ExxonMobil Environmental Services Company

4096 Piedmont Avenue #194 Oakland, California 94611 510 547 8196 Telephone 510 547 8706 Facsimile Jennifer C. Sedlachek Project Manager

December 5, 2012

Ms. Barbara Jakub, P.G. Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577

By Alameda County Environmental Health at 2:21 pm, Feb 05, 2013

RE: Former Exxon RAS #79374/990 San Pablo Avenue, Albany, California.

Dear Ms. Jakub:

Attached for your review and comment is a copy of the letter report entitled *Groundwater Monitoring Report, Fourth Quarter 2012, and Response to Comments,* dated December 5, 2012, for the above-referenced site. The report was prepared by Cardno ERI of Petaluma, California, and details activities for the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Jennifer C. Sedlachek Project Manager

Attachment:

Cardno ERI's Groundwater Monitoring Report, Fourth Quarter 2012, and Response to Comments,

dated December 5, 2012

Sedbulk

cc:

w/ attachment

Ms. Muriel T. Blank, Trustee, The Blank Family Trusts Reverend Deborah Blank, Trustee, The Blank Family Trusts

Ms. Marcia Blank Kelly, The Blank Family Trusts

w/o attachment

Ms. Rebekah A. Westrup, Cardno ERI

Cardno ERI License A/C10/C36-611383

601 North McDowell Blvd. Petaluma, CA 94954

Phone +1 707 766 2000 Fax +1 707 789 0414 www.cardno.com

www.cardnoeri.com

December 5, 2012 Cardno ERI 2735C.Q124

Ms. Jennifer C. Sedlachek ExxonMobil Environmental Services 4096 Piedmont Avenue #194 Oakland, California 94611

SUBJECT

Groundwater Monitoring Report, Fourth Quarter 2012 and Response to Comments

Former Exxon Service Station 79374 990 San Pablo Avenue, Albany, California

Alameda County RO#2974

INTRODUCTION

At the request of ExxonMobil Environmental Services (EMES), on behalf of Exxon Mobil Corporation, Cardno ERI performed fourth quarter 2012 groundwater monitoring and sampling activities at the subject site and responded to comments submitted by the Alameda County Health Care Services Agency, Environmental Health Services (ACEH) in electronic correspondence dated October 5, 2012 (Appendix A). Relevant plates, tables, and appendices are included at the end of this report. Currently, the site is occupied by a retail outlet for paints and painting products.

GROUNDWATER MONITORING AND SAMPLING SUMMARY

Gauging and sampling date:

10/19/12

Wells sampled:

MW1 through MW3, MW3A, MW4 through MW6,

MW3A

Well gauged

MW1 through MW6, MW3A, SVE1 through SVE3

Presence of NAPL:

Not observed

Laboratory:

Calscience Environmental Laboratories, Inc.

Garden Grove, California

Analyses performed:

EPA Method 8015B TPHd, TPHg, TPHmo

EPA Method 8260B

BTEX, MTBE, ETBE, TAME, TBA, DIPE, EDB,

1,2-DCA

Waste disposal:

49 gallons purge and decon water delivered to InStrat, Inc., of Rio Vista,

California, on 10/26/12

RESULTS

Groundwater Gradient

Based on well construction, Cardno ERI separated the wells into shallow and deep water-bearing zones. Wells MW3A, MW4, MW5, and SVE1 through SVE3 are screened no deeper than 15 feet bgs and are referred to as the shallow zone; wells MW1 through MW3 and MW6 have screened intervals that extend below 15 feet bgs and are referred to as the deep zone. Groundwater elevations are presented in Plates 3 and 4.

The groundwater flow direction in the shallow zone was towards the southwest with a hydraulic gradient of approximately 0.05. The groundwater flow in the deep zone was not calculated due to varying well construction of wells MW1 through MW3 and MW6.

Hydrocarbons in Groundwater

Concentrations of TPHd were reported in wells MW3A and MW3 through MW6. Concentrations of TPHg were reported in wells MW2, MW3, MW3A, and MW4 through MW6. Concentrations of TPHmo were reported in wells MW4 and MW5. BTEX constituents were reported in wells MW1, MW3, MW3A, and MW4 through MW6. Concentrations of MTBE, TBA, ETBE, DIPE, TAME, EDB, and 1,2-DCA were not reported in samples collected from the wells. Concentrations of TPHd and TPHg increased in wells MW3 through MW5 and MW3A. The analytical results in the remaining wells are consistent with historical data. Maximum hydrocarbon concentrations were reported west of the former USTs. Isoconcentration maps depicting hydrocarbon concentrations underlying the site are presented in Plates 5 through 7.

RESPONSE TO COMMENTS

In electronic correspondence dated October 5, 2012, the ACEH indicated that before they could approve Cardno ERI's, *Work Plan for Groundwater Monitoring, Air Sparge, and Soil Vapor Extraction Well Installation*, dated August 1, 2012, they required additional information and supporting data for the proposed off-site well locations. The ACEH requested that Cardno ERI re-evaluate groundwater gradient at the site and provide justification of the proposed well locations and isoconcentration maps and cross sections. Cardno ERI prepared the requested items; findings are discussed in the following sections.

Cross Sections

The ACEH requested that Cardno ERI prepare and submit cross sections showing lithology, constituent concentrations, maximum and minimum groundwater elevations, proposed SVE and AS screen intervals, the approximate location of the former tank pit and on-site utility conduits. The requested cross sections are presented in Plates 8 through 12. During generation of the cross sections, it was noted that boring logs for wells along the edges of the site indicated a consistent stratigraphy while wells in the center of the site between boring B4 and well MW3 are comprised of coarse-grained sediments. Additional review of historic reports indicated that the former tank pit had been backfilled with sand. Further review of historic aerial photographs indicated that the locations of the former station building and tank pit appeared to be too far to the east and the locations were adjusted approximately 15 feet to the west.

Evaluation of Groundwater Gradient

The ACEH requested an evaluation of groundwater gradient beneath the site and generation of groundwater contour maps using only wells screened within the same zone. Cardno ERI reviewed boring logs, well construction data, and groundwater elevation data and concluded that wells MW3A, MW4, MW5, and SVE1 through SVE3 are screened no deeper than 15 feet bgs and produce a groundwater gradient consistent with the hydrocarbon distribution. Wells MW1, MW2, MW3, and MW6 have screen intervals extending deeper than 15 feet bgs and do not yield a consistent groundwater gradient. These zones are shown in the cross sections presented in Plates 9 through 12. As requested, Cardno ERI generated a groundwater contour elevation map for the shallow zone. The contour elevation map indicates that the groundwater gradient in the shallow zone is

toward the west and southwest (Plate 3). Groundwater flow in the deep zone was not calculated due to varying well construction.

Justification for Proposed Off-Site Well Locations

The ACEH noted that though previous gradient maps had indicated gradient directions to the north-northeast, south-southeast, and north-northwest; the proposed off-site well locations are to the southwest of the site. As noted in the previous section, the gradient for the shallow zone, screened between 5 and 15 feet bgs, is to the west and southwest towards the proposed wells. Additionally, dissolved-phase constituent distribution maps for TPHg, benzene, and MTBE are presented in Plates 5 through 7, respectively, and indicate that concentrations for the constituents of concern are at or below reporting limits to the east of the former tanks, and increase to the west and southwest toward the proposed off-site wells.

Remediation Well Locations

Based on the additional review of the site data, Cardno ERI proposes to install wells AS2 and SVE4 as shown on the attached plates, not as shown in the work plan.

RECOMMENDATIONS

Cardno ERI recommends continued semi-annual monitoring and sampling of wells MW1 through MW3, MW3A, and MW4 through MW6 and MW3A during second and fourth quarters.

Cardno ERI recommends the installation of off-site groundwater monitoring wells, additional on-site remediation wells, and performing a groundwater extraction test using well SVE3 to evaluate groundwater recharge in the former UST pit and evaluate the appropriate equipment for remediation, as proposed in the *Work Plan for Groundwater Monitoring, Air Sparge, and Soil Vapor Extraction Well Installations*, dated August 1, 2012.

LIMITATIONS

For any documents cited that were not generated by Cardno ERI, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno ERI does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document was prepared in accordance with generally accepted standards of environmental, geological, and engineering practices in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

Please contact Ms. Rebekah A. Westrup, Cardno ERI's project manager for this site, at rebekah.westrup@cardno.com or at (707) 766-2000 with any questions regarding this report.

Sincerely,

JUNGANNED LACY

Jennifer L. Lacy Senior Staff Scientist for Cardno ERI 707 766 2000

Email: jennifer.lacy@cardno.com

Site Vicinity Map

SCANNIED No. 8737

EXP. 7/7/13

Pavid R. Daniels

David R. Daniels P.G. 8737 for Cardno ERI 707 766 2000

Email: david.daniels@cardno.com

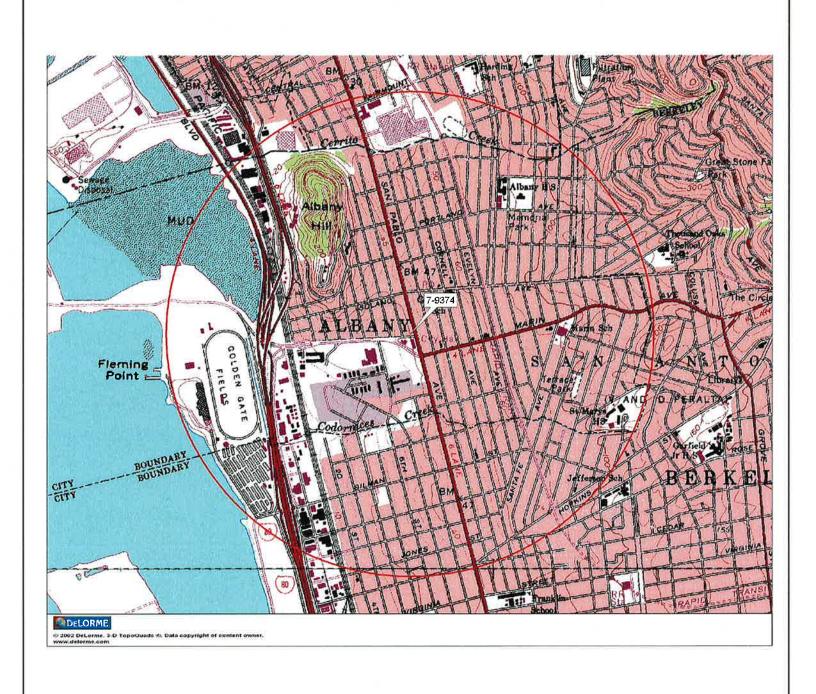
Enclosures:

Acronym List

Plate 1

riate i	one vicinity map
Plate 2	Select Analytical Results
Plate 3	Groundwater Elevation Map – Shallow Zone
Plate 4	Groundwater Elevation Map Deep Zone
Plate 5	Dissolved-Phase Constituent Distribution Map – TPHg
Plate 6	Dissolved-Phase Constituent Distribution Map – Benzene
Plate 7	Dissolved-Phase Constituent Distribution Map – MTBE
Plate 8	Cross-Section Location Map
Plate 9	Cross-Section A-A,' Select Soil Analytical Results
Plate 10	Cross-Section A-A,' Select Groundwater Analytical Results
Plate 11	Cross-Section B-B,' Select Soil Analytical Results
Plate 12	Cross-Section B-B,' Select Groundwater Analytical Results
Table 1A	Cumulative Groundwater Monitoring and Sampling Data
Table 1B	Additional Cumulative Groundwater Monitoring and Sampling Data
Table 2	Well Construction Details
Appendix A	Groundwater Sampling Protocol
Appendix B	Field Notes
Appendix C	Laboratory Analytical Report and Chain-of-Custody Record
Appendix D	Waste Disposal Documentation
Appendix E	Correspondence

cc: Ms. Barbara Jakub, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577


Ms. Muriel T. Blank, Trustee, The Blank Family Trusts, 1164 Solano Avenue, #406, Albany, California, 94706

Reverend Deborah Blank, Trustee, The Blank Family Trust, 1563 Solano Avenue, #344, Berkeley, California, 94707

Ms. Marcia Blank, Trustee, The Blank Family Trust, 641 SW Morningside Road, Topeka, Kansas, 66606

ACRONYM LIST

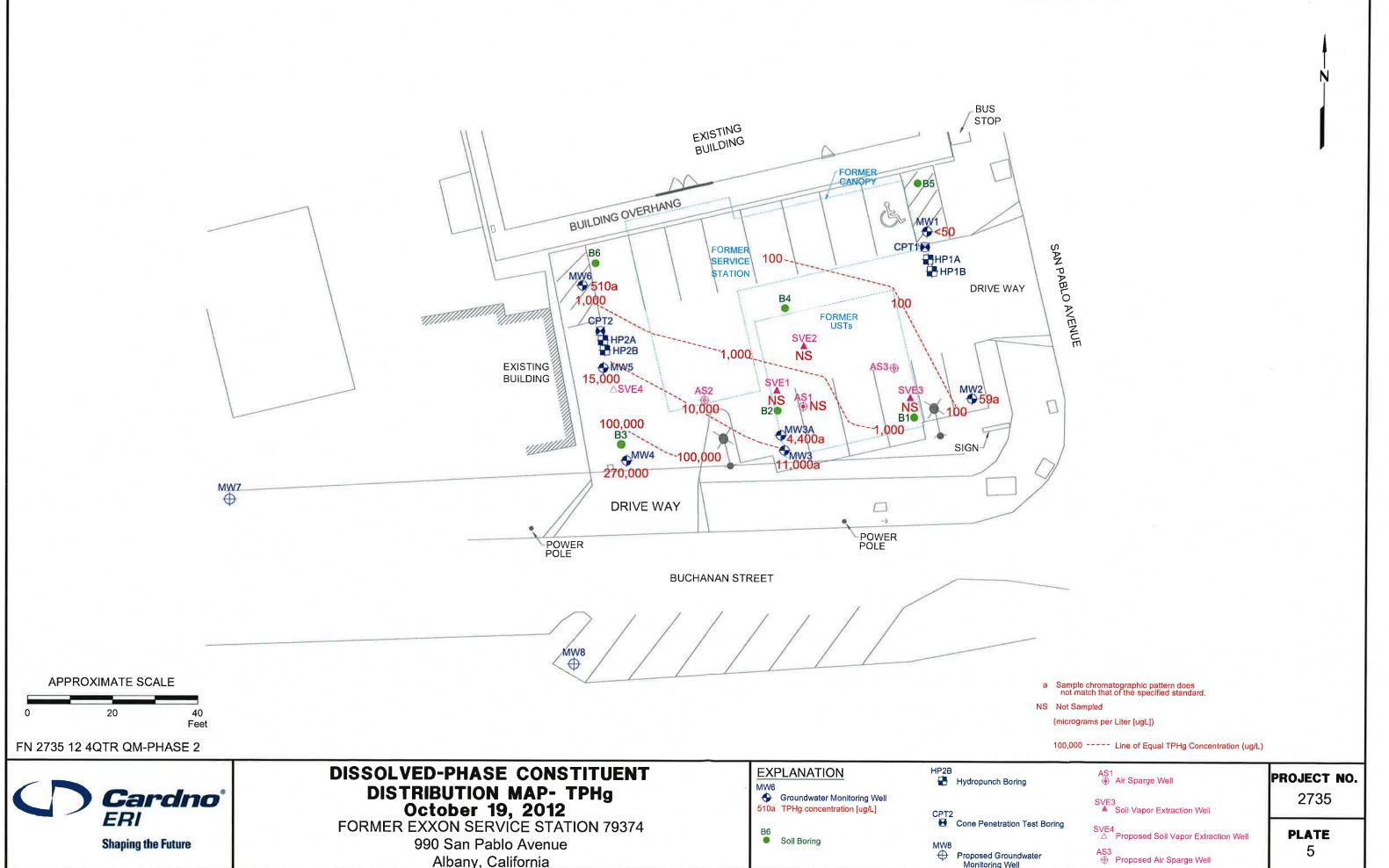
μg/L	Micrograms per liter	NEPA	National Environmental Policy Act
μs	Microsiemens	NGVD	National Geodetic Vertical Datum
1,2-DCA	1,2-dichloroethane	NPDES	National Pollutant Discharge Elimination System
acfm	Actual cubic feet per minute	O&M	Operations and Maintenance
AS	Air sparge	ORP	Oxidation-reduction potential
bgs	Below ground surface	OSHA	Occupational Safety and Health Administration
BTEX	Benzene, toluene, ethylbenzene, and total xylenes	OVA	Organic vapor analyzer
CEQA	California Environmental Quality Act	P&ID	Process & Instrumentation Diagram
cfm	Cubic feet per minute	PAH	Polycyclic aromatic hydrocarbon
COC	Chain of Custody	PCB	Polychlorinated biphenyl
CPT	Cone Penetration (Penetrometer) Test	PCE	Tetrachloroethene or perchloroethylene
DIPE	Di-isopropyl ether	PID	Photo-ionization detector
DO	Dissolved oxygen	PLC	Programmable logic control
DOT	Department of Transportation	POTW	Publicly owned treatment works
DPE	Dual-phase extraction	ppmv	Parts per million by volume
DTW	Depth to water	PQL	Practical quantitation limit
EDB	1,2-dibromoethane	psi	Pounds per square inch
EPA	Environmental Protection Agency	PVC	Polyvinyl chloride
ESL	Environmental screening level	QA/QC	Quality assurance/quality control
ETBE	Ethyl tertiary butyl ether	RBSL	Risk-based screening levels
FID	Flame-ionization detector	RCRA	Resource Conservation and Recovery Act
fpm	Feet per minute	RL	Reporting limit
GAC	Granular activated carbon	scfm	Standard cubic feet per minute
gpd	Gallons per day	SSTL	Site-specific target level
gpm	Gallons per minute	STLC	Soluble threshold limit concentration
GWPTS	Groundwater pump and treat system	SVE	Soil vapor extraction
HVOC	Halogenated volatile organic compound	SVOC	Semivolatile organic compound
J	Estimated value between MDL and PQL (RL)	TAME	Tertiary amyl methyl ether
LEL	Lower explosive limit	TBA	Tertiary butyl alcohol
LPC	Liquid-phase carbon	TCE	Trichloroethene
LRP	Liquid-ring pump	TOC	Top of well casing elevation; datum is msl
LUFT	Leaking underground fuel tank	TOG	Total oil and grease
LUST	Leaking underground storage tank	TPHd	Total petroleum hydrocarbons as diesel
MCL	Maximum contaminant level	TPHg	Total petroleum hydrocarbons as gasoline
MDL	Method detection limit	TPHmo	Total petroleum hydrocarbons as motor oil
mg/kg	Milligrams per kilogram	TPHs	Total petroleum hydrocarbons as stoddard solvent
mg/L	Milligrams per liter	TRPH	Total recoverable petroleum hydrocarbons
mg/m³	Milligrams per cubic meter	UCL	Upper confidence level
MPE	Multi-phase extraction	USCS	Unified Soil Classification System
MRL	Method reporting limit	USGS	United States Geologic Survey
msl	Mean sea level	UST	Underground storage tank
MTBE	Methyl tertiary butyl ether	VCP	Voluntary Cleanup Program
MTCA	Model Toxics Control Act	VOC	Volatile organic compound
NAI	Natural attenuation indicators	VPC	Vapor-phase carbon
NAPL	Non-aqueous phase liquid		

FN 2735 TOPO

EXPLANATION

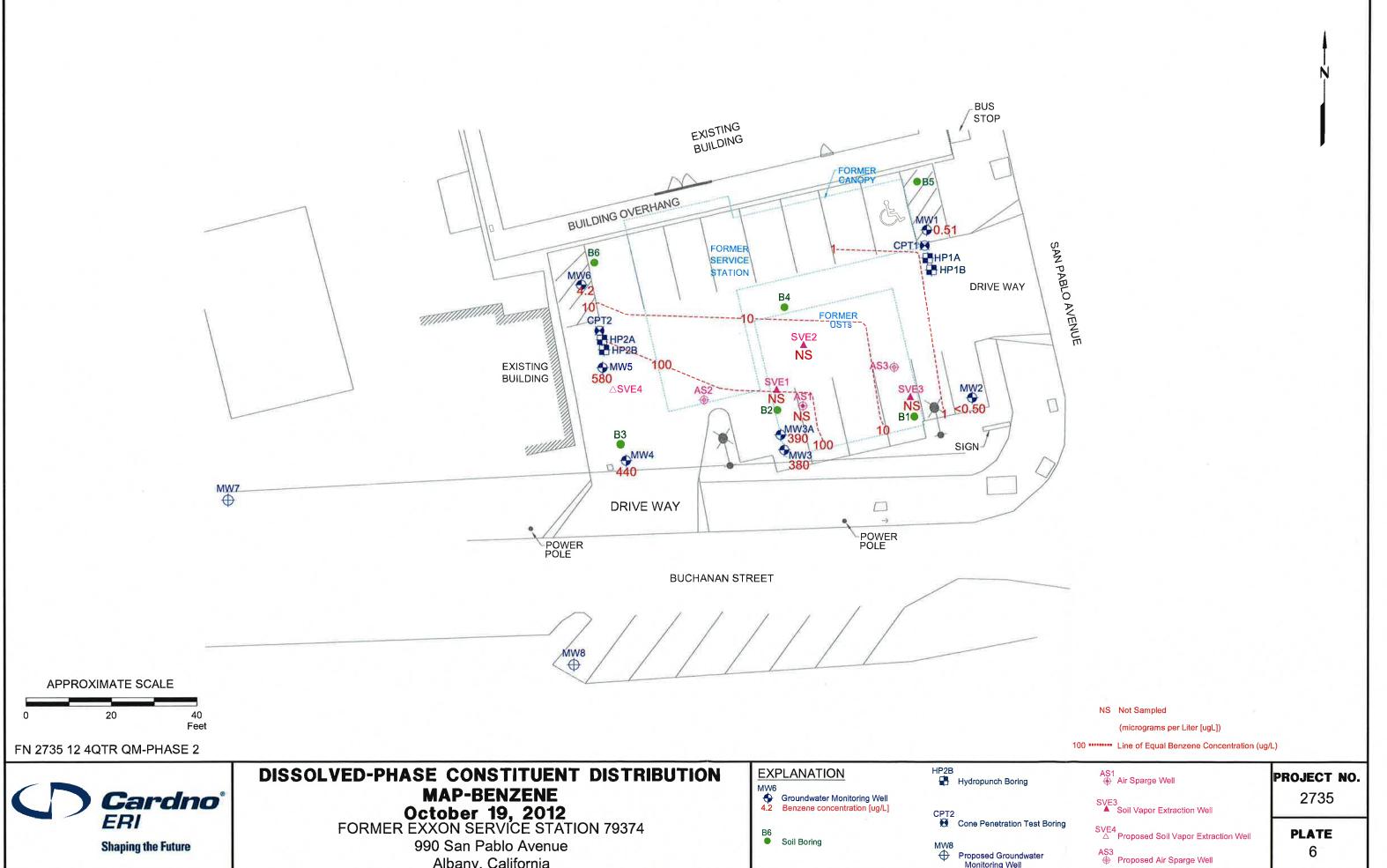
1/2-mile radius circle

APPROXIMATE SCALE 0 0.5 1 mile SOURCE: Modified from a map provided by DeLorme 3-D TopoQuads

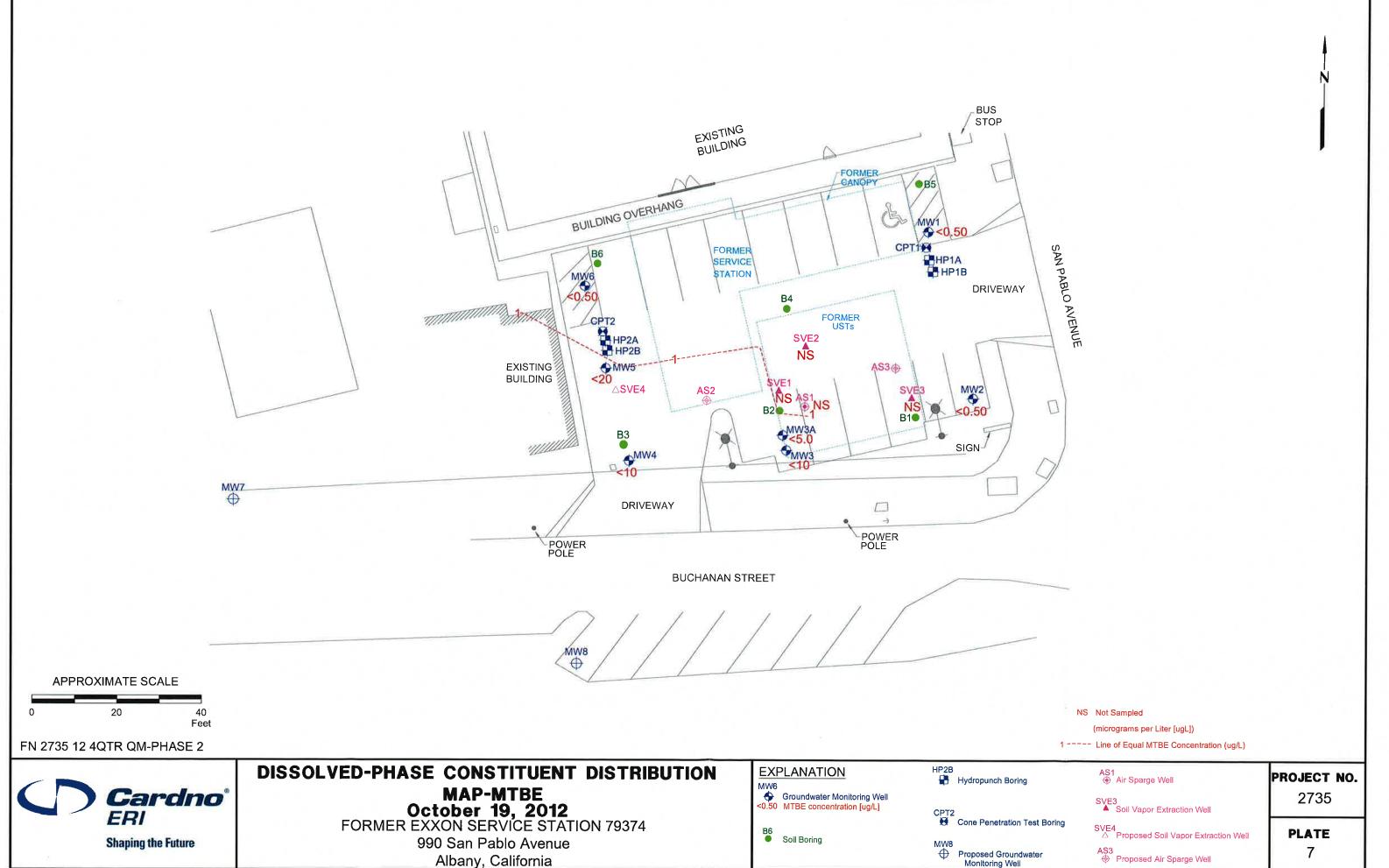

SITE VICINITY MAP

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California PROJECT NO.

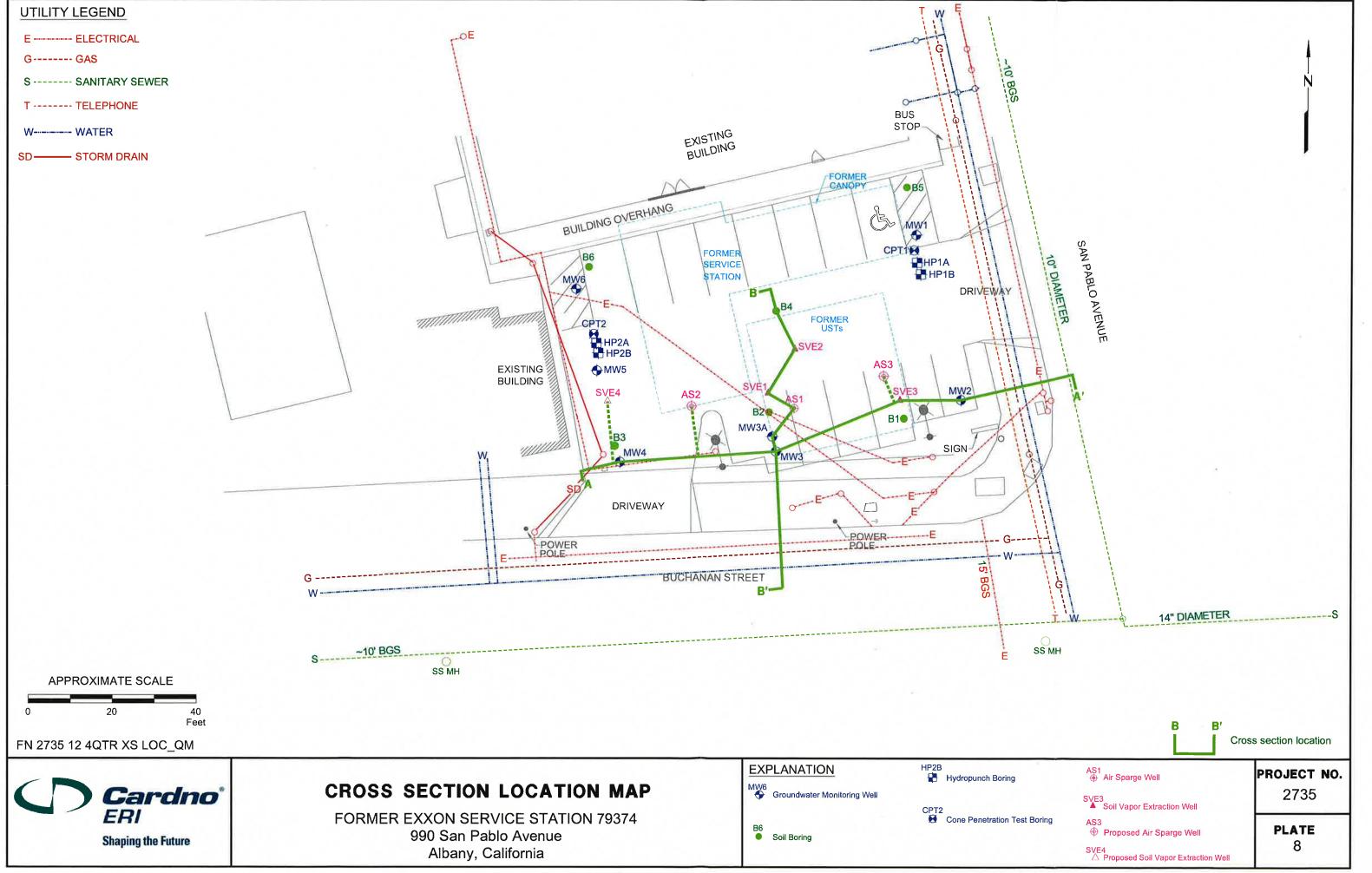
2735


PLATE

1


Albany, California

Proposed Groundwater Monitoring Well


Monitoring Weil

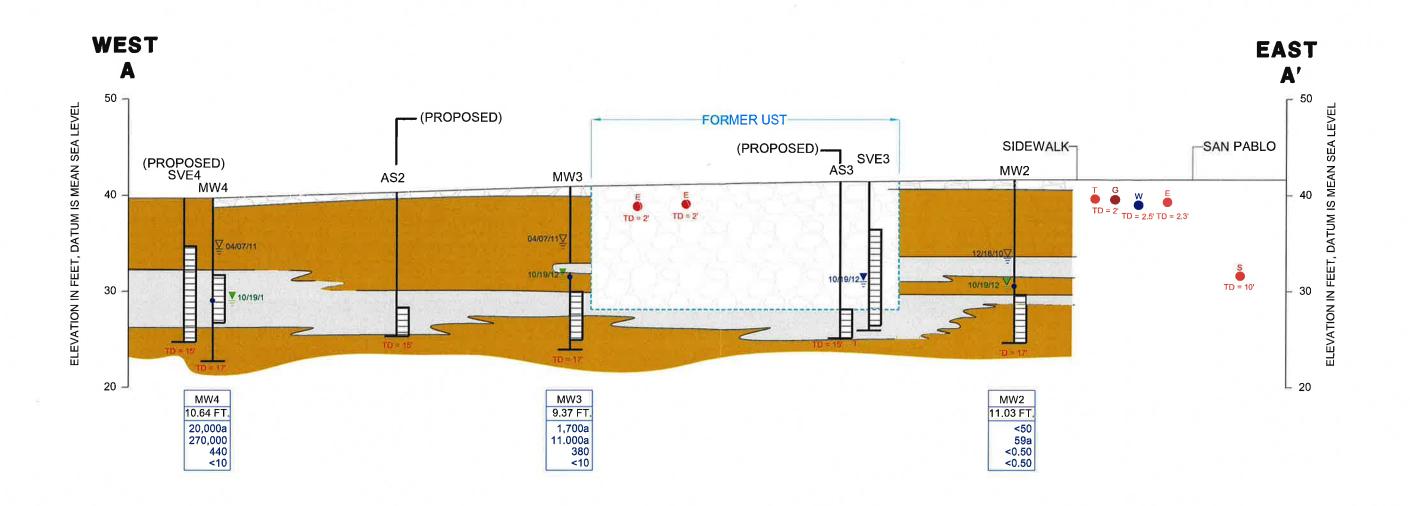
Albany, California

Albany, California

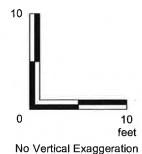
Proposed Groundwater Monitoring Well

Albany, California

Telephone Conduit

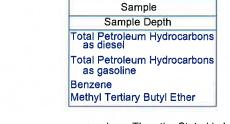

Water Line

Coarse-grained sediments


9

Current And First Groundwater

Shaping the Future



FN 2735 12 4QTR XS A-A' GW_QM

Shaping the Future

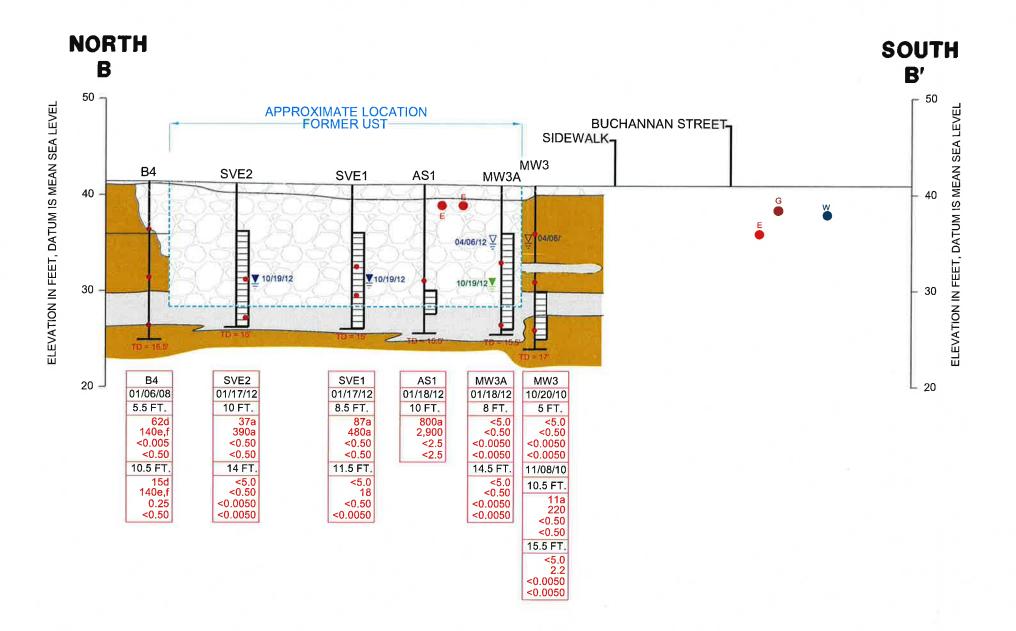
CROSS SECTION A-A', SELECT GROUNDWATER ANALYTICAL RESULTS Cardno

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California

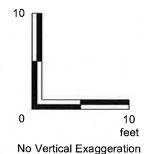
- Less Than the Stated Laboratory Reporting Limit
- Micrograms per Liter

Analyte Concentrations in ug/L

Sample chromatographic pattern does not match that of the specified standard.


PROJECT NO.

2735


PLATE

10

APPROXIMATE SCALE

FN 2735 12 4QTR XS B-B'_QM

CROSS SECTION B-B,' SELECT SOIL ANALYTICAL RESULTS

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California

Coarse-grained sediments

 Soil Sample Depth TD = Total Depth

PROJECT NO. 2735

> PLATE 11

Fine-grained sediments

Minimum Groundwater Level

Current And Maximum Groundwater Level Current And First Groundwater Level

Analyte Concentrations in mg/kg

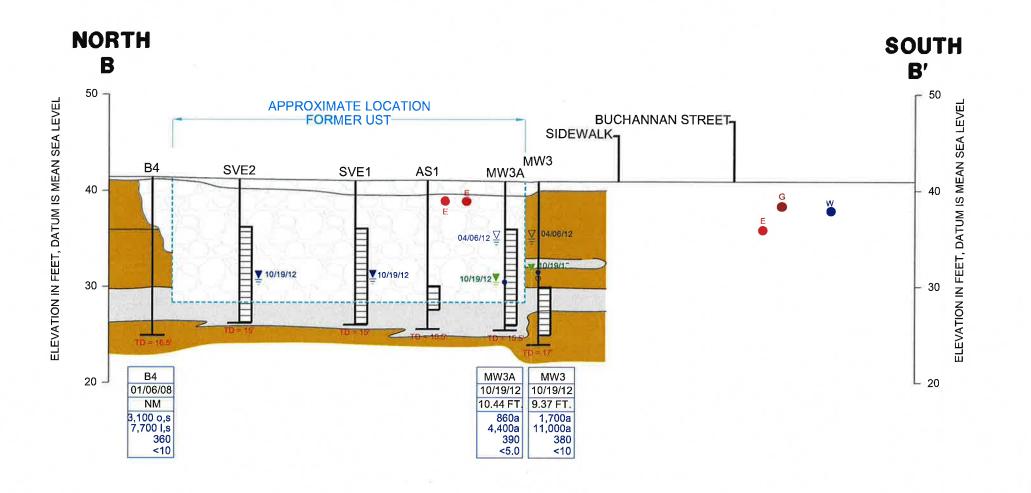
Sample Date

Sample Depth Total Petroleum Hydrocarbons as diesel Total Petroleum Hydrocarbons

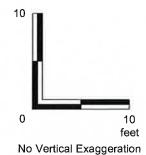
Methyl Tertiary Butyl Ether

significant.

f No recognizable pattern.


< Less Than the Stated Laboratory Reporting Limit Milligrams per kilogram

> Sample chromatographic pattern does not match that of the specified standard. Gasoline range compounds are


Strongly aged gasoline or diesel

as gasoline

Benzene

APPROXIMATE SCALE

FN 2735 12 4QTR XS B-B'_QM

Cardno° ERI **Shaping the Future**

CROSS SECTION B-B', **SELECT GROUNDWATER ANALYTICAL RESULTS**

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California

Coarse-grained sediments

 Electrical Conduit Water Line

Water Sample

PROJECT NO. 2735

Analyte Concentrations in ug/L Sample Sample Date Sample Depth Total Petroleum Hydrocarbons as diesel Total Petroleum Hydrocarbons as gasoline

Methyl Tertiary Butyl Ether

 Less Than the Stated Laboratory Reporting Limit Micrograms per Liter

a Sample chromatographic pattern does not match that of the specified standard. Unmodified or weakly modified gasoline is significant.

o Gasoline range compounds are

s Liquid sample that contains greater than approximately 1 volume % sediment.

Benzene

PLATE

Fine-grained sediments

TD = Total Depth

Minimum Groundwater Level

Current And Maximum Groundwater Level Current And First Groundwater

12

TAL ILLE	0 "		TOOF	DTM	O)47 E1	NIADI		TDU		TDU	MATRIC				
Well ID	Sampling Date	Depth (feet)	TOC Elev (feet)	v. DTW (feet)	GW Elev. (feet)	NAPL (feet)	Ο&G (μg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	Τ (μg/L)	E (µg/L)	X (µg/L)
									_						
Monitoring \	Well Samples														
MW1	11/04/10	***	Well inst	talled.											
MW1	12/01/10	***	41.45	Well su	rveyed.										
MW1	12/16/10		41.45	9.18	32.27	No	-1 2	<250	71a	54	< 0.50	1.4	0.65	0.58	1.6
MW1	01/31/11	777	41.45	8.78	32.67	No	-	<250	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50
MW1	04/07/11		41.45	8.45	33.00	No		<250	65a	160a	< 0.50	2.9	0.92	<0.50	1.7
MW1	07/18/11	-	41.45	9.49	31.96	No		<250	<50	63a	<0.50	<0.50	<0.50	<0.50	<0.50
MW1	10/13/11		41.45	9.86	31.59	No		<250	54	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW1	04/06/12		41.45	8.11	33.34	No	2 40/	<250	130	130	<0.50	2.1	<0.50	<0.50	< 0.50
MW1	10/19/12		41.45	10.42	31.03	No	Market 1	<250	<50	<50	<0.50	0.51	2.2	<0.50	0.65
MW2	11/04/10		Well inst	talled.											
MW2	12/01/10	****	41.25	Well su	rveyed.										
MW2	12/16/10	727	41.25	8.11	33.14	No	500 5	<250	110a	<50	< 0.50	<0.50	<0.50	<0.50	< 0.50
MW2	01/31/11	-	41.25	9.29	31.96	No	200	<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	04/07/11	7,77	41.25	8.21	33.04	No	550	<250	<50	<50	0.51	<0.50	<0.50	<0.50	<0.50
MW2	07/18/11	-	41.25	9.52	31.73	No		<250	<50	54a	< 0.50	< 0.50	< 0.50	<0.50	<0.50
MW2	10/13/11	-	41.25	9.56	31.69	No		<250	98	75a	< 0.50	<0.50	< 0.50	< 0.50	<0.50
MW2	04/06/12		41.25	8.68	32.57	No		<250	60	68	< 0.50	<0.50	< 0.50	<0.50	< 0.50
MW2	10/19/12		41.25	11.03	30.22	No	***	<250	<50	59a	<0.50	<0.50	<0.50	<0.50	<0.50
MW3	11/08/10		Well inst	talled.											
MW3	12/01/10		40.42	Well su	rveyed.										
MW3	12/16/10		40.42	8.18	32.24	No	***	<250	2,900a	19,000	<12	350	130	940	290
MW3	01/31/11	100	40.42	7.64	32.78	No	5755	390	2,800a	17,000a	<12	540	140	700	270
MW3	04/07/11		40.42	5.88	34.54	No	****	<250	2,700a	14,000	<10	600	150	780	230
MW3	07/18/11		40.42	8.31	32.11	No	****	<250	1,700a	19,000	<10	650	140	660	220
MW3	10/13/11		40.42	8.76	31.66	No	535)	<250	1,900a	16,000	<10	520	150	900	270
MW3	04/06/12		40.42	8.13	32.29	No		<250	3,200a	18,000	<20	300	120	1,100	180
MW3	10/19/12		40.42	9.37	31.05	No	***	<250	1,700a	11,000a	<10	380	120	740	150
MW3A	01/18/12		Well inst	talled.											
MW3A	02/06/12		40.68	Well su	rveyed.										
MW3A	04/06/12		40.68	6.02	34.66	No	201 2	<250	170a	1,300	<2.0	41	7.5	140	38
MW3A	10/19/12	***	40.68	10.44	30.24	No	**** **	<250	860a	4,400a	<5.0	390	59	410	82
MW4	11/05/10		Well inst	talled.											
MW4	12/01/10		39.30	Well su	rveyed.										
MW4	12/16/10		39.30	6.10	33.20	No		<250	2,000a	9,900	<5.0	440	40	170	380
MW4	01/31/11		39.30	6.84	32.46	No		260	3,900a	13,000	<10	500	59	320	740
MW4	04/07/11		39.30	5.29	34.01	No		<250	1,900a	9,600	<10	530	59	250	340
MW4	07/18/11		39.30	7.36	31.94	No		<250	2,800a	14,000	<10	570	66	320	510
MW4	10/13/11		39.30	7.83	31.47	No	1000 5	320	7,200a	14,000	<10	350	43	340	690
MW4	04/06/12	===	39.30	6.21	33.09	No	535 5	<250	1,800a	9,100a	<10	380	40	220	410

							All	bany, Califori	nia						
Well ID	Sampling Date	Depth (feet)	TOC Elev (feet)	. DTW (feet)	GW Elev. (feet)	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	Χ (μg/L)
/W4	10/19/12	(200	39.30	10.64	28.66	No	(****	1,400a	20,000a	270,000	<10	440	88	2,100	3,800
/IW5	11/11/10		Well insta	alled.											
ИW5	12/01/10	-	40.38	Well su	rveyed.										
MW5	12/16/10		40.38	7.69	32.69	No	7.	<250	1,100a	6,200	<2.5	150	96	270	980
MW5	01/31/11	-	40.38	8.00	32.38	No	(2002	270	4,600a	15,000	<10	520	310	1,100	2,500
ЛW5	04/07/11	3-11-3	40.38	6.73	33.65	No	-	<250	610a	2,500	<2.5	61	32	180	390
иW5	07/18/11	-	40.38	7.63	32.75	No	0,000	<250	2,000a	11,000	<2.5	340	160	990	1,800
/IW5	10/13/11		40.38	9.31	31.07	No	0.000	660	7,600a	23,000	<20	390	160	1,200	3,100
MW5	04/06/12	***	40.38	6.77	33.61	No	O rona	<250	880a	6,000a	<5.0	62	17	360	680
/IW5	10/19/12		40.38	10.64	29.74	No		280a	2,100a	15,000	<20	580	63	950	1,400
лW6	11/03/10		Well insta	alled.											
ИW6	12/01/10		41.06	Well su	rveyed.										
MW6	12/16/10	-	41.06	8.55	32.51	No	/	<250	110a	1,700	< 0.50	2.8	1.2	61	46
MW6	01/31/11		41.06	8.52	32.54	No	-	<250	800a	2,000a	<1.0	6.0	<1.0	30	24
√lW6	04/07/11		41.06	7.78	33.28	No		<250	660a	2,000	<0.50	10	1.0	20	19
/IW6	07/18/11	2445	41.06	9.27	31.79	No		<250	350a	1,000a	< 0.50	2.5	<0.50	3.8	3.5
/IW6	10/13/11	-	41.06	10.21	30.85	No		<250	370a	890a	< 0.50	2.8	<0.50	7.9	5.5
/IW6	04/06/12		41.06	7.19	33.87	No	10 44	<250	440a	1,400a	< 0.50	2.4	< 0.50	13	15
IW6	10/19/12	2 444	41.06	11.36	29.70	No	9 1110	<250	99a	510a	<0.50	4.2	1.6	8.0	7.0
\S1	01/18/12		Well insta	alled.											
\S1	10/19/12			10.32		No		•••	V. 1	•					1,555
SVE1	01/17/12	***	Well insta	alled.											
SVE1	02/06/12	-	40.58	Well su	rveyed.										
SVE1	10/19/12	(40.58	10.21	30.37	No		***		G HHH :				=44-5	***
SVE2	01/17/12		Well insta	alled.											
SVE2	02/06/12		40.94	Well su	rveyed.										
SVE2	10/19/12	-	40.94	10.48	30.46	No						•••		•	
SVE3	01/17/12		Well insta	alled.											
SVE3	02/06/12	(made)	40.93	Well su	rveyed.										
SVE3	10/19/12	(555)	40.93	10.39	30.54	No	5 	***	X 200	: :=== :		***	***	****	
Grab Groun	dwater Samples														
3-1W	01/06/08	•••					26r,s	<5,000	99,000o,n,r	76,000m,р,г	<50	<50	93	3,100	9,600
3-2W	01/06/08		-		-		-	310s	23,000o,r,s	77,000 l,r,s	<50	1,500	300	2,000	6,800
3-3W	01/06/08	-	-	-				<250s	2,0000,s	6,200 l,s	<10	170	32	740	250
3-4W	01/06/08	-		***			SI NGR	<250s	3,100o,s	7,700 l,s	<10	360	<10	240	20
3-5W	01/06/08	•••	•				STI	<250s	120o,s	120q,s	<0.5	<0.5	<0.5	<0.5	<0.5

Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)
B-6W	01/06/08		2220	RING		***		<250s	830o,s	1,700 l,s	<2.5	5.2	<2.5	100	8.6
DR-W	01/06/08							<250	960	730m,p	<0.5	<0.5	<0.5	6.9	14
W-27.5-HP1A	10/28/10	27.5	985				***	260	330a	63a	<0.50	<0.50	<0.50	<0.50	<0.50
W-36-HP1A	10/28/10	36		2200	***		***	<250	220a	<50	< 0.50	<0.50	< 0.50	< 0.50	<0.50
W-46.5-HP1A	10/28/10	46.5	***	***	***		2318 3	<420	<83	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-59-HP1B	10/27/10	59	-	1			•••	<250	130	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-27.5-HP2A	10/29/10	27.5		-	***)	***	***	<250	100a	340	<0.50	1.7	2.1	20	46
W-52-HP2A	10/29/10	52	***	****	***	1966		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-60.5-HP2B	10/27/10	60.5		-				<250	62	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-10-SVE1-2	01/31/12	10	1000 5	****	***	-	***	890a	1,500a	1,400	<1.0	46	2.0	24	23
W-10-SVE1-1	01/31/12	10			***	- man	***	990a	1,900a	2,000	<2.0	87	2.1	13	23

Notes:		
TOC	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Add'I VOCs	=	Additional volatile organic carbons analyzed using EPA Method 8260B.
Add'l SVOCs	=	Additional semi-volatile organic carbons analyzed using EPA Method 8270C.
μg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	Sample chromatographic pattern does not match that of the specified standard.
b	=	n-butylbenzene.
С	=	sec-butylbenzene.
d	=	Isopropylbenzene.
е	=	n-propylbenzene.
f	=	1,2,4-trimethylbenzene.
g	=	1,3,5-trimethylbenzene.
μ̈	=	Naphthalene.
ì	=	1-butanone.
j	=	1,2-dibromo-3-chloropropane.
k	=	2-methylnapthalene.
1	=	Unmodified or weakly modified gasoline is significant.
m	=	Heavier gasoline range compounds are significant.
n	=	Diesel range compounds are significant; no recognizable pattern.
0	=	Gasoline range compounds are significant.
р	=	No recognizable pattern.
q	=	Strongly aged gasoline or diesel compounds are significant.
r	=	Lighter than water immiscible sheen/product is present.
s	=	Liquid sample that contains greater than approximately 1 volume % sediment.

						Albany, C	amornia			
Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (μg/L)	Add'I VOCs (µg/L)	Add'l SVOCs (µg/L)
Monitorin	g Well Samples									
MW1	11/04/10		Well insta	illed.						
MW1	12/16/10	3 444 3	<0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		
MW1	01/31/11		< 0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		
MW1	04/07/11	. 	<0.50	<0.50	< 0.50	10	< 0.50	<0.50		
MW1	07/18/11	1000 L	< 0.50	< 0.50	< 0.50	<5.0	< 0.50	<0.50	\ 	
MW1	10/13/11		<0.50	< 0.50	< 0.50	<5.0	< 0.50	<0.50	-	
MW1	04/06/12		< 0.50	< 0.50	< 0.50	<5.0	< 0.50	<0.50		
MW1	10/19/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
MW2	11/04/10	-	Well insta	illed.						
MW2	12/16/10		<0.50	<0.50	<0.50	<5.0	< 0.50	<0.50	-	***
MW2	01/31/11		<0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		
MW2	04/07/11		<0.50	<0.50	<0.50	<5.0	< 0.50	<0.50		
MW2	07/18/11		<0.50	<0.50	<0.50	<5.0	< 0.50	<0.50		
MW2	10/13/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	- Control	***
MW2	04/06/12	5 572 5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	S	
MW2	10/19/12	•	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	3 711	
MW3	11/08/10		Well insta	alled						
MW3	12/16/10		<12	<12	<12	<120	<12	<12	(gille	44245
MW3	01/31/11		<12	<12	<12	<120	<12	<12		
MW3	04/07/11		<10	<10	<10	<100	<10	<10	-	
MW3	07/18/11	:===	<10	<10	<10	<100	<10	<10		
MW3	10/13/11		<10	<10	<10	<100	<10	<10		
MW3	04/06/12	:===:	<20	<20	<20	<200	<20	<20		:===
MW3	10/19/12		<10	<10	<10	<100	<10	<10	1. 	1 #11# 1
MW3A	01/18/12		Well insta	alled						
MW3A	04/06/12		<2.0	<2.0	<2.0	<20	<2.0	<2.0	3 	242
MW3A	10/19/12		<5.0	<5.0	<5.0	<50	<5.0	<5.0	? ≥d	: <u>2252</u> 1
MW4	11/05/10		Well insta							
MW4	12/16/10	1555	<5.0	<5.0	<5.0	<50	<5.0	<5.0		
MW4	01/31/11	(555)	<10	<10	<10	<100	<10	<10	0 778	i ans i
MW4	04/07/11		<10	<10	<10	<100	<10	<10	0. 550 6525	9 000 5004
MW4	07/18/11	222	<10	<10	<10	<100	<10	<10		9 88 3
MW4	10/13/11		<10	<10	<10	<100	<10	<10	// 	
MW4	04/06/12	222	<10	<10	<10	<100	<10	<10		-222
MW4	10/19/12		<10	<10	<10	<100	<10	<10		
MW5	11/11/10	3 555	Well insta		-0.5	-05	-0.5	-O E		
MW5	12/16/10	1565	<2.5	<2.5	<2.5	<25	<2.5	<2.5	() - 1	(FRE)
MW5	01/31/11		<10	<10	<10	<100	<10	<10	(
MW5	04/07/11	1.22	<2.5	<2.5	<2.5	<25	<2.5	<2.5	722	7202

						Albany, C	alitornia			
Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	Add'l VOCs (μg/L)	Add'l SVOCs (µg/L)
MW5	07/18/11	***	<2.5	<2.5	<2.5	<25	<2.5	<2.5	See	245
MW5	10/13/11		<20	<20	<20	<200	<20	<20	· ·	:
MW5	04/06/12	***	< 0.50	<5.0	<5.0	<50	<5.0	<5.0	-	
MW5	10/19/12	1964:	<20	<20	<20	<200	<20	<20	:	(400)
MW6	11/03/10	•••	Well insta	lled.						
MW6	12/16/10	202	< 0.50	<0.50	<0.50	<5.0	<0.50	<0.50	(<u></u>	
MW6	01/31/11		<1.0	<1.0	<1.0	<10	<1.0	<1.0		
MW6	04/07/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	0.2003	
MW6	07/18/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	1922	
MW6	10/13/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	822)alls:
MW6	04/06/12	212	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	(c)	
MW6	10/19/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	: <u>************************************</u>	-
AS1	01/18/12	1575	Well insta	lled.						
AS1	10/19/12	-	577765	- 				-	CATTLE.	2 1111 1
SVE1	01/17/12		Well insta	lled.						
SVE1	10/19/12	-	***	(221)	:===::					2 444 5
SVE2	01/17/12	-	Well insta	lled.						
SVE2	10/19/12	***		-	***		***			
SVE3	01/17/12		Well insta	lled.						
SVE3	10/19/12	***	*****		3686 (7448	(***	(484)		3444
Grab Grou	ndwater Sample	es								
B-1W	01/06/08	: en	<50	<50	<50	<200	<50	<50	210b, 68c, 370d, 1,100e, 3,800f, 1,300g, 1,500h	4,000h, 3,900k
B-2W	01/06/08	Andrea.	<50	<50	<50	<200	<50	<50	110b, 140e, 440f, 2,400g, 730h, 610i, 32j	(1772)
B-3W	01/06/08	(<u>200</u>	<10	<10	<10	<40	<10	<10	25b, 11c, 74d, 190e, 290f, 49g, 55i	:
B-4W	01/06/08	1.000	<10	<10	<10	<40	<10	<10	46b, 19c, 48d, 160e, 16f, 100h	S are :
B-5W	01/06/08	1000	ND	<0.5	<0.5	<2.0	<0.5	<0.5	2.6b, 0.83e, 4.8f, 1.2g, 6.5h	redu
B-6W	01/06/08	श्चित्रक. स्टब्स्टर	<2.5	<2.5	<2.5	<10	<2.5	<2.5	14b, 5.6c, 17d, 60e, 32f, 5.8g, 38h, 10i	(ant)
DR-W	01/06/08	1	<0.5	<0.5	<0.5	<2.0	<0.5	<0.5	6.9b, 2.4c, 2.5d, 11e, 17f, 5.5g, 7.0h	7202
W-27.5-HP	1A 10/28/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	Lette	S ane :
	10/28/10	36	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		S 2002 5
W-46.5-HP	1A 10/28/10	46.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	1,500	(555)
W-59-HP1E	3 10/27/10	59	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	, para	\$ ≅₽ :
W-27.5-HP	2A 10/29/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	U.5755	1777
W-52-HP2	10/29/10	52	<0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	0 1000 √1000	

TABLE 1B

Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (μg/L)	`TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	Add'l VOCs (µg/L)	Add'l SVOCs (µg/L)
W-60.5-HP	2B 10/27/10	60.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	-	***
	1-1 01/31/12 1-2 01/31/12	10 10	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	62 57	<2.0 <1.0	<2.0 <1.0		

TABLE 1B

Notes:		To a finally and a planether deturn in many and level
TOC	=	Top of well casing elevation; datum is mean sea level.
DTW CW Flant	=	Depth to water.
GW Elev.		Groundwater elevation; datum is mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)],
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Add'l VOCs	=	Additional volatile organic carbons analyzed using EPA Method 8260B.
Add'l SVOCs	=	Additional semi-volatile organic carbons analyzed using EPA Method 8270C.
μg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	Sample chromatographic pattern does not match that of the specified standard.
b	=	n-butylbenzene.
С	=	sec-butylbenzene.
d	=	Isopropylbenzene.
е	=	n-propylbenzene.
f	=	1,2,4-trimethylbenzene.
g	=	1,3,5-trimethylbenzene.
h	=	Naphthalene.
2 i	=	1-butanone.
j	=	1,2-dibromo-3-chloropropane.
k	=	2-methylnapthalene.
1	=	Unmodified or weakly modified gasoline is significant.
m	=	Heavier gasoline range compounds are significant.
n	=	Diesel range compounds are significant; no recognizable pattern.
О	=	Gasoline range compounds are significant.
р	=	No recognizable pattern.
q q	=	Strongly aged gasoline or diesel compounds are significant.
r r	=	Lighter than water immiscible sheen/product is present.
s	=	Liquid sample that contains greater than approximately 1 volume % sediment.

TABLE 2 WELL CONSTRUCTION DETAILS Former Exxon Service Station 79374 990 San Pablo Avenue

Albany, California

Well ID	Well Installation Date	TOC Elevation (feet)	Borehole Diameter (inches)	Total Depth of Boring (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Casing Material	Screened Interval (feet bgs)	Slot Size (inches)	Filter Pack Interval (feet bgs)	Filter Pack Material
MW1	11/04/10	41.45	8	17	17	2	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW2	11/04/10	41.25	8	17	17	4	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW3	11/08/10	40.42	8	17	17	4	Schedule 40 PVC	11-16	0.020	9-16	#3 Sand
MW3A	01/18/12	40.68	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
MW4	11/05/10	39.30	8	17	13	2	Schedule 40 PVC	8-13	0.020	6-13	#3 Sand
MW5	11/05/10	40.38	8	17	14	2	Schedule 40 PVC	9-14	0.020	7-14	#3 Sand
MW6	11/03/10	41.06	10	20	20	2	Schedule 40 PVC	15-20	0.020	13-20	#3 Sand
AS1	01/18/12		8	15.5	15.5	1	Schedule 80 PVC	10.25-13.5	#60 mesh	10.5-15.5	#2/12 Sand
SVE1	01/17/12	40.58	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
SVE2	01/17/12	40.94	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15	#2/12 Sand
SVE3	01/17/12	40.93	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand

Notes:

TOC = Top of well casing elevation; datum is mean sea level.

PVC = Polyvinyl chloride.

feet bgs = Feet below ground surface.

APPENDIX A GROUNDWATER SAMPLING PROTOCOL

GROUNDWATER SAMPLING PROTOCOL

The static water level and separate-phase product level, if present, in each well that contained water and/or separate-phase product are measured with a ORS Interface Probe, which is accurate to the nearest 0.01 foot. To calculate groundwater elevations and evaluate groundwater gradient, depth to water (DTW) levels are subtracted from top of casing elevations.

Groundwater samples collected for subjective evaluation are collected by gently lowering approximately half the length of a clean Teflon® or polypropylene bailer past the air-water interface (if possible) and collecting a sample from near the surface of the water in the well. The samples are checked for measurable free-phase hydrocarbons or sheen. If appropriate, free-phase hydrocarbons are removed from the well.

Before water samples are collected from the groundwater monitoring wells, the wells are purged until a minimum of three well casing volumes is purged and stabilization of the temperature, pH, and conductivity is obtained. Water samples from the wells that do not obtain stability of the temperature, pH, and conductivity are considered to be "grab samples." The quantity of water purged from each well is calculated as follows:

1 well casing volume = $\pi r^2 h(7.48)$ where:

r = radius of the well casing in feet
h = column of water in the well in feet
(depth to bottom - depth to water)

7.48 = conversion constant from cubic feet to gallons π = ratio of the circumference of a circle to its diameter

Gallons of water purged/gallons in 1 well casing volume = well casing volumes removed.

The wells are purged using a submersible pump. Prior to use at the site and between wells the pump is cleaned.

Five gallons of water are placed in three 15-gallon tubs. Liquinox detergent is added to the first tub of water. The pump and tubing are submerged in the first tub and the water is pumped through the pump. The process is repeated in the second and third tub.

After purging, each well is allowed to recharge to at least 80% of the initial water level. Water samples from wells that do not recover at least 80% (due to slow recharging of the well) between purging and sampling are considered to be "grab samples." Water samples are collected with a new, disposable Teflon® or polypropylene bailer. The groundwater is carefully poured into selected sample containers (40-milliliter [ml] glass vials, 1,000-ml glass amber bottles, etc.), which are filled so as to produce a positive meniscus.

Depending on the required analysis, each sample container is preserved with hydrochloric acid, nitric acid, etc., or it is preservative free. The type of preservative used for each sample is specified on the Chain-of-Custody record.

Each vial and glass amber bottle is sealed with a cap containing a Teflon® septum, and subsequently examined for air bubbles to avoid headspace, which would allow volatilization to occur. The samples are promptly transported in iced storage in a thermally-insulated ice chest, accompanied by a Chain-of-Custody record, to a California state-certified laboratory.

Water generated during purging and cleaning is contained and transported off site for treatment and disposal.

APPENDIX B FIELD NOTES

Daily Field Report Cardno ERI

Shaping the Future

roject ID #:	79374	Cardno ERI Job #
white (W	Date

Equipment Used: Subpump, Bailor
Name(s): S. Church

Sheet:

Time Arrived On Site: Time Departed Site: **Total Travel**

Onsite 4/15		7	185 415-43	1	
Open 445-515 DTW 515-54 Purge 658-72 Sample	9	Purga Quan Total	29 20 49		
Sampled Mi	v1,2,3	,3A,41,5,	6	1. 200	
Offsite 1015			Mw 3 not recove	d to 80% at ter	2 hrs
(
2				2	
				· · · · · · · · · · · · · · · · · · ·	
				-	
-					
Out-Of-Scope Tasks:					
					
"M/P/SWELLS	*M/S	WELLS	"M/S LOW FLOW	WELLS	
"MO WELLS	*O/P	WELLS	*POTABLE	WELLS	
*TOOK TWO AT	io.				
TOTAL PURGED GALLON " T/C SET UPS	151				
112 0121 0170					

ERI Groundwater M+S Depth To Water

Case Volume= $H(r^2x0.163)$

H=Height of Water Column in Feet r=Radius of well casing in inches

Common conversion factors: 2"=0.163, 4"=0.652, 6"=1.457

Project

Location

Date

2735

79374 10-19-12 S.Charch

WELL	WELL DIAMETER	ODOR? SHEEN?	TOTAL DEPTH	Pre-Purge DTW	Depth To	PRODUCT THICKNESS	COMMENTS
ASI			13,47	10,32			
SVEI	4		15,04	10.21			
SVE 2	4		14,98	10.48	10.44		
SVE3	4		15.03	10,39			
mw2	4		15,20	11.03			
mw 1	2		16,61	10,42			
mw3A	4/		15,20	10,44			
mu 5	2		13.40	10.64			
mw6	2			11,36			
mwl	2			10,64			
mh3	4		14,98	9,37			
<u> </u>							
						-	

					GB	OUND	WATER S	AMDI INI	G EIEI D	1.00					
Client Name Location: Field Crew:	793	74	/e		ERI Job	#: 27	erformed:		Date: 10-14-12 Page of Case Volume = (TD - DTW) x F where F = 0.163 for 2" inside-diameter well casing 0.652 for 4" inside-diameter well casing 1.457 for 6" inside-diameter well casing						
	T	Case	Purge				1		7						
Well ID	Time	Volume	Volume	Temp	Cond	pН	Post-Purge DTW	80% Recharge	BB	40mil	Amber	DO	ORP	Comments Well Box Condition	
mw2	754	2.71	3				111.01								
77100 ==	558	X177	3	100 0	1. 25	12.11	11,21	y		6	2			OK	
	600	3	-		1067		111							Dry 6gal	
	600		9	22, /	1083	7.0C	1//	\mathcal{L}	1810	9			/ /		
mw1	610	1.00	7	L			10 100	110							
77,00 /	611	1,00	-	22.5	Tani	7711	10.48	Y		6	2			OF	
	612	1	2	23,0	921	7,04	10		1110					Dry 3gal	
	012	(3	2710	7/8	7.09	10	0	82.	5					
mw3A	133	3.10	4			L	12.7.1								
THUY TH	634	7110	4	22.9	11.12	2016	10,61	<u> </u>		6	2			OK	
	0)9	4	8	22.9	1062	6.94	1 1 1	1	10/5	1				Dry 7gal	
		/	12	├──	-	-	1 ()	\mathcal{C}	185)				* 1	
mws	646	0,44	1		<u> </u>		11.00	1/		-,-					
	016	0176	1	22,9	1070	1 60	10,89	Y		6	2			OK	
		/	2	2219	1010	6,97	11		Mal					Drylgal	
			3				-	(091						
mwl	657	1.28	2				12.90	V							
	658	71.0	2	21.8	553	7.11	12.70			6	2	-	L	OH	
	659	2	4	21.8	597	7.03	17		903	9/ 0	735			Dry 5gal	
			6	1		7,00	1//		14 MAG		//				
mwy	716	0.40	1				10.67	V		6	2			NI	
	7/7		1	22,9	968	684	1-107				12		L	OK	
		1	2			7	1//	C	150					Dry 2gal	
			3				1 ()	/	, 0						
mw3	724	5:61	6				13,19	N		6	2			OH	
			MG											Dry 5961	
		6	/2				13	/	010	7				1314 1961	
			18			- 5	1 ` ′	/	0 / 0						

WAT	ER S	SAMF	PLINC	3 SIT	ES	TATU	S								Date: 10-19-12
													290		
EDI lok	a Niconal	hor: 1	735	04.45	<i>i</i>	79370	1			gan c	-	011		111	inspected by: Schurza
ERI Job	ווווטאו כ	Jer	111	Station	No.:4	(1)/		Site Ad	ldress: _	11000	any	0010	ave	Albe	anx_
		/	/	7	/	7	7	7							
WellID		HORNE IN	er ket	Caping	of Cal	Mell Well S	(C) 30	II Jaul	Well	COME	Galitic	Tuns C	stertis	ordition Sile App	astance
- Wa	Mag	5 60 C	30/1/0/	97.00	10°	Me Me 6	No	100 130	Me.	160,C	% ×	D. Ounc	Of Brigg	of Site Vol	Comments / Well Covers
SVEI	OK.	N/R/ok				N/R/ok	Y/N		N/R/ok	N/R/ok		s/w/e	g/v/o	N/R/ok	
451	T	1	OK	OK	oh	OK	N	OK	OK						
ASI SVEZ			++-	-			-	-			-				
SVE3	H^{-}		1							-	-	-			
mwa	\vdash						1				-	-			- 46
mw1			So.	178			Y				en.		Series .		
mw3A			A ST	81	1	Grand Control	N	111	_ usper			ELK			
mw5			138	rid	.2.	1,193	1 1 1					L ⁴			***
mw6			340				Mr.					ă l			
mw4	1	1					. 10			liv.	i	100	979 E ₇	2 Vij en e	N
ma3	V	V	M	Y	W.	Taring Name	V	W	V	1 1 1 1	oti i	6-31705/ 2		3	
		ļ			g d		190		111/3					- AY	
	-	-		-		-			-d/		7.				
	-			-		-					16.83	Land of the Control	8		
			-	-				-							
	-	-		-	-	-		-			_				
			-	-		-	-	-	-		-				
			-					-		h					r
			-												
		<u> </u>			<u> </u>										
								s = Soil. g = Graffitti on walls.							
ok = No a			nts				N =	No.				Nater.			grants (or evidence of).
ok = No a	iction ne	eaea.									e = E	Empty.		o = Op	en (not secured).
				-											to a week to a series of the s

APPENDIX C

LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY RECORD

CALSCIENCE

WORK ORDER NUMBER: 12-10-1481

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

ECETVE NOV 0 5 2012

Analytical Report For

Client: Cardno ERI

Client Project Name: ExxonMobil 79374/022735C

Attention: Rebekah Westrup

601 North McDowell Blvd. Petaluma, CA 94954-2312

Cecile & e Soia

Approved for release on 11/2/2012 by: Cecile deGuia

Project Manager

ResultLink >

Email your PM)

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: ExxonMobil 79374/022735C

Work Order Number: 12-10-1481

1	Client Sample Data	3
	1.1 EPA 8015B (M) TPH Diesel (Aqueous)	3
	1.2 EPA 8015B (M) TPH Motor Oil (Aqueous)	5
	1.3 EPA 8015B (M) TPH Gasoline (Aqueous)	7
	1.4 EPA 8260B Volatile Organics (Aqueous)	10
2	Quality Control Sample Data	14 14
	2.2 LCS/LCSD	20
3	Glossary of Terms and Qualifiers	28
4	Chain of Custody/Sample Receipt Form	29

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/20/12 12-10-1481 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 1 of 2

							rage 1012			
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
W-10-MW1		12-10-1481-2-H	10/19/12 08:25	Aqueous	GC 47	10/22/12	10/23/12 21:06	121022B07S		
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>					
TPH as Diesel	ND	50	1	SG,U	ug/L					
Surrogates:	REC (%)	Control Limits		Qual						
n-Octacosane	129	68-140								
W-11-MW2		12-10-1481-3-H	10/19/12 08:10	Aqueous	GC 47	10/22/12	10/23/12 21:21	121022B07S		
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>					
TPH as Diesel	ND	50	1	SG,U	ug/L					
Surrogates:	REC (%)	Control Limits		<u>Qual</u>						
n-Octacosane	118	68-140								
W-13-MW3		12-10-1481-4-H	10/19/12 10:10	Aqueous	GC 47	10/22/12	10/23/12 21:36	121022B07S		
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>					
TPH as Diesel	1700	50	1	SG,HD	ug/L					
Surrogates:	REC (%)	Control Limits		Qual						
n-Octacosane	102	68-140								
W-11-MW3A		12-10-1481-5-H	10/19/12 08:55	Aqueous	GC 47	10/22/12	10/23/12 21:52	121022B07S		
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>					
H as Diesel 860		250	5	SG,HD	ug/L					
Surrogates:	REC (%)	Control Limits		Qual						
n-Octacosane	99	68-140								

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method:

10/20/12

12-10-1481

EPA 3510C

EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 2 of 2

Client Cample Number		Lab Sample	Date/Time	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Client Sample Number W-11-MW4		Number 12-10-1481-6-H	10/19/12 09:50	Aqueous	GC 47	10/22/12	10/23/12 22:07	121022B07S
			09:50				22:07	
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Diesel	20000	250	5	HD,SG	ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
n-Octacosane	81	68-140						
W-11-MW5		12-10-1481-7-Н	10/19/12 09:10	Aqueous	GC 47	10/22/12	10/23/12 22:22	121022B07S
Parameter_	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Diesel	2100	50	1	SG,HD	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
n-Octacosane	103	68-140						
W-13-MW6		12-10-1481-8-H	10/19/12 09:35	Aqueous	GC 47	10/22/12	10/23/12 22:38	121022B07S
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Diesel	99	50	1	SG,HD	ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
n-Octacosane	103	68-140						
Method Blank		099-15-304-132	N/A	Aqueous	GC 47	10/22/12	10/23/12 17:31	121022B07S
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Diesel	ND	50	1	U	ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
n-Octacosane	111	68-140						

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/20/12 12-10-1481 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 1 of 2

Project: ExxonMobil 793	374/0227350						Page 1 o				
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
W-10-MW1		12-10-1481-2-H	10/19/12 08:25	Aqueous	GC 47	10/22/12	10/23/12 21:06	121022B08S			
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>						
TPH as Motor Oil	ND	250	1	SG,U	ug/L						
Surrogates:	<u>REC (%)</u>	Control Limits		Qual							
n-Octacosane	129	68-140									
W-11-MW2	1,114,1	12-10-1481-3-Н	10/19/12 08:10	Aqueous	GC 47	10/22/12	10/23/12 21:21	121022B08\$			
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>						
TPH as Motor Oil	ND	250	1	SG,U	ug/L						
Surrogates:	<u>REC (%)</u>	Control Limits		Qual							
n-Octacosane	118	68-140									
W-13-MW3		12-10-1481-4-H	10/19/12 10:10	Aqueous	GC 47	10/22/12	10/23/12 21:36	121022B08S			
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>						
TPH as Motor Oil	ND	250	1	\$G,U	ug/L						
Surrogates:	REC (%)	Control Limits		Qual							
n-Octacosane	103	68-140									
W-11-MW3A		12-10-1481-5-H	10/19/12 08:55	Aqueous	GC 47	10/22/12	10/26/12 09:53	121022B08S			
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>						
TPH as Motor Oil	ND	250	1	SG,U	ug/L						
Surrogates:	<u>REC (%)</u>	Control Limits		Qual							
n-Octacosane	111	68-140									

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/20/12 12-10-1481 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 2 of 2

Project. Exxonivious /s	9374/0227330						1 0	19e 2 01 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-11-MW4		12-10-1481-6-H	10/19/12 09:50	Aqueous	GC 47	10/22/12	10/23/12 22:07	121022B08S
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	1400	1200	5	SG,HD	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
n-Octacosane	81	68-140						
W-11-MW5		12-10-1481-7-H	10/19/12 09:10	Aqueous	GC 47	10/22/12	10/23/12 22:22	121022B08S
Parameter_	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	280	250	1	SG,HD	ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
n-Octacosane	103	68-140						
W-13-MW6		12-10-1481-8-H	10/19/12 09:35	Aqueous	GC 47	10/22/12	10/23/12 22:38	121022B08S
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	250	1	SG,U	ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
n-Octacosane	103	68-140						
Method Blank		099-15-278-116	N/A	Aqueous	GC 47	10/22/12	10/23/12 17:31	121022B08S
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	250	1	U	ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
n-Octacosane	111	68-140						

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

10/20/12 12-10-1481 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 1 of 3

Project: ExxonMobil 793	374/022735C						Pa	ge 1 of 3	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II	
W-10-MW1		12-10-1481-2-E	10/19/12 08:25	Aqueous	GC 57	10/26/12	10/26/12 15:35	121026B01	
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>				
TPH as Gasoline	ND	50	1	U	ug/L				
Surrogates:	REC (%)	Control Limits		<u>Qual</u>					
1,4-Bromofluorobenzene	111	38-134				i.			
W-11-MW2		12-10-1481-3-D	10/19/12 08:10	Aqueous	GC 57	10/26/12	10/26/12 17:09	121026B01	
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>				
TPH as Gasoline	59	50	1	HD	ug/L				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene	86	38-134							
W-13-MW3		12-10-1481-4-D	10/19/12 10:10	Aqueous	GC 57	10/26/12	10/27/12 02:33	121026B01	
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>				
TPH as Gasoline	11000	500	10	HD	ug/L				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene	111	38-134							
W-11-MW3A		12-10-1481-5-D	10/19/12 08:55	Aqueous	GC 57	10/26/12	10/27/12 02:02	121026B01	
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>				
TPH as Gasoline	4400	250	5	HD	ug/L				
Surrogates:	REC (%)	Control Limits		<u>Qual</u>					
1,4-Bromofluorobenzene	90	38-134							

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method:

10/20/12

12-10-1481

EPA 5030C

EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 2 of 3

Troject: Exxemition recriptor	21000						1 6	190 2 01 0
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-11-MW4		12-10-1481-6-F	10/19/12 09:50	Aqueous	GC 24	10/30/12	10/30/12 17:10	121030B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	270000	5000	100		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	117	38-134						
W-11-MW5	What	12-10-1481-7-E	10/19/12 09:10	Aqueous	GC 24	10/27/12	10/28/12 02:42	121027B02
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	15000	500	10		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	97	38-134						
W-13-MW6		12-10-1481-8-D	10/19/12 09:35	Aqueous	GC 57	10/26/12	10/26/12 17:40	121026B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	510	50	1	HD	ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	100	38-134						
Method Blank		099-12-436-7,972	N/A	Aqueous	GC 57	10/26/12	10/26/12 13:03	121026B01
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1	U	ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method:

10/20/12

12-10-1481

EPA 5030C

EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 3 of 3

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-436-7,976	N/A	Aqueous	GC 24	10/27/12	10/27/12 12:50	121027B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1	U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	73	38-134						
Method Blank		099-12-436-7,979	N/A	Aqueous	GC 24	10/30/12	10/30/12 12:39	121030B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1	U	ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	62	38-134						

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

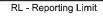
Preparation:

Method:

Units:

10/20/12

12-10-1481


EPA 5030C

EPA 8260B

ug/L

Page 1 of 4

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
W-10-MW1			12-10-1481-2-A		10/19/12 08:25	Aqueous	GC/MS L	10/24/12	10/24 17:		121024L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	0.51	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Toluene	2.2	0.50	1			Ether (ETBE)		ND	0.50	1	ū
Ethylbenzene	ND	0.50	1	U	, ,	ethyl Ether (T		ND	0.50	1	Ŭ
Xylenes (total)	0.65	0.50	1	Ŭ	1,2-Dibromoe	•	, w.L.,	ND	0.50	1	Ü
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe			ND	0.50	1	Ŭ
	ND	5.0	1	U	1,2-010110100	eu lai le		ND	0.50	19	O
Tert-Butyl Alcohol (TBA)			•	_	0			DEC (0/.)	Cambral	,	S=1
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits	<u>Qua</u>	<u>l</u>	Surrogates:			REC (%)	Control Limits	_	<u>Qual</u>
1,4-Bromofluorobenzene	91	68-120			Dibromofluor	omethane		102	80-127		
1,2-Dichloroethane-d4	103	80-128			Toluene-d8	Officularie		97	80-120		
W-11-MW2		00 120	12-10-1	481-3-A	10/19/12	Aqueous	GC/MS L	10/24/12	10/24		121024L01
					08:10	3/4			17:	54	
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Toluene	ND	0.50	1	U	Ethyl-t-Butyl	Ether (ETBE)		ND	0.50	1	U
Ethylbenzene	ND	0.50	1	Ū		ethyl Ether (T		ND	0.50	1	U
Xvlenes (total)	ND	0.50	1	Ū	1.2-Dibromoe	,	,	ND	0.50	1	Ū
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	Ü	1,2-Dichloroe			ND	0.50	i	Ü
Tert-Butyl Alcohol (TBA)	ND	5.0	i	Ü	1,2 5101110100	otriario		110	0.00	10	Ü
Surrogates:	REC (%)	Control	Qua	_	Surrogates:			REC (%)		<u>(</u>	Qual
		<u>Limits</u>							<u>Limits</u>		
1,4-Bromofluorobenzene	93	68-120			Dibromofluor	omethane		106	80-127		
1,2-Dichloroethane-d4	106	80-128			Toluene-d8			98	80-120		
W-13-MW3			12-10-1	481-4-B	10/19/12 10:10	Aqueous	GC/MS L	10/25/12	10/25 14:4		121025L01
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DF	Qual
	380			Quui		thor (DIDE)		ND			U
Benzene		10	20		Diisopropyl E	, ,			10	20	
Toluene	120	10	20		, ,	Ether (ETBE)		ND	10	20	U
Ethylbenzene	740	10	20		•	ethyl Ether (T	AIVIE)	ND	10	20	U
Xylenes (total)	150	10	20		1.2-Dibromo			ND	10	20	U
Methyl-t-Butyl Ether (MTBE)	ND	10	20	U	1,2-Dichloroe	etnane		ND	10	20	U
Tert-Butyl Alcohol (TBA)	ND	100	20	U							
Surrogates:	<u>REC (%)</u>	Control Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	Control Limits	<u>C</u>	Qual
1,4-Bromofluorobenzene	96	68-120			Dibromofluor	omethane		92	80-127		
1,2-Dichloroethane-d4	88	80-128			Toluene-d8			103	80-120		
1,2-DICHIOTOEUTATIE-04	00	00-120			i oluene-d8			100	00-120		

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

10/20/12

Work Order No:

12-10-1481

Preparation:

EPA 5030C


Method:

EPA 8260B ug/L

Units:

Page 2 of 4

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch I
W-11-MW3A				481-5-B	10/19/12 08:55	Aqueous	GC/MS L	10/25/12	10/25 15:	5/12	121025L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	390	5.0	10		Diisopropyl E	ther (DIPE)		ND	5.0	10	U
Toluene	59	5.0	10		Ethyl-t-Butyl)	ND	5.0	10	Ū
Ethylbenzene	410	10	20		Tert-Amyl-Me	, ,	,	ND	5.0	10	Ü
Xylenes (total)	82	5.0	10		1,2-Dibromo	•		ND	5.0	10	Ü
Methyl-t-Butyl Ether (MTBE)	ND	5.0	10	U	1,2-Dichloroe			ND	5.0	10	Ü
Tert-Butyl Alcohol (TBA)	ND	50	10	Ü	1,2 Biornoroc	ou la lic		110	5.0	10	ŭ
Surrogates:	REC (%)		Qua		Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
1.4-Bromofluorobenzene	96	68-120			Dibromofluor	omothono		94	80-127		
,	91	80-128				Omeulane		101			
1,2-Dichloroethane-d4	91	80-128			Toluene-d8	- 15 1		101	80-120		
W-11-MW4			12-10-1	481-6-A	10/19/12 09:50	Aqueous	GC/MS L	10/24/12	10/24 19:		121024L0
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	440	10	20		Diisopropyl E	ther (DIPE)		ND	10	20	U
Toluene	88	10	20		Ethyl-t-Butyl	, ,	١	ND	10	20	Ü
Ethylbenzene	2100	40	80		Tert-Amyl-Me	, ,	,	ND	10	20	Ü
Xylenes (total)	3800	40	80		1,2-Dibromoe	,	,,	ND	10	20	Ŭ
Methyl-t-Butyl Ether (MTBE)	ND	10	20	U	1,2-Dichloroe			ND	10	20	Ŭ
Tert-Butyl Alcohol (TBA)	ND	100	20	Ŭ	TIE DIOTHOTOG	Allano		110	10	20	Ü
Surrogates:	REC (%)	Control Limits	Qual	-	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
1.4-Bromofluorobenzene	89	68-120			Dibromoficos			84	80-127		
•					Dibromofluor	ometnane					
1,2-Dichloroethane-d4	88	80-128			Toluene-d8			104	80-120		
W-11-MW5			12-10-1	481-7-B	10/19/12 09:10	Aqueous	GC/MS L	10/25/12	10/25 16:0		121025L0
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	580	20	40		Diisopropyl E	ther (DIPE)		ND	20	40	U
Toluene	63	20	40		Ethyl-t-Butyl I	, ,)	ND	20	40	Ū
Ethylbenzene	950	20	40		Tert-Amyl-Me	٠,	'	ND	20	40	Ŭ
Xylenes (total)	1400	20	40		1,2-Dibromoe	•	,	ND	20	40	Ū
Methyl-t-Butyl Ether (MTBE)	ND	20	40	U	1,2-Dichloroe			ND	20	40	Ŭ
Tert-Butyl Alcohol (TBA)	ND	200	40	Ü	.,					FU	
Surrogates:	REC (%)	Control Limits	Qual		Surrogates:			REC_(%)	Control Limits	<u>C</u>	<u>Qual</u>
1 4-Bromofluorobenzene	96	68-120			Dibromofluor	omethane		96	80-127		
1,4-Bromofluorobenzene 1,2-Dichloroethane-d4	95 95	68-120 80-128			Dibromofluor Toluene-d8	omethane		96 101	80-127 80-120		

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method:

Units:

10/20/12

12-10-1481

EPA 5030C

EPA 8260B

ug/L

Page 3 of 4

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
W-13-MW6			12-10-	1481-8-A	10/19/12 Aqueous GC/M 09:35			10/24/12	10/24/12 20:16		121024L01
<u>Parameter</u>	Result	RL	DE	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	4.2	0.50	1		Diisopropyl E	Ether (DIPE)		ND	0.50	1	U
Toluene	1.6	0.50	1			Ether (ETBE)	١	ND	0.50	1	Ü
Ethylbenzene	8.0	0.50	1			ethyl Ether (T		ND	0.50	1	Ŭ
Xylenes (total)	7.0	0.50	1		1,2-Dibromo	*	, (IVIL)	ND	0.50	1	Ŭ
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloro			ND	0.50	1	Ü
Tert-Butyl Alcohol (TBA)	ND	5.0	1	Ü	1,2-DICITIOIO	culane		ND	0.50	1	O
		Control			Curromatory			REC (%)	Control	,	Out of
<u>Surrogates:</u>	<u>REC (%)</u>	Limits	<u>Qua</u>	<u> </u>	Surrogates:			REC (%)	Limits	7	<u>Qual</u>
	04	-						00			
1,4-Bromofluorobenzene	94	68-120			Dibromofluor	romethane		93	80-127		
1,2-Dichloroethane-d4	88	80-128			Toluene-d8			99	80-120		
Method Blank			099-12	-884-947	N/A	Aqueous	GC/MS L	10/24/12	10/24 12:		121024L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	Ether (DIPE)		ND	0.50	1	U
Toluene	ND	0.50	: 1	Ū		Ether (ETBE))	ND	0.50	1	Ü
Ethylbenzene	ND	0.50	1	Ŭ	, ,	ethyl Ether (T.		ND	0.50	1	Ŭ
Xylenes (total)	ND	0.50	1	ŭ	1,2-Dibromo	•	, (IVIL)	ND	0.50	1	Ü
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	Ü	1,2-Dichloro			ND	0.50	1	Ü
Tert-Butyl Alcohol (TBA)	ND	5.0	1	Ŭ	1,2-DICITIOTO	calane		ND	0.50	100	Ü
Surrogates:	REC (%)	Control	Qua	-	Surrogates:			REC (%)	Control	<u>C</u>	Qual
		<u>Limits</u>							<u>Limits</u>		
1,4-Bromofluorobenzene	90	68-120			Dibromofluor	romethane		109	80-127		
1,2-Dichloroethane-d4	106	80-128			Toluene-d8			97	80-120		
Method Blank			099-12	-884-948	N/A	Aqueous	GC/MS L	10/25/12	10/2: 12:		121025L01
Parameter Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DF	<u>Qual</u>
Benzene	ND	0.50	1	U	Diisopropyl E	Ether (DIPF)		ND	0.50	1	U
Toluene	ND	0.50	1	Ü		Ether (ETBE)	1	ND	0.50	1	Ŭ
Ethylbenzene	ND	0.50	1	Ü	, ,	ethyl Ether (T.		ND	0.50	1	Ü
Xylenes (total)	ND	0.50	1	Ü	1,2-Dibromo	•	,	ND	0.50	1	Ü
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	Ü	1,2-Diblomo			ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U	1,2-0101110101	ou laile		ND	0.00		J
Surrogates:	REC (%)	Control Limits	Qua		Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
1,4-Bromofluorobenzene	90	68-120			Dibromofluor	romethane		100	80-127		
•	107					omediane		91			
1,2-Dichloroethane-d4	107	80-128			Toluene-d8			91	80-120		

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method:

EPA 5030C

Units:

EPA 8260B ug/L

12-10-1481

10/20/12

Project: ExxonMobil 79374/022735C

Page 4 of 4

Client Sample Number			Lab Sample Number		Date/Time Collected Matrix		Instrument	Date Prepared	Date/Time Analyzed		QC Batch ID	
Method Blank			099-12-884-950		N/A	Aqueous	GC/MS L	10/25/12	10/2 00:		121025L02	
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL	<u>DF</u>	Qual	
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPE)		ND	0.50	1	U	
Toluene	ND	0.50	1	U	Ethyl-t-Butyl E	Ether (ETBE)	ND	0.50	1	U	
Ethylbenzene	ND	0.50	1	U	Tert-Amyl-Me	thyl Ether (T	AME)	ND	0.50	1	U	
Xylenes (total)	ND	0.50	1	U	1,2-Dibromoe	thane		ND	0.50	1	U	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe	thane		ND	0.50	1	U	
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U								
Surrogates:	REC (%)	Control Limits	<u>Qu</u>	<u>al</u>	Surrogates:			<u>REC (%)</u>	Control Limits	<u>C</u>	<u>Qual</u>	
1,4-Bromofluorobenzene	89	68-120			Dibromofluoro	omethane		108	80-127			
1,2-Dichloroethane-d4	107	80-128			Toluene-d8			95	80-120			

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/20/12 12-10-1481 EPA 5030C EPA 8015B (M)

Quality Control Sample ID			Matrix		nstrument	_	Date epared	Date Analyzed	MS/MSD Batch Number		
W-10-MW1				Aqueou	ıs (GC 57	10/2	26/12	10/26/12	121	026\$01
<u>Parameter</u>		SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline		ND	2000	1916	96	1869	93	68-122	2	0-18	

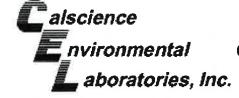
Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/20/12 12-10-1481 EPA 5030C EPA 8015B (M)

Quality Control Sample ID			Matrix	10	nstrument	_	Date epared	Date Analyzed		/ISD Batch lumber
12-10-1917-1			Aqueou	ıs G	iC 24	10/2	27/12	10/27/12	121	1027801
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	ND	2000	1871	94	1875	94	68-122	0	0-18	

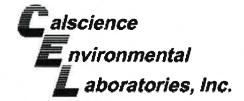
Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/20/12 12-10-1481 EPA 5030C EPA 8015B (M)

Quality Control Sample ID			Matrix	l	nstrument	_	Date epared	Date Analyzed		/ISD Batch lumber
12-10-1825-1			Aqueou	ıs G	C 24	10/	30/12	10/30/12	121	030S01
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	ND	2000	1438	72	1790	89	68-122	22	0-18	ВА

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/20/12 12-10-1481 EPA 5030C EPA 8260B


Quality Control Sample ID			Matrix		Instrument		Date epared	Date Analyzed		ISD Batch umber
12-10-1252-1			Aqueou	ıs	GC/MS L	10/2	24/12	10/24/12	121	024S01
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	16.50	10.00	27.73	112	25.63	91	76-124	8	0-20	
Toluene	1.544	10.00	12.29	107	12.04	105	80-120	2	0-20	
Ethylbenzene	ND	10.00	11.21	112	10.89	109	78-126	3	0-20	
Xylenes (total)	0.9525	30.00	33.64	109	33.48	108	70-130	0	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	10.24	102	9.928	99	67-121	3	0-49	
Tert-Butyl Alcohol (TBA)	ND	50.00	68.53	137	46.23	92	36-162	39	0-30	ВА
Diisopropyl Ether (DIPE)	ND	10.00	10.88	109	10.27	103	60-138	6	0-45	
Ethyl-t-Butyl Ether (ETBE)	ND	10.00	11.12	111	10.70	107	69-123	4	0-30	
Tert-Amyl-Methyl Ether (TAME)	ND	10.00	10.79	108	10.49	105	65-120	3	0-20	
1,2-Dibromoethane	ND	10.00	10.60	106	10.51	105	80-120	1	0-20	
1,2-Dichloroethane	ND	10.00	10.55	105	9.717	97	80-120	8	0-20	

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/20/12 12-10-1481 EPA 5030C EPA 8260B


Quality Control Sample ID			Matrix	l	nstrument		Date pared	Date Analyzed		ISD Batch umber
12-10-1479-1			Aqueou	ıs G	C/MS L	10/2	25/12	10/25/12	121	025S01
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	10.28	10.00	20.13	99	20.81	105	76-124	3	0-20	
Toluene	ND	10.00	10.47	105	10.91	109	80-120	4	0-20	
Ethylbenzene	1.340	10.00	12.12	108	12.49	111	78-126	3	0-20	
Xylenes (total)	ND	30.00	31.95	107	33.55	112	70-130	5	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	9.771	98	10.18	102	67-121	4	0-49	
Tert-Butyl Alcohol (TBA)	ND	50.00	68.56	137	45.25	90	36-162	41	0-30	BA
Diisopropyl Ether (DIPE)	ND	10.00	10.14	101	10.57	106	60-138	4	0-45	
Ethyl-t-Butyl Ether (ETBE)	ND	10.00	10.46	105	10.75	107	69-123	3	0-30	
Tert-Amyl-Methyl Ether (TAME)	ND	10.00	10.26	103	10.97	110	65-120	7	0-20	
1,2-Dibromoethane	ND	10.00	10.24	102	10.72	107	80-120	5	0-20	
1,2-Dichloroethane	ND	10.00	9.836	98	10.20	102	80-120	4	0-20	

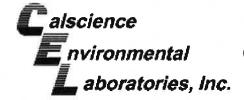
Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/20/12 12-10-1481 EPA 5030C EPA 8260B

Quality Control Sample ID			Matrix		Instrument		Date epared	Date Analyzed	MS/MSD Batch Number	
12-10-1726-2			Aqueou	ıs	GC/MS L	10/2	25/12	10/26/12	121	025S02
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	0,7395	10.00	11.19	104	11.02	103	76-124	1	0-20	
Toluene	ND	10.00	10.67	107	10.40	104	80-120	3	0-20	
Ethylbenzene	ND	10.00	10.54	105	10.41	104	78-126	1	0-20	
Xylenes (total)	ND	30.00	32.12	107	31.38	105	70-130	2	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	9.878	99	9.889	99	67-121	0	0-49	
Tert-Butyl Alcohol (TBA)	ND	50.00	67.92	136	67.53	135	36-162	1	0-30	
Diisopropyl Ether (DIPE)	ND	10.00	10.44	104	10.43	104	60-138	0	0-45	
Ethyl-t-Butyl Ether (ETBE)	ND	10.00	10.71	107	10.67	107	69-123	0	0-30	
Tert-Amyl-Methyl Ether (TAME)	ND	10.00	10.64	106	10.46	105	65-120	2	0-20	
1,2-Dibromoethane	ND	10.00	10.72	107	10.25	102	80-120	5	0-20	
1,2-Dichloroethane	ND	10.00	10.08	101	9.750	97	80-120	3	0-20	

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-10-1481 EPA 3510C EPA 8015B (M)

				D	ate	Date		LCS/LCSD Batch	
Quality Control Sample ID	Matrix		Instrument	Pre	pared	Analyze	t	Number	
099-15-278-116	Aqueous		GC 47	10/	22/12	10/23/12		121022B08S	
Parameter	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	2000	1989	99	2050	102	75-117	3	0-13	

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-10-1481 EPA 3510C EPA 8015B (M)


Quality Control Sample ID	Matrix	Matrix		Date Prepared		Date Analyzed		LCS/LCSD Batch Number	
099-15-304-132	Aqueous		GC 47	10/2	22/12	10/23/12		121022B07S	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	2000	2161	108	2189	109	75-117	1	0-13	

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-10-1481 EPA 5030C EPA 8015B (M)


Quality Control Sample ID	Matr	ix	Instrument		ate pared	Date Analyzed	d	LCS/LCSD Batch Number	
099-12-436-7,972	Aqueo	ıs	GC 57	10/	26/12	10/26/12		121026B01	
<u>Parameter</u>	<u>SPIKE</u> ADDED	LCS	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	2000	1777	89	1808	90	78-120	2	0-10	

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-10-1481 EPA 5030C EPA 8015B (M)

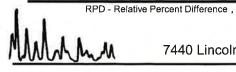
Quality Control Sample ID	Matrix		Instrument	77.847.7000	ate pared	Date Analyze	d	LCS/LCSD Batch Number	
099-12-436-7,976	Aqueous		GC 24	10/27/12		10/27/12		121027B02	
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	2000	1812	91	1841	92	78-120	2	0-10	

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-10-1481 EPA 5030C EPA 8015B (M)

Quality Control Sample ID	Matrix		Instrument		ate pared	Date Analyzed	i	LCS/LCSD Batch Number	
099-12-436-7,979	Aqueous		GC 24	10/3	30/12	10/30/12		121030B02	
<u>Parameter</u>	<u>SPIKE</u> ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	2000	1859	93	1882	94	78-120	1	0-10	

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-10-1481 EPA 5030C EPA 8260B

Project: ExxonMobil 79374/022735C


Quality Control Sample ID	М	atrix	Instrument	:	Date Prepared		ate llyzed	LCS	LCSD Batch Number	
099-12-884-947	Aque	eous	GC/MS L		10/24/12	10/24	4/12	1	21024L01	
Parameter	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	10.00	10.47	105	10.70	107	80-120	73-127	2	0-20	
Toluene	10.00	10.67	107	10.65	107	80-120	73-127	0	0-20	
Ethylbenzene	10.00	10.89	109	10.90	109	80-120	73-127	0	0-20	
Xylenes (total)	30.00	33.34	111	32.50	108	75-125	67-133	3	0-25	
Methyl-t-Butyl Ether (MTBE)	10.00	9.819	98	10.16	102	69-123	60-132	3	0-20	
Tert-Butyl Alcohol (TBA)	50.00	49.60	99	50.60	101	63-123	53-133	2	0-20	
Diisopropyl Ether (DIPE)	10.00	11.03	110	11.13	111	59-137	46-150	1	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	11.12	111	11.25	113	69-123	60-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	10.61	106	10.49	105	70-120	62-128	1	0-20	
1,2-Dibromoethane	10.00	10.25	103	10.32	103	79-121	72-128	1	0-20	
1,2-Dichloroethane	10.00	9.902	99	10.15	101	80-120	73-127	2	0-20	

Total number of LCS compounds: 11

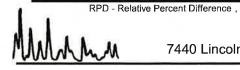
Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result : Pass

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-10-1481 EPA 5030C EPA 8260B

Project: ExxonMobil 79374/022735C


Quality Control Sample ID	Matrix Aqueous		Instrument Pr		Date Prepared		Date Analyzed		LCS/LCSD Batch Number	
099-12-884-948					10/25/12	10/25/12		121025L01		
<u>Parameter</u>	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	10.00	9.511	95	10.33	103	80-120	73-127	8	0-20	
Toluene	10.00	9.342	93	10.29	103	80-120	73-127	10	0-20	
Ethylbenzene	10.00	10.04	100	10.78	108	80-120	73-127	7	0-20	
Xylenes (total)	30.00	30.79	103	33.08	110	75-125	67-133	7	0-25	
Methyl-t-Butyl Ether (MTBE)	10.00	8.802	88	9.926	99	69-123	60-132	12	0-20	
Tert-Butyl Alcohol (TBA)	50.00	49.30	99	49.27	99	63-123	53-133	0	0-20	
Diisopropyl Ether (DIPE)	10.00	9.388	94	10.71	107	59-137	46-150	13	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	9.446	94	10.78	108	69-123	60-132	13	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	9.616	96	10.37	104	70-120	62-128	8	0-20	
1,2-Dibromoethane	10.00	9.942	99	10.92	109	79-121	72-128	9	0-20	
1,2-Dichloroethane	10.00	9.764	98	10.29	103	80-120	73-127	5	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

N/A 12-10-1481 EPA 5030C EPA 8260B

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	М	Matrix		Instrument		Date Analyzed 10/25/12		LCS/LCSD Batch Number 121025L02		1
099-12-884-950	Aqueous		GC/MS L		10/25/12					
Parameter	SPIKE ADDED	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	10.00	9.775	98	9.621	96	80-120	73-127	2	0-20	
Toluene	10.00	9.861	99	9.761	98	80-120	73-127	1	0-20	
Ethylbenzene	10.00	10.15	102	9.949	99	80-120	73-127	2	0-20	
Xylenes (total)	30.00	31.11	104	30.65	102	75-125	67-133	1	0-25	
Methyl-t-Butyl Ether (MTBE)	10.00	9.311	93	8.939	89	69-123	60-132	4	0-20	
Tert-Butyl Alcohol (TBA)	50.00	49.25	98	47.07	94	63-123	53-133	5	0-20	
Diisopropyl Ether (DIPE)	10.00	9.959	100	9.847	98	59-137	46-150	1	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	10.17	102	9.881	99	69-123	60-132	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	10.04	100	9.670	97	70-120	62-128	4	0-20	
1,2-Dibromoethane	10.00	9.962	100	9.639	96	79-121	72-128	3	0-20	
1,2-Dichloroethane	10.00	9.414	94	9.077	91	80-120	73-127	4	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 12-10-1481

MPN - Most Probable Number

WOIK OIGCI	Number. 12-10-1401
Qualifier	<u>Definition</u>
AZ	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
ВА	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
BU	Sample analyzed after holding time expired.
DF	Reporting limits elevated due to matrix interferences.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
НО	High concentration matrix spike recovery out of limits
HT	Analytical value calculated using results from associated tests.
НХ	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
IL	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The associated sample was non-detected. Therefore, the sample data was reported without further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
RU	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
SG	A silica gel cleanup procedure was performed.
SN	See applicable analysis comment.
U	Undetected at detection limit.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Cecile de Guia

From:

azat magdanov [azat.magdanov@cardno.com]

Sent:

Tuesday, October 23, 2012 9:59 AM

To:

Cecile de Guia

Cc:

Rebekah Westrup; David R. Daniels; Judy Hutton

Subject:

RE: ExxonMobil 79374; 12-10-1481

Hi again, Cecile,

The COC is correct there's mistake in the label. It's W-11-MW2 @ 0810 10/19/2012.

Kind regards,

Azat Magdanov

SENIOR ENVIRONMENTAL TECHNICIAN CARDNO ERI

Phone (+1) 707-766-2000 Fax (+1) 707-789-0414 Mobile (+1) 707-304-2306 Address 601 North McDowell Blvd., Petaluma, CA 94954-2312 USA

Email azat.magdanov@cardno.com Web www.cardno.com www.cardnoeri.com

From: Rebekah Westrup

Sent: Tuesday, October 23, 2012 9:32 AM **To:** David R. Daniels; azat magdanov

Subject: Fwd: ExxonMobil 79374; 12-10-1481

Please correct and cc me when returned to Cecile

Sent from my mobile device

Begin forwarded message:

From: "Cecile de Guia" < cdeguia@calscience.com>

To: "Rebekah Westrup" < rebekah.westrup@cardno.com>, "Judy Hutton"

<judy.hutton@cardno.com>

Subject: ExxonMobil 79374; 12-10-1481

Good Morning Rebekah,

Please verify the sample label ID for #3? The label says W-10-MW2 collected on 109/12 @ 0810 and it didn't match the COC.

Thank you.

Best regards, Cecile de Guia Project Manager

[cid:image004.jpg@01CDB0FF.DCDE2EF0]

7440 Lincoln Way Garden Grove, CA 92841-1427 (714) 895-5494

Calscience Environmental Laboratories, Inc.

Sample ID

W-/1

W- /

W-

W-

Relinquished by

2

7440 Lincoln Way

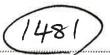
Garden Grove, CA 92841

Phone: 714-895-5494

Fax: 714-894-7501

QC Deliverables (please circle one)

Project Manager or attach specific instructions


Site Specific - if yes, please attach pre-schedule w/ TestAmerica

Level 2 Level 3

Consultant Name: Cardno ERI Account #: NA PO#: Direct Bill Cardno ERI Consultant Address: 601 N. McDowell Boulevard Invoice To: Direct Bill Cardno ERI Consultant City/State/Zip: Petaluma, California, 94954 Report To: Rebekah Westrup ExxonMobil Project Mgr: Jennifer Sedlachek Project Name: 02 2735 C 79374 Consultant Project Mgr: Rebekah Westrup ExxonMobil Site #: ajor Project (AFE # Fax No.: 707-789-0414 Consultant Telephone Number: 707-766-2000 Site Address: 990 San Pablo Avenue Sampler Name (Print): Steve Charch Site City, State, Zip: Albany, California Sampler Signature: Oversight Agency: Alameda County Environmental Health Department Preservative Analyze For: BTEX 8260B 0xygenates 8260B Shipped RUSH TAT (Pre-Schedule Other (specify): Distilled Wate TPHd 8015M TPHmo 8015M **TPHg 8015M** Date of Report No. of Containers Field Point Name Time Sampled Sampled Field Filtered Сотроѕіте Drinking V Sludge Soil Date Grab 10-19-12 1145 2v **QCBB QCBB** HO D 825 W-10 8 х -MW1 MW1 6v lxlx 810 -MW2 MW2 8 6v Х 1010 -MW3 MW3 6ν 855 W- // -MW3A MW3A 8 6ν $X \mid X$ 950 -MW4 MW4 8 6v X 910 -MW5 MW5 6v Х 935 -MW6 MW6 6v Х Comments/Special Instructions: Use silica gel cleanup on all TPHd analyses aboratory Comments: PLEASE E-MAIL ALL PDF FILES TO Oxygenates = MTBE, ETBE, DIPE, TAME, TBA, 1,2-DCA, EDB Temperature Upon Receipt: norcallabs@eri-us.com; ERI-EIMLABS@eri-us.com Set TBA reporting limit at or below 12 ug/L. Sample Containers Intact? Ν GLOBAL ID # T0619716673 VOCs Free of Headspace? N

Received by:

Time

Print Date: 10/19/12 16:45 PM

Package 3 of 3

Send Label To Printer

SIGNATURE REQUIRED

☑ Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

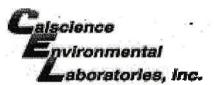
Do not copy or reprint this label for additional shipments - each package must have a unique barcode,

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

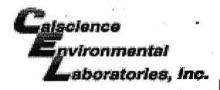
STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.


ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:


By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

WORK ORDER #: 12-10- [] [] []

ERECEIPT FORM cooler / of /

CLIENT: Cardno ERI	DATE:	10/20/12							
TEMPERATURE: Thermometer ID: SC4 (Criteria: 0.0 °C – 6.0 °C, not frozei	n)								
Temperature $3 \cdot 6 ^{\circ} \text{C} \cdot 0.3 ^{\circ} \text{C} \text{ (CF)} = 3 \cdot 3 ^{\circ} \text{C}$	Blank	☐ Sample							
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).									
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.									
	☐ Received at ambient temperature, placed on ice for transport by Courier.								
Ambient Temperature: □ Air □ Filter		Initial: YC							
CUSTODY SEALS INTACT:		3							
☑ Cooler □ □ No (Not Intact) □ Not Present	□ N/A	Initial: YC							
□ Sample □ □ No (Not Intact) ⊅ Not Present	•	Initial:							
AND	N CONTRACTOR								
SAMPLE CONDITION:	Yes	No N/A							
Chain-Of-Custody (COC) document(s) received with samples	. Ø								
COC document(s) received complete	. pl								
\square Collection date/time, matrix, and/or # of containers logged in based on sample labels.									
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.									
Sampler's name indicated on COC	. ø								
Sample container label(s) consistent with COC.									
Sample container(s) intact and good condition									
Proper containers and sufficient volume for analyses requested	. ø								
Analyses received within holding time	Ø								
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours	. 🗆								
Proper preservation noted on COC or sample container	Ø								
☐ Unpreserved vials received for Volatiles analysis									
Volatile analysis container(s) free of headspace	. ø								
Tedlar bag(s) free of condensationCONTAINER TYPE:									
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	s® □TerraC	Cores® □							
Water: □VQA ØVOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB □]1AGB na₂ □1AGB s							
□500AGB Ø500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB □]1PB na □500PB							
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ □ □									
Air: □Tedlar® □Canister Other: □ Trip Blank Lot#: N Labeled/Checked by:									
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Reviewed by: 4734									
Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 u: Ultra-pure znna: ZnAc2+Na0	JH t: Filtered	ocanned by: 🚾 🥌							

WORK ORDER #: 12-10- 7 9 8 7

SAMPLE ANOMALY FORM

SAMPLES - CONTAINE	RS & L	ABELS:			Comme	ents:		
□ Sample(s) NOT RECE □ Sample(s) received b □ Holding time expired □ Insufficient quantities □ Improper container(s □ Improper preservativ □ No preservative note □ Sample labels illegible □ Sample label(s) do note □ Sample label(s) do note □ Project Informat □ Project Informat □ # of Container(s) □ Analysis □ Sample container(s) of □ Water present in □ Broken	EIVED but ut NOT I — list sans for ana) used — e used — d on COd le — note of match the Collection) compron	at listed on (LISTED on Comple ID(s) and Ilysis — list test list test Corlabel — test/contained — Note ted Corlainer	coc nd test est list test & er type e in comr	ments		abeled		6810
☐ Sample container(s) :	not label	ed			_			
☐ Air sample container	r(s) com	promised –	Note in o	comments	100			
☐ Flat					2			
☐ Very low in volu	me 🦠							
☐ Leaking (Not tra		-	_	_			- 17	
☐ Leaking (transfe								
☐ Leaking (transfe	erred into	o Client's Te	edlar® Ba	ag*)				
☐ Other:								
HEADSPACE – Contain	ners wit	h Bubble >	6mm o	r ¼ inch:				
Sample # Container # of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received		Analysis
Comments:			7	æ,				
*Transferred at Client's reque	est.	T			In	nitial / Da		10 /20 /12

APPENDIX D WASTE DISPOSAL DOCUMENTATION

NON-HAZARDOUS WASTE MANIFEST

WASTE MANIFEST 3. Generator's Name and Mailing Address EMT 79 37 H QQO SAN PABLO AVE 4. Generator's Phone () FLRAM, CA 5. Transporter 1 Company Name 6. US EPA ID Number A. State Transporter's ID CARDNO ERI 7. Transporter 2 Company Name 8. US EPA ID Number C. State Transporter's ID D. Transporter 2 Phone 9. Designated Facility Name and Site Address Document No. ER12- CARDNO CARDNO ONE PAID Number C. State Transporter's ID D. Transporter 2 Phone E. State Facility's ID		- 1		
4. Generator's Phone () ALBAM, CA 5. Transporter 1 Company Name 6. US EPA ID Number A. State Transporter's ID CARDNO ERI 7. Transporter 2 Company Name 8. US EPA ID Number C. State Transporter's ID D. Transporter 2 Phone	ERI			
5. Transporter 1 Company Name 6. US EPA ID Number A. State Transporter's ID B. Transporter 1 Phone 7. Transporter 2 Company Name 8. US EPA ID Number C. State Transporter's ID D. Transporter 2 Phone				
5. Transporter 1 Company Name 6. US EPA ID Number A. State Transporter's ID B. Transporter 1 Phone 7. Transporter 2 Company Name 8. US EPA ID Number C. State Transporter's ID D. Transporter 2 Phone				
7. Transporter 2 Company Name 8. US EPA ID Number C. State Transporter's ID D. Transporter 2 Phone				
D. Transporter 2 Phone				
INSTRAT, INC.				
1105 C AIMPORT RD. RIO WRTA, CA 94671	F. Facility's Phone (707) \$74-3834			
11. WASTE DESCRIPTION 12. Containers 13 Tot		14. Unit Wt./Vol.		
No. Type Quar	tity	Wt./Vol.		
Non-HAZ PURCE WATER OF POLY 4	7	(-NL		
b.		40		
· c.				
d.				
u.				
G. Additional Descriptions for Materials Listed Above H. Handling Codes for Wastes	Listed Above			
CLEAR, NO GOOR SOLID				
15. Special Handling Instructions and Additional Information				
	AND AND AND	7 4000		
	Action Assess	y Assessed		
16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipment are fully and accurately described and are in all respects in proper condition for transport. The materials described on this manifest are not subject to federal hazardous waste regulations.				
16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipment are fully and accurately described and are in all respects in proper condition for transport. The materials described on this manifest are not subject to federal hazardous waste regulations.	Dot			
16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipment are fully and accurately described and are in all respects in proper condition for transport. The materials described on this manifest are not subject to federal hazardous waste regulations. Printed/Typed Name Signature	Dat Month Da			
Printed/Typed Name Signature	Month Da	ay Year		
Printed/Typed Name Signature 17. Transporter 1 Acknowledgement of Receipt of Materials	Month Da	ay Year te		
Printed/Typed Name Signature 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Signature	Month Da	ay Year te ay Year		
Printed/Typed Name Signature 17. Transporter 1 Acknowledgement of Receipt of Materials	Month Da	ay Year		
Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Signature Signature	Month Da Dat Month Da	ay Year lee ay Year le		
Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Signature Signature 18. Transporter 2 Acknowledgement of Receipt of Materials	Month Da Dat Month Da Dat	ay Year lee ay Year le		
Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name Signature Signature Signature Signature Signature	Month Da Dat Month Da Dat	ay Year lee ay Year le		
Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name Signature Signature Signature Signature	Month Da Dat Month Da Dat	ay Year lee ay Year le		
Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name Signature Signature 19. Discrepancy Indication Space	Month Da Dat Month Da Dat	ay Year ie e e e e y y y y y y y y y y y y y y		

APPENDIX E CORRESPONDENCE

Rebekah Westrup

From: Jakub, Barbara, Env. Health <barbara.jakub@acgov.org>

Sent: Friday, October 05, 2012 11:41 AM

To: Rebekah Westrup; jennifer.c.sedlachek@exxonmobil.com

Subject: RE: RO 2974 "Work Plan for Groundwater Monitoring, Air Sparge and Soil Vapor Extraction

Well Installations"

Dear Ms. Sedlachek,

I have performed a review of the Work Plan for Groundwater Monitoring, Air Sparge and Soil Vapor Extraction Well Installations dated August 1, 2012 and Groundwater Monitoring Report, Second Quarter 2012 dated May 25, 2012 prepared by Cardo ERI. Before this work plan can be approved, I need some clarifications and additional information.

The rose diagram from the groundwater monitoring report indicates that that primary groundwater flow directions have been to the north, NNE, SSE, and NNW. However the proposed groundwater monitoring wells are located to the Southwest. Please provide your justification for these locations or relocate them. Include a contaminant isoconcentration contour map on this proposed location map for contaminants of concern.

Please provide at least two cross-sections, at least one perpendicular and one parallel to the groundwater flow direction, include the lithology and contaminant concentrations, groundwater high and low elevations, proposed SVE and air-sparge screen intervals, the tank pit and any utility conduits that are on-site. Also, if the site surface has a large vertical variation, please use the elevation on the vertical scale.

As I have requested for other sites, please enlarge the site area presented on the site maps (groundwater elevation maps, etc.) so information is easily readable. Please evaluate if the data that is used on the groundwater elevation map is all from the same screened interval. Prepare groundwater contour elevation maps using only wells from the same screened interval. Evaluate if the previous groundwater flow directions presented on the rose diagram are accurate in light of this apparent inclusion of anomalous data. Also include an arrow showing the groundwater flow direction on all future groundwater elevation maps.

Please submit the requested evaluation and cross-sections in a work plan addendum by November 5, 2012. Regards,

Barbara Jakub, P.G.
Hazardous Materials Specialist
Alameda County Environmental Health
1131 Harbor Bay Pky.
Alameda, CA 94502
Direct: 510-639-1287

Fax: 510-639-1287

PDF copies of case files can be downloaded at:

http://ehgis.acgov.org/dehpublic/dehpublic.jsp

From: Rebekah Westrup [mailto:rebekah.westrup@cardno.com]

Sent: Thursday, October 04, 2012 8:25 AM

To: Jakub, Barbara, Env. Health

Subject: RO 2974 "Work Plan for Groundwater Monitoring, Air Sparge and Soil Vapor Extraction Well Installations"

Barb:

I am just following up on the above referenced Work Plan that we submitted on August 1, 2012. We are eager to move forward with this work, and anticipate that placement of the offsite wells will require additional permitting. We want to try to start that process before the Holidays, but cannot do so until we have your approval for the proposed work. Have you had a chance to review this work plan? Please let me know if you have any questions or concerns. I hope things are going well with you.

Rebekah A. Westrup SR STAFF GEOLOGIST CARDNO ERI

Shaping the Future

Phone (+1) 707-766-2000 Fax (+1) 707-789-0414 Mobile (+1) 707-338-8555 Address 601 North McDowell Blvd., Petaluma, CA 94954-2312 USA Email rebekah.westrup@cardno.com Web www.cardno.com www.cardnoeri.com

This email and its attachments may contain confidential and/or privileged information for the sole use of the intended recipient(s). All electronically supplied data must be checked against an applicable hardcopy version which shall be the only document which Cardno warrants accuracy. If you are not the intended recipient, any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited. If you have received this email in error, please email the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed are the author's own and may not reflect the views or opinions of Cardno.