RECEIVED

By dehloptoxic at 8:37 am, Jan 08, 2007

Summary Report of Additional Phase II ESA Investigation at the Former Asphalt Plant Area Hanson Radum Facility 3000 Busch Road, Pleasanton, Alameda County, California

> December 5, 2006 001-09567-00

Prepared for Hanson Aggregates Northern California 3000 Busch Road Pleasanton, California 94566

> Prepared by LFR Inc. 1900 Powell Street, 12th Floor Emeryville, California 94608

CONTENTS

CER	TIFICATIONSiii
EXE	CCUTIVE SUMMARYv
1.0	INTRODUCTION
	1.1 Site Description and Background1
	1.2 Previous Investigations and Known Impacts to the Subsurface
	1.2.1 Soil Quality
	1.2.2 Groundwater Quality
	1.3 Limitations
2.0	ADDITIONAL INVESTIGATION METHODOLOGY4
	2.1 Pre-Field Activities
	2.2 Collection of Soil and Groundwater Samples5
	2.2.1 Sample Locations6
	2.2.2 Soil Sampling and Lithologic Logging8
	2.2.3 Grab Groundwater Sampling9
	2.2.4 Equipment Decontamination and Borehole Abandonment9
	2.2.5 Laboratory Analyses9
	2.2.6 Data Validation Summary
	2.2.7 Field Documentation
3.0	LABORATORY ANALYTICAL RESULTS
	3.1 Petroleum Hydrocarbons in Soil
	3.1.1 Area I
	3.1.2 Area II
	3.1.3 Area III
	3.1.4 Area IV
	3.2 Metals in Soil
	3.3 PAHs and VOCs in Soil
	3.4 Petroleum Hydrocarbons in Groundwater

4.0	REGULATORY APPROACH
5.0	CONCLUSIONS
6.0	REFERENCES
TAB	LES
1a	Area I - Analytical Results for Petroleum Hydrocarbons in Soil Samples
1b	Area II - Analytical Results for Petroleum Hydrocarbons in Soil Samples
1c	Area III - Analytical Results for Petroleum Hydrocarbons in Soil Samples
1d	Area IV - Analytical Results for Petroleum Hydrocarbons in Soil Samples
1e	Area V - Analytical Results for Petroleum Hydrocarbons in Soil Samples
2a	Analytical Results for Organic Compounds in Soil Samples, Polycyclic Aromatic Hydrocarbons
2b	Analytical Results for Organic Compounds in Soil Samples, Volatile Organic Compounds
3	Analytical Results for Metals in Soil Samples
4	Analytical Results for Groundwater Samples
FIGU	URES
1	Site Vicinity Map
2	Approximate Soil and Groundwater Sample Locations by LFR and ENV, September through November 2006
APPI	ENDICES
A	Selected Figures from the Alameda County Zone 7 Water Agency Livermore Annual Report (Jones and Stokes 2006)
В	Approved Drilling Permit
C	Selected Tables and Figure from the Draft Phase II Environmental Site Assessment Report by ENV (ENV 2006)
D	Lithologic Soil Boring Logs

E

Laboratory Certified Analytical Reports

CERTIFICATIONS

LFR Inc. has prepared this Summary Report of Additional Phase II Environmental Site Assessment Investigation on behalf of Hanson Aggregates Northern California in a manner consistent with the level of care and skill ordinarily exercised by professional geologists and environmental scientists. This investigation was prepared under the technical direction of the undersigned California Professional Geologists.

Ron Goloubow Senior Geologist December 5, 2006

Date

Katrin M. Schliewen, P.G.

Senior Hydrogeologist

California Professional Geologist #7808

December 5, 2006

Date

December 5, 2006

J. Scott Seyfried, P.G.

Date

Principal Hydrogeologist

California Professional Geologist #7374, Certified Hydrogeologist #764

EXECUTIVE SUMMARY

This summary report presents the findings of an additional Phase II Environmental Site Assessment (ESA) investigation conducted by LFR Inc. (LFR) at the Hanson Radum facility former hot mix asphalt plant area located at 3000 Bush Road, Pleasanton, California ("the Site"). LFR conducted this investigation for Hanson Aggregates Northern California ("Hanson") to further characterize the extent of petroleum-affected soil and groundwater beneath the Site.

LFR used the results of previous investigations conducted by ENV America Inc. (ENV), a consulting firm contracted by a potential purchasing agent (Legacy Partners), to design an additional investigation. LFR advanced 24 soil borings to depths approximately ranging from 10 to 65 feet below ground surface to collect soil and groundwater samples for laboratory analyses. LFR confirmed that the primary chemicals of potential concern (COPCs) in soil are total petroleum hydrocarbons as diesel (TPHd) and as motor oil (TPHmo), and that groundwater has been affected by TPHd and TPHmo.

1.0 INTRODUCTION

LFR Inc. (LFR) is pleased to present this summary report to Hanson Aggregates Northern California ("Hanson") for the additional Phase II Environmental Site Assessment (ESA) investigation that was conducted at the former hot mix asphalt plant and associated spray rack area at Hanson's Radum Facility located at 3000 Busch Road, Pleasanton, California ("the Site"; Figure 1). Results of Phase II investigations completed by other consultants have indicated that soil and shallow groundwater beneath the Site have been affected by petroleum hydrocarbons.

Our objective for the additional investigation presented in this report was to further characterize the extent and magnitude of affected soil and groundwater beneath the Site. This objective was met through the advancement of 24 soil borings at the Site and chemical analysis of 45 soil and 3 groundwater samples from those borings. Our report presents the methods and results of our Phase II investigation.

1.1 Site Description and Background

The Site is a former asphalt plant located in the southwestern corner of the approximately 1,050-acre property located approximately 1.5 miles northeast of downtown Pleasanton and north of Stanley Boulevard (Figure 1). The Site lies within an approximately 6-square-mile area of aggregate mining in the central portion of the Livermore Valley (see figures included in Appendix A). Land use in this area includes active and inactive aggregate mining and associated aggregate handling activities, and includes numerous former pits.

The Site lies within the Amador Sub-basin of the Livermore-Amador Valley Groundwater Basin. In general, subsurface lithology in the area consists of alluvial materials, including 20 to 40 feet of surficial clays underlain by sandy gravel and sandy clayey gravels to depths of approximately 80 to 150 feet below the ground surface (bgs). Unconfined (shallow) groundwater is encountered in this lithologic zone (referred to as the "Upper Aquifer Zone") at depths of approximately 75 feet bgs. The upper permeable gravels are underlain by a relatively continuous, silty clay aquiclude up to 50 feet thick, which is underlain by the Lower Aquifer Zone (Jones and Stokes 2006).

Mining of sand and gravel in the Livermore-Amador Valley began prior to 1900 (Jones and Stokes 2006). Mining operations for aggregate resources at the Site were begun in 1938 by Kaiser Sand and Gravel. As portions of the property were mined out, the former pits reportedly either were backfilled with debris and mine waste, or were used for storage and/or as disposal ponds for water (from dewatering of new pits) and fine-grained sediments (silt and sand) washed out of the aggregate material.

Hanson purchased the property in 1991 and continued mining operations until 2001. Mining was discontinued at that time due to lack of available aggregate materials. The

Site consists of an area approximately 500 feet by 600 feet containing remnants of the former asphalt plant operations, including portions of a former truck scale and an asphalt tank containment structure, and a concrete pad.

1.2 Previous Investigations and Known Impacts to the Subsurface

A potential purchasing agent (Legacy Partners) contracted ENV America, Inc. (ENV) to conduct a Phase I ESA during September 2006. ENV conducted a Phase II ESA during September and October 2006 to assess areas of affected soil and groundwater at the Site. The Phase II investigation by ENV included collecting soil, grab groundwater, and surface-water samples from several locations at the Site. Soil and water samples were collected from soil borings, test pits, hand-dug shallow pits, and surface-water bodies.

The Phase II ESA completed by ENV concluded that the sediments and groundwater beneath the Site had been affected by elevated concentrations of total petroleum hydrocarbons as diesel (TPHd) and TPH as motor oil (TPHmo), metals, and to a lesser extent with TPH as gasoline (TPHg) and polycyclic aromatic hydrocarbons (PAHs), as a result of past site activities.

1.2.1 Soil Quality

Analytical results of soil samples collected by ENV identified several areas of affected soil, primarily in the western and northern portions of the Site. ENV sample locations are shown on Figure 2 and copies of ENV summary tables presented in the draft Phase II report are included in Appendix C.

TPHd and TPHmo concentrations above laboratory reporting limits were detected in soil samples collected at the Site from depths ranging approximately between 0.5 and 40 feet bgs. TPHd was detected at a maximum concentration of 7,800 mg/kg and TPHmo was detected at a maximum concentration of 16,000 mg/kg. TPHg was detected in a limited number of soil samples and in one sample at an elevated concentration of 530 mg/kg. With few exceptions, volatile organic compounds (VOCs) were not detected and PAHs were detected only in samples where the TPHd and TPHmo concentrations were detected at elevated concentrations. Elevated metals concentrations were detected in a limited number of soil samples collected from the northern portion of the Site, and included arsenic, barium, cobalt, chromium, nickel, lead, and vanadium.

ENV advanced six soil borings to visually characterize the extent of "heavy, black, viscous free phase petroleum product" identified in soil between approximately 30 and 40 feet bgs in the northern portion of the Site. Based on field observations, ENV estimated the extent of the petroleum product to be limited to within the area delineated by the dashed line shown on Figure 3 of the ENV report, a copy of which is included in Appendix C.

1.2.2 Groundwater Quality

Grab groundwater samples were collected from soil borings EB-15, EB-16, EB-22, and EB-29 (Figure 2) at depths ranging from approximately 52 feet bgs at soil boring EB-29 to approximately 60 feet bgs at soil boring EB-22. The groundwater flow direction beneath the Site was not assessed.

Petroleum hydrocarbons were not detected in groundwater, except for relatively low concentrations of TPHmo (850 micrograms per liter [μ g/l]) and TPHd (150 μ g/l) in the grab groundwater sample collected from soil boring EB-29, located east of the truck scale and asphalt containment area.

1.3 Limitations

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by LFR and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that LFR relied upon any information prepared by other parties not under contract to LFR, LFR makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when LFR's investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the Site may vary from those at the locations where data were collected. LFR's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100 percent confidence in environmental investigation conclusions cannot reasonably be achieved.

LFR, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

2.0 ADDITIONAL INVESTIGATION METHODOLOGY

The investigation activities included drilling 22 soil borings to depths ranging approximately from 10 to 35 feet bgs to collect depth-discrete soil samples for field screening, logging, and laboratory analyses, and three soil borings to depths ranging approximately from 50 to 60 feet bgs to collect grab groundwater samples for laboratory analyses.

To facilitate comparison with historical data, LFR divided the Site into five general areas (Areas I through V) as shown on Figure 2. The roughly oval eastern extension area identified by ENV as a TPH-affected zone at approximately 30 to 40 feet bgs was not specifically targeted by LFR, because the lateral extent of this area appeared adequately defined by ENV through a network of soil borings and visual observations of the soil samples in the field.

This section describes the pre-field and drilling activities conducted by LFR during this investigation, and presents the rationale for the selected sample locations and laboratory analyses.

2.1 Pre-Field Activities

Permitting

LFR acquired the necessary drilling permit from the Alameda County Zone 7 Water Agency ("Zone 7") to advance temporary soil borings at the Site for environmental soil and grab groundwater sampling. A copy of the approved drilling permit is included in Appendix B. It should be noted that one condition of the permit is that "all soil and water laboratory analysis results" be submitted to Zone 7 within 60 days after the completion of permitted work.

Subsurface Utility Clearance

Prior to beginning drilling work, LFR subcontracted Cruz Brothers Locators of Scotts Valley, California, to perform subsurface utility locating at the Site to identify possible subsurface obstructions and utilities. All proposed soil boring locations were properly cleared in the presence of the field geologist overseeing the drilling activities.

Health and Safety Plan

A site-specific Health and Safety Plan (HSP) was prepared to document potential hazards to worker health and safety at the Site during the field activities and to specify the appropriate means to mitigate or control hazards. The HSP addressed the potential for exposure to hazardous constituents and described general safety procedures. A health and safety meeting was conducted before fieldwork began, and applicable

activities were completed according to the HSP. A copy of the HSP was made available to personnel involved in investigation activities.

Zone 7 Groundwater Elevation Data

To help locate appropriate grab groundwater sample locations, LFR requested from Zone 7 groundwater elevation data for any wells located within approximately 1 mile of the Site. Zone 7 provided the depth-to-groundwater and reference point elevation data for three monitoring wells recently monitored by Zone 7. From these data, LFR calculated groundwater elevations for these three wells. From the approximate center of the Site, the three wells are located approximately 3,750 feet northwest (3S/1E16C4), 1,500 feet west (3S1E15M3), and 550 feet northeast (3S1E15F3). The following table provides a summary of September and October 2006 groundwater data obtained from Zone 7.

Well	3S/1E16C4	3S1E15M3	3S1E15F3
Distance and direction from the Site	3,750 feet northwest	1,500 feet west	550 feet northeast
Depth to water below top of casing (feet)	45.1	72.57	75.91
Reference Point Elevation (feet, msl)	341.4	360	360
Groundwater Elevation (feet, msl)	296.3	287.5	284.09

Note: msl = above mean sea level

Groundwater levels measured during September and October 2006 in these three wells indicate a general easterly groundwater flow direction in the vicinity of the Site. However, because no lithologic or well construction information was immediately available for these wells, it could not be determined whether the apparent easterly groundwater flow direction also exists for the first encountered groundwater beneath the Site.

2.2 Collection of Soil and Groundwater Samples

LFR subcontracted HEW Drilling Company Inc. ("HEW"), a California state-licensed drilling contractor located in Palo Alto, California, and V&W Drilling, Inc. ("V&W"), a California state-licensed drilling contractor located in Isleton, California, to drill the soil borings during November 13 through 16, 2006. HEW advanced 20 of the 24 soil borings using a 6-inch-diameter hollow-stem auger drill rig. V&W used direct push drilling methods to advance 4 of the 25 soil borings on November 14, 2006.

Soil boring target depths and locations were determined based on results of previous investigations and modified in the field based on field screening and visual observations. The three deepest soil borings were advanced to depths approximately 5 feet below first encountered groundwater as determined during drilling.

2.2.1 Sample Locations

The Site was divided into five areas, which are described below.

Area I

Area I is located in the southeastern portion of the Site, approximately south of the former scale and asphalt tank containment structures. Soil samples collected by ENV resulted in elevated concentrations of TPHd, TPHmo, TPHg, and PAH in soil samples collected from approximately 10 feet bgs from soil boring EB-13 and/or test pit AP-4 (Appendix C and Table 1a). However, soil samples collected from other depths from these borings, and from other borings within this area, did not contain elevated hydrocarbons (e.g., EB-12, TRANS-C, and at depths of 0.5, 15, and 20 feet bgs from EB-13).

LFR advanced four soil borings located approximately south (B-1), east (B-2), west (B-3), and north (B-4) of previous locations EB-13 and AP-4, to depths of approximately 18 to 20 feet bgs. Soil samples were collected from approximately every 5 feet; from these four soil borings, at least one soil sample from approximately 5, 7, 10, 15, or 18 feet bgs was selected for laboratory analyses.

Area II

Area II is located approximately southeast of the former scale and asphalt tank containment structures. Soil samples collected by ENV resulted in elevated TPHd and TPHmo concentrations detected in soil samples collected from approximately 8, 15, and 18 feet bgs from test pit CS-2 (Appendix C and Table 1b). However, analytical results for soil samples collected at approximately 20 feet bgs from soil boring EB-11, located adjacent to CS-2, and at approximately 2, 5, and 16.5 feet bgs from soil boring EB-16, located approximately 40 feet north of CS-2, did not contain significant or detectable TPHd or TPHmo concentrations.

LFR advanced three soil borings approximately south (B-5), west (B-6), and east (B-7) of test pit CS-2 and soil boring EB-11, to depths of approximately 15 feet bgs. Soil samples were collected from approximately every 5 feet bgs; of these three soil borings, all but one of the 15-foot-bgs samples were selected for laboratory analyses.

Area III

Area III encompasses approximately the areas of the former truck scale and asphalt tank containment areas in the center of the Site. Soil samples collected by ENV resulted in elevated TPHd, TPHmo, and metals concentrations detected in a soil sample collected from approximately 8 feet bgs from test pit PO-1 (Appendix C and Table 1c). Analytical results for soil samples collected at approximately 5, 10, and 25 feet bgs from soil boring EB-10, located adjacent to test pit PO-1, and soil samples collected at approximately 2, 8, 12, and 15 feet bgs from test pits PO-1, PO-2, and/or AP-3 did not contain significant or detectable TPHd and TPHmo concentrations.

LFR advanced three soil borings approximately south (B-8) and north (B-10) of previous location PO-1, and in the northeastern corner of Area III (B-9), to depths of approximately 15 to 18 feet bgs. Soil samples were collected from approximately every 5 feet bgs; all but one of the 15-foot-bgs samples collected were selected for laboratory analyses.

Area IV

Area IV is a relatively large area located north and east of the former truck scale and asphalt tank containment. Soil samples collected by ENV resulted in elevated concentrations of TPHd, TPHmo, and PAHs detected in soil samples collected from approximately 5 and 7 feet bgs from soil boring EB-30 and test pit SR-3, respectively (Appendix C and Table 1d). The soil sample collected approximately 5 feet bgs from test pit SR-2 provides the lateral extent of TPH-affected soil to the north of test pit SR-3. Soil samples collected from approximately 2 feet bgs and various depths between 10 and 40 feet bgs from soil borings EB-30 and EB-33 and from test pits RR-3, SR-2, SR-3, and SR-4 indicate that TPHd and TPHmo are laterally limited in extent.

LFR advanced four soil borings (B-11 through B-14) to depths ranging approximately from 10 to 22.5 feet bgs. Soil samples were collected from approximately every 5 feet; soil samples collected from approximately 5, 7, 10, and 15 feet bgs were submitted for laboratory analyses. Soil boring B-16 was advanced within the eastern extension area to confirm the presence of TPH product between 30 and 40 feet bgs. Preliminary analytical results from the one shallow soil sample collected from soil boring B-16 (at 3 feet bgs) indicated an elevated TPHd concentration. Based on these preliminary results, LFR advanced three additional soil borings (B-15, B-20, and B-24) to depths ranging from approximately 10 to 20 feet bgs in the vicinity of soil boring B-16. Soil samples collected from approximately 4, 7, and 10 feet bgs were selected for laboratory analyses.

Area V

Area V is the northernmost area defined by LFR. This area was defined around soil boring EB-20, in which elevated concentrations of various metals were detected in the

soil samples collected from 6 feet bgs (Appendix C and Table 3). TPH was not detected in any samples collected by ENV in this area (Table 1e).

LFR advanced three soil borings in Area V (B-17 through B-19) and collected soil samples from approximately 6 and 10 feet bgs. All samples were selected for laboratory analyses.

Groundwater

LFR advanced three soil borings (B-21, B-22, and B-23) to collect grab groundwater samples. As described above, water-level data provided by Zone 7 indicated that the groundwater flow direction may be toward the east. LFR located the three deep soil borings based on the assumed groundwater flow direction and on the locations and analytical results of the four grab groundwater samples collected by ENV. Soil boring B-21 was located near the northwestern corner of the Site, approximately upgradient from the eastern extension. Soil boring B-22 was located near the northeastern corner of the Site and approximately downgradient from the eastern extension. Soil boring B-23 was located approximately downgradient from ENV grab groundwater sample location EB-29, the only groundwater sample in which in elevated TPH concentrations were detected (Table 4).

2.2.2 Soil Sampling and Lithologic Logging

Soil samples were collected during drilling at approximately 5-foot intervals for lithologic evaluation, field screening, and laboratory analyses. Soil samples from boreholes advanced using the direct-push drilling method were collected using the continuous-core sampling method. Soil cores were collected inside plastic sample tubes as drilling progressed. Soil samples collected using the hollow-stem auger drilling method were collected using either continuous-core or brass-tube-lined split-spoon sampling methods.

Soils encountered during drilling were logged by an LFR field geologist under the supervision of a State of California Professional Geologist. The soil lithologic changes were classified using the Unified Soil Classification System. Lithologic information is included on soil boring logs provided in Appendix D. Soils encountered during drilling generally consisted of predominantly coarser-grained sediments such as sands and gravels with intervals of finer-grained clays and silts. However, particularly in the southern portion of the Site, soils encountered during drilling included large intervals of finer-grained sediments such as clays and silts. In several boring locations advanced in the northern portion of Site, relatively well-graded, pea-gravel-sized materials were encountered that appeared to be engineered fill. This was particularly evident in soil boring B-20, where pea gravel was encountered to the bottom of the boring at 15 feet bgs, and in soil boring B-22, where pea gravel was encountered approximately from 12 to 45 feet bgs.

Soil cores and samples were reviewed for visible or olfactory indications of the presence of petroleum hydrocarbons, and also were field screened using a portable photoionization detector to assess the presence of hydrocarbons or other VOCs, and results were recorded on the soil boring logs.

Soil samples submitted to the laboratory for analyses were labeled with the boring identification number and depth interval, the time and date of collection, the analysis requested, and the initials of the sampler. All samples were stored in ice-chilled coolers and submitted to the laboratory under strict chain-of-custody protocol.

2.2.3 Grab Groundwater Sampling

LFR collected grab groundwater samples from three soil borings (B-21, B-22, and B-23) that were advanced to depths ranging from 50 to 60 feet bgs. Each soil boring was advanced approximately 5 feet into the first observed saturated sediments. Temporary, 2-inch-diameter, polyvinyl chloride well casings and 5- or 10-foot-long wells screens were placed inside the hollow-stem auger and the hollow-stem auger then was lifted several feet to allow groundwater to enter the temporary casing. The depth to groundwater was measured in feet bgs at each boring after the temporary well casing had been in place at least several hours. The grab groundwater samples were collected using disposable bailers, poured into laboratory-supplied sample containers, and labeled with the boring identification number, the time and date of collection, the analyses requested, and the initials of the sampler. The samples were stored in an ice-chilled cooler and maintained under strict chain-of-custody protocol until they were submitted to the analytical laboratory.

2.2.4 Equipment Decontamination and Borehole Abandonment

All drilling equipment was properly decontaminated prior to use and between soil boring locations. The downhole drilling equipment, such as augers, drill rods, drill bits, and soil sampling equipment, were steam cleaned within a portable containment unit.

After soil and groundwater samples were collected, each borehole was sealed with a mixture of cement and bentonite ("grout") from the total depth to the ground surface. The grout was either poured into the borehole from ground surface, or through a tremie pipe, depending on the total depth of the soil boring and on whether groundwater was present.

2.2.5 Laboratory Analyses

Laboratory analyses of all soil and grab groundwater samples were conducted by SunStar Analytical, a state-certified laboratory located in Tustin, California. Soil samples selected for laboratory analyses were submitted for analyses under a "rush" 24- to 48-hour-turnaround schedule. Samples not initially selected for analyses were

submitted to the laboratory but were placed on hold. Depending on preliminary analytical results, LFR identified individual samples to be taken off hold for analyses.

Depending on the sample locations and field conditions, soil and grab groundwater samples were submitted for some or all of the following analyses:

- TPHd and TPHmo, using Environmental Protection Agency (EPA) test method 8015 modified. Soil samples underwent a silica gel cleanup prior to analysis to remove naturally occurring fats or oils that can result in false positive results for TPH components
- PAHs using EPA test method 8270. Unless specifically requested because of field observations, LFR requested that soil samples be analyzed for PAHs if preliminary analytical results resulted in TPHd or TPHmo concentrations above 100 mg/kg
- VOCs using EPA test method 8260
- Selected metals (arsenic, barium, cobalt, chromium, copper, nickel, and vanadium) using EPA test method 6010

All laboratory-certified analytical results are included in Appendix E.

2.2.6 Data Validation Summary

LFR performed a level III data validation evaluation of the analytical data collected during the site investigation. The data validation evaluation was conducted in accordance with the United States Environmental Protection Agency (U.S. EPA) Data Validation Functional Guidelines for Evaluating Environmental Analyses, "U.S. EPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," dated October 1999. The following is a summary of the evaluation of analytical data for soil and groundwater samples collected as part of LFR's November 2006 investigation. The samples were submitted to SunStar Analytical.

The data were evaluated based on the following parameters:

- data completeness
- holding times
- blanks
- system monitoring compound spike recoveries (surrogates)
- matrix spike/matrix spike duplicate recoveries (MS/MSD)
- laboratory control spike/laboratory control spike duplicate recoveries (LCS/LCSDs)

A review of the quality assurance/quality control sample analytical results for the groundwater and soil samples did not identified quality issues which would cause the majority of the data to be qualified. The sample temperatures, MS/MSD recoveries,

field duplicates, field blanks, LCS recoveries, and holding times were all within compliance criteria.

The surrogate recoveries for the TPHd and TPHmo analyses in samples B-15-4, B-24-4, and B-24-10 were outside the laboratory established quality control limits. This is likely due to matrix interference within these soil samples. Per data validation guidelines, the TPHd and TPHmo analytical results are qualified as estimated concentrations in these samples.

Copper was detected at a low concentration in one laboratory soil blank. However, the field data results were more than five times greater than the concentration detected in the laboratory blank sample. Per EPA methodology, the relatively low copper concentration in the laboratory blank does not affect field data quality.

2.2.7 Field Documentation

Field activities were documented using appropriate field forms, including a field log of soil borings, sample labels, chain-of-custody forms, and cooler receipt forms. The standardized field documentation helps maintain integrity of field procedures and sample collection during the field investigation activities. Completed field forms are kept on file at LFR and are available upon request.

3.0 LABORATORY ANALYTICAL RESULTS

Analytical results for soil and grab groundwater samples collected by LFR are summarized in Tables 1a through 4. Also included in these tables is a summary of analytical data from previous investigations as presented in the draft Phase II report by ENV. Analytical results are discussed for each of the five LFR-defined areas (Area I through V; Figure 2).

In the sections below, the primary chemicals of potential concern (COPCs) are highlighted for each area. In general, analytical results for samples collected by LFR confirmed that the primary COPCs in soil are TPHd, TPHmo, and to lesser extent, TPHg, metals, and PAHs. For discussion purposes, only significant concentrations are discussed, for example TPHd and TPHmo detected at concentrations above 100 and 500 mg/kg, respectively.

3.1 Petroleum Hydrocarbons in Soil

3.1.1 Area I

Analytical results for soil samples collected by LFR and ENV in Area I are summarized in Table 1a. A review of analytical results for Area I indicates that the primary COPC for this area is TPHd. TPHd was detected at concentrations ranging

from 320 to 7,300 mg/kg in samples collected approximately from 7.5 to 10.5 feet bgs in four soil borings (B-1, B-3, B-4, and EB-13) and one test pit (AP-4). TPHd was not detected at significant concentrations in samples collected from shallower or deeper depths in these locations, indicating that the TPHd-affected soil is vertically limited to between approximately 7 and 12 feet bgs.

TPHg was detected at a concentration of 530 mg/kg in the 10-foot-bgs sample collected from EB-13 located approximately in the center of ENV's proposed area of concern within Area I. TPHg was not detected at significant concentrations in any other soil sample collected within Area I and therefore appears to be limited in extent both vertically and laterally to approximately 10 feet bgs in the immediate vicinity of EB-13.

3.1.2 Area II

Analytical results for soil samples collected by LFR and ENV in Area II are summarized in Table 1b. A review of analytical results for Area II indicates that the primary COPCs for this area are TPHd and TPHmo. Soil samples collected from approximately 8 to 18 feet bgs from test pit CS-2, from approximately 5 feet bgs from soil boring B-6, and from 15 feet bgs from soil boring B-5, contained TPHd and TPHmo at concentrations up to 4,100 and 19,000 mg/kg, respectively.

The TPH-affected soil appears to be localized around the CS-2 test pit location, with TPHmo-affected soil extending to the B-5 and B-6 locations at distinct depths.

3.1.3 Area III

Analytical results for soil samples collected by LFR and ENV in Area III are summarized in Table 1c. A review of analytical results for Area III indicates that the primary COPCs for this area are TPHd and TPHmo. Only the two samples collected from less than 8 feet bgs from test pit PO-1 contained elevated TPHd and TPHmo concentrations. The soil sample collected from 8 feet bgs contained TPHd at 5,900 and TPHmo at 16,000 mg/kg. No other soil samples collected from locations within Area III at depths ranging from 2 to 20 feet bgs contained elevated TPH concentrations, and in most cases TPH concentrations were below laboratory report limits. Therefore, the TPH-affected soil appears to be localized in the upper 10 feet of soil in the vicinity of test pit PO-1.

3.1.4 Area IV

Analytical results for soil samples collected by LFR and ENV in Area IV are summarized in Table 1d. A review of analytical results for Area IV indicates that the primary COPCs for this area are TPHd and TPHmo. TPHd and TPHmo were detected at elevated concentrations in several soil borings (EB-14, EB-30, B-16, and B-24) and test pits (SR-2 and SR-3), and with one exception discussed below, only at depths of less than 10 feet bgs. Concentrations up to 1,000 mg/kg for TPHd and up to 3,500 mg/kg for TPHmo were detected.

Based on these data, the TPH-affected soil appears localized in the following areas:

- in the upper 5 feet of soil near test pit SR-2
- between 5 and 10 feet bgs near test pit SR-3
- between ground surface and 7 feet bgs in the vicinity of soil boring EB-30
- in the upper 10 feet of soil in the vicinity of soil boring B-24

Visual observations made during site investigation activities conducted by ENV in the eastern extension area of the Site (partially coinciding with Area IV) identified a "heavy, black, viscous free phase petroleum product" present at depths approximately between 30 and 40 feet bgs (ENV soil borings EB14, EB-23 through EB-26, and EB-33). Analytical results of the soil sample collected from approximately 33.5 feet bgs in soil boring EB-14 resulted in TPHd and TPHmo concentrations at 7,800 mg/kg and 8,700 mg/kg, respectively. However, the soil sample collected from 43.5 feet bgs in soil boring EB-14 contained only low to non-detected concentrations of TPHd and TPHmo, respectively. LFR visually identified what is presumed to be this same free-phase petroleum product in soil boring B-16 at depths between approximately 25 and 32 feet bgs.

3.2 Metals in Soil

Analytical results for soil samples collected by LFR and ENV in Area V are summarized in Tables 1e (TPH) and 3 (metals). This area appears primarily affected by metals in localized areas. A review of analytical results for Area V indicates that the primary COPCs for this area are arsenic, chromium, cobalt, copper, nickel, and vanadium. Elevated concentrations of these six metals were detected in the 6-foot-bgs sample collected from soil boring EB-20. Elevated cobalt concentrations also were detected in the 35- and 40-foot-bgs samples collected from soil boring EB-34. The area of potential metals-affected soil appears to be localized approximately between 5 and 7 feet bgs in the vicinity of soil boring EB-20.

3.3 PAHs and VOCs in Soil

Of the samples collected by ENV and LFR, 11 were analyzed for PAHs and/or VOCs; analytical data are summarized in Tables 2a and 2b, respectively. VOCs were not detected at significant concentrations in any of the soil samples. Three PAHs were detected at slightly elevated concentrations, namely anthracene, benzo(a)anthracene, and phenanthrene, which were detected at concentrations of 3.3, 2.1, and 12 mg/kg, respectively, in the sample collected from 33.5 feet bgs in soil boring EB-14. Because of the depth of the sample, these detections are not considered significant.

3.4 Petroleum Hydrocarbons in Groundwater

Analytical results for groundwater samples collected by LFR and ENV at the Site are summarized in Table 4. A review of analytical results for groundwater samples indicates that groundwater has been affected by TPHd and TPHmo. The grab groundwater samples collected from soil borings B-22 and EB-29 contained TPHd at concentrations of 1,700 and 150 μ g/l, respectively. The grab groundwater sample collected from soil boring EB-29 also contained TPHmo at a concentration of 850 μ g/l. None of the other grab groundwater samples contained TPHd or TPHmo above the laboratory reporting limits.

Assuming a generally easterly groundwater flow direction beneath the Site, as indicated by Zone 7 water-level data and as discussed in Section 2.1, soil borings B-22 and EB-29 are located approximately downgradient from areas where TPH-affected soil has been identified. In particular, soil borings B-22 and EB-29 may be located approximately downgradient from the eastern extension area, where free-phase hydrocarbons were identified at depths approximately between 30 and 40 feet bgs.

4.0 REGULATORY APPROACH

The analytical results of the soil and groundwater samples collected by LFR and ENV at the Site indicate that soil and groundwater have been affected by TPHd and TPHmo, likely as a result of historical operations conducted at the Site. Based on our experience working with regulatory agencies, the Site would be considered a "low-risk hydrocarbon" site, and, as such, would not require active remediation. The "low-risk hydrocarbon site" designation is supported by the following considerations:

- TPHd and TPHmo are considered "longer-chain" hydrocarbons that are relatively immobile, have limited solubility, and represent a relatively minor threat to groundwater. The minor threat to groundwater associated with petroleum-affected soil beneath the Site is confirmed by groundwater data collected during the LFR and ENV investigations. Of the seven borings from which groundwater data were collected, hydrocarbons were detected in only two borings, at a maximum concentration of 1.7 milligrams per liter TPHd. It is important to note that this groundwater sample was collected within approximately 50 feet of the estimated extent of hydrocarbon-affected soil.
- The future or the current land use plans do not include residential occupation; in this case, the current land use is industrial and the proposed future land uses are light industrial and commercial.
- There is no direct pathway for humans to be exposed to the affected soil and or groundwater; in this case, there is no complete pathway for humans to be exposed to the affected soil or groundwater. TPHd and TPHmo do not readily off-gas from the soil or groundwater through the soil column to near the ground surface to affect human health through the inhalation of affected outdoor or indoor air.

- The source(s) that have affected soil and/or groundwater (such as underground storage tanks or free-phase hydrocarbons) have been or are planned to be removed; in this case, there appear to be no significant sources to soil.
 - The apparent source of hydrocarbons to groundwater may be the "heavy, black, viscous free phase petroleum product" identified by ENV in the eastern extension area at depths approximately between 30 and 40 feet bgs. Given the depth of this potential source, removal is not a viable option. The nature of this potential source indicates that it is not highly mobile.
 - Site surface features such as the former truck scale and asphalt containment area, which are potential TPH sources to shallow affected soil, are proposed for demolition. It is our understanding that the demolition activities will include overexcavation of affected soil in the areas beneath and adjacent to these surface features.
- The distribution of affected soil has been adequately assessed though the collection and analysis of soil samples by ENV and LFR. It appears that affected soil is localized, generally at depths greater than 5 feet bgs, and therefore is not a significant concern to human health.

Based on regulatory criteria described above and the analytical results of the soil and groundwater samples collected at the Site to date, it is LFR's opinion that the Site would qualify as a low-risk hydrocarbon site.

5.0 CONCLUSIONS

At the request of Hanson, LFR completed an additional Phase II investigation to further assess the extent and magnitude of petroleum-affected soil and groundwater beneath the Site, previously identified by ENV during an initial Phase II investigation.

LFR used the results of the investigations conducted by ENV to design an additional investigation. LFR advanced 24 soil borings to depths approximately ranging from 10 to 65 feet bgs to collect soil and groundwater samples for laboratory analyses. LFR confirmed that the primary COPCs in soil are TPHd and TPHmo, and that groundwater has been affected by TPHd and TPHmo.

Based on the results of the LFR and ENV Phase II investigations, the site setting, and our experience with similar sites, LFR finds that soil and groundwater conditions at the Site meet the criteria of a "low-risk hydrocarbon site," as defined by the San Francisco Bay Regional Water Quality Control Board. As such, if the site usage is to remain commercial/industrial, it is not likely that active remediation of the soil or groundwater beneath the Site will be required by the regulatory agencies.

Findings that support this conclusion include:

- The primary COPCs at the Site are TPHd and TPHmo. These are longer-chain hydrocarbons that are relatively immobile, have limited solubility, and represent a relatively minor threat to groundwater. The minor threat to groundwater associated with petroleum-affected soil beneath the Site is confirmed by groundwater data collected during the LFR and ENV investigations. Of the seven borings from which groundwater samples were collected and analyzed, petroleum hydrocarbons were detected in only two borings, at a maximum concentration of 1.7 mg/l TPHd. It is important to note that this groundwater sample was collected within approximately 50 feet of the estimated extent of hydrocarbon-affected soil detected at the Site. Although this limited groundwater impact will likely need to be confirmed and further assessed with data from groundwater monitoring wells, the existing set of data from "grab" groundwater samples from the LFR and ENV investigations provides an adequate level of certainty to support this conclusion.
- The Site lies within a large industrial land use area, and is zoned for commercial and industrial use. It is our understanding that the future and current land use plans do not include residential occupation.
- The primary source(s) for COPCs that have affected soil and/or groundwater (such as underground storage tanks or free-phase hydrocarbons) have been or will be removed. For example, site surface features such as the former truck scale and asphalt containment area, which are potential TPH sources to shallow affected soil, are proposed for demolition. It is our understanding that the demolition activities will include overexcavation of affected soil in the areas beneath and adjacent to these surface features.

6.0 REFERENCES

- ENV America Inc. (ENV). 2006. Draft Phase II Environmental Site Assessment, 3000 Busch Road, Pleasanton, California. November.
- Jones and Stokes. 2006. Annual Report for the Groundwater Management Plan, 2005 Water Year. Prepared for the Zone 7 Water Agency. September.
- LFR Inc. (LFR). 2006. Proposal to Conduct an Additional Phase II Environmental Site Assessment Investigation and Evaluate Remediation Options and Costs for the Former Asphalt Plant Area, Hanson Radum Facility, 3000 Busch Road, Pleasanton, California. November 10.

Table 1a
Area I - Analytical Results of Petroleum Hydrocarbons in Soil Samples
Hanson Radum Former Hot Mix Asphalt Plant Area
3000 Busch Road, Pleasanton, California

	Sample Depth (feet	Date Sample							Total	Other Organic
Sample ID	below grade)	_	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene		Compounds
AREA I	<u> </u>			•		•		,	,	
	s Collected by	LFR								
B-1-4.5	4.5	11/14/2006	< 10	< 10	< 0.5	NA	NA	NA	NA	NA
B-1-7.5	7.5	11/14/2006	320	< 10	5.9	< 0.002	< 0.002	< 0.002	< 0.004	see Tables 2a/2b
B-1-10	10	11/14/2006	< 10	< 10	< 0.5	NA	NA	NA	NA	NA
B-1-14.5	14.5	11/14/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-1-18	18	11/14/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-2-5	5	11/13/2006	< 10	< 10	< 0.5	NA	NA	NA	NA	NA
B-2-10	10	11/13/2006	< 10	< 10	< 0.5	NA	NA	NA	NA	NA
B-2-14	14	11/13/2006	< 10	< 10	< 0.5	NA	NA	NA	NA	NA
B-2-19.5	19.5	11/13/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-3-5	5	11/14/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-3-7	7	11/14/2006	27	< 10	0.5	NA	NA	NA	NA	NA
B-3-10	10	11/14/2006	7,300	330	38	NA	NA	NA	NA	see Table 2a
B-3-14	14	11/14/2006	2,100	< 10	NA	NA	NA	NA	NA	NA
B-3-18	18	11/14/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-4-5	5	11/14/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-4-10.5	10.5	11/14/2006	6,400	460	33	NA	NA	NA	NA	see Table 2a
B-4-15	15	11/14/2006	7,100	< 10	NA	NA	NA	NA	NA	NA
B-4-18	18	11/14/2006	hold	hold	hold	hold	hold	hold	hold	hold
Soil Sample	s Collected by	ENV								
CS1-2	2	9/27/2006	91	260	NA	NA	NA	NA	NA	NA
CS1-8	8	9/27/2006	52	170	NA	NA	NA	NA	NA	NA
CS1-12	12	9/27/2006	59	190	NA	NA	NA	NA	NA	NA
CS1-13	13	9/27/2006	59	190	NA	NA	NA	NA	NA	NA

Table 1a
Area I - Analytical Results of Petroleum Hydrocarbons in Soil Samples
Hanson Radum Former Hot Mix Asphalt Plant Area
3000 Busch Road, Pleasanton, California

	Sample Depth (feet	Date Sample							Total	Other Organic
Sample ID	below grade)	•	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	Compounds
AP4-9-10	9-10	9/26/2006	5,600	< 50	NA	NA	NA	NA	NA	see Tables 2a/2b
AP-5 - 2	2	9/27/2006	< 0.99	< 49	NA	NA	NA	NA	NA	NA
AP-5 - 8	8	9/27/2006	2.6	< 50	NA	NA	NA	NA	NA	NA
AP-5-15	15	9/27/2006	< 1.0	< 50	NA	NA	NA	NA	NA	NA
EB12-20	20	10/9/2006	< 1.0	< 50	< 0.25	< 0.005	< 0.005	< 0.005	< 0.010	NA
EB13-10	10	10/9/2006	400	240	530	< 2.0	< 2.0	< 2.0	< 4.0	NA
EB13-15	15	10/9/2006	< 0.99	< 50	0.33	< 0.005	< 0.005	< 0.005	< 0.0099	NA
EB13 -20	20	10/9/2006	16	< 50	0.31	< 0.005	< 0.005	< 0.005	< 0.0099	NA
EB17-6	6	10/20/2006	< 0.96	< 48	< 0.22	< 0.0044	< 0.0044	< 0.0044	< 0.0098	NA
EB17-15	15	10/20/2006	< 0.97	< 48	< 0.24	< 0.0047	< 0.0047	< 0.0047	< 0.0095	NA
EB-18-15	15	10/20/2006	< 1.0	< 50	< 0.22	< 0.0045	< 0.0045	< 0.0045	< 0.009	NA
EB-18-20	20	10/20/2006	< 0.95	< 48	< 0.22	< 0.0045	< 0.0045	< 0.0045	< 0.009	NA
Trans-C	0.5	9/29/2006	6.7	< 50	NA	NA	NA	NA	NA	NA

Notes:

Samples collected by LFR were analyzed by SunStar Analytical, located in Tustin, CA.

Samples collected by ENV were analyzed by Severn Trent Laboratories, located in Pleasanton, CA.

NA = parameter not analyzed

ND = parameter not present above laboratory reporting limits

TPHd = total petroleum hydrocarbons as diesel

TPHmo = total petroleum hydrocarbons as motor oil

TPHg = total petroleum hydrocarbons as gasoline

Table 1b
Area II - Analytical Results of Petroleum Hydrocarbons in Soil Samples
Hanson Radum Former Hot Mix Asphalt Plant Area
3000 Busch Road, Pleasanton, California

	Sample	Date								Other
	Depth (feet	Sample							Total	Organic
Sample ID	below grade)	Collected	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	Compounds
AREA II										
Soil Samples	Collected by 1	LFR								
B-5-5	5	11/15/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-5-10	10	11/15/2006	< 10	160	NA	NA	NA	NA	NA	see Table 2a
B-5-15	15	11/15/2006	< 10	7,800	NA	NA	NA	NA	NA	see Table 2a
B-6-5	5	11/15/2006	< 10	19,000	NA	NA	NA	NA	NA	see Table 2a
B-6-10	10	11/15/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-6-15	15	11/15/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-7-5	5	11/15/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-7-11	11	11/15/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-7-15	15	11/15/2006	hold	hold	hold	hold	hold	hold	hold	hold
Soil Samples	S Collected by 1	ENV								
EB-11-20	5	10/9/2006	< 1.0	< 50	< 0.24	< 0.0049	< 0.0049	< 0.0049	< 0.0097	NA
EB-16@2'	2	10/20/2006	20	60	< 0.23	< 0.0045	< 0.0045	< 0.0045	< 0.009	NA
EB-16@5'	5	10/20/2006	5.4	< 50	< 0.22	< 0.0044	< 0.0044	< 0.0044	< 0.0088	NA
EB-16@16.5	16.5	10/20/2006	4.6	< 50	< 0.21	< 0.0043	< 0.0043	< 0.0043	< 0.0085	NA
CS2-8	8	9/27/2006	1,800	3,600	NA	NA	NA	NA	NA	NA
CS2-15	15	9/27/2006	4,100	9,300	NA	NA	NA	NA	NA	see Table 2a
CS2-18	18	9/27/2006	3,000	6,000	NA	NA	NA	NA	NA	NA

Notes:

Samples collected by LFR were analyzed by SunStar Analytical, located in Tustin, CA.

Samples collected by ENV were analyzed by Severn Trent Laboratories, located in Pleasanton, CA.

NA = parameter not analyzed

ND = parameter not present above laboratory reporting limits

TPHd = total petroleum hydrocarbons as diesel

TPHg = total petroleum hydrocarbons as gasoline

TPHmo = total petroleum hydrocarbons as motor oil

Table 1c
Area III - Analytical Results of Petroleum Hydrocarbons in Soil Samples
Hanson Radum Former Hot Mix Asphalt Plant Area
3000 Busch Road, Pleasanton, California

Carrala	Sample	Date							Tatal	Other
Sample ID	Depth (feet	Sample Collected	TPHd	TPHmo	TDLLa	Donzono	Taluana	Ethylbenzene	Total	Organic Compounds
AREA III	below grade)	Collected	тгпа	трпппо	тепд	Бепzепе	Toluene	Ethylbenzene	Aylenes	Compounds
	oles Collected b	w I FD								
B-8-13	13	11/14/2006	< 10	< 10	< 0.5	NA	NA	NA	NA	see Table 2b
B-8-18	18	11/14/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-9-5	5	11/14/2006	< 10	< 10	< 0.5	NA	NA	NA	NA	NA
B-9-10	10	11/15/2006	< 10	< 10	< 0.5	NA NA	NA NA	NA NA	NA NA	NA NA
B-9-10 B-9-15	15	11/15/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-10-5	5	11/15/2006	< 10	< 10	< 0.5	NA	NA	NA	NA	NA
B-10-3 B-10-10	10	11/15/2006	< 10	< 10	< 0.5	NA NA	NA NA	NA NA	NA NA	NA NA
B-10-15	15	11/15/2006	hold	hold	hold	hold	hold	hold	hold	hold
D-10-13	13	11/13/2000	noiu	noiu	noiu	noid	noid	noid	noid	noid
Soil Samp	oles Collected b	y ENV								
PO1-2	2	9/27/2006	170	280	NA	NA	NA	NA	NA	NA
PO1-8	8	9/27/2006	5,900	16,000	NA	NA	NA	NA	NA	NA
PO1-12	12	9/27/2006	4.7	< 49	NA	NA	NA	NA	NA	NA
PO2-2	2	9/27/2006	43	280	NA	NA	NA	NA	NA	NA
PO2-8	8	9/27/2006	2.2	< 50	NA	NA	NA	NA	NA	NA
PO2-15	15	9/27/2006	< 0.99	< 50	NA	NA	NA	NA	NA	NA
AP2-2	2	9/26/2006	3.1	< 50	NA	NA	NA	NA	NA	NA
AP2-8	8	9/26/2006	1.5	< 50	NA	NA	NA	NA	NA	NA
AP2-13	13	9/26/2006	1.6	< 50	NA	NA	NA	NA	NA	NA
AP3-2	2	9/26/2006	3.7	< 50	NA	NA	NA	NA	NA	NA
AP3-8	8	9/26/2006	1.1	< 50	NA	NA	NA	NA	NA	NA
AP3-15	15	9/26/2006	1.6	< 50	NA	NA	NA	NA	NA	NA
EB9-5	5	10/9/2006	3.5	< 49	NA	NA	NA	NA	NA	NA
EB9-10	10	10/9/2006	1.1	< 50	NA	NA	NA	NA	NA	NA
EB9-20	20	10/9/2006	1.9	< 50	NA	NA	NA	NA	NA	NA
EB10-5	5	10/9/2006	1.7	< 50	NA	NA	NA	NA	NA	NA
EB10-10	10	10/9/2006	< 1.0	< 50	NA	NA	NA	NA	NA	NA
EB10-25	25	10/9/2006	1.3	< 50	NA	NA	NA	NA	NA	NA

Table 1c

Area III - Analytical Results of Petroleum Hydrocarbons in Soil Samples Hanson Radum Former Hot Mix Asphalt Plant Area 3000 Busch Road, Pleasanton, California

concentrations in milligrams per kilogram (mg/kg)

	Sample	Date								Other
Sample	Depth (feet	Sample							Total	Organic
ID	below grade)	Collected	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	Compounds

Notes:

Samples collected by LFR were analyzed by SunStar Analytical, located in Tustin, CA.

Samples collected by ENV were analyzed by Severn Trent Laboratories, located in Pleasanton, CA.

NA = parameter not analyzed

ND = parameter not present above laboratory reporting limits

TPHd = total petroleum hydrocarbons as diesel

TPHmo = total petroleum hydrocarbons as motor oil

TPHg = total petroleum hydrocarbons as gasoline

Table 1d

Area IV - Analytical Results of Petroleum Hydrocarbons in Soil Samples
Hanson Radum Former Hot Mix Asphalt Plant Area
3000 Busch Road, Pleasanton, California

	Sample Depth									Other
Commis ID	(feet below	Sample	TDILL	TDLL	TDI I -	D	T.I	E4h. III	Total	Organic
Sample ID AREA IV	grade)	Collected	TPHd	TPHmo	IPHg	Benzene	Toluene	Ethylbenzene	Xylenes	Compounds
	Collected by LF	D								
B-11-5	5	11/15/2006	< 10	< 10	NA	NA	NA	NA	NA	see Table 2a
B-11-10	10	11/15/2006	<10	< 10	NA	NA	NA	NA	NA	see Table 2a
B-11-15	15	11/15/2006	<10	<10	NA	NA	NA	NA	NA	NA
B-11-22.5	22.5	11/15/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-12-4.5	4.5	11/13/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-12-9.5	9.5	11/13/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-12-14.5	14.5	11/13/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-13-5	5	11/15/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-13-7.5	7.5	11/15/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-13-10	10	11/15/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-14-5	5	11/15/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-14-10	10	11/15/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-14-15	15	11/15/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-15-4 B-15-7	4 7	11/15/2006 11/15/2006	<10 J <10	220 J < 10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
B-15-7 B-15-10	10	11/15/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-15-10 B-16-3	3	11/13/2006	890	180	NA	NA	NA	NA	NA	see Table 2a
B-16-25.5	25.5	11/13/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-16-30.5	30.5	11/13/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-16-31.5	31.5	11/13/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-20-4	4	11/16/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-20-7	7	11/16/2006	< 10	< 10	NA	NA	NA	NA	NA	NA
B-20-10	10	11/16/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-20-15	15	11/16/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-24-4	4	11/16/2006	<10 J	1,300 J	NA	NA	NA	NA	NA	see Table 2a
B-24-7	7	11/16/2006	< 10	650	NA	NA	NA	NA	NA	see Table 2a
B-24-10	10	11/16/2006	<10 J	3,500 J	NA	NA	NA	NA	NA	see Table 2a
B-24-15	15	11/16/2006	hold	hold	hold	hold	hold	hold	hold	hold
B-24-20	20	11/16/2006	hold	hold	hold	hold	hold	hold	hold	hold
Soil Samples	Collected by EN	\mathbf{v}								
SR1-1	1	9/26/2006	19	110	NA	NA	NA	NA	NA	NA
SR1-8	8	9/26/2006	< 1.0	< 50	NA	NA	NA	NA	NA	NA
SR1-15	15	9/26/2006	< 1.0	< 50	NA	NA	NA	NA	NA	NA
SR2-5	5	9/26/2006	130	450	NA	NA	NA	NA	NA	NA
SR2-8	8	9/26/2006	55	220	NA	NA	NA	NA	NA	NA
SR2-15	15	9/26/2006	4.0	< 50	NA	NA	NA	NA	NA	NA
SR3-7	7	9/26/2006	1,000	1,700	NA	NA	NA	NA	NA	see Table 2a
SR3-12	12	9/26/2006	28	130	NA	NA	NA	NA	NA	NA
SR4-2	2	9/26/2006	5.6	< 50	NA	NA		NA NA NA		NA
SR4-8	8	9/26/2006	4.9	< 50	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
SR4-13	13	9/26/2006	< 50	< 50	NA	NA	NA	NA	NA	NA

Table 1d

Area IV - Analytical Results of Petroleum Hydrocarbons in Soil Samples
Hanson Radum Former Hot Mix Asphalt Plant Area
3000 Busch Road, Pleasanton, California

	Sample Depth (feet below	Date Sample							Total	Other Organic
Sample ID	grade)	Collected	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene		Compounds
AP1-1	1	9/26/2006	4.4	ND	NA	NA	NA	NA	NA	NA
AP1-8	8	9/26/2006	< 0.99	< 50	NA	NA	NA	NA	NA	NA
AP1a-11	11	9/26/2006	9.0	< 50	NA	NA	NA	NA	NA	NA
RR3-2.5	2.5	10/9/2006	NA	NA	NA	NA	NA	NA	NA	NA
EB-14@2'	2	10/19/2006	140	< 490	< 0.25	< 0.005	< 0.005	< 0.005	< 0.010	ND
EB-14@6'	6	10/19/2006	< 0.99	< 50	< 0.25	< 0.005	< 0.005	< 0.005	< 0.010	ND
EB-14@15'	15	10/19/2006	< 0.99	< 50	< 0.25	< 0.005	< 0.005	< 0.005	< 0.010	ND
EB-14@33.5'	33.5	10/19/2006	7,800	8,700	32	< 0.025	< 0.025	< 0.025	< 0.0099	see Table 2a/2b
EB-14@43.5'	43.5	10/19/2006	2.2	< 50	< 0.25	< 0.0049	< 0.0049	< 0.0049	< 0.0098	ND
EB-30-5	5	10/26/2006	200	1,300	< 0.25	< 5.0	< 5.0	< 5.0	< 0.010	ND
EB-30-10	10	10/26/2006	1.6	< 49	< 0.25	< 0.0049	< 0.0049	< 0.0049	< 0.0098	ND
EB-30-15	15	10/26/2006	7.6	50	< 0.25	< 0.0048	< 0.0048	< 0.0048	< 0.0097	ND
EB-30-35	35	10/26/2006	< 1.0	< 50	< 0.25	< 0.005	< 0.005	< 0.005	< 0.010	ND
EB-30-40	40	10/26/2006	< 0.99	< 49	< 0.24	< 0.0049	< 0.0049	< 0.0049	< 0.0098	ND
EB-33-40	40	10/26/2006	13.0	< 50	0.29	< 0.0049	< 0.0049	< 0.0049	< 0.0098	ND

Notes:

Samples collected by LFR were analyzed by SunStar Analytical, located in Tustin, CA.

Samples collected by ENV were analyzed by Severn Trent Laboratories, located in Pleasanton, CA.

NA = parameter not analyzed

ND = parameter not present above laboratory reporting limits

TPHd = total petroleum hydrocarbons as diesel

TPHmo = total petroleum hydrocarbons as motor oil

TPHg = total petroleum hydrocarbons as gasoline

J = estimated concentration because the surrogate percent recovery is out of laboratory quality control limits

Table 1e Area V - Analytical Results of Petroleum Hydrocarbons in Soil Samples Hanson Radum Former Hot Mix Asphalt Plant Area 3000 Busch Road, Pleasanton, California

Sample ID	Sample Depth (feet below grade)	Date Sample Collected	TPHd	TPHmo	TPHg	Benzene	Toluene	Ethylbenzene	Total Xylenes	Other Organic Compounds			
AREA V	<u> </u>	l.				-I		,	,				
Soil Samples Collected by LFR													
B-17-5.5 5.5 11/13/2006 <10 <10 NA NA NA NA NA NA NA													
B-17-9	9	11/13/2006	< 10	< 10	NA	NA	NA	NA	NA	NA			
B-18-6	6	11/16/2006	< 10	< 10	NA	NA	NA	NA	NA	NA			
B-18-10	10	11/16/2006	hold	hold	hold	hold	hold	hold	hold	hold			
B-19-6	6	11/16/2006	hold	hold	hold	hold	hold	hold	hold	hold			
B-19-10	10	11/16/2006	hold	hold	hold	hold	hold	hold	hold	hold			
Soil Samples	s Collected by	ENV											
EB-15	2	10/19/2006	< 0.97	<49	< 0.24	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0098			
EB-15	6	10/19/2006	< 0.95	<48	< 0.24	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0096			
EB-15	10	10/19/2006	< 0.99	<49	< 0.25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0099			
EB-15	15	10/19/2006	< 0.95	< 47	< 0.25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0099			
EB-20	2	10/20/2006	< 0.98	<49	< 0.25	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010			
EB-20	6	10/20/2006	< 0.96	<48	< 0.25	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0092			
EB-34	35	10/26/2006	< 0.98	< 49	< 0.24	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0095			
EB-34	40	10/26/2006	< 0.98	<49	< 0.23	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0093			

Notes:

Samples collected by LFR were analyzed by SunStar Laboratories, Inc., located in Tustin, CA.

Samples collected by ENV were analyzed by Severn Trent Laboratories, located in Pleasanton, CA.

NA = parameter not analyzed

ND = parameter not present above laboratory reporting limits

TPHd = total petroleum hydrocarbons as diesel

TPHmo = total petroleum hydrocarbons as motor oil

TPHg = total petroleum hydrocarbons as gasoline

Table 2a
Analytical Results of Organic Compounds in Soil Samples
Polycyclic Aromatic Hydrocarbons
Hanson Radum Former Hot Mix Asphalt Plant Area
3000 Busch Road, Pleasanton, California

	Sample Depth	Date			Benzo(a)	Benzo						
	(feet below	Sample	Ace-	Anthra-	anthra-	(g,h,i)		Fluor-		Naphtha-	Phenan-	
Sample ID	grade)	Collected	naphthene	cene	cene	perylene	Chrysene	anthene	Fluorene	lene	threne	Pyrene
Soil Samples	Collected by LI	FR										
AREA I												
B-1-7.5	7.5	11/14/2006	< 0.3	< 0.3	< 0.3	<1	< 0.3	< 0.3	< 0.3	< 0.3	0.44	< 0.3
B-3-10	10	11/14/2006	< 0.3	< 0.3	< 0.3	<1	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
B-4-10.5	10.5	11/14/2006	< 0.3	< 0.3	< 0.3	<1	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
AREA II												
B-5-10	10	11/15/2006	< 0.3	< 0.3	< 0.3	<1	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
B-5-15	15	11/15/2006	< 0.3	< 0.3	< 0.3	<1	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
B-6-5	5	11/15/2006	< 0.3	< 0.3	< 0.3	<1	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
AREA IV												
B-11-5	5	11/15/2006	< 0.3	< 0.3	< 0.3	< 1	< 0.3	0.46	< 0.3	< 0.3	0.80	< 0.3
B-11-10	10	11/15/2006	< 0.3	< 0.3	< 0.3	<1	< 0.3	< 0.3	< 0.3	< 0.3	0.36	< 0.3
B-15-4	4	11/16/2006	< 0.3	< 0.3	< 0.3	<1	< 0.3	< 0.3	< 0.3	< 0.3	0.36	< 0.3
B-16-3	3	11/13/2006	< 0.3	< 0.3	< 0.3	<1	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
B-24-4	4	11/16/2006	< 0.3	< 0.3	< 0.3	<1	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
B-24-7	7	11/16/2006	< 3.0	< 3.0	< 3.0	< 10	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
B-24-10	10	11/16/2006	<3.0	< 3.0	< 3.0	< 10	< 3.0	< 3.0	< 3.0	<3.0	< 3.0	< 3.0
Soil Samples	Collected by EN	NV										
AP4-9-10	9-10	9/26/2006	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	3.2	2.4	5	< 0.25
CS2-15	15	9/27/2006	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.044	0.017	< 0.005	< 0.005	< 0.005
SR3-7	7	9/26/2006	< 0.25	< 0.25	0.36	< 0.25	0.63	< 0.25	0.98	1.3	1.4	< 0.25
EB-14@33.5'	33.5	10/19/2006	3.1	3.3	2.1	1.0	3.5	< 0.25	4.5	< 0.25	12	4.7

Table 2a

Analytical Results of Organic Compounds in Soil Samples Polycyclic Aromatic Hydrocarbons Hanson Radum Former Hot Mix Asphalt Plant Area 3000 Busch Road, Pleasanton, California

concentrations in milligrams per kilogram (mg/kg)

		Sample Depth	Date			Benzo(a)	Benzo						
		(feet below	Sample	Ace-	Anthra-	anthra-	(g,h,i)		Fluor-		Naphtha-	Phenan-	
S	Sample ID	grade)	Collected	naphthene	cene	cene	perylene	Chrysene	anthene	Fluorene	lene	threne	Pyrene

Notes:

Samples collected by LFR were analyzed by SunStar Analytical, located in Tustin, CA.

Samples collected by ENV were analyzed by Severn Trent Laboratories, located in Pleasanton, CA.

NA = parameter not analyzed

Table 2b
Analytical Results of Organic Compounds in Soil Samples
Volatile Organic Compounds
Hanson Radum Former Hot Mix Asphalt Plant Area
3000 Busch Road, Pleasanton, California

	Sample	Date					1,2,3-	1,2,4	1,3,5	1,2,4
	Depth (feet	Sample	n-Butyl-	sec-Butyl-	tert-Butyl-	n-Propyl-	Trichloro-	Trichloro-	Trimethyl-	Trimethyl-
Sample ID	below grade)	Collected	benzene	benzene	benzene	benzene	benzene	benzene	benzene	benzene
Soil Samples Collected by LFR										
AREA I										
B-1-7.5	7.5	11/14/2006	0.013	0.012	0.0074	0.0077	0.011	0.0072	0.018	0.023
AREA III										
B-8-13	13	11/14/2006	0.0033	< 0.002	< 0.002	< 0.002	0.0021	0.0021	< 0.002	< 0.002
Soil Samples	Soil Samples Collected by ENV									
AP4-9-10	9-10	9/26/2006	1.5	0.99	NA	NA	NA	NA	NA	NA
EB-14@33.5'	33.5	10/19/2006	0.12	0.041	ND	0.063	ND	ND	ND	ND

Notes:

Samples collected by LFR were analyzed by SunStar Analytical, located in Tustin, CA.

Samples collected by ENV were analyzed by Severn Trent Laboratories, located in Pleasanton, CA.

NA = parameter not analyzed

ND = parameter not present above laboratory reporting limits

NE = ESL value not established

Table 3 Analytical Results for Metals in Soil Samples Hanson Radum Former Hot Mix Asphalt Plant 3000 Busch Road, Pleasanton, California

	Sample	Date									
	Depth (feet	Sample					_				
Sample ID	below grade)		Arsenic	Barium	Chromium	Cobalt	Copper	Nickel	Vanadium		
Soil Samples	Collected by Ll	F R									
Area III											
B-9-5	5	11/15/2006	< 5	43	15	4.5	14	29	8.8		
B-9-10	10	11/15/2006	< 5	49	23	5.3	14	39	12		
B-10-5	5	11/15/2006	< 5	50	12	3.8	28	18	7.2		
B-10-10	10	11/15/2006	< 5	32	13	4.3	22	26	7.2		
Area IV											
B-16-3	3	11/13/2006	< 5	77	27	6.3	21	44	17		
Area V											
B-17-5.5	5.5	11/13/2006	< 5	45	16	4.1	9.6	29	11		
B-17-9	9	11/13/2006	< 5	74	28	6.4	21	54	16		
B-18-6	6	11/16/2006	< 5	48	14	3.9	37	33	7.4		
B-18-10	10	11/16/2006	< 5	70	20	6.3	22	36	12		
B-19-6	6	11/16/2006	< 5	58	28	6.0	19	45	13		
B-19-10	10	11/16/2006	< 5	110	11	3.4	19	20	7.5		
Soil Samples	Soil Samples Collected by ENV										
EB20-2	2	10/20/2006	2.8	90	30	7.3	40	46	22		
EB20-6	6	10/20/2006	60	940	220	89	330	310	220		
EB34-35	35	10/26/2006	5.1	130	53	12	25	6.0	26		
EB34-40	40	10/26/2006	4.4	120	11	63	24	73	26		

Notes:

Samples collected by LFR were analyzed by SunStar Analytical, located in Tustin, CA. Samples collected by ENV were analyzed by Severn Trent Laboratories, located in Pleasanton, CA. **Bold Text** indicates parameter detected above laboratory reporting limit.

Table 4 Analytical Results for Groundwater Samples Hanson Radum Former Hot Mix Asphalt Plant 3000 Busch Road, Pleasanton, California

concentrations in micrograms per liter ($\mu g/l$)

	Approximate Sample Depth	Date								Other
	(feet below	Sample						Ethyl-	Total	Organic
Sample ID	grade)	Collected	TPHd	TPHmo	TPHg	Benzene	Toluene	benzene	Xylenes	Compounds
Grab Groundy	collected by	LFR								
GGW-21	60	11/15/2006	< 50	< 50	NA	NA	NA	NA	NA	NA
GGW-22	50	11/15/2006	1,700	< 50	NA	< 0.5	< 0.5	0.59	1.2	*
GGW-23	55	11/16/2006	< 50	< 50	NA	NA	NA	NA	NA	NA
Grab Groundy	ENV									
EB-15W@55'	55	10/19/2006	< 50	< 500	< 50	< 0.5	< 0.5	< 0.5	<1	NA
EB-16W@55'	55	10/20/2006	< 50	< 500	< 50	< 0.5	< 0.5	< 0.5	<1	NA
EB-22W@60'	60	10/20/2006	< 50	< 500	< 50	< 0.5	< 0.5	< 0.5	< 1	ND
EB-29W@52'	52	10/25/2006	150	850	< 50	< 0.5	< 0.5	< 0.5	<1	ND

Notes:

Samples collected by LFR were analyzed by SunStar Analytical, located in Tustin, CA.

Samples collected by ENV were analyzed by Severn Trent Laboratories, located in Pleasanton, CA.

NA = parameter not analyzed

ND = parameter not present above laboratory reporting limits

TPHd = total petroleum hydrocarbons as diesel

TPHmo = total petroleum hydrocarbons as motor oil

TPHg = total petroleum hydrocarbons as gasoline

^{*} Isopropylbenzene (2.5 µg/l)

Site Vicinity Map

3000 Busch Road, Pleasanton, California

Figure 1

LEGEND

- LFR soil boring location
- LFR grab groundwater location
- ENV test pit sampling location
- ENV borehole sampling location
- ENV soil sample location
- ENV borehole and grab groundwater sample location

ENV proposed excavation, depth below ground surface in feet ¹

Based on ESL Criteria established by RWQCB for Shallow Soil in Residential Zoning

TPH = total petroleum hydrocarbons

RWQCB = California Regional Water Quality Control Board, San Francisco Bay Region

Approximate Soil and Groundwater Sample Locations by LFR and ENV September through November 2006

3000 Busch Road, Pleasanton, California

APPENDIX A

Selected Figures from the Alameda County Zone 7 Water Agency Livermore Annual Report (Jones and Stokes 2006)

APPENDIX B

Approved Drilling Permit

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

100 NORTH CANYONS PARKWAY, LIVERMORE, CA 94551

PHONE (925) 454-5000

November 14, 2006

Ms. Katrin Schliewen LFR, Inc. 1900 Powell Street, 12th floor Emeryville, CA 94608-1827

Dear Ms. Schliewen:

Enclosed is drilling permit 26194 for a contamination investigation at 3000 Busch Road Avenue in Pleasanton for Hanson Aggregates. Also enclosed is a current drilling permit application for your files. Drilling permit applications for future projects can also be downloaded from our web site at www.zone7water.com.

Please note that permit conditions A-2 and G requires that a report be submitted after completion of the work. The report should include drilling and completion logs, location sketch, permit number and any analysis of the soil and water samples. Please submit the original of your completion report. We will forward your submittal to the California Department of Water Resources.

If you have any questions, please contact me at extension 5056 or Matt Katen at extension 5071.

Sincerely,

Wyman Hong

Water Resources Specialist

Enc.

FOR APPLICANT TO COMPLETE

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 454-5728

DRILLING PERMIT APPLICATION

LOCATION OF PROJECT 🍣 Radum Hanson-Busch Rd California Coordinates Source ft Accuracy+ PERMIT CONDITIONS CCN ft. CCE APN (Circled Permit Requirements Apply) CLIENT Name /7 **GENERAL** Address A permit application should be submitted so as to arrive at the APPLICANT Name Kalzin Boure! location sketch for geotechnical projects. Address_/900 Phone 570-596-9637 Ehenrille-94602 date. WATER SUPPLY WELLS В. TYPE OF PROJECT 1. Minimum surface seal thickness is two inches of cement Well Construction Geotechnical Investigation grout placed by tremie. Cathodic Protection General Water Supply Contamination Monitoring Well Destruction is specially approved. PROPOSED WELL USE New Domestic Irrigation A sample port is required on the discharge pipe near the Municipal Remediation Industrial wellhead. Groundwater Monitoring GROUNDWATER MONITORING Dewatering · · · · · · · Other · · · · · · · · · **PIEZOMETERS** DRILLING METHOD: placed by tremie. Mud Rotary - Air Rotary -Hollow Stem Auger - M Cable Tool Direct Push · · Other practicable or 20 feet. DRILLING COMPANY HEW D. DN lling DRILLER'S LICENSE NO. 60 4987 shall be used in place of compacted cuttings. WELL PROJECTS Ē. Drill Hole Diameter Maximum tremie. Casing Diameter_ Depth WELL DESTRUCTION. See attached. Surface Seal Depth Number SOIL BORINGS Number of Borings soil and water laboratory analysis results. Maximum 17 6 ~ 20 Depth ESTIMATED STARTING DATE ESTIMATED COMPLETION DATE Approved I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68. APPLICANT'S Date // - /3 - 06 SIGNATURE

FOR OFFICE USE

PERMIT NUMBER	26203		
WELL NUMBER		 	
APN			

- Zone 7 office five days prior to proposed starting date.
- Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Dritlers Report or equivalent for well projects or drilling logs and
- Permit is void if project not begun within 90 days of approval
- Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth
- 3. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements.
- **WELLS** INCLUDING
 - 1. Minimum surface seal thickness is two inches of cement grout
 - Minimum seal depth for monitoring wells is the maximum depth
- GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout
- CATHODIC. Fill hole above anode zone with concrete placed by
 - SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after the completion of permitted work the well installation report including all

APPENDIX C

Selected Tables and Figure from the Draft Phase II Environmental Site Assessment Report by ENV (ENV 2006)

TABLE 1 SUMMARY OF PRELIMINARY ANALYTICAL RESULTS - SOIL

Hanson Aggregates Site 3000 Busch Road Pleasanton, California

																					- 70.00	anion, Ci	injornia .																							
1		Conce	entration (r	mg/kg)		Τ	Γ	Т			VOC	's			Co	ncentratio	n (μg/kg)					SVOC	20														ion (mg/k	(g)								
					PCBs	Organo- chlorine Pesticides	Chlorinate Herbicide	ed s	BTEX ((mg/kg)		.3	Other		_				P	olycyclic A	Aromatic I		ons (PAHs	5)				Other							Me	etals (mg	g/kg)	T						-		-
		TPH-d (C ₁₀ -C ₂₈)	TPH-mo (C ₂₄ -C ₃₆)	PH-g (C ₅ -C ₁₂)	Individual Analytes Listed on Analytical Report repared by	Individual Analytes Listed on	Individua Analytes Listed on Analytica Report prepared by	Berzene	Toluene	Ethylbenzene	Xylenes (total)	n-Butylbenzene sec-Butylbenzene	Sopropylbenzene	N-Propylbenzene	Other (in U.S. EPA 8260 ist by GC/MS)	Acenaphthene	Acenaphthylene	Fluorene	Phenanthrene	Benzo (a) anthracene	Chrysene	Benzo (a) pyrene	Benzo (b) flouranthene Benzo (k) fluoranthene	Benzo (g,h,i) perylene	Indeno (1,2,3-cd) pyrene	Flouranthene	Dibenz (a,h) anthracene	SVOCs	Other SVOCs (in U.S. EPA 270C List by GC/MS)	Silver	Barium	Beryllium	Cadmium	Chromium	Hexavalent Chromium	Copper	Magnessum Molybdenum	Vickel	ead	Antimony	hallíum	/anadium	ercury (mg/kg)		Citrate (mg	Ckei
Sample ID Sample Date	e Sample Depth (ft)					,	,								0 =1														[O &]				0 0	U	;	0 2			1	A S	T	> 1	Σ	- V	<u>ک</u> ک	pH
API-1 9/26/04 API-8 9/26/04 API-8 9/26/06 API-11 9/26/06 API-8 9/26/06 API-11 9/26/06 API-8 9/26/06 API-9 9/26/06 API-13 9/26/06 API-13 9/26/06 API-13 9/26/06 API-13 9/26/06 API-15 9/26/06 API-15 9/26/06 API-15 9/27/06 CBI-15 9/27/06 CBI-16 9/27/06 COMPSPI-1 9/1/06 CONCRETE 10/11/06 CONCRETE 10/11/06 CSI-12 9/27/06 CSI-12 9/27/06 CSI-13 9/27/06 CSI-14 9/27/06 CSI-15 9/27/06 CSI-19 9/28/06 EBI-19 9/28/06 EBI-19 9/28/06 EBI-19 9/28/06 EBI-19 9/28/06 EBI-19 9/28/06 EBI-19 9/29/06 EBI-19 9/29/06 EBI-19 9/29/06 EBI-14 9/29/06 EBI-19 9/29/06 EBI-14 9/29/06 EBI-19 10/2/06	(ft) 6 1 6 8 6 1 6 8 6 8 6 13 6 2 6 8 6 13 6 9-10 6 8 6 15 6 0.5 6 8 6 15 7 0.5 7 0.5 7 0.5 7 0.5 8 8 8 6 15 8 8 7 15 8 8 8 15 8 9-10 8	4.4 <0.99 9.0 3.1 1.5 1.6 5600 <1.0 na na na co.99 sp sp	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	na na na c0.22 c0.25	na n	na n	na n	 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0049 <0.0048 <0.0048 <0.0049 na na na na na na na na 	na n	<0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0040 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0048 < <0.0048 < <0.0048 < <0.0048 < <0.0048 < <0.0049 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < <0.0050 < 0.0050 < <0.0050 < 0.0050 < <0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050 < 0.0050	-0.010 r -0.010 r -0.010 r -0.0099 r 0.0098 r 0.0098 r 0.0095 r 0.0096 r 0.0095 r 0.0098 r na n	a na	na	i na	na <5.0 na <4.9 na <5.0 na <5.0 na <5.0 na <5.0 na <5.0 na <5.0 na na <4.9 na na na na	na n	<4.9 <5.0 <5.0 <4.9 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <nd><5.0 <nd><nd><nd><nd><nd><nd><nd><nd><nd><nd></nd></nd></nd></nd></nd></nd></nd></nd></nd></nd></nd>	<4.9 < <4.9 <5.0 <5.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0 <6.0	5.0 <5.0 5.0 <5.0 4.9 <4.9 5.0 <5.0 5.0 <5.0 5.0 <5.0 5.0 <5.0 5.0 <5.0 5.0 <5.0 ana	<4.9 <5.0 <5.0 <4.9 <5.0 <5.0 <5.0 <4.9 <5.0 <5.0 <5.0 an an an a	na	na r	0 <5.0 0 <5.0 9 <4.9 0 <5.0 0 <5.0 0 <5.0 1 <5.0 0 <5.0 0 <5.0 1 <5.0	na n	na n	na n	a na	na n	ma m	a na	na n	na n	a na	na na na na na na na na	ma	na	na n	na in	na r	na n	na n	na n na na na na <th>a na a na</th> <th>na na n</th> <th>na na</th> <th>a na a na</th>	a na	na n	na na	a na
EB7-6 10/2/06 EB8-1 10/2/06 EB8-6 10/2/06 EB8-6 10/2/06 EB9-5 10/9/06 EB9-10 10/9/06 EB9-20 10/9/06 EB10-5 10/9/06 EB10-25 10/9/06 EB11-20 10/9/06 EB11-20 10/9/06 EB12-20 10/9/06	15 2 6 15 5 10 20 5 10 25 5	<pre><1.0 2.5 <0.99 <0.99 3.5 1.1 1.9 1.7 <1.0 1.3 <1.0 <1.0</pre>		0.25 0.24 0.25 0.24 0.25 0.24 na na na na na na 0.24	na n	na n	na n	<0.0049 <0.0048 <0.0050 <0.0049 na na na na na ona ona ona ona ona ona	<0.0049 < 0.0048 < 0.0050 < 0.0049 < na na na na na na na na (0.0049 < 0.0049 <	<0.0049 <0<0.0048 <0<0.0050 <0<0.0049 <0<0.00	0.0098 n 0.0096 n 0.0099 n 0.0097 n na	a na	na	na n	na n	na n	na n	na n na n na n na n na n na n na n na n	na n	na n	na n	na n	na n	na n	na	a na	na n	na	na n	na	na n	na n	na n	na n	na na na na na na na na na	na n	na n	na n	na n	na n	na n	na n	na n	na n na n na n na n na n na n na n na n	a na na a na a na a na a na a	na n

TABLE 1 SUMMARY OF PRELIMINARY ANALYTICAL RESULTS - SOIL

Hanson Aggregates Site 3000 Busch Road Pleasanton, California

														`					40000000																			1 7
	Concent	ration (mg/kg)	1	T 0====	T			V	OCs			Concent	ration (μg/k	(g)				SVOCs						-						entration						-		
			PCBs	Organo- chlorine Pesticides	Chlorinated Herbicides		BTEX (mg/kg)			Other			4-1-1-1		P	olycyclic Are			(PAHs)				Other SVOCs						IVICU	us (mg/kg						-		
	TPH-d (C ₁₀ -C ₂₈)	TPH-mo (C ₂₄ -C ₃₆) TPH-g (C ₅ -C ₁₂)	Individual Analytes Listed on Analytical Report prepared by laboratory	Analytes Listed on Analytical Report prepared by	Analytes Listed on Analytical Report	Benzene	Toluene	Xylenes (total)	n-Butylbenzene	sec-butyloenzene Isopropylbenzene Naphthalene	N-Propylbenzene Other (in U.S. EPA 8260	list by GC/MS) Naphthalene	Acenaphthene Acenaphthylene	Fluorene	Phenanthrene	Benzo (a) anthracene	Chrysene	Benzo (a) pyrene Benzo (b) flouranthene	Benzo (k) fluoranthene	Benzo (g,h,i) perylene	Indeno (1,2,3-cd) pyrene Flouranthene	Pyrene	aceie	Other SVOCs (in U.S. EPA 8270C List by GC/MS)	Arsenic	Barium Beryllium	Cadmium	Chromium	Hexavalent Chromium	Magnesium	Molybdenum Nickel	Lead	Antimony	Thallium	Vanadium	Mercury (mg/kg)	Citrate (mg/l	pH (pH units)
Sample ID Sample D	ample Depth (ft)																											200										
EB13-15 10/9/06 EB13-20 10/9/06 EB14@2' 10/19/06 EB-14@15' 10/19/06 EB-14@15' 10/19/06 EB-14@33.5' 10/19/06 EB-15@6' 10/19/06 EB-15@6' 10/19/06 EB-15@6' 10/19/06 EB-15@6' 10/19/06 EB-15@6' 10/19/06 EB-16@5' 10/20/06 EB-16@5' 10/20/06 EB-16@5' 10/20/06 EB-16@5' 10/20/06 EB-16@16.5'	(fi) 15	Section Sect	na n	na n	na n	<0.0050 < < < < < < < < < < < < < < < < < <	0.0050 0.005 0.0044 0.004 0.0047 0.004 0.0048 0.004 0.0049 0.004 0.0049 0.004 0.0049 0.004 0.0049 0.004 0.0048 0.004 0.0048 0.004 0.0048 0.004 0.0048 0.004 0.0049 0.005 0.0050 0.005 0.0050 0.005 0.0049 0.004 0.0050 0.005 0.0050 0.005 0.0049 0.004 0.0050 0.005 0.0050 0.0055 0.0050 0.0055 0.0050 0.0055 0.0050 0.0055 0.0050 0.0055 0.0050 0.0055 0.0050 0.0055	50		1	na n	a na	na n	ma m	na n.	a na	na r na r na	na n	na n	na r na r na r na r 1000 <2 na r na r 1000 l 2 na r	na n	ma	a na	na	98 3.3 95 1.8 95 1.8 96 27 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	na n	na 1 1 1 1 1 1 1 1 1		na n	na na na	na na na na na na velose 52 velose 53 velose 64 na velose 65 na velose	na n	na na na na na c2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <	na	9 19 48 32 44 44 45 46 46 44 4 33 44 46 46 45 46 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	na n	na na na <	na n
EB32-40 10/26/06 4 EB33-40 10/26/06 4 EB33-40 10/26/06 4 EB33-40 10/26/06 4 EB34-35 10/26/06 4 LS-1 9/29/06 LS-1 9/29/06 LS-15 9/29/06 LS-15 9/28/06 PL-2 9/28/06 PL-16 9/28/06 PL-16 9/28/06 PO1-2 9/27/06 PO1-2 9/27/06 PO2-2 9/27/06 PO2-3 9/27/06 PO2-8 9/27/06 1 PT-0.5 9/28/06 1 RM-1 9/28/06 1 RM-2 9/28/06 1 RM-1 9/28/06 1 RM-1 9/28/06 1 RM-1 9/28/06 1	40 <0.99 40 13 35 <0.98 40 <0.98 1 24 8 <1.0 15 19 2 <0.99 8 <0.99 6 <0.99 10 <0.99 11 24 3 8 <0.99 47 2 43 8 <0.99 5 0.99 6 0.99 7 2 43 8 2.2 8 2.2 15 <0.99 9 0.5 5 na 5 na 7 2 2.9 8 1.6 15 15	 <50 < 0.24 <50 < 0.29 <10.29 <10.24 <10.29 <10.24 <10.2	na	na n	na n	<0.0049 <0.0049 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.0047 <0.004	0.0049	9 <0.0098 9 <0.0098 7 <0.0095 7 <0.0093 na	na ni na na	a na na na na	ma	na	na n	na na na na na na na ND	na na nD ND ND ND ND ND ND ND na na na na	na n	na	a na	na na na na na na ND ND ND ND ND ND ND na	Na	a na b ND D ND	Na	na n	na	9 3.4 i	87	 <0.50 8 <0.49 7 <0.49 12 <0.48 11 na na n	3 43 9 40 1 53 6 63 1 na 1 na 1 na 1 na 1 na 1 na 1 na 1 na	na 18 na 25 na 24 na n	na n	CO.95 73 na	4.1 <2 4.6 <2 5.8 <1 na n	2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <	 <0.98 22 <0.98 26 <0.95 26 <0.95 26 <0.95 26 <0.97 <0.97	32 <0 33 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0 41 <0	.050 na .048 n	na	na n

TABLE 1 SUMMARY OF PRELIMINARY ANALYTICAL RESULTS - SOIL

Hanson Aggregates Site

3000 Busch Road Pleasanton, California

1			Concent	ration (mg/kg	(,)	_		_							Con	centration (μg/kg)																		Concer	ntration (n	ng/kg)								T
						Organo-	Chlorinoto	ad			VO	Cs										SVOCs														(mg/kg)	8 - 67						-		- 1 /
1					PCBs	chlorine Pesticides	Herbicides	es es	BTEX	(mg/kg)			Othe						Polyc	velie Are	omatic Hv	drocarbons	s (PAHs)					Other								(118/118)							-		$ ^{\prime}$
						1 10110100	-	+	_				T T		Q										o l			SVOCs															STL	Citrate (m	g/L)
			TPH-d (C ₁₀ -C ₂₈)	TPH-mo (C ₂₄ -C ₃₆) TPH-g (C ₅ -C ₁₂)	Individua Analytes Listed or Analytica Report prepared b laborator	Analytes Listed on Analytica Report py prepared by	Analytes Listed on Analytical Report prepared by	1	Toluene	Ethylbenzene	Xylenes (total)	n-Butylbenzene sec-Butylbenzene	Isopropylbenzene	N-Propylbenzene	Other (m U.S. EPA 8260 list by GC/MS) Naphthalene	Acenaphthene	Acenaphthylene	Phenanthrene	Anthracene	Berzo (a) anthracene	Chrysene	Benzo (a) pyrene Benzo (b) flouranthene	Benzo (k) fluoranthene	Benzo (g,h,i) perylene	Indeno (1,2,3-cd) pyren	Flouranthene	Dibenz (a,h) anthracene	Phenol Other SVOCs (in U.S. E 8270C List by GC/MS)	Silver	Arsenic	Barium	Cadmium	Cobalt	Chromium Hexavalent Chromiun	Copper	Magnesium	Molybdenum	Lead	Antimony	Selenium	Vanadium	Zinc	Mercury (mg/kg) Arsenic	Copper	Nickei oH (pH units)
Sample ID		Sample Depth (ft)																																											
RO-C	9/29/06	0.5		61 na	na	na	na	na	na	na	na	na na	na r	a na	na na	na	na n	a na	a na	na	na n	na na	na	na	na n	na na	na	na na	na	na	na na	a na	na	no ==				2 1 20							$\perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp$
RP-A	9/29/06	0.5		<50 na	na	na	na	na	na	na	na	na na	na r	а па	na na	na	na n	a na	na na	na	na n	na na	na	na	na n	na na	na	na na	<0.96		140 <0.4	-	****	48 na	7.4	na 2000	na n	a na	na na	na na	na		na na		
	9/29/06	0.5	-	<49 na	na	na	na	na	na	na	na	na na	na r	a na	na na	na	na n	a na	na na	na	na n	a na	na	na	na n	na na	na	na na	<1.0	3.9 1	130 <0	50 <0.40	10	40 Ha	27	9700	0.96 8	0.5	<1.9	<1.9 <0.96	0 22		.058 na		a na
	9/29/06	0.5		<50 na	na	na	na	na	na	na	na	na na	na r	a na	na na	na	na na	a na	na na	na	na n	na na	na	na	na n	na na	na	na na	<0.95	7.6 1	160 0.6	55 <0.48	30	120 na	41	64000	1.0 /41	0.3	<1.0	2.0 <1.0	5 44	47 <0.0			
	0/18/06	3.5		na na	na	na	na	na	na	na	na	na na	na n	a na	na na	na	na na	a na	na na	na	na n	a na	na	na	na n	na na	na	na na	<0.99	4.2 1	60 <0.9	99 0.69	11	57 <0.80	63	na <	0.00 7	21.0	20	<2.0 <0.99	9 32	200 -0.0	0.050 na	-	a na
	0/18/06	0.5		na na	na	na	na	na	na	na	na	na na	na n	a na	na na	na	na na	a na	na na	na	na n	a na	na	na	na n	na na	na	na na	< 0.99	3.6 1	100 <0.5	50 <0.50	8.0	43 <0.80	25	na <	0.99 50	9.8		<2.0 <0.99	0 21	76 0.0			a na
				na na	na	na	na	na	na	na	na	na na	na n	a na	na na	na	na na	a na	na na	na	na n	a na	na	na	na n	na na	na	na na	<1.0	3.5 1	10 <0.5	52 <0.52	9.1	44 <0.80	23	na <	1.0 60	7.4	<21 <	2.0 <0.99	0 22	52 0.0		na n	
				na na	na	na	na	na	na	na	na	na na	na n	a na	na na	na	na na	a na	ı na	na	na n	a na	na	na	na n	na na	na	na na	< 0.99	4.3 1	50 <0.5	50 < 0.50	12	58 <0.80	35	na <	0.99 80) 11	<2.0 <	<2.0 <0.99	9 29	70 0.0		na n	
	0/18/06	0.5	3000	na na	na	na	na	na	na	na	na	na na	na n	a na	na na	na	na na	a na	na	na	na n	a na	na	na	na n	na na	na	na na	< 0.96	4.9 1	50 <0.4	48 < 0.48	12	56 <0.80	32	na <	0.96 78	8 89	<1.9 <	<1.9 <0.96	6 20	56 0.0	070	na n	
	0/18/06	0.5	The second second	na na	na	na	na	na	na	na	na	na na	na n	a na	na na	na	na na	a na	na	na	na n	a na	na	na	na n	na na	na	na na	< 0.95	3.2	85 <0.4	48 < 0.48	5.8	30 <0.80	26	na <	0.95	12	<1.9	<1.9 <0.90	5 16	130 0.0		na n	
	9/29/06	0.5		560 na	<50	ND	ND	na	na	na	na	na na	na n	a na	na na	na	na na	a na	na	na	na n	a na	na	na	na na	na na	na	na na	<1.0	3.2 1	50 <0.5	50 < 0.50	8.8	38 na	28	7800	2.0 55	8.0	<20 <	20 <10	26	60 0.1	0.11	na n	
RR-2 RR3-2.5	10/9/06	0.5		55 na	<50	ND	ND	na	na	na	na	na na	na n	a na	na na	na	na na	na na	na	na	na n	a na	na	na	na na	ia na	na	na na	<0.98	4.6 1	30 <0.4	49 < 0.49	7.9	31 na	24	8000 <	0.98 49	6.0	<2.0 <	2.0 <0.98	8 25	39 <0.0	120	na n	
	0/11/06	2.5		na na	na	ND	ND	na	na	na	na	na na	na n	a na	na na	na	na na	na na	na	na	na n	a na	na	na	na na	a na	na	na na	< 0.96	3.7 1	10 <0.4	48 < 0.48	9.1	36 na	42	na <	0.96 46	4.7	<1.9 <	<1.9 <0.96	6 26	39 <0.0	1000	na n	
	9/26/06	0.5		na na 110 na	na	na	na	na	na	na	na	na na	na n	a na	na na	na	na na	па	na	na	na n	a na	na	na	na na	a na	na	na p	na	na i	na na	na na	na	na na	na	na	na na	na	na	na na	na	na n	na na	na na	-
	9/26/06	0		<50 na	na	na	na	na	na	na	na	na na	na n	a na	na na	na	na na	na na	na	na	na n	a na	na	na	na na	a na	na	na na	na	na 1	na na	na na	na	na na	na	na	na na	na	na	na na	na	na na		na na	-
	9/26/06	15		<50 na	na	na	na	na	na	na	na	na na	na n	a na	na na	na	na na	na na	na	na	na n	a na	na	na	na na	a na	na	na na	na	na i	na na	na na	na	na na	na	na	na na	na	na	na na	na	na n	na na	na na	
	9/26/06	5		150 na	na na	na	na	na	na	na	na	na na	na n	a na	na na	na	na na	na	na	na	na n	a na	na	na	na na		na	na na	na	na r	na na	na na	na	na na	na	na	na na	na	na	na na	na	na na	na na	na na	
	9/26/06	8		220 na	na	na na	na na	na na	na na	na na	na na	na na	na n	a na	na na	na	na na	na na	na	na	na n	a na	na	na	na na	- 110	na	na na	na	na r	na na	na	na	na na	na	na	na na	na	na	na na	na	na n	ia na	na na	
	9/26/06	15		<50 na	na	na	na	na	na	na na	na na	na na	na n	i na	na na	na	na na	na	na	na	na na	a na	na	na	na na		na	na na	na	na r	na na	na	na	na na	na	na	na na	na	na i	na na	na	na na	a na	na na	a na
	9/26/06		1000 1		na	na	na	na	na	na na		na na	na n	i na	na na	na	na na	na	na	na	na na	a na	na	na	na na		na	na na	na	na r	na na	na	na	na na	na	na	na na	na	na i	na na	na	na na	ia na	na na	na
	9/26/06			130 na	na	na	na	na	na	na	na na	na na	na n	i na	na 1300	<250 -	250 980	140	0 ND	360	630 <2	50 <250	250	<250 <	250 <25		<250	na na	na	na r	na na	na	na	na na	na	na i	na na	na	na i	na na	na	na na	na na	na na	na
	9/26/06			50 na	na	na	na	na	na	na		na na	na n	na	na na	na	na na	na	na	na	na na	a na	na	na i	na na	a na	na	na na	na	na r	na na	na	na	na na	na	na i	na na	na	na i	na na	na	na na	na na	na na	na
	9/26/06			50 na	na	na	na na	na na	na na	na na	na na	na na	na n	na na	na na	na	na na	na	na	na	na na	a na	na	na i	na na		na	na na	na	na r	na na	na	na	na na	na	na i	na na	na	na i	na na	na	na na	a na	na na	na
	9/26/06			50 na	na	na	na	na	na na	na na		na na	na n	na	na na	na	na na	na	na	na	na na	a na	na	na i	na na	1144	na	na na	na	na n	na na	na	na	na na	na	na i	na na	na	na i	na na	na	na na	na na	na na	na
TRANS-A	0/27/06			50 na	<50	na	na	na	na	na	na na	na na	na na	na	na na	na	na na	na	na	na	na na	a na	па	na 1	na na	4 1141	na	na na	na	na n	na na	na	na	na na	na	na i	na na	na	na i	na na	na	na na	na na	na na	na
	-			50 na	<250	na	na	na	na	na na		na na	na na	na	na na	na	na na	na	na	па	na na	na na	na	na 1	na na	a na	na	na na	na	1144	na na	na	na	na na	na	na i	na na	na	na r	na na	na	na na	na na	na na	
				50 na	<50	na	na	na	na	na	na na	na na	na na	na	na na	na	na na	na	na	na	na na	na na	na	na 1	na na		na	na na	na	na n	1141	na	na	na na	na	na i	na na	na	na r	na na	na	na na	na na	na na	na
				50 na	<50	na	na	na	na	na		na na	na na	na	na na	na na	na na	113	na	na	na na	na na	na	na i	na na		na	na na		na n	110	na	na	na na	na	na r	na na	na	na r	na na	na	na na	ia na	na na	na
		0.5		60 na	<50	na	na	na	na	na		na na	na na	na	na na	na	na na	na pa	na	na	na na	na na	na	na i	na na		na	na na		na n	1100	na	na	na na	na	na r	na na	na	na r	na na	na	na na	a na	na na	na
				na <0.25		na	na			<0.0050		na na	na na	na	na na	na	na na	na	na		na na	na na	na				na	na na		na n			na	na na	na	na r	na na	na	na r	na na		na na		na na	na
			<0.99 <		na	na	na	-	na			na na	****	7765		3.44			na				-			na na	na		<0.99			0 <0.50	140	33 na	25	na <0	.99 51	5.8		2.0 <0.99	22	47 <0.04	049 na	na na	na
					-	4				144	200		116	710	1 114	THE .	ina IId	114	11d	11d	na na	l IId	III	ıla I	на па	na	na	na na	na	na n	a na	na	na	na na	na	na r	na na	na	na n	na na	na	na na	a na	na na	na

Abbreviations/Acronyms:

na - not analyzed μg/kg- micrograms per kilogram mg/kg - milligrams per kilogram

ND- not detected at or above the

laboratory reporting limit
AP - Asphalt Plant
CB - Concrete Batch Plant
CPI - Corrugated Pipe Interior

COMP - Slag Stockpile Composite

Sample CR - Crusher CS - Contaminated Soil Area

/mass spectrometry

GC/MS - gas chromatography

PO - Paving Oil PT - Plastic Tanks (near CB) RM- Rod Mill EB - Environmental Boring

RO - Runoff (Vulcan) RP - Retention Pond

LS - Lube Shed

p - pending analysis

PL - Plant Lube Shed

RR - Railroad
SLAG - Slag Stockpile
SR- Spray Rack
TPH-d - Total Petroleum Hydrocarbons, diesel range
TPH-d - Total Petroleum Hydrocarbons,

motor oil range
TPH-g - Total Petroleum Hydrocarbons,
gasoline range

TRANS - transformer WO - Waste Oil WH - Warehouse

BTEX - benzene, toluene, ethylbenzene, xylenes PCBs - Polychlorinated Biphenyls SVOCs - Semi-volatile Organic Compounds VOCs - Volatile Organic Compounds

DRAFT

			Concer	tration (μ	g/L)									Cone	centration	μg/L)									_	T									Con	centration	n (mg/L)								
			Total	Petroleu	ım				V	'OCs								Polycy	clic Arc	matic	Hydroc	arbons (PAHs)													Metals									
				rocarbon (TPH)	ns	ВТ	EX (μg	/L)																																					
		Sample	TPH-d (C ₁₀ -C ₂₈)	-то (С	TPH-g (C ₅ -C ₁₂)	Toluene	Ethy benzene	Xvlenes	Acetone	Benzene	Chlorobenzene	1,4-Dichlorobenzene	4-Isopropyltoluene Toluene	Other (in U.S. EPA 8260 list by GC/MS)	Naphthalene	Acenaphthene	Fluorene	Phenanthrene	Anthracene Benzo (a) anthracene	Chrysene	Benzo (a) pyrene	Benzo (k) fluoranthene	Benzo (g,h,i) perylene	Indeno (1,2,3-cd) pyrene	Pyrene	Dibenz (a,h) anthracene	Silver	Arsenic	Barium	Beryllium	Cadmium	Cobalt	Chromium	Hexavalent Chromium	Copper	Magnesium	Molybdenum	Nickel	Lead	Antimony	Selenium	Thallium	Vanadium	Zinc	Mercury (mg/kg)
Sample ID		(ft bgs)																																											
EB1-W(27')	9/28/06	27	<50	<500 <	100 <1	.0 <1.	.0 <1.	.0 <1.	.0 na	na	na	na 1	na na	na	na	na na	na	na 1	na na	na	na 1	a na	na	na n	a na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
EB2-W (28')	9/29/06	28	79	<500 <	50 <0.	50 <0.:	50 <0.:	50 <1.	.0 na	na	na	na i	na na	na	na	na na	na	na 1	na na	na	na 1	a na	na	na n	a na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
EB-15W@55'	10/19/06	55	<50	<500 <	50 <0.	50 <0.5	50 <0.	50 <1.	.0 na	na	na	na i	na na	na	na	na na	na	na r	na na	na	na I	a na	na	na n	a na	na	<0.0050	< 0.0050	0.36	< 0.0050	< 0.0020	0.0071	0.0068	< 0.010	<0.0050	na	< 0.0050	0.0083	< 0.0050	<0.0050	<0.0050	<0.0050	0.0082	<0.010	<0.00020
EB-16W@55'	10/20/06	55	<50	<500 <	50 <0.	50 <0.5	50 <0.5	50 <1.	.0 na	na	na	na 1	na na	na	na	na na	na	na r	na na	na	na r	a na	na	na n	a na	na	<0.0050	<0.0050	0.67	<0.0050	< 0.0020	0.010	0.0052	< 0.010	0.0086	na	0.0065	0.0140	0.0076	<0.0050	<0.0050	<0.0050	0.0076		<0.00020
EB-22W@60'	10/20/06	60	<50	<500 <	50 <0.	50 <0.5	50 <0.5	50 <1.	0 NE	ND	ND	ND N	ND NE	ND	ND N	ND ND	ND	ND N	ID NE	ND	ND N	D ND	ND	ND N	D ND	ND -	<0.0050	<0.0050	0.39	< 0.0050	< 0.0020	<0.0050	<0.0050	<0.010	<0.0050	na	< 0.0050	0.0055	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050		<0.00020
EB29W-52'	10/25/06	52	150	850 <	50 <0	50 <0.5	50 <0.5	50 <1.	0 <20	0 <2.0	<2.0	<2.0 <	4.0 <2.	ND	na i	na na	na	na r	na na	na	na r	a na	na	na n	a na	na -	<0.0050	<0.0050	0.10	< 0.0050	<0.0020	<0.0050	0.99	na	<0.0050	na	0.053	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.016	0.078	na
LAKE-H	9/29/06	-	na	na r	na na	a na	na na	na na	na	na	na	na r	na na	na	na i	na na	na	na r	na na	na	na r	a na	na	na n	a na	na -	<0.0050	<0.0050	0.14	<0.0050	< 0.0020	<0.0050	<0.0050	na	<0.0050	na	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050		<0.00020
LAKE-I	9/29/06	-	na	na r	na na	a na	na	na na	na	na	na	na r	na na	na	na 1	na na	na	na r	na na	na	na r	a na	na	na na	a na	na -	<0.0050	<0.0050	0.15	<0.0050	<0.0020	<0.0050	<0.0050	na	<0.0050	na	<0.0050	<0.0050	-	<0.0050	<0.0050	<0.0050	<0.0050		<0.00020
SAN-1	10/11/06	6	850	1000 1	70 <0.:	50 <0.5	50 27	<1.	0 81	<0.50	<0.50	<0.50 5	.4 22	ND	na i	na na	na	na n	na na	na	na r	a na	na	na na	a na	na ·	<0.0050	<0.0050	0.083	<0.0050	<0.0020	<0.0050	<0.0050	na	0.022	na	<0.0050	<0.0050		0.0056		<0.0050	<0.0050		<0.00020
SAN-2	10/11/06	6	80	<500 <	50 1.6	6 <0.5	50 2.0	0 <1.	0 <50	1.5	8.6	1.1 <	1.0 1.5	ND	na 1	na na	na	na n	na na	na	na r	a na	na	na na	a na	na -	<0.0050	<0.0050	0.059	<0.0050	<0.0020	<0.0050	<0.0050	na	<0.0050	na	<0.0050	<0.0050	-	0.0052	<0.0050	<0.0050	<0.0050	0.043	<0.00020

Abbreviations/Acronyms:

na - not analyzed

na - ποι analyzeu
<## - not detected at or above the laboratory reporting limit (shown)
μg/kg- micrograms per kilogram
mg/l - milligrams per liter
ND - not detected at or above the laboratory reporting limit

GC/MS - gas chromatography/mass spectrometry BTEX- benzene, toluene, ethylbenzene, xylenes VOCs - Volatile Organic Compounds

Table 2 of 2

APPENDIX D

Lithologic Soil Boring Logs

ect Number: 0	01-0956		Page of of
ect Name	911000	7.500	Date:
ELL CONSTRUCT	ION		SAMPLE DATA
	ime of Graphic Cample Log	Description	Sample Number Interval Penetratio Rate (blows/ft.)
		Dry poorly souted angular grand	40 to 134 314
2-	wear.	sing cy (Cy olive Soum (257)	141, BAMP; NR
B	reholo	organic odor C G12-7 1/21	
		cular change to very bark gray (2.5)	96), must, 8-1-10 B
	wint_		— No
		colon change to DARIC yellowish slown below 12th Feet	(10712 4K)
	-	SANDY SULT (M.C.) DAVIE Yellowith 81	NA
			B-1-18 - BH
20///	Change, Eller Special Cong.	GANNELLE SAND (SW) dive (54 4/3) &V SAND, POUR SOTTON of BOVING @ 2	y, Five graines
		10011 any 0001NJ (2)	o Freef _
	·		<u> </u>
			-
	_		
			cation Schematic
ng/Well No.: Bー(drilled: W/(4/6 ng company: ソゼい	96 Sampling	thod: Direct Pu[] PID brok Method:	el n N indica
Staff: LCL	and the second second	= No recovery	· · · · · · · · · · · · · · · · · · ·

Project Number:_	001-0	95 -00		Page	of	<u>.</u>
Project Name:	HANSON	Plesanton		Date:\	V13/06	<u></u>
WELL CONSTR	RUCTION		LITHOLOGY		SAMPLE DA	NTA
Depth, feet	Time of Gra ↑ Sample L	phic og	Description	· · ·	Sample Number Interval	Penetration Rate (blows/ft.) PrD/ FID (ppm)
- - - - - - - -	B-INON B) Amolt Borehy	514	it (ML) Light yellow tel ROUMRD gradul 44 CL DAME yellow BY 500 - plancin, 5000			% (% 0-2
	- Tuong	Color change m	o DARK SHOWN (104R (SW) DARK SHOWN (10	3/3) below 7)	2001	0.3 (0.3 4 0.1
		and the last to	e young DALL gray	(2.54 N3/)		03 02 3 0-1
\\ \frac{1}{2} \\ \fr		SAND (SW) D medium to cons	iank hioun (loya 3/3) m your ares same, moder	oret, wall z	- - - -	0.2
20		Bolton	of Boring C 20	•		ų
-					_	
			Boring/Well Loc	ation Schemati	lc July	
Boring/Well No.: B Date drilled: 11/1 Drilling company: H LFR Staff: LPU	13/06 San 15W Han	ing method: Hollow Stempling Method: Split	Augy Ap-2	08-2		N
Reviewed by:	3 +	Signed:			Date:	

LEVINE FRICKE

Project Number:	901-0°	1867-00			Page	of	
Project Name:	HANSON	MOCAST	*		Date: 1	107/06	<u>.</u>
WELL CONSTRU	JCTION		LITHOLOG	GY		SAMPLE [DATA
Depth, feet	Time of Graphic Sample Log		Descri	ption		Sample Number Interval	Penetration Rate (blows/ ft.) PID/ FID (ppm)
	2-INW	SANDY SILT (FILLY GIATINAD	sand, mino	ofter slow	1 (2.54 6/4 hattyuru	DRY	0-1
	Bovehor	Sector Clay (CL) DAM BLOWN	n (10/123/2) M	8-5 =3 -8		0-1 0-1
_,		petulum H	Janan C	obor below	64 Feets	3-7	6 5
<u> </u>		clayer sict (me) Very DANK	cdian (s.zh)	B-3-10		457
		sicry UM (c	of Dankgray	(cley N4/) movir, w.		31.
_ 5		Color CHANGE	(CL) DANK 4	ellowisher	< (10-12 4/5)		ivi o ,i
_		1 mars 1	whim phatico	ς,	3-3-	19 12	0.) N.R.
		GRAVE (Ly SI granto BAND 1440 DA.	Button o	2 por Ni	ar grand up. Q 20 Fe	eet	
-				•			
			•			_	
			Boring	g/Well Locatio	on Schematic	-	
Boring/Well No.: B Date drilled: \\ Drilling company: \\ LFR Staff: \LP(19 06 Sampling Hammer v	ethod: Dived RSY Method: Veight and size:					N

_		Sample Da	ıta		LEVINE • FI	RICKE
Project Number:_		9567-00		Page	of [
roject Name:	<u> </u>	NSON RADUM		Date:	1/14/01	<u> </u>
WELL CONSTR	UCTION		LITHOLOGY		SAMPLE DA	ATA
Depth, feet	Time of Graph	ic .	Description of w		sample Jumber Amber Atterval	Penetratio Rate (blows/ft.) PtD/FID
-	Sample Log	The state of the s) Day to DAMP, For		te/	<u> ۱۳۳</u> ۲
		Sus or playedus	wonze gravel, up, I	TO 12 Dia		0.1
_]	0.2
5	2-100	- clares or CT (me)	obly, moist, cour	o B-4-	-5 POT N	(v ·)
_ /	Burelul	os plannik	Alone Day of The	ist Complex		0.2
_		soutel, sub Angula	grand of to 1 4" DIA	, si, pos-co	' — _M	'n
- 	CEMENT	Reddisy Theor				ا ہوں
<u>to</u>	J~~-	Store Clay (CI)	clause sect (me)	most, Dank		
		gray, wie plance	charges sout (med)	hourson,	10.5	25 JR
- $ / $		ODOTH TERCOMY	SILT NOT IN GRAND A	504	— h	
						14
75				8-4-	1.11	12 N
18			4. 4.			21
		Sun Sang (SM)	sangy suit (my)	B-4-	18	orl
-		moletan solan	SANDY SHIT (MY) DOWN. MAST, FINE.	graining San		
20		Somme	Carry@ 201			
		()			_ -	*
				·		
_	_				_	
				•		
. .			•		-	
				-		
	_					
	.			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
1			Boring/Well Location	n Schematic	· · · · · · · · · · · · · · · · · · ·	
Boring/Well No.: 15	1 / ~/	g method: D\ved Rusy ling Method:				(N)
Drilling company:	L	ner weight and size:				indicate
LFR Staff:	200	MR= NO Recover	y]		4	٠
viewed by:		Signed:		· · · · · · · · · · · · · · · · · · ·	Date:	
VICWELL DY.		Signed.				

OLFR

Project Numb	11		ofof
Project Name:	Hanson	Radum Site, Pleasanton	1 CA Date: 11/15/06
WELL CONS	STRUCTION	LITHOLOGY	SAMPLE DATA
Depth, feet	Time of Graph		Sample Number Interval (blows/ft.)
_]			_
9' 3/3	0940	Sand 1078 4/4 F-1	Crs Subangular 5B5-5.0 \$/3/7 0.
		Gravel, med. Sand	Crs Subangular SB5-5.0 \$/3/7 0. , silt, dry (20,65,15,0)
			. –
9, 3/2	0950	Silt loye 5/, F-C.	Les la les pallades a
0.5 3		Med sand, mo	orst (25, 15, 65, 0) 6/17/50 0
			_
14	1	1 1 1 2 2 4/ 5 0	
3/3 CS	0000	Gravel 10 y R 4/2 F-C F-Med Sand S	is Gral, SB5-15.0 6/5/17 0.
_			
			<u> </u>
Ju 3/3		Notese	
_		0 1.5' split spoon sampler	(3 x 60" brass liners)
		A - All samples colle	cted from middle liver (4.5'-5.0')
		* All lost soil assumed -	(4.5'-5.0')
_		o Drill Rig = CME-75 Ho	1 1
_			
		0 TO ≈ 16.0' bgs	
_			
1			Location Schematic
oring/Well No.: nte drilled:		method: H.S. A. Method: Split-Spoon	$\left(\begin{array}{c} \mathbf{N} \end{array} \right)$
illing company:	HEW Hammer	weight and size: 1.5	indicate
R Staff: 1/	10(0		
ewed by:		Signed:	Date

Lithology and Sample Data Project Number: 001-09567-00

11	0 1 6.1	01 1 00	Pageo	f
Project Name: Hanson	Kadum Sife	: , Pleasanton CA	Date: 11 / 15	106
WELL CONSTRUCTION		LITHOLOGY	SAMP	LE DATA
	aphic Log	Description	Sample	Interval Penetration Rate (blows/ft.)
			-	
			<u> </u>	
4° 7/ 0815	Sand 10	OYR 4/1 F-Crs Subar	nonlar 1586-5.0	19/19/15
_	G	oyk Y, F-Crs Subarravel, Med sand, soll	f, moist (20,65,15,6)	
			, -	
- 9° 6820	Silt 10	YRS/, F. Gravel, F	F. sand ISR Calo.	lin/el/ D
2/ 0820 05/3		silt, clay, moist (1		10/8/6 0.
			_	
5/ 0830	Grave 10	OVP 4/ E-C.C.	- 1cR - 5	
	F	OYR 4/, F-Crs Gra -Med Sand, SIIt, d	~ (40,20,40,0)	S/19/16 O.
			· · · · · · · · · · · · · · · · · · ·	
	Notes &			
	0 1.5° splits	poon sampler (3'x	6.0" brass liners)	: F
	- All	samples collected f	rom middle liver	
_	* All lost s	soil assured from	botton of drive	
	o Drill Rig = 1	CME-75 Hollows	Stem Angrer (HSA)	
- - .	OTO 2 6.0'	bas	·	
_ - -				
			· ·	
		Doring/Moll Location	n Sahamatia	, L
	ng method: H.S. A.	Boring/Well Locatio	. Schematic	
11 1	pling Method: Split-Spea mer weight and size: 1.5	<u>u</u> .	e to the second	indicate
viewed by:	Signed		Date	

Project Number	: 001-09 <u>5</u>	67-00	<u></u>		_ Page_	of_	<u> </u>
Project Name:	Hanson R	adum '	Sile P	leasanton C	A Date:	11/15/0	6
WELL CONST	RUCTION	gogywynnigwy a sigermae w allen wa estifian bur bullani. X CI I I I I I I I I I I I I I I I I I	LI'	THOLOGY	menne i maneramono, mano no dissilano del maneramono del m	SAMPLI	E DATA
Depth, feet	Time of Graphi Sample Log	c	D	escription		Sample	Interval Penetration Rate (blows/ft.)
						_	
- 4' 3/3		Sand	IDYR	. Wn F-Crs	Subannala	c15B7-5.0	13/12/14 0.
5.5			Gra.	. Wn F-Crs	d, silf, dr	1 (20,65,15,0)
						·. —	
9,					٠,		9/3/3
0.5 3			·	<u></u>		587-11.0	2/3/5 0.0
		5:1+	,	n/, F-Crs S. 0,90,0)	nd, moist	_	
- lu 37				,		-	
S 3/2		Gravel	10yr F-M.	4/1 F-Crs G d Sand, Silt	rael (Otzite)	1867-15.0	4/12/20 0.
			. ,		, = > 7 (10)		
				•			
\$ - 		Notes		 	· 		
]		sampler (3	"x 6.0" bro	ass livers	
		l p	- All sava	nples collecte	d from mi	ddle liver	
		<u> </u>	-/116 300	ilbies Conecio	(4,	5'-5.0')	
				assured fro			
_		O DV: II K;	9 = 67011	E-75 Hollow	2 SHEW YE	11377	
		070%	16.0' bgs				
	<u></u>						
					Y	<u>.</u>	
				Boring/Well Loc	ation Schem	atic $ o$	
Boring/Well No.: Date drilled:	. .	ethod: H.S.	A.				N
Drilling company:	HEW Hammer	weight and size:			•		Indicate
LFR Staff: 170	<u>010</u>	-					
eviewed by:		Sign	ned:			Date	

Lithology and Sample Data 001-09567-00 **Project Number:** Page. HANSON RADUM **Project Name:** Date: SAMPLE DATA LITHOLOGY WELL CONSTRUCTION Penetration Rate (blows/ ft.) Graphic Log Time of Grandly six (my/sun Gund (OM) devis show 0,0 Dany, poorly Everted Sistingula Rive Brivel, moderate Rive granes stress 2-1NOCH 0,0 DIAMERTH 00 Sub-Angella & Sub Louissed gravel (per general), Borehole U.O OΟ ں,ں M 00 CEMENT ل، ہ grout ML Elayey, Gravel (GC) olive Brown, B=B-13 = 15 mount to view, moist, provis souted From = Susangula grand up x 2" Dell 0.0 ہ ہن 0-0 NK B-4-18 & NA **Boring/Well Location Schematic** DIVERT PUSH Boring/Well No.: Drilling method: ___ n/14/06 Date drilled: Sampling Method: __ VEW Hammer weight and size: Drilling company: LFR Staff: NA: NO Recovery Date: Signed: Reviewed by:

OLFR

Project Number:	001-095			Pagec	of
Project Name:	Hanson K	adum Site, Ple	msanton CA	Date: 1/ 15	106
WELL CONST	RUCTION	LITH	OLOGY	SAMF	PLE DATA
Depth, feet	Time of Graph Sample Log		scription.	Sample Number	Interval Penetration Rate (blows/ft.)
	_				
			٠.		
_ u` _	1,	S- 1 1000 W	1/ - 1/ 1/ 0		
3/	1130	Sand 10YR4	72 F-Med >	and SB 1-5.0	8/4/5
_				<u> </u>	
—				· .	
3/	1140	Same as above (SAAB) U/F-C	s Sand. 5B 9-10.0	7/7/7 0
- 105					
				· · · · · · · · · · · · · · · · · · ·	
h' 3/		Gravel loyen	la Esta 1	1500 150	7410 0
15.8/3	1150	Gravel (France)	(Pea-Great) M	ler SB 9-15.0 ed-Crs sand,	3/6/8 D.
_		\$11+,	moist (70,20	2, 10,0) =	
	<u>-</u>			· · · · · · · · · · · · · · · · · · ·	
		Notes &	1 /2	· · · · · · · · · · · · · · · · · · ·	
		o 1.5' split spoon :	sampler (> x	od prass (mes)	
		- All samp	les collected fr	on middle liver (4.5'-5.0')	
	_	* All lost soil a	ssured from	botton of drive	
	·	O Drill Rig = CME	-75 Hollow S	tem Augur (HSA)	
_				· —	
		oTD = 16.0" bgs	<u> </u>		
			:	· — ·	
-	-			. .	
				•	
		Bo	oring/Well Location	n Schematic	Lyl-
oring/Well No.: Solution Soluti	166 Sampling	ethod: H.S. A. Method: Split-Spoon weight and size: L.S			N
riewed by:		Signed:		Dat	te:

OLFR

Project Number	<u>: 001-099</u>	67-00			Page	of		
Project Name:	Hanson 4	Radum	sile p	loasanton CA	Date:	11/15/0	6	
WELL CONST	RUCTION	atalika ka saka ata ka ka mana ka saka saka saka saka saka saka sak	LI	THOLOGY		SAMPLE	DATA	macron nes
Depth, feet	Time of Graph Sample Log		E	escription		Sample Number Interval	Penetration Rate (blows/ft.)	PID/FID.
_					·			
_					-			
7/3	1040	Sand	104	R 1/1 F-Cus el, Med Sond,	Subangular	5810-50	35/50	0
_			Gra	el, Med Sand,	silt, dry (3	50,50,00)	•	
9, 2/3					٠.			
9, 7/3	1045	Sand	loya	4/2 F. Grael	Med Sond	5 <u>810-10.0</u>	4/8/9	٥.
0.5				, moist (10, 8			- 1	
						_		
- W 7/	1050	Grael	lovo	4/0 F Com. 1	(lease 1)	CRINACA	3/2/4	,
		- Craer	Med	4/2 F Grad 1 -Crs Sond, S:	It, moist/7	0,20,10,0)	2/2/3	_(
_								
		SAAB		. W			11-1	
		Notes					2/3/3	
		a 1.5°	split spoor	sampler (3)	x 6.0" brass	s liners)		
_			- All sar	nples collected	from midd	le liver		
		* 411	lost soil	assured from	botton of	drive	.,,,,	
		o Drill A	lia = CM'	E-75 Hollow	Stem Angr	cr (HSA)		
_			-			4 1	. *	
		-	ipprox. 3	blc sample .0' above sour	randing gra	de		
		·			. 0		4	
					Y			
			<u> </u>	70 1 MAY 11 1				
Boring/Well No.:	B-10 Drilling	method: H.S.	. A.	Boring/Well Locat	ion Schemati	<u>c</u>		
Date drilled:	Sampli	ng Method: Spl	+-Spoon				N	
Prilling company:		r weight and size:	1.5				indical	te
					· · · · · · · · · · · · · · · · · · ·		-	

Project Number: 001 - 09 S6	7-00	Pageof
Project Name: Hanson Ra	adum Site, Pleasanton CA	Date:)1/15/06
WELL CONSTRUCTION	LITHOLOGY	SAMPLE DATA
Depth, Time of Graphic Log	Description	Sample Number Interval Rate (blows/ ft.) (ppm)
5 23 1320	R 1 1000 N TC C)	_
5 43 1320	Sand 10YR 4/1 F-Cvs Saba Gravel, Med Sand, silt,	ngulo SBIT-5.0 9/10/7 0.0
		— 916/6
10	SAAB w/ moth-balls like or	lor* SBIT-10.0 8/6/4 0.0
5 2/3 1335	SAAB	JSB11-15.0 2/3/2 0.0
- 193-NR		_ _ s/3/3
O/2 NR		— 2/3/3
- 34 - 1350 -	SAAB w/ slight odors/maybe from (35,50, 15,0)	<u> </u>
-5-	Notess	
	o Sare as other logs except strong from upper 15.0° bgs.	ng odors —
	-> Moth ball like odors - Na	ph thateve
	070 = 23.0° bys	
Boring/Well No.: Signature Drilling me	Boring/Well Location	Schematic
1	Method: Split - Spos ~ reight and size: 1 - S`	indicate

Lithology and Sample Data Project Number: つの つうらうナーの

Reviewed by:_

e_____Of____

roject Name:	HANSON	Da Da	ate: 11/13/66	
WELL CONSTRUCTIO	N	LITHOLOGY	SAMPLE DATA	energe .
Depth, Time	iple Log	Description	Sample Number Interval Penetration Rate (blows/ft)	PID/FID (ppm)
	30	welly sourced yourself yeard 1/4" DIA, mel 470 1"31A,	MINGR -	٥٠٧
DVAN		or CHANGE TO DARK BLOWN (7.54R3/4) L Mangrand poorly souther to 14311, For	mists-12-45	0.5 0.5
CEA	MEN	•	_	0,3
	GRA	ul (BP) dill brown (2.544/4) m I south, susangula to sis voused yoursel us	SIST 8-12-95 12 4	2.3
				0.2
			. H c	(1) 0.7
15		Button of bov. mg @ 15.		
				·
1		Boring/Well Location So	chematic	$\overline{}$
Boring/Well No.: B-12 Date drilled: \(\bullet \lambda \lambd	Sampling Method	Hullow STEM And i: CA Mood SPLAT your and size: 140 H	indic	ノト

Project Number: <i>O</i> _(ว		Page of	<u>.</u> .
Project Name: <u> Haぃ≲ぁぃ</u>	LADUK LADUK	· · · · · · · · · · · · · · · · · · ·	Date: 11/15/06	<u>.</u>
WELL CONSTRUCTION		ITHOLOGY	SAMPLE	DATA
Depth, Time of feet Sample	Graphic Log	Description	Sample Number Interval	Penetration Rate (blows/ ft.) PID/ FID (ppm)
8-100	Sury Grand (6	m) tight of our on sangular grand up		
DVAMET Parelio	poorty sorth si	is angular grand up	P TO 184 DIA	
_ //	sun chy (ch)	olive Blown	P-13-5 -	5 0
CEMEN	- mooning time a	MALMAND SAMD.	4	اک
- goot	Clayer SAND (SC)	101/w brown,	B=13-7.5 @[9)
	STITY GRAVEL (6"	solive brown, les sand, modusti n) olive brown, subangular grand	3-13-10	رن از
	14 DIA	1 0 0 Feet		24
	BUTTON of &	Tryle 9 Feet trylic 10% Fe	zeit	
		V	_ [
LY	- ;		_	· ·
				· .
			·	
-				
	-			
-				
		Boring/Well Location	Schematic	· .
Boring/Well No.: 3-13	Drilling method: Hollaw STern			$\left(\begin{array}{c} N \end{array}\right)$
Date drilled: 11/15/06 Drilling company: H5W	Sampling Method: <u>CA MoD</u> Hammer weight and size: <u>140 ^{tf}</u>			indicate
LFR Staff: LR	Transition worght and Size. 1 CV			
		- 1		

Project Number	: <u>001-04>6</u>		A))	Pageof_	
Project Name:_	Hanson K	adum Site	-, Pleasanton CA	Date: 1/ /15/0	06
WELL CONST	RUCTION		LITHOLOGY	SAMPL	E DATA
Depth, feet	Time of Graphic		Description	Sample	Interval Penetration Rate (blows/ ft.) PID/ FID
				<u> </u>	
	1420	Sand	10YR V/ F. Sabang Grand (Pea-Grand). F	Ner B14-5.0	11/10/11 0
\$5_2			Grael (Vea-Grael), i silt, dry (20,75,		
- g	1430	Grael	loyey, F. Grael, Sand, silt, dry (s	F.Med BIM-10.0	16/15/12 0
			>md, silt, dry (S	0,50,70,0)	
·	1440	SAARSmoist	(50,25,25,0)	B14-15.0	8/6/5 0.0
				. –	
· —		Notese		,	
		a 1.5' split sp	oon sampler (3 x)	60" brass liners)	
	_	- All	samples collected from eil assured from	om middle liver (4.5'-5.0')	
			ME-75 Hollow S	1	
		· TD 2 16.0	'bos	· · · · · · · · · · · ·	
				<u>-</u> 	
Boring/Well No.:	Sampling	thod: H.S.A. Method: Split-Spoor veight and size: L.S.	Boring/Well Location	n Schematic	N
LFR Staff: 176	<u>do</u>			•	

Project Number: 001-09567-00 Page_ Project Name: HANSON RADUM Date: LITHOLOGY WELL CONSTRUCTION SAMPLE DATA Graphic Log Sample comeller SICT (MC) HOUR OLIVE BURN DAMP PRIVE SU Angulan Gravel poorly Souted up to B- Now oTracto 0-0 B-15-4, Peshelat Final poorly souted sib Angular gland up to B-15=7 18 CEMBAT grost-0,0 - Button of Busines Q & Bottomb 3-15-100= Shuple At 1016 Eccti **Boring/Well Location Schematic** Boring/Well No.: B-15 Drilling method: Hollow Stem Date drilled: 11/16/66 Sampling Method: CA Mud Sol H 5 Hammer weight and size: 40 H Drilling company: HEW LFR Staff: Reviewed by: Date: Signed:

Reviewed by:

roject Number: 💍 💍	01-095	-00	Page of 7
roject Name:	HANSON T	ZADUM	Date: 11/13/06
WELL CONSTRUCT	ION	LITHOLOGY International Control of the Control of	SAMPLE DATA SAMPLE DATA
	Time of Graphic Sample Log	Description	Sample Number Interval Rate Rate Plo/ FID/
8-70 N	INCH MELL INCH	57 4 GARD (GM) Light yellow poorly sorted subangular grand GAND (SP) Light yellowick book Thous MINOT TO MIDLATH COME	A () C5-16-3- P 40 0
	MENT Swift _		
			2-16-25.5
		cityer Grand (BC) olivi shown	(254 6/4) DAND 18 14 G
		perholeum My dro cambon odo	
		Boring/Well Loca	ution Schematic
Boring/Well No.: B-Lb Date drilled: LL/13/pu Drilling company: HEW LFR Staff: LPL	Sampling N	hod: Hollow STEM lethod: CA Montrain eight and size: 140 th	indicate N

roject Number: 06	4	· · · · · · · · · · · · · · · · · · ·	Page	of 7
roject Name: HAN	SOU KADUM		Date: W/13	3/06
WELL CONSTRUCTION		LITHOLOGY	SAM	IPLE DATA
epth, Time of Sample	Graphic Log	Descript.ion	Sample	Interval Penetration Rate (blows/ft.) PID/FID
CEMEN GOOD	Suty Clay (CL month to very 1 Sottom of 6 36 % Freeth	DARK JUMY (7.54, moist, mederum Phrondoneg 35' button	10/3) -35.5 10/3) -35.5 10 -35.5	357
			·	
		Boring/Well Locatio	n Schematic	1
Boring/Well No.: 5-16 Date drilled: 1/13/06 Drilling company: HEW LFR Staff: LPU	Drilling method: Hollow STEM Sampling Method: CA Modiff to Hammer weight and size: 140 #	man	Jonemane	N

Reviewed by:

ULFR LEVINE • FRICKE

roject Number:	001-0	756+	Page <u>\</u>	of
roject Name:	HANG	, oy Roum	Date: L	13/66
WELL CONSTRU	JCTION	LITHOLOGY	\$	AMPLE DATA
Depth, feet	Time of Graphic Sample Log	Description	Sample	Number Interval Penetration Rate (blows/ft.) PID/FID (ppm)
	_ B - 120d	Dry pourts south submyrlangua		
	Borelul	moist, well souted sub Angula	grand ,	- 0.1
5	CEMENT		B-17-5.8 -	· 0.
	gwit	Button of borring @ 9'	b-17-9	27 o.
	<u>-</u>			- 4.4
15				_
15			,,, , — , — , — , — , — , — , — , — , —	-
				_
		Boring/Well Loc	ation Schematic	
Boring/Well No.: B- Date drilled:	3/s/ Sampling	ethod: Hollow Stam Augh Method: CA Mon SPLU Sport weight and size: 140 H	and continued	N

LEVINE FRICKE

Project Number:_	001-0956	7-00	Pageof	•
Project Name:	HANSON R	MUGA	Date: 11 /16/0	<u> </u>
WELL CONSTR	UCTION	LITHOLOGY	SAMPLE D	
Depth, feet	Time of Graphic Sample Log	Description	Sample Number Interval	Penetration Rate (blows/ft.) PID/ FID (ppm)
	B-INCH DIAMETS Box-elof	Sus Angular, well sorted grand up	up, FINE	
5	CEMENT		B-18-6	14
-10		BOTTOM OF BOND 9 FEET BOTTOM OF SAMPLE 10/2	3-18-10	(3
		Sacriforn oic strong (
_15				
				-
				<u> </u>
		Boring/Well Locat	tion Schematic	where
Boring/Well No.: Date drilled: Drilling company: L	16/06 Sampling	ethod: Hollow Stem Augen Method: CA. Wool SPLOT Storn weight and size: L40#		N

Page_

Project Number	001-0	9567	Page	of	<u> </u>
Project Name:	HANSON	RADUM	Date:	11/16/0	<u> 56</u>
WELL CONST	RUCTION	LITHOLOGY		SAMPLE D	
Depth, feet	Time of Grap — Sample Lo	nic Descripti	lon 1	Sample Number Interval	Penetration Rate (blows/ ft.)
	DIAMRASS Barehol	SILT GRAND (GM) GRAVELLE MINIST, FINR STANGULA GRAVEL	, sur (mu) olive . poorly sortel, u,	TO LA DIA	ن ن
<u>-</u> 5	CEMENT	- SILTY SAM (SM) BANG yellow - DAMP TO MINIST, FINR GURAGUERS Sub Angelon Poorly Souted grand SAMD, SILT (ML) DANK yellow Moderate gravel	SAND, Asmoral B-1 wish busins,	(9-6	\$ 0
		Siry SAD (SM) wife Olive,	DAMP, FINE 3-1	4-10 8	8 c
		Bottom of Sangli E			
	-				
		Boring/W.	ell Location Schema	etic	
Boring/Well No.:	/16/66 Samp	g method: Hollaw SThan Avy ling Method: CA Mand SPLIT Spin ner weight and size: 4 off	on Location Jonetha		N
eviewed by:	-	Signed:		Date:	· ·

Reviewed by:_

(2) LFR

roject Number:_	001-09563	} ~∞	Pageof
Project Name:	HAMSON	Payun	Date: 11/16/56
WELL CONSTRU	JCTION	LITHOLOGY	SAMPLE DATA
Depth, feet	Time of Graphic Sample Log	Description	Sample Number Interval Peretratio Rate (blows/ft.) PID/ FID (ppm)
	-8-1NC	FINE SUS Angular granul well socked,	VP to 18 211
-5//	Borehold	<u> </u>	3-20-4 14 0
	CEMENT CEMENT		3-20-7 9 20 0
- to		GRANDLY SILT (ML) Blive Blow, M. FINR SUBANQUE grandly surel well some	1 3 -20-10 D 29 0.0
_ 15 2		SALPLISTA,	17 17 22 0.1
	-		
		Boring/Well Loca	ation Schematic
Boring/Well No.: B Date drilled: Lt Drilling company: L LFR Staff: LPL	16/06 Sampling	ethod: Holling Stein August Method: CA Wood S.A. It-, on weight and size: 140#	N

Lithology and Sample Data

LEVINE FRICKE

Project Number:_	001-0951	07-00	Pageof
Project Name:	HANSON S	MUGN	Date: 11/15/06
WELL CONSTRU	JCTION	LITHOLOGY	SAMPLE DATA
Depth, feet	Time of Graphic Sample Log	Description	Sample Number Interval Rate Rate Robert Propertion Ploy PID/PID
		SILTY GRAVER (GM) OLIVE, DE Souted SUS ANYVORNO SUS MUMBER 2" DIA.	gravel up to
<u> </u>	B-NOF		
	Don Kreet		
20			
20		Collected GRAS Groundwards	sample _
30	- CEMENT GOUT BACKFILL (ALANDONMENT)		<u> </u>
. — / / / / / / / / / / / / / / / / / /			
		GREVELLY CLAY (CL) DANK yellowish medium plasticity, STIFF, Vangular	y Brown, maist
		Siving CIA, (CL) Damingellowish Snow plastery, STIET, WATER ENCOUNTERS Scam AT 51 Feet, MINOR GRAVED	on, moist media
	<u> </u>	SILTY CLAY AS ABOUT	soil samples.
		Bottom of soving@ 65'	C 25, 50, 55, 60, ps.
70		DTW 55,6 N/16/06 0 3:3 Boring/Well Loca	ation Schematic
Boring/Well No.: B- Date drilled: 11/15 Drilling company: H LFR Staff: LPL	✓ 06 Sampling EW Hammer v B WATM	ethod: Hollow STEM Augel 9 (ab 5 Method: CA Man GRUT Sport from from the sample of the	roundwater collected 2-inch pre indicate oracty set in borehole

Lithology and Sample Data

Description The of September Consideration of the South State of the	Project Number:	001-0956	67-00	Page	of	<u> </u>
Description Timed Graphic Sample Charletty Sixt (ML) Olive brown, Bery, poorly One of the state of state of the state of	Project Name:	HANSON	RADUM	Date: 1	/15/0	06
Constitution Survey of the second of the sec	WELL CONSTRU	JCTION	LITHOLOGY .		SAMPLE D	ATA
Solve of the solve	Depth, feet	1 0 0	D e s c r i p t l o n		Sample Number Interval	Penetratio Rate (blows/ft.)
CRAVEL (SP) Brown, Damp to maist, will Sortal, Subvarred Jurue 3/6 to 1/2 "Dia. Collected Gras Growdraws Sample At 16:00 on 11/15/06 Sortal Subvarred ground 76" Dia, petruleum Hydrocaren sort Stepen on Stewner to 45 to 1 Hydrocaren sort Stepen on Stewner to 45 to 1 Sortal Subvarred ground 76" Dia, petruleum Hydrocaren sort Stepen on Stewner to 45 to 1 Sortal Subvarred ground 76" Dia petruleum Hydrocaren sort Stepen on Stewner to 45 to 1 Sortal Subvarred ground 76" Dia petruleum Hydrocaren sort Stepen on Stewner to 45 to 1 Sortal Subvarred ground 76" Dia petruleum Sortal Ground 76" Dia petruleum Sortal Subvarred ground 76" Dia petruleum Sortal Subvarr		BYCKEN EN	Gravelly sust(ML) office Brown, Souted susangular to Subrounded gran	Dry, poorly		
Boring/Well No. B-22 Date drilled: 11/15/06 Drilling company: HEW Bound (GM) Dark blown, wet, well South Subround growd 36" Did, petroleum Hydrocrusson ober Steen on Stowert & AS Feet (JURATURITS) 1828/030000 Story Chapter (1) Dark gittenist blown, 8-22-53.5 WW15T, well won plus that, Fiven to HAM (#22-50.5) Bottom & Foring & 50 Bottom & Foring & 50 Boring/Well Location Schematic (1/16/06 0 3:30 Drilling method: Lbilow Stem Auger Carcalo Dw Saw plus (a lice ted N Carcalo Dw Saw			GRAVEL (SP) Brown, DAMP TO Souted, SUSHOUNDED JUANE 3/8 TO 1/2"	maist, well		
Boring/Well No. B-22 Drilling method: Lbl(ow Stem Auger Drilling company: HE W Hammer weight and size: L40th Draw Service (CM) DARK School, west, well Southed sub-source grant grant 36% Div, petroleum Location of Mark Stem on Service As Feet Location of Mark Stem on Service As Feet Location of Mark Stem of Mark Stem on Service As Feet Location of Mark Stem on Service of As Feet Southed sub-source grant grant of Mark Stem	20		Collected Gras Groundward SAN AT 16:00 on 1/15/06	nplo		
Boring/Well No: B-22 Drilling method: Lbllow STEM Augs Sput Show Drulling company: HEW Hammer weight and size: 140th Hammer weight and size: 140th Lucation and Sput Show and Sput Show are the content of the sample of the sa		1. N				
Boring/Well No.: B-22 Date drilled: 11/15/06 Drilling company: HEW Hammer weight and size: 140# Scit Sample St. Boring/Well Location Schematic Crab Sw Sample Collected North St. Sample St. Boring/Well Location Schematic Crab Sw Sample Collected North St. Sample St. Crab Sw Sample Collected North St. Sample Collected North St. Sample St.		<u> </u>	I MYOWO LANDON GOOK. SHEEN ON SENIM	et, well etwoleum rents Q 45 Fe	2004 2007	
Boring/Well No.: B-27 Drilling method: Hollow Stem Auger Crab Sw sawple collected Date drilled: 11/15/06 Sampling Method: CA, Mod Sput Sport Sport Windige Company: HEW Hammer weight and size: 140# Windige Company: HEW Hammer weight and size: 140#		-7	Sicry clay (CL) DANK gettow 18th Show Must, medium plastich, Fiven to Bottom of Boring a 50 Bottom of Sample 51'			
Boring/Well No.: B-27 Drilling method: Hollow Stem Auger Crab 5 w sample collected Crab 5 w sample collected Sampling Method: CA, Mod Sput Sport Crab 5 w sample collected Cra	60				\$	
Date drilled: 11/15/06 Sampling Method: CA, Mod Sput Sport from 2- inch PUC femp- N Drilling company: HEW Hammer weight and size: 140# Ur writing sect in bare hole, indicated the section of the section		22 Drilling m	Boring/Well Locati	ion Schematic		
IN EIRAINE WA AT TIME Of Dietting	Date drilled: \\ / 15	Sampling Hammer Solution	Method: <u>CA</u> , <u>Mod Sput Spoo</u> from 2-1 weight and size: 140th A OF WATH ENCOUNTED	inch PUC	- temp-	(N

Lithology and Sample Data

Project Number:	001-0956-	-00	Page	of	
Project Name:	HANSON R	Dun	Date:	1/16/06	
WELL CONSTRU	JCTION	LITHOLOGY	engane nadyska kotene nady a zacznady o o o o o o o o o o o o o o o o o o o	SAMPLE D	DATA
Depth, feet	Time of Graphic Sample Log	Description		Sample Number Interval	Penetration Rate (blows/ft.) PID/ FID (ppm)
		Sorted Subangular to Subroum Jed grand	Dry, poorly		
10	DIAMETER BONEVOL			· .	
20					
20					
30 - 40	BACKERU (ALANDAMENT)	Calledel GRAS 6 NOUNDWAT AT 14:50 on 11/16/06	rn Sample		
40	<u> </u>				
50	, , , , , , , , , , , , , , , , , , ,	Bottom or boring @ 53'			
60	· · · · · · · · · · · · · · · · · · ·	soil samples collected. e 40, 45' +50'	Gor Lith	otory	
Boring/Well No.: B- Date drilled: 1\sqrt{16} Drilling company: HE LFR Staff: LPL	Sampling 6 Sampling 6 Hammer w Dopper o	Boring/Well Locate thod: Hollow STEIN Auge Wethod: CA. Moi Sprit Spon Veight and size: 140# F WATH ENCONTRICTING TO MT TIME OF DRITTING	tion Schematic Sample VC cusin Placed	eallect	N indicate

Lithology and Sample Data Project Number: 001-09567 00

Reviewed by:_

LEVINE FRICKE

roject Name:	HANSON R	ADUN	Date:	1/16/60)
WELL CONSTRI	UCTION	LITHOLOGY		SAMPLE D	ATA
Depth, feet	Time of Graphic Sample Log	Description		Sample Number Interval	Penetration Rate (blows/ft.) PID/ FID (ppm)
	-8-INCH-	Gravel (GP) Black JAMP FI yrand well souted up to 86°511, L Devied ASOMAN COATED MCK			. (U A
-5//	DVAMARIE	Bural e 4'	3-24	-4 9	is on
	CEMENT	BLACK AT 7'	3-14-		5 00
		Black toing below 91/2 Reet	6-20-1	0 9	35 00
					28 00
		BLACK TAR Like RUSSER Below	3-24-15		17 910 26 0-0 36
		DUTTION of South 2012	3-24-	20)	40 00
		Stock pile HAS A SHOONEY	Petro Hydr	- I	4000
=		a par but Does not negleting a	THE PLD		
		Boring/Well Locati	on Schamatia		
Boring/Well No.: B	24 Drilling met	thod: How Ten Apr	on ochematic	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	16/06 Sampling N Hammer w	Aethod: CA Med SNU Spor	<u>-</u>		indicate
Li i Cian.					

APPENDIX E

Laboratory Certified Analytical Reports

SunStar Laboratories, Inc.

16 November 2006

Katrin Schliewen LFR Inc. -- Emeryville 1900 Powell Street, 12th Floor Emeryville, CA 94608-1827 RE: Hansoy Radum Facility

Enclosed are the results of analyses for samples received by the laboratory on 11/14/06 08:46. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maria Bonifacio For John Shepler

Laboratory Director

Project: Hansoy Radum Facility

Project Number: [none]

Project Manager: Katrin Schliewen

Reported: 11/16/06 10:43

ANALYTICAL REPORT FOR SAMPLES

Sample 1D	Laboratory ID	Matrix	Date Sampled	Date Received
B-2-5	T601553-01	Soil	11/13/06 00:00	11/14/06 08:46
B-2-10	T601553-02	Soil	11/13/06 00:00	11/14/06 08:46
B-2-14	T601553-03	Soil	11/13/06 00:00	11/14/06 08:46
B-12-4.5	T601553-05	Soil	11/13/06 00:00	11/14/06 08:46
B-12-9.5	T601553-06	Soil	11/13/06 00:00	11/14/06 08:46
B-17-5.5	T601553-08	Soil	11/13/06 00:00	11/14/06 08:46
B-17-9	T601553-09	Soil	11/13/06 00:00	11/14/06 08:46
B-16-3	T601553-10	Soil	11/13/06 00:00	11/14/06 08:46

SunStar Laboratories, Inc.

LFR Inc. -- Emeryville

Project: Hansoy Radum Facility

1900 Powell Street, 12th Floor Emeryville CA, 94608-1827 Project Number: [none]
Project Manager: Katrin Schliewen

Reported: 11/16/06 10:43

Purgeable Petroleum Hydrocarbons by EPA 8015m SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-2-5 (T601553-01) Soil	Sampled: 11/13/06 00:00	Received: 11/1	4/06 08:46						
C6-C12 (GRO)	ND	500	ug/kg	1	6111411	11/14/06	11/14/06	EPA 8015m	
Surrogate: 4-Bromofluorob	enzene	98.4 %	65-13	35	"	"	н	**	
B-2-10 (T601553-02) Soil	Sampled: 11/13/06 00:00	Received: 11/	14/06 08:40	5					
C6-C12 (GRO)	ND	500	ug/kg	1	6111411	11/14/06	11/14/06	EPA 8015m	
Surrogate: 4-Bromofluorob	enzene	98.4 %	65-13	35	17	"	и	tt.	
B-2-14 (T601553-03) Soil	Sampled: 11/13/06 00:00	Received: 11/	14/06 08:4	6					
C6-C12 (GRO)	ND	500	ug/kg	1	6111411	11/14/06	11/14/06	EPA 8015m	
Surrogate: 4-Bromofluorob	enzene	101 %	65-13	35	n	11	и	u	

SunStar Laboratories, Inc.

Project: Hansoy Radum Facility

Project Number: [none]

Project Manager: Katrin Schliewen

Reported: 11/16/06 10:43

Extractable Petroleum Hydrocarbons by 8015 SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-2-5 (T601553-01) Soil	Sampled: 11/13/06 00:00	Received: 11/1	4/06 08:4	6					•
C13-C28 (DRO) C29-C40 (MORO)	ND ND	10 10	mg/kg	1	6111409	11/14/06	11/14/06	EPA 8015m	
Surrogate: Chrysene		108 %	65-	135	u	n .	<i>n</i>	и	
B-2-10 (T601553-02) Soil	Sampled: 11/13/06 00:00	Received: 11/	14/06 08:	46					
C13-C28 (DRO) C29-C40 (MORO)	ND ND	10 10	mg/kg	1 "	6111409	11/14/06 "	11/14/06	EPA 8015m	
Surrogate: Chrysene		118%	65-	135	и	r	и	"	
B-2-14 (T601553-03) Soil	Sampled: 11/13/06 00:00	Received: 11/	14/06 08:	46					
C13-C28 (DRO)	ND	10	mg/kg	1	6111409	11/14/06	11/14/06	EPA 8015m	
C29-C40 (MORO)	ND ND	10	n	h		11	н	11	
Surrogate: Chrysene		122 %	65-	135	"	"	"	n	
B-12-4.5 (T601553-05) So	il Sampled: 11/13/06 00:00	Received: 1	1/14/06 08	8:46					
C13-C28 (DRO) C29-C40 (MORO)	ND ND	10 10	mg/kg	1	6111409 "	11/14/06	11/14/06	EPA 8015m	
Surrogate: Chrysene		119 %	65-	135	"	**	11	ıt	
B-12-9.5 (T601553-06) So	il Sampled: 11/13/06 00:00	Received: 1	1/14/06 0	8:46					
C13-C28 (DRO) C29-C40 (MORO)	ND ND	10 10	mg/kg	1	6111409	11/14/06	11/14/06	EPA 8015m	
Surrogate: Chrysene	ND	112 %	65-	135	"	"	"	n	
5 ,									
B-17-5.5 (T601553-08) So	il Sampled: 11/13/06 00:00) Received: 1	1/14/06 0	8:46					
C13-C28 (DRO)	ND	10	mg/kg	1	6111409	11/14/06	11/14/06	EPA 8015m	
C29-C40 (MORO)	ND	10		П	н	н		п	
Surrogate: Chrysene		117 %	65-	135	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hansoy Radum Facility

Project Number: [none]

Project Manager: Katrin Schliewen

Reported: 11/16/06 10:43

Extractable Petroleum Hydrocarbons by 8015 SunStar Laboratories, Inc.

Analyte	Resuit	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B-17-9 (T601553-09) Soil	Sampled: 11/13/06 00:00	Received: 11/	14/06 08:	46					
C13-C28 (DRO)	ND	10	mg/kg	1	6111409	11/14/06	11/14/06	EPA 8015m	
C29-C40 (MORO)	ND	10	D	"	ч	n .	н	п	
Surrogate: Chrysene		106 %	65-	135	ı,	n	"	и	
B-16-3 (T601553-10) Soil	Sampled: 11/13/06 00:00	Received: 11/	14/06 08:	46					
C13-C28 (DRO)	890	10	mg/kg	1	6111409	11/14/06	11/14/06	EPA 8015m	
C29-C40 (MORO)	180	10	tr.	rı	н		0	11	
Surrogate: Chrysene		122 %	65-	135	"	ч	п	п	

SunStar Laboratories, Inc.

LFR Inc. -- Emeryville

1900 Powell Street, 12th Floor Emeryville CA, 94608-1827 Project: Hansoy Radum Facility

Project Number: [none]

Project Manager: Katrin Schliewen

Reported: 11/16/06 10:43

Metals by EPA 6000/7000 Series Methods SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-17-5.5 (T601553-08) Soil	Sampled: 11/13/06 00:00	Received: 1	1/14/06 0	8:46					
Arsenic	ND	5.0	mg/kg	1	6111410	11/14/06	11/15/06	EPA 6010B	
Barium	45	1.0	u	"	"		u	μ	
Chromium	16	2.0	и	ìi	u	и	n .	n	
Cobalt	4.1	2.0	и	ıı	н		u	н	
Copper	9.6	1.0	и	n	и	и	0	n	
Nickel	29	2.0	"	'n			u	n	
Vanadium	11	5.0	u	и	н		10	N	
B-17-9 (T601553-09) Soil	Sampled: 11/13/06 00:00	Received: 11/	14/06 08:	46					
Arsenic	ND	5.0	mg/kg	1	6111410	11/14/06	11/15/06	EPA 6010B	
Barium	74	1.0	н	II .	п	н	11	п	
Chromium	28	2.0	u	, i	u	"	U	Ħ	
Cobalt	6.4	2.0	"	'n	u		**	71	
Copper	21	1.0	H	и	H	"	n	н	
Nickel	54	2.0	ч	lı	n	н	11	tı	
Vanadium	16	5.0	н	н	u	н	0	†I	
B-16-3 (T601553-10) Soil	Sampled: 11/13/06 00:00	Received: 11/	14/06 08:	46					
Arsenic	ND	5.0	mg/kg	1	6111410	11/14/06	11/15/06	EPA 6010B	
Barium	77	1.0		н			0	11	
Chromium	27	2.0	h	'n	ıt	и	1)	11	
Cobalt	6.3	2.0	ч	и	ч		n	11	
Copper	21	1.0	п	п	ĮI.	п	u	71	
Nickel	44	2.0		и	u		11	11	
Vanadium	17	5.0	u	н	u	"	9	0	

SunStar Laboratories, Inc.

LFR Inc. -- Emeryville

1900 Powell Street, 12th Floor Emeryville CA, 94608-1827 Project: Hansoy Radum Facility

Project Number: [none]

Project Manager: Katrin Schliewen

Reported: 11/16/06 10:43

PAH compounds by Semivolatile GCMS

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B-16-3 (T601553-10) Soil	Sampled: 11/13/06 00:00	Received: 11/	14/06 08:	:46					
Acenaphthene	ND	300	ug/kg	1	6111510	11/15/06	11/15/06	EPA 8270C	
Acenaphthylene	ND	300		и	11	11	n	11	
Anthracene	ND	300		п	**	11	н	ti.	
Benzo (a) anthracene	ND	300		ч	0	11	Ħ	n	
Benzo (b) fluoranthene	ND	300	n	и	ŧt.	11	н	U	
Benzo (k) fluoranthene	ND	300	h		11	0	н	0	
Benzo (g,h,i) perylene	ND	1000	и	н	41	ш		U	
Benzo (a) pyrene	ND	300	"	И	tt	u	и	U.	
Chrysene	ND	300	11	n	n	ιτ	и	ц	
Dibenz (a,h) anthracene	ND	300	h	и	н	n	н	U	
Fluoranthene	ND	300	н	11	и	r1	n	u	
Fluorene	ND	300	n	11	н	н	11	н	
Indeno (1,2,3-cd) pyrene	ND	300	n	n	и	ıı .	u u	ц	
Naphthalene	ND	300	10	11	н	п	11	n	
Phenanthrene	ND	300	1)	u	u	н	0	н	
Pyrene	ND	300	ur.	n	н	it	U	и	
Surrogate: 2,4,6-Tribromoph	enol	57.4 %	18.1	-101	"	"	"	"	
Surrogate: Terphenyl-dl4		66.5 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hansoy Radum Facility

Project Number: [none]

Project Manager: Katrin Schliewen

Reported: 11/16/06 10:43

Purgeable Petroleum Hydrocarbons by EPA 8015m - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6111411 - EPA 5030 GC										
Blank (6111411-BLK1)				Prepared	& Analyzo	ed: 11/14/	06			
C6-C12 (GRO)	ND	500	ug/kg							
Surrogate: 4-Bromofluorobenzene	106	* *** - *** - *** - *** - *** - * * * *	II.	125		84.8	65-135			
LCS (6111411-BS1)				Prepared	& Analyzo	ed: 11/14/	06			
C6-C12 (GRO)	14100	500	ug/kg	13800		102	75-125			
Surrogate: 4-Bromofluorobenzene	125		"	125	_	100	65-135			
Matrix Spike (6111411-MS1)	Sou	ırce: T60155	3-01	Prepared	& Analyzo	ed: 11/14/	06			
C6-C12 (GRO)	12000	500	ug/kg	13800	69	86.5	65-135		F. Flat and Name 1 11. 11.	2 -t 2.E. 17.7 PM
Surrogate: 4-Bromofluorobenzene	128		н	125		102	65-135			
Matrix Spike Dup (6111411-MSD1)	Sou	ırce: T60155	3-01	Prepared .	& Analyza	ed: 11/14/	06			
C6-C12 (GRO)	11800	500	ug/kg	13800	69	85.0	65-135	1.68	20	
Surrogate: 4-Bromofluorobenzene	133		"	125		106	65-135			

SunStar Laboratories, Inc.

Project: Hansoy Radum Facility

Project Number: [none]

Project Manager: Katrin Schliewen

Reported: 11/16/06 10:43

Extractable Petroleum Hydrocarbons by 8015 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6111409 - EPA 3550B GC										
Blank (6111409-BLK1)				Prepared	& Analyze	ed: 11/14/	06			
C13-C28 (DRO)	ND	10	mg/kg							
C29-C40 (MORO)	ND	10	tr.							
Surrogate: Chrysene	119		"	100		119	65-135			
LCS (6111409-BS1)				Prepared	& Analyze	ed: 11/14/	06			
C13-C28 (DRO)	540	10	mg/kg	500		108	75-125			7 *************************************
Surrogate: Chrysene	118		н	100		118	65-135			
Matrix Spike (6111409-MS1)	So	arce: T60155	3-01	Prepared	& Analyze	ed: 11/14/	06			
C13-C28 (DRO)	580	10	mg/kg	500	ND	116	75-125			
Surrogate: Chrysene	112		rt .	100		112	65-135	·		
Matrix Spike Dup (6111409-MSD1)	So	arce: T60155	3-01	Prepared	& Analyze	ed: 11/14/	06			
C13-C28 (DRO)	570	10	mg/kg	500	ND	114	75-125	1.74	20	
Surrogate: Chrysene	92.4		"	100		92,4	65-135		~~.	

SunStar Laboratories, Inc.

Project: Hansoy Radum Facility

Project Number: [none]

Project Manager: Katrin Schliewen

Reported: 11/16/06 10:43

Metals by EPA 6000/7000 Series Methods - Quality Control SunStar Laboratories, Inc.

Anaiyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6111410 - EPA 3051								·		
Blank (6111410-BLK1)				Prepared:	11/14/06	Analyzed	: 11/15/06			
Arsenic	ND	5.0	mg/kg							
Barium	ND	1.0	и							
Chromium	ND	2.0	н							
Cobalt	ND	2.0	U							
Copper	ND	1.0	11							
Nickel	ND	2.0	11							
Vanadium	ND	5.0	9							
LCS (6111410-BS1)				Prepared:	11/14/06	Analyzed	: 11/15/06			
Arsenic	96.5	5.0	mg/kg	100		96.5	75-125			
Barium	87.4	1.0	e e	100		87.4	75-125			
Chromium	92.5	2.0	"	100		92.5	75-125			
Matrix Spike (6111410-MS1)	So	urce: T60155	3-10	Prepared:	11/14/06	Analyzed	: 11/15/06			
Arsenic	93.0	5.0	mg/kg	100	ND	93.0	75-125			
Barium	169	1.0	н	100	77	92.0	75-125			
Chromium	109	2.0	n	100	27	82.0	75-125			
Matrix Spike Dup (6111410-MSD1)	So	urce: T60155	3-10	Prepared:	11/14/06	Analyzed	: 11/15/06			
Arsenic	96,4	5.0	mg/kg	100	ND	96.4	75-125	3.59	20	
Barium	171	1.0	'n	100	77	94.0	75-125	1.18	20	
Chromium	104	2.0	н	100	27	77.0	75-125	4.69	20	

SunStar Laboratories, Inc.

Project: Hansoy Radum Facility

Project Number: [none]

Project Manager: Katrin Schliewen

Reported: 11/16/06 10:43

PAH compounds by Semivolatile GCMS - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6111510 - EPA 3550 ECD/0	GCMS									
Blank (6111510-BLK1)				Prepared &	& Analyze	d: 11/15/	06	_ 		
Acenaphthene	ND	300	ug/kg		<u> </u>	-				
Acenaphthylene	ND	300								
Anthracene	ND	300	11							
Benzo (a) anthracene	ND	300	Ð							
Benzo (b) fluoranthene	ND	300	16							
Benzo (k) fluoranthene	ND	300	17							
Benzo (g,h,i) perylene	ND	1000	er							
Benzo (a) pyrene	ND	300	ч							
Chrysene	ND	300	*11							
Dibenz (a,h) anthracene	ND	300	u							
Fluoranthene	ND	300	n							
Fluorene	ND	300	н							
Indeno (1,2,3-cd) pyrene	ND	300	n							
Naphthaiene	ND	300	н							
Phenanthrene	ND	300	п							
Pyrene	ND	300	н							
Surrogate: 2,4,6-Tribromophenol	1030		**	1670		61.7	18.1-101			
Surrogate: Terphenyl-dl4	1400		u	1670		83.8	29.1-130			
LCS (6111510-BS1)				Prepared &	& Analyze	d: 11/15/	06			
Acenaphthene	1140	300	ug/kg	1670		68.3	38.9-79.4			
Pyrene	840	300	n	1670		50.3	25-85.2			
Surrogate: 2,4,6-Tribromophenol	1160			1670		69.5	18.1-101			
Surrogate: Terphenyl-dl4	1460		"	1670		87.4	29.1-130			
LCS Dup (6111510-BSD1)				Prepared &	& Analyze	d: 11/15/	06			
Acenaphthene	1100	300	ug/kg	1670		65.9	38.9-79.4	3.57	31	
Pyrene	824	300	1)	1670		49.3	25-85.2	1.92	31	
Surrogate: 2,4,6-Tribromophenol	1030		**	1670		61.7	18.1-101			
Surrogate: Terphenyl-dl4	1280		"	1670		76.6	29.1-130			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mospi

LFR Inc. -- Emeryville Project: Hansoy Radum Facility
1900 Powell Street, 12th Floor Project Number: [none] Reported:
Emeryville CA, 94608-1827 Project Manager: Katrin Schliewen 11/16/06 10:43

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

T601553

SAMPLE COLLE				PROJ	JECT NO.:	S	ECTI	ON NO	0.:		DATE:	112/-1	SAN	APLER'S	SINITE	ALS:	SERIAL NO	.:
	900 Powell St meryville, Cal	reet, 12th	Floor	PRO	IECT NAME:				·		SAMPI	13/06 ER (Signature)		_اھال	•	$\overline{}$	Nº 20	1959
LEVINE FRICKE	510) 652-4500	Fax: (510	0) 652-2246	Į į	JECT NAME:	RA	ŊU	W '	FAE	elity		متملا	as	rus	w	Z		1000
-			SAMP		7					_		ANAL	SES/	_ /		1		REMARKS
					/ /	/			180 0	sortem sor			7 /		7	/		
				/	/ .o. / 65 /	'	YPE	_/s	W PEN	* /_w/	(602)	1624) 27000)	///			TAT	/*vocs	: **Metals:
				/ &	io Mo Tribing	/ /		80151	18480)	80151	10 876C	OV BOIL		/ ,	/ /	///	☐ 8260 Lis	st 🗌 CAM1
0.4.4				Same			\\$\\\	54,40		, 1	EP AS	,4	/ /	/8	id it.	/5/	☐ 8240 Lis	t 🗌 RCRA
SAMPLE	= ID.	DATE	TIME	% \	to of confines	\K\	85/x	PA BOISH	(K) (K)	SOLEM SOL	Merc	Her Bornton	//	Standa	ing 1	OD/	☐ 8010 Lis	st 🗌 LUFT
8-1-5		1/3/6		1	X	(X)	έX	X				<u> </u>			7		-HOUR	
B-2-10		7 17	<i>8</i> 2	1		X	X							义	\	24		
B-2-14			03			χ,	X	¥		- 1				1x		24	h	
3-2-19	5		04				, · ·								×	hald		
D-12-4.	} ~		05			٨	X							X		ъ.	h	
B-12-9 E			06		1 11	Y	×	l —						X		ZH		
B-12-14	5		07		1 11	عد	V		1/2	×	2			15	· ×	hold	, o c	
B-17-5			08			X	Y	-				· · · · · · · · · · · · · · · · · · ·			1	24	he	
B-17-9	>		09			X	×			X		•		X		24	h	
3-16-3			10							$\frac{1}{2}$				$\frac{1}{x}$			h	
3-16-31 3-16-31 3-16-30	<u> </u>		11			^	~			- ^				$+\sim$	7	hold	. <i>VV</i> (
B-16-30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		12			-					-			+-	K	1 1	<i></i>	
0 10 10	· >_	. 1	13	1.1	14	+-									X	hold	,	
<u> </u>	72	1		+*	4	+	¥									roca		
				+												* 1-	0. 6	0- 0
				+				-	-		-	 				15 (TS)	Ba, Co,	cro co,
											24 1	1 RS		7		4 4 +	I TPUJ	
				+ -	1 -					- ₩-	1 7			1)		不可以	TPHd for PA	100 /10
				-		+				\mathbb{N}_{2}	D				-		PMO - 1	11 mg/C
				-									CX	+-	 	roun	JOI FA	<i>H</i>
SAMPLE RECEIPT:	Cooler Temp:	METHOD OF	SHIPMENT:	RELIE	NOUNSHED/BY	<u> </u>			1 6	RELINQUI	SHED B	'			RELIN	I NQUISHED B	SY:	
Intact Cold	Cooler Temp:			(5)	SCAL THE STATE OF	~	: 1	1/13	106	SIGNATU			(DATE)			IATURE)		(DATE)
☑ On Ice ☐ Ambient	Cooler No:	LAB REPOR	T NO.:		ARRY LA	14.182 DOY W	NGK NF	y-c, -	' '	SIGNATO	(E)		1.1/	4/06	(SIGN	MIURE)		(DATE)
	<u> </u>	FAX COC C	ONFIRMATION TO:	(PRIN	ITED NAME)	~ / / 1 .	(11)	ME)	(PRINTED	NAME)	`	(TIME)	li .	(PRIN	ITED NAME)		(TIME)
Preservative Correct? ☐ Yes ☐ No ☐ N/A		Karo	LIN Schlier	MOON.	FR INC		ح	٠٠.		COMPAN		/	87	4	COM	PANY)		
ANALYTICAL LABORATO	DRY:	FAX RESUL		RECE	INCO BY		11/	×/-	/ 1 F	RECEIVE		<i>9</i>		2		•	ABORATORY):	
SON STAP		SEND HARD	COBY TO:	MIGN	IATURE)		ι <i>ι [[</i>	5/0	7	SIGNATU	(D)	The	(DATE)	./	(SIGN	IATURE)		(DATE)
SUN STAR ANALYT	· ·	JEND DAKL	1 0.	17 TA	me Miz	e-		S &		Maria PRINTED		oni facio	11/1	4/06	Ĺ.			
ANACYT	ICAC	SEND EDD		PRIN	MED NAME)		(TII	ME)	(PRINTED	NAME)	lalar	(TIME)	46	(PRIN	ITED NAME)		(TIME)
			, DQ. OOM	COM	IPANY)					SUNS COMPAN	()	WW	0	7	(COM	PANY)		
Shinning Conv (W/h	itol	File Conv	(Vallow)		Field Copy (2inl/								•	CHAIN	N of CUSTOD	Y - ANALYSES FO	PM CDR 5/200

20 November 2006

Katrin Schliewen LFR Inc. -- Emeryville 1900 Powell Street, 12th Floor Emeryville, CA 94608-1827

RE: Hanson Radum Facility

Enclosed are the results of analyses for samples received by the laboratory on 11/15/06 10:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maria Bonifacio

Project Coordinator

Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen **Reported:** 11/20/06 11:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-1-4.5	T601559-01	Soil	11/14/06 09:00	11/15/06 10:30
B-1-7.5	T601559-02	Soil	11/14/06 09:10	11/15/06 10:30
B-1-10	T601559-03	Soil	11/14/06 09:20	11/15/06 10:30
B-3-7	T601559-07	Soil	11/14/06 11:04	11/15/06 10:30
B-3-10	T601559-08	Soil	11/14/06 10:40	11/15/06 10:30
B-3-14	T601559-09	Soil	11/14/06 11:15	11/15/06 10:30
B-3-18	T601559-10	Soil	11/14/06 11:20	11/15/06 10:30
B-4-10.5	T601559-12	Soil	11/14/06 12:30	11/15/06 10:30
B-4-15	T601559-13	Soil	11/14/06 12:30	11/15/06 10:30
B-8-13	T601559-17	Soil	11/14/06 16:40	11/15/06 10:30

SunStar Laboratories, Inc.

Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/20/06 11:26

Purgeable Petroleum Hydrocarbons by EPA 8015m SunStar Laboratories, Inc.

				,					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1-4.5 (T601559-01) Soil	Sampled: 11/14/06 09:00	Received: 11	/15/06 10:3	30					•
C6-C12 (GRO)	ND	500	ug/kg	1	6111507	11/15/06	11/15/06	EPA 8015m	
Surrogate: 4-Bromofluorobo	enzene	71.1 %	65-1	35	"	"	"	"	
B-1-7.5 (T601559-02) Soil	Sampled: 11/14/06 09:10	Received: 11	/15/06 10:3	30					
C6-C12 (GRO)	5900	500	ug/kg	1	6111507	11/15/06	11/15/06	EPA 8015m	
Surrogate: 4-Bromofluorobo	enzene	110 %	65-1	35	"	"	"	"	
B-1-10 (T601559-03) Soil	Sampled: 11/14/06 09:20	Received: 11/	15/06 10:3	0					
C6-C12 (GRO)	ND	500	ug/kg	1	6111507	11/15/06	11/15/06	EPA 8015m	
Surrogate: 4-Bromofluorobo	enzene	102 %	65-1	35	"	"	"	"	
B-3-7 (T601559-07) Soil	Sampled: 11/14/06 11:04 F	Received: 11/1	5/06 10:30)					
C6-C12 (GRO)	500	500	ug/kg	1	6111507	11/15/06	11/15/06	EPA 8015m	
Surrogate: 4-Bromofluorobe	enzene	99.2 %	65-1	35	"	"	"	"	
B-3-10 (T601559-08) Soil	Sampled: 11/14/06 10:40	Received: 11/	15/06 10:3	0					
C6-C12 (GRO)	38000	500	ug/kg	1	6111507	11/15/06	11/15/06	EPA 8015m	
Surrogate: 4-Bromofluorobo	enzene	175 %	65-1	35	"	"	"	"	S-02
B-4-10.5 (T601559-12) Soil	Sampled: 11/14/06 12:30	Received: 1	1/15/06 10	:30					
C6-C12 (GRO)	33000	500	ug/kg	1	6111507	11/15/06	11/15/06	EPA 8015m	
Surrogate: 4-Bromofluorobe	enzene	87.2 %	65-1	35	"	"	"	"	
B-8-13 (T601559-17) Soil	Sampled: 11/14/06 16:40	Received: 11/	15/06 10:3	0					
C6-C12 (GRO)	ND	500	ug/kg	1	6111507	11/15/06	11/16/06	EPA 8015m	
Surrogate: 4-Bromofluorobo	enzene	91.2 %	65-1	35	"	"	"	"	

SunStar Laboratories, Inc.

LFR Inc. -- Emeryville

1900 Powell Street, 12th Floor Emeryville CA, 94608-1827 Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/20/06 11:26

Extractable Petroleum Hydrocarbons by 8015 SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B-1-4.5 (T601559-01) Soil	Sampled: 11/14/06 09:00	Received: 11	/15/06 10:3	80					
C13-C28 (DRO)	ND	10	mg/kg	1	6111506	11/15/06	11/16/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		94.5 %	65-13	35	"	"	"	"	
B-1-7.5 (T601559-02) Soil	Sampled: 11/14/06 09:10	Received: 11	/15/06 10:3	80					
C13-C28 (DRO)	320	10	mg/kg	1	6111506	11/15/06	11/16/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	II .	
Surrogate: Chrysene		92.1 %	65-13	35	"	"	"	"	
B-1-10 (T601559-03) Soil	Sampled: 11/14/06 09:20	Received: 11/	15/06 10:30	0					
C13-C28 (DRO)	ND	10	mg/kg	1	6111506	11/15/06	11/16/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		93.2 %	65-13	35	"	"	"	"	
B-3-7 (T601559-07) Soil	Sampled: 11/14/06 11:04	Received: 11/1	5/06 10:30						
C13-C28 (DRO)	27	10	mg/kg	1	6111506	11/15/06	11/16/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	11	
Surrogate: Chrysene		92.6 %	65-13	35	"	"	"	"	
B-3-10 (T601559-08) Soil	Sampled: 11/14/06 10:40	Received: 11/	15/06 10:30	0					
C13-C28 (DRO)	7300	10	mg/kg	1	6111506	11/15/06	11/16/06	EPA 8015m	
C29-C40 (MORO)	330	10	"	"	"	"	"	"	
Surrogate: Chrysene		104 %	65-13	35	"	"	"	"	
B-3-14 (T601559-09) Soil	Sampled: 11/14/06 11:15	Received: 11/	15/06 10:30	0					
C13-C28 (DRO)	2100	10	mg/kg	1	6111705	11/17/06	11/18/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		113 %	65-13	35	"	"	"	"	

SunStar Laboratories, Inc.

LFR Inc. -- Emeryville Project: Hanson Radum Facility

1900 Powell Street, 12th FloorProject Number: 001-09567-00Reported:Emeryville CA, 94608-1827Project Manager: Katrin Schliewen11/20/06 11:26

Extractable Petroleum Hydrocarbons by 8015 SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B-3-18 (T601559-10) Soil	Sampled: 11/14/06 11:20	Received: 11/	/15/06 10:	:30					
C13-C28 (DRO)	ND	10	mg/kg	1	6111705	11/17/06	11/18/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		112 %	65-	135	"	"	"	"	
B-4-10.5 (T601559-12) Soi	il Sampled: 11/14/06 12:3	0 Received: 1	1/15/06 1	0:30					
C13-C28 (DRO)	6400	10	mg/kg	1	6111506	11/15/06	11/16/06	EPA 8015m	
C29-C40 (MORO)	460	10	"	"	"	"	"	"	
Surrogate: Chrysene		89.3 %	65-	135	"	"	"	"	
B-4-15 (T601559-13) Soil	Sampled: 11/14/06 12:30	Received: 11/	15/06 10:	:30					
C13-C28 (DRO)	7100	10	mg/kg	1	6111705	11/17/06	11/18/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		127 %	65-	135	"	"	"	"	
B-8-13 (T601559-17) Soil	Sampled: 11/14/06 16:40	Received: 11/	15/06 10:	:30					
C13-C28 (DRO)	ND	10	mg/kg	1	6111506	11/15/06	11/16/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		88.5 %	65-	135	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/20/06 11:26

Volatile Organic Compounds by EPA Method 8260B SunStar Laboratories, Inc.

		Sunstar							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1-7.5 (T601559-02) Soil	Sampled: 11/14/06 09:10	Received: 11	/15/06 10	:30					
Bromobenzene	ND	2.0	ug/kg	1	6111508	11/15/06	11/15/06	EPA 8260B	
Bromochloromethane	ND	2.0	"	"	"	"	"	"	
Bromodichloromethane	ND	2.0	"	"	"	"	"	"	
Bromoform	ND	2.0	"	"	"	"	"	"	
Bromomethane	ND	2.0	"	"	"	"	"	"	
n-Butylbenzene	13	2.0	"	"	"	"	"	"	
sec-Butylbenzene	12	2.0	"	"	"	"	"	"	
tert-Butylbenzene	7.4	2.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	2.0	"	"	"	"	"	"	
Chlorobenzene	ND	2.0	"	"	"	"	"	"	
Chloroethane	ND	2.0	"	"	"	"	"	"	
Chloroform	ND	2.0	"	"	"	"	"	"	
Chloromethane	ND	2.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	2.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	2.0	"	"	"	"	"	"	
Dibromochloromethane	ND	2.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane		2.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	"	"	"	"	"	
Dibromomethane	ND	2.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	2.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	2.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	2.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	2.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	2.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	2.0	"	"	,,	"	"	"	
Hexachlorobutadiene	ND	2.0	"	"	,,	"	"	"	
Isopropylbenzene	ND	2.0	"	"	,,	"	"	"	
p-Isopropyltoluene	ND	2.0	"	"	"	"	"	"	
Methylene chloride	ND	2.0	"	"	"	"	"	"	
Naphthalene	ND ND	2.0	"	"	"	"	"	"	
n-Propylbenzene	7.7	2.0	,,	"	,,	"	"	"	
Styrene Styrene	ND	2.0	"	"	,,	"	"	"	
1,1,2,2-Tetrachloroethane	ND ND	2.0	"	"	,,	"	"	"	
1,1,2,2-1 ettachtoroethane	ND	2.0							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Moder

Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/20/06 11:26

Volatile Organic Compounds by EPA Method 8260B SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B-1-7.5 (T601559-02) Soil	Sampled: 11/14/06 09:10	Received: 11	/15/06 10:	30					
1,1,1,2-Tetrachloroethane	ND	2.0	ug/kg	1	6111508	11/15/06	11/15/06	EPA 8260B	
Tetrachloroethene	ND	2.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	11	2.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	7.2	2.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.0	"	"	"	"	"	"	
Trichloroethene	ND	2.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	2.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	2.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	18	2.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	23	2.0	"	"	"	"	"	"	
Vinyl chloride	ND	2.0	"	"	"	"	"	"	
Benzene	ND	2.0	"	"	"	"	"	"	
Γoluene	ND	2.0	"	"	"	"	"	"	
Ethylbenzene	ND	2.0	"	"	"	"	"	"	
n,p-Xylene	ND	4.0	"	"	"	"	"	"	
o-Xylene	ND	2.0	"	"	"	"	"	"	
Surrogate: Toluene-d8		88.4 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobe	enzene	115 %	81.2-	123	"	"	"	"	
Surrogate: Dibromofluorom		121 %	90-1	35	"	"	"	"	
B-8-13 (T601559-17) Soil	Sampled: 11/14/06 16:40	Received: 11/	15/06 10:3	80					
Bromobenzene	ND	2.0	ug/kg	1	6111508	11/15/06	11/15/06	EPA 8260B	
Bromochloromethane	ND	2.0	"	"	"	"	"	"	
Bromodichloromethane	ND	2.0	"	"	"	"	"	"	
Bromoform	ND	2.0	"	"	"	"	"	"	
Bromomethane	ND	2.0	"	"	"	"	"	"	
n-Butylbenzene	3.3	2.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	2.0	"	"	"	"	"	"	
								"	
ert-Butylbenzene	ND	2.0	"	"	"	"	"	"	
ert-Butylbenzene Carbon tetrachloride			"	"	"	"	"	"	
Carbon tetrachloride	ND	2.0							
Carbon tetrachloride Chlorobenzene	ND ND	2.0 2.0	"	"	"	"	"		
Carbon tetrachloride	ND ND ND	2.0	"	"	"	"	"	"	
Carbon tetrachloride Chlorobenzene Chloroethane	ND ND	2.0 2.0 2.0	" "	" "	" "	" "	"	" " " " " " " " " " " " " " " " " " " "	
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0	" "	" "	" "	" " " "	" " " "	11 11 11	
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene	ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	11 11 11	
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene	ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	11 11 11 11	
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane	ND ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	" " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " "	11 11 11 11 11	
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane 1,2-Dibromo-3-chloropropa	ND N	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	" " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	11 11 11 11 11	11 11 11 11 11	
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane	ND ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " "	" " " " " " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

M. A.

Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/20/06 11:26

Volatile Organic Compounds by EPA Method 8260B SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-8-13 (T601559-17) Soil	Sampled: 11/14/06 16:40	Received: 11/	15/06 10:	30					
1,3-Dichlorobenzene	ND	2.0	ug/kg	1	6111508	11/15/06	11/15/06	EPA 8260B	
1,4-Dichlorobenzene	ND	2.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	2.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	2.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	2.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	2.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	2.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	2.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	2.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.0	"	"	"	"	"	"	
Isopropylbenzene	ND	2.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	2.0	"	"	"	"	"	"	
Methylene chloride	ND	2.0	"	"	"	"	"	"	
Naphthalene	ND	2.0	"	"	"	"	"	"	
n-Propylbenzene	ND	2.0	"	"	"	"	"	"	
Styrene	ND	2.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	2.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND ND	2.0	"	"	"	"	"	"	
Tetrachloroethene	ND ND	2.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	2.1	2.0	"	"	,,	"	"	"	
		2.0	,,	,,	,,	"	"	"	
1,2,4-Trichlorobenzene	2.1		"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.0	"	,,	"	,,	"	"	
1,1,1-Trichloroethane	ND	2.0	"	"	"	"	"	"	
Trichloroethene	ND	2.0	"	"	,,	"	"	,,	
Trichlorofluoromethane	ND	2.0							
1,2,3-Trichloropropane	ND	2.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	2.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	2.0	"	"	"	"	"	"	
Vinyl chloride	ND	2.0	"	"	"	"	"	"	
Benzene	ND	2.0	"	"	"	"	"	"	
Toluene	ND	2.0	"	"	"	"	"	"	
Ethylbenzene	ND	2.0	"	"	"	"	"	"	
m,p-Xylene	ND	4.0	"	"	"	"	"	"	
o-Xylene	ND	2.0	"	"	"	"	"	"	
Surrogate: Toluene-d8		109 %	85.5	-116	"	"	"	"	
Surrogate: 4-Bromofluoroben	izene	120 %	81.2		"	"	"	"	
Surrogate: Dibromofluorome		66.9 %	90-		"	"	"	"	S-GC

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

A Popi

Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/20/06 11:26

PAH compounds by Semivolatile GCMS SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B-1-7.5 (T601559-02) Soil	Sampled: 11/14/06 09:10	Received: 11	/15/06 10	:30					
Acenaphthene	ND	300	ug/kg	1	6111706	11/17/06	11/20/06	EPA 8270C	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
Phenanthrene	440	300	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Surrogate: 2,4,6-Tribromophe	enol	78.4 %	18.1	-101	"	"	"	"	
Surrogate: 2,4,0-111010110phe Surrogate: Terphenyl-dl4	enoi	74.9 %		-101 -130	,,	"	"	"	
	Sampled: 11/14/06 10:40								
B-3-10 (T601559-08) Soil S Acenaphthene	ND	300		1	6111706	11/17/06	11/20/06	EPA 8270C	
	ND ND	300	ug/kg "	1	0111/00	11/1//00	11/20/00	EPA 82/0C	
Acenaphthylene Anthracene	ND ND	300	"	"	"	"	"	,,	
	ND ND		"	"	,,	"	"	"	
Benzo (a) anthracene		300	,,	"	,,	,,	"		
Benzo (b) fluoranthene	ND	300	"	"	,,	,,	"	"	
Benzo (k) fluoranthene	ND	300	,,	"	,,	,,	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	,,	,,	"	"	
Benzo (a) pyrene	ND	300	"		,,		"		
Chrysene	ND	300	"	"	,,	,,	"	"	
Dibenz (a,h) anthracene	ND	300					"		
TI d	3.775	200		"	"	"	"	"	
Fluoranthene	ND	300	"			r.			
Fluorene	ND	300	"	"	"	"	"	"	
Fluorene Indeno (1,2,3-cd) pyrene	ND ND	300 300	"	"	"	"	"	"	
Fluorene Indeno (1,2,3-cd) pyrene Naphthalene	ND ND ND	300 300 300	"	" "	"	"	"	"	
Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene	ND ND ND ND	300 300 300 300	" " "	" " " "	"	"	"	" " "	
Fluorene Indeno (1,2,3-cd) pyrene Naphthalene	ND ND ND	300 300 300	"	" "	"	"	"	"	
Fluorene Indeno (1,2,3-cd) pyrene Naphthalene Phenanthrene	ND ND ND ND ND	300 300 300 300	" " " " "	" " " "	"	"	"	" " "	

SunStar Laboratories, Inc.

Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/20/06 11:26

PAH compounds by Semivolatile GCMS SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-4-10.5 (T601559-12) Soil	Sampled: 11/14/06 12:30	Received: 1	1/15/06 1	0:30					
Acenaphthene	ND	300	ug/kg	1	6111706	11/17/06	11/20/06	EPA 8270C	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	n .	
Benzo (a) pyrene	ND	300	"	"	"	"	"	II .	
Chrysene	ND	300	"	"	"	"	"	II .	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	II .	
Fluoranthene	ND	300	"	"	"	"	"	II .	
Fluorene	ND	300	"	"	"	"	"	II .	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	n .	
Surrogate: 2,4,6-Tribromophe	enol	45.0 %	18.1	!-101	"	"	"	"	
Surrogate: Terphenyl-dl4		48.2 %	29.1	!-130	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/20/06 11:26

Purgeable Petroleum Hydrocarbons by EPA 8015m - Quality Control SunStar Laboratories, Inc.

Analyta	D agul4	Reporting	Unita	Spike	Source	0/DEC	%REC	DDD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6111507 - EPA 5030 GC										
Blank (6111507-BLK1)				Prepared	& Analyz	ed: 11/15/	06			
C6-C12 (GRO)	ND	500	ug/kg							
Surrogate: 4-Bromofluorobenzene	114		"	125		91.2	65-135			
LCS (6111507-BS1)				Prepared	& Analyz	ed: 11/15/	06			
C6-C12 (GRO)	12200	500	ug/kg	13800		88.4	75-125			
Surrogate: 4-Bromofluorobenzene	117		"	125		93.6	65-135			
Matrix Spike (6111507-MS1)	Sou	ırce: T60155	59-01	Prepared	& Analyzo	ed: 11/15/	06			
C6-C12 (GRO)	10500	500	ug/kg	13800	ND	76.1	65-135			
Surrogate: 4-Bromofluorobenzene	134		"	125		107	65-135			
Matrix Spike Dup (6111507-MSD1)	Sou	ırce: T60155	9-01	Prepared	& Analyzo	ed: 11/15/	06			
C6-C12 (GRO)	12100	500	ug/kg	13800	ND	87.7	65-135	14.2	20	
Surrogate: 4-Bromofluorobenzene	131		"	125		105	65-135			

SunStar Laboratories, Inc.

Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen **Reported:** 11/20/06 11:26

Extractable Petroleum Hydrocarbons by 8015 - Quality Control SunStar Laboratories, Inc.

l	D 1	Reporting	** **	Spike	Source	A/DEC	%REC	DDD	RPD	37.7
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6111506 - EPA 3550B GC										
Blank (6111506-BLK1)				Prepared:	11/15/06	Analyzed:	11/16/06			
C13-C28 (DRO)	ND	10	mg/kg							
C29-C40 (MORO)	ND	10	"							
Surrogate: Chrysene	91.5		"	100		91.5	65-135			
LCS (6111506-BS1)				Prepared:	11/15/06	Analyzed:	11/16/06			
C13-C28 (DRO)	480	10	mg/kg	500		96.0	75-125			
Surrogate: Chrysene	93.6		"	100		93.6	65-135			
Matrix Spike (6111506-MS1)	Sou	rce: T60155	59-01	Prepared:	11/15/06	Analyzed:	11/16/06			
C13-C28 (DRO)	570	10	mg/kg	500	ND	114	75-125			
Surrogate: Chrysene	114		"	100		114	65-135			
Matrix Spike Dup (6111506-MSD1)	Sou	rce: T60155	59-01	Prepared:	11/15/06	Analyzed:	11/16/06			
C13-C28 (DRO)	570	10	mg/kg	500	ND	114	75-125	0.00	20	
Surrogate: Chrysene	121		"	100		121	65-135			
Batch 6111705 - EPA 3550B GC										
Blank (6111705-BLK1)				Prepared:	11/17/06	Analyzed:	11/18/06			
C13-C28 (DRO)	ND	10	mg/kg							
C29-C40 (MORO)	ND	10	"							
Surrogate: Chrysene	101		"	100		101	65-135			
LCS (6111705-BS1)				Prepared:	11/17/06	Analyzed:	11/18/06			
C13-C28 (DRO)	570	10	mg/kg	500		114	75-125			
Surrogate: Chrysene	118		"	100		118	65-135			

SunStar Laboratories, Inc.

Project: Hanson Radum Facility

Spike

Source

Project Number: 001-09567-00 Project Manager: Katrin Schliewen **Reported:** 11/20/06 11:26

RPD

%REC

Extractable Petroleum Hydrocarbons by 8015 - Quality Control SunStar Laboratories, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6111705 - EPA 3550B GC										
Matrix Spike (6111705-MS1)	Sour	ce: T60155	59-09	Prepared	11/17/06	Analyzed	l: 11/18/06			
C13-C28 (DRO)	2700	10	mg/kg	500	2100	120	75-125			
Surrogate: Chrysene	118		"	100		118	65-135			
Matrix Spike Dup (6111705-MSD1)	Sour	ce: T60155	59-09	Prepared	11/17/06	Analyzed	l: 11/18/06			
C13-C28 (DRO)	2700	10	mg/kg	500	2100	120	75-125	0.00	20	
Surrogate: Chrysene	115		"	100		115	65-135			

SunStar Laboratories, Inc.

LFR Inc. -- Emeryville Project: Hanson Radum Facility

1900 Powell Street, 12th Floor Project Number: 001-09567-00 **Reported:**Emeryville CA, 94608-1827 Project Manager: Katrin Schliewen 11/20/06 11:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 6111508 - EPA 5030 GCMS

Blank (6111508-BLK1)				Prepared & Analyzed: 11/15/06
Bromobenzene	ND	2.0	ug/kg	
Bromochloromethane	ND	2.0	"	
Bromodichloromethane	ND	2.0	"	
Bromoform	ND	2.0	"	
Bromomethane	ND	2.0	"	
n-Butylbenzene	ND	2.0	"	
sec-Butylbenzene	ND	2.0	"	
tert-Butylbenzene	ND	2.0	"	
Carbon tetrachloride	ND	2.0	"	
Chlorobenzene	ND	2.0	"	
Chloroethane	ND	2.0	"	
Chloroform	ND	2.0	"	
Chloromethane	ND	2.0	"	
2-Chlorotoluene	ND	2.0	"	
4-Chlorotoluene	ND	2.0	"	
Dibromochloromethane	ND	2.0	"	
1,2-Dibromo-3-chloropropane	ND	2.0	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	
Dibromomethane	ND	2.0	"	
1,2-Dichlorobenzene	ND	2.0	"	
1,3-Dichlorobenzene	ND	2.0	"	
1,4-Dichlorobenzene	ND	2.0	"	
Dichlorodifluoromethane	ND	2.0	"	
1,1-Dichloroethane	ND	2.0	"	
1,2-Dichloroethane	ND	2.0	"	
1,1-Dichloroethene	ND	2.0	"	
cis-1,2-Dichloroethene	ND	2.0	"	
trans-1,2-Dichloroethene	ND	2.0	"	
1,2-Dichloropropane	ND	2.0	"	
1,3-Dichloropropane	ND	2.0	"	
2,2-Dichloropropane	ND	2.0	"	
1,1-Dichloropropene	ND	2.0	"	
cis-1,3-Dichloropropene	ND	2.0	"	
trans-1,3-Dichloropropene	ND	2.0	"	
Hexachlorobutadiene	ND	2.0	"	
Isopropylbenzene	ND	2.0	"	
p-Isopropyltoluene	ND	2.0	"	
Methylene chloride	ND	2.0	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mary.

Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen **Reported:** 11/20/06 11:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	0111	508 -	LPA	5030	GCMS

Blank (6111508-BLK1)				Prepared & A	nalyzed: 11/15	/06	
Naphthalene	ND	2.0	ug/kg				
n-Propylbenzene	ND	2.0	"				
Styrene	ND	2.0	"				
1,1,2,2-Tetrachloroethane	ND	2.0	"				
1,1,1,2-Tetrachloroethane	ND	2.0	"				
Tetrachloroethene	ND	2.0	"				
1,2,3-Trichlorobenzene	ND	2.0	"				
1,2,4-Trichlorobenzene	ND	2.0	"				
1,1,2-Trichloroethane	ND	2.0	"				
1,1,1-Trichloroethane	ND	2.0	"				
Trichloroethene	ND	2.0	"				
Trichlorofluoromethane	ND	2.0	"				
1,2,3-Trichloropropane	ND	2.0	"				
1,3,5-Trimethylbenzene	ND	2.0	"				
1,2,4-Trimethylbenzene	ND	2.0	"				
Vinyl chloride	ND	2.0	"				
Benzene	ND	2.0	"				
Γoluene	ND	2.0	"				
Ethylbenzene	ND	2.0	"				
m,p-Xylene	ND	4.0	"				
o-Xylene	ND	2.0	"				
Surrogate: Toluene-d8	102		"	100	102	85.5-116	
Surrogate: 4-Bromofluorobenzene	116		"	100	116	81.2-123	
Surrogate: Dibromofluoromethane	92.0		"	100	92.0	90-135	
LCS (6111508-BS1)				Prepared: 11/1	15/06 Analyze	d: 11/17/06	
Chlorobenzene	281	2.0	ug/kg	250	112	75-125	
1,1-Dichloroethene	233	2.0	"	250	93.2	75-125	
Trichloroethene	230	2.0	"	250	92.0	75-125	
Benzene	232	2.0	"	250	92.8	75-125	
Гoluene	243	2.0	"	250	97.2	75-125	
Surrogate: Toluene-d8	99.0		"	100	99.0	85.5-116	
Surrogate: 4-Bromofluorobenzene	111		"	100	111	81.2-123	
Surrogate: Dibromofluoromethane	112		"	100	112	90-135	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mospie

LFR Inc. -- Emeryville
1900 Powell Street 12th Floor

1900 Powell Street, 12th Floor Emeryville CA, 94608-1827

Project: Hanson Radum Facility

Spike

Source

Project Number: 001-09567-00 Project Manager: Katrin Schliewen **Reported:** 11/20/06 11:26

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6111508 - EPA 5030 GCMS										
Matrix Spike (6111508-MS1)	Sou	urce: T60155	9-17	Prepared	& Analyzo	ed: 11/15	06			
Chlorobenzene	212	2.0	ug/kg	250	ND	84.8	75-125			
1,1-Dichloroethene	162	2.0	"	250	ND	64.8	75-125			QM-07
Trichloroethene	184	2.0	"	250	ND	73.6	75-125			QM-07
Benzene	195	2.0	"	250	ND	78.0	75-125			
Toluene	216	2.0	"	250	ND	86.4	75-125			
Surrogate: Toluene-d8	103		"	100		103	85.5-116			
Surrogate: 4-Bromofluorobenzene	118		"	100		118	81.2-123			
Surrogate: Dibromofluoromethane	64.8		"	100		64.8	90-135			S-GC
Matrix Spike Dup (6111508-MSD1)	Sou	urce: T60155	9-17	Prepared	& Analyzo	ed: 11/15	06			
Chlorobenzene	192	2.0	ug/kg	250	ND	76.8	75-125	9.90	20	
1,1-Dichloroethene	188	2.0	"	250	ND	75.2	75-125	14.9	20	
Trichloroethene	181	2.0	"	250	ND	72.4	75-125	1.64	20	QM-07
Benzene	194	2.0	"	250	ND	77.6	75-125	0.514	20	
Toluene	189	2.0	"	250	ND	75.6	75-125	13.3	20	
Surrogate: Toluene-d8	96.6		"	100		96.6	85.5-116			
Surrogate: 4-Bromofluorobenzene	115		"	100		115	81.2-123			
Surrogate: Dibromofluoromethane	80.3		"	100		80.3	90-135			S-GC

SunStar Laboratories, Inc.

Project: Hanson Radum Facility

Spike

Source

%REC

Project Number: 001-09567-00 Project Manager: Katrin Schliewen **Reported:** 11/20/06 11:26

RPD

PAH compounds by Semivolatile GCMS - Quality Control SunStar Laboratories, Inc.

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6111706 - EPA 3550 ECD/0	GCMS									
Blank (6111706-BLK1)				Prepared:	11/17/06	Analyzed	d: 11/19/06			
Acenaphthene	ND	300	ug/kg							
Acenaphthylene	ND	300	"							
Anthracene	ND	300	"							
Benzo (a) anthracene	ND	300	"							
Benzo (b) fluoranthene	ND	300	"							
Benzo (k) fluoranthene	ND	300	"							
Benzo (g,h,i) perylene	ND	1000	"							
Benzo (a) pyrene	ND	300	"							
Chrysene	ND	300	"							
Dibenz (a,h) anthracene	ND	300	"							
Fluoranthene	ND	300	"							
Fluorene	ND	300	"							
Indeno (1,2,3-cd) pyrene	ND	300	"							
Naphthalene	ND	300	"							
Phenanthrene	ND	300	"							
Pyrene	ND	300	"							
Surrogate: 2,4,6-Tribromophenol	1300		"	1670		77.8	18.1-101			
Surrogate: Terphenyl-dl4	1480		"	1670		88.6	29.1-130			
LCS (6111706-BS1)				Prepared:	11/17/06	Analyzed	d: 11/20/06			
Acenaphthene	1250	300	ug/kg	1670		74.9	38.9-79.4			
Pyrene	908	300	"	1670		54.4	25-85.2			

"

ug/kg

"

Source: T601559-02

300

300

1670

1670

1670

1670

1670

1670

1640

1420

1240

792

1490

1160

SunStar Laboratories, Inc.

Surrogate: 2,4,6-Tribromophenol

Matrix Spike (6111706-MS1)

Surrogate: 2,4,6-Tribromophenol

Surrogate: Terphenyl-dl4

Surrogate: Terphenyl-dl4

Acenaphthene

Pyrene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

98.2

85.0

74.3

47.4

89.2

69.5

Prepared: 11/17/06 Analyzed: 11/20/06

ND

ND

18.1-101

29.1-130

33.8-76.1

24.5-100

18.1-101

29.1-130

Project: Hanson Radum Facility

Project Number: 001-09567-00 Project Manager: Katrin Schliewen **Reported:** 11/20/06 11:26

PAH compounds by Semivolatile GCMS - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6111706 - EPA 3550 ECD/GCMS

Matrix Spike Dup (6111706-MSD1)	Sourc	e: T60155	59-02	Prepared:	11/17/06	Analyze	d: 11/20/06		
Acenaphthene	1210	300	ug/kg	1670	ND	72.5	33.8-76.1	2.45	31
Pyrene	731	300	"	1670	ND	43.8	24.5-100	8.01	31
Surrogate: 2,4,6-Tribromophenol	1180		"	1670		70.7	18.1-101		
Surrogate: Terphenyl-dl4	1080		"	1670		64.7	29.1-130		

SunStar Laboratories, Inc.

LFR Inc. -- Emeryville Project: Hanson Radum Facility
1900 Powell Street, 12th Floor Project Number: 001-09567-00 Reported:
Emeryville CA, 94608-1827 Project Manager: Katrin Schliewen 11/20/06 11:26

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds

present in the sample extract.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

SAMPLE COLLECTOR:		PROJECT NO.:	SECTION NO.:	DATE:	/14/06 SAMPLE	B'S INITIALS:	SERIAL NO.:
LFR 1900 Powell St Emeryville, Cal	reet, 12th Floor	PROJECT NAME:	- an year of	1 1	/【 て/ 06】 <u>に</u> は R (Sign ature):	~	№ 202162
LEVINE FRICKE (510) 652-4500	lifornia 94608-1827	PROJECT NAME:	RADUM	SAMPLE	R (Signature):		14- 202102
EEVINE (510) 032-4300	*	. ,	(ATD O AR		2000		/DEMARKS
	SAN	<u>IPLE</u>			ANALYSES		REMARKS
			/ TYPE /		LA See See See See See See See See See Se	TAT	
·		10. /ners	CH.	CASHA CHAI THEORY TOLE	an salker	~ V/	*VOCs: **Metals:
		Lab Sample No. of Containers	Tord Parish Tork	BIET HOS HERES	Second Arthres	٧/. /	☐ 8260 List ☐ CAM17
		Same of Co	/ Jd (Et ino la	TEX TEX COLOR MEN		adard C. Y. O	□ 8240 List □ RCRA □ 8010 List □ LUFT
SAMPLE ID.	DATE TIME	180 Sal HO OF SOIL Water	\ \484. \484. \484.	BIE JOU Mete	4 / / de	andard Str. HOLD	624 List
R-1-40	With 900			BOLEM HE BOLE BOLE BOOK OF THE WAS TO	01	V (12 F	
 		- ' \wedge - - 			62 /		2Hd ATPHIMO IS
P-1-4-2	1 210			X			M THAN
13-1-10	920		XXX		67	1 100	Ma Kg, THEN
B-1-14,5	935				64	X Rui	Y CPOR PAH
B-1-18	945				05	X Por	The same of
B-3-5	1050				06	X	4 (1)
B-3-10	1109		111		67	m .4	ME! De Ba
3 3 7			1355	 	08		C C TS LOU
B-3-10	1040				 		cr, cu, ai
B-3-14	1115		 		09	_ VN	
B-3-18	1120				10	X	
B-4-5	1210				4	X	
B-4-10.5	1230		XXX	1	2		
RANC	1230				(7)	X	
B-4-18	1245				14		
	1400		1 1 1		15		
B-5-5-5			1		16	2/	HRS
B-3-5	1530	- - - - - - - - - 	 	 _ _ _ _ _ _ _ _ _ _			
B-8-13	1643		XXX	X- -	13		
3-8-18	1650				18	X	
	Y ,						
SAMPLE RECEIPT: Cooler Temp:	METHOD OF SHIPMENT:	RELINQUISHED BY:	0 /-	1 RELINQUISHED BY	•	2 RELINQUISHED BY:	: 3
☐ Intact ☐ Cold	LAS SEDORTNO	(SIGNATURE)	pull 1/14/	(SIGNATURE)	(DATE)	(SIGNATURE)	(DATE)
On Ice Ambient Cooler No:	LAB REPORT NO.:	I ADRIV LOG	WVASP 17-14	(SIGNATURE)	(22)	,	, —…— ,
<u></u>	FAX COC CONFIRMATION T		(TIME)	(PRINTED NAME)	(TIME)	(PRINTED NAME)	(TIME)
Preservative Correct? Yes No NA	د بده بدها		X	(COMPANY)		(COMPANY)	
ANALYTICAL LABORATORY:	FAX RESULTS TO:	QUI SCRIPPANY)				2 RECEIVED BY (LAB	MODATORYI: 1
PARALITICAL LABORATORY:	FAX RESULTS ID.	RECEIVED BY:	Br-11/4/6	K) ./		,	•
SUMSTAR	SEND HARDCO Y TO:	(SIONATURE)	(DATE)	(SIGNATURE)	(DATE) 11-1	(SIGNATURE)	(DATE)
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	SEND EDD TO	(PRINTED NAME)	1714 (TIME) 714	(PRINTED NAME)	T (TIME)	(PRINTED NAME)	(TIME)
HWALL TLON	SEND EDD TO: P		(TIME)	(PRINTED NAME)	A Vargue 1017	0	(: m=)
VO		(COMPANY)		(COMPANY) S	mitch	(COMPANY)	
Shipping Copy (White)	File Copy (Yellow)	Field Copy (F	Pink)			CHAIN of CUSTODY	- ANALYSES FORM, CDR 5/2003

21 November 2006

Katrin Schliewen LFR Inc. -- Emeryville 1900 Powell Street, 12th Floor Emeryville, CA 94608-1827

RE: Hanson Radum

Enclosed are the results of analyses for samples received by the laboratory on 11/16/06 08:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maria Bonifacio For John Shepler

Laboratory Director

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 11:11

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B14-5.0	T601568-01	Soil	11/15/06 14:20	11/16/06 08:30
B14-10.0	T601568-02	Soil	11/15/06 14:30	11/16/06 08:30
B13-5	T601568-04	Soil	11/15/06 13:18	11/16/06 08:30
B13-7.5	T601568-05	Soil	11/15/06 13:20	11/16/06 08:30
GGW-21	T601568-08	Water	11/15/06 11:30	11/16/06 08:30
GGW-22	T601568-09	Water	11/15/06 16:00	11/16/06 08:30

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 11:11

Extractable Petroleum Hydrocarbons by 8015 SunStar Laboratories, Inc.

				,					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B14-5.0 (T601568-01) Soil	Sampled: 11/15/06 14:20	Received: 11	/16/06 08:	:30					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		107 %	65-1	35	"	"	"	"	
B14-10.0 (T601568-02) Soil	Sampled: 11/15/06 14:30	Received: 1	1/16/06 08	8:30					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		101 %	65-1	35	"	"	"	"	
B13-5 (T601568-04) Soil	Sampled: 11/15/06 13:18	Received: 11/1	16/06 08:30	0					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		102 %	65-1	35	"	"	"	"	
B13-7.5 (T601568-05) Soil	Sampled: 11/15/06 13:20	Received: 11	/16/06 08:	:30					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		98.7 %	65-1	35	"	"	"	"	
GGW-21 (T601568-08) Wa	ter Sampled: 11/15/06 11	:30 Received	d: 11/16/06	6 08:30					
C13-C28 (DRO)	ND	0.050	mg/l	1	6111604	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	0.050	"	"	"	"	"	"	
Surrogate: Chrysene		127 %	65-1	35	"	"	"	"	
GGW-22 (T601568-09) Wa	ter Sampled: 11/15/06 16	:00 Received	d: 11/16/06	6 08:30					
C13-C28 (DRO)	1.7	0.050	mg/l	1	6111604	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	0.050	"	"	"	"	"	"	
Surrogate: Chrysene		73.5 %	65-1	35	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 11:11

Volatile Organic Compounds by EPA Method 8260B SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
					Daten	1 Tepateu	Anatyzeu	ivicuiou	notes
GGW-22 (T601568-09) Water	Sampled: 11/15/06 16:00								
Bromobenzene	ND	1.0	ug/l	1	6111723	11/17/06	11/17/06	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene			"	"	"	"	"	"	
	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	2.5	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"		"	"	"	"	
Methylene chloride	ND	1.0		"	"				
Naphthalene	ND	1.0	"	"		"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Morpi.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 11:11

Volatile Organic Compounds by EPA Method 8260B SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GGW-22 (T601568-09) Water	Sampled: 11/15/06 16:00	Received	: 11/16/0	06 08:30					
1,1,1,2-Tetrachloroethane	ND	1.0	ug/l	1	6111723	11/17/06	11/17/06	EPA 8260B	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	0.50	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	0.59	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	1.2	0.50	"	"	"	"	"	"	
Surrogate: Toluene-d8		102 %	88.8	B-117	"	"	"	"	
Surrogate: 4-Bromofluorobenzen	ie	106 %	83.5	5-119	"	"	"	"	
Surrogate: Dibromofluorometha		108 %	81.1	'-136	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 11:11

Extractable Petroleum Hydrocarbons by 8015 - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6111604 - EPA 3510C GC										
Blank (6111604-BLK1)				Prepared:	11/16/06	Analyzed	: 11/17/06			
C13-C28 (DRO)	ND	0.050	mg/l							
C29-C40 (MORO)	ND	0.050	"							
Surrogate: Chrysene	3.20		"	4.00		80.0	65-135			
LCS (6111604-BS1)				Prepared:	11/16/06	Analyzed	: 11/17/06			
C13-C28 (DRO)	18.7	0.050	mg/l	20.0		93.5	75-125			
Surrogate: Chrysene	2.87		"	4.00		71.8	65-135			
Matrix Spike (6111604-MS1)	Sou	rce: T60156	68-08	Prepared:	11/16/06	Analyzed	: 11/17/06			
C13-C28 (DRO)	21.8	0.050	mg/l	20.0	ND	109	75-125			
Surrogate: Chrysene	3.97		"	4.00		99.2	65-135			
Matrix Spike Dup (6111604-MSD1)	Sou	rce: T60156	68-08	Prepared:	11/16/06	Analyzed	: 11/17/06			
C13-C28 (DRO)	24.0	0.050	mg/l	20.0	ND	120	75-125	9.61	20	
Surrogate: Chrysene	4.18		"	4.00		104	65-135			
Batch 6111605 - EPA 3550B GC										
Blank (6111605-BLK1)				Prepared:	11/16/06	Analyzed	: 11/17/06			
C13-C28 (DRO)	ND	10	mg/kg							
C29-C40 (MORO)	ND	10	"							
Surrogate: Chrysene	99.1		"	100		99.1	65-135			
LCS (6111605-BS1)				Prepared:	11/16/06	Analyzed	: 11/17/06			
C13-C28 (DRO)	570	10	mg/kg	500		114	75-125			
Surrogate: Chrysene	117		"	100		117	65-135			

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 11:11

RPD

%REC

Extractable Petroleum Hydrocarbons by 8015 - Quality Control SunStar Laboratories, Inc.

Reporting

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6111605 - EPA 3550B GC										
Matrix Spike (6111605-MS1)	Sour	ce: T60156	59-01	Prepared:	11/16/06	Analyzed	l: 11/17/06			
C13-C28 (DRO)	590	10	mg/kg	500	ND	118	75-125			
Surrogate: Chrysene	133		"	100		133	65-135			
Matrix Spike Dup (6111605-MSD1)	Sour	ce: T60156	59-01	Prepared:	11/16/06	Analyzed	l: 11/17/06			
C13-C28 (DRO)	590	10	mg/kg	500	ND	118	75-125	0.00	20	
Surrogate: Chrysene	134		"	100		134	65-135			

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 11:11

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6111723 - EPA 5030 GCMS

Blank (6111723-BLK1)				Prepared & Analyzed: 11/17/06
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	
p-Isopropyltoluene	ND	1.0	"	
Methylene chloride	ND	1.0	"	
	1,2	1.0		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

M. A.

Analyte

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 11:11

RPD

Limit

Notes

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

40.0

100

100

100

100

100

40.0

40.0

40.0

Source

Result

%REC

%REC

Limits

RPD

Reporting

Limit

Result

40.9

97.1

108

97.0

103

103

39.5

44.5

41.7

1.0

1.0

1.0

0.50

0.50

ug/l

Blank (6111723-BLK1)				Prepared & An	alyzed: 11/17	/06
Naphthalene	ND	1.0	ug/l	•		
n-Propylbenzene	ND	1.0	"			
Styrene	ND	1.0	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"			
Tetrachloroethene	ND	1.0	"			
1,2,3-Trichlorobenzene	ND	1.0	"			
1,2,4-Trichlorobenzene	ND	1.0	"			
1,1,2-Trichloroethane	ND	1.0	"			
1,1,1-Trichloroethane	ND	1.0	"			
Trichloroethene	ND	1.0	"			
Trichlorofluoromethane	ND	1.0	"			
1,2,3-Trichloropropane	ND	1.0	"			
1,3,5-Trimethylbenzene	ND	1.0	"			
,2,4-Trimethylbenzene	ND	1.0	"			
Vinyl chloride	ND	0.50	"			
Benzene	ND	0.50	"			
Γoluene	ND	0.50	"			
Ethylbenzene	ND	0.50	"			
m,p-Xylene	ND	1.0	"			
o-Xylene	ND	0.50	"			
urrogate: Toluene-d8	40.0		"	40.0	100	88.8-117
urrogate: 4-Bromofluorobenzene	41.0		"	40.0	102	83.5-119

SunStar Laboratories, Inc.

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Surrogate: Dibromofluoromethane

LCS (6111723-BS1)

Surrogate: Toluene-d8

Chlorobenzene

Trichloroethene

Benzene

Toluene

1,1-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

102

97.1

108

97.0

103

103

98.8

111

104

Prepared & Analyzed: 11/17/06

81.1-136

75-125

75-125

75-125

75-125

75-125

88.8-117

83.5-119

81.1-136

Morrow

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 11:11

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6111723 - EPA 5030 GCMS										
LCS Dup (6111723-BSD1)				Prepared	& Analyze	ed: 11/17/	06			
Chlorobenzene	111	1.0	ug/l	100		111	75-125	13.4	20	
1,1-Dichloroethene	124	1.0	"	100		124	75-125	13.8	20	
Trichloroethene	107	1.0	"	100		107	75-125	9.80	20	
Benzene	117	0.50	"	100		117	75-125	12.7	20	
Toluene	106	0.50	"	100		106	75-125	2.87	20	
Surrogate: Toluene-d8	39.9		"	40.0		99.8	88.8-117			
Surrogate: 4-Bromofluorobenzene	44.8		"	40.0		112	83.5-119			
Surrogate: Dibromofluoromethane	42.6		"	40.0		106	81.1-136			

SunStar Laboratories, Inc.

LFR Inc. -- Emeryville Project: Hanson Radum

1900 Powell Street, 12th Floor Project Number: 001-09567-00 Reported:

Emeryville CA, 94608-1827 Project Manager: Katrin Schliewen 11/21/06 11:11

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

ķ

21 November 2006

Katrin Schliewen LFR Inc. -- Emeryville 1900 Powell Street, 12th Floor Emeryville, CA 94608-1827

RE: Hanson Radum

Enclosed are the results of analyses for samples received by the laboratory on 11/16/06 08:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maria Bonifacio

Project Coordinator

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-5-5	T601569-01	Soil	11/15/06 09:40	11/16/06 08:30
B-5-10	T601569-02	Soil	11/15/06 09:50	11/16/06 08:30
B-5-15	T601569-03	Soil	11/15/06 10:00	11/16/06 08:30
B-6-5	T601569-04	Soil	11/15/06 08:15	11/16/06 08:30
B-6-10	T601569-05	Soil	11/15/06 08:20	11/16/06 08:30
B-6-15	T601569-06	Soil	11/15/06 08:30	11/16/06 08:30
B-7-5	T601569-07	Soil	11/15/06 08:50	11/16/06 08:30
B-7-11	T601569-08	Soil	11/15/06 09:10	11/16/06 08:30
B-9-5	T601569-10	Soil	11/15/06 11:30	11/16/06 08:30
B-9-10	T601569-11	Soil	11/15/06 11:40	11/16/06 08:30
B-10-5	T601569-13	Soil	11/15/06 10:40	11/16/06 08:30
B-10-10	T601569-14	Soil	11/15/06 10:45	11/16/06 08:30
B-11-5	T601569-16	Soil	11/15/06 13:20	11/16/06 08:30
B-11-10	T601569-17	Soil	11/15/06 13:30	11/16/06 08:30
B-11-15	T601569-18	Soil	11/15/06 13:35	11/16/06 08:30

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

Purgeable Petroleum Hydrocarbons by EPA 8015m SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-9-5 (T601569-10) Soil	Sampled: 11/15/06 11:30	Received: 11/1	6/06 08:30						
C6-C12 (GRO)	ND	500	ug/kg	1	6111613	11/16/06	11/16/06	EPA 8015m	
Surrogate: 4-Bromofluorol	benzene	92.0 %	65-13	35	"	"	"	"	
B-9-10 (T601569-11) Soil	Sampled: 11/15/06 11:40	Received: 11/	16/06 08:30)					
C6-C12 (GRO)	ND	500	ug/kg	1	6111613	11/16/06	11/16/06	EPA 8015m	
Surrogate: 4-Bromofluorol	benzene	94.4 %	65-13	35	"	"	"	"	
B-10-5 (T601569-13) Soil	Sampled: 11/15/06 10:40	Received: 11/	16/06 08:30)					
C6-C12 (GRO)	ND	500	ug/kg	1	6111613	11/16/06	11/16/06	EPA 8015m	
Surrogate: 4-Bromofluorol	benzene	91.2 %	65-13	35	"	"	"	"	
B-10-10 (T601569-14) Soi	l Sampled: 11/15/06 10:4	5 Received: 11	/16/06 08:3	30					
C6-C12 (GRO)	ND	500	ug/kg	1	6111613	11/16/06	11/16/06	EPA 8015m	
Surrogate: 4-Bromofluorol	benzene	91.2 %	65-13	35	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

Extractable Petroleum Hydrocarbons by 8015 SunStar Laboratories, Inc.

i 									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B-5-5 (T601569-01) Soil	Sampled: 11/15/06 09:40	Received: 11/1	6/06 08:30						
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		129 %	65-13	35	"	"	"	"	
B-5-10 (T601569-02) Soil	Sampled: 11/15/06 09:50	Received: 11/	16/06 08:30	0					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	160	10	"	"	"	"	"	"	
Surrogate: Chrysene		100 %	65-13	35	"	"	"	"	
B-5-15 (T601569-03) Soil	Sampled: 11/15/06 10:00	Received: 11/	16/06 08:30	0					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	7800	10	"	"	"	"	"	"	
Surrogate: Chrysene		102 %	65-13	35	"	"	"	"	
B-6-5 (T601569-04) Soil	Sampled: 11/15/06 08:15	Received: 11/1	6/06 08:30						
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	19000	10	"	"	"	"	"	"	
Surrogate: Chrysene		94.7 %	65-13	35	"	"	"	"	
B-6-10 (T601569-05) Soil	Sampled: 11/15/06 08:20	Received: 11/	16/06 08:30	0					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		103 %	65-13	35	"	"	"	"	
B-6-15 (T601569-06) Soil	Sampled: 11/15/06 08:30	Received: 11/	16/06 08:30	0					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	n	"	"	"	"	
Surrogate: Chrysene		126 %	65-13	35	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

Extractable Petroleum Hydrocarbons by 8015 SunStar Laboratories, Inc.

				,					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B-7-5 (T601569-07) Soil	Sampled: 11/15/06 08:50	Received: 11/1	6/06 08:30						
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		124 %	65-1.	35	"	"	"	"	
B-7-11 (T601569-08) Soil	Sampled: 11/15/06 09:10	Received: 11/	/16/06 08:3	0					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		101 %	65-1.	35	"	"	"	"	
B-9-5 (T601569-10) Soil	Sampled: 11/15/06 11:30	Received: 11/1	6/06 08:30						
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	II .	
Surrogate: Chrysene		101 %	65-1.	35	"	"	"	"	
B-9-10 (T601569-11) Soil	Sampled: 11/15/06 11:40	Received: 11/	/16/06 08:3	0					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		98.8 %	65-1.	35	"	"	"	"	
B-10-5 (T601569-13) Soil	Sampled: 11/15/06 10:40	Received: 11/	/16/06 08:3	0					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	II .	
Surrogate: Chrysene		96.9 %	65-1.	35	"	"	"	"	
B-10-10 (T601569-14) So	il Sampled: 11/15/06 10:4	5 Received: 1	1/16/06 08:	30					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		99.3 %	65-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

Extractable Petroleum Hydrocarbons by 8015 SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-11-5 (T601569-16) Soil	Sampled: 11/15/06 13:20	Received: 11/	16/06 08:3	0					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		99.9 %	65-1	35	"	"	"	"	
B-11-10 (T601569-17) Soil	Sampled: 11/15/06 13:30	Received: 11	/16/06 08:	30					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		97.3 %	65-1	35	"	"	"	"	
B-11-15 (T601569-18) Soil	Sampled: 11/15/06 13:35	Received: 11	/16/06 08:	30					
C13-C28 (DRO)	ND	10	mg/kg	1	6111605	11/16/06	11/17/06	EPA 8015m	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: Chrysene		123 %	65-1	35	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

Metals by EPA 6000/7000 Series Methods SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-9-5 (T601569-10) Soil	Sampled: 11/15/06 11:30	Received: 11/1	6/06 08:3	0					
Arsenic	ND	5.0	mg/kg	1	6111603	11/16/06	11/16/06	EPA 6010B	
Barium	43	1.0	"	"	"	"	"	m m	
Chromium	15	2.0	"	"	"	"	"	"	
Cobalt	4.5	2.0	"	"	"	"	"	"	
Copper	14	1.0	"	"	"	"	"	"	
Nickel	29	2.0	"	"	"	"	"	"	
Vanadium	8.8	5.0	"	"	"	"	"	"	
B-9-10 (T601569-11) Soil	Sampled: 11/15/06 11:40	Received: 11/	16/06 08:	30					
Arsenic	ND	5.0	mg/kg	1	6111603	11/16/06	11/16/06	EPA 6010B	
Barium	49	1.0	"	"	"	"	"	"	
Chromium	23	2.0	"	"	"	"	"	"	
Cobalt	5.3	2.0	"	"	"	"	"	"	
Copper	14	1.0	"	"	"	"	"	"	
Nickel	39	2.0	"	"	"	"	"	"	
Vanadium	12	5.0	"	"	"	"	"	"	
B-10-5 (T601569-13) Soil	Sampled: 11/15/06 10:40	Received: 11/	16/06 08:	30					
Arsenic	ND	5.0	mg/kg	1	6111603	11/16/06	11/16/06	EPA 6010B	
Barium	50	1.0	"	"	"	"	"	"	
Chromium	12	2.0	"	"	"	"	"	n n	
Cobalt	3.8	2.0	"	"	"	"	"	n n	
Copper	28	1.0	"	"	"	"	"	n n	
Nickel	18	2.0	"	"	"	"	"	"	
Vanadium	7.2	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

Metals by EPA 6000/7000 Series Methods SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-10-10 (T601569-14) Soil	Sampled: 11/15/06 10:45	Received: 11	/16/06 08	3:30					
Arsenic	ND	5.0	mg/kg	1	6111603	11/16/06	11/16/06	EPA 6010B	
Barium	32	1.0	"	"	"	"	"	"	
Chromium	13	2.0	"	"	"	"	"	"	
Cobalt	4.3	2.0	"	"	"	"	"	"	
Copper	22	1.0	"	"	"	"	"	"	
Nickel	26	2.0	"	"	"	"	"	n .	
Vanadium	7.2	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

PAH compounds by Semivolatile GCMS SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-5-10 (T601569-02) Soil	Sampled: 11/15/06 09:50	Received: 11/	16/06 08:	:30					
Acenaphthene	ND	300	ug/kg	1	6112003	11/20/06	11/20/06	EPA 8270C	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	m .	
Naphthalene	ND	300	"	"	"	"	"	n .	
Phenanthrene	ND	300	"	"	"	"	"	n .	
Pyrene	ND	300	"	"	"	"	"	"	
Surrogate: Terphenyl-dl4		75.4 %	29.1	-130	"	"	"	"	
B-5-15 (T601569-03) Soil	Sampled: 11/15/06 10:00	Received: 11/	16/06 08:	:30					
Acenaphthene	ND	300	ug/kg	1	6112003	11/20/06	11/20/06	EPA 8270C	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Surrogate: Terphenyl-dl4		104 %	29 1	-130	"	"	"	"	
Sanc. Terprienyi di i		10170	27.1						

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

PAH compounds by Semivolatile GCMS SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B-6-5 (T601569-04) Soil	Sampled: 11/15/06 08:15	Received: 11/1	6/06 08:3	0					
Acenaphthene	ND	300	ug/kg	1	6112003	11/20/06	11/20/06	EPA 8270C	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Surrogate: Terphenyl-dl4		%	29.1	-130	"	"	"	"	S-04
B-11-5 (T601569-16) Soil									
(1001007 10) 001	1 Sampled: 11/15/06 13:20	Received: 11/	16/06 08:	30					
	Sampled: 11/15/06 13:20 ND			1	6111606	11/16/06	11/19/06	EPA 8270C	
Acenaphthene	ND	300	ug/kg		6111606	11/16/06	11/19/06	EPA 8270C	
	ND ND	300 300	ug/kg	1					
Acenaphthene Acenaphthylene Anthracene	ND ND ND	300 300 300	ug/kg	1	"	"	"	"	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene	ND ND ND ND	300 300 300 300	ug/kg "	1	"	"	"	"	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene	ND ND ND ND	300 300 300 300 300	ug/kg " "	1 "	" "	"	" "	" "	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene	ND ND ND ND ND	300 300 300 300 300 300	ug/kg " " "	1	" " "	"	" " " " " " " " " " " " " " " " " " " "	11 11 11	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene	ND ND ND ND ND ND	300 300 300 300 300 300 300	ug/kg " " " "	1	" " " " " " " " " " " " " " " " " " " "	" " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene	ND ND ND ND ND ND ND	300 300 300 300 300 300 1000 300	ug/kg " " " "	1	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	11 11 11 11	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene	ND	300 300 300 300 300 300 1000 300 300	ug/kg " " " " "	1 " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	11 11 11 11 11	11 11 11 11	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene Dibenz (a,h) anthracene	ND	300 300 300 300 300 300 1000 300 300	ug/kg " " " " "	1	11 11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " "	11 11 11 11 11	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene Dibenz (a,h) anthracene Fluoranthene	ND N	300 300 300 300 300 300 1000 300 300 300	ug/kg " " " " " "	1	11 11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " "	" " " " " " " " " " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene	ND N	300 300 300 300 300 300 1000 300 300 300	ug/kg " " " " " " "	1	11 11 11 11 11 11 11	" " " " " " " " " " " "	" " " " " " " " " " " " " "	" " " " " " " " " " " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene	ND N	300 300 300 300 300 300 1000 300 300 300	ug/kg " " " " " " "	1	11 11 11 11 11 11 11	11 11 11 11 11 11	" " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene	ND N	300 300 300 300 300 300 1000 300 300 300	ug/kg " " " " " " " "	1	11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11		
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene	ND N	300 300 300 300 300 300 1000 300 300 300	ug/kg	1			11 11 11 11 11 11 11 11 11 11 11 11 11		

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

PAH compounds by Semivolatile GCMS SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-11-10 (T601569-17) Soil	Sampled: 11/15/06 13:30	Received: 11	/16/06 08	8:30					
Acenaphthene	ND	300	ug/kg	1	6111606	11/16/06	11/19/06	EPA 8270C	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
Phenanthrene	360	300	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Surrogate: Terphenyl-dl4		73.1 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

Purgeable Petroleum Hydrocarbons by EPA 8015m - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
rmaryte	Resuit	LIIIII	Omis	LCVCI	Result	/OKLC	Lillits	KI D	Lillit	110168
Batch 6111613 - EPA 5030 GC										
Blank (6111613-BLK1)				Prepared	& Analyze	ed: 11/16/0	06			
C6-C12 (GRO)	ND	500	ug/kg							
Surrogate: 4-Bromofluorobenzene	109		"	125		87.2	65-135			
LCS (6111613-BS1)				Prepared	& Analyze	ed: 11/16/0	06			
C6-C12 (GRO)	14800	500	ug/kg	13800		107	75-125			
Surrogate: 4-Bromofluorobenzene	125		"	125		100	65-135			
Matrix Spike (6111613-MS1)	Sou	urce: T60156	9-10	Prepared	& Analyze	ed: 11/16/0	06			
C6-C12 (GRO)	12500	500	ug/kg	13800	ND	90.6	65-135			
Surrogate: 4-Bromofluorobenzene	133		"	125		106	65-135			
Matrix Spike Dup (6111613-MSD1)	Sou	urce: T60156	9-10	Prepared	& Analyze	ed: 11/16/0	06			
C6-C12 (GRO)	14500	500	ug/kg	13800	ND	105	65-135	14.8	20	
Surrogate: 4-Bromofluorobenzene	138		"	125		110	65-135			

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

Extractable Petroleum Hydrocarbons by 8015 - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6111605 - EPA 3550B GC										
Blank (6111605-BLK1)				Prepared:	11/16/06	Analyzed	1: 11/17/06			
C13-C28 (DRO)	ND	10	mg/kg							
C29-C40 (MORO)	ND	10	"							
Surrogate: Chrysene	99.1		"	100		99.1	65-135			
LCS (6111605-BS1)				Prepared:	11/16/06	Analyzed	1: 11/17/06			
C13-C28 (DRO)	570	10	mg/kg	500		114	75-125			
Surrogate: Chrysene	117		"	100		117	65-135			
Matrix Spike (6111605-MS1)	Sour	rce: T60156	9-01	Prepared:	11/16/06	Analyzed	1: 11/17/06			
C13-C28 (DRO)	590	10	mg/kg	500	ND	118	75-125			
Surrogate: Chrysene	133		"	100		133	65-135			
Matrix Spike Dup (6111605-MSD1)	Sour	rce: T60156	9-01	Prepared:	11/16/06	Analyzed	1: 11/17/06			
C13-C28 (DRO)	590	10	mg/kg	500	ND	118	75-125	0.00	20	
Surrogate: Chrysene	134		"	100		134	65-135			

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

Metals by EPA 6000/7000 Series Methods - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6111603 - EPA 3051										
Blank (6111603-BLK1)				Prepared	& Analyze	ed: 11/16/0	06			
Arsenic	ND	5.0	mg/kg							
Barium	ND	1.0	"							
Chromium	ND	2.0	"							
Cobalt	ND	2.0	"							
Copper	ND	1.0	"							
Nickel	ND	2.0	"							
Vanadium	ND	5.0	"							
LCS (6111603-BS1)				Prepared	& Analyze	ed: 11/16/0	06			
Arsenic	98.5	5.0	mg/kg	100		98.5	75-125			
Barium	94.1	1.0	"	100		94.1	75-125			
Chromium	97.0	2.0	"	100		97.0	75-125			
Matrix Spike (6111603-MS1)	Sour	ce: T60156	59-10	Prepared	& Analyze	ed: 11/16/0	06			
Arsenic	97.7	5.0	mg/kg	100	2.7	95.0	75-125			
Barium	136	1.0	"	100	43	93.0	75-125			
Chromium	117	2.0	"	100	15	102	75-125			
Matrix Spike Dup (6111603-MSD1)	Source	ce: T60156	59-10	Prepared	& Analyze	ed: 11/16/0	06			
Arsenic	92.4	5.0	mg/kg	100	2.7	89.7	75-125	5.58	20	
Barium	141	1.0	"	100	43	98.0	75-125	3.61	20	
Chromium	130	2.0	"	100	15	115	75-125	10.5	20	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

RPD

%REC

PAH compounds by Semivolatile GCMS - Quality Control SunStar Laboratories, Inc.

Reporting

1600

Spike

1670

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6111606 - EPA 3550 ECD	/GCMS									
Blank (6111606-BLK1)				Prepared:	11/16/06	Analyzed	: 11/19/06			
Acenaphthene	ND	300	ug/kg							
Acenaphthylene	ND	300	"							
Anthracene	ND	300	"							
Benzo (a) anthracene	ND	300	"							
Benzo (b) fluoranthene	ND	300	"							
Benzo (k) fluoranthene	ND	300	"							
Benzo (g,h,i) perylene	ND	1000	"							
Benzo (a) pyrene	ND	300	"							
Chrysene	ND	300	"							
Dibenz (a,h) anthracene	ND	300	"							
Fluoranthene	ND	300	"							
Fluorene	ND	300	"							
Indeno (1,2,3-cd) pyrene	ND	300	"							
Naphthalene	ND	300	"							
Phenanthrene	ND	300	"							
Pyrene	ND	300	"							
Surrogate: Terphenyl-dl4	1270		"	1670		76.0	29.1-130			
LCS (6111606-BS1)				Prepared:	11/16/06	Analyzed	: 11/19/06			
Acenaphthene	1280	300	ug/kg	1670		76.6	38.9-79.4			
Pyrene	1060	300	"	1670		63.5	25-85.2			
Surrogate: Terphenyl-dl4	1440		"	1670		86.2	29.1-130			
LCS Dup (6111606-BSD1)				Prepared:	11/16/06	Analyzed	: 11/19/06			
Acenaphthene	1220	300	ug/kg	1670		73.1	38.9-79.4	4.80	31	
Pyrene	934	300	"	1670		55.9	25-85.2	12.6	31	

SunStar Laboratories, Inc.

Surrogate: Terphenyl-dl4

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

95.8

29.1-130

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/21/06 14:47

RPD

PAH compounds by Semivolatile GCMS - Quality Control SunStar Laboratories, Inc.

Spike

1670

Source

%REC

Reporting

1080

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 6112003 - EPA 3550 ECD/0	GCMS										
Blank (6112003-BLK1)	Prepared & Analyzed: 11/20/06										
Acenaphthene	ND	300	ug/kg								
Acenaphthylene	ND	300	"								
Anthracene	ND	300	"								
Benzo (a) anthracene	ND	300	"								
Benzo (b) fluoranthene	ND	300	"								
Benzo (k) fluoranthene	ND	300	"								
Benzo (g,h,i) perylene	ND	1000	"								
Benzo (a) pyrene	ND	300	"								
Chrysene	ND	300	"								
Dibenz (a,h) anthracene	ND	300	"								
Fluoranthene	ND	300	"								
Fluorene	ND	300	"								
Indeno (1,2,3-cd) pyrene	ND	300	"								
Naphthalene	ND	300	"								
Phenanthrene	ND	300	"								
Pyrene	ND	300	"								
Surrogate: Terphenyl-dl4	1290		"	1670		77.2	29.1-130				
LCS (6112003-BS1)				Prepared	& Analyz	ed: 11/20/0	06				
Acenaphthene	1240	300	ug/kg	1670		74.3	38.9-79.4				
Pyrene	865	300	"	1670		51.8	25-85.2				
Surrogate: Terphenyl-dl4	1420		"	1670		85.0	29.1-130				
Matrix Spike (6112003-MS1)	Sour	rce: T60157	78-01	Prepared	& Analyz	ed: 11/20/0	06				
Acenaphthene	1180	300	ug/kg	1670	ND	70.7	33.8-76.1				
Pyrene	777	300	"	1670	ND	46.5	24.5-100				

SunStar Laboratories, Inc.

Surrogate: Terphenyl-dl4

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

64.7

29.1-130

LFR Inc. -- Emeryville Project: Hanson Radum

1900 Powell Street, 12th Floor Project Number: 001-09567-00

Emeryville CA, 94608-1827 Project Manager: Katrin Schliewen 11/21/06 14:47

PAH compounds by Semivolatile GCMS - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6112003 - EPA 3550 ECD/GCMS

Matrix Spike Dup (6112003-MSD1)	x Spike Dup (6112003-MSD1) Source: T601578-01				Prepared & Analyzed: 11/20/06						
Acenaphthene	1040	300	ug/kg	1670	ND	62.3	33.8-76.1	12.6	31		
Pyrene	727	300	"	1670	ND	43.5	24.5-100	6.65	31		
Surrogate: Terphenyl-dl4	1060		"	1670		63.5	29.1-130				

SunStar Laboratories, Inc.

LFR Inc. -- Emeryville Project: Hanson Radum

1900 Powell Street, 12th Floor Project Number: 001-09567-00

Emeryville CA, 94608-1827 Project Manager: Katrin Schliewen 11/21/06 14:47

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

CHAIN OF CUSTODY / ANALYSES REQUEST FORM SERIAL NO.: SAMPLER'S INITIALS: SECTION NO.: DATE: SAMPLE COLLECTOR: 11/15/06 001-09567-00 XKX Nº 201953 1900 Powell Street, 12th Floor Emeryville, California 94608-1827 (510) 652-4500 Fax: (510) 652-2246 SAMPLER (Signature): PROJECT NAME: REMARKS **ANALYSES** SAMPLE TONG BYEY ERABATEON Heals Era Bulongon VOCS EER BERGER TAT TRIMO Es addan TYPE No. of Containers *VOCs: **Metals: ☐ 8240 List ☐ RCRA RUSH HOLD ☐ 8010 List ☐ LUFT Soil Mater TIME DATE SAMPLE ID. ☐ 624 List 01 0940 B 5 -5.0 62 0350 B5-10.0 63 can - no All 1000 64 0815 65 0820 - 10.0 06 0830 Greath HAN 07 0850 RUN FOR PAH 08 6910 09 0915 10 1130 - 5,0 24 M Rush u1140 h 1150 13 10-5.0 1040 10 - 10.0 1045 15 B 10 - 15.0 1050 щ × 1320 ·B 11-5,0 17 × 330 11 - 10.0 ιδ X ·B11-15.0 1335 9 1350 2 RELINQUISHED BY: RELINQUISHED BY: METHOD OF SHIPMENT: RELINQUISHED BY SAMPLE RECEIPT: Cooler Temp: (DATE) (SIGNATURE) LAB REPORT NO .: Cooler No: On Ice Ambient (PRINTED (TIME) (PRINTED NAME) FAX COC CONFIRMATION TO: KATRIN Schliewsn Preservative Correct?, COMPANY Yes No DA/A 2 RECEIVED BY (LABORATORY): FAX RESULTS TO: ANALYTICAL LABORATORY: (DATE) (SIGNATURE) SEND HARDCORY TO: SUN STAR (TIME) (PRINTED NAME) SEND EDD TO: EMV.LABEDDS.COM (COMPANY) CHAIN of CUSTODY - ANALYSES FORM.CDR 5/2003 Field Copy (Pink)

File Copy (Yellow)

Shipping Copy (White)

1601569

22 November 2006

Katrin Schliewen LFR Inc. -- Emeryville 1900 Powell Street, 12th Floor Emeryville, CA 94608-1827

RE: Hanson Radum

Enclosed are the results of analyses for samples received by the laboratory on 11/17/06 10:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Maria Bonifacio

Project Coordinator

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/22/06 14:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-15-4	T601578-01	Soil	11/16/06 15:00	11/17/06 10:00
B-15-7	T601578-02	Soil	11/16/06 15:10	11/17/06 10:00
B-18-6	T601578-04	Soil	11/16/06 11:15	11/17/06 10:00
B-18-10	T601578-05	Soil	11/16/06 11:25	11/17/06 10:00
B-19-6	T601578-06	Soil	11/16/06 11:30	11/17/06 10:00
B-19-10	T601578-07	Soil	11/16/06 11:40	11/17/06 10:00
B-20-4	T601578-08	Soil	11/16/06 12:50	11/17/06 10:00
B-20-7	T601578-09	Soil	11/16/06 12:55	11/17/06 10:00
B-24-4	T601578-12	Soil	11/16/06 13:50	11/17/06 10:00
B-24-7	T601578-13	Soil	11/16/06 13:55	11/17/06 10:00
B-24-10	T601578-14	Soil	11/16/06 14:00	11/17/06 10:00
GGW-23	T601578-17	Water	11/16/06 14:50	11/17/06 10:00

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/22/06 14:58

Extractable Petroleum Hydrocarbons by 8015 SunStar Laboratories, Inc.

				,					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-15-4 (T601578-01) Soil	Sampled: 11/16/06 15:00	Received: 11/	/17/06 10:	00					
C13-C28 (DRO) C29-C40 (MORO)	ND 220	10 10	mg/kg	1	6111711	11/17/06	11/18/06	EPA 8015m	
Surrogate: Chrysene		170 %	65-	135	"	"	"	"	S-04
B-15-7 (T601578-02) Soil	Sampled: 11/16/06 15:10	Received: 11/	/17/06 10:	00					
C13-C28 (DRO) C29-C40 (MORO)	ND ND	10 10	mg/kg	1	6111711	11/17/06	11/18/06	EPA 8015m	
Surrogate: Chrysene	1,0	126 %	65-	135	"	"	"	"	
B-18-6 (T601578-04) Soil	Sampled: 11/16/06 11:15	Received: 11/	/17/06 10:	00					
C13-C28 (DRO) C29-C40 (MORO)	ND ND	10 10	mg/kg	1	6111711	11/17/06	11/18/06	EPA 8015m	
Surrogate: Chrysene		131 %	65-	135	"	"	"	"	
B-20-4 (T601578-08) Soil	Sampled: 11/16/06 12:50	Received: 11/	/17/06 10:	00					
C13-C28 (DRO) C29-C40 (MORO)	ND ND	10 10	mg/kg	1	6111711	11/17/06	11/18/06	EPA 8015m	
Surrogate: Chrysene		135 %	65-	135	"	"	"	"	
B-20-7 (T601578-09) Soil	Sampled: 11/16/06 12:55	Received: 11/	/17/06 10:	00					
C13-C28 (DRO) C29-C40 (MORO)	ND ND	10 10	mg/kg	1	6111711	11/17/06	11/19/06	EPA 8015m	
Surrogate: Chrysene		134 %	65-	135	"	"	"	"	
B-24-4 (T601578-12) Soil	Sampled: 11/16/06 13:50	Received: 11/	/17/06 10:	00					
C13-C28 (DRO) C29-C40 (MORO)	ND 1300	10 10	mg/kg	1	6111711	11/17/06	11/19/06	EPA 8015m	
Surrogate: Chrysene		29.5 %	65-	135	"	"	"	"	S-04

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/22/06 14:58

Extractable Petroleum Hydrocarbons by 8015 SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-24-7 (T601578-13) Soil	Sampled: 11/16/06 13:55	Received: 11/	17/06 10	:00					
C13-C28 (DRO)	ND	10	mg/kg	1	6111711	11/17/06	11/19/06	EPA 8015m	
C29-C40 (MORO)	650	10	"	"	"	"	"	"	
Surrogate: Chrysene		129 %	65-	135	"	"	"	"	
B-24-10 (T601578-14) Soil	Sampled: 11/16/06 14:00	Received: 11	/17/06 1	0:00					
C13-C28 (DRO)	ND	10	mg/kg	1	6111711	11/17/06	11/19/06	EPA 8015m	
C29-C40 (MORO)	3500	10	"	"	"	"	"	"	
Surrogate: Chrysene		24.2 %	65-	135	"	"	"	"	S-04
GGW-23 (T601578-17) Wa	ater Sampled: 11/16/06 14	4:50 Received	l: 11/17/(6 10:00					
C13-C28 (DRO)	ND	0.050	mg/l	1	6111722	11/17/06	11/19/06	EPA 8015m	
C29-C40 (MORO)	ND	0.050	"	"	"	"	"	"	
Surrogate: Chrysene		83.2 %	65-	135	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/22/06 14:58

Metals by EPA 6000/7000 Series Methods SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-18-6 (T601578-04) Soil	Sampled: 11/16/06 11:15	Received: 11/	17/06 10:	00					
Arsenic	ND	5.0	mg/kg	1	6111714	11/17/06	11/17/06	EPA 6010B	
Barium	48	1.0	"	"	"	"	"	"	
Chromium	14	2.0	"	"	"	"	"	"	
Cobalt	3.9	2.0	"	"	"	"	"	"	
Copper	37	1.0	"	"	"	"	"	"	
Nickel	33	2.0	"	"	"	"	"	"	
Vanadium	7.4	5.0	"	"	"	"	"	"	
B-18-10 (T601578-05) Soil	Sampled: 11/16/06 11:25	Received: 11	/17/06 10	0:00					
Arsenic	ND	5.0	mg/kg	1	6111714	11/17/06	11/17/06	EPA 6010B	
Barium	70	1.0	"	"	"	"	"	"	
Chromium	20	2.0	"	"	"	"	"	"	
Cobalt	6.3	2.0	"	"	"	"	"	"	
Copper	22	1.0	"	"	"	"	"	"	
Nickel	36	2.0	"	"	"	"	"	"	
Vanadium	12	5.0	"	"	"	"	"	"	
B-19-6 (T601578-06) Soil	Sampled: 11/16/06 11:30	Received: 11/	17/06 10:	00					
Arsenic	ND	5.0	mg/kg	1	6111714	11/17/06	11/17/06	EPA 6010B	
Barium	58	1.0	"	"	"	"	"	"	
Chromium	28	2.0	"	"	"	"	"	n .	
Cobalt	6.0	2.0	"	"	"	"	"	n .	
Copper	19	1.0	"	"	"	"	"	n .	
Nickel	45	2.0	"	"	"	"	"	n .	
Vanadium	13	5.0	"	"	"	"	"	n .	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/22/06 14:58

Metals by EPA 6000/7000 Series Methods SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-19-10 (T601578-07) Soil	Sampled: 11/16/06 11:40	Received: 11	/17/06 10	0:00					
Arsenic	ND	5.0	mg/kg	1	6111714	11/17/06	11/17/06	EPA 6010B	
Barium	110	1.0	"	"	"	"	"	"	
Chromium	11	2.0	"	"	"	"	"	"	
Cobalt	3.4	2.0	"	"	"	"	"	"	
Copper	19	1.0	"	"	"	"	"	m .	
Nickel	21	2.0	"	"	"	"	"	m .	
Vanadium	7.5	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/22/06 14:58

PAH compounds by Semivolatile GCMS SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-15-4 (T601578-01) Soil	Sampled: 11/16/06 15:00	Received: 11/	17/06 10:	00					
Acenaphthene	ND	300	ug/kg	1	6112003	11/20/06	11/20/06	EPA 8270C	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	m .	
Naphthalene	ND	300	"	"	"	"	"	m .	
Phenanthrene	ND	300	"	"	"	"	"	n .	
Pyrene	ND	300	"	"	"	"	"	"	
Surrogate: Terphenyl-dl4		73.7 %	29.1	-130	"	"	"	"	
B-24-4 (T601578-12) Soil	Sampled: 11/16/06 13:50	Received: 11/	17/06 10:	00					
Acenaphthene	ND	300	ug/kg	1	6112003	11/20/06	11/20/06	EPA 8270C	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Surrogate: Terphenyl-dl4		65.3 %	20 1	-130	"	"	"	"	
Surroguie. 1 erpnenyi-ul4		05.5 /0	49.1	150					

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/22/06 14:58

PAH compounds by Semivolatile GCMS SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B-24-7 (T601578-13) Soil	Sampled: 11/16/06 13:55	Received: 11/	17/06 10:	:00					
Acenaphthene	ND	3000	ug/kg	10	6112003	11/20/06	11/22/06	EPA 8270C	
Acenaphthylene	ND	3000	"	"	"	"	"	"	
Anthracene	ND	3000	"	"	"	"	"	"	
Benzo (a) anthracene	ND	3000	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	3000	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	3000	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	10000	**	"	"	"	"	"	
Benzo (a) pyrene	ND	3000	"	"	"	"	"	"	
Chrysene	ND	3000	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	3000	"	"	"	"	"	"	
Fluoranthene	ND	3000	"	"	"	"	"	"	
Fluorene	ND	3000	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	3000	"	"	"	"	"	"	
Naphthalene	ND	3000	"	"	"	"	"	"	
Phenanthrene	ND	3000	"	"	"	"	"	"	
Pyrene	ND	3000	••	"	"	"	"	"	
Surrogate: Terphenyl-dl4		77.8 %	29.1	-130	"	"	"	"	
B-24-10 (T601578-14) Soil	I G I. J. 11/17/07 14:00								
· · · · · · · · · · · · · · · · · ·	I Sampled: 11/16/06 14:00	Received: 11	l/17/06 10	0:00					
	ND	3000 Received: 11		10	6112003	11/20/06	11/22/06	EPA 8270C	
Acenaphthene	ND	3000	ug/kg		6112003	11/20/06	11/22/06	EPA 8270C	
Acenaphthene Acenaphthylene			ug/kg	10					
Acenaphthene Acenaphthylene Anthracene	ND ND ND	3000 3000 3000	ug/kg	10	"	"	"	"	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene	ND ND ND ND	3000 3000 3000 3000	ug/kg "	10	"	"	"	"	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene	ND ND ND ND ND	3000 3000 3000 3000 3000	ug/kg " "	10	" "	" "	"	" "	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene	ND ND ND ND ND ND	3000 3000 3000 3000	ug/kg " " "	10	" " "	" "	" " "	11 11 11	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene	ND ND ND ND ND ND	3000 3000 3000 3000 3000 3000 10000	ug/kg " " "	10	11 11 11 11 11 11 11 11 11 11 11 11 11	" " " " "	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene	ND ND ND ND ND ND ND	3000 3000 3000 3000 3000 3000	ug/kg " " " "	10	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11	11 11 11 11	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene	ND	3000 3000 3000 3000 3000 3000 10000 3000 3000	ug/kg " " " " "	10	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11 11 11	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene Dibenz (a,h) anthracene	ND N	3000 3000 3000 3000 3000 3000 10000 3000 3000 3000	ug/kg " " " " " "	10	11 11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene Dibenz (a,h) anthracene Fluoranthene	ND N	3000 3000 3000 3000 3000 3000 10000 3000 3000 3000 3000	ug/kg " " " " " "	10	11 11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene	ND N	3000 3000 3000 3000 3000 3000 10000 3000 3000 3000 3000	ug/kg " " " " " "	10	11 11 11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""	11 11 11 11 11 11 11 11 11 11	" " " " " " " " " " " " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene	ND N	3000 3000 3000 3000 3000 3000 3000 300	ug/kg " " " " " " "	10	11 11 11 11 11 11 11	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " " " " " " " " " " " "		
Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene	ND N	3000 3000 3000 3000 3000 3000 10000 3000 3000 3000 3000 3000 3000	ug/kg " " " " " " " "	10	11 11 11 11 11 11 11 11				
	ND N	3000 3000 3000 3000 3000 3000 3000 300	ug/kg	10					

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/22/06 14:58

Extractable Petroleum Hydrocarbons by 8015 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6111711 - EPA 3550B GC										
Blank (6111711-BLK1)				Prepared:	11/17/06	Analyzed	l: 11/18/06			
C13-C28 (DRO)	ND	10	mg/kg							
C29-C40 (MORO)	ND	10	"							
Surrogate: Chrysene	134		"	100		134	65-135			
LCS (6111711-BS1)				Prepared:	11/17/06	Analyzed	l: 11/19/06			
C13-C28 (DRO)	590	10	mg/kg	500		118	75-125			
Surrogate: Chrysene	134		"	100		134	65-135			
Matrix Spike (6111711-MS1)	So	urce: T60157	78-01	Prepared:	11/17/06	Analyzed	l: 11/19/06			
C13-C28 (DRO)	490	10	mg/kg	500	ND	98.0	75-125			
Surrogate: Chrysene	113		"	100		113	65-135			
Matrix Spike Dup (6111711-MSD1)	So	urce: T60157	78-01	Prepared:	11/17/06	Analyzed	l: 11/19/06			
C13-C28 (DRO)	600	10	mg/kg	500	ND	120	75-125	20.2	20	QR-0
Surrogate: Chrysene	132		"	100		132	65-135			
Batch 6111722 - EPA 3510C GC										
Blank (6111722-BLK1)				Prepared:	11/17/06	Analyzed	l: 11/18/06			
C13-C28 (DRO)	ND	0.050	mg/l							
C29-C40 (MORO)	ND	0.050	"							
Surrogate: Chrysene	3.49		"	4.00		87.2	65-135			
LCS (6111722-BS1)				Prepared:	11/17/06	Analyzed	l: 11/19/06			
C13-C28 (DRO)	20.6	0.050	mg/l	20.0		103	75-125			
Surrogate: Chrysene	3.85		"	4.00		96.2	65-135			

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/22/06 14:58

RPD

%REC

Extractable Petroleum Hydrocarbons by 8015 - Quality Control SunStar Laboratories, Inc.

Reporting

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6111722 - EPA 3510C GC										
Matrix Spike (6111722-MS1)	Sour	ce: T60157	77-05	Prepared:	11/17/06	Analyzed	1: 11/19/06			
C13-C28 (DRO)	22.8	0.050	mg/l	20.0	ND	114	75-125			
Surrogate: Chrysene	4.32		"	4.00		108	65-135			
Matrix Spike Dup (6111722-MSD1)	Sour	ce: T60157	7-05	Prepared:	11/17/06	Analyzed	1: 11/19/06			
C13-C28 (DRO)	21.4	0.050	mg/l	20.0	ND	107	75-125	6.33	20	
Surrogate: Chrysene	4.04		"	4.00		101	65-135			

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/22/06 14:58

Metals by EPA 6000/7000 Series Methods - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6111714 - EPA 3051										
Blank (6111714-BLK1)				Prepared	& Analyze	ed: 11/17/0	06			
Arsenic	ND	5.0	mg/kg							
Barium	ND	1.0	"							
Chromium	ND	2.0	"							
Cobalt	ND	2.0	"							
Copper	1.80	1.0	"							QB-01
Nickel	ND	2.0	"							
Vanadium	ND	5.0	"							
LCS (6111714-BS1)				Prepared	& Analyze	ed: 11/17/0	06			
Arsenic	97.4	5.0	mg/kg	100		97.4	75-125			
Barium	94.7	1.0	"	100		94.7	75-125			
Chromium	94.3	2.0	"	100		94.3	75-125			
Matrix Spike (6111714-MS1)	So	urce: T60157	78-07	Prepared	& Analyze	ed: 11/17/0	06			
Arsenic	106	5.0	mg/kg	100	2.6	103	75-125			
Barium	196	1.0	"	100	110	86.0	75-125			
Chromium	127	2.0	"	100	11	116	75-125			
Matrix Spike Dup (6111714-MSD1)	So	urce: T60157	78-07	Prepared	& Analyze	ed: 11/17/0	06			
Arsenic	99.1	5.0	mg/kg	100	2.6	96.5	75-125	6.73	20	
Barium	183	1.0	"	100	110	73.0	75-125	6.86	20	QM-03
Chromium	111	2.0	"	100	11	100	75-125	13.4	20	

SunStar Laboratories, Inc.

Project: Hanson Radum Project Number: 001-09567-00 Project Manager: Katrin Schliewen

Reported: 11/22/06 14:58

RPD

PAH compounds by Semivolatile GCMS - Quality Control SunStar Laboratories, Inc.

Spike

Source

%REC

Reporting

1080

Acenaphthene ND 300 ug/kg Acenaphthylene ND 300 " Anthracene ND 300 " Benzo (a) anthracene ND 300 " Benzo (b) fluoranthene ND 300 " Benzo (b) fluoranthene ND 300 " Benzo (a) fluoranthene ND 300 " Benzo (a) pyrene ND 1000 " Benzo (a) pyrene ND 300 " Benzo (a) pyrene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) fluoranthene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) fluoranthene ND 300 " Benzo (b) fluoranthene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) fluoranthene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) fluoranthene ND 300 " Benzo (a) pyrene RD 300 "	Analyte	Result	Limit	Units	Spike Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Acenaphthene ND 300 ug/kg Acenaphthylene ND 300 " Anthracene ND 300 " Benzo (a) anthracene ND 300 " Benzo (b) fluoranthene ND 300 " Benzo (k) fluoranthene ND 300 " Benzo (a) pyrene ND 1000 " Benzo (a) pyrene ND 300 " Benzo (a) pyrene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene Analyzed: 11/20/06 Benzo (b) pyrene Analyzed: 11/20/06 Benzo (a) pyrene Analyzed: 11/20/06 Benzo (b) pyrene Analyzed: 11/20/06	Batch 6112003 - EPA 3550 ECD/C	GCMS	_								
Acenaphthene ND 300 ug/kg Acenaphthylene ND 300 " Anthracene ND 300 " Benzo (a) anthracene ND 300 " Benzo (b) fluoranthene ND 300 " Benzo (k) fluoranthene ND 300 " Benzo (a) pyrene ND 1000 " Benzo (a) pyrene ND 300 " Benzo (a) pyrene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene ND 300 " Benzo (b) nothracene ND 300 " Benzo (a) pyrene Analyzed: 11/20/06 Benzo (b) pyrene Analyzed: 11/20/06 Benzo (a) pyrene Analyzed: 11/20/06 Benzo (b) pyrene Analyzed: 11/20/06	Blank (6112003-BLK1)				Prepared of	& Analyze	ed: 11/20/0)6			
Anthracene ND 300 " Benzo (a) anthracene ND 300 " Benzo (b) fluoranthene ND 300 " Benzo (k) fluoranthene ND 300 " Benzo (k) fluoranthene ND 300 " Benzo (a) pyrene ND 300 " Chrysene ND 300 " Ch	Acenaphthene	ND	300	ug/kg	•						
Benzo (a) anthracene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (a) pyrene ND 300 " Chrysene ND 300 " Chrysene ND 300 " Chrysene ND 300 " Dibenz (a,h) anthracene ND 300 " Fluoranthene ND 300 " Fluoranthene ND 300 " Fluoranthene ND 300 " Robert (a,h) anthracene ND 300 " Robert	Acenaphthylene	ND	300	"							
Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (g,h,i) perylene Benzo (a) pyrene ND 1000 " Benzo (a) pyrene ND 300 " Benzo (a) pyrene ND 300 " Chrysene ND 300 " Dibenz (a,h) anthracene ND 300 " Fluoranthene ND 300 " Fluoranthene ND 300 " Fluoranthene ND 300 " Bonzo (a,h) anthracene ND 300 " Fluoranthene ND 300 " Bonzo (a,h) anthracene ND 300 "	Anthracene	ND	300	"							
Benzo (k) fluoranthene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene ND 300 " Chrysene ND 300 " Ch	Benzo (a) anthracene	ND	300	"							
Benzo (g,h,i) perylene ND 1000 "	Benzo (b) fluoranthene	ND	300	"							
Benzo (a) pyrene ND 300 "	Benzo (k) fluoranthene	ND	300	"							
ND 300 "	Benzo (g,h,i) perylene	ND	1000	"							
Dibenz (a,h) anthracene ND 300 " Fluoranthene ND 300 " Indeno (1,2,3-ed) pyrene ND 300 " Indeno (1,2,3-ed) pyrene ND 300 " Naphthalene ND 300 " Naphthalene ND 300 " Naphthalene ND 300 " No 300	Benzo (a) pyrene	ND	300	"							
ND 300 "	Chrysene	ND	300	"							
Fluorene ND 300 " Indeno (1,2,3-cd) pyrene ND 300 " Naphthalene ND 300 " Phenanthrene ND 300 " Pyrene ND 300 " Surrogate: Terphenyl-dl4 1290 " 1670 77.2 29.1-130 **LCS (6112003-BS1)** **Acenaphthene 1240 300 ug/kg 1670 74.3 38.9-79.4 **Pyrene 865 300 " 1670 51.8 25-85.2 **Surrogate: Terphenyl-dl4 1420 " 1670 85.0 29.1-130 **Matrix Spike (6112003-MS1)** **Source: T601578-01 Prepared & Analyzed: 11/20/06 **Acenaphthene 1180 300 ug/kg 1670 ND 70.7 33.8-76.1	Dibenz (a,h) anthracene	ND	300	"							
Indeno (1,2,3-cd) pyrene ND 300 " Naphthalene ND 300 " Phenanthrene ND 300 " Pyrene ND 300 " Surrogate: Terphenyl-dl4 1290 " 1670 77.2 29.1-130 LCS (6112003-BS1) Acenaphthene 1240 300 ug/kg 1670 74.3 38.9-79.4 Pyrene 865 300 " 1670 51.8 25-85.2 Surrogate: Terphenyl-dl4 1420 " 1670 85.0 29.1-130 Matrix Spike (6112003-MS1) Source: T601578-01 Prepared & Analyzed: 11/20/06 Acenaphthene 1180 300 ug/kg 1670 ND 70.7 33.8-76.1	Fluoranthene	ND	300	"							
Naphthalene ND 300 " Phenanthrene ND 300 " Pyrene ND 300 " Surrogate: Terphenyl-dl4 1290 " 1670 77.2 29.1-130 LCS (6112003-BS1) Prepared & Analyzed: 11/20/06 Acenaphthene 1240 300 ug/kg 1670 74.3 38.9-79.4 Pyrene 865 300 " 1670 51.8 25-85.2 Surrogate: Terphenyl-dl4 1420 " 1670 85.0 29.1-130 Matrix Spike (6112003-MS1) Source: T601578-01 Prepared & Analyzed: 11/20/06 Acenaphthene 1180 300 ug/kg 1670 ND 70.7 33.8-76.1	Fluorene	ND	300	"							
ND 300 "	Indeno (1,2,3-cd) pyrene	ND	300	"							
Pyrene ND 300 " 1670 77.2 29.1-130 LCS (6112003-BS1) Prepared & Analyzed: 11/20/06 Acenaphthene 1240 300 ug/kg 1670 74.3 38.9-79.4 Pyrene 865 300 " 1670 51.8 25-85.2 Surrogate: Terphenyl-dl4 1420 " 1670 85.0 29.1-130 Matrix Spike (6112003-MS1) Source: T601578-01 Prepared & Analyzed: 11/20/06 Acenaphthene 1180 300 ug/kg 1670 ND 70.7 33.8-76.1	Naphthalene	ND	300	"							
Surrogate: Terphenyl-dl4 1290 " 1670 77.2 29.1-130	Phenanthrene	ND	300	"							
LCS (6112003-BS1) Prepared & Analyzed: 11/20/06 Acenaphthene 1240 300 ug/kg 1670 74.3 38.9-79.4 Pyrene 865 300 " 1670 51.8 25-85.2 Surrogate: Terphenyl-dl4 1420 " 1670 85.0 29.1-130 Matrix Spike (6112003-MS1) Source: T601578-01 Prepared & Analyzed: 11/20/06 Acenaphthene 1180 300 ug/kg 1670 ND 70.7 33.8-76.1	Pyrene	ND	300	"							
Acenaphthene 1240 300 ug/kg 1670 74.3 38.9-79.4 Pyrene 865 300 " 1670 51.8 25-85.2 Surrogate: Terphenyl-dl4 1420 " 1670 85.0 29.1-130 Matrix Spike (6112003-MS1) Source: T601578-01 Prepared & Analyzed: 11/20/06 Acenaphthene 1180 300 ug/kg 1670 ND 70.7 33.8-76.1	Surrogate: Terphenyl-dl4	1290		"	1670		77.2	29.1-130			
Pyrene 865 300 " 1670 51.8 25-85.2 Surrogate: Terphenyl-dl4 1420 " 1670 85.0 29.1-130 Matrix Spike (6112003-MS1) Source: T601578-01 Prepared & Analyzed: 11/20/06 Acenaphthene 1180 300 ug/kg 1670 ND 70.7 33.8-76.1	LCS (6112003-BS1)				Prepared of	& Analyze	ed: 11/20/0)6			
Surrogate: Terphenyl-dl4 1420 " 1670 85.0 29.1-130 Matrix Spike (6112003-MS1) Source: T601578-01 Prepared & Analyzed: 11/20/06 Acenaphthene 1180 300 ug/kg 1670 ND 70.7 33.8-76.1	Acenaphthene	1240	300	ug/kg	1670		74.3	38.9-79.4			
Matrix Spike (6112003-MS1) Source: T601578-01 Prepared & Analyzed: 11/20/06 Acenaphthene 1180 300 ug/kg 1670 ND 70.7 33.8-76.1	Pyrene	865	300	"	1670		51.8	25-85.2			
Acenaphthene 1180 300 ug/kg 1670 ND 70.7 33.8-76.1	Surrogate: Terphenyl-dl4	1420		"	1670		85.0	29.1-130			
	Matrix Spike (6112003-MS1)	So	urce: T60157	78-01	Prepared of	& Analyze	ed: 11/20/0	06			
Pyrene 777 300 " 1670 ND 46.5 24.5-100	Acenaphthene	1180	300	ug/kg	1670	ND	70.7	33.8-76.1			
	Pyrene	777	300	"	1670	ND	46.5	24.5-100			

SunStar Laboratories, Inc.

Surrogate: Terphenyl-dl4

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

64.7

29.1-130

1670

LFR Inc. -- Emeryville Project: Hanson Radum

1900 Powell Street, 12th Floor Project Number: 001-09567-00 Reported:

Emeryville CA, 94608-1827 Project Manager: Katrin Schliewen 11/22/06 14:58

PAH compounds by Semivolatile GCMS - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6112003 - EPA 3550 ECD/GCMS

Matrix Spike Dup (6112003-MSD1)	Source	ce: T60157	78-01	Prepared a	& Analyze	ed: 11/20	/06			
Acenaphthene	1040	300	ug/kg	1670	ND	62.3	33.8-76.1	12.6	31	
Pyrene	727	300	"	1670	ND	43.5	24.5-100	6.65	31	
Surrogate: Terphenyl-dl4	1060		"	1670		63.5	29.1-130			

SunStar Laboratories, Inc.

LFR Inc Emeryville	Project: Hanson Radum	
1900 Powell Street, 12th Floor	Project Number: 001-09567-00	Reported:
Emeryville CA, 94608-1827	Project Manager: Katrin Schliewen	11/22/06 14:58

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
S-02	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside if QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-03	Multiple analyses indicate the percent recovery exceeds the Quality Control acceptance criteria due to a matrix effect.
QB-01	The method blank contains analyte at a concentration above the MRL; however, concentration is less than 10% of the sample result, which is negligible according to method criteria.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

SunStar Laboratories, Inc.

T601578 CHAIN OF CUSTODY / ANALYSES REQUEST FORM SECTION NO .: SAMPLER'S INITIALS: PROJECT NO.: SERIAL NO .: **SAMPLE COLLECTOR:** 001-09567-03 PROJEÇT NAME: W/16/06 1900 Powell Street, 12th Floor Emeryville, California 94608-18 XXX Nº 201964 Emeryville, California 94608-1827 LEVINE · FRICKE (510) 652-4500 Fax: (510) 652-2246 AMALYSES REMARKS SAMPLE VOC3 ktr v 8280fezh Bitet ken nooneoo **TYPE** TAHNO ERABORAN TAT NO. of Containers Weigns fish ex diductor TPHO EPROTEIN *VOCs: **Metals: ☐ 8260 List ☐ CAM17 AUSH. ☐ 8240 List ☐ RCRA HOLD (X) ■ 8010 List ■ LUFT SAMPLE ID. DATE TIME ☐ 624 List W/16/06/1505 01 02 15 kd 01 1515 0प XX 1115 05 1125 67 1140 08 LO 1300 1310 12 13 14 400 1410 12 1420 2 XX 17 1450 SAMPLE RECEIPA Cooler Temp: 0 METHOD OF SHIPMENT: RELINCOISHED BY: RELINQUISHED BY: 2 RELINQUISHED BY: 2.20 Intact Cold (SIGNATURE) (DATE) (SIGNATURE) (DATE) LAB REPORT NO.: Cooler No: On Ice Ambient (PRINTED NAME) FAX COC CONFIRMATION TO: (PRINTED NAME) (TIME) (PRINTED NAME) (TIME) Preservative Correct! Yes No No NA SULLAWIEN (COMPANY) (COMPANY) ANALYTICAL LABORATORY: FAX RESULTS TO: RECEIVED BY: 2 RECEIVED BY (LABORATORY): 11/6/00

(SIGNATURE) /

(PRINTED NAME)

(COMPANY)

Shipping Copy (White)

SUNSTAR

File Copy (Yellow)

EMV.LABEDDS.COM

SEND HARDOOPY TO:

SEND EDD TO

Field Copy (Pink)

CHAIN of CUSTODY - ANALYSES FORM.CDR 5/2003

(DATE)

(TIME)

(DATE) 117-6 (SIGNATURE)

(PRINTED NAME)

(COMPANY)

nowo