

1111 Broadway, 24th Floor Oakland, CA 94607-4036 Post Office Box 2047 Oakland, CA 94604-2047 T: 510-834-6600 F: 510-808-4645 gbrandt@wendel.com

April 10, 2009

Stephen Hill Chief, Toxics Cleanup Division San Francisco Bay Area Regional Water Quality Control Board 1515 Clay Street, Suite 1400 Oakland, CA 94612

. Enviroumental Month

Re:

Report of Groundwater Sampling Results Crown Chevrolet-Cadillac-Isuzu, Inc. 7544 Dublin Boulevard, Dublin, California

Dear Mr. Hill:

I am writing on behalf of our client, Future Dublin Properties, LLC, with regard to recent soil and groundwater sampling conducted at 7544 Dublin Boulevard and 6707 Golden Gate Drive (the "Site"). The Site has been used by Crown Chevrolet-Cadillac-Isuzu, Inc. as an auto dealership, service and repair facility for approximately 40 years. Section 1.2 of the enclosed copy of the March 16, 2009 Limited Phase II Environmental Site Sampling Report ("Phase II") prepared by Basics Environmental contains additional information about past use of the Site.

The sampling results in the Phase II show petroleum and other constituents in groundwater at concentrations above certain environmental screening levels ("ESLs"). None of the constituents included in the laboratory analysis (with the exception of arsenic) were found in any of the soil samples at concentrations above the ESLs.

We are submitting the Phase II to comply with reporting requirements, including the obligation under California Water Code Section 13271, which requires reporting when a hazardous substance, sewage, or petroleum or oil is discharged in or on groundwater or surface waters and under California Health & Safety Code Section 25359.4. We have not made any finding that reportable quantities of the contaminants, as defined under the California Health & Safety Code or implementing regulations under the Porter-Cologne Act, have been released.

Because we do not believe that any of the releases reported here are of an emergency nature or exceed thresholds that must be reported to the Office of Emergency Services ("OES"),

¹ ESLs applied in the Phase II are those set forth in Table A (Shallow Soils (<3m bgs), Groundwater is Current or Potential Source of Drinking Water) of the Interim Final – November 2007 (Revised May 2008) Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater prepared by the California Regional Water Quality Control Board San Francisco Bay Region.

Regional Water Quality Control Board April 10, 2009 Page 2

we are providing OES with a copy of this letter by mail rather than by telephone or by use of online forms provided by OES.

Our client and I would like to have a meeting as soon as possible with the assigned case worker to discuss future action, if any, required by the Regional Water Quality Control Board with regard to the Site and the steps necessary to obtain closure. Please have the assigned case worker contact me at the number listed above at his or her earliest convenience.

Very truly yours,

WENDEL, ROSEN, BLACK & DEAN LLP

Greggory C. Brandt

Enclosure

cc: California OES (w/o enclosure)
California State Warning Center
3650 Schriever Avenue
Mather, CA 95655

Donna Drogos (w/enclosure) Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Alchect County App 1 5 2009

Entrownersal Hoalh

LIMITED PHASE II ENVIRONMENTAL SITE SAMPLING REPORT

7544 Dublin Boulevard & 6707 Golden Gate Drive Dublin California

FOR

Crown Chevrolet-Cadillac-Isuzu, Inc. 7544 Dublin Boulevard Dublin, CA 94568

March 16, 2009 09-ENV1427

March 16, 2009 09-ENV1427

Crown Chevrolet-Cadillac-Isuzu, Inc. 7544 Dublin Boulevard Dublin, CA 94568

Attention:

Mr. Patrick Costello

Subject:

Limited Phase II Environmental Site Sampling Report

7544 Dublin Boulevard & 6707 Golden Gate Drive

Dublin, California 94568

Dear Mr. Patrick Costello:

Basics Environmental, Inc. (Basics) is pleased to present the results of a Limited Phase II Environmental Site Sampling Report for the site located at 7544 Dublin Boulevard & 6707 Golden Gate Drive in Dublin, California.

Soil samples were collected from eight boreholes at an approximate depth of 4.0 feet below ground surface (bgs), as well as from two additional boreholes at approximate depths of 10 and 14 feet bgs. In addition, nine grab groundwater samples were collected from nine of the ten boreholes at the site.

Soil samples were analyzed for multi range total petroleum hydrocarbons as gasoline, Stoddard solvent, diesel, and motor oil and volatile organic compounds. Ground water samples were analyzed for multi range total petroleum hydrocarbons as gasoline, Stoddard solvent, diesel, kerosene, motor oil and bunker oil, and volatile organic compounds. In addition, select samples were also analyzed for heavy metals, PCBs and glycols.

Elevated concentrations of total petroleum hydrocarbons as diesel, kerosene, motor oil and bunker oil were detected within the ground water at eight locations above conservative regulatory screening guidance criteria. In addition, elevated concentrations of total petroleum hydrocarbons as gasoline and Stoddard solvent, tetrachloroethene, benzene, chlorobenzene and 1,2-dichlorobenzene were detected within the ground water at one location above conservative regulatory screening guidance criteria.

Should you have any questions regarding this report, please contact the undersigned.

Sincerely,

Basics Environmental, Inc.

Donavan G. Tom, M.B.A., R.E.A. II Principal Consultant

TABLE OF CONTENTS

PROFESSIONAL CERTIFICATION

1.0	INTRODUCTION1-1
1.1 1.2 1.3 1.4	Purpose of Assessment 1-1 Background 1-1 Scope of Work 1-4 Permits and Regulatory Compliance 1-6
2.0	SOIL AND GROUND WATER SAMPLING2-1
2.1	Field Activities2-1
3.0	CHEMICAL ANALYSES AND RESULTS3-1
3.1 3.2	Chemical Analyses 3-1 Analytical Results 3-2
4.0	DISCUSSIONS AND RECOMMENDATIONS4-1
4.1 4.2	Discussions
List	of Drawings
Drav	ving 1: Site Location Map ving 2: Soil Boring Locations ving 3: Aerial Photo (2005)
Appe	<u>endices</u>
	ENDIX A: Boring Logs ENDIX B: Laboratory Analytical Results and Chain of Custody

PROFESSIONAL CERTIFICATION

LIMITED ENVIRONMENTAL SITE SAMPLING REPORT
7544 Dublin Boulevard & 6707 Golden Gate Drive
Dublin, California
For
Crown Chevrolet-Cadillac-Isuzu, Inc.
09-ENV1427
March 16, 2009

This report has been prepared by the staff of Basics Environmental, Inc. (Basics) under the professional supervision of the Principal Consultant whose seal and signature appears hereon. The findings, interpretations of data, recommendations, specifications or professional opinions are presented within the limits prescribed by available information at the time the report was prepared, in accordance with generally accepted professional environmental practice and within the requirements by the Client. There is no other warranty, either expressed or implied.

The data and findings of this report are based on the data and information obtained from the agreed upon scope of work between Basics and the Client. Because contamination is not necessarily evenly distributed across the property's soils and ground water, it can easily remain undetected and geology may control the subsurface distribution of contamination. Additional scope of services including geologic interpretation (at greater cost) may or may not disclose information which may significantly modify the findings of this report. We accept no liability on completeness or accuracy of the information presented and or provided to us, or any conclusions and decisions which may be made by the Client or others regarding the subject site.

This report was prepared solely for the benefit of Basic's Client. Basics consents to the release of this report to third parties involved in the evaluation of the property for which the report was prepared, including without limitation, lenders, title companies, public institutions, attorneys, and other consultants. However, any use of or reliance upon this report shall be solely at the risk of such party and without legal recourse against Basics, or its subcontractors, affiliates, or their respective employees, officers, or directors, regardless of whether the action in which recovery of damage is sought is based upon contract, tort (including the sole, concurrent or other negligence and strict liability of Basics), statute or otherwise. This report shall not be used or relied upon by a party that does not agree to be bound by the above statements

No. 25030

Donavan G. Tom, R.E.A. II Principal Consultant Paul H. King, P.G. #5901 Associate Consultant

09-ENV1427

AULH KNG

No 5901 Na indud

1.0 INTRODUCTION

1.1 Purpose of Assessment

Basics Environmental, Inc. (Basics) has performed this Limited Phase II Environmental Site Sampling Report (Phase II) for Crown Chevrolet-Cadillac-Isuzu, Inc. pursuant to our signed agreement on February 18, 2009 and associated with a property transaction. The "subject site" is at 7544 Dublin Boulevard & 6707 Golden Gate Drive, Dublin, California (See Drawing 1). A site plan showing subject site features is attached as Drawing 2. An aerial photograph of the subject site is attached as Drawing 3.

1.2 Background

On the basis of the information compiled within a Phase I Environmental Site Assessment Report, prepared for the subject site by Basics dated October 13, 2008, the following recognized environmental condition was identified for the subject site:

(1) The subject site has a long history of utilizing hazardous materials as part of auto dealership operations from at least 1968 to 2009.

According to historical resources, the subject site has been occupied as a car dealership with on-site auto repair facilities since 1968 (approximately 40 years). Hazardous materials reportedly stored onsite as part of auto repair operations include (and maximum amounts) acetylene (344 to 564 ft3), Automatic Transmission Fluid (ATF) (240 to 270 gallons), base coat paint (60 gallons), blue glass cleaner (25 to 65 gallons), car batteries (90), car wash wax (140 gallons), carbon dioxide (750 to 1,075 ft3), cold parts cleaner (70 gallons), coolant/antifreeze (100 to 785 gallons), falcon blue (25 gallons), Freon (500 pounds), gasoline (1,000 gallons), gear lube (80 to 96 gallons), helium (834 ft3), kerosene (55 to 220 gallons), lacquer thinner (32 to 110 gallons), miscellaneous paint products (40 to 110 gallons), motor oil (600 to 940 gallons), parts cleaning solvent (135 gallons), refrigerant oil (420 gallons), Stoddard solvent (80 gallons), thinner (110 gallons), waste coolant (240 to 250 gallons), waste lacquer thinner (55 to 110 gallons), and waste oil (1,000 gallons).

Service Area 1 is located at the west side of Building B. Located within Service Area 1 are aboveground and belowground hoists along the north and south sides of the building. Patches of concrete indicative of former underground hydraulic lifts were also observed within Service Area 1. Two rectangular-shaped, concrete-filled patches indicative of a former sump or oil/water separator are located at the west side of Service Area 1. A small circular patch indicative of subsurface sampling was observed just to the south of the rectangular patches. The results were not provided for review. Five aboveground storage tanks (ASTs) are located at the southeast corner of Service Area 1. Four of the ASTs contain motor oil and one contains ATF. The capacities of the ASTs range from 100 to 200 gallons. Visual observations of Service Area 1 did not reveal any obvious evidence of hazardous materials, stains or spills. Visual observations of the floors within Service Area 1 did not reveal any other obvious evidence of drains, sumps, cracks or other conduits to the subsurface.

Service Area 2 is located at the east side of the Building B. Located within Service Area 2 are aboveground and belowground hoists along the north and south sides of the building. Patches of concrete indicative of former underground hydraulic lifts were also observed within Service Area 2. A hot water parts washer, a sump, and three 55-gallon plastic drums containing detergents are located at the northwest corner of Service Area 2. The parts washer is equipped with a concrete secondary containment system. Oily staining was noted on the concrete floor surrounding the sump, parts washer, and drums of detergent. Several 55-gallon drums containing detergent and a water treatment system is located at the northeast corner of Service Area 2. The water treatment system circulates water through the adjoining carwash located outside along the east side of Building B. Visual observations of Service Area 2 did not reveal any other obvious evidence of hazardous materials, stains or spills. Visual observations of the floors within Service Area 2 did not reveal any other obvious evidence of the subsurface.

Paint & Auto Body Shop 1 is located at the center portion of Building C. One underground hoist, two aboveground hoists, and one spray booth (southwest corner) are located within Paint & Auto Body Shop 1. One stairwell located at the north side of Paint & Auto Body Shop 1 provides access to a file storage loft located above the northern portion of Paint & Auto Body Shop 1. Visual observations of the floors within Service Area 1 did not reveal any other obvious evidence of drains, sumps, cracks or other conduits to the subsurface.

Paint & Auto Body Shop 2 is located at the southern portion of Building C. Two spray booths are located at the northwest portion of the Paint & Auto Body Shop 2. A flammable materials cabinet containing spray cans of reducer is located at the west side of Paint & Auto Body Shop 2. Shelves of numerous quart-sized containers of auto body paint and a mixing machine are located along the southwest side of Paint & Auto Body Shop 2. Visual observations of the shelves did not reveal any obvious evidence of stains or spills. A workbench and small containers (one gallon or less) of thinners, three 55-

gallon drums of waste thinner on secondary containers, and two 5-gallon covered metal containers were observed at the southwest corner of Paint & Auto Body Shop 2. Visual observations of the area around the workbench and containers of thinner and waste thinner reveal paint staining. In addition, lacquer thinner is also stored at the northeast corner of Paint & Auto Body Shop 2. Visual observations of the floors within Service Area 2 did not reveal any obvious evidence of drains, sumps, cracks or other conduits to the subsurface.

A car wash is located to the east of Building B. A trench drain located along the center of the car wash directs the wash water to a separator and subsequently, to the treatment system for recycling. Three plastic 55-gallon drums of detergent were observed in the carwash area.

An approximately 200-gallon waste antifreeze AST is located along the south side of Building B under an awning. Visual observations of the AST and the concrete paved area around the AST revealed superficial staining.

One 500-gallon diesel AST, one 1,000-gallon gasoline UST, and one 1,000-gallon waste oil UST are located in the area south of Building B. In July 1986, one 1,000-gallon waste oil UST and one 1,000-gallon gasoline UST were installed, replacing two former 1,000-gallon USTs also containing waste oil and gasoline in the same location. A fuel dispenser is located approximately 10 feet north of the UST fill port. No environmental sampling was required at the time of UST replacement.

In 2003, soil sampling was conducted during dispenser pan installation. One soil sample (DS-1) was collected from 2.5 feet bgs from the base of the excavation beneath the dispenser location. One sample (Comp-DS) was collected from the excavated soil stockpile. The soil samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-g), Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), and methyl tertiary-butyl ether (MTBE). Analytical results showed no detectable concentrations of petroleum hydrocarbon constituents analyzed. Lead was detected at the low concentrations of 4.7 mg/kg and 3.3 mg/kg in samples DS-1 and Comp DS, respectively. However, sampling in this area only addressed shallow soil in the vicinity of the fuel dispenser.

From 2003 to the present the tanks, piping, and gasoline dispenser have been upgraded several times and have tested tight.

The subject site is not currently listed as a contaminated facility: however, given the appreciable amounts of hazardous materials used over an extended period of time, it is conceivable that soil and/or groundwater may have been impacted. Inadvertent discharges of hazardous materials to the concrete porous surface are not always evident. However, years of usage of appreciable amounts of chemicals typically 55-gallons or more (over five to ten or more years) plus any conduits to the subsurface (drains, sumps or cracks) increase the potential of inadvertent discharges to the subsurface.

As such, Basics was authorized to perform subsurface sampling to assess if there are any residual impacts from the current and past use of hazardous substances onsite.

1.3 Scope of Work

To address the site-specific suspect areas of concern, Basics proposed the following Limited Phase II Environmental Site Sampling approach to preliminarily assess potential environmental impacts from the identified recognized environmental conditions.

The scope of work performed for this Limited Phase II Environmental Site Sampling consisted of the following tasks:

• Under the direction of a California Registered Environmental Assessor II and California Professional Geologist, at least ten shallow exploratory borings were to be advanced at the subject site (designated as B1 through B10).

Basics proposed at least ten soil borings to be advanced at the subject site to screen for potential residual environmental impacts from primarily current and past auto maintenance operations. One boring (B1) was to be advanced in the area of the paint mixing area of the auto body shop; two borings (B2 and B3) were to be advanced in the associated paved parking lot area/former bulk storage area near the storm water runoff drains (perceived down gradient positions); one boring (B4) was to be advanced in the associated paved area near the outside location of an air compressor and hazardous materials storage area; one boring (B5) was to be advanced in the area of a former sump with the service area; one boring (B6) was to be advanced in the associated paved area near the location of a 1,000-gallon waste oil underground storage tank; one boring (B7) was to be advanced in the area of the hazardous materials storage area of the service area; one boring (B8) was to be advanced in the area of a sump within the service area; one boring (B9) was to be advanced in the associated paved area near the location of a 1,000-gallon gasoline underground storage tank; and one boring (B10) was to be advanced in the service area (adjacent to the car wash).

Soil samples were to be collected within the soil at depths of approximately four and eight feet bgs within each of the borings B1 through B10, except for B6 and B9 which were to be collected at ten and fifteen feet bgs. Basics was also to attempt to retrieve grab groundwater samples from each of the borings. Based on discussions with the client and to limit the analytical costs, only the four and ten foot soil samples and select grab groundwater samples were to be initially analyzed at the laboratory and the other deeper soil samples were to be held pending the initial analytical results.

Based on local subsurface investigations at nearby locations, groundwater in the area was reported to be encountered at a depth of approximately 10 to 15 feet bgs and to flow in a southerly direction. If deemed warranted from visual observations of the samples, additional soil samples were to be collected from the exploratory borings.

- The samples were to be collected, labeled, placed in a cooler with ice, and transported with Chain of Custody documentation to McCampbell Analytical Laboratory, a State-accredited laboratory with the Department of Toxic Substances Control (DTSC) of the California Environmental Protection Agency, for analysis;
- All soil and grab water samples were to be analyzed for multi range total petroleum hydrocarbons as gasoline, diesel, kerosene, Stoddard solvent, motor oil and bunker oil (TPH-g/d/k/ss/mo/bo); and volatile organic compounds;
- The soil samples collected within the auto service areas (B5, B7, B8 and B10) were to be also analyzed for polychlorinated biphenyls;
- The soil samples collected within the paint shop and underground storage tank areas (B1, B6 and B9) were to be also analyzed for priority pollutant metals; and
- The grab water samples collected at locations B4 and B10 (perceived down gradient positions to a hazardous material storage area and adjacent to the car wash) were to be also analyzed for ethylene glycol.

The work for this Limited Phase II Environmental Site Sampling was performed within the client-approved scope of work and budget for the assessment. It should be noted that this scope of work only screens the potential of inadvertent discharges of constituents of concern as defined within the previous Phase I Environmental Site Assessment Report conducted by Basics within representative areas and not the presence of undocumented underground storage tanks. Based on the visual site inspection, no obvious evidence of undocumented underground storage tanks and/or associated appurtenances have been noted for the subject site. If future plans include the major redevelopment of the subject site, a search for any unforseen underground storage tanks and/or collection of additional soil samples and ground water samples may be warranted.

1.4 Permits and Regulatory Compliance

Agencies were contacted prior to the beginning of this work and the permits necessary to proceed were obtained. Permits and/or approvals were obtained from the following agencies:

- Livermore-Amador Valley Zone 7 Water Agency Drilling Permit Number 29014; and
- Underground Services Alert (U.S.A.), U.S.A. Ticket # 047384.

2.0 SOIL AND GROUND WATER SAMPLING

2.1 Field Activities

2.1.1 Limited Subsurface Investigation

On February 24th and 25th, 2009, ten soil borings were advanced by Vironex, Inc. of Pacheco, California under the direction of a California Registered Environmental Assessor II and Professional Geologist. The borings were specifically intended to sample the shallow subsurface soil and ground water. The targeted areas of concern are shown on Drawing 2 and include the following:

- One boring (B1) was to be advanced in the area of the paint mixing area of the auto body shop;
- Two borings (B2 and B3) were to be advanced in the associated paved parking lot area/former bulk hazardous materials storage area near the storm water runoff drains (perceived down gradient positions);
- One boring (B4) was to be advanced in the associated paved area near the outside location of an air compressor and hazardous materials storage area;
- One boring (B5) was to be advanced in the area of a former sump with the service area;
- One boring (B6) was to be advanced in the associated paved area near the location of a 1,000-gallon waste oil underground storage tank;
- One boring (B7) was to be advanced in the area of the hazardous materials storage area of the service area;
- One boring (B8) was to be advanced in the area of a sump within the service area;
- One boring (B9) was to be advanced in the associated paved area near the location of a 1,000-gallon gasoline underground storage tank; and
- One boring (B10) was to be advanced in the service area (adjacent to the car wash).

Prior to drilling activities, a representative of Basics performed an inspection of the facility. Boring locations were based on known current hazardous substance handling areas and estimated past hazardous substance handling areas identified in the previous report. Due to the size and nature of the auto maintenance areas, sampling locations were intended to provide generally representative samples only and screen for potential impacts.

The sampling locations were marked at the site with white paint and cleared with Underground Service Alert (U.S.A.) prior to drilling activities. Vironex utilized Geoprobe® 6600 Direct Penetration Technology (DPT) drilling methods. DPT uses dry impact methods to drive boring tools into the subsurface. A soil sample was collected in a 2-inch diameter, five foot long steel continuous core sampler. Transparent polyvinyl chloride (PVC) soil liners were utilized within the inner sample barrel. PVC soil liners are inert to petroleum hydrocarbons, metals, solvents, pesticides and most hazardous substances (except high levels of phenols). After advancing both the drive-casing and sample barrel five feet, the sampler was removed from the borehole, and the sample tube removed from the sampler. Selected sections of the sample tube were then cut from the targeted depths and the ends of the selected section of tube were sequentially sealed with aluminum foil and plastic endcaps. Each selected section of tube was then sealed and labeled for analytical purposes and stored in a cooler with ice pending delivery to the laboratory; the remainder of the samples were evaluated for field characterization. The drive-casing and sample barrel were advanced in this manner until the total depth of each borehole was reached.

Soil samples from boreholes B1 through B10, except for B6 and B9, were retrieved from the discrete depths of approximately 4 and 8 feet bgs within the target areas of concern. Sample depths were initially based on typical site screening depths with respect to the environmental condition being assessed and not determined by geologic interpretation.

Soil samples from borehole B6 were retrieved from the discrete depths of approximately 5.0 and 10.0 feet bgs and from borehole B9 from the discrete depths of 5.0, 10.0 and 14.0 feet bgs within the areas of the 1,000-gallon waste oil and 1,000-gallon unleaded gasoline underground storage tanks, respectively. Sample depths were initially based on typical site screening depths with respect to the size of the underground storage tank being assessed and not

determined by geologic interpretation, however, since ground water was encountered prior to 15 feet bgs. the deeper soil samples were adjusted just below the saturated zone.

Each of the soil borings B1 through B9 were advanced to a total depth of approximately 15 feet bgs and boring B10 was advanced to a total depth of approximately 17.0 feet bgs for groundwater sampling purposes. Subsurface materials were identified and evaluated based on the continuous cores from the boreholes and relative drilling difficulty. The soil from all of the borings was logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. All of the soil was evaluated with a 10.6 eV Photoionization Detector (PID) calibrated using a 100 ppm isobutylene standard. No organic vapors were detected with the PID and no petroleum hydrocarbon or solvent odors were detected in any of the boreholes. No staining or discoloration were detected in any of the boreholes with the exception of B5 between the depths of 2.0 and 5.0 feet bgs in fill material, B6 between the depths of 3.0 and 4.0 in silt, B9 between the depths of 11.0 and 15.0 in silt, and B10 between the depths of 1.0 and 1.5 feet bgs in fill material. The subsurface materials encountered in the boreholes consisted primarily of clay, silty clay, and silt with layers of sand or silty gravel encountered in all of the boreholes except for B2 and B9. The sand or silty gravel layers typically ranged from 0.5 to 1.0 feet thick, with the exception of B3 where a 3.5 foot thick layer of sand was encountered, and B7 where a 1.5 foot thick layer of sand was encountered. Copies of the boring logs are attached with this report as Appendix A.

The grab groundwater sampling procedures followed by Vironex are described below:

- Threading together and lowering into the boring 1-inch diameter slotted PVC pipe to the bottom of the borehole; and
- Allowing time for groundwater to enter the slotted pipe.
- Lowering a polyethylene tube with a stainless steel foot valve into the slotted pipe and lifting the water sample to the surface with the tubing and footvalve; and
- Decanting the sample into labeled, laboratory-provided containers and placing the containers into an insulated chest containing ice.

Groundwater was initially encountered at depths ranging from approximately 11 to 14.5 feet bgs during drilling, and was subsequently measured at depths ranging from 10.1 to 12.9 feet bgs within 10 minutes of drilling to the total borehole depth, with the exception of B9 where water was subsequently measured at a depth of 9.6 feet bgs.

Following groundwater sample collection, the temporary slotted PVC pipe was removed and the borehole was backfilled to the surface with neat cement slurry using a tremie pipe. The drill cuttings were placed in a 55-gallon drum, which was labeled and stored at the site pending receipt of the laboratory analysis.

Once retained for laboratory analysis, all samples were maintained under chain of custody until delivered to the laboratory. The soil and groundwater samples were subsequently delivered to McCampbell Analytical Laboratory, Inc. in Pittsburg, California, a State-accredited laboratory.

3.0 CHEMICAL ANALYSES AND RESULTS

3.1 Chemical Analyses

Each of the shallow soil samples retained from each of the soil borings (except for soil samples from depths of 10.0 and 14.0 feet bgs, in soil borings B6 and B9, respectively) were analyzed for the following:

- Multi-Range Total Petroleum Hydrocarbons as gasoline, Stoddard solvent, diesel and motor oil (TPH-g/ss/mo) using EPA Methods SW5030B/8021B/8015B modified and SW3550C/8015B; and
- Volatile Organic Compounds (VOCs) using EPA Method SW8260B.

Each of the groundwater samples retrieved from all of the boreholes, except B6 (where a groundwater sample was not retrieved) were analyzed for the following:

- Multi-Range Total Petroleum Hydrocarbons as gasoline, Stoddard solvent, diesel, kerosene, bunker oil, and motor oil and bunker oil (TPH-g/ss/k/d/bo/mo) and for MTBE and benzene, toluene, ethylbenzene and xylenes (MBTEX) using EPA Method SW5030B/8021B/8015B modified and SW3551C/8015B; and
- Volatile Organic Compounds (VOCs) using EPA Method SW8260B.

Additional laboratory analysis for soil samples from select soil borings and groundwater samples were also analyzed for the following:

- The soil samples collected within the auto service areas (B5, B7, B8 and B10) were analyzed for Polychlorinated Biphenyls (PCBs) using EPA Method SW3550C/8082;
- The soil samples collected within the paint shop and underground storage tank areas (B1, B6 and B9) were analyzed for Priority Pollutant Metals using EPA Method SW3050B/6020A;
- The grab water samples collected within the paint shop and adjacent to the car wash (B1 and B10) were analyzed for Priority Pollutant Metals using EPA Method E200.8; and

• The grab water samples collected from adjacent to a hazardous materials storage area and the car wash (B4 and B10) were to be also analyzed for Glycols (Method MAI-Alcohols).

Note: The other soil samples were put on hold pending the analytical results of the selected samples.

3.2 Analytical Results

Results of chemical analyses for the samples collected on February 24th and 25th, 2009 are presented in Tables 1 through 8. Certified laboratory reports are presented in Appendix B, including chain-of-custody documentation.

Table 1. Soil Analytical Results - Petroleum Hydrocarbons

Sample	Depth	TPH-g	TPH-d	TPH-ss	TPH-mo
ID	Feet	mg/kg	mg/kg	mg/kg	mg/kg
					· .
B1	4.0	ND < 1.0	ND < 1.0	ND < 1.0	ND < 5.0
B2	4.0	ND < 1.0	1.1	ND < 1.0	5.4
B3	4.0	ND < 1.0	ND < 1.0	ND < 1.0	ND < 5.0
В3	4.0	ND < 1.0	ND < 1.0	ND < 1.0	ND < 5.0
B4	4.0	ND < 1.0	ND < 1.0	ND < 1.0	ND < 5.0
B5	4.0	ND < 1.0	1.9	ND < 1.0	ND < 5.0
B6	10.0	ND < 1.0	ND < 1.0	ND < 1.0	ND < 5.0
B7	4.0	ND < 1.0	33	ND < 1.0	180
B8	4.0	ND < 1.0	1.3	ND < 1.0	ND < 5.0
B9	14.0	ND < 1.0	1.4	ND < 1.0	5.5
B10	4.0	ND < 1.0	1.6	ND < 1.0	ND < 5.0
ESL ¹		83	83	83	2,500

NA means Not Analyzed.

(1)ESL = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels Table A − Shallow Soils (≤3m bgs) Groundwater IS Current or Potential Source of Drinking Water − Commercial/Industrial Land Use, updated May 2008.

Bold means levels above respective ESLs.

Table 2. Soil Analytical Results - Volatile Organic Compounds

Sample	Depth	VOCs
ID	Feet	mg/kg
•		
B1	4.0	All ND
B2	4.0	All ND
B3	4.0	All ND
B4	4.0	All ND
B5	4.0	All ND, except
		Acetone = 0.18
В6	10.0	All ND
B7	4.0	All ND
В8	4.0	All ND
B9	14.0	All ND
B10	4.0	All ND
rior 1		
ESL^1		Acetone = 0.5

(1)ESL = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels Table A − Shallow Soils (≤3m bgs) Groundwater IS Current or Potential Source of Drinking Water − Commercial/Industrial Land Use, updated May 2008.

Bold means levels above respective ESLs.

Table 3. Soil Analytical Results - Polychlorinated Biphenyls

Sample	Depth	PCBs
ID	Feet	mg/kg
n.c	. 4.0	AHND
B5 ,	4.0	All ND < 1.2
B7	4.0	All ND < 0.025
B8	4.0	All ND < 0.025
B10	4.0	All ND < 0.025
ESL^1		0.74

(1) ESL = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels Table A – Shallow Soils (\leq 3m bgs) Groundwater IS Current or Potential Source of Drinking Water – Commercial/Industrial Land Use, updated May 2008.

Bold means levels above respective ESLs.

Table 4. Soil Analytical Results - Inorganic Constituents (TTLC Extraction)

Sample	Depth	Sb	As	Be	Cd	Cr ^(total)	Cu	Pb
<u>ID</u>	Feet	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
						,		
B1	4.0	ND < 0.5	8.9	0.56	0.42	46	25	8.0
В6	10.0	ND < 0.5	8.2	0.54	0.31	51	28	7.3
ESL ¹		40	1.6	8.0	7.4	None	230	750

Table 4. Soil Analytical Results - Inorganic Constituents (TTLC Extraction) (contd.)

Sample	Depth	Hg	Ni	Se	Ag	Tl	Zn
<u>ID</u>	Feet	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
B1	4.0	ND < 0.05	41	ND < 0.5	ND < 0.5	ND < 0.5	56
B6	10.0	ND < 0.05	41	ND < 0.5	ND < 0.5	ND < 0.5	61
			*				
ESL^1		10	150	10	40	16	600

Bold means levels above respective ESLs.

(total) Note: These soil samples were analyzed for total chromium detected (assumes 6:1 ratio of Chromium III to Chromium VI within these samples).

⁽¹⁾ESL = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels Table A − Shallow Soils (≤3m bgs) Groundwater IS Current or Potential Source of Drinking Water − Commercial/Industrial Land Use, updated May 2008.

Table 5. Grab Groundwater Analytical Results - Petroleum Hydrocarbons

				4 7		
Sample	TPH-g	TPH-d	TPH-ss	TPH-k	TPH-mo	TPH-bo
ID	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
				•		
B1-W	65	2,400	57	1,500	2,100	2,700
B2-W	ND < 50	6,400	ND < 50	1,200	49,000	58,000
B3-W	ND < 50	930	ND < 50	230	4,500	6,100
B4-W	ND < 50	600	ND < 50	110	3,200	4,100
B5-W	ND < 50	65	ND < 50	ND < 50	ND < 250	170
B7-W	ND < 50	62	ND < 50	ND < 50	410	470
B8-W	550	230	170	180	270	530
B9-W	ND < 50	3,400	ND < 50	ND < 50	22,000	25,000
B10-W	ND < 50	2,400	ND < 50	ND < 50	23,000	25,000
ESL ²	100	100	100	100	. 100	100
ESL	100	100	100	100	100	100

All sample and ESL values in $\mu g/L$.

ND means not detected above the reporting limit.

(2)ESL = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels Table A -Shallow Soils (≤3m bgs) Groundwater IS Current or Potential Source of Drinking Water, updated May 2008. Bold means levels above respective ESLs.

Table 6. Grab Groundwater Analytical Results – Volatile Organic Constituents

Sample	Acetone	Napthalene	PCE	Chlorobenzene	1,2-DCB	\mathbf{B}'
ID	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
B1-W	54	1.2	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
B2-W	ND < 10	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
B3-W	ND < 10	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
B4-W	ND < 10	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
B5-W	ND < 10	ND < 0.5	1.6	ND < 0.5	ND < 0.5	ND < 0.5
B7-W	ND < 10	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
B8-W	ND < 10	ND < 0.5	9.6	370	140	2.9
B9-W	ND < 10	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
B10-W	ND < 10	ND < 0.5	1.9	ND < 0.5	ND < 0.5	ND < 0.5
ESL ²	1,500	17	5.0	25	10	1.0

Table 6. Grab Groundwater Analytical Results - Volatile Organic Constituents (contd.)

Sample	1,2,4-TMB	1,3,5-TMB	T	E	$\mathbf{x}_{\mathbf{x}}$	MTBE
ID	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		1				
B1-W	4.8	1.9	3.0	1.8	12	ND < 0.5
B2-W	ND < 0.5	ND < 0.5	0.77	ND < 0.5	ND < 0.5	ND < 0.5
B3-W	0.65	ND < 0.5	1.1	ND < 0.5	0.66	ND < 0.5
B4-W	ND < 0.5	ND < 0.5	0.56	ND < 0.5	ND < 0.5	ND < 0.5
B5-W	ND < 0.5	ND < 0.5	0.70	ND < 0.5	ND < 0.5	ND < 0.5
B7-W	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
B8-W	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5
B9-W	ND < 0.5	ND < 0.5	0.84	ND < 0.5	ND < 0.5	0.94
B10-W	ND < 0.5	ND < 0.5	0.58	ND < 0.5	ND < 0.5	ND < 0.5
ESL ²	None	None	40	30	20	5.0

ND means not detected above the reporting limit.

All sample and ESL values in µg/L.

⁽²⁾ESL = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels Table A – Shallow Soils (≤3m bgs) Groundwater IS Current or Potential Source of Drinking Water, updated May 2008. **Bold means levels above respective ESLs**.

PCE = Tetrachloroethene

B = Benzene

1,2-DCB = 1,2-Dichlorobenzene

1,2,4-TMB = 1,2,4-Trimethylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

T = Toluene

E = Ethylbenzene

 $\dot{X} = Xylenes$

MTBE = Methyl-Tert-Butyl Ether

Table 7. Grab Groundwater Analytical Results - Inorganic Constituents

Sample ID	Sb μg/L	As μg/L	Be µg/L	Cd µg/L	Cr ^(total) µg/L	Cu µg/L	Pb μg/L
B1-W B10-W	0.64 ND < 0.5	3.9 1.8		ND < 0.25 ND < 0.25	4		ND < 0.5 ND < 0.5
ESL ²	6.0	36	0.53	0.25	50	3.1	2.5

Table 7. Grab Groundwater Analytical Results - Inorganic Constituents (contd.)

Sample ID	Hg μg/L	Ni μg/L	Se µg/L	Ag μg/L	Tl μg/L	Zn µg/L
B1-W	0.17	0.86	0.88	ND < 0.19 ND < 0.19	ND < 0.5	ND < 5
ESL^2	0.025	8.2	5.0	0.19	2.0	81

ND means not detected above the reporting limit.

Grab water samples were filtered and preserved at the laboratory prior to extraction.

Bold means levels above respective ESLs.

All sample and ESL values in µg/L.

⁽²⁾ ESL = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels Table A – Shallow Soils (≤3m bgs) Groundwater IS Current or Potential Source of Drinking Water, updated May 2008.

⁽total) Note: These samples were analyzed for total chromium detected (assumes 6:1 ratio of Chromium III to Chromium VI within these samples).

Table 8. Grab Groundwater Analytical Results - Glycols

Sample	Glycols			
ID	μg/L			
•				
B4-W	All ND < 0.2			
B10-W	All ND < 0.2			
ESL ²	None			

ND means not detected above the reporting limit. $^{(2)}ESL = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels Table A -$ Shallow Soils (≤3m bgs) Groundwater IS Current or Potential Source of Drinking Water, updated May 2008. All sample and ESL values are in µg/L.

4.0 DISCUSSION AND RECOMMENDATIONS

4.1 Discussion

4.1.1 Soil Samples

Based on the laboratory results of the soil samples reported herein, detectable amounts of total petroleum hydrocarbons as diesel and motor oil were detected within the soil samples collected at approximately 4.0 feet bgs in boreholes B2, B5, B7, B8 and B10 and at approximately 14.0 feet bgs in borehole B9. No other detectable concentrations of total petroleum hydrocarbons as gasoline, diesel, Stoddard solvent or motor oil were detected in soil samples collected from boreholes B1 through B10.

The maximum concentrations of total petroleum hydrocarbons as diesel at 33 mg/kg and motor oil at 180 mg/kg detected in the soil samples collected are below their respective May 2008 ESL for shallow soil (≤3m bgs) set forth by the SFRWQCB for residential and industrial/commercial land use where groundwater is a current or potential source of drinking water. The ESL for TPH (residual fuels) which corresponds to the TPH-motor oil and bunker oil results is 2,500 mg/kg for shallow soil and commercial/industrial land use, and 370 mg/kg for shallow soil for residential land use.

No detectable concentrations of volatile organic compounds were detected within the soil samples collected at approximately 4.0 feet bgs in boreholes B1, B2, B3, B4, B5, B7, B8 and B10 or soil samples collected at approximately 10 and 14 feet bgs in boreholes B6 and B9, respectively, except for a small amount of acetone at 0.18 mg/kg within B4. The detected concentration of acetone is below its respective May 2008 ESL for shallow soil (≤3m bgs) set forth by the SFRWQCB for residential and industrial/commercial land use where groundwater is a current or potential source of drinking water (0.5 mg/kg for acetone).

No detectable concentrations of polychlorinated biphenyls were detected within the soil samples collected at approximately 4.0 feet bgs in boreholes B5, B7, B8 and B10. However, because of the elevated detection limit for the B5 soil sample, the detection limit exceeded the ESL.

Detectable concentrations of arsenic, beryllium, cadmium, total chromium, copper, lead, mercury nickel, and zinc were encountered within the soil samples in boreholes B1 and B6. The analytical results indicate the concentrations of arsenic, berryllium, cadmium, chromium, copper, lead, mercury, nickel, and zinc in the soil are below their respective Total Threshold Limit Concentration (TTLC) set forth by the California Administration Code, Title 22 (500 mg/kg for arsenic, 75 mg/kg for beryllium, 100 mg/kg for cadmium, 2,500 mg/kg for total chromium, 2,500 mg/kg for copper, 1,000 mg/kg for lead, 20 mg/kg for mercury, 2,000 mg/kg for nickel, and 5,000 mg/kg for zinc) and that none of the detected metals concentrations require further characterization for waste characterization purposes (i.e. no Waste Extraction Test (WET) or Toxic Characteristic Leaching Procedure (TCLP) are needed).

All detected metal concentrations, with the exception of arsenic in all each of the boreholes are also below their respective applicable May 2008 ESLs for shallow soil (<3 meters) set forth by the SFRWQCB for industrial/commercial sites where ground water is a current or potential source of drinking water (8.0 mg/kg for beryllium, 7.4 mg/kg for cadmium, 230 mg/kg for copper, 750 mg/kg for lead, 10 mg/kg for mercury, 150 mg/kg for nickel, and 600 mg/kg for zinc). The concentrations of arsenic ranging from 8.2 mg/kg to 8.9 mg/kg within B1 and B6 were above the May 2008 ESLs for shallow soil (<3 meters) set forth by the SFRWQCB for industrial/commercial sites where ground water is a current or potential source of drinking water (1.5 mg/kg for arsenic). No ESL exists for total chromium. To determine if chromium exceeds ESL values of concern, additional analysis may be performed for hexavalent chromium, and the results compared to the respective ESL.

4.1.2 Grab Groundwater Samples

Based on the laboratory results of the grab groundwater samples reported herein, detectable amounts of two or more of the following compounds were detected in all of the ground water grab samples: total petroleum hydrocarbons as diesel, kerosene, motor oil and bunker oil. The ground water grab samples were collected from all of the boreholes except B6, where a groundwater grab sample was not collected. In addition, detectable amounts of total petroleum hydrocarbons as gasoline and Stoddard solvent were detected within the grab groundwater sample collected from boreholes B1 and B8.

May 2008 SFRWQCB ESL values where groundwater is a current or potential source of drinking water were exceeded for the following samples.

- TPH-g: B8
- TPH-ss: B8
- TPH-k: B1, B2, B3, B4, B8, and detection limits for ND results for B9 and B10
- TPH-d: B1, B2, B3, B4, B8, B9, B10
- TPH-bo: B1, B2, B3, B4, B5, B7, B8, B9, B10
- TPH-mo: B1, B2, B3, B4, B7, B8, B9, B10

The ESL for TPH (gasolines) which corresponds to the TPH-gasoline and Stoddard solvent, TPH (middle distillates) which corresponds to the TPH-diesel and kerosene results and TPH (residual fuels) which corresponds to the TPH-motor oil and bunker oil results are all $100 \, \mu g/L$.

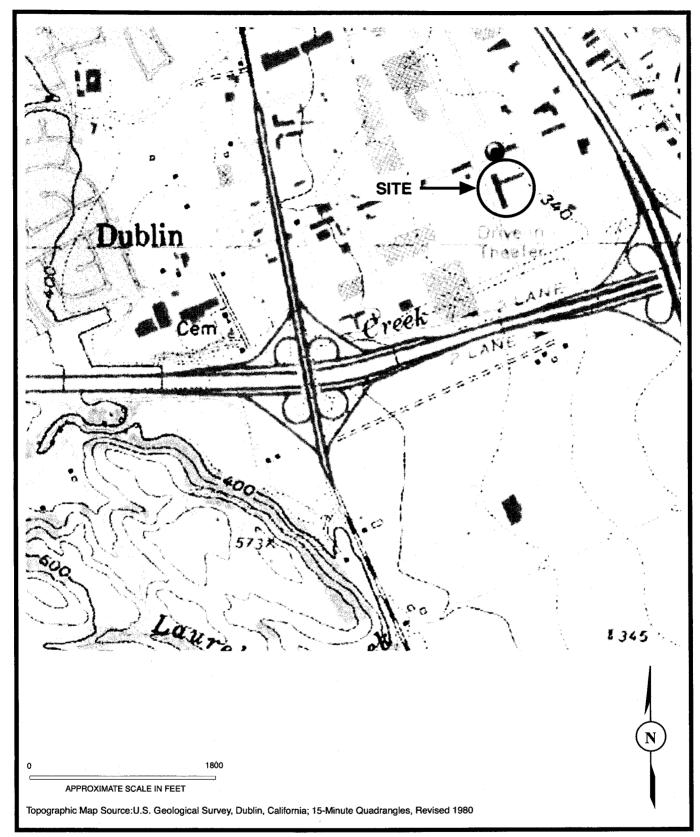
Detectable concentrations of acetone, naphthalene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, and total xylenes were detected within the grab groundwater sample collected from borehole B1. Detectable concentrations of toluene were detected within the grab groundwater samples collected from boreholes B1, B2, B3, B4, B5, B9 and B10. Detectable concentrations of tetrachloroethene were detected within the grab groundwater samples collected from boreholes B5, B8 and B10. Detectable concentrations of benzene, chlorobenzene and 1,2-dichlorobenzene were detected within the grab groundwater sample collected from borehole B8. Detectable concentrations of methyl-tert-butyl-ether was detected

within the grab groundwater sample collected from borehole B9. No other concentrations of volatile organic compounds analyzed by EPA 8260B were detected in the grab water samples.

The concentrations of tetrachloroethene at 9.6 μg/L, benzene at 2.9 μg/L, chlorobenzene at 370 μg/L, and 1,2-dichlorobenzene at 140 μg/L within the B8 groundwater grab sample exceed their respective May 2008 SFRWQCB ESL values where groundwater is a current or potential source of drinking water (5.0 μg/L for tetrachloroethene, 1.0 μg/L for benzene, 25.0 μg/L for chlorobenzene, and 10 μg/L for 1,2-dichlorobenzene). There are no ESL values for 1,2,4-trimethylbenzene or 1,3,5-trimethylbenzene. No USEPA Region 9 2008 PRGs exists for ground water. However, the USEPA Region 9 2008 PRG for 1,2,4-trimethylbenzene in tap water is 15 μg/L and for 1,3,5-trimethylbenzene is 12 μg/L. None of the detected concentrations of these two compounds exceeded their respective PRG values.

Detectable concentrations of antimony, arsenic, chromium, copper, mercury, nickel, and selenium were detected within the grab groundwater sample in borehole B1. In addition, detectable concentrations of arsenic and nickel were detected within the grab groundwater sample in B10. With the exception of chromium and mercury detected within the grab ground water sample from B1, the analytical results indicate that all of the detected metal concentrations in the ground water are below their respective May 2008 SFRWQCB ESLs where groundwater is a current or potential source of drinking water (6.0 µg/L for antimony, 36 µg/L for arsenic, 3.1 µg/L copper, 0.25 µg/L mercury, 8.2 µg/L for nickel, and 5.0 µg/L selenium). The analytical results indicate the maximum level of total chromium at 59 µg/L in B1 is above its respective May 2008 SFRWQCB ESL where ground water is a current or potential source of drinking water (50 µg/L for total chromium).

No detectable concentrations of glycols were detected within the grab groundwater samples collected in boreholes B4 or B10.

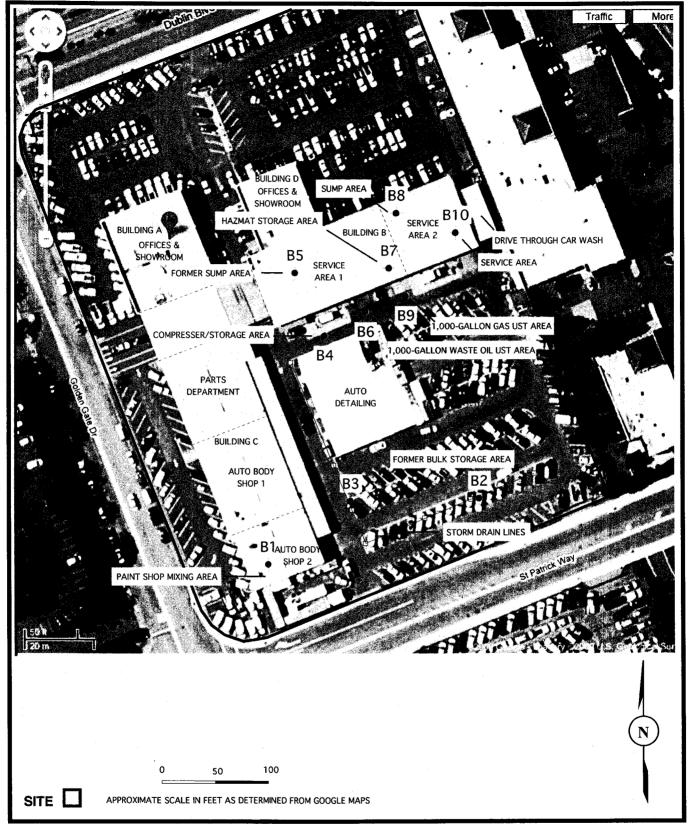

4.2 Recommendations

On the basis of the information obtained from the soil samples collected from a depth of approximately 4.0 feet bgs at eight selected locations (B1, B2, B3, B4, B5, B7, B8 and B10), the soil samples collected from a depth of approximately 10 and 14 feet bgs at two select locations (B6 and B9, respectively), and the nine grab groundwater samples collected from nine selected locations (B1, B2, B3, B4, B5, B7, B8, B9 and B10) our findings indicate the following:

- (1) Elevated concentrations of total petroleum hydrocarbons for one or more of diesel, motor oil and bunker oil-range compounds were detected in the grab groundwater samples at concentrations exceeding their respective ESLs for groundwater within boreholes B1, B2, B3, B4, B5, B7, B8, B9 and B10. The maximum concentrations of total petroleum hydrocarbons as diesel, motor oil and bunker oil were detected at 6,400 μg/L, 49,000 μg/L and 58,000 μg/L, respectively within borehole B2 (located in the paved parking lot area/former bulk hazardous materials storage area near a storm water runoff drain).
- (2) Elevated concentrations of total petroleum hydrocarbons as gasoline and Stoddard solvent were detected in the grab groundwater sample at concentrations exceeding their respective ESLs for groundwater within borehole B8. The maximum concentrations of total petroleum hydrocarbons as gasoline and Stoddard solvent were detected at 550 µg/L and 230 µg/L, respectively within borehole B8 (located near a sump within the service area).
- (3) Elevated concentrations of tetrachloroethene, chlorobenzene and 1,2-dichlorobenzene were detected in the grab groundwater sample at concentrations exceeding their respective ESLs for groundwater within borehole B8. The maximum concentrations of tetrachloroethene, benzene, chlorobenzene and 1,2-dichlorobenzene were detected at 9.6 μg/L, 2.9 μg/L, 370 μg/L and 140 μg/L, respectively within borehole B8 (located near a sump within the service area).
- (4) Elevated concentrations of total chromium and mercury were detected in the grab groundwater sample at concentrations exceeding their respective ESLs for groundwater within borehole B1. The maximum concentrations of total chromium and mercury were detected at 59 μ g/L and 0.17 μ g/L, respectively within borehole B1 (located near a paint mixing area of the auto body shop).

(5) Elevated concentrations of arsenic ranging from 8.2 mg/kg to 8.9 mg/kg were detected in the soil samples collected within borehole B1 and B6 exceeding the ESL for arsenic in the soil. Based on communications with the DTSC, the elevated concentrations of arsenic in soil relative to the arsenic ESL are interpreted to be representative of naturally occurring background concentrations.

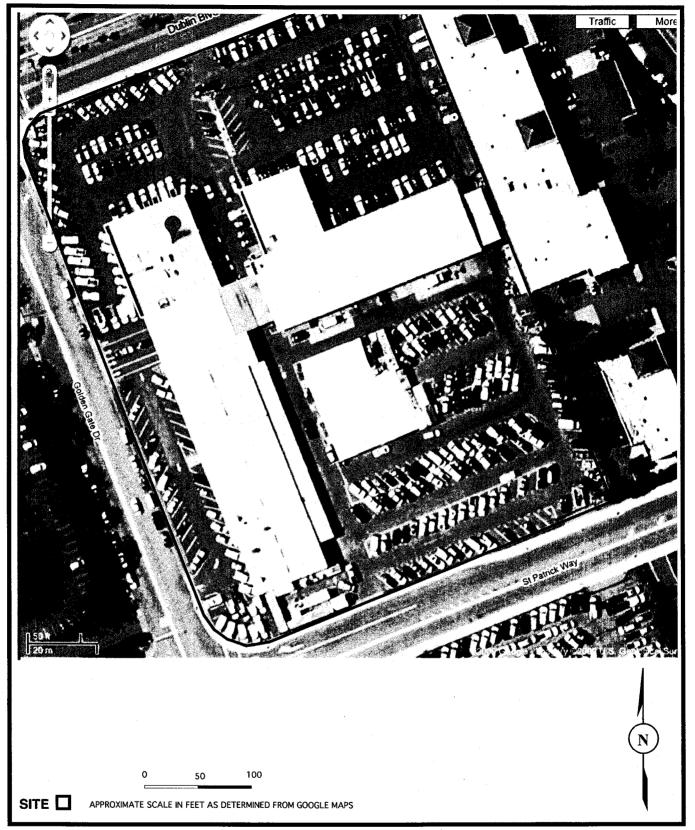
Sample results exceeding ESL values indicate that an unacceptable level of risk may exist and that additional evaluation of risk may be warranted. As such, Basics recommends that a copy of this report be sent to the local regulatory enforcing agency (Alameda County Environmental Health Services Local Oversight Program and/or San Francisco Regional Water Quality Control Board) for review.


Site Location

Limited Phase II Environmental Site Sampling 7544 Dublin Boulevard & 6707 Golden Gate Drive Dublin, California PROJECT NO. **09-ENV1427**

DRAWING NO.

1


Soil Boring Locations

Limited Phase II Environmental Site Sampling 7544 Dublin Boulevard & 6707 Golden Gate Drive Dublin, California PROJECT NO. 09-ENV1427

DRAWING NO.

2

Aerial Photograph (2005)

Limited Phase II Environmental Site Sampling 7544 Dublin Boulevard & 6707 Golden Gate Drive Dublin, California PROJECT NO. **09-ENV1427**

DRAWING NO.

3

RO	RING		B1 PROJECT NO.: 0471 PROJECT N	ADEE: 1	Crown Chevrole	t Deal	erchin	Dublin	
一			CATION: Inside paint and body shop	AME: (CIOWII CIICVIOIC	t Dear			тим: None
_		-	GENCY: Vironex, Inc.	DRILLEI	n. Ioa	DATE		STARTED:	DATE & TIME FINISHED:
			QUIPMENT: Geoprobe 6600	DKILLEI	R: JOE		2/25/ 083	09	2/25/09 0850
со	MPLE	ETIO	N DEPTH: 15.0 Feet BEDROCK DEPTH: No	t Encou	untered	LOGGED BY:			СНЕСКЕВ ВУ:
FIF	RST W	ATE	R DEPTH: 14.0 Feet NO. OF SAMPLES: 2 S	oil, 1 V		MLD			
	DEPTH (FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.3 ft. Concrete slab. 0.3 to 2.0 ft. Brown clayey sand (FILL); loose, moist, with gravel to 0.5-in. diameter. No Petroleum Hydrocarbon (PHC) odor.	FILL	No Well Constructed		0	using a 5-fe Geoprobe I sampler. T	ontinuously cored oot long 2.0-inch O.D. Macrocore barrel he sampler was lined -long 1.5-inch O.D.
_ _ _ _	5		2.0 to 7.0 ft. Dark brown clay (CL); stiff, moist, with some angular gravel to 0.25-in. diameter. No PHC odor.	CL	B1-4.0		0	transparent	PVC tubes. 6 ft. recovery
			7.0 to 14.5 ft. Olive brown silt (ML); medium stiff, moist. No PHC odor.		D1 0 0			5 to 10 ft.	4.5 ft. recovery
	10		moist. No PHC odor.	<u>▼</u>	B1-8.0		0	i	
				ML				10 to 15 ft.	4.2 ft. recovery
_	15		Soft, wet at 14.0 ft. 14.5 to 15.0 ft. Brown silty gravel (GM); saturated, with gravel to 0.75-in. diameter. No PHC odor.	∑ GM			0	at 14.0 ft.	untered during drilling
								2/25/09. To slotted PVC borehole. V 10.4 ft. at 0 0905. Wate	emporary 1-in. diam. C casing placed in Water level measured at 1855, and at 10.6 ft. at er sample B1-W to 9010; no odor or sheer
_	20							Borehole g using a trer cement gro	routed on 2/25/09 nie pipe and neat ut.
	25								
_	30								

BORING	NO.:	B2 PROJECT NO.: 0471 PROJECT N	АМЕ: (Crown Chevrole	t Deale	ership,	Dublin	
BORING	g roc	ATION: East of former bulk storage adjacent to storm dr	ain			ELEVA	FION AND DA	тим: None
DRILLI	•	ENCY: Vironex, Inc.	DRILLEF	a: Joe	DATE	& TIME 2/25/ 073		DATE & TIME FINISHED: 2/25/09 0745
		N DEPTH: 15.0 Feet BEDROCK DEPTH: No	t Encor	ıntered	LOGGED BY:			CHECKED BY:
		REPTH: 13.0 Feet NO. OF SAMPLES: 2 S						
<u> </u>					5			<u>L </u>
DEPTH (FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
		0.0 to 0.3 ft. Concrete slab. 0.3 to 5.0 ft. Dark grayish brown clay (CL); stiff, moist, with trace gravel to 0.25-in. diameter. No Petroleum Hydrocarbon (PHC) odor.	CL	No Well Constructed		0	using a 5-f Geoprobe sampler. T with 5-foo	ontinuously cored to long 2.0-inch O.D. Macrocore barrel the sampler was lined though 1.5-inch O.D. PVC tubes.
- 5 - 5		5.0 to 9.5 ft. Dark brown clayey silt (ML); medium stiff, moist. No PHC odor.		B2-4.0		0	0 to 5 ft. 4	.8 ft. recovery
_ _ _ 			ML	B2-8.0			5 to 10 ft.	4.6 ft. recovery _
10 	-	9.5 to 13.0 ft. Olive brown silty clay (CL); medium stiff, moist. No PHC odor.	CL			0	10 to 15 ft	. 4.2 ft. recovery
- - -		Soft at 12.5 ft. Wet at 13.0 ft. 13.0 to 15.0 ft. Olive brown silt (ML); soft, saturated. — No PHC odor.				0	Water enco	ountered during drilling
- 15 - - - - - -							Borehole t 2/25/09. T slotted PV borehole. 10.1 ft. at 6 sample B2	erminated at 15.0 ft. of emporary 1-in. diam. C casing placed in Water level measured 0748 and at 0758. Wat -W collected at 0800; sheen on sample.
- 20 							Borehole g using a tre cement gro	grouted on 2/25/09 mie pipe and neat out.
- - - 25	- - - - -							
- - - -					-			
_ _ _ 3(. –							

во	RING	NO.:	B3 PROJECT NO.: 0471 PROJECT N	AME:	Crown Chevrole	t Deal	ership,	Dublin	
ВО	RING	LOC	Parking lot across from paint and body shop				ELEVA	TION AND DA	тим: None
			SENCY: Vironex, Inc.	DRILLE	R: Joe	DATE	2/24/ 073		DATE & TIME FINISHED: 2/24/09
DR	ILLIN	G E	QUIPMENT: Geoprobe 6600				0800		
co	MPLE	ETIO	N DEPTH: 15.0 Feet BEDROCK DEPTH: No			LOGGED BY: MLD			CHECKED BY:
FIF		ATE	R DEPTH: 13.5 Feet NO. OF SAMPLES: 2 S	Soil, 1 V		MILD		<u> </u>	
	DEPTH (FT.)		DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.5 ft. Asphalt and Road Base. 0.5 to 2.0 ft. Black clay (CL); medium stiff, moist, with trace gravel to 0.25-in. diameter. No Petroleum Hydrocarbon (PHC) odor. 2.0 to 5.0 ft. Dark brown clay (CL); stiff, moist. No PHC odor.	CL	No Well Constructed		0	using a 5-fi Geoprobe I sampler. T with 5-foot transparent	continuously cored cot long 2.0-inch O.D. Macrocore barrel he sampler was lined t-long 1.5-inch O.D. t PVC tubes.
	5		5.0 to 7.5 ft. Olive brown clayey silt (ML); stiff, moist, with orange mottling. No PHC odor. 7.5 to 11.0 ft. Dark brown clayey sand (SW); loose,	ML	B3-8.0		0		5.0 ft. recovery
_ _ _ _	10		moist, with gravel to 0.25-in. diameter. No PHC odor.	SW			0	10 to 15 ft.	4.6 ft recovery
			stiff, moist. No PHC odor. Wet at 13.0 ft. 13.5 to 14.5 ft. Olive brown silty sand (SP); loose, saturated. No PHC odor.	CL ▽ SP			0	Water enco	ountered during drilling
	15		14.5 to 15.0 ft. Dark brown silty clay (CL); medium stiff, moist, with trace gravel to 0.25-in. diameter. No PHC odor.	CL				Borehole to 2/24/09. T slotted PV borehole. 11.2 ft. at 0 0812. Sam	erminated at 15.0 ft. on emporary 1-in. diam. C casing placed in Water level measured at 1802, and at 11.3 ft. at uple B3-W collected at dor or sheen on sample.
	20								grouted on 2/24/09 mie pipe and neat out.
	25						•		
_	30								

BORING	G NO	: B4 PROJECT NO.: 0471 PROJECT N	AME:	Crown Chevrole	t Deal	ership,	Dublin	
BORIN	G LO	CATION: Adjacent to outdoor hoist				ELEVA	TION AND DA	тим: None
DRILLI	NG A	GENCY: Vironex, Inc.	DRILLE	R: Joe	DATE	2/25/		DATE & TIME FINISHED 2/25/09
DRILLI	NG E	QUIPMENT: Geoprobe 6600		·		095	0	1005
		ON DEPTH: 15.0 Feet BEDROCK DEPTH: NO			LOGGED BY: CH			CHECKED BY:
FIRST V	VATE	R DEPTH: 13.5 Feet NO. OF SAMPLES: 2 S	Soil, 1 V		ļ.,			
DEPTH (FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
-	_	0.0 to 0.3 ft. Asphalt and road base. 0.3 to 1.0 ft. Dark brown clay (CL); stiff, moist.	CL	No Well Constructed		0		ontinuously cored oot long 2.0-inch O.D.
- -	_	No Petroleum Hydrocarbon (PHC) odor. 1.0 to 3.0 ft. Brown silt (ML); stiff, moist, with some gravel to 0.25-in. diameter. No PHC odor.	ML			0	sampler. T	Macrocore barrel The sampler was lined t-long 1.5-inch O.D.
- - -	_	2.5 to 3.0 ft. Bluish green discoloration. 3.0 to 5.0 ft. Black clay (CL); stiff, moist,	CL	B4-4.0		0		t PVC tubes.
5	-	with roots. No PHC odor. 5.0 to 6.5 ft. Dark brown silty clay (CL); stiff, moist, with orange mottling. No PHC odor	CL			0	0 to 5 ft. 4	.8 ft. recovery
-	_	6.5 to 7.5 ft. Brown silty gravel (GM); moist, with gravel to 1.0-in. diameter. No PHC odor.	GM			0		
· -		7.5 to 15.0 ft. Olive green clayey silt (ML); stiff, moist. No PHC odor.		B4-8.0			5 to 10 ft.	4.2 ft. recovery
- - 10	_		ML					
	=					0	10 to 15 ft	. 3.8 ft. recovery
-	=	is (Ā					
-	_	Wet at 13.5 ft.	⊽					
- - 15	_	14.0 to 14.5 ft. With gravel to 0.5-in. diameter.					Water enco	ountered during drillin
- 13 - - - - -					,		2/25/09. T slotted PV borehole. 11.4 ft. at 1017. Wat	erminated at 15.0 ft. o emporary 1-in. diam. C casing placed in Water level measured 1007, and at 11.5 ft. at er sample B4-W t 1020; no odor or she
20	_						Borehole g using a tre cement gro	grouted on 2/25/09 mie pipe and neat out.
- 25	-							
- 43			-					
-	- -					*		
- - 30	_							

BORING	NO.:	B5 PROJECT NO.: 0471 PROJEC	CT NA	ме: (Crown Chevrole	t Deal	ership,	, Dublin	
BORING	LOC	Adjacent to former sump near entrance					ELEVA	TION AND DA	тим: None
DRILLIN		with the same temperature and the same tempera	1	DRILLEF	a: Joe	DATE	2/24/		DATE & TIME FINISHED 2/24/09
		QUIPMENT: Geoprobe 6600	٠.,				110	1113	
_		NDEPTH: 15.0 Feet BEDROCK DEPTH: R DEPTH: 14.0 Feet NO. OF SAMPLES:				LOGGED BY: CHECKE			CHECKED BY:
		17.01 CC NO. OF SAMPLES:	230			<u>.</u> 1			
DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	OI4		REMARKS
- - - - - -		0.0 to 0.3 ft. Concrete slab. 0.3 to 5.0 ft. Brown clayey sand (FILL); medium dense, moist, with gravel to 0.5-in. diameter. No Petroleum Hydrocarbon (PHC) odor. 2.0 to 5.0 ft. Bluish green discoloration.	<u>x</u>	FILL	No Well Constructed		0	using a 5-f Geoprobe sampler. T with 5-foot transparent	ontinuously cored oot long 2.0-inch O.D. Macrocore barrel he sampler was lined i-long 1.5-inch O.D. PVC tubes.
- 3 -: -: -		5.0 to 7.5 ft. Black clay (CL); stiff, moist, with organic matter. No PHC odor.		CL			0		
- - -		7.5 to 14.0 ft. Dark brown silty clay (CL); medium stiff, moist. No PHC odor.	X	CL	B5-8.0			5 to 10 ft.	4.8 ft. recovery
- 10 - - - -				Ā		-	0	10 to 15 ft.	4.5 ft recovery
- - - 15		14.0 to 15.0 ft. Dark brown gravelly clayey sand (SW); loose, wet, with gravel to 0.75-in. diameter.		∑ SW			0	Water enco	untered during drillin
		No PHC odor						2/24/09. T slotted PV borehole. 11.0 ft. at 1 1120. Sam	erminated at 15.0 ft. o emporary 1-in. diam. C casing placed in Water level measured 115, and at 10.7 ft. at uple B5-W collected a dor or sheen on sampl
20								Borehole g using a treat cement gro	routed on 2/24/09 nie pipe and neat out.
- - - -									
25	_								
- - - 	_								
- - 30			=						- S

во	RING	NO.:	B6 PROJECT NO.: 0471 PROJECT N	AME: (Crown Chevrole	t Deal	ership,	Dublin	
во	RING	LOC	CATION: Adjacent to west waste oil UST				ELEVA	TION AND DA	тим: None
┝			GENCY: Vironex, Inc.	DRILLE	R: Joe	DATE	2/25/		DATE & TIME FINISHED: 2/25/09
DR	ILLIN	NG E	QUIPMENT: Geoprobe 6600			<u> </u>	105	1	1120
-			N DEPTH: 15.0 Feet BEDROCK DEPTH: No. R DEPTH: 13.5 Feet No. of Samples: 2.5		untered		ML		CHECKED BY;
		1	70.07.00.00.00.00.00.00.00.00.00.00.00.0	· · · · ·	z	<u> </u>			<u> </u>
	DEPTH (FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
-			0.0 to 0.3 ft. Asphalt and Road Base. 0.3 to 2.0 ft. Grayish black clay (CL); stiff, moist. — No Petroleum Hydrocarbon (PHC) odor.	CL	No Well Constructed		0	using a 5-f	ontinuously cored oot long 2.0-inch O.D. Macrocore barrel
			2.0 to 4.0 ft. Gravelly clayey silt (ML); medium stiff, moist, with gravel to 1.0-in. diameter. No PHC odor. 3.0 to 4.0 ft. Bluish gray discoloration.	ML			0	with 5-foot	the sampler was lined the sampler was lined to
-	5		4.0 to 6.0 ft. Dark brown clay (CL); stiff, moist, with orange mottling and roots. No PHC odor.	CL	B6-5.0		0	0 to 5 ft. 4	6 ft. recovery
			6.0 to 14.5 ft. Olive brown clayey silt (ML); medium stiff, moist. No PHC odor.						•
_				ML				5 to 10 ft.	4.8 ft. recovery
_	10	_	<u>X</u>	MIL	B6-10.0		0	10 to 15 ft.	4.4 ft. recovery
			13.0 to 13.5 ft. With fine sand.	▼					
	15		Wet at 13.5 ft. 14.5 to 15.0 ft. Silty gravel (GM); saturated, with gravel to 0.25-in. diameter. No PHC odor.	± GM			0	at 13.5 ft.	untered during drilling
								2/25/09. W 12.2 ft. at 1	erminated at 15.0 ft. on later level measured at 124, and at 12.4 ft. at water sample collected.
	20							Borehole g using a tren cement gro	routed on 2/25/09 nie pipe and neat ut.
_	20			•					
_									
_	25								
		.		-					
_	30								

во	RING	NO.:	B7 PROJECT NO.: 0471 PROJECT N	AME: (Crown Chevrole	t Deal	ership,	Dublin	
ВС	RING	LOC	CATION: Inside service area next to oil dispensers		1		ELEVA	TION AND DA	гим: None
			GENCY: Vironex, Inc.	DRILLE	R: Joe	DATE	2/24/ 093		DATE & TIME FINISHED: 2/24/09 1000
			N DEPTH: 15.0 Feet BEDROCK DEPTH: No	t Enco	untered	ļ <u>.</u>	LOGGE	ED BY:	CHECKED BY:
			R DEPTH: 13.5 Feet NO. OF SAMPLES: 2 S			MLD			
-				<u> </u>		5			
	DEPTH (FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.3 ft. Concrete slab. 0.3 to 5.0 ft. Brown clayey sand (FILL); loose, moist, — with gravel to 1.5-in. diameter. No Petroleum Hydrocarbon (PHC) odor.	FILL	No Well Constructed		0	using a 5-fo Geoprobe I sampler. T with 5-foot	ontinuously cored bot long 2.0-inch O.D. Macrocore barrel he sampler was lined -long 1.5-inch O.D. PVC tubes.
	5		5.0 to 8.0 ft. Black clay (CL); stiff, moist, with organic matter. No PHC odor.	CL	B7-4.0		.0	0 to 5 ft. 4	5 ft. recovery
	10		8.0 to 12.0 ft. Dark brown silt (ML); stiff, moist, with some gravel to 0.25-in. diameter. No PHC odor.		B7-8.0		0	5 to 10 ft.	4.6 ft. recovery
	10		12.0 to 13.5 ft. Dark brown silty clay (CL); medium				0	10 to 15 ft.	4.8 ft. recovery
_			stiff, moist. No PHC odor. 13.5 to 14.0 ft. Dark brown clayey fine sand (SP); loose, wet_No PHC odor.	ÇL ∇ SP CL			0	Water enco	untered during drilling
	15		14.0 to 15.0 ft. Dark brown silty clay (CL); medium stiff, moist. No PHC odor.					Borehole to 2/24/09. T slotted PV borehole. 12.7 ft. at 1014. Sam	erminated at 15.0 ft. on emporary 1-in. diam. C casing placed in Water level measured a 004, and at 12.6 ft. at ple B7-W collected at dor or sheen on sample
<u>-</u>	20				The state of the s		-		routed on 2/24/09 nie pipe and neat ut
	25								
	30	_							

BORIN	G N	ю.:	B8 PROJECT NO.: 0471 PROJECT	NAME:	Crown Chevro	let Deal	ership	, Dublin	
BORIN	√G I	LOC	Action: Adjacent to car wash sump				ELEVA	TION AND DA	тим: None
	_	-	ENCY: Vironex, Inc.	DRILI	er: Joe	DATI	2/24		DATE & TIME FINISHED: 2/24/09
DRILL	INC	G EQ	QUIPMENT: Geoprobe 6600						1302
	-		N DEPTH: 15.0 Feet BEDROCK DEPTH: N R DEPTH: 12.5 Feet NO. OF SAMPLES: 2			LOGGED BY: CHECK MLD			CHECKED BY:
	<u> </u>	Т		т —		5			
nrepth (FT)	DEFIR (F		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
	-		0.0 to 0.3 ft. Concrete slab. 0.3 to 3.0 ft. Brown clayey sand (FILL); medium dense, moist, with gravel to 0.5-in. diameter. No Petroleum Hydrocarbon (PHC) odor. 1.5 to 3.0 ft. Slight bluish green discoloration.	FIL	No Well Constructed		0	using a 5-f Geoprobe sampler. T with 5-foo	continuously cored coot long 2.0-inch O.D. Macrocore barrel The sampler was lined t-long 1.5-inch O.D. t PVC tubes.
5			3.0 to 8.0 ft. Black silty clay (CL); stiff, moist, with roots. No PHC odor.	CL	B8-4.0		0		.6 ft. recovery
			8.0 to 12.5 ft. Olive brown silty clay (CL); medium stiff, moist, with roots. No PHC odor.	K	B8-8.0			5 to 10 ft.	4.6 ft. recovery
_ _ 10 _ _)			CI			0	10 to 15 ft	4.8 ft. recovery
_			12.5 to 13.0 ft. Dark brown clayey sand (SW); loose, wet. No PHC odor.	SV			0		
_			13.0 to 15.0 ft. Olive brown silty clay (CL); soft, wet. No PHC odor.	CI			0	Water enco	ountered during drilling
_ 15	5							2/24/09. T slotted PV borehole. 12.1 ft. at 1316. San	erminated at 15.0 ft. on emporary 1-in. diam. C casing placed in Water level measured at 1306, and at 11.9 ft. at uple B8-W collected at dor or sheen on sample.
20 20 	0							Borehole gusing a tre	grouted on 2/24/09 mile pipe and neat out.
- 25	5								
						-			
- 30	U			1				1	

		<u></u>	DO		0	1 D - 1		Dul-II	
┢	RING		· · · · · · · · · · · · · · · · · · ·	AME: (Crown Chevrole	t Deale			
ВС	RING	LOC	Adjacent to east waste oil UST		·	T			тим: None
-				DRILLE	r: Joe	DATE	& тіме /2/25 123		DATE & TIME FINISHED: 2/25/09 1240
-									CHECKED BY:
\vdash			N DEPTH: 15.0 Feet BEDROCK DEPTH: No. of Samples: 2 S			LOGGED BY: CHE			CHECKED DI:
111			R DEPTH: 11.0 Feet NO. OF SAMPLES: 2 S	O11, 1 V					
	DEPTH (FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.3 ft. Asphalt and Road Base. 0.3 to 1.0 ft. Dark grayish black clay (CL); stiff, moist.	CL	No Well Constructed		0		ontinuously cored oot long 2.0-inch O.D.
			No Petroleum Hydrocarbon (PHC) odor. 1.0 to 4.0 ft. Brown silt (ML); stiff, moist, with some gravel to 0.25-in. diameter. No PHC odor.	ML	Constructed		0	Geoprobe sampler. T with 5-foo	Macrocore barrel The sampler was lined t-long 1.5-inch O.D. t PVC tubes.
	5		4.0 to 8.5 ft. Dark grayish black clay (CL); stiff, moist, with roots and wood fragments. No PHC odor.	CL	B9-5.0		0 -	0 to 5 ft. 4	.8 ft. recovery
			7.0 ft. Color change to dark brown.		-			5 to 10 ft.	4.4 ft. recovery
	10		8.5 to 15.0 ft. Olive green silt (ML); medium stiff, moist. No PHC odor.	<u></u>	B9-10.0		0	10 to 15 ft	4.6 ft. recovery
			11.0 ft. Wet; color change to bluish green.	ML					
								Water ence at 11.0 ft.	ountered during drilling
	15							2/25/09. I slotted PV borehole. 8.5 ft. at 1 1251. Wa	erminated at 15.0 ft. on emporary 1-in. diam. C casing placed in Water level measured at 241, and at 9.6 ft. at er sample B9-W it 1255; no odor or sheen
	20								grouted on 2/25/09 mie pipe and neat out.
	25								
	43								
	30							-	

во	RING	NO.:	B10 PROJECT NO.: 0471 PROJECT N	AME:	Crown Chevrole	t Deal	ership,	Dublin	
ВС	RING	LOC	ATION: Inside building near outside carwash area				ELEVA	TION AND DA	тим: None
<u> </u>			SENCY: Vironex, Inc.	DRILLE	R: Joe	DATE	2/24/		DATE & TIME FINISHED: 2/24/09
			QUIPMENT: Geoprobe 6600		<u> </u>		124		1358
-			N DEPTH: 17.0 Feet BEDROCK DEPTH: No. R DEPTH: 14.5 Feet NO. OF SAMPLES: 2.5			LOGGED BY: CHECKED MLD			
		-1		· ·	*	-			
	DEPTH (FT.)		DESCRIPTION	GRAPHIC	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID		REMARKS
			0.0 to 0.3 ft. Concrete slab. 0.3 to 2.0 ft. Brown gravelly sand (FILL); loose, dry, with gravel to 0.5-in. diameter. No Petroleum Hydrocarbon (PHC) odor.	FILL	No Well Constructed		0	using a 5-f Geoprobe	continuously cored oot long 2.0-inch O.D. Macrocore barrel The sampler was lined
E			1.0 to 1.5 ft. With dry oily staining. 2.0 to 3.5 ft. Black silty clay (CL); stiff, moist, with roots. No PHC odor.	CL			0		t-long 1.5-inch O.D. t PVC tubes.
E	5		3.5 to 5.0 ft. Brown silt (ML); stiff, dry, with minor gravel to 0.25-in. diameter. No PHC odor.	ML	B10-4.0		0	0 to 5 ft. 4	.2 ft. recovery
			5.0 to 13.0 ft. Black silty clay (CL); stiff, moist, with roots. No PHC odor.	,					
				CL	B10-8.0			5 to 10 ft.	4.6 ft. recovery
	10						0		
								10 to 15 ft	4.0 ft. recovery
_			13.0 to 16.0 ft. Olive green silty clay (CL); medium stiff, moist. No PHC odor.	<u>_</u>				154- 17.0	20.6
	15		Wet at 14.5 ft.	CΓ			0	13 10 17 11	. 2.0 ft. recovery
			16.0 to 17.0 ft. Olive green clayey sand (SC); loose, wet. No PHC odor.	SC			0	Water enco at 14.5 ft.	ountered during drilling
								2/24/09. T slotted PV borehole. 12.9 ft. at	erminated at 17.0 ft. on emporary 1-in. diam. C casing placed in. Water level measured at 1400 and at 1410, at
	20							1500. Wat	1450, and at 12.9 ft. at the sample B10-W at 1510, no odor or sheen
	` 2 <i>5</i>								grouted on 2/24/09 mie pipe and neat out.
<u>-</u>	25								
_									
	30	_							

McCampbell Analytical,	Inc
"When Quality Counts"	

Basics Environmental	Client Project ID: #0471; Former Crown	Date Sampled: 02/24/09
655 12th Street, Suite 126	Chevrolet	Date Received: 02/26/09
Oakland, CA 94607	Client Contact: Donavan Tom	Date Reported: 03/06/09
Oakialiu, CA 94007	Client P.O.:	Date Completed: 03/06/09

WorkOrder: 0902730

March 06, 2009

Dear Donavan:

Enclosed within are:

- 1) The results of the 10 analyzed samples from your project: #0471; Former Crown Chevrolet,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

P & D 'NVIRGNMENTAL, INC.
Sagta Chara Ave, Suite 240
Oskland, CA 24610
(\$10) 653-6916

6902430 CHAIN OF CUSTODY RECORD

PAGE 1 OF 2

SAMPLED BY: (PR	INTEO AND	SICHATI	URE)	HER (Raw Cherroler Bin BWG, DUBIN		ANN TOTAL						REMARKS
SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOCATION	7 ₹8	lè	Ĭ	\mathcal{L}	lá	W ₁	/ ^{&}	
B1-4.0	alaston	10 H S	Soil			17	X		X	\dashv	1	ice	Normal From Aread
B1 80	212510	1/250	51			11				1		P.	HOLD
	1					1	.		Н	4	4		
85-70	2/25/09		- 11			44-	×	Δ	Н		+	· ·	HOLD
Ba-8.0	2/25/09	10745					-	H	H	-+	+-	l —	True's
68-40	2/24/09	1/2753	11			1 7	$\frac{1}{x}$	×	H	7	+	h	No Fard Tour Asset
B3-20	2/24/09					Ηi	r	ť	H	1	1	×	Horp
							Г	Γ	П				
<u> 84-40</u>	0/25/08	1000	19				Z	X	Ш			, n	Normal Tota Arend
B4-8.0	12509	1005	11		mpenturan kalibaran Ma	1	L	L	Ш	Ц	1	<u> ''_</u>	Morp
							L	Į.	Ш	4			
<u> 85-40 </u>	2/24/00					44	<u> ×</u>	X	H	\sqcup	X	1	News Two Assess
<u>.85-8.0</u>	p124/01	11113	11			-	\vdash	1-	Н	$\vdash \vdash$	-	╁┈	Morp
	 	1-	 				+	╀	Н	\vdash	+	├	
RELINDUISHED BY:	[SICNATUR	<u></u>	DATE	TIME	RECEIVED BY: (SICHATUS	<u>1</u>	101	4.5			= -	OIM	BORATORY:
Water 16	adian	Z-3	3/247				NOT.		or c	(21) (21)	□ ½		c CAMPBGU ANALYTIC
BELINOUISHED BY:	(SENY TU	₹ Ε)	DATE	TIME	REGEIVED BY: (SICHATU)	E)	Tu	909	ATO	RY (ATHO	CT: LA	DORATORY PHONE HUNBER:
Andrew Control of the			2409	230	タントア		A	vi (X	LA	RY	DELI	us 18	77) 252-9262
RILINGUISHED BY:			DATE	TIME	RÉCLIVED FOR LABORATO (SICHATURE)	MY BY:			S	ATTA	E AN	()n	RCQUICST SHECT rs: ()/)HO
Results and billing P&D Environmental, lab@pdenviro.com	to Basi	iës fin Për	F0211	ortal org	RFWARKS:				ICE GO	/1.1 op 5	2.8 TIDINO	yes Yes	A PPROPRIATE J
lob opdenviro.com		Pen	Po.L. 3/4/	098					DE	CHLC	ONDIT WASE A RINAT VATIO	ED IN U VOAS	PPROPRIATE BY PRESERVED IN LAS JOSE METALS OTHER

P & D ENVIRONMENTAL, INC. 55 Sunta Clara Are, Sulte 240

PROJECT HUMBER		FORMER CROWN CHEVROLET 7544 DUBLIN BLUD, DUBLIN										386		
SAMPLED BY: (PRINTED AND SIGNA METABLE DESTREMES C SAMPLE MUMBER DATE DIME			Gliebal Archim			NUMBER OF CONTAINERS	10 TO			$\cdot g$		/4	REMARKS	
						+,-	¥.	۲.	6	H	"+	110	E WHOLE A.	-ad
B/a - 5.0 10/a - 10.0	क्षेत्रहाल क्षेत्रहाल	1115	シエ			++-	令	Ð	f			13		
		1.00						Ť						
87-4.0	2/24/89	0955	100			1	X	X			<u> </u>	"	Normal Turn Area	
B7-810	3/34/09	1000	11.				 _	<u> </u>	L		<u> </u>	<u> </u>	Houb	
B2-4.6	alsules					6 2.4	┢	L	-		U -	-	Horna Tun Amund	
152-8.0	2/24/0	1245	- 11				伶	f	r		<u> </u>	70		
	1 1111	1000	``				T	T	T					
159-50	225/09	1235	- 11				L					_^	Horp	
R9-100	2/25/69		u			1	<u>]×</u>	X	<u> </u>	L			Manage of the Mile of	HOL
B9-14.0	2 25 0	13cc	11				1×	X	<u> </u>	<u> </u>		L		75
B10-40	12/109		11				14	¥X	_	ļ.,	M -	<u> </u>		Twons
B10-8.0	17/24/09	255	ш			120	1	-	ļ.,	ļ	Н.	<u> </u>	Horp	
							╀	╁	╄	┝	H	╁		
RELINQUISHED BY	(SIGNATUR	() ()	DATE 3/34/i	TIME 1341	RECEIVED BY; (SIGNATUR	9//		(144		****	1.10	Ø.	ABORATORYO ML CAMPBELL ANAL	TICAL
REUNDARSHED BY: (SIGNATURE)		Ź	DATE	745 2	RECEIVED BY: (SIGNATUR		300	11,500	u4	R	CONTA DC LIL	5 5	adoratory phone inhader: (877/252 - 9262	
RELINGUISHED BY:	(SICH ATUR	E)	DATE	TIME	RÉCEIVED FOR LABORATO (SIGNATURE)	RY BY:							s request sheet lyts (y)no	
Results and billing P&O Environmental, lab@pdenviro.com	to: Basics ine.		00 COTT 1 K-0-1- 1 4 1 CO		REMARKS:			,,,,,,,		u pirefr		**************************************		

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

✓ Email

WorkOrder: 0902730
WorkOrder. 0702/30

Excel

EDF

ClientCode: BEO

HardCopy ThirdParty ☐ J-flag

5 days

Report to:

Donavan Tom Basics Environmental

655 12th Street, Suite 126

Oakland, CA 94607 (510) 834-9099

FAX: (510) 834-9098

Email: basics@aol.com

lab@pdenviro.com CC: PO:

ProjectNo: #0471; Former Crown Chevrolet

WriteOn

Bill to: Accounts Payable

Fax

Basics Environmental

655 12th Street, Suite 126 Oakland, CA 94607

Date Received: Date Printed:

Requested TAT:

02/26/2009 03/05/2009

Requested Tests (See legend below)

Lab ID	Client ID Matrix Collection		Matrix Collection Date Hold		1	2	3	4	5	6	7	8	9	10	111	12
0902730-001	B1-4.0	Soil	2/25/2009 8:45	Tot		Α	Α	Α				ľ.	l			
0902730-003	B2-4.0	Soil	2/25/2009 7:40			Α	Α.	I			T					
0902730-005	B3-4.0	Soil	2/24/2009 7:58			Α	Α		Ι΄			ļ				
0902730-007	B4-4.0	Soil	2/25/2009 10:00			Α	Α					I		ļ	1	
0902730-009	B5-4.0	Soil	2/24/2009 11:10		Α	Α	Α									
0902730-012	B6-10.0	Soil	2/25/2009 11:20			Α	Α	Α								
0902730-013	B7-4.0	Soil	2/24/2009 9:55		Α	Α	Α									
0902730-015	B8-4.0	Soil	2/24/2009 12:45		Α	Α	Α									
0902730-019	B9-14.0	Soil	2/25/2009 13:00			A	Α		1						1	
0902730.020	B10-4.0	Soil	2/24/2000 12:50		Δ	Δ	Δ				T			1	1	ì

Test Legend:

1	8082A_PCB_S
6	
11	

2	8260B_S
7	· · · · · · · · · · · · · · · · · · ·
12	

3	G-MBTEX_S	
8		

4	PP13MS_S
9	

	5	
-	10	

The following SampIDs: 001A, 003A, 005A, 007A, 009A, 012A, 013A, 015A, 019A, 020A contain testgroup.

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	Basics Environm	ientai			Date an	a Time Received U2/26/200	9 8:44:47 PW
Project Name:	#0471; Former C	rown Chevrolet		•	Checklis	st completed and reviewed by:	Samantha Arbuckle
WorkOrder N°:	0902730	Matrix Soil			Carrier:	Rob Pringle (MAI Courier)	
		<u>Ch</u>	ain of C	ustody (C	COC) Information	<u>on</u> ·	
Chain of custody	present?		Yes	✓.	No 🗌		
Chain of custody	signed when relinqu	uished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌		
Sample IDs note	ed by Client on COC	?	Yes	\checkmark	No 🗌		
Date and Time of	of collection noted by	Client on COC?	Yes	Y	No 🗆		
Sampler's name	noted on COC?	•	Yes	•	No 🗌		
		,	Sample	e Receip	t Information		· .
Custody seals in	itact on shipping con	tainer/cooler?	Yes		No 🗌	na 🗹	
	ner/cooler in good co		Yes	V	No 🗌		
	er containers/bottles		Yes	✓	No 🗌		
Sample containe	ers intact?		Yes	~	No 🗌		
Sufficient sample	e volume for indicate	ed test?	Yes	~	No 🗌		
		Sample Pro	nitevnae	ın and H	old Time (HT) Ir	formation	
All samples rece	eived within holding t		Yes	✓	No 🗌	<u>normation</u>	
	Blank temperature	· ·		er Temp:		NA 🗆	
	ils have zero headsp	aca / na hubblas?	Yes	э, толцэ. П		√o VOA vials submitted ✓	
	hecked for correct pr		Yes	~	No 🗆		
	l acceptable upon re		Yes		No 🗆	NA 🗹	
Samples Receiv		50 pt (pt 1 2).	Yes	~	No 🗆		
		(Ice Ty	ype: WE	T ICE			
* NOTE: If the "I	No" box is checked, :	see comments below.	,				
							
Client contacted	• 1	Date conta	acted:			Contacted by:	•
Cherk Contacted	•	Date Come				Somusion by.	
Comments:							

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web; www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

The County County					
Basics Environmental	Client Project ID: #0471	; Former Crown	Date Sampled:	02/24/09	
655 12th Street, Suite 126	Chevrolet		Date Received:	02/26/09	
	Client Contact: Donava	ı Tom	Date Extracted:	02/26/09-03/02/09	
Oakland, CA 94607	Client P.O.:		Date Analyzed	02/28/09-03/05/09	

Polychlorinated Biphenyls (PCBs) Aroclors by GC-ECD*

Analytical Method: SW8082 Work Order: 0902730 Extraction Method: SW3550C 0902730-015A 0902730-020A Lab ID 0902730-009A 0902730-013A B5-4.0 B7-4.0 B8-4.0 B10-4.0 Client ID Reporting Limit for DF =1 Matrix S S S S DF 1 50 1 S W Compound Concentration mg/kg ug/L Aroclor1016 ND<1.2 ND ND ND 0.025 NA ND 0.025 NΑ Aroclor1221 ND<1.2 ND ND ND ND 0.025 NA Aroclor1232 ND<1.2 ND 0.025 NA Aroclor1242 ND<1.2 ND ND ND 0.025 NA Aroclor1248 ND<1.2 ND ND ND ND ND 0.025 NA Aroclor1254 ND<1.2 ND Aroclor1260 ND<1.2 ND ND ND 0.025 NA PCBs, total ND<1.2 ND ND ND 0.025 NA Surrogate Recoveries (%) %SS: 98 80 80 h4,a1 Comments

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

al) sample diluted due to matrix interference

h4) sulfuric acid permanganate (EPA 3665) cleanup

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 F-mail: main@mccampbell.com www.mccamphell.com Telephone: 877-252-9262 Fax: 925-252-9269

Basics Environmental Client Project ID: #0471; Former Date Sampled: 02/25/09 Crown Chevrolet Date Received: 02/26/09 655 12th Street, Suite 126 Date Extracted: 02/26/09 Client Contact: Donavan Tom Oakland, CA 94607 Client P.O.: Date Analyzed: 02/28/09

Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902730 0902730-001A Lab ID Client ID B1-4.0 Soil Matrix Reporting Limit Concentration * DF Compound Concentration * DF Compound ND 1.0 0.005 0.05 tert-Amyl methyl ether (TAME) 1.0 0.005 Benzene ND 1.0 0.005 Bromobenzene ND 1.0 ND 1.0 0.005 Bromochloromethane ND 1.0 0.005 Bromodichloromethane 0.005 ND 1.0 0.005 Bromoform ND 1.0 Bromomethane 1.0 2-Butanone (MEK) ND 1.0 0.02 t-Butyl alcohol (TBA) ND 0.05 ND 1.0 0.005 1.0 0.005 sec-Butyl benzene n-Butyl benzene ND tert-Butyl benzene ND 1.0 Carbon Disulfide ND 1.0 0.005 0.005 ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chloroethane ND 1.0 0.005 Chloroform 1.0 0.005 ND Chloromethane ND 1.0 0.005 2-Chlorotoluene 1.0 0.005 ND 1.0 Dibromochloromethane ND 4-Chlorotoluene 0.005 ND 10 0.004 1,2-Dibromo-3-chloropropane ND 1.0 0.004 1,2-Dibromoethane (EDB) ND 1.0 0.005 ND 1:0 0.005 1,2-Dichlorobenzene Dibromomethane 1.0 0.005 1,3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND ND 1.0 0.005 Dichlorodifluoromethane ND 1.0 0.005 1,1-Dichloroethane 1,2-Dichloroethane (1,2-DCA) ND 1.0 0.004 1,1-Dichloroethene ND 1.0 0.005 ND 1.0 ND 1.0 0.005 0.005 trans-1.2-Dichloroethene cis-1,2-Dichloroethene 1,2-Dichloropropane ND 1.0 0.005 1,3-Dichloropropane ND 1.0 0.005 ND 1.0 0.005 ND 1.0 0.005 1,1-Dichloropropene 2,2-Dichloropropane cis-1,3-Dichloropropene ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 0.005 ND 1.0 Diisopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene ND 1.0 0.1 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.005 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane Isopropylbenzene ND 1.0 0.005 2-Hexanone ND 1.0 0.005 1.0 0.005 4-Isopropyl toluene ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 ND 0.005 Methylene chloride ND 1.0 0.005 ND 1.0 0.005 Naphthalene n-Propyl benzene 1,1,1,2-Tetrachloroethane ND 1.0 0.005 Styrene ND 1.0 0.005 0.005 1,1,2,2-Tetrachloroethane ND 1.0 ND 1.0 0.005 Tetrachloroethene ND 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 Toluene 1.0 1,2,4-Trichlorobenzene ND 1.0 0.005 ND 1.0 0.005 1,1,1-Trichloroethane 1.0 0.005 ND 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 ND 1.0 0.005 1,2,3-Trichloropropane Trichlorofluoromethane ND 0.005 1.0 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene 0.005 Xylenes ND 1.0 0.005 Vinyl Chloride ND 1.0 Surrogate Recoveries (%) 108 %SS1: 87 %SS3 98

water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Comments

Basics Environmental

Oakland, CA 94607

655 12th Street, Suite 126

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #0471; Former 02/25/09 Date Sampled: Crown Chevrolet Date Received: 02/26/09 Client Contact: Donavan Tom Date Extracted: 02/26/09 Client P.O.: Date Analyzed: 02/28/09

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902730

Lab ID				0902730-003A								
Client ID				B2-4.0								
Matrix				Soil								
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit					
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005					
Benzene	ND	1.0	0.005	Bromobenzene	ND ND	1.0	0.005					
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005					
Bromoform	ND	1.0	0.005	Bromomethane	ND ND	1.0	0.005					
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05					
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005					
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005					
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005					
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005					
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005					
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005					
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004					
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005					
1,3-Dichlorobenzene	ND ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005					
Dichlorodifluoromethane	ND	. 1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005					
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005					
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	0.1	0.005					
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005					
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND.	1.0	0.005					
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005					
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	. ND	1.0	0.005					
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1					
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005					
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005					
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005					
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005					
Naphthalene	ND .	1.0	0.005	n-Propyl benzene	ND	1.0	0.005					
Styrene	ND	1.0	0.005	1.1.1.2-Tetrachloroethane	ND	1.0	0.005					
1.1.2.2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005					
Toluene	ND	1.0	0.005	1.2.3-Trichlorobenzene	ND	1.0	0.005					
1,2,4-Trichlorobenzene	· ND	1.0	0.005	1.1.1-Trichloroethane	ND	1.0	0.005					
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005					
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005					
1.2.4-Trimethylbenzene	ND	1.0	0.005	1.3.5-Trimethylbenzene	ND	1.0	0.005					
Vinyl Chloride	ND	1.0	0.005	Xylenes	ND	1.0	0.005					
				ecoveries (%)	•							
%SS1:	8			%SS2:	10	8						
%\$\$3:	9				<u></u>	-						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak, &) low surrogate due to matrix interference.

Comments:

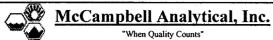
"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

asics Environmental	Client Project ID: #0471; Former	Date Sampled: 02/24/09
55 104 Chart Call 107	Crown Chevrolet	Date Received: 02/26/09
55 12th Street, Suite 126	Client Contact: Donavan Tom	Date Extracted: 02/26/09
akland, CA 94607	Client P.O.:	Date Analyzed: 02/28/09

Volatile Organics by P&T and GC/MS (Basic Target List)*

Analytical Method: SW8260B Work Order: 0902730 Extraction Method: SW5030B


Lab ID				0902730-005A			
Client ID				B3-4.0			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	. ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	- ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND -	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dibromomethane	ND	1,0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	, ND	1.0	0.005
1,2-Dichloropropane	ND -	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene.	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes	ND	1.0	0.005
		Sur	rogate R	ecoveries (%)			
%SS1:	9	90		%SS2:	10	19	
%SS3:		01					

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Comments

Basics Environmental

Oakland, CA 94607

655 12th Street, Suite 126

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #0471; Former Date Sampled: 02/25/09 Crown Chevrolet Date Received: 02/26/09 Date Extracted: 02/26/09 Client Contact: Donavan Tom Date Analyzed: 02/28/09 Client P.O.:

Volatile Organics by P&T and GC/MS (Basic Target List)*

Analytical Method: SW8260B Work Order: 0902730 Extraction Method: SW5030B

Lab ID				0902730-007A			
Client ID			•	B4-4.0			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	0.18	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND -	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005
1.3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0,005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	-1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes	ND	1.0	0.005
		Sur	rogate R	ecoveries (%)			
%SS1:	8	39	X	%SS2:	10	9	
%SS3:	- 	99					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Basics Environmental Client Project ID: #0471; Former Date Sampled: 02/24/09 Crown Chevrolet Date Received: 02/26/09 655 12th Street, Suite 126 Date Extracted: 02/26/09 Client Contact: Donavan Tom Oakland, CA 94607 Client P.O.: Date Analyzed: 02/28/09

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902730

Lab ID				0902730-009A			
Client ID				B5-4.0			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0 -	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	. ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005
4-Chiorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	- ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	· ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbènzene	ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1.1.1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes	ND	1.0	0.005
		Sui	rrogate R	ecoveries (%)			
%SS1:	9			%SS2:	10)7	
%SS3:	9						
Comments:							

ı	* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are
I	reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Basics Environmental Client Project ID: #0471; Former Date Sampled: 02/25/09 Crown Chevrolet Date Received: 02/26/09 655 12th Street, Suite 126 Date Extracted: Client Contact: Donavan Tom 02/26/09 Oakland, CA 94607 Client P.O.: Date Analyzed: 03/02/09

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902730 Lab ID 0902730-012A

Client ID				B6-10.0			
Matrix				Soil			-
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	NĎ	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	/ 1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	- ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND.	1.0	0.005	Ethylbenzene	ND .	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND.	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes	ND	1.0	0.005
		Sur	rogate R	ecoveries (%)			
%SS1:	7	4		%SS2:	1(00	
%SS3:	9	0					

Comments:	
* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP	extracts are
reported in mg/L, wipe samples in ug/wipe.	

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Basics Environmental Client Project ID: #0471; Former Date Sampled: 02/24/09 Crown Chevrolet Date Received: 02/26/09 655 12th Street, Suite 126 Date Extracted: 02/26/09 Client Contact: Donavan Tom Oakland, CA 94607 Date Analyzed: 03/01/09 Client P.O.:

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902730

Lab ID				0902730-013A			
Client ID				B7-4.0			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND .	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND ·	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND_	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes	ND	1.0	0.005
•		Sur	rogate Re	ecoveries (%)			
%SS1:	8	8		%SS2:	10	09	
%SS3:	9	7					
Comments:							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak, &) low surrogate due to matrix interference.

Basics Environmental Client Project ID: #0471; Former Date Sampled: 02/24/09 Crown Chevrolet Date Received: 02/26/09 655 12th Street, Suite 126 Client Contact: Donavan Tom Date Extracted: 02/26/09 Oakland, CA 94607 Date Analyzed: 03/02/09 Client P.O.:

Volatile Organics by P&T and GC/MS (Basic Target List)*

Work Order: 0902730 Analytical Method: SW8260B Extraction Method: SW5030B 0902730-015A Lab ID Client ID B8-4.0 Matrix Soil Reporting Limit Concentration * DF Compound Concentration * DF Compound 1.0 0.005 ND 1.0 0.05 tert-Amyl methyl ether (TAME) Acetone ND 1.0 0.005 ND 1.0 0.005 Benzene Bromobenzene Bromochloromethane ND 1.0 0.005 ND 1.0 0.005 Bromodichloromethane 1.0 0.005 ND Bromoform ND 1.0 0.005 Bromomethane ND ND 1.0 0.05 2-Butanone (MEK) 1.0 0.02 t-Butyl alcohol (TBA) 1.0 0.005 ND n-Butyl benzene ND 1.0 0.005 sec-Butyl benzene ND 1.0 0.005 tert-Butyl benzene ND 1.0 0.005 Carbon Disulfide 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND ND 1.0 0.005 ND Chloroethane 1.0 0.005 Chloroform Chloromethane ND 1.0 0.005 2-Chlorotoluene ND 1.0 0.005 ND 1.0 0.005 ND 1.0 0.005 Dibromochloromethane 4-Chlorotoluene 0.004 1,2-Dibromo-3-chloropropane ND 1.0 1,2-Dibromoethane (EDB) ND 1.0 ND 1.0 0.005 ND 1.0 0.005 1,2-Dichlorobenzene Dibromomethane 1,3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 1.0 0.005 ND 1.0 0.005 ND Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane (1,2-DCA) ND 1.0 0.004 1,1-Dichloroethene ND 1.0 0.005 ND 1.0 0.005 cis-1;2-Dichloroethene ND 1.0 0.005 trans-1,2-Dichloroethene ND 1.0 0.005 1,3-Dichloropropane ND 1.0 0.005 1,2-Dichloropropane 1.0 0.005 ND 1.0 2,2-Dichloropropane ND 0.005 1,1-Dichloropropene cis-1,3-Dichloropropene ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 0.005 ND 1.0 Diisopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene ND 1.0 0.1 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 1.0 0.005 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 0.005 ND 1.0 0.005 ND 1.0 2-Hexanone Isopropylbenzene ND Methyl-t-butyl ether (MTBE) ND 1:0 0.005 4-Isopropyl toluene 1.0 1.0 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 ND Methylene chloride 0.005 ND 1.0 0.005 Naphthalene ND 1.0 0:005 n-Propyl benzene 1,1,1,2-Tetrachloroethane ND 1.0 0.005 Styrene ND 1.0 0.005 ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene 1.0 0.005 Trichlorofluoromethane ND ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes Surrogate Recoveries (%) 100 %SS1: %553 87

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak, &) low surrogate due to matrix interference.

Comments

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 rww.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Basics Environmental Client Project ID: #0471; Former Date Sampled: 02/25/09 Crown Chevrolet Date Received: 02/26/09 655 12th Street, Suite 126 Date Extracted: 02/26/09 Client Contact: Donavan Tom Oakland, CA 94607 Date Analyzed: 03/01/09 Client P.O.:

Volatile Organics by P&T and GC/MS (Basic Target List)*

Work Order: 0902730 Analytical Method: SW8260B Extraction Method: SW5030B Lab ID 0902730-019A B9-14.0 Client ID Matrix Reporting Limit DF DF Concentration * Compound Concentration * Compound 0.005 ND 1.0 Acetone 1.0 0.05 tert-Amyl methyl ether (TAME) ND 10 0.005 Benzene ND 1.0 0.005 Bromobenzene Bromodichloromethane ND 1.0 0.005 Bromochloromethane ND 1.0 0.005 0.005 Bromoform ND 1.0 0.005 Bromomethane ND 10 t-Butyl alcohol (TBA) 0.05 2-Butanone (MEK) ND 1.0 0.02 ND 1.0 0.005 n-Butyl benzene ND 1.0 0.005 sec-Butyl benzene ND 1.0 ND 1.0 0.005 ND 1.0 0.005 Carbon Disulfide tert-Butyl benzene ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 ND 1.0 Chloroform Chloroethane 0.005 Chloromethane ND 1.0 0.005 2-Chlorotoluene ND 1.0 0.005 1.0 0.005 ND 4-Chlorotoluene ND 1.0 0.005 Dibromochloromethane 1,2-Dibromo-3-chloropropane ND 1.0 0.004 1,2-Dibromoethane (EDB) ND 1.0 0.004 0.005 ND 1.0 Dibromomethane ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 1.3-Dichlorobenzene 1.0 ND 0.005 Dichlorodifluoromethane ND 1.0 0.005 1,1-Dichloroethane 1,2-Dichloroethane (1,2-DCA) ND 1.0 0.005 ND 1.0 0.004 1,1-Dichloroethene cis-1,2-Dichloroethene ND 1.0 0.005 ND 1.0 0.005 trans-1,2-Dichloroethene ND ND 1.0 0.005 1,2-Dichloropropane 1.0 0.005 1.3-Dichloropropane 1:0 0.005 2,2-Dichloropropane ND 1.0 0.005 ND 1,1-Dichloropropene ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene 0.005 ND 1.0 Diisopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene Ethyl tert-butyl ether (ETBE) ND 1.0 ND 1.0 0.1 0.005 Freon 113 ND 1.0 0.005 Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 1.0 0.005 Methyl-t-butyl ether (MTBE) 4-Isopropyl toluene ND 0.005 ND 1.0 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 1.0 Naphthalene ND 0.005 n-Propyl benzene 1.0 0.005 ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND Styrene 0.005 1,1,2,2-Tetrachloroethane ND 1.0 ND 1.0 0.005 Tetrachloroethene 1.0 0.005 ND 1,2,3-Trichlorobenzene ND Toluene 1.0 0.005 0.005 1,1,1-Trichloroethane ND 1.0 1,2,4-Trichlorobenzene ND 1.0 0.005 0.005 ND 1.0 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND 1.0 0.005 Xylenes Surrogate Recoveries (%)

water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

89

100

%SS1 %SS3

Comments

108

Basics Environmental

Oakland, CA 94607

655 12th Street, Suite 126

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #0471; Former Date Sampled: 02/24/09 Crown Chevrolet Date Received: 02/26/09 Date Extracted: 02/26/09 Client Contact: Donavan Tom Date Analyzed: 03/01/09 Client P.O.:

Volatile Organics by P&T and GC/MS (Basic Target List)*

Analytical Method: SW8260B Work Order: 0902730 Extraction Method: SW5030B

0902730-020A Lab ID B10-4.0 Client ID Matrix Soil Reporting Limit Concentration ' DF DF Compound Concentration * Compound ND 1.0 0.005 ND 0.05 1.0 tert-Amyl methyl ether (TAME) Acetone 1.0 0.005 ND 1.0 0.005 ND Benzene Bromobenzene 1.0 0.005 Bromochloromethane ND 0.005 Bromodichloromethane ND 1.0 ND 1.0 0.005 ND 0.005 Bromoform 1.0 Bromomethane 1.0 0.05 ND 1.0 t-Butyl alcohol (TBA) ND 2-Butanone (MEK) 0.02 ND 1.0 0.005 1.0 n-Butyl benzene ND 0.005 sec-Butyl benzene ND 1.0 0.005 tert-Butyl benzene ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 ND 1.0 0.005 Chloroform Chloroethane 1.0 0.005 ND Chloromethane ND 1.0 0.005 2-Chlorotoluene 1.0 0.005 ND ND 1.0 0.005 Dibromochloromethane 4-Chlorotoluene 0.004 ND 1.0 1,2-Dibromo-3-chloropropane ND 1.0 0.004 1,2-Dibromoethane (EDB) ND 1.0 0.005 Dibromomethane ND 1.0 0.005 1.2-Dichlorobenzene 1.0 0.005 ND 1,3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1.0 0.005 1,1-Dichloroethane 0.005 ND 1.0 1,2-Dichloroethane (1,2-DCA) ND 1.0 0.004 1,1-Dichloroethene trans-1,2-Dichloroethene ND 1.0 0.005 ND 1.0 0.005 cis-1,2-Dichloroethene 1.0 0.005 1,2-Dichloropropane ND 1.0 0.005 1,3-Dichloropropane ND ND 1.0 0.005 1.0 ND 0.005 2,2-Dichloropropane 1,1-Dichloropropene 0.005 cis-1,3-Dichloropropene ND 1.0 0.005 trans-1,3-Dichloropropene ND 1.0 1.0 0.005 ND Diisopropyl ether (DIPE) ND 1.0 0.005 Ethylbenzene ND 1.0 0.1 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 1.0 0.005 ND Hexachlorobutadiene ND 1.0 0.005 Hexachloroethane ND 1.0 0.005 ND 1.0 0.005 Isopropylbenzene 2-Hexanone 1.0 0.005 ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 4-Isopropyl toluene 1.0 0.005 1.0 4-Methyl-2-pentanone (MIBK) ND ND 0.005 Methylene chloride ND 1.0 0.005 ND Naphthalene 1.0 0.005 n-Propyl benzene 0.005 1,1,1,2-Tetrachloroethane ND 1.0 Styrene ND 1.0 0.005 0.005 1,1,2,2-Tetrachloroethane 1.0 ND ND 1.0 0.005 Tetrachloroethene 0.005 ND 0.005 ND 1.0 Toluene 1.0 1,2,3-Trichlorobenzene 0.005 ND 1.0 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 ND 1.0 0.005 1,2,3-Trichloropropane Trichlorofluoromethane 0.005 1,2,4-Trimethylbenzene ND 1.0 ND 1.0 0.005 1,3,5-Trimethylbenzene ND 0.005 ND 1.0 0.005 1.0 Xylenes Vinyl Chloride Surrogate Recoveries (%) 109 %SS1: 89 %SS3 103

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

"When Quality Counts"

Basics Environmen	ntal): #0471; Former	Date Sampled: 0	02/24/09-02	2/25/09
665 1011 61 11 6	'. 10/	Crown Chevrole	t	Date Received: (02/26/09	
655 12th Street, Su	nte 126	Client Contact:	Donavan Tom	Date Extracted	02/26/09	
Oakland, CA 9460	7	Client P.O.:		Date Analyzed:	02/27/09-0	3/04/09
Gasoline (C6 Extraction method: SW503		Solvent Range (C9-C1) Analytical met	·	bons as Gasoline and Stod	dard Solvei Work Order: 0	
Lab ID	Client ID	Matrix	TPH(g)	TPH(ss)	DF	% SS
0002720 001 4	D1 40	c	NID	ND	1	80

Extraction method:	3 W 3 G 3 G B	Allalytical	methods: SW8021B/8013Bm	11 01	k Order: U	702750
Lab ID	Client ID	Matrix	ТРН(g)	TPH(ss)	DF	% SS
0902730-001A	B1-4.0	S	· ND	ND	1	.80
0902730-003A	B2-4.0	S	ND	ND	1	82
0902730-005A	B3-4.0	S	ND	ND	1	81
0902730-007A	B4-4.0	s	ND	ND	1	99
0902730-009A	B5-4.0	S	ND	ND	. 1	81
0902730-012A	B6-10.0	S	ND	ND	1	90
0902730-013A	B7-4.0	· · · S	ND	ND	1	87
0902730-015A	B8-4.0	S	ND	ND	1	96
0902730-019A	B9-14.0	S	ND	ND	1	81
0902730-020A	B10-4.0	S	ND	ND. ::	. 1	87
				Χ.		
			* -			

Reporting Limit for DF =1, ND means not detected at or	W	NA	NA NA	ug/L
above the reporting limit	S	1.0	1.0	mg/Kg
		<u> </u>	<u> </u>	

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

	Counts"						
Basics Environmental	•	roject ID: #04	71; Former	Date Sam	npled: 0	2/25/09	-
	Crown	Chevrolet		Date Rec	eived 0	2/26/09	
655 12th Street, Suite 126	Client (Contact: Donav	n Tom	Date Exti	racted 0	2/26/09	
			10111				
Oakland, CA 94607	Client F	.O.:		Date Ana	dyzed 0)3/02/09	
	Priorit	Pollutant Meta	ls by ICP-MS*				
Lab ID	0902730-001A	0902730-012	4			Reporting Lin	nit for DF =1;
Client ID	B1-4.0	B6-10.0				ND means rabove the re	not detected porting limit
Matrix	S	S				S :	W
Extraction Type	TOTAL	TOTAL				mg/Kg	mg/L
Analytical Method: 6020A		-MS Metals, Con extraction Method: SW				Work Order:	0902730
Analytical Method: 6020A Dilution Factor						Work Order:	0902730
	E 1 ND	xtraction Method: SW 1 ND				1 0.5	1 NA
Dilution Factor	1 1	xtraction Method: SW				1 0.5 0.5	NA NA
Dilution Factor Antimony	E 1 ND	xtraction Method: SW 1 ND				1 0.5 0.5 0.5	NA NA NA
Dilution Factor Antimony Arsenic	1 ND 8.9	1 ND 8.2				1 0.5 0.5 0.5 0.25	I NA NA NA
Dilution Factor Antimony Arsenic Beryllium	1 ND 8.9 0.56 0.42 46	ND 8.2 0.54 0.31 51				1 0.5 0.5 0.5 0.5 0.25 0.5	I NA NA NA NA
Dilution Factor Antimony Arsenic Beryllium Cadmium	1 ND 8.9 0.56 0.42	1 ND 8.2 0.54 0.31				1 0.5 0.5 0.5 0.5 0.25 0.5 0.5	I NA NA NA NA NA
Dilution Factor Antimony Arsenic Beryllium Cadmium Chromium	1 ND 8.9 0.56 0.42 46	ND 8.2 0.54 0.31 51				1 0.5 0.5 0.5 0.5 0.25 0.5 0.5	NA
Dilution Factor Antimony Arsenic Beryllium Cadmium Chromium Copper	1 ND 8.9 0.56 0.42 46 25	ND 8.2 0.54 0.31 51 28	3050B			1 0.5 0.5 0.5 0.25 0.5 0.5 0.5 0.5	I NA NA NA NA NA NA NA NA
Dilution Factor Antimony Arsenic Beryllium Cadmium Chromium Copper Lead	1 ND 8.9 0.56 0.42 46 25 8.0	ND 8.2 0.54 0.31 51 28 7.3				1 0.5 0.5 0.5 0.5 0.25 0.5 0.5 0.5 0.5 0.5	I NA NA NA NA NA NA NA NA NA
Dilution Factor Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury	1 ND 8.9 0.56 0.42 46 25 8.0 ND	ND 8.2 0.54 0.31 51 28 7.3 ND	3050B			1 0.5 0.5 0.5 0.5 0.25 0.5 0.5 0.5 0.05 0.0	I NA
Dilution Factor Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel	1 ND 8.9 0.56 0.42 46 25 8.0 ND	ND 8.2 0.54 0.31 51 28 7.3 ND 41	3050B			1 0.5 0.5 0.5 0.25 0.5 0.5 0.5 0.05 0.5 0.5	I NA
Dilution Factor Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium	1 ND 8.9 0.56 0.42 46 25 8.0 ND 41	ND 8.2 0.54 0.31 51 28 7.3 ND 41 ND	3050B			1 0.5 0.5 0.5 0.5 0.25 0.5 0.5 0.5 0.05 0.0	I NA
Dilution Factor Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	1 ND 8.9 0.56 0.42 46 25 8.0 ND 41 ND	ND 8.2 0.54 0.31 51 28 7.3 ND 41 ND ND ND ND ND ND ND N	3050B			1 0.5 0.5 0.5 0.25 0.5 0.5 0.5 0.05 0.5 0.5	I NA

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion.

Comments

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 ww.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269 Web: www.mccampbell.com

Client Project ID: #0471; Former **Basics Environmental** Date Sampled: 02/24/09-02/25/09 Crown Chevrolet Date Received: 02/26/09 655 12th Street, Suite 126 Date Extracted: 02/26/09 Client Contact: Donavan Tom Date Analyzed: 02/28/09-03/02/09 Oakland, CA 94607 Client P.O.:

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3	5550C ·	Analytical me	ethods: SW8015B	W	ork Order: 0	902730
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS
0902730-001A	B1-4.0	S	ND	ND	1	106
0902730-003A	B2-4.0	S	1.1,e7,e2	5.4	1	106
0902730-005A	B3-4.0	S	ND	ND	1	108
0902730-007A	B4-4.0	S	ND	ND	1	109
0902730-009A	B5-4.0	S	1.9,e2	ND	1	106
0902730-012A	B6-10.0	S	ND	ND	1	105
0902730-013A	B7-4.0	S	33,e7,e2	180	2	97
0902730-015A	B8-4.0	S	1.3,e2	ND	1	109
0902730-019A	B9-14.0	S	1.4,e7,e2	5.5	1	108
0902730-020A	B10-4.0	S	1.6,e2	ND	1	99
	· · · · · · · · · · · · · · · · · · ·			• ,		
:	<u>, , , , , , , , , , , , , , , , , , , </u>					
		<u> </u>			-	

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or, surrogate peak is on elevated baseline, or, surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

e7) oil range compounds are significant

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

BatchID: 41721

WorkOrder 0902730

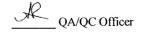
EPA Method SW8260B	Extra	ction SW	5030B					S	Spiked San	nple ID	: 0902729-0)15A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%))
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	79.9	82.7	3.40	88	80.5	8.86	60 - 130	30	60 - 130	30
Benzene	ND	0.050	114	116	1.72	110	112	2.37	60 - 130	30	60 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	71.1	72.4	1.80	96.5	96.4	0.0530	60 - 130	30	60 - 130	30
Chlorobenzene	ND	0.050	111	111	0	104	102	1.82	60 - 130	30	60 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	85.1	79.4	6.95	94.3	96.6	2.46	60 - 130	30	60 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	88.2	89	0.941	106	106	0	60 - 130	30	60 - 130	30
1,1-Dichloroethene	ND	0.050	75.3	78.4	4.06	71.4	74.9	4.86	60 - 130	30	60 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	80.8	83.4	3.15	105	106	1.63	60 - 130	30	60 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	85.8	88.2	2.85	107	108	1.21	60 - 130	30	60 - 1,30	30
Methyl-t-butyl ether (MTBE)	ND	0.050	79.5	82.5	3.65	95.2	97.3	2.16	60 - 130	30	60 - 130°	30
Toluene	ND	0.050	121	116	4.63	127	125	1.89	60 - 130	30	60 - 130	30
Trichloroethene	ND	0.050	98	97.1	0.868	104	105	1.14	60 - 130	30	60 - 130	30
%SS1:	73	0.12	70	73	3.74	73	74	1.59	70 - 130	30	70 - 130	30
%SS2:	101	0.12	107	106	0.347	106	106	0	70 - 130	30	70.~130	30
%SS3:	91	0.012	98	99	1.29	84	87	3.40	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

BATCH 41721 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902730-001A	02/25/09 8:45 AM	02/26/09	02/28/09 8:16 PM	0902730-003A	02/25/09 7:40 AM	02/26/09	02/28/09 9:00 PM
0902730-005A	02/24/09 7:58 AM	02/26/09	02/28/09 9:44 PM	0902730-007A	02/25/09 10:00 AM	02/26/09	02/28/09 10:28 PM
0902730-009A	02/24/09 11:10 AM	02/26/09	02/28/09 11:12 PM	0902730-012A	02/25/09 11:20 AM	02/26/09	03/02/09 8:53 PM
0902730-013A	02/24/09 9:55 AM	02/26/09	03/01/09 12:39 AM	0902730-015A	02/24/09 12:45 PM	02/26/09	03/02/09 9:36 PM
0902730-019A	02/25/09 1:00 PM	02/26/09	03/01/09 2:07 AM	0902730-020A	02/24/09 12:50 PM	02/26/09	03/01/09 2:50 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8082

W.O. Sample Matrix: Soil

QC Matrix: Soil

BatchID: 41723

WorkOrder 0902730

EPA Method SW8082 Extraction SW3550C Spiked Sample ID: 0902730-)13A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, maryte	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Aroclor1260	ND	0.075	110	109	0.346	126	126	0	70 - 130	20	70 - 130	20
%SS:	83	0.050	83	83	0	82	82	0	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

BATCH 41723 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902730-009A	02/24/09 11:10 AM	03/02/09	03/05/09 5:43 PM	0902730-013A	02/24/09 9:55 AM	02/26/09	02/28/09 7:31 PM
0902730-015A	02/24/09 12:45 PM	02/26/09	02/28/09 8:27 PM	0902730-020A	02/24/09 12:50 PM	02/26/09	02/28/09 9:23 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

"When Quality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

BatchID: 41716

WorkOrder: '0902730

EPA Method: SW8021B/8015Bm	Extra	ction: SW	5030B	30B						Spiked Sample ID: 0902727-		
Analyte	Sample	Spiked	мѕ	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, wayto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	0.60	97.3	94.9	2.47	100	97.3	2.77	70 - 130	20	70 - 130	20
МТВЕ	ND	0.10	94.9	94.9	0	93	89.5	3.83	70 - 130	20	70 - 130	20
Benzene	ND	0.10	88.2	88.5	0.365	83.6	85.1	1.78	70 - 130	20	70 - 130	20
Toluene	/ ND	0.10	102	103	1.00	103	105	1.97	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	102	104	1.06	106	108	1.94	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	113	114	1.06	118	120	1.62	70 - 130	20	70 - 130	20
%SS:	79	0.10	90	90	0	95	98	2.40	70 - 130	20	70 - 130	20

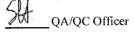
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41716 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902730-001A	02/25/09 8:45 AM	02/26/09	03/04/09 3:08 AM	0902730-003A	02/25/09 7:40 AM	02/26/09	02/28/09 3:17 AM
0902730-005A	02/24/09 7:58 AM	02/26/09	02/28/09 3:50 AM	0902730-007A	02/25/09 10:00 AM	02/26/09	03/03/09 4:30 PM
0902730-009A	02/24/09 11:10 AM	02/26/09	03/04/09 12:19 PM	0902730-012A	02/25/09 11:20 AM	02/26/09	02/27/09 9:55 PM
0902730-013A	02/24/09 9:55 AM	02/26/09	02/27/09 10:25 PM	0902730-015A	02/24/09 12:45 PM	02/26/09	02/28/09 2:53 AM
0902730-019A	02/25/09 1:00 PM	02/26/09	02/28/09 3:22 AM	0902730-020A	02/24/09 12:50 PM	02/26/09	02/28/09 5:50 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0902730

EPA Method: 6	6020A			Extracti	on: SW3050)B	В	atchID: 4	1722	Spiked Sample ID: 0902729-015A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%)
7 mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	ND	50	101	101	· . 0	10	110	98.2	11.6	75 - 125	20	75 - 125	20
Arsenic	4.9	50	106	105	0.778	10	113	96.9	14.8	75 - 125	20	75 - 125	. 20
Beryllium	ND	50	95.5	93.9	1.66	10	110	97.3	12.3	75 - 125	20	75 - 125	20
Cadmium	ND	50	99	98.8	0.202	10	110	98.2	11.3	75 - 125	20	75 - 125	20
Chromium	.37	50	95.6	97.8	1.28	10	116	99.2	15.6	75 - 125	20	75 - 125	20
Copper	9.9	50	103	104	0.990	10	119	103	15.2	75 - 125	20	75 - 125	20
Lead	4.5	50	96.7	96.6	0.132	10	107	94.6	12.2	75 - 125	20	75 - 125	20
Mercury	ND	1.25	98.4	98.3	0.160	0.25	112	96.2	15.5	75 - 125	20	75 - 125	20
Nickel	32	50	102	103	0.574	10	118	101	15.5	75 - 125	20	75 - 125	20
Selenium	ND	50	103	102	0.915	10	111	96	14.6	75 - 125	20	75 - 125	20
Silver	ND	50	114	113	0.370	10	112	99.3	11.6	75 - 125	20	75 - 125	20
Thallium	ND	50	93.2	93.6	0.407	10	92.4	84.5	8.92	75 - 125	20	75 - 125	20
Zinc	34	500	100	100	0	100	112	96.5	15.0	75 - 125	20	75 - 125	20
%SS:	94	250	92	92	0	250	106	92	14.2	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41722 SUMMARY

Lab ID	Date Sampled Date B	Extracted Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902730-001A	02/25/09 8:45 AM 0	02/26/09 03/02/09 1.49 PM	0902730-012A	02/25/09 11:20 AM	1 02/26/09	03/02/09 1:57 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil

QC Matrix: Soil

BatchID: 41682

WorkOrder: 0902730

EPA Method: SW8015B Extraction: SW3550C Spiked									Spiked Sam	ple ID:	0902721-0	02A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, way to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	ND	20	94.1	97.8	3.95	110	107	2.75	70 - 130	30	70 - 130	30
%SS:	84	50	81	85	5.52	100	97	2.92	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41682 SUMMARY

Lab ID	Date Sampled Date Ex	tracted Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902730-001A	02/25/09 8:45 AM 02/	26/09 02/28/09 2:58 PM	0902730-003A	02/25/09 7:40 AM	02/26/09	02/28/09 4:06 PM
0902730-005A	02/24/09 7:58 AM 02/	26/09 02/28/09 5:15 PM	0902730-007A	02/25/09 10:00 AM	02/26/09	02/28/09 6:23 PM
0902730-009A	02/24/09 11:10 AM 02/	26/09 02/28/09 7:32 PM	0902730-012A	02/25/09 11:20 AM	02/26/09	02/28/09 8:40 PM
0902730-013A	02/24/09 9:55 AM 02/	26/09 03/02/09 7:01 PM	0902730-015A	02/24/09 12:45 PM	02/26/09	02/28/09 10:57 PM
0902730-019A	02/25/09 1:00 PM 02/	26/09 03/01/09 12:05 AM	.0902730-020A	02/24/09 12:50 PM	02/26/09	03/02/09 5:50 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-Telephone: 877-252-9262 E-mail: main@mccampbell.com 262 Fax: 925-252-9269

Basics Environmental	Client Project ID: #0471; Former Crown	Date Sampled: 02/24/09-02/25/09						
655 12th Street, Suite 126	Chevrolet	Date Received: 02/26/09						
Oakland, CA 94607	Client Contact: Donavan Tom	Date Reported: 03/04/09						
Oakland, CA 94607	Client P.O.:	Date Completed: 03/03/09						

WorkOrder: 0902706

March 05, 2009

Dear Donavan:

Enclosed within are:

- 1) The results of the 9 analyzed samples from your project #0471; Former Crown Chevrolet,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

P & D ENVIRONMENTAL, INC. 55 Santa Clare Ave. Suite 240

0902706

PROJECT NUMBER: PROJECT NAME FORMER CROWN 7544 DUBLIN (SAMPLED BY: (PRINTED AND SIGNATURE)			CROWN CHEVRUE NUBLIN BLUD, DUBI		38/e								/			
CUICHEEL DES	1			las!	ANGULE SAMPLE LOCATION	NUMBER OF CONTAINERS	SECTION AND ADDRESS OF THE PARTY OF THE PART	1	Ĭ	1		1/	PROGRAM	1	REMARKS	
	2/25/09					la a	<u> Y</u>		7	H	+	t_i	7	No-	1 Y	n Aross
<u>81-w</u> B2-w	2/25/09	2110	WATCH			-+-	l ý	Ĥ	<i></i>				7		11	v.
133-60	aladio	0815	n			14	犮	Ŷ				T			n	31
134-W	2 25 04	1030	1/	***		110	İχ	X		X	\top	1	Y .	\$8	*1	a
B5-W	2/24/09	1125	,,,			17	×	X		П			ካ	j.	- 13	4
87-W	- 		11			17	X	X					1	- 4	- fi	,
188-W	2/24/09		77			7	X	X					ŧ	- 15 y	33	33
B9-W	2 35/09		11			7	X	X	¥			1	N .	3 }	81	- 77
1310-W	2/24/09		u			10	X	X	X	X		L			1	11
	1 1			500000000000000000000000000000000000000			L			Ш		1				
							1					L				
10E1+40		7					L	L								
GOOD CONDI HEAD SPACE	ABSENT V	PPROP		1			L		L]			
DECHLORINA	D IN LAB	PRES	ERVED	N LAB	-		1		L							
PRESERVATIO	N_VI						1	1	L	L	Щ	1				
Organization and							L	1	L							
REUNQUISHED BY:	(SICHATUR	E)	DATE	TIME	RECEIVED BY: (SIGNATU	RE)		(Trees	387	MONTE:		9		ORATORY	5	
Eliste His	Siebel beschung HAS 34			! "	The second 73 MC						CAMEBELL AMALYT					
RELINCOUSHED BY: (SIGNATURE) DATE, TIME RECEIVED BY: (SIGNATURE)			2	-10	LABORATORY CONTACT: LABORATORY PHONE MUMBER: MUCEUA RYDELIUS 1877 852-9262 SAMPLE ANALYSIS REQUEST SHEET											
RECONOLISMED BY:	(SICHATUR	<u>5)</u>	DĂTE	TIME	RECEIVED FOR LABORAT	ORY BY:	1		S					EQUEST 5 (×)N		

per SJC. analyze BIW and BIOW for APIBaiss, do not analyze BAW for also metals

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Email

1 of 1

		WorkOrder:	0902

Excel

EDF

Fax

ClientCode: BEO

HardCopy ThirdParty

___ J-flag 5 days

Report to:

Donavan Tom Basics Environmental

655 12th Street, Suite 126

Oakland, CA 94607 (510) 834-9099 FAX: (510) 834-9098 Email:

basics@aol.com

WriteOn

CC: lab@pdenviro.com PO:

ProjectNo: #0471; Former Crown Chevrolet

Bill to:

Accounts Payable

Basics Environmental

655 12th Street, Suite 126 Oakland, CA 94607

Requested TAT: Date Received:

Date Printed:

02/26/2009 03/05/2009

*								Re	quested	Tests	See leg	end bel	ow)			
Lab iD	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0902706-001	B1-W	Water	2/25/2009 9:10	TÖI	8		Α	С	С			T				
0902706-002	B2-W	Water	2/25/2009 8:00		В		Α					1.5				
0902706-003	B3-W	Water	2/24/2009 8:15		В		Α									
0902706-004	B4-W	Water	2/25/2009 10:20		В	С	Α									
0902706-005	B5-W	Water	2/24/2009 11:25		В		Α							1		
0902706-006	. B7-W	Water	2/24/2009 10:20		В		Α									
0902706-007	B8-W	Water	2/24/2009 13:20		В		Α						l			
0902706-008	B9-W	Water	2/25/2009 12:55		В		Α							l		
0902706-009	B10-W	Water	2/24/2009 15:10		В	С	A	D	D		I					

Test Legend:

1	8260B_W
6	
11	

2	ETHYLENEGLYCOL_W
7	······································

3	G-MBTEX_W	

4	PP13MS_DISS	
9		

5	PRDISSOLVED
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A contain testgroup.

Prepared by: Melissa Valles

Comments:

Originally logged in as P&D workorder, but it was changed to Basics Env. Per Paul King's email 03/04/09.

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Comments:

Sample Receipt Checklist

Client Name:	Basics Environmental			Date a	and Time Received	02/26/2009	2:37:48 PM	
Project Name:	#0471; Former Crown Che	vrolet		Check	dist completed and r	eviewed by:	Melissa Valles	
WorkOrder N°:	0902706 Matrix	Water		Carrie	r: Rob Pringle (N	//AI Courier)		
		Chain of C	ustody (C	OC) Informati	tion			
Chain of custody	present?	Yes	✓	No 🗆				
Chain of custody	signed when relinquished and	received? Yes	V	No 🗌				
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌				
Sample IDs noted	d by Client on COC?	Yes	✓	No 🗌			· C	
Date and Time of	f collection noted by Client on	COC? Yes	✓	No 🗔				
Sampler's name	noted on COC?	Yes	v	No 🗌				
		Samp	e Receint	Information		•		
Custody seals int	tact on shipping container/coo			No 🗌		NA 🗹		
-	er/cooler in good condition?	Yes	✓	No 🗌				
	er containers/bottles?	Yes	V	No 🗌	· ·		*	
Sample containe		Yes	✓	No 🗌		×		
	volume for indicated test?	Yes	~	No 🗌				
		Sample Preservati	on and Ho	old Time (HT)	Information			
All samples recei	ived within holding time?	Yes	V	No 🗌				
Container/Temp	Blank temperature	Coo	ler Temp:	4°C		NA 🗌		
Water - VOA vial	s have zero headspace / no b	ubbles? Yes	V	No 🗌	No VOA vials subm	nitted 🗌		
Sample labels ch	necked for correct preservation	n? Yes	V	No 🗌				
TTLC Metal - pH	acceptable upon receipt (pH<	(2)? Yes		No 🗌		NA 🔽		
Samples Receive	ed on Ice?	Yes	✓	No 🗌				
		(Ice Type: W	ET ICE)			•	
* NOTE: If the "N	lo" box is checked, see comm	ents below.						
Client contacted:		Date contacted:			Contacted	I by:	į	

Basics Environmental Client Project ID: #0471; Former Date Sampled: 02/25/09 Crown Chevrolet Date Received: 02/26/09 655 12th Street, Suite 126 Client Contact: Donavan Tom Date Extracted: 02/28/09 Oakland, CA 94607 Date Analyzed: 02/28/09 Client P.O.:

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902706 Lab ID 0902706-001B

Lad ID		· ·		0902706-001B							
Client ID		B1-W									
Matrix				Water							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit				
Acetone	54	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5				
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5				
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5				
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5				
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0				
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5				
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5				
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5				
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5				
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5				
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5				
1,2-Dibromo-3-chloropropane	. ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5				
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5				
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5				
Dichlorodifluoromethane	ND	1.0	0.5	1.1-Dichloroethane	ND	1.0	0.5				
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1.1-Dichloroethene	ND	1.0	0.5				
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5				
1.2-Dichloropropane	ND	1.0	0.5	1.3-Dichloropropane	ND	1.0	0.5				
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1,0	0.5				
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5				
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	1.8	1.0	0.5				
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10				
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5				
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5				
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5				
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5				
Naphthalene	1.2	1.0	0.5	n-Propyl benzene	ND	1.0	0.5				
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND.	1.0	0.5				
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5				
Toluene	3.0	1.0	0.5	1.2.3-Trichlorobenzene	ND	1.0	0.5				
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5				
1.1.2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5				
Trichlorofluoromethane	ND	1.0	0.5	1.2.3-Trichloropropane	ND	1.0	0.5				
1,2,4-Trimethylbenzene	4.8	1.0	0.5	1,3,5-Trimethylbenzene	1.9	1.0	0.5				
Vinyl Chloride	ND	1.0	0.5	Xylenes	12	1.0	0.5				
3.1				ecoveries (%)							
%SS1:	7	'5		%SS2:	9:	5					
%SS3:		36									
Comments: b1		-									
Commono, OI						****					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe

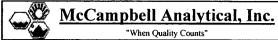
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Basics Environmental	Client Project ID: #0471; Former	Date Sampled: 02/25/09
655 12th Street, Suite 126	Crown Chevrolet	Date Received: 02/26/09
033 12th Street, Suite 120	Client Contact: Donavan Tom	Date Extracted: 02/28/09
Oakland, CA 94607	Client P.O.:	Date Analyzed: 02/28/09

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B		Analy	tical Metho	od: SW8260B	Work Order: 0902	706						
Lab ID				0902706-002B								
Client ID		B2-W										
Matrix				Water								
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit					
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5					
Benzene	ND	1.0	0.5	Bromobenzene	ND ND	1.0	0.5					
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5					
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5					
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0					
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5					
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5					
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5					
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5					
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5					
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5					
1.2-Dibromo-3-chloropropane	ND	1.0	0.2	1.2-Dibromoethane (EDB)	ND	1.0	0.5					
Dibromomethane	ND	1.0	0.5	1.2-Dichlorobenzene	ND	1.0	0.5					
1,3-Dichlorobenzene	ND	1.0	0.5	1.4-Dichlorobenzene	ND	1.0	0.5					
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5					
1.2-Dichloroethane (1.2-DCA)	ND	1.0	0.5	1.1-Dichloroethene	ND	1.0	0.5					
cis-1,2-Dichloroethene	. ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5					
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5					
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5					
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5					
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5					
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10					
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5					
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5					
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5					
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5					
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5					
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5					
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5					
Toluene	0.77	1.0	0.5	1.2.3-Trichlorobenzene	ND	1.0	0.5					
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5					
1.1.2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5					
Trichlorofluoromethane	ND	1.0	0.5	1.2.3-Trichloropropane	ND	1.0	0.5					
1.2.4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5					
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5					
· · · · · · · · · · · · · · · · · · ·	1,1,0			ecoveries (%)								
%SS1:	76		. vgate IV	%SS2	95		14					
%SS3:	88			70332.								
/00000.)		<u> </u>								


^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

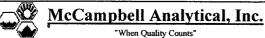
surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

Comments: b1

Basics Environmental Client Project ID: #0471; Former Date Sampled: 02/24/09 Crown Chevrolet Date Received: 02/26/09 655 12th Street, Suite 126 Client Contact: Donavan Tom Date Extracted: 02/28/09 Oakland, CA 94607 Date Analyzed: 02/28/09 Client P.O.:

Volatile Organics by P&T and GC/MS (Basic Target List)*


Extraction Method: SW5030B Work Order: 0902706 Analytical Method: SW8260B Lab ID 0902706-003B

Client ID				B3-W			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND-	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene.	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	1.1	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	0.65	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	0.66	1.0	0.5
		Sur	rogate R	ecoveries (%)			
%SS1:	7	6		%SS2:	9:	5	
%SS3:	9						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit, N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak, &) low surrogate due to matrix interference.

Basics Environmental Client Project ID: #0471; Former 02/25/09 Date Sampled: Crown Chevrolet Date Received: 02/26/09 655 12th Street, Suite 126 Client Contact: Donavan Tom Date Extracted: 02/28/09 Oakland, CA 94607 Client P.O.: Date Analyzed: 02/28/09

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902706

Lab ID		0902706-004B					
Client ID		B4-W					
Matrix	<u> </u>	Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF.	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	- 1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND '	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND .	1.0	. 0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND :	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	-1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5
2-Hexanone	ND	1,0	0.5	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	0.56	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	- 0.5	1,1,1-Trichloroethane	ND ·	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND ND	1.0	0.5
		Sur	rogate Re	ecoveries (%)			
%SS1:	7			%SS2:	9	6	
%SS3:	8	8					
Comments: b1							,

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

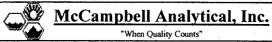
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

Basics Environmental	Client Project ID: #0471; Former	Date Sampled: 02/24/09
655 12th Street, Suite 126	Crown Chevrolet	Date Received: 02/26/09
033 12th Street, State 120	Client Contact: Donavan Tom	Date Extracted: 02/28/09
Oakland, CA 94607	Client P.O.:	Date Analyzed: 02/28/09

Volatile Organics by P&T and GC/MS (Basic Target List)*


Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902706

Lab ID		0902706-005B					
Client ID				B5-W			
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	-1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND .	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND .	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0.	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	. ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	1.6	1.0	0.5
Toluene	0.70	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND-	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5
		Sur	rogate R	ecoveries (%)			
%SS1:	7	4		%SS2:	94	4	
%SS3:	. 9	0					
Comments: b1							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Basics Environmental	Client Project ID: #0471; Former	Date Sampled: 02/24/09
655 19th Stungt Switz 196	Crown Chevrolet	Date Received: 02/26/09
655 12th Street, Suite 126	Client Contact: Donavan Tom	Date Extracted: 03/01/09
Oakland, CA 94607	Client P O	Date Analyzed: 03/01/09

Volatile Organics by P&T and GC/MS (Basic Target List)*

•	Volatile Organ	•		d GC/MS (Basic Target List)*		•		
Extraction Method: SW5030B		Analytical Method: SW8260B			Work Order: 0902	706		
Lab ID		0902706-006B						
Client ID		B7-W						
Matrix				Water			<u> </u>	
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reportin Limit	
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5	
Carbon Tetrachloride	ND	. 1.0	0.5	Chlorobenzene	· ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5	
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5	
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5	
1.2-Dibromo-3-chloropropane	ND	1.0	0.2	1.2-Dibromoethane (EDB)	ND	1.0	0.5	
Dibromomethane	ND	1.0	0.5	1.2-Dichlorobenzene	ND	1.0	0.5	
1.3-Dichlorobenzene	ND	1.0	0.5	1.4-Dichlorobenzene	ND	1.0	0.5	
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1.1-Dichloroethene	ND	1.0	0.5	
cis-1,2-Dichloroethene	ND .	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5	
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5	
2,2-Dichloropropane	ND	1.0	0.5	1.1-Dichloropropene	ND	1.0	0.5	
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5	
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10	
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5	
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND.	1.0	0.5	
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5	
Styrene	ND	1.0	0.5	1.1.1.2-Tetrachloroethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1<0	0.5	Tetrachloroethene	ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1.1.1-Trichloroethane	ND	1.0	0.5	
1.1.2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1.3.5-Trimethylbenzene	ND	1.0	0.5	
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5	
,. 6110.130				ecoveries (%)		•		
%SS1:	7	6	- 2Barr X	%SS2:	9:	5		
0/4551		8		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak, &) low surrogate due to matrix interference.

Basics Environmental

Oakland, CA 94607

655 12th Street, Suite 126

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Client Project ID: #0471; Former Date Sampled: 02/24/09 Crown Chevrolet Date Received: 02/26/09 Client Contact: Donavan Tom Date Extracted: 03/02/09 Date Analyzed: 03/02/09 Client P.O.:

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902706

Lab ID				0902706-007B			
Client ID				B8-W			
Matrix							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<100	10	10	tert-Amyl methyl ether (TAME)	ND<5.0	10	0.5
Benzene	ND<5.0	10	0.5	Bromobenzene	ND<5.0	10	0.5
Bromochloromethane	ND<5.0	10	0.5	Bromodichloromethane	ND<5.0	10	0.5
Bromoform	ND<5.0	10 -	0.5	Bromomethane	ND<5.0	10	0.5
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (TBA)	ND<20	10	2.0
n-Butyl benzene	ND<5.0	10	0.5	sec-Butyl benzene	ND<5.0	10	0.5
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide	ND<5.0	10	0.5
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene	370	10	0.5
Chloroethane	ND<5.0	10	0.5	Chloroform	ND<5.0	. 10	0.5
Chloromethane	ND<5.0	. 10	0.5	2-Chlorotoluene	ND<5.0	. 10	0.5
4-Chlorotoluene	ND<5.0	- 10	0.5	Dibromochloromethane	ND<5.0	10	0.5
1,2-Dibromo-3-chloropropane	ND<2.0	10	0.2	1,2-Dibromoethane (EDB)	ND<5.0	10	0.5
Dibromomethane	ND<5.0	10	0.5	1,2-Dichlorobenzene	140	10	0.5
1.3-Dichlorobenzene	ND<5.0	10	0.5	1.4-Dichlorobenzene	ND<5.0	10	0.5
Dichlorodifluoromethane	ND<5.0	10	0.5	1.1-Dichloroethane	ND<5.0	10	0.5
1,2-Dichloroethane (1,2-DCA)	ND<5.0	10	0.5	1,1-Dichloroethene	ND<5.0	10	0.5
cis-1,2-Dichloroethene	ND<5.0	10	0.5	trans-1,2-Dichloroethene	ND<5.0	10	0.5
1,2-Dichloropropane	ND<5.0	10	0.5	1,3-Dichloropropane	ND<5.0	10	0.5
2,2-Dichloropropane	ND<5.0	10	0.5	1.1-Dichloropropene	ND<5.0	10	0.5
cis-1,3-Dichloropropene	ND<5.0	10	0.5	trans-1,3-Dichloropropene	ND<5.0	1.0	0.5
Diisopropyl ether (DIPE)	ND<5.0	10	0.5	Ethylbenzene	ND<5.0	10	0.5
Ethyl tert-butyl ether (ETBE)	ND<5.0	10	0.5	Freon 113	ND<100	10	10
Hexachlorobutadiene	ND<5.0	10	0.5	Hexachloroethane	ND<5.0	10	0.5
2-Hexanone	ND<5.0	10	0.5	Isopropylbenzene	ND<5.0	10	0.5
4-Isopropyl toluene	ND<5.0	10	0.5	Methyl-t-butyl ether (MTBE)	ND<5.0	10	0.5
Methylene chloride	ND<5.0	10	0.5	4-Methyl-2-pentanone (MIBK)	ND<5.0	10	0.5
Naphthalene	ND<5.0	10	0.5	n-Propyl benzene	ND<5.0	10	0.5
Styrene	ND<5.0	10	0.5	1.1.1.2-Tetrachloroethane	ND<5.0	10	0.5
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene	9.6	10	0.5
Toluene	ND<5.0	10	0.5	1.2.3-Trichlorobenzene	ND<5.0	10	0.5
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1.1.1-Trichloroethane	ND<5.0	10	0.5
1.1.2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene	ND<5.0	10	0.5
Trichlorofluoromethane	ND<5.0	10	0.5	1.2.3-Trichloropropane	ND<5.0	10	0.5
1,2,4-Trimethylbenzene	ND<5.0	10	0.5	1,3,5-Trimethylbenzene	ND<5.0	10	0.5
Vinyl Chloride	ND<5.0	10.	0.5	Xylenes	ND<5.0	10	0.5
Tanji Omorido	1 110 5.0			ecoveries (%)			
%SS1:	7′			%SS2:	94	4	
%SS3:	86						
Comments: b1						*	

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Basics Environmental Client Project ID: #0471; Former 02/25/09 Date Sampled: Crown Chevrolet 02/26/09 Date Received: 655 12th Street, Suite 126 Client Contact: Donavan Tom Date Extracted: 03/01/09 Oakland, CA 94607 Client P.O.: Date Analyzed: 03/01/09

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0902706 Lab ID 0902706-008B

Client ID		B9-W					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	0.94	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	0.84	1.0	0.5	1,2,3-Trichlorobenzene	ND ·	1.0	0.5
1,2,4-Trichlorobenzene	ND .	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5
	*	Sur	rogate Re	ecoveries (%)			,
%SS1:	7	'6		%SS2:	90	5	~~
%S\$3:	8	6					
Comments: b1	-						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Basics Environmental Client Project ID: #0471; Former Date Sampled: 02/24/09 Crown Chevrolet Date Received: 02/26/09 655 12th Street, Suite 126 Date Extracted: 03/01/09 Client Contact: Donavan Tom Oakland, CA 94607 Date Analyzed: 03/01/09 Client P.O.:

Volatile Organics by P&T and GC/MS (Basic Target List)*

Work Order: 0902706 Extraction Method: SW5030B Analytical Method: SW8260B

Lab ID		0902706-009B					
Client ID		B10-W					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	. ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	. ND	1.0	0.5	Bromodichloromethane	ND	1:0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND:	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND ND	1.0	0.5	Tetrachloroethene	1.9	1.0	0.5
Toluene	0.58	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1.2.4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5
		Sui	rogate R	ecoveries (%)			
%SS1:	7	6		%SS2:	9	5	
%SS3:		37					
Comments: b1	-						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	"When Quality Counts"	Telephone:	Telephone: 877-252-9262 Fax: 925-252-9269				
Basics Environment		Client Project ID Crown Chevrole	: #0471; Former	Date Sampled: 02/24/09-02/25/09 Date Received: 02/26/09 Date Extracted 02/26/09			
655 12th Street, Suit	e 126	Client Contact:	Donavan Tom				
Oakland, CA 94607		Client P.O.:	:	Date Analyzed 02/27	/09		
Extraction method: MAI-Alco	phols		ycols* methods: MAI-Alcohols	Work O	rder: 090	02706	
Lab ID	Client ID	Matrix	Ethylene G	lycol	DF	% SS	
0902706-004C	B4-W	w	ND,b1		1	N/A	
0902706-009C	B10-W	w	ND<2.0,a1	4,b1	10	N/A	
				· ·			
	•						
-							
NATE							
	,						
						-	
	e de la companya de						
						1	
·							
Reporting L	imit for DF =1;	w	0.2		-	ıg/L	
ND means no	ot detected at or reporting limit	S	NA			NA ·	
		Ethylene glycol monoe	thyl ether; EGME=Ethylene gly	ycol monomethyl ether.	<u> </u>		
Water samples are reporte	d in mg/L. Soil samples ar due to the physical nature ontains greater than ~1 vol	e reported in mg/Kg.					

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Basics Environmental	Client Project ID: #0471; Former	Date Sampled: 02/24/09-02/25/09
655 12th Street, Suite 126	Crown Chevrolet	Date Received: 02/26/09
033 12th offset, butter 120	Client Contact: Donavan Tom	Date Extracted 02/28/09
Oakland, CA 94607	Client P.O.:	Date Analyzed: 02/28/09

Gasoline (C6-C12), Stoddard Solvent (C9-C12) Volatile Hydrocarbons with BTEX and MTBE*

Extraction Method: SW5030B		Ana	Work Order: 0902706					
	Lab ID	0902706-001A	0902706-002A	0902706-003A	0902706-004A			
	Client ID	B1-W	B2-W	B3-W	B4-W	Reporting Limit for DF =1		
	Matrix	W	. W	W	W	-		
	DF	1	1	1.	1	S	W	
Compound			Conc	entration		ug/kg	μg/L	
ТРН(g)		65	ND	ND	ND	NA	50	
TPH(ss)		57	ND	ND	ND	NA	50	
МТВЕ		ND	ND	ND	ND	NA	5.0	
Benzene		ND	ND	ND	ND	NA	0.5	
Toluene		2.2	0.58	0.77	ND	NA	0.5	
Ethylbenzene		1.3	. ND	ND	ND	NA	0.5	
Xylenes		11	ND	0.64	ND	NA	0.5	
		Surr	ogate Recoveries	s (%)	· .			
%SS:		97	99	101	99			
Comments		d2,b1	bl-	bl	b1	1		

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

d2) heavier gasoline range compounds are significant (aged gasoline?)

d6) one to a few isolated non-target peaks present in the TPH(g) chromatogram

Basics Environmental	Client Project ID: #0471; Former	Date Sampled: 02/24/09-02/25/09
655 12th Street, Suite 126	Crown Chevrolet	Date Received: 02/26/09
033 1241 54165, 5416 120	Client Contact: Donavan Tom	Date Extracted 02/28/09
Oakland, CA 94607	Client P.O.:	Date Analyzed: 02/28/09

Gasoline (C6-C12), Stoddard Solvent (C9-C12) Volatile Hydrocarbons with BTEX and MTBE*

Analytical Method: SW8021B/8015Bm

Work Order: 0902706

Extraction Method: \$W5030B		Ana	Work Order: 0902706					
	Lab ID	0902706-005A	0902706-006A	0902706-007A	0902706-008A	×		
Client		B5-W	B7-W	B8-W	B9-W	Reporting Limit for DF =1		
	Matrix	W	W	W	W			
	DF	·I	1	1	1	S	w	
Compound			Conc	entration		ug/kg	μg/L	
ТРН(g)		ND	ND	550	ND	NA	50	
TPH(ss)		ND	ND	170	ND	NA NA	50	
МТВЕ		ND	ND	ND	ND	NA	5.0	
Benzene		ND	ND	2.9	ND	NA	. 0.5	
Toluene		ND	ND	ND	0.64	NA	0.5	
Ethylbenzene		ND	ND	ND	ND	NA	0.5	
Xylenes		ND	ND	ND	ND	NA	0.5	
		Surr	ogate Recoveries	s (%)				
%SS:	,	103	97	111	99			
Comments		bl .	bl	d6,b1	b1			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

d2) heavier gasoline range compounds are significant (aged gasoline?)

d6) one to a few isolated non-target peaks present in the TPH(g) chromatogram

Basics Environmental	Client Project ID: #0471; Former	Date Sampled: 02/24/09-02/25/09
655 12th Street. Suite 126	Crown Chevrolet	Date Received: 02/26/09
obb 12th Stroot, State 120	Client Contact: Donavan Tom	Date Extracted 02/28/09
Oakland, CA 94607	Client P.O.:	Date Analyzed: 02/28/09

Gasoline (C6-C12), Stoddard Solvent (C9-C12) Volatile Hydrocarbons with BTEX and MTBE*

Extraction Method: SW5030B Analytical Method: SW8021B/8015Bm Work Order: 0902706 Lab ID 0902706-009A B10-W Reporting Limit for Client ID DF =1 Matrix \mathbf{W} DF 1 S w Compound Concentration ug/kg μg/L TPH(g) ND NA 50 ND NA 50 TPH(ss) MTBE NA 5.0 ND 0.5 Benzene ND NA 0.5 Toluene ND NA Ethylbenzene ND NA Xylenes ND NA 0.5 Surrogate Recoveries (%) %SS: 101 Comments

cluttered chromatogram; sample peak coelutes with surrogate peak.

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- d2) heavier gasoline range compounds are significant (aged gasoline?)
- d6) one to a few isolated non-target peaks present in the TPH(g) chromatogram

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

"When Quality	Counts"		Telephone: 877-252-9262 Fax: 925-252-9269					
Basics Environmental	Client Pr	roject ID: #0471	; Former	Date Sampled:	02/24/09-02	2/25/09		
	Crown C	Chevrolet	· · · · · · · · · · · · · · · · · · ·	Date Received 02/26/09				
655 12th Street, Suite 126	Client C	ontact: Donavan	Tom	Date Extracted 02/26/09				
	Chefit C	ontact. Donavan	10111	Date Extracted	02/20/09			
Oakland, CA 94607	Client P.	O.:		Date Analyzed	02/27/09			
	Priority	Pollutant Metals	by ICP-MS*					
Lab ID	0902706-001C	0902706-009D			Reporting Lin	nit for DF =1		
Client ID	B1-W	B10-W			ND means r			
Matrix	W	W	1		S	w		
Extraction Type	DISS.	DISS.			mg/kg	μg/L		
Analytical Method: E200.8		MS Metals, Conce traction Method: E200.8			Work Order:	0902706		
Dilution Factor	1	1			1	l		
Antimony	0.64	ND			NA	0.5		
Arsenic	3.9	1.8				0.5		
	3.9	1.0			NA	0.5		
Beryllium	ND	ND			NA NA	0.5		
Beryllium Cadmium		 				1		
**	ND	ND			NA	0.5		
Cadmium	ND ND	ND ND			NA NA	0.5 0.25		
Cadmium Chromium	ND ND 59	ND ND ND			NA NA NA	0.5 0.25 0.5		
Cadmium Chromium Copper	ND ND 59 1.7	ND ND ND ND			NA NA NA NA	0.5 0.25 0.5 0.5		
Cadmium Chromium Copper Lead	ND ND 59 1.7 ND	ND ND ND ND			NA NA NA NA	0.5 0.25 0.5 0.5 0.5		
Cadmium Chromium Copper Lead Mercury	ND ND 59 1.7 ND 0.017	ND ND ND ND ND ND ND			NA NA NA NA NA	0.5 0.25 0.5 0.5 0.5 0.012		
Cadmium Chromium Copper Lead Mercury Nickel	ND ND 59 1.7 ND 0.017 0.86	ND 3.6			NA NA NA NA NA	0.5 0.25 0.5 0.5 0.5 0.012		
Cadmium Chromium Copper Lead Mercury Nickel Selenium	ND ND 59 1.7 ND 0.017 0.86 0.88	ND 3.6 ND			NA NA NA NA NA NA NA NA NA	0.5 0.25 0.5 0.5 0.5 0.012 0.5 0.5		
Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver	ND ND 59 1.7 ND 0.017 0.86 0.88 ND	ND N			NA	0.5 0.25 0.5 0.5 0.5 0.012 0.5 0.5 0.19		

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

bl

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion.

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Then Quanty ex		
Basics Environmental	Client Project ID: #0471; Former	Date Sampled: 02/24/09-02/25/09
655 12th Street, Suite 126	Crown Chevrolet	Date Received: 02/26/09
	Client Contact: Donavan Tom	Date Extracted 02/26/09
Oakland, CA 94607	Client P.O.:	Date Analyzed: 02/28/09-03/03/09

Total Extractable Petroleum Hydrocarbons*

Extraction Method: SW3510C	*	Ana	Work Order: 0902706					
	Lab ID	0902706-001A	0902706-002A	0902706-003A	0902706-004A			
Client		BI-W	B2-W	B3-W	B4-W	Reporting Limit for DF =1		
- 1	Matrix	W	W	W	W			
	DF	1	20	2	2	S	w	
Compound			Conc	entration		ug/kg	μg/L	
TPH-Diesel (C10-C23)	:	2400	6400	930	600	NA	50	
TPH-Motor Oil (C18-C36)	:	2100	49,000	4500	3200	NA	250	
TPH-Bunker Oil (C10-C36)		2700	58,000	6100	4100	NA	100	
TPH-Kerosene (C9-C18)		1500	1200	230	110	NA	50	
		Surre	ogate Recoveries	s (%)				
%SS:		113	85	86	94			
Comments		e3,b1	e7,e2,b1	e7,e2,b1	e7,e2,b1			
		<u> </u>	1	<u> </u>	<u> </u>	1		

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- e2) diesel range compounds are significant; no recognizable pattern
- e3) aged diesel is significant
- e6) one to a few isolated peaks present in the THP(d/mo) chromatogram
- e7) oil range compounds are significant

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or, surrogate peak is on elevated baseline, or, surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

was quanty cour		
Basics Environmental	Client Project ID: #0471; Former	Date Sampled: 02/24/09-02/25/09
655 12th Street, Suite 126	Crown Chevrolet	Date Received: 02/26/09
	Client Contact: Donavan Tom	Date Extracted 02/26/09
Oakland, CA 94607	Client P.O.:	Date Analyzed: 02/28/09-03/03/09

Total Extractable Petroleum Hydrocarbons*

		I dtai Extrac	table retroleum	Hydrocar bons			
Extraction Method: SW3510C		Ana	alytical Method: SW801	5B		Work Order:	0902706
	Lab ID	0902706-005A	0902706-006A	0902706-007A	0902706-008A		
	Client ID	B5-W	B7-W	B8-W	B9-W	Reporting DF	
	Matrix	W	W	W	W		
	DF	. 1	1	1	10	S	W
Compound			ug/kg	μg/L			
ΓΡΗ-Diesel (C10-C23)		65	62	230	3400	NA	50
TPH-Motor Oil (C18-C36)		ND	410	270	22,000	NA	250
TPH-Bunker Oil (C10-C36)		170	470	530	25,000	NA	100
TPH-Kerosene (C9-C18)		ND	ND	180	ND<500	NA	50
		Surre	ogate Recoveries	i (%)			
%SS:		118	99	99	96		
Comments		e2,b1	e7,e2,b1	e7,e2,e6,b1	e7,e2,b1		

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

- b1) aqueous sample that contains greater than ~1 vol. % sediment e2) diesel range compounds are significant; no recognizable pattern
- e3) aged diesel is significant
- e6) one to a few isolated peaks present in the THP(d/mo) chromatogram
- e7) oil range compounds are significant

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

· \	when Quarty	Courts			<u> </u>						
Basics Environmental				oject ID:	#0471	; Former	Date Sampled:	02/24/09-0	02/25/09		
655 12th Street, Suite 12	26		Crown C	nevrolet			Date Received	Date Received: 02/26/09			
2			Client Co	ontact: De	onavan	Гот	Date Extracted	02/26/09			
Oakland, CA 94607			Client P.O.:				Date Analyzed	: 02/28/09-	03/03/09		
Extraction Method: SW3510C	Total Extractable Petroleum Hydrocarbons* Method: SW3510C Analytical Method: SW8015B								0902706		
	Lab ID	09027	706-009A								
	Client ID	В	10-W	-	-	•			Limit for		
	Matrix	-	W								
	DF		20	`	-	,	-	S	w		
Compound					Conce	ntration		ug/kg	μg/L		
TPH-Diesel (C10-C23)			2400					NA	50		
TPH-Motor Oil (C18-C36)		2	3,000					NA	250		
TPH-Bunker Oil (C10-C36)		2	5,000					NA	100		
TPH-Kerosene (C9-C18)		NE	D<1000					NA	50		
			Surr	ogate Řec	overies	(%)					
%SS:			94								
Comments		e7	e2 b1								

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- b1) aqueous sample that contains greater than ~1 vol. % sediment
- e2) diesel range compounds are significant; no recognizable pattern
- e3) aged diesel is significant
- e6) one to a few isolated peaks present in the THP(d/mo) chromatogram
- e7) oil range compounds are significant

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

NONE

QC Matrix: Water

BatchID: 41695

WorkOrder: 0902706

EPA Method: SW8260B	Extrac	ction: SW	5030B	•				· S	spiked San	ple ID:	0902697-0	14a
Analyte	Sample	Sample Spiked M			MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)).
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	89	90.9	2.15	90.5	91.2	0.774	70 - 130	30	70 - 130	30
Benzene	ND	10	108	107	0.493	109	110	0.838	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	75.1	77	2.56	97.3	93.5	4.05	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	109	108	0.378	95.4	95.9	0.485	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	107	110	2.32	94	92.7	1.42	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	101	100	0.688	105	105	0	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	85.4	84	1.68	76.2	75.5	0.909	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	95.6	95.8	0.243	127	128	0.286	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	103	103	0	113	113	0	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	98.5	96.3	2.23	100	100	0	70 - 130	30	70 - 130	30
Toluene	ND	110	126	126	0	102	103	0.117	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	102	102	0	95	94.7	0.277	70 - 130	30	70 - 130	30
%SS1:	90	25	88	88	, 0	81	82	0.945	70 - 130	30	70 - 130 -	30
%SS2:	108	25	104	107	2.71	98	98	0	70 - 130	30	70 - 130	30
%SS3:	87	2.5	92	91	1.13	.72	72	0	70 - 130	30	70 - 130	30

BATCH 41695 SUMMARY

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902706-001B	02/25/09 9:10 AM	02/28/09	02/28/09 8:38 PM	0902706-002B	02/25/09 8:00 AM	02/28/09	02/28/09 9:22 PM
0902706-003B	02/24/09 8:15 AM	02/28/09	02/28/09 10:06 PM	0902706-004B	02/25/09 10:20 AM	02/28/09	02/28/09 10:50 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

SA QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

BatchID: 41704

WorkOrder: 0902706

EPA Method: SW8260B	Extra	ction: SW	5030B					s	Spiked San	nple ID:	0902708-0	03c
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	88.3	92.1	4.18	94.1	94.1	0	70 - 130	30	70 - 130	30
Benzene	ND	-10	103	109	5.23	- 111	112	0.276	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	79.9	83.2	3.98	90	86.7	3.73	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	94.6	100	5.64	104	105	0.573	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	97.8	99.8	2.11	110	108	1.10	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	101	104	2.05	94.9	94.6	0.289	70 - 130	-30	70 - 130	30
1,1-Dichloroethene	ND	10	85	85.3	0.400	85.1	83.7	1.70	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	92.3	98.1	6.08	103	102	1.28	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	98.2	106	7.21	114	111	. 2.88	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	96.9	98.6	1.78	103	101	2.44	70 - 130	30	70 - 130	30
Toluene	ND	10	113	117	3.80	124	124	0	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	103	104	1.65	108	109	0.668	70 - 130	30	70 - 130	30
%SS1:	86	25	74	72	1.78	77.	76	0.548	70 - 130	30	70 - 130	30
%SS2:	97	25	99.	98	1.03	98	98	0	70 - 130	30	70 - 130	30
%SS3:	73	2.5	91	88	3.40	103	105	1.56	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41704 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902706-005B	02/24/09 11:25 AM	02/28/09	02/28/09 11:33 PM	0902706-006B	02/24/09 10:20 AM	03/01/09	03/01/09 12:17 AM
0902706-007B	02/24/09 1:20 PM	03/02/09	03/02/09 5:30 PM	0902706-008B	02/25/09 12:55 PM	03/01/09	03/01/09 1:44 AM
0902706-009B	02/24/09 3:10 PM	03/01/09	03/01/09 2:27 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR GLYCOL

W.O. Sample Matrix: Water

QC Matrix: Water

BatchID: 41705

WorkOrder: 0902706

EPA Method: MAI-Alcohols				s	Spiked Sam	ple ID:	0902706-0	04c				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, many to	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Ethylene Glycol	ND	1	117	115	1.48	112	111	0.821	80 - 120	20	80 - 120	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

BATCH 41705 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID ·	Date Sampled	Date Extracted	Date Analyzed
0902706-004C	02/25/09 10:20 AM	02/26/09	02/27/09 2:48 PM	0902706-009C	02/24/09 3:10 PM	02/26/09	02/27/09 6:43 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

SH QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

BatchID: 41696

WorkOrder: 0902706

EPA Method: SW8021B/8015Bm Extraction: SW5030B									Spiked Sample ID: 0902713-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%)			
/ works	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	99.6	98.8	0.756	98.7	101	2.64	70 - 130	20	70 - 130	20
МТВЕ	NĎ	10	101	106	4.95	92.7	104	- 11.1	70 - 130	20	70 - 130	20
Benzene	ND	10	104	102	1.69	104	101	2.83	70 - 130	20	70 - 130	- 20
Toluene	ND	10	96.1	95.3	0.839	94.9	92.7	2.37	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	. 105	104	0.545	106	94.2	11.8	70 - 130	20	70 - 130	20
Xylenes	ND ·	30	102	102	0	102	89.2	13.7	70 - 130	20	70 - 130	20
%SS:	93	10	101	100	1.43	101	98	3.75	70 - 130	20	70 - 130	20

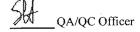
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41696 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902706-001A	02/25/09 9:10 AM	02/28/09	02/28/09 2:40 PM	0902706-002A	02/25/09 8:00 AM	02/28/09	02/28/09 3:11 PM
0902706-003A	02/24/09 8:15 AM	02/28/09	02/28/09 3:41 PM	0902706-004A	02/25/09 10:20 AM	02/28/09	02/28/09 4:12 PM
.0902706-005A	02/24/09 11:25 AM	02/28/09	02/28/09 4:42 PM	0902706-006A	02/24/09 10:20 AM	02/28/09	02/28/09 5:12 PM
0902706-007A	02/24/09 1:20 PM	02/28/09	02/28/09 5:43 PM	0902706-008A	02/25/09 12:55 PM	02/28/09	02/28/09 6:13 PM
0902706-009A	02/24/09 3:10 PM	02/28/09	02/28/09 6:44 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100,* (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 E-mail: main@mccampbell.com 52 Fax: 925-252-9269 Web: www.mccampbell.com Telephone: 877-252-9262

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

BatchID: 41640

WorkOrder: 0902706

EPA Method: E200.8	Extra	ction: E20	8.00		1			Spiked Sample ID: 0902572-0					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	ceptance Criteria (%)			
•	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Antimony	ND	10	101	102	1.55	98.9	99.1	0.202	70 - 130	20	85 - 115	20	
Arsenic	2.2	10	102	106	3.75	103	103	.0	70 - 130	20	85 - 115	. 20	
Beryllium	ND	10	98.4	99.4	0.910	99.5	101	1.79	70 - 130	20	85 - 115	20	
Cadmium	ND	10	95.9	95.7	0.230	96.8	97.5	0.689	70 - 130	20	85 - 115	20	
Chromium	ND	10	100	98.3	1.98	98.1	97.7	0.378	70 - 130	20	85 - 115	20	
Copper	6.6	10	99.6	98.6	0.605	104	105	1.34	70 - 130	20	85 - 115	20	
Lead	ND	10	94.6	95.1	0.532	93.8	94.6	0.743 .	70 - 130	20	85 - 115	20	
Mercury	ND	0.25	102	105	2.52	98	98	0,	70 - 130	20	85 - 115	20	
Nickel	1.1	10	99.4	96	3.14	102	102	0 .	70 - 130	20	85 - 115	20	
Selenium	0.69	10	99	99.1	0.0944	99.6	99.8	0.221	70 - 130	20	85 - 115	20	
Silver	ND	10	95.1	95.5	0.441	98.9	100	1.07	70 - 130	20	85 - 115	20	
Thallium	ND	10	87.7	88.9	1.34	86.5	87.9	1.64	70 - 130	20	85 - 115	20	
Zinc	ND	100	92.3	94.5	2.24	96.1	96	0.111	70 - 130	20	85 - 115	20	
%SS:	99	750	98	98	0	97	96	0.207	70 - 130	.20	70 - 130	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41640 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
0902706-001C	02/25/09 9:10 AM	02/26/09	02/27/09 11:11 AM					٦

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

QA/QC Officer

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water

QC Matrix: Water

BatchID: 41687

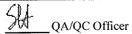
WorkOrder: 0902706

EPA Method: E200.8	Extrac	tion: E20	8.0						Spiked Sam	nple ID:	0902572-0	05A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, way to	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	ND	10	102	101	1.06	101	99.8	1.10	70 - 130	20	85 - 115	20
Arsenic	2.1	10	102	104	1.37	108	104	3.98	70 - 130	20	85 - 115	20
Beryllium	ND	10	98.2	98.2	0	102	102	0	70 - 130	- 20	85 - 115	20
Cadmium	ND	10	95.6	96.4	0.885	97.6	98.7	1.07	70 - 130	20	85 - 115	20
Chromium	ND	10	99.9	98.6	1.29	99.2	99	0.212	70 - 130	20	85 - 115	20
Copper	7.2	10	98.9	99.5	0.351	103	105	1.15	70 - 130	20	85 - 115	20
Lead	ND	10	95.4	95.5	0.157	93.4	94.4	0.969	70 - 130	20	85 - 115	20
Mercury	ND	0.25	103	102	1.21	100	98.2	1.90	70 - 130	20	85 - 115	20
Nickel	1.0	10	98.4	97.8	0.554	100	102	1.68	70 - 130	20	85 - 115	20
Selenium	0.63	10	102	99.2	2.80	101	100	1.09	70 - 130	20	85 - 115	20
Silver	ND	- 10	95.5	94.4	1.20	100	99.3	0.823	70 - 130	20	85 - 115	20
Thallium	ND	10	88.7	89	0.371	87.6	. 88	0.467	70 - 130	20	85 - 115	20
Zinc	ND	100	94.1	93.9	0.213	98.3	97.8	0.430	70 - 130	20	85 - 115	20
%SS:	97	750	98	99	0.434	95	96	1.40	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41687 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902706-009D	02/24/09 3:10 PM	02/26/09	02/27/09 11:19 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water

QC Matrix: Water

BatchiD: 41670

WorkOrder: 0902706

EPA Method: SW8015B Extraction: SW3510C							Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	criteria (%)		
, wante	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	108	106	1.93	N/A	N/A	70 - 130	30	
%SS:	N/A	2500	N/A	N/A	N/A	108	104	3.28	N/A	N/A	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41670 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902706-001A	02/25/09 9:10 AM	02/26/09	03/01/09 4:39 AM	0902706-002A	02/25/09 8:00 AM	02/26/09	03/03/09 6:01 PM
0902706-003A	02/24/09 8:15 AM	02/26/09	02/28/09 6:25 AM	0902706-004A	02/25/09 10:20 AM	02/26/09	03/03/09 3:13 AM
0902706-005A	02/24/09 11:25 AM	02/26/09	03/01/09 5:47 AM	0902706-006A	02/24/09 10:20 AM	02/26/09	03/03/09 2:03 AM
0902706-007A	02/24/09 1:20 PM	02/26/09	03/03/09 2:03 AM	0902706-008A	02/25/09 12:55 PM	02/26/09	03/03/09 5:33 AM
0902706-009A	02/24/09 3:10 PM	02/26/09	03/03/09 3:13 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

- INVOICE -

DATE OF INVOICE: 03/16/09

PURCHASER: Crown Chevrolet-Cadillac-Isuzu, Inc.

7544 Dublin Boulevard Dublin, CA 94568

ATTENTION: Mr. Patrick Costello

WORKPLAN/MOBILIZATION

TELEPHONE: 925-828-6500 (o) 925-895-0769 (d)

FACSIMILIE: 925-227-8806

This invoice is for the services and expenses described below. It is due from the date of receipt. Invoices are overdue thirty (30) days after the date shown and are subject to a service charge of 1.5% per month.

SERVICES:

In accordance with 09-ENV1427, this bill is for the Dublin Limited Phase II Environmental Site Sampling performed at 7544 Dublin Boulevard & 6707 Golden Gate, Dublin, CA 94568.

TIME AND EXPENSE BASIS

TOTAL AMOUNT DUE	\$13,589.60
Less Deposit Received (2/24/09)	(\$4,00.00)
TOTAL	\$17,589.60
OVERSIGHT AND REPORT PREPARATION -Findings, Site Drawings, Conclusions	\$2,000.00
LABORATORY ANALYSIS (10 Soil/9 Water) - TPH-g/d/k/ss/mo/bo, VOCs, PCBs, Metals, Glycols	\$4,800.00
DRILLING SERVICES (Vironex, Inc.) -Drilling Crew, Equipment, Grouting, etc.	\$5,289.60
FIELD INVESTIGATION (10 Exploratory Borings) -Field Crew, Field Equipment, etc.	\$4,400.00
-Workplan, Mobilization, Drilling Permit, Utility Marking, etc.	\$1,100.00

- THANK YOU FOR CHOOSING BASICS ENVIRONMENTAL, INC. -

655 12TH STREET, #126 • OAKLAND, CA • 94607 • TEL/FAX 510-834-9099/9098