ExxonMobil Environmental Services Company

4096 Piedmont Avenue #194 Oakland, California 94611 510 547 8196 Telephone 510 547 8706 Facsimile

RECEIVED

11:19 am, Mar 21, 2011

Alameda County

Environmental Health

Jennifer C. Sedlachek Project Manager

E‰onMobil

February 28, 2011

Ms. Barbara Jakub, P.G. Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577

RE: Former Exxon RAS #79374/990 San Pablo Avenue, Albany, California.

Dear Ms. Jakub:

Attached for your review and comment is a copy of the letter report entitled *Site Assessment Report*, dated February 28, 2011, for the above-referenced site. The report was prepared by Cardno ERI of Petaluma, California, and details assessment activities at the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Jennifer C. Sedlachek Project Manager

. .

Attachment:

Cardno ERI's Site Assessment Report, dated February 28, 2011

cc: w/ attachment

Ms. Muriel T. Blank, Trustee, The Blank Family Trusts Reverend Deborah Blank, Trustee, The Blank Family Trusts Ms. Marcia Blank Kelly, The Blank Family Trusts

w/o attachment

Ms. Paula Sime, Cardno ERI

Shaping the Future

Cardno ERI License A/C10-611383

601 North McDowell Blvd. Petaluma, CA 94954-2312 USA

Phone 707 766 2000 Toll-free 800 382 9105

www.cardno.com

Fax 707 789 0414

www.cardnoeri.com

February 28, 2011 Cardno ERI 273503.R02

Ms. Jennifer C. Sedlachek ExxonMobil Environmental Services 4096 Piedmont Avenue #194 Oakland, California 94611

SUBJECT

Site Assessment Report

Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Alameda County #RO00002974

Ms. Sedlachek:

At the request of ExxonMobil Environmental Services (EMES), on behalf of Exxon Mobil Corporation, Cardno ERI prepared this site assessment report for the subject site (Plate 1). The purpose of this work is to evaluate the stratigraphy beneath the site, identify water-bearing zones, delineate the vertical extent of dissolved-phase petroleum hydrocarbons in groundwater, and provide ongoing monitoring points for evaluation of dissolved-phase hydrocarbon concentrations in groundwater and to define the groundwater flow direction This work was requested by the Alameda County Health Care Services Agency, beneath the site. Environmental Health Services (ACEH) in a letter dated June 30, 2008. The work was conducted in accordance with the Work Plan for Soil and Groundwater Assessment (Work Plan), dated March 15, 2010 (ERI, 2010).

The work consisted of the installation of groundwater monitoring wells MW1 through MW6 and the advancement of CPT borings CPT1 and CPT2 and Hydropunch® (HP) borings HP1A, HP1B, HP2A, and HP2B at the subject site (Plate 2). Based on the results of the investigation, Cardno ERI concludes that the groundwater flow

Cardno ERI 273503.R02 Former Exxon Service Station 79374, Albany, California

direction beneath the site is to the north. The vertical extent of hydrocarbons in soil and groundwater are delineated.

SITE DESCRIPTION

Former Exxon Service Station 79374 is located at 990 San Pablo Avenue, on the northwestern corner of the intersection of Buchanan Street and San Pablo Avenue, Albany, California (Plate 1). The site is currently occupied by a retail outlet for Benjamin Moore paints and painting products and associated paved asphalt driveway and parking area. The surrounding areas consist of residential and commercial properties.

According to City of Albany building permits issued in 1951, a service station owned by Signal Oil Company occupied the site. Humble Oil company acquired the site in approximately 1967 from Standard Oil Company of California (Chevron) rebranding the site as an Enco station. The station was rebranded as an Exxon service station in 1972. The service station was demolished in 1983; during demolition activities, one used-oil UST and four gasoline USTs were removed and the tank cavity was backfilled with sand to 90% compaction (City of Albany permit 82-0708). The location of the former used-oil UST is not apparent. The approximate locations of the former dispenser island and UST cavity are shown on Plate 2.

GEOLOGY AND HYDROGEOLOGY

The site lies at an approximate elevation of 40 feet above msl, and the local topography slopes toward the southwest. The site is located along the eastern margin of the San Francisco Bay within the East Bay Plain (Hickenbottom and Muir, 1988). The surficial deposits in the site vicinity are mapped as Holocene alluvial fan and fluvial deposits (Graymer, 2000). The site is located approximately 1,630 feet north-northwest of Cordornices Creek. The active northwest trending Hayward fault is located approximately 1½ mile northeast of the site.

The East Bay Plain is regionally divided into two major groundwater basins: the San Pablo and the San Francisco Basin. These basins are tectonic depressions that are filled primarily with a sequence of coalescing alluvial fans. The San Francisco Basin is further divided into seven sub-areas. The site is located in the Berkeley Sub-Area, which is filled primarily by alluvial deposits that range from 10 to 300 feet thick with poorly defined aquitards (CRWQCB, 1999). Under natural conditions, the direction of groundwater flow in the East Bay Plain is east to west.

Assessment activities indicate that the soil beneath the site consists of clayey sandy gravel and silty to sandy clay with varying amounts of silt and sand to 21.5 feet bgs, the maximum depth investigated (EC&A, 2008).

Free groundwater occurs in the sand and sandy gravel layer from approximately 8 to 12 feet bgs. During the April 2009 groundwater monitoring event conducted at the Arco Station 2035 at 1001 San Pablo Avenue, Albany, located approximately 550 feet south-southeast of the site, the groundwater flow direction was to the west with a horizontal gradient of 0.02 (Broadbent, 2009).

PREVIOUS WORK

Environmental work has been conducted at the site since 2007. Previous work has included the drilling of soil borings and collection of grab samples. Cumulative groundwater analytical results are included in Tables 1A and 1B. Cumulative soil analytical results are presented in Table 2A and 2B.

Fueling System Activities

In 1983, one used-oil UST and four gasoline USTs were removed and the tank cavity was backfilled with sand to 90% compaction (City of Albany permit 82-0708).

Site Assessment Activities

Six exploratory borings (B1 through B6) were advanced on site in 2008 (EC&A, 2008). Two soil samples were collected from each boring at approximately 5.5 and 10.5 feet bgs. Maximum concentrations of TPHg, TPHd, and benzene were reported in the soil samples collected at 10.5 feet bgs in borings B1 and B2 at 7,200 mg/kg (B1); 1,400 mg/kg (B1 and B2); and 13 mg/kg (B2); respectively. Grab groundwater results indicated maximum dissolved-phase TPHg, TPHd, and benzene concentrations of 77,000 µg/L (B2); 99,000 µg/L (B1); and 1,500 µg/L (B2), respectively. The laboratory reported an immiscible sheen present in the groundwater samples collected from borings B1 and B2.

SUBSURFACE INVESTIGATION

After a review of assessment activities performed in January of 2008 by Edd Clark & Associates (EC&A), the ACEH required additional assessment to further evaluate the lateral and vertical extent of hydrocarbons in soil and groundwater. The ACEH requested a site assessment be performed utilizing CPT technology to evaluate the possible extent of dissolved-phase hydrocarbons and the installation of a monitoring well network (Appendix A).

In response to the ACEH request, ERI proposed the installation of wells MW1 through MW6 and the advancement of borings CPT1/HP1A/HP1B and CPT2/HP2A/HP2B at the subject site. Cardno ERI performed

the fieldwork in accordance with the Work Plan, Cardno ERI's standard field protocol (Appendix B), a sitespecific safety plan, applicable regulatory guidelines, and under the advisement of a professional geologist.

Pre-Field Activities

Prior to field activities, Cardno ERI obtained drilling permits from the Alameda County Public Works Agency (the County) (Appendix C), notified Underground Service Alert (USA), and contracted a private utility-locating company to locate underground utilities at the site. From October 19 and 22, 2010, and on November 1, 2010, Cardno ERI observed Woodward Drilling, Company (Woodward) advance soil borings MW1 through MW3 and CPT1/HP1A/HP1B to 5 feet bgs and borings MW4 through MW6 and CPT2/HP2A/HP2B to 8 feet bgs using hand tools and vacuum equipment in accordance with EMES' subsurface clearance protocol. During clearance activities, samples were collected for classification according to the USCS using visual and manual methods, and PID screening. Select soil samples were submitted for laboratory analysis.

Cone Penetration Test and Hydropunch Borings

Between October 27 and 29, 2010, Cardno ERI observed Gregg Drilling and Testing (Gregg) advance two sets of CPT/HP borings (CPT1/HP1A/HP1B and CPT2/HP2A/HP2B) to depths of approximately 60 and 62 feet bgs, respectively. During the advancement of the CPT borings, one pore pressure dissipation tests was performed at boring CPT2 at 40 feet bgs.

Following CPT soundings, grab groundwater samples were collected at depth-discrete intervals as listed in the following table.

Depth at which Grab Groundwater Samples Were Collected

Boring ID	Sample ID	Screened Interval (feet bgs)	Elapsed Time
HP1A	Not Applicable	9 to 14	40 minutes; borehole dry
HP1A	W-27.5-HP1A	25 to30	60 minutes
HP1A	W-36-HP1A	34 to 38	40 minutes
HP1A	W-46.5-HP1A	45 to 48	30 minutes
HP1B	W-60.5-HP2A	57 to 61	23 minutes
HP2A	Not Applicable	8 to 14	60 minutes; borehole dry
HP2A	W-27.5-HP2A	25 to 30	40
HP2A	Not Applicable	38 to 42	60 minutes; borehole dry
HP2A	W-52-HP2A	50 to 54	0
HP2B	W-59-HP2B	59 to 63	10 minutes

The depth intervals correspond to distinct coarser-grained units identified during CPT soundings. Grab groundwater samples were submitted for laboratory analysis. Each CPT and HP boring was backfilled through the rods using cement slurry from total depth of the boring to the ground surface.

Boring locations are shown on Plate 2. Standard field protocols are included in Appendix B. CPT logs and graphs showing the results of the dissipation test were provided by Gregg and are presented in Appendix D.

Groundwater Monitoring Well Installations

From November 2 to 8, 2010, Cardno ERI observed Woodward install groundwater monitoring wells MW1 through MW6. Select soil samples were preserved for laboratory analysis.

Borings MW1 and MW4 through MW5 were completed as 2-inch PVC monitoring wells with 0.020-inch slotted PVC screen. Borings MW2 and MW3 were completed as 4-inch PVC monitoring wells with 0.020-inch slotted PVC screen. Well construction details are presented on the boring logs in Appendix E and in Table 3.

Well Development

On November 9 and 10, 2010, Cardno ERI observed Woodward develop monitoring wells MW1 through MW6 using a drill rig equipped with a 2-inch and 4-inch diameter surge block and an electric pump equipped with a digital flow meter. Field data are included in Appendix F².

Groundwater Monitoring and Sampling

On December 16, 2010, Cardno ERI performed monitoring and sampling activities for the six newly installed wells at the site. Groundwater samples were obtained from each of the monitoring wells in accordance with the field protocol (Appendix B), and submitted for laboratory analyses. NAPL was not observed in the groundwater monitoring wells.

Laboratory Analyses

Cardno ERI submitted soil and groundwater samples for analysis to a state-certified laboratory. Laboratory analytical reports and COC records are provided in Appendix G. Cumulative groundwater and soil sample analytical data and testing methods are summarized in Tables 1A and 1B and 2A and 2B, respectively.

Site Survey

On December 1, 2010, Cardno ERI observed Cardno WRG of Roseville, California, survey the locations and elevations of borings CPT1, CPT2, HP1A, HP1B, HP2A, and HP2B and the locations, well box elevations, and TOC elevations for wells MW1 through MW6. The survey data is included in Appendix H.

Waste Management Plan

Soil and rinsate and purge water generated during assessment activities was stored in 55-gallon metal drums on site pending characterization and disposal. Cardno ERI collected one composite soil sample from the drums for laboratory analysis to evaluate disposal options. Soil stockpile analytical results are presented in Tables 2A and 2B. Laboratory analytical reports and COC records are provided in Appendix G.

On November 19, 2010, 340 gallons of rinseate and purge water was transported to InStrat Inc., of Rio Vista, California, for disposal. On November 23, 2010, Cardno ERI observed Belshire Environmental Services, Inc. (Belshire), of Foothill Ranch, California, under direct contract to EMES, remove sixteen 55-gallon drums from the site. The 15 drums containing soil were transported to TPST Soil Recyclers of California in Adelanto, California, and one drum containing water was transported to Crosby and Overton of Long Beach, California, EMES-approved disposal facilities. On December 17, 2010, 49 gallons of purge water associated with monitoring and sampling activities, was transported to InStrat Inc. for disposal. Waste disposal documentation is included in Appendix H.

RESULTS OF INVESTIGATION

Site Geology

During this investigation, native soil observed beneath the site consisted of clays and silts from 1 to 17 feet bgs. Two layers of sand and clayey sand were observed at depths between approximately 8 to 10 feet bgs and 11 to 13.5 feet bgs in borings MW1 through MW4. In borings MW5 and MW6, clayey sand was observed from 11 to 15.5 feet bgs and 12 to 20 feet bgs, respectively, the total depth drilled.

Alternating layers of sandy silt, clayey silt, and silty clay were identified by means of CPT from 20 to 60 feet bgs. Up to 2-foot thick layers of very stiff fine-grained cemented material and stringers of cemented sand were present from 20 to 30 feet bgs and at 35 feet bgs in boring CPT1 and at 42 feet bgs in boring CPT2. A sand stringer was identified at 46 feet bgs and cemented sands were identified from 57 to 60 feet bgs in boring CPT1; sand was identified at 62 feet bgs in boring CPT2, the maximum depth explored.

Site Hydrogeology

During drilling activities, groundwater was first encountered at depths ranging from 8.5 to 20 feet bgs. DTW in the completed wells ranged from 6.10 to 9.18 feet below TOC. Deeper water-bearing zones were also identified on the CPT logs, with water encountered in the depth intervals of 25 to 30 feet bgs (HP1A and HP1B), 34 to 38 feet bgs (HP1A), 45 to 48 feet bgs (HP1A), 50 to 54 feet bgs (HP2A, 57 to 61 feet bgs (HP1B), and 59 to 63 feet bgs (HP2B) in the adjacent HP borings.

Hydrocarbons in Soil

A total of 19 soil samples were submitted for analyses as part of assessment activities. The maximum concentrations of TPHg, TPHd, and TPHmo were 450 mg/kg, 93 mg/kg, and 29 mg/kg, respectively in sample S-10.5-MW5, with the exception of 2.2 mg/kg for TPHg reported in sample S-15.5-MW3 and in S-14.5-MW6, respectively. Concentrations of TPHg, TPHd, and TPHmo were not reported above the laboratory reporting limit in soil samples collected beneath 10.5 feet bgs. Concentrations of benzene, MTBE, TBA, DIPE, ETBE, TAME, 1,2-DCA, and EDB were not reported in the 19 soil samples collected during this investigation. Cumulative soil sample analytical results are presented as Tables 2A and 2B. Select analytical results are shown on Plate 3.

Hydrocarbons in Groundwater

During this investigation, seven depth-discrete grab groundwater samples were collected from HP borings along the eastern (HP1A and HP1B) and the western (HP2A and HP2B) edge. Groundwater samples from borings HP1A and HP2A contained dissolved-phase concentrations of TPHmo, TPHd, TPHg, and benzene; the maximum concentrations were reported at 260 μ g/L (HP1A), 330 μ g/L (HP1A) and 340 μ g/L (HP2A) and 1.7 μ g/L, respectively. Groundwater samples from borings HP1B and HP2B, collected at depths of 59 and 60.5 feet bgs, respectively, contained dissolved-phase concentrations of TPHd at 130 μ g/L and 62 μ g/L, respectively. Concentrations of MTBE, DIPE, ETBE, TAME, 1,2-DCA, and EDB were not reported in grab groundwater samples collected from any of the HP borings during this investigation.

Concentrations of TPHd, TPHg, and/or BTEX were reported in each of the newly installed groundwater monitoring wells MW1 through MW6. The maximum concentrations of TPHd, TPHg, and benzene were reported at 27.5 feet bgs at 2,9000 µg/L (MW3), 19,000 µg/L (MW3), and 440 µg/L (MW4), respectively. Concentrations of TPHmo, DIPE, ETBE, TAME, 1,2-DCA, and EDB were not reported at or above the laboratory reporting limits groundwater samples collected from the wells during this investigation. Cumulative groundwater results are presented in Tables 1A and 1B. A groundwater elevation map and select analytical results are shown on Plate 4 and 5, respectively.

CONCLUSIONS

Based on the results of this investigation, Cardno ERI's concludes that:

- The lateral and vertical extent of hydrocarbons in soil is adequately defined across the site.
- Soil samples collected at or above first-encountered groundwater in the soil borings contained concentrations of petroleum hydrocarbons below or near the laboratory reporting limits.
- The hydrocarbon concentrations present at or below 10 feet bgs may be influenced by the presence of dissolved-phase hydrocarbons in groundwater.
- Groundwater monitoring data indicate that dissolved hydrocarbons are present in shallow groundwater.
 The maximum concentrations of dissolved-phase hydrocarbons were reported in wells MW3 and MW4 screened from 11 to 16 feet bgs and 8 to 13 feet bgs, respectively.
- Dissolved-phase hydrocarbons are delineated vertically at the site with petroleum hydrocarbon concentrations absent or near the laboratory reporting limits in the deeper water-bearing zones.
- Groundwater analytical data indicate that the distribution of petroleum hydrocarbons in groundwater is delineated to the east.

RECOMMENDATIONS

Cardno ERI recommends the quarterly monitoring of wells MW1 through MW6 for one year to evaluate groundwater flow direction.

CONTACT INFORMATION

The responsible party contact is Ms. Jennifer C. Sedlachek, ExxonMobil Environmental Services, 4096 Piedmont Avenue #194, Oakland, California 94611. The consultant contact is Ms. Paula Sime, Cardno ERI., 601 North McDowell Boulevard, Petaluma, California 94954. The agency contact is Ms. Barbara Jakub, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577.

LIMITATIONS

For any documents cited that were not generated by Cardno ERI, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno ERI does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

February 28, 2011 Cardno ERI 273503.R02 Former Exxon Service Station 79374, Albany, California

This document was prepared in accordance with generally accepted standards of environmental, geological, and engineering practices in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

Please contact Ms. Paula Sime, Cardno ERI's project manager for this site, at (707) 766-2000 with any questions regarding this site.

Sincerely,

Rebekah A. Westrup Senior Staff Geologist for Cardno ERI

707 766 2000

Email: rebekah.westrup@cardno.com

Heidi LMieren bach-Carle

P.G. 6793 for Cardno ERI 707 766 2000

Email: heidi.dieffenbach-carle@cardno.com

Ms. Barbara Jakub, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577

Ms. Muriel T. Blank, Trustee, The Blank Family Trusts, 1164 Solano Avenue, #406, Albany, California, 94706

Reverend Deborah Blank, Trustee, The Blank Family Trusts, 1563 Solano Avenue, #344, Berkeley, California, 94707

Ms. Marcia Blank, Trustee, The Blank Family Trusts, 641 SW Morningside Road, Topeka, Kansas, 66606

February 28, 2011 Cardno ERI 273503.R02 Former Exxon Service Station 79374, Albany, California

Enclosures:

References

Acronym List

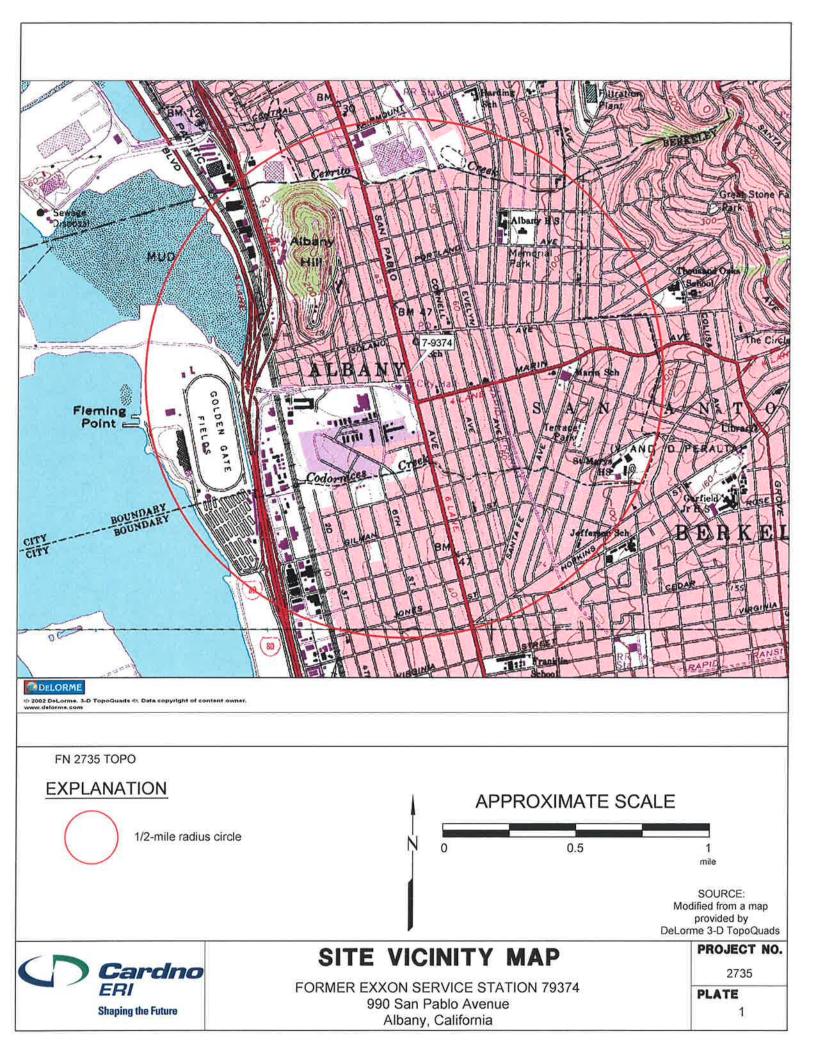
Plate 1	Site Vicinity Map
Plate 2	Generalized Site Plan
Plate 3	Select Soil Analytical Results
Plate 4	Select Groundwater Analytical Results
Plate 5	Groundwater Elevation Map
Table 1A	Cumulative Groundwater Monitoring and Sampling Data
Table 1B	Additional Cumulative Groundwater Monitoring and Sampling Data
Table 2A	Cumulative Soil Analytical Results
Table 2B	Additional Cumulative Soil Analytical Results - HVOCs
Table 3	Well Construction Details
Appendix A	Correspondence
Appendix B	Field Protocols
Appendix C	Permits
Appendix D	CPT Protocol and Report
Appendix E	Boring Logs
Appendix F	Field Data
Appendix G	Laboratory Analytical Reports
Appendix H	Survey Data
Appendix I	Waste Documentation

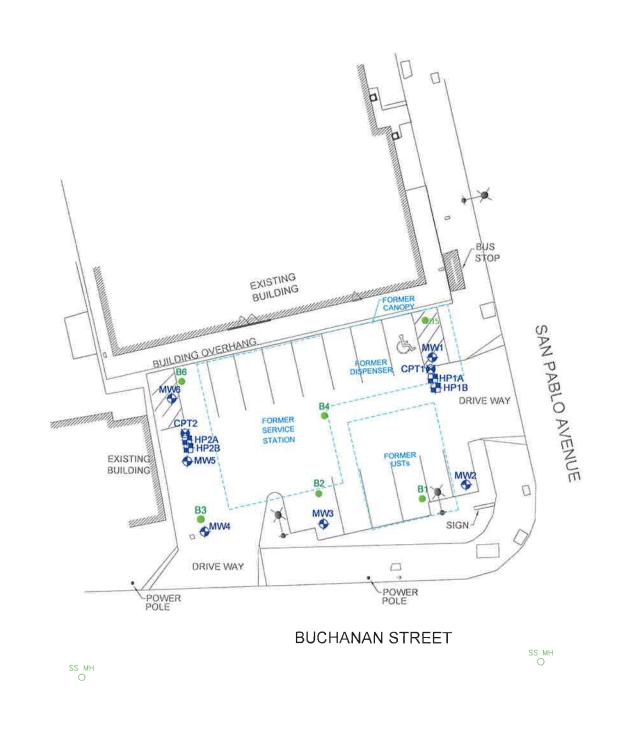
REFERENCES

Broadbent & Associates, Inc. (Broadbent). July 15, 2009. Second Quarter 2009 Semi-Annual Ground-Water Monitoring Report, Atlantic Richfield Company Station #2035, 1001 San Pablo Avenue, Albany, California. Broadbent Project No. 06-88-610

California Regional Water Quality Control Board San Francisco Bay Region Groundwater Committee (CRWQCB). June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.

Edd Clark & Associates (EC&A). January 31, 2008. Report of Phase II Environmental Assessment, 990 San Pablo Avenue, Albany, California 94706. EC&A Project No 0589,002.07.


Environmental Resolutions, Inc. March 15, 2010. Work Plan for Soil and Groundwater Assessment, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #RO00002974. ERI 273503.W01


Graymer, R.W. 2000. Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California. USGS, Miscellaneous Field Studies MF-2342.

Hickenbottom, Kelvin and Muir, Kenneth S. June 1988. *Geohydrogeology and Groundwater Quality Overview of the East Bay Plain Area, Alameda County, CA*. Alameda County Flood Control and Water Conservation District. 83p.

ACRONYM LIST

µg/L	Micrograms per liter	NEPA	National Environmental Policy Act
μs	Microsiemens	NGVD	National Geodetic Vertical Datum
1,2-DCA	1,2-dichloroethane	NPDES	National Pollutant Discharge Elimination System
acfm	Actual cubic feet per minute	O&M	Operations and Maintenance
AS	Air sparge	ORP	Oxidation-reduction potential
bgs	Below ground surface	OSHA	Occupational Safety and Health Administration
BTEX	Benzene, toluene, ethylbenzene, and total xylenes	OVA	Organic vapor analyzer
CEQA	California Environmental Quality Act	P&ID	Process & Instrumentation Diagram
cfm	Cubic feet per minute	PAH	Polycyclic aromatic hydrocarbon
COC	Chain of Custody	PCB	Polychlorinated biphenyl
CPT	Cone Penetration (Penetrometer) Test	PCE	Tetrachloroethene or perchloroethylene
DIPE	Di-isopropyl ether	PID	Photo-ionization detector
DO	Dissolved oxygen	PLC	Programmable logic control
DOT	Department of Transportation	POTW	Publicly owned treatment works
DPE	Dual-phase extraction	ppmv	Parts per million by volume
DTW	Depth to water	PQL	Practical quantitation limit
EDB	1,2-dibromoethane	psi	Pounds per square inch
EPA	Environmental Protection Agency	PVC	Polyvinyl chloride
ESL	Environmental screening level	QA/QC	Quality assurance/quality control
ETBE	Ethyl tertiary butyl ether	RBSL	Risk-based screening levels
FID	Flame-ionization detector	RCRA	Resource Conservation and Recovery Act
fpm	Feet per minute	RL	Reporting limit
GAC	Granular activated carbon	scfm	Standard cubic feet per minute
gpd	Gallons per day	SSTL	Site-specific target level
gpm	Gallons per minute	STLC	Soluble threshold limit concentration
GWPTS	Groundwater pump and treat system	SVE	Soil vapor extraction
HVOC	Halogenated volatile organic compound	SVOC	Semivolatile organic compound
J	Estimated value between MDL and PQL (RL)	TAME	Tertiary amyl methyl ether
LEL	Lower explosive limit	TBA	Tertiary butyl alcohol
LPC	Liquid-phase carbon	TCE	Trichloroethene
LRP	Liquid-ring pump	TOC	Top of well casing elevation; datum is msl
LUFT	Leaking underground fuel tank	TOG	Total oil and grease
LUST	Leaking underground storage tank	TPHd	Total petroleum hydrocarbons as diesel
MCL	Maximum contaminant level	TPHg	Total petroleum hydrocarbons as gasoline
MDL	Method detection limit	TPHmo	Total petroleum hydrocarbons as motor oil
mg/kg	Milligrams per kilogram	TPHs	Total petroleum hydrocarbons as stoddard solvent
mg/L	Milligrams per liter	TRPH	Total recoverable petroleum hydrocarbons
mg/m ³	Milligrams per cubic meter	UCL	Upper confidence level
MPE	Multi-phase extraction	USCS	Unified Soil Classification System
MRL	Method reporting limit	USGS	United States Geologic Survey
msl	Mean sea level	UST	Underground storage tank
MTBE	Methyl tertiary butyl ether	VCP	Voluntary Cleanup Program
MTCA	Model Toxics Control Act	VOC	Volatile organic compound
NAI	Natural attenuation indicators	VPC	Vapor-phase carbon
NAPL	Non-aqueous phase liquid		

APPROXIMATE SCALE

FN 2735 10 R01 GSP_SP

Cardno ERI **Shaping the Future**

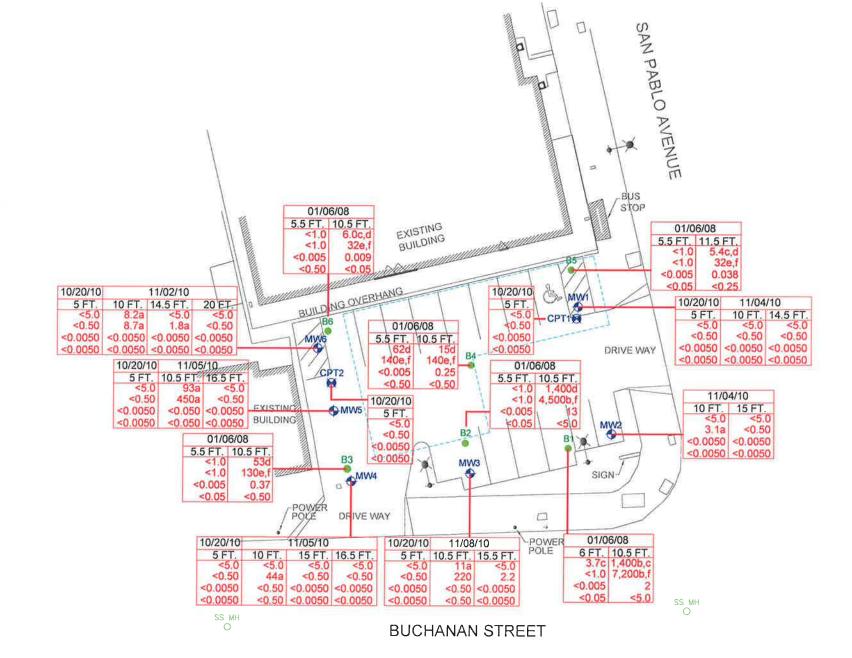
GENERALIZED SITE PLAN

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California

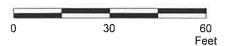
EXPLANATION MW6 Groundwater Monitoring Well

B6 Soil Boring

HP2B
Hydropunch Boring


SOURCE: Location of former station features approximate, based on areial photograph interpretation PROJECT NO. 2735

PLATE


- Less Than the Stated Laboratory Reporting Limit
 mg/kg Milligrams per kilogram
 - The sample chromatographic pattern does not match that of the specified standard.
 - Heavier gasoline range compounds are significant.
 - Diesel range compounds are significant; no recognizable pattern.
 - Gasoline range compounds are significant.
 - Strongly aged gasoline or diesel range compounds are significant.
 - No recognizable pattern.

NOTE:

Historical data shown in lightly shaded boxes.

APPROXIMATE SCALE

FN 2735 10 R02 SOIL ANALYTICAL_SP

SELECT SOIL ANALYTICAL RESULTS

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California

EXF	PLANATION		
MW6	Groundwater Monitoring Well		
		CPT2	Cone Penetration Test Boring
B6	Soil Boring		•

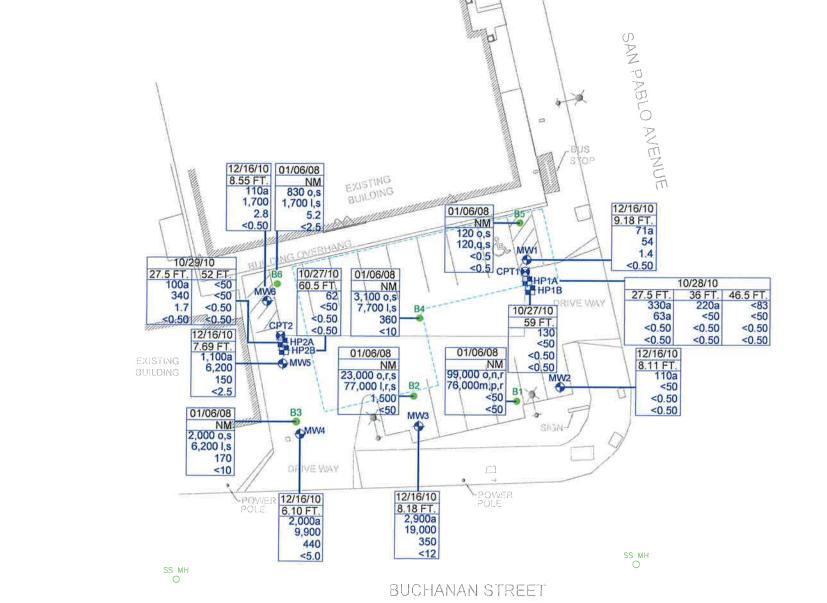

PROJECT NO. 2735

PLATE 3

- Reporting Limit
- Micrograms per Liter
- NM Not Measured
- Sample chromatographic pattern does not match that of the specified standard.
- Unmodified or weakly modified gasoline is significant.
- Heavier gasoline range compounds
- Diesel range compounds are significant; no recognizable pattern.
- Gasoline range compounds are significant.
- No recognizable pattern.
- Strongly aged gasoline or diesel compounds are significant.
- Lighter than water immiscible sheen/product
- Liquid sample that contains greater then approximately 1 volume % sediment.

NOTE:

Hystorical data shown in lightly shaded boxes.

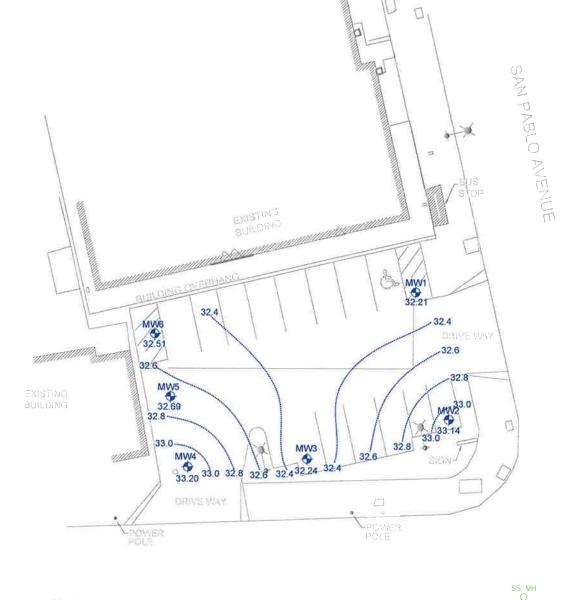
APPROXIMATE SCALE 60

FN 2735 11 R02 GW ANALYTICAL_SP

SELECT GROUNDWATER ANALYTICAL RESULTS

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California

EXF	PLANATION	HP2B Hydropunch Boring	
MW6	Groundwater Monitoring Well	and the state of t	
De		CPT2 Cone Penetration Test Boring	
B6	Soil Boring		


PROJECT NO. 2735

PLATE

Rose diagram developed by evaluating the groundwater gradient direction from the quarterly monitoring data. Each circle on the rose dargram represents the number of monitoring events that the gradient plotted in that 22 1/2 degree sector

Data Points Shown

GROUNDWATER FLOW DIRECTION ROSE DIAGRAM

APPROXIMATE SCALE
0 30 60
Fee

FN 2735 11 R02 GW ELEVATION_SP

GROUNDWATER ELEVATION MAP

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California EXPLANATION

BUCHANAN STREET

MW6
Groundwater Monitoring Well

32.51 Groundwater elevation in feet;
datum is mean sea level

33.0 -----Line of Equal Groundwater Elevation; datum is mean sea level

PROJECT NO. 2735

PLATE 5

5 ____ E

Well ID	Sampling Date	Depth (feet)	TOC Elev (feet)	v. DTW (feet)	GW Elev. (feet)	NAPL (feet)	O&G (µg/L)	· TPHmo (μg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)
Monitoring \	Well Samples														Silvia
MW1	11/04/10		Well inst	alled											
MW1	12/01/10		41.45	Well su	inveved										
MW1	12/16/10		41.45	9.18	32.27	No	2 335	<250	71a	54	<0.50	1.4	0.65	0.58	1.6
MW2	11/04/10		Well inst	alled.											
MW2	12/01/10		41.25	Wellsu	rveved.										
MW2	12/16/10		41.25	8.11	33.14	No		<250	110a	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW3	11/08/10		Well inst	alled.											
MW3	12/01/10		40.42	Well su	rveyed.										
MW3	12/16/10		40.42	8.18	32.24	No		<250	2,900a	19,000	<12	350	130	940	290
MW4	11/05/10		Well inst	alled.											
MW4	12/01/10		39.30	Wellsu	rveyed.										
MW4	12/16/10		39.30	6.10	33.20	No		<250	2,000a	9,900	<5.0	440	40	170	380
MW5	11/11/10		Well inst	alled.											
MW5	12/01/10		40.38	Well su	rveyed.										
MW5	12/16/10		40.38	7.69	32.69	No	•••	<250	1,100a	6,200	<2.5	150	96	270	980
MW6	11/03/10		Well inst	alled.											
MW6	12/01/10		41.06	Well su	rveyed.										
MW6	12/16/10		41.06	8.55	32.51	No	11.55 .7	<250	110a	1,700	<0.50	2.8	1.2	61	46
Grab Ground	dwater Samples														
B-1W	01/06/08		()	(-	(***	***	26r,s	<5,000	99,000o,n,r	76,000m,p,r	<50	<50	93	3,100	9,600
B-2W	01/06/08			-	0444			310s	23,000o,r,s	77,000 l,r,s	<50	1,500	300	2,000	6,800
B-3W	01/06/08	442			=			<250s	2,000o,s	6,200 l,s	<10	170	32	740	250
B-4W	01/06/08		***	(3 11-)			Series (<250s	3,100o,s	7,700 l,s	<10	360	<10	240	20
B-5W	01/06/08	: 4004	-		(41)	444	2020	<250s	120o,s	120q,s	<0.5	<0.5	<0.5	<0.5	<0.5
B-6W	01/06/08	***	***	•••				<250s	830o,s	1,700 l,s	<2.5	5.2	<2.5	100	8.6
DR-W	01/06/08	3555	(***	•••		(111)	230 0	<250	96o	730m,p	<0.5	<0.5	<0.5	6.9	14

Well ID	Sampling Date	Depth (feet)	1001 770	DTW (feet)	GW Elev. (feet)	NAPL (feet)	O&G (µg/L)	TPHmo (μg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (μg/L)	B (µg/L)	T (µg/L)	Ε (μg/L)	Χ (μg/L)
W-27.5-HP1A	10/28/10	27.5		••••				260	330a	63a	< 0.50	< 0.50	<0.50	<0.50	< 0.50
W-36-HP1A	10/28/10	36		***			37775	<250	220a	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-46.5-HP1A	10/28/10	46.5		202				<420	<83	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-59-HP1B	10/27/10	59		ans:		101 2	-	<250	130	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-27.5-HP2A	10/29/10	27.5		*	***	***		<250	100a	340	<0.50	1.7	2.1	20	46
W-52-HP2A	10/29/10	52	Here)	*	***	****	***	<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-60.5-HP2B	10/27/10	60.5	222				***	<250	62	<50	<0.50	<0.50	<0.50	<0.50	<0.50

Notes:		
TOC	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	Ξ	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Add'I VOCs	=	Additional volatile organic carbons analyzed using EPA Method 8260B.
Add'l SVOCs	=	Additional semi-volatile organic carbons analyzed using EPA Method 8270C.
μg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	Sample chromatographic pattern does not match that of the specified standard.
b	=	n-butylbenzene.
С	=	sec-butylbenzene.
d	=	Isopropylbenzene.
е	=	n-propylbenzene.
f	=	1,2,4-trimethylbenzene.
g	=	1,3,5-trimethylbenzene.
h	=	Naphthalene.
i	=	1-butanone.
j	=	1,2-dibromo-3-chloropropane.
k	=	2-methylnapthalene.
I	=	Unmodified or weakly modified gasoline is significant.
m	=	Heavier gasoline range compounds are significant.
n	=	Diesel range compounds are significant; no recognizable pattern.
0	=	Gasoline range compounds are significant.

Notes (Cont.):		
р	=	No recognizable pattern.
q	$= \frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}}$	Strongly aged gasoline or diesel compounds are significant.
r	=	Lighter than water immiscible sheen/product is present.
s	=	Liquid sample that contains greater than approximately 1 volume % sediment.

Vell ID	Sampling Date	Depth	EDB	1,2-DCA	TAME	TBA	ETBE	DIPE	Add'I VOCs	Add'l SVOCs
	Date	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
lonitoring	Well Samples									
/W1	12/16/10	***	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	***	***
IW2	12/16/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		***
IW3	12/16/10	***	<12	<12	<12	<120	<12	<12	***	MAN T
IW4	12/16/10		<5.0	<5.0	<5.0	<50	<5.0	<5.0		**************************************
IW5	12/16/10	:###C	<2.5	<2.5	<2.5	<25	<2.5	<2.5		-
1W6	12/16/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
irab Groun	ndwater Samples	i								
3-1W	01/06/08		<50	<50	<50	<200	<50	<50	210b, 68c, 370d, 1,100e, 3,800f, 1,300g, 1,500h	4,000h, 3,900
-2W	01/06/08	555	<50	<50	<50	<200	<50	<50	110b, 140e, 440f, 2,400g, 730h, 610i, 32j	
-3W	01/06/08		<10	<10	<10	<40	<10	<10	25b, 11c, 74d, 190e, 290f, 49g, 55i	
-4W	01/06/08	555	<10	<10	<10	<40	<10	<10	46b, 19c, 48d, 160e, 16f, 100h	
-5W	01/06/08	100	ND	<0.5	<0.5	<2.0	<0.5	<0.5	2.6b, 0.83e, 4.8f, 1.2g, 6.5h	
-6W	01/06/08	ntto:	<2.5	<2.5	<2.5	<10	<2.5	<2.5	14b, 5.6c, 17d, 60e, 32f, 5.8g, 38h, 10i	
R-W	01/06/08	222	<0.5	<0.5	<0.5	<2.0	<0.5	<0.5	6.9b, 2.4c, 2.5d, 11e, 17f, 5.5g, 7.0h	
V-27.5-HP1	10/28/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
V-36-HP1A	10/28/10	36	<0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	***	
V-46.5-HP1	10/28/10	46.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	-	
V-59-HP1B	10/27/10	59	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
V-27.5-HP2	10/29/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
V-52-HP2A	10/29/10	52	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
V-60.5-HP2	10/27/10	60.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		

TABLE 1B

		Albany, California
Notes:		
TOC	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Add'l VOCs	=	Additional volatile organic carbons analyzed using EPA Method 8260B.
Add'l SVOCs	=	Additional semi-volatile organic carbons analyzed using EPA Method 8270C.
μg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	Sample chromatographic pattern does not match that of the specified standard.
b	=	n-butylbenzene.
С	=	sec-butylbenzene.
d	=	Isopropylbenzene.
е	=	п-propylbenzene.
f	=	1,2,4-trimethylbenzene.
g	=	1,3,5-trimethylbenzene.
h	=	Naphthalene.
i	=	1-butanone.
j	=	1,2-dibromo-3-chloropropane.
k	=	2-methylnapthalene.
I	=	Unmodified or weakly modified gasoline is significant.
m	=	Heavier gasoline range compounds are significant.
n	=	Diesel range compounds are significant; no recognizable pattern.
0	=	Gasoline range compounds are significant.

TABLE 1B

Notes (Cont.):		
р	=	No recognizable pattern.
q	=	Strongly aged gasoline or diesel compounds are significant.
r	=	Lighter than water immiscible sheen/product is present.
s	=	Liquid sample that contains greater than approximately 1 volume % sediment.

TABLE 2A CUMULATIVE SOIL ANALYTICAL RESULTS

Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 1 of 2)

Sample	Sampling	Depth	TPHmo	TPHd	TPHg	MTBE	В	T	E	X	EDB	1,2-DCA	TBA	DIPE	ETBE	TAME	Total Lead
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Soil Boring Samples																1	
B-1	01/06/08	6.0	<5.0	3.7c	<1.0	< 0.05	< 0.005	<0.005	< 0.005	< 0.005	544	***					***
B-1	01/06/08	10.5	<100	1,400b,c	7,200b,f	<5.0	2	51	110	400			***				
B-2	01/06/08	5.5	<5.0	<1.0	<1.0	<0.05	<0.005	<0.005	< 0.005	< 0.005				-111			-
B-2	01/06/08	10.5	<100	1,400d	4,500b,f	<5.0	13	35	100	380	Ware			-43			***
B-3	01/06/08	5.5	<5.0	<1.0	<1.0	<0.50	<0.005	<0.005	<0.005	<0.00E							
B-3	01/06/08	10.5	<5.0	53d	130e,f	<0.50	0.005	0.29		<0.005			_				****
5-0	01/00/00	10.5	\0.0	550	1306,1	~ 0.30	0.37	0.29	2.6	0.44							300
B-4	01/06/08	5.5	<5.0	62d	140e.f	< 0.50	< 0.005	1.0	0.066	0.094							
B-4	01/06/08	10.5	<5.0	15d	140e,f	< 0.50	0.25	1.5	1.3	0.11						/ ***	7 <u>444</u> (
3-5	01/06/08	5.5	<5.0	<1.0	<1.0	< 0.05	<0.005	< 0.005	< 0.005	<0.005				***			-
3-5	01/06/08	11.5	<5.0	5.4c,d	32e,f	<0.25	0.038	0.24	0.051	0.035				****		***	***
			_														
3-6	01/06/08	5.5	<5.0	<1.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005				****		***	***
3-6	01/06/08	10.5	<5.0	6.0c,d	32e,f	<0.05	0.009	0.41	<0.005	0.039						02/22	
nonitoring Well Sample	1 5																
G-5-MW1	10/20/10	5.0	<25	<5.0	< 0.50	< 0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.050	< 0.010	<0.010	<0.010	***
S-10-MW1	11/04/10	10.0	<25	<5.0	< 0.50	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.050	<0.010	< 0.010	<0.010	
S-14.5-MW1	11/04/10	14.5	<25	<5.0	<0.50	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	***
2.40.4440	4.40.44.0																
S-10-MW2	11/04/10	10.0	<25	<5.0	3.1a	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	***
S-15-MW2	11/04/10	15.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-5-MW3	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-10.5-MW3	11/08/10	10.5	<25	11a	220	<0.50	<0.50	<0.50	2.0	1.1	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0	
6-15.5-MW3	11/08/10	15.5	<25	<5.0	2.2	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.050	<0.010	<0.010	<0.010	
5-5-MW4	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
3-10-MW4	11/05/10	10.0	<25	<5.0	44a	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0	
3-15-MW4	11/05/10	15.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.050	<0.010	<0.010	<0.010	***
i-16.5-MW4	11/05/10	16.5	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
6-5-MW5	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-10.5-MW5	11/05/10	10.5	29	93a	450a	<0.050	< 0.050	1.5	<0.50	<0.50	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0	****
S-16.5-MW5	11/05/10	16.5	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.050	<0.010	<0.010	<0.010	
5 5 4 4 4 A	40/00/10	5 0	.0=		.0.70	.0.0											
S-5-MW6	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	***
i-10-MW6	11/02/10	10.0	<25	8.2a	8.7a	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	***
S-14.5-MW6	11/02/10	14.5	<25	<5.0	1.8a	<0.0050	<0.0050	<0.0050	<0.0093	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	***
S-20-MW6	11/02/10	20.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.050	<0.010	<0.010	<0.010	777

TABLE 2A **CUMULATIVE SOIL ANALYTICAL RESULTS**

Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 2 of 2)

Sample	Sampling	Depth	TPHmo	TPHd	TPHg	MTBE	В	Т	Е	Х	EDB	1,2-DCA	TBA	DIPE	ETBE	TAME	Total Lead
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
																	1
S-5-CPT1	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
									0.0000	0.0000	-0.0000	-0.0000	40.000	10.010	~0.010	~0.010	
S-5-CPT2	10/20/10	5.0	<25	<5.0	< 0.50	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.050	<0.010	<0.010	<0.010	
Drum Samples	0.4.10.0.10.0				_												
DR-1	01/06/08		<5.0	2.5c,d	4.9e,f	<0.050	<0.005	0.027	0.035	0.035							9.7
Soil Stockpile Samples																	
COMP(S-Profile-1-4)	11/08/10		<25	7.1a	14a	<0.0050	<0.0050	<0.00E0	0.000	0.040	-0.0050	-0.0050	.0.055				
(0 1 101110 1 4)	11/00/10		120	7.1a	140	~ 0.0050	<0.0050	<0.0050	0.069	0.049	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	6.93
Notes:																	
S-15-MW4	==	Soil - depth -	monitoring	well 4.													
TPHmo	=	Total petroleu	ım hydroca	rbons as m	otor oil ana	lyzed using	EPA Metho	d 8015B.									
TPHd	=	Total petroleu	al petroleum hydrocarbons as diesel analyzed using EPA Method 8015B.														
TPHg	=	Total petrole	al petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B.														
MTBE	=	Methyl tertiary	thyl tertiary butyl ether analyzed using EPA Method 8260B; analyzed using EPA Method 8020 in 2008.														
BTEX	=	Benzene, tolu	nzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.														
EDB	=	1,2-Dibromoe	2-Dibromoethane analyzed using EPA Method 8260B.														
1,2-DCA	=	1,2-Dicholore	thane analy	zed using	EPA Metho	d 8260B.											
TBA	=	Tertiary butyl			-												
DIPE	=	Di-isopropyl e															
ETBE	=	Ethyl tertiary b															
TAME	=	Tertiary amyl				Method 826	50B.										
Total Lead	=	Total lead and	alyzed using	g EPA Meth	nod 6010B.												
1,2,4-trimethylbenzene	=	1,2,4-Trimethy		-	-												
1,3,5-trimethlynemzene	=	1,3,5-Trimethl	ynemzene	analyzed u	sing EPA M	lethod 8260	B.										
Isopropyltoluene	#	Isopropyltolue	ne analyze	d using EP	A Method 8	260B.											
Naphthalene	=	Naphthalene a	analyzed us	sing EPA M	ethod 8260	В.											
n-Butylbenzene	=	n-Butylbenzer	•	-													
p-Isopropyltoluene	E	p-Isopropyltol	-	-													
sec-Butylbenzene	=	sec-Butylbenz		_													
t-Butylbenzene	=	t-Butylbenzene	-	•													
Add'l HVOCs	=	-	-	-			–										
feet bgs	=	Additional Hal			anic Compo	ounds analy	zed using E	PA Method 8	3260B.								
ND		Feet below gro Not detected.	ouna suna	e.													
140	=		Not onnites	bla													
<	(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Not analyzed/I			!.												
a		Less than the The sample of				motoh that -	of the energy	ad ata = 4 = 4									
b	:= =	Heavier gasoli					or trie specifi	eu standard	•								
c	=																
		Diesel range of Gasoline range				ogruzabie p	ацегп.										
		Cascille latte	e combodi	US ALB SIGE	mucæmi.												
d e		Strongly aged		_		nde ere el-	oificant.										

TABLE 2B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs

Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 1 of 2)

0			1,2,4-trimethyl-	1,3,5-trimethyl-	Isopropyl-	Naph-	n-Butyl-	p-Isopropyl-	sec-Butyl-	t-Butyl-	Add'l
Sample	Sampling	Depth	benzene	benzene	benzene	thalene	benzene	toluene	benzene	benzene	HVOCs
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Soil Boring Samples											
Not analyzed for these analytes	i.										
Monitoring Well Samples											
Not analyzed for these analytes											
Drum Samples											
Not analyzed for these analytes											
Soil Stockpile Samples											
COMP(S-Profile-1-4)	11/08/10	:777	0.0053	0.062	0.061	0.098	0.14	0.012	0.053	0.018	ND
Notes:											
S-15-MW4	=	Soil - depth - m	onitoring well 4.								
TPHmo	=	Total petroleun	hydrocarbons as i	notor oil analyzed us	ing EPA Meth	nod 8015B.					
TPHd	=	Total petroleun	hydrocarbons as	diesel analyzed using	EPA Method	I 8015B.					
TPHg	=	Total petroleur	n hydrocarbons as	gasoline analyzed us	sing EPA Met	nod 8015B.					
MTBE	=	Methyl tertiary	outyl ether analyzed	using EPA Method	8260B; analy	zed using E	PA Method	8020 in 2008.			
BTEX	=	Benzene, tolue	ne, ethylbenzene, a	nd total xylenes anal	yzed using Ef	A Method	8260B.				
EDB	=	1,2-Dibromoeth	nane analyzed using	EPA Method 8260E	3.						
1,2-DCA	=	1,2-Dicholoreth	ane analyzed using	EPA Method 8260E	3.						
TBA	==	Tertiary butyl a	cohol analyzed usir	ng EPA Method 8260	DB.						
DIPE	=	Di-isopropyl eth	ner analyzed using I	EPA Method 8260B.							
ETBE	=			ising EPA Method 8							
TAME	=			d using EPA Method							
Total Lead	=		zed using EPA Me	-							
1,2,4-trimethylbenzene	=		-	using EPA Method 8	260B.						
1,3,5-trimethlynemzene	=:		_	using EPA Method 8							
Isopropyltoluene	=		e analyzed using El	_							
Naphthalene	=:		alyzed using EPA								

TABLE 2B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs

Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 2 of 2)

Notes (Cont.):		
n-Butylbenzene	= n-Bι	ıtylbenzene analyzed using EPA Method 8260B.
p-Isopropyltoluene	= p-lse	propyltoluene analyzed using EPA Method 8260B.
sec-Butylbenzene	= sec-	Butylbenzene analyzed using EPA Method 8260B.
t-Butylbenzene	= t-Bu	tylbenzene analyzed using EPA Method 8260B.
Add'l HVOCs	= Addi	tional Halogenated Volatile Organic Compounds analyzed using EPA Method 8260B.
feet bgs	≃ Feet	below ground surface.
ND	= Not	detected.
	= Not	analyzed/Not applicable
<	= Less	than the laboratory reporting limit.
а	= The	sample chromatographic pattern does not match that of the specified standard.
b	= Heav	ier gasoline range compounds are significant.
С	= Dies	el range compounds are significant; no recognizable pattern.
d	= Gase	oline range compounds are significant.
е	= Stron	ngly aged gasoline or diesel range compounds are significant.
f	= No re	ecognizable pattem.

TABLE 3

WELL CONSTRUCTION DETAILS Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Well ID	Well Installation Date	TOC Elevation (feet)	Borehole Diameter (inches)	Total Depth of Boring (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Casing Material	Screened Interval (feet bgs)	Slot Size (inches)	Filter Pack Interval (feet bgs)	Filter Pack Material
MW1	11/04/10	41.45	8	17	17	2	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW2	11/04/10	41.25	8	17	17	4	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW3	11/08/10	40.42	8	17	17	4	Schedule 40 PVC	11-16	0.020	9-16	#3 Sand
MW4	11/05/10	39.30	8	17	13	2	Schedule 40 PVC	8-13	0.020	6-13	#3 Sand
MW5	11/05/10	40.38	8	17	14	2	Schedule 40 PVC	9-14	0.020	7-14	#3 Sand
MW6	11/03/10	41.06	10	20	20	2	Schedule 40 PVC	15-20	0.020	13-20	#3 Sand

Notes:

TOC Top of well casing elevation; datum is mean sea level.

PVC Polyvinyl chloride. =

feet bgs = Feet below ground surface.

APPENDIX A

CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

June 30, 2008

Ms. Jennifer Sedlachek (via electronic mail) ExxonMobil 4096 Piedmont Ave., #194 Oakland, CA 94611

Mrs. Muriel Blank Blank Family Trust 1164 Solano Ave., #406 Albany, CA 94706

Subject: Fuel Leak Case No. RO00002974 and Geotracker Global ID T0619716673, Exxon, 990 San Pablo Ave., Albany, CA 94706

Dear Ms. Sedlachek and Mrs. Blank:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above-referenced site including the January 31, 2008 Report of Phase II Environmental Site Assessment that was submitted by Edd Clark & Associates, Inc. The assessment report recommends preparing a work plan for additional soil and groundwater investigation at the site, installing wells and performing a sensitive receptor survey. This report indicates that maximum concentrations of 99,000 micrograms per liter (μg/L) total petroleum hydrocarbons as diesel (TPHd) in B-1, 77,000 μg/L total petroleum hydrocarbons as gasoline (TPHg) in B-2 and 1,500 μg/l benzene in B-2 are present in groundwater at your site. Free product was also noted in boring in B-1. The maximum TPHd concentration in soil [7,200 milligrams per kilogram (mg/Kg)] was detected in B-1 at a depth of 10.5 feet below ground surface (bgs). Maximum TPHg concentrations of 1,400 mg/Kg were detected in borings B-1 and B-2 from 10.5 ft bgs and the maximum benzene concentration (13 mg/kg) was detected in B-2 from 10.5 feet bgs.

ACEH concurs that additional assessment needs to be performed at the site. Please address the following technical comments, perform the requested work, and submit the work plan requested below.

TECHNICAL COMMENTS

1. Groundwater Characterization —The Phase II report indicates that free product is present at the site and that petroleum hydrocarbons and volatile organic compounds are present across the entire site. The lateral and vertical extent of the groundwater plume is

not defined. An expedited site assessment should be performed at the site using methods such as CPT, MIP or other continuous logging method to evaluate the extent of petroleum hydrocarbons. After the extent of contamination is determined, a monitoring well network can be installed using cluster wells or multi-chamber wells with screen lengths of 2 feet or less and sand packs of less than five feet.

- Source Area Soil Characterization Soil samples collected at the site indicate that the
 lateral and vertical extent of the contamination is undefined. The expedited site
 assessment requested should include sampling to define the lateral and vertical extent of
 petroleum hydrocarbons in the source area(s). Also please provide the tank, product
 piping and dispenser locations on the figures you submit.
- 3. Preferential Pathway Evaluation Survey. The purpose of the preferential pathway study is to locate potential migration pathways and conduits and determine the probability of the NAPL and/or plume encountering preferential pathways and conduits that could spread contamination. We request that you perform a preferential pathway study that details the potential migration pathways and potential conduits (wells, utilities, pipelines, etc.) for vertical and lateral migration that may be present in the vicinity of the site.

Discuss your analysis and interpretation of the results of the preferential pathway study (including the detailed well survey and utility survey requested below) and report your results in the Soil and Water Investigation (SWI) requested below. The results of your study shall contain all information required by California Code of Regulations, Title 23, Division 3, Chapter 16, §2654(b).

a. Utility Survey

Included in your Phase II report is a map with some utility lines on it. No flow directions or depths are presented on the map, nor is there an evaluation of whether these provide a pathway for migration of free product and other contaminants that could migrate from your site. An evaluation of all utility lines and trenches (including sewers, storm drains, pipelines, trench backfill, etc.) within and near the site and plume area(s) is required as part of your study. Please include maps and cross-sections illustrating the location, depth, and flow direction of all utility lines and trenches within and near the site and plume areas(s) as part of your study.

b. Well Survey

As recommended by your consultants, please proceed with a well survey as part of your preferential pathway evaluation. The preferential pathway study includes a detailed well survey of all wells (monitoring and production wells: active, inactive, standby, decommissioned (sealed with concrete), abandoned (improperly decommissioned or lost); and dewatering, drainage, and cathodic protection wells) within a ¼-mile radius of the subject site. Please submit an evaluation of whether there are any potential impacts to wells in the vicinity of the site in the work plan requested below.

Ms. Sedlachek and Mrs. Blank RO0002974 June 30, 2008, Page 3

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Barbara Jakub), according to the following schedule:

• September 22, 2008 -- Work Plan and preferential pathway evaluation.

This report is being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic_submittal/report_rgmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or

Ms. Sedlachek and Mrs. Blank RO0002974 June 30, 2008, Page 4

certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 639-1287 or send me an electronic mail message at barbara.jakub@acgov.org.

Sincerely,

Barbara J. Jakub, P.G.

Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Ms. Etta Jon VandenBosch, Edd Clark & Associates, Inc., P.O. Box 339, Rohnert Park, CA 94927, (via electronic mail, ejv@sonic.net)

Mrs. Marcia B. Kelly, 641 SW Morningside Rd., Topeka, KS 66615 (via electronic mail - marciabkelly@earthlink.net)

Rev. Deborah Blank, 1563 Solano Ave. #344, Berkeley, CA 94707 (via electronic mail-miracoli@earthlink.net)

Donna Drogos, ACEH (Sent via electronic mail)

Barbara Jakub, ACEH

Ms. Sedlachek and Mrs. Blank RO0002974 June 30, 2008, Page 5

File

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

ISSUE DATE: July 5, 2005

REVISION DATE: December 16, 2005

PREVIOUS REVISIONS: October 31, 2005

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF)
 with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format.
 These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to dehloptoxic@acgov.org

O

- ii) Send a fax on company letterhead to (510) 337-9335, to the attention of Alicia Lam-Finneke.
- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window,
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name at acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload)

APPENDIX B

FIELD PROTOCOLS

Cardno ERI Soil Boring and Well Installation Field Protocol

Preliminary Activities

Prior to the onset of field activities at the site, Cardno ERI obtains the appropriate permit(s) from the governing agency(s). Advance notification is made as required by the agency(s) prior to the start of work. Cardno ERI marks the borehole locations and contacts the local one call utility locating service at least 48 hours prior to the start of work to mark buried utilities. Borehole locations may also be checked for buried utilities by a private geophysical surveyor. Prior to drilling, the borehole location is cleared in accordance with the client's procedures. Fieldwork is conducted under the advisement of a registered professional geologist and in accordance with an updated site-specific safety plan prepared for the project, which is available at the job site during field activities.

Drilling and Soil Sampling Procedures

Cardno ERI contracts a licensed driller to advance the boring and collect soil samples. The specific drilling method (e.g., hollow-stem auger, direct push method, or sonic drilling), sampling method [e.g., core barrel or California-modified split spoon sampler (CMSSS)] and sampling depths are documented on the boring log and may be specified in a work plan. Soil samples are typically collected at the capillary fringe and at 5-foot intervals to the total depth of the boring. To determine the depth of the capillary fringe prior to drilling, the static groundwater level is measured with a water level indicator in the closest monitoring well to the boring location, if available.

The borehole is advanced to just above the desired sampling depth. For CMSSSs, the sampler is placed inside the auger and driven to a depth of 18 inches past the bit of the auger. The sampler is driven into the soil with a standard 140-pound hammer repeatedly dropped from a height of 30 inches onto the sampler. The number of blows required to drive the sampler each 6-inch increment is recorded on the boring log. For core samplers (e.g., direct push), the core is driven 18 inches using the rig apparatus.

Soil samples are preserved in the metal or plastic sleeve used with the CMSSS or core sampler, in glass jars or other manner required by the local regulatory agency (e.g., Environmental Protection Agency Method 5035). Sleeves are removed from the sample barrel, and the lowermost sample sleeve is immediately sealed with TeflonTM tape, capped, labeled, placed in a cooler chilled to 4° Celsius and transported to a state-certified laboratory. The samples are transferred under chain-of-custody (COC) protocol.

Field Screening Procedures

Cardno ERI places the soil from the middle of the sampling interval into a plastic re-sealable bag. The bag is placed away from direct sunlight for a period of time which allows volatilization of chemical constituents, after which the tip of a photo-ionization detector (PID) or similar device is inserted through the plastic bag to measure organic vapor concentrations in the headspace. The PID measurement is recorded on the boring log. At a minimum, the PID or other device is calibrated on a daily basis in accordance with manufacturer's specifications using a hexane or isobutylene standard. The calibration gas and concentration are recorded on a calibration log. Instruments such as the PID are useful for evaluating relative concentrations of volatilized hydrocarbons, but they do not measure the concentration of petroleum hydrocarbons in the soil matrix with the same precision as laboratory analysis. Cardno ERI trained personnel describe the soil in the bag according to the Unified Soil Classification System and record the description on the boring log, which is included in the final report.

Air Monitoring Procedures

Cardno ERI performs a field evaluation for volatile hydrocarbon concentrations in the breathing zone using a calibrated photo-ionization detector or lower explosive level meter.

Groundwater Sampling

A groundwater sample, if desired, is collected from the boring by using HydropunchTM sampling technology or installing a well in the borehole. In the case of using HydropunchTM technology, after collecting the capillary fringe soil sample, the boring is advanced to the top of the soil/groundwater interface and a sampling probe is pushed to approximately 2 feet below the top of the static water level. The probe is opened by partially withdrawing it and thereby exposing the screen. A new or decontaminated bailer is used to collect a water sample from the probe. The water sample is then emptied into laboratory-supplied containers constructed of the correct material and with the correct volume and preservative to comply with the proposed laboratory test. The container is slowly filled with the retrieved water sample until no headspace remains and then promptly sealed with a Teflon-lined cap, checked for the presence of bubbles, labeled, entered onto a COC record and placed in chilled storage at 4° Celsius. Laboratory-supplied trip blanks accompany the water samples as a quality assurance/quality control procedure. Equipment blanks may be collected as required. The samples are kept in chilled storage and transported under COC protocol to a client-approved, state-certified laboratory for analysis.

Backfilling of Soil Boring

If a well is not installed, the boring is backfilled from total depth to approximately 5 feet below ground surface (bgs) with either neat cement or bentonite grout using a tremie pipe and either the boring is backfilled from 5 feet bgs to approximately 1 foot bgs with hydrated bentonite chips or backfill is continued to just below grade with neat cement grout. The borehole is completed to surface grade with material that best matches existing surface conditions and meets local agency requirements. Site-specific backfilling details are shown on the respective boring log.

Well Construction

A well (if constructed) is completed using materials documented on the boring log or specified in a work plan. The well is constructed with slotted casing across the desired groundwater sampling depth(s) and completed with blank casing to within 6 inches of surface grade. No further construction is conducted on temporary wells. For permanent wells, the annular space of the well is backfilled with Monterey sand from the total depth to approximately 2 feet above the top of the screened casing. A hydrated granular bentonite seal is placed on top of the sand filter pack. Grout may be placed on top of the bentonite seal to the desired depth using a tremie pipe. The well may be completed to surface grade with a 1-foot thick concrete pad. A traffic-rated well vault and locking cap for the well casing may be installed to protect against surface-water infiltration and unauthorized entry. Site-specific well construction details including type of well, well depth, casing diameter, slot size, length of screen interval and sand size are documented on the boring log or specified in the work plan.

Well Development and Sampling

If a permanent groundwater monitoring well is installed, the grout is allowed to cure a minimum of 48 hours before development. Cardno ERI personnel or a contracted driller use a submersible pump or surge block to develop the newly installed well. Prior to development, the pump is decontaminated by allowing it to run and re-circulate while immersed in a non-phosphate solution followed by successive immersions in potable water and de-ionized water baths. The well is developed until sufficient well casing volumes are removed so that turbidity is within allowable limits and pH, conductivity and temperature levels stabilize in the purge water. The volume of groundwater extracted is recorded on a log.

Following development, groundwater within the well is allowed to recharge until at least 80% of the drawdown is recovered. A new or decontaminated bailer is slowly lowered past the air/water interface in the well, and a water sample is collected and checked for the presence of non-aqueous phase liquid, sheen or emulsions. The water sample is then emptied into laboratory-supplied containers as discussed above.

Surveying

If required, wells are surveyed by a licensed land surveyor relative to an established benchmark of known elevation above mean sea level to an accuracy of +/- 0.01 foot. The casing is notched or marked on one side to identify a consistent surveying and measuring point.

Decontamination Procedures

Cardno ERI or the contracted driller decontaminates soil and water sampling equipment between each sampling event with a non-phosphate solution, followed by a minimum of two tap water rinses. Deionized water may be used for the final rinse. Downhole drilling equipment is steam-cleaned prior to drilling the borehole and at completion of the borehole.

Waste Treatment and Soil Disposal

Soil cuttings generated from the drilling or sampling are stored on site in labeled, Department of Transportation-approved, 55-gallon drums or other appropriate storage container. The soil is removed from the site and transported under manifest to a client- and regulatory-approved facility for recycling or disposal. Decontamination fluids and purge water from well development and sampling activities, if conducted, are stored on site in labeled, regulatory-approved storage containers. Fluids are subsequently transported under manifest to a client- and regulatory-approved facility for disposal or treated with a permitted mobile or fixed-base carbon treatment system.

APPENDIX C

PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 09/16/2010 By jamesy

Permit Numbers: W2010-0684 to W2010-0690

City of Project Site: Albany

Permits Valid from 09/27/2010 to 09/30/2010

Phone: 707-766-2000

Phone: 510-527-4337

Phone: 510-547-8196

Application Id:

1284591303892

Site Location: **Project Start Date:**

Assigned Inspector:

990 San Pablo Avenue, Albany, CA

09/27/2010

Completion Date: 09/30/2010 Contact Vicky Hamlin at (510) 670-5443 or vickyh@acpwa.org

Applicant:

ERI - Alex Snyder

601 N McDowell Blvd., Petaluma, CA 94612

Property Owner:

The Blank Family Trust Muriel T Blank 1164 Solano Ave., Albany, CA 94706

Client:

Exxon Environmental Services, Jennifer

Sedlachek

4096 Piedmont Ave, Oakland, CA 94611

Total Due:

Receipt Number: WR2010-0316 Total Amount Paid:

\$2647.00

Payer Name: Environmental Resolutions, Paid By: CHECK

\$2647.00 PAID IN FULL

Inc.

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 6 Wells

Driller: Woodward Drilling - Lic #: 710079 - Method: hstem

Work Total: \$2382.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well ld	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2010- 0684	09/16/2010	12/26/2010	MW1	8.00 in.	2.00 in.	5.00 ft	15.00 ft
W2010- 0685	09/16/2010	12/26/2010	MW2	8.00 in.	4.00 in.	5.00 ft	15.00 ft
W2010- 0686	09/16/2010	12/26/2010	MW3	8.00 in.	4.00 in.	5.00 ft	15.00 ft
W2010- 0687	09/16/2010	12/26/2010	MW4	8.00 in.	2.00 in.	5.00 ft	15.00 ft
W2010- 0688	09/16/2010	12/28/2010	MW5	8.00 in.	2.00 in.	5.00 ft	15.00 ft
W2010- 0689	09/16/2010	12/26/2010	MW6	8.00 in.	2.00 in.	5.00 ft	15.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

Alameda County Public Works Agency - Water Resources Well Permit

- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.
- 5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Borehole(s) for Investigation-Geotechnical Study/CPT's - 6 Boreholes

Driller: Gregg Drilling - Lic #: 485165 - Method: hstem Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2010-	09/16/2010	12/26/2010	6	2.00 in.	40.00 ft
0690					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend

Alameda County Public Works Agency - Water Resources Well Permit

and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

- 4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX D CPT PROTOCOL AND REPORT

GREGG DRILLING & TESTING, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

November 1, 2010

Cardno ERI Attn: Paula Sime

Subject: CPT Site Investigation

Former Exxon 79374 Albany, California

GREGG Project Number: 10-163MA

Dear Ms. Sime:

The following report presents the results of GREGG Drilling & Testing's Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

1	Cone Penetration Tests	(CPTU)	\boxtimes
2	Pore Pressure Dissipation Tests	(PPD)	\boxtimes
3	Seismic Cone Penetration Tests	(SCPTU)	
4	UVOST Laser Induced Fluorescence	(UVOST)	
5	Groundwater Sampling	(GWS)	
6	Soil Sampling	(SS)	
7	Vapor Sampling	(VS)	
8	Pressuremeter Testing	(PMT)	
9	Vane Shear Testing	(VST)	
10	Dilatometer Testing	(DMT)	

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (925) 313-5800.

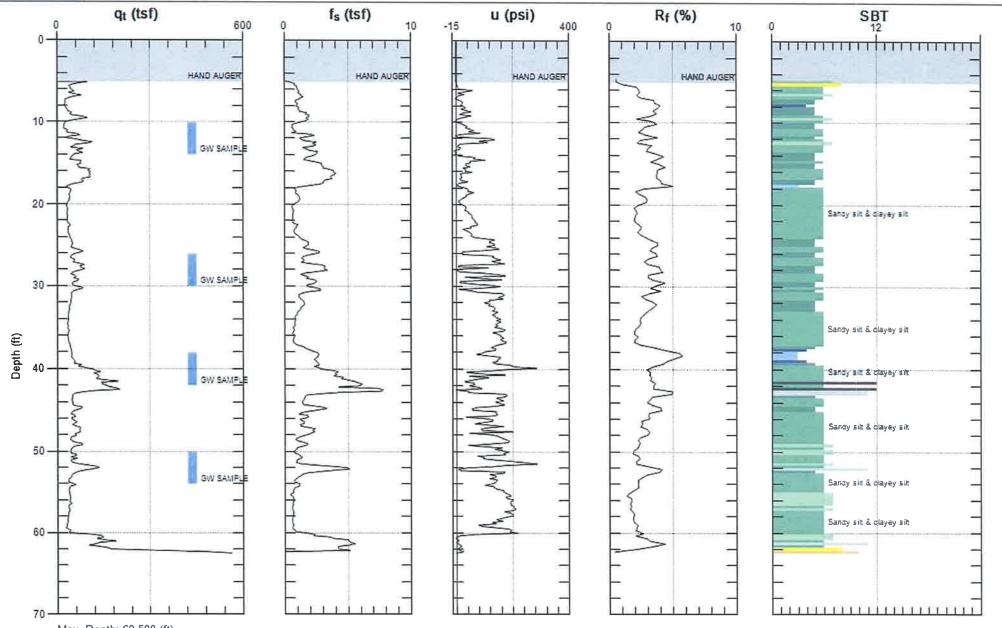
Sincerely,

GREGG Drilling & Testing, Inc.

1 Kay akeden

Mary Walden

Operations Manager



Site: FMR. EXXON 79374

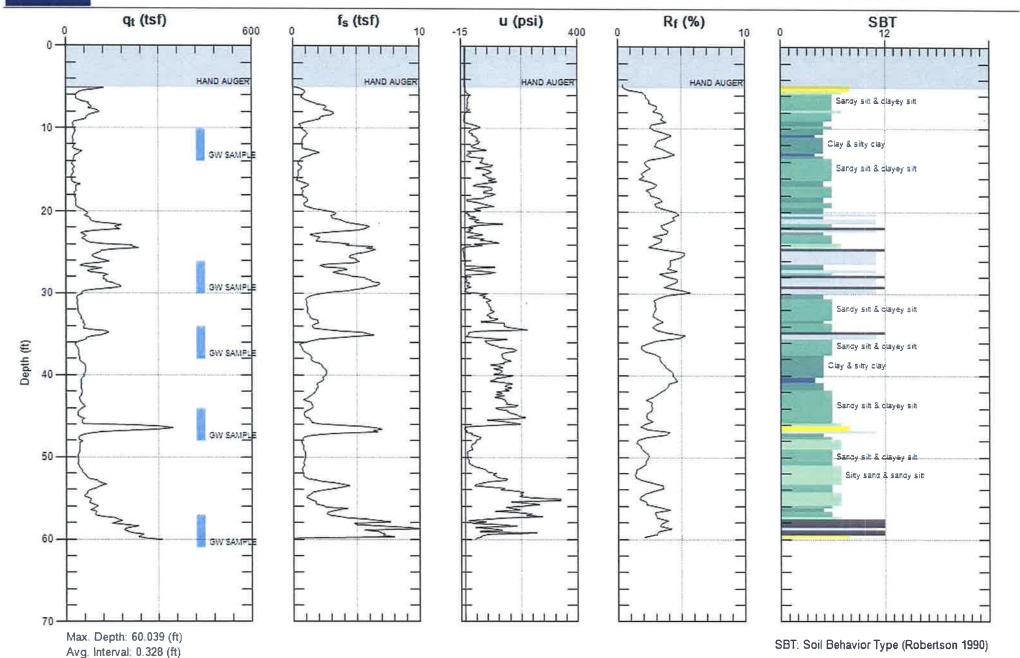
Sounding: CPT-02

Engineer: R.WESTRUP

Date: 10/27/2010 09:10

Max. Depth: 62.500 (ft) Avg. Interval: 0.328 (ft)

SBT: Soil Behavior Type (Robertson 1990)


CARDNO ERI

Site: FMR. EXXON 79374

Sounding: CPT-01

Engineer: R.WESTRUP

Date: 10/27/2010 02:36

GREGG DRILLING & TESTING, INC. GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Cone Penetration Test Sounding Summary

-Table 1-

Date	Termination Depth (Feet)	Depth of Groundwater Samples (Feet)	Depth of Soil Samples (Feet)	Depth of Pore Pressure Dissipation Tests (Feet)
10/27/10	60	14, 30, 38, 48, 61	_	T.
10/27/10	62	14, 30, 42, 54	-	40.8
		_		
	10/27/10	(Feet) (Feet) 60	(Feet) Samples (Feet) 10/27/10 60 14, 30, 38, 48, 61	(Feet) Samples (Feet) (Feet) 10/27/10 60 14, 30, 38, 48, 61 -

GREGG DRILLING & TESTING, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Bibliography

Lunne, T., Robertson, P.K. and Powell, J.J.M., "Cone Penetration Testing in Geotechnical Practice" E & FN Spon. ISBN 041923750, 1997

Roberston, P.K., "Soil Classification using the Cone Penetration Test", Canadian Geotechnical Journal, Vol. 27, 1990 pp. 151-158.

Mayne, P.W., "NHI (2002) Manual on Subsurface Investigations: Geotechnical Site Characterization", available through www.ce.gatech.edu/~geosys/Faculty/Mayne/papers/index.html, Section 5.3, pp. 107-112.

Robertson, P.K., R.G. Campanella, D. Gillespie and A. Rice, "Seismic CPT to Measure In-Situ Shear Wave Velocity", Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8, 1986 pp. 791-803.

Robertson, P.K., Sully, J., Woeller, D.J., Lunne, T., Powell, J.J.M., and Gillespie, D.J., "Guidelines for Estimating Consolidation Parameters in Soils from Piezocone Tests", Canadian Geotechnical Journal, Vol. 29, No. 4, August 1992, pp. 539-550.

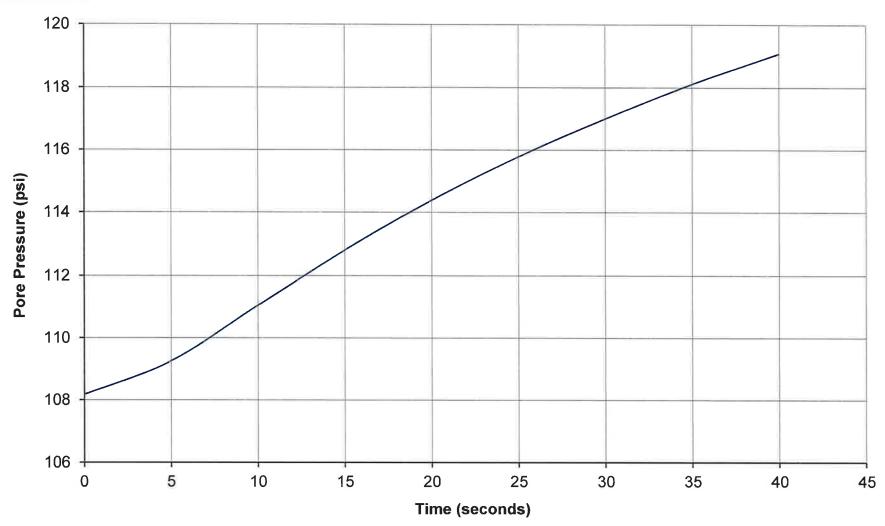
Robertson, P.K., T. Lunne and J.J.M. Powell, "Geo-Environmental Application of Penetration Testing", Geotechnical Site Characterization, Robertson & Mayne (editors), 1998 Balkema, Rotterdam, ISBN 90 5410 939 4 pp 35-47.

Campanella, R.G. and I. Weemees, "Development and Use of An Electrical Resistivity Cone for Groundwater Contamination Studies", Canadian Geotechnical Journal, Vol. 27 No. 5, 1990 pp. 557-567.

DeGroot, D.J. and A.J. Lutenegger, "Reliability of Soil Gas Sampling and Characterization Techniques", International Site Characterization Conference - Atlanta, 1998.

Woeller, D.J., P.K. Robertson, T.J. Boyd and Dave Thomas, "Detection of Polyaromatic Hydrocarbon Contaminants Using the UVIF-CPT", 53rd Canadian Geotechnical Conference Montreal, QC October pp. 733-739, 2000.

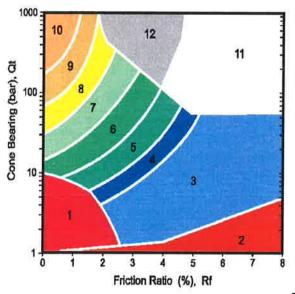
Zemo, D.A., T.A. Delfino, J.D. Gallinatti, V.A. Baker and L.R. Hilpert, "Field Comparison of Analytical Results from Discrete-Depth Groundwater Samplers" BAT EnviroProbe and QED HydroPunch, Sixth national Outdoor Action Conference, Las Vegas, Nevada Proceedings, 1992, pp 299-312.


Copies of ASTM Standards are available through www.astm.org

GREGG DRILLING & TESTING

Pore Pressure Dissipation Test

Sounding: CPT-02
Depth: 40.8463335
Site: FMR. EXXON 79374
Engineer: R.WESTRUP


Cone Penetration Test Data & Interpretation

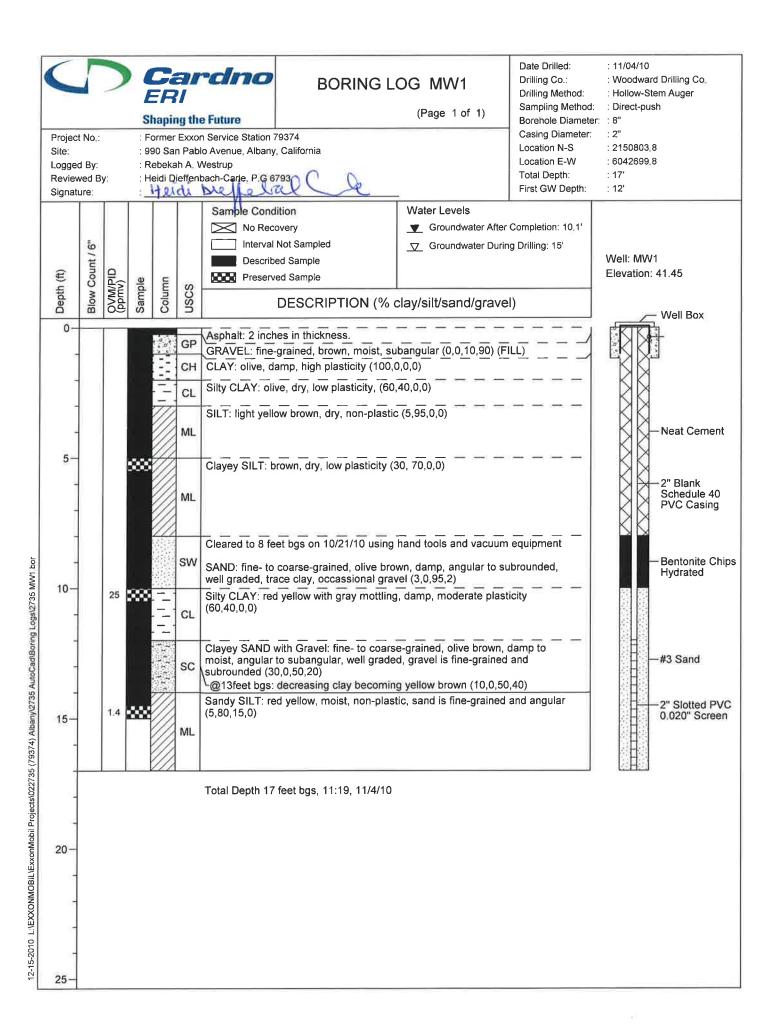
The Cone Penetration Test (CPT) data collected from your site are presented in graphical form in the attached report. The plots include interpreted Soil Behavior Type (SBT) based on the charts described by Robertson (1990). Typical plots display SBT based on the non-normalized charts of Robertson et al (1986). For CPT soundings extending greater than 50 feet, we recommend the use of the normalized charts of Robertson (1990) which can be displayed as SBTn, upon request. The report also includes spreadsheet output of computer calculations of basic interpretation in terms of SBT and SBTn and various geotechnical parameters using current published correlations based on the comprehensive review by Lunne, Robertson and Powell (1997), as well as recent updates by Professor Robertson. The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg Drilling & Testing Inc. do not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and do not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software.

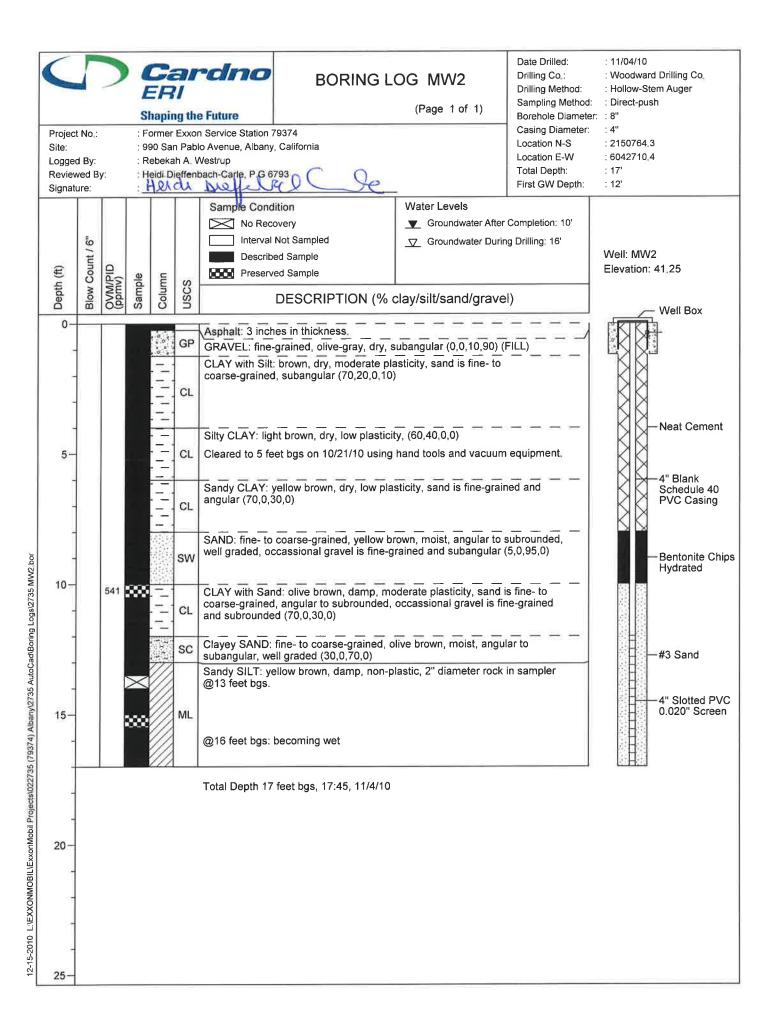
Some interpretation methods require input of the groundwater level to calculate vertical effective stress. An estimate of the in-situ groundwater level has been made based on field observations and/or CPT results, but should be verified by the user.

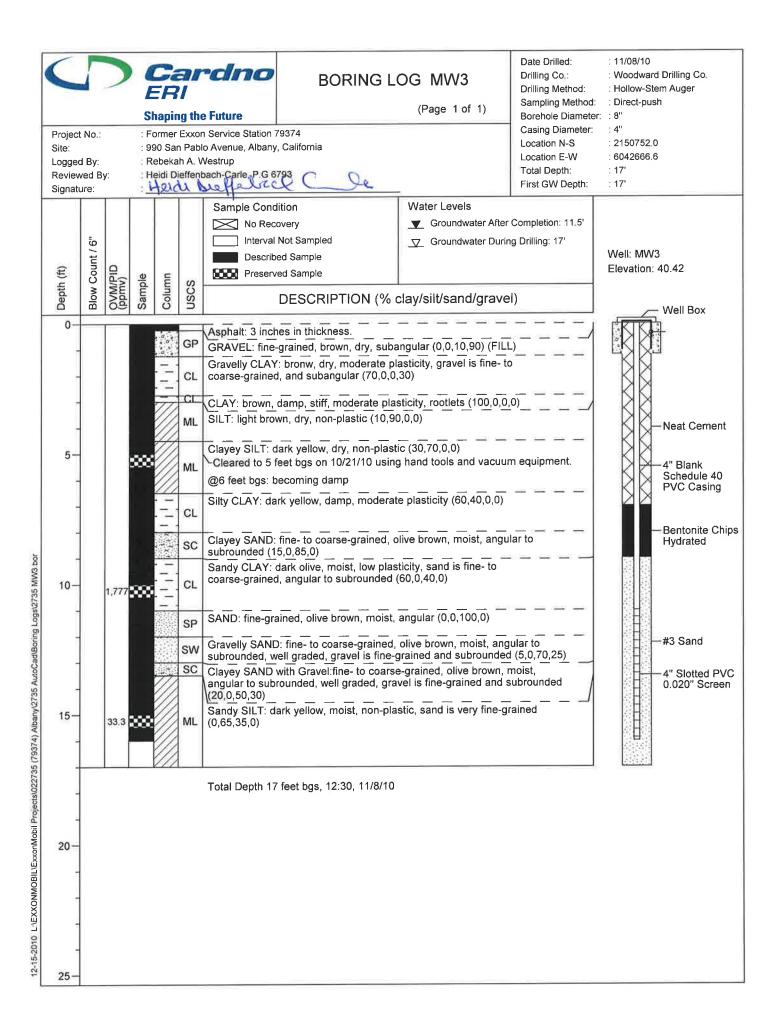
A summary of locations and depths is available in Table 1. Note that all penetration depths referenced in the data are with respect to the existing ground surface.

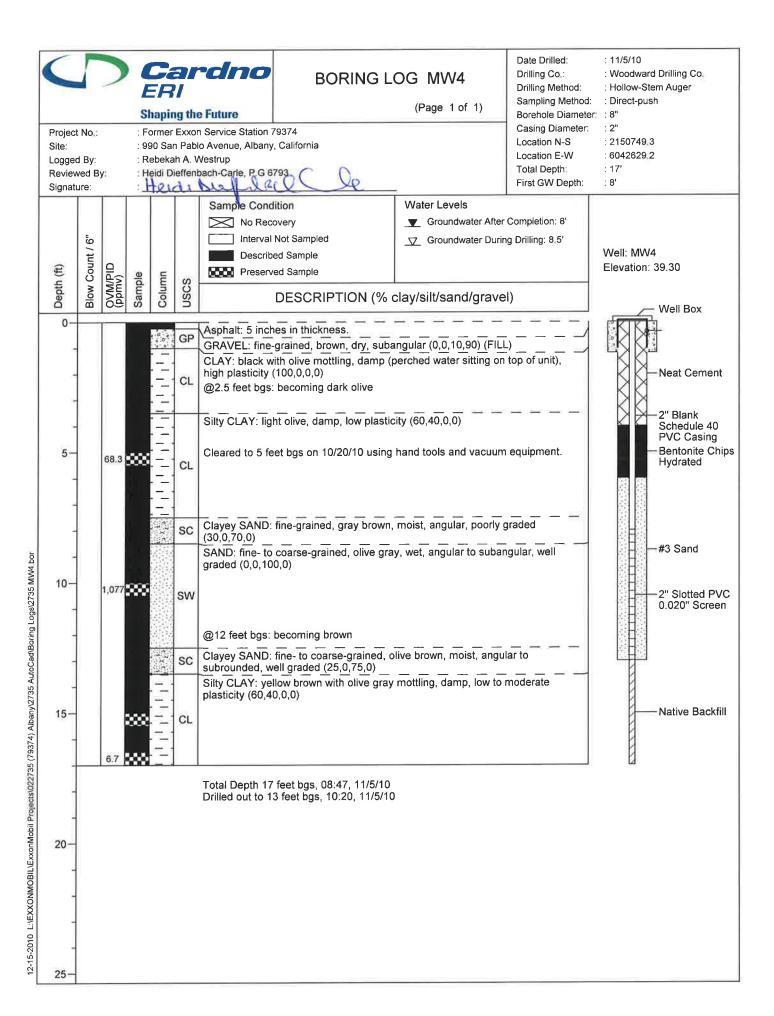
Note that it is not always possible to clearly identify a soil type based solely on q_t , f_s , and u_2 . In these situations, experience, judgment, and an assessment of the pore pressure dissipation data should be used to infer the correct soil behavior type.

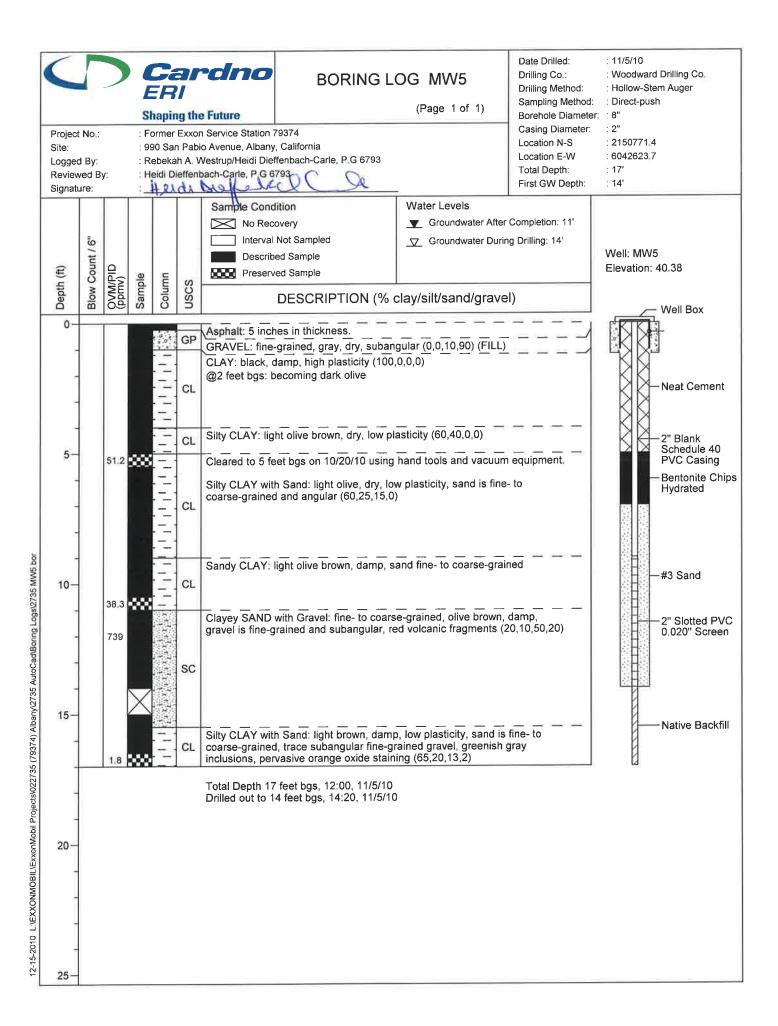
(After Robertson, et al., 1986)

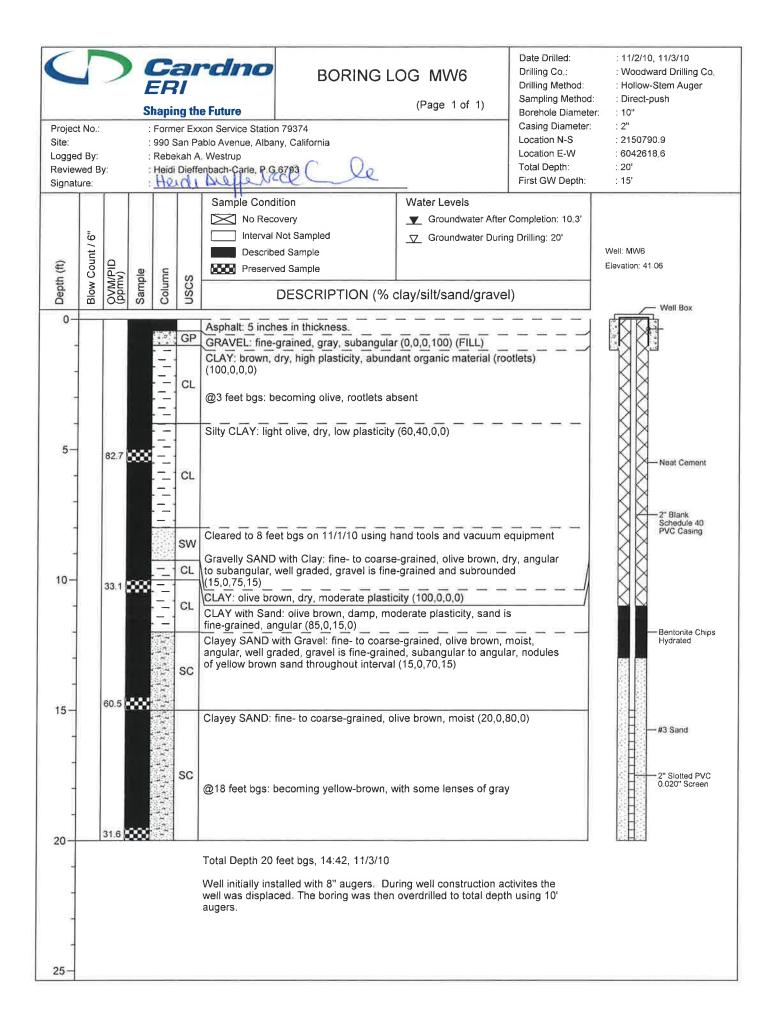

ZONE	SBT		
1	Sensitive, fine grained		
2	Organic materials		
3	Clay		
4	Silty clay to clay		
5	Clayey silt to silty clay		
6	Sandy silt to clayey silt		
7	Silty sand to sandy silt		
8	Sand to silty sand		
9	Sand		
10	Gravely sand to sand		
11	Very stiff fine grained*		
12	Sand to clayey sand*		

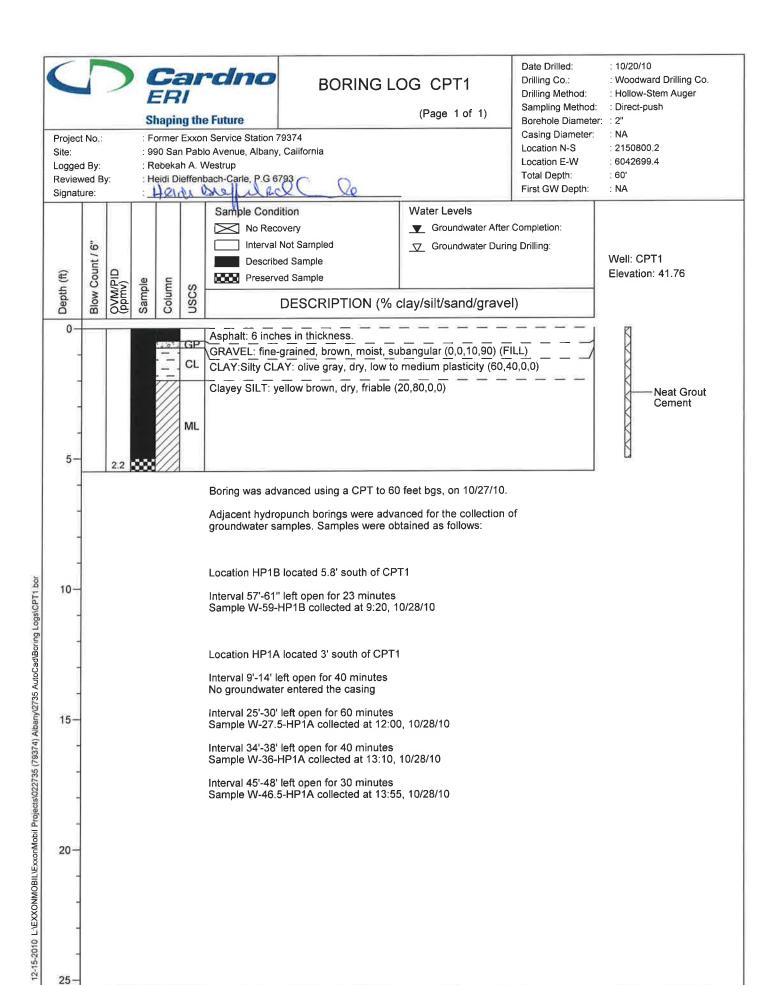

*over consolidated or cemented

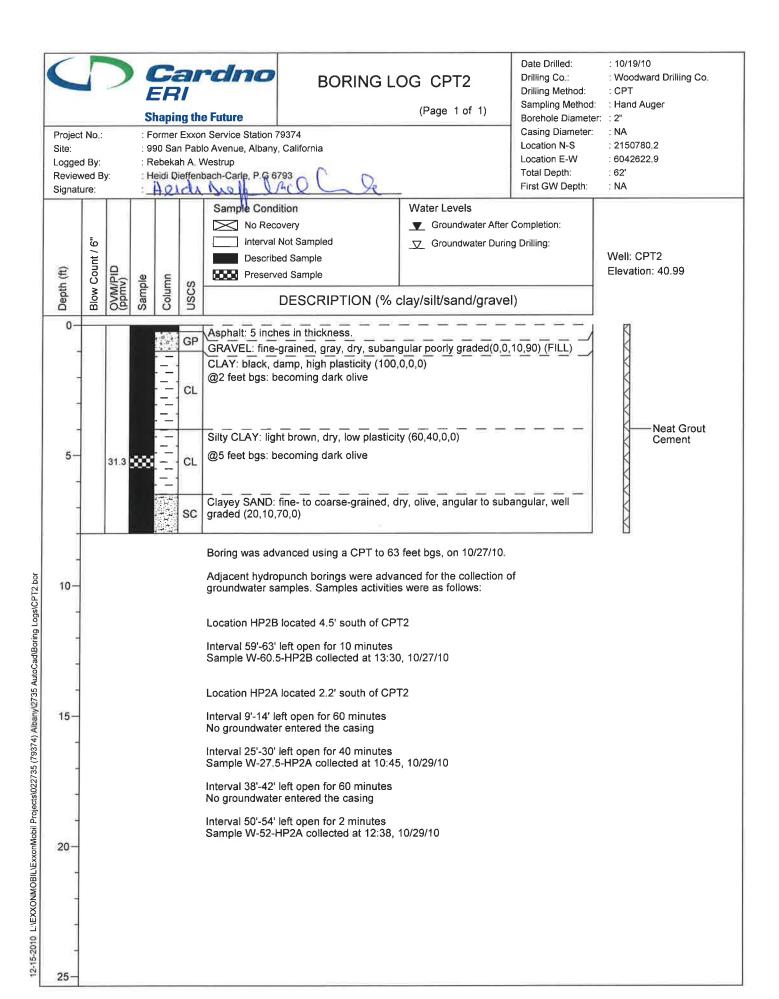

Figure SBT


APPENDIX E


BORING LOGS







APPENDIX F

FIELD DATA

ERI Job# 2735	Surging				
Client/Site: E	Start 0800	Stop 0834			
Location: 7	9374			Start 1131	Stop 1201
Name.:	Start 1323	Stop 1336			
DATE: 1°	1/10/2010			Start	Stop
Weather: S	unny			Start	Stop
WELL ID MW 1			W.L.W	To the sign	
	PURGE	T	COND	рН	Turbidity
TIME	VOLUME	Temp			NTU
hr:min	Gal	deg C	S/m	unit	
0839	1	1 deg	10%	0.1	Less Than 5
0843	11	22.4	0.24	6.92	NO READING
0846	2	22.4	0.24	7.08	NO READING
0849	3	22.5	0.24	7.12	NO READING
0853	4	22.7	0.23	7.14	NO READING
0856	5	22.7	0.20	6.69	NO READING
	DRY		<u> ""</u>		
1204					
1207	6	23.0	0.17	7.20	NO READING
1210	7	23.0	0.16	7.04	NO READING
1214	8	23.0	0.16	7.00	NO READING
1217	9	23.0	0.14	6.88	NO READING
	DRY				
1339					
1341	9.5	22.6	0.14	7.04	NO READING
1343	10.0	22.8	0.14	7.00	NO READING
1345	10.5	22.8	0.14	6.93	NO READING
1347	11.0	22.8	0.13	6.89	NO READING
1349	11.5	22.8	0.13	6.85	NO READING
1351	12.0	22.7	0.13	6.82	NO READING
1353	12.5	22.7	0.13	6.80	NO READING
0:00	13.0	22.7	0.13	6.73	NO READING
0.00	DRY		V	TALL VILL	
	DICT				
Total Purge Volume	Gallons 13.0				
CASING VOL. FACTOR			WELL	INFORMATION	
CASING FOL. FACTOR		Time			
diameter	Î Î	TD:	16.74		
2"-dia:	0.163	DTW:	9.75		
			3.73		
4"-dia: 6"-dia:	0.652 1.457	h: csg vol:	1.14		
U -ula.	1.707	COMMENT			

ERI Job# 2735	Qtr. 4th	Year 201	0	Su	rging
Client/Site: E	Start 1026	Stop 1051			
Location: 7	Start 1409	Stop 1428			
Name.: D	Start	Stop			
	1/10/2010	Start	Stop		
	unny			Start	Stop
WELL ID MW 2			S THE	23 2 7 7	Media.
State Commen	PURGE	1		ľ	
TIME	VOLUME	Temp	COND	рН	Turbidity
hr:min	Gal	deg C	S/m	unit	NTU
1054	4	1 deg	10%	0.1	Less Than 5
1103	4	21.6	0.17	7.25	NO READING
1111	8	21.4	0.16	7.13	NO READING
	DRY				
1432				777 577	
1436	10	21.7	0.13	7.07	NO READING
1439	12	21.7	0.14	7.09	NO READING
1443	14	21.5	0.13	7.09	NO READING
	DRY		2.00		
otal Purge Volume	Gallons 15.0				
CASING VOL. FACTOR			WELL	INFORMATION	
		Time			
diameter		TD:	17.20		
2"-dia:	0.163	DTW:	9.63		
4"-dia:	0.652	h:			
6"-dia:	1.457	csg vol:	4.94		

ERI Job# 2735 Qtr. 4th Year 2010			Surging		
Client/Site: ExxonMobil				Start 0927	Stop 0950
Location: 7	Start	Stop			
Name.: D	an West			Start	Stop
	/10/2010		Start	Stop	
	unny		Start	Stop	
WELL ID MW 3		Town to		1.0	
	PURGE		N LX	1	
TIME	VOLUME	Temp	COND	pH	Turbidity
hr:min	Gal	deg C	S/m	unit	NTU
0954	4	1 deg	10%	0.1	Less Than 5
1001	4	22.1	0.23	6.96	NO READING
	DRY			h E LL N LU V	
1454					
1456	6	21.7	0.15	6.63	NO READING
	DRY				
					_
					_
	College 7.0				
Total Purge Volume	Gallons 7.0		14/51	INFORMATION	
CASING VOL. FACTOR			WELL	INFURMATION	T
	1	Time_	40.00		
diameter		TD:	15.35		
2"-dia:	0.163	DTW :	9.21		
4"-dia:	0.652	h;	4.00		
6"-dia:	1.457	csg vol:	4.00		

ERI Job# 2735	Job# 2735 Qtr. 4th Year 2010		Surging		
	xxonMobil	I		Start 1405	Stop 1423
Location: 79374				Start	Stop
lame.: D	Start	Stop			
DATE: 11/9/2010				Start	Stop
Veather: Sunny				Start	Stop
VELL ID MW 4					
AELT ID IMMA 4					
TIME	PURGE VOLUME	Temp	COND	рН	Turbidity
hr:min	Gal	deg C	S/m	unit	NTU
1426	0.5	1 deg	10%	0.1	Less Than 5
1428	0.5	22.5	0.28	7.23	NO READING
1431	1.0	23.0	0.28	7.21	NO READING
1433	1.5	23.2	0.27	7.12	NO READING
1436	2.0	23.2	0.28	7.12	NO READING
1439	2.5	23.2	0.27	7.10	NO READING
1441	3.0	23.1	0.25	6.99	NO READING
1444	3.5	23.1	0.22	6.91	NO READING
1446	4.0	23.0	0.23	6.90	NO READING
1449	4.5	22.9	0.23	6.89	NO READING
1451	5.0	22.9	0.25	6.97	NO READING
	DRY			I I I WHILE I I	
Total Purge Volume	Gallons 5.0	V L III			8 11 1
CASING VOL. FACTOR			WELL	INFORMATION	
		Time			
diameter		TD:	13.28		
2"-dia:	0.163	DTW :	7.80		
4"-dia:	0.652	h:	72,000		
6"-dia:	1.457	csg vol:	0.89		

ERI Job# 2735 Qtr. 4th Year 2010 Client/Site: ExxonMobil			Surging		
			Start 1139	Stop 1158	
Location: 79374				Start 1254	Stop 1301
Name.: D	an West		Start 1505	Stop 1516	
	1/9/2010			Start	Stop
Weather: S			Start	Stop	
WELL ID MW 5				100	
TIME	PURGE VOLUME	Temp	COND	рН	Turbidity
hr:min	Gal	deg C	S/m	unit	NTU
1203	0.5	1 deg	10%	0.1	Less Than 5
1204	0.5	21.8	0.27	7.27	NO READING
1206	1.0	21.9	0.26	7.21	NO READING
1207	1.5	21.9	0.26	7.19	NO READING
1209	2.0	22.0	0.26	7.18	NO READING
1211	2.5	22.0	0.25	7.04	NO READING
1212	3.0	22.0	0.24	6.98	NO READING
1214	3.5	21.7	0.24	6.98	NO READING
	DRY				
1303					
1305	4.0	21.9	0.18	6.96	NO READING
1307	4.5	22.0	0.17	6.81	NO READING
1309	5.0	21.7	0.16	6.73	NO READING
	DRY			v v willing	
1520					
1521	5.5	20.9	0.16	7.08	NO READING
1523	6.0	21.5	0.15	6.96	NO READING
1526	6.5	21.9	0.15	6.78	658
1529	7.0	22.2	0.15	6.68	878
	DRY		The Tri		
otal Purge Volume	Gallons 7.0				
CASING VOL. FACTOR			WELL	INFORMATION	
		Time			
diameter		TD:	14.00		
2"-dia:	0.163	DTW :	9.35		
4"-dia:	0.652	h:			
6"-dia:	1.457	csg vol:	0.76		

ERI Job# 2735	Surging				
Client/Site: E	Start 1044	Stop 1103			
Location: 7	Start 1319	Stop 1330			
Name.: D	an West			Start	Stop
DATE: 1	1/9/2010			Start	Stop
Weather: S	unny			Start	Stop
WELL ID MW 6				- 12 A T	
TIME	PURGE VOLUME	Temp	COND	рН	Turbidity
hr:min	Gal	deg C	S/m	unit	NTU
1114	1	1 deg	10%	0.1	Less Than 5
1114	1.0	20.9	0.22	6.42	NO READING
1115	2.0	20.5	0.21	6.65	NO READING
1116	3.0	20.6	0.22	6.74	NO READING
1117	4.0	20.6	0.24	6.90	916
1119	5.0	20.7	0.27	6.99	996
1121	6.0	20.9	0.28	7.00	NO READING
1123	7.0	21.0		7.14	NO READING
	DRY	V. W. A. STORY			
1331					
1334	8.0	20.7	0.16	7.26	NO READING
1336	9.0	20.8	0.14	7.14	NO READING
1339	10.0	20.8	0.14	7,15	NO READING
1341	11.0	20.7	0.14	7.08	570
	DRY				<u>N. za. Weg</u>
Total Purge Volume	Gallons 11.0				
CASING VOL. FACTOR			WELL	INFORMATION	
		Time			
diameter		TD:	20.00		
2"-dia:	0.163	DTW:	10.20		
4"-dia:	0.652	h:	2007700		
6"-dia:	1.457	csg vol:	1.60		

Daily Field Report

Cardno ERI

Project ID #: 79374

Cardno ERI Job # 022735201

Subject: GW SAMPLING Date: 12/16/2010

Equipment Used: SOLINST/HYDAC/PUMPS/BATTS'S/SAMPLING EQUIPMENT/ETC. Sheet: 1

Name(s): PROWSE, JAKE

*O/P 0 WELLS

Time Arrived On Site: 8:30 Time Departed Site: 13:30

08:30	-ARRIVED OI	N SITE	
	-INFORMED S	STATION OF WORK TO BE DON	
	-SET UP EXC	LUSION ZONE AND CHOCKED	THE WHEELS ON VEHICLE
	-REVIEWED	APPLICABLE JSA'S	
	-PERFORME	SPSA FOR: TRAFFIC CONTRO	LL
	-STARTED PA	PERWORK FOR SITE AND LAB	ELS
	-SET UP DEC	ON/WORK AREA AND DECON'D	EQUIPMENT
08:30	-HELD H&S M	EETING/REVIEWED HOSPITAL	ROUTE /FINISHED AT 08:45
08:45	-OPENED WE	LLS AND ALLOWED WELLS TO	CHARGE
08:45	-STARTED ME	ASURING /FINISHED AT 09:00	
09:00	-STARTED PL	IRGING /FINISHED AT 11:00	
11:00	-STARTED SA	MPLING /FINISHED AT 13:15	
	-DECON'D EQ	UIPMENT/CLEANED UP DECON	STATION/LOADED TRUCK
	-BROKE DOW	N EXCLUSION ZONE/LOADED T	RUCK
13:30	-ERI CARDNO	OFF SITE	
15:00	-STARTED PU	RGE WATER TREATMENT (TRA	ILER) /FINISHED AT 15:15
'M/P/S 6	WELLS	*M/S 0 WELLS	M/S LOW FLOW 0 WELLS

TOTAL PURGED GALLONS: 0

DECON WATER GALLONS: 0

*POTABLE 0 WELLS

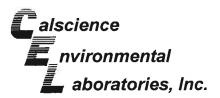
*0 T/C SET UPS

*MO 0 WELLS

DAILY FIELD REPORT

PROJECT: 2735	JOB # + ACTIVITY: 2 79374
SUBJECT:	DATE:_12-16
EQUIPMENT USED:	SHEET: OF
NAME: Jake Prower	PROJECT MNGR: P. Sime
Onsite 830	Swyy
Safety Meeting	3
Open Wells	
DTW Wells	
0	1W 1-6
Decon 20 gal Purge 29 gal 49 gal Total	
Purae 29 gal	
49 gal Total	
* Replaced lock for MW.	5
1	
Offsite 1330	
	FEV 922000 (Fax 707 789 0414)
601 N. McDowell Boulevard, Petaluma, California 949	54 707 766 2000 (Fax 707 789 0414)
The second secon	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

Depth to W	/ater Data	QRT	4th	YEAR	2010		Calc Case	Volume for	or purge
ERI#	2735			i			2" WELL	x 0.163	
Site #	79374	Address:	990 San Pat	olo Ave, Alban	y, CA		4" WELL	x 0.652	
PM:	Paula Sime						6" WELL	x 1.467	
Date:	12/16/10						r (square	d) x 0.163	
Tech:	JP			Recharge	formula:	333 1	it Bole (D. P. P.	
DTW Time	9:00			Step 1► Calc 80% in feet►			$TD - PreDTW \times .80 (ft) =$		
Start:				Step 2▶	Calc PostDT	W (ft)▶	TD - PostDTW (ft) =		
Finish:				Take ratio	of result fro	m Step 2 a	and Step :	I to find %	recharge
19,5							Commis	1 100 1	Prd
WELL ID	TD	PreDTW	CASE D	CASE V	PostDTW		Sample Time	DTP	Thick
WI MW	The second second	9.18	2	1.21	8.81	104.98	the second second second		
W2 MW2	The second secon	8.11	4	5.72	9.37	85.65			
W3 MW		8.18	4	4.58	10.00	74.07			
W4 MW		6.10	2	1.14	6.23	98.14			
W5 MW		7.69	2	0.93	7.99	94.75			
WE MW		8.55	2	1.75	9.83	88.05			
				1					
i	1	1							
	·								
		-)				i			
								- 7	***************************************
				and bearing					
				-					
					THE PERSON				-
								-	30 5 5 55
			- 1						* 10- () # (
				T					
						-			
	·	<u>1</u>							
				-				(I) (III) (I	
1									


ERI#	2735		QRT	4th	2010	1	1
			DATE:		2010		-
Client:	Merced Co	unty		12/16/10			
Site ID:	79374		TECH	JP			-
ADDRESS:			PM:	Paula Sime			
990 San Pablo	Ave, Albany, CA		Total Purg	je Volume	1		
		PRG					
WELL#	TIME	VOL	TEMP	COND	pH	DO	OR
BB COMMENTS:			_				
COMMENTS:				ļ			1
		PRG			1		
WELL#	TIME	VOL	TEMP	COND	pН	DO	OR
MW1	9:25	1	°C	uS	7.44	mg/L	m\
	9:25	1	20.10	812.00	7.41	-	
	9:26	2	20.00	814.00	7.33		
	9:27	3	20.00	827.00	7.29		-
	1 1					-	-
TOTAL DUDGE	.+					+	-
TOTAL PURGE	1			ļ		ļ	-
COMMENTS:	1		1			-	1
		DD.C	-			-	
DOTE U	TEVALE	PRG	TEME	COND	**		ODI
WELL#	TIME	VOL	TEMP °C	COND	рН	DO	ORI
MW2	9:47	2		uS	7.47	mg/L	mV
	9:48		18.80	744.00	7.47		
	9:50	6	18.90	743.00	7.40		
	9:51		19.20	771.00	7.35		
						-	
OTAL DUDGE	 					-	
OTAL PURGE	ļ					-	
ONIVIENTS.	1		-	1			
	 	DDC	+				
VELL#	TIME	PRG VOL	TEMP	COND	pН	DO	ORP
NW3	10:13	2	°C	uS	рrt	mg/L	mV
1113	10:13	2	19.10	700.00	7.08	Ing/L	1117
	10:14	4	19.10	705.00	6.98		
	10:16	6	19.20	737.00	6.81		
	10.10	<u> </u>	13.20	707.00	0.01		
			1				
OTAL PURGE			1				
OMMENTS:			1				
			1				
	j-	PRG	1				
ELL#	TIME	VOL	TEMP	COND	pН	DO	ORP
W4	10:29	2	°C	uS	brr	mg/L	mV
***	10:31	2	18.80	811.00	7.13	mg/L	1117
	10:32	4	19.70	836.00	6.97		
	10.02		1 10.70	555.00	0.07		

ERI#	2735		QRT	4th	2010	v.	
Client:	Merced Cou	nty	DATE:	12/16/10			
Site ID:	79374		TECH	JP			
ADDRESS:			PM:	Paula Sime			
990 San Pablo Av	ve, Albany, CA		Total Pur	ge Volume			Í
TOTAL PURGE	5						
COMMENTS:					1		
		PRG					
WELL#	TIME	VOL	TEMP	COND	pН	DO	ORP
MW5	10:41	1	°C	uS		mg/L	mV
	10:42	1	18.50	392.00	7.64		
	10:42	2	18.80	443.00	7.56		
	10:43	3	19.20	481.00	7.42		
TOTAL PURGE							
COMMENTS:							
		PRG					
VELL#	TIME	VOL	TEMP	COND	pН	DO	ORP
/IW6	10:56	2	°C	uS		mg/L	mV
	10:57	2	18.10	694.00	7.61		
	10:58	4	18.70	678.00	7.56		
	10:59	6	18.70	755.00	7.40		
OTAL PURGE							
OMMENTS:			-				

ERI Jol	Numl	per:17	35	Station	No.: _	1939	4	Site A	ddres	s: _9	90	San	Pab	lo Av	e, t	Hbav	spected by: Specific	
22.0	/ 4 -	/ /	10.	0/0	105 -01	100 100	10/ 1	, , ,	G .	/ \	/	01 110	or oruns	Ontents Buildi	no dition	n are	arce _	
1 WM	N/R/ok	N/R/ok	N/R/ok	N/R/ok	N/R/ok	N/R/ok	Y/N	N/R/ok	N/P	Vok	N/D/-I	9 1	\$ Ou	201 Brill	9 3	In Mobile	Comments / Well Covers	
MW 2	JON-	014	OK.	0.0	or	OK	Y	OK	0	R				g/v/o	N/R	l/ok	Twell Covers	
WM3	-			OK	1		N	1	1 7	1	1	NA	NA	.0	0	KI		_
MW4				OK			N	\vdash	\vdash	\dashv	_	+-		-1				_
MW 5	-			OK			N	-	+	+	-	-						
MWG	-	-		R			N	 -	\vdash	-	-	-						
1100	- 1		tie	OK		Ì	N		\vdash	-		-				B	eplaced lock	
			ti.					-	\vdash	-	-	-					epiacra Jack	
			4							-	_	-						
				~					_	-								
								4.		_						_		
																\dashv		
																-		
				-		-										_		
		-																
																_		_
		-																
	-																	
	-+									-								
	-									-								
	-									+								
-	_									+								
										+								_
	1.50									+								
							-	-		+								
							-			+								
						-	-			+								
N = Not rep	airable i	n time av	ailable-s	ee com	nents		V = V											
x = Kepaire	ed-see c	omments	3				$Y = Y_0$				8	s = So	il.		g = 1	Graffitti	on walls.	
ok = No act	ion need	ed.					N = N	0.			9	w = W	ater.				s (or evidence of).	

APPENDIX G

LABORATORY ANALYTICAL REPORTS

November 05, 2010

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 10-10-2014

Client Reference:

ExxonMobil 79374 / 022735

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/26/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile L e Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

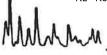
Date Received: Work Order No: Preparation: Method:

10/26/10 10-10-2014 EPA 3550B EPA 8015B (M)

Project: Exxo	nMobil 79374 / 02	2735						Pa	ge 1 of 2
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-MW1			10-10-2014-1-A	10/20/10 14:40	Solid	GC 45	10/26/10	10/26/10 23:35	101026B18
Comment(s):	-The sample extract was	subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Units			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		104	61-145						
S-5-MW4			10-10-2014-2-A	10/20/10 10:40	Solid	GC 45	10/26/10	10/26/10 23:50	101026B18
Comment(s):	-The sample extract was	•							
<u>Parameter</u>		Result	RL	DF	Qual	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		119	61-145						
S-5-MW5			10-10-2014-3-A	10/20/10 09:10	Solid	GC 45	10/26/10	10/27/10 00:06	101026B18
Comment(s):	-The sample extract was	subjected to	Silica Gel treatment	prior to analysi	s.				
Parameter		Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		107	61-145						
S-5-MW6			10-10-2014-4-A	10/20/10 09:55	Solid	GC 45	10/26/10	10/27/10 00:21	101026B18
Comment(s):	-The sample extract was								
Parameter		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
ΓPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		118	61-145						

RL - Reporting Limit ,

Environmental Resolutions, Inc. 601 North McDowell Blvd.

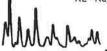

Petaluma, CA 94954-2312

Analytical Report

Date Received: 10/26/10 Work Order No: 10-10-2014 Preparation: **EPA 3550B** Method: EPA 8015B (M)

Project: Exxo	nMobil 79374 / 02	2735						Pa	ge 2 of 2
Client Sample Number	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-CPT1			10-10-2014-5-A	10/20/10 13:45	Solid	GC 45	10/26/10	10/27/10 00:36	101026B18
Comment(s):	-The sample extract was	s subjected to Result	o Silica Gel treatment	prior to analys <u>DF</u>	is. <u>Qual</u>	Units			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		101	61-145						
S-5-CPT2			10-10-2014-6-A	10/19/10 12:00	Solid	GC 45	10/26/10	10/27/10 00:52	101026B18
Comment(s):	-The sample extract was	-				19/2/192			
<u>Parameter</u>		Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		113	61-145						
S-5-MW3			10-10-2014-7-A	10/21/10 15:45	Solid	GC 45	10/26/10	10/27/10 01:06	101026B18
Comment(s):	-The sample extract was	-							
Parameter		Result	RL	<u>DF</u>	<u>Qual</u>	Units			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		115	61-145						
Method Blank			099-12-254-1,648	N/A	Solid	GC 45	10/26/10	10/26/10 20:49	101026B18
Parameter		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		104	61-145						

RL - Reporting Limit ,



Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

10/26/10 10-10-2014 **EPA 3550B** EPA 8015B (M)

Project: Exxo	nMobil 79374 / 02	2735						Ра	ge 1 of 2
Client Sample Number	ər		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-MW1			10-10-2014-1-A	10/20/10 14:40	Solid	GC 45	10/26/10	10/26/10 23:35	101026B17
Comment(s):	-The sample extract was	subjected to	Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		104	61-145						
S-5-MW4			10-10-2014-2-A	10/20/10 10:40	Solid	GC 45	10/26/10	10/26/10 23:50	101026B17
Comment(s):	-The sample extract was	subjected to	Silica Gel treatment	prior to analysi	s.				
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		118	61-145						
S-5-MW5			10-10-2014-3-A	10/20/10 09:10	Solid	GC 45	10/26/10	10/27/10 00:06	101026B17
Comment(s):	-The sample extract was	subjected to	Silica Gel treatment	prior to analysi	S				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		107	61-145						
S-5-MW6			10-10-2014-4-A	10/20/10 09:55	Solid	GC 45	10/26/10	10/27/10 00:21	101026B17
Comment(s):	-The sample extract was	subjected to	Silica Gel treatment	prior to analysi	s.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		117	61-145						

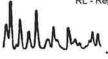
eport ne

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

10/26/10 10-10-2014 EPA 3550B EPA 8015B (M)


Project: ExxonMobil 79374 / 022735

Page 2 of 2

Project: Exxo	nMobil 79374 / 02	2735						Pa	ige 2 of 2
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-CPT1			10-10-2014-5-A	10/20/10 13:45	Solid	GC 45	10/26/10	10/27/10 00:36	101026B17
Comment(s):	-The sample extract wa	s subjected t	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		100	61-145						
S-5-CPT2			10-10-2014-6-A	10/19/10 12:00	Solid	GC 45	10/26/10	10/27/10 00:52	101026B17
Comment(s):	-The sample extract was	s subjected to	o Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Diesel		ND	5.0	4	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		113	61-145						
S-5-MW3			10-10-2014-7-A	10/21/10 15:45	Solid	GC 45	10/26/10	10/27/10 01:06	101026B17
Comment(s):	-The sample extract was	s subjected to	o Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>		Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		114	61-145						
Method Blank			099-12-275-3,716	N/A	Solid	GC 45	10/26/10	10/26/10 20:49	101026B17
Parameter		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		104	61-145						

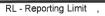
RL - Reporting Limit ,

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Analytical Report


Date Received: Work Order No: Preparation: Method:

10/26/10 10-10-2014 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 1 of 2

Project: ExxonMobil /93/4/	022735						Pa	ige 1 of 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-MW1		10-10-2014-1-A	10/20/10 14:40	Solid	GC 4	10/26/10	10/26/10 22:45	101026B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1	U	mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	82	42-126						
S-5-MW4		10-10-2014-2-A	10/20/10 10:40	Solid	GC 4	10/26/10	10/27/10 00:22	101026B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1	U	mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	80	42-126						
S-5-MW5		10-10-2014-3-A	10/20/10 09:10	Solid	GC 4	10/26/10	10/27/10 11:43	101026B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1	U	mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	84	42 -126						
S-5-MW6		10-10-2014-4-A	10/20/10 09:55	Solid	GC 4	10/26/10	10/27/10 01:26	101026B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1	U	mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	83	42-126						

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

10/26/10 10-10-2014 EPA 5030C EPA 8015B (M)


Project: ExxonMobil 79374 / 022735

Page 2 of 2

Project: ExxonMobil 79374 / 03	22/35						Pa	ige 2 or 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-CPT1		10-10-2014-5-A	10/20/10 13:45	Solid	GC 4	10/26/10	10/27/10 01:58	101026B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1	U	mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	58	42-126						
S-5-CPT2		10-10-2014-6-A	10/19/10 12:00	Solid	GC 4	10/26/10	10/27/10 02:30	101026B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	1	U	mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	83	42-126						
S-5-MW3		10-10-2014-7-A	10/21/10 15:45	Solid	GC 4	10/26/10	10/27/10 03:03	101026B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1	U	mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	78	42-126						
Method Blank		099-12-279-4,051	N/A	Solid	GC 4	10/26/10	10/26/10 21:40	101026B01
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1	U	mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	80	42-126						

DF - Dilution Factor ,

Environmental Resolutions, Inc.

Date Received:

Work Order No:

Petaluma, CA 94954-2312

Preparation:

Method:
Units:

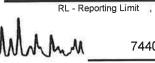
Date Received:

10/26/10

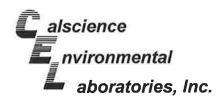
10-10-2014

Preparation:

EPA 5030C


EPA 8260B

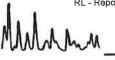
Units:


Project: ExxonMobil 79374 / 022735

Page 1 of 3

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
S-5-MW1			10-10-	2014-1-A	10/20/10 14:40	Solid	GC/MS Z	10/26/10	10/27 15:		101027L01
Parameter Parame	Result	RL	DF	Qual	Parameter			Result	RL	DF	<u>Qual</u>
Benzene	ND	0.0050	1	U	Diisopropyl Et	her (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	1	U	Ethyl-t-Butyl E)	ND	0.010	1	U
Ethylbenzene	ND	0.0050	1	Ū	Tert-Amyl-Met	•	•	ND	0.010	1	U
Xylenes (total)	ND	0.0050	1	Ú	1,2-Dibromoet		•	ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	Ü	1,2-Dichloroet	hane		ND	0.0050	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U	•						
Surrogates:	REC (%)		Qu	<u>al</u>	Surrogates:			<u>REC (%)</u>	Control Limits	2	Qual
1.4-Bromofluorobenzene	97	60-132			Toluene-d8			98	80-120		
1,4-Biomondologenzene 1,2-Dichloroethane-d4	106	62-146			Dibromofluoro	methane		105	63-141		
S-5-MW4	100	02 110	10-10-	2014-2-A	10/20/10	Solid	GC/MS Z	10/26/10	10/27		101027L01
					10:40				18:	50	
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Etl	her (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	4	U	Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	U
Ethylbenzene	ND	0.0050	4	U	Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	U
Xylenes (total)	ND	0.0050	1	U	1,2-Dibromoet	hane	•	ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	4	U	1,2-Dichloroet	hane		ND	0.0050	1.	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U							
Surrogates:	REC (%)	Control Limits	Qu	al	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
1.4-Bromofluorobenzene	99	60-132			1,2-Dichloroet	hane-d4		104	62-146		
Toluene-d8	99	80-120			Dibromofluoro	methane		102	63-141		
S-5-MW5			10-10-	2014-3-A	10/20/10 09:10	Solid	GC/MS Z	10/26/10	10/27 19:		101027L01
2aaaaataa	Popult	DI	DF	Qual	Parameter			Result	RL	DF	Qual
Parameter	Result	RL			<u>Parameter</u>	har (DIDE)					U
Benzene	ND	0.0050	1	U	Diisopropyl Etl	, ,		ND	0.010	1	-
Foluene	ND	0.0050	1	U	Ethyl-t-Butyl E			ND	0.010	1	U
Ethylbenzene	ND	0.0050	1	U	Tert-Amyl-Met		AIVIL)	ND	0.010	1	_
Kylenes (total)	ND	0.0050	1	U	1,2-Dibromoet			ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroet	nane		ND	0.0050	1	U
Fert-Butyl Alcohol (TBA)	ND	0.050	1	. U				DEC (9/)	Control	,	Qual.
Surrogates:	<u>REC (%)</u>	Control Limits	Qua	<u>al</u>	Surrogates:			<u>REC (%)</u>	Control Limits	<u> </u>	<u>Qual</u>
Dibromofluoromethane	104	63-141			Toluene-d8			98	80-120		
1.4-Bromofluorobenzene	97	60-132			1,2-Dichloroet	hane-d4		105	62-146		
1,4-DIOIIIOIIUOIODEIIZENE	٥,	30 102			Laz Diomoroec	iidilo dir			•		

, DF - Dilution Factor


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 10/26/10 10-10-2014 EPA 5030C EPA 8260B mg/kg

Project: ExxonMobil 79374 / 022735

Page 2 of 3

Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
S-5-MW6			10-10	-2014-4-A	10/20/10 09:55	Solid	GC/MS Z	10/26/10	10/2 19:		101027L01
Parameter_	Result	RL	DE	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Et	her (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	1	ŭ	Ethyl-t-Butyl E	, ,)	ND	0.010	1	U
Ethylbenzene	ND	0.0050	1	Ü	Tert-Amyl-Met		,	ND	0.010	1	Ū
Xylenes (total)	ND	0.0050	1	Ü	1,2-Dibromoet	•	,	ND	0.0050	1	Ū
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	Ŭ	1,2-Dichloroet			ND	0.0050	1	Ū
Tert-Butyl Alcohol (TBA)	ND	0.050	1	ŭ	T,E DIGINOTOGE	i i di i o			0.0000	-	•
Surrogates:	REC (%)	Control	Qu	_	Surrogates:			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
Dibromofluoromethane	105	63-141			1,4-Bromofluo	rohenzene		97	60-132		
Toluene-d8	99	80-120			1,2-Dichloroet			109	62-146		
S-5-CPT1			10-10	-2014-5-A	10/20/10 13:45	Solid	GC/MS Z	10/26/10	10/27		101027L01
					10.40					-	
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1	U	Diisopropyl Etl	ner (DIPE)		ND	0.010	1	U
Foluene	ND	0.0050	1	U	Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	U
Ethylbenzene	ND	0.0050	1	U	Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	U
Kylenes (total)	ND	0.0050	1	U	1,2-Dibromoet	hane		ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroet	hane		ND	0.0050	1	U
Fert-Butyl Alcohol (TBA)	ND	0.050	1	U							
Surrogates:	REC (%)	Control Limits	Qu	<u>al</u>	Surrogates:			REC (%)	Control Limits	2	Qual
1,2-Dichloroethane-d4	107	62-146			1,4-Bromofluo	robenzene		97	60-132		
Dibromofluoromethane	105	63-141			Toluene-d8			98	80-120		
S-5-CPT2			10-10-	-2014-6-A	10/19/10 12:00	Solid	GC/MS Z	10/26/10	10/27 20:		101027L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
	-		7.5			or (DIDE)				1	U
Benzene	ND	0.0050	1	U	Diisopropyl Etl	, ,		ND	0.010		U
Foluene	ND	0.0050	1	U	Ethyl-t-Butyl E	,	•	ND	0.010	1	U
Ethylbenzene	ND	0.0050	1	U	Tert-Amyl-Met	,	AIVIE)	ND	0.010	1	U
(ylenes (total)	ND	0.0050	1	U	1,2-Dibromoet			ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroet	iane		ND	0.0050	1	U
⁻ ert-Butyl Alcohol (TBA) <u>Surrogates:</u>	ND <u>REC (%)</u>	0.050 Control	1 <u>Qu</u>	U <u>al</u>	Surrogates:			REC (%)		<u>(</u>	Qual
Faluera do	97	<u>Limits</u> 80-120			1,2-Dichloroet	nano da		109	<u>Limits</u> 62-146		
Foluene-d8		60-132			Dibromofluoro			103	63-141		
1.4-Bromofluorobenzene	98										

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 10/26/10 10-10-2014 EPA 5030C EPA 8260B mg/kg

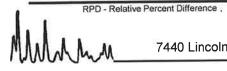
Project: ExxonMobil 79374 / 022735

Page 3 of 3

Client Sample Number				o Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/I Analy		QC Batch ID
S-5-MW3			10-10-2	014-7-A	10/21/10 15:45	Solid	GC/MS Z	10/26/10	10/27 21:1		101027L01
Parameter	Result	, <u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Eth	ner (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	1	U	Ethyl-t-Butyl Et	ther (ETBE)	ND	0.010	1	U
Ethylbenzene	ND	0.0050	1	U	Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	U
Xylenes (total)	ND	0.0050	1	U	1,2-Dibromoetl	nane		ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroeth	nane		ND	0.0050	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U							
Surrogates:	REC (%)	Control Limits	Qua	ļ	Surrogates:			REC (%)	Control Limits	2	<u>Qual</u>
1.2-Dichloroethane-d4	109	62-146			1.4-Bromofluor	obenzene		97	60-132		
Toluene-d8	97	80-120			Dibromofluoro	methane		105	63-141		
Method Blank			099-12-	882-713	N/A	Solid	GC/MS Z	10/27/10	10/27 14:2		101027L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Eth	ner (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	1	U	Ethyl-t-Butyl Et	ther (ETBE)	ND	0.010	1	U
Ethylbenzene	ND	0.0050	1	U	Tert-Amyl-Met	hyl Ether (1	AME)	ND	0.010	1	U
Xylenes (total)	ND	0.0050	1	U	1,2-Dibromoetl	nane		ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroeth	nane		ND	0.0050	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U							
Surrogates:	REC (%)	Control Limits	Qua	<u>l</u>	Surrogates:			REC (%)	Control Limits	(Qual
Toluene-d8	98	80-120			Dibromofluoro	methane		106	63-141		
1,4-Bromofluorobenzene	98	60-132			1,2-Dichloroeth	nane-d4		108	62-146		

RL - Reporting Limit , DF - Dilution Factor

aboratories, Inc.


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

10/26/10 10-10-2014 EPA 3550B EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-10-2005-5	Solid		10/26/10		10/26/10	101026S18
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	106	92	64-130	14	0-15	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 10/26/10 10-10-2014 EPA 3550B EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number			
10-10-2005-5	Solid	GC 45	10/26/10		10/26/10	101026\$17			
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers			
TPH as Diesel	202	195	64-130	4	0-15	3			

RPD - Relative Percent Difference , 7440 Lincoln

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No:

Preparation: Method:

10/26/10 10-10-2014

EPA 5030C

EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-5-MW1	Solid	GC 4	10/26/10		10/26/10	101026S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	108	108	48-114	0	0-23	

RPD - Relative Percent Difference,

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

10/26/10 10-10-2014 **EPA 5030C** EPA 8260B

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
S-5-MW1	Solid	GC/MS Z	10/26/10	10/27/10	101027S01
					0 ""

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	100	96	61-127	4	0-20	
Toluene	99	95	63-123	3	0-20	
Ethylbenzene	107	100	57-129	6	0-22	
Methyl-t-Butyl Ether (MTBE)	105	102	57-123	3	0-21	
Tert-Butyl Alcohol (TBA)	115	106	30-168	8	0-34	
Diisopropyl Ether (DIPE)	100	95	57-129	5	0-20	
Ethyl-t-Butyl Ether (ETBE)	102	98	55-127	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	100	99	58-124	1	0-20	
Ethanol	133	110	17-167	19	0-47	
1,1-Dichloroethene	100	95	47-143	5	0-25	
1,2-Dibromoethane	105	102	64-124	2	0-20	
1,2-Dichlorobenzene	100	96	35-131	4	0-25	
1,2-Dichloroethane	100	96	80-120	5	0-20	
Carbon Tetrachloride	104	99	51-135	5	0-29	
Chlorobenzene	101	95	57-123	5	0-20	
Trichloroethene	102	99	44-158	4	0-20	
Vinyl Chloride	94	93	49-139	1	0-47	

RPD - Relative Percent Difference,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 10-10-2014 **EPA 3550B** EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number
099-12-254-1,648	Solid	GC 45	10/26/10	10/26/10	101026B18

Parameter	LCS %REC	LCSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
TPH as Motor Oil	107	109	75-123	2	0-12	

RPD - Relative Percent Difference ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-10-2014 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bato Number	:h
099-12-275-3,716	Solid	GC 45	10/26/10	10/26/10	101026B17	
Parameter	LCS	%REC LCSD	%REC %F	REC CL RPI	RPD CL	Qualifiers
TPH as Diesel	104	100	1	75-123 4	0-12	

RPD - Relative Percent Difference , 7440 Lincoln

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Date Received:

N/A

Petaluma, CA 94954-2312

Work Order No: Preparation:

10-10-2014 **EPA 5030C**

Method:

EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

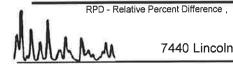
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number
099-12-279-4,051	Solid	GC 4	10/26/10	10/26/10	101026B01

Qualifiers RPD CL LCS %REC %REC CL RPD LCSD %REC <u>Parameter</u> 70-124 2 0-18 109 TPH as Gasoline 111

RPD - Relative Percent Difference

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:


N/A 10-10-2014 **EPA 5030C EPA 8260B**

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD I Numbe	
099-12-882-713	Solid	GC/MS Z	10/27/10	10/27	/10	101027L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	92	98	78-120	71-127	6	0-20	
Toluene	90	96	77-120	70-127	6	0-20	
Ethylbenzene	92	99	76-120	69-127	8	0-20	
Methyl-t-Butyl Ether (MTBE)	102	106	77-120	70-127	4	0-20	
Tert-Butyl Alcohol (TBA)	92	92	68-122	59-131	1	0-20	
Diisopropyl Ether (DIPE)	94	97	78-120	71-127	3	0-20	
Ethyl-t-Butyl Ether (ETBE)	98	102	78-120	71-127	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	97	100	75-120	68-128	3	0-20	
Ethanol	90	92	56-140	42-154	2	0-20	
1,1-Dichloroethene	92	97	74-122	66-130	5	0-20	
1,2-Dibromoethane	103	108	80-120	73-127	5	0-20	
1,2-Dichlorobenzene	89	94	75-120	68-128	6	0-20	
1,2-Dichloroethane	97	100	80-120	73-127	4	0-20	
Carbon Tetrachloride	93	100	49-139	34-154	7	0-20	
Chlorobenzene	90	95	79-120	72-127	5	0-20	
Trichloroethene	94	101	80-120	73-127	7	0-20	
Vinyl Chloride	86	90	68-122	59-131	4	0-20	

Total number of LCS compounds: 17 Total number of ME compounds: 0 Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 10-10-2014

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range,
ET	Sample was extracted past end of recommended max. holding time.
1	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS recovery percentage is within LCS ME control limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

Phone: 714-895-549

Fax: 714-894-7501

Co	nsultant Name:	Environ	mental F	Resolu	utions	s, Inc.							-				_ A	cco	unt#	NA	<u></u>					PO#:	_								
Cons	ultant Address:	601 N.	McDowe	il Bou	ılevar	ď											_In	voic	е То	: Jer	nifer	Sed	lach	вk			=9-==					2101			
Consultan	t City/State/Zip:	Petalun	na, Califo	ornia,	9495	4											R	epo	rt To	: Pai	ula Si	me													
ЕххопМо	bil Project Mgr:				Jenni	fer S	edlac	hek						ER	l Pr	ojec	t #/A	ctiv	ity#	: 022	27350)3													
Consulta	ant Project Mgr:					Paula	a Sim	e			_			_	Ex	xon	Mob	il S	ite #:	_			7	937	74			Ma	ajor Projec	ct (AFE	#):				_
Consultant Tele	phone Number:						Fa	x No).: <u>7</u>	07-	789-	041	4			:	Site	Add	iress	990) San	Pat	lo A	ven	ue										
Sampl	ler Name (Print):		beleah										_	_	Sit	e Ci	ity, S	State	e, Zip	: Alb	алу,	Calif	orni	94	706										_
San	pler Signature:		hobelul	(11	Uph	n)								_	0	ver	sight	t Ag	ency	: Ala	meda	a Co	unty	Env	viror	mental	Heal	lth D	Department						
					_	<u>r</u>	_	Ц	_	Pr	ese	rvati	ve	_	I		Mat	rix		_	匚			_		Analyz	e For	1			_				
Sample ID	Field Point Name/ Location ID	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	Methanol	Sodium Bisulfate	NaOH	H ₂ SO ₄ Plastic	H ₂ SO ₄ Glass	TINO3	Other	None	Groundwater	Wastewater Drinking Water	Sludge	Soil	Other (specify):	TPHd and TPHg by	EPA 8015B	TPHmo by EPA 8015B	BTEX by EPA 8260B	7 Oxys by EPA 8260B	Total Lead by 6010 (Stockpile sample	only)		HVOCS 8010 List byEPA 8260 (Stockpile sample only)		RUSH TAT (Pre-Schedule)	5-day TAT	Standard 10-day TAT	Due Date of Report	
S-5-mw1	mwi	10/20/10	14:40	1	χ			П	Т	Т	Т	П	1 _x		П	T		П	х	Т	1	<	х	x	х		Т	Т					х		
S-5-mw4	mwy		10:40	1	X			П	T	1	T	П	Y		Ħ	T	Ť		y			ľ		×			\top	T			Γ	Г	x		\neg
S-5-mw5	MW5		9:10	1	X			П		1	Т	П	X		П				X		1	(<	×								П	Х		
S-5-mwb	mwb		9:55	li	Х	10211		П			П		У		П				X		X	8	X	γ	X	ll.					Γ		X		
S-5-CPT1	CPTI	1	13:45	1	X			П				П	X			1			X		X	(X	X.	X		1						X		
S-5-CPT2	CPT2	toltalio	12:00	1	X					I			X						X		١,	(X	¥	×								X		
5-5-mw3	mw3	10/21/10	15:45	1	X				-	-			¥	1	\parallel		+	-	γ	-	\		X	X	4		+	+					X		_
													-		П	4												+							
Comments/Special Instructions Use silica gel cleanup on all TF 7 oxy = MTBE, TBA, TAME, DIP GLOBAL ID # (global ID# T06 Relingyshed by:	PHd analyses PE, ETBE, 1,2-D		EDB Date		ime		No		labs	@	eri-u				-EIN	Da	BS@	eri-L	ES TO		San VO	nper nple A Via	ature Con als F	tain ree	oon ers of H	: Receipt Intact? leadspa circle on	ace?				Y		N		*)
Retinquished by:	050	10	22/10 Date 2510	T	60 ime 130	Rec	eived 2u					el):	1			Da			Time	Le Le Sit	vel 3 vel 4 te Spe					se attac			edule w/ Ca	alscienc	e				

<*WebShip*>>>>>

800-322-5555 www.gso.com

Ship From:
ALAN KEMP
CAL SCIENCE- CONCORD
5063 COMMERCIAL CIRCLE #H
CONCORD, CA 94520
Ship To:

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0,00

ERI

Reference:

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED Tracking #: 515221312 NPS

ORC

GARDEN GROVE

D92843A

Print Date: 10/25/10 16:30 PM

Send Label To Printer

Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

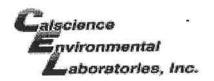
STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

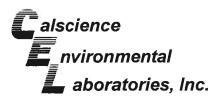

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

2014



WORK ORDER #: 10-10- □ □ □ □

SAMPLE RECEIPT FORM

Cooler / of /

CLIENT: EPI	DATE:_	10/24	/10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not from	zen)		
Temperature/•_\psi °C + 0.5 °C (CF) =/_•\frac{g}{} °C		☐ Samp	ole
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same	day of sampli	ng.	
☐ Received at ambient temperature, placed on ice for transport by			
Ambient Temperature: ☐ Air ☐ Filter		Initia	al: <u>//</u>
Tallistone Tomporataile.			
CUSTODY SEALS INTACT:			
☑ Cooler □ □ No (Not Intact) □ Not Preser	nt □ N/A		al: <u>//</u>
□ Sample □ □ No (Not Intact) ☑ Not Prese	nt	lniti	al: <u>WSC</u>
			D1/A
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete			
☐ Collection date/time, matrix, and/or # of containers logged in based on sample lab	els.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		_	_
Sampler's name indicated on COC			_
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition			
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time	Ø		
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours	🗆		Æ
Proper preservation noted on COC or sample container	🗆		Z
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	🗆		Þ
Tedlar bag(s) free of condensation	🗆		Z
Solid: □4ozCGJ □8ozCGJ □16ozCGJ ☑Sleeve (5/B) □EnCo	res [®] □Terra	Cores® □	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGE	Bp □1AGB	□1AGB na ₂	. □1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CG	Bs □1PB [□500PB □	1500PB na
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □]
Air: ☐Tediar® ☐Summa® Other: ☐ Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag Preservative: h: HCL n: HNO3 naz:NazSzO3 na: NaOH p: HsPO4 s: HzSO4 znna: ZnAcz+NaO	E: Envelope F	Reviewed b	y:

November 18, 2010

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma. CA 94954-2312

BY:----

Subject:

Calscience Work Order No.: 10-11-0368

Client Reference:

ExxonMobil 79374 / 022735

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/04/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

NELAP ID: 03220CA • DoD-ELAP ID: L10-41

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

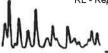
Environmental Resolutions, Inc. 601 North McDowell Blvd.

Date Received: Work Order No: 11/04/10 10-11-0368 EPA 3550B

Petaluma, CA 94954-2312

Preparation: Method:

EPA 8015B (M)


Project: ExxonMobil 79374 / 022735

Page 1 of 1

Project. Exxo	111010011 793747	022733						1 6	age i oi i
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
S-10-MW6			10-11-0368-1-A	11/02/10 11:11	Solid	GC 48	11/05/10	11/07/10 03:43	101105B27
Comment(s):	-The sample extract	was subjected to	Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		114	61-145						
S-14.5-MW6			10-11-0368-2-A	11/02/10 11:50	Solid	GC 48	11/05/10	11/07/10 03:58	101105B27
Comment(s):	-The sample extract	was subjected to	Silica Gel treatment						
Parameter		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		111	61-145						
S-20-MW6			10-11-0368-3-A	11/02/10 12:55	Solid	GC 48	11/05/10	11/07/10 04:13	101105B27
Comment(s):	-The sample extract	was subjected to	Silica Gel treatment	prior to analys	is.				
Parameter Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		116	61-145						
Method Blank			099-12-254-1,692	N/A	Solid	GC 48	11/05/10	11/06/10 22:06	101105B27
				D.F.	01	14-14-			
Parameter Parameter		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		63	61-145						

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No:

11/04/10

Preparation: Method: 10-11-0368 EPA 3550B

EPA 8015B (M)

22:06

<u>Units</u>

mg/kg

Client Sample Numbe	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
S-10-MW6	91		10-11-0368-1-A	11/02/10 11:11	Solid	GC 48	11/05/10	11/07/10 03:43	101105B16
Comment(s):	-The sample chromatog of the unknown hydroca -The sample extract wa	arbon(s) in the	sample was based up	pon the specif	fied standa	pattern of the	specified st	tandard. Qua	ntitation
Parameter	· ·	Result	RL	DF	Qual	Units			
ΓPH as Diesel	5.5	3.2	5.0	1		mg/kg			
Surrogates:	Ī	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	1	114	61-145						
S-14.5-MW6			10-11-0368-2-A	11/02/10 11:50	Solid	GC 48	11/05/10	11/07/10 03:58	101105B16
Comment(s):	-The sample extract wa	s subjected to	Silica Gel treatment p	orior to analys	is.				
Parameter	, i	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
PH as Diesel	١	ND	5.0	1	U	mg/kg			
Surrogates:	1	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	1	111	61-145						
S-20-MW6			10-11-0368-3-A	11/02/10 12:55	Solid	GC 48	11/05/10	11/07/10 04:13	101105B16
Comment(s):	-The sample extract wa	s subjected to	Silica Gel treatment p	orior to analys	is.				
Parameter	J	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Diesel	1	ND	5.0	1	U	mg/kg			
Surrogates:	<u>.</u> E	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	1	116	61-145						
Method Blank			099-12-275-3,738	N/A	Solid	GC 48	11/05/10	11/06/10 22:06	101105B16

RL - Reporting Limit ,

DF - Dilution Factor

Result

REC (%)

63

Qual - Qualifiers

Control Limits

<u>DF</u>

<u>RL</u>

5.0

61-145

<u>Parameter</u>

Surrogates:

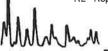
TPH as Diesel

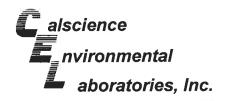
Decachlorobiphenyl

Qual

Qual

U



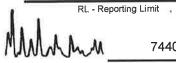

Environmental Resolutions, Inc. Date Received: Work Order No: 601 North McDowell Blvd. Petaluma, CA 94954-2312 Preparation: Method:

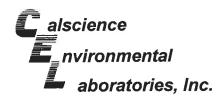
11/04/10 10-11-0368 EPA 5030C EPA 8015B (M)

Project: Exxon	Mobil 79374 /	022735						Pa	ge 1 of 1
Client Sample Numbe	r		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-MW6			10-11-0368-1-A	11/02/10 11:11	Solid	GC 4	11/09/10	11/10/10 09:43	101109B03
Comment(s):	-The sample chroma	atographic patter	n for TPH does not m e sample was based u	atch the chron	natographic	pattern of the	specified st	tandard. Qua	ntitation
<u>Parameter</u>	or the unknown riyur	Result	RL	DF	Qual	u. <u>Units</u>			
TPH as Gasoline		8.7	0.50	1		mg/kg			
<u>Surrogates:</u>		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ne	104	42-126						
S-14.5-MW6			10-11-0368-2-A	11/02/10 11:50	Solid	GC 4	11/09/10	11/10/10 10:15	101109B03
			n for TPH does not ma				specified st	andard. Qua	ntitation
<u>Parameter</u>	or the driknown mydi	Result	RL	DF	Qual	Units			
TPH as Gasoline		1.8	0.50	1		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ne	89	42-126						
S-20-MW6			10-11-0368-3-A	11/02/10 12:55	Solid	GC 4	11/09/10	11/10/10 10:47	101109B03
Parameter_		Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline		ND	0,50	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ne	86	42-126						
Method Blank			099-12-279-4,081	N/A	Solid	GC 4	11/09/10	11/10/10 05:57	101109B03
Parameter		Result	RL	DF	Qual	Units			
Parameter TPH as Gasoline		ND ND	0.50	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
<u>Surrogales.</u> 1,4-Bromofluorobenzer	ne - FID	86	42-126		Studi				
.,	· ·								

RL - Reporting Limit ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

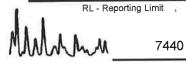

Date Received:
Work Order No:
Preparation:
Method:
Units:


11/04/10 10-11-0368 EPA 5030C EPA 8260B mg/kg

Project: ExxonMobil 79374 / 022735

Page 1 of 2

Troject. Exxoniviodii 73			1.	ab Sample	Date/Time	12/1/07		Date	Date/	rime	
Client Sample Number				Number	Collected	Matrix	Instrument	Prepared	Analy	zed	QC Batch ID
S-10-MW6			10-11	-0368-1-A	11/02/10 11:11	Solid	GC/MS Z	11/04/10	11/07 01:		101106L02
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.0050	1	U	Diisopropyl Etl	her (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	1	U	Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	U
Ethylbenzene	ND	0.0050	1	U	Tert-Amyl-Met	thyl Ether (T	AME)	ND	0.010	1	U
Xylenes (total)	ND	0.0050	1	U	1,2-Dibromoet	hane	·	ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	ŭ	1,2-Dichloroet	hane		ND	0.0050	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	ū	,						
Surrogates:	<u>REC (%)</u>	Control Limits	Qu	_	Surrogates:			REC (%)	Control Limits	<u>(</u>	Qual
Dibromofluoromethane	104	63-141			1.4-Bromofluo	robenzene		104	60-132		
1,2-Dichloroethane-d4	100	62-146			Toluene-d8			102	80-120		
S-14.5-MW6			10-11-	-0368-2-A	11/02/10 11:50	Solid	GC/MS Z	11/04/10	11/07 01:0		101106L02
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Parameter</u>			Result	RL	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1	U	Diisopropyl Etl	her (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	1	U	Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	IJ
Ethylbenzene	0.0093	0.0050	1		Tert-Amyl-Met	thyl Ether (T	AME)	ND	0.010	1	U
Xylenes (total)	ND	0.0050	1	U	1,2-Dibromoet	hane		ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroet	hane		ND	0.0050	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U							
Surrogates:	REC (%)	Control Limits	<u>Qu</u>	<u>al</u>	Surrogates:			REC (%)	Control Limits	(Qual
1.2-Dichloroethane-d4	98	62-146			1.4-Bromofluo	robenzene		100	60-132		
Toluene-d8	99	80-120			Dibromofluoro	methane		102	63-141		
S-20-MW6			10-11	-0368-3-A	11/02/10 12:55	Solid	GC/MS Z	11/04/10	11/06 13:		101106L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Etl	her (DIPF)		ND	0.010	1	U
	ND	0.0050	1	Ü	Ethyl-t-Butyl E)	ND	0.010	1	Ü
Toluene Ethylhonzono	ND ND	0.0050	1	Ü	Tert-Amyl-Met	,	•	ND	0.010	1	Ü
Ethylbenzene	ND	0.0050	1	Ü	1,2-Dibromoet	-	,	ND	0.0050	1	Ü
Xylenes (total)	ND	0.0050	1	Ü	1,2-Dichloroet			ND	0.0050	1	Ŭ
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-01011101000	114110			0.0000		-
Tert-Butyl Alcohol (TBA) <u>Surrogates:</u>	REC (%)	Control	Qu	_	Surrogates:			<u>REC (%)</u>	Control Limits	2	Qual
		Limits							CITIIIS		
	445				= -			00	00 400		
1,2-Dichloroethane-d4	110	62-146			1,4-Bromofluo	robenzene		99 102	60-132 80-120		


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

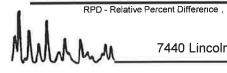
Date Received: Work Order No: Preparation: Method: Units: 11/04/10 10-11-0368 EPA 5030C EPA 8260B mg/kg

Project: ExxonMobil 79374 / 022735

Page 2 of 2

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy		QC Batch ID
Method Blank			099-12	-882-738	N/A	Solid	GC/MS Z	11/06/10	11/06 12:3		101106L01
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Eth	ner (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	1	U	Ethyl-t-Butyl E	ther (ETBE	Ξ)	ND	0.010	1	U
Ethylbenzene	ND	0.0050	1	U	Tert-Amyl-Met	hyl Ether (ГАМЕ)	ND	0.010	1	U
Xylenes (total)	ND	0.0050	1	U	1,2-Dibromoet	hane		ND	0.0050	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroetl	nane		ND	0.0050	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U							
Surrogates:	REC (%)	Control Limits	Qua	<u>l</u>	<u>Surrogates:</u>			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
1,2-Dichloroethane-d4	114	62-146			Toluene-d8			101	80-120		
Dibromofluoromethane	108	63-141			1,4-Bromofluo	robenzene		96	60-132		
Method Blank			099-12	-882-739	N/A	Solid	GC/MS Z	11/06/10	11/07 00:		101106L02
Parameter	Result	RL	DE	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Eth	ner (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	1	Ü	Ethyl-t-Butyl E	, ,	Ξ)	ND	0.010	1	U
Ethylbenzene	ND	0.0050	1	Ū	Tert-Amyl-Met	hyl Ether (ΓΆΜΕ)	ND	0.010	1	U
Xylenes (total)	ND	0.0050	1	Ū	1,2-Dibromoet	hane		ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroetl	hane		ND	0.0050	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U							
Surrogates:	<u>REC (%)</u>	Control Limits	Qua	<u>ll</u>	Surrogates:			<u>REC (%)</u>	Control Limits	<u>(</u>	Qual
Toluene-d8	101	80-120			1,2-Dichloroet	hane-d4		103	62-146		
Dibromofluoromethane	100	63-141			1,4-Bromofluo	robenzene		97	60-132		

aboratories, Inc.


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

11/04/10 10-11-0368 **EPA 3550B** EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
10-11-0475-79	Solid	GC 48	11/05/10	11/06/10	101105S27
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD C	<u>Qualifiers</u>
TPH as Motor Oil	97	101	64-130	4 0-15	

-116

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/04/10 10-11-0368 EPA 3550B EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix Solid	Instrument	Date Prepared 11/05/10		Date Analyzed	MS/MSD Batch Number 101105S16
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	100	112	64-130	11	0-15	

RPD - Relative Percent Difference , 7440 Lincoln

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No:

Preparation: Method:

11/04/10 10-11-0368 EPA 5030C EPA 8015B (M)

Project ExxonMobil 79374 / 022735

ared Analyzed Number
0/10 11/10/10 101109S02

Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	90	93	48-114	3	0-23	

RPD - Relative Percent Difference ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

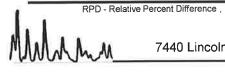
11/04/10 10-11-0368 EPA 5030C

EPA 8260B

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	ı	Date Analyzed	MS/MSD Batch Number
S-20-MW6	Solid	GC/MS Z	11/04/10		11/06/10	101106S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	99	97	61-127	2	0-20	

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
_	00	07	04.407	2	0-20	
Benzene	99	97	61-127	2		
Toluene	98	95	63-123	3	0-20	
Ethylbenzene	97	94	57-129	4	0-22	
Methyl-t-Butyl Ether (MTBE)	88	87	57-123	1	0-21	
Tert-Butyl Alcohol (TBA)	102	97	30-168	5	0-34	
Diisopropyl Ether (DIPE)	101	99	57-129	1	0-20	
Ethyl-t-Butyl Ether (ETBE)	91	91	55-127	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	89	88	58-124	0	0-20	
Ethanol	109	92	17-167	17	0-47	
1,1-Dichloroethene	102	102	47-143	0	0-25	
1,2-Dibromoethane	92	92	64-124	0	0-20	
1,2-Dichlorobenzene	94	94	35-131	0	0-25	
1,2-Dichloroethane	102	103	80-120	1	0-20	
Carbon Tetrachloride	107	105	51-135	2	0-29	
Chlorobenzene	95	91	57-123	4	0-20	
Trichloroethene	99	98	44-158	2	0-20	
Vinyl Chloride	102	98	49-139	4	0-47	


AMAMA_

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-11-0368 EPA 3550B EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrumer		ate pared	Date Analyzed		LCS/LCSD Bate Number	:h
099-12-254-1,692	Solid	GC 48	11/0	5/10	11/06	3/10	101105B27	
<u>Parameter</u>	LCS 9	<u>6REC LO</u>	SD %REC	%RE	C CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	99		105	75	-123	5	0-12	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-11-0368 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID		Matrix	Instr	ument	Dat Prepa		Date Analyzed		LCS/LCSD Bate Number	:h
099-12-275-3,738	5	olid	GC	2 48	11/05	/10	11/06	/10	101105B16	
<u>Parameter</u>		LCS %	REC	LCSD	%REC	%RE	C CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel		97		92		75	-123	6	0-12	

RPD - Relative Percent Difference ,
7440 Lincoln

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

10-11-0368 EPA 5030C EPA 8015B (M)

N/A

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dai Analy	373	LCS/LCSD Bato Number	h
099-12-279-4,081	Solid	GC 4	11/09/10	11/10	/10	101109B03	
<u>Parameter</u>	LCS	6REC LCSD	%REC 9	6REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	101	100		70-124	1	0-18	

RPD - Relative Percent Difference ,
7440 Lincoln

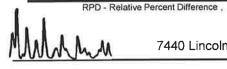
Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

N/A 10-11-0368 EPA 5030C EPA 8260B

Project: ExxonMobil 79374 / 022735


Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Numbe	
099-12-882-738	Solid	GC/MS Z	11/06/10	11/06	/10	101106L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	94	96	78-120	71-127	2	0-20	
Toluene	89	89	77-120	70-127	0	0-20	
Ethylbenzene	90	85	76-120	69-127	6	0-20	
Methyl-t-Butyl Ether (MTBE)	92	85	77-120	70-127	8	0-20	
Tert-Butyl Alcohol (TBA)	98	90	68-122	59-131	9	0-20	
Diisopropyl Ether (DIPE)	97	94	78-120	71-127	3	0-20	
Ethyl-t-Butyl Ether (ETBE)	92	85	78-120	71-127	8	0-20	
Tert-Amyl-Methyl Ether (TAME)	86	88	75-120	68-128	1	0-20	
Ethanol	86	92	56-140	42-154	6	0-20	
1,1-Dichloroethene	99	96	74-122	66-130	3	0-20	
1,2-Dibromoethane	98	92	80-120	73-127	7	0-20	
1,2-Dichlorobenzene	83	78	75-120	68-128	6	0-20	
1,2-Dichloroethane	100	99	80-120	73-127	1	0-20	
Carbon Tetrachloride	99	96	49-139	34-154	4	0-20	
Chlorobenzene	90	86	79-120	72-127	5	0-20	
Trichloroethene	92	92	80-120	73-127	0	0-20	
Vinyl Chloride	97	97	68-122	59-131	0	0-20	


Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

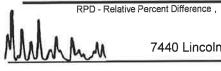
Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

N/A 10-11-0368 EPA 5030C EPA 8260B

Project: ExxonMobil 79374 / 022735


Quality Control Sample ID	Matrix	Instrument	Date Prepared		ite yzed	LCS/LCSD Numbe	
099-12-882-739	Solid	GC/MS Z	11/06/10	11/06	/10	101106L	02
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	90	88	78-120	71-127	1	0-20	
Toluene	84	85	77-120	70-127	1	0-20	
Ethylbenzene	83	82	76-120	69-127	2	0-20	
Methyl-t-Butyl Ether (MTBE)	87	89	77-120	70-127	2	0-20	
Tert-Butyl Alcohol (TBA)	90	85	68-122	59-131	6	0-20	
Diisopropyl Ether (DIPE)	93	97	78-120	71-127	5	0-20	
Ethyl-t-Butyl Ether (ETBE)	89	91	78-120	71-127	2	0-20	
Tert-Amyl-Methyl Ether (TAME)	88	87	75-120	68-128	1	0-20	
Ethanol	79	80	56-140	42-154	1	0-20	
1,1-Dichloroethene	90	91	74-122	66-130	1	0-20	
1,2-Dibromoethane	91	88	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	75	77	75-120	68-128	3	0-20	
1,2-Dichloroethane	87	86	80-120	73-127	1	0-20	
Carbon Tetrachloride	89	91	49-139	34-154	2	0-20	
Chlorobenzene	84	84	79-120	72-127	0	0-20	
Trichloroethene	90	87	80-120	73-127	4	0-20	
Vinyl Chloride	96	98	68-122	59-131	1	0-20	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 10-11-0368

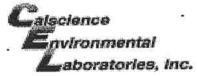
Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS recovery percentage is within LCS ME control limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

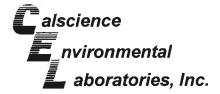
Phone: 714-895-5494


Fax: 714-894-7501

Co	nsultant Name:	Enviror	nmental I	Resol	utions	s, Inc.									_/	Acco	unt#:	NA.	A			F	PO#:							
Cons	ultant Address:	601 N.	McDowe	ell Bou	ılevar	d									l	nvoid	е То	: Jer	nnifer Se	dlach	ek									
Consultan	t City/State/Zip	Petalur	na, Calif	ornia,	9495	4									_ '	Repo	rt To:	Pa	ula Sime											
ExxonMo	bil Project Mgr	:			Jenni	fer S	dlac	hek					ERII	•roj€	ct#	Activ	ity #	02	273503											
Consulta	nt Project Mgr					Paula	Sim	9						Еххо	пМо	bil S	ite #:			7	937	4		N	Aajor Proje	ct (AF	E #):			
Consultant Tele	phone Number	707-76	6-2000				Fax	No.:	707	-789-	-0414				Site	Add	lress	990	0 San Pa	blo A	veni	ue					8	8		
Sampl	er Name (Print)		Lebel	ah A	the	My	A						_ :	Site (City,	State	e, Zip	: Alb	bany, Cal	iforni	a 94	706								
Sarr	pler Signature		Myles	1/2	12	14								Ove	rsigl	nt Ag	ency	: Ala	ameda Co	ounty	Env	iron	nental He	alth I	Departmer	nt				
	· · · · · · · · · · · · · · · · · · ·		,		$\overline{}$	_			P	rese	rvativ	e,		L	Ma	trix							Analyze F	or:			1			
Sample ID	Field Point Name/ Location ID	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	Methanol Sodium Bisulfate	HCI	NaOn H₂SO₄ Plastic	H ₂ SO ₄ Glass	lce	Other	Groundwater	Wastewater	Sludge	Soil	Other (specify):	TPHd and TPHg by EPA 8015B	TPHmo by EPA 8015B	BTEX by EPA 8260B	Oxys by EPA 8260B	(Stockpile sample only)		HVOCS 8010 List byEPA 8260 (Stockpile sample only)		RUSH TAT (Pre-Schedule)	5-day TAT	Standard 10-day TAT	Due Date of Report
5-10-MW6	MWG	1/2/0	114	1	~			\top	\sqcap	†	\vdash	x	\top	T		Ħ	x	T	X	_	x		- 0 0	+	<u> </u>	_	۱ ۳	10		
5-10-MW6 5-14.5-MW6	MW6	1/2/10		i	-			\top	H	T	H	Ŷ	+	H	+	+	Ŷ	╁	Î	Ŷ	Ŕ			+	-	\dashv		Н	X	
5-20-MW6	nul		1255	1	7				H	T	H	Ý		T		$\dagger \dagger$	χl	\vdash	X	-	X	-	-	+		+	1	Н	X	
									H	1		Ť	\top	T	\top	\top			F	5	~	+		1		-	H			
			1						Ħ	1	\vdash	T	\top			11	7	T	<u> </u>	Н	\exists	\forall		+		\dashv	\vdash	Н		
								\vdash	H	1	H	т		Т	7	\forall	1	1		Н	7	\dashv		+		\dashv	Н	H	\dashv	
								+	H	+	\vdash	H	\vdash	t		††	+			Н	+	\dashv		+		_	╁	Н	\dashv	
								+	H	+	H	H	+	\vdash	+	+	+		1	\vdash	\dashv	\dashv	-	+		+	+	Н	\dashv	
			1					+	H	+	H	H	+	Н	+	\forall	+	\vdash	ł	\vdash	\dashv	+		+		-	\vdash	H	-	
	-	-	1	1				+	\vdash	╁	H	+	+	Н	-	+	+	╁		\vdash	\dashv	+		+		+	⊢	Н	-	
Comments/Special Instructions Use silica gel cleanup on all TP 7 oxy = MTBE, TBA, TAME, DIP GLOBAL ID # (global ID# - T061	Hd analyses E, ETBE, 1,2-D0	CA and	EDB	1			Nore	callat	us@	eri-u		E					ES TO		Temper Sample VOA Vi	ature Con	Upo taine	on R ers In					Y Y		N N	
Relinquisped by,		11/3	ate //U	1	me 53°	Rece	ived b			1/			- /	1/3/	te // 0	0	ime 953	Lev	<u>Delivera</u> vel 2 vel 3											
Relinquished by:	050	1	ate	1	me 30	Rece	ived b	y (Lat	pers	M	:I): 7		j	 	10	1	Time	Site	-	-	-		attach pre		edule w/ Ca	alscience	е			
			7,7				1	1				-																		

age 1/ of 18

WORK ORDER #: 10-11- 1 1 6 1


SAMPLE RECEIPT FORM Cooler ___ of ___ ERI DATE: 11/04/10 CLIENT: TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature $3 \cdot 1 ^{\circ}C + 0.5 ^{\circ}C (CF) = 3 \cdot 6 ^{\circ}C$ Blank ☐ Sample `☐ Sample(s) outside temperature criteria (PM/APM contacted by: _____). ☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. ☐ Received at ambient temperature, placed on ice for transport by Courier. Initial: Ambient Temperature: Air ☐ Filter CUSTODY SEALS INTACT: ☐ No (Not Intact) □ Not Present □ N/A Initial: Cooler ☑ Not Present Initial: ☐ No (Not Intact) ☐ Sample N/A Yes No SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples..... П \Box COC document(s) received complete...... ☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels. □ No analysis requested. □ Not relinquished. □ No date/time relinquished. Sampler's name indicated on COC..... Sample container label(s) consistent with COC...... Sample container(s) intact and good condition...... \Box Proper containers and sufficient volume for analyses requested...... \Box Analyses received within holding time..... pH / Residual Chlorine / Dissolved Sulfide received within 24 hours...... □ Proper preservation noted on COC or sample container...... □ ☐ Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace...... □ \Box Tedlar bag(s) free of condensation..... □ **CONTAINER TYPE:** Solid: □4ozCGJ □8ozCGJ □16ozCGJ ☑Sleeve (/) □EnCores® □TerraCores® □ Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1AGBna₂ □1AGBs □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □500PB □500PBna □250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ □ Air: □Tedlar® □Summa® Other: □____ Trip Blank Lot#:____ Labeled/Checked by:

Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ znna: ZnAc₂+NaOH f: Field-filtered **Scanned by**:

1000

A THE PROPERTY OF THE PARTY OF

November 18, 2010

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

	EC	E	I	WI	ال د
517 [6]	NOV	1	9	2010	
В	Y:				

Subject: Calscience Work Order No.: 10-11-0633

Client Reference:

ExxonMobil 79374 / 022735

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/6/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Sain


Calscience Environmental Laboratories, Inc. Cecile deGuia **Project Manager**

NELAP ID: 03220CA • DoD-ELAP ID: L10-41

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

Environmental Resolutions, Inc. 601 North McDowell Blvd.

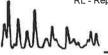
Date Received: Work Order No: Preparation:

11/06/10 10-11-0633 **EPA 3550B**

Petaluma, CA 94954-2312

Method:

EPA 8015B (M)


Project: EvvonMobil 79374 / 022735

Page 1 of 3

Project: Exxo	nMobil 79374 / 02	22735						Pa	ige 1 of 3
Client Sample Numb	per		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-MW1			10-11-0633-1-A	11/04/10 09:20	Solid	GC 49	11/08/10	11/08/10 20:31	101108B05
Comment(s):	-The sample extract wa	as subjected to		prior to analys	is.				
<u>Parameter</u>	3	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ļ	ND	25	1	U	mg/kg			
Surrogates:	1	REC (%)	Control Limits		Qual				
Decachlorobiphenyl		111	61-145						
S-14.5-MW1			10-11-0633-2-A	11/04/10 09:25	Solid	GC 49	11/08/10	11/08/10 20:45	101108B05
Comment(s):	-The sample extract wa	-							
Parameter	2	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
ГРН as Motor Oil	ı	ND	25	1	U	mg/kg			
Surrogates:	1	REC (%)	Control Limits		Qual				
Decachlorobiphenyl		105	61-145						
S-10-MW2			10-11-0633-3-A	11/04/10 14:00	Solid	GC 49	11/08/10	11/08/10 21:00	101108B05
Comment(s):	-The sample extract wa	as subjected to	Silica Gel treatment	prior to analys	is,				
Parameter		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
ΓΡΗ as Motor Oil	1	ND	25	1	U	mg/kg			
Surrogates:	<u>!</u>	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	•	104	61-145						
S-15-MW2			10-11-0633-4-A	11/04/10 14:43	Solid	GC 49	11/08/10	11/08/10 21:15	101108B05
Comment(s):	-The sample extract wa	as subjected to		prior to analysi	is.				
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	1	ND	25	1	U	mg/kg			
Surrogates:	<u> 1</u>	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	1	103	61-145						

RL - Reporting Limit ,

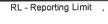
DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Date Received: Work Order No: Preparation:

11/06/10 10-11-0633 **EPA 3550B**

Petaluma, CA 94954-2312


Method:

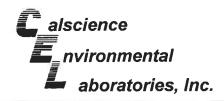
EPA 8015B (M)

Project: EyyonMohil 70374 / 022735

Page 2 of 3

Project: Exxo	nMobil 79374 / (022735						Pa	age 2 of 3
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10.5-MW5			10-11-0633-5-A	11/05/10 11:40	Solid	GC 49	11/08/10	11/08/10 21:30	101108B05
Comment(s):	-The sample extract	was subjected to	Silica Gel treatment	prior to analys	is.				
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		29	25	1		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		102	61-145						
S-16.5-MW5			10-11-0633-6-A	11/05/10 12:00	Solid	GC 49	11/08/10	11/08/10 21:45	101108B05
Comment(s):	-The sample extract								
Parameter		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		102	61-145						
S-10-MW4			10-11-0633-7-A	11/05/10 08:30	Solid	GC 49	11/08/10	11/08/10 21:59	101108B05
Comment(s):	-The sample extract v	was subjected to	Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		107	61-145						
S-15-MW4			10-11-0633-8-A	11/05/10 08:47	Solid	GC 49	11/08/10	11/08/10 22:14	101108B05
Comment(s):	-The sample extract v	was subjected to	Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		101	61-145						

Environmental Resolutions, Inc.


Date Received:

11/06/10

Page 3 of 3

Ellellolling it to bold at the control of the contr		
601 North McDowell Blvd.	Work Order No:	10-11-0633
Petaluma, CA 94954-2312	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Project: Exxo	nMobil 79374 / (022735						Pa	ge 3 of 3
Client Sample Number	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-16.5-MW4			10-11-0633-9-A	11/05/10 08:47	Solid	GC 49	11/08/10	11/08/10 22:29	101108B05
Comment(s):	-The sample extract v	was subjected to	Silica Gel treatment	prior to analys	is.				
Parameter		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		104	61-145						
Method Blank			099-12-254-1,702	N/A	Solid	GC 49	11/08/10	11/08/10 18:18	101108B05
Parameter		Result	RL	DF	Qual	Units			
			25	1	U				
TPH as Motor Oil		ND	20	1	J	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		108	61-145						

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received:

Work Order No: Preparation:

Method:

11/06/10

10-11-0633

EPA 3550B

EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 1 of 3

Project. Exxo	111010011 / 93/4/	022133						1 0	age i oi e
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-MW1			10-11 - 0633-1-A	11/04/10 09:20	Solid	GC 49	11/08/10	11/08/10 20:31	101108B04
Comment(s):	-The sample extract	was subjected t	to Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
ΓPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		110	61-145						
S-14.5-MW1			10-11-0633-2-A	11/04/10 09:25	Solid	GC 49	11/08/10	11/08/10 20:45	101108B04
Comment(s):	-The sample extract	was subjected t	to Silica Gel treatment	prior to analys	is.				
Parameter		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
ΓPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		104	61-145						
S-10-MW2			10-11 -0633-3-A	11/04/10 14:00	Solid	GC 49	11/08/10	11/08/10 21:00	101108B04
Comment(s):	-The sample extract	was subjected t	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	RL	<u>DF</u>	<u>Qual</u>	Units			
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		103	61-145						
S-15-MW2			10-11-0633-4-A	11/04/10 14:43	Solid	GC 49	11/08/10	11/08/10 21:15	101108B04
Comment(s):	-The sample extract	was subjected t	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			- 4
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		102	61-145						

DF - Dilution Factor

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:

11/06/10

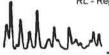
Work Order No:

10-11-0633

Preparation:

EPA 3550B

Method:


EPA 8015B (M)

Project: Exxo	nMobil 79374 / 02	22735						Pa	ge 2 of 3
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10.5-MW5			10-11-0633-5-A	11/05/10 11:40	Solid	GC 49	11/08/10	11/08/10 21:30	101108B04
Comment(s):	-The sample chromatog of the unknown hydroca -The sample extract wa	arbon(s) in the	sample was based u	pon the specif	ied standar	pattern of the	specified st	andard. Qua	ntitation
Parameter		Result	RL	DF	Qual	Units			
TPH as Diesel	9	93	5.0	1		mg/kg			
Surrogates:	<u> 1</u>	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	•	101	61-145						
S-16.5-MW5			10-11-0633-6-A	11/05/10 12:00	Solid	GC 49	11/08/10	11/08/10 21:45	101108B04
Comment(s):	-The sample extract wa	as subjected to	Silica Gel treatment	prior to analys	is.				
Parameter Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel	ı	ND	5.0	1	U	mg/kg			
Surrogates:	<u> </u>	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	•	101	61-145						
S-10-MW4			10-11-0633-7-A	11/05/10 08:30	Solid	GC 49	11/08/10	11/08/10 21:59	101108B04
Comment(s):	-The sample extract wa	s subjected to	Silica Gel treatment	prior to analys	is.				
Parameter_	9	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel	1	ND	5.0	1	U	mg/kg			
Surrogates:	<u>1</u>	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	•	106	61-145						
S-15-MW4			10-11-0633-8-A	11/05/10 08:47	Solid	GC 49	11/08/10	11/08/10 22:14	101108B04
Comment(s):	-The sample extract wa	s subjected to	Silica Gel treatment	prior to analys	is.				
Parameter Parameter		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
ΓPH as Diesel	1	ND	5.0	1	U	mg/kg			
Surrogates:	1	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	•	100	61-145						

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/06/10 10-11-0633 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 3 of 3

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-16.5-MW4			10-11-0633-9-A	11/05/10 08:47	Solid	GC 49	11/08/10	11/08/10 22:29	101108B04
Comment(s):	-The sample extract v	vas subjected to	Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		103	61-145						
Method Blank			099-12-275-3,742	N/A	Solid	GC 49	11/08/10	11/08/10 18:18	101108B04
Parameter		Result	RL	DF	Qual	Units			
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		107	61-145						

RL - Reporting Limit , 7440

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/06/10 10-11-0633 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 1 of 3

1 Tojoot. Exxoniviosii Tot	71 11 022100							
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-MW1		10-11-0633-1-A	11/04/10 09:20	Solid	GC 24	11/12/10	11/13/10 03:18	101112B02
Parameter	Result	RL	DE	Qual	Units			
TPH as Gasoline	ND	0.50	1	U	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	72	42-126						
S-14.5-MW1		10-11-0633-2-A	11/04/10 09:25	Solid	GC 24	11/12/10	11/13/10 03:51	101112B02
	Decult	RL	DF	Qual	Units			
<u>Parameter</u> TPH as Gasoline	Result ND	0.50	1	Ų	mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	73	42-126						
S-10-MW2		10-11-0633-3-A	11/04/10 14:00	Solid	GC 24	11/12/10	11/13/10 05:32	101112B02
Comment(s): -The sample	chromatographic patte	rn for TPH does not n	natch the chron	natographi	c pattern of the	e specified s	tandard. Qua	antitation
of the unknow <u>Parameter</u>	wn hydrocarbon(s) in th <u>Result</u>	ne sample was based <u>RL</u>	upon the speci DF	ried standa <u>Qual</u>	ara. <u>Units</u>			
TPH as Gasoline	3.1	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	76	42-126						
S-15-MW2		10-11-0633-4-A	11/04/10 14:43	Solid	GC 24	11/12/10	11/13/10 06:06	101112B02
	Desult	DI	DE	Ougl	Units			
Parameter	<u>Result</u> ND	<u>RL</u> 0.50	<u>DF</u> 1	<u>Qual</u> U	mg/kg			
TPH as Gasoline	ND	0.00	•	•	59			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	72	42-126						
		*0:						

DF - Dilution Factor

Qual - Qualifiers

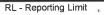
Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:

11/06/10

Work Order No:

10-11-0633


Preparation:

EPA 5030C

Method:

EPA 8015B (M)

Project: Exxo	nMobil 79374 /	022735						Pa	ge 2 of 3
Client Sample Number	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10.5-MW5			10-11-0633-5-A	11/05/10 11:40	Solid	GC 24	11/15/10	11/15/10 00:31	101115B03
Comment(s):	-The sample chroma	atographic patteri	n for TPH does not m	natch the chron	natographic	pattern of the	specified st	andard. Qua	ntitation
Parameter	of the unknown nyai	Result	RL	DF	Qual	Units			
TPH as Gasoline		450	50	100		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ene	96	42-126						
S-16.5-MW5			10-11-0633-6-A	11/05/10 12:00	Solid	GC 24	11/12/10	11/13/10 07:13	101112B02
Parameter		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline		ND	0.50	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenze	ene	73	42-126						
S-10-MW4			10-11-0633-7-A	11/05/10 08:30	Solid	GC 24	11/15/10	11/15/10 23:57	101115B03
Comment(s):	-The sample chroma	atographic pattern	n for TPH does not m	atch the chron	natographic	pattern of the	specified st	andard. Qua	ntitation
Parameter	or the unknown nyur	Result	RL	DF	Qual	Units			
TPH as Gasoline		44	20	40		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ene	78	42-126						
S-15-MW4			10-11-0633-8-A	11/05/10 08:47	Solid	GC 24	11/12/10	11/13/10 08:20	101112B02
			D.	55	0=1	41.11			
<u>Parameter</u>		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline		ND	0.50	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ene	73	42-126						

DF - Dilution Factor

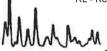
Qual - Qualifier

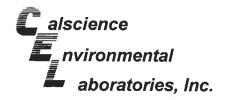
Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

11/06/10 10-11-0633 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735


Page 3 of 3


Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
S-16.5-MW4		10-11-0633-9-A	11/05/10 08:47	Solid	GC 24	11/12/10	11/13/10 08:53	101112B02	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Units				
TPH as Gasoline	ND	0.50	1	U	mg/kg	21			
Surrogates:	REC (%)	Control Limits		Qual					
1,4-Bromofluorobenzene	73	42-126							
Method Blank		099-12-279-4,089	N/A	Solid	GC 24	11/12/10	11/13/10 01:03	101112B02	
Parameter	Result	RL	DF	Qual	Units			y	
TPH as Gasoline	ND	0.50	1	U	mg/kg				
Surrogates:	REC (%)	Control Limits		Qual					
1,4-Bromofluorobenzene - FID	71	42-126							
Method Blank		099-12-279-4,094	N/A	Solid	GC 24	11/15/10	11/15/10 21:07	101115B03	
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>				
ΓPH as Gasoline	ND	4.0	8	U	mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
4-Bromofluorobenzene - FID	78	42-126							

RL - Reporting Limit

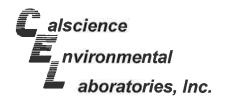
DF - Dilution Factor

Qual - Qualifiers

Environmental Resolutions, Inc.	Date Received:	11/06/10
601 North McDowell Blvd.	Work Order No:	10-11-0633
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg

Project: ExxonMobil 79374 / 022735

Page 1 of 4


Troject. Exxoniviodii 7:	931410221	33								Pa	ige i of 4
Client Sample Number			l	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ d Anal		QC Batch ID
S-10-MW1			10-11	I-0633-1-A	11/04/10 09:20	Solid	GC/MS XX	11/06/10	11/1 16:		101110L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Et	her (DIPE))	ND	0.010	1	U
Toluene	ND	0.0050	1	U	Ethyl-t-Butyl E	, ,		ND	0.010	i .	Ü
Ethylbenzene	ND	0.0050	1	U	Tert-Amyl-Met	thyl Ether (TAME)	ND	0.010	1	Ü
Xylenes (total)	ND	0.0050	1	U	1,2-Dibromoet		,	ND	0.0050	1	Ü
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroet	hane		ND	0.0050	1	Ü
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U						•	_
Surrogates:	REC (%)	Control Limits	Qı	<u>ual</u>	Surrogates:			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
Toluene-d8	101	80-120			Dibromofluoro	methane		99	63-141		
1,4-Bromofluorobenzene	106	60-132			1.2-Dichloroet			97	62-146		
S-14.5-MW1			10-11	-0633-2-A	11/04/10 09:25	Solid	GC/MS XX	11/06/10			101110L01
										_	
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
3enzene	ND	0.0050	1	U	Diisopropyl Eth	ner (DIPE)		ND	0.010	1	U
l'oluene	ND	0.0050	1	Ū	Ethyl-t-Butyl Et		Ξ)	ND	0.010	1	Ü
Ethylbenzene	ND	0.0050	1	Ū	Tert-Amyl-Met			ND	0.010	1	Ü
(ylenes (total)	ND	0.0050	1	U	1,2-Dibromoetl		· · · · · · · – /	ND	0.0050	1	Ü
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	Ū	1,2-Dichloroeth			ND	0.0050	1	Ü
Fert-Butyl Alcohol (TBA)	ND	0.050	1	Ū	.,			110	0.0000	'	J
Surrogates:	<u>REC (%)</u>	Control Limits	Qu	_	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
Foluene-d8	100	80-120			Dibromofluoror	nethane		101	63-141		
.4-Bromofluorobenzene	106	60-132			1,2-Dichloroeth			101	62-146		
		00 102	45.44								-
S-10-MW2			10-11-	-0633-3-A	11/04/10 14:00	Solid	GC/MS XX	11/06/10	11/10 18:0		101110L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Eth	er (DIDE)		ND	0.010	1	U
oluene	ND	0.0050	1	Ü	Ethyl-t-Butyl Et	, ,	5)	ND	0.010		П
thylbenzene	ND	0.0050	1	Ü	Tert-Amyl-Meth	•	,	ND	0.010	1	U
(ylenes (total)	ND	0.0050	1	Ü	1.2-Dibromoeth	• '	r will	ND		•	_
flethyl-t-Butyl Ether (MTBE)	ND	0.0050	1	Ü	1,2-Dichloroeth			ND	0.0050	1	U
ert-Butyl Alcohol (TBA)	ND	0.050	1	ŭ	1,2-DIGHIGHOCH	iai iC		IAD	0.0050	1	U
urrogates:	REC (%)	Control	Qua	_	Surrogatos:			DEC (0/)	Control	_	u.al
urroyales.	NEC (70)	Limits	<u> </u>	<u> </u>	Surrogates:			REC (%)		Q	ual
oluene-d8	90	80-120			1.2 Diables			90	Limits		
	83				1,2-Dichloroeth				62-146		
,4-Bromofluorobenzene	03	60-132			Dibromofluoron	nethane		82	63-141		

DF - Dilution Factor

Qual - Qualifiers

Environmental Resolutions, Inc.

Date Received:

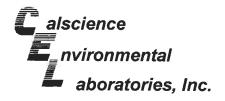
Work Order No:

10-11-0633
Petaluma, CA 94954-2312

Preparation:

Method:

EPA 8260B
Units:

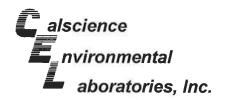

mg/kg

Project: ExxonMobil 79374 / 022735

Page 2 of 4

Project: Exxoniviodii 78	3374 / 0227	35								Pa	ge 2 of 4
Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ ! Anal		QC Batch ID
S-15-MW2			10-11	-0633-4-A	11/04/10 14:43	Solid	GC/MS XX	11/06/10	11/1 (18:		101110L01
Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Et	her (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	1	U	Ethyl-t-Butyl E	ther (ETBE	Ξ)	ND	0.010	1	Ü
Ethylbenzene	ND	0.0050	1	U	Tert-Amyl-Met			ND	0.010	1	Ū
Xylenes (total)	ND	0.0050	1	U	1,2-Dibromoet	hane	•	ND	0.0050	1	Ū
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroet	hane		ND	0.0050	1	Ü
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U							=
Surrogates:	<u>REC (%)</u>	Control Limits	Qu	<u>al</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>tual</u>
Toluene-d8	92	80-120			Dibromofluoro	methane		79	63-141		
1,4-Bromofluorobenzene	93	60-132			1,2-Dichloroetl	hane-d4		86	62-146		
S-10.5-MW5			10-11-	-0633-5-A	11/05/10 11:40	Solid	GC/MS XX	11/06/10	11/10		101110L02
Parameter	Result	RL	DF	Qual	Parameter			Donult	Di	DE	Outl
Benzene	ND					(DIDE)		Result	<u>RL</u>	DF	Qual
Toluene	ND ND	0.50	100	Ü	Diisopropyl Eth			ND	1.0	100	
Ethylbenzene		0.50	100	U	Ethyl-t-Butyl Et			ND	1.0	100	
-	1.5	0.50	100		Tert-Amyl-Met		AME)	ND	1.0	100	U
Xylenes (total)	ND	0.50	100	U	1,2-Dibromoetl			ND	0.50	100	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	100	U	1,2-Dichloroeth	nane		ND	0.50	100	U
Tert-Butyl Alcohol (TBA)	ND	5.0	100	. U	_						
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits	<u>Qu</u>	<u>al</u>	Surrogates:			REC (%)	Control Limits	<u>Q</u>	<u>ual</u>
Toluene-d8	90	80-120			Dibromofluoror	nethane		96	63-141		
1,4-Bromofluorobenzene	95	60-132			1,2-Dichloroeth	nane-d4		97	62-146		
S-16.5-MW5			10-11-	0633-6-A	11/05/10 12:00	Solid	GC/MS XX	11/11/10	11/11 20:2		101111L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Eth	er (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	1	Ü	Ethyl-t-Butyl Et	, ,)	ND	0.010	1	Ü
Ethylbenzene	ND	0.0050	i	Ü	Tert-Amyl-Meth	`	,	ND	0.010	1	Ü
Xylenes (total)	ND	0.0050	ાં	Ü	1,2-Dibromoeth	•	,	ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	Ü	1,2-Dichloroeth			ND	0.0050	i	Ü
Tert-Butyl Alcohol (TBA)	ND	0.050	4	Ŭ	.,= =.5/110/000/				0.0000	'	S
Surrogates:	REC (%)	Control Limits	Qua	-	Surrogates:			REC (%)	Control Limits	Q	<u>ual</u>
1.4-Bromofluorobenzene	102	60-132			Dibromofluoron	oothano		99	63-141		
Toluene-d8	102	80-132						110			
i viuerie-do	102	00-120			1,2-Dichloroeth	ane-d4		110	62-146		

Environmental Resolutions, Inc.	Date Received:	11/06/10
601 North McDowell Blvd.	Work Order No:	10-11-0633
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374 / 022735		Page 3 of 4


					Units:					EP.	A 8260B mg/kg
Project: ExxonMobil 7937	4 / 0227	735								Pag	ge 3 of 4
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared		Time vzed	QC Batch ID
S-10-MW4			10-11-	0633-7-A	11/05/10 08:30	Solid	GC/MS XX		11/1 15:		101110L02
Comment(s): -The reporting limits an	e elevated o	due to high	n levels o	f non-targe	et compounds.						
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	100	U	Diisopropyl Eth	or (DIDE)		ND	1.0		U
Toluene	ND	0.50	100	Ü	Ethyl-t-Butyl Et		=\	ND		100	U
Ethylbenzene	ND	0.50	100	Ü	Tert-Amyl-Meth	,	,	ND	1.0	100	-
Xylenes (total)	ND	0.50	100	U	1,2-Dibromoeth	,	I AIVIE)	ND	1.0	100	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	100	Ü	1,2-Dichloroeth			ND	0.50	100	U
Tert-Butyl Alcohol (TBA)	ND	5.0	100	Ü	1,2-Dictrioroett	ane		טאו	0.50	100	U
Surrogates:	REC (%)		Qua	-	Surrogates:			REC (%)	Control Limits	<u>Q</u>	<u>ual</u>
1.4-Bromofluorobenzene	104	60-132			Dibromofluoron	nethana		96	63-141		
1,2-Dichloroethane-d4	88	62-146			Toluene-d8	neurane		101	80-120		
S-15-MW4		02 110	10-11-0)633-8-A	11/05/10 08:47	Solid	GC/MS XX		11/10		101110L01
									13		
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1	U	Diisopropyl Eth			ND	0.010	1	U
Toluene	ND	0.0050	1	U	Ethyl-t-Butyl Eth	her (ETBE	:)	ND	0.010	1	U
Ethylbenzene	ND	0.0050	1	U	Tert-Amyl-Meth	yl Ether (T	AME)	ND	0.010	1	U
Xylenes (total)	ND	0.0050	1	U	1,2-Dibromoeth	ane		ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroeth	ane		ND	0.0050	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U							
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>l</u>	Surrogates:			REC (%)	Control Limits	Q	<u>ual</u>
Toluene-d8	91	80-120			Dibromofluorom	nethane		82	63-141		
1,4-Bromofluorobenzene	90	60-132			1,2-Dichloroetha	ane-d4		92	62-146		
S-16.5-MW4			10-11-0	633-9-A	11/05/10 08:47	Solid	GC/MS XX	11/06/10	11/10 19:5		101110L01
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DF	Ougl
Benzene	ND		_	U		··· (DIDC)			-		<u>Qual</u>
Toluene	ND	0.0050	1	U	Diisopropyl Ethe	. ,		ND	0.010	1	U
Ethylbenzene	ND	0.0050 0.0050	1	U	Ethyl-t-Butyl Eth	,	,	ND	0.010	1	U
Xylenes (total)	ND	0.0050	•	U	Tert-Amyl-Methy		AIVIE)	ND	0.010	1	U
Methyl-t-Butyl Ether (MTBE)	ND		1	U	1,2-Dibromoetha			ND	0.0050	1	U
Tert-Butyl Alcohol (TBA)	ND	0.0050	1	U	1,2-Dichloroetha	ai ie		ND	0.0050	1	U
Surrogates:	REC (%)	0.050 Control	1 Qual	_	Surrogates:			REC (%)	Control	Qı	<u>ıal</u>
Toluene-d8	91	Limits			4.0.00.11				Limits		
		80-120			1,2-Dichloroetha			94	62-146		
1,4-Bromofluorobenzene	90	60-132			Dibromofluorom	ethane		82	63-141		

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

Environmental Resolutions, Inc.

Date Received:

Work Order No:

10-11-0633
Petaluma, CA 94954-2312

Preparation:

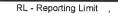
Method:
Units:

Date Received:

11/06/10

10-11-0633
Preparation:

EPA 5030C


EPA 8260B

mg/kg

Project: ExxonMobil 79374 / 022735

Page 4 of 4

Client Sample Number			L	ab Sample		Matrix	Instrument	Date Prepared	Date/		QC Batch ID
Method Blank			099-1	Number 2-882-745	Collected N/A	Solid	GC/MS XX	Troparoc	11/1	0/10	101110L01
									13:	71	
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1	U	Diisopropyl Et	her (DIPF)		ND	0.010	1	U
Toluene	ND	0.0050	1	Ū	Ethyl-t-Butyl E	. ,	=)	ND	0.010	1	ŭ
Ethylbenzene	ND	0.0050	1	Ŭ	Tert-Amyl-Me	,	,	ND	0.010	1	Ü
Xylenes (total)	ND	0.0050	1	Ŭ	1,2-Dibromoe	,	i AiviL)	ND		1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	Ü	1,2-Dichloroet			ND	0.0050		U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	Ü	1,2-DICHIOTOE	liane		ND	0.0050	1	U
- · · ·					Cumanatas			DEC (0/)	041	_	
Surrogates:	<u>REC (%)</u>	Limits	<u>Qu</u>	<u>aı</u>	Surrogates:			<u>REC (%)</u>		ي	<u>(ual</u>
Tab 40	96							00	Limits		
Toluene-d8		80-120			Dibromofluoro			99	63-141		
1,4-Bromofluorobenzene	107	60-132			1,2-Dichloroet	hane-d4		97	62-146		
Method Blank			099-12	2-882-747	N/A	Solid	GC/MS XX	11/10/10	11/10		101110L02
									12:	42 	
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	100	U	Diisopropyl Etl	her (DIPE)		ND	1.0	100	
Toluene	ND	0.50	100	Ŭ	Ethyl-t-Butyl E	,	:1	ND	1.0		_
Ethylbenzene	ND	0.50	100	ŭ	Tert-Amyl-Met	,	,	ND	1.0	100 100	_
Xylenes (total)	ND	0.50	100	Ü	1,2-Dibromoet	•	AIVIL)	ND	0.50		
Methyl-t-Butyl Ether (MTBE)	ND	0.50	100	Ü	1,2-Dichloroet			ND	0.50	100	
Tert-Butyl Alcohol (TBA)	ND	5.0	100	Ü	1,2-01011101000	ilaric		ND	0.50	100	U
Surrogates:	REC (%)	Control	Qua	_	Currogatos			DEC (III)	Control	^	
<u>Surrogates.</u>	KEC (%)	Limits	Qua	<u>11</u>	Surrogates:			REC (%)	Control Limits	<u>u</u>	ual
Toluene-d8	99	80-120			Dibromofluoro	methane		93	63-141		
1,4-Bromofluorobenzene	105	60-132			1,2-Dichloroeth	nane-d4		90	62-146		
Method Blank			099-12	-882-749	N/A	Solid	GC/MS XX	11/11/10	11/11	/10	101111L01
									16:1		1011111201
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1	U		or (DIDE)					
Foluene	ND ND				Diisopropyl Eth	, ,		ND	0.010	1	U
		0.0050	1	U	Ethyl-t-Butyl Et	,	,	ND	0.010	1	U
Ethylbenzene Yutopoo (total)	ND	0.0050	1	U	Tert-Amyl-Metl	• (AME)	ND	0.010	1	U
(ylenes (total)	ND	0.0050	1	U	1,2-Dibromoetl			ND	0.0050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroeth	nane		ND	0.0050	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	. U							
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits	Qua	<u>l</u>	Surrogates:			REC (%)	Control Limits	Q	<u>ual</u>
,2-Dichloroethane-d4	106	62-146			1,4-Bromofluor	obenzene		99	60-132		
Dibromofluoromethane	102	63-141			Toluene-d8	2201120116		97	80-120		
oondoromodiano	. 52	50 171			i didene-do			01	00-120		

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

11/06/10 10-11-0633 **EPA 3550B**

Method:

EPA 8015B (M)

Quality Control Sample ID	Matrix Instrument		Date Prepared		Date Analyzed	MS/MSD Batch Number	
S-10-MW1	Solid	GC 49	11/08/10		11/08/10	101108S05	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
TPH as Motor Oil	92	89	64-130	3	0-15		

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

11/06/10 10-11-0633 **EPA 3550B** EPA 8015B (M)

Quality Control Sample ID	Matrix	Matrix Instrument			Date Analyzed	MS/MSD Batch Number	
S-10-MW1	Solid	GC 49	11/08/10		11/08/10	101108S04	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
TPH as Diesel	96	94	64-130	2	0.45		

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:

Work Order No:

Preparation: Method:

11/06/10

10-11-0633 EPA 5030C

EPA 8015B (M)

Quality Control Sample ID	Matrix	Matrix Instrument			Date Analyzed	MS/MSD Batch Number 101112S02	
S-14.5-MW1	Solid	GC 24	11/12/10		11/13/10		
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
TPH as Gasoline	109	106	48-114	3	0-23		

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

11/06/10 10-11-0633

Method:

EPA 5030C EPA 8260B

S-10.5-MW5	Solid	GC/MS XX	11/06/10	11/10/10	101110801
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	104	104	61-127	1	0-20	
Toluene	109	108	63-123	1	0-20	
Ethylbenzene	99	98	57-129	1	0-22	
Methyl-t-Butyl Ether (MTBE)	108	133	57-123	20	0-21	3
Tert-Butyl Alcohol (TBA)	87	87	30-168	0	0-34	
Diisopropyl Ether (DIPE)	84	104	57-129	21	0-20	4
Ethyl-t-Butyl Ether (ETBE)	105	130	55-127	21	0-20	4.3
Tert-Amyl-Methyl Ether (TAME)	114	112	58-124	1	0-20	T .
Ethanol	328	349	17-167	6	0-47	3
1,1-Dichloroethene	77	106	47-143	32	0-25	4
1,2-Dibromoethane	99	97	64-124	2	0-20	
1,2-Dichlorobenzene	96	95	35-131	1	0-25	
1,2-Dichloroethane	99	97	80-120	2	0-20	
Carbon Tetrachloride	108	135	51-135	22	0-29	
Chlorobenzene	99	99	57-123	0	0-20	
Trichloroethene	110	108	44-158	1	0-20	
Vinyl Chloride	121	147	49-139	20	0-47	3

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

11/06/10 10-11-0633 EPA 5030C

Method:

EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
10-11-0683-2	Solid	GC/MS XX	11/08/10	11/11/10	101111501

Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	104	104	61-127	1	0-20	
Toluene	102	103	63-123	1	0-20	
Ethylbenzene	105	106	57-129	1	0-22	
Methyl-t-Butyl Ether (MTBE)	96	98	57-123	3	0-21	
Tert-Butyl Alcohol (TBA)	100	99	30-168	1	0-34	
Diisopropyl Ether (DIPE)	103	103	57-129	0	0-20	
Ethyl-t-Butyl Ether (ETBE)	101	103	55-127	2	0-20	
Tert-Amyl-Methyl Ether (TAME)	100	102	58-124	2	0-20	
Ethanol	95	92	17-167	4	0-47	
1,1-Dichloroethene	88	85	47-143	4	0-25	
1,2-Dibromoethane	101	102	64-124	1	0-20	
1,2-Dichlorobenzene	99	98	35-131	2	0-25	
1,2-Dichloroethane	102	103	80-120	1	0-20	
Carbon Tetrachloride	101	103	51-135	2	0-29	
Chlorobenzene	101	101	57-123	0	0-20	
Trichloroethene	102	102	44-158	1	0-20	
Vinyl Chloride	118	120	49-139	2	0-47	

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received: Work Order No:

N/A 10-11-0633

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Quality Control Sample ID	Matrix	Matrix Instrument		Da d Anal	ite yzed	LCS/LCSD Bate Number	h
099-12-254-1,702	Solid	GC 49	11/08/10	11/08	3/10	101108B05	
<u>Parameter</u>	LCS %	REC LCS	LCSD %REC %F		RPD	RPD CL	Qualifiers
TPH as Motor Oil	96	g	5	75-123	1	0-12	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No:

N/A 10-11-0633

Preparation: Method:

EPA 3550B EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	red Analyzed		LCS/LCSD Batch Number	1
099-12-275-3,742	Solid	GC 49	11/08/10			101108B04	
Parameter	LCS %	6REC LCSD	%REC %	REC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	116	114	ļ.	75-123		0-12	

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

N/A 10-11-0633 EPA 5030C

Method:

EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrume		ate oared	Date Analyzed		LCS/LCSD Batc Number	h
099-12-279-4,094	Solid	GC 24	11/1	5/10	11/15/10		101115B03	
Parameter	LCS %	6REC LO	CSD %REC	%REC	CCL J	RPD	RPD CL	Qualifiers
TPH as Gasoline	113		111	70-1	24	1	0-18	

RPD - Relative Percent Difference ,
7440 Lincoln

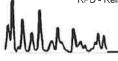
Environmental Resolutions, Inc. 601 North McDowell Blvd.

Date Received:

N/A

601 North McDowell Blvd. Petaluma, CA 94954-2312 Work Order No:

10-11-0633


Preparation:

EPA 5030C

Method:

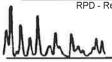
EPA 8015B (M)

Quality Control Sample ID	Matrix	Matrix Instrument		Date Prepared		Date Analyzed		LCS/LCSD Batch Number	1
099-12-279-4,089	Solid	GC 2	C 24 11/12		12/10 11/		3/10	101112B02	
Parameter	LCS %	6REC	LCSD %	<u>SREC</u>	%RE	C CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	108	1	110		70-	-124	1	0-18	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-11-0633 EPA 5030C EPA 8260B

Project: ExxonMobil 79374 / 022735


Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed			
099-12-882-745	Solid	GC/MS XX	11/10/10	11/10/10		101110L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	99	102	78-120	71-127	2	0-20	
Toluene	105	107	77-120	70-127	2	0-20	
Ethylbenzene	101	103	76-120	69-127	2	0-20	
Methyl-t-Butyl Ether (MTBE)	107	109	77-120	70-127	2	0-20	
Tert-Butyl Alcohol (TBA)	90	89	68-122	59-131	1	0-20	
Diisopropyl Ether (DIPE)	84	85	78-120	71-127	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	104	106	78-120	71-127	2	0-20	
Tert-Amyl-Methyl Ether (TAME)	114	115	75-120	68-128	1	0-20	
Ethanol	52	50	56-140	42-154	4	0-20	ME
1,1-Dichloroethene	94	96	74-122	66-130	2	0-20	
1,2-Dibromoethane	101	102	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	98	100	75-120	68-128	2	0-20	
1,2-Dichloroethane	95	96	80-120	73-127	1	0-20	
Carbon Tetrachloride	111	114	49-139	34-154	3	0-20	
Chlorobenzene	101	102	79-120	72-127	1	0-20	
Trichloroethene	106	109	80-120	73-127	3	0-20	
Vinyl Chloride	101	103	68-122	59-131	2	0-20	

Total number of LCS compounds: 17

Total number of ME compounds: 1

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

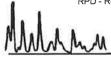
Date Received: Work Order No: Preparation:

Method:

N/A 10-11-0633 EPA 5030C

EPA 8260B

Project: ExxonMobil 79374 / 022735


Quality Control Sample ID	Matrix	Instrument GC/MS XX	Date Prepared	Date Analyzed 11/10/10		LCS/LCSD Batch Number 101110L02	
099-12-882-747	Solid		11/10/10				
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	99	102	78-120	71-127	2	0-20	
Toluene	105	107	77-120	70-127	2	0-20	
Ethylbenzene	101	103	76-120	69-127	2	0-20	
Methyl-t-Butyl Ether (MTBE)	107	109	77-120	70-127	2	0-20	
Tert-Butyl Alcohol (TBA)	90	89	68-122	59-131	1	0-20	
Diisopropyl Ether (DIPE)	84	85	78-120	71-127	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	104	106	78-120	71-127	2	0-20	
Tert-Amyl-Methyl Ether (TAME)	114	115	75-120	68-128	1	0-20	
Ethanol	52	50	56-140	42-154	4	0-20	ME
1,1-Dichloroethene	94	96	74-122	66-130	2	0-20	
1,2-Dibromoethane	101	102	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	98	100	75-120	68-128	2	0-20	
1,2-Dichloroethane	95	96	80-120	73-127	1	0-20	
Carbon Tetrachloride	111	114	49-139	34-154	3	0-20	
Chlorobenzene	101	102	79-120	72-127	1	0-20	
Trichloroethene	106	109	80-120	73-127	3	0-20	
Vinyl Chloride	101	103	68-122	59-131	2	0-20	

Total number of LCS compounds: 17

Total number of ME compounds: 1

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

N/A 10-11-0633

EPA 5030C EPA 8260B

Method:

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix Solid	Instrument GC/MS XX	Date Prepared 11/11/10	Date Analyzed		LCS/LCSD Batch Number 101111L01	
099-12-882-749							
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	100	100	78-120	71-127	0	0-20	:
Toluene	99	100	77-120	70-127	1	0-20	
Ethylbenzene	101	101	76-120	69-127	0	0-20	
Methyl-t-Butyl Ether (MTBE)	102	103	77-120	70-127	0	0-20	
Tert-Butyl Alcohol (TBA)	100	101	68-122	59-131	0	0-20	
Diisopropyl Ether (DIPE)	105	104	78-120	71-127	0	0-20	
Ethyl-t-Butyl Ether (ETBE)	103	103	78-120	71-127	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	100	102	75-120	68-128	2	0-20	
Ethanol	105	99	56-140	42-154	6	0-20	
1,1-Dichloroethene	103	106	74-122	66-130	3	0-20	
1,2-Dibromoethane	102	104	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	99	98	75-120	68-128	1	0-20	
1,2-Dichloroethane	101	101	80-120	73-127	0	0-20	
Carbon Tetrachloride	105	107	49-139	34-154	2	0-20	
Chlorobenzene	99	99	79-120	72-127	0	0-20	
Trichloroethene	101	102	80-120	73-127	1	0-20	
Vinyl Chloride	106	103	68-122	59-131	3	0-20	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 10-11-0633

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution,
2	therefore, the sample data was reported without further clarification. Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the
3	sample data was reported without further clarification. Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control
4	and, therefore, the sample data was reported without further clarification. The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD
5	was in control and, therefore, the sample data was reported without further clarification. The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and,
В	hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
<u>E</u>	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the
	laboratory method detection limit. Reported value is estimated.
ME	LCS recovery percentage is within LCS ME control limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter
	concentration in the sample exceeding the spike concentration by a factor of four or
U	greater. Undetected at detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Sandy Tat

From: Rebekah Westrup [rebekah.westrup@cardno.com]

Sent: Monday, November 08, 2010 6:41 PM

To: Sandy Tat

Subject: RE: ExxonMobil 79374 / 022735 (10-11-0633)

Attachments: 10-11-0633.pdf

Sandy:

That should be S-10.5-MW5 See attached.

From: Sandy Tat [mailto:STat@calscience.com] Sent: Monday, November 08, 2010 12:01 PM

To: Rebekah Westrup

Subject: ExxonMobil 79374 / 022735 (10-11-0633)

Hi Rebekah,

Please verify the sample ID for sample S-5-MW5. On the COC, it labeled as S-5-MW5, but on the containers, it labeled as S-10.5-MW5. Therefore, which sample ID should we follow? Please advise.

Thanks,

Sandy Tat
Project Manager Assistant
Calscience Environmental Laboratories, Inc.
7440 Lincoln Way
Garden Grove, CA 92841-1427

Phone: 714-895-5494 x220

Fax: 714-894-7501 STat@calscience.com

PRIVACY NOTICE:

This email (and/or the documents attached to it) is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential, or exempt from disclosure under applicable Federal or State law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone or else to arrange for the

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

Phone: 714-895-5494

Fax: 714-894-7501

0633

Cons	sultant Name	: Enviror	nmental	Reso	lution	s, Inc.											Α	cco	unt#	: NA					F	O#:								
Consult	tant Address	601 N.	McDowe	ell Bo	uleva	rd											_		e To			Sed	lach	ek										
Consultant C	City/State/Zip	: Petalur	na, Calif	ornia	949	54													rt To								7				_	_		
ExxonMobil	l Project Mgr				Jenn	ifer S	edlad	hek						ER	l Pr	oied	_	-	/ity#	_			_		_							_		
Consultant	t Project Mgr:					Paula	a Sim	e						-					ite #:				70	937	 4			M	lajor Project	/AFE			_	==
Consultant Teleph	one Number	: 707-76	6-2000				Fa	x No	.: 70	07-7	89-6	0414			. –				iress		0 50	Dah						IAI	ajor Project	AFE	. #):			
	Name (Print):		Cheli	d. 8	-11	esti									Sie				, Zip						_	-		_			_	_		
Sampl	er Signature:		Valant		K	11/1	X							-													is erecon	Service.			_	-	_	
·			i-th/th	41.	~~	y w	v	_	=	Pro	200	vativ	_		_	ver	Mat	_	ency	: Ale	mea	a Co	inty	Env	_		_	_	Department	_		_		
		Г		8	П	Г		Н	Т	T	J	Valid	Ť		Н	\neg	IVIAL	iix		T	\vdash	-	മി	_	$\overline{}$	Analy:	ze For	r:	Φ		- C		_	
	Field Point Name/ Location ID	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	Methanol	dium bisulfate	Ю	SO ₄ Plastic	H ₂ SO ₄ Glass		Other	ne	oundwater	Wastewater Drinking Water	Sludge		Other (specify):	TPHd and TPHg by	EPA 8015B	TPHmo by EPA 8015B	BTEX by EPA 8260B	7 Oxys by EPA 8260B	Stockpile sample			HVOCS 8010 List byEPA 8260 (Stockpile sample only)		RUSH TAT (Pre-Schedule	5-day TAT	Standard 10-day TAT	Due Date of Report
Sample ID	를 걸	۵	F	ž	ট	రి	谨	ĕ d	위	g	Ŧ.	윈	2	盲	No	8	\$ \$	S.	Soll	1	直	副	희			Sto	(Yluo		JYE Sam		12	-da	lanc	ne l
5-10-MUI	MWI	14/10	920	1	1								x				Т	П	х		3		\neg	\neg	x		Ť	\top		\sqcap		2,	x	
5-14.5-MWI	MWI	11/4/10	0925	1	1				Τ	П	T		1		П		T		ī	Т			,	:	,		7	+		\forall	\Box		î	
5-10-MW2	MW2	1/4/10		1	1			П		П		1	IT	Ħ	T	T		H	†		H	\neg	H	1	Ħ			1		\forall	П	\dashv	H	
5-15-MWZ	MWZ	11/4/10		1	,			П	\top	П	T	1	I	П	Ħ		+	H	Ħ	T	Н	\neg	H	1	H	-	+	╁	_	+	\vdash	-	H	
S-5- mw58-10.5-M		145/10	11:40	1	i			H	T	H	\forall	Ť	\parallel	H	\forall	+	+	H	H	✝	H	\dashv	H	H	H		+	╁		H	\vdash	\dashv	H	
S- 16.5 - MWS	MW5	14510	1200	1	T'			H	\top	H	1	1	╫	Н	+	+	+	H	+	1		\dashv	H	H	╫		+	+		Н	\vdash	\dashv	4	
5-10 - muy	Mw4	115/10	6:30	1	1			H	1	H	7	1	╫	H	+	+	+	H	\forall	+		\dashv	H	H	H		+	╁		\vdash	\vdash	\dashv	7	
5-15 - mu4	MW4	1	8:47	T	1			H	\dagger	Ħ	7	+	۲	Н	+	+	+	+	H	+-	Н		H	H	H		+	+		Н	\dashv	\dashv	H	
5-16,5 mw4	mw4	V	8:47	1	T		П	\dagger	+	H	\top	+	b	H	+	†	+		Ы	\vdash	H		₩	1	-		╁	╁		Н		-	-	
			,					\vdash	t	H	T	+	Ť	H	+	+	+	\forall	+	1	_	-	+	+	+		+	╀		Н	\dashv	-	*/	
Comments/Special Instructions: Use silica gel cleanup on all TPHd		1								L			1	Ш			4				orat	ory (om	mer	its:			_		Ш			\dashv	
7 oxy = MTBE, TBA, TAME, DIPE,		A and E	DB									PLI							ES TO							ceipt							- 1	
GLOBAL ID # /global ID# - T06197							Nord	alla	bs@	geri	i-us	.co		CKI-	-CITAL		ഠയല	rı-uş	.com		VOA	pιe τ Vial	onta s Fre	ainei	'S INI F Hea	act? adspa	are?				Y		N	
Relination of the Control of the Con		11/5/	ate ID		me	Rece						C, F			ارز	Date			ime	Lev	<u>Deliv</u> el 2					cle on					ī		N	
Freiinguished by:		Da	ate		me	Rece	ive to	y (La	b pe	rson	nel)	:	-	\dashv	_	Date	_	17	ime	Lev	el 3 el 4													
DO TUG	50	11.5	Ol-	17	30		7					L				6/	- 1			Site	Spe	ific - lanac	if ye: er or	s, ple	ease ch s	attacl	h pre-s	sche	edule w/ Calsc	ence				

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

Phone: 714-895-5494

Fax: 714-894-7501

0633

Consultant Name: Environmental Resolutions, Inc. Account #: NA PO#: Consultant Address: 601 N. McDowell Boulevard Invoice To: Jennifer Sedlachek Consultant City/State/Zip: Petaluma, California, 94954 Report To: Paula Sime ExxonMobil Project Mgr: Jennifer Sedlachek ERI Project #/Activity #: 02273503 Consultant Project Mgr: Paula Sime ExxonMobil Site #: 79374 Major Project (AFE #): Consultant Telephone Number: 707-766-2000 Fax No.: 707-789-0414 Site Address: 990 San Pablo Avenue Sampler Name (Print): Site City, State, Zip: Albany, California 94706 Sampler Signature: Oversight Agency: Alameda County Environmental Health Department Preservative Matrix Analyze For HVOCS 8010 List byEPA 8260 (Stockpile sample only) Shipped EPA 8260B I by 6010 sample RUSH TAT (Pre-Schedule BTEX by EPA 8260B PHd and TPHg by Standard 10-day TAT No. of Containers of Report Composite 5-day TAT Grab Sample ID MW X MW mws MNW5 Mw4 115/10 6:20 mu 4 MW4 mw4 VVV mwy 8:47 Comments/Special Instructions: aboratory Comments: Use silica gel cleanup on all TPHd analyses PLEASE E-MAIL ALL PDF FILES TO Temperature Upon Receipt: 7 oxy = MTBE, TBA, TAME, DIPE, ETBE, 1,2-DCA and EDB ERI-EIMLABS@eri-us.com Sample Containers Intact? Ν GLOBAL ID # (globaLID# - T0619716673) Norcallabs@eri-us.com VOA Vials Free of Headspace? Received by: Date Time QC Deliverables (please circle one) Level 2 1-2-19 Level 3 Received by (Lab personnel): Level 4 Site Specific - if yes, please attach pre-schedule w/ Calscience CEL Project Manager or attach specific instructions

< WebShip > > > Page 31 of 33

800-322-5555 www.gso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: BTS, DALY CITY, ERI Delivery Instructions:

Signature Type: SIGNATURE REQUIRED

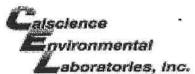
D92843A

(0933)

00117032

wente Mar 1 - constitution (1) (1)

Print Date: 11/05/10 13:26 PM


Package 1 of 1

Send Label To Printer:

☑ Print All

Edit Shipment

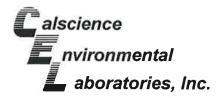
Finish

WORK ORDER #: 10-11-0633

, IPICro	SAMPLE RECEIPT FORM	Cooler _/_ of _/

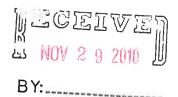
CLIENT:ERI	DATE:	11/06	(/10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozentemperature 3 • 6 °C + 0.5 °C (CF) = 4 • / °C	en) ØBlank	□ Samp	le
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).		E.	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same		ng.	
☐ Received at ambient temperature, placed on ice for transport by C	ourier.	4 848	/
Ambient Temperature: Air Filter	icho i Wino i Dillingo	Initia	1: <u>T</u> ~
CUSTODY SEALS INTACT:			1/4/1
☑ Cooler □ □ No (Not Intact) □ Not Present	□ N/A	Initia	1: TN
□ Sample □ □ No (Not Intact) ☑ Not Present			1: <u>WX</u>
a dample a la tro (trot mast) ya trot i toosh			
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	/		
COC document(s) received complete	. , 🗷		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample label	S.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	. 🖊		
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition			
Proper containers and sufficient volume for analyses requested	. _Z		
Analyses received within holding time	. 🗹		
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours	. 🗆		Z
Proper preservation noted on COC or sample container	🗆		Z
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace			Ø
Tedlar bag(s) free of condensation CONTAINER TYPE:	🗆		Ø
Solid: 40zCGJ 80zCGJ 160zCGJ Sleeve (P) EnCore	es® □Terra0	Cores [®] □_	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp			
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGB	1PB □	⊒500PB □5	00PB na
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂ □			
Air: Tedlar® Summa® Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H5SO4 znna: ZnAc5+NaOH	Envelope R	eviewed by:	<u> </u>

SOP T100_090 (09/13/10)


WORK ORDER #: 10-11-0633

SAMPLE ANOMALY FORM

SAMPLES - CONTAIN	ERS & L	ABELS:			Commo	ents:	
□ Sample(s)/Containe □ Sample(s)/Containe □ Holding time expire □ Insufficient quantitio □ Improper container(□ Improper preservati □ No preservative not □ Sample labels illegil □ Sample label(s) do r □ Sample ID □ Date and/or Tir □ Project Informa □ # of Container(r(s) received — list sands s for and s) used — ve used — ed on CO ole — note not match me Collect ation	wed but NOT mple ID(s) an alysis – list te list test list test C or label – test/containe COC – Note	T LISTED and test est list test { er type	on COC notify lab		abeled 1-5-10	
☐ Analysis ☐ Sample container(s)	compro	nisad — Note	a in comr	ments	· w··		
□ Sample container(s) □ Water present □ Broken □ Sample container(s) □ Air sample container □ Flat □ Very low in vol □ Leaking (Not tr □ Leaking (transf	in sample not labe er(s) com ume ansferred	e container led promised – d - duplicate o Calscience	Note in o bag sul e Tedlar	comments comitted) Bag*)			
HEADSPACE - Contain	ners wit	h Bubble >	6mm o	r ¼ inch:			
Sample # Container # of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received	Analysis
Comments:				×			
*Transferred at Client's requ	est.				Ir	itial / Da	te: WSC 11/06/10


g 10 y = name of section of the contract of th

SOP T100_090 (09/17/10)

November 24, 2010

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 10-11-0827

Client Reference: ExxonMobil 79374 / 022735

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/10/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

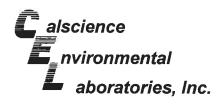
Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Soia

Calscience Environmental Laboratories, Inc. Cecile deGuia **Project Manager**


NELAP ID: 03220CA • DoD-ELAP ID: L10-41

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/10/10 10-11-0827 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 1 of 1


T TOJECL. LAXO	111110011 733747	322133						Pa	ige i oi i
Client Sample Numb	per		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10.5-MW3			10-11-0827-1-A	11/08/10 09:00	Solid	GC 47	11/11/10	11/14/10 04:20	101111B12S
Comment(s):	-The sample extract v	was subjected to	Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		90	61-145						
S-15.5-MW3			10-11-0827-2-A	11/08/10 09:20	Solid	GC 47	11/11/10	11/14/10 04:36	101111B12S
Comment(s):	-The sample extract w	vas subjected to	Silica Gel treatment	prior to analysi	is				
Parameter		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		92	61-145						
Method Blank			099-12-254-1,734	N/A	Solid	GC 47	11/11/10	11/13/10 20:03	101111B12S
Parameter		Result	RL	DF	Qual	Units			
TPH as Motor Oil		ND	25	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		81	61-145						

RL - Reporting Limit

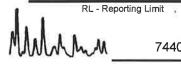
DF - Dilution Factor ,

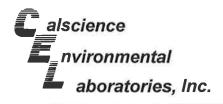
Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

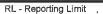

11/10/10 10-11-0827 EPA 3550B


EPA 8015B (M)

FAX: (714) 894-7501

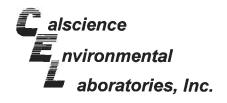
Project: Exxo	nMobil 79374 / (022735						Pa	ge 1 of 1
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10.5-MW3			10-11-0827-1-A	11/08/10 09:00	Solid	GC 47	11/11/10	11/14/10 04:20	101111B11S
Comment(s):		ocarbon(s) in the	n for TPH does not ma sample was based u Silica Gel treatment	pon the speci	fied standar		specified st	andard. Qua	ntitation
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		11	5.0	1		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		90	61-145						
S-15.5-MW3			10-11-0827-2-A	11/08/10 09:20	Solid	GC 47	11/11/10	11/14/10 04:36	101111B11S
Comment(s):	-The sample extract v	was subjected to	Silica Gel treatment	prior to analys	is.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Diesel		ND	5.0	1	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		92	61-145						
Method Blank			099-12-275-3,754	N/A	Solid	GC 47	11/11/10	11/13/10 20:03	101111B11S

Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	
TPH as Diesel	ND	5.0	1	U	mg/kg	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>		
Decachlorobiphenyl	81	61-145				


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/10/10 10-11-0827 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735


Page 1 of 1

Troject. Exxoniviosii 700	747 022700						1 6	age i oi i
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch IE
S-10.5-MW3		10-11-0827-1-A	11/08/10 09:00	Solid	GC 4	11/16/10	11/16/10 16:42	101116B02
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	220	5.0	10		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	126	42-126						
S-15.5-MW3		10-11-0827-2-A	11/08/10 09:20	Solid	GC 4	11/16/10	11/16/10 22:37	101116B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	2.2	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	94	42-126						
Method Blank		099-12-279-4,095	N/A	Solid	GC 4	11/16/10	11/16/10 10:46	101116B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	1	U	mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	88	42-126						
Method Blank		099-12-279-4,096	N/A	Solid	GC 4	11/16/10	11/16/10 12:24	101116B02
Parameter	Result	<u>RL</u>	DF	Qual	Units			
TPH as Gasoline	ND	4.0	8	U	mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	73	42-126						

DF - Dilution Factor

Qual - Qualifiers

Environmental Resolutions, Inc.

Date Received:

Work Order No:

Petaluma, CA 94954-2312

Preparation:

Method:

Units:

Date Received:

11/10/10

10-11-0827

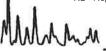
Preparation:

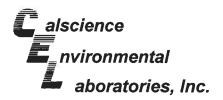
EPA 5030C


EPA 8260B

Units:

Project: ExxonMobil 79374 / 022735


Page 1 of 2


Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/	-	QC Batch ID
S-10.5-MW3				0827-1-A	11/08/10 09:00	Solid	GC/MS UU		11/1: 06:	2/10	101111L04
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	100	U	Diisopropyl Eth	ner (DIPE)		ND	1.0	100	U
Toluene	ND	0.50	100	U	Ethyl-t-Butyl Et	ther (ETBE	E)	ND	1.0	100	Ū
Ethylbenzene	2.0	0.50	100		Tert-Amyl-Met		,	ND	1.0	100	Ū
Xylenes (total)	1.1	0.50	100		1,2-Dibromoetl	hane	,	ND	0.50	100	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	100	U	1,2-Dichloroeth	nane		ND	0.50	100	Ū
Tert-Butyl Alcohol (TBA)	ND	5.0	100	U							
Surrogates:	REC (%)	Control Limits	Qua	<u>al</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	ual
1,2-Dichloroethane-d4	88	62-146			Dibromofluoror	nethane		91	63-141		
Toluene-d8	99	80-120			1,4-Bromofluor			96	60-132		
S-15.5-MW3			10-11-0	0827-2-A	11/08/10 09:20	Solid	GC/MS UU	11/10/10	11/12		101111L03
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1	U	Diisopropyl Eth	er (DIPE)		ND	0.010	1	U
Toluene	ND	0.0050	1	U	Ethyl-t-Butyl Et	her (ETBE)	ND	0.010	4	Ū
Ethylbenzene	ND	0.0050	1	U	Tert-Amyl-Meth			ND	0.010	1	U
Xylenes (total)	ND	0.0050	1	U	1,2-Dibromoeth	nane	,	ND	0.0050	ৰ	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	1,2-Dichloroeth	ane		ND	0.0050	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U							
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>l</u>	Surrogates:			REC (%)	Control Limits	<u>Q</u>	ual
1,2-Dichloroethane-d4	95	62-146			1,4-Bromofluor	obenzene		97	60-132		
Toluene-d8	98	80-120			Dibromofluoron	nethane		97	63-141		
Method Blank			099-12-	-882-750	N/A	Solid	GC/MS UU	11/11/10	11/12		101111L03
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1	U		or (DIDE)					
Toluene	ND ND	0.0050	1	U	Diisopropyl Eth	, ,		ND	0.010	1	U
Ethylbenzene	ND		1	U	Ethyl-t-Butyl Etl	, ,		ND	0.010	1	U
Cylenes (total)	ND	0.0050 0.0050	1	U	Tert-Amyl-Meth 1,2-Dibromoeth	- '	AIVIE)	ND	0.010	1	U
Nethyl-t-Butyl Ether (MTBE)	ND	0.0050	1 *	U	1,2-Dibromoeth			ND	0.0050	1	U U
Tert-Butyl Alcohol (TBA)	ND	0.0050	1	U	1,2-DICHIOTORIN	aile		ND	0.0050	1	U
Surrogates:	REC (%)	Control Limits	Qual	_	Surrogates:			REC (%)	Control	Q	u <u>al</u>
	96	60-132			D" "			103	<u>Limits</u> 63-141		
1,4-Bromofluorobenzene Foluene-d8	97	80-120			Dibromofluorom 1,2-Dichloroeth			106	62-146		

DF - Dilution Factor ,

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

Units:

11/10/10 10-11-0827 EPA 5030C

EPA 8260B mg/kg

Project: ExxonMobil 79374 / 022735

Page 2 of 2

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/I Analy		QC Batch ID
Method Blank			099-12-	882-751	N/A	Solid	GC/MS UU	11/11/10	11/12 01:3		101111L04
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	100	U	Diisopropyl Eth	er (DIPE)		ND	1.0	100	U
Toluene	ND	0.50	100	U	Ethyl-t-Butyl Et	her (ETBE	i)	ND	1.0	100	U
Ethylbenzene	ND	0.50	100	U	Tert-Amyl-Meth	nyl Ether (T	AME)	ND	1.0	100	Ų
Xylenes (total)	ND	0.50	100	U	1,2-Dibromoeth	nane		ND	0.50	100	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	100	U	1,2-Dichloroeth	ane		ND	0.50	100	U
Tert-Butyl Alcohol (TBA)	ND	5.0	100	U							
Surrogates:	REC (%)	Control Limits	<u>Qual</u>		Surrogates:			REC (%)	Control Limits	<u>Q</u>	<u>ual</u>
Toluene-d8	96	80-120			1,2-Dichloroeth	ane-d4		95	62-146		
Dibromofluoromethane	94	63-141			1,4-Bromofluor	obenzene		96	60-132		

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

11/10/10 10-11-0827 **EPA 3550B** EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-11-0093-14	Solid	GC 47	11/11/10		11/13/10	101111512
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	106	123	64-130	15	0-15	

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No:

11/10/10 10-11-0827 **EPA 3550B**

Preparation:

Method:

EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-11-0093-14	Solid	GC 47	11/11/10		11/13/10	101111511
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	112	125	64-130	11	0-15	

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:

Work Order No:

Preparation:

Method:

11/10/10

10-11-0827 **EPA 5030C**

EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	,	Date Analyzed	MS/MSD Batch Number
10-11-1031-4	Solid	GC 4	11/16/10		11/16/10	101116S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	105	105	48-114	0	0-23	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

11/10/10 10-11-0827 EPA 5030C EPA 8260B

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
10-11-0655-3	Solid	GC/MS UU	11/08/10	11/12/10	101111502

Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	80	83	61-127	3	0-20	
Toluene	55	55	63-123	0	0-20	3
Ethylbenzene	48	49	57-129	2	0-22	3
Methyl-t-Butyl Ether (MTBE)	96	101	57-123	5	0-21	
Tert-Butyl Alcohol (TBA)	99	114	30-168	14	0-34	
Diisopropyl Ether (DIPE)	93	96	57-129	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	87	91	55-127	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	80	83	58-124	4	0-20	
Ethanol	22	25	17-167	14	0-47	
1,1-Dichloroethene	99	106	47-143	7	0-25	
1,2-Dibromoethane	104	116	64-124	11	0-20	
1,2-Dichlorobenzene	46	42	35-131	9	0-25	
1,2-Dichloroethane	94	99	80-120	5	0-20	
Carbon Tetrachloride	16	20	51-135	19	0-29	3
Chlorobenzene	71	71	57-123	0	0-20	
Trichloroethene	70	75	44-158	6	0-20	
Vinyl Chloride	115	117	49-139	2	0-47	

MMM_

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

N/A 10-11-0827 EPA 3550B EPA 8015B (M)

EPA

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy	3.7.4	LCS/LCSD Batc Number	h
099-12-254-1,734	Solid	GC 47	11/11/10	11/13	/10	101111B12S	
Parameter	LCS %	6REC LCSI) %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	112	11	2	75-123	0	0-12	

MMM_____

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-11-0827 EPA 3550B

EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da I Anal		LCS/LCSD Bate Number	h
099-12-275-3,754	Solid	GC 47	11/11/10	11/13	3/10	101111B11S	
Parameter	LCS %	REC LCSD	%REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	114	11	8	75-123	4	0-12	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

N/A 10-11-0827 EPA 5030C

Method:

EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	:h
099-12-279-4,096	Solid	GC 4	11/16/10	11/16/10	101116B02	
Parameter	LCS %	6REC LCSD	%REC %R	REC CL RPI	<u>RPD CL</u>	Qualifiers
TPH as Gasoline	106	107	7	0-124 0	0-18	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

N/A 10-11-0827 EPA 5030C

Method:

EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	1000	LCS/LCSD Bate Number	ch
099-12-279-4,095	Solid	GC 4	11/16/10	11/16	5/10	101116B01	
Parameter	LCS %	6REC LCSD	%REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	s Gasoline 10		7	70-124	0	0-18	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

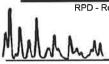
Date Received: Work Order No: Preparation:

N/A 10-11-0827 EPA 5030C

Method:

EPA 8260B

Project: ExxonMobil 79374 / 022735


Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD I Numbe	
099-12-882-750	Solid	GC/MS UU	11/11/10	11/11	/10	101111L	03
Parameter	LCS %REC	LCS %REC LCSD %REC		ME_CL	RPD	RPD CL	Qualifiers
Benzene	88	92	78-120	71-127	5	0-20	
Toluene	91	95	77-120	70-127	4	0-20	
Ethylbenzene	94	95	76-120	69-127	1	0-20	
Methyl-t-Butyl Ether (MTBE)	89	93	77-120	70-127	5	0-20	
Tert-Butyl Alcohol (TBA)	92	94	68-122	59-131	2	0-20	
Diisopropyl Ether (DIPE)	88	90	78-120	71-127	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	83	87	78-120	71-127	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	83	89	75-120	68-128	7	0-20	
Ethanol	96	93	56-140	42-154	3	0-20	
1,1-Dichloroethene	93	95	74-122	66-130	2	0-20	
1,2-Dibromoethane	97	101	80-120	73-127	4	0-20	
1,2-Dichlorobenzene	96	99	75-120	68-128	3	0-20	
1,2-Dichloroethane	96	101	80-120	73-127	5	0-20	
Carbon Tetrachloride	104	107	49-139	34-154	3	0-20	
Chlorobenzene	97	100	79-120	72-127	3	0-20	
Trichloroethene	92	97	80-120	73-127 6		0-20	
Vinyl Chloride	90	94	68-122	59-131 5		0-20	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-11-0827 EPA 5030C EPA 8260B

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ite yzed	LCS/LCSD Numbe	
099-12-882-751	Solid	GC/MS UU	11/11/10	11/11	/10	101111L	04
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	88	92	78-120	71-127	5	0-20	
Toluene	91	95	77-120	70-127	4	0-20	
Ethylbenzene	94	95	76-120	69-127	1	0-20	
Methyl-t-Butyl Ether (MTBE)	89	93	77-120	70-127	5	0-20	
Tert-Butyl Alcohol (TBA)	92	94	68-122	59-131	2	0-20	
Diisopropyl Ether (DIPE)	88	90	78-120	71-127	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	83	87	78-120	71-127	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	83	89	75-120	68-128	7	0-20	
Ethanol	96	93	56-140	42-154	3	0-20	
1,1-Dichloroethene	93	95	74-122	66-130	2	0-20	
1,2-Dibromoethane	97	101	80-120	73-127	4	0-20	
1,2-Dichlorobenzene	96	99	75-120	68-128	3	0-20	
1,2-Dichloroethane	96	101	80-120	73-127	5	0-20	
Carbon Tetrachloride	104	107	49-139	34-154	3	0-20	
Chlorobenzene	97	100	79-120	72-127	3	0-20	
Trichloroethene	92	97	80-120	73-127	6	0-20	
Vinyl Chloride	90	94	68-122	59-131	5	0-20	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 10-11-0827

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution,
	therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The
	associated method blank surrogate spike compound was in control and, therefore, the
	sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out
	of control due to matrix interference. The associated LCS and/or LCSD was in control
4	and, therefore, the sample data was reported without further clarification. The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD
4	was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control
3	due to a matrix interference effect. The associated batch LCS/LCSD was in control and.
	hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
I	Compound did not meet method-described identification guidelines. Identification was
	based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the
	laboratory method detection limit. Reported value is estimated.
ME	LCS recovery percentage is within LCS ME control limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter
	concentration in the sample exceeding the spike concentration by a factor of four or
	greater.
U	Undetected at detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

Fax: 714-894-7501

Consultant Name	: Environ	mental l	Resol	ution	s, Inc.										/	Acco	unt	#: N	NA					PO#:								
Consultant Address	601 N.	McDowe	ell Bou	uleva	rd											nvoi	ce T	o: J	Jenn	nifer Se	dlach	nek										
Consultant City/State/Zip	: Petalun	na, Calif	ornia,	9495	54_															la Sime		_										
ExxonMobil Project Mg	:			Jenn	ifer S	edlac	hek					E	RIF	roje				_		73503												
Consultant Project Mg	:				Paula	a Sim	e								nMo			_			7	937	74	_		Majo	r Proj	ect (Al	E#):		
Consultant Telephone Number	r: <u>707-76</u>	6-2000				Fa	x No	: 70	7-78	9-04	14				Site	Ad:	dres	s: 9	990	San Pa	blo /	\ven	ие									
Sampler Name (Print	:R	ebeko	hA	Wes	Arup									Site (City,	Stat	e, Zi	— ip: А	٩lba	iny, Cal	iforn	ia 94	706					===/::::				777
Sampler Signature		Astehuil	(12	Wit	on "								-2.5							neda Co					Healt	th Dep	artme	nt				
					f				Pres	erva	tive			Т	Ma	trix			1		_		_	Analyz	e For:				7			
Gill Point Name/	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	Melhanol Sodium Disultato	HCI	NaOH U SO Blastic	H ₂ SO ₄ Glass	HNO ₃	lice	None	Groundwater	Wastewater	Sludge	Soil	Air	Other (specify):	TPHd and TPHg by EPA 8015B	TPHmo by EPA 8015B	BTEX by EPA 8260B	7 Oxys by EPA 8260B	Total Lead by 6010 (Stockpile sample	only)	AVOCS 8010 List	by EPA 8260 (Stockpile	anipie only)	OLICH TAT (Dra-Schadule)	5-day TAT	Standard 10-day TAT	Due Date of Report
5-105-mu3 mu3	vidio	9'00	1	X			H	Ħ		\top	I - I	x	\dagger	✝	\vdash	†	х	\dagger	┪		_				4		. Д .	-	+	100	_	
S-15.5" MW3 MW3	148/10		ti	X			H	Н	$^{+}$	+	H		$^{+}$	┢	H	+	Ŷ	+	╅	X					+	_			╁	+	X	
5.3 1102	Allohi	1920	H	1 / ·			H	$\dagger \dagger$		+	H	4	+	H	H	t		+	+		-	-		-	+			-+	╁	+	+	
	_	1	\vdash	-	1		H	╁┤	+	+	Н	+	+	⊢	\vdash	+	Н	+	╅		H	H	-		+			-	╁	+	+	
	†		H		-		H	+	+	+	Н	+	+	\vdash	H	+	\vdash	+	+		\vdash	-	-		+			-	╁	+	+	
	-		\vdash	-	1		H	H	+	╁	Н	+	╁	┝	H	+	Н	+	+		⊢	Н	Н		+				╀	+	╀	
	+		\vdash		-		H	+	+	+	Н	+	+	⊢	H	+	Н	+	4	_	⊢				\perp			_	4	4	\perp	
	-		⊢		-		H	+	4	+	Н	+	+	╀	Н	\perp		4	4		_				_	_		_	1	_	L	
	-						Н	\sqcup	4	+	Ц	4	\perp	┡	Ц	┸	Ш	4	4													
				_	_		Ш	Ш	Ц	┸	Ц	1	_	L	Ш			4										_]				
							Ш				Ш																		T	T		
Comments/Special Instructions: Use silica gel cleanup on all TPHd analyses											PI FA	SE	E-M/	AII A	LL PI)E EII	EST			oratory Temper												
7 oxy = MTBE, TBA, TAME, DIPE, ETBE, 1,2-D	CA and E	EDB										EF			BS@			- 1		Sample				•					Υ		-N	
GLOBAL ID # (glober ID# - T0619716673) Relinquished by	T 8		T =		T _m	Nor		bs@)eri-	us.	com		_	_		_		_		VOA Vi				•					Υ		N	
Alela LIVA	1 1	ate //o	1	ime OO	Rece	ived I	»y: > <u>}</u>	/	$\overline{}$	C	E	L	l.		ate -(0	1	Time Ja:	Į,	<u>2C [</u> eve eve		bles	(plea	ise c	ircle one	<u>e</u>)							
Relinquished by:	11/8	ate		me	Rece	ived b	y (La	b be	rson	_			+		ite		Time	-	_eve													
100 to 80	11-9-	10	17	<u>30</u>				1	1/0	20	b	_	Û	lo	10	18	30	, s	Site	Specific ect Mana								alscien	ce			

NPS

< WebShip >>>>>

800-322-5555 www.gso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference:

CURTIS & TOMPKINS, ERI, STANTEC, CONOCO PHILLIPS

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED Tracking #: 515326392

ORC

GARDEN GROVE

D92843A

86201472

Print Date: 11/09/10 15:30 PM

Send Label To Printer

Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

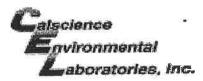
STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

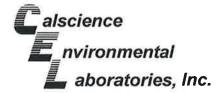
ADDITIONAL OPTIONS:


Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.


(Carpette Till copetie

WORK ORDER #: 10-11- ◎ ② ② ②

SAMPLE RECEIPT FORM Cooler ___ of ___

CLIENT: ERI	DATE:	11/10	/10							
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0°C – 6.0°C, not frozen) Temperature 2 • 4 °C + 0.5 °C (CF) = 2 • 9 °C Blank Sample Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. Received at ambient temperature, placed on ice for transport by Courier.										
Ambient Temperature: ☐ Air ☐ Filter		Initial:	N							
CUSTODY SEALS INTACT: Cooler	□ N/A	Initial:	10cm							
O/ 22 CONDITION	Yes	No	N/A							
Chain-Of-Custody (COC) document(s) received with samples										
COC document(s) received complete	.Д									
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.										
\square No analysis requested. \square Not relinquished. \square No date/time relinquished.	·									
Sampler's name indicated on COC										
Sample container label(s) consistent with COC	Z									
Sample container(s) intact and good condition	p									
Proper containers and sufficient volume for analyses requested	Ø									
Analyses received within holding time	Z									
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours			P							
Proper preservation noted on COC or sample container	. 🗆		P							
☐ Unpreserved vials received for Volatiles analysis	*									
Volatile analysis container(s) free of headspace	. 🗆									
Tedlar bag(s) free of condensation CONTAINER TYPE:										
Solid: □4ozCGJ □8ozCGJ □16ozCGJ ☑Sleeve (□2) □EnCores	s [®] □TerraC	Cores [®] □_	-							
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp										
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB □	3500PB □50	00PB na							
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na₂ □										
Air: ☐Tedlar® ☐Summa® Other: ☐ Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 znna: ZnAc2+NaOH f:	Envelope R	eviewed by:	MSC							

November 22, 2010

Paula Sime
Environmental Resolutions, Inc.
601 North McDowell Blvd.
Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 10-11-0826

Client Reference: ExxonMobil 79374 / 022735

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/10/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

Mulum_

NELAP ID: 03220CA • DoD-ELAP ID: L10-41

CSDLAC ID: 10109

SCAQMD ID: 93LA0830 FAX: (714) 894-7501

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

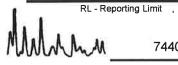
Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:

11/10/10

Work Order No: Preparation:

10-11-0826 EPA 3550B


Method:

EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 1 of 1

Composition Composition									
Comment(s):	Client Sample Numb	er		•		Matrix	Instrument		QC Batch ID
Parameter Result RL DF Qual Units TPH as Motor Oil ND 25 1 U mg/kg Surrogates: REC (%) Control Limits Qual Decachlorobiphenyl 90 61-145 Method Blank 099-12-254-1,734 N/A Solid GC 47 11/11/10 11/13/10 20:03 101111B12 Parameter Result RL DF Qual Units TPH as Motor Oil ND 25 1 U mg/kg Surrogates: REC (%) Control Limits Qual	COMP(S-Profile-1	-4)		10-11-0826-5-A	11/08/10 10:20	Solid	GC 47	11/11/10	101111B12S
TPH as Motor Oil ND 25 1 U mg/kg	Comment(s):	-The sample extract	was subjected to	Silica Gel treatment	prior to analys	is,			
Surrogates: REC (%) Control Limits Qual	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Decachlorobiphenyl 90 61-145	TPH as Motor Oil		ND	25	1	Ų	mg/kg		
Method Blank 099-12-254-1,734 N/A Solid GC 47 11/11/10 11/13/10 20:03 101111B12 Parameter Result RL DF Qual Units TPH as Motor Oil ND 25 1 U mg/kg Surrogates: REC (%) Control Limits Qual	Surrogates:		REC (%)	Control Limits		Qual			
Parameter Result RL DF Qual Units TPH as Motor Oil ND 25 1 U mg/kg Surrogates: REC (%) Control Limits Qual	Decachlorobiphenyl		90	61-145					
TPH as Motor Oil ND 25 1 U mg/kg Surrogates: Qual	Method Blank			099-12-254-1,734	N/A	Solid	GC 47	11/11/10	101111B12S
TPH as Motor Oil ND 25 1 U mg/kg Surrogates: Qual	Parameter		Result	RI	DE	Qual	Units		
Surrogates: REC (%) Control Limits Qual									
	I PH as IVIOTOF OII		MD	20	'	J	mg/kg		
Decachlorobiphenyl 81 61-145	Surrogates:		REC (%)	Control Limits		Qual			
	Decachlorobiphenyl		81	61-145					

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/10/10 10-11-0826 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
COMP(S-Profile-1-4)	10-11-0826-5-A	11/08/10 10:20	Solid	GC 47	11/11/10	11/14/10 04:06	101111B11S

Comment(s):

Decachlorobiphenyl

Decachlorobiphenyl

-The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

-The sample extract was subjected to Silica Gel treatment prior to analysis.

 Parameter
 Result
 RL
 DF
 Qual
 Units

 TPH as Diesel
 7.1
 5.0
 1
 mg/kg

 Surrogates:
 REC (%)
 Control Limits
 Qual

61-145

61-145

90

81

Method Blank		099-12-275-3,754	N/A	Solid	GC 47	11/11/10	11/13/10 20:03	101111B11S
Parameter TPH as Diesel	<u>Result</u> ND	<u>RL</u> 5.0	<u>DF</u>	<u>Qual</u> U	<u>Units</u> mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				

RL - Reporting Limit . 7440

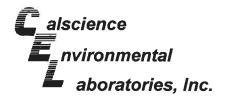
DF - Dilution Factor

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/10/10 10-11-0826 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735


Page 1 of 1

Client Sample Numbe	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
COMP(S-Profile-1	4)		10-11-0826-5-A	11/08/10 10:20	Solid	GC 4	11/16/10	11/17/10 18:31	101116B04
Comment(s):	-The sample chroma hydrocarbons are als			e chromatogra	phic patterr	of the specif	ied standard	but heavier	
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline		14	4.0	8		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ene	93	42-126						
Method Blank			099-12-279-4,099	N/A	Solid	GC 4	11/16/10	11/17/10 06:08	101116B04
Parameter		Result	<u>RL</u>	DF	Qual	Units			
TPH as Gasoline		ND	4.0	8	U	mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ne - FID	83	42-126						

RL - Reporting Limit , 7440

DF - Dilution Factor ,

Qual - Qualifiers

Environmental Resolutions, Inc.

Date Received:

Work Order No:

Petaluma, CA 94954-2312

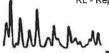
Preparation:

Method:

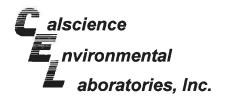
Date Received:

11/10/10

10-11-0826


Preparation:

EPA 5030C


Units: mg/kg

Project: ExxonMobil 79374 / 022735 Page 1 of 3

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ I Analy		QC Batch ID
COMP(S-Profile-1-4)			10-11-	0826-5-A	11/08/10 10:20	Solid	GC/MS UU	11/10/10	11/12 05:		101111L03
Parameter	Result	RL	DF	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0050	1	U	2,2-Dichloropropa	ane		ND	0.0050	1	U
Toluene	ND	0.0050	1	U	2-Chlorotoluene			ND	0.0050	1	U
Ethylbenzene	0.069	0.0050	1		4-Chlorotoluene			ND	0.0050	1	U
Xylenes (total)	0.049	0.0050	1		4-Methyl-2-Penta	none		ND	0.050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	Acetone			ND	0.12	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U	Bromobenzene			ND	0.0050	1	U
Diisopropyl Ether (DIPE)	ND	0.010	1	U	Bromochlorometh	ane		ND	0.0050	1	U
Ethyl-t-Butyl Ether (ETBE)	ND	0.010	1	U	Bromoform			ND	0.0050	1	U
Tert-Amyl-Methyl Ether (TAME)	ND	0.010	1	U	Bromomethane			ND	0.025	1	U
Ethanol	ND	0.25	1	U	Carbon Disulfide			ND	0.050	1	U
1,1,1,2-Tetrachloroethane	ND	0.0050	1	U	Carbon Tetrachlo	ride		ND	0.0050	1	U
1,1,1-Trichloroethane	ND	0.0050	1	U	Chlorobenzene			ND	0.0050	1	U
1,1,2,2-Tetrachloroethane	ND	0.0050	1	U	Dibromochlorome	thane		ND	0.0050	1	U
1,1,2-Trichloroethane	ND	0.0050	1	U	Chloroethane			ND	0.0050	1	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050	1	U	Chloroform			ND	0.0050	1	U
1,1-Dichloroethane	ND	0.0050	1	U	Chloromethane			ND	0.025	1	U
1,1-Dichloroethene	ND	0.0050	1	U	Dibromomethane			ND	0.0050	1	U
1,1-Dichloropropene	ND	0.0050	1	U	Bromodichlorome	thane		ND	0.0050	1	U
1,2,3-Trichlorobenzene	ND	0.010	1	U	Dichlorodifluorom	ethane		ND	0.0050	1	U
1,2,3-Trichloropropane	ND	0.0050	1	U	Hexachloro-1,3-B	utadiene		ND	0.10	1	U
1,2,4-Trichlorobenzene	ND	0.0050	1	U	Isopropylbenzene			0.061	0.0050	1	
1,2,4-Trimethylbenzene	0.0053	0.0050	1		2-Butanone			ND	0.050	1	U
1,3,5-Trimethylbenzene	0.062	0.0050	1		Methylene Chlorid	le		ND	0.050	1	U
c-1,2-Dichloroethene	ND	0.0050	1	U	2-Hexanone			ND	0.050	1	U
1,2-Dibromo-3-Chloropropane	ND	0.010	1	U	Naphthalene			0.098	0.050	1	
1,2-Dibromoethane	ND	0.0050	1	U	n-Butylbenzene			0.14	0.0050	1	
1,2-Dichlorobenzene	ND	0.0050	1	U	n-Propylbenzene			ND	0.50	100	U
1,2-Dichloroethane	ND	0.0050	1	U	p-Isopropyltoluene			0.012	0.0050	1	
1,2-Dichloropropane	ND	0.0050	1	U	sec-Butylbenzene			0.053	0.0050	1	
t-1,2-Dichloroethene	ND	0.0050	1	Ų	Styrene			ND	0.0050	1	U
c-1,3-Dichloropropene	ND	0.0050	1	U	tert-Butylbenzene			0.018	0.0050	1	
1,3-Dichlorobenzene	ND	0.0050	1	U	Tetrachloroethene	•		ND	0.0050	1	U
1,3-Dichloropropane	ND	0.0050	1	U	Trichloroethene			ND	0.0050	1	U
t-1,3-Dichloropropene	ND	0.0050	1	U	Trichlorofluorome	thane		ND	0.050	1	U
1,4-Dichlorobenzene	ND	0.0050	1	U	Vinyl Chloride			ND	0.0050	1	U
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>l</u>	Surrogates:			REC (%)	Control Limits	Q	<u>ual</u>
Toluene-d8	107	80-120			Dibromofluoromet	hane		98	63-141		
1,4-Bromofluorobenzene	111	60-132			1,2-Dichloroethan			91	62-146		

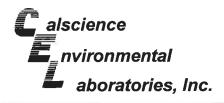
RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifier

Units:

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/10/10 10-11-0826 EPA 5030C EPA 8260B mg/kg


Project: ExxonMobil 79374 / 022735

Page 2 of 3

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank			099-	12-882-750	N/A	Solid	GC/MS UU	11/11/10	11/12 01:		101111L03
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1	U	2,2-Dichloropre	opane		ND	0.0050	1	U
Toluene	ND	0.0050	1	U	2-Chlorotoluen	ie .		ND	0.0050	1	U
Ethylbenzene	ND	0.0050	1	U	4-Chlorotoluen	ie		ND	0.0050	1	U
Xylenes (total)	ND	0.0050	1	U	4-Methyl-2-Per	ntanone		ND	0.050	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	U	Acetone			ND	0.12	1	U
Tert-Butyl Alcohol (TBA)	ND	0.050	1	U	Bromobenzene	•		ND	0.0050	1	U
Diisopropyl Ether (DIPE)	ND	0.010	1	U	Bromochlorom	ethane		ND	0.0050	1	U
Ethyl-t-Butyl Ether (ETBE)	ND	0.010	1	U	Bromoform			ND	0.0050	1	U
Tert-Amyl-Methyl Ether (TAME)	ND	0.010	1	U	Bromomethane	Э		ND	0.025	1	U
Ethanol	ND	0.25	1	U	Carbon Disulfic	de		ND	0.050	1	U
1,1,1,2-Tetrachloroethane	ND	0.0050	1	U	Carbon Tetrac	hloride		ND	0.0050	1	U
1,1,1-Trichloroethane	ND	0.0050	1	U	Chlorobenzene)		ND	0.0050	1	U
1,1,2,2-Tetrachloroethane	ND	0.0050	1	U	Dibromochloro	methane		ND	0.0050	1	U
1,1,2-Trichloroethane	ND	0.0050	1	U	Chloroethane			ND	0.0050	1	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050	1	U	Chloroform			ND	0.0050	1	U
1,1-Dichloroethane	ND	0.0050	1	U	Chloromethane	•		ND	0.025	1	U
1,1-Dichloroethene	ND	0.0050	1	U	Dibromometha	ne		ND	0.0050	1	U
1,1-Dichloropropene	ND	0.0050	1	U	Bromodichloro	methane		ND	0.0050	1	U
1,2,3-Trichlorobenzene	ND	0.010	1	U	Dichlorodifluore	omethane		ND	0.0050	1	U
1,2,3-Trichloropropane	ND	0.0050	1	U	Hexachloro-1,3	3-Butadiene		ND	0.10	1	U
1,2,4-Trichlorobenzene	ND	0.0050	1	U	Isopropylbenze	ene		ND	0.0050	1	U
1,2,4-Trimethylbenzene	ND	0.0050	1	U	2-Butanone			ND	0.050	1	U
1,3,5-Trimethylbenzene	ND	0.0050	1	U	Methylene Chlo	oride		ND	0.050	1	U
c-1,2-Dichloroethene	ND	0.0050	1	U	2-Hexanone			ND	0.050	1	U
1,2-Dibromo-3-Chloropropane	ND	0.010	1	U	Naphthalene			ND	0.050	1	U
1,2-Dibromoethane	ND	0.0050	1	U	n-Butylbenzene	Э		ND	0.0050	1	U
1,2-Dichlorobenzene	ND	0.0050	1	U	n-Propylbenzer	ne		ND	0.0050	1	U
1,2-Dichloroethane	ND	0.0050	1	U	p-Isopropyltolu	ene		ND	0.0050	1	U
1,2-Dichloropropane	ND	0.0050	1	U	sec-Butylbenze	ene		ND	0.0050	1	U
t-1,2-Dichloroethene	ND	0.0050	1	U	Styrene			ND	0.0050	1	U
c-1,3-Dichloropropene	ND	0.0050	1	U	tert-Butylbenze	ne		ND	0.0050	1	U
1,3-Dichlorobenzene	ND	0.0050	1	U	Tetrachloroethe	ene		ND	0.0050	1	U
1,3-Dichloropropane	ND	0.0050	1	U	Trichloroethene	e		ND	0.0050	1	U
t-1,3-Dichloropropene	ND	0.0050	1	U	Trichlorofluoror	methane		ND	0.050	1	U
1,4-Dichlorobenzene	ND	0.0050	1	U	Vinyl Chloride			ND	0.0050	1	U
Surrogates:	REC (%)	Control Limits	<u>Q</u> ı	<u>ıal</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	Qual
Toluene-d8	97	80-120			Dibromofluoron	nethane		103	63-141		
1.2-Dichloroethane-d4	106	62-146			1.4-Bromofluor			96	60-132		
1,2-Dichioroethane-04	.00	02-140			1,4-DIUITIONUOF	onenzene		00	00-132		

mg/kg

Environmental Resolutions, Inc.

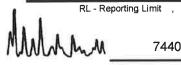
601 North McDowell Blvd.

Petaluma, CA 94954-2312

Analytical Report

 Date Received:
 11/10/10

 Work Order No:
 10-11-0826


 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Method: Units:

Project: ExxonMobil 79374 / 022735 Page 3 of 3

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch ID
Method Blank			099-12-	882-755	N/A	Solid	GC/MS UU	11/12/10	11/13 01:3		101112L04
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	100	U	2,2-Dichloropro	opane		ND	0.50	100	U
Toluene	ND	0.50	100	U	2-Chlorotoluen	e		ND	0.50	100	U
Ethylbenzene	ND	0.50	100	U	4-Chlorotoluen	е		ND	0.50	100	U
Xylenes (total)	ND	0.50	100	U	4-Methyl-2-Per	ntanone		ND	5.0	100	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	100	U	Acetone			ND	12	100	U
Tert-Butyl Alcohol (TBA)	ND	5.0	100	U	Bromobenzene	•		ND	0.50	100	U
Diisopropyl Ether (DIPE)	ND	1.0	100	U	Bromochlorom	ethane		ND	0.50	100	U
Ethyl-t-Butyl Ether (ETBE)	ND	1.0	100	U	Bromoform			ND	0.50	100	U
Tert-Amyl-Methyl Ether (TAME)	ND	1.0	100	U	Bromomethane)		ND	2.5	100	U
Ethanol	ND	25	100	U	Carbon Disulfic	de		ND	5.0	100	U
1,1,1,2-Tetrachloroethane	ND	0.50	100	U	Carbon Tetracl	hloride		ND	0.50	100	U
1,1,1-Trichloroethane	ND	0.50	100	U	Chlorobenzene)		ND	0.50	100	U
1,1,2,2-Tetrachloroethane	ND	0.50	100	U	Dibromochloro	methane		ND	0.50	100	U
1,1,2-Trichloroethane	ND	0.50	100	U	Chloroethane			ND	0.50	100	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	5.0	100	U	Chloroform			ND	0.50	100	U
1,1-Dichloroethane	ND	0.50	100	U	Chloromethane	•		ND	2.5	100	U
1,1-Dichloroethene	ND	0.50	100	U	Dibromometha	ne		ND	0.50	100	U
1,1-Dichloropropene	ND	0.50	100	U	Bromodichloro	methane		ND	0.50	100	U
1,2,3-Trichlorobenzene	ND	1.0	100	U	Dichlorodifluore	omethane		ND	0.50	100	U
1,2,3-Trichloropropane	ND	0.50	100	U	Hexachloro-1,3	3-Butadiene		ND	10	100	U
1,2,4-Trichlorobenzene	ND	0.50	100	U	Isopropylbenze	ene		ND	0.50	100	U
1,2,4-Trimethylbenzene	ND	0.50	100	U	2-Butanone			ND	5.0	100	U
1,3,5-Trimethylbenzene	ND	0.50	100	U	Methylene Chlo	oride		ND	5.0	100	U
c-1,2-Dichloroethene	ND	0.50	100	U	2-Hexanone			ND	5.0	100	U
1,2-Dibromo-3-Chloropropane	ND	1.0	100	U	Naphthalene			ND	5.0	100	U
1,2-Dibromoethane	ND	0.50	100	U	n-Butylbenzene			ND	0.50	100	U
1,2-Dichlorobenzene	ND	0.50	100	U	n-Propylbenzer	ne		ND	0.50	100	U
1,2-Dichloroethane	ND	0.50	100	U	p-Isopropyltolu	ene		ND	0.50	100	U
1,2-Dichloropropane	ND	0.50	100	U	sec-Butylbenze	ene		ND	0.50	100	U
t-1,2-Dichloroethene	ND	0.50	100	U	Styrene			ND	0.50	100	U
c-1,3-Dichloropropene	ND	0.50	100	U	tert-Butylbenze	ne		ND	0.50	100	U
1,3-Dichlorobenzene	ND	0.50	100	U	Tetrachloroethe	ene		ND	0.50	100	U
1,3-Dichloropropane	ND	0.50	100	U	Trichloroethene			ND	0.50	100	U
t-1,3-Dichloropropene	ND	0.50	100	U	Trichlorofluoror	methane		ND	5.0	100	U
1,4-Dichlorobenzene	ND	0.50	100	U	Vinyl Chloride			ND	0.50	100	U
Surrogates:	REC (%)	Control Limits	Qual		Surrogates:			REC (%)	Control Limits	Q	<u>ual</u>
Toluene-d8	91	80-120			Dibromofluoron	nethane		96	63-141		
1,4-Bromofluorobenzene	95	60-132			1,2-Dichloroeth	nane-d4		98	62-146		

Date Received:

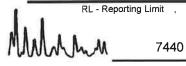
11/10/10 10-11-0826

601 North McDowell Blvd. Petaluma, CA 94954-2312

Environmental Resolutions, Inc.

Work Order No: Preparation:

EPA 3050B


Method:

EPA 6010B

Project: ExxonMobil 79374 / 022735

Page 1 of 1

Troject. Exxonivioni 1991+	7 0227 00						, U	190 1 01 1
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
COMP(S-Profile-1-4)		10-11-0826-5-A	11/08/10 10:20	Solid	ICP 5300	11/11/10	11/12/10 18:42	101111L07
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Lead	6.93	0.500	1		mg/kg			
Method Blank		097-01-002-14,338	N/A	Solid	ICP 5300	11/11/10	11/15/10 16:22	101111L07
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Lead	ND	0.500	1	U	mg/kg			

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/10/10 10-11-0826 EPA 3050B EPA 6010B

Project ExxonMobil 79374 / 022735

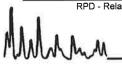
Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-11-0873-6	Solid	ICP 5300	11/11/10		11/12/10	101111807
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Lead	4X	4X	75-125	4X	0-20	Q

Mullima_

CL - Control Limit

Environmental Resolutions, Inc.

601 North McDowell Blvd.


Petaluma, CA 94954-2312

Quality Control - PDS / PDSD

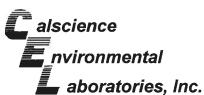
Date Received Work Order No: Preparation: Method: 11/10/10 10-11-0826 EPA 3050B EPA 6010B

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dat	e Analyzed F	PDS / PDSD_Batch Number
10-11-0873-6	Solid	ICP 5300	11/11/10	1	1/15/10	101111807
Parameter	PDS %REC	PDSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Lead	4X	4X	75-125	4X	0-20	Q

RPD - Relative Percent Difference , CL - Control Limit

nel c


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/10/10 10-11-0826 EPA 3550B EPA 8015B (M)

Project ExxonMobil 79374 / 022735

			Date		Date	MS/MSD Batch
Quality Control Sample ID	Matrix	Instrument	Prepared		Analyzed	Number
10-11-0093-14	Solid	GC 47	11/11/10		11/13/10	101111512
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	106	123	64-130	15	0-15	

RPD-Rela

ories Inc

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/10/10 10-11-0826 EPA 3550B EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
10-11-0093-14	Solid	GC 47	11/11/10	11/13/10	101111511
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD C	<u>Qualifiers</u>
TPH as Diesel	112	125	64-130	11 0-15	

RPD - Relative Percent Difference , 7440 Lincoln

nel o

0-20

0-20

0-47

0-25

0-20

0-25

0-20

0-29

0-20

0-20

0-47

3

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Ethyl-t-Butyl Ether (ETBE)

1,1-Dichloroethene

1,2-Dibromoethane

1,2-Dichloroethane

Chlorobenzene

Trichloroethene

Vinyl Chloride

1,2-Dichlorobenzene

Carbon Tetrachloride

Ethanol

Tert-Amyl-Methyl Ether (TAME)

Date Received: Work Order No: Preparation: Method: 11/10/10 10-11-0826 EPA 5030C EPA 8260B

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-11-0655-3	Solid	GC/MS UU	11/08/10		11/12/10	101111S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	80	83	61-127	3	0-20	
Toluene	55	55	63-123	0	0-20	3
Ethylbenzene	48	49	57-129	2	0-22	3
Methyl-t-Butyl Ether (MTBE)	96	101	57-123	5	0-21	
Tert-Butyl Alcohol (TBA)	99	114	30-168	14	0-34	
Diisopropyl Ether (DIPE)	93	96	57-129	2	0-20	

91

83

25

106

116

42

99

20

71

75

117

55-127

58-124

17-167

47-143

64-124

35-131

80-120

51-135

57-123

44-158

49-139

4

4

14

7

11

9

5

19

0

6

2

87

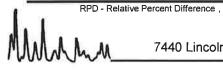
80

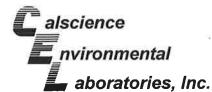
22

99

104

46


94


16

71

70

115

0-47

0-25

0-20

0-25

0-20

0-29

0-20

0-47

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/10/10 10-11-0826 EPA 5030C EPA 8260B

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-11-0839-1	Solid	GC/MS UU	11/10/10		11/13/10	101112802
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	93	90	61-127	3	0-20	
Toluene	94	92	63-123	3	0-20	
Ethylbenzene	95	92	57-129	3	0-22	
Methyl-t-Butyl Ether (MTBE)	88	89	57-123	1	0-21	
Tert-Butyl Alcohol (TBA)	107	100	30-168	7	0-34	
Diisopropyl Ether (DIPE)	89	88	57-129	1	0-20	
Ethyl-t-Butyl Ether (ETBE)	82	83	55-127	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	80	81	58-124	1	0-20	

29

98

96

90

98

110

96

96

97

17-167

47-143

64-124

35-131

80-120

51-135

57-123

44-158

49-139

1

3

4

1

3

0

2

4

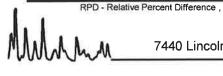
1

29

100

100

91


101

109

97

100

95

Ethanol

1,1-Dichloroethene

1,2-Dibromoethane

1,2-Dichloroethane

Trichloroethene

Vinyl Chloride

Carbon Tetrachloride Chlorobenzene

1,2-Dichlorobenzene

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

10-11-0826 EPA 3050B EPA 6010B

N/A

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instr	ument	Dat Prepa		Da Anal	ite yzed	LCS/LCSD Bato Number	h
097-01-002-14,338	Solid	ICP	5300	11/11	/10	11/18	5/10	101111L07	
Parameter	LCS ^c	%REC	LCSD 9	<u>6REC</u>	%RE	C CL	RPD	RPD CL	Qualifiers
Lead	100)	99		80-	-120	0	0-20	

Allena_

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-11-0826 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzo		LCS/LCSD Bato Number	h
099-12-254-1,734	Solid	GC 47	11/11/10	11/13/1	0	101111B12S	
<u>Parameter</u>	LCS 9	6REC LCSD	%REC %	REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	112	112	2	75-123	0	0-12	

AMM_____

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-11-0826 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
099-12-275-3,754	Solid	GC 47	11/11/10	11/13/10	101111B11S	
Parameter	LCS 9	6REC LCSD	%REC %F	REC CL RP	D RPD CL	Qualifiers
TPH as Diesel	114	. 118	3	75-123 4	0-12	

RPD - Relative Percent Difference , 7440 Lincoln

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-11-0826 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

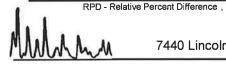
Quality Control Sample ID	Matrix	Instrumen	Da t Prep	17/217	Da Anal	ite yzed	LCS/LCSD Bate Number	ch
099-12-279-4,099	Solid	GC 4	11/1	6/10	11/17	//10	101116B04	
<u>Parameter</u>	LCS 9	6REC LC	SD %REC	%RE	C CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	102		104	70	-124	2	0-18	

RPD - Relative Percent Difference ,
7440 Lincoln

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-11-0826 EPA 5030C EPA 8260B

Project: ExxonMobil 79374 / 022735


Quality Control Sample ID	Matrix	Instrument	Date Prepared		ite yzed	LCS/LCSD I Number	
099-12-882-750	Solid	GC/MS UU	11/11/10	11/11	/10	101111L	03
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	88	92	78-120	71-127	5	0-20	
Toluene	91	95	77-120	70-127	4	0-20	
Ethylbenzene	94	95	76-120	69-127	1	0-20	
Methyl-t-Butyl Ether (MTBE)	89	93	77-120	70-127	5	0-20	
Tert-Butyl Alcohol (TBA)	92	94	68-122	59-131	2	0-20	
Diisopropyl Ether (DIPE)	88	90	78-120	71-127	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	83	87	78-120	71-127	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	83	89	75-120	68-128	7	0-20	
Ethanol	96	93	56-140	42-154	3	0-20	
1,1-Dichloroethene	93	95	74-122	66-130	2	0-20	
1,2-Dibromoethane	97	101	80-120	73-127	4	0-20	
1,2-Dichlorobenzene	96	99	75-120	68-128	3	0-20	
1,2-Dichloroethane	96	101	80-120	73-127	5	0-20	
Carbon Tetrachloride	104	107	49-139	34-154	3	0-20	
Chlorobenzene	97	100	79-120	72-127	3	0-20	
Trichloroethene	92	97	80-120	73-127	6	0-20	
Vinyl Chloride	90	94	68-122	59-131	5	0-20	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312


Date Received: Work Order No: Preparation: Method:

N/A 10-11-0826 **EPA 5030C EPA 8260B**

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID		Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Numbe	
099-12-882-755		Solid	GC/MS UU	11/12/10	11/12	/10	101112L	04
Parameter		LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene		90	88	78-120	71-127	2	0-20	
Toluene		92	92	77-120	70-127	0	0-20	
Ethylbenzene		94	94	76-120	69-127	0	0-20	
Methyl-t-Butyl Ether (MTBE)		88	90	77-120	70-127	2	0-20	
Tert-Butyl Alcohol (TBA)		92	92	68-122	59-131	0	0-20	
Diisopropyl Ether (DIPE)		87	90	78-120	71-127	4	0-20	
Ethyl-t-Butyl Ether (ETBE)		83	84	78-120	71-127	1	0-20	
Tert-Amyl-Methyl Ether (TAME)		82	82	75-120	68-128	0	0-20	
Ethanol		98	90	56-140	42-154	8	0-20	
1,1-Dichloroethene		97	98	74-122	66-130	1	0-20	
1,2-Dibromoethane		98	98	80-120	73-127	0	0-20	
1,2-Dichlorobenzene		96	95	75-120	68-128	1	0-20	
1,2-Dichloroethane		97	96	80-120	73-127	2	0-20	
Carbon Tetrachloride	5	106	109	49-139	34-154	2	0-20	
Chlorobenzene		99	98	79-120	72-127	0	0-20	
Trichloroethene		96	94	80-120	73-127	2	0-20	
Vinyl Chloride		92	94	68-122	59-131	3	0-20	

Total number of LCS compounds: 17 Total number of ME compounds: 0 Total number of ME compounds allowed: LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 10-11-0826

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
1	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS recovery percentage is within LCS ME control limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

Phone: 714-895-5494

Fax: 714-894-7501

Cons	ultant Name:	Environ	mental F	Resolu	itions	Inc.											Ac	cou	ınt#	NA	£				ş	PO#:								
Consult	ant Address:	601 N.	McDowe	ell Bou	levar	d											Inv	oic/	e To	: Jer	nifer	Sed	ach	ek										
Consultant C	ity/State/Zip:	Petalun	na, Califo	ornia,	9495	4						-					Re	por	rt To	: Pai	ula S	ime												
ExxonMobil	Project Mgr:			,	lennit	ier Se	dlac	hek						ERI	Pro	ject	- : #/A	ctiv	ity #	: 022	2735	03												
Consultant	Project Mgr:					Paula	Sim	е							Ex	koni	Mob	il Si	ite #:				79	937	4				Major Project (AFE	#):			
Consultant Teleph	one Number:	707-76	6-2000				Fa	x No	o.: <u>7</u>	07-7	89-0)414				S	ite /	Add	ress	: 990	0 Sar	Pab	lo A	venu	ie.									
Sampler	Name (Print):	Reb	elah	AL	103	T4D	<u></u>								Site	_			, Zip															
Sampl	er Signature:	//	ulasus		Vid	X T									0	vers	ight	Age	ency	: Ala	med	a Co	unty	Env	iron	ment	al H	lealth	n Department					
1/25-			Oversight Agency: Alameda County Environmental Health Department Preservative Matrix Analyze For:																															
Sample ID	Field Point Name/ Location ID	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	Methanol	Sodium Bisulfate	NaOH	H ₂ SO ₄ Plastic	H ₂ SO ₄ Glass	lce	Other	None	Groundwater	Drinking Water	Sludge	Soll	Other (specify):	TPHd and TPHg by	EPA 8015B	TPHmo by EPA 8015B	BTEX by EPA 8260B	7 Oxys by EPA 8260B				HVOCS 8010 List byEPA 8260 (Stockpile sample only)		RUSH TAT (Pre-Schedule)	5-day TAT	Standard 10-day TAT	Due Dale of Report
45-Profile-(1-4)	Profile	11810	10:20	ч		X		П					x	1 1	T			П	х			x	х	x	х	X			X	П			х	
								П			П	T	Τ	П	T	T	Т	П	\neg	Т	Г		٦	\exists				П		П	Г			
								П			П	1		П	T	1	T	П	T		T		T	1			900			П			Т	
								П	T	\dagger	П	T	T	Ħ	T	1	\top	П	T	T	T		T	\exists	\exists			П			Т	Г		
								П	T	T	H	1	T	П	†	1	1	H	\top	\vdash	1		٦	7	\exists		_			П	П			
								П	T	1	H	T	T	П	7	+	+	H	+	\top	1		7	1	7	_		Ħ		Н	Г			
								H	+	t	H	\dagger	+	H	\dagger	$^{+}$	Ħ	H	\dashv	+	t		\dashv	+	+		=	Н		Н	Н	Н		
		 		-	_	_		Н	+	+	H	+	+	H	+	+	+	H	+	+	╁	-	\dashv	\dashv	\dashv		_	Н		\vdash	Н		-	
		-	-					Н	+	+	Н	+	+	Н	+	+	+	Н	+	+	╁	-	-	\dashv	+	-	-	H		\vdash	H	H	\vdash	
		1		-				Н	+	+	Н	+	╁	Н	+	+	╁	Н	+	╁	┢	-	H	\dashv	\dashv		_	\vdash		Н	H	H	H	-
Comments/Special Instructions: Use silica gel cleanup on all TPHo 7 oxy = MTBE, TBA, TAME, DIPE, GLOBAL ID # (global ID# - T0619)	ETBE, 1,2-D	COMPOSH CA and I		leen _e	s int	v 511	igle Nor				ri-us								ES TO		Ter Sar	nple	ature Conf	Upo	on F ers I	Recei ntact	?	=?			Y		N N	
Relinguished by:		ils		17		Page 1		by:	1		>	Ċŧ			IIn	Date	0	20	Time	Le	Deli vel 2 vel 3					ircle c		•:			1		14	
Reithquiehed by:	GSD	11.9		1	me 30	Rece	eived	oy (L	anp	LISO LI		e to	_		V/c	Date 0		l	Time 30	Sit									chedule w/ Calsc	ience	:			

Page 22 of 24

<WebShip>>>>>

800-322-5555 www.qso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference:

CURTIS & TOMPKINS, ERI, STANTEC, CONOCO PHILLIPS

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED

Tracking #: NPS GARDEN GROVE

515326392

D92843A

Print Date: 11/09/10 15:30 PM Package 1 of 1

Send Label To Printer

☑ Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

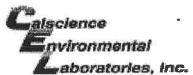
STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email


Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or" not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

TE STEX

ுர*் இ*டிய ட்ட நடிக்குள்கள் டி

WORK ORDER #: 10-11- @ 8 2 6

SAMPLE RECEIPT FOR	M	Cooler <u></u> of <u></u>
- 4		11/10/10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen)		
Temperature 2 • 4 °C + 0.5 °C (CF) = 2 • 9 °C	Blank	☐ Sample
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).		
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day	of sampl	ing.
☐ Received at ambient temperature, placed on ice for transport by Cou	rier.	
Ambient Temperature: 🗆 Air 🗆 Filter		Initial:
CUSTODY SEALS INTACT:		
Cooler	□ N/A	Initial: 20
□ Sample □ □ □ No (Not Intact) □ Not Present		Initial:
SAMPLE CONDITION:	es	No N/A
لر Chain-Of-Custody (COC) document(s) received with samples		
لر	2	
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
\square No analysis requested. $\ \square$ Not relinquished. $\ \square$ No date/time relinquished.		
لر	2	
لر	2	
قر	a	
Proper containers and sufficient volume for analyses requested		
Analyses received within holding time	2	
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours		
Proper preservation noted on COC or sample container		
☐ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace		
Tedlar bag(s) free of condensation		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ ☑Sleeve (_<) □EnCores®	□Terra	Cores [®] □
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □	1AGB [□1AGB na ₂ □1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGBs	□1PB [⊒500PB
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂ □		
Air: □Tedlar [®] □Summa [®] Other: □ Trip Blank Lot#:	Labeled/	Checked by:
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: En		Reviewed by:

SOP T100_090 (09/13/10)

November 12, 2010

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 10-10-2471

Client Reference: ExxonMobil 79374 / 022735

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/30/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & se Soin

Calscience Environmental
Laboratories. Inc.
Cecile deGuia
Project Manager

NELAP ID: 03220CA • DoD-ELAP ID: L10-41

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Date Received: Work Order No:

10-10-2471 EPA 3510C EPA 8015B (M)

10/30/10

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Preparation: Method:

. .

Project:	ExxonMobil	79374	/ 022735
I I U I C U L .		13017	1 022100

Page 1 of 1

Project. Exxo	111010011 /93/4/	122133						Го	age i oi i
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-27.5-HP1A			10-10-2471-1-G	10/28/10 12:00	Aqueous	GC 49	11/01/10	11/03/10 14:27	101101B17
Comment(s):	-The sample extract v	was subjected to	Silica Gel treatment	prior to analy	sis.				
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
ΓΡΗ as Motor Oil		260	250	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		105	68-140						
W-36-HP1A			10-10-2471-2-G	10/28/10 13:10	Aqueous	GC 49	11/01/10	11/03/10 14:42	101101B17
Comment(s):	-The sample extract v	was subjected to							
<u>Parameter</u>		Result	RL	<u>DF</u>	Qual	Units			
TPH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		116	68-140						
W-46.5-HP1A			10-10-2471-3-G	10/28/10 13:55	Aqueous	GC 49	11/01/10	11/03/10 14:56	101101B17
Comment(s):	-The sample extract v		Silica Gel treatment		sis.				
Parameter		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
PH as Motor Oil		ND	420	1,67	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		114	68-140						
Method Blank			099-12-234-738	N/A	Aqueous	GC 49	11/01/10	11/04/10 13:12	101101B17
		B #	-	DE	Ougl	1744-			
Parameter		Result	RL	<u>DE</u>	<u>Qual</u>	<u>Units</u>			
PH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		132	68-140						

RL - Reporting Limit ,

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 10/30/10 10-10-2471 EPA 3510C EPA 8015B (M)

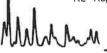
			The contract of the contract o				D-4-	Data Ciara	-
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-27.5-HP1A			10-10-2471-1-G	10/28/10 12:00	Aqueous	GC 49	11/01/10	11/03/10 14:27	101101B16
Comment(s):	of the unknown hydro	ocarbon(s) in th	ern for TPH does not man ne sample was based u to Silica Gel treatment	pon the spec	ified standard		specified st	andard. Qua	ntitation
<u>Parameter</u>	The dample extract	Result	RL	DF	Qual	<u>Units</u>			
TPH as Diesel		330	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		105	68-140						
W-36-HP1A			10-10-2471-2-G	10/28/10 13:10	Aqueous	GC 49	11/01/10	11/03/10 14:42	101101B16
Comment(s):	of the unknown hydro	carbon(s) in th	rn for TPH does not ma ne sample was based u to Silica Gel treatment	pon the speci	ified standard		specified st	andard. Qua	ntitation
Parameter	•	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Diesel		220	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		116	68-140						
W-46.5-HP1A			10-10-2471-3-G	10/28/10 13:55	Aqueous	GC 49	11/01/10	11/03/10 14:56	101101B16
Comment(s):	-The sample extract v	vas subjected t	to Silica Gel treatment j	orior to analys	sis.				
<u>Parameter</u>		Result	RL	DF	Qual	<u>Units</u>			
TPH as Diesel		ND	83	1.67	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		114	68-140						
Method Blank			099-12-330-1,704	N/A	Aqueous	GC 49	11/01/10	11/04/10 13:12	101101B16
Parameter		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
ΓPH as Diesel		ND	50	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				

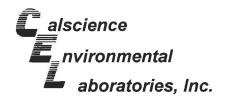
RL - Reporting Limit ,

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 10/30/10 10-10-2471 EPA 5030C EPA 8015B (M)


Project: ExxonMobil 79374 / 022735


Page 1 of 1

Floject. Exxor	110011 133171	022100							190 1 01 1
Client Sample Numbe	r		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-27.5-HP1A			10-10-2471-1-E	10/28/10 12:00	Aqueous	GC 5	11/03/10	11/03/10 20:24	101103B02
Comment(s):	-The sample chroma of the unknown hydro	tographic pattern	for TPH does not ma	atch the chro	matographic	pattern of the	e specified st	tandard. Qua	intitation
Parameter	of the driknown nyure	Result	RL	DF	Qual	Units			
TPH as Gasoline		63	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ene	85	38-134						
W-36-HP1A			10-10-2471-2-D	10/28/10 13:10	Aqueous	GC 5	11/03/10	11/03/10 20:57	101103B02
Parameter		Result	RL	DF	Qual	Units			
TPH as Gasoline		ND	50	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ene	84	38-134						
W-46.5-HP1A			10-10-2471-3-D	10/28/10 13:55	Aqueous	GC 5	11/03/10	11/03/10 21:29	101103B02
Parameter		Result	RL	DF	Qual	Units			
TPH as Gasoline		ND	50	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ne	85	38-134						
Method Blank			099-12-436-5,459	N/A	Aqueous	GC 5	11/03/10	11/03/10 11:11	101103B02
		- "	D.	DE	01	11-74-			
<u>Parameter</u>		Result ND	<u>RL</u> 50	<u>DF</u> 1	<u>Qual</u> U	<u>Units</u> ug/L			
TPH as Gasoline		ND	50	1	U	ugr			
Surrogates:		REC (%)	Control Limits		Qual				
1,4-Bromofluorobenze	ne	83	38-134						

RL - Reporting Limit ,

DF - Dilution Factor

Environmental Resolutions, Inc.

Date Received:

Work Order No:

Petaluma, CA 94954-2312

Preparation:

Method:

Units:

Date Received:

10/30/10

10-10-2471

Preparation:


EPA 5030C

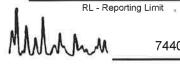
Project: ExxonMobil 79374 / 022735 Page 1 of 2

											90 1 01 =
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Anal		QC Batch II
W-27.5-HP1A			10-10-2	2471-1-A	10/28/10 12:00	Aqueous	GC/MS L	11/01/10	11/0 ⁻ 18:		101101L01
Parameter -	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Toluene	ND	0.50	1	U	Ethyl-t-Butyl	Ether (ETBE))	ND	0.50	1	U
Ethylbenzene	ND	0.50	1	U	Tert-Amyl-Me	ethyl Ether (T	AME)	ND	0.50	1	U
Xylenes (total)	ND	0.50	1	U	1.2-Dibromoe	• ,	,	ND	0.50	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	Ū	1,2-Dichloroe			ND	0.50	1	Ū
Tert-Butyl Alcohol (TBA)	ND	5.0	1	Ü	.,				0100		•
Surrogates:	REC (%)		Qua	•	Surrogates:			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
Toluene-d8	99	80-120			1,2-Dichloroe	ethane_d4		97	80-128		
Dibromofluoromethane	106	80-127			1,4-Bromoflu			89	68-120		
W-36-HP1A	100	00 127	10-10-2	471-2-A	10/28/10	Aqueous	GC/MS L	11/01/10	11/0		101101L01
					13:10				19:	02	
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DE	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIDE)		ND	0.50	1	
Toluene	ND	0.50	1	Ü	Ethyl-t-Butyl			ND	0.50	1	Ü
Ethylbenzene	ND	0.50	1	Ü	Tert-Amyl-Me	, ,		ND	0.50	1	Ü
	ND		1	Ü	1.2-Dibromoe	, ,	MIVIL)	ND	0.50	1	Ü
Xylenes (total)	ND	0.50	-	U	1,2-Dibroffice			ND		1	Ü
Methyl-t-Butyl Ether (MTBE)		0.50	1	U	1,2-DICHIOTOE	ernane		ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	_	0			DEC (0/)	Control	,	Dural .
<u>Surrogates:</u>	REC (%)	Control Limits	Qua	<u>!</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
1,4-Bromofluorobenzene	89	68-120			Dibromofluore	omethane		112	80-127		
Toluene-d8	98	80-120			1,2-Dichloroe	ethane-d4		97	80-128		
W-46.5-HP1A			10-10-2	471-3-A	10/28/10 13:55	Aqueous	GC/MS L	11/01/10	11/01 19:		101101L01
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	thor (DIDE)		ND	0.50	1	U
Senzene Foluene	ND		4	Ü	Ethyl-t-Butyl 6	, ,		ND			U
******	ND ND	0.50	1	U	Tert-Amyl-Me			ND ND	0.50	1	U
Ethylbenzene		0.50		U			MIVIE)		0.50	1	U
Kylenes (total)	ND	0.50	1	_	1,2-Dibromoe			ND	0.50	1	U
Wethyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe	urane		ND	0.50	1	U
Fert-Butyl Alcohol (TBA)	ND	5.0	1	_	0			DEC /0/3	Control	,	Qual
Surrogates:	<u>REC (%)</u>	Control Limits	Qual		Surrogates:			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
Coluene-d8	100	80-120			1.2-Dichloroe	thane-d4		95	80-128		
1.4-Bromofluorobenzene	85	68-120			Dibromofluoro			107	80-127		
1,4*-DIOMONDONENZENE		30-120			ווטווטווטווטווטווטווטווטווטווטווטווט	omediane			50-127		

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312


Analytical Report

Date Received: 10/30/10
Work Order No: 10-10-2471
Preparation: EPA 5030C

Method: EPA 8260B Units: ug/L

Project: ExxonMobil 79374 / 022735 Page 2 of 2

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank			099-12-	884-460	N/A	Aqueous	GC/MS L	11/01/10	11/01 12:		101101L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Toluene	ND	0.50	1	U	Ethyl-t-Butyl E	Ether (ETBE)	ND	0.50	1	U
Ethylbenzene	ND	0.50	1	U	Tert-Amyl-Me	thyl Ether (T	AME)	ND	0.50	1	U
Xylenes (total)	ND	0.50	1	U	1,2-Dibromoe	thane		ND	0.50	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe	thane		ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U							
Surrogates:	REC (%)	Control Limits	Qual		Surrogates:			<u>REC (%)</u>	Control Limits	Ω	Qual
Toluene-d8	98	80-120			Dibromofluoro	methane		107	80-127		
1,4-Bromofluorobenzene	84	68-120			1,2-Dichloroe	thane-d4		93	80-128		

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 10/30/10 10-10-2471 EPA 5030C EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-10-2277-1	Aqueous	GC 5	11/03/10		11/03/10	101103S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	87	88	68-122	2	0-18	

cropine Bapiloate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: 10/30/10 10-10-2471 EPA 5030C EPA 8260B

Method:

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-10-2448-1	Aqueous	GC/MS L	11/01/10		11/01/10	101101S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	98	101	76-124	3	0-20	
Toluene	104	106	80-120	2	0-20	
Ethylbenzene	102	102	78-126	0	0-20	
Methyl-t-Butyl Ether (MTBE)	77	82	67-121	7	0-49	
Tert-Butyl Alcohol (TBA)	88	93	36-162	5	0-30	
Diisopropyl Ether (DIPE)	72	74	60-138	3	0-45	
Ethyl-t-Butyl Ether (ETBE)	73	76	69-123	5	0-30	
Tert-Amyl-Methyl Ether (TAME)	77	80	65-120	3	0-20	
Ethanol	111	109	30-180	2	0-72	
1,2-Dibromoethane	95	101	80-120	6	0-20	
1,2-Dichloroethane	90	94	80-120	4	0-20	

Environmental Resolutions, Inc.

601 North McDowell Blvd.

Petaluma, CA 94954-2312

Quality Control - LCS/LCS Duplicate

Date Received: Work Order No:

10-10-2471 **EPA 3510C** EPA 8015B (M)

N/A

Preparation: Method:

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-12-234-738	Aqueous	GC 49	11/01/10	11/03/10	101101B17	
Parameter	LCS %	REC LCSD	%REC %R	REC CL RPI	RPD CL	Qualifiers
TPH as Motor Oil	114	115	7	5-117 1	0-13	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-10-2471 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Dai Prepa		Da Analy		LCS/LCSD Bato Number	ch
099-12-330-1,704	Aqueous	GC 49	11/01	11/01/10		/10	101101B16	
<u>Parameter</u>	LCS %	6REC LCS	D %REC	%RE	C CL	RPD	RPD CL	Qualifiers
TPH as Diesel	105	1	06	75-	117	1	0-13	

AMAMA_

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-10-2471 EPA 5030C EPA 8015B (M)

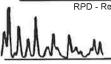
Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	:h
099-12-436-5,459	Aqueous	GC 5	11/03/10	11/03/10	101103B02	
<u>Parameter</u>	LCS 9	%REC LCSD	%REC %F	REC CL RPD	RPD CL	Qualifiers
TPH as Gasoline	90	109	7	'8-120 19	0-10	Χ

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-10-2471 EPA 5030C EPA 8260B

Project: ExxonMobil 79374 / 022735


Quality Control Sample ID	Matrix	Пер		Da Anal	ate yzed	LCS/LCSD Batch Number	
099-12-884-460	Aqueous	GC/MS L	11/01/10	11/01	/10	101101L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	97	93	80-120	73-127	4	0-20	
Toluene	106	101	80-120	73-127	5	0-20	
Ethylbenzene	102	97	80-120	73-127	5	0-20	
Methyl-t-Butyl Ether (MTBE)	80	81	69-123	60-132	1	0-20	
Tert-Butyl Alcohol (TBA)	93	96	63-123	53-133	3	0-20	
Diisopropyl Ether (DIPE)	72	71	59-137	46-150	1	0-37	
Ethyl-t-Butyl Ether (ETBE)	74	75	69-123	60-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	82	79	70-120	62-128	3	0-20	
Ethanol	123	89	28-160	6-182	32	0-57	
1,2-Dibromoethane	101	100	79-121	72-128	0	0-20	
1,2-Dichloroethane	93	91	80-120	73-127	2	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 10-10-2471

Qualifier	<u>Definition</u>
	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ĒT	Sample was extracted past end of recommended max. holding time.
ı.	Compound did not meet method-described identification guidelines. Identification was
•	based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the
	laboratory method detection limit. Reported value is estimated.
ME	LCS recovery percentage is within LCS ME control limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or
	greater.
U	Undetected at detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
6	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Calsciunce Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

F. ne: 714-895-5494

Fax: 714-894-7501

			meritari	103010	aons,	IIIC.								-			_ A	cco	unt 1	#: <u>N</u>	<u> </u>					PO#	:				_			
Consul	tant Address:	601 N.	McDowe	ll Bou	levaro		,			_			_				_ In	void	e To	o: <u>J</u> e	nnife	r Sed	lache	ek_										
Consultant (City/State/Zip:	: Petalun	na, Califo	rnia,	94954	<u> </u>											_ R	epo	rt To	o: <u>P</u> a	ula S	Sime												
ExxonMobi	il Project Mgr:				Jenn	ifer S	edlac	hek						EF	RI Pi	ojec	t #/#	Activ	vity i	#: <u>02</u>	2735	03												
Consultan	t Project Mgr:					Paul	Sim	e							Ex	xon	Mob	il Si	te #:	_			793	74			1	Major	r Projec	t (AFF	= #):			
Consultant Telepi							Fa	x No).: <u>7</u>	07-7	89-0	414				_	Site	Add	ires	s: 99	0 Sa	n Pat	lo A	venu	ie .									
Sampler	Name (Print):	Re	pekah	AV	Vest	gup.									Si	te C	ity, S	State	e, Zi _l	p: All	bany,	Calif	omia	94	706									
Samp	ler Signature:	_ PA	John	170	Lector	1									c)vers	sight	t Ag	enc	y: Ali	amed	la Co	unty	Env	ironr	nenta	al Hea	alth D	epartme	ent				
Sampler Signature: Oversight Agency: Alameda County Environmental Health Department Preservative Matrix Analyze For:																																		
Sample ID	Field Point Name/ Location ID	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	Melhanol	Sodium Bisulfale	NaOH	H ₂ SO ₄ Plastic	H₂SO₄ Glass HNO,	Ice	Other	None (Anbers)	Groundwater	Drinking Water	Sludge	Soll	Air Other (specify):	TPHd and TPHa by	EPA 8015B	TPHmo by EPA 8015B	BTEX by EPA 8260B	7 Oxys by EPA 8260B						RUSH TAT (Pre-Schedule)	5-day TAT	Standard 10-day TAT	Due Date of Report
W-27.5-HPIA	HPIA	10 28 10	12:00	8	X				7		П			1 1	x		T	П		1		 X	$\overline{}$	X			\top			\dashv	†	LG.	X	
W-36 - HPIA	HPIA	1	13:10	8	x			П	Jx		П			П	X	\neg	T	П	7	1	_	×	_	X	$\overline{}$	_	\top			+	H		x	
W-46.5- HPLA	HPIA		13:55	_	X			П	X		П		T	Ħ	хľ	_	T	П	1	1	+	×		X		1	7			+	H	Н	x	
			1					П	Ť	T	П		1	Ħ	1	1	T	П	\dashv	+	t		Ì			1	+			+	H		$\overline{}$	
								П	1	1	П	+	T	H	+	╅	1	H	\dashv	+	✝				\dashv	7	+			_	\vdash		\dashv	
								\Box	✝	t	H	\top	t	Ħ	+	+	+	H	+	†	+		H		\dashv	7	+			+	╁	\vdash	\dashv	
				Т				H	+	+	H	+	╁	Н	+	+	+	H	+	+	1-		H	-	\dashv	\dashv	+			+	\vdash		\dashv	
								H	$^{+}$	+	Н	+	╁	Н	+	+	╁	\vdash	\dashv	+	╁		H	-	\dashv	\dashv	+		-	+	⊢	-	\dashv	
7,40			_					H	+	t	Н	+	+	Н	+	+	+	Н	+	+	╁		\vdash	-		-	+			+	\vdash	H	\dashv	
								H	+	+	Н	+	+	Н	+	+	H	Н	+	┿	⊢		Н	-	\dashv	\dashv	+			+	╀		\dashv	_
Comments/Special Instructions:		1						Ш		1			1_	Ш			_	Щ	_1	La	bora	tory	Com	mei	nts:		\perp	_				L	\Box	
Use silica gel cleanup on all TPHd a			_									P	LEA			L AL				이	Ter	npera	ature	Upo	n Re									
7 oxy = MTBE, TBA, TAME, DIPE, E1 GLOBAL ID#(global ID# - T0619710		and EDI	3				Nor	والجم	ahe/	മം	-i_(16		.	ERI	-EIN	ILAB	S@e	eri-us	s.cor	n		nple									Υ		N	
Relinquished by:		10/29	ate	92		Rece To	ived I	y:	72	li	14	C			19	Date Date	10	_	ime 72 ime	_		iverat					oace?				Υ		N	
0 to 6	80	I.	9-10	l	3D		ne							- 1		39		l		Sit	- Sn	ecific Mana	- if ye	es, p or att	leas tach	e atta	ach pre	e-sch	nedule w ions	/ Calso	cience	9		

Page 14 of 16

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: ERI

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED

Print Date: 10/29/10 16:06 PM

Send Label To Printer

Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

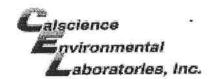
STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email


Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

for a first of the state of the second of th

and the first today are no started that many transfer the succession of the same of the sa

WORK ORDER #: 10- □ □ - ☑ 4 7 1/

SAMPLE RECEIPT FORM

Cooler <u>/</u> of <u>/</u>

CLIENT: EP	DATE: _	10 /30	<u> </u>
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen	n)		
Temperature $\underline{\hspace{0.5cm}}/\hspace{0.5cm} \underline{\hspace{0.5cm}}^{\circ} C + 0.5^{\circ} C (CF) = \underline{\hspace{0.5cm}}/\hspace{0.5cm} \underline{\hspace{0.5cm}}^{\circ} C$	⊞-Blank	☐ Samp	ole
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same d	ay of sampl	ing.	
☐ Received at ambient temperature, placed on ice for transport by Co	urier.		0.5
Ambient Temperature: □ Air □ Filter		Initia	al: <u>///</u>
CUSTODY SEALS INTACT:	- N/A	1141	I(
Cooler	□ N/A		al: //
□ Sample □ □ No (Not Intact) ☑ Not Present		Initia	al:
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	. 🗹		
COC document(s) received complete			
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC	囡		
Sample container label(s) consistent with COC	幺		
Sample container(s) intact and good condition	区		
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time	Ø		
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours	. 🗆		
Proper preservation noted on COC or sample container	. d		
☐ Unpreserved vials received for Volatiles analysis	1		
Volatile analysis container(s) free of headspace	. Ø		
Tedlar bag(s) free of condensation CONTAINER TYPE:			Ø
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCore	es® □Terra	aCores® □]
Water: □VOA ☑VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB	□1AGBna	₂ □1AGBs
□500AGB ☑500AGJ □500AGJs □250AGB □250CGB	s □1PB	□500PB □]500PB na
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂ □_]
Air: □Tedlar [®] □Summa [®] Other: □ Trip Blank Lot#:	Labeled		y: #}
Container, O. Olcar Parameter and Container			-
Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znna: ZnAc ₂ +NaOH	r: rieia-filterea	Scarlieu L	·»· — ***

ne

November 12, 2010

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 10-10-2447

Client Reference: ExxonMobil 79374 / 022735

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/30/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

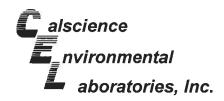
Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Soia

Calscience Environmental Laboratories. Inc. Cecile deGuia Project Manager


NELAP ID: 03220CA • DoD-ELAP ID: L10-41

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Date Received: Work Order No:

10/30/10 10-10-2447 EPA 3510C

601 North McDowell Blvd. Petaluma, CA 94954-2312

Environmental Resolutions, Inc.

Preparation: Method:

ethod: EPA 8015B (M)

Project: Exxo	nMobil 79374 / 0	22735						Pa	nge 1 of 1
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-27.5-HP2A			10-10-2447-1-G	10/29/10 10:45	Aqueous	GC 49	11/01/10	11/03/10 15:55	101101B17
Comment(s):	-The sample extract wa	as subjected to	Silica Gel treatment	prior to analys	sis,				
<u>Parameter</u>		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		100	68-140						
W-52-HP2A			10-10-2447-2-G	10/29/10 12:38	Aqueous	GC 49	11/01/10	11/03/10 16:10	101101B17
Comment(s):	-The sample extract wa	as subjected to	Silica Gel treatment p	orior to analys	sis.				
Parameter		<u>Result</u>	RL	DF	Qual	<u>Units</u>			
TPH as Motor Oil	Ï	ND	250	1	U	ug/L			
Surrogates:	<u> </u>	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	•	90	68-140						
Method Blank			099-12-234-738	N/A	Aqueous	GC 49	11/01/10	11/04/10 13:12	101101B17
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	1	ND	250	1	U	ug/L			

RL - Reporting Limit

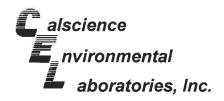
DF - Dilution Factor ,

REC (%)

132

Qual - Qualifiers

Control Limits


68-140

Surrogates:

Decachlorobiphenyl

Qual

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

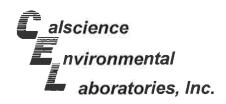
Date Received: Work Order No: Preparation: Method:

10/30/10 10-10-2447 EPA 3510C EPA 8015B (M)

Project: Exxo	nMobil 79374 / (022735						Pa	ge 1 of 1
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-27.5-HP2A			10-10-2447-1-G	10/29/10 10:45	Aqueous	GC 49	11/01/10	11/03/10 15:55	101101B16
Comment(s):	-The sample chroma of the unknown hydro -The sample extract v	carbon(s) in the	sample was based u	pon the speci	ified standard		specified st	andard, Qua	ntitation
<u>Parameter</u>		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Diesel		100	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		100	68-140						
W-52-HP2A			10-10-2447-2-G	10/29/10 12:38	Aqueous	GC 49	11/01/10	11/03/10 16:10	101101B16
Comment(s):	-The sample extract v	vas subjected to	Silica Gel treatment p	prior to analys	sis.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		ND	50	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		90	68-140						
Method Blank			099-12-330-1,704	N/A	Aqueous	GC 49	11/01/10	11/04/10 13:12	101101B16
Parameter		Result	<u>RL</u>	DF	Qual	Units			
TPH as Diesel		ND	50	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				

RL - Reporting Limit

DF - Dilution Factor ,


133

Qual - Qualifiers

68-140

Decachlorobiphenyl

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

10/30/10 10-10-2447 EPA 5030C

Method:

EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-27.5-HP2A		10-10-2447-1-E	10/29/10 10:45	Aqueous	GC 25	11/03/10	11/04/10 05:36	101103B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	340	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	84	38-134						
W-52-HP2A		10-10-2447-2-E	10/29/10 12:38	Aqueous	GC 25	11/03/10	11/04/10 06:09	101103B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND ND	50	1	U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	84	38-134						
Method Blank		099-12-436-5,461	N/A	Aqueous	GC 25	11/04/10	11/03/10 16:12	101103B01
Parameter	Result	RL	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	50	1	U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	82	38-134						

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units:

10/30/10 10-10-2447 EPA 5030C **EPA 8260B** ug/L

Project: ExxonMobil 79374 / 022735

Page 1 of 1

Project: Exxoniviodii /s	3374 / 0227	35									ge i oi i
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch IC
W-27.5-HP2A			10-10-	2447-1-A	10/29/10 10:45	Aqueous	GC/MS L	11/01/10	11/01 17:		101101L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	1.7	0.50	1		Diisopropyl E	Ether (DIPE)		ND	0.50	1	U
Toluene	2.1	0.50	1		Ethyl-t-Butyl	Ether (ETBE))	ND	0.50	-1	U
Ethylbenzene	20	0.50	1		Tert-Amyl-Mo	ethyl Ether (T	AME)	ND	0.50	1	U
Xylenes (total)	46	0.50	1		1,2-Dibromo	ethane		ND	0.50	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe	ethane		ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U							
Surrogates:	REC (%)	Control Limits	Qua	<u>al</u>	Surrogates:			REC (%)	Control Limits	2 2	Qual
1,4-Bromofluorobenzene	95	68-120			Toluene-d8			97	80-120		
Dibromofluoromethane	107	80-127			1,2-Dichloroe	ethane-d4		96	80-128		
W-52-HP2A			10-10-2	2447-2-A	10/29/10 12:38	Aqueous	GC/MS L	11/01/10	11/01 18:0		101101L01
	D #	D.	DE					D#	DI		Overl
Parameter	Result	RL	DF	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1	U	Diisopropyl E	. ,		ND	0.50	1	U
Toluene	ND	0.50	1	U		Ether (ETBE)		ND	0.50	1	U
Ethylbenzene	ND	0.50	1	U	,	ethyl Ether (T	AME)	ND	0.50	1	U
Xylenes (total)	ND	0.50	1	U	1,2-Dibromoe			ND	0.50	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe	ethane		ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U							
Surrogates:	<u>REC (%)</u>	Control Limits	Qua	<u>al</u>	Surrogates:			<u>REC (%)</u>	Control Limits	2	Qual
1,2-Dichloroethane-d4	98	80-128			1,4-Bromoflu	orobenzene		91	68-120		
Dibromofluoromethane	106	80-127			Toluene-d8			98	80-120		
Method Blank			099-12	-884-460	N/A	Aqueous	GC/MS L	11/01/10	11/01 12:3		101101L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Foluene	ND	0.50	1	Ū	Ethyl-t-Butyl	, ,)	ND	0.50	4	Ū
Ethylbenzene	ND	0.50	4	Ū	Tert-Amyl-Me	, ,		ND	0.50	1	Ū
Kylenes (total)	ND	0.50	4	Ū	1,2-Dibromoe	•	•	ND	0.50	4	Ū
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	Ū	1,2-Dichloroe			ND	0.50	1	Ų
Fert-Butyl Alcohol (TBA)	ND	5.0	1	U							
Surrogates:	REC (%)	Control Limits	Qua	_	Surrogates:			REC (%)	Control Limits	<u>C</u>	Qual
1,2-Dichloroethane-d4	93	80-128			1.4-Bromoflu	orobenzene		84	68-120		
Dibromofluoromethane	107	80-127			Toluene-d8	0.000,120,10		98	80-120		
omonuoromethane	107	00-121			i oluci ic-uo			70	30 120		

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 10/30/10 10-10-2447 EPA 5030C EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-11-0112-3	Aqueous	GC 25	11/04/10		11/03/10	101103S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	90	94	68-122	3	0-18	

RPD - Relai

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

10/30/10 10-10-2447 EPA 5030C

EPA 8260B

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-10-2448-1	Aqueous	GC/MS L	11/01/10		11/01/10	101101\$01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	98	101	76-124	3	0-20	
Toluene	104	106	80-120	2	0-20	
Ethylbenzene	102	102	78-126	0	0-20	
Methyl-t-Butyl Ether (MTBE)	77	82	67-121	7	0-49	
Tert-Butyl Alcohol (TBA)	88	93	36-162	5	0-30	
Diisopropyl Ether (DIPE)	72	74	60-138	3	0-45	
Ethyl-t-Butyl Ether (ETBE)	73	76	69-123	5	0-30	
Tert-Amyl-Methyl Ether (TAME)	77	80	65-120	3	0-20	
Ethanol	111	109	30-180	2	0-72	
1,2-Dibromoethane	95	101	80-120	6	0-20	
1,2-Dichloroethane	90	94	80-120	4	0-20	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-10-2447 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Dat Prepa		Date Analyzed	LCS/LCSD Bate Number	ch
099-12-234-738	Aqueous	GC 49	11/01	/10	11/03/10	101101B17	
<u>Parameter</u>	LCS %	REC LCS	D %REC	%REC	CL RPD	RPD CL	Qualifiers
TPH as Motor Oil	114	1	15	75-11	7 1	0-13	

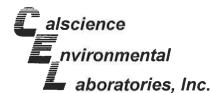
MMM__

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-10-2447 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Dat Prepa	4//	Date Analyzed	LCS/LCSD Bate Number	h
099-12-330-1,704	Aqueous	GC 49	11/01	/10	11/03/10	101101B16	
<u>Parameter</u>	LCS %	<u> 6REC LCS</u>	D %REC	%REC C	CL RPD	RPD CL	Qualifiers
TPH as Diesel	105	1	06	75-117	' 1	0-13	


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-10-2447 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instr	ument	Dat Prepa	100	Da Anal	200	LCS/LCSD Bate Number	:h
099-12-436-5,461	Aqueous	GC	25	11/04	/10	11/03/10		101103B01	
<u>Parameter</u>	LCS %	<u> 6REC</u>	LCSD	%REC	%RE	C CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	102		102		78	-120	0	0-10	

RPD - Rela

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-10-2447 EPA 5030C EPA 8260B

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Numbe	
099-12-884-460	Aqueous	GC/MS L	11/01/10	11/01	/10	101101L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	97	93	80-120	73-127	4	0-20	
Toluene	106	101	80-120	73-127	5	0-20	
Ethylbenzene	102	97	80-120	73-127	5	0-20	
Methyl-t-Butyl Ether (MTBE)	80	81	69-123	60-132	1	0-20	
Tert-Butyl Alcohol (TBA)	93	96	63-123	53-133	3	0-20	
Diisopropyl Ether (DIPE)	72	71	59-137	46-150	1	0-37	
Ethyl-t-Butyl Ether (ETBE)	74	75	69-123	60-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	82	79	70-120	62-128	3	0-20	
Ethanol	123	89	28-160	6-182	32	0-57	
1,2-Dibromoethane	101	100	79-121	72-128	0	0-20	
1,2-Dichloroethane	93	91	80-120	73-127	2	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 10-10-2447

Qualifier *	Definition See applicable analysis comment
1	See applicable analysis comment. Surrogate compound recovery was out of control due to a required sample dilution,
1	therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The
2	associated method blank surrogate spike compound was in control and, therefore, the
	sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out
	of control due to matrix interference. The associated LCS and/or LCSD was in control
	and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD
2000	was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control
	due to a matrix interference effect. The associated batch LCS/LCSD was in control and,
В	hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range. Sample was extracted past end of recommended max. holding time.
ET	•
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the
3	laboratory method detection limit. Reported value is estimated.
ME	LCS recovery percentage is within LCS ME control limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter
_	concentration in the sample exceeding the spike concentration by a factor of four or
	greater.
U	Undetected at detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Calsciunce **Environmental** Laboratories, Inc.

7440 Lincoln Way

Consultant Name: Environmental Resolutions, Inc.

Garden Grove, CA 92841

F. ae: 714-895-5494

Fax: 714-894-7501

Co	nsultant Name:	Environ	mental F	Resolu	tions,	Inc.											Acc	ount	#:_N	IA_				F	0#:								
Const	ultant Address:	601 N	McDowe	ll Bou	levaro	l										_ 1	лчо	ice T	o: <u>J</u> e	ennifer	Sedla	achel	k										
Consultant	t City/State/Zip:	Petalun	na, Califo	mia,	94954		_									_	Rep	ort T	o: <u>P</u>	aula S	me												
ExxonMol	bil Project Mgr:				Jenn	ifer S	edlac	hek					'	ERI F	roje	ect#	Act	ivity	#: <u>0</u> :	22735)3												
Consulta	nt Project Mgr:					Paula	Sime	2						_ =	ххо	nMo	bil S	ite#	: _			7937	74			ı	Major	Proje	ct (AF	E#):			
Consultant Telep								x No	.: 70	7-78	9-04	14				Site	e Ad	dres	s: 9	90 Sar	Pabl	o Av	enue	е									
Sample	er Name (Print):	Re												_, s	ite	City,	Sta	te, Zi	ір: <u>А</u>	lbany,	Califo	rnia	947	06		_							
Sam	pler Signature:		arby	w	MZ/	with	1							_	Ove	rsig	ht A	gend	y: <u>A</u>	lamed	a Cou	nty E	Envir	onn	enta	l He	alth De	epartm	nent				
					_	_			_	Pres	erva	ative	_			Ma	trix	_					_	An	alyze	For				1			
Sample ID	Field Point Name/ Location ID	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	Methanol	HCI (VOAs)	NaOH H SO Bleete	H ₂ SO ₄ Flessie:	HNO ₃	lce	None (Ambere) Amber's	Groundwater	Wastewater Drinking Mater	Sludge	Soil	Air	TPHd and TPHq by	EPA 8015B	TPHmo by EPA 8015B	BTEX by EPA 8260B	7 Oxys by EPA 8260B						RUSH TAT (Pre-Schedule)	5-day TAT	Standard 10-day TAT	Due Date of Report
W-27.5- HP214	HPZA	1429/10	10:45	8	X				х	Т	1	П			х	T	1	П	T	1	X	x	-	_	1	\top				╁	147	X	
W-52- HP2A	HP2A	10/29/10		8	X				X		1	П		X	_		T		T		X	X			1	\forall				T	1	X	
		,									T	П								\top		Ì				\exists			\neg	T	T	\vdash	
								П	Т			П								\top		T	T	T	7	7				1	1	T	
			8						Τ	П	T	П		П				П	\top	\top		T	\exists	\dashv	\exists	T			\neg	T	T		
								П	T		1	П					T	П	\top	\top			\forall	T	\dashv	7			-	+	+	t	
3172		ĺ						Ħ	T	\top	T	Ħ		\top		1	T	H	+	╅		\dashv	7	7	\dashv	+			-	+	+	t	
								\vdash	\top	\vdash	\dagger	\forall	\dashv	T	П	\top	T	Н	+	╈		\dashv	\dashv	\forall	\dashv	+			-	+	+	+	
								H	\top	\vdash	✝	H	+	+		\top	+	Н	+	╁		\dashv	+	\dashv	+	+			\dashv	╁	╁	+	
								\forall	1	H	+	H		\vdash	H	+	\dagger	Н	+	╁		\dashv	+	\dashv	\dashv	+		(3)	\dashv	╁	┿	╁	
Comments/Special Instructions: Use silica gel cleanup on all TPHd 7 oxy = MTBE, TBA, TAME, DIPE, I GLOBAL ID # (global ID# - T06197	ETBE, 1,2-DCA	and EDI	3	L			Nore	ralla	he@) eri	110		Ε			LL PI			го	Sar	tory (npera nple (A Vial	ture Conta	Upo ainer	n Re	tact?					Y		N	
Relinguished by Mul		10/29	ate //0	/4:	me 28	Rece			~	ران محر		E		110	Da TXI	te -(0		Time		C Deli evel 2 evel 3					-					1		N	
Relinquished by:	xO	10-9c	ate 1-(D		me	Rece	. []	yj(La	(EX)	rsonr	nel):			T	Da			Time	L	evel 4									w/ Cal:	scien	ce		
· · · · · · · · · · · · · · · · · · ·							0 (-				

< WebShip >>>>>

800-322-5555 www.gso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: ETIC

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED Tracking #: 515260131

SDS

ORC

D

GARDEN GROVE

D92843A

85930626

Print Date : 10/29/10 16:09 PM

Package 1 of 1

WORK ORDER #: 10-1 0-2 4 4 7

E RECEIPT FORM Cooler __ of __ ERC DATE: 10 /30/10 CLIENT: TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature | $.6 \, ^{\circ}\text{C} + 0.5 \, ^{\circ}\text{C} \, (\text{CF}) = \& .1 \, ^{\circ}\text{C}$ Ƴ Blank ☐ Sample ☐ Sample(s) outside temperature criteria (PM/APM contacted by: ___ ☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. ☐ Received at ambient temperature, placed on ice for transport by Courier. Initial: 💯 Ambient Temperature: Air ☐ Filter **CUSTODY SEALS INTACT:** ☑ Cooler ☐ No (Not Intact) □ Not Present □ N/A Initial: Not Present ☐ Sample ☐ No (Not Intact) Initial **SAMPLE CONDITION:** Yes N/A No Chain-Of-Custody (COC) document(s) received with samples..... COC document(s) received complete..... Collection date/time, matrix, and/or # of containers logged in based on sample labels. ☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished. Sampler's name indicated on COC...... П Sample container label(s) consistent with COC...... Sample container(s) intact and good condition..... Proper containers and sufficient volume for analyses requested..... Analyses received within holding time..... pH / Residual Chlorine / Dissolved Sulfide received within 24 hours...... Proper preservation noted on COC or sample container..... ☐ Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace...... Tedlar bag(s) free of condensation..... CONTAINER TYPE: Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve (_____) □EnCores® □TerraCores® □ Water: □VOA ☑VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1AGBna₂ □1AGBs □500AGB ☑500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □500PB □500PBna □250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ □ Air: □Tedlar® □Summa® Other: □____ Trip Blank Lot#:____ Labeled/Checked by: (

Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₂PO₄ s: H₂SO₄ znna: ZnAc₂+NaOH f: Field-filtered Scanned by:

SOP T100_090 (09/13/10)

November 11, 2010

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 10-10-2354

Client Reference: ExxonMobil 79374 / 022735

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/29/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Sois

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

NELAP ID: 03220CA • DoD-ELAP ID: L10-41 • CS

CSDLAC ID: 10109

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

10/29/10 10-10-2354 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 1 of 1

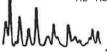
Project: Exxo	nMobil 79374 / 0	22735						Pa ———	ge 1 of 1
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-60.5-HP2B			10-10-2354-1-G	10/27/10 13:30	Aqueous	GC 49	11/01/10	11/03/10 15:11	101101B17
Comment(s):	-The sample extract w	as subjected to	Silica Gel treatment p	orior to analys	sis.				
Parameter		Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		96	68-140						
W-59-HP1B			10-10-2354-2-G	10/28/10 09:20	Aqueous	GC 49	11/01/10	11/03/10 15:26	101101B17
Comment(s):	-The sample extract w	as subjected to	Silica Gel treatment p	orior to analys	sis.	= !			
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		100	68-140						
Method Blank			099-12-234-738	N/A	Aqueous	GC 49	11/01/10	11/04/10 13:12	101101B17
Parameter		Result	RL	DF	Qual	Units			
TPH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		132	68-140						

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312


Date Received: Work Order No: Preparation: Method: 10/29/10 10-10-2354 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 1 of 1

Project: Exxor	nMobil 79374 / 02	22735						Pa	ge 1 of 1
Client Sample Number	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-60.5-HP2B			10-10-2354-1-G	10/27/10 13:30	Aqueous	GC 49	11/01/10	11/03/10 15:11	101101B16
Comment(s):	-The sample extract wa	as subjected to	Silica Gel treatment	prior to analys	sis.				
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel	(62	50	1		ug/L			
Surrogates:	J	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	,	96	68-140						
W-59-HP1B			10-10-2354-2-G	10/28/10 09:20	Aqueous	GC 49	11/01/10	11/03/10 15:26	101101B16
Comment(s):	-The sample extract wa	as subjected to	Silica Gel treatment p	orior to analys	sis				
<u>Parameter</u>		Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Diesel		130	50	1		ug/L			
Surrogates:	Ī	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	,	100	68-140						
Method Blank			099-12-330-1,704	N/A	Aqueous	GC 49	11/01/10	11/04/10 13:12	101101B16
Parameter		Result	RL	DF	Qual	Units			
TPH as Diesel	l -	ND	50	1	U	ug/L			
Surrogates:	<u> </u>	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	1	133	68-140						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No:

10/29/10 10-10-2354

Preparation:

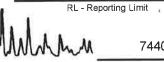
EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-60.5-HP2B		10-10-2354-1-E	10/27/10 13:30	Aqueous	GC 42	11/03/10	11/03/10 11:44	101103B01
Parameter	Result	<u>RL</u>	DF	Qual	Units			
TPH as Gasoline	ND	50	1	U	ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	82	38-134						
W-59-HP1B		10-10-2354-2-E	10/28/10 09:20	Aqueous	GC 42	11/03/10	11/03/10 12:57	101103B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	50	1	U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	86	38-134						
Method Blank		099-12-436-5,455	N/A	Aqueous	GC 42	11/03/10	11/03/10 02:37	101103B01
Parameter Parameter	Result	<u>RL</u>	DF	Qual	Units			
TPH as Gasoline	ND	50	1	U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	80	38-134						

luma


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 10/29/10 10-10-2354 EPA 5030C EPA 8260B ug/L

Project: ExxonMobil 79374 / 022735

Page 1 of 1

Client Sample Number			L	ab Sample	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Anal		QC Batch ID
W-60.5-HP2B			10-10	Number -2354-1-A	10/27/10 13:30	Aqueous	GC/MS BB		10/3	0/10	101030L01
Parameter Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPF)		ND	0.50	1	U
Toluene	ND	0.50	1	Ü	Ethyl-t-Butyl		١	ND	0.50	4	Ü
Ethylbenzene	ND	0.50	1	Ü	Tert-Amyl-Me			ND	0.50	1	ŭ
Xylenes (total)	ND	0.50	1	Ü	1.2-Dibromoe	, ,	, uvi=,	ND	0.50	1	ŭ
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	Ü	1.2-Dichloroe			ND	0.50	1	ŭ
, ,	ND ND	5.0	1	Ü	1,2-DIGITIO100	Striano		110	0.00	10	· ·
Tert-Butyl Alcohol (TBA) <u>Surrogates:</u>	REC (%)	Control Limits	Qu	-	Surrogates:			REC (%)	Control Limits	. (<u>Qual</u>
1,4-Bromofluorobenzene	100	68-120			Toluene-d8			100	80-120		
Dibromofluoromethane	103	80-127			1,2-Dichloroe	ethane-d4		99	80-128		
W-59-HP1B			10-10-	-2354-2-A	10/28/10 09:20	Aqueous	GC/MS BB	10/30/10	10/3 20:		101030L01
Parameter_	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Foluene	ND	0.50	લં	ū	Ethyl-t-Butyl	, ,)	ND	0.50	1	U
Ethylbenzene	ND	0.50	4	Ū	Tert-Amyl-Me	•		ND	0.50	1	U
Xylenes (total)	ND	0.50	1	ū	1,2-Dibromoe	,	,	ND	0.50	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	Ū	1,2-Dichloroe			ND	0.50	4	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U	·						
Surrogates:	REC (%)	Control Limits	<u>Qu</u>	<u>al</u>	Surrogates:			REC (%)	Control Limits	. (<u>Qual</u>
1.2-Dichloroethane-d4	103	80-128			1,4-Bromoflu	orobenzene		100	68-120		
Dibromofluoromethane	104	80-127			Toluene-d8			99	80-120		
Method Blank			099-12	2-884-461	N/A	Aqueous	GC/MS BB	10/30/10	10/30 11:		101030L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	<u>DE</u>	Qual
	ND	0.50	1	U	Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Benzene	ND	0.50	4	U	Ethyl-t-Butyl		١	ND	0.50	1	Ü
Foluene	ND ND	0.50	1	U	Tert-Amyl-Me	• •		ND	0.50	1	U
Ethylbenzene	ND	0.50	1	U	1,2-Dibromoe	•	,	ND	0.50	1	Ü
Kylenes (total) Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	Ü	1,2-Dibromoe			ND	0.50	4	Ü
retr-Butyl Alcohol (TBA)	ND	5.0	1	U	1,2-010110100	ou la la		.,0	0.00	10	Ū
Surrogates:	REC (%)	Control Limits	Qu	_	Surrogates:			REC (%)	Control Limits	. (<u>Qual</u>
1,2-Dichloroethane-d4	98	80-128			1.4-Bromoflu	orobenzene		100	68-120		
'	93	80-127			Toluene-d8	\$100011E0116		100	80-120		
Dibromofluoromethane	93	00-12/			i oluene-d8			100	00-120		
					8						

DF - Dilution Factor ,

Qual - Qualifier

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 10/29/10 10-10-2354 EPA 5030C EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-11-0061-1	Aqueous	GC 42	11/03/10		11/03/10	101103S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	111	107	68-122	4	0-18	

All RPD - Rejai

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

4

3

2

3

3

69-123

65-120 30-180

80-120

80-120

0-30

0-20

0-72

0-20

0-20

10/29/10 10-10-2354 EPA 5030C EPA 8260B

Method:

Project ExxonMobil 79374 / 022735

Ethyl-t-Butyl Ether (ETBE)

1,2-Dibromoethane

1,2-Dichloroethane

Ethanol

Tert-Amyl-Methyl Ether (TAME)

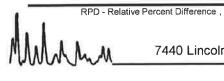
Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-10-2229-1	Aqueous	GC/MS BB	10/30/10		10/30/10	101030801
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Parameter	INO MILO	MOD 701CC	701 KEO OE	RPD	111 000	Qualifiers
Benzene	107	109	76-124	2	0-20	
Toluene	106	108	80-120	2	0-20	
Ethylbenzene	106	108	78-126	2	0-20	
Methyl-t-Butyl Ether (MTBE)	114	119	67-121	4	0-49	
Tert-Butyl Alcohol (TBA)	113	118	36-162	5	0-30	
Diisopropyl Ether (DIPE)	107	112	60-138	4	0-45	

116

118

103

118


114

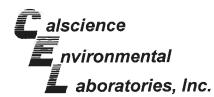
111

101

114

111

nel


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-10-2354 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepare		ate lyzed	LCS/LCSD Bate Number	:h
099-12-234-738	Aqueous	GC 49	11/01/1	11/0	3/10	101101B17	
Parameter	LCS %	6REC LCSE	%REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	114	. 11	5	75-117	1	0-13	

RPD - Rela

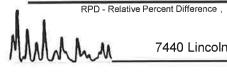
Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-10-2354 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		LCS/LCSD Batc Number	h
099-12-330-1,704	Aqueous	GC 49	11/01/10	11/03/	10	101101B16	
<u>Parameter</u>	LCS	6REC LCSD	%REC %	REC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	105	106	3	75-117	1	0-13	

RPD - Relative Percent Difference ,
7440 Lincoln




Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-10-2354 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrur	Instrument		e red	Da Analy		LCS/LCSD Bate Number	h
099-12-436-5,455	Aqueous	GC 4	12	11/03	10	11/03	/10	101103B01	
<u>Parameter</u>	LCS %	<u>6REC</u>	LCSD %	<u>6REC</u>	%RE	C CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	120		116		78	-120	3	0-10	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: N/A 10-10-2354 EPA 5030C

Method:

EPA 8260B

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD I Number	
099-12-884-461	Aqueous	GC/MS BB	10/30/10	10/30	/10	101030L0	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	101	103	80-120	73-127	2	0-20	
Toluene	100	103	80-120	73-127	2	0-20	
Ethylbenzene	102	104	80-120	73-127	2	0-20	
Methyl-t-Butyl Ether (MTBE)	93	99	69-123	60-132	6	0-20	
Tert-Butyl Alcohol (TBA)	113	112	63-123	53-133	1	0-20	
Diisopropyl Ether (DIPE)	101	102	59-137	46-150	1	0-37	
Ethyl-t-Butyl Ether (ETBE)	99	101	69-123	60-132	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	98	101	70-120	62-128	3	0-20	
Ethanol	114	102	28-160	6-182	11	0-57	
1,2-Dibromoethane	99	101	79-121	72-128	2	0-20	
1,2-Dichloroethane	100	102	80-120	73-127	2	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 10-10-2354

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
1	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS recovery percentage is within LCS ME control limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for $\%$ moisture.

Calscionce Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

F. ie: 714-895-5494

Fax: 714-894-7501

Cons	sultant Name:	Environ	nental R	esolut	ions,	inc.											_ ^	/ccc	unt	#:_!	NA				3	20#:						
Consul	tant Address:	601 N. N	1cDowell	Boule	evard												_ 10	nvoi	ce T	o: <u>1</u>	enn	ifer Sedl	ache	k								
Consultant (City/State/Zip:	Petalum	a, Califo	rnia, 9	4954												F	Repo	ort T	o: <u>F</u>	aula	Sime										
ExxonMobi	l Project Mgr:				Jenni	fer Se	edlaci	nek						EF	RI Pi	oje	ct #/	Acti	vity	#: C	227	3503										
Consultan	t Project Mgr:					Paula	Sime)						_	Ex	xon	Mol	bil S	ite #	k:			793	74			Major Project	(AFE #	f):			
Consultant Telepi	none Number:	707-766	-2000				Fax	k No	.: 70	07-7	89-0)414					Site	Ad	dres	s: 9	90 8	San Pab	lo Av	/enu	е							
Sampler	Name (Print):	Reb	eloh Al	ules:	מאא										Si	te C	ity,	Stat	e, Z	ip:_/	Albai	ny, Califo	ornia	947	06							
Samp	ler Signature:	A	lokut	Mille	W									otorie.	c)ver	sigh	nt Ag	geno	:y:_ <u>/</u>	\lam	eda Cou	inty !	Envi	ronn	nental	Health Departmen	ıt				
					7					Pre	eser	vativ	е	_	T		Mat			=	T					alyze		\neg				
Sample ID	Field Point Name/ Location ID	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	Methanol	Sodium Bisuffate HCL (VOAs)	NaOH	H ₂ SO ₄ Plastic	H ₂ SO ₄ Glass	Ice	Other	None (Ambaus) AMBERS	Groundwaler	Wastewater Drinking Water	Sludge	Soil	Air	Other (specify):	TPHd and TPHg by EPA 8015B	TPHmo by EPA 8015B	BTEX by EPA 8260B	7 Oxys by EPA 8260B				RUSH TAT (Pre-Schedule)	5-day TAT	Standard 10-day TAT	Due Date of Report
W-605-HP2B	HP2B	Idzīla	13:30	8	X			П	×		П		\top		x		T			П	7	Х			х			\top			Х	
W-59-HPIB	HPIB		9:20	15-7	X			H	7	(1	Ŧ		_	×	1	1			7	×	×	X	X			\prod	4	-	X	
									-												1											
Comments/Special Instructions: Use silica gel cleanup on all TPHd: 7 oxy = MTBE, TBA, TAME, DIPE, E GLOBAL ID # (global ID) - T061971 Relinquished by	TBE, 1,2-DCA			1	me :40	1	Nor eived to	ov:		_			m	ER	I-EIN	/ILA Dat	BS@	geri-		TO om	QC I		ature Cont ds Fr	Upo aine ee o	on R rs Ir of He	tact? adspa	ice?		Y Y		N N	
Relinquished by:	8D	0 99	ate	Ti	me 30	_	eived i	by (L	ab p	erso	me					Dat	10 te 19/10	1	Time	9	Leve Leve Site Proje	el 4 Specific					ch pre-schedule w/	Calscir	ence			

rage 13 of 15

<WebShip>>>>>

800-322-5555 www.gso.com

Ship From: Tracking #: 515251025 ALÁN KEMP NPS CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520 Ship To: SAMPLE RECEIVING CEL GARDEN GROVE 7440 LINCOLN WAY GARDEN GROVE, CA 92841 D92843A COD: \$0.00 Reference: PREMIER ENV, KOCH CARBON, ETIC, ERI, CONOCO, PARS Delivery Instructions: Signature Type: SIĞNATURE REQUIRED

Print Date: 10/28/10 16:06 PM

Package 1 of 1

Send Label To Printer

Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

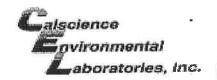
STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

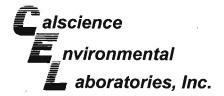

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section.

Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

I saw (Injury 2 of all windows of 1



WORK ORDER #: 10-10-2 3 5 1

SAMPLE RECEIPT FORM Cooler / of /

CLIENT: R	DATE:	10/29	7/10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen)		A CHILDREN
Temperature $\frac{1}{\sqrt{2}} \cdot 2^{\circ}C + 0.5^{\circ}C (CF) = \frac{1}{\sqrt{2}} \cdot \frac{7}{\sqrt{2}} \cdot C = \frac{1}{\sqrt{2}} \cdot \frac{7}{\sqrt{2}} \cdot C = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}$	Blank	☐ Sample	Э
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same da	y of samplin	ıg.	
☐ Received at ambient temperature, placed on ice for transport by Cou			
Ambient Temperature: ☐ Air ☐ Filter		Initial:	15
CUSTODY SEALS INTACT:			ne
☐ Cooler ☐ ☐ No (Not Intact) ☐ Not Present	□ N/A	Initial	
☐ Sample ☐ ☐ No (Not Intact) ☐ Not Present		Initial:	<u> </u>
SAMPLE CONDITION:	/es	No	N/A
Chain-Of-Custody (COC) document(s) received with samples		П	
COC document(s) received complete			
	<i>)</i> =		_
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.	d		
Sampler's name indicated on COC	/		_
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition	4 N		
Proper containers and sufficient volume for analyses requested	' ,		
Analyses received within holding time	7	П	
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours	_		
Proper preservation noted on COC or sample container			L-1
☐ Unpreserved vials received for Volatiles analysis	rd.		
Volatile analysis container(s) free of headspace	-		
Tedlar bag(s) free of condensation CONTAINER TYPE:			<u></u>
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	[®] □Terra0	Cores [®] □_	
Water: □VOA ☑VÕAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB □]1AGB na₂ [∃1AGB s
□500AGB ☑500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB □	3500PB □5	00PBna
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na₂ □	🗅		
Air: Tedlar [®] Summa [®] Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: B Preservative: h: HCl n: HNO ₂ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znna: ZnAc ₂ +NaOH f:	Envelope R	eviewed by:	WX-

SOP T100_090 (09/13/10)

January 05, 2011

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 10-12-1645

Client Reference:

ExxonMobil 79374 / 022735

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 12/18/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Pecile & en Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia **Project Manager**

NELAP ID: 03220CA • DoD-ELAP ID: L10-41 **CSDLAC ID: 10109**

SCAQMD ID: 93LA0830

FAX: (714) 894-7501

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 12/18/10 10-12-1645 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735


Page 1 of 2

Project: Exxo									ige i oi z
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-9-MW1			10-12-1645-2-H	12/16/10 11:30	Aqueous	GC 46	12/22/10	12/23/10 03:58	101222B08
Comment(s):	-The sample extrac	t was subjected	to Silica Gel treatment	prior to analy	sis.				
Parameter		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
ΓPH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		117	68-140						
W-10-MW2			10-12-1645-3-H	12/16/10 11:50	Aqueous	GC 46	12/22/10	12/23/10 04:13	101222B08
Comment(s):	-The sample extrac	t was subjected	to Silica Gel treatment	prior to analy	sis.	61279			
Parameter		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		134	68-140						
W-12-MW3			10-12-1645-4-H	12/16/10 12:10	Aqueous	GC 46	12/22/10	12/23/10 04:29	101222B08
Comment(s):	-The sample extrac	t was subjected	to Silica Gel treatment	prior to analys	sis.				
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		98	68-140						
W-7-MW4	142-511-55		10-12-1645-5-H	12/16/10 12:35	Aqueous	GC 46	12/22/10	12/23/10 04:44	101222B08
Comment(s):	-The sample extract	t was subjected	to Silica Gel treatment	prior to analys	sis.				
Parameter		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
PH as Motor Oil		ND	250	1	U	ug/L			
D		REC (%)	Control Limits		Qual				
Surrogates:									

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

12/18/10 10-12-1645 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 2 of 2

,									.90 - 0
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-8-MW5			10-12-1645-6-H	12/16/10 12:50	Aqueous	GC 46	12/22/10	12/23/10 04:59	101222B08
Comment(s):	-The sample extract	was subjected	to Silica Gel treatment	prior to analy	sis.				
<u>Parameter</u>		Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		108	68-140						
W-10-MW6			10-12-1645-7-H	12/16/10 13:10	Aqueous	GC 46	12/22/10	12/23/10 05:15	101222B08
Comment(s):	-The sample extract	was subjected	to Silica Gel treatment	prior to analys	sis.				
Parameter		Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		110	68-140						
Method Blank		1776	099-12-234-772	N/A	Aqueous	GC 46	12/22/10	12/23/10 02:41	101222B08
Parameter_		Result	RL	<u>DF</u>	Qual	Units			
TPH as Motor Oil		ND	250	1	U	ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		103	68-140						

TC - Teporting

DF - Dilution Factor

Qual - Qualifier

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

10-12-1645 **EPA 3510C** EPA 8015B (M)

12/18/10

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-9-MW1		100	10-12-1645-2-H	12/16/10 11:30	Aqueous	GC 46	12/21/10	12/23/10 03:58	101221B07
Comment(s):	-The sample chromato of the unknown hydrod -The sample extract wa	arbon(s) in th	ne sample was based i	upon the spec	ified standar		specified st	tandard. Qua	ntitation
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		71	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		117	68-140						
W-10-MW2			10-12-1645-3-H	12/16/10 11:50	Aqueous	GC 46	12/21/10	12/23/10 04:13	101221B07
Comment(s):	-The sample chromato of the unknown hydrod -The sample extract wa	arbon(s) in th	ne sample was based ι	ipon the spec	ified standar		specified st	andard. Qua	intitation
Parameter		Result	RL	DF	Qual	<u>Units</u>			
TPH as Diesel		110	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		135	68-140						
W-12-MW3		To He	10-12-1645-4-H	12/16/10 12:10	Aqueous	GC 46	12/21/10	12/23/10 04:29	101221B07
Comment(s):	-The sample chromato of the unknown hydroc -The sample extract wa	arbon(s) in th	ne sample was based u	ipon the speci	ified standard		specified st	andard. Qua	ntitation
Parameter		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel	:	2900	50	1		ug/L			
Surrogates:]	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	!	98	68-140						

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Date Received: Work Order No:

12/18/10 10-12-1645

Petaluma, CA 94954-2312

Preparation: Method:

EPA 3510C EPA 8015B (M)

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch IE
W-7-MW4			10-12-1645-5-H	12/16/10 12:35	Aqueous	GC 46	12/21/10	12/23/10 04:44	101221B07
Comment(s):	of the unknown I	nydrocarbon(s) in th	rn for TPH does not me sample was based to Silica Gel treatment	upon the speci	fied standard		e specified s	andard. Qua	ıntitation
Parameter		<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		2000	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		116	68-140						
W-8-MW5			10-12-1645-6-H	12/16/10 12:50	Aqueous	GC 46	12/21/10	12/23/10 04:59	101221B07
Comment(s):	of the unknown h	nydrocarbon(s) in th	rn for TPH does not me sample was based of to Silica Gel treatment	upon the speci	fied standard		specified st	andard. Qua	ntitation
Parameter		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
ΓPH as Diesel		1100	50	1		ug/L			
Surrogates:		REC (%)	Control Limits		Qual				
		108	68-140						

-The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation

<u>Units</u>

ug/L

<u>DF</u>

RL - Reporting Limit

DF - Dilution Factor

Result

REC (%)

110

110

Qual - Qualifier

of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

<u>RL</u>

50

Control Limits

68-140

-The sample extract was subjected to Silica Gel treatment prior to analysis.

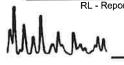
Comment(s):

<u>Parameter</u>

<u>Surrogates:</u> Decachlorobiphenyl

TPH as Diesel

Qual


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 12/18/10 10-12-1645 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 3 of 3

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-330-1,753	N/A	Aqueous	GC 46	12/21/10	12/23/10 02:41	101221B07
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Diesel	ND	50	1	U	ug/L			
Surrogates;	REC (%)	Control Limits		Qual				
Decachiorobiphenyl	103	68-140						

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 12/18/10 10-12-1645 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Page 1 of 2

Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch IE
10-12-1645-2-E	12/16/10 11:30	Aqueous	GC 29	12/20/10	12/21/10 06:49	101220B02
RL	<u>DF</u>	Qual	<u>Units</u>			
50	1		ug/L			
Control Limits		Qual				
38-134						
10-12-1645-3-E	12/16/10 11:50	Aqueous	GC 29	12/20/10	12/21/10 07:24	101220B02
<u>RL</u>	DF	Qual	<u>Units</u>			
50	1	U	ug/L			
Control Limits		<u>Qual</u>				
38-134						
10-12-1645-4-E	12/16/10 12:10	Aqueous	GC 29	12/20/10	12/21/10 07:59	101220B02
RL	DF	Qual	<u>Units</u>			
500	10		ug/L			
Control Limits		Qual				
38-134						
10-12-1645-5-E	12/16/10 12:35	Aqueous	GC 29	12/20/10	12/21/10 08:34	101220B02
RL	DF	Qual	Units			
250	5		ug/L			
Control Limits		<u>Qual</u>				
	RL 50 Control Limits 38-134 10-12-1645-3-E RL 50 Control Limits 38-134 10-12-1645-4-E RL 500 Control Limits 38-134 10-12-1645-4-E RL 500 Control Limits 38-134	Number Collected 10-12-1645-2-E 12/16/10 11:30 RL 50 DF 1 Control Limits 38-134 12/16/10 11:50 RL 50 DF 1 Control Limits 38-134 12/16/10 12:10 RL 500 DE 10 Control Limits 38-134 DE 10 Control Limits 38-134 12/16/10 12:35 RL 500 DE 10 Control Limits 38-134 DE 12:35	Number Collected Matrix 10-12-1645-2-E 12/16/10 Aqueous Aqueous RL 50 1 DF Qual Qual 50 1 Qual Aqueous 10-12-1645-3-E 12/16/10 Aqueous Aqueous RL DF Qual 1 U Control Limits 38-134 Qual Aqueous RL DE Qual Qual 500 10 Aqueous RL DE Qual Qual 500 10 Qual Control Limits 38-134 Qual 10-12-1645-5-E 12/16/10 Aqueous RL DE Qual Qual SEL DE Qual 5	Number Collected Matrix Instrument 10-12-1645-2-E 12/16/10 11:30 Aqueous GC 29 RL 50 1 DF Qual Units ug/L Units ug/L Control Limits 38-134 Qual Units ug/L Units ug/L EL DE Qual Units 11:50 Units ug/L Units ug/L Control Limits 38-134 Qual Units ug/L Units ug/L EL DE Qual Units ug/L Units ug/L Units ug/L Control Limits 38-134 Qual Units ug/L Units ug/L	Number Collected 11:30 Matrix Instrument Prepared 10-12-1645-2-E 12/16/10 11:30 Aqueous GC 29 12/20/10 RL 50 1	Number Collected Matrix Instrument Prepared Analyzed

RL - Reporting Limit

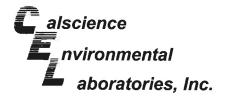
DF - Dilution Factor ,

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 12/18/10 10-12-1645 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735


Page 2 of 2

Tojour Existentinosii Tool II								
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
W-8-MW5		10-12-1645-6-E	12/16/10 12:50	Aqueous	GC 29	12/20/10	12/21/10 09:09	101220B02
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Units			
TPH as Gasoline	6200	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	122	38-134						
W-10-MW6		10-12-1645-7-E	12/16/10 13:10	Aqueous	GC 29	12/20/10	12/21/10 09:44	101220B02
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	1700	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	117	38-134						
Method Blank		099-12-436-5,661	N/A	Aqueous	GC 29	12/20/10	12/21/10 03:19	101220B02
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1	U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	83	38-134						

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifier

Environmental Resolutions, Inc. 601 North McDowell Blvd.

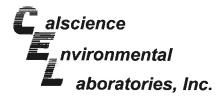
Petaluma, CA 94954-2312

Date Received: Work Order No:

Preparation: Method:

Units:

12/18/10 10-12-1645


EPA 5030C EPA 8260B

ug/L

No. 10-12-1645-2-A 12/16/10 Aqueous GC/MS BB 12/21/10 12/21/10 14/26 11/30	QC Batch ID		Date/1	Date Prepared	Instrument	Matrix	Date/Time Collected	b Sample Number				Client Sample Number
Benzene	101221L01			12/21/10	GC/MS BB	Aqueous						W-9-MW1
Toluene	Qual	DE	RL	Result	_		Parameter	Qual	DF	RL	Result	Parameter
Toluene	U	1	0.50	ND		ner (DIPE)	Diisopropyl E		1	0.50	1.4	Benzene
Ethylbenzene	U	20		ND)	, ,			1	0.50	0.65	Toluene
Xylenes (total)	Ü	(0)			,	` '			1	0.50	0.58	Ethylbenzene
Methyl-t-Butyl Ether (MTBE) ND 0.50 1 U 1,2-Dichloroethane ND 0,50 1 Tert-Butyl Alcohol (TBA) ND 5.0 1 U 1,2-Dichloroethane Pace (%) Control Limits Qual Limits Surrogates: REC (%) Control Limits Qual Limits ND 1.4-Bromofluorobenzene 101 68-120 101 68-120 101 68-120 101 68-120 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08 101 117:08	Ū				,	,	•		1	0.50	1.6	Xylenes (total)
Tert-Butyl Alcohol (TBA)	Ū							U			ND	Methyl-t-Butyl Ether (MTBE)
Surrogates	_	•	0.00				.,		1		ND	Tert-Butyl Alcohol (TBA)
Dibromofiuoromethane 99 80-127 1,2-Dichloroethane-d4 94 80-128	<u>Qual</u>	<u>C</u>		REC (%)			Surrogates:	-	-	Control		, ,
Toluene-d8				94		nane_d4	1.2-Dichloroe				99	Dibromofluoromethane
W-10-MW2												
Parameter	101221L01	/10			GC/MS BB			645-3-A	10-12-1	00 120		
Benzene)8	17:0	/"LTL (/	in - 1 ' '	431 V	11:50			0.00		
Toluene	Qual	<u>DF</u>	RL	Result			Parameter	Qual	<u>DF</u>	RL	Result	<u>Parameter</u>
Ethylbenzene ND 0.50 1 U Tert-Amyl-Methyl Ether (TAME) ND 0.50 1 ND 0.50 N	U	1	0.50	ND		ner (DIPE)	Diisopropyl E	U	1	0.50	ND	Benzene
Xylenes (total) ND 0.50 1 U 1,2-Dibromoethane ND 0.50 1 Methyl-t-Butyl Ether (MTBE) ND 0.50 1 U 1,2-Dichloroethane ND 1,2-Dichl	U	1	0.50	ND)	her (ETBE)	Ethyl-t-Butyl i	U	1	0.50	ND	Toluene
Methyl-t-Butyl Ether (MTBE) ND 0.50 1 U 1,2-Dichloroethane ND 1,2-Dichl	U	1	0.50	ND	AME)	nyl Ether (T	Tert-Amyl-Me	U	1	0.50	ND	Ethylbenzene
ND 5.0 1 U Surrogates: REC (%) Control Limits Limits Dibromofluoromethane 108 80-127 1,4-Bromofluorobenzene 99 68-120 1,2-Dichloroethane-d4 114 80-128 Toluene-d8 96 80-120	U	1	0.50	ND	,	nane	1,2-Dibromoe	U	1	0.50	ND	Xylenes (total)
REC (%) Control Limits	U	1	0.50	ND		nane	1,2-Dichloroe	U	1	0.50	ND	Methyl-t-Butyl Ether (MTBE)
Limits L								U	1	5.0	ND	Tert-Butyl Alcohol (TBA)
Toluene-d8 96 80-120 12/23/10 12/23/10 12/23/10 12/23/10 12/23/10 18/46 12/23/10 12/23/10 12/25 13/20/20/20/20/20/20/20/20/20/20/20/20/20/	Qual	<u>C</u>					Surrogates:	l	Qua		REC (%)	Surrogates:
1,2-Dichloroethane-d4			68-120	99		obenzene	1.4-Bromofluo			80-127	108	Dibromofluoromethane
Result RL DF Qual Parameter Result RL DF Qual			80-120	96						80-128	114	1,2-Dichloroethane-d4
Benzene 350 12 25 Diisopropyl Ether (DIPE) ND 12 25 130 12 25 Ethyl-t-Butyl Ether (ETBE) ND 12 25 Ethylbenzene 940 12 25 Tert-Amyl-Methyl Ether (TAME) ND 12 25 25 Xylenes (total) 290 12 25 1,2-Dibromoethane ND 12 25 25 Methyl-t-Butyl Ether (MTBE) ND 12 25 U 1,2-Dichloroethane ND 12 25 Tert-Butyl Alcohol (TBA) ND 120 25 U Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual Control Contr	101223L02			12/23/10	GC/MS BB	Aqueous		645-4-C	10-12-1			W-12-MW3
Toluene	Qual	DF	RL	Result			Parameter	Qual	DF	RL	Result	Parameter
Toluene						er (DIPF)					350	Benzene
Ethylbenzene						, ,						
Xylenes (total) 290 12 25 1,2-Dibromoethane ND 12 25 Methyl-t-Butyl Ether (MTBE) ND 12 25 U 1,2-Dichloroethane ND 12 25 Fert-Butyl Alcohol (TBA) ND 120 25 U V V V REC (%) Control Qual Limits Qual Limits REC (%) Control Limits Limits Limits						, ,						
Methyl-t-Butyl Ether (MTBE) ND 12 25 U 1,2-Dichloroethane ND 12 25 Fert-Butyl Alcohol (TBA) ND 120 25 U Surrogates: REC (%) Control Qual Limits Qual Limits REC (%) Control Qual Limits					,	,						-
Tert-Butyl Alcohol (TBA) ND 120 25 U Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual Limits Limits								u				, ,
Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual Limits	Ü	20	12				.,2 2 3 10 110 100					
	Qual	Q					Surrogates:	-		<u>Control</u>		• , ,
2101011011011011011011011011011011011011						ohenzene	1.4-Bromofluo				103	Dibromofluoromethane
1,2-Dichloroethane-d4 102 80-128 Toluene-d8 102 80-120						0001120110	•					

DF - Dilution Factor ,

Environmental Resolutions, Inc.

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

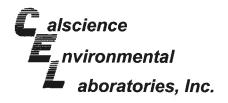
Work Order No: Preparation:

Method:

Units:

12/18/10 10-12-1645

EPA 5030C


EPA 8260B ug/L

Page 2 of 4

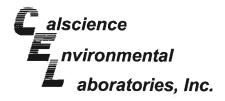
Project: ExxonMobil 79374 / 022735

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch II
W-7-MW4			10-12-10	645-5-A	12/16/10 12:35	Aqueous	GC/MS BB	12/21/10	12/2 ⁻ 18:		101221L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Benzene	440	25	50		Diisopropyl E	ther (DIPE)		ND	5.0	10	U
Toluene	40	5.0	10		Ethyl-t-Butyl	, ,)	ND	5.0	10	Ü
Ethylbenzene	170	5.0	10		Tert-Amyl-Me	`	,	ND	5.0	10	Ŭ
Xylenes (total)	380	5.0	10		1,2-Dibromoe	, ,	, _/	ND	5.0	10	Ŭ
Methyl-t-Butyl Ether (MTBE)	ND	5.0	10	U	1,2-Dichloroe			ND	5.0	10	Ü
Tert-Butyl Alcohol (TBA)	ND	50	10	Ü	1,2-0101110100	iliane		ND	5.0	10	U
Surrogates:	REC (%)	Control Limits	Qual	Ü	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
Toluene-d8	98	80-120			Dibromofluore	omethane		102	80-127		
1,4-Bromofluorobenzene	103	68-120			1,2-Dichloroe			102	80-128		
W-8-MW5	103	00-120	10-12-16	SAF.R.C	1,2-Dichloroe	Aqueous	GC/MS BB		12/23	2/10	101223L02
	á (Ly	15	10-12-10	J45-0-C	12:50	Adueous	GC/WS BB	12/23/10	19:		101223202
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Benzene	150	2.5	5		Diisopropyl E	ther (DIPE)		ND	2.5	5	U
Toluene	96	2.5	5		Ethyl-t-Butyl B	, ,)	ND	2.5	5	Ü
Ethylbenzene	270	10	20		Tert-Amyl-Me	• •	,	ND	2.5	5	Ŭ
Xylenes (total)	980	10	20		1,2-Dibromoe		,,	ND	2.5	5	Ŭ
Methyl-t-Butyl Ether (MTBE)	ND	2.5	5	U	1,2-Dichloroe			ND	2.5	5	Ü
Tert-Butyl Alcohol (TBA)	ND	25	5	Ü	1,2-Dicrioroc	ulaile		ND	2.5	J	U
Surrogates:	REC (%)	Control Limits	Qual	O	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
Toluene-d8	101	80-120			Dibromofluoro	amathana		105	80-127		
	102										
1,4-Bromofluorobenzene	102	68-120	-		1,2-Dichloroe	thane-d4		106	80-128		
W-10-MW6			10-12-16	645-7-A	12/16/10 13:10	Aqueous	GC/MS BB	12/21/10	12/21 19:0		101221L01
Parameter	Result	RL	DF	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DE	Qual
Benzene	2.8	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Foluene	1.2	0.50	1		Ethyl-t-Butyl B	, ,	1	ND	0.50	1	Ü
Ethylbenzene	61	2.0	4		Tert-Amyl-Me	٠,		ND	0.50	4	Ü
(ylenes (total)	46	0.50	1		1,2-Dibromoe	•	·,	ND	0.50	1	Ŭ
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe			ND	0.50	1	Ü
Fert-Butyl Alcohol (TBA)	ND	5.0	1	Ü	.,_ 5.01110100			.10	5.00	1	J
Surrogates:	REC (%)	Control Limits	Qual	J	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>)ual</u>
oluene-d8	101	80-120			Dibromofluoro	methane		97	80-127		
	117	68-120						89			
1,4-Bromofluorobenzene	117	08-120			1,2-Dichloroet	tnane-d4		OB	80-128		

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 12/18/10 10-12-1645 EPA 5030C EPA 8260B ug/L

Project: ExxonMobil 79374 / 022735


Page 3 of 4

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank		May 3	099-12	-884-499	N/A	Aqueous	GC/MS BB	12/21/10	12/21 13:		101221L01
Parameter	Result	RL	<u>DE</u>	Qual	Parameter			Result	RL.	DF	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPF)		ND	0.50	1	U
Toluene	ND	0.50	1	Ü	Ethyl-t-Butyl	` ,	1	ND	0.50	1	Ŭ
Ethylbenzene	ND	0.50	1	Ū	Tert-Amyl-Me	•	,	ND	0.50	1	Ŭ
Xylenes (total)	ND	0.50	1	Ū	1,2-Dibromoe		/	ND	0.50	1	Ū
Methyl-t-Butyl Ether (MTBE)	ND	0.50	i	Ü	1,2-Dichloroe			ND	0.50	1	Ŭ
Tert-Butyl Alcohol (TBA)	ND	5.0	i	ŭ	112 5101110100	Jan Gario			0,00	•	_
Surrogates:	REC (%)		Qua	-	Surrogates:			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
Toluene-d8	100	80-120			Dibromofluor	omethane		104	80-127		
1,4-Bromofluorobenzene	101	68-120			1,2-Dichloroe			106	80-128		
Method Blank			099-12-	884-500	N/A	Aqueous	GC/MS BB	12/22/10	12/22 14:0		101222L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DE	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPF)		ND	0.50	1	U
Foluene	ND	0.50	1	Ü	Ethyl-t-Butyl I	` ,)	ND	0.50	1	Ü
Ethylbenzene	ND	0.50	1	ŭ	Tert-Amyl-Me	, ,		ND	0.50	1	Ū
Kylenes (total)	ND	0.50	1	Ū	1.2-Dibromoe	, ,	,	ND	0.50	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	Ū	1,2-Dichloroe	ethane		ND	0.50	1	U
Fert-Butyl Alcohol (TBA)	ND	5.0	1	Ū	.,						
Surrogates:	REC (%)	Control Limits	Qua	Į.	Surrogates:			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
Toluene-d8	99	80-120			Dibromofluore	omethane		102	80-127		
1,2-Dichloroethane-d4	100	80-128			1,4-Bromoflue	orobenzene		102	68-120		
Method Blank			099-12-	884-501	N/A	Aqueous	GC/MS BB	12/23/10	12/23 14:0		101223L02
Parameter_	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Foluene	ND	0.50	1	U	Ethyl-t-Butyl I	Ether (ETBE))	ND	0.50	1	U
Ethylbenzene	ND	0.50	1	U	Tert-Amyl-Me	ethyl Ether (T	AME)	ND	0.50	1	U
Kylenes (total)	ND	0.50	1	U	1,2-Dibromoe	ethane		ND	0.50	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe	thane		ND	0.50	1	U
Fert-Butyl Alcohol (TBA)	ND	5.0	1	U							
. 0.1. 2 3.1		Control	Qua		Surrogates:			REC (%)	<u>Control</u>	_	Qual
• '	<u>REC (%)</u>	Limits	9,000	•.					Limits		
Surrogates:	99		3,000		1,2-Dichloroe	thane-d4		108	<u>Limits</u> 80-128		

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Environmental Resolutions, Inc.

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No:

Preparation: Method:

Units:

12/18/10

10-12-1645 EPA 5030C

EPA 8260B

ug/L

Project: ExxonMobil 79374 / 022735

Page 4 of 4

Client Sample Number			Lab Sample Date/Time Number Collected Mat		Matrix	Instrument	Date Prepared	Date/Time I Analyzed		QC Batch ID	
Method Blank			099-12-	884-502	N/A	Aqueous	GC/MS BB	12/30/10	12/30 14:		101230L02
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Toluene	ND	0.50	1	U	Ethyl-t-Butyl I	Ether (ETBE)	ND	0.50	1	U
Ethylbenzene	ND	0.50	1	U	Tert-Amyl-Me			ND	0.50	1	U
Xylenes (total)	ND	0.50	1	U	1,2-Dibromoe	thane		ND	0.50	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe	thane		ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U							
Surrogates:	REC (%)	Control Limits	Qual	l	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
Toluene-d8	101	80-120			Dibromofluoro	omethane		111	80-127		
1,4-Bromofluorobenzene	97	68-120			1,2-Dichloroe	thane-d4		116	80-128		

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 12/18/10 10-12-1645 EPA 5030C EPA 8015B (M)

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-12-1648-1	Aqueous	GC 29	12/20/10	7	12/21/10	101220502
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	106	106	68-122	0	0-18	

RPD - Relative Percent Difference , 7440 Lincoln

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 12/18/10 10-12-1645 EPA 5030C EPA 8260B

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
W-9-MW1	Aqueous	GC/MS BB	12/21/10		12/21/10	101221801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	122	109	76-124	10	0-20	
Toluene	114	127	80-120	10	0-20	3
Ethylbenzene	116	113	78-126	2	0-20	
Methyl-t-Butyl Ether (MTBE)	112	119	67-121	7	0-49	
Tert-Butyl Alcohol (TBA)	97	96	36-162	1	0-30	
Diisopropyl Ether (DIPE)	116	107	60-138	9	0-45	
Ethyl-t-Butyl Ether (ETBE)	1 21	112	69-123	8	0-30	
Tert-Amyl-Methyl Ether (TAME)	121	113	65-120	7	0-20	3
Ethanol	83	83	30-180	0	0-72	
1,2-Dibromoethane	122	113	80-120	7	0-20	3
1,2-Dichloroethane	120	104	80-120	15	0-20	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 12/18/10 10-12-1645 EPA 5030C EPA 8260B

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	/ Control Sample ID Matrix Instrument		Date Prepared	Date Analyzed		MS/MSD Batch Number	
10-12-1351-2	Aqueous	GC/MS BB	12/22/10		12/22/10	101222801	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	100	101	76-124	ì	0-20		
Toluene	100	101	80-120	2	0-20		
Ethylbenzene	104	101	78-126	3	0-20		
Methyl-t-Butyl Ether (MTBE)	99	99	67-121	0	0-49		
Tert-Butyl Alcohol (TBA)	95	98	36-162	3	0-30		
Diisopropyl Ether (DIPE)	103	106	60-138	3	0-45		
Ethyl-t-Butyl Ether (ETBE)	104	108	69-123	3	0-30		
Tert-Amyl-Methyl Ether (TAME)	101	105	65-120	4	0-20		
Ethanol	82	89	30-180	9	0-72		
1,2-Dibromoethane	102	120	80-120	16	0-20		
1,2-Dichloroethane	100	107	80-120	6	0-20		

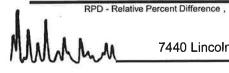
Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 12/18/10 10-12-1645 EPA 5030C EPA 8260B

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
10-12-1672-2	Aqueous	GC/MS BB	12/23/10		12/23/10	101223501	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	105	104	76-124	0	0-20		
Toluene	106	106	80-120	0	0-20		
Ethylbenzene	97	56	78-126	19	0-20	3	
Methyl-t-Butyl Ether (MTBE)	97	101	67-121	4	0-49		
Tert-Butyl Alcohol (TBA)	89	99	36-162	11	0-30		
Diisopropyl Ether (DIPE)	108	111	60-138	2	0-45		
Ethyl-t-Butyl Ether (ETBE)	106	109	69-123	3	0-30		
Tert-Amyl-Methyl Ether (TAME)	103	104	65-120	1	0-20		
Ethanol	78	84	30-180	8	0-72		
1,2-Dibromoethane	105	106	80-120	1	0-20		
1,2-Dichloroethane	103	103	80-120	0	0-20		

AMMM_


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

12/18/10 10-12-1645 **EPA 5030C EPA 8260B**

Project ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Matrix Instrument		Date Prepared		MS/MSD Batch Number	
10-12-2078-8 Aqueous GC/MS BB		12/30/10	200	12/30/10	101230S01		
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	121	118	76-124	3	0-20		
Toluene	120	117	80-120	2	0-20		
Ethylbenzene	122	119	78-126	3	0-20		
Methyl-t-Butyl Ether (MTBE)	98	105	67-121	7	0-49		
Tert-Butyl Alcohol (TBA)	119	109	36-162	8	0-30		
Diisopropyl Ether (DIPE)	124	123	60-138	1	0-45		
Ethyl-t-Butyl Ether (ETBE)	112	119	69-123	6	0-30		
Tert-Amyl-Methyl Ether (TAME)	107	114	65-120	6	0-20		
Ethanol	108	90	30-180	18	0-72		
1,2-Dibromoethane	113	112	80-120	1	0-20		
1,2-Dichloroethane	120	118	80-120	1	0-20		

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-12-1645 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	k Instrument		Date Prepared		ite yzed	LCS/LCSD Batcl Number	1
099-12-234-772	Aqueous	GC 46	12/2	2/10	12/23/10		101222B08	k win i
<u>Parameter</u>	LC§ %	<u>6REC L</u>	CSD %REC	<u>%RE</u>	C CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	103		103	75	-117	0	0-13	

AMMM_

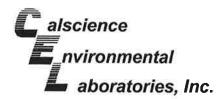
Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-12-1645 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instru	ment P	Date epared	Da Analy	Contract of the contract of th	LCS/LCSD Bate Number	ch
099-12-330-1,753	Aqueous	GC 4	46 1:	12/21/10		/10	101221B07	
Parameter	LCS %	6REC	LCSD %REC	<u>%RI</u>	EC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	106		104	75	- 117	2	0-13	

MMMM_


Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 10-12-1645 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instr	ument	Da Prepa	in the same	Da Anal	ite yzed	LCS/LCSD Bate Number	h
099-12-436-5,661	Aqueous	GC	29	12/20	/10	12/2	/10	101220B02	5 172
<u>Parameter</u>	LCS %	&REC	LCSD	%REC	<u>%RE</u>	C CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	109		110		78	-120	0	0-10	

AMANA_

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 10-12-1645 EPA 5030C EPA 8260B

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 12/21/10		LCS/LCSD Numbe	
099-12-884-499	Aqueous	GC/MS BB	12/21/10			101221L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	105	106	80-120	73-127	1	0-20	
Toluene	107	114	80-120	73-127	6	0-20	
Ethylbenzene	110	108	80-120	73-127	2	0-20	
Methyl-t-Butyl Ether (MTBE)	107	118	69-123	60-132	9	0-20	
Tert-Butyl Alcohol (TBA)	94	96	63-123	53-133	2	0-20	
Diisopropyl Ether (DIPE)	109	104	59-137	46-150	5	0-37	
Ethyl-t-Butyl Ether (ETBE)	117	111	69-123	60-132	5	0-20	
Tert-Amyl-Methyl Ether (TAME)	114	112	70-120	62-128	2	0-20	
Ethanol	68	79	28-160	6-182	14	0-57	
1,2-Dibromoethane	110	109	79-121	72-128	1	0-20	
1,2-Dichloroethane	108	99	80-120	73-127	9	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

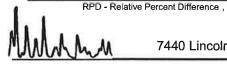
Date Received: Work Order No: Preparation:

Method:

10-12-1645 EPA 5030C EPA 8260B

N/A

Project: ExxonMobil 79374 / 022735


Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 12/22/10		LCS/LCSD Numbe	
099-12-884-500	Aqueous	GC/MS BB	12/22/10			101222L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	100	99	80-120	73-127	0	0-20	
Toluene	101	99	80-120	73-127	2	0-20	
Ethylbenzene	105	104	80-120	73-127	1	0-20	
Methyl-t-Butyl Ether (MTBE)	95	94	69-123	60-132	1	0-20	
Tert-Butyl Alcohol (TBA)	89	94	63-123	53-133	5	0-20	
Diisopropyl Ether (DIPE)	100	102	59-137	46-150	2	0-37	
Ethyl-t-Butyl Ether (ETBE)	103	102	69-123	60-132	0	0-20	
Tert-Amyl-Methyl Ether (TAME)	103	100	70-120	62-128	3	0-20	
Ethanol	75	79	28-160	6-182	4	0-57	
1,2-Dibromoethane	105	103	79-121	72-128	1	0-20	
1,2-Dichloroethane	95	93	80-120	73-127	2	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result : Pass

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

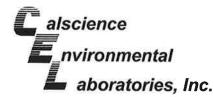
Date Received: Work Order No: Preparation: Method:

10-12-1645 EPA 5030C EPA 8260B

N/A

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 12/23/10		LCS/LCSD Numbe	
099-12-884-501	Aqueous	GC/MS BB	12/23/10			101223L	02
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	102	105	80-120	73-127	3	0-20	
Toluene	104	107	80-120	73-127	3	0-20	
Ethylbenzene	107	110	80-120	73-127	2	0-20	
Methyl-t-Butyl Ether (MTBE)	94	97	69-123	60-132	4	0-20	
Tert-Butyl Alcohol (TBA)	107	111	63-123	53-133	3	0-20	
Diisopropyl Ether (DIPE)	107	111	59-137	46-150	4	0-37	
Ethyl-t-Butyl Ether (ETBE)	99	103	69-123	60-132	5	0-20	
Tert-Amyl-Methyl Ether (TAME)	95	99	70-120	62-128	5	0-20	
Ethanol	101	104	28-160	6-182	3	0-57	
1,2-Dibromoethane	102	106	79-121	72-128	3	0-20	
1,2-Dichloroethane	100	104	80-120	73-127	4	0-20	


Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

N/A 10-12-1645 EPA 5030C EPA 8260B

Project: ExxonMobil 79374 / 022735

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 12/30/10		LCS/LCSD Numbe	
099-12-884-502	Aqueous	GC/MS BB	12/30/10			101230L	02
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	111	112	80-120	73-127	0	0-20	
Toluene	114	115	80-120	73-127	0	0-20	
Ethylbenzene	117	117	80-120	73-127	0	0-20	
Methyl-t-Butyl Ether (MTBE)	94	102	69-123	60-132	8	0-20	
Tert-Butyl Alcohol (TBA)	124	93	63-123	53-133	29	0-20	ME,X
Diisopropyl Ether (DIPE)	118	118	59-137	46-150	0	0-37	
Ethyl-t-Butyl Ether (ETBE)	107	115	69-123	60-132	7	0-20	
Tert-Amyl-Methyl Ether (TAME)	102	111	70-120	62-128	9	0-20	
Ethanol	118	82	28-160	6-182	36	0-57	
1,2-Dibromoethane	108	108	79-121	72-128	0	0-20	
1,2-Dichloroethane	115	116	80-120	73-127	1	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 1

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Note "ME" & "X": The percent recovery and the RPD are above acceptable control limits. The spike and spike duplicate were within control limits and, therefore, the sample data was reported without further clarification.

RPD - Relative Percent Difference ,

CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 10-12-1645

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution,
	therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The
	associated method blank surrogate spike compound was in control and, therefore, the
_	sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out
	of control due to matrix interference. The associated LCS and/or LCSD was in control
	and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD
5	was in control and, therefore, the sample data was reported without further clarification. The PDS/PDSD or PES/PESD associated with this batch of samples was out of control
•	due to a matrix interference effect. The associated batch LCS/LCSD was in control and,
	hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
J	Analyte was detected at a concentration below the reporting limit and above the
	laboratory method detection limit. Reported value is estimated.
ME	LCS recovery percentage is within LCS ME control limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter
	concentration in the sample exceeding the spike concentration by a factor of four or
00	greater.
QO	Compound did not meet ID guidelines. Addit. GC/MS ID params used.
Ü	Undetected at detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Calscience Environmental Laboratories, Inc.

2

5

7440 Lincoln Way

Garden Grove, CA 92841

Phone: 714-895-5494

Fax: 714-894-7501

Site Specific - if yes, please attach pre-schedule w/ TestAmerica

Project Manager or attach specific instructions

Consultant Name: Cardno ERI Account #: NA PO#: 4512299226 Consultant Address: 601 N. McDowell Boulevard Invoice To: Jennifer Sedlachek Consultant City/State/Zip: Petaluma, California, 94954 Report To: Paula Sime ExxonMobil Project Mgr: Jennifer Sedlachek Project Name: 02 2735 13X Consultant Project Mgr: Paula Sime 79374 ExxonMobil Site #: Major Project (AFE #): Consultant Telephone Number: 707-766-2000 Fax No.: 707-789-0414 Site Address: 990 San Pablo Avenue Sampler Name (Print): Site City, State, Zip: Albany, California Sampler Signature: Oversight Agency: Alameda County Environmental Health Department Preservative Matrix Analyze For: Shipped RUSH TAT (Pre-Schedule TPHmo 8015N **TPHd 8015M** Standard 10-day TAT Date of Report No. of Containers ield Point Name Time Sampled Field Filtered 5-day TAT Sample ID **QCBB** 2 HO 12-16 1130 -MW1 MW₁ 8 6V xlx X 1150 -MW2 12-16 MW₂ 8 х 12-16 W- 10 1210 -MW3 MW3 8 XX X 12-16 1235 -MW4 MW4 X 12-16 W--MW5 1340 MW5 8 6v X 1310 112-16 W- 10 -MW6 MW₆ Comments/Special Instructions: Use silica gel cleanup on all TPHd analyses aboratory Comments: PLEASE E-MAIL ALL PDF FILES TO Oxygenates = MTBE, ETBE, DIPE, TAME, TBA, 1,2-DCA, EDB Temperature Upon Receipt: norcallabs@eri-us.com; ERI-EIMLABS@eri-us.com Set TBA reporting limit at or below 12 ug/L. Sample Containers Intact? GLOBAL ID # T0619716673 VOCs Free of Headspace? Relinguished by: Received by: QC Deliverables (please circle one) 15:00 Level 2

Page 26 of 29

< WebShip >>>>>

800-322-5555 www.gso.com

(1645)

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: ERI, C&T

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED Tracking #: 515587993

SDS

ORC

D

GARDEN GROVE

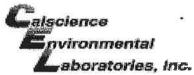
D92843A

87237939

Print Date: 12/17/10 16:17 PM

Package 1 of 1

Send Label To Printer


Print All

Edit Shipment

Finish

as curs at b. A. . .

Initial: 14

□ Sample

WORK ORDER #: 10-12- [] 6 4 5

Cooler / of / ERI Cardo DATE: 12/18/10 CLIENT: TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature $3 \cdot 0 \text{ °C} + 0.5 \text{ °C} \text{ (CF)} = 3 \cdot 5 \text{ °C}$ **□**-Blank ☐ Sample ☐ Sample(s) outside temperature criteria (PM/APM contacted by: _____). ☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. ☐ Received at ambient temperature, placed on ice for transport by Courier. Initial: YC **Ambient Temperature**: □ Air ☐ Filter **CUSTODY SEALS INTACT: C**Cooler ☐ No (Not Intact) □ Not Present □ N/A

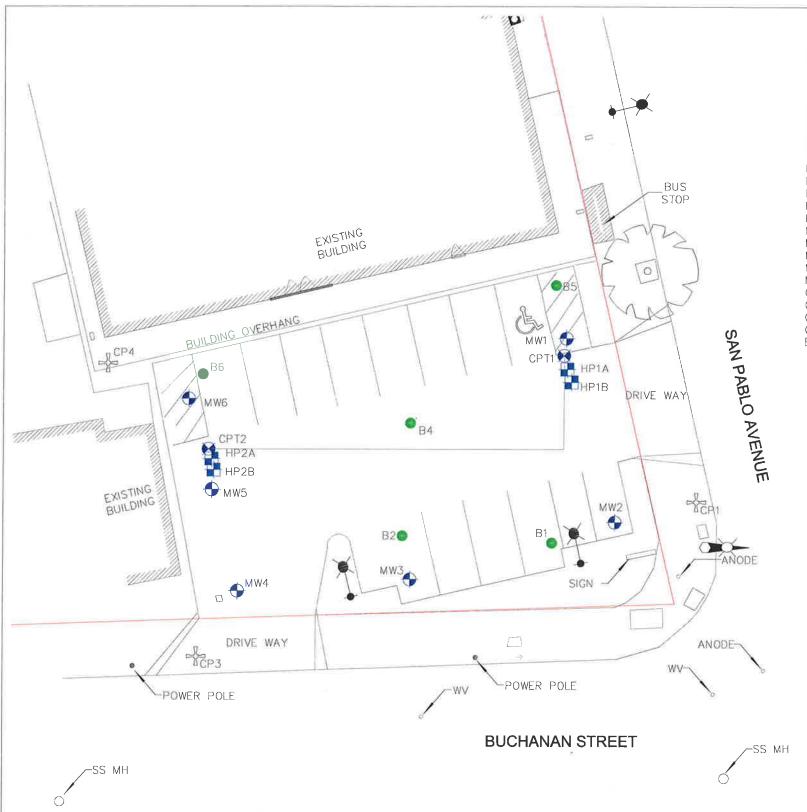
□ No (Not Intact)

✓ Not Present

SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	/		
COC document(s) received complete	,🗷		
\square Collection date/time, matrix, and/or # of containers logged in based on sample labe	ls.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		41	
Sampler's name indicated on COC	🗷		
Sample container label(s) consistent with COC	🗖	otag	
Sample container(s) intact and good condition	Ø		
Proper containers and sufficient volume for analyses requested	Ø		
Analyses received within holding time	🗷		
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours	🗆		Z
Proper preservation noted on COC or sample container	🗹		
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	⊭		
Tedlar bag(s) free of condensation CONTAINER TYPE:	🗆		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCor	es [®] □Teri	aCores® [J
Water: □VOA 🗹 VOAh □VOAna₂ □125AGB □125AGBh □125AGB	D1AGB	□1AGBna	a₂ □1AGBs
□500AGB	s 🗆 1PB	□500PB (⊒500PB na
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □_			J
Air: ☐Tedlar® ☐Summa® Other: ☐ Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Zlploc/Resealable Bag E Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 znna: ZnAc2+NaOH	: Envelope	Reviewed	by: <u>QV</u>

· 維多學術形式 化乳化 (400mg)

WORK ORDER #: 10-12- [4 5


SAMPLE ANOMALY FORM

SAMPL	ES - CO	NIATNO	ERS & L	ABELS:			Comments:				
Sample(s)/Container(s) NOT RECEIVED but listed on COC Sample(s)/Container(s) received but NOT LISTED on COC								(-1) sample not received			
☐ Holding time expired – list sample ID(s) and test								ceived	8 vials instead of 6.		
□ Insu	fficient	quantitie	es for ana	alysis – list te	est				ainers: 10)		
☐ lmpr	oper co	ntainer(s) üsed -	list test							
☐ Impr	oper pr	eservati	ve used -	- list test							
□ No p	reserva	tive not	ed on CO	C or label -	list test	& notify lab					
☐ Sam	ple labe	ls illegil	ole – note	test/containe	er type						
∕ Sam	ple labe	l(s) do r	ot match	COC - Note	e in comi	ments					
	Sample	∌ ID									
	Date a	nd/or Tir	ne Collec	ted							
		Informa						J.,			
Ø	# of Co	ntainer(s)								
	Analys	is							- Company		
☐ Sam	ple cont	tainer(s)	comproi	nised – Note	e in comi	ments	<u> </u>				
	-		n sample	container							
	Broken	l									
☐ Samı	ple cont	tainer(s)	not labe	led							
	-	containe	er(s) com	promised –	Note in	comments	_				
	Flat						-	10.121			
	•	w in vol									
				d - duplicate	_	•					
		- '		o Calscienc							
		g (transf	erred int	o Client's Te	edlar [®] Ba	ag*)					
☐ Othe	r:										
HEADS	PACE -	Contai	ners wit	h Bubble >	6mm o	or ¼ inch:					
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received	Analysis		
-	- 4										
1											
Comment	:s:										
Secretary											
*Transferre	Transferred at Client's request. Initial / Date: \(\text{\sigma} \) 12 //8/10										

SOP T100_090 (09/17/10)

APPENDIX H

SURVEY DATA

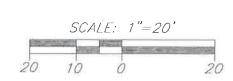
DESCRIPTION	NORTHING	EASTING	LATITUDE	LONGITUDE	ELEV (PVC)	ELEV (BOX)	ELEV (GROUND)
B1 B2 B4 B5 B6 CPT1 CPT2 HP1A HP1B HP2A HP2B MW1 MW2 MW3 MW4 MW5 MW6 CTRL PT1 CTRL PT2 CTRL PT3 CTRL PT4 BM	2150759.8 2150761.3 2150785.6 2150815.3 2150796.1 2150800.2 2150797.2 2150794.4 21507775.5 2150764.3 2150764.3 2150775.0 2150749.3 2150771.4 2150768.7 2150785.3 2150785.3 2150785.3	6042697.0 6042664.8 6042666.4 6042697.6 6042621.6 6042699.4 6042622.9 6042700.1 6042701.0 6042623.4 6042623.9 6042699.8 6042710.4 6042666.6 6042629.2 6042623.7 6042618.6 6042728.2 6042601.0 6042670.1 6042861.9	37.8879175 37.8879200 37.8879868 37.8880700 37.8880132 37.8880286 37.8880204 37.8880204 37.888927 37.8879631 37.8879568 37.8879568 37.8879306 37.8879306 37.8879306 37.8879455 37.8879455 37.8879488 37.8879488 37.8879436 37.8879436	-122.2984541 -122.2985657 -122.2985618 -122.2987177 -122.2987177 -122.2987122 -122.2987122 -122.2987182 -122.2987893 -122.2987615 -122.2984458 -122.2984458 -122.298703 -122.2987084 -122.2984080 -122.2985589 -122.2986883 -122.2987088 -122.2987088 -122.2987088	41,45 41,25 40,42 39,30 40,38 41,06	41.75 41.63 40.92 39.72 40.66 41.37	41.31 40.92 41.23 41.98 41.51 41.76 40.99 41.74 41.71 40.90 40.79 41.42 39.02 42.16 42.73 41.47
DIVI	2100007710	0072001.3	J7.0003JZJ	-122.23/0300			41.4/

BASIS OF COORDINATES AND ELEVATIONS:

COORDINATES ARE CALIFORNIA STATE PLANE ZONE 3 COORDINATES FROM GPS OBSERVATIONS PROCESSED AGAINST OBSERVATION FILES FROM THE CALIFORNIA SPATIAL REFERENCE CENTER DATUM, REFERENCE EPOCH 2010.9192, THE DATE OF THE SURVEY.

COORDINATE DATUM IS NAD 83(CORS).

DATUM ELLIPSOID IS WGS84.


REFERENCE GEOID IS GEOIDO9.

CORS STATIONS USED WERE P181 AND SBRN.

VERTICAL DATUM IS NAVD 88 AND IS BASED ON CONVENTINAL SURVEY METHODS USING CITY OF ALBANY REFERENCE MONUMENT #423. THE ELEVATION OF BM #423 IS REPORTED BY THE CITY OF ALBANY AS 41.47 FT.

DATE OF LATEST SURVEY: DECEMBER 1, 2010.

SACRAMENTO 201 CREEKSIDE RIDGE CT, STE 100, ROSEVILLE, CA 95678 TEL: (916) 677-8600 FAX: (916) 677-8620 www.cardnowrg.com
PLANNERS • ENGINEERS • LANDSCAPE ARCHITECTS •
SURVEYORS

MONITORING WELL SURVEY ALAMEDA COUNTY, CALIFORNIA

> 990 SAN PABLO AVENUE ALBANY, CALIFORNIA

PROJECT NO. DATE: 12/14/2010

BY: DIW

SCALE: 1'=20' SHEET NO. 1 OF 1

APPENDIX I WASTE DOCUMENTATION

	Manifest		SOIL'SA No		F CA				fest#Ψ		
T	Date of Shipment:	Responsible for I	Payment:		t Truck #:		ity #:	Approval Numb		Load #	
L	11 123/10			399	1/732	1732 A07			450	(10L	
ſ	Generator's Name and Billing Address:					or's Phone #: -212-2938					
١	EXXONMOBIL OIL CORP.					o Contact:		-			
١	ATTN: EMES ADMINISTRATOR 2555 W. 190TH ST. #1100										
I	TORRANCE, CA 90504							Customer Accor	unt Number		
ŀ	Consultant's Name and Billing Address: ERI - Petaluma					ant's Phone #:		1			
١	erti - Petaluma				Person	to Contact:					
l					FAX#:		5	Customer Acco	unt Number		
ŀ	Generation Site (Transport from): (name & address)			Site Pho	one #:	~~				
١	EXXONMOBIL 793				Davon	to Contact:					
	990 SAN PABLO AVE					to Contract:					
	ALBANY, CA 6470	טנ			FAX#:						
ŀ	Designated Facility (Transport to): (name & address)					Phone #: 0) 882-8001			WINE AS TO SERVICE AS TO SERVI		
	SOIL SAFE	A L ADORE AL 1-A				to Contact:					
	12328 HIBISCUS / ADELANTO, CA 9					DELLENA JEFFREY			1		
١	ADELDAYIO, ON 6	2001			FAX#: (78	0) 246-8004					
1	Transporter Name and Mailing Address:				Transp	Transporter's Phone #: 949-460-5200		CAR000183913			
	BELSHIRE 25971 TOWNE CENTRE DRIVE				Person	to Contact:					
	FOOTHILL RANCH, CA 92810					LARRY MOOTHART		450647			
			RESI: 1803	351	FAX#: 949	FAX#: 949-460-5210		Customer Account Number			
	Description of Soil	Moisture Content	Contaminated	1 by: App	rox. Qly:	Description	of Delivery	Gross Weight	Tare Weight	Het Wel	
	Sand O Organic O Clay O Other O	0-10% □ 10-20% □ 20%-over □	Gas Diesel Other	0 0	15	Soil		45600	3770	838	
	Sand O Organic O	0-10% C	Gas Diesel	0	3					410	
I	Clay Other O List any exception to items listed	20% - over 🚨	Other			Scale	Ficket # / '7	C >	L	1.1	
Į	and the second of the state of					Cearc	Ticket#570	2)2			
	Generator's and/or consulte Sheet completed and certific in any way.										
		ator O Consu	ultant 💢		Signature a	nd date: (1) (3)	clinited i	EKronMubi	: Month	Day Ye	
	Transporter's certification: condition as when received without off-loading, adding	l. I/We further cer	rtify that the so	oil is beir	ig directly	y transported	from the Ger	il is being delive teration Site to	ered in exac the Designa	tly the sa ited Facil	
					Signature and date: Month Day Yea						
1	Discrepancies:				1						
	Recycling Facility certifies the receipt of the soil covered by this manifest except as noted above:										
0	Kecycling Facility certifies				- 1 - 1						
6	Print or Type Name:	EY/J. PROVAN		0	Signature a	and date:	$\langle \rangle$				

TRANSPORTER COPY

NO. 689439

NON-HAZARDOUS WASTE DATA FORM

	E S		186351	30
	Generator's Name and Mailing Address EXXONMOBIL OIL CORP. ATTN: EMES ADMINISTRATOR 2555 W. 190TH 9T. #1105 TORRANCE, CA 90504	*	Generator's Site Address (If different than mailing address) EXXONMOBIL 79374 980 SAN PABLO AVE ALBANY, CA 94706	
	Generator's Phone: 310-212-2938 Container type removed from site: ***Corums** Under Truck** Roll-off Truck**	☐ Dump Truck	Container type transported to receiving facility: Drums	mp Truck
	Quantity		Quantity U Gallan Volume	
GENERATOR	WASTE DESCRIPTIONNON-HAZARDOUS COMPONENTS OF WASTE 1	PPM % 99-100%	GENERATING PROCESS WELL PURGING / DECON V COMPONENTS OF WASTE PPM 3	WATER %
	2. TPH 2. Waste Profile 12620 HANDLING INSTRUCTIONS: WEAR ALL APPROP		7-10 SOUD XX LIQUID SLUDGE SLURRY OTHE	R
	Generalor Printed/Typed Name		n Behalf of Executival: Mon	nth Day Year
IER	The Generator certifies that the waste as described is 100% non-haza Transporter 1 Company Name BELSHIRE Transporter 1 Printed Tryped Name	rdous Signature	Phone# 949-460-5200	nth Day Year
TRANSPORTE	Transporter Acknowledgment of Receipt of Materials Transporter 2 Company Name Transporter 2 Printed/Typed Name	Signature	Phone# 1949-460-52	inth Day Year
	Transporter Acknowledgment of Receipt of Materials Designated Facility Name and Site Address CROSBY & OVERTON 1630 W. 17TH STREET LONG BEACH, CA 90813	\(\(\frac{f}{-} \)	Phone# 582-432-5445	17070
RECEIVING FACILITY	Printed/Typed Name ((C,Y)) () Geller G Designated Facility Owner or Operator: Certification of receipt of ma	Signature Signature Signature	+ cless 1	oogth Say Year

NON-HAZARDOUS WASTE MANIFEST

Plea	ase print or type (Form designed for use on elite (12 pitch) t	typewriter) +				
Contract of the Contract of th	NON-HAZARDOUS WASTE MANIFEST	erator's US EPA ID No.		Manifest Document No	Z161-79374	2. Page 1 of
in	3, Generator's Name and Mailing Address	1-793.74			************	
\$ JE	990	San Pablo Ave Albany, CA WS EPAID Number		-		
300	4. Generator's Phone ()	Albany, cA				
No.		6. US EPA ID Number		A. State Trans		
	I.R.1				r 1 Phone 万万 火 6.	- 2624
	7. Transporter 2 Company Name	8. US EPA ID Number		C. State Trans		
700	Designated Facility Name and Site Address	10. US EPA ID Number		D. Transporte E. State Facili		
	Instrut	10060				
	1105 c An port Rd	-39/col		F. Facility's Pl		
	11. WASTE DESCRIPTION	(ar000 150599				
	11. WASTE DESCRIPTION			ontainers	13. Total Quantity	14. Unit Wt./Vol.
	a;		No.	Туре	Quantity	VV1.7 VOI.
1500	a.				075	
	Non- Haz pe	rge water		Poly	275	GALS
G	D _e	3				
GEN		*				
E			-			
I A	c.					
A						
O R	d,					
4	O. Additional Departmine for Metarials Listed Above		<u> </u>	H. Handling C	odes for Wastes Listed Above	<u></u>
100	G. Additional Descriptions for Materials Listed Above			The transming o	odd for tradical Elatod 715040	
	Colors-Brown					
	odors-per					
R	50 / i d S					
	15. Special Hariding Instructions and Additional Information					
100						
100						
-	16. GENERATOR'S CERTIFICATION: I hereby certify that the	e contents of this shipment are fully and accurately describ	ned and are in	all respects		
183	in proper condition for transport. The materials described o	on this manifest are not subject to federal hazardous waste	e regulations.	·		
						Date
	Printed/Typed Name	Signature			Month	Day Year
Ĭ.	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	Signature	11	A	Month	Date Day Year
S	1) 1/2 654	1	1-1		1.1	19/10
P	18. Transporter 2 Acknowledgement of Receipt of Materials					Date
THAN PORTUR	Printed/Typed Name	Signature			Month	Day Year
Ē						
F	19. Discrepancy Indication Space					
A						
11	20. Facility Owner or Operator; Certification of receipt of the wa	raste materials covered by this manifest, except as noted in	n item 19.			
-	Instrat					Date
T	Printed/Typed Name	Signature			Month /	Day Year
Y	Mart Deleter	prese f	22		!/	19 10

NON-HAZARDOUS WASTE

NON-HAZARDOUS WASTE MANIFEST

Plea	se print or type (Form designed for use on elite	(12 pitch) typewriter)					
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No.	20		Manifest Document No	E14 -79374	2 Page 1 of
	3. Generator's Name and Mailing Address	990 San	74 Pablo Ave		0	# 2735	
	4. Generator's Phone (Alberry	C1A				
3.	5. Transporter 1 Company Name	6 1	US EPA ID Number		A. State Trans	prostorio ID	
	ER I	I	OO EI A ID WAIIDEI			r 1 Phore 701) 746	- 7/22
331	7. Transporter 2 Company Name	<u>J</u>	US EPA ID Number		C. State Trans		- Level and
	7. Transporter 2 Company Name	J.	OO EI AIB Namboi		D. Transporte		
1000	Designated Facility Name and Site Address	10.	US EPA ID Number		E. State Facili		
	Justina Tracing Name and Site Address	10.	OG EL TID Hambor		L. State r aciii	iy s iD	
1	1105 c Arrport Rd				F. Facility's Ph	2000	
	Pio Vista, CA	Ca	100150599		(707) 3	374-3834	
Do.	11. WASTE DESCRIPTION			12. Co	ntainers	13. Total	14. Unit
HIN.				No.	Туре	Quantity	Wt./Vol.
	a. Non-Hal-g	urge was	Ler		Poly	65	GALS
GEN	b _i				į.		
E R A	C.						
፲							
O R	d.						
100							
	G. Additional Descriptions for Materials Listed Abor	ve			H. Handling Co	odes for Wastes Listed Above	
6	Colors-Brown						
4	3,0==:						
100	odors- 05						
No.	odors- Solids-						
8	15. Special Handling Instructions and Additional Inf	formation					
				7			
-	16. GENERATOR'S CERTIFICATION: I hereby ce	rtify that the contents of this shipme	nt are fully and accurately described	and are in a	all respects	per	7
100	in proper condition for transport. The materials	described on this manifest are not s	ubject to federal hazardous waste re	gulations.	•		
							Date
100	Printed/Typed Name		Signature			Month	Day Year
							LÍL
7	17. Transporter 1 Acknowledgement of Receipt of I	Vaterials		1			Date
Ŕ	Printed/Typed Name		Signature /			Month	Day Year
ğ	Danny h Est		14/ W/	-/)/	119110
۱ğ ا	18. Transporter 2 Acknowledgement of Receipt of I	Materials /					Date
Ĭ₽ ŀ	Printed/Typed Name		Signature			Month	Day Year
TRANSPORTER		90					
FA	19. Discrepancy Indication Space						
C	20. Facility Owner or Operator; Certification of rece	int of the waste materials severed by	v this manifest excent se noted in its	em 19			
	20 Fachity Owner or Operator; Certification of rece	ibi oi ine maste matemais covered b	y mio maninost, except as noted ill lit	o.n 19.			Date
	Printed/Typed Name		Signature			Month	
T	Printed/Typed Name Belcla	2	Signature:	A	_	Month	Day Year

NON-HAZARDOUS WASTE MANIFEST

Ple	ase print or type (Form designed for use on elite (12 pltch) type	writer)				
		or's US EPA ID No.		Manifest Document No	Emi-79374	2. Page 1
i i	Generator's Name and Malling Address Every	ERI # 2735				
	900 Sa.	ny cot 6 US EPAID Number		CIE	7 C.J.	
	4. Generator's Phone () Alba;	ny , Cot				
4	5. Transporter 1 Company Name	6 US EPA ID Number		A. State Trans		1 2000
	7. Transporter 2 Company Name	8. US EPA ID Number		C. State Trans	1 Phore 707) 76	= - 0 004 9
1	7. Transporter 2 Company Name	d. US EFA ID Nullius		D. Transporte		
	9. Designated Facility Stame and Site Address In Street	10. US EPA ID Number		E. State Facili		
10	1105 CHI FRONT Red			F/Facility's Pi	none	
		(arodo150579		707) 374-3	
	11. WASTE DESCRIPTION		12. G	ontainers Type	13. Total Quantity	14. Unit Wi./Vat
墨	6.					
	Non- Haz Pur	ve water		Poly	49	GALS
GHNHR	b.					
E						-
A T	C,					
O R	d.		-			
	- -					
1				II Desiles O	adaa fay Mianhaa Lintad Abayy	
100	G. Additional Descriptions for Materials Listed Above			H. Handling C	odes for Wastes Listed Above	
	Octors - pr					
7.4	50/10/5					
图 经到 图	15. Special Handling Instructions and Additional Information 16. GENERATOR'S CERTIFICATION: I hereby certify that the cor	ntents of this shipment are fully and accurately describe	ed and are in	all respects	(22)	
	in proper condition for transport. The materials described on thi	is manifest are not subject to federal hazardous waste :	regulations.		_	
	Printed/Typed Name	Signature			Montř	Dale Day Year
Ĭ	17. Transporter 1 Acknowledgement of Receipt of Materials	, A	. /			Date
-RAZOPORTER	Printed/Typed Name Proposition	Signature	1-7-7	18	Month.	Day Year
P	18, Transporter 2 Acknowledgement of Receipt of Materials	R F		Ţ,		Date
XT ELO	Printed/Typed Name	Signature			Month	Day Year
FAC	19. Discrepancy Indication Space	, , , , , , , , , , , , , , , , , , ,				
L	20. Facility Owner or Operator; Certification of receipt of the waste	materials covered by this manifest, except as noted in	ltem 19.			Date
	Printed/Typed Name	Skpnäture	2.0		Month	Date Day Year
Y	Mart Bricher	1 mint			/2	117 110

NON-HAZARDOUS WASTE