

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone:

www.CRAworld.com

(510) 420-0700 Fax: (510) 420-9170

		÷ .	TRA	NSI	AITT.	AL		
DATE:	Februa	ry 23, 2010		Referi	ENCE NO).:	060204	
				Projec	CT NAM	Е:	2301-230	07 Lincoln Avenue, Alameda
To:	Jerry W	ickham						DEOFIVED
	Alamed	la County Environi	nental Hea	alth		_		RECEIVED
	1131 H	arbor Bay Parkway	Suite 250			_		2:45 pm, Feb 24, 2010
	Alamed	la, California 94502	-6577			_		Alameda County
								Environmental Health
Please find	l enclosed	l: Draft Originals Prints			Final Other			· · ·
Sent via:		☐ Mail ☐ Overnight	Courier		Same Da Other	•		d Alameda County FTP
QUAN	ГІТҮ				DESCI	RIPTI	ON	
1		Groundwater Mon	nitoring Re	eport –				
-								
	equested our Use	[] []	For Re	eview a	nd Comr	nent		
COMMEI If you hav (510) 420-3	e any qu	estions regarding t	he content	s of thi	s docun	nent, j	please cal	l Peter Schaefer at
Copy to:	1	Alan A. and Beverly	M. Seban	c, Trus	tees, 280)5 Ral	ston Ave	avenue, Carson, CA 90810 nue, Hillsborough, CA 94010 2th Floor, Oakland, CA 94612
Complete	d by: _l	Peter Schaefer			Signed	· #	Efu	Schol-
Filing: 0	Correspoi	ndence File						

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 Denis L. Brown Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.1.brown@shell.com

Subject:

2301-2307 Lincoln Avenue

Alameda, California SAP Code 165255 Incident No. 97767044 ACEH No. RO0002971

Dear Mr. Wickham,

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

As always, please feel free to contact me directly at (707) 865-0251 with any questions or concerns.

Sincerely,

Denis L. Brown Project Manager

GROUNDWATER MONITORING REPORT -FOURTH QUARTER 2009

FORMER SHELL SERVICE STATION 2301-2307 LINCOLN AVENUE ALAMEDA, CALIFORNIA

SAP CODE

165255

INCIDENT NO.

97767044

AGENCY NO.

RO0002971

& Associates 5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

FEBRUARY 23, 2010 REF. NO. 060204 (9)

This report is printed on recycled paper.

(510) 420-9170 web: http://www.CRAworld.com

Office: (510) 420-0700

Prepared by:

Conestoga-Rovers

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTRO	DDUCTION	1
	1.1	SITE INFORMATION	1
2.0	SITE A	ACTIVITIES, FINDINGS, AND DISCUSSION	1
	2.1	CURRENT QUARTER'S ACTIVITIES	
	2.2	CURRENT QUARTER'S FINDINGS	2
	2.3	PROPOSED ACTIVITIES	2
	2.4	DISCUSSION	2

LIST OF FIGURES (Following Text)

FIGURE 1

VICINITY MAP

FIGURE 2

GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP

LIST OF APPENDICES

APPENDIX A

BLAINE TECH SERVICES, INC. - GROUNDWATER MONITORING REPORT

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell).

1.1 <u>SITE INFORMATION</u>

Site Address 2301-2307 Lincoln Avenue, Alameda

Site Use Strip mall

Shell Project Manager Denis Brown

CRA Project Manager Peter Schaefer

Lead Agency and Contact ACEH, Jerry Wickham

Agency Case No. RO0002971

Shell SAP Code 165255

Shell Incident No. 97767044

Date of most recent agency correspondence was January 12, 2010.

2.0 SITE ACTIVITIES, FINDINGS, AND DISCUSSION

2.1 CURRENT QUARTER'S ACTIVITIES

Blaine Tech Services, Inc. (Blaine) gauged and sampled the wells according to the established monitoring program for the site.

CRA prepared a vicinity map (Figure 1) and a groundwater contour and chemical concentration map (Figure 2). Blaine's report, presenting the analytical data, is included in Appendix A.

As discussed during CRA's September 4, 2009 telephone conversation with Alameda County Environmental Health (ACEH), CRA submitted a *Revised Subsurface Investigation Work Plan* on November 23, 2009 to replace our August 27, 2009 *Subsurface Investigation Work Plan*.

1

2.2 CURRENT QUARTER'S FINDINGS

Groundwater Flow Direction

Variable

Hydraulic Gradient

Variable

Depth to Water

7.62 to 8.86 feet below top of well casing

2.3 PROPOSED ACTIVITIES

CRA will proceed with the investigation proposed in our November 23, 2009 *Revised Subsurface Investigation Work Plan* with the modifications requested in ACEH's January 12, 2010 letter, which conditionally approves the work plan. CRA will submit a subsurface investigation report by May 21, 2010.

Blaine will gauge and sample wells according to the revised monitoring program for this site outlined below. This site will be monitored semiannually during the second and fourth quarters, and CRA will issue groundwater monitoring reports semiannually following the sampling events.

2.4 <u>DISCUSSION</u>

CRA sampled all monitoring wells quarterly for one hydrologic cycle (1 year, through the fourth quarter of 2009) and, as approved in ACEH's July 24, 2009 letter and per State Water Resources Control Board Resolution 2009-0042 adopted May 19, 2009, we will implement a semiannual monitoring and reporting schedule at the site, with sampling conducted during the second and fourth quarters.

Once the proposed groundwater monitoring well (MW-9) is installed, it will be sampled quarterly for one hydrologic cycle.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Peter Schaefer, CEG, CHG

Aubrey K. Cool, PG

FIGURES

Former Shell Service Station

2301-2307 Lincoln Avenue Alameda, California

Vicinity Map

Basemap modified from data from Virgil Chavez Land Surveying and drawing provided by Geomatrix

Groundwater Contour and Chemical Concentration Map

CONESTOGA-ROVERS & ASSOCIATES

Former Shell Service Station

Scale (ft)

2301-2307 Lincoln Avenue Alameda, California

APPENDIX A

BLAINE TECH SERVICES, INC. –
GROUNDWATER MONITORING REPORT

BLAINE TECH SERVICES INC.

GROUNDWATER SAMPLING SPECIALISTS SINCE 1985

January 11, 2010

Denis Brown Shell Oil Products US 20945 South Wilmington Avenue Carson, CA 90810

> Fourth Quarter 2009 Groundwater Monitoring at Former Shell Service Station 2301-2307 Lincoln Avenue Alameda, CA

Monitoring performed on December 23, 2009

Groundwater Monitoring Report 091223-IW-1

This report covers the routine monitoring of groundwater wells at this former Shell service station. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Martinez Refining Company.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a forty-hour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

SEATTLE

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Manager

MN/np

attachments: Cumulative Table of WELL CONCENTRATIONS

Certified Analytical Report

Field Data Sheets

Anni Kreml cc:

Conestoga-Rovers & Associates

5900 Hollis St., Suite A Emeryville, CA 94608

WELL CONCENTRATIONS 2301-2307 Lincoln Avenue Alameda, CA

						THE PARTY HAVE A STATE OF THE PARTY HAVE A S		Depth to	GW
Well ID	Date	TPPH	В	T	E	X	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MVV-1	3/16/2009	NA	NA	NA	NA	NA	25.77	8.24	17.53
MW-1	3/27/2009	13,000	9.7	<10	<10	<10	25.77	7.09	18.68
MW-1	5/22/2009	3,900	2.6	<2.0	<2.0	<2.0	25.77	7.70	18.07
MW-1	9/23/2009	17,000	8.1	<10	<10	<10	25.77	9.27	16.50
MW-1	12/23/2009	9,700	8.7	<10	<10	<10	25.77	8.07	17.70
MW-2	3/16/2009	NA	NA	NA	NA	NA	26.09	8.54	17.55
MVV-2	3/27/2009	<50	<0.50	<1.0	<1.0	<1.0	26.09	8.16	17.93
MVV-2	5/22/2009	<50	<0.50	<1.0	<1.0	<1.0	26.09	7.88	18.21
MW-2	9/23/2009	<50	<0.50	<1.0	<1.0	<1.0	26.09	9.21	16.88
MW-2	12/23/2009	<50	<0.50	<1.0	<1.0	<1.0	26.09	8.04	18.05
MW-3	3/16/2009	NA	NA	NA	NA	NA	25.56	6.06	19.50
MW-3	3/27/2009	<50	<0.50	<1.0	<1.0	<1.0	25.56	6.37	19.19
MW-3	5/22/2009	<50	<0.50	<1.0	<1.0	<1.0	25.56	7.35	18.21
MW-3	9/23/2009	64	<0.50	<1.0	<1.0	<1.0	25.56	8.79	16.77
MW-3	12/23/2009	<50	<0.50	<1.0	<1.0	<1.0	25.56	7.62	17.94
								·	
MVV-4	3/16/2009	NA	NA	NA	NA	NA	26.60	7.43	19.17
MW-4	3/27/2009	3,900	170	25	190	360	26.60	7.50	19.10
MVV-4	5/22/2009	3,500	280	19	270	220	26.60	8.43	18.17
MW-4	9/23/2009	920	170	3.4	14	16	26.60	9.90	16.70
MW-4	12/23/2009	2,700	200	5.5	190	56	26.60	8.85	17.75

WELL CONCENTRATIONS 2301-2307 Lincoln Avenue Alameda, CA

								Depth to	GW
Well ID	Date	TPPH	В	T	E	X	TOC	Water	Elevation
	:	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-5	3/16/2009	NA	NA	NA	NA	NA	26.63	7.21	19.42
MW-5	3/27/2009	<50	<0.50	<1.0	<1.0	<1.0	26.63	7.74	18.89
MW-5	5/22/2009	<50	<0.50	<1.0	<1.0	<1.0	26.63	8.42	18.21
MW-5	9/23/2009	<50	<0.50	<1.0	<1.0	<1.0	26.63	9.89	16.74
MW-5	12/23/2009	<50	<0.50	<1.0	<1.0	<1.0	26.63	8.81	17.82
MW-6	3/16/2009	NA	NA	NA	NA	NA	26.61	7.31	19.30
MW-6	3/27/2009	<50	<0.50	<1.0	<1.0	<1.0	26.61	7.82	18.79
MW-6	5/22/2009	<50	<0.50	<1.0	<1.0	<1.0	26.61	8.43	18.18
MW-6	9/23/2009	<50	<0.50	<1.0	<1.0	<1.0	26.61	9.87	16.74
MW-6	12/23/2009	<50	<0.50	<1.0	<1.0	<1.0	26.61	8.77	17.84
MW-7	3/16/2009	NA	NA	NA	NA	NA	26.69	7.35	19.34
MVV-7	3/27/2009	54	<0.50	<1.0	<1.0	<1.0	26.69	7.62	19.07
MVV-7	5/22/2009	<50	<0.50	<1.0	<1.0	<1.0	26.69	8.50	18.19
MVV-7	9/23/2009	<50	<0.50	<1.0	<1.0	<1.0	26.69	10.00	16.69
MW-7	12/23/2009	<50	<0.50	<1.0	<1.0	<1.0	26.69	8.86	17.83
MVV-8	3/16/2009	NA	NA	NA	NA	NA	26.05	6.81	19.24
MW-8	3/27/2009	<50	<0.50	<1.0	<1.0	<1.0	26.05	7.04	19.01
MVV-8	5/22/2009	<50	<0.50	<1.0	<1.0	<1.0	26.05	7.76	18.29
MVV-8	9/23/2009	<50	<0.50	<1.0	<1.0	<1.0	26.05	9.27	16.78
MW-8	12/23/2009	<50	<0.50	<1.0	<1.0	<1.0	26.05	7.98	18.07

WELL CONCENTRATIONS 2301-2307 Lincoln Avenue Alameda, CA

								Depth to	GW
Well ID	Date	TPPH	В	Т	E	X	TOC	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B

TOC = Top of Casing Elevation

GW = Groundwater

DO = Dissolved Oxygen

ug/L = Parts per billion

ppm = Parts per million

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

NA = Not applicable

ND = Not detected

January 07, 2010

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Subject:

Calscience Work Order No.:

09-12-2118

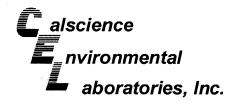
Client Reference:

2301 - 2307 Lincoln Ave., Alameda, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 12/24/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.


If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Philip Samelle for

Xuan H. Dang **Project Manager**

Blaine Tech Services, Inc. 1680 Rogers Avenue

San Jose, CA 95112-1105

Date Received:

12/24/09

Work Order No:

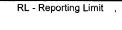
09-12-2118

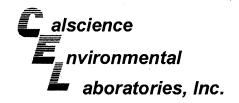
Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B


Units:


ug/L

Project: 2301 - 2307 Lincoln Ave., Alameda, CA

Page 1 of 4

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch II
MW-1	, Sull Fra		09-12-	2118-1-A	12/23/09 11:40	Aqueous	GC/MS W	12/29/09	12/30 07:5		091229L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Benzene	8.7	5.0	10		Xylenes (total)		ND	10	10	
Ethylbenzene	ND.	10	10		TPPH `			9700	500	10	
Toluene	ND	10	10								
Surrogates:	REC (%)	Control Limits	Qu	<u>ai</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
Dibromofluoromethane	96	80-132			1,2-Dichloroe	thane-d4		99	80-141		
Toluene-d8	103	80-120			Toluene-d8-T	PPH		105	88-112		
1,4-Bromofluorobenzene	104	76-120									
MW-2			09-12-	2118-2-A	12/23/09 11:00	Aqueous	GC/MS W	12/29/09	12/30 08:2		091229L02
<u>Parameter</u>	Result	RL .	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1		Xylenes (total)		ND	1.0	1	
Ethylbenzene	ND	1.0	i		TPPH	,		ND	50	i	
Toluene	ND	1.0	1							-	
Surrogates:	REC (%)	Control Limits	<u>Qu</u>	<u>al</u>	Surrogates:			REC (%)	Control Limits	2	<u>Qual</u>
Dibromofluoromethane	96	80-132			1,2-Dichloroe	thane-d4		101	80-141		
Toluene-d8	99	80-120			Toluene-d8-T	PPH -		100	88-112		
1,4-Bromofluorobenzene	99	76-120									
MW-3		all sys	09-12-	2118-3-A	12/23/09 11:20	Aqueous	GC/MS W	12/29/09	12/3(08:		091229L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1		Xylenes (total	l)		ND	1.0	1	
Ethylbenzene	ND	1.0	1		TPPH `	•		ND	50	1	
Toluene	ND	1.0	1								
Surrogates:	REC (%)	Control Limits	<u>Qu</u>	ı <u>al</u>	<u>Surrogates:</u>			REC (%)	Control Limits	9	<u>Qual</u>
Dibromofluoromethane	97	80-132			1,2-Dichloroe	thane-d4		103	80-141		
Toluene-d8	99	80-120			Toluene-d8-T	PPH		100	88-112		
1.4-Bromofluorobenzene	99	76-120									

Blaine Tech Services, Inc. 1680 Rogers Avenue

Date Received:

12/24/09

San Jose, CA 95112-1105

Work Order No:

09-12-2118

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B


Units:

ug/L

Project: 2301 - 2307 Lincoln Ave., Alameda, CA

Page 2 of 4

Client Sample Number			١	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy	zed	QC Batch ID
MW-4			09-12-2	118-4-A	12/23/09 12:35	Aqueous	GC/MS W	12/29/09	12/30 09:1		091229L02
Parameter	Result	RL	<u>DF</u>	Qual	Parameter	٠		Result	<u>RL</u>	DF	Qual
Benzene	200	1.0	2		Xylenes (total))		56	2.0	2	
Ethylbenzene Toluene	190 5.5	2.0 2.0	2 2		TPPH			2700	100	2	
Surrogates:	REC (%)	Control Limits	2 Qua	Ĺ	Surrogates:			<u>REC (%)</u>	Control Limits	<u>C</u>	<u>Qual</u>
Dibromofluoromethane	98	80-132			1,2-Dichloroe	thane-d4		101	80-141		
Toluene-d8	99	80-120			Toluene-d8-T	PPH		99	88-112		
1,4-Bromofluorobenzene	101	76-120									
MW-5			09-12-2	2118-5-A	12/23/09 11:50	Aqueous	GC/MS W	12/30/09	12/30 14:3		091230L01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1		Xylenes (total)		ND	1.0	1	
Ethylbenzene	ND	1.0	. 1		TPPH			ND	50	1	
Toluene	ND	1.0	1					DEO (0/)	0	,	S =1
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>11</u>	Surrogates:			REC (%)	Control Limits	5	<u>Qual</u>
Dibromofluoromethane	94	80-132			1,2-Dichloroe	thane-d4		100	80-141		
Toluene-d8	100	80-120			Toluene-d8-T	PPH		100	88-112		
1,4-Bromofluorobenzene	98	76-120									
MW-6			09-12-2	2118-6-A	12/23/09 12:05	Aqueous	GC/MS W	12/30/09	12/30 16:0		091230L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	0.50	· 1 🙏		Xylenes (total)		ND	1.0	1	
Ethylbenzene	ND	1.0	1		TPPH			ND	50	1	
Toluene Surrogates:	ND REC (%)	1.0 Control Limits	1 Qua	<u>al</u>	Surrogates:			REC (%)	Control Limits	9	Qual
Dibromofluoromethane	96	80-132			1,2-Dichloroe	thane-d4		98	80-141		
Toluene-d8 1,4-Bromofluorobenzene	100 97	80-120 76-120		ŧ	Toluene-d8-T			101	88-112		

Blaine Tech Services, Inc. 1680 Rogers Avenue

San Jose, CA 95112-1105

Date Received:

12/24/09

Work Order No:

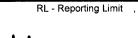
09-12-2118

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B


Units:

ug/L

Project: 2301 - 2307 Lincoln Ave., Alameda, CA

Page 3 of 4

	· · · · · · · · · · · · · · · · · · ·										
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
MW-7			09-12-2	2118-7-A	12/23/09 12:20	Aqueous	GC/MS W	12/30/09	12/30 16:		091230L01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1		Xylenes (total)		ND	1.0	1	
Ethylbenzene	ND	1.0	1		TPPH			ND	50	1	
Toluene	ND	1.0	1								
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>ll</u>	Surrogates:			REC (%)	Control Limits	2	Qual
Dibromofluoromethane	94	80-132			1,2-Dichloroe	thane-d4		102	80-141		
Toluene-d8	100	80-120			Toluene-d8-T	PPH		100	88-112	1	
1,4-Bromofluorobenzene	99	76-120									
MW-8			09-12-2	2118-8-A	12/23/09 12:15	Aqueous	GC/MS W	12/30/09	12/30 16:		091230L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1		Xylenes (total	l)		ND	1.0	1	
Ethylbenzene	ND	1.0	1		TPPH			ND	50	1	
Toluene	ND	1.0	1								
Surrogates:	REC (%)	Control Limits	Qua	<u>al</u>	Surrogates:			<u>REC (%)</u>	Control Limits	2	<u>Qual</u>
Dibromofluoromethane	99	80-132			1,2-Dichloroe	thane-d4		104	80-141		
Toluene-d8	97	80-120			Toluene-d8-T	PPH		98	88-112		
1,4-Bromofluorobenzene	99	76-120									
Method Blank	17. 1893. u		099-12	-767-3,065	5 N/A	Aqueous	GC/MS W	12/29/09	12/3 02:		091229L02
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Xylenes (total	l)		ND	1.0	1	
Ethylbenzene	ND	1.0	1		TPPH			ND	50	1	
Toluene	ND	1.0	1							,	
Surrogates:	REC (%)	<u>Limits</u>	Qua	<u>al</u>	Surrogates:			REC (%)	Limits	. (Qual
Dibromofluoromethane	97	80-132			1,2-Dichloroe	ethane-d4		98	80-141		
Toluene-d8	100	80-120			Toluene-d8-T	ГРРН		100	88-112		
1,4-Bromofluorobenzene	98	76-120									
										•	

Date Received:

12/24/09

1680 Rogers Avenue

Blaine Tech Services, Inc.

Work Order No:

09-12-2118

San Jose, CA 95112-1105 Preparation: **EPA 5030B**

Method:

LUFT GC/MS / EPA 8260B

Units:

ug/L

Project: 2301 - 2307 Lincoln Ave., Alameda, CA

Page 4 of 4

Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank			099-1	2-767-3,067	N/A	Aqueous	GC/MS W	12/30/09	12/30 14:		091230L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Xylenes (total))		ND	1.0	1	
Ethylbenzene	ND	1.0	1		TPPH			ND	50	1	
Toluene	ND	1.0	1								
Surrogates:	REC (%)	Control Limits	Q	<u>ual</u>	Surrogates:			REC (%)	Control Limits	2	<u>Qual</u>
Dibromofluoromethane	95	80-132			1,2-Dichloroe	thane-d4		100	80-141		
Toluene-d8	101	80-120			Toluene-d8-T	PPH		101	88-112		
1,4-Bromofluorobenzene	97	76-120									

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

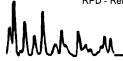
09-12-2118 EPA 5030B LUFT GC/MS / EPA 8260B

12/24/09

Project 2301 - 2307 Lincoln Ave., Alameda, CA

Quality Control Sample ID	Matrix	Instrument.	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-12-2082-1	Aqueous	GC/MS W	12/29/09		12/29/09	091229501
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	94	93	72-120	1	0-20	
Carbon Tetrachloride	83	89	63-135	7	0-20	•
Chlorobenzene	97	98	80-120	1	0-20	
1,2-Dibromoethane	96	103	80-120	6	0-20	
1,2-Dichlorobenzene	94	95	80-120	2	0-20	
1,1-Dichloroethene	94	96	60-132	2	0-24	
Ethylbenzene	98	99	78-120	1	0-20	
Toluene	93	93	74-122	0	0-20	
Trichloroethene	98	96	69-120	2	0-20	
Vinyl Chloride	83	86	58-130	3	0-20	
Methyl-t-Butyl Ether (MTBE)	93	97	72-126	3	0-21	
Tert-Butyl Alcohol (TBA)	90	91	72-126	2	0-20	
Diisopropyl Ether (DIPE)	98	99	71-137	0	0-23	
Ethyl-t-Butyl Ether (ETBE)	96	97	74-128	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	97	99	76-124	3	0-20	
Ethanol	101	90	35-167	12	0-48	

Quality Control - Spike/Spike Duplicate


Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

09-12-2118 EPA 5030B LUFT GC/MS / EPA 8260B

12/24/09

Project 2301 - 2307 Lincoln Ave., Alameda, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
MW-5	Aqueous	GC/MS W	12/30/09		12/30/09	091230\$01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	95	93	72-120	2	0-20	
Carbon Tetrachloride	78	87	63-135	11	0-20	
Chlorobenzene	97	98	80-120	1	0-20	
1,2-Dibromoethane	98	102	80-120	3	0-20	
1,2-Dichlorobenzene	95	94	80-120	0	0-20	
1,1-Dichloroethene	94	96	60-132	2	0-24	
Ethylbenzene	97	99	78-120	2	0-20	
Toluene	96	93	74-122	4	0-20	
Trichloroethene	97	95	69-120	1	0-20	
Vinyl Chloride	86	81	58-130	6	0-20	
Methyl-t-Butyl Ether (MTBE)	96	98	72-126	2	0-21	
Tert-Butyl Alcohol (TBA)	87	97	72-126	11	0-20	
Diisopropyl Ether (DIPE)	97	100	71-137	4	0-23	
Ethyl-t-Butyl Ether (ETBE)	94	98	74-128	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	97	96	76-124	1	0-20	
Ethanol	117	107	35-167	9	0-48	

Quality Control - LCS/LCS Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received:

N/A

Work Order No:

09-12-2118

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 2301 - 2307 Lincoln Ave., Alameda, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 12/30/09		LCS/LCSD Numbe	
099-12-767-3,065	Aqueous	GC/MS W	12/29/09			091229L	02
Parameter	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	96	96	80-122	73-129	0	0-20	
Carbon Tetrachloride	86	91	68-140	56-152	5	0-20	
Chlorobenzene	98	99	80-120	73-127	1	0-20	
1,2-Dibromoethane	100	102	80-121	73-128	2	0-20	
1,2-Dichlorobenzene	94	95	80-120	73-127	0 .	0-20	
1,1-Dichloroethene	98	98	72-132	62-142	1	0-25	
Ethylbenzene	98	99	80-126	72-134	1	0-20	
Toluene	97	98	80-121	73-128	1	0-20	
Trichloroethene	98	99	80-123	73-130	1	0-20	
Vinyl Chloride	93	96	67-133	56-144	4	0-20	
Methyl-t-Butyl Ether (MTBE)	100	99	75-123	67-131	1	0-20	
Tert-Butyl Alcohol (TBA)	93	93	75-123	67-131	0	0-20	
Diisopropyl Ether (DIPE)	99	100	71-131	61-141	0	0-20	
Ethyl-t-Butyl Ether (ETBE)	97	98	76-124	68-132	0	0-20	
Tert-Amyl-Methyl Ether (TAME)	100	101	80-123	73-130	0	0-20	
Ethanol	107	97	61-139	48-152	10	0-27	
TPPH	90	90	65-135	53-147	0	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: LCS ME CL validation result: Pass

Quality Control - LCS/LCS Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received:

Work Order No:

09-12-2118

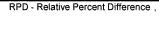
N/A

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B


Project: 2301 - 2307 Lincoln Ave., Alameda, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared -	Da ^r - Analy		LCS/LCSD Ba Number	atch
099-12-767-3,067	Aqueous	GC/MS W	12/30/09	12/30/	09	091230L01	
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	99	98	80-122	73-129	1	0-20	
Carbon Tetrachloride	84	87	68-140	56-152	4	0-20	
Chlorobenzene	100	100	80-120	73-127	1	0-20	
1,2-Dibromoethane	103	105	80-121	73-128	2	0-20	
1,2-Dichlorobenzene	96	95	80-120	73-127	0	0-20	
1,1-Dichloroethene	99	100	72-132	62-142	1	0-25	
Ethylbenzene	101	101	80-126	72-134	0	0-20	
Toluene	98	97	80-121	73-128	1	0-20	
Trichloroethene	102	101	80-123	73-130	1	0-20	
Vinyl Chloride	87	92	67-133	56-144	6	0-20	
Methyl-t-Butyl Ether (MTBE)	100	99	75-123	67-131	1	0-20	
Tert-Butyl Alcohol (TBA)	88	90	75-123	67-131	2	0-20	
Diisopropyl Ether (DIPE)	101	100	71-131	61-141	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	99	99 °	76-124	68-132	0	0-20	
Tert-Amyl-Methyl Ether (TAME)	102	100	80-123	73-130	1	0-20	
Ethanol	108	97	61-139	48-152	11	0-27	
TPPH	95	89	65-135	53-147	7	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed: LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-12-2118

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3 .	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z .	Analyte presence was not confirmed by second column or GC/MS analysis.
-	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

LAB (LOCATION)	Shell Oil Products Chain Of Custody Record																													
CALSCIENCE ()	100000	Ple	ase Che	ck Appr	priate:	Box:		Pri	nt B	ill:To	o Co	ntae	t Na	me:					::IN	CIDI	NT:	# (EN	IV S	ERV	ICES) [CHEC	(IF NO INC	DENT # APPL	IES
□ SPL ()	□ E	NV. SERVICES		MOTIVA RE		SHELL	RETAIL	1 1		chae									9			_	_			4			3/09	
□ XENCO ()		OTIVA SD&CM		CONSULTAN	ıT	LUBES		Pe	ter S	cnae	eier		PO	4::::		4444	-:::::		-	- *	•	SAF		<u> </u>	7	-	DATE			
TEST AMERICA ()					<u> </u>				1	1	1	::::: T		" …		:::: <u>:</u>	<u>::::::</u>					30.		· · · · ·	<u> </u>		PAGE	E:	↓ of _	<u></u>
OTHER ()	□ SI	IELL PIPELINE		OTHER		====::			<u> </u>												<u>L</u>	0.00	AL ID NO							
SAMPLING COMPANY:				LOG COOE						Œ55: \$		•		. AI	l				CA		!	1			4590	`				
Blaine Tech Services ADDRESS:				BTSS				EDF 0	ELMERA	2307 ABLE TO	(Name, C	Company	Office L	ocation)	ame	da	PHONE N	o	CA		-	E-MAIL	7173	9/ 10	+550			CONSULT	NT PROJECT NO	,
1680 Rogers Ave, San Jose, CA 95112								١		4	OD 4	F		ı. 00	- -		(E4N)	420.1	225			chal	lades	nara.	vorld.			0912	29-IN-	1
PROJECT CONTACT (Mandeopy or PDF Report to): Michael Ninokata - Copy to Shell.Lab.Billing@	raworld.	:om						SAM	PLER NA	emi, (Print)	Eme	ryvii	ie Uti	nce		(510)	420-	3333		-	Snei	leare	<u>u</u> ci av	vona.	LABI	USE ONL	Ý		
TELEPHONE: FAX		E-MAIL						1	i Ai	N	1431		ι A	m	<											O	9.	12.	-211	ዎ
(408)573-0555 (408)573-7	771	mninok	ata@blair	etech.co				╄	-		_				<u> </u>												f	1		<i>-</i>
TURNAROUND TIME (CALENDAR DAYS): ✓ STANDARD (14 DAY)	(YS	2 DAYS	☐ 24 H	IOURS	LJ RE	SULTS NEED ON V	ED V e ekend											RE	QUE	STE	AN/	LYS	IS							3*
☐ LA - RWQOB REPORT FORMAT ☐ UST AGENCY:								T	1																	П	T ₁	EMPERAT	URE ON RE	CEIPT
			☐ SHE	LL CONTRAC	T RATE APPL	LIES		٦	£																				C°	
SPECIAL INSTRUCTIONS OR NOTES :			☐ STA	TE REIMBURS	SEMENT RAT	TE APPLIES		(8260B)	(B015M)		6																			
			EDD EDD	NOT NEEDE	D			8			(8260B)									9						1	\vdash			
			☑ REC	EIPT VERIFIC	CATION REQ	QUESTED		able	dati	8	8) 51	â		اءا	â	6	809	_	90B)	015	1				.					
19181411	SA	MPLING			PRESERVA*	TIVE	1	┦ §	fa	260	nate	756	60B	90 200 200	260	260	(82	809 80	(82	8) FG	1				ı		-			
Field Sample Identification	-	T	MATRIX		T		NO. OF	TPH - Pui	TPH - Extractable	BTEX (8260B)	5 Oxygenates	MTBE (8260B	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	ED8 (8260B)	Ethanol (8260B)	Methanol (8015M)					- 1	- [Containe	r PID Readi	ngs
Field Sample Identification USE UNEX	DATE	TIME		HCL HN	03 13504	NONE OTHE		Ē	₹	ᇤ	Ŝ.	Ē	TBA	듬	Ā		1,2		Ě	Met								or Lab	ratory Note	25
/ MW-1	alea	6 1140	W	7	00 112304	NONE OFFI	3	X		X																	$\neg \vdash$			
(2) (2) (3) (4) (4)	(यम्		W			-	3	К	}		}	 			H	\dashv									-+	+				
2 MW-2	11	1100						\mathcal{L}	} _	$\langle V \rangle$		-			\vdash	\dashv			_		-			\vdash		\dashv				
3 MW-3	1	1120		X			3	X		X	L															_				
4 mw-4		1235		X			3	X	1	X											1									
1900000	++	1150					3	∇	*	X											1									
C MW-5	-+				-		 -	K	+	Θ		-	-				\dashv									\dashv	_			
G MW-6	$\dashv \bot$	1205		X			3	X	-	$\langle \cdot \rangle$	-	<u> </u>					_		<u> </u>					\vdash		+	\dashv			
7 Mw-7	-1 L	1220	1	\times			3	X		X	_										<u> </u>						\perp			· ~
8 Mw-8		1215	1	X			3	X		X																				
10/W- b	- 4	107					1	 	-		1	-					ᅥ				-	-				\dashv	\dashv			
								L	L	<u> </u>	_																\dashv			
																									1					
Retinguished by: (Signature)			Received by:	(Signature)			٠	1	1	ښل	ــــــــــــــــــــــــــــــــــــــ	<u>!</u>		لــــا	<u></u> i				لـــــا	<u> </u>	Dale					_	Time:			
7111			0			<u></u>															1	2	23	3/0	9		13	330		
avou			Received by:		20																Date				<u> </u>	-+	Time:			
Relinguished by: (Signature)			ACCOMED BY:	(January of	Sin	alle	,		سبر ۱	-/									^		,	2/2	2 3 <i>/</i>	310 108	,		_	500		
			10	-00		ill	7	<u>_</u>	20												i (_	Time:	000		
Refinquished 15 (Organiure)	734	رام	Received by:	(Signeture)		20			_		^	· 6	-1								1	2/	SU	1				90	CX	

Page 11 of 13

<*WebShip*>>>>

800-322-5555 www.gso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference:

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED Tracking #: 513272161

ORC

GARDEN GROVE

D92843A

7810966

Print Date : 12/23/09 16:31 PM

NPS

Package 1 of 2

Send Label To Printer

Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

ت لك يون

WORK ORDER #: **09-12-** □ □ □ □

SAMPLE RECEIPT FORM Cooler _____ of ____

CLIENT: BT S	DATE: _	12/24/09
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C − 6.0 °C, not froze temperature	Blank day of sample	□ Sample ing. Initial: <u>/</u> /
CUSTODY SEALS INTACT: Cooler		Initial: <u>YC</u> Initial: <u>&</u>
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples COC document(s) received complete	🗹	No N/A
Sampler's name indicated on COC. Sample container label(s) consistent with COC. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Analyses received within holding time. Proper preservation noted on COC or sample container.	. d . d . d	
☐ Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace	🗖	□ □ □ □ Ø
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBr □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGB □250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ Air: □Tedlar® □Summa® Other: □ Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E Preservative: h: HCl. n: HNO3 na: NacSup. Nat NacOH n: H-PO. s: H-SO. Tana: ZoAs + NacOH	o □1AGB s □1PB □□□□	□1AGBna₂ □1AGBs □500PB □500PBna □□ Checked by: Reviewed by:

WELL GAUGING DATA

Project # 091223-1W-1 Date 12/23/09	Client	SHELL
-------------------------------------	--------	-------

Site 2301-2307 LINCOLN AVE, ALAMEDA, CA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Immiscibles Removed	1	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
MW-1	0742	l					8.07	12.90		
MW-2	0800	١					8.04	12.41		
MW-3	0750						7.62	11.53		·
MW-4	0631	4	-				8.85	17.70		
MW-5	0809	4					8.81	17,87		
MW-6	0822	4					8.77	17.80		
MW-7	0844	4					8.86	17.68		·
MW-8	0852	4				-	7.98	17.50	1	
										-
									·	
							. ,			
					·					

VELL MONITORING DATA

BTS #: 09	1223-1	W-1		Site: 2301	-2307 LING	OLN AVE, ALAMEDA						
Sampler: 10				Date: 12 2								
Well I.D.:	WW - 1			Well Diamet	ter: 2 3 4	6 8 111						
Total Well I)): 12.	.90	Depth to Wa	iter (DTW): 8.	07						
Depth to Fro	ee Product	· .		Thickness of	f Free Product (fee	et):						
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): YSI HACH								
DTW with 8	80% Recha	arge [(H	leight of Water	Column x 0.20) + DTW]: 9.04								
Purge Method:	Disposable Bailer Positive Air Displacement Electric Submersible Other NEW TVBING, CHECK VALUE Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47 Other reduction Port October 1.47 Other reduction Port Dedicated Tubing Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47											
1 Case Volume		fied Volum		_ Gals.		1						
Time	Temp (°F)	рН	Cond. (mS or (S)	Turbidity (NTUs)	Gals. Removed	Observations						
1128	58.3	8.28	476	71000	0.2	STRONG ODOR						
1130	59.6	7.62	518	71000	0.4	11						
1132	59.7	7.60	522	71000	0.6	11						
Did well dev	water?	Yes ((No)	Gallons actu	ally evacuated:	0,4						
Sampling D	ate: 12/2	3/09	Sampling Time	e: 1140	Depth to Wate	r: 8.92						
Sample I.D.	: MW -			Laboratory:	CalScience Colu	umbia Other						
Analyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)) Other: SEE	coc						
EB I.D. (if a	npplicable)):	@ Time	Duplicate I.I	D. (if applicable):							
Analyzed fo	or: TPH-G	ВТЕХ	MTBE TPH-D	Oxygenates (5)	Other:							
D.O. (if req'	d): Pr	re-purge:		mg/L	Post-purge:	mg/I						
O.R.P. (if re	eq'd): Pr	re-purge:		mV	Post-purge:	, mV						

VELL MONITORING DATA ÆET

BTS#: 09	1223-1	W-1		Site: 2301	-2307 LING	OLN AVE, ALAMEDA					
Sampler: W				Date: 12 2							
Well I.D.:	NW-2			Well Diamet	er: 2 3 4	6 8					
Total Well I	Depth (TD): 12	.41	Depth to Wa	ter (DTW): 8.	04					
Depth to Fro	ee Product			Thickness of Free Product (feet):							
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): YSI HACH							
DTW with 8	30% Recha	arge [(H	leight of Water	r Column x 0.20) + DTW]: 8.91							
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm	Displaceme	nt Extrac	Waterra Peristaltic tion Pump ITVBING, CH	Other:	Disposable Bailer Extraction Port Dedicated Tubing NEW TUBING CHECK					
Time	Temp (°F)	рН	Cond. (mS or (4S)	Turbidity (NTUs)	Gals. Removed	Observations					
1048	56.5	7.96	1537	479	0.2						
1050	57.6	7.29	1410	512	0.4						
1052	57.8	7.26	1398	456	0.6						
Did well de	water?	Yes	MO)	Gallons actu	ally evacuated:	0.6					
Sampling D	ate: 12/23	3/09	Sampling Time	e: 1100	Depth to Wate	r: 8.88					
Sample I.D.	: MW -	2		Laboratory:	CalScience Colu	ımbia Other					
Analyzed fo	r: трн-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SEE	coc					
EB I.D. (if a	pplicable)):	@ Time	Duplicate I.I	O. (if applicable):						
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:						
D.O. (if req'	d): Pr	re-purge:		mg/L	Post-purge:	mg/ _L					
O.R.P. (if re	q'd): Pr	re-purge:		mV	Post-purge:	mV					

SHELL VELL MONITORING DAT/ IEET

BTS#: 09	1223-1	w-1		Site: 2301-2307 LINCOLN AVE, ALAMEDA								
Sampler: 11				Date: 12 23		•						
Well I.D.:	WW-3			Well Diameter	: 2 3 4	6 8 1"						
Total Well	Depth (TD)): 11.	.53	Depth to Water (DTW): 7.62								
Depth to Fr	ee Product	· · · · · · · · · · · · · · · · · · ·		Thickness of Free Product (feet):								
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH								
DTW with	80% Recha	arge [(F	leight of Water	Column x 0.20) + DTW]: 8	.48						
Purge Method:	Bailer Disposable B. Positive Air I Electric Subm	Displaceme	ent Extrac	Waterra Peristaltic ction Pump 7/BING, CHGCE		Bailer Disposable Bailer Extraction Port Dedicated Tubing NEW TVBING CHECK VALVE						
				Well Diamete		Diameter Multiplier						
$ \frac{O \cdot 2 - (Gals.) \times 8}{1 \text{ Case Volume}} = \frac{O \cdot O}{Specified Volumes} = \frac{O \cdot O}{Calculated Volume} $ $ \frac{1"}{2"} = \frac{0.04}{0.16} = \frac{4"}{6"} = \frac{0.65}{1.47} = \frac{1.47}{3"} = \frac{0.37}{0.37} = \frac{1.47}{0.37} = \frac{1.47}{0.163} =$												
Time	Temp (°F)	рН	Cond. (mS or (S)	Turbidity (NTUs)	Gals. Removed	Observations						
1108	59.6	7.22	812	71000	0.2							
1110	60.8	7.18	796	71000	0.4							
1112	60.5	7.17	794	71000	0.6							
Did well de	water?	Yes C	No	Gallons actuall	ly evacuated:	0.6						
Sampling D	ate: 12/23	3/09	Sampling Time	e: 1120	Depth to Water	-						
Sample I.D.	: MW -	3		Laboratory:	CalScience Colu	ımbia Other						
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SEE	coc						
EB I.D. (if a):	@ Time	Duplicate I.D.	(if applicable):							
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:							
D.O. (if req'	d): Pr	re-purge:		mg/L P	Post-purge:	mg/ _L						
O.R.P. (if re	eq'd): Pr	re-purge:		mV P	Post-purge:	mV						

SHEL VELL MONITORING DATA TEET

											
BTS #: 09	11223-1	W- (Site: 2301 - 2	2307 LINCO	LN AVE, ALAMEDA					
Sampler: N			•	Date: 12 23							
Well I.D.:	MW - 4			Well Diameter:	: 2 3 (4)	6 8					
Total Well	Depth (TD): 17.	70	Depth to Water	(DTW): 8,8	35					
Depth to Fr	ee Product			Thickness of Free Product (feet):							
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH					
DTW with	80% Recha	arge [(H	eight of Water	Column x 0.20)) + DTW]: 10.	62					
E 0	, <u> </u>	Displaceme nersible	other	Well Diamete	Other: Other: Well D	Bailer Disposable Bailer Extraction Port Dedicated Tubing riameter Multiplier 0.65 1.47 radius² * 0.163					
			Cond.	Turbidity							
Time	Temp (°F)	pН	(mS or (S)	(NTUs)	Gals. Removed	Observations					
1032	64.5	7.04	1249	317	5.8	ODOR					
1033	66.7	6.89	1243	153	11.6						
1034	66.7	6.92	1250	145	17.4	" DTW=12.76					
•											
Did well de	water?	Yes ((No	Gallons actuall	y evacuated:	17.4					
Sampling D	Date: 12/2	3/09	Sampling Time	e: 1235	Depth to Water	8.90					
Sample I.D	.: MW -	4		Laboratory:	CalScience Colu	mbia Other					
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: SEE	Coc					
EB I.D. (if	applicable):	@ Time	Duplicate I.D.	(if applicable):						
Analyzed for	or: TPH-G	·BTEX	MTBE TPH-D	Oxygenates (5)	Other:						
D.O. (if req	ı'd): P	re-purge:		mg/ _L F	ost-purge:	mg/ _L					
ORP (if r	ea'd). P	re-nurge'		mV F	ost-purge:	mV					

SHEL VELL MONITORING DATA TEET

BTS #: 09	1223-1	W-1		Site: 2301.	-2307 LING	oln ave, alameda					
Sampler: 10			,	Date: 12/2							
Well I.D.:	WW-5			Well Diamet	Well Diameter: 2 3 (4) 6 8						
Total Well	Depth (TD): 17.	87	Depth to Wa	Depth to Water (DTW): 8.81						
Depth to Fr	ee Product			Thickness of Free Product (feet):							
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH							
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.2	0) + DTW]: 0	.63					
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	Displaceme	ent Extrac Other	Waterra Peristaltic ction Pump Well Dian	Sampling Method: Other: Multiplier Well 1 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing					
$\frac{5.9 \text{ (Gals.) X}}{1 \text{ Case Volume}} = \frac{17.7 \text{ Gals.}}{\text{Specified Volumes}} = \frac{17.7 \text{ Gals.}}{\text{Calculated Volume}} = \frac{2"}{3"} = \frac{0.16}{0.37} = \frac{6"}{\text{Other}} = \frac{1.47}{\text{radius}^2 * 0.163}$											
Time	Temp (°F)	рН	Cond. (mS or (S)	Turbidity (NTUs)	Gals. Removed	Observations					
0910	65.7	7.76	764	54	5.9	1.					
0911	68.0	7.81	178	113	11.8						
0912	68.2	7.83	774	273	17.7	DTW= 12.86					
Did well de	water?	Yes	Ø)	Gallons actua	ally evacuated:	17.7					
Sampling D	ate: 12/2	3/09	Sampling Time	e: 1150	Depth to Wate	r: 8.85					
Sample I.D.	: MW -	5		Laboratory:	CalScience Colu	ımbia Other					
Analyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other: SEE	coc					
EB I.D. (if a	applicable)):	@ Time	Duplicate I.L). (if applicable):	· · · · · · · · · · · · · · · · · · ·					
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:						
D.O. (if req	d): Pi	re-purge:		mg/L	Post-purge:	mg/ _L					
O.R.P. (if re	eq'd): Pi	re-purge:		mV	Post-purge:	mV					

SHEL VELL MONITORING DAT/ IEET

BTS#: 09	1223-1	W-1		Site: Z	-301-2	2307 LING	OLN AVE, ALAMEDA					
Sampler: W				1	12 23							
Well I.D.:	NW - 6			Well D	iameter:	: 2 3	6 8					
Total Well I	•	·): 17	.80	Depth t	to Water	r (DTW): 8.7	17					
Depth to Fre	ee Product		The state of the s			ree Product (fee						
Referenced		(PVC)	Grade	D.O. Meter (if req'd): YSI HACH								
DTW with 8	80% Recha	arge [(H	leight of Water	r Column x 0.20) + DTW]: 10.58								
Purge Method:	Disposable Bailer Positive Air Displacement Extraction Pump Electric Submersible Other Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65											
Time	Temp (°F)	рН	Cond. (mS or (S)	1	oidity ΓUs)	Gals. Removed	Observations					
0929	62.9	7.75	795	31		5.9						
0930	67.9	7.44	772	127	1	11.8						
0931	68.1	7.49	779	65	>	17.7	DTW= 15.02					
				·								
Did well de	water?	Yes	No	Gallons	s actuall	y evacuated:	17.7					
Sampling D	ate: 12/2:	3/09	Sampling Time	e: 1205	,	Depth to Wate	er: 8.82					
Sample I.D.				Labora	tory:	CalScience Col	umbia Other					
Analyzed fo	or: TPH-G	ВТЕХ	MTBE TPH-D	Oxygena		Other: SEE	COC					
EB I.D. (if a	applicable)):	@ Time	Duplica	ate I.D.	(if applicable):	. 1					
Analyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygena	ates (5)	Other:						
D.O. (if req'	d): P1	re-purge:		mg/L	P	ost-purge:	mg/1					
O.R.P. (if re	eq'd): Pi	re-purge:		mV	P	ost-purge:	mV					

SHEL VELL MONITORING DAT/ IEET

BTS #: 09	11223-1	W-1		Site: 2301-2307 LINCOLN AVE, ALAMEDA					
Sampler: \W				Date: 12/23/09					
Well I.D.: MW - 7				Well Diameter: 2 3 (4) 6 8					
Total Well): 17	.68	Depth to Water (DTW): 8.86					
Depth to Fr	ee Product	- •		Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH					
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)	+ DTW]: 10	.63			
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65									
5.8 ((3 fied Volum	$\frac{17.4}{\text{Colculated Vo}}$	— II 3"	0.16 6" 0.37 Other	1.47 radius² * 0.163			
Time	Temp (°F)	рН	Cond. (mS or (S)	Turbidity (NTUs)	Gals. Removed	Observations			
1006	65.1	6.99	781	88	5.8				
1007	66.6	7.02	797	162	11.6				
1008	66.9	7.06	792	190	17.4	DTW = 15.52			
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
Did well dewater? Yes Gallons actually evacuated: 17.4									
Sampling Daté: 12/23/09 Sampling Time: 1270 Depth to Water: 8.87									
Sample I.D.: MW - 7 Laboratory: CalScience Columbia Other									
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: SEE COC									
EB I.D. (if applicable): © Time Duplicate I.D. (if applicable):									
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
D.O. (if req'd): Pre-purge: mg/L Post-purge:									
O.R.P. (if re	eq'd): Pr	e-purge:		mV P	ost-purge:	mV			

SHEL VELL MONITORING DATA TEET

BTS #: 091223 - IW-1					Site: 2301-2307 LINCOLN AVE, ALAMEDA					
Sampler: \W				Date: 12/23/09						
Well I.D.: MW - 8				Well Diameter: 2 3 (4) 6 8						
Total Well Depth (TD): 17.50				Depth to Water (DTW): 7.98						
Depth to Fre	•		Thickness of Free Product (feet):							
Referenced	PVC	Grade	D.O. Meter (if req'd): YSI HACH							
DTW with 8	30% Recha	arge [(H	eight of Water	Column	x 0.20)	+DTW]: 9.	88			
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Electric Submersible Other Other:										
Time	Temp (°F)	pН	Cond. (mS or (S)	Turb (NT	idity Us)	Gals. Removed	Observations			
0949	60.6	7.46	462	13	2	6.2				
0950	63.7	7.38	382	46:	Z	12.4				
0951	63.9	7.34	388	77	0	18.6	DTW=14.71			
	·									
					MARKET MARKET NEW TO THE TAXABLE PARTY.					
Did well de	Did well dewater? Yes (No) Gallons actually evacuated: 18.6									
Sampling Date: 12/23/09 Sampling Time: 1215 Depth to Water: 8.10										
Sample I.D.: MW - 8 Laboratory: CalScience Columbia Other										
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: SEE COC										
EB I.D. (if a):	@ Time	Duplicate I.D. (if applicable):							
Analyzed fo	·····	ВТЕХ	MTBE TPH-D	Oxygena	ites (5)	Other:				
D.O. (if req	'd): P	re-purge:	v	mg/ _L	F	ost-purge:	mg/L			
O.R.P. (if req'd): Pre-purge: mV Post-purge:						mV				