5-C12         Surrogate         %Recovery         Qualifier         Limits         Prepared         Analyzed         Dil Fac           4-Bromofluorobenzene         108         67 - 130         10/15/14 13:43         1		ND		0.50	ug/L			10/15/14 13:43	1	
Z_2-Dichloropropane         ND         0.50         ug/L         10/15/14 13:43         1           Gasoline Range Organics (GRO)         72         R         50         ug/L         10/15/14 13:43         1           -c5-c12         Surrogate         %Recovery         Qualifier         Limits         Prepared         Analyzed         Dil Fac           4-Bromofluorobenzene         108         67 - 130         10/15/14 13:43         1	Ayienes, Iotal	ND		1.0	ug/L			10/15/14 10:40	4	
Gasoline Range Organics (GRO)         72         R         50         ug/L         10/15/14 15.45         1           -C5-C12         Surrogate         %Recovery         Qualifier         Limits         Prepared         Analyzed         Dil Fac           4-Bromofluorobenzene         108         67 - 130         10/15/14 13:43         1	2,2-Dicnioropropane	ND		0.50	ug/L			10/15/14 13.43	1	
Surrogate         %Recovery         Qualifier         Limits         Prepared         Analyzed         Dil Fac           4-Bromofluorobenzene         108         67 - 130         10/15/14 13:43         1	Gasoline Range Organics (GRO) -C5-C12	72	R	50	ug/L			10/15/14 13:43	1	
4-Bromofluorobenzene         108         67 - 130         10/15/14 13:43         1	Surrogate	%Recoverv	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
	4-Bromofluorobenzene	108		67 - 130				10/15/14 13:43	1	

TestAmerica Job ID: 720-60396-1

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-100 Date Collected: 10/06/14 12:30 Date Received: 10/06/14 17:40						Lab	Sample ID: 720- Matrix	60396-2 к: Water
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	99		72 - 130				10/15/14 13:43	1
Toluene-d8 (Surr)	93		70 - 130				10/15/14 13:43	1
Client Sample ID: MW-02 Date Collected: 10/06/14 08:40						Lab	Sample ID: 720- Matrix	60396-3 x: Wateı
Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDŁ Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L	-		10/15/14 12:17	1
Acetone	ND		50	ug/L			10/15/14 12:17	1
Benzene	ND		0.50	ug/L			10/15/14 12:17	1
Dichlorobromomethane	ND		0.50	ug/L			10/15/14 12:17	1
Bromobenzene	ND		1.0	ug/L			10/15/14 12:17	1
Chlorobromomethane	ND		1.0	ug/L			10/15/14 12:17	1
Bromoform	ND		1.0	ug/L			10/15/14 12:17	1
Bromomethane	ND		1.0	ug/L			10/15/14 12:17	1
2-Butanone (MEK)	ND		50	ug/L			10/15/14 12:17	1
n-Butylbenzene	ND		1.0	ug/L			10/15/14 12:17	1
sec-Butylbenzene	ND		1.0	ug/L			10/15/14 12:17	1
tert-Butvlbenzene	ND		1.0	ug/L			10/15/14 12:17	1
Carbon disulfide	ND		5.0	ug/L			10/15/14 12:17	1
Carbon tetrachloride	ND		0.50	ug/L			10/15/14 12:17	1
Chlorobenzene	ND		0.50	ug/L			10/15/14 12:17	1
Chloroethane	ND		1.0	ug/L			10/15/14 12:17	1
Chloroform	ND		1.0	ug/L			10/15/14 12:17	1
Chloromethane	ND		1.0	ug/L			10/15/14 12:17	1
2-Chlorotoluene	ND		0.50	ug/L			10/15/14 12:17	-
4-Chlorotoluene	ND		0.50	ug/L			10/15/14 12:17	1
Chlorodibromomethane	ND		0.50	ug/L			10/15/14 12:17	1
1.2-Dichlorobenzene	ND		0.50	ug/L			10/15/14 12:17	-
1.3-Dichlorobenzene	ND		0.50	ug/L			10/15/14 12:17	1
1.4-Dichlorobenzene	ND		0.50	ug/L			10/15/14 12:17	
1.3-Dichloropropane	ND		1.0	ug/L			10/15/14 12:17	1
1.1-Dichloropropene	ND		0.50	ug/L			10/15/14 12:17	1
1.2-Dibromo-3-Chloropropane	ND		1.0	ug/L			10/15/14 12:17	1
Ethylene Dibromide	ND		0.50	ug/L			10/15/14 12:17	1
Dibromomethane	ND		0.50	ug/L			10/15/14 12:17	1
Dichlorodifluoromethane	ND		0.50	ug/L			10/15/14 12:17	1
1,1-Dichloroethane	ND		0.50	ug/L			10/15/14 12:17	1
1.2-Dichloroethane	ND		0.50	ug/L			10/15/14 12:17	1
1,1-Dichloroethene	ND		0.50	ug/L			10/15/14 12:17	1
cis-1.2-Dichloroethene	2.8		0.50	ug/L			10/15/14 12:17	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 12:17	1
1,2-Dichloropropane	ND		0.50	ug/L			10/15/14 12:17	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 12:17	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 12:17	
Ethylbenzene	ND		0.50	ug/L			10/15/14 12:17	1
Hexachlorobutadiene	ND		1.0	ug/L			10/15/14 12:17	1
2-Hexanone	ND		50	ug/L			10/15/14 12:17	1
less services and the services of the services	ND		0.50	ug/L			10/15/14 12:17	1

TestAmerica Job ID: 720-60396-1

6

### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-02 Date Collected: 10/06/14 08:40							Lab	Sample ID: 720- Matrix	60396-3 <: Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L			10/15/14 12:17	1
Methylene Chloride	ND		5.0		ug/L			10/15/14 12:17	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			10/15/14 12:17	1
Naphthalene	ND		1.0		ug/L			10/15/14 12:17	1
N-Propylbenzene	ND		1.0		ug/L			10/15/14 12:17	1
Styrene	ND		0.50		ug/L			10/15/14 12:17	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 12:17	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 12:17	1
Tetrachloroethene	4.7		0.50		ug/L			10/15/14 12:17	1
Toluene	ND		0.50		ug/L			10/15/14 12:17	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			10/15/14 12:17	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/15/14 12:17	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/15/14 12:17	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/15/14 12:17	1
Trichloroethene	9.1		0.50		ug/L			10/15/14 12:17	1
Trichlorofluoromethane	ND		1.0		ug/L			10/15/14 12:17	1
1,2,3-Trichloropropane	ND		0.50		ug/L			10/15/14 12:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/15/14 12:17	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			10/15/14 12:17	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			10/15/14 12:17	1
Vinyl acetate	ND		10		ug/L			10/15/14 12:17	1
Vinyl chloride	ND		0.50		ug/L			10/15/14 12:17	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 12:17	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 12:17	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			10/15/14 12:17	1

Surrogate	%Recovery	Qualifier	Limits	Prepared
4-Bromofluorobenzene	111		67 - 130	
1,2-Dichloroethane-d4 (Surr)	96		72 - 130	
Toluene-d8 (Surr)	93		70 - 130	

#### Client Sample ID: MP-01-1 Date Collected: 10/06/14 12:35 Date Received: 10/06/14 17:40

Dute Recented. Torout 11.40								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			10/15/14 14:11	1
Acetone	ND		50	ug/L			10/15/14 14:11	1
Benzene	ND		0.50	ug/L			10/15/14 14:11	1
Dichlorobromomethane	ND		0.50	ug/L			10/15/14 14:11	1
Bromobenzene	ND		1.0	ug/L			10/15/14 14:11	1
Chlorobromomethane	ND		1.0	ug/L			10/15/14 14:11	1
Bromoform	ND		1.0	ug/L			10/15/14 14:11	1
Bromomethane	ND		1.0	ug/L			10/15/14 14:11	1
2-Butanone (MEK)	ND		50	ug/L			10/15/14 14:11	1
n-Butylbenzene	ND		1.0	ug/L			10/15/14 14:11	1
sec-Butylbenzene	ND		1.0	ug/L			10/15/14 14:11	1
tert-Butylbenzene	ND		1.0	ug/L			10/15/14 14:11	1
Carbon disulfide	ND		5.0	ug/L			10/15/14 14:11	1
Carbon tetrachloride	ND		0.50	ug/L			10/15/14 14:11	1

**TestAmerica** Pleasanton

Analyzed

10/15/14 12:17

10/15/14 12:17

10/15/14 12:17

Lab Sample ID: 720-60396-4

Dil Fac

Matrix: Water

1

1

TestAmerica Job ID: 720-60396-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-1 Date Collected: 10/06/14 12:35							Lab	Lab Sample ID: 720-60396-4 Matrix: Water			
Date Received: 10/06/14 17:40		0			11-24		-		Andread		
Chlorebanzona	Result	Qualifier	RL	WDL	Unit un/l		<u> </u>	Prepareo	Analyzeo	DIFac	
Chloroothano	ND		0.50		ug/L				10/15/14 14:11	1	
Chloroform	ND		1.0		ug/L				10/15/14 14:11	1	
Chloromothana	ND		1.0		ug/L				10/15/14 14.11	1	
	ND		1.0		ug/L				10/15/14 14:11	1	
2-Chlorotoluene	ND		0.50		ug/L				10/15/14 14:11	1	
4-Chlorotoluene	ND		0.50		ug/L				10/15/14 14:11	1	
Chlorodibromomethane	ND		0.50		ug/L	~			10/15/14 14:11	1	
1,2-Dichlorobenzene	ND		0.50		ug/L				10/15/14 14:11	1	
1,3-Dichlorobenzene	ND		0.50		ug/L				10/15/14 14:11	1	
1,4-Dichlorobenzene	ND		0.50		ug/L				10/15/14 14:11	1	
1,3-Dichloropropane	ND		1.0		ug/L				10/15/14 14:11	1	
1,1-Dichloropropene	ND		0.50		ug/L				10/15/14 14:11	1	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L				10/15/14 14:11	1	
Ethylene Dibromide	ND		0.50		ug/L				10/15/14 14:11	1	
Dibromomethane	ND		0.50		ug/L				10/15/14 14:11	1	
Dichlorodifluoromethane	ND		0.50		ug/L				10/15/14 14:11	1	
1,1-Dichloroethane	ND		0.50		ug/L				10/15/14 14:11	1	
1,2-Dichloroethane	ND		0.50		ug/L				10/15/14 14:11	1	
1,1-Dichloroethene	ND		0.50		ug/L				10/15/14 14:11	1	
cis-1,2-Dichloroethene	4.4		0.50		ug/L				10/15/14 14:11	1	
trans-1,2-Dichloroethene	ND		0.50		ug/L				10/15/14 14:11	1	
1,2-Dichloropropane	ND		0.50		ug/L				10/15/14 14:11	1	
cis-1,3-Dichloropropene	ND		0.50		ug/L				10/15/14 14:11	1	
trans-1,3-Dichloropropene	ND		0.50		ug/L				10/15/14 14:11	1	
Ethylbenzene	ND		0.50		ug/L				10/15/14 14:11	1	
Hexachlorobutadiene	ND		1.0		ug/L				10/15/14 14:11	1	
2-Hexanone	ND		50		ug/L				10/15/14 14:11	1	
Isopropylbenzene	ND		0.50		ug/L				10/15/14 14:11	1	
4-Isopropyltoluene	ND		1.0		ug/L				10/15/14 14:11	1	
Methylene Chloride	ND		5.0		ug/L				10/15/14 14:11	1	
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L				10/15/14 14:11	1	
Naphthalene	ND		1.0		ug/L				10/15/14 14:11	1	
N-Propylbenzene	ND		1.0		ug/L				10/15/14 14:11	1	
Styrene	ND		0.50		ug/L				10/15/14 14:11	1	
1.1.1.2-Tetrachioroethane	ND		0.50		ug/L				10/15/14 14:11	1	
1.1.2.2-Tetrachloroethane	ND		0.50		ua/L				10/15/14 14:11	1	
Tetrachloroethene	58		0.50		ua/L				10/15/14 14:11	1	
Toluene	ND		0.50		ua/L				10/15/14 14:11	1	
1 2 3-Trichlorobenzene	ND		10		ug/l				10/15/14 14:11	1	
1 2 4-Trichlorobenzene	ND		1.0		ug/l				10/15/14 14:11	1	
1 1 1-Trichloroethane	ND		0.50		ug/L				10/15/14 14:11	1	
1 1 2-Trichloroethane	ND		0.50		ug/L				10/15/14 14:11	1	
Tripheresthere	47		0.50		ug/L				10/15/14 14:11	1	
Trichlorofluoromethane	17		1.0		ug/L				10/15/14 14:11	1	
1.2.3. Trichloropropage	ND		0.50		ug/L				10/15/14 14.11	1	
1.4.0 Trichloro 1.2.2 trifucrosthere			0.00		ug/L				10/15/14 14.11	1	
1.2.4 Trimethylanzons			0.50		ug/L				10/15/14 14:11		
	ND		0.50		ug/L				10/15/14 14.11		
	ND		0.00		ug/L				10/15/14 14:11	1	
VINVIACETATE	ND		10		uu/L				10/15/14 14:11	1	

TestAmerica Job ID: 720-60396-1

10/15/14 14:11

10/15/14 14:11

Lab Sample ID: 720-60396-5

Matrix: Water

6

1

1

### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-1 Date Collected: 10/06/14 12:35							Lab	Sample ID: 720- Matrix	60396-4 c: Water
Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		0.50		ug/L			10/15/14 14:11	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 14:11	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 14:11	1
Gasoline Range Organics (GRO) -C5-C12	64	R	50		ug/L			10/15/14 14:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	106		67 - 130					10/15/14 14:11	1

4-Bromofluorobenzene	106	67 _ 130	
1,2-Dichloroethane-d4 (Surr)	99	72 - 130	
Toluene-d8 (Surr)	92	70 - 130	

## Client Sample ID: MP-01-2

## Date Collected: 10/06/14 13:30

Date	Received:	10/06/14	17:40
------	-----------	----------	-------

Analyte	Result	Qualifier	RL	MDL Uni	it I	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/	L		10/15/14 14:40	1
Acetone	ND		50	ug/	Ľ		10/15/14 14:40	1
Benzene	ND		0.50	ug/	Ľ		10/15/14 14:40	1
Dichlorobromomethane	ND		0.50	ug/	L		10/15/14 14:40	1
Bromobenzene	ND		1.0	ug/	Ľ		10/15/14 14:40	1
Chlorobromomethane	ND		1.0	ug/	Ľ		10/15/14 14:40	1
Bromoform	ND		1.0	ug/	Ľ		10/15/14 14:40	1
Bromomethane	ND		1.0	ug/	ïL.		10/15/14 14:40	1
2-Butanone (MEK)	ND		50	ug/	Ľ		10/15/14 14:40	1
n-Butylbenzene	ND		1.0	ug/	Ľ		10/15/14 14:40	1
sec-Butylbenzene	ND		1.0	ug/	Ľ		10/15/14 14:40	1
tert-Butylbenzene	ND		1.0	ug/	Ľ		10/15/14 14:40	1
Carbon disulfide	ND		5.0	ug/	Ľ		10/15/14 14:40	1
Carbon tetrachloride	ND		0.50	ug/	'L		10/15/14 14:40	1
Chlorobenzene	ND		0.50	ug/	Ľ		10/15/14 14:40	1
Chloroethane	ND		1.0	ug/	Ľ		10/15/14 14:40	1
Chloroform	ND		1.0	ug/	۲L		10/15/14 14:40	1
Chloromethane	ND		1.0	ug/	۲L		10/15/14 14:40	1
2-Chlorotoluene	ND		0.50	ug/	۲L		10/15/14 14:40	1
4-Chlorotoluene	ND		0.50	ug/	ïL		10/15/14 14:40	1
Chlorodibromomethane	ND		0.50	ug/	'L		10/15/14 14:40	1
1,2-Dichlorobenzene	ND		0.50	ug/	'L		10/15/14 14:40	1
1,3-Dichlorobenzene	ND		0.50	ug/	'L		10/15/14 14:40	1
1,4-Dichlorobenzene	ND		0.50	ug/	'L		10/15/14 14:40	1
1,3-Dichloropropane	ND		1.0	ug/	'L		10/15/14 14:40	1
1,1-Dichloropropene	ND		0.50	ug/	'L		10/15/14 14:40	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/	۲L		10/15/14 14:40	1
Ethylene Dibromide	ND		0.50	ug/	۲L		10/15/14 14:40	1
Dibromomethane	ND		0.50	ug/	۲L		10/15/14 14:40	1
Dichlorodifluoromethane	ND		0.50	ug/	ſL		10/15/14 14:40	1
1,1-Dichloroethane	ND		0.50	ug/	۲L		10/15/14 14:40	1
1,2-Dichloroethane	ND		0.50	ug/	ſL		10/15/14 14:40	1
1,1-Dichloroethene	ND		0.50	ug/	۲L		10/15/14 14:40	1
cis-1,2-Dichloroethene	43		0.50	ug/	۲L		10/15/14 14:40	1
trans-1,2-Dichloroethene	ND		0.50	ug/	۲L		10/15/14 14:40	1

TestAmerica Job ID: 720-60396-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-2								Lab Sample ID: 720-	60396-5
Date Collected: 10/06/14 13:30								Matrix	x: Water
Date Received: 10/06/14 17:40								Contraction in the second	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepare	ed Analyzed	Dil Fac
1,2-Dichloropropane	ND		0.50		ug/L			10/15/14 14:40	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/15/14 14:40	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/15/14 14:40	1
Ethylbenzene	ND		0.50		ug/L			10/15/14 14:40	1
Hexachlorobutadiene	ND		1.0		ug/L			10/15/14 14:40	1
2-Hexanone	ND		50		ug/L			10/15/14 14:40	1
Isopropylbenzene	ND		0.50		ug/L			10/15/14 14:40	1
4-Isopropyltoluene	ND		1.0		ug/L			10/15/14 14:40	1
Methylene Chloride	ND		5.0		ug/L			10/15/14 14:40	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			10/15/14 14:40	1
Naphthalene	ND		1.0		ug/L			10/15/14 14:40	1
N-Propylbenzene	ND		1.0		ug/L			10/15/14 14:40	1
Styrene	ND		0.50		ug/L			10/15/14 14:40	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 14:40	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 14:40	1
Tetrachloroethene	ND		0.50		ug/L			10/15/14 14:40	1
Toluene	ND		0.50		ug/L			10/15/14 14:40	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			10/15/14 14:40	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/15/14 14:40	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/15/14 14:40	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/15/14 14:40	1
Trichloroethene	ND		0.50		ug/L			10/15/14 14:40	1
Trichlorofluoromethane	ND		1.0		ug/L			10/15/14 14:40	· 1
1,2,3-Trichloropropane	ND		0.50		ūg/L			10/15/14 14:40	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/15/14 14:40	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			10/15/14 14:40	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			10/15/14 14:40	1
Vinyl acetate	ND		10		ug/L			10/15/14 14:40	1
Vinyl chloride	ND		0.50		ug/L			10/15/14 14:40	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 14:40	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 14:40	1
Gasoline Range Organics (GRO)	ND		50		ug/L			10/15/14 14:40	1
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits				Prepare	ed Analyzed	Dil Fac
1.5.	444		67 120					10/15/14 14.40	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dii Fac
4-Bromofluorobenzene	111	67 - 130		10/15/14 14:40	1
1,2-Dichloroethane-d4 (Surr)	103	72 - 130		10/15/14 14:40	1
Toluene-d8 (Surr)	93	70 - 130		10/15/14 14:40	1

## Client Sample ID: MP-01-3

#### Date Collected: 10/06/14 14:20 Date Received: 10/06/14 17:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			10/15/14 15:08	1
Acetone	ND		50		ug/L			10/15/14 15:08	1
Benzene	ND		0.50		ug/L			10/15/14 15:08	1
Dichlorobromomethane	ND		0.50		ug/L			10/15/14 15:08	1
Bromobenzene	ND		1.0		ug/L			10/15/14 15:08	1
Chlorobromomethane	ND		1.0		ug/L			10/15/14 15:08	1
Bromoform	ND		1.0		ug/L			10/15/14 15:08	1

TestAmerica Pleasanton

Lab Sample ID: 720-60396-6

**Matrix: Water** 

TestAmerica Job ID: 720-60396-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-3							Lab Sample ID: 720-60396-6			
Date Collected: 10/06/14 14:20							Matrix: Water			
Date Received: 10/06/14 17:40										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Bromomethane	ND		1.0		ug/L			10/15/14 15:08	1	
2-Butanone (MEK)	ND		50		ug/L			10/15/14 15:08	1	
n-Butylbenzene	ND		1.0		ug/L			10/15/14 15:08	1	
sec-Butylbenzene	ND		1.0		ug/L			10/15/14 15:08	1	
tert-Butylbenzene	ND		1.0		ug/L			10/15/14 15:08	1	
Carbon disulfide	ND		5.0		ug/L			10/15/14 15:08	1	
Carbon tetrachloride	ND		0.50		ug/L			10/15/14 15:08	1	
Chlorobenzene	ND		0.50		ug/L			10/15/14 15:08	1	
Chloroethane	ND		1.0		ug/L			10/15/14 15:08	1	
Chloroform	ND		1.0		ug/L			10/15/14 15:08	1	
Chloromethane	ND		1.0		ug/L			10/15/14 15:08	1	
2-Chlorotoluene	ND		0.50		ug/L			10/15/14 15:08	1	
4-Chlorotoluene	ND		0.50	11	ug/L			10/15/14 15:08	1	
Chlorodibromomethane	ND		0.50		ug/L			10/15/14 15:08	1	
1,2-Dichlorobenzene	ND		0.50		ug/L			10/15/14 15:08	1	
1,3-Dichlorobenzene	ND		0.50		ug/L			10/15/14 15:08	1	
1,4-Dichlorobenzene	ND		0.50		ug/L			10/15/14 15:08	1	
1,3-Dichloropropane	ND		1.0		ug/L			10/15/14 15:08	1	
1,1-Dichloropropene	ND		0.50		ug/L			10/15/14 15:08	1	
1.2-Dibromo-3-Chloropropane	ND		1.0		ua/L			10/15/14 15:08	1	
Ethylene Dibromide	ND		0.50		ua/L			10/15/14 15:08	1	
Dibromomethane	ND		0.50		ua/L			10/15/14 15:08	1	
Dichlorodifluoromethane	ND		0.50		ua/L			10/15/14 15:08	1	
1.1-Dichloroethane	ND		0.50		ua/L			10/15/14 15:08	1	
1.2-Dichloroethane	ND		0.50		ua/L			10/15/14 15:08	1	
1 1-Dichloroethene	ND		0.50		ua/L			10/15/14 15:08	1	
cis-1 2-Dichloroethene	8.8		0.50		ug/l			10/15/14 15:08	1	
trans-1 2-Dichloroethene	ND		0.50		ug/L			10/15/14 15:08	1	
1 2-Dichloropropage	ND		0.50		ug/L			10/15/14 15:08	1	
cis_1 3-Dichloropropene			0.50		ug/L			10/15/14 15:08	1	
trans 1.3 Dichloropropene			0.50		ug/L			10/15/14 15:08	1	
Ethylbenzene	ND		0.50		ug/L			10/15/14 15:08	1	
Hevenhlorobutadiene	ND		1.0		ug/L			10/15/14 15:09	1	
			50		ug/L			10/15/14 15:08	1	
	ND		0.50		ug/L			10/15/14 15:08		
	ND		0.50		ug/L			10/15/14 15:08		
4-Isopropytoliterie	ND		1.0		ug/L			10/15/14 15:08		
	ND		5.0		ug/L			10/15/14 15:08	1	
4-metry-2-pentanone (MBK)	ND		50		ug/L			10/15/14 15:06	1	
Naphthalene	ND		1.0		ug/L			10/15/14 15:08	1	
N-Propyidenzene	ND		1.0		ug/L			10/15/14 15:08	1	
Styrene	ND		0.50		ug/L			10/15/14 15:08	1	
1,1,1,2-l etrachloroethane	ND		0.50		ug/L			10/15/14 15:08	1	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 15:08	1	
l etrachloroethene	ND		0.50		ug/L			10/15/14 15:08	1	
loluene	ND		0.50		ug/L			10/15/14 15:08	1	
1,2,3-Trichlorobenzene	ND		1.0		ug/L			10/15/14 15:08	1	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/15/14 15:08	1	
1,1,1-Trichloroethane	ND		0.50		ug/L			10/15/14 15:08	1	
1,1,2-Trichloroethane	ND		0.50		ug/L			10/15/14 15:08	1	

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,3-Dichloropropane

1,1-Dichloropropene

Ethylene Dibromide

1,2-Dibromo-3-Chloropropane

TestAmerica Job ID: 720-60396-1

5

6

Method: 8260B/CA_LUFTMS	- 8260B / C	A LUFT M	S (Continue	d)					
Client Sample ID: MP-01-3							Lab	Sample ID: 720-	60396-6
Date Collected: 10/06/14 14:20								Matrix	x: Water
Date Received: 10/06/14 17:40			•						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.50		ug/L			10/15/14 15:08	1
Trichlorofluoromethane	ND		1.0		ug/L			10/15/14 15:08	1
1,2,3-Trichloropropane	ND		0.50		ug/L			10/15/14 15:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/15/14 15:08	1
1,2,4-Trimethylbenzene	ND		0.50	1	ug/L			10/15/14 15:08	1
1,3,5-Trimethylbenzene	ND		0.50	1	ug/L			10/15/14 15:08	1
Vinyl acetate	ND		10	4	ug/L			10/15/14 15:08	1
Vinyl chloride	ND		0.50		ug/L			10/15/14 15:08	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 15:08	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 15:08	1
Gasoline Range Organics (GRO)	ND		50		ug/L			10/15/14 15:08	1
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	109		67 - 130					10/15/14 15:08	1
1,2-Dichloroethane-d4 (Surr)	98		72 - 130					10/15/14 15:08	1
Toluene-d8 (Surr)	93		70 - 130					10/15/14 15:08	1
Client Sample ID: MP-02-1							Lab	Sample ID: 720-	60396-7
Date Collected: 10/06/14 09:35								Matrix	x: Water
Date Received: 10/06/14 17:40									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L	 125		10/15/14 15:36	1
Acetone	ND		50		ug/L			10/15/14 15:36	1
Benzene	ND		0.50		ug/L			10/15/14 15:36	1
Dichlorobromomethane	ND		0.50		ug/L			10/15/14 15:36	1
Bromobenzene	ND		1.0		ug/L			10/15/14 15:36	1
Chlorobromomethane	ND		1.0		ug/L			10/15/14 15:36	1
Bromoform	ND		1.0		ug/L			10/15/14 15:36	1
Bromomethane	ND		1.0		ug/L			10/15/14 15:36	1
2-Butanone (MEK)	ND		50		ug/L			10/15/14 15:36	- 1
n-Butylbenzene	ND		1.0		ug/L			10/15/14 15:36	1
sec-Butvlbenzene	ND		1.0		ug/L			10/15/14 15:36	1
tert-Butvibenzene	ND		1.0		ug/L			10/15/14 15:36	1
Carbon disulfide	ND		5.0		ua/L			10/15/14 15:36	1
Carbon tetrachloride	ND		0.50		ug/L			10/15/14 15:36	1
Chlorobenzene	ND		0.50		ug/L			10/15/14 15:36	1
Chloroethane	ND		1.0		ua/L			10/15/14 15:36	1
Chloroform	ND		1.0		ua/L			10/15/14 15:36	1
Chloromethane	ND		1.0	- F	ua/L			10/15/14 15:36	1
2-Chlorotoluene	ND		0.50		ua/l			10/15/14 15:36	1
4-Chiorotoluene	ND		0.50		ua/L			10/15/14 15:36	1
Chlorodibromomethane	ND		0.50		ua/l			10/15/14 15:36	1
	ND		0.50		<del>3</del> ,			10/16/14 15:36	1

0.50

0.50

1.0

0.50

0.50

1.0

ND

ND

ND

ND

ND

ND

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

TestAmerica Pleasanton

10/15/14 15:36

10/15/14 15:36

10/15/14 15:36

10/15/14 15:36

10/15/14 15:36

10/15/14 15:36

1

1

1

1

1

Toluene-d8 (Surr)

TestAmerica Job ID: 720-60396-1

5

6

### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-1				Lab Sample ID: 720-60396-7				
Date Collected: 10/06/14 09:35							Matrix	k: Water
Date Received: 10/06/14 17:40								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		0.50	ug/L			10/15/14 15:36	1
Dichlorodifluoromethane	ND		0.50	ug/L			10/15/14 15:36	1
1,1-Dichloroethane	ND		0.50	ug/L			10/15/14 15:36	1
1,2-Dichloroethane	ND		0.50	ug/L			10/15/14 15:36	1
1,1-Dichloroethene	ND		0.50	ug/L			10/15/14 15:36	1
cis-1,2-Dichloroethene	85		0.50	ug/L			10/15/14 15:36	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 15:36	1
1,2-Dichloropropane	ND		0.50	ug/L			10/15/14 15:36	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 15:36	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 15:36	1
Ethylbenzene	ND		0.50	ug/L			10/15/14 15:36	1
Hexachlorobutadiene	ND		1.0	ug/L			10/15/14 15:36	1
2-Hexanone	ND		50	ug/L			10/15/14 15:36	1
Isopropyibenzene	ND		0.50	ug/L			10/15/14 15:36	1
4-Isopropyltoluene	ND		1.0	ug/L			10/15/14 15:36	1
Methylene Chloride	ND		5.0	ug/L			10/15/14 15:36	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			10/15/14 15:36	1
Naphthalene	ND		1.0	ug/L			10/15/14 15:36	1
N-Propvlbenzene	ND		1.0	ug/L			10/15/14 15:36	1
Styrene	ND		0.50	ug/L			10/15/14 15:36	1
1,1,2-Tetrachloroethane	ND		0.50	ug/L			10/15/14 15:36	1
1.1.2.2-Tetrachloroethane	ND		0.50	ug/L			10/15/14 15:36	1
Tetrachloroethene	ND		0.50	ug/L			10/15/14 15:36	1
Toluene	ND		0.50	ug/L			10/15/14 15:36	1
1.2.3-Trichlorobenzene	ND		1.0	ug/L			10/15/14 15:36	1
1.2.4-Trichlorobenzene	ND		1.0	ug/L			10/15/14 15:36	1
1.1.1-Trichloroethane	ND		0.50	ug/L			10/15/14 15:36	1
1.1.2-Trichloroethane	ND		0.50	ug/L			10/15/14 15:36	1
Trichloroethene	0.61		0.50	ua/L			10/15/14 15:36	1
Trichlorofluoromethane	ND		1.0	ug/L			10/15/14 15:36	1
1.2.3-Trichloropropane	ND		0.50	ua/L			10/15/14 15:36	1
1.1.2-Trichloro-1.2.2-trifluoroethane	ND		0.50	ua/L			10/15/14 15:36	1
1.2.4-Trimethylbenzene	ND		0.50	ua/L			10/15/14 15:36	1
1.3.5-Trimethylbenzene	ND		0.50	ua/L			10/15/14 15:36	1
Vinvl acetate	ND		10	ua/L			10/15/14 15:36	1
Vinyl chloride	ND		0.50	ug/L			10/15/14 15:36	1
Xvlenes Total	ND		1.0	ug/L			10/15/14 15:36	1
2.2-Dichloropropane	ND		0.50	ua/L			10/15/14 15:36	1
Gasoline Bange Organics (GRO)	53	R	50	ua/L			10/15/14 15:36	1
-C5-C12	55	IN IN	-1	-9-				
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	108	1.01	67 - 130				10/15/14 15:36	1
1,2-Dichloroethane-d4 (Surr)	106		72 - 130				10/15/14 15:36	1

10/15/14 15:36

70 - 130

94

....

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MP-02-3							Lab	Sample ID: 720-	60396-8
Date Collected: 10/06/14 11:05								Matrix	k: Water
Date Received: 10/06/14 17:40							_		
Analyte	Result	Qualifier	RL	MDL Un	it	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/	L			10/15/14 16:05	1
Acetone	ND		50	ug/	L			10/15/14 16:05	1
Benzene	ND		0.50	ug/	L			10/15/14 16:05	1
Dichlorobromomethane	ND		0.50	ug/	L			10/15/14 16:05	1
Bromobenzene	ND		1.0	ug/	L			10/15/14 16:05	1
Chlorobromomethane	ND		1.0	ug/	L			10/15/14 16:05	1
Bromoform	ND		1.0	ug/	L			10/15/14 16:05	1
Bromomethane	ND		1.0	ug/	L			10/15/14 16:05	1
2-Butanone (MEK)	ND		50	ug/	L			10/15/14 16:05	1
n-Butylbenzene	ND		1.0	ug/	L			10/15/14 16:05	1
sec-Butylbenzene	ND		1.0	ug/	L			10/15/14 16:05	1
tert-Butylbenzene	ND		1.0	ug/	L			10/15/14 16:05	1
Carbon disulfide	ND		5.0	ug/	L			10/15/14 16:05	1
Carbon tetrachloride	ND		0.50	ug/	L			10/15/14 16:05	1
Chlorobenzene	ND		0.50	ug/	L			10/15/14 16:05	1
Chloroethane	ND		1.0	ug/	L			10/15/14 16:05	1
Chloroform	ND		1.0	ug/	L			10/15/14 16:05	1
Chloromethane	ND		1.0	ug/	L			10/15/14 16:05	1
2-Chlorotoluene	ND		0.50	ug/	L			10/15/14 16:05	1
4-Chlorotoluene	ND		0.50	ug/	L			10/15/14 16:05	1
Chlorodibromomethane	ND		0.50	ug/	L			10/15/14 16:05	1
1,2-Dichlorobenzene	ND		0.50	ug/	L			10/15/14 16:05	1
1,3-Dichlorobenzene	ND		0.50	ug/	L			10/15/14 16:05	1
1,4-Dichlorobenzene	ND		0.50	ug/	L			10/15/14 16:05	1
1,3-Dichloropropane	ND		1.0	ug/	L			10/15/14 16:05	1
1,1-Dichloropropene	ND		0.50	ug/	L			10/15/14 16:05	1
1,2-Dibromo-3-Chloropropane	. ND		1.0	ug/	L			10/15/14 16:05	1
Ethylene Dibromide	ND		0.50	ug/	L			10/15/14 16:05	. 1
Dibromomethane	ND		0.50	ug/	L			10/15/14 16:05	1
Dichlorodifluoromethane	ND		0.50	ug/	L			10/15/14 16:05	1
1,1-Dichloroethane	ND		0.50	ug/	L			10/15/14 16:05	1
1,2-Dichloroethane	ND		0.50	ug/	L			10/15/14 16:05	1
1,1-Dichloroethene	ND		0.50	ug/	L			10/15/14 16:05	1
cis-1.2-Dichloroethene	29		0.50	ug/	L			10/15/14 16:05	1
trans-1,2-Dichloroethene	ND		0.50	ug/	L			10/15/14 16:05	1
1.2-Dichloropropane	ND		0.50	ug/	L			10/15/14 16:05	1
cis-1.3-Dichloropropene	ND		0.50	ug/	L			10/15/14 16:05	1
trans-1.3-Dichloropropene	ND		0.50	ug/	L			10/15/14 16:05	1
Ethylbenzene	ND		0.50	ug/	L			10/15/14 16:05	1
Hexachlorobutadiene	ND		1.0	ug/	L			10/15/14 16:05	1
2-Hexanone	ND		50	ua/	L			10/15/14 16:05	1
Isopropylbenzene	ND		0.50	ua/				10/15/14 16:05	1
4-Isopropyltoluene	ND		1.0	ua/				10/15/14 16:05	1
Methylene Chloride	ND		5.0	ua/	L			10/15/14 16:05	1
4-Methyl-2-pentanone (MIRK)	ND		50	-1g/ 110/				10/15/14 16:05	1
Nanhthalene	ND		1.0	ug/				10/15/14 16:05	1
N-Propylbenzene	ND		1.0	ug/				10/15/14 16:05	1
Styrene	ND		0.50	10/				10/15/14 16:05	1
1 1 1 2-Tetrachloroethane	ND		0.50		L			10/15/14 16:05	1
in the second container					-				

TestAmerica Pleasanton

......

TestAmerica Job ID: 720-60396-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-3 Date Collected: 10/06/14 11:05						Lab	o Sample ID: 720-60396-8 Matrix: Water		
Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			10/15/14 16:05	1	
Tetrachloroethene	ND		0.50	ug/L			10/15/14 16:05	1	
Toluene	ND		0.50	ug/L			10/15/14 16:05	1	
1,2,3-Trichlorobenzene	ND		1.0	ug/L			10/15/14 16:05	1	
1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/15/14 16:05	1	
1,1,1-Trichloroethane	ND		0.50	ug/L			10/15/14 16:05	1	
1,1,2-Trichloroethane	ND		0.50	ug/L			10/15/14 16:05	1	
Trichloroethene	ND		0.50	ug/L			10/15/14 16:05	1	
Trichlorofluoromethane	ND		1.0	ug/L			10/15/14 16:05	1	
1,2,3-Trichloropropane	ND		0.50	ug/L			10/15/14 16:05	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			10/15/14 16:05	1	
1,2,4-Trimethylbenzene	ND		0.50	ug/L			10/15/14 16:05	1	
1,3,5-Trimethylbenzene	ND		0.50	ug/L			10/15/14 16:05	1	
Vinyl acetate	ND		10	ug/L			10/15/14 16:05	1	
Vinyl chloride	ND		0.50	ug/L			10/15/14 16:05	1	
Xylenes, Total	ND		1.0	ug/L			10/15/14 16:05	1	
2,2-Dichloropropane	ND		0.50	ug/L			10/15/14 16:05	1	
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L			10/15/14 16:05	1	
	0/ <b>D</b> = = = + = = =	Ouglifier	Limite			Bronarad	Analyzad	Dil Eac	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	112		67 - 130		10/15/14 16:05	1
1,2-Dichloroethane-d4 (Surr)	105		72 - 130		10/15/14 16:05	1
Toluene-d8 (Surr)	91		70 - 130		10/15/14 16:05	1

#### Client Sample ID: MP-03-1 Date Collected: 10/06/14 11:15 Date Received: 10/06/14 17:40

Analyte Result	Qualifier F	L MDL	Unit	- 1	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether ND	0.5	0	ug/L			10/15/14 16:34	1
Acetone ND		0	ug/L			10/15/14 16:34	1
Benzene ND	0.5	0	ug/L			10/15/14 16:34	1
Dichlorobromomethane ND	0.5	0	ug/L			10/15/14 16:34	1
Bromobenzene ND	1	0	ug/L			10/15/14 16:34	1
Chlorobromomethane ND	1	0	ug/L			10/15/14 16:34	1
Bromoform ND	1	0	ug/L			10/15/14 16:34	1
Bromomethane ND	1	0	ug/L			10/15/14 16:34	1
2-Butanone (MEK) ND		0	ug/L			10/15/14 16:34	1
n-Butylbenzene ND	1	0	ug/L			10/15/14 16:34	1
sec-Butylbenzene ND	1	0	ug/L			10/15/14 16:34	1
tert-Butylbenzene ND	1	0	ug/L			10/15/14 16:34	1
Carbon disulfide ND	5	0	ug/L			10/15/14 16:34	1
Carbon tetrachloride ND	0.5	0	ug/L			10/15/14 16:34	1
Chlorobenzene ND	0.:	0	ug/L			10/15/14 16:34	1
Chloroethane ND	1	0	ug/L			10/15/14 16:34	1
Chloroform ND	1	0	ug/L			10/15/14 16:34	1
Chloromethane ND	1	0	ug/L			10/15/14 16:34	1
2-Chlorotoluene ND	0.:	0	ug/L			10/15/14 16:34	1
4-Chlorotoluene ND	0.4	0	ug/L			10/15/14 16:34	1
Chlorodibromomethane ND	0.4	0	ug/L			10/15/14 16:34	1

TestAmerica Pleasanton

Lab Sample ID: 720-60396-9

**Matrix: Water** 

TestAmerica Job ID: 720-60396-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-1	Lab Sample ID:								
Date Collected: 10/06/14 11:15								Matrix	k: Water
Date Received: 10/06/14 17:40									
Analyte	Result	Qualifier	RL	MDL L	Jnit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		0.50	Ĺ	ıg/L			10/15/14 16:34	1
1,3-Dichlorobenzene	ND		0.50	ι	ıg/L			10/15/14 16:34	1
1,4-Dichlorobenzene	ND		0.50	ι	ig/L			10/15/14 16:34	1
1,3-Dichloropropane	ND		1.0	L	ıg/L			10/15/14 16:34	1
1,1-Dichloropropene	ND		0.50	ι	ıg/L			10/15/14 16:34	1
1,2-Dibromo-3-Chloropropane	ND		1,0	ι	ıg/L			10/15/14 16:34	1
Ethylene Dibromide	ND		0.50	L	ıg/L			10/15/14 16:34	1
Dibromomethane	ND		0.50	L	ıg/L			10/15/14 16:34	1
Dichlorodifluoromethane	ND		0.50	L	ıg/L			10/15/14 16:34	1
1,1-Dichloroethane	ND	4	0.50	ι	ıg/L			10/15/14 16:34	1
1,2-Dichloroethane	ND		0.50	L	ıg/L			10/15/14 16:34	1
1,1-Dichloroethene	ND		0.50	L	ig/L			10/15/14 16:34	1
cis-1,2-Dichloroethene	0.63		0.50	L	ig/L			10/15/14 16:34	1
trans-1,2-Dichloroethene	ND		0.50	L	ig/L			10/15/14 16:34	1
1,2-Dichloropropane	ND		0.50	ι	ig/L			10/15/14 16:34	1
cis-1,3-Dichloropropene	ND		0.50	L	ig/L			10/15/14 16:34	1
trans-1,3-Dichloropropene	ND		0.50	ι	ig/L			10/15/14 16:34	1
Ethylbenzene	ND		0.50	ι	ig/L			10/15/14 16:34	1
Hexachlorobutadiene	ND		1.0	ι	ig/L			10/15/14 16:34	1
2-Hexanone	ND		50	ι	ig/L			10/15/14 16:34	1
Isopropylbenzene	ND		0.50	ι	ıg/L			10/15/14 16:34	1
4-isopropyltoluene	ND		1.0	ι	ıg/L			10/15/14 16:34	1
Methylene Chloride	ND		5.0	ι	ıg/L			10/15/14 16:34	1
4-Methyl-2-pentanone (MIBK)	ND		50	ι	ig/L			10/15/14 16:34	1
Naphthalene	ND		1.0	ι	ıg/L			10/15/14 16:34	1
N-Propylbenzene	ND		1.0	ι	ig/L			10/15/14 16:34	1
Styrene	ND		0:50	ι	ig/L			10/15/14 16:34	1
1,1,1,2-Tetrachloroethane	ND		0.50	L	ig/L			10/15/14 16:34	1
1,1,2,2-Tetrachloroethane	ND		0.50	L	ıg/L			10/15/14 16:34	1
Tetrachloroethene	22		0.50	ι	ig/L			10/15/14 16:34	1
Toluene	ND		0.50	ι	ig/L			10/15/14 16:34	1
1,2,3-Trichlorobenzene	ND		1.0	ι	ig/L			10/15/14 16:34	1
1,2,4-Trichlorobenzene	ND		1.0	ι	ig/L			10/15/14 16:34	1
1,1,1-Trichloroethane	ND		0.50	ι	ıg/L			10/15/14 16:34	1
1,1,2-Trichloroethane	ND		0.50	L	ig/L			10/15/14 16:34	1
Trichloroethene	4.0		0.50	ι	ıg/L			10/15/14 16:34	1
Trichlorofluoromethane	ND		1.0	L	ig/L			10/15/14 16:34	* 1
1.2.3-Trichloropropane	ND		0.50	L	ig/L			10/15/14 16:34	1
1.1.2-Trichloro-1.2.2-trifluoroethane	ND		0.50	ι	ig/L			10/15/14 16:34	1
1.2.4-Trimethylbenzene	ND		0.50	ι	ig/L			10/15/14 16:34	1
1.3.5-Trimethylbenzene	ND		0.50	ι	ig/L			10/15/14 16:34	1
Vinvl acetate	ND		10	ι	ig/L			10/15/14 16:34	1
Vinvl chloride	ND		0.50	L	ig/L			10/15/14 16:34	1
Xvlenes, Total	ND		1.0	L	ig/L			10/15/14 16:34	1
2 2-Dichloropropane	ND		0.50	L	ia/L			10/15/14 16:34	1
Casoline Pange Organice (CPO)	ND		50		ia/L			10/15/14 16:34	1
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	109		67 - 130					10/15/14 16:34	1

reur	Analyzou
	10/15/14 16:34

TestAmerica Job ID: 720-60396-1

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-1 Date Collected: 10/06/14 11:15						Lab	Sample ID: 720- Matrix	60396-9 c: Water
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		72 - 130				10/15/14 16:34	1
Toluene-d8 (Surr)	93		70 - 130				10/15/14 16:34	1
Client Sample ID: MP-03-2						Lab S	ample ID: 720-6	0396-10
Date Collected: 10/06/14 08:35							Matrix	c: Water
Date Received: 10/06/14 17:40								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			10/15/14 17:02	1
Acetone	ND		50	ug/L			10/15/14 17:02	1
Benzene	ND		0.50	ug/L			10/15/14 17:02	1
Dichlorobromomethane	ND		0.50	ug/L			10/15/14 17:02	1
Bromobenzene	ND		1.0	ug/L			10/15/14 17:02	1
Chlorobromomethane	ND		1.0	ug/L			10/15/14 17:02	1
Bromoform	ND		1.0	ug/L			10/15/14 17:02	1
Bromomethane	ND		1.0	ug/L			10/15/14 17:02	1
2-Butanone (MEK)	ND		50	ug/L			10/15/14 17:02	1
n-Butylbenzene	ND		1.0	ug/L			10/15/14 17:02	1
sec-Butylbenzene	ND		1.0	ug/L			10/15/14 17:02	1
tert-Butylbenzene	ND		1.0	ug/L			10/15/14 17:02	1
Carbon disulfide	ND		5.0	ug/L			10/15/14 17:02	1
Carbon tetrachloride	ND		0.50	ug/L			10/15/14 17:02	1
Chlorobenzene	ND		0.50	ug/L			10/15/14 17:02	1
Chloroethane	ND		1.0	ug/L			10/15/14 17:02	1
Chloroform	ND		1.0	ug/L			10/15/14 17:02	1
Chloromethane	ND		1.0	ug/L			10/15/14 17:02	1
2-Chlorotoluene	ND		0.50	ug/L			10/15/14 17:02	1
4-Chlorotoluene	ND		0.50	ug/L			10/15/14 17:02	1
Chlorodibromomethane	ND		0.50	ug/L			10/15/14 17:02	1
1,2-Dichlorobenzene	ND		0.50	ug/L			10/15/14 17:02	1
1,3-Dichlorobenzene	ND		0.50	ug/L			10/15/14 17:02	1
1,4-Dichlorobenzene	ND		0.50	ug/L			10/15/14 17:02	1
1,3-Dichloropropane	ND		1.0	ug/L			10/15/14 17:02	1
1,1-Dichloropropene	ND		0.50	ug/L			10/15/14 17:02	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			10/15/14 17:02	1
Ethylene Dibromide	ND		0.50	ug/L			10/15/14 17:02	1
Dibromomethane	ND		0.50	ug/L			10/15/14 17:02	1
Dichlorodifluoromethane	ND		0.50	ug/L			10/15/14 17:02	1
1,1-Dichloroethane	ND		0.50	ug/L			10/15/14 17:02	1
1,2-Dichloroethane	ND		0.50	ug/L			10/15/14 17:02	1
1,1-Dichloroethene	ND		0.50	ug/L			10/15/14 17:02	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 17:02	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 17:02	1
1,2-Dichloropropane	ND		0.50	ug/L			10/15/14 17:02	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 17:02	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 17:02	1
Ethylbenzene	ND		0.50	ug/L			10/15/14 17:02	1
Hexachlorobutadiene	ND		1.0	ug/L			10/15/14 17:02	1
2-Hexanone	ND		50	ug/L			10/15/14 17:02	1
Isopropylbenzene	ND		0.50	ug/L			10/15/14 17:02	1

TestAmerica Job ID: 720-60396-1

5 6 7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-2 Date Collected: 10/06/14 08:35							Lab S	Sample ID: 720-6 Matrix	0396-10 x: Water
Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ıg/L			10/15/14 17:02	1
Methylene Chloride	ND		5.0	u	ıg/L			10/15/14 17:02	1
4-Methyl-2-pentanone (MIBK)	ND		50	U	ıg/L			10/15/14 17:02	1
Naphthalene	ND		1.0	U	ıg/L			10/15/14 17:02	1
N-Propylbenzene	ND		1.0	U	ug/L			10/15/14 17:02	1
Styrene	ND		0.50	U	ıg/L			10/15/14 17:02	1
1,1,1,2-Tetrachloroethane	ND		0.50	U	ıg/L			10/15/14 17:02	1
1,1,2,2-Tetrachloroethane	ND		0.50	U	ıg/L			10/15/14 17:02	1
Tetrachloroethene	ND		0.50	U	ıg/L			10/15/14 17:02	1
Toluene	ND		0.50	u	ıg/L			10/15/14 17:02	1
1,2,3-Trichlorobenzene	ND		1.0	U	ıg/L			10/15/14 17:02	1
1,2,4-Trichlorobenzene	ND		1.0	U	ıg/L			10/15/14 17:02	1
1,1,1-Trichloroethane	ND		0.50	U	ıg/L			10/15/14 17:02	1
1,1,2-Trichloroethane	ND		0.50	u	ıg/L			10/15/14 17:02	1
Trichloroethene	ND		0.50	U	ıg/L			10/15/14 17:02	1
Trichlorofluoromethane	ND		1.0	U	ıg/L			10/15/14 17:02	1
1,2,3-Trichloropropane	. ND		0.50	U	ıg/L			10/15/14 17:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	U	ıg/L			10/15/14 17:02	1
1,2,4-Trimethylbenzene	ND		0.50	U	ıg/L			10/15/14 17:02	1
1,3,5-Trimethylbenzene	ND		0.50	U	ug/L			10/15/14 17:02	1
Vinyl acetate	ND		10	ι	lg/L			10/15/14 17:02	1
Vinyl chloride	ND		0.50	L	ug/L			10/15/14 17:02	1
Xylenes, Total	ND		1.0	ι.	ıg/L			10/15/14 17:02	1
2,2-Dichloropropane	ND		0.50	ι	ıg/L			10/15/14 17:02	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ι	ıg/L			10/15/14 17:02	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	111		67 - 130		10/15/14 17:02	1
1,2-Dichloroethane-d4 (Surr)	107		72 - 130		10/15/14 17:02	1
Toluene-d8 (Surr)	93		70 - 130		10/15/14 17:02	1

#### Client Sample ID: MP-03-3 Date Collected: 10/06/14 11:00 Date Received: 10/06/14 17:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			10/15/14 17:31	1
Acetone	ND		50		ug/L			10/15/14 17:31	1
Benzene	ND		0.50		ug/L			10/15/14 17:31	1
Dichlorobromomethane	ND		0.50		ug/L			10/15/14 17:31	1
Bromobenzene	ND		1.0		ug/L			10/15/14 17:31	1
Chlorobromomethane	ND		1.0		ug/L			10/15/14 17:31	1
Bromoform	ND		1.0		ug/L			10/15/14 17:31	1
Bromomethane	ND		1.0		ug/L			10/15/14 17:31	1
2-Butanone (MEK)	ND		50		ug/L			10/15/14 17:31	1
n-Butylbenzene	ND		1.0		ug/L			10/15/14 17:31	1
sec-Butylbenzene	ND		1.0		ug/L			10/15/14 17:31	1
tert-Butylbenzene	ND		1.0		ug/L			10/15/14 17:31	1
Carbon disulfide	ND		5.0		ug/L			10/15/14 17:31	1
Carbon tetrachloride	ND	×.	0.50		ug/L			10/15/14 17:31	1

TestAmerica Pleasanton

Lab Sample ID: 720-60396-11

**Matrix: Water** 

TestAmerica Job ID: 720-60396-1

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-3 Date Collected: 10/06/14 11:00							Lab S	ample ID: 720-6 Matrix	0396-11 k: Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	ND		0.50		ug/L			10/15/14 17:31	1
Chloroethane	ND		1.0		ug/L			10/15/14 17:31	1
Chloroform	ND		1.0		ug/L			10/15/14 17:31	1
Chloromethane	ND		1.0		ug/L			10/15/14 17:31	1
2-Chlorotoluene	ND		0.50		ug/L			10/15/14 17:31	1
4-Chlorotoluene	ND		0.50		ug/L			10/15/14 17:31	1
Chlorodibromomethane	ND		0.50		ug/L			10/15/14 17:31	1
1,2-Dichlorobenzene	ND		0.50		ug/L			10/15/14 17:31	1
1,3-Dichlorobenzene	ND		0.50		ug/L			10/15/14 17:31	1
1,4-Dichlorobenzene	ND		0.50		ug/L			10/15/14 17:31	1
1,3-Dichloropropane	ND		1.0		ug/L			10/15/14 17:31	1
1,1-Dichloropropene	ND		0.50		ug/L			10/15/14 17:31	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			10/15/14 17:31	1
Ethylene Dibromide	ND		0.50		ug/L			10/15/14 17:31	1
Dibromomethane	ND		0.50		ug/L			10/15/14 17:31	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/15/14 17:31	1
1,1-Dichloroethane	ND		0.50		ug/L			10/15/14 17:31	1
1,2-Dichloroethane	ND		0.50		ug/L			10/15/14 17:31	1
1,1-Dichloroethene	ND		0.50		ug/L			10/15/14 17:31	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			10/15/14 17:31	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			10/15/14 17:31	1
1,2-Dichloropropane	ND		0.50		ug/L			10/15/14 17:31	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/15/14 17:31	1
trans-1,3-Dichloropropene	ND		0.50	14	ug/L			10/15/14 17:31	1
Ethylbenzene	ND		0.50		ug/L			10/15/14 17:31	1
Hexachlorobutadiene	ND		1.0		ug/L			10/15/14 17:31	1
2-Hexanone	ND		50		ug/L			10/15/14 17:31	1
Isopropylbenzene	ND		0.50	1.11	ug/L			10/15/14 17:31	1
4-lsopropyltoluene	ND		1.0		ug/L			10/15/14 17:31	1
Methylene Chloride	ND		5.0		ug/L			10/15/14 17:31	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			10/15/14 17:31	1
Naphthalene	ND		1.0		ug/L			10/15/14 17:31	1
N-Propylbenzene	ND		1.0		ua/L			10/15/14 17:31	1
Styrene	ND		0.50		ug/L			10/15/14 17:31	1
1.1.1.2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 17:31	1
1.1.2.2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 17:31	1
Tetrachloroethene	ND		0.50		ug/L			10/15/14 17:31	1
Toluene	ND		0.50		ug/L			10/15/14 17:31	1.
1.2.3-Trichlorobenzene	ND		1.0		ug/L			10/15/14 17:31	1
1.2.4-Trichlorobenzene	ND		1.0		ug/L			10/15/14 17:31	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/15/14 17:31	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/15/14 17:31	1
Trichloroethene	ND		0.50		ug/L			10/15/14 17:31	1
Trichlorofluoromethane	ND		1.0		ug/L			10/15/14 17:31	1
1.2.3-Trichloropropane	ND		0.50		ug/L			10/15/14 17:31	1
1.1.2-Trichloro-1.2.2-trifluoroethane	ND		0.50		ug/L			10/15/14 17:31	1
1.2.4-Trimethylbenzene	ND		0.50		ug/L			10/15/14 17:31	1
1.3.5-Trimethylbenzene	ND		0.50		ug/L			10/15/14 17:31	1
Vinyl acetate	ND		10		ug/L			10/15/14 17:31	1
TestAmerica Job ID: 720-60396-1

Lab Sample ID: 720-60396-12

Matrix: Water

6

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-3 Date Collected: 10/06/14 11:00							Lab S	Sample ID: 720-6 Matrix	0396-11 c: Water
Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		0.50		ug/L			10/15/14 17:31	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 17:31	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 17:31	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			10/15/14 17:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	110	120	67 _ 130			-		10/15/14 17:31	
1,2-Dichloroethane-d4 (Surr)	107		72 - 130					10/15/14 17:31	-
Toluene-d8 (Surr)	94		70 - 130					10/15/14 17:31	1

## Client Sample ID: MP-04-1

#### Date Collected: 10/06/14 12:40 Date Received: 10/06/14 17:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L	-		10/15/14 17:59	1
Acetone	ND		50		ug/L			10/15/14 17:59	1
Benzene	ND		0.50		ug/L			10/15/14 17:59	1
Dichlorobromomethane	ND		0.50		ug/L			10/15/14 17:59	1
Bromobenzene	ND		1.0		ug/L			10/15/14 17:59	1
Chlorobromomethane	ND		1.0		ug/L			10/15/14 17:59	1
Bromoform	ND		1.0		ug/L			10/15/14 17:59	1
Bromomethane	ND		1.0		ug/L			10/15/14 17:59	1
2-Butanone (MEK)	ND		50		ug/L			10/15/14 17:59	1
n-Butylbenzene	ND		1.0		ug/L			10/15/14 17:59	1
sec-Butylbenzene	ND		1.0		ug/L			10/15/14 17:59	1
tert-Butylbenzene	ND		1.0		ug/L			10/15/14 17:59	1
Carbon disulfide	ND		5.0		ug/L			10/15/14 17:59	1
Carbon tetrachloride	ND		0.50		ug/L			10/15/14 17:59	1
Chlorobenzene	ND		0.50		ug/L			10/15/14 17:59	1
Chloroethane	ND		1.0		ug/L			10/15/14 17:59	1
Chloroform	ND		1.0		ug/L			10/15/14 17:59	1
Chloromethane	ND		1.0		ug/L			10/15/14 17:59	1
2-Chlorotoluene	ND		0.50		ug/L			10/15/14 17:59	1
4-Chlorotoluene	ND		0.50		ug/L			10/15/14 17:59	1
Chlorodibromomethane	ND		0.50		ug/L			10/15/14 17:59	1
1,2-Dichlorobenzene	ND		0.50	10	ug/L			10/15/14 17:59	1
1,3-Dichlorobenzene	ND		0.50		ug/L			10/15/14 17:59	1
1,4-Dichlorobenzene	ND		0.50		ug/L			10/15/14 17:59	1
1,3-Dichloropropane	ND		1.0		ug/L			10/15/14 17:59	1
1,1-Dichloropropene	ND		0.50		ug/L			10/15/14 17:59	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			10/15/14 17:59	1
Ethylene Dibromide	ND		0.50		ug/L			10/15/14 17:59	1
Dibromomethane	ND		0.50		ug/L			10/15/14 17:59	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/15/14 17:59	1
1,1-Dichloroethane	ND		0.50		ug/L			10/15/14 17:59	1
1,2-Dichloroethane	ND		0.50		ug/L			10/15/14 17:59	1
1,1-Dichloroethene	ND		0.50		ug/L			10/15/14 17:59	1
cis-1,2-Dichloroethene	2.2		0.50		ug/L			10/15/14 17:59	1
trans-1 2-Dichloroethene	ND		0.50		ua/L			10/15/14 17:59	1

TestAmerica Job ID: 720-60396-1

6

#### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-1 Date Collected: 10/06/14 12:40							Lab S	ample ID: 720-6 Matrix	0396-12 :: Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		0.50		ug/L			10/15/14 17:59	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/15/14 17:59	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/15/14 17:59	1
Ethylbenzene	ND		0.50		ug/L			10/15/14 17:59	1
Hexachlorobutadiene	ND		1.0		ug/L			10/15/14 17:59	1
2-Hexanone	ND		50		ug/L			10/15/14 17:59	1
Isopropylbenzene	ND		0.50		ug/L			10/15/14 17:59	1
4-Isopropyltoluene	ND		1.0		ug/L			10/15/14 17:59	1
Methylene Chloride	ND		5.0		ug/L			10/15/14 17:59	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			10/15/14 17:59	1
Naphthalene	ND		1.0		ug/L			10/15/14 17:59	1
N-Propylbenzene	ND		1.0		ug/L			10/15/14 17:59	1
Styrene	ND		0.50		ug/L			10/15/14 17:59	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 17:59	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 17:59	1
Tetrachloroethene	0.76		0.50		ug/L			10/15/14 17:59	1
Toluene	ND		0.50		ug/L			10/15/14 17:59	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			10/15/14 17:59	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/15/14 17:59	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/15/14 17:59	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/15/14 17:59	1
Trichloroethene	12		0.50		ug/L			10/15/14 17:59	1
Trichlorofluoromethane	ND		1.0		ug/L			10/15/14 17:59	1
1,2,3-Trichloropropane	ND		0.50		ug/L			10/15/14 17:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/15/14 17:59	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			10/15/14 17:59	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			10/15/14 17:59	1
Vinyl acetate	ND		10		ug/L			10/15/14 17:59	1
Vinyl chloride	ND		0.50		ug/L			10/15/14 17:59	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 17:59	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 17:59	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			10/15/14 17:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	109		67 - 130			-		10/15/14 17:59	1
1,2-Dichloroethane-d4 (Surr)	105		72 - 130					10/15/14 17:59	1
Toluene-d8 (Surr)	93		70 - 130					10/15/14 17:59	1

#### Client Sample ID: MP-04-2 Date Collected: 10/06/14 12:50

#### Date Received: 10/06/14 17:40 Dil Fac Result Qualifier Analyte RL MDL Unit D Prepared Analyzed 10/15/14 16:50 Methyl tert-butyl ether ND 0.50 ug/L 1 ND 50 ug/L 10/15/14 16:50 1 Acetone ND 0.50 ug/L 10/15/14 16:50 1 Benzene ND ug/L 10/15/14 16:50 1 Dichlorobromomethane 0.50 Bromobenzene ND 1.0 ug/L 10/15/14 16:50 1 ND 10/15/14 16:50 1.0 ug/L 1 Chlorobromomethane 10/15/14 16:50 ND Bromoform 1.0 ug/L 1

TestAmerica Pleasanton

Lab Sample ID: 720-60396-13

Matrix: Water

TestAmerica Job ID: 720-60396-1

6

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-2 Date Collected: 10/06/14 12:50							Lab Sample ID: 720-60396-13 Matrix: Water			
Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Bromomethane	ND	- D.	1.0		ug/L			10/15/14 16:50	1	
2-Butanone (MEK)	ND		50		ug/L			10/15/14 16:50	1	
n-Butylbenzene	ND		1.0		ug/L			10/15/14 16:50	1	
sec-Butylbenzene	ND		1.0		ug/L			10/15/14 16:50	1	
tert-Butylbenzene	ND		1.0		ug/L			10/15/14 16:50	1	
Carbon disulfide	ND		5.0		ug/L			10/15/14 16:50	1	
Carbon tetrachloride	ND		0.50		ug/L			10/15/14 16:50	1	
Chlorobenzene	ND		0.50		ug/L			10/15/14 16:50	1	
Chloroethane	ND		1.0		ug/L			10/15/14 16:50	1	
Chloroform	ND		1.0		ug/L			10/15/14 16:50	1	
Chloromethane	ND		1.0		ug/L			10/15/14 16:50	1	
2-Chlorotoluene	ND		0.50		ug/L			10/15/14 16:50	1	
4-Chlorotoluene	ND		0.50		ug/L			10/15/14 16:50	1	
Chlorodibromomethane	ND		0.50		ug/L			10/15/14 16:50	1	
1,2-Dichlorobenzene	ND		0.50		ug/L			10/15/14,16:50	1	
1,3-Dichlorobenzene	ND		0.50		ug/L			10/15/14 16:50	1	
1,4-Dichlorobenzene	ND		0.50		ug/L			10/15/14 16:50	1	
1.3-Dichloropropane	ND		1.0		ug/L			10/15/14 16:50	1	
1.1-Dichloropropene	ND		0.50		ug/L			10/15/14 16:50	1	
1.2-Dibromo-3-Chloropropane	ND		1.0		ug/L			10/15/14 16:50	1	
Ethylene Dibromide	ND		0.50		ug/L			10/15/14 16:50	1	
Dibromomethane	ND		0.50		ua/L			10/15/14 16:50	1	
Dichlorodifluoromethane	ND		0.50		ua/L			10/15/14 16:50	1	
1 1-Dichloroethane	ND		0.50		ua/L		14	10/15/14 16:50	1	
1 2-Dichloroethane	ND		0.50		ua/L			10/15/14 16:50	1	
1 1-Dichloroethene	ND		0.50		ua/L			10/15/14 16:50	1	
cis-1 2-Dichloroethene	23		0.50		ua/L			10/15/14 16:50	1	
trans-1 2-Dichloroethene	ND.		0.50		ua/L			10/15/14 16:50	1	
1 2-Dichloropropane	ND		0.50		ua/l			10/15/14 16:50	1	
cis-1 3-Dichloropropene	ND		0.50		ua/l			10/15/14 16:50	1	
trans_1.3-Dichloropropene	ND		0.50		ua/l			10/15/14 16:50	1	
Ethylhenzene	ND		0.50		ua/l			10/15/14 16:50	1	
Hexachlorobutadiene	ND		1.0		ug/L			10/15/14 16:50	1	
2-Hevenone	ND		50		ug/L			10/15/14 16:50	1	
Isopropylbenzene	ND		0.50		ug/L			10/15/14 16:50	1	
	ND		1.0		ug/L			10/15/14 16:50	1	
4-isopropylioliterie	ND		5.0		ug/L			10/15/14 16:50	1	
A Methyl 2 postenene (MIPK)	ND		50		ug/L			10/15/14 16:50	1	
4-methyl-2-pentanone (MIBK)	ND		10		ug/L			10/15/14 16:50	1	
	ND		1.0		ug/L			10/15/14 16:50	1	
N-Propyidenzene	ND		1.0		ug/L			10/15/14 16:50	1	
Styrene	ND		0.50		ug/L			10/15/14 16:50		
1,1,1,2-1 etrachioroethane	ND		0.50		ug/L			10/15/14 16:50		
1,1,2,2-1 etrachloroethane	ND		0.50		ug/L			10/15/14 16:50		
	ND		0.50		ug/L		-	10/15/14 16:50	1	
louene	ND		0.50		ug/L			10/15/14 16:50	1	
1,2,3- Frichlorobenzene	ND		1.0		ug/L			10/15/14 16:50	1	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/15/14 16:50	1	
1,1,1-Trichloroethane	ND		0.50		ug/L			10/15/14 16:50	1	
1,1,2-Trichloroethane	ND		0.50		ug/L			10/15/14 16:50	1	

#### TestAmerica Job ID: 720-60396-1

Lab Sample ID: 720-60396-14

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

6

#### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-2 Date Collected: 10/06/14 12:50							Lab S	ample ID: 720-6 Matrix	0396-13 :: Water
Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.50		ug/L			10/15/14 16:50	1
Trichlorofluoromethane	ND		1.0		ug/L			10/15/14 16:50	1
1,2,3-Trichloropropane	ND		0.50		ug/L			10/15/14 16:50	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/15/14 16:50	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			10/15/14 16:50	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			10/15/14 16:50	1
Vinyl acetate	ND		10		ug/L			10/15/14 16:50	1
Vinyl chloride	ND		0.50		ug/L			10/15/14 16:50	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 16:50	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 16:50	1
Gasoline Range Organics (GRO)	ND		50		ug/L			10/15/14 16:50	1
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	0.4		07 400					10/15/14 16.50	1

-			
91	67 - 130	10/15/14 16:50	
87	72 - 130	10/15/14 16:50	
93	70 - 130	10/15/14 16:50	
	91 87 93	91 67 - 130 87 72 - 130 93 70 - 130	91         67 - 130         10/15/14 16:50           87         72 - 130         10/15/14 16:50           93         70 - 130         10/15/14 16:50

# **Client Sample ID: MP-04-3**

#### Matrix: Water Date Collected: 10/06/14 09:35 Date Received: 10/06/14 17:40 Dil Fac D Prepared Analyzed **Result Qualifier** RL MDL Unit Analyte ND 0.50 ug/L 10/15/14 17:20 Methyl tert-butyl ether 10/15/14 17:20 ND 50 ug/L Acetone 10/15/14 17:20 Benzene ND 0.50 ug/L 10/15/14 17:20 Dichlorobromomethane ND 0.50 ug/L ND 1.0 ug/L 10/15/14 17:20 Bromobenzene 10/15/14 17:20 ND 10 ug/L Chlorobromomethane 10/15/14 17:20 Bromoform ND 1.0 ug/L ND 1.0 ug/L 10/15/14 17:20 Bromomethane ug/L 10/15/14 17:20 ND 50 2-Butanone (MEK) 10/15/14 17:20 1.0 ND ug/L n-Butylbenzene 10/15/14 17:20 ND 1.0 ug/L sec-Butylbenzene 1.0 ug/L 10/15/14 17:20 ND tert-Butylbenzene 5.0 10/15/14 17:20 ND ug/L Carbon disulfide 10/15/14 17:20 Carbon tetrachloride ND 0.50 ug/L ND 0.50 ug/L 10/15/14 17:20 Chlorobenzene 10/15/14 17:20 ND 1.0 ug/L Chloroethane 10/15/14 17:20 ug/L Chloroform ND 1.0 10/15/14 17:20 Chloromethane ND 1.0 ug/L ND 0.50 ug/L 10/15/14 17:20 2-Chlorotoluene 10/15/14 17:20 ND 0.50 ug/L 4-Chlorotoluene 10/15/14 17:20 Chlorodibromomethane ND 0.50 ug/L 1,2-Dichlorobenzene ND 0.50 ug/L 10/15/14 17:20 10/15/14 17:20 1.3-Dichlorobenzene ND 0.50 ug/L ug/L 10/15/14 17:20 1,4-Dichlorobenzene ND 0 50 10/15/14 17:20 1,3-Dichloropropane ND 1.0 ug/L ND 0.50 ug/L 10/15/14 17:20 1,1-Dichloropropene ND ug/L 10/15/14 17:20 1.0 1,2-Dibromo-3-Chloropropane 10/15/14 17:20 Ethylene Dibromide ND 0.50 ug/L

TestAmerica Job ID: 720-60396-1

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-3						Lab Sample ID: 720-60396-14			
Date Collected: 10/06/14 09:35							Matrix	x: Water	
Date Received: 10/06/14 17:40									
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Dibromomethane	ND		0.50	ug/L			10/15/14 17:20	1	
Dichlorodifluoromethane	ND		0.50	ug/L			10/15/14 17:20	1	
1,1-Dichloroethane	ND		0.50	ug/L			10/15/14 17:20	1	
1,2-Dichloroethane	ND		0.50	ug/L			10/15/14 17:20	1	
1,1-Dichloroethene	ND		0.50	ug/L			10/15/14 17:20	1	
cis-1,2-Dichloroethene	1.0		0.50	ug/L			10/15/14 17:20	1	
trans-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 17:20	1	
1,2-Dichloropropane	ND		0.50	ug/L			10/15/14 17:20	1	
cis-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 17:20	1	
trans-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 17:20	1	
Ethylbenzene	ND		0.50	ug/L			10/15/14 17:20	1	
Hexachlorobutadiene	ND		1.0	ug/L			10/15/14 17:20	1	
2-Hexanone	ND		50	ua/L			10/15/14 17:20	1	
Isopropylbenzene	ND		0.50	ug/L			10/15/14 17:20	1	
4-Isopropylouene	ND		1.0	ua/L			10/15/14 17:20	1	
Methylene Chloride	ND		5.0	ua/L			10/15/14 17:20	1	
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			10/15/14 17:20	1	
Naphthalene	ND		1.0	ug/L			10/15/14 17:20	1	
N Bronylbonzene	ND		1.0	ug/L			10/15/14 17:20	1	
Strong	ND		0.50	ug/L			10/15/14 17:20	1	
1.1.1.2 Totrachloroothano	ND		0.50	ug/L			10/15/14 17:20	1	
	ND		0.50	ug/L			10/15/14 17:20	1	
	ND		0.50	ug/L			10/15/14 17:20	1	
l etrachioroethene	ND		0.50	ug/L			10/15/14 17:20	1	
loluene	ND		0.50	ug/L			10/15/14 17:20		
1,2,3-Trichlorobenzene	ND		1.0	ug/L			10/15/14 17:20	1	
1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/15/14 17:20	1	
1,1,1-Trichloroethane	ND		0.50	ug/L			10/15/14 17:20	1	
1,1,2-Trichloroethane	ND		0.50	ug/L			10/15/14 17:20	1	
Trichloroethene	ND		0.50	ug/L			10/15/14 17:20	1	
Trichlorofluoromethane	ND		1.0	ug/L			10/15/14 17:20	1	
1,2,3-Trichloropropane	ND		0.50	ug/L			10/15/14 17:20	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			10/15/14 17:20	1	
1,2,4-Trimethylbenzene	ND		0.50	ug/L			10/15/14 17:20	1	
1,3,5-Trimethylbenzene	ND		0.50	ug/L			10/15/14 17:20	1	
Vinyl acetate	ND		10	ug/L			10/15/14 17:20	1	
Vinyl chloride	ND		0.50	ug/L			10/15/14 17:20	1	
Xylenes, Total	ND		1.0	ug/L			10/15/14 17:20	1	
2,2-Dichloropropane	ND		0.50	ug/L			10/15/14 17:20	1	
Gasoline Range Organics (GRO)	ND		50	ug/L			10/15/14 17:20	1	
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	94		67 - 130				10/15/14 17:20	1	
1,2-Dichloroethane-d4 (Surr)	90		72 - 130				10/15/14 17:20	1	

10/15/14 17:20

70 - 130

91

Toluene-d8 (Surr)

1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: TB100614-1							Lab Sample ID: 720-60396-1 Matrix: Wate			
Date Conected. 10/06/14 17:40								11104 61 17		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Methyl tert-butyl ether	ND		0.50		ug/L	-		10/15/14 12:46	1	
Acetone	ND		50		ug/L			10/15/14 12:46	1	
Benzene	ND		0.50		ug/L			10/15/14 12:46	1	
Dichlorobromomethane	ND		0.50		ug/L			10/15/14 12:46	1	
Bromobenzene	ND		1.0		ug/L			10/15/14 12:46	1	
Chlorobromomethane	ND		1.0		ug/L			10/15/14 12:46	1	
Bromoform	ND		1.0		ug/L			10/15/14 12:46	1	
Bromomethane	ND		1.0		ug/L			10/15/14 12:46	1	
2-Butanone (MEK)	ND		50		ug/L			10/15/14 12:46	1	
n-Butylbenzene	ND		1.0		ug/L			10/15/14 12:46	1	
sec-Butylbenzene	ND		1.0		ug/L			10/15/14 12:46	1	
tert-Butvlbenzene	ND		1.0		ug/L			10/15/14 12:46	1	
Carbon disulfide	ND		5.0		ug/L			10/15/14 12:46	1	
Carbon tetrachloride	ND		0.50		ug/L			10/15/14 12:46	1	
Chlorobenzene	ND		0.50		ua/L			10/15/14 12:46	1	
Chloroethane	ND		1.0		ua/L			10/15/14 12:46	1	
Chloroform	ND		1.0		ua/L			10/15/14 12:46	1	
Chloromethane	ND		1.0		ua/L			10/15/14 12:46	1	
2-Chlorotoluene	ND		0.50		ua/l			10/15/14 12:46	1	
	ND		0.50		ug/L			10/15/14 12:46	1	
Chlorodibromomethane	ND		0.50		ug/L			10/15/14 12:46	1	
	ND		0.50		ug/L			10/15/14 12:46	1	
	ND		0.50					10/15/14 12:46	1	
	ND		0.50		ug/L			10/15/14 12:46	1	
1,4-Dichloropropage	ND		1.0	-	ug/L			10/15/14 12:46	1	
1.1 Dichlerenzenene	ND		0.50		ug/L			10/15/14 12:46	1	
	ND		1.0		ug/L			10/15/14 12:46	1	
1,2-Dibromo-3-Chloropropane	ND		0.50		ug/L			10/15/14 12:46	1	
	ND		0.50		ug/L			10/15/14 12:40	1	
	ND		0.50		ug/L			10/15/14 12:46	1	
	ND		0.50		ug/L			10/15/14 12:40	1	
	ND		0.50		ug/L			10/15/14 12:46	1	
	ND		0.50		uy/L			10/15/14 12:40	1	
	ND		0.50		ug/L			10/15/14 12:46	1	
cis-1,2-Dichloroethene	ND		0.50		ug/L			10/15/14 12:46	1	
trans-1,2-Dichloroethene	ND		0.50		ug/L			10/15/14 12:46	1	
1,2-Dichloropropane	ND		0.50		ug/L			10/15/14 12:46	1	
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/15/14 12:46	1	
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/15/14 12:46	1	
Ethylbenzene	ND		0.50		ug/L			10/15/14 12:46	1	
Hexachlorobutadiene	ND		1.0		ug/L			10/15/14 12:46	1	
2-Hexanone	ND		50		ug/L			10/15/14 12:46	1	
Isopropylbenzene	ND		0.50		ug/L			10/15/14 12:46	1	
4-Isopropyltoluene	ND		1.0		ug/L			10/15/14 12:46	1	
Methylene Chloride	ND		5.0		ug/L			10/15/14 12:46	1	
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			10/15/14 12:46	1	
Naphthalene	ND		1.0		ug/L			10/15/14 12:46	1	
N-Propylbenzene	ND		1.0		ug/L			10/15/14 12:46	1	
Styrene	ND		0.50		ug/L			10/15/14 12:46	1	
1,1,1,2-Tetrachloroethane	ND		0.50	I	ug/L			10/15/14 12:46	1	

**TestAmerica** Pleasanton

5 6

TestAmerica Job ID: 720-60396-1

5

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB100614-1							Lab S	Sample ID: 720-6	0396-15
Date Collected: 10/06/14 08:00								Matri	x: Water
Date Received: 10/06/14 17:40						10			
Analyte	Result	Qualifier	RL	MDL Unit		D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	-	0.50	ug/L				10/15/14 12:46	1
Tetrachloroethene	ND		0.50	ug/L				10/15/14 12:46	1
Toluene	ND		0.50	ug/L				10/15/14 12:46	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L				10/15/14 12:46	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L	0.00			10/15/14 12:46	1
1,1,1-Trichloroethane	ND		0.50	ug/L				10/15/14 12:46	1
1,1,2-Trichloroethane	ND		0.50	ug/L				10/15/14 12:46	1
Trichloroethene	ND		0.50	ug/L				10/15/14 12:46	1
Trichlorofluoromethane	ND		1.0	ug/L				10/15/14 12:46	1
1,2,3-Trichloropropane	ND		0.50	ug/L				10/15/14 12:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L	1.0			10/15/14 12:46	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L				10/15/14 12:46	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L				10/15/14 12:46	1
Vinyl acetate	ND		10	ug/L				10/15/14 12:46	1
Vinyl chloride	ND		0.50	ug/L				10/15/14 12:46	1
Xylenes, Total	ND		1.0	ug/L				10/15/14 12:46	1
2,2-Dichloropropane	ND		0.50	ug/L				10/15/14 12:46	1
Gasoline Range Organics (GRO)	ND		50	ug/L	100			10/15/14 12:46	1
-C5-C12									

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	108		67 - 130		10/15/14 12:46	1
1,2-Dichloroethane-d4 (Surr)	96		72 - 130		10/15/14 12:46	1
Toluene-d8 (Surr)	94		70 - 130		10/15/14 12:46	1

#### Client Sample ID: TB100614-2 Date Collected: 10/06/14 08:02 Date Received: 10/06/14 17:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L		-	10/15/14 12:42	1
Acetone	ND		50		ug/L			10/15/14 12:42	1
Benzene	ND		0.50		ug/L			10/15/14 12:42	1
Dichlorobromomethane	ND		0.50		ug/L			10/15/14 12:42	1
Bromobenzene	ND		1.0		ug/L			10/15/14 12:42	1
Chlorobromomethane	ND		1.0		ug/L			10/15/14 12:42	1
Bromoform	ND		1.0		ug/L			10/15/14 12:42	1
Bromomethane	ND		1.0		ug/L			10/15/14 12:42	1
2-Butanone (MEK)	ND		50		ug/L			10/15/14 12:42	1
n-Butylbenzene	ND		1.0		ug/L			10/15/14 12:42	1
sec-Butylbenzene	ND		1.0		ug/L			10/15/14 12:42	1
tert-Butylbenzene	ND		1.0		ug/L			10/15/14 12:42	1
Carbon disulfide	ND		5.0		ug/L			10/15/14 12:42	1
Carbon tetrachloride	ND		0.50		ug/L			10/15/14 12:42	1
Chlorobenzene	ND		0.50		ug/L			10/15/14 12:42	1
Chloroethane	ND		1.0		ug/L			10/15/14 12:42	1
Chloroform	ND		1.0		ug/L			10/15/14 12:42	1
Chloromethane	ND		1.0		ug/L			10/15/14 12:42	1
2-Chlorotoluene	ND		0.50		ug/L			10/15/14 12:42	1
4-Chlorotoluene	ND		0.50		ug/L			10/15/14 12:42	1
Chlorodibromomethane	ND		0.50		ug/L			10/15/14 12:42	1

**TestAmerica** Pleasanton

Lab Sample ID: 720-60396-16

Matrix: Water

TestAmerica Job ID: 720-60396-1

5 6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB100614-2 Date Collected: 10/06/14 08:02						Lab Sample ID: 720-60396-16 Matrix: Water			
Date Received: 10/06/14 17:40	Pocult	Qualifier	PI	MDI U	ait	D	Prepared	Analyzed	Dil Fac
	ND	Quanner	0.50		1/1	 U	Frepareu	10/15/14 12:42	1
1 3-Dichlorobenzene	ND		0.50		n/l			10/15/14 12:42	1
	ND		0.50		n/i			10/15/14 12:42	1
1.2 Dichloropropopo	ND		1.0	10	n/l			10/15/14 12:42	1
1.1 Dichloropropene	ND	1.1	0.50	10	,,∟ 1/i			10/15/14 12:42	1
1, 1-Dichioropropene	ND		1.0	10	n/l			10/15/14 12:42	1
Ethylene Dibromide	ND		0.50		n/l			10/15/14 12:42	1
	ND		0.50	uc	s/t			10/15/14 12:42	1
Dichlorodifluoromethane	ND		0.50		s/I			10/15/14 12:42	1
1 1 Dichloroethane	ND		0.50		5/I			10/15/14 12:42	1
1.2. Dichloroethane	ND		0.50	10	s/1			10/15/14 12:42	1
1 1-Dichloroethene	ND		0.50	10	y/⊫ y/l			10/15/14 12:42	1
cis 1.2 Dichloroethene	ND		0.50	10	y/∟ s/l			10/15/14 12:42	1
trans 1.2 Dichloroothone	ND		0.50	ug	9/L 3/I			10/15/14 12:42	1
	ND		0.50	10	9/L 3/I			10/15/14 12:42	1
	ND		0.50	ug	a/L			10/15/14 12:42	1
trans 1.3 Dichloropropono	ND		0.50	ug	y/∟ x/l			10/15/14 12:42	1
trans-1,3-Dichloropropene	ND		0.50	ug	y/∟ ×/I			10/15/14 12:42	1
Ethylbenzene			1.0	ug	y/∟ >/I			10/15/14 12:42	1
	ND.		50	ug	y/L			10/15/14 12:42	1
2-nexanone	ND		0.50	ug	y/L			10/15/14 12:42	1
	ND		0.50	, ug	9/L			10/15/14 12:42	1
4-Isopropytoluene	ND		5.0	us	y/L			10/15/14 12:42	1
	ND		5.0	uy	9/L			10/15/14 12:42	-
4-Methyl-2-pentanone (MIBK)	ND		50	uy	9/L			10/15/14 12:42	1
Naphthalene	ND		1.0	uu	g/∟ >/I			10/15/14 12:42	1
N-Propyidenzene	ND		1.0	uu	J/∟ ×/I			10/15/14 12:42	1
Styrene	ND		0.50	ug	g/∟ _/I			10/15/14 12:42	1
	ND		0.50	ug	g/∟ _/I			10/15/14 12:42	1
1,1,2,2-Jetrachioroethane	ND		0.50	uç	]/∟ _/I			10/15/14 12:42	1
l etrachloroethene	ND		0.50	ug	9/L			10/15/14 12:42	
	ND		0.50	ug	]/∟ _/I			10/15/14 12:42	1
1,2,3-Inchlorobenzene	ND		1.0	ug	]/∟ 			10/15/14 12:42	
1,2,4-Irichlorobenzene	ND		1.0	uç	J/∟			10/15/14 12.42	4
1,1,1-I richloroethane	ND		0.50	ug	J/∟			10/15/14 12.42	1
1,1,2- I richloroethane	ND		0.50	ug	3/L			10/15/14 12:42	4
Trichloroethene	ND		0.50	uç	]/L			10/15/14 12:42	1
Trichlorofluoromethane	ND		1.0	ug	g/L			10/15/14 12:42	
1,2,3-Trichloropropane	ND		0.50	ug	3/L			10/15/14 12:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug	g/∟			10/15/14 12:42	1
1,2,4-Trimethylbenzene	ND		0.50	ug	g/L			10/15/14 12:42	1
1,3,5-Trimethylbenzene	ND		0.50	uç	g/L			10/15/14 12:42	1
Vinyl acetate	ND		10	ug	g/L			10/15/14 12:42	1
Vinyl chloride	ND		0.50	ug	g/L			10/15/14 12:42	1
Xylenes, Total	ND		1.0	ug	g/L			10/15/14 12:42	1
2,2-Dichloropropane	ND		0.50	uç	g/L			10/15/14 12:42	1
Gasoline Range Organics (GRO)	ND		50	ug	g/L			10/15/14 12:42	1
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		67 - 130					10/15/14 12:42	1

10/15/14 12:42 1

TestAmerica Job ID: 720-60396-1

Lab Sample ID: 720-60396-16

Matrix: Water

6

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

### Client Sample ID: TB100614-2 Date Collected: 10/06/14 08:02 Date Received: 10/06/14 17:40

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		72 - 130		10/15/14 12:42	1
Toluene-d8 (Surr)	93		70 - 130		10/15/14 12:42	1
ALCOLUMN STREET						

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Nature         Trep Type         Trep Type         Trep Type         Type         Native         Analyses         Diffee           Analyses         Readin         Readin         Readin         No         0.550         upL         101514.0659         11           Analyses         No         0.500         upL         101514.0659         11           Bencene         NO         0.00         upL         101514.0659         11           Decisions/ormsthane         NO         0.00         upL         101514.0659         15           Bencenembane         NO         10         upL         101514.0659         15           Bencenembane         NO         10         upL         101514.0659         15           Bencenembane         NO         10         upL         101514.0659         15           Seldupharzene         NO         10         upL         101514.0659         15           Seldupharzene         NO         10         upL         101514.0659         15           Carbon stackink         NO         5.0         upL         101514.0659         15           Carbon stackink         NO         5.0         upL         1015144.0659         15 <th>Lab Sample ID: MB 720-168839/4</th> <th></th> <th colspan="6"></th> <th colspan="5">Client Sample ID: Method Blank Pren Type: Total/NA</th>	Lab Sample ID: MB 720-168839/4								Client Sample ID: Method Blank Pren Type: Total/NA				
Harting         HB         Main         Name         Distantion         NL         MD         Unit         D         Prepared         Analyzed         Distantion           Analyce         ND         0.50         ugL         1015141 0859         1           Acetone         ND         0.60         ugL         1015141 0859         1           Bername         ND         0.60         ugL         1015141 0859         1           Bernamestrame         ND         0.60         ugL         1015141 0859         1           Bernamestrame         ND         1.0         ugL         1015141 0859         1           Bernamestrame         ND         1.0         ugL         1015141 0859         1           Bernamestrame         ND         1.0         ugL         1015141 0859         1           Subanose (NEK)         ND         1.0         ugL         1015141 0859         1           Subanose (NEK)         ND         1.0         ugL         1015141 0859         1           Carbon drasit/drasit/         ND         0.00         ugL         1015141 0859         1           Carbon drasit/drasit/drasit/drasit/drasit/drasit/drasit/drasit/drasit/drasit/drasit/drasit/drasit/drasit/drasit/drasit/	Matrix: Water									Flep Type. I	Utainin		
Analyce         Result         Confine         RL         MDL         Unit         D         Prepared         Analyced         Dil Fac           Methy tabuly teher         ND         0.50         upL         1011514 08.59         11           Berzene         ND         0.00         upL         1011514 08.59         11           Dichordorromethane         ND         0.00         upL         1011514 08.59         11           Bromstenzene         ND         100         upL         1011514 08.59         11           Bromstenzene         ND         0.00         upL         1011514 08.59         11           Bromstenzene         ND         0.00         upL         1011514 08.59         11           Cabon dustifie         ND         0.00         upL         1011514 08.59         11     <	Analysis Batch: 166659	MB	MB										
Mathy terk buky ether         ND         5.0         upL         10115/14 0055         1           Actore         ND         5.0         upL         10115/14 0055         1           Dehteroinmenthane         ND         0.00         upL         10115/14 0055         1           Dehteroinmenthane         ND         1.0         upL         10115/14 0055         1           Encodenzene         ND         1.0         upL         1015/14 0055         1           Encodenzene         ND         1.0         upL         1015/14 0055         1           Bromordman         ND         1.0         upL         1015/14 0055         1           Statance (MEK)         ND         6.0         upL         1015/14 0055         1           n=Butybarzene         ND         1.0         upL         1015/14 0055         1           caton diracted         ND         0.0         upL         1015/14 0055         1           Caton diracted         ND         0.0         upL         1015/14 0055         1           Caton diracted         ND         0.0         upL         1015/14 0055         1           Caton diractedeeee         ND         0.0         upL	Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac		
Action         ND         60         ugL         101114 0.659         1           Benzene         ND         0.50         ugL         101114 0.659         1           Benzene         ND         1.0         ugL         101114 0.659         1           Benzenes         ND         1.0         ugL         101114 0.659         1           Seluptorzene         ND         1.0         ugL         101114 0.659         1           Seluptorzene         ND         1.0         ugL         101114 0.659         1           Carbon disulfac         ND         0.0         ugL         101114 0.659         1	Methyl tert-butyl ether	ND		0.50		ug/L	_		· · · · · · · · · · · · · · · · · · ·	10/15/14 08:59	1		
BncameND0.000.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.	Acetone	ND		50		ug/L				10/15/14 08:59	1		
Detecte/oronomethane         ND         0.50         ug/L         1015/14 0.559         1           Bronnethane         ND         1.0         ug/L         1015/14 0.659         1           Bronnethane         ND         1.0         ug/L         1015/14 0.659         1           Bronnethane         ND         1.0         ug/L         1015/14 0.659         1           Senderbane         ND         1.0         ug/L         1015/14 0.659         1           24uanos (MK)         ND         1.0         ug/L         1015/14 0.659         1           24uberzene         ND         1.0         ug/L         1015/14 0.659         1           acthor isulfiberzene         ND         0.0         ug/L         1015/14 0.659         1           Chron tetrachorisine         ND         0.0         ug/L         1015/14 0.659         1           Chron tetrachorisine         ND         0.0         ug/L         1015/14 0.659         1           Chron tetrachorisine         ND         0.0         ug/L         1015/14 0.659         1           Chron tetrachorise         ND         0.0         ug/L         1015/14 0.659         1           Chron tetrachorise         ND<	Benzene	ND		0.50		ug/L				10/15/14 08:59	1		
Broncebarzen         ND         10         ugL         1015/14 04.59         1           Chiozhornenthane         ND         1.0         ugL         1015/14 04.59         1           Broncefrain         ND         1.0         ugL         1015/14 04.59         1           Broncefrain         ND         1.0         ugL         1015/14 04.59         1           Allanner (KK)         ND         1.0         ugL         1015/14 04.59         1           n-Bulyberzene         ND         1.0         ugL         1015/14 04.59         1           Carbon disulfide         ND         0.0         ugL         1015/14 04.59         1           Carbon disulfide         ND         0.0         ugL         1015/14 04.59         1           Carbon disulfide         ND         0.0         ugL         1015/14 04.59         1           Chiocothane         ND         1.0         ugL         1015/14 04.59         1           Chiocothane         ND         0.0         ugL         1015/14 04.59         1           Chiocothane         ND         0.0         ugL         1015/14 04.59         1           Chiocothane         ND         0.0         ugL	Dichlorobromomethane	ND		0,50		ug/L				10/15/14 08:59	1		
Chicoberonomshame         ND         1.0         uglt         10/15/14 08:59         1           Bromorthame         ND         1.0         uglt         10/15/14 08:59         1           Stromorshame         ND         1.0         uglt         10/15/14 08:59         1           2-Statinone (MEC)         ND         1.0         uglt         10/15/14 08:59         1           accButylbenzene         ND         1.0         uglt         10/15/14 08:59         1           accButylbenzene         ND         1.0         uglt         10/15/14 08:59         1           accButylbenzene         ND         0.0         uglt         10/15/14 08:59         1           Carlon disulfde         ND         0.0         uglt         10/15/14 08:59         1           Chicobenzene         ND         1.0         uglt         10/15/14 08:59         1           Chicobenzene         ND         0.0         uglt         10/15/14 08:59         1           Chicobenzene         ND         0.50         uglt         10/15/14 08:59         1           Chicobenzene         ND         0.50         uglt         10/15/14 08:59         1           1.2-Dichicobenzene         ND	Bromobenzene	ND		1.0		ug/L				10/15/14 08:59	1		
Bronnotorm         ND         1.0         ug/L         10/15/14 08.59         1           Bronnotemane         ND         1.0         ug/L         10/15/14 08.59         1           acbutance (MEY)         ND         1.0         ug/L         10/15/14 08.59         1           acbutybenzane         ND         1.0         ug/L         10/15/14 08.59         1           acbutybenzane         ND         0.0         ug/L         10/15/14 08.59         1           Carbon strainforde         ND         0.50         ug/L         10/15/14 08.59         1           Chiorobarzene         ND         0.50         ug/L         10/15/14 08.59         1           Chiorobarzene         ND         1.0         ug/L         10/15/14 08.59         1           Chiorobarzene         ND         0.0         ug/L         10/15/14 08.59         1           Chiorobarzene         ND         0.50         ug/L         10/15/14 08.59         1           Chiorobarzene         ND         0.50         ug/L         10/15/14 08.59         1           Chiorobarzene         ND         0.50         ug/L         10/15/14 08.59         1           1.2-Othorobarzene         ND	Chlorobromomethane	ND		1.0		ug/L				10/15/14 08:59	1		
Bromomethane         ND         1 0         upl.         10/15/14 08:59         1           2-Buildnence         ND         1 0         upl.         10/15/14 08:59         1           ase-Buildnence         ND         1 0         upl.         10/15/14 08:59         1           ase-Buildnence         ND         0.0         upl.         10/15/14 08:59         1           Carbon disulfide         ND         0.50         upl.         10/15/14 08:59         1           Carbon titachforde         ND         0.50         upl.         10/15/14 08:59         1           Chinochtrae         ND         0.50         upl.         10/15/14 08:59         1           Chinochtrae         ND         1.0         upl.         10/15/14 08:59         1           Chinochtrae         ND         0.50         upl.         10/15/14 08:59         1           2-Chinothuene         ND         0.50         upl.         10/15/14 08:59         1           1.2-Dichtonbenzene         ND         0.50         upl.         10/15/14 08:59         1           1.2-Dichtonbenzene         ND         0.50         upl.         10/15/14 08:59         1           1.2-Dichtonbenzene	Bromoform	ND		1.0		ug/L				10/15/14 08:59	1		
2-Batanow (MEX)         ND         50         ug/L         101/5/14.06.59         1           n-Buty/benzene         ND         1.0         ug/L         101/5/14.06.59         1           tert-Buty/benzene         ND         1.0         ug/L         101/5/14.06.59         1           tert-Buty/benzene         ND         5.0         ug/L         101/5/14.06.59         1           Carbon istricke         ND         0.50         ug/L         101/5/14.06.59         1           Carbon strachtonide         ND         0.50         ug/L         101/5/14.06.59         1           Chiorothane         ND         1.0         ug/L         101/5/14.06.59         1           Chiorothane         ND         1.0         ug/L         101/5/14.06.59         1           2-Chorotoluene         ND         0.50         ug/L         101/5/14.06.59         1           2-Chorotoluene         ND         0.50         ug/L         101/5/14.06.59         1           1.2-Dichorobanzene         ND         0.50         ug/L         101/5/14.06.59         1           1.2-Dichorobanzene         ND         0.50         ug/L         101/5/14.06.59         1           1.2-Dichorobanzene	Bromomethane	ND		1.0		ug/L				10/15/14 08:59	1		
n-Butylbenzene         ND         10         ug/L         10/14/14.06.59         1           see-Butylbenzene         ND         10         ug/L         10/15/14.06.59         1           Carbon fabilitée         ND         5.0         ug/L         10/15/14.06.59         1           Carbon terachtonde         ND         5.0         ug/L         10/15/14.06.59         1           Carbon terachtonde         ND         0.50         ug/L         10/15/14.06.59         1           Chorobenzene         ND         0.50         ug/L         10/15/14.06.59         1           Chorobenzene         ND         1.0         ug/L         10/15/14.06.59         1           Chorobenzene         ND         0.50         ug/L         10/15/14.06.59         1           2-Choroboluene         ND         0.50         ug/L         10/15/14.06.59         1           2-Choroboluene         ND         0.50         ug/L         10/15/14.06.59         1           1.2-Choroboluene         ND         0.50         ug/L         10/15/14.06.59         1           1.2-Choroboluene         ND         0.50         ug/L         10/15/14.06.59         1           1.2-Choloroponene	2-Butanone (MEK)	ND		50		ug/L				10/15/14 08:59	1		
sac-Butylbenzene         ND         1.0         ug/L         10/15/14.08.59         1           tarn-Butylbenzene         ND         1.0         ug/L         10/15/14.08.59         1           Carbon diskulfenzene         ND         0.50         ug/L         10/15/14.08.59         1           Carbon diskulfenzene         ND         0.50         ug/L         10/15/14.08.59         1           Chiorobanzene         ND         1.0         ug/L         10/15/14.08.59         1           Chiorobanzene         ND         1.0         ug/L         10/15/14.08.59         1           Chiorobanzene         ND         0.50         ug/L         10/15/14.08.59         1           2-Chiorobuene         ND         0.50         ug/L         10/15/14.08.59         1           1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14.08.59         1           1.	n-Butvlbenzene	ND		1.0		ug/L				10/15/14 08:59	1		
tert-Butytbenzene         ND         1.0         ug/L         101514108:59         1           Carbon terschloride         ND         5.0         ug/L         101514108:59         1           Chioroberzene         ND         0.50         ug/L         101514108:59         1           Chioroberzene         ND         0.0         ug/L         101514108:59         1           Chioroberzene         ND         1.0         ug/L         101514108:59         1           Chioroberzene         ND         1.0         ug/L         101514108:59         1           Chioroberzene         ND         0.50         ug/L         101514108:59         1           Chioroberzene         ND         0.50         ug/L         101514108:59         1           1.3-Dichioroberzene         ND         0.50         ug/L         10151408:59         1           1.3-Dichioroberzene         ND <td>sec-Butylbenzene</td> <td>ND</td> <td></td> <td>1.0</td> <td></td> <td>ug/L</td> <td></td> <td></td> <td></td> <td>10/15/14 08:59</td> <td>1</td>	sec-Butylbenzene	ND		1.0		ug/L				10/15/14 08:59	1		
Carbon disulfide         ND         5.0         ug/L         101/51/4 08:59         1           Carbon disulfide         ND         0.60         ug/L         101/51/4 08:59         1           Chirochenzene         ND         1.0         ug/L         101/51/4 08:59         1           Chirochenzene         ND         1.0         ug/L         101/51/4 08:59         1           Chirochethane         ND         1.0         ug/L         101/51/4 08:59         1           Chirochethane         ND         0.50         ug/L         101/51/4 08:59         1           Chirocholuene         ND         0.50         ug/L         101/51/4 08:59         1           Chirocholuene         ND         0.50         ug/L         101/51/4 08:59         1           1.2-Dichorobanzene         ND         0.50         ug/L         101/51/4 08:59         1           1.2-Dichorobanzene <td>tert-Butylbenzene</td> <td>ND</td> <td></td> <td>1.0</td> <td></td> <td>ug/L</td> <td></td> <td></td> <td></td> <td>10/15/14 08:59</td> <td>1</td>	tert-Butylbenzene	ND		1.0		ug/L				10/15/14 08:59	1		
Carbon tetrachloride         ND         0.50         ug/L         10/15/14 08:59         1           Chlorobenzene         ND         0.60         ug/L         10/15/14 08:59         1           Chlorobenzene         ND         1.0         ug/L         10/15/14 08:59         1           Chloroben         ND         1.0         ug/L         10/15/14 08:59         1           Chloroblane         ND         0.60         ug/L         10/15/14 08:59         1           2-Chloroblane         ND         0.60         ug/L         10/15/14 08:59         1           2-Chloroblane         ND         0.60         ug/L         10/15/14 08:59         1           1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichlorobe	Carbon disulfide	ND		5.0		ug/L				10/15/14 08:59	1		
Chlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           Chlorobrahane         ND         1.0         ug/L         10/15/14 08:59         1           Chlorobrahane         ND         1.0         ug/L         10/15/14 08:59         1           Chlorobrahane         ND         0.50         ug/L         10/15/14 08:59         1           2-Chlorobluene         ND         0.50         ug/L         10/15/14 08:59         1           2-Chlorobluene         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.4-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dic	Carbon tetrachloride	ND		0.50		ug/L				10/15/14 08:59	1		
Chloroethane         ND         1.0         ug/L         10/15/14/08:59         1           Chloroothan         ND         1.0         ug/L         10/15/14/08:59         1           Chloroothane         ND         0.50         ug/L         10/15/14/08:59         1           2-Chlorotoluene         ND         0.50         ug/L         10/15/14/08:59         1           4-Chlorotobromethane         ND         0.50         ug/L         10/15/14/08:59         1           1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14/08:59         1           1.3-Dichloroppane         ND         0.50         ug/L         10/15/14/08:59         1           1.4-Dichlorobenzene         ND         0.50         ug/L         10/15/14/08:59         1           1.3-Dichloroppane         ND         0.50         ug/L         10/15/14/08:59         1           1.1-Dichloroppane         ND         0.50         ug/L         10/15/14/08:59         1           1.1-Dichloroppane         ND         0.50         ug/L         10/15/14/08:59         1           1.1-Dichloroppane         ND         0.50         ug/L         10/15/14/08:59         1           1.1-Dich	Chlorobenzene	ND		0.50		ug/L				10/15/14 08:59	1		
Chiordom         ND         1.0         ug/L         10/15/14 08:59         1           Chiordom         ND         1.0         ug/L         10/15/14 08:59         1           2-Chiorobluene         ND         0.50         ug/L         10/15/14 08:59         1           2-Chiorobluene         ND         0.50         ug/L         10/15/14 08:59         1           2-Chiorobluene         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichlo	Chloroethane	ND		1.0		ua/L				10/15/14 08:59	1		
Chiormethane         ND         1.0         ug/L         10/15/14/08:59         1           2-Chiorabluene         ND         0.50         ug/L         10/15/14/08:59         1           4-Chiorabluene         ND         0.50         ug/L         10/15/14/08:59         1           12-Dichlorobenzene         ND         0.50         ug/L         10/15/14/08:59         1           1.3-Dichlorobenzene         ND         0.50         ug/L         10/15/14/08:59         1           1.3-Dichlorobenzene         ND         0.50         ug/L         10/15/14/08:59         1           1.3-Dichlorobenzene         ND         0.50         ug/L         10/15/14/08:59         1           1.3-Dichloropropane         ND         0.50         ug/L         10/15/14/08:59         1           1.3-Dichloropropane         ND         0.50         ug/L         10/15/14/08:59         1           1.1-Dichloropropane         ND         0.50         ug/L         10/15/14/08:59         1           1.1-Dichloropropane         ND         0.50         ug/L         10/15/14/08:59         1           1.1-Dichloropropane         ND         0.50         ug/L         10/15/14/08:59         1	Chloroform	ND		1.0		ua/L				10/15/14 08:59	1		
2-Chlorotoluene         ND         0.50         ug/L         10/15/14 08.59         1           4-Chlorotoluene         ND         0.50         ug/L         10/15/14 08.59         1           Chlorotoluene         ND         0.50         ug/L         10/15/14 08.59         1           1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08.59         1           1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08.59         1           1.3-Dichloroporpane         ND         0.50         ug/L         10/15/14 08.59         1           1.3-Dichloroporpane         ND         1.0         ug/L         10/15/14 08.59         1           1.3-Dichloroporpane         ND         1.0         ug/L         10/15/14 08.59         1           1.3-Dichloroporpane         ND         0.50         ug/L         10/15/14 08.59         1           1.3-Dichloroporpane         ND         0.50         ug/L         10/15/14 08.59         1           1.2-Dichloromide         ND         0.50         ug/L         10/15/14 08.59         1           1.2-Dichloromide         ND         0.50         ug/L         10/15/14 08.59         1	Chloromethane	ND		1.0		ua/L				10/15/14 08:59	1		
A-Chiorotilaren         ND         0.50         ug/L         10/15/14 08.59         1           Chiorotilaronomethane         ND         0.50         ug/L         10/15/14 08.59         1           1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08.59         1           1.3-Dichlorobenzene         ND         1.0         ug/L         10/15/14 08.59         1           1.3-Dichloropropane         ND         0.50         ug/L         10/15/14 08.59         1           1.2-Dicrome-S-Chioropropane         ND         0.50         ug/L         10/15/14 08.59         1           Dichorodificoroethane         ND         0.50         ug/L         10/15/14 08.59         1           1.1-Dichloroethane         ND         0.50         ug/L         10/15/14 08.59         1           1.2-Dichloroethane         ND         0.50         ug/L         10/15/14 08.59         1 <td>2-Chlorotoluene</td> <td>ND</td> <td></td> <td>0.50</td> <td></td> <td>ua/L</td> <td></td> <td></td> <td></td> <td>10/15/14 08:59</td> <td>1</td>	2-Chlorotoluene	ND		0.50		ua/L				10/15/14 08:59	1		
Chlorodibromethane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.4-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dicromode         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dicromode         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichloropthane         ND         0.50         ug/L         10/15/14 08:59         1           1.1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1      1	4-Chlorotoluene	ND		0.50		ug/L				10/15/14 08:59	1		
1.2-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.4-Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.1-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichloropthane         ND         0.50         ug/L         10/15/14 08:59         1           1.1-Dichloropthane         ND         0.50         ug/L         10/15/14 08:59         1           1.1-Dichloropthane         ND         0.50         ug/L         10/15/14 08:59         1           1.1-Dichloropthane         ND         0.50         ug/L         10/15/14 08:59         1 </td <td>Chlorodibromomethane</td> <td>ND</td> <td></td> <td>0.50</td> <td></td> <td>ua/L</td> <td></td> <td></td> <td></td> <td>10/15/14 08:59</td> <td>1</td>	Chlorodibromomethane	ND		0.50		ua/L				10/15/14 08:59	1		
J.3.Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.4.Dichlorobenzene         ND         0.50         ug/L         10/15/14 08:59         1           1.3.Dichloropropane         ND         1.0         ug/L         10/15/14 08:59         1           1.1.Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.2.Dioromo-3-Chloropropane         ND         0.50         ug/L         10/15/14 08:59         1           Ethylene Dibromide         ND         0.50         ug/L         10/15/14 08:59         1           Dibromomethane         ND         0.50         ug/L         10/15/14 08:59         1           1.1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1 </td <td>1 2-Dichlorobenzene</td> <td>ND</td> <td></td> <td>0.50</td> <td></td> <td>ua/L</td> <td></td> <td></td> <td></td> <td>10/15/14 08:59</td> <td>1</td>	1 2-Dichlorobenzene	ND		0.50		ua/L				10/15/14 08:59	1		
I.4-Dickinstruction         ND         0.50         ug/L         10/15/14 08:59         1           1.3-Dickinsprepen         ND         1.0         ug/L         10/15/14 08:59         1           1.3-Dickinsprepen         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dibromo-3-Chloropropane         ND         0.50         ug/L         10/15/14 08:59         1           Ethylene Dibromide         ND         0.50         ug/L         10/15/14 08:59         1           Dichoropropane         ND         0.50         ug/L         10/15/14 08:59         1           Dichorodfluoromethane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1 <td>1 3-Dichlorobenzene</td> <td>ND</td> <td></td> <td>0.50</td> <td></td> <td>ua/L</td> <td></td> <td></td> <td></td> <td>10/15/14 08:59</td> <td>1</td>	1 3-Dichlorobenzene	ND		0.50		ua/L				10/15/14 08:59	1		
J.3.Dichloropropane         ND         1.0         ug/L         10/15/14 08:59         1           1.3.Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1.2.Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           Ethylene Dibromide         ND         0.50         ug/L         10/15/14 08:59         1           Dichlorodflucromethane         ND         0.50         ug/L         10/15/14 08:59         1           1.1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1.1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1.1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1.2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1 <td>1.4-Dichlorobenzene</td> <td>ND</td> <td></td> <td>0.50</td> <td></td> <td>ug/L</td> <td></td> <td></td> <td></td> <td>10/15/14 08:59</td> <td>1</td>	1.4-Dichlorobenzene	ND		0.50		ug/L				10/15/14 08:59	1		
International propene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichoropropene         ND         1.0         ug/L         10/15/14 08:59         1           Ethylene Dibromide         ND         0.50         ug/L         10/15/14 08:59         1           Dibromoethane         ND         0.50         ug/L         10/15/14 08:59         1           Dichorodifluoromethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichoroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichoroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1      <	1 3-Dichloropropane	ND		1.0		ug/L				10/15/14 08:59	1		
L2-Dibromo-3-Chloropropane         ND         1.0         ug/L         10/15/14 08:59         1           Ethylene Dibromide         ND         0.50         ug/L         10/15/14 08:59         1           Dibromomethane         ND         0.50         ug/L         10/15/14 08:59         1           Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1	1 1-Dichloropropene	ND		0.50		ua/L				10/15/14 08:59	1		
Ethylene Dibromide         ND         0.50         ug/L         10/15/14 08:59         1           Dibromomethane         ND         0.50         ug/L         10/15/14 08:59         1           Dichlorodifluoromethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroptopene         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,3-Dichloroptopene         ND         0.50         ug/L         10/15/14 08:59         1	1 2-Dibromo-3-Chloropropane	ND		1.0		ua/L				10/15/14 08:59	1		
Disromomethane         ND         0.50         ug/L         10/15/14 08:59         1           Dichlorodifluoromethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           Ethylbenzene         ND         0.50         ug/L         10/15/14 08:59         1 <t< td=""><td>Ethylene Dibromide</td><td>ND</td><td></td><td>0.50</td><td></td><td>ug/L</td><td></td><td></td><td></td><td>10/15/14 08:59</td><td>1</td></t<>	Ethylene Dibromide	ND		0.50		ug/L				10/15/14 08:59	1		
Dichlorodifiuoromethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           cis-1,3-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,3-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           Ethylbenzene         ND         0.50         ug/L         10/15/14 08:59         1	Dibromomethane	ND		0.50		ug/L				10/15/14 08:59	1		
1,1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           cis-1,2-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroptopene         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,3-Dichloroptopene         ND         0.50         ug/L         10/15/14 08:59	Dichlorodifluoromethane	ND		0.50		ug/L				10/15/14 08:59	1		
1,2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,1-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           cis-1,2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,2-Dichloroethane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           cis-1,3-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,3-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,3-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           Ethylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           Lexachlorobutadiene         ND         0.50         ug/L         10/15/14 08:59         1           2-Hexanone         ND         0.50         ug/L         10/15/14 08:59         1 </td <td>1.1-Dichloroethane</td> <td>ND</td> <td></td> <td>0.50</td> <td></td> <td>ug/L</td> <td></td> <td></td> <td></td> <td>10/15/14 08:59</td> <td>1</td>	1.1-Dichloroethane	ND		0.50		ug/L				10/15/14 08:59	1		
I,1-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           cis-1,2-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,2-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           cis-1,3-Dichloroptopene         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,3-Dichloroptopene         ND         0.50         ug/L         10/15/14 08:59         1           Ethylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           Hexachlorobutadiene         ND         0.50         ug/L         10/15/14 08:59         1           2-Hexanone         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbuene         ND         5.0         ug/L         10/15/14 08:59         1 <td>1.2-Dichloroethane</td> <td>ND</td> <td></td> <td>0.50</td> <td></td> <td>ua/L</td> <td></td> <td></td> <td></td> <td>10/15/14 08:59</td> <td>1</td>	1.2-Dichloroethane	ND		0.50		ua/L				10/15/14 08:59	1		
cis-1,2-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,2-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           isi-1,3-Dichloroptopane         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,3-Dichloroptopene         ND         0.50         ug/L         10/15/14 08:59         1           thysachlorobutadiene         ND         0.50         ug/L         10/15/14 08:59         1           2-Hexanone         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropyltoluene         ND         0.50         ug/L         10/15/14 08:59         1           4-Methyl-2-pentanone (MIBK)         ND         50         ug/L         10/15/14	1.1-Dichloroethene	ND		0.50		ug/L				10/15/14 08:59	1		
trans-1,2-Dichloroethene         ND         0.50         ug/L         10/15/14 08:59         1           1,2-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           cis-1,3-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,3-Dichloropropene         ND         1.0         ug/L         10/15/14 08:59         1           Hexachlorobutadiene         ND         0.50         ug/L         10/15/14 08:59         1           2-Hexanone         ND         0.50         ug/L         10/15/14 08:59         1           Isopropylboluene         ND         1.0         ug/L         10/15/14 0	cis-1.2-Dichloroethene	ND		0.50		ug/L				10/15/14 08:59	1		
1,2-Dichloropropane         ND         0.50         ug/L         10/15/14 08:59         1           cis-1,3-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,3-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,3-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           Ethylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           Hexachlorobutadiene         ND         0.50         ug/L         10/15/14 08:59         1           2-Hexanone         ND         50         ug/L         10/15/14 08:59         1           Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropyltoluene         ND         0.50         ug/L         10/15/14 08:59         1           4-Methyl-2-pentanone (MIBK)         ND         50         ug/L         10/15/14 08:59         1           Naphthalene         ND         50         ug/L         10/15/14 08:59         1           N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1 <tr< td=""><td>trans-1.2-Dichloroethene</td><td>ND</td><td></td><td>0.50</td><td></td><td>ug/L</td><td></td><td></td><td></td><td>10/15/14 08:59</td><td>1</td></tr<>	trans-1.2-Dichloroethene	ND		0.50		ug/L				10/15/14 08:59	1		
cis-1,3-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           trans-1,3-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           Ethylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           Hexachlorobutadiene         ND         0.50         ug/L         10/15/14 08:59         1           2-Hexanone         ND         1.0         ug/L         10/15/14 08:59         1           Isopropylbenzene         ND         50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropyltoluene         ND         5.0         ug/L         10/15/14 08:59         1           4-Methyl-2-pentanone (MIBK)         ND         50         ug/L         10/15/14 08:59         1           Naphthalene         ND         1.0         ug/L         10/15/14 08:59         1           N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1	1.2-Dichloropropane	ND		0.50		ug/L				10/15/14 08:59	1		
trans-1,3-Dichloropropene         ND         0.50         ug/L         10/15/14 08:59         1           Ethylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           Hexachlorobutadiene         ND         1.0         ug/L         10/15/14 08:59         1           2-Hexanone         ND         50         ug/L         10/15/14 08:59         1           Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         5.0         ug/L         10/15/14 08:59         1           4-Methyl-2-pentanone (MIBK)         ND         50         ug/L         10/15/14 08:59         1           Naphthalene         ND         1.0         ug/L         10/15/14 08:59         1           N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           S	cis-1.3-Dichloropropene	ND		0.50		ug/L				10/15/14 08:59	1		
Ethylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           Hexachlorobutadiene         ND         1.0         ug/L         10/15/14 08:59         1           2-Hexanone         ND         50         ug/L         10/15/14 08:59         1           1sopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         5.0         ug/L         10/15/14 08:59         1           4-Methyl-2-pentanone (MIBK)         ND         50         ug/L         10/15/14 08:59         1           Naphthalene         ND         1.0         ug/L         10/15/14 08:59         1           N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           Styrene         ND         0.50         ug/L         10/15/14 08:59         1	trans-1.3-Dichloropropene	ND		0.50		ug/L				10/15/14 08:59	1		
Hexachlorobutadiene         ND         1.0         ug/L         10/15/14 08:59         1           2-Hexanone         ND         50         ug/L         10/15/14 08:59         1           Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         5.0         ug/L         10/15/14 08:59         1           4-Methyl-2-pentanone (MIBK)         ND         50         ug/L         10/15/14 08:59         1           Naphthalene         ND         1.0         ug/L         10/15/14 08:59         1           N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           Styrene         ND         0.50         ug/L         10/15/14 08:59         1	Ethylbenzene	ND		0.50		ug/L				10/15/14 08:59	1		
2-Hexanone         ND         50         ug/L         10/15/14 08:59         1           Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           4-Isopropylbenzene         ND         5.0         ug/L         10/15/14 08:59         1           4-Methyl-2-pentanone (MIBK)         ND         50         ug/L         10/15/14 08:59         1           Naphthalene         ND         1.0         ug/L         10/15/14 08:59         1           N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           Styrene         ND         0.50         ug/L         10/15/14 08:59         1	Hexachlorobutadiene	ND		1.0		ug/L				10/15/14 08:59	1		
Isopropylbenzene         ND         0.50         ug/L         10/15/14 08:59         1           4-Isopropylboluene         ND         1.0         ug/L         10/15/14 08:59         1           Methylene Chloride         ND         5.0         ug/L         10/15/14 08:59         1           4-Methyl-2-pentanone (MIBK)         ND         50         ug/L         10/15/14 08:59         1           Naphthalene         ND         1.0         ug/L         10/15/14 08:59         1           N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           Styrene         ND         0.50         ug/L         10/15/14 08:59         1	2-Hexanone	ND		50		ug/L				10/15/14 08:59	1		
4-Isopropyltoluene         ND         1.0         ug/L         10/15/14 08:59         1           Methylene Chloride         ND         5.0         ug/L         10/15/14 08:59         1           4-Methyl-2-pentanone (MIBK)         ND         50         ug/L         10/15/14 08:59         1           Naphthalene         ND         1.0         ug/L         10/15/14 08:59         1           N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           Styrene         ND         0.50         ug/L         10/15/14 08:59         1	Isopropylbenzene	ND		0.50		ug/L				10/15/14 08:59	1		
Methylene Chloride         ND         5.0         ug/L         10/15/14 08:59         1           4-Methyl-2-pentanone (MIBK)         ND         50         ug/L         10/15/14 08:59         1           Naphthalene         ND         1.0         ug/L         10/15/14 08:59         1           N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           Styrene         ND         0.50         ug/L         10/15/14 08:59         1	4-Isopropyltoluene	ND		1.0		ug/L				10/15/14 08:59	1		
4-Methyl-2-pentanone (MIBK)         ND         50         ug/L         10/15/14 08:59         1           Naphthalene         ND         1.0         ug/L         10/15/14 08:59         1           N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           Styrene         ND         0.50         ug/L         10/15/14 08:59         1	Methylene Chloride	ND		5.0		ug/L				10/15/14 08:59	1		
Naphthalene         ND         1.0         ug/L         10/15/14 08:59         1           N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           Styrene         ND         0.50         ug/L         10/15/14 08:59         1	4-Methyl-2-pentanone (MIBK)	ND		50		ug/L				10/15/14 08:59	1		
N-Propylbenzene         ND         1.0         ug/L         10/15/14 08:59         1           Styrene         ND         0.50         ug/L         10/15/14 08:59         1	Naphthalene	ND		1.0		ug/L				10/15/14 08:59	1		
Styrene         ND         0.50         ug/L         10/15/14 08:59         1	N-Propylbenzene	ND		1.0		ug/L				10/15/14 08:59	1		
	Styrene	ND		0.50		ug/L				10/15/14 08:59	1		

TestAmerica Job ID: 720-60396-1

7

### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-168839/4 Matrix: Water Analysis Batch: 168839							Client Sa	ample ID: Metho Prep Type: T	d Blank ⁻ otal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	-	0.50	1	ug/L			10/15/14 08:59	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 08:59	1
Tetrachloroethene	ND		0.50		ug/L			10/15/14 08:59	1
Toluene	ND		0.50		ug/L			10/15/14 08:59	1
1,2,3-Trichlorobenzene	ND		1.0	,	ug/L			10/15/14 08:59	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/15/14 08:59	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/15/14 08:59	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/15/14 08:59	1
Trichloroethene	ND		0.50		ug/L			10/15/14 08:59	1
Trichlorofluoromethane	ND		1.0	,	ug/L			10/15/14 08:59	1
1,2,3-Trichloropropane	ND		0.50		ug/L			10/15/14 08:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	)	ug/L			10/15/14 08:59	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			10/15/14 08:59	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			10/15/14 08:59	1
Vinyl acetate	ND		10	,	ug/L			10/15/14 08:59	1
Vinyl chloride	ND		0.50		ug/L			10/15/14 08:59	1
Xylenes, Total	ND		1.0	,	ug/L			10/15/14 08:59	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 08:59	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	1	ug/L			10/15/14 08:59	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	107		67 - 130		10/15/14 08:59	1
1,2-Dichloroethane-d4 (Surr)	91		72 - 130		10/15/14 08:59	1
Toluene-d8 (Surr)	93		70 - 130		10/15/14 08:59	1

#### Lab Sample ID: LCS 720-168839/5 Matrix: Water

Analysis Batch: 168839

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	24.7		ug/L		99	62 - 130	
Acetone	125	110		ug/L		88	26 - 180	
Benzene	25.0	25.4		ug/L		102	79 - 130	
Dichlorobromomethane	25.0	26.1		ug/L		104	70 - 130	
Bromobenzene	25.0	24.3		ug/L		97	70 - 130	
Chlorobromomethane	25.0	21.1		ug/L		85	70 - 130	
Bromoform	25.0	25.0		ug/L		100	68 - 136	
Bromomethane	25.0	24.3		ug/L		97	43 - 151	
2-Butanone (MEK)	125	106		ug/L		85	54 - 130	
n-Butylbenzene	25.0	28.6		ug/L		114	70 - 142	
sec-Butylbenzene	25.0	25.9		ug/L		104	70 - 134	
tert-Butylbenzene	25.0	24.7		ug/L		99	70 - 135	
Carbon disulfide	25.0	23.1		ug/L		93	58 - 130	
Carbon tetrachloride	25.0	23.2		ug/L		93.	70 - 146	
Chlorobenzene	25.0	24.6		ug/L		98	70 - 130	
Chloroethane	25.0	26.1		ug/L		104	62 - 138	
Chloroform	25.0	25.7		ug/L		103	70 - 130	

TestAmerica Pleasanton

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

.

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-168839/5				Client Sample	e ID: Lab C	ontrol Sample
Matrix: Water					Prep I	ype: Total/NA
Analysis Batch: 168839	0.11	1.00	1.00		P/ Dee	
Analyte	Spike	Rocult	Cualifier Unit	D %Rec	/ortec.	
Chloremothene	25.0	26.6		106	52 175	
	25.0	20.0	ug/L	110	70 130	
	25.0	27.0	ug/L	110	70 130	
4-Chlorotoluene	25.0	27.5	ug/L	05	70 - 130	
	25.0	23.7	ug/L	95	70 140	
	25.0	24.4	ug/L	97	70 130	
	25.0	25.5	ug/L	101	70 - 130	
	25.0	24.9	ug/L	100	70 130	
	25.0	24.3	ug/L	97	70 - 130	
	25.0	27.2	ug/L	109	70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	22.0	ug/L	91	70 - 130	
Ethylene Dibromide	25.0	21.6	ug/L	86	70 - 130	
	25.0	23.7	ug/L	95	70 - 130	
Dichlorodifluoromethane	25.0	23.0	ug/L	92	34 - 132	
1,1-Dichloroethane	25.0	26.4	ug/L	105	70 - 130	
1,2-Dichloroethane	25.0	23.9	ug/L	96	61 - 132	
1,1-Dichloroethene	25.0	21.3	ug/L	85	64 - 128	
cis-1,2-Dichloroethene	25.0	25.3	ug/L	101	70 - 130	
trans-1,2-Dichloroethene	25.0	24.0	ug/L	96	68 - 130	
1,2-Dichloropropane	25.0	26.0	ug/L	104	70 - 130	
cis-1,3-Dichloropropene	25.0	27.0	ug/L	108	70 - 130	
trans-1,3-Dichloropropene	25.0	27.7	ug/L	111	70 - 140	
Ethylbenzene	25.0	25.6	ug/L	103	80 - 120	
Hexachlorobutadiene	25.0	29.7	ug/L	119	70 - 130	
2-Hexanone	125	97.6	ug/L	78	60 - 164	
Isopropylbenzene	25.0	24.5	ug/L	98	70 - 130	
4-Isopropyltoluene	25.0	24.7	ug/L	99	70 - 130	
Methylene Chloride	25.0	24.4	ug/L	97	70 - 147	
4-Methyl-2-pentanone (MIBK)	125	103	ug/L	82	58 - 130	
Naphthalene	25.0	22.7	ug/L	91	70 - 130	
N-Propylbenzene	25.0	28.1	ug/L	112	70 - 130	
Styrene	25.0	24.1	ug/L	96	70 - 130	
1,1,1,2-Tetrachloroethane	25.0	24.2	ug/L	97	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	27.6	ug/L	110	70 - 130	
Tetrachloroethene	25.0	22.9	ug/L	92	70 - 130	
Toluene	25.0	25.7	ug/L	103	78 - 120	
1,2,3-Trichlorobenzene	25.0	26.1	ug/L	104	70 - 130	
1,2,4-Trichlorobenzene	25.0	27.6	ug/L	111	70 - 130	
1,1,1-Trichloroethane	25.0	23.9	ug/L	95	70 - 130	
1,1,2-Trichloroethane	25.0	25.0	ug/L	100	70 - 130	
Trichloroethene	25.0	22.1	ug/L	88	70 - 130	
Trichlorofluoromethane	25.0	26.3	ug/L	105	66 - 132	
1,2,3-Trichloropropane	25.0	23.8	ug/L	95	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20.1	ug/L	80	42 - 162	
1.2.4-Trimethylbenzene	25.0	26.4	ug/L	106	70 - 132	
1.3.5-Trimethylbenzene	25.0	26.9	ua/L	108	70 - 130	
Vinvl acetate	25.0	26.4	ug/L	106	43 - 163	
Vinyl chloride	25.0	24.8	ug/L	99	54 - 135	
			-			

TestAmerica Job ID: 720-60396-1

7

### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-168	839/5						Client	t Sample	Dran Tur	trol Sample
Analysis Batch: 168839									Ргер Тур	e: Total/NA
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene			25.0	25.6		ug/L		102	70 - 142	
o-Xylene			25.0	25.4		ug/L		102	70 - 130	
2,2-Dichloropropane			25.0	24.9		ug/L		100	70 - 140	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene	102		67 - 130							
1,2-Dichloroethane-d4 (Surr)	87		72 - 130							
Toluene-d8 (Surr)	93		70 - 130							
Lab Sample ID: LCS 720-168	839/7						Client	t Sample	ID: Lab Cont	trol Sample
Matrix: Water									Ргер Тур	e: Total/NA
Analysis Batch: 168839			Snike	105	105				%Rec	

			Spike	LUS	LCS				%Rec.	
Anaiyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO) -C5-C12			500	511		ug/L		102	62 - 120	
	LCS	LCS								
Surrogate	%Recoverv	Qualifier	Limits							

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	111		67 - 130
1,2-Dichloroethane-d4 (Surr)	98		72 - 130
Toluene-d8 (Surr)	93		70 - 130

#### Lab Sample ID: LCSD 720-168839/6 Matrix: Water

#### Analysis Batch: 168839

#### Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	24.9		ug/L		100	62 - 130	1	20
Acetone	125	118		ug/L		94	26 - 180	7	30
Benzene	25.0	25.3		ug/L		101	79 - 130	1	20
Dichlorobromomethane	25.0	25.9		ug/L		104	70 - 130	1	20
Bromobenzene	25.0	24.3		ug/L		97	70 - 130	0	20
Chlorobromomethane	25.0	21.2		ug/L		85	70 - 130	0	20
Bromoform	25.0	27.3		ug/L		109	68 - 136	9	20
Bromomethane	25.0	24.3		ug/L		97	43 - 151	0	20
2-Butanone (MEK)	125	115		ug/L		92	54 - 130	8	20
n-Butylbenzene	25.0	28.6		ug/L		114	70 - 142	0	20
sec-Butylbenzene	25.0	26.1		ug/L		104	70 - 134	1	20
tert-Butylbenzene	25.0	25.0		ug/L		100	70 - 135	2	20
Carbon disulfide	25.0	23.0		ug/L		92	58 - 130	0	20
Carbon tetrachloride	25.0	23.6		ug/L		94	70 - 146	2	20
Chlorobenzene	25.0	26.4		ug/L		106	70 - 130	7	20
Chloroethane	25.0	26.3		ug/L		105	62 - 138	1	20
Chloroform	25.0	25.4		ug/L		102	70 - 130	1	20
Chloromethane	25.0	26.9		ug/L		108	52 - 175	1	20
2-Chlorotoluene	25.0	27.7		ug/L		111	70 - 130	0	20
4-Chlorotoluene	25.0	27.8		ug/L		111	70 - 130	0	20
Chlorodibromomethane	25.0	24.4		ug/L		97	70 - 145	3	20

7

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-168839/6		Client Sample ID: Lab Control Sample Dup							
Matrix: Water							Prep T	ype: To	tal/NA
Analysis Batch: 168839									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	25.0	24.3		ug/L		97	70 - 130	0	20
1,3-Dichlorobenzene	25.0	24.9		ug/L		100	70 - 130	2	20
1,4-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130	0	20
1,3-Dichloropropane	25.0	24.5		ug/L		98	70 - 130	1	20
1,1-Dichloropropene	25.0	27.2		ug/L		109	70 - 130	0	20
1,2-Dibromo-3-Chloropropane	25.0	23.7		ug/L		95	70 - 136	4	20
Ethylene Dibromide	25.0	22.3		ug/L		89	70 - 130	3	20
Dibromomethane	25.0	23.3		ug/L		93	70 - 130	2	20
Dichlorodifluoromethane	25.0	23.6		ug/L		94	34 - 132	2	20
1,1-Dichloroethane	25.0	26.0		ug/L		104	70 - 130	1	20
1,2-Dichloroethane	25.0	24.2		ug/L		97	61 - 132	1	20
1,1-Dichloroethene	25.0	21.8		ug/L		87	64 - 128	3	20
cis-1,2-Dichloroethene	25.0	25.2		ug/L		101	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	24.2		ug/L		97	68 - 130	1	20
1,2-Dichloropropane	25.0	25.2		ug/L		101	70 - 130	3	20
cis-1,3-Dichloropropene	25.0	26.9		ug/L		108	70 - 130	0	20
trans-1,3-Dichloropropene	25.0	28.5		ug/L		114	70 - 140	3	20
Ethylbenzene	25.0	27.6		ug/L		111	80 - 120	7	20
Hexachlorobutadiene	25.0	29.7		ug/L		119	70 - 130	0	20
2-Hexanone	125	105		ug/L		84	60 - 164	7	20
Isopropylbenzene	25.0	26.5		ug/L		106	70 - 130	8	20
4-Isopropyltoluene	25.0	24.6		ug/L		98	70 - 130	0	20
Methylene Chloride	25.0	24.5		ug/L		98	70 - 147	1	20
4-Methyl-2-pentanone (MIBK)	125	111		ug/L		89	58 - 130	7	20
Naphthalene	25.0	23.8		ug/L		95	70 - 130	5	20
N-Propylbenzene	25.0	28.2		ug/L		113	70 - 130	0	20
Styrene	25.0	26.1		ug/L		104	70 - 130	8	20
1,1,1,2-Tetrachloroethane	25.0	25.8		ug/L		103	70 - 130	7	20
1,1,2,2-Tetrachloroethane	25.0	28.6		ug/L		114	70 - 130	3	20
Tetrachloroethene	25.0	22.8		ug/L		91	70 - 130	0	20
Toluene	25.0	27.8		ug/L		111	78 - 120	8	20
1,2,3-Trichlorobenzene	25.0	25.9		ug/L		104	70 - 130	1	20
1,2,4-Trichlorobenzene	25.0	26.9		ug/L		108	70 - 130	3	20
1,1,1-Trichloroethane	25.0	24.0		ug/L		96	70 - 130	1	20
1,1,2-Trichloroethane	25.0	25.1		ug/L		101	70 - 130	1	20
Trichloroethene	25.0	22.0		ug/L		88	70 - 130	0	20
Trichlorofluoromethane	25.0	27.0		ug/L		108	66 - 132	3	20
1,2,3-Trichloropropane	25.0	25.7		ug/L		103	70 - 130	8	20
1.1.2-Trichloro-1.2.2-trifluoroetha	25.0	20.2		ug/L		81	42 - 162	1	20
ne									
1,2,4-Trimethylbenzene	25.0	26.5		ug/L		106	70 - 132	0	20
1,3,5-Trimethylbenzene	25.0	26.8		ug/L		107	70 - 130	0	20
Vinyl acetate	25.0	27.9		ug/L		112	43 - 163	5	20
Vinyl chloride	25.0	25.0		ug/L		100	54 _ 135	1	20
m-Xylene & p-Xylene	25.0	27.5		ug/L		110	70 - 142	7	20
o-Xylene	25.0	27.1		ug/L		108	70 - 130	6	20
2,2-Dichloropropane	25.0	24.5		ug/L		98	70 - 140	2	20

#### TestAmerica Job ID: 720-60396-1

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

93

iction. Of the start of the sta	110 02000	/ O/TEOT	1 1110 (00110								
Lab Sample ID: LCSD 720-16 Matrix: Water Analysis Batch: 168839	8839/6					Clier	nt San	nple ID:	Lab Contro Prep T	l Sampl ype: Tot	e Dup al/NA
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	111		67 - 130								
1,2-Dichloroethane-d4 (Surr)	90		72 - 130								
Toluene-d8 (Surr)	94		70 - 130								
Lab Sample ID: LCSD 720-16	8839/8					Clier	it San	nple ID:	Lab Contro	I Sampl	e Dup
Matrix: Water									Prep T	ype: Tot	al/NA
Analysis Batch: 168839											
- Crott			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)			500	510		ug/L		102	62 - 120	0	20
-C5-C12											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	111		67 _ 130								
1,2-Dichloroethane-d4 (Surr)	94		72 - 130								

70-130

#### Lab Sample ID: 720-60396-3 MS Matrix: Water

Analysis Batch: 168839

Toluene-d8 (Surr)

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	ND		25.0	26.4		ug/L		106	60 - 138	
Acetone	ND		125	108		ug/L		87	60 - 140	
Benzene	ND		25.0	25.5		ug/L		102	60 - 140	
Dichlorobromomethane	ND		25.0	27.1		ug/L		108	60 - 140	
Bromobenzene	ND		25.0	24.1		ug/L		96	60 - 140	
Chlorobromomethane	ND		25.0	21.7		ug/L		87	60 - 140	
Bromoform	ND		25.0	27.3		ug/L		109	56 - 140	
Bromomethane	ND		25.0	23.5		ug/L		94	23 - 140	
2-Butanone (MEK)	ND		125	112		ug/L		90	60 - 140	
n-Butylbenzene	ND		25.0	28.4		ug/L		114	60 - 140	
sec-Butylbenzene	ND		25.0	25.1		ug/L		100	60 - 140	
tert-Butylbenzene	ND		25.0	24.0		ug/L		96	60 - 140	
Carbon disulfide	ND		25.0	22.8		ug/L		91	38 - 140	
Carbon tetrachloride	ND		25.0	23.4		ug/L		94	60 - 140	
Chlorobenzene	ND		25.0	26.2		ug/L		105	60 - 140	
Chloroethane	ND		25.0	25.6		ug/L		102	51 - 140	
Chloroform	ND		25.0	26.0		ug/L		104	60 - 140	
Chloromethane	ND		25.0	24.4		ug/L		97	52 - 140	
2-Chlorotoluene	ND		25.0	26.8		ug/L		107	60 - 140	
4-Chlorotoluene	ND		25.0	27.5		ug/L		110	60 - 140	
Chlorodibromomethane	ND		25.0	25.3		ug/L		101	60 - 140	+
1,2-Dichlorobenzene	ND		25.0	24.2		ug/L		97	60 - 140	
1,3-Dichlorobenzene	ND		25.0	24.7		ug/L		99	60 - 140	
1,4-Dichlorobenzene	ND		25.0	24.8		ug/L		99	60 - 140	
1,3-Dichloropropane	ND		25.0	26.0		ug/L		104	60 - 140	
1,1-Dichloropropene	ND		25.0	27.3		ug/L		109	60 - 140	

7

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60396-3 MS									<b>Client Sam</b>	ple ID: MW-02
Matrix: Water									Prep	Type: Total/NA
Analysis Batch: 168839										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromo-3-Chloropropane	ND		25.0	24.0		ug/L		96	60 - 140	
Ethylene Dibromide	ND		25.0	23.0		ug/L		92	60 - 140	
Dibromomethane	ND		25.0	24.6		ug/L		99	60 _ 140	
Dichlorodifluoromethane	ND		25.0	21.0		ug/L		84	38 - 140	
1,1-Dichloroethane	ND		25.0	26.5		ug/L		106	60 - 140	
1,2-Dichloroethane	ND		25.0	25.0		ug/L		100	60 - 140	
1,1-Dichloroethene	ND		25.0	21.2		ug/L		85	60 - 140	
cis-1,2-Dichloroethene	2.8		25.0	28.4		ug/L		103	60 - 140	
trans-1,2-Dichloroethene	ND		25.0	24.5		ug/L		96	60 - 140	
1,2-Dichloropropane	ND		25.0	26.4		ug/L		105	60 - 140	
cis-1,3-Dichloropropene	ND		25.0	27.5		ug/L		110	60_140	
trans-1,3-Dichloropropene	ND		25.0	29.5		ug/L		118	60 - 140	
Ethylbenzene	ND		25.0	27.1		ug/L		109	60 - 140	
Hexachlorobutadiene	ND		25.0	29.2		ug/L		117	60 - 140	
2-Hexanone	ND		125	107		ug/L		86	60 - 140	
Isopropylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	
4-Isopropyltoluene	ND		25.0	24.0		ug/L		96	60 - 140	
Methylene Chloride	ND		25.0	24.5		ug/L		98	40 - 140	
4-Methyl-2-pentanone (MIBK)	ND		125	114		ug/L		91	58 - 130	
Naphthalene	ND		25.0	23.9		ua/L		96	56 - 140	
N-Propylbenzene	ND		25.0	27.3		ua/L		109	60 - 140	
Styrene	ND		25.0	26.3		ug/L		105	60 - 140	
1.1.1.2-Tetrachloroethane	ND		25.0	26.4		ua/L		106	60 - 140	
1.1.2.2-Tetrachloroethane	ND		25.0	27.8		ua/L		111	60 - 140	
Tetrachloroethene	4.7		25.0	28.2		ua/L		94	60 - 140	
Toluene	ND		25.0	27.2		ua/L		109	60 - 140	
1.2.3-Trichlorobenzene	ND		25.0	26.3		ua/L		105	60 - 140	
1 2 4-Trichlorobenzene	ND		25.0	27.9		ug/L		112	60 - 140	
1 1 1-Trichloroethane	ND		25.0	23.7		ug/L		95	60 - 140	
1 1 2-Trichloroethane	ND		25.0	26.0		ug/l		104	60 - 140	
Trichloroethene	91		25.0	31.6		ug/l		90	60 - 140	
Trichlorofluoromethane	ND		25.0	25.7		ug/L		103	60 - 140	
1.2.3-Trichloropropane	ND		25.0	24.7		ug/L		99	60, 140	
1.1.2 Trichloro 1.2.2 trifluorootha	ND		25.0	19.7		ug/L		79	60 140	
ne	110		20.0	10.1		ug, L		10	001110	
1,2,4-Trimethylbenzene	ND		25.0	26.1		ug/L		104	60 - 140	
1,3,5-Trimethylbenzene	ND		25.0	26.2		ug/L		105	60 - 140	
Vinyl acetate	ND		25.0	27.8		ug/L		111	40 - 140	
Vinyl chloride	ND		25.0	23.4		ug/L		93	58 - 140	
m-Xylene & p-Xylene	ND		25.0	27.5		ug/L		110	60 - 140	
o-Xylene	ND		25.0	27.3		ug/L		109	60 - 140	
2,2-Dichloropropane	ND		25.0	24.8		ug/L		99	60 - 140	
	MQ	MS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene	113		67 - 130							
1 2-Dichloroethane-d4 (Surr)	.10		72 . 130							
Toluene-d8 (Surr)	04		70 130							

7

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60396-3 MSD Matrix: Water									Client Sam Prep T	ple ID: N ype: To	IW-02 tal/NA
Analysis Batch: 168839											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND		25.0	25.5		ug/L		102	60 - 138	3	20
Acetone	ND		125	106		ug/L		85	60 - 140	3	20
Benzene	ND		25.0	25.5		ug/L		102	60 - 140	0	20
Dichlorobromomethane	ND		25.0	27.1		ug/L		108	60 - 140	0	20
Bromobenzene	ND		25.0	24.7		ug/L		99	60 - 140	2	20
Chlorobromomethane	ND		25.0	22.0		ug/L		88	60 _ 140	1	20
Bromoform	ND		25.0	27.2		ug/L		109	56 - 140	1	20
Bromomethane	ND		25.0	24.0		ug/L		96	23 - 140	2	20
2-Butanone (MEK)	ND		125	107		ug/L		85	60 - 140	5	20
n-Butylbenzene	ND		25.0	29.6		ug/L		118	60 - 140	4	20
sec-Butylbenzene	ND		25.0	26.4		ug/L		105	60 - 140	5	20
tert-Butylbenzene	ND		25.0	25.1		ug/L		100	60 - 140	4	20
Carbon disulfide	ND		25.0	23.7		ug/L		95	38 - 140	4	20
Carbon tetrachloride	ND		25.0	23.7		ug/L		95	60 - 140	1	20
Chlorobenzene	ND		25.0	26.8		ug/L		107	60 - 140	2	20
Chloroethane	ND		25.0	25.9		ug/L		104	51 - 140	1	20
Chloroform	ND		25.0	26.4		ug/L		106	60 - 140	2	20
Chloromethane	ND		25.0	25.8		ug/L		103	52 - 140	6	20
2-Chlorotoluene	ND		25.0	27.9		ug/L		112	60 - 140	4	20
4-Chlorotoluene	ND		25.0	28.4		ug/L		114	60 - 140	3	20
Chlorodibromomethane	ND		25.0	25.1		ug/L		100	60 - 140	1	20
1.2-Dichlorobenzene	ND		25.0	24.6		ug/L		99	60 - 140	2	20
1.3-Dichlorobenzene	ND		25.0	25.5		ug/L		102	60 - 140	3	20
1,4-Dichlorobenzene	ND		25.0	25.3		ug/L		101	60 - 140	2	20
1.3-Dichloropropane	ND		25.0	25.4		ug/L		102	60 - 140	2	20
1.1-Dichloropropene	ND		25.0	27.7		ug/L		111	60 - 140	1	20
1.2-Dibromo-3-Chloropropane	ND		25.0	23.6		ug/L		94	60 - 140	2	20
Ethylene Dibromide	ND		25.0	22.7		ug/L		91	60 - 140	2	20
Dibromomethane	ND		25.0	24.7		ug/L		99	60 - 140	0	20
Dichlorodifluoromethane	ND		25.0	22.6		ug/L		90	38 - 140	7	20
1.1-Dichloroethane	ND		25.0	26.8		ug/L		107	60 - 140	1	20
1 2-Dichloroethane	ND		25.0	24.7		ug/L		99	60 - 140	1	20
1 1-Dichloroethene	ND		25.0	21.7		ug/L		87	60 - 140	3	20
cis-1 2-Dichloroethene	2.8		25.0	29.1		ug/L		105	60 - 140	2	20
trans-1 2-Dichloroethene	ND		25.0	24.9		ug/L		98	60 - 140	2	20
1 2-Dichloropropane	ND		25.0	25.8		ug/L		103	60 - 140	2	20
cis-1 3-Dichloropropene	ND		25.0	27.6		ug/L		110	60 - 140	0	20
trans-1 3-Dichloropropene	ND		25.0	29.1		ug/L		116	60 - 140	1	20
Ethylbenzene	ND		25.0	27.9		ug/L		111	60 - 140	3	20
Hexachlorobutadiene	ND		25.0	30.7		ua/L		123	60 - 140	5	20
2-Hexanone	ND		125	101		ug/L		80	60 - 140	7	20
Isopropylbenzene	ND		25.0	26.6		ug/L		106	60 - 140	2	20
4-isopropyitoluene	ND		25.0	25.0		ug/L		100	60 - 140	4	20
Methylene Chloride	ND		25.0	24.6		ug/L		99	40 - 140	0	20
4-Methyl-2-pentanone (MIRK)	ND		125	109		ug/L		87	58 - 130	5	20
Nanhthalene	ND		25.0	23.9		ug/l		96	56 - 140	0	20
N-Pronvibenzene	ND		25.0	28.5		ug/L		114	60 - 140	4	20
Styrene	ND		25.0	26.7		ug/L		107	60 - 140	1	20

5

6 7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60396-3	NSD							1.00	<b>Client Sam</b>	ple ID: N	/W-02
Matrix: Water									Prep T	ype: Tot	tal/NA
Analysis Batch: 168839											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	26.7		ug/L		107	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND		25.0	28.0		ug/L		112	60 - 140	1	20
Tetrachloroethene	4.7		25.0	28.5		ug/L		95	60 - 140	1	20
Toluene	ND		25.0	28.0		ug/L		112	60 - 140	3	20
1,2,3-Trichlorobenzene	ND		25.0	26.7		ug/L		107	60 - 140	2	20
1,2,4-Trichlorobenzene	ND		25.0	28.3		ug/L		113	60 - 140	1	20
1,1,1-Trichloroethane	ND		25.0	24.5		ug/L		98	60 - 140	3	20
1,1,2-Trichloroethane	ND		25.0	25.5		ug/L		102	60 - 140	2	20
Trichloroethene	9.1		25.0	32.4		ug/L		93	60 - 140	3	20
Trichlorofluoromethane	ND		25.0	27.0		ug/L		108	60 - 140	5	20
1,2,3-Trichloropropane	ND		25.0	25.1		ug/L		100	60 - 140	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	20.5		ug/L		82	60 - 140	4	20
ne 1.2.4-Trimethylbenzene	ND		25.0	27.0		ug/L		108	60 - 140	4	20
1.3.5-Trimethylbenzene	ND		25.0	27.4		ug/L		110	60 - 140	5	20
Vinyl acetate	ND		25.0	27.3		ug/L		109	40 - 140	2	20
Vinyl chloride	ND		25.0	24.8		ug/L		99	58 - 140	6	20
m-Xylene & p-Xylene	ND		25.0	27.9		ug/L		111	60 - 140	1	20
o-Xylene	ND		25.0	27.6		ug/L		110	60 - 140	1	20
2,2-Dichloropropane	ND		25.0	25.2		ug/L		101	60 - 140	2	20
	MOD	MCD									

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	111		67 - 130
1,2-Dichloroethane-d4 (Surr)	92		72 - 130
Toluene-d8 (Surr)	94		70 - 130

#### Lab Sample ID: MB 720-168840/4 Matrix: Water

#### Analysis Batch: 168840

Analysis Batom 100040	340	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			10/15/14 09:07	1
Acetone	ND		50		ug/L			10/15/14 09:07	1
Benzene	ND		0.50		ug/L			10/15/14 09:07	1
Dichlorobromomethane	ND		0.50		ug/L			10/15/14 09:07	1
Bromobenzene	ND		1.0		ug/L			10/15/14 09:07	1
Chlorobromomethane	ND		1.0		ug/L			10/15/14 09:07	1
Bromoform	ND		1.0		ug/L			10/15/14 09:07	1
Bromomethane	ND		1.0		ug/L			10/15/14 09:07	1
2-Butanone (MEK)	ND		50		ug/L			10/15/14 09:07	1
n-Butylbenzene	ND		1.0		ug/L			10/15/14 09:07	1
sec-Butylbenzene	ND		1.0		ug/L			10/15/14 09:07	1
tert-Butylbenzene	ND		1.0		ug/L			10/15/14 09:07	1
Carbon disulfide	ND		5.0		ug/L			10/15/14 09:07	1
Carbon tetrachloride	ND		0.50		ug/L			10/15/14 09:07	1
Chlorobenzene	ND		0.50		ug/L			10/15/14 09:07	1
Chloroethane	ND		1.0		ug/L			10/15/14 09:07	1
Chloroform	ND		1.0		ug/L			10/15/14 09:07	1

TestAmerica Pleasanton

Client Sample ID: Method Blank

Prep Type: Total/NA

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-168840/4							Client S	ample ID: Metho	d Blank
Matrix: Water								Prep Type: 1	otal/NA
Analysis Batch: 168840									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		1.0		ug/L	 _		10/15/14 09:07	1
2-Chlorotoluene	ND		0.50		ug/L			10/15/14 09:07	1
4-Chlorotoluene	ND		0.50		ug/L			10/15/14 09:07	1
Chlorodibromomethane	ND		0.50		ug/L			10/15/14 09:07	1
1,2-Dichlorobenzene	ND		0.50		ug/L			10/15/14 09:07	1
1,3-Dichlorobenzene	ND		0.50		ug/L			10/15/14 09:07	1
1,4-Dichlorobenzene	ND		0.50		ug/L			10/15/14 09:07	1
1,3-Dichloropropane	ND		1.0		ug/L			10/15/14 09:07	1
1,1-Dichloropropene	ND		0.50		ug/L			10/15/14 09:07	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			10/15/14 09:07	1
Ethylene Dibromide	ND		0.50		ug/L			10/15/14 09:07	1
Dibromomethane	ND		0.50		ug/L			10/15/14 09:07	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/15/14 09:07	1
1,1-Dichloroethane	ND		0.50		ug/L			10/15/14 09:07	1
1,2-Dichloroethane	ND		0.50		ug/L			10/15/14 09:07	1
1,1-Dichloroethene	ND		0.50		ug/L			10/15/14 09:07	1
cis-1.2-Dichloroethene	ND		0.50		ug/L			10/15/14 09:07	- 1
trans-1.2-Dichloroethene	ND		0.50		ug/L			10/15/14 09:07	1
1.2-Dichloropropane	ND		0.50		ug/L			10/15/14 09:07	1
cis-1.3-Dichloropropene	ND		0.50		ug/L			10/15/14 09:07	1
trans-1 3-Dichloropropene	ND		0.50		ug/L			10/15/14 09:07	1
Ethylbenzene	ND		0.50		ug/L			10/15/14 09:07	1
Hexachlorobutadiene	ND		1.0		ug/L			10/15/14 09:07	1
2-Hexanone	ND		50		ua/L			10/15/14 09:07	1
Isopropylbenzene	ND		0.50		ua/L			10/15/14 09:07	1
4-isopropyitoluene	ND		1.0		ua/L			10/15/14 09:07	1
Methylene Chloride	ND		5.0		ua/L			10/15/14 09:07	1
4-Methyl-2-pentanone (MIBK)	ND		50		ua/L			10/15/14 09:07	1
Nanhthalene	ND		10		ua/L			10/15/14 09:07	1
N-Propylbenzene	ND		1.0		ug/l			10/15/14 09:07	1
Styrene	ND		0.50		ug/L			10/15/14 09:07	1
1 1 1 2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 09:07	1
	ND		0.50		ug/L			10/15/14 09:07	1
Tetrachloroethene	ND		0.50		ug/L			10/15/14 09:07	1
Toluene	ND		0.50		· ug/l			10/15/14 09:07	1
			1.0		ug/L			10/15/14 09:07	1
	ND		1.0		ua/l			10/15/14 09:07	1
1,2,4- Inchlorosthane	ND		0.50		ug/L			10/15/14 09:07	1
1,1,2 Trichloroethane	ND		0.50		ug/L			10/15/14 09:07	1
	ND		0.50		ug/L			10/15/14 09:07	1
Trichlorefluormathana			1.00		ug/L			10/15/14 09:07	1
1.2.2-Trichloronronane			0.50		'uo/l			10/15/14 09:07	1
1.1.2.Trichloro_1.2.2.trifluoroethone			0.50		ug/L			10/15/14 09:07	1
1.2.4 Trimethylbergere			0.50		ug/L			10/15/14 00:07	1
			0.50		ug/L			10/15/14 00:07	1
1,0,0- Himethyldenzene			10		ug/L			10/15/14 00:07	1
Vinyi adetate			0.50		ug/L			10/15/14 00:07	1
Viriyi chionae	ND		1.0		ug/L			10/15/14 00:07	1
Aylenes, I otal	ND		1.0		ug/L			10/15/14 09:07	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-168840/4 Matrix: Water							Client S	ample ID: Metho Prep Type: T	d Blank otal/NA
Analysis Batch: 100040	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 09:07	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			10/15/14 09:07	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92		67 - 130			-		10/15/14 09:07	1
1,2-Dichloroethane-d4 (Surr)	86		72 - 130					10/15/14 09:07	1
Toluene-d8 (Surr)	91		70 - 130					10/15/14 09:07	1

#### Lab Sample ID: LCS 720-168840/5

### Matrix: Water

Analysis Batch: 168840

Analysis Daten. 100040							
	Spi	ke LCS	LCS			%Rec.	
Analyte	Add	ed Result	Qualifier Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25	21.9	ug/L		88	62 - 130	
Acetone	1	25 115	ug/L		92	26 - 180	
Benzene	25	i.0 23.0	ug/L		92	79 - 130	
Dichlorobromomethane	25	.0 23.0	ug/L		92	70 - 130	
Bromobenzene	25	i.0 23.7	ug/L		95	70 - 130	
Chlorobromomethane	25	.0 22.6	ug/L		90	70 - 130	
Bromoform	25	5.0 25.1	ug/L		100	68 - 136	
Bromomethane	25	i.0 22.7	ug/L		91	43 - 151	
2-Butanone (MEK)	1	25 119	ug/L		95	54 - 130	
n-Butylbenzene	25	5.0 24.4	ug/L		98	70 - 142	
sec-Butylbenzene	25	i.0 24.1	ug/L		96	70 - 134	
tert-Butylbenzene	25	5.0 23.7	ug/L		95	70 - 135	
Carbon disulfide	25	5.0 18.9	ug/L		76	58 - 130	
Carbon tetrachloride	25	5.0 23.9	ug/L		96	70 - 146	
Chlorobenzene	25	5.0 24.2	ug/L		97	70 - 130	
Chloroethane	25	5.0 22.2	ug/L		89	62 - 138	
Chloroform	25	5.0 23.2	ug/L		93	70 - 130	
Chloromethane	25	.0 20.8	ug/L		83	52 - 175	
2-Chlorotoluene	25	5.0 23.3	ug/L		93	70 - 130	
4-Chlorotoluene	25	5.0 23.4	ug/L		94	70 - 130	
Chlorodibromomethane	25	5.0 24.6	ug/L		98	70 _ 145	
1,2-Dichlorobenzene	25	5.0 23.5	ug/L		94	70 - 130	
1,3-Dichlorobenzene	25	5.0 24.1	ug/L		96	70 - 130	
1,4-Dichlorobenzene	25	5.0 23.8	ug/L		95	70 - 130	
1,3-Dichloropropane	25	.0 22.8	ug/L		91	70 - 130	
1,1-Dichloropropene	25	5.0 25.2	ug/L		101	70 - 130	
1,2-Dibromo-3-Chloropropane	25	5.0 25.0	ug/L		100	70 - 136	
Ethylene Dibromide	25	5.0 24.2	ug/L		97	70 - 130	
Dibromomethane	25	.0 23.4	ug/L		94	70 - 130	
Dichlorodifluoromethane	25	5.0 20.6	ug/L		83	34 - 132	
1,1-Dichloroethane	25	.0 22.6	ug/L		90	70 - 130	
1,2-Dichloroethane	25	.0 22.1	ug/L		88	61 - 132	
1,1-Dichloroethene	25	.0 20.4	ug/L		82	64 - 128	
cis-1 2-Dichloroethene	25	0 227	ua/L		91	70 - 130	

TestAmerica Job ID: 720-60396-1

7

### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-168	340/5						Clien	t Sample	e ID: Lab Contr	ol Sample
Matrix: Water									Prep Type	: TOLAI/INA
Analysis Batch: 168840			Sniko	105	105				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1 2-Dichloroethene			25.0	22.8	quannor	ug/l		91	68 - 130	
1 2 Dichloropropage			25.0	22.8		ug/l		91	70 - 130	
cis-1 3-Dichloropropene			25.0	24.9		ua/L		99	70 - 130	
trans_1.3-Dichloropropene			25.0	27.0		ug/L		108	70 - 140	
Ethylbenzene			25.0	23.9		ug/l		96	80 - 120	
Heyachlorobutadiene			25.0	24.3		ug/l		97	70 - 130	
2-Hevanone			125	103		ua/L		82	60 - 164	
Isopropylbenzene			25.0	24.7		ug/L		99	70 - 130	
4-Isopropyltoluene			25.0	23.8		ua/L		95	70 - 130	
Methylene Chloride			25.0	217		ug/l		87	70 - 147	
4-Methyl-2-pentanone (MIBK)			125	106		ug/L		85	58 - 130	
Nanhthalene			25.0	23.9		ug/l		96	70 - 130	
N-Propylbenzene			25.0	24.1		ua/L		96	70 - 130	
Styrene			25.0	24.4		ug/L		98	70 - 130	
1 1 1 2-Tetrachloroethane			25.0	24.5		ua/L		98	70 - 130	
1 1 2 2-Tetrachloroethane			25.0	23.3		ua/L		93	70 - 130	
Tetrachloroethene			25.0	24.9		ua/L		100	70 - 130	
Toluene			25.0	23.8		ua/L		95	78 - 120	
1 2 3-Trichlorobenzene			25.0	24.2		ua/L		97	70 - 130	
1 2 4-Trichlorobenzene			25.0	25.6		ug/L		102	70 - 130	
1 1 1-Trichloroethane			25.0	23.5		ug/L		94	70 - 130	
1 1 2-Trichloroethane			25.0	24.1		ua/L		97	70 - 130	
Trichloroethene			25.0	24.4		ua/L		98	70 - 130	
Trichlorofluoromethane			25.0	23.5		ua/L		94	66 - 132	
1.2.3-Trichloropropage			25.0	23.9		ua/L		96	70 - 130	
1 1 2 Trichloro 1 2 2-trifluoroetha			25.0	21.3		ua/L		85	42 - 162	
ne						0				
1,2,4-Trimethylbenzene			25.0	23.5		ug/L		94	70 - 132	
1,3,5-Trimethylbenzene			25.0	24.0		ug/L		96	70 - 130	
Vinyl acetate			25.0	19.8	.4.	ug/L		79	43 - 163	
Vinyl chloride			25.0	22.0		ug/L		88	54 - 135	
m-Xylene & p-Xylene			25.0	23.9		ug/L		96	70 - 142	
o-Xylene			25.0	23.9		ug/L		96	70 - 130	
2,2-Dichloropropane			25.0	24.3		ug/L		97	70 - 140	
	1.00	1.00								
	LCS	LUS Out IIE	1 in 14-							
Surrogate	%Recovery	Qualifier	Limits							
4-Bromotiuorobenzene	93		67 - 130							
1,2-Dichloroethane-d4 (Surr)	86		72 - 130							
Toluene-d8 (Surr)	94		70 - 130							

#### Lab Sample ID: LCS 720-168840/7 Matrix: Water Analysis Batch: 168840

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	478		ug/L	-	96	62 - 120	
-C5-C12								

**TestAmerica** Pleasanton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

#### TestAmerica Job ID: 720-60396-1

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

#### Lab Sample ID: LCS 720-168840/7 Matrix: Water Analysis Batch: 168840

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	93		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		72 - 130
Toluene-d8 (Surr)	93		70 - 130

#### Lab Sample ID: LCSD 720-168840/6

Matrix: Water Analysis Batch: 168840

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	22.3		ug/L	-	89	62 - 130	2	20
Acetone	125	116		ug/L		92	26 - 180	1	30
Benzene	25.0	23.1		ug/L		92	79 - 130	0	20
Dichlorobromomethane	25.0	23.2		ug/L		93	70 - 130	1	20
Bromobenzene	25.0	24.0		ug/L		96	70 - 130	1	20
Chlorobromomethane	25.0	23.1		ug/L		93	70 - 130	2	20
Bromoform	25.0	25.3		ug/L		101	68 - 136	1	20
Bromomethane	25.0	22.8		ug/L		91	43 - 151	0	20
2-Butanone (MEK)	125	118		ug/L		95	54 - 130	1	20
n-Butylbenzene	25.0	24.3		ug/L		97	70 - 142	1	20
sec-Butylbenzene	25.0	24.1		ug/L		96	70 - 134	0	20
tert-Butylbenzene	25.0	23.8		ug/L		95	70 - 135	0	20
Carbon disulfide	25.0	19.1		ug/L		76	58 - 130	1	20
Carbon tetrachloride	25.0	24.1		ug/L		96	70 - 146	1	20
Chlorobenzene	25.0	24.4		ug/L		98	70 - 130	1	20
Chloroethane	25.0	22.4		ug/L		90	62 - 138	1	20
Chloroform	25.0	23.2		ug/L		93	70 - 130	0	20
Chloromethane	25.0	21.5		ug/L		86	52 - 175	3	20
2-Chlorotoluene	25.0	23.4		ug/L		94	70 - 130	0	20
4-Chlorotoluene	25.0	23.9		ug/L		96	70 - 130	2	20
Chlorodibromomethane	25.0	24.5		ug/L		98	70 - 145	0	20
1,2-Dichlorobenzene	25.0	23.9		ug/L		96	70 - 130	2	20
1,3-Dichlorobenzene	25.0	24.2		ug/L		97	70 - 130	0	20
1,4-Dichlorobenzene	25.0	24.1		ug/L		96	70 - 130	1	20
1,3-Dichloropropane	25.0	23.0		ug/L		92	70 - 130	1	20
1,1-Dichloropropene	25.0	25.1		ug/L		100	70 - 130	0	20
1,2-Dibromo-3-Chloropropane	25.0	24.6		ug/L		98	70 - 136	2	20
Ethylene Dibromide	25.0	24.3		ug/L		97	70 - 130	1	20
Dibromomethane	25.0	23.4		ug/L		94	70 - 130	0	20
Dichlorodifluoromethane	25.0	20.8		ug/L		83	34 - 132	1	20
1,1-Dichloroethane	25.0	23.0		ug/L		92	70 - 130	2	20
1,2-Dichloroethane	25.0	22.4		ug/L		90	61 - 132	1	20
1,1-Dichloroethene	25.0	20.6		ug/L		82	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	22.8		ug/L		91	70 - 130	0	20
trans-1,2-Dichloroethene	25.0	23.1		ug/L		92	68 - 130	1	20
1,2-Dichloropropane	25.0	22.8		ug/L		91	70 - 130	0	20
cis-1,3-Dichloropropene	25.0	24.8		ug/L		99	70 - 130	0	20
trans-1,3-Dichloropropene	25.0	27.1		ug/L		108	70 - 140	0	20
Ethylbenzene	25.0	24.2		ug/L		97	80 - 120	1	20

**TestAmerica** Pleasanton

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

TestAmerica Job ID: 720-60396-1

7

### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-168840/6 Client Sample ID: Lab Control Sample Du									
Matrix: Water							Prep Ty	pe: To	tal/NA
Analysis Batch: 168840									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hexachlorobutadiene	25.0	24.3		ug/L		97	70 - 130	0	20
2-Hexanone	125	102		ug/L		82	60 - 164	1	20
Isopropylbenzene	25.0	25.0		ug/L		100	70 - 130	1	20
4-Isopropyitoluene	25.0	23.9		ug/L		95	70 - 130	0	20
Methylene Chloride	25.0	22.0		ug/L		88	70 - 147	1	20
4-Methyl-2-pentanone (MIBK)	125	104		ug/L		83	58 - 130	2	20
Naphthalene	25.0	24.1		ug/L		96	70 - 130	1	20
N-Propylbenzene	25.0	24.1		ug/L		96	70 - 130	0	20
Styrene	25.0	24.7		ug/L		99	70 - 130	1	20
1,1,1,2-Tetrachloroethane	25.0	24.7		ug/L		99	70 - 130	0	20
1,1,2,2-Tetrachloroethane	25.0	23.3		ug/L		93	70 - 130	0	20
Tetrachloroethene	25.0	25.1		ug/L		100	70 - 130	0	20
Toluene	25.0	23.9		ug/L		96	78 - 120	1	20
1,2,3-Trichlorobenzene	25.0	24.6		ug/L		98	70 - 130	2	20
1,2,4-Trichlorobenzene	25.0	25.6		ug/L		102	70_130	0	20
1,1,1-Trichloroethane	25.0	23.3		ug/L		93	70 - 130	1	20
1,1,2-Trichloroethane	25.0	23.8		ug/L		95	70 - 130	1	20
Trichloroethene	25.0	24.4		ug/L		97	70 - 130	0	20
Trichlorofluoromethane	25.0	20.6		ug/L		82	66 - 132	13	20
1,2,3-Trichloropropane	25.0	23.6		ug/L		95	70 - 130	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.4		ug/L		86	42 - 162	0	20
ne									
1,2,4-Trimethylbenzene	25.0	23.7		ug/L		95	70 - 132	1	20
1,3,5-Trimethylbenzene	25.0	24.1		ug/L		97	70 - 130	1	20
Vinyl acetate	25.0	20.0		ug/L		80	43 - 163	1	20
Vinyl chloride	25.0	22.3		ug/L		89	54 - 135	1	20
m-Xylene & p-Xylene	25.0	24.0		ug/L		96	70 - 142	0	20
o-Xylene	25.0	24.2		ug/L		97	70 - 130	1	20
2,2-Dichloropropane	25.0	24.5		ug/L		98	70 - 140	1	20
1000	1000								

	LUGD	2030	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95	1	67 - 130
1,2-Dichloroethane-d4 (Surr)	85		72 - 130
Toluene-d8 (Surr)	94		70 - 130

#### Lab Sample ID: LCSD 720-168840/8 Matrix: Water

Matrix: Water	
Analysis Batch: 168	840

			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)			500	484		ug/L		97	62 - 120	1	20
-C5-C12											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	94		67 - 130								
1,2-Dichloroethane-d4 (Surr)	88		72 - 130								
Toluene-d8 (Surr)	94		70 - 130								

TestAmerica Pleasanton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

7

## Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60457-A-1 MS	5							Client	Sample ID:	Matrix Spike
Matrix: Water									Prep	ype: Total/NA
Analysis Batch: 168840	Comula	Comple	Calles	MC	MC				P/ Doo	
Apolido	Bacult	Sample	Addod	Recult	Qualifier	Unit	D	% Por	/onec.	
Analyte Methyl text butyl other	ND	Quaimer	25.0	23.5	Quaimer			04	60 138	
			25.0	20.0		ug/L		97	60 140	
Acetone	ND		125	22.4		ug/L		00	60 140	
Benzene			25.0	23.1		ug/L		92	60 140	
Dichloropromometnane	ND		25.0	23.7		ug/L		95	60 140	
Bromobenzene	ND		25.0	23.5		ug/L		94	60 - 140	
Chlorobromometnane	ND		25.0	23.2		ug/L		93	60 - 140	
Bromotorm	ND		25.0	25.6		ug/L		103	56 - 140	
Bromomethane	ND		25.0	22.2		ug/L		89	23 - 140	
2-Butanone (MEK)	ND		125	117		ug/L		94	60 - 140	
n-Butylbenzene	ND		25.0	23.8		ug/L		95	60 - 140	
sec-Butylbenzene	ND		25.0	23.2		ug/L		93	60 - 140	
tert-Butylbenzene	ND		25.0	22.9		ug/L		91	60 - 140	
Carbon disulfide	ND		25.0	18.6		ug/L		74	38 - 140	
Carbon tetrachloride	ND		25.0	23.4		ug/L		94	60 - 140	
Chlorobenzene	ND		25.0	24.0		ug/L		96	60 - 140	
Chloroethane	ND		25.0	21.9		ug/L		88	51 - 140	
Chloroform	ND		25.0	23.3		ug/L		93	60 - 140	
Chloromethane	ND		25.0	21.0		ug/L		84	52 - 140	
2-Chlorotoluene	ND		25.0	22.7		ug/L		91	60 - 140	
4-Chlorotoluene	ND		25.0	23.0		ug/L		92	60 - 140	
Chlorodibromomethane	ND		25.0	25.3		ug/L		101	60 - 140	
1,2-Dichlorobenzene	ND		25.0	23.6		ug/L		94	60 - 140	
1,3-Dichlorobenzene	ND		25.0	23.8		ug/L		95	60 - 140	
1,4-Dichlorobenzene	ND		25.0	23.9		ug/L		96	60 - 140	
1,3-Dichloropropane	ND		25.0	24.0		ug/L		96	60 - 140	
1,1-Dichloropropene	ND		25.0	24.6		ug/L		99	60 - 140	
1,2-Dibromo-3-Chloropropane	ND		25.0	26.9		ug/L		108	60 - 140	
Ethylene Dibromide	ND		25.0	25.1		ug/L		100	60 - 140	
Dibromomethane	ND		25.0	23.9		ug/L		96	60 - 140	
Dichlorodifluoromethane	ND		25.0	20.4		ug/L		82	38 - 140	
1,1-Dichloroethane	ND		25.0	22.7		ug/L		91	60 - 140	
1,2-Dichloroethane	ND		25.0	22.7		ug/L		91	60 - 140	
1,1-Dichloroethene	ND		25.0	20.0		ug/L		80	60 - 140	
cis-1,2-Dichloroethene	ND		25.0	22.9		ug/L		92	60 - 140	
trans-1,2-Dichloroethene	ND		25.0	22.9		ug/L		91	60 - 140	
1.2-Dichloropropane	ND		25.0	23.6		ug/L		93	60 - 140	
cis-1.3-Dichloropropene	ND		25.0	25.7		ug/L		103	60 - 140	
trans-1.3-Dichloropropene	ND		25.0	28.1		ua/L		112	60 - 140	
Ethylbenzene	ND		25.0	23.4		ua/L		94	60 - 140	
Hexachlorobutadiene	ND		25.0	23.6		ua/L		95	60 - 140	
2-Hexanone	ND		125	111		ug/L		88	60 - 140	
Isonropylbenzene	ND		25.0	24.1		ug/l		96	60 - 140	
	ND		25.0	23.0		ug/l		92	60 140	
Methylene Chloride			25.0	20.0		ug/L		87	40 _ 140	
4-Methyl-2-pentanone (MIRK)			125	112		ug/L		90	58 130	
Nanhthalana			25.0	24.0		ug/L		90	56 140	
N-Pronvibenzene			25.0	24.9		ug/L		03	60 140	
N-Fropylbenzene			25.0	20.0		ug/L		55	60 140	
Styrene	ND		25.0	24.3		ug/L		97	00 - 140	

7

### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60457-A-	-1 MS							Client	Sample ID:	Matrix Spike
Matrix: Water									Prep Ty	/pe: Total/NA
Analysis Batch: 168840										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	ND		25.0	24.2		ug/L		97	60 - 140	
1,1,2,2-Tetrachloroethane	ND		25.0	24.1		ug/L		96	60 - 140	
Tetrachloroethene	ND		25.0	24.7		ug/L		99	60 - 140	
Toluene	ND		25.0	23.5		ug/L		94	60 - 140	
1,2,3-Trichlorobenzene	ND		25.0	24.6		ug/L		99	60 - 140	
1,2,4-Trichlorobenzene	ND		25.0	26.1		ug/L		105	60 - 140	
1,1,1-Trichloroethane	ND		25.0	22.6		ug/L		91	60 - 140	
1,1,2-Trichloroethane	ND		25.0	24.7		ug/L		99	60 - 140	
Trichloroethene	ND		25.0	24.6		ug/L		97	60 - 140	
Trichlorofluoromethane	ND		25.0	22.8		ug/L		91	60 - 140	
1,2,3-Trichloropropane	1.2		25.0	25.8		ug/L		98	60 - 140	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	20.7		ug/L		83	60 - 140	
ne										
1,2,4-Trimethylbenzene	ND		25.0	23.2		ug/L		93	60 - 140	
1,3,5-Trimethylbenzene	ND		25.0	23.2		ug/L		93	60 - 140	
Vinyl acetate	ND		25.0	21.6		ug/L		86	40 - 140	
Vinyl chloride	ND		25.0	21.6		ug/L		86	58 - 140	
m-Xylene & p-Xylene	ND		25.0	23.6		ug/L		94	60 - 140	
o-Xylene	ND		25.0	23.6		ug/L		94	60 - 140	
2,2-Dichloropropane	ND		25.0	23.2		ug/L		93	60 - 140	
		140		*						
	WS	WS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene	95		67 - 130							

72 - 130

70_130

87

Toluene-d8 (Surr)	94
Lab Sample ID: 720-60457-A-1 MSD	

Matrix: Water Analysis Batch: 168840

1,2-Dichloroethane-d4 (Surr)

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND		25.0	22.4		ug/L		90	60 - 138	5	20
Acetone	ND		125	101		ug/L		81	60 - 140	2	20
Benzene	ND		25.0	23.6		ug/L		94	60 - 140	2	20
Dichlorobromomethane	ND		25.0	23.0		ug/L		92	60 - 140	3	20
Bromobenzene	ND		25.0	24.1		ug/L		96	60 - 140	2	20
Chlorobromomethane	ND		25.0	22.8		ug/L		91	60 - 140	2	20
Bromoform	ND		25.0	24.6		ug/L		98	56 - 140	4	20
Bromomethane	ND		25.0	23.6		ug/L		94	23 - 140	6	20
2-Butanone (MEK)	ND		125	114		ug/L		91	60 - 140	2	20
n-Butylbenzene	ND		25.0	25.0		ug/L		100	60 - 140	5	20
sec-Butylbenzene	ND		25.0	24.3		ug/L		97	60 - 140	5	20
tert-Butylbenzene	ND		25.0	23.9		ug/L		95	60 - 140	4	20
Carbon disulfide	ND		25.0	19.3		ug/L		77	38 - 140	4	20
Carbon tetrachloride	ND		25.0	24.3		ug/L		97	60 - 140	4	20
Chlorobenzene	ND		25.0	24.5		ug/L		98	60 - 140	2	20
Chloroethane	ND		25.0	22.9		ug/L		92	51 - 140	5	20
Chloroform	ND		25.0	23.6		ug/L		94	60 - 140	1	20

TestAmerica Pleasanton

**Client Sample ID: Matrix Spike Duplicate** 

Prep Type: Total/NA

TestAmerica Job ID: 720-60396-1

7 8

### Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60457-A-1 MSE Matrix: Water	0						Client S	ample II	: Matrix Spike Duplicate Prep Type: Total/NA			
Analysis Batch: 168840	0	Ormala	Calles	MOD	MOD				0/ Dee		800	
Analyta	Bacult	Sample	Spike	Result	Qualifier	Unit	D	%Pec	/ortec.	PPD	Limit	
Chloromothono	Nesul	Quanner	25.0	21 /	Quamer	ug/l		85	52 140	2	20	
2 Chlorotoluono			25.0	21.4		ug/L		0.0	60 140	4	20	
4 Chlorotoluene			25.0	20.0		ug/L		94	60 140	4	20	
Chloradikromomothana	ND		25.0	24.0		ug/L		00	60 140	-	20	
			25.0	24.7		ug/L		06	60 140	2	20	
1,2-Dichlorobenzene	ND		25.0	24.0		ug/L		07	60 140	2	20	
			25.0	24.0		ug/L		97	60 140	1	20	
1.3 Dichloropropage	ND		25.0	24.2		ug/L		97	60 140	1	20	
1.1 Dichloropropono			25.0	25.1		ug/L		102	60 140	3	20	
	ND		25.0	20.0		ug/L		97	60 140	10	20	
T,2-Dibionio-3-Chloropiopane	ND		25.0	24.5		ug/L		97	60 140	. 3	20	
Dibromomothana	ND		25.0	23.0		ug/L		94	60 140	2	20	
Dishloredifluoremethane	ND		25.0	20.4		ug/L		86	38 140	5	20	
			25.0	21.0		ug/L		00	60 140	2	20	
			25.0	20.1		ug/L		92	60 140	2	20	
			25.0	22.1		ug/L		03	60 140	4	20	
			25.0	20.7		ug/L		00	60 140	4	20	
trans 1.2 Dichlerosthene			25.0	23.0		ug/L		92	60 140	3	20	
	ND		25.0	23.0		ug/L		02	60 140	1	20	
			25.0	25.4		ug/L		102	60 140	1	20	
trans 1.2 Dichloropropene			25.0	20.4		ug/L		102	60 140	3	20	
Tans-1,5-Dichloropropene			25.0	21.5		ug/L		109	60 140	3	20	
Etnyidenzene	ND		25.0	24.1		ug/L		100	60 140	5	20	
Hexachiorobutadiene			25.0	25.0		ug/L		100	60 140	0	20	
			125	25.0		ug/L		100	60 140	0	20	
			25.0	20.0		ug/L		07	60 140	5	20	
4-isopropylioidene			25.0	24.5		ug/L		97	40 140	1	20	
Methylene Chionae			25.0	21.0		ug/L		00	40 - 140	5	20	
4-Methyl-2-pentanone (MIBK)	ND		125	22.0		ug/L		00	56 140	3	20	
Napmalene			25.0	23.9		ug/L		90	50 - 140	4	20	
N-Propyidenzene			25.0	24.4		ug/L		90	60 140	0	20	
	ND		25.0	24.5		ug/L		97	60 140	0	20	
1,1,2,2 Tetrachloroethane			25.0	24.0		ug/L		97	60 140	0	20	
Tatrachleraethene			25.0	25.1		ug/L		101	60 140	4	20	
Teluene	ND		25.0	23.5		ug/L		06	60 140	2	20	
			25.0	20.5		ug/L		100	60 140	- 1	20	
1,2,3-Thermolobenzene			25.0	24.5		ug/L		100	60 140	0	20	
1,2,4-Thchloroothana			25.0	20.1		ug/L		03	60 140	2	20	
			25.0	23.2		ug/L		96	60 140	3	20	
			25.0	25.0		ug/L		08	60 140	2	20	
Trichlorofluoromothano			25.0	20.0		ug/L		08	60 140	7	20	
1.2.3 Trichlorononana	1 2		25.0	24.0		ug/L		63	60 140	5	20	
	1.2		25.0	24.0		ug/L		87	60 140	5	20	
i, i, z- i richioro-1, z, z-trifiuoroetha	ND		20.0	21.0		ug/L		07	00-140	5	20	
1,2,4-Trimethylbenzene	ND		25.0	23.9		ug/L		95	60 - 140	3	20	
1,3,5-Trimethylbenzene	ND		25.0	24.1		ug/L		96	60 - 140	4	20	
Vinyl acetate	ND		25.0	21.0		ug/L		84	40 - 140	3	20	
Vinyl chloride	ND		25.0	23.1		ug/L		92	58 - 140	7	20	

TestAmerica Job ID: 720-60396-1

7

# Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

#### Lab Sample ID: 720-60457-A-1 MSD Matrix: Water Analysis Batab: 168840

#### Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Analysis Batch: 168840												
	Sample	Sample	Spike	MSD	MSD					%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	ND		25.0	24.1		ug/L	9	-	96	60 - 140	2	20
o-Xylene	ND		25.0	24.0		ug/L			96	60 - 140	2	20
2,2-Dichloropropane	ND		25.0	24.3		ug/L			97	60 - 140	4	20
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene	94		67 - 130									
1,2-Dichloroethane-d4 (Surr)	84		72 - 130									
Toluene-d8 (Surr)	96		70 - 130									

# **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet TestAmerica Job ID: 720-60396-1

8

## GC/MS VOA

Analysis Batch: 16883	9				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60396-1	MW-01	Total/NA	Water	8260B/CA_LUFT	
720-60396-2	MW-100	Total/NA	Water	8260B/CA_LUFT	
720-60396-3	MW-02	Total/NA	Water	MS 8260B/CA_LUFT	
720-60396-3 MS	MW-02	Total/NA	Water	MS 8260B/CA_LUFT	
720-60396-3 MSD	MW-02	Total/NA	Water	MS 8260B/CA_LUFT	
720-60396-4	MP-01-1	Total/NA	Water	MS 8260B/CA_LUFT	
720-60396-5	MP-01-2	Total/NA	Water	MS 8260B/CA_LUFT	
720-60396-6	MP-01-3	Total/NA	Water	MS 8260B/CA_LUFT	
720-60396-7	MP-02-1	Total/NA	Water	NIS 8260B/CA_LUFT	
720-60396-8	MP-02-3	Total/NA	Water	8260B/CA_LUFT	
720-60396-9	MP-03-1	Total/NA	Water	8260B/CA_LUFT	
720-60396-10	MP-03-2	Total/NA	Water	8260B/CA_LUFT	
720-60396-11	MP-03-3	Total/NA	Water	8260B/CA_LUFT	
720-60396-12	MP-04-1	Total/NA	Water	8260B/CA_LUFT	
720-60396-15	TB100614-1	Total/NA	Water	8260B/CA_LUFT	
LCS 720-168839/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
LCS 720-168839/7	Lab Control Sample	Totai/NA	Water	8260B/CA_LUFT	
LCSD 720-168839/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
LCSD 720-168839/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
MB 720-168839/4	Method Blank	Total/NA	Water	8260B/CA_LUFT MS	

#### Analysis Batch: 168840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60396-13	MP-04-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-60396-14	MP-04-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-60396-16	TB100614-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-60457-A-1 MS	Matrix Spike	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-60457-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-168840/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-168840/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	

# **QC Association Summary**

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet TestAmerica Job ID: 720-60396-1

8

## GC/MS VOA (Continued)

Lab Sample ID	Client Sample ID	Pren Tyne	Matrix	Method	Pren Batcl
LCSD 720-168840/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA LUFT	
				MS	
LCSD 720-168840/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-168840/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

## Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet TestAmerica Job ID: 720-60396-1

8 9

Client Samp	le ID: MW-0	1						Lab Sample ID	: 720-60396-1
Date Collected	: 10/06/14 12:2	25			5				Matrix: Water
Date Received:	: 10/06/14 17:4	0							
	Batch	Batch		Dilution	Batch	Prepared			
Bron Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Totol/NA	Analysis	8260B/CA LUETMS		1	168830	10/15/14 13:14	ASC	TALPIS	
	Analysis	B200B/CA_LOT TWO			100000	10/10/14 10.14	AUU	MET LO	
Client Samp	le ID: MW-1	00						Lab Sample ID	: 720-60396-2
Date Collected	: 10/06/14 12:3	30							Matrix: Water
Date Received:	: 10/06/14 17:4	0							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 13:43	ASC	TAL PLS	
									700 00000 0
Client Samp	le ID: MW-0	2						Lab Sample ID	: 720-60396-3
Date Collected	: 10/06/14 08:4	10							matrix: water
Date Received:	: 10/06/14 17:4	0							
Γ	Batch	Batch		Dilution	Batch	Prepared			
Pron Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 12:17	ASC	TAL PLS	
Client Samp	le ID: MP-01 : 10/06/14 12::	I-1 35						Lab Sample ID	: 720-60396-4 Matrix: Water
Date Received	: 10/06/14 17:4	10							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 14:11	ASC	TAL PLS	
<b>Client Samp</b>	le ID: MP-01	-2						Lab Sample ID	: 720-60396-5
Client Samp	le ID: MP-01	I-2						Lab Sample ID	: 720-60396-5 Matrix: Water
Client Samp Date Collected Date Received	le ID: MP-01 : 10/06/14 13:3 : 10/06/14 17:4	1-2 30 10				ē.		Lab Sample ID	: 720-60396-5 Matrix: Water
Client Samp Date Collected Date Received	le ID: MP-01 : 10/06/14 13:: : 10/06/14 17:4 Batch	I-2 30 10 Batch		Dilution	Ratch	Prepared		Lab Sample ID	: 720-60396-5 Matrix: Water
Client Samp Date Collected Date Received	le ID: MP-01 1: 10/06/14 13:3 10/06/14 17:4 Batch	I-2 30 IO Batch	Run	Dilution	Batch	Prepared or Analyzed	Analyst	Lab Sample ID	: 720-60396-5 Matrix: Water
Client Samp Date Collected Date Received Prep Type Total/NA	le ID: MP-01 1: 10/06/14 13:3 10/06/14 17:4 Batch Type Analysis	I-2 30 0 Batch Method 8260B/CA_LUFTMS	Run	Dilution Factor	Batch Number 168839	Prepared or Analyzed 10/15/14 14:40	Analyst ASC	Lab Sample ID	: 720-60396-5 Matrix: Water
Client Samp Date Collected Date Received Prep Type Total/NA	le ID: MP-01 1: 10/06/14 13:3 10/06/14 17:4 Batch Type Analysis	I-2 30 0 Batch Method 8260B/CA_LUFTMS	Run	Dilution Factor 1	Batch Number 168839	Prepared or Analyzed 10/15/14 14:40	Analyst ASC	Lab Sample ID	: 720-60396-5 Matrix: Water
Client Samp Date Collected Date Received Prep Type Total/NA Client Samp	le ID: MP-01 : 10/06/14 13:: : 10/06/14 17:4 Batch Type Analysis le ID: MP-01	I-2 30 10 Batch Method 8260B/CA_LUFTMS I-3	Run	Dilution Factor 1	Batch Number 168839	Prepared or Analyzed 10/15/14 14:40	Analyst ASC	Lab Sample ID Lab TAL PLS Lab Sample ID	: 720-60396-5 Matrix: Water
Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	le ID: MP-01 : 10/06/14 13:3 : 10/06/14 17:4 Batch Type Analysis le ID: MP-01 : 10/06/14 14:2	I-2 30 10 Batch Method 8260B/CA_LUFTMS I-3 20	Run	Dilution Factor 1	Batch Number 168839	Prepared or Analyzed 10/15/14 14:40	Analyst ASC	Lab Sample ID Lab TAL PLS Lab Sample ID	: 720-60396-5 Matrix: Water : 720-60396-6 Matrix: Water
Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	le ID: MP-01 : 10/06/14 13:: : 10/06/14 17:4 Batch Type Analysis le ID: MP-01 : 10/06/14 14:2 : 10/06/14 17:4	I-2 30 40 Batch Method 8260B/CA_LUFTMS I-3 20 40	Run	Dilution Factor 1	Batch Number 168839	Prepared or Analyzed 10/15/14 14:40	Analyst ASC	Lab Sample ID	: 720-60396-5 Matrix: Water : 720-60396-6 Matrix: Water
Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	le ID: MP-01 : 10/06/14 13:: : 10/06/14 17:4 Batch Type Analysis le ID: MP-01 : 10/06/14 14:2 : 10/06/14 17:4 Batch	I-2 30 10 Batch Method 8260B/CA_LUFTMS I-3 20 10 Batch	Run	Dilution Factor 1 Dilution	Batch Number 168839 Batch	Prepared or Analyzed 10/15/14 14:40 Prepared	Analyst ASC	Lab Sample ID	: 720-60396-5 Matrix: Water : 720-60396-6 Matrix: Water
Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	le ID: MP-01 : 10/06/14 13:: : 10/06/14 17:4 Batch Type Analysis le ID: MP-01 : 10/06/14 14:2 : 10/06/14 17:4 Batch Type	I-2 30 10 Batch Method 8260B/CA_LUFTMS I-3 20 10 Batch Method	Run	Dilution Factor 1 Dilution Factor	Batch Number 168839 Batch Number	Prepared or Analyzed 10/15/14 14:40 Prepared or Analyzed	Analyst ASC Analyst	Lab Sample ID Lab Lab Lab	: 720-60396-5 Matrix: Water : 720-60396-6 Matrix: Water

## Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet TestAmerica Job ID: 720-60396-1

5

8

Oliont Compl		0.4						Lab Cample	10. 720 60206 7
Client Sampi	e ID: IVIP-U	2-1						Lab Sample	ID. 720-00390-7
Date Collected:	10/06/14 09:	35							Matrix: Wate
Date Received:	10/06/14 17:4	40							
	Batch	Batch		Dilution	Batch	Prepared			
Pren Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA LUETMS		1	168839	10/15/14 15:36	ASC	TAL PLS	
	7 thaty sis	62660/6/ <u>-</u> 261 1110			100000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
<b>Client Sampl</b>	e ID: MP-0	2-3						Lab Sample	ID: 720-60396-8
Date Collected:	10/06/14 11:	05							Matrix: Water
Date Received:	10/06/14 17:4	40							
-									
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 16:05	ASC	TAL PLS	
Client Sampl	e ID: MP-0	3-1			38			Lab Sample	ID: 720-60396-9
Date Collected:	10/06/14 11:	15							Matrix: Water
Date Beceived	10/06/14 17:4	40							matrix. mator
Date Received.	10/00/14 17.	••							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 16:34	ASC	TAL PLS	
Client Sample	e ID: MP-0	3-2					1	ab Sample II	): 720-60396-10
Date Collected:	10/06/14 08-	35							Matrix: Water
Date Received:	10/06/14 17:4	40							matrix, mater
<b>—</b>									
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 17:02	ASC	TAL PLS	
Client Sample	e ID: MP-0	3-3					L	ab Sample I	0: 720-60396-11
Date Collected:	10/06/14 11:	00							Matrix: Water
Date Received:	10/06/14 17:4	40							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 17:31	ASC	TAL PLS	
Client Sample	e ID: MP-04	4-1					L	.ab Sample II	): 720-60396-12
Date Collected:	10/06/14 12:4	40							Matrix: Water
Date Received:	10/06/14 17:4	40					_		
	Batah	Ratch		Dilution	Batch	Prepared			
Bron Turne	Daton	Method	Pue	Eactor	Number	or Analyzed	Analyst	Lab	
Tetel (h)	Archie	ROCOR LUCTION	Null		400000	10/15/14 47-50	ASC		
I Otal/NA	Analysis	0260B/CA_LUFIMS		1	168839	10/15/14 17:59	ASC	TAL PLS	

## Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet TestAmerica Job ID: 720-60396-1

8 9

Client Samp	le ID: MP-04	4-2	····				La	ab Sample ID	: 720-60396-13
Date Collected: Date Received:	: 10/06/14 12: 10/06/14 17:4	50 10						CONTRACTOR N	Matrix: Water
Γ	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168840	10/15/14 16:50	ASC	TAL PLS	
Client Samp	le ID: MP-04	4-3					La	ab Sample ID	: 720-60396-14
Date Collected Date Received:	: 10/06/14 09: : 10/06/14 17:4	35 40							Matrix: Water
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168840	10/15/14 17:20	ASC	TAL PLS	
Client Samp	le ID: TB10	0614-1					La	ab Sample ID	: 720-60396-15
Date Collected	10/06/14 08-	00							Matrix: Water
Date Received:	: 10/06/14 17:4	40							
<b>[</b>	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 12:46	ASC	TAL PLS	
Client Samp	le ID: TB10	0614-2					La	ab Sample ID	: 720-60396-16
Date Collected	: 10/06/14 08:	02		1					Matrix: Water
Date Received:	: 10/06/14 17:4	40							
[-	Datab	Patab		Dilution	Batch	Prepared			
Bron Type	Type	Method	Rup	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA LUETMS		1	168840	10/15/14 12:42	ASC	TAL PLS	
I VIGI/INA	/ inciy SiS	52500/0/1_10/10/0			100040				

#### Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

### TestAmerica Job ID: 720-60396-1

10

### Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
California	State Prog	am	9	2496	01-31-16
Analysis Method	Prep Method	Matrix	Analy	te	

TestAmerica Job ID: 720-60396-1

lethod	Method Description	Protocol	Laboratory
260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS

#### Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

## **Sample Summary**

Matrix

Water

#### Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

**Client Sample ID** 

MW-01

MW-100

MW-02

MP-01-1

MP-01-2

MP-01-3

MP-02-1

MP-02-3

MP-03-1

MP-03-2

MP-03-3

MP-04-1

MP-04-2

MP-04-3

TB100614-1

TB100614-2

Lab Sample ID

720-60396-1

720-60396-2

720-60396-3

720-60396-4

720-60396-5

720-60396-6

720-60396-7

720-60396-8

720-60396-9

720-60396-10

720-60396-11

720-60396-12

720-60396-13

720-60396-14

720-60396-15

720-60396-16

#### TestAmerica Job ID: 720-60396-1

Collected

10/06/14 12:25

10/06/14 12:30

10/06/14 08:40

10/06/14 12:35

10/06/14 13:30

10/06/14 14:20

10/06/14 09:35

10/06/14 11:05

10/06/14 11:15

10/06/14 08:35

10/06/14 11:00

10/06/14 12:40

10/06/14 12:50

10/06/14 09:35

10/06/14 08:00

10/06/14 08:02

Received	
10/06/14 17:40	
10/06/14 17:40	
10/06/14 17:40	R
10/06/14 17:40	~
10/06/14 17:40	
10/06/14 17:40	
10/06/14 17:40	
10/06/14 17:40	
10/06/14 17:40	
10/06/14 17:40	
10/06/14 17:40	
10/06/14 17:40	
10/06/14 17:40	

10/06/14 17:40

10/06/14 17:40

10/06/14 17:40

Seq. No.	1248	1465 North McDowe Suite 200	ell Blvd.	CHAIN	OF CUST	FODY	FOR	M	10	ge i	156	131	0
.ab:	TA	Petaluma, CA 9495	4	Samplers:	D. Allb A								
		(707) 793-3800	1	201	-201								
lob Numb	per: ODIO168	A. 80000.05 0	1	10-6	0346								
Jame/I or	ration: Computer of	Incourt Calilla	town						YSIS F	REQUE	-STEI	G	
		hervour capitac	15010		A			11 17 184					
Project M	anager: <u>Aven</u>	1 Whitmarsh		Recorder:	Signature Begu		PHa						T
					(olghorato rioqu		ALS ALS						
MATRIX	#			DATE	STATION	1	MET						
					DESCRIPTI	ON	5 82						
	npre CCL		VR MO			DEPTH	270 Pace						
× v ×	DIIII XI MIU	J-ON	1410	061225		l ^a	N N N			┝╼╆╼┼	++	++-	+
	13 MM	3-100	1410	061230			X						
+++	9 MU	N-02	1410	060840			×						$\downarrow$
		-01-1	1410	06123					++			┿╋	+
	R R R R R R R R R R R R R R R R R R R	-01-2	IUIA	061350			X		++		-+-+	+-+-	+
	112 24	2-07-HMP-02-1	1410	0000033			1				++		+
	MP	>-02-2	1410	06110	-		X						T
	3 MF	2-03-1	1410	061115			X						
	ZM	03-2	1410	060833			I A						
DEDODT	TO. avenu white	DITIONAL INFORMATION			n-n sér	NA CHA	N OF CU	SIOD	Y REC	JORD	1.1	1 / 11 /	1
	10. dand all	He Lince ion			Relinquished By	(Signature)	(Print Nam	e)	(Com	anvi	100	C 1/~1 Data/Tir	te
PO#: (	6012205652				store	the	0 1	inl	en	teelf	tu	1.10	6
TAT:	Standard				Received By (Si	gnalure):	(Print Nam	e)	(Comp	oany)	0	Date/Tin	ne)
Commen	ts: Field Filtered Y	(/N											
EDF	reavired. Site	D: TIOCOCOTE	6		Relinquished By	(Signature)	(Print Nam	e)	(Comp	oany)	(1	Date/Tin	ne)
	102 MJMSD				Received By (Si	anature):	/Drint Nor	al	(Com	anul		Date/Tir	mal
					received by (or	gnature).	(r mit roenn	0)	(comp	(arry)	(.	Ducor Thi	10)
_					Relinquished By	(Signature)	(Print Nam	e)	(Com	oany)	(	Date/Tir	me)
	0-60396 Chain of Custody				Received By (Si	ignature):	(Print Nam	e)	(Com	oanv)	(	Date/Tir	me)

1 L L L
Seq. No Lab: Job Numi	TA per:	124: 00 1	9	000	-	14 Si Pe (7	465 uite etal '07)	Ne 20 Ium ) 79	orth )0 na, 1 )3-3	Ma CA 380	:Do 949 0	wel )54	I Bŀ	vd.	7	10	( 5	Cl San	H/	Al ers	N s:	1	of C Au	US 6_4	ST E	-01	YC	′F	0	R	M			•	1ª	n	n	15	167	30	9
Name/Loo	- ation:	Croi	in	d	how	rel	et	(	a	Lit	la	0	1	U	24	د											T				AN	IAL	YSI	ISI	REC	QUE	EST	TEC	)		
Project M	anage	r: _A	ien	1 '	1	it	m	or	54								_ F	Rec	cord	der	r: 1	2_	JAC (Signatu		A	red)			<b>TALS</b>	F-FPIter											
MATRIX	CON	# TAINERS	5				Ĩ									D	AT	Έ					ST DESC	CRIF					22 MET	Sorre											
Soil	Inpres	LCL 103			SAN	MPI	LE	NL	ME	ER			YR		мо	I	۲AC		т	IME	E				C	EPT	T	3270	LITLE 2	vocs											
×		3	M	P.	- 0	3		3		T	1		12	1	0	1	3 4	- 1	11	6	00				1		Ť			X		+		$\uparrow$			1			+	+
		2	M	٩-	- 0	4	-	3						1	1	DC		5	1 2	24	10	2								<											
			M	P	-0	4	-	2	-	-	-		lL	11	C	20	16	> 1	12	- 5	0	1			_					×								1		_	1
		15	M	P	~ 0	14	-	3		_	-		lL	1		0 0		00	29	3	3 5				_			_		X		_	+	1			_	-		_	+
		2	T	B	10	10	6	Î	4	-			1	4	10	0 1	0 (			S C		-			+		╢			×		+	+	-			-	-		_	4
		3		15	10	0	6	L	4	-	-			4	11				2 8		12	╢						+	-	x	$\vdash$	-	+	+	$\square$				$\vdash$	+	-
┿╉┼┉			+		+	+	+	-	+	+	+		+	+	+	+		+-	+	+	+	╢			+		╢	+	+	$\vdash$		-+-	-	-	$\vdash$	┝╼┼	+		+	+	+
				$\vdash$	-	+	$\square$		+	+	+		+	+	$^{+}$	+	+	+	+	+	+-	th			+		╢╴	+	+	-		-	+	+-			-	+		+	+
						+			$\uparrow$	$\uparrow$	1		+	+	+	╈	+	+	+	+	+				+			+	+	$\vdash$		+	+	+	+		+	+		+	+
			A	DDI	TIO	NA	LI	NF	OR	MA	TIC	N		-		-	,		-	<u></u>	,	╢				.0	HA	IN	OF	CL	JST	OE	Y F	RE(	col	RD			1 1		-
REPORT	TO: 4	very.	un	in	hav	151	9	a	ma	ic.	10	n										1	2-	1	4	ela	x	£	Jui	TAA	all	ut.	+	AM	EC		1	olt	tri	11	74
	ć	lavid.	all	at	00	au	ne	e.	10	m													Relingui	ished	By	(Signa	ture)	. (P	rint	Nag	20)	82	(0	om	pany	1		(D	ate/	Time)	-
°O#:(	012	2056	52																			-	10	The	m	IL	w	22	2	. 1	M	1	er	4		in	-6	1	4	17	to
AT:	tand	and																					Receive	d By	(Sig	nature	):	(P	Print	Nan	ne)		(C	Comp	oany,	)		(D	ate/1	īme)	-
Comment	s: Fie	eld Filter	ed	Y/N	1			_			_	_				_						1	-																		
LDF	reg	wired	5	te	IT	Ľ.	11	Ge	0	20	011	011	3	-		-		_	-	_	-		Relinqui	ished	By	(Signa	ture)	(P	Print	Nan	ne)		(C	Comp	ралу	)		(D	ate/1	Time)	1
																							Receive	d By	(Sig	inature	):	(P	Print	Nan	ne)		(0	Comp	oany	)	-	(D	ate/	Time)	,
·						_										-			_	_	_		Relinqui	ished	Ву	(Signa	ture)	(P	Print	Nan	ne)		(C	Com	oany	;)		(D	ate/1	Time)	
						_		-	-								-	-			_		Receive	d By	(Sig	Inature	):	(F	Print	Nan	ne)		(0	Com	oany	)		(D	ate/	Time)	<u> </u>

### Salimpour, Afsaneh

From: Whitmarsh, Avery [avery.whitmarsh@amec.com]

Sent: Friday, October 10, 2014 10 58 AM

To: Salimpour, Afsaneh

Cc: Allbut, David; Stemler, Greg

Subject: Crown - sample analysis

Hı Afsaneh -

We'd like to release all the samples from hold that we had submitted on Monday for Crown Chevrolet.

That is for the following job numbers:

- 720-60396

720-60404

Please let me know if you have any questions.

Thanks Avery

#### Avery Whitmarsh, PG Senior Geologist AMEC

Kolma L& ufrasht cruid
 Grand Avenue, Suite 1100, Oakland, CA 94612 USA
 Custo Control (Ex 810-363-3141)
 Close Control (Ex 810-364-3141)
 Close Control (Ex 810-364-31414)
 Close Control (Ex 810-364-3141)



If a constrained is this e-mail is intended only for the individual or entity to whom it is addressed in the reducing environments) may comain confidential and/or privileged information including environments, and a control use, disclose, disseminate, copy or print its contents. In this e-mathements, alcase notify the sender by reply e-mail and delete and destroy the message.

### Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

### Job Number: 720-60396-1

List Source: TestAmerica Pleasanton

	1
Login Number: 60396	
List Number: 1	
Creator: Bullock, Tracy	
Question	

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	



APPENDIX C

Data Quality Review



### DATA QUALITY REVIEW

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California Site Cleanup Program Case No. RO0003014

April 21, 2015 Project OD10160070

This Data Quality Review appendix was prepared by the staff of Amec Foster Wheeler under the supervision of the project Data Quality Manager whose signature appears hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Jake Torrens Associate Scientist Amec Foster Wheeler Environment & Infrastructure, Inc.

### TABLE OF CONTENTS

	Page	Э
1.0	INTRODUCTION	1
2.0	THIRD QUARTER 2014 GROUNDWATER MONITORING       C-1         2.1       DATA ACCURACY       C-2         2.1.1       Spiked Compounds       C-2         2.1.2       Surrogate Recoveries       C-2         2.1.3       Method Blanks       C-2         2.1.4       Trip Blanks       C-2         2.1.5       Other Factors       C-2         2.2       DATA PRECISION       C-2         2.3       DATA COMPLETENESS       C-2	1 2 2 2 2 2 2 2 2 2 2 2 2
3.0	FOURTH QUARTER 2014 GROUNDWATER MONITORING       C-3         3.1       DATA ACCURACY       C-3         3.1.1       Spiked Compounds       C-3         3.1.2       Surrogate Recoveries       C-3         3.1.3       Method Blanks       C-3         3.1.4       Trip Blanks       C-3         3.1.5       Other Factors       C-3         3.2       DATA PRECISION       C-4         3.3       DATA COMPLETENESS       C-4	3 3 3 3 3 3 3 4 4
4.0	SUMMARY OF GROUNDWATER DATA QUALITY REVIEW	4
5.0	REFERENCES C-4	4

### TABLE

 Table C-1
 Summary of Precision Data for Analysis of Groundwater Field Duplicate

 Sample

# APPENDIX C DATA QUALITY REVIEW Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

### 1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. ("Amec Foster Wheeler"), evaluated the analytical data from the third and fourth quarter 2014 groundwater monitoring events using guidelines set forth in the U.S. Environmental Protection Agency's (EPA's) *USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (National Functional Guidelines; U.S. EPA, 2008).

The data quality review also included a data completeness check of the data packages, a transcription check of sample results, and a review of all laboratory reporting forms. Qualified data are included in the data summary tables in the main body of this report (with the exception of analytes that have not been detected at the site, which are not tabulated). Data qualifiers for the third and fourth quarter 2014 groundwater monitoring events are included on the laboratory analytical reports, copies of which are included in Appendix B.

### 2.0 THIRD QUARTER 2014 GROUNDWATER MONITORING

Quality assurance procedures for groundwater samples collected during the third quarter 2014 groundwater monitoring event included the collection and analysis of one blind field duplicate sample and one matrix spike/matrix spike duplicate (MS/MSD) sample; laboratory analysis of method blank samples, surrogate spikes, and laboratory control spike/laboratory control spike duplicates (LCS/LCSDs); and evaluation of the analytical results.

The blind field duplicate groundwater sample was collected from monitoring well MW-01 and labeled as MW-100. The groundwater MS/MSD sample was collected from monitoring well MW-02.

A review of groundwater data quality is provided in the following sections.

## 2.1 DATA ACCURACY

Data accuracy was assessed by the analysis of LCS, LCSD, MS, and MSD samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy.

#### 2.1.1 Spiked Compounds

No results were qualified due to LCS/LCSD or MS/MSD recoveries.

#### 2.1.2 Surrogate Recoveries

No groundwater data were qualified due to surrogate recoveries.

#### 2.1.3 **Method Blanks**

There were no detections in the method blank samples.

#### 2.1.4 Trip Blanks

Two trip blanks were submitted for volatile organic compound (VOC) analysis. There were no detections in the trip blank samples.

#### 2.1.5 Other Factors

Total petroleum hydrocarbons quantified as gasoline (TPHg; reported by the analytical laboratory as gasoline range organics) were reported at a concentration similar to trichloroethene (TCE) in groundwater sample MP-02-1 and to tetrachloroethene (PCE) in groundwater samples MW-01, MW-100, MP-01-1, and MP-03-1. The analytical laboratory indicated in the case narratives for these samples that the reported TPHg results were due to presence of discrete peaks (PCE or TCE) and not the presence of gasoline range organics. As a result, Amec Foster Wheeler qualified these TPHg results with "R" to indicate that they are rejected.

#### 2.2 **DATA PRECISION**

Data precision is evaluated by comparing analytical results from the duplicate sample pair and evaluating the calculated relative percent difference (RPD) between the data sets. Results for LCS/LCSD, MS/MSD, and the field duplicate sample pair were evaluated to assess the precision of the analytical methods. A summary of sample results from the field duplicate sample pair is shown in Table C-1.

The RPDs for the MS/MSD, LCS/LCSD, and field duplicate pairs were within acceptance limits.

#### 2.3 **DATA COMPLETENESS**

Completeness is the ratio of the number of valid sample results to the total number of samples analyzed with a specific matrix and/or analysis. The percent complete is calculated by the following equation:

> (number of valid measurements) × 100 % Complete = (number of measurements planned)

The percent complete for groundwater sample data collected during the third quarter 2014 groundwater monitoring event is 100 percent, with the exception of TPHg results, where the percent complete is 61.5 percent.

## 3.0 FOURTH QUARTER 2014 GROUNDWATER MONITORING

Quality assurance procedures for groundwater samples collected during Amec Foster Wheeler's fourth quarter 2014 groundwater monitoring event included the collection and analysis of one blind field duplicate sample and one MS/MSD sample; laboratory analysis of method blank samples, surrogate spikes, and LCS/LCSDs; and evaluation of the analytical results.

The blind field duplicate groundwater sample was collected from monitoring well MW-01 and labeled as MW-100. The groundwater MS/MSD sample was collected from monitoring well MW-02.

A review of groundwater data quality is provided in the following sections.

## 3.1 DATA ACCURACY

Data accuracy was assessed by the analysis of LCS, LCSD, MS, and MSD samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy.

## 3.1.1 Spiked Compounds

No results were qualified due to LCS/LCSD or MS/MSD recoveries.

# 3.1.2 Surrogate Recoveries

No groundwater data were qualified due to surrogate recoveries.

# 3.1.3 Method Blanks

There were no detections in the method blank samples.

# 3.1.4 Trip Blanks

Two trip blank samples were submitted for VOC analysis. There were no detections in the trip blank samples.

# 3.1.5 Other Factors

TPHg were reported at concentrations similar to one or more compounds including PCE, TCE, and/or cis-1,2-dichloroethene (cis-1,2-DCE) in groundwater samples MW-01, MW-100, MP-01-1, and MP-02-1. The analytical laboratory indicated in the case narratives for these samples that the TPHg results were due to presence of discrete peaks (PCE, TCE, or,

cis-1,2-DCE) and not the presence of gasoline range organics. As a result, Amec Foster Wheeler qualified these TPHg results with "R" to indicate that they are rejected.

## 3.2 DATA PRECISION

Data precision is evaluated by comparing analytical results from duplicate sample pairs and evaluating the calculated RPD between the data sets. Results for the LCS/LCSD, MS/MSD, and the field duplicate sample pairs were evaluated to assess the precision of the analytical methods. A summary of sample results from the field duplicate sample pair is shown in Table C-1.

The RPDs for the MS/MSD, LCS/LCSD, and the field duplicate pairs were within acceptance limits.

## 3.3 DATA COMPLETENESS

Completeness is the ratio of the number of valid sample results to the total number of samples analyzed with a specific matrix and/or analysis. The percent complete is calculated by the following equation:

% Complete = <u>(number of valid measurements)</u> × 100 (number of measurements planned)

The percent complete for groundwater sample data collected during the second quarter 2014 groundwater monitoring event is 100 percent, with the exception of the TPHg results, where the percent complete is 75 percent.

# 4.0 SUMMARY OF GROUNDWATER DATA QUALITY REVIEW

Based on an evaluation of data quality for samples collected during the third and fourth quarter 2014 groundwater monitoring events, all the analytical results are valid and useable, with the exception of the rejected results. The data are acceptable and can be used for decision-making purposes; however, the limitations identified by the applied qualifiers should be considered when using the data.

# 5.0 REFERENCES

U.S. Environmental Protection Agency, 2008, USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, June.

### TABLE C-1

### SUMMARY OF PRECISION DATA FOR ANALYSIS OF GROUNDWATER FIELD DUPLICATE SAMPLES

Crown Chevrolet Cadillac Isuzu

7544 Dublin Boulevard

Dublin, California

			All concentrations	reported in µg	/L			
Primary Sample ID	Duplicate Sample ID	Collection Date	Compound ¹	Reporting Limit	Primary Sample Result	Duplicate Sample Result	RPD ²	Absolute Difference Between Sample Results ³
	MM 100	7/20/2014	Tetrachloroethene	0.50/1.0	100	100	0%	NA
10100-01	10100-100	7/30/2014	Trichloroethene	0.50/1.0	0.89	<1.0	NA	0.11
	MW 100	10/6/2014	Tetrachloroethene	0.50	82	90	9%	NA
10100-01	10100-100	10/0/2014	Trichchloroethene	0.50	0.95	0.97	NA	0.02

<u>Notes</u>

1. Only compounds detected in at least one of the field primary or field duplicate samples are shown.

2. Relative Percent Difference (RPD) is calculated by:

$$RPD \quad \% = \left| \frac{2(S_1 - S_2)}{S_1 + S_2} \right| \times 100$$

Where  $S_1$ , is the sample concentration and  $S_2$  is the blind duplicate sample concentration.

3. The RPD is not applicable when the sample results are less than two times the reporting limit. In those cases, duplicate results are acceptable when the absolute difference between the results is less than the reporting limit. When a compound was detected in one duplicate sample, but was not detected at or above the laboratory reporting limit in the other sample, then the results are acceptable when the absolute difference between the detected result and the reporting limit is less than the reporting limit.

Abbreviations

 $\mu g/L = micrograms per liter$ 

NA = not applicable