ExxonMobil Environmental Services Company

4096 Piedmont Avenue #194 Oakland, California 94611 510 547 8196 Telephone 510 547 8706 Facsimile Jennifer C. Sedlachek

Project Manager

March 26, 2013

Ms. Barbara Jakub, P.G. Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577

RECEIVED

By Alameda County Environmental Health at 4:08 pm, Mar 28, 2013

RE: Former Exxon RAS #79374/990 San Pablo Avenue, Albany, California.

Dear Ms. Jakub:

Attached for your review and comment is a copy of the letter report entitled *Response to Comments and Revised Work Plan for Off-Site Borings*, dated March 26, 2012, for the above-referenced site. The report was prepared by Cardno ERI of Petaluma, California, and details activities for the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Jennifer C. Sedlachek Project Manager

Attachment:

Cardno ERI's Response to Comments and Revised Work Plan for Off-Site Borings, dated

March 26, 2012

Sedbulk

cc:

w/ attachment

Ms. Muriel T. Blank, Trustee, The Blank Family Trusts Reverend Deborah Blank, Trustee, The Blank Family Trusts Ms. Marcia Blank Kelly, The Blank Family Trusts

ivis. Marcia Diank Keny, The Diank Family Th

w/o attachment

Ms. Rebekah A. Westrup, Cardno ERI

March 26, 2013 Cardno ERI 2735C.W04 Cardno ERI License A/C10/C36-611383

601 North McDowell Blvd, Petaluma, CA 94954

Phone +1 707 766 2000 Fax +1 707 789 0414 www.cardno.com

www.cardnoeri.com

Ms. Jennifer C. Sedlachek ExxonMobil Environmental Services 4096 Piedmont Avenue #194 Oakland, California 94611

SUBJECT

Response to Comments and Revised Work Plan for Off-Site Soil Borings

Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Alameda County Department of Environmental Health RO 2974

Ms. Sedlachek:

At the request of ExxonMobil Environmental Services (EMES), on behalf of Exxon Mobil Corporation, Cardno ERI prepared this response to comments and work plan for off-site soil borings in response to the Alameda County Department of Environmental Health (ACEH) letter dated February 8, 2013 (Appendix A).

SITE DESCRIPTION

Former Exxon Service Station 79374 is located at 990 San Pablo Avenue, on the northwestern corner of the intersection of Buchanan Street and San Pablo Avenue, Albany, California (Plate 1). The site is currently occupied by a retail outlet for Benjamin Moore paints and painting products and associated asphalt parking area. The surrounding areas consist of residential and commercial properties (Plate 2). The City of Albany Fire Department and Police Department are located on the south of the site across Buchanan Street. An active environmental case, identified as Firestone #3655 in the GeoTracker™ database, is located across San Pablo Avenue to the east. A Shell Service Station and an Atlantic Richfield Company Service Station (Arco) are

located approximately 350 feet and 500 feet, respectively, south-southeast of the site.

In 1945, a service station owned by Signal Oil Company occupied the site (EDR, 2009a). Humble Oil company acquired the site in approximately 1967 from Standard Oil Company of California (Chevron), rebranding the site as an Enco station (EDR, 2009a). The station was rebranded as an Exxon service station in 1975. The service station was demolished in 1983; during demolition activities, one used-oil UST and four gasoline USTs were removed and the tank cavity was backfilled with sand to 90% compaction (City of Albany, 1983).

Cardno ERI reviewed eight historical aerial photographs of the site and vicinity dated between September 6, 1949, and June 21, 1983 (EDR, 2009b). Based on these photographs, the dispenser islands were most likely located beneath the station canopy on the north side of the site and the former USTs were most likely located on the south side of the site, east of the station's service bays. The location of the former used-oil UST is not apparent. The approximate location of the former USTs are shown on Plate 2.

GEOLOGY AND HYDROGEOLOGY

The site lies at an approximate elevation of 40 feet above msl, and the local topography slopes toward the southwest. The site is located along the eastern margin of the San Francisco Bay within the East Bay Plain (Hickenbottom and Muir, 1988). The surficial deposits in the site vicinity are mapped as Holocene alluvial fan and fluvial deposits (Graymer, 2000). The site is located approximately 1,630 feet north-northwest of Cordornices Creek. The active northwest trending Hayward fault is located approximately 1½ mile northeast of the site.

The East Bay Plain is regionally divided into two major groundwater basins: the San Pablo and the San Francisco Basin. These basins are tectonic depressions that are filled primarily with a sequence of coalescing alluvial fans. The San Francisco Basin is further divided into seven sub-areas. The site is located in the Berkeley Sub-Area, which is filled primarily by alluvial deposits that range from 10 to 300 feet thick with poorly defined aquitards (CRWQCB, 1999). Under natural conditions, the direction of groundwater flow in the East Bay Plain is east to west.

Soil borings indicate that the soil beneath the site consists predominantly of silt and clay with an apparently continuous coarse-grained unit 2 to 8 feet thick encountered between approximately 8 and 20 feet bgs (EC&A, 2008; Cardno ERI, 2011a; Cardno ERI, 2012a). Fill material was encountered in the boring for well SVE3 (located in the former UST pit) to approximately 7 feet bgs. CPT soundings indicate the presence of predominantly silt and clay between approximately 20 and 60 feet bgs, the maximum depth explored. Minor coarse-grained layers up to 3 feet thick are interbedded with the silts and clays. During the groundwater

Cardno ERI 2735C.W04 Former Mobil Service Station 79374, Albany, California

monitoring events conducted to date, the DTW has ranged from approximately 5 to 10 feet bgs with a variable groundwater flow direction. The distribution of dissolved-phase hydrocarbons suggests that the dominant groundwater flow direction is towards the west or southwest (Cardno ERI, 2011b).

PREVIOUS WORK

Cumulative groundwater monitoring and sampling data are presented in Tables 1A and 1B. Well construction details are presented in Table 2. Cumulative results of soil samples collected at the site are presented in Tables 3A and 3B.

Fueling System Activities

In 1983, one used-oil UST and four gasoline USTs were removed and the tank cavity was backfilled with sand to 90% compaction (City of Albany, 1983).

Site Assessment Activities

Six exploratory borings (B1 through B6) were advanced on site in 2008. Maximum concentrations of TPHg, TPHd, and benzene were reported in the soil samples collected from 10.5 feet bgs from borings B1 and B2, located near the former USTs. Grab groundwater results also indicated maximum dissolved-phase TPHg, TPHd, and benzene concentrations in the samples collected from soil borings B1 and B2. The laboratory reported an immiscible sheen present in the groundwater samples collected from borings B1 and B2 (EC&A, 2008).

Monitoring wells MW1 through MW6 and borings CPT1/HP1 and CPT2/HP2 were installed at the site in 2010. Maximum concentrations of TPHg and TPHd in soil were reported in the samples collected at 10.5 feet bgs from wells MW3 and MW5 (west of the former USTs). Dissolved-phase hydrocarbons were adequately delineated vertically at the site with petroleum hydrocarbon concentrations below or near the laboratory reporting limits in the water samples collected below 27.5 feet bgs (Cardno ERI, 2011a).

In January 2012, Cardno ERI installed SVE wells SVE1 through SVE3, AS well AS1, and monitoring well MW3A (Cardno ERI, 2012a).

Remediation Activities

According to City of Albany permit 82-0708, the USTs were removed and backfilled in 1983. It is unknown if overexcavation was performed during the UST removal.

Between January 31 and February 1, 2012, Cardno ERI conducted feasibility testing at the subject site. The feasibility tests consisted of three 4-hour events: a DPE only test, a combined AS and DPE test, and an AS only test. Approximately 93 pounds of TPHg and 0.09 pound of benzene were removed during testing (Cardno ERI, 2012b).

Groundwater Monitoring Activities

Groundwater monitoring was initiated at the site in 2010 with the installation of wells MW1 through MW6. Maximum dissolved-phase TPHg and benzene concentrations were reported in groundwater at 23,000 μ g/L (MW5, 10/13/11) and 650 μ g/L (MW3, 07/18/11), respectively. Groundwater is currently sampled on a semi-annual basis. Maximum dissolved-phase TPHg and benzene are primarily present in the western portion of the site.

RESPONSE TO COMMENTS

In correspondence dated February 8, 2013, the ACEH noted that though the feasibility test demonstrated that AS/DPE could be an effective remediation method for mass removal, a CAP needed to be submitted and approved before remediation wells proposed in Cardno ERI's *Work Plan for Groundwater Monitoring, Air Sparge and Soil Vapor Extraction Well Installation* (Work Plan), dated August 1, 2012 (Cardno ERI, 2012c), could be installed. The ACEH would not approve the Work Plan and asked that technical comments numerated in the correspondence be addressed. ACEH comments are paraphrased in bold font followed by Cardno ERI's response in normal type font.

TPHg was detected in MW-4 at a concentration of 270,000 micrograms per liter, indicating the presence of SPH and possible mobilization of SPH due to the pilot test. Please monitor for SPH in this well. If measurable SPH is present please begin product bailing and record the depth of the SPH and mass removed in future monitoring reports.

As requested, quarterly monitoring of well MW4 was initiated on March 6, 2013. Measurable NAPL was not observed in the well. Details of the monitoring will be included under separate cover in the semi-annual monitoring and sampling report.

The work plan and monitoring report proposes installing two monitoring wells, one at the police station and one on Buchanan Street to monitor the extent of the plume. Rather than installing the wells at this time, ACEH requests that you identify the location of your dissolved contaminant plume by installing a transect(s) of borings. Based on the results of this work, propose monitoring well locations for both groundwater and remediation system performance monitoring. Please evaluate if the sanitary sewer line intercepts contamination from the site and acts as a preferential pathway for the migration of contaminants.

Cardno ERI prepared a work plan as requested. The work plan is presented in the sections following the Response to Comments.

We request that you use an aerial photo as the base map showing the site and its immediate vicinity for future site maps submitted for the site. Please label and identify the use of all properties on your map.

On February 21, 2013, Cardno ERI contacted the ACEH regarding clarification of "future site maps." The ACEH explained the request to mean maps showing proposed work (borings, wells, excavations, etc.). Cardno ERI has prepared the map as requested by the ACEH as Plate 3.

At this time, a Draft Corrective Action Plan (CAP)... appears warranted.

ACEH established a due date of June 16, 2013, for the Draft CAP. In Cardno ERI's opinion, preparing a Draft CAP by June 16, 2013, is premature. Cardno ERI believes completing the off-site assessment proposed in this work plan prior to preparing a Draft CAP would be beneficial. Cardno ERI does not anticipate the field work proposed in this work plan will be approved and completed until after June 16, 2013.

The State Water Resources Control Board passed Resolution No. 2012-0062 on November 6, 2012 which requires development of a Path to Closure by December 31, 2013... Please submit an electronic copy of the Path to Closure Schedule...

Cardno ERI believes preparing the schedule prior to completing the off-site assessment is premature. Cardno ERI recommends preparing a Draft CAP following implementation of the work plan and including the schedule.

REVISED WORK PLAN

As requested by the ACEH in correspondence dated February 8, 2013, Cardno ERI prepared the following revised work plan for off-site soil borings to evaluate the lateral extent of residual and dissolved-phase

hydrocarbons. The proposed work consists of installing five off-site soil borings along Buchanan Street and Adam Street to for the collection of soil and groundwater samples. Proposed boring locations are shown on Plate 3. The borings are located on both sides of major utility trenches which will help evaluate trench backfill material as a conduit. The boring locations were chosen to evaluate conditions south and west of the site, downgradient from wells MW3 and MW4. Previous soil borings IB-1 and IB-2 (Plate 3) associated with the fire department and traffic control requirements were also considered.

The procedures for drilling, sampling, and decontamination are described in the field protocol presented in Appendix B. The fieldwork will be conducted under advisement of a professional geologist and in accordance with applicable regulatory guidelines.

Pre-Drilling Activities

Prior to the onset of drilling, well installation and soil boring permits will be obtained from the ACEH and encroachment permits with be obtained from the City of Albany. Cardno ERI personnel will visit the site to check for obstructions and to mark the proposed locations. Cardno ERI will further evaluate the utility network shown on Plate 3 to extend the utility map as far as the proposed borings. Underground Service Alert will be notified at least 48 hours prior to the start of field activities.

Soil Boring Sampling Activities

Proposed soil borings B7 through B12 will be advanced to a depth of approximately 15 feet bgs using hand augers, due to the proximity of subsurface utilities. Each boring will be logged continuously to total depth. Soil samples will be preserved for laboratory analysis at a minimum of approximately every 5 feet, using a slide hammer. A groundwater sample will be collected from each of the borings.

Laboratory Analyses

Soil and groundwater samples will be submitted to an EMES-approved, state-certified analytical laboratory. The samples will be analyzed for TPHmo, TPHd, and TPHg by EPA Method 8015B and BTEX, fuel oxygenates (MTBE, DIPE, ETBE, TAME, and TBA), and lead scavengers (1,2-DCA and EDB) by EPA Method 8260B.

Waste Management Plan

The soil and rinsate water generated during drilling activities will be temporarily stored on site in DOT-approved, 55-gallon drums and then taken to EMES approved disposal facilities. Disposal documentation will be included in the report.

Site Safety Plan

Fieldwork will be performed in accordance with a site-specific safety plan.

Report

The field and laboratory procedures, laboratory results, conclusions, and recommendations will be included in a report submitted to EMES and ACEH. The report will be signed by a State of California professional geologist.

CONTACT INFORMATION

The responsible party contact is Ms. Jennifer C. Sedlachek, ExxonMobil Environmental Services, 4096 Piedmont Avenue #194, Oakland, California, 94611. The consultant contact is Ms. Rebekah A. Westrup, Cardno ERI., 601 North McDowell Boulevard, Petaluma, California, 94954. The agency contact is Ms. Barbara Jakub, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577.

LIMITATIONS

For any documents cited that were not generated by Cardno ERI, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno ERI does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document was prepared in accordance with generally accepted standards of environmental, geological, and engineering practices in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

March 26, 2013 Cardno ERI 2735C.W04 Former Mobil Service Station 79374, Albany, California

Please contact Ms. Rebekah A. Westrup, Cardno ERI's project manager for this site, at rebekah.westrup@cardno.com or (707) 766-2000 with questions regarding this site.

Sincerely,

Rebekah A. Westrup Senior Staff Geologist

for Cardno ERI 707 766 2000

Email: rebekah.westrup@cardno.com

David R. Daniels P.G. 8737 for Cardno ERI 707 766 2000

Email: david.daniels@cardno.com

Enclosures:

References

Acronym List

Plate 1 Site Vicinity Map

Plate 2 Generalized Site Plan

Plate 3 Proposed Boring Locations

Table 1A Cumulative Groundwater Monitoring and Sampling Data

Table 1B Additional Cumulative Groundwater Monitoring and Sampling Data

Table 2 Well Construction Details

Table 3A Cumulative Soil Analytical Results

Table 3B Additional Cumulative Soil Analytical Results – HVOCs

Appendix A Correspondence

Appendix B Field Protocol

Ms. Barbara Jakub, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577

Ms. Muriel T. Blank, Trustee, The Blank Family Trusts, 1164 Solano Avenue, #406, Albany, California, 94706

Reverend Deborah Blank, Trustee, The Blank Family Trusts, 1563 Solano Avenue, #344, Berkeley, California, 94707

Ms. Marcia Blank, Trustee, The Blank Family Trusts, 641 SW Morningside Road, Topeka, Kansas, 66606

REFERENCES

California Regional Water Quality Control Board San Francisco Bay Region Groundwater Committee (CRWQCB). June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.

City of Albany. March 28, 1983. Building Permit 82-0708.

Cardno ERI. February 28, 2011a. Site Assessment Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #RO00002974.

Cardno ERI. November 18, 2011b. Groundwater Monitoring Report, Fourth Quarter 2011, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno ERI. April 12, 2012a. Well Installation Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #RO00002974.

Cardno ERI. April 12, 2012b. Air Sparge and Dual-Phase Extraction and Feasibility Testing, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #RO00002974.

Cardno ERI. August 1, 2012c. Work Plan for Groundwater Monitoring, Air Sparge and Soil Vapor Extraction Well Installation, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #RO00002974.

Edd Clark & Associates (EC&A). January 31, 2008. Report of Phase II Environmental Assessment, 990 San Pablo Avenue, Albany, California 94706. EC&A Project No 0589,002.07.

Environmental Data Resources Inc (EDR). December 1, 2009a. *The EDR-City Directory Abstract*, 990 San Pablo Avenue, Albany, CA 94706. Inquiry Number: 2648519.6.

Environmental Data Resources Inc. (EDR). December 1, 2009b. *Certified Sanborn® Map Report, 990 San Pablo Avenue, Albany, CA 94706.* Inquiry Number: 2648519.36.

Graymer, R.W. 2000. Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California. USGS, Miscellaneous Field Studies MF-2342.

March 26, 2013 Cardno ERI 2735C.W04 Former Mobil Service Station 79374, Albany, California

Hickenbottom, Kelvin and Muir, Kenneth S. June 1988. *Geohydrogeology and Groundwater Quality Overview of the East Bay Plain Area, Alameda County, CA*. Alameda County Flood Control and Water Conservation District. 83p.

ACRONYM LIST

μg/L	Micrograms per liter	NEPA	National Environmental Policy Act
μs	Microsiemens	NGVD	National Geodetic Vertical Datum
1,2-DCA	1,2-dichloroethane	NPDES	National Pollutant Discharge Elimination System
acfm	Actual cubic feet per minute	O&M	Operations and Maintenance
AS	Air sparge	ORP	Oxidation-reduction potential
bgs	Below ground surface	OSHA	Occupational Safety and Health Administration
BTEX	Benzene, toluene, ethylbenzene, and total xylenes	OVA	Organic vapor analyzer
CEQA	California Environmental Quality Act	P&ID	Process & Instrumentation Diagram
cfm	Cubic feet per minute	PAH	Polycyclic aromatic hydrocarbon
COC	Chain of Custody	PCB	Polychlorinated biphenyl
CPT	Cone Penetration (Penetrometer) Test	PCE	Tetrachloroethene or perchloroethylene
DIPE	Di-isopropyl ether	PID	Photo-ionization detector
DO	Dissolved oxygen	PLC	Programmable logic control
DOT	Department of Transportation	POTW	Publicly owned treatment works
SVE	Dual-phase extraction	ppmv	Parts per million by volume
DTW	Depth to water	PQL	Practical quantitation limit
EDB	1,2-dibromoethane	psi	Pounds per square inch
EPA	Environmental Protection Agency	PVC	Polyvinyl chloride
ESL	Environmental screening level	QA/QC	Quality assurance/quality control
ETBE	Ethyl tertiary butyl ether	RBSL	Risk-based screening levels
FID	Flame-ionization detector	RCRA	Resource Conservation and Recovery Act
fpm	Feet per minute	RL	Reporting limit
ĠAC	Granular activated carbon	scfm	Standard cubic feet per minute
gpd	Gallons per day	SSTL	Site-specific target level
gpm	Gallons per minute	STLC	Soluble threshold limit concentration
GWPTS	Groundwater pump and treat system	SVE	Soil vapor extraction
HVOC	Halogenated volatile organic compound	SVOC	Semivolatile organic compound
J	Estimated value between MDL and PQL (RL)	TAME	Tertiary amyl methyl ether
LEL	Lower explosive limit	TBA	Tertiary butyl alcohol
LPC	Liquid-phase carbon	TCE	Trichloroethene
LRP	Liquid-ring pump	TOC	Top of well casing elevation; datum is msl
LUFT	Leaking underground fuel tank	TOG	Total oil and grease
LUST	Leaking underground storage tank	TPHd	Total petroleum hydrocarbons as diesel
MCL	Maximum contaminant level	TPHg	Total petroleum hydrocarbons as gasoline
MDL	Method detection limit	TPHmo	Total petroleum hydrocarbons as motor oil
mg/kg	Milligrams per kilogram	TPHs	Total petroleum hydrocarbons as stoddard solvent
mg/L	Milligrams per liter	TRPH	Total recoverable petroleum hydrocarbons
mg/m ³	Milligrams per cubic meter	UCL	Upper confidence level
MPE	Multi-phase extraction	USCS	Unified Soil Classification System
MRL	Method reporting limit	USGS	United States Geologic Survey
msl	Mean sea level	UST	Underground storage tank
MTBE	Methyl tertiary butyl ether	VCP	Voluntary Cleanup Program
MTÇA	Model Toxics Control Act	VOC	Volatile organic compound
NAI	Natural attenuation indicators	VPC	Vapor-phase carbon
NAPL	Non-aqueous phase liquid		

FN 2735 TOPO

EXPLANATION

1/2-mile radius circle

APPROXIMATE SCALE 0 0.5 1 mile SOURCE: Modified from a map provided by

SITE VICINITY MAP

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California

PROJECT NO.

2735

PLATE

DeLorme 3-D TopoQuads

1

L:\EXXONMOBIL\ExxonMobil Projects\022735C (79374) Albany\2735 AutoCad\SPECIALTY MAPS\13 W04\13 W04 GSP_SP.dwg, mary.jones

PROJECT NO.

2735

PLATE

FN 2735 13 W04 PROP BORINGS-2_SP

APPROXIMATE SCALE

PROPOSED BORING LOCATIONS

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California

EXPLANATION MW6 Groundwater Monitoring Well	HP2B Hydropunch Boring	AS1 ⊕ Air Sparge Well
B6 Soil Boring	CPT2	SVE3 Soil Vapor Extraction Well
IB-2 Soil Boring by Other Consultant for City of Albany	B12 Proposed Soil Boring	

TABLE 1A

CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
990 San Pablo Avenue
Albany, California

								bany, California							
Well ID	Sampling Date	Depth (feet)	TOC Elev (feet)	/. DTW (feet)	GW Elev. (feet)	NAPL (feet)	O&G (µg/L)	TPHmo (μg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)
Monitoring W	Vell Samples						_								
MW1	11/04/10		Well inst	follod											
MW1	12/01/10		41.45	well su	nyoyod										
MW1	12/16/10		41.45	9.18	32.27	No		<250	71a	E.1	<0.50	1.4	0.65	0.50	1.0
MW1	01/31/11	***	41.45	8.78	32.67	No	***	<250	<50	54 <50		1.4	0.65	0.58	1.6
MW1	04/07/11		41.45	8.45	33.00	No		<250	65a		<0.50	<0.50	<0.50	< 0.50	< 0.50
MW1			41.45	9.49	31.96			<250 <250		160a	< 0.50	2.9	0.92	< 0.50	1.7
MW1	07/18/11 10/13/11		41.45	9.49	31.59	No		<250 <250	<50	63a	<0.50	< 0.50	< 0.50	< 0.50	< 0.50
		14447				No	***		54	<50	<0.50	<0.50	< 0.50	< 0.50	<0.50
MW1	04/06/12	222	41.45	8.11	33.34	No	***	<250	130	130	<0.50	2.1	<0.50	<0.50	<0.50
MW1	10/19/12		41.45	10.42	31.03	No	***	<250	<50	<50	<0.50	0.51	2.2	<0.50	0.65
MW2	11/04/10	1555	Well inst	alled.											
MW2	12/01/10	15015	41.25	Well su	rveyed.										
MW2	12/16/10	1777	41.25	8.11	33.14	No		<250	110a	<50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
MW2	01/31/11		41.25	9.29	31.96	No		<250	<50	<50	< 0.50	<0.50	< 0.50	<0.50	< 0.50
MW2	04/07/11		41.25	8.21	33.04	No		<250	<50	<50	0.51	<0.50	< 0.50	<0.50	<0.50
MW2	07/18/11		41.25	9.52	31.73	No	007	<250	<50	54a	< 0.50	<0.50	<0.50	< 0.50	<0.50
MW2	10/13/11		41.25	9.56	31.69	No		<250	98	75a	< 0.50	<0.50	< 0.50	<0.50	<0.50
MW2	04/06/12		41.25	8.68	32.57	No	***	<250	60	68	< 0.50	<0.50	<0.50	<0.50	<0.50
MW2	10/19/12	-	41.25	11.03	30.22	No		<250	<50	59a	<0.50	<0.50	<0.50	<0.50	<0.50
MW3	11/08/10		Well inst	alled											
MW3	12/01/10	***	40.42	Well su	rveved										
MW3	12/16/10		40.42	8.18	32.24	No		<250	2,900a	19,000	<12	350	130	940	290
MW3	01/31/11	9000	40.42	7.64	32.78	No	5 202 5	390	2,800a	17,000a	<12	540	140	700	270
MW3	04/07/11	-303-	40.42	5.88	34.54	No	1805	<250	2,700a	14,000	<10	600	150	780	230
MW3	07/18/11		40.42	8.31	32.11	No	(200)	<250	1,700a	19,000	<10	650	140	660	220
MW3	10/13/11	10000	40.42	8.76	31.66	No	15052	<250	1,900a	16,000	<10	520	150	900	270
MW3	04/06/12		40.42	8.13	32.29	No	1,752:	<250	3,200a	18,000	<20	300	120	1,100	180
MW3	10/19/12		40.42	9.37	31.05	No	•••	<250	1,700a	11,000a	<10	380	120	740	150
MW3A	01/18/12	***	Well inst	-belle											
MW3A	02/06/12		40.68	Well su	rveved										
MW3A	04/06/12		40.68	6.02	34.66	No	:max.	<250	170a	1,300	<2.0	41	7.5	140	38
MW3A	10/19/12	-4-	40.68	10.44	30.24	No		<250	860a	4,400a	<5.0	390	7.5 59	410	8 2
MW4	11/05/10	222	Well inst		2				-	,		-	8		J
MW4	12/01/10			Well su	nveved										
MW4	12/16/10		39.30	6.10	33.20	No	1222	<250	2,000a	0.000	<5.0	440	40	170	200
MW4	01/31/11	244	39.30	6.84	33.20 32.46	No		260	2,000a 3,900a	9,900 13,000	<5.0 <10	440	40 50	170	380
MW4	04/07/11		39.30	5.29	34.01			<250				500 530	59 50	320	740
MW4	07/18/11		39.30	7.36	34.01	No No		<250	1,900a	9,600	<10	530 570	59	250	340
MW4	10/13/11		39.30	7.83	31.47	No		320	2,800a	14,000	<10	570 350	66 42	320	510
MW4	04/06/12		39.30	6.21	33.09			<250	7,200a	14,000	<10	350	43	340	690
IVI V V 4	04/00/12	-555	39.30	0.21	JJ.09	No	- 	~230	1,800a	9,100a	<10	380	40	220	410

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

		5 4	T00 FI	DTM	OM EI	N14 F01		cany, Californ		TDU	MEDE				
Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	(feet)	GW Elev. (feet)	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)
IW4	10/19/12	:: 	39.30	10.64	28.66	No		1,400a	20,000a	270,000	<10	440	88	2,100	3,800
IW5	11/11/10		Well insta	alled.											
IW5	12/01/10		40.38	Well su	rveyed.										
1W5	12/16/10		40.38	7.69	32.69	No		<250	1,100a	6,200	<2.5	150	96	270	980
1W5	01/31/11		40.38	8.00	32.38	No		270	4,600a	15,000	<10	520	310	1,100	2,500
IW5	04/07/11		40.38	6.73	33.65	No		<250	610a	2,500	<2.5	61	32	180	390
IW5	07/18/11	-	40.38	7.63	32.75	No		<250	2,000a	11,000	<2.5	340	160	990	1,800
1W5	10/13/11	-	40.38	9.31	31.07	No		660	7,600a	23,000	<20	390	160	1,200	3,100
1W5	04/06/12	2	40.38	6.77	33.61	No	244	<250	880a	6,000a	<5.0	62	17	360	680
W5	10/19/12	29 44	40.38	10.64	29.74	No	### 1	280a	2,100a	15,000	<20	580	63	950	1,400
1W6	11/03/10		Well insta	alled.											
1W6	12/01/10	855	41.06	Well su	rveyed.										
1W6	12/16/10		41.06	8.55	32.51	No	T-2777. 4	<250	110a	1,700	< 0.50	2.8	1.2	61	46
1W6	01/31/11	0.555	41.06	8.52	32.54	No	2010	<250	800a	2,000a	<1.0	6.0	<1.0	30	24
IW6	04/07/11	0.777	41.06	7.78	33.28	No		<250	660a	2,000	< 0.50	10	1.0	20	19
IW6	07/18/11	777	41.06	9.27	31.79	No		<250	350a	1,000a	< 0.50	2.5	<0.50	3.8	3.5
IW6	10/13/11		41.06	10.21	30.85	No		<250	370a	890a	< 0.50	2.8	<0.50	7.9	5.5
W6	04/06/12		41.06	7.19	33.87	No	-11	<250	440a	1,400a	< 0.50	2.4	<0.50	13	15
W6	10/19/12	7	41.06	11.36	29.70	No	<u> </u>	<250	99a	510a	<0.50	4.2	1.6	8.0	7.0
S1	01/18/12	***	Well insta	alled.											
S1	10/19/12	***		10.32	****	No	***		**** ()		***	****	•••		
VE1	01/17/12		Well insta	alled.											
VE1	02/06/12	7444	40.58	Well su	rveyed.										
VE1	10/19/12		40.58	10.21	30.37	No				(* <u>***</u>				***	***
VE2	01/17/12	6 555	Well insta	alled.											
VE2	02/06/12	5.000	40.94	Well su	rveyed.										
VE2	10/19/12	20 000	40.94	10.48	30.46	No	***		5775 8	3 771	STATE OF THE PARTY			(888)	-
SVE3	01/17/12	¥3385	Well insta	alled.											
SVE3	02/06/12	-	40.93	Well su	rveyed.										
VE3	10/19/12	9200	40.93	10.39	30.54	No	***			R	8444				8444
rab Groun	dwater Samples														
-1W	01/06/08	/: ****		C HHH	S 1011		26r,s	<5,000	99,000o,n,r	76,000m,p,r	<50	<50	93	3,100	9,600
-2W	01/06/08	-	222	722			222	310s	23,000о,г,ѕ	77,000 l,r,s	<50	1,500	300	2,000	6,800
-3W	01/06/08				C****			<250s	2,000o,s	6,200 l,s	<10	170	32	740	250
-4W	01/06/08	722	2.2	100.0	V 2007		8221	<250s	3,100o,s	7,700 l,s	<10	360	<10	240	20
									. ,						
-5W	01/06/08		***	***	C 1177		1100 00	<250s	120o,s	120q,s	<0.5	<0.5	<0.5	<0.5	<0.5

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
990 San Pablo Avenue
Albany, California

Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	Τ (μg/L)	E (µg/L)	X (µg/L)
B-6W	01/06/08	***	1888 :	***	***	***	: = = :	<250s	830o,s	1,700 l,s	<2.5	5.2	<2.5	100	8.6
DR-W	01/06/08	-	707				***	<250	960	730m,p	<0.5	<0.5	<0.5	6.9	14
W-27.5-HP1A	10/28/10	27.5	: ***					260	330a	63a	<0.50	<0.50	<0.50	<0.50	<0.50
W-36-HP1A	10/28/10	36		-	***	***	***	<250	220a	<50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50
W-46.5-HP1A	10/28/10	46.5		***	***	****	***	<420	<83	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-59-HP1B	10/27/10	59		•••	*		244	<250	130	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-27.5-HP2A	10/29/10	27.5		***	***	***		<250	100a	340	<0.50	1.7	2.1	20	46
W-52-HP2A	10/29/10	52		***	***	***	****	<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-60.5-HP2B	10/27/10	60.5	***	•••	-	-	-	<250	62	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-10-SVE1-2	01/31/12	10	5 5310 5	***	****	***	3 88.5 3	890a	1,500a	1,400	<1.0	46	2.0	24	23
W-10-SVE1-1	01/31/12	10	***	***	***	***		990a	1,900a	2,000	<2.0	87	2.1	13	23

TABLE 1A

CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
990 San Pablo Avenue
Albany, California

Notes:		
TOC	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Add'l VOCs	=	Additional volatile organic carbons analyzed using EPA Method 8260B.
Add'l SVOCs	=	Additional semi-volatile organic carbons analyzed using EPA Method 8270C.
µg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	Sample chromatographic pattern does not match that of the specified standard.
b	=	n-butylbenzene.
С	=	sec-butylbenzene.
d	=	Isopropylbenzene.
е	=	n-propylbenzene.
f	=	1,2,4-trimethylbenzene.
g	=	1,3,5-trimethylbenzene.
h	=	Naphthalene.
368	=	1-butanone.
Ĵ	=	1,2-dibromo-3-chloropropane.
k	=	2-methylnapthalene.
I	=	Unmodified or weakly modified gasoline is significant.
m	=	Heavier gasoline range compounds are significant.
n	=	Diesel range compounds are significant; no recognizable pattern.
0	=	Gasoline range compounds are significant.
Р	=	No recognizable pattern.
q	=	Strongly aged gasoline or diesel compounds are significant.
r	=	Lighter than water immiscible sheen/product is present.
S	=	Liquid sample that contains greater than approximately 1 volume % sediment.

TABLE 1B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

						Albany, C	amornia			
Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (μg/L)	Add'l VOCs (μg/L)	Add'l SVOCs (µg/L)
Monitoring	y Well Samples									
MW1	11/04/10	550	Well insta	lled.						
MW1	12/16/10		<0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		
MW1	01/31/11		< 0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		\ aun
MW1	04/07/11		<0.50	<0.50	<0.50	10	< 0.50	<0.50		
MW1	07/18/11	====/,	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	≥====================================	170
MW1	10/13/11		<0.50	<0.50	<0.50	<5.0	< 0.50	<0.50	===	(444
MW1	04/06/12	2400	<0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		1200 1200
MW1	10/19/12	200	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
MW2	11/04/10		Well insta							
MW2	12/16/10	***	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
	01/31/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		***
MW2 MW2	04/07/11	550	<0.50	<0.50	<0.50	<5.0 <5.0	< 0.50	<0.50		5 5 5 5 5
		RATE .							- 155 5	5 940
MW2	07/18/11	50 (10 ft.)	< 0.50	<0.50	< 0.50	<5.0	<0.50	<0.50		1.555
MW2	10/13/11	****	< 0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		1000
MW2	04/06/12	### / I	< 0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		A NIS
MW2	10/19/12	######################################	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	WIE:	1.77
MW3	11/08/10	9450	Well insta							
MW3	12/16/10	***	<12	<12	<12	<120	<12	<12	***	
MW3	01/31/11	***	<12	<12	<12	<120	<12	<12	***	
MW3	04/07/11	***	<10	<10	<10	<100	<10	<10	****	1494
MW3	07/18/11		<10	<10	<10	<100	<10	<10	No.	(***
MW3	10/13/11	****	<10	<10	<10	<100	<10	<10	3,00 0	1 1000
MW3	04/06/12	555 %	<20	<20	<20	<200	<20	<20	Here.	
MW3	10/19/12	***	<10	<10	<10	<100	<10	<10	###.	
MW3A	01/18/12	******	Well insta	illed.						
MW3A	04/06/12	¥=0	<2.0	<2.0	<2.0	<20	<2.0	<2.0	-	
MW3A	10/19/12	***	<5.0	<5.0	<5.0	<50	<5.0	<5.0	Dane.	
MW4	11/05/10	***	Well insta	illed.						
MW4	12/16/10	###/	<5.0	<5.0	<5.0	<50	<5.0	<5.0		
MW4	01/31/11		<10	<10	<10	<100	<10	<10		***
MW4	04/07/11		<10	<10	<10	<100	<10	<10		
MW4	07/18/11	2000	<10	<10	<10	<100	<10	<10		
MW4	10/13/11	2220	<10	<10	<10	<100	<10	<10		200
MW4	04/06/12	200	<10	<10	<10	<100	<10	<10		
MW4	10/19/12	lane (<10	<10	<10	<100	<10	<10		E L
MW5	11/11/10		Well insta							
MW5	12/16/10		<2.5	<2.5	<2.5	<25	<2.5	<2.5		
	01/31/11	###/				<100			- 	
MW5 MW5	01/31/11	5,557/) 2458/)	<10 <2.5	<10 <2.5	<10 <2.5	<100 <25	<10 <2.5	<10 <2.5		222

TABLE 1B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

						Albany, C	alitornia			
Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (μg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	Add'l VOCs (μg/L)	Add'l SVOCs (µg/L)
MW5	07/18/11	Deter .	<2.5	<2.5	<2.5	<25	<2.5	<2.5	Her	-
MW5	10/13/11	. 	<20	<20	<20	<200	<20	<20	e=#.0	***
MW5	04/06/12	1	<0.50	<5.0	< 5.0	<50	<5.0	<5.0	3-1 .	
MW5	10/19/12	S 7777	<20	<20	<20	<200	<20	<20	****	-
MW6	11/03/10		Well insta	lled.						
MW6	12/16/10	3	<0.50	<0.50	< 0.50	<5.0	<0.50	<0.50	222	
MW6	01/31/11		<1.0	<1.0	<1.0	<10	<1.0	<1.0	/	722
MW6	04/07/11	1	< 0.50	<0.50	<0.50	<5.0	<0.50	<0.50	المنتقالة المنافقة ا	
MW6	07/18/11	***	<0.50	<0.50	< 0.50	<5.0	<0.50	<0.50		244
MW6	10/13/11	:: ***	< 0.50	< 0.50	< 0.50	<5.0	<0.50	<0.50	HALL)	-
MW6	04/06/12		<0.50	< 0.50	<0.50	<5.0	<0.50	<0.50	HAM	
MW6	10/19/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		3 121
AS1	01/18/12		Well insta	lled.						
AS1	10/19/12	1944	1	-		1	-		000 /2	8 1111
SVE1	01/17/12	19464	Well insta	lled.						
SVE1	10/19/12		***			Terre			***	C 2111
SVE2	01/17/12	122	Well insta	lled.						
SVE2	10/19/12					***	-		***	3 175
SVE3	01/17/12	II nea	Well insta	lled.						
SVE3	10/19/12	10 000	(ace)	***			-		www.	(au
Grab Grou	ndwater Sample	es								
B-1W	01/06/08	7. 50.5	<50	<50	<50	<200	<50	<50	210b, 68c, 370d, 1,100e, 3,800f, 1,300g, 1,500h	4,000h, 3,900k
B-2W	01/06/08	7.333	<50	<50	<50	<200	<50	<50	110b, 140e, 440f, 2,400g, 730h, 610i, 32j	(See
B-3W	01/06/08	19 40 x	<10	<10	<10	<40	<10	<10	25b, 11c, 74d, 190e, 290f, 49g, 55i	7 <u></u>
B-4W	01/06/08	7,330	<10	<10	<10	<40	<10	<10	46b, 19c, 48d, 160e, 16f, 100h	-
B-5W	01/06/08	220	ND	<0.5	<0.5	<2.0	<0.5	<0.5	2.6b, 0.83e, 4.8f, 1.2g, 6.5h	
B-6W	01/06/08	3.550	<2.5	<2.5	<2.5	<10	<2.5	<2.5	14b, 5.6c, 17d, 60e, 32f, 5.8g, 38h, 10i	:
DR-W	01/06/08	0200	<0.5	<0.5	<0.5	<2.0	<0.5	<0.5	6.9b, 2.4c, 2.5d, 11e, 17f, 5.5g, 7.0h	-
W-27.5-HP	1A 10/28/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		-
	A 10/28/10	36	< 0.50	<0.50	<0.50	<5.0	< 0.50	<0.50		
	1A 10/28/10	46.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	=====================================	(****
W-59-HP1E	3 10/27/10	59	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	(Control of the Control of the Contr	
W-27.5-HP	2A 10/29/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
	A 10/29/10	52	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		2555

TABLE 1B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (μg/L)	Add'l VOCs (µg/L)	Add'l SVOCs (µg/L)
W-60.5-HP	2B 10/27/10	60.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	=	
	1-1 01/31/12 1-2 01/31/12	10 10	<2.0 <1.0	<2.0 <1.0	<2.0 <1.0	62 57	<2.0 <1.0	<2.0 <1.0		

TABLE 1B

ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
990 San Pablo Avenue
Albany, California

Notes:		
TOC	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Add'l VOCs	=	Additional volatile organic carbons analyzed using EPA Method 8260B.
Add'l SVOCs	=	Additional semi-volatile organic carbons analyzed using EPA Method 8270C.
μg/L	=	Micrograms per liter
ND	=	Not detected at or above laboratory reporting limits.
****	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	Sample chromatographic pattern does not match that of the specified standard.
b	=	n-butylbenzene.
С	=	sec-butylbenzene.
d	=	Isopropylbenzene.
е	=	n-propylbenzene.
f	=	1,2,4-trimethylbenzene.
g	=	1,3,5-trimethylbenzene.
h	=	Naphthalene.
i	=	1-butanone.
j	=	1,2-dibromo-3-chloropropane.
k	=	2-methylnapthalene.
1	=	Unmodified or weakly modified gasoline is significant.
m	=	Heavier gasoline range compounds are significant.
n	=	Diesel range compounds are significant; no recognizable pattern.
0	=	Gasoline range compounds are significant.
р	=	No recognizable pattern.
q	=	Strongly aged gasoline or diesel compounds are significant.
г	=	Lighter than water immiscible sheen/product is present.
s	=	Liquid sample that contains greater than approximately 1 volume % sediment.

TABLE 2

WELL CONSTRUCTION DETAILS
Former Exxon Service Station 79374
990 San Pablo Avenue
Albany, California

Well ID	Well Installation Date	TOC Elevation (feet)	Borehole Diameter (inches)	Total Depth of Boring (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Casing Material	Screened Interval (feet bgs)	Slot Size (inches)	Filter Pack Interval (feet bgs)	Filter Pack Material
MW1	11/04/10	41.45	8	17	17	2	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW2	11/04/10	41.25	8	17	17	4	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW3	11/08/10	40.42	8	17	17	4	Schedule 40 PVC	11-16	0.020	9-16	#3 Sand
MW3A	01/18/12	40.68	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
MW4	11/05/10	39.30	8	17	13	2	Schedule 40 PVC	8-13	0.020	6-13	#3 Sand
MW5	11/05/10	40.38	8	17	14	2	Schedule 40 PVC	9-14	0.020	7-14	#3 Sand
MW6	11/03/10	41.06	10	20	20	2	Schedule 40 PVC	15-20	0.020	13-20	#3 Sand
AS1	01/18/12	***	8	15.5	15.5	1	Schedule 80 PVC	10.25-13.5	#60 mesh	10.5-15.5	#2/12 Sand
SVE1	01/17/12	40.58	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
SVE2	01/17/12	40.94	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15	#2/12 Sand
SVE3	01/17/12	40.93	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand

Notes:

TOC Top of well casing elevation; datum is mean sea level.

Polyvinyl chloride. PVC

feet bgs = Feet below ground surface.

TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS

Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 1 of 3)

Sample Sampling Depth TPHmo TPHd TPHg MTBE B T E X	EDB 1,2-DCA TBA DIPE ETBE TAME Total Lead
ID Date (feet bgs) (mg/kg)	ng/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)
Soil Boring Samples	
B-1 01/06/08 6.0 <5.0 3.7c <1.0 <0.05 <0.005 <0.005 <0.005 <0.005	
B-1 01/06/08 10.5 <100 1,400b,c 7,200b,f <5.0 2 51 110 400	
B-2 01/06/08 5.5 <5.0 <1.0 <1.0 <0.05 <0.005 <0.005 <0.005 <0.005	
B-2 01/06/08 10.5 <100 1,400d 4,500b,f <5.0 13 35 100 380	
B-3 01/06/08 5.5 <5.0 <1.0 <1.0 <0.50 <0.005 <0.005 <0.005	
B-3 01/06/08 10.5 <5.0 53d 130e,f <0.50 0.37 0.29 2.6 0.44	
B-4 01/06/08 5.5 <5,0 62d 140e,f <0,50 <0.005 1.0 0.066 0.094	
B-4 01/06/08 10.5 <5.0 15d 140e,f <0.50 0.25 1.5 1.3 0.11	
DE 04/06/00 EE 250 240 2005 2005 2005 2005 2005	
B-5 01/06/08 5.5 <5.0 <1.0 <1.0 <0.05 <0.005 <0.005 <0.005 <0.005 B-5 01/06/08 11.5 <5.0 5.4c,d 32e,f <0.25 0.038 0.24 0.051 0.035	
B-5 01/00/06 11.5 \\\0,0 5.40,0 52e,1 \\\0,25 0,056 0,24 0.051 0.055	
B-6 01/06/08 5.5 <5.0 <1.0 <0.05 <0.005 <0.005 <0.005 <0.005	
B-6 01/06/08 10.5 <5.0 6.0c,d 32e,f <0.05 0.009 0.41 <0.005 0.039	
Monitoring Well Samples	
	.0050 <0.0050 <0.050 <0.010 <0.010 <
	0.0050 <0.0050 <0.050 <0.010 <0.010 -0
S-14.5-MW1 11/04/10 14.5 <25 <5.0 <0.50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	0.0050 <0.0050 <0.050 <0.010 <0.010 <0.010
S-10-MW2 11/04/10 10.0 <25 <5.0 3.1a <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.0050 <0.0050 <0.050 <0.010 <0.010 -
S-15-MW2 11/04/10 15.0 <25 <5.0 <0.50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	.0050 <0.0050 <0.050 <0.010 <0.010
	.0050 <0.0050 <0.050 <0.010 <0.010
	0.50 <0.50 <5.0 <1.0 <1.0
S-15.5-MW3 11/08/10 15.5 <25 <5.0 2.2 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	.0050 <0.0050 <0.050 <0.010 <0.010 <0.010
S-8-MW3A 01/18/12 8.0 <25 <5.0 <0.50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	.0050 <0.0050 <0.050 <0.010 <0.010 <0.010
	.0050 <0.0050 <0.050 <0.010 <0.010 <0.0100050 <0.050 <0.050 <0.010 <0.010
0 1 10 M	10.0000 10.0000 10.010 10.010
S-5-MW4 10/20/10 5,0 <25 <5,0 <0,50 <0,0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	.0050 <0.0050 <0.050 <0.010 <0.010
S-10-MW4 11/05/10 10.0 <25 <5.0 44a <0.50 <0.50 <0.50 <0.50 <	0.50 <0.50 <5.0 <1.0 <1.0 <
S-15-MW4 11/05/10 15.0 <25 <5.0 <0.50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	.0050 <0.0050 <0.050 <0.010 <0.010 <0.010
S-16.5-MW4 11/05/10 16.5 <25 <5.0 <0.50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	.0050 <0.0050 <0.050 <0.010 <0.010 <0.010
S-5-MW5 10/20/10 5.0 <25 <5.0 <0.50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	.0050 <0.0050 <0.050 <0.010 <0.010 <0.010
	.0050 <0.0050 <0.050 <0.010 <0.010 <0.010
	0.0050
2	-0.000 -0.010 -0.010
S-5-MW6 10/20/10 5.0 <25 <5.0 <0.50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.0050 <0.0050 <0.050 <0.010 <0.010 <0.010
S-10-MW6 11/02/10 10.0 <25 8.2a 8.7a <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	0.0050 <0.0050 <0.050 <0.010 <0.010 <0.010 -

TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS

Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 2 of 3)

Sample	Sampling	Depth	TPHmo	TPHd	TPHg	MTBE	B	T	E	X	EDB	1,2-DCA	TBA	DIPE	ETBE	TAME	Total Lead
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-14.5-MW6	11/02/10	14.5	<25	<5.0	1.8a	<0.0050	<0.0050	<0.0050	<0.0093	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-20-MW6	11/02/10	20.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-5-CPT1	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	5 000 :
S-5-CPT2	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	-
S-10-AS1	01/18/12	10.0	<25	800a	2,900	<2.5	<2.5	<2.5	47	<2.5	<2.5	<2.5	<25	<5.0	<5.0	<5.0	1 555 1
S-8.5-SVE1	01/17/12	8.5	<25	87a	480a	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0	: :
S-11.5-SVE1	01/17/12	11.5	<25	<5.0	18	<0.0050	<0.50	0.010	0.084	0.11	<0.0050	<0.0050	<0.50	<0.010	<0.010	<0.010	
S-10-SVE2	01/17/12	10.0	53a	37a	390a	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0	
S-14-SVE2	01/17/12	14.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	<0.010	<0.010	<0.010	
S-12.5-SVE3	01/17/12	12.5	57a	760a	1,900a	<2.5	<2.5	<2.5	<2.5	<2.5	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0	-
S-15-SVE3	01/17/12	15.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	0.015	0.033	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
Drum Samples DR-1	01/06/08		<5,0	2.5c,d	4.9e,f	<0.050	<0.005	0.027	0.035	0,035		. 		7. 555	1 277 1	 -	9.7
Soil Stockpile Samples COMP(S-Profile-1-4) S-SP1 (1-4)	11/08/10 01/18/12	_	<25 190a	7,1a 39a	14a 230	<0.0050 <0.0050	<0.0050 0.20	<0.0050 0.66	0.069 4.3	0.049 14	<0.0050 <0.0050	<0.0050 <0.0050	<0.050 <0.050	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	6.93 37.6

TABLE 3A

CUMULATIVE SOIL ANALYTICAL RESULTS

Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 3 of 3)

Notes:		
S-15-MW4	=	Soil - depth - monitoring well 4.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015B.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015B.
TPHg	#	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B; analyzed isong EPA Method 8020 in 2008.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	÷	1,2-Dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	₩.	1,2-Dicholorethane analyzed using EPA Method 8260B
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B
Total Lead	=	Total lead analyzed using EPA Method 6010B.
1,2,4-trimethylbenzene	=	1,2,4-Trimethylbenzene analyzed using EPA Method 8260B.
1,3,5-trimethlynemzene	=	1,3,5-Trimethlynemzene analyzed using EPA Method 8260B.
Isopropyltoluene	=	Isopropyltoluene analyzed using EPA Method 8260B,
Naphthalene	=	Naphthalene analyzed using EPA Method 8260B.
n-Butylbenzene	=	n-Butylbenzene analyzed using EPA Method 8260B.
p-Isopropyltoluene	Ė	p-Isopropyltoluene analyzed using EPA Method 8260B.
sec-Butylbenzene	=	sec-Butylbenzene analyzed using EPA Method 8260B.
t-Butylbenzene	Ħ	t-Butylbenzene analyzed using EPA Method 8260B.
Add'l HVOCs	=	Additional Halogenated Volatile Organic Compounds analyzed using EPA Method 8260B.
feet bgs	#	Feet below ground surface.
ND	=	Not detected.
Sec. (5)	=1	Not analyzed/Not applicable
<	=	Less than the laboratory reporting limit.
а	=	The sample chromatographic pattern does not match that of the specified standard
b	=	Heavier gasoline range compounds are significant.
C	=	Diesel range compounds are significant; no recognizable pattern.
d	=	Gasoline range compounds are significant.
е	=	Strongly aged gasoline or diesel range compounds are significant.
f	=	No recognizable pattern.

TABLE 3B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs

Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 1 of 2)

			1,2,4-trimethyl-	1,3,5-trimethyl-	Isopropyl-	Naph-	n-Butyl-	p-Isopropyl-	sec-Butyl-	t-Butyl-	Add'l
Sample	Sampling	Depth	benzene	benzene	benzene	thalene	benzene	toluene	benzene	benzene	HVOC:
ID .	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg
Soil Boring Samples											
Not analyzed for these anal	ytes.										
Monitoring Well Samples											
Not analyzed for these anal	ytes.										
Drum Samples											
Not analyzed for these anal	ytes.										
Soil Stockpile Samples											
COMP(S-Profile-1-4)	11/08/10	(Make)	0.0053	0.062	0.061	0.098	0.14	0.012	0.053	0.018	ND
S-SP1 (1-4)	01/18/12		8.3	2.2	0.12	<5.0	0.20	0.012	0.051	<0.0050	2.5g
3 31 1 (1 1)	01/10/12		0.0	2.2	0.12	-0.0	0.20	0.010	0.001	~0.0000	2.09
Notes:											
S-15-MW4	=	Soil - depth -	monitoring well 4.								
TPHmo	=		_	s motor oil analyzed	using EPA	Method 801	5B.				
TPHd	=		=	s diesel analyzed us	_						
TPHg	=		-	is gasoline analyze	•						
MTBE	=	•	•	ed using EPA Meth	•			hod 8020 in 20	08		
BTEX	=			, and total xylenes					00.		
EDB	=			ing EPA Method 82	-	9 = 1 7 1 1110					
1,2-DCA	=		-	ng EPA Method 82							
TBA	=			sing EPA Method 8							
DIPE	=		•	g EPA Method 8260							
ETBE	=			d using EPA Metho							
TAME	=		•	zed using EPA Met							
Total Lead	=		alyzed using EPA	•	1100 6200B.						
1,2,4-trimethylbenzene	=										
					4 00C0D						
• •				d using EPA Metho							
1,3,5-trimethlynemzene	=	1,3,5-Trimeth	lynemzene analyze	ed using EPA Metho	od 8260B.						
1,3,5-trimethlynemzene Isopropyltoluene	=	1,3,5-Trimeth	lynemzene analyze ene analyzed using	ed using EPA Metho EPA Method 8260	od 8260B.						
1,3,5-trimethlynemzene Isopropyltoluene Naphthalene	= = =	1,3,5-Trimeth Isopropyltolue Naphthalene	lynemzene analyze ene analyzed using analyzed using EP	ed using EPA Metho EPA Method 8260 A Method 8260B.	od 8260B. B.						
1,3,5-trimethlynemzene Isopropyltoluene Naphthalene n-Butylbenzene	= = = =	1,3,5-Trimeth Isopropyltolue Naphthalene n-Butylbenze	lynemzene analyze ene analyzed using analyzed using EP ne analyzed using	ed using EPA Metho EPA Method 8260l A Method 8260B. EPA Method 8260B	od 8260B. B.						
1,3,5-trimethlynemzene Isopropyltoluene Naphthalene n-Butylbenzene p-Isopropyltoluene	= = = =	1,3,5-Trimeth Isopropyltolue Naphthalene n-Butylbenzel p-Isopropyltol	lynemzene analyze ene analyzed using analyzed using EP ne analyzed using uene analyzed usin	ed using EPA Method EPA Method 82600 A Method 8260B. EPA Method 8260B ng EPA Method 826	od 8260B. B. s. s. soB.						
1,3,5-trimethlynemzene Isopropyltoluene Naphthalene n-Butylbenzene p-Isopropyltoluene sec-Butylbenzene	= = = = = = = = = = = = = = = = = = = =	1,3,5-Trimeth Isopropyltolue Naphthalene n-Butylbenze p-Isopropyltol sec-Butylbenz	lynemzene analyze ene analyzed using analyzed using EP ne analyzed using s uene analyzed usin zene analyzed usin	ed using EPA Method EPA Method 82601 A Method 8260B. EPA Method 8260B ng EPA Method 826 g EPA Method 826	od 8260B. B. S. SOB. OB.						
1,3,5-trimethlynemzene Isopropyltoluene Naphthalene n-Butylbenzene p-Isopropyltoluene sec-Butylbenzene t-Butylbenzene	= = = = = =	1,3,5-Trimeth Isopropyltolue Naphthalene n-Butylbenzei p-Isopropyltol sec-Butylbenzer t-Butylbenzer	lynemzene analyze ene analyzed using analyzed using EP ne analyzed using suene analyzed using zene analyzed using e analyzed using E	ed using EPA Method EPA Method 82601 A Method 8260B. EPA Method 8260B ng EPA Method 826 g EPA Method 826 EPA Method 8260B.	od 8260B. B. G. GOB.						
1,3,5-trimethlynemzene Isopropyltoluene Naphthalene n-Butylbenzene p-Isopropyltoluene sec-Butylbenzene t-Butylbenzene Add'I HVOCs	= = = = = = = = = = = = = = = = = = = =	1,3,5-Trimeth Isopropyltolue Naphthalene n-Butylbenzel p-Isopropyltol sec-Butylbenzer t-Butylbenzer Additional hal	lynemzene analyze ene analyzed using analyzed using EP ne analyzed using uene analyzed usin zene analyzed usin e analyzed using E ogenated volatile o	ed using EPA Method EPA Method 82601 A Method 8260B. EPA Method 8260B ng EPA Method 826 g EPA Method 826	od 8260B. B. G. GOB.	ng EPA Me	thod 8260B				
1,3,5-trimethlynemzene Isopropyltoluene Naphthalene n-Butylbenzene p-Isopropyltoluene sec-Butylbenzene t-Butylbenzene Add'I HVOCs feet bgs	= = = = = = = = = = = = = = = = = = = =	1,3,5-Trimeth Isopropyltolue Naphthalene n-Butylbenzei p-Isopropyltol sec-Butylbenzer t-Butylbenzer Additional hal Feet below gr	lynemzene analyze ene analyzed using analyzed using EP ne analyzed using uene analyzed using ene analyzed using analyzed using Eogenated volatile cound surface.	ed using EPA Method EPA Method 82601 A Method 8260B. EPA Method 8260B ng EPA Method 826 g EPA Method 826 EPA Method 8260B.	od 8260B. B. G. GOB.	ng EPA Me	thod 8260B				
1,3,5-trimethlynemzene Isopropyltoluene Naphthalene n-Butylbenzene p-Isopropyltoluene sec-Butylbenzene t-Butylbenzene Add'I HVOCs	= = = = = = = = = = = = = = = = = = = =	1,3,5-Trimeth Isopropyltolue Naphthalene n-Butylbenzer p-Isopropyltol sec-Butylbenzer t-Butylbenzer Additional hal Feet below gr Not detected.	lynemzene analyze ene analyzed using EP ne analyzed using su uene analyzed using zene analyzed using te analyzed using E ogenated volatile of ound surface.	ed using EPA Method EPA Method 82601 A Method 8260B. EPA Method 8260B ng EPA Method 826 g EPA Method 826 EPA Method 8260B.	od 8260B. B. G. GOB.	ng EPA Me	thod 8260B				
1,3,5-trimethlynemzene Isopropyltoluene Naphthalene n-Butylbenzene p-Isopropyltoluene sec-Butylbenzene t-Butylbenzene Add'I HVOCs feet bgs	= = = = = = = = = = = = = = = = = = = =	1,3,5-Trimeth Isopropyltolue Naphthalene n-Butylbenzer p-Isopropyltol sec-Butylbenzer t-Butylbenzer Additional hal Feet below gr Not detected. Not analyzed,	lynemzene analyze ene analyzed using EP analyzed using EP ne analyzed using evene analyzed us	ed using EPA Method EPA Method 82601 A Method 8260B. EPA Method 8260B ng EPA Method 8260 g EPA Method 8260B. EPA Method 8260B.	od 8260B. B. G. GOB.	ng EPA Me	thod 8260B				
1,3,5-trimethlynemzene Isopropyltoluene Naphthalene n-Butylbenzene p-Isopropyltoluene sec-Butylbenzene t-Butylbenzene Add'l HVOCs feet bgs ND	= = = = = = = = = = = = = = = = = = = =	1,3,5-Trimeth Isopropyltolue Naphthalene n-Butylbenzer p-Isopropyltol sec-Butylbenzer Additional hal Feet below gr Not detected. Not analyzed, Less than the	lynemzene analyze ene analyzed using EP ne analyzed using in uene analyzed using zene analyzed using e analyzed using in e analyzed using it e analyzed using it ogenated volatile of cound surface. (Not applicable	ed using EPA Method EPA Method 82601 A Method 8260B. EPA Method 8260B ag EPA Method 8260 g EPA Method 8260B EPA Method 8260B ag EPA method 8260B ag EPA Method 8260B ag EPA Method 8260B ag Imit.	od 8260B. B. 60B. 0B. analyzed usir						
1,3,5-trimethlynemzene Isopropyltoluene Naphthalene n-Butylbenzene p-Isopropyltoluene sec-Butylbenzene t-Butylbenzene Add'l HVOCs feet bgs ND	= = = = = = = = = = = = = = = = = = = =	1,3,5-Trimeth Isopropyltolue Naphthalene n-Butylbenzer p-Isopropyltol sec-Butylbenzer Additional hal Feet below gr Not detected. Not analyzed, Less than the	lynemzene analyze ene analyzed using EP ne analyzed using in uene analyzed using zene analyzed using e analyzed using in e analyzed using it e analyzed using it ogenated volatile of cound surface. (Not applicable	ed using EPA Method EPA Method 82601 A Method 8260B. EPA Method 8260B ng EPA Method 8260 g EPA Method 8260B. EPA Method 8260B.	od 8260B. B. 60B. 0B. analyzed usir						

TABLE 3B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs

Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 2 of 2)

Notes (Cont.):		
С	Diesel range compounds are significant; no recognizable pattern.	
d	= Gasoline range compounds are significant.	
е	Strongly aged gasoline or diesel range compounds are significant.	
f	= No recognizable pattern.	
g	= n-Propylbenzene	

APPENDIX A CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

February 8, 2013

Ms. Jennifer Sedlachek
ExxonMobil
4096 Piedmont Ave., #194
Oakland, CA 94611
(Sent via E-mail to:
jennifer.c.sedlachek@exxonmobil.com)

Mrs. Muriel Blank Blank Family Trust 1164 Solano Ave., #406 Albany, CA 94706

Subject: Fuel Leak Case No. RO0002974 and GeoTracker Global ID T0619716673, Exxon, 990 San Pablo Ave., Albany, CA 94706

Dear Ms. Sedlachek and Mrs. Blank:

Thank you for the recently submitted documents entitled, *Groundwater Monitoring Report, Fourth Quarter 2012, and Response to Comments*, dated December 5, 2012, *Air Sparge and Dual-Phase Extraction Feasibility Testing* dated April 12, 2012, and *Work Plan for Groundwater Monitoring, Air-Sparge and Soil Vapor Extraction Well Installation* dated August 1, 2012 which were prepared by Cardno ERI for the subject site. Alameda County Environmental Health (ACEH) staff has reviewed the case file including the above-mentioned reports for the above-referenced site. The feasibility study tested dual-phase extraction (DPE), combined air-sparge/DPE, and air sparge for a total of four hours per test. The tests demonstrate that AS/DPE could be an effective remediation method for mass removal. However, a corrective action plan needs to be submitted and approved before installation of the remediation wells and implementation of the corrective action can begin. Therefore, the work plan cannot be approved at this time. Please address the following technical comments and send us the reports requested below.

TECHNICAL COMMENTS

- Separate Phase Hydrocarbons TPHg was detected in MW-4 at a concentration of 270,000 micrograms per liter, indicating the presence of SPH and possible mobilization of SPH due to the pilot test. Please monitor for SPH in this well. If measurable SPH is present please begin product bailing and record the depth of the SPH and mass removed in future monitoring reports.
 - ACEH concurs with semi-annual monitoring and reporting until implementation of the CAP but requests quarterly SPH guaging in well MW-4. Please submit the monitoring reports by the dates requested below.
- Downgradient Extent of Contamination The work plan and monitoring report proposes installing two monitoring wells, one at the police station and one on Buchanan Street to monitor the extent of the plume. Rather than installing the wells at this time, ACEH requests that you identify the location of your dissolved contaminant plume by installing a transect(s) of

Ms. Sedlachek and Mrs. Blank RO0002974 February 8, 2013, Page 2

borings. Based on the results of this work, propose monitoring well locations for both groundwater and remediation system performance monitoring. Please evaluate if the sanitary sewer line intercepts contamination from the site and acts as a preferential pathway for the migration of contaminants.

ACEH realizes that there is a fire station across the street and would like to point out two things. First, the fire station is currently an active fuel leak case RO0000297. You may want to review this case for the limited amount of data available. Second, this station has doors on both the Buchanan Street side and the Marin Avenue side of the building. It may be possible to install borings and wells on Buchanan Street with minimal interference with fire station operations. Please submit a revised work plan to assess the extent of off-site contamination by the due date requested below.

- 3. <u>Aerial Photo Base Map</u> We request that you use an aerial photo as the base map showing the site and its immediate vicinity for future site maps submitted for the site. Please label and identify the use of all properties on your map.
- 4. Corrective Action Plan At this time, a Draft Corrective Action Plan (CAP) prepared in accordance with Title 23, California Code of Regulations, Section 2725 appears warranted. The CAP must include a concise background of soil and groundwater investigations performed in connection with this case and an assessment of the residual impacts of the chemicals of concern (COCs) for the site and the surrounding area where the unauthorized release has migrated or may migrate. The CAP should also include, but is not limited to, a detailed description of site lithology, including soil permeability, and most importantly, contamination cleanup levels and cleanup goals, in accordance with the San Francisco Regional Water Quality Control Board (SFRWQCB) Basin Plan and appropriate ESL guidance for all COCs and for the appropriate groundwater designation. Please note that soil cleanup levels should ultimately (within a reasonable timeframe) achieve water quality objectives (cleanup goals) for groundwater in accordance with the SFRWQCB Basin Plan. Please specify appropriate cleanup levels and cleanup goals in accordance with 23 CCR Section 2725, 2726, and 2727 in the CAP.

The CAP must evaluate at least three viable alternatives for remedying or mitigating the actual or potential adverse affects of the unauthorized release(s) besides the 'no action' and 'monitored natural attenuation' remedial alternatives. Each alternative shall be evaluated not only for cost-effectiveness but also its timeframe to reach cleanup levels and cleanup goals, and ultimately the Responsible Party must propose the most cost-effective corrective action.

- 6. Baseline Environmental Project Schedule The State Water Resources Control Board passed Resolution No. 2012-0062 on November 6, 2012 which requires development of a Path to Closure Plan by December 31, 2013 that addresses the impediments to closure for the site. The Path to Closure must have milestone dates by calendar quarter which will achieve site cleanup and case closure in a timely and efficient manner that minimizes the cost of corrective action. The Project Schedule should include, but not be limited to, the following key environmental elements and milestones as appropriate:
 - Preferential Pathway Study
 - Soil, Groundwater, and Soil Vapor Investigations

Ms. Sedlachek and Mrs. Blank RO0002974 February 8, 2013, Page 3

- Initial, Updated, and Final/Validated SCMs
- Interim Remedial Actions
- Feasibility Study/Corrective Action Plan
- Pilot Tests
- Remedial Actions
- Soil Vapor and Groundwater Monitoring Well Installation and Monitoring
- Public Participation Program (Fact Sheet Preparation/Distribution/Public Comment Period, Community Meetings, etc.)
- Case Closure Tasks (Request for closure documents, ACEH Case Closure Summary Preparation and Review, Site Management Plan, Institutional Controls, Public Participation, Landowner Notification, Well Decommissioning, Waste Removal, and Reporting.)

Please include time for regulatory and RP in house review, permitting, off-site access agreements, and utility connections, etc.

Please use a critical path methodology/tool to construct a schedule with sufficient detail to support a realistic and achievable Path to Closure Schedule. The schedule is to include at a minimum:

- Defined work breakdown structure including summary tasks required to accomplish the project objectives and required deliverables
- Summary task decomposition into smaller more manageable components that can be scheduled, monitored, and controlled
- Sequencing of activities to identify and document relationships among the project activities using logical relationships
- Identification of critical paths, linkages, predecessor and successor activities, leads and lags, and key milestones
- Identification of entity responsible for executing work
- Estimated activity durations (60-day ACEH review times are based on calendar days)

Please submit an electronic copy of the Path to Closure Schedule by the date listed below. ACEH will review the schedule to ensure that all key elements are included.

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Barbara Jakub), according to the following schedule:

Ms. Sediachek and Mrs. Blank RO0002974 February 8, 2013, Page 4

- April 10, 2013 Work Plan
 (File to be named: WP_R_yyyy-mm-dd)
- April 10, 2013 Path to Closure and Schedule (File to be named PROJ_SCH_yyyy-mm-dd)
- June 16, 2013 Draft Corrective Action Plan (File to be named: CAP _R_yyyy-mm-dd)
- June 20, 2013 Groundwater Monitoring Report (Semi-annual Monitoring Report (1st Quarter 2013) (File to be named: GWM R yyyy-mm-dd)

December 20, 2013 – Groundwater Monitoring Report (Semi-annual Monitoring Report (2nd Quarter 2013) (File to be named: GWM R yyyy-mm-dd)

Thank you for your cooperation. Should you have any questions or concerns regarding this correspondence or your case, please call me at (510) 639-1287 or send me an electronic mail message at barbara.jakub@acgov.org.

Sincerely,

Digitally signed by Barbara J. Jakub DN: cn=Barbara J. Jakub, o, ou,

email=barbara.jakub@acgov.org,

c=US

Date: 2013.02.08 10:34:06 -08'00'

Barbara J. Jakub, P.G.

Hazardous Materials Specialist

Bubara Jakut

Enclosure: Responsible Party(ies) Legal Requirements/Obligations

ACEH Electronic Report Upload (ftp) Instructions

cc: Rebekah Westrup, Environmental Resolutions, Inc., 601 North McDowell Blvd., Petaluma, CA 94954 (Sent via E-mail to: rebekah.westrup@cardno.com)

Mrs. Marcia B. Kelly, 641 SW Morningside Rd., Topeka, KS 66615 (*Sent via E-mail to:* marciabkelly@earthlink.net)

Rev. Deborah Blank, 1563 Solano Ave. #344, Berkeley, CA 94707 (Sent via E-mail to: miracoli@earthlink.net)

Donna Drogos, ACEH (Sent via E-mail to: donna.drogos@acgov.org)
Barbara Jakub, ACEH (Sent via E-mail to: barbara.jakub@acgov.org)

GeoTracker, file

APPENDIX B

FIELD PROTOCOL

Cardno ERI Soil Boring and Well Installation Field Protocol

Preliminary Activities

Prior to the onset of field activities at the site, Cardno ERI obtains the appropriate permit(s) from the governing agency(s). Advance notification is made as required by the agency(s) prior to the start of work. Cardno ERI marks the borehole locations and contacts the local one call utility locating service at least 48 hours prior to the start of work to mark buried utilities. Borehole locations may also be checked for buried utilities by a private geophysical surveyor. Prior to drilling, the borehole location is cleared in accordance with the client's procedures. Fieldwork is conducted under the advisement of a registered professional geologist and in accordance with an updated site-specific safety plan prepared for the project, which is available at the job site during field activities.

Drilling and Soil Sampling Procedures

Cardno ERI contracts a licensed driller to advance the boring and collect soil samples. The specific drilling method (e.g., hollow-stem auger, direct push method, or sonic drilling), sampling method [e.g., core barrel or California-modified split spoon sampler (CMSSS)] and sampling depths are documented on the boring log and may be specified in a work plan. Soil samples are typically collected at the capillary fringe and at 5-foot intervals to the total depth of the boring. To determine the depth of the capillary fringe prior to drilling, the static groundwater level is measured with a water level indicator in the closest monitoring well to the boring location, if available.

The borehole is advanced to just above the desired sampling depth. For CMSSSs, the sampler is placed inside the auger and driven to a depth of 18 inches past the bit of the auger. The sampler is driven into the soil with a standard 140-pound hammer repeatedly dropped from a height of 30 inches onto the sampler. The number of blows required to drive the sampler each 6-inch increment is recorded on the boring log. For core samplers (e.g., direct push), the core is driven 18 inches using the rig apparatus.

Soil samples are preserved in the metal or plastic sleeve used with the CMSSS or core sampler, in glass jars or other manner required by the local regulatory agency. Sleeves are removed from the sample barrel, and the lowermost sample sleeve is immediately sealed with TeflonTM tape, capped, labeled, placed in a cooler chilled to 4° Celsius and transported to a state-certified laboratory. The samples are transferred under chain-of-custody (COC) protocol.

Field Screening Procedures

Cardno ERI places the soil from the middle of the sampling interval into a plastic re-sealable bag. The bag is placed away from direct sunlight for a period of time which allows volatilization of chemical constituents, after which the tip of a photo-ionization detector (PID) or similar device is inserted through the plastic bag to measure organic vapor concentrations in the headspace. The PID measurement is recorded on the boring log. At a minimum, the PID or other device is calibrated on a daily basis in accordance with manufacturer's specifications using a hexane or isobutylene standard. The calibration gas and concentration are recorded on a calibration log. Instruments such as the PID are useful for evaluating relative concentrations of volatilized hydrocarbons, but they do not measure the concentration of petroleum hydrocarbons in the soil matrix with the same precision as laboratory analysis. Cardno ERI trained personnel describe the soil in the bag according to the Unified Soil Classification System and record the description on the boring log, which is included in the final report.

Air Monitoring Procedures

Cardno ERI performs a field evaluation for volatile hydrocarbon concentrations in the breathing zone using a calibrated photo-ionization detector or lower explosive level meter.

Groundwater Sampling

A groundwater sample, if desired, is collected from the boring by using HydropunchTM sampling technology or installing a well in the borehole. In the case of using HydropunchTM technology, after collecting the capillary fringe soil sample, the boring is advanced to the top of the soil/groundwater interface and a sampling probe is pushed to approximately 2 feet below the top of the static water level. The probe is opened by partially withdrawing it and thereby exposing the screen. A new or decontaminated bailer is used to collect a water sample from the probe. The water sample is then emptied into laboratory-supplied containers constructed of the correct material and with the correct volume and preservative to comply with the proposed laboratory test. The container is slowly filled with the retrieved water sample until no headspace remains and then promptly sealed with a Teflon-lined cap, checked for the presence of bubbles, labeled, entered onto a COC record and placed in chilled storage at 4° Celsius. Laboratory-supplied trip blanks accompany the water samples as a quality assurance/quality control procedure. Equipment blanks may be collected as required. The samples are kept in chilled storage and transported under COC protocol to a client-approved, state-certified laboratory for analysis.

Backfilling of Soil Boring

If a well is not installed, the boring is backfilled from total depth to approximately 5 feet below ground surface (bgs) with either neat cement or bentonite grout using a tremie pipe and either the boring is backfilled from 5 feet bgs to approximately 1 foot bgs with hydrated bentonite chips or backfill is continued to just below grade with neat cement grout. The borehole is completed to surface grade with material that best matches existing surface conditions and meets local agency requirements. Site-specific backfilling details are shown on the respective boring log.

Well Construction

A well (if constructed) is completed using materials documented on the boring log or specified in a work plan. The well is constructed with slotted casing across the desired groundwater sampling depth(s) and completed with blank casing to within 6 inches of surface grade. No further construction is conducted on temporary wells. For permanent wells, the annular space of the well is backfilled with Monterey sand from the total depth to approximately 2 feet above the top of the screened casing. A hydrated granular bentonite seal is placed on top of the sand filter pack. Grout may be placed on top of the bentonite seal to the desired depth using a tremie pipe. The well may be completed to surface grade with a 1-foot thick concrete pad. A traffic-rated well vault and locking cap for the well casing may be installed to protect against surface-water infiltration and unauthorized entry. Site-specific well construction details including type of well, well depth, casing diameter, slot size, length of screen interval and sand size are documented on the boring log or specified in the work plan.

Well Development and Sampling

If a permanent groundwater monitoring well is installed, the grout is allowed to cure a minimum of 48 hours before development. Cardno ERI personnel or a contracted driller use a submersible pump or surge block to develop the newly installed well. Prior to development, the pump is decontaminated by allowing it to run and re-circulate while immersed in a non-phosphate solution followed by successive immersions in potable water and de-ionized water baths. The well is developed until sufficient well casing volumes are removed so that turbidity is within allowable limits and pH, conductivity and temperature levels stabilize in the purge water. The volume of groundwater extracted is recorded on a log.

Following development, groundwater within the well is allowed to recharge until at least 80% of the drawdown is recovered. A new or decontaminated bailer is slowly lowered past the air/water interface in the well, and a water sample is collected and checked for the presence of non-aqueous phase liquid, sheen or emulsions. The water sample is then emptied into laboratory-supplied containers as discussed above.

Surveying

If required, wells are surveyed by a licensed land surveyor relative to an established benchmark of known elevation above mean sea level to an accuracy of +/- 0.01 foot. The casing is notched or marked on one side to identify a consistent surveying and measuring point.

Decontamination Procedures

Cardno ERI or the contracted driller decontaminates soil and water sampling equipment between each sampling event with a non-phosphate solution, followed by a minimum of two tap water rinses. Deionized water may be used for the final rinse. Downhole drilling equipment is steam-cleaned prior to drilling the borehole and at completion of the borehole.

Waste Treatment and Soil Disposal

Soil cuttings generated from the drilling or sampling are stored on site in labeled, Department of Transportation-approved, 55-gallon drums or other appropriate storage container. The soil is removed from the site and transported under manifest to a client- and regulatory-approved facility for recycling or disposal. Decontamination fluids and purge water from well development and sampling activities, if conducted, are stored on site in labeled, regulatory-approved storage containers. Fluids are subsequently transported under manifest to a client- and regulatory-approved facility for disposal or treated with a permitted mobile or fixed-base carbon treatment system.