

By Alameda County Environmental Health at 8:30 am, Jan 29, 2013

QUARTERLY GROUNDWATER MONITORING REPORT

For the Site Located at:

2145 35TH AVENUE OAKLAND, CALIFORNIA 94601

Prepared for:

Salisbury Avenue Associates LLC 2917 MacArthur Boulevard, #A3F Oakland, CA 94602

Prepared by:

Eagle Environmental Construction (EEC)

1485 Bayshore Boulevard, Suite 374

San Francisco, CA 94124

January 25, 2013

Table of Contents

1.0	Introduction							
2.0	Groundwater Sampling Activities							
3.0	Groundwater Elevations and Flow Direction							
4.0	Groundwater Samples Laboratory Results							
5.0	Waste Management							
6.0	Conclus	ions and Recommendations3						
TAB	LES							
TABI	LE 1	WELL DATA AND GROUNDWATER ELEVATIONS						
		SUMMARY OF CHEMICAL ANALYSIS OF GROUNWATER SAMPLES COLLECTED FROM THE MONITORING WELLS						
FIGU	JRES							
FIGU	RE 1	SITE LOCATION						
FIGURE 2 WELL LOCATIONS AND GROUNDWATER FLOW DIRECTIONS AND		WELL LOCATIONS AND GROUNDWATER FLOW DIRECTIONS AND GRADIENT						
FIGURE 3 GROUNDWATER CONTAMINANT CONCENTRATIONS, J		GROUNDWATER CONTAMINANT CONCENTRATIONS, JULY AND DECEMBER 2012						

APPENDICES

APPENDIX A WELL PURGING AND SAMPLING LOGS

APPENDIX B LABORATORY REPORT

1.0 Introduction

This quarterly groundwater monitoring report is for the former gasoline service station located at 2145 35th Avenue, Oakland, California (Figure 1). This is the second quarterly sampling event since the four monitoring wells were installed in July 2012. The first sampling event was performed on July 9, 2012 and documented in a detailed report titled "Phase II Environmental Investigation Report and Supplemental Investigation Workplan", dated August 2012. The scope of work documented in the August 2012 report included the following:

- Removal of the car maintenance pit;
- · Removal of the hydraulic lift;
- Removal of the dispenser island and associated piping;
- Drilling of fifteen soil borings with soil and groundwater sampling and analysis;
- Installation and closing of 4 temporary piezometers; and
- Drilling and sampling of four monitoring wells

This report documents the groundwater sampling event performed on December 6, 2012. For background information about the subject site and an update of the activities performed through July 2012, review the August 2012 report mentioned above.

2.0 Groundwater Sampling Activities

The wells w ere purged and sampled on Dece mber 06, 2012. EEC Engineer, Sami Malaeb, performed the well purging and sampling. The well sampling logs are presented in Appendix A. The depth to water in the wells was measured and recorded after removing the well caps and letting the wells stabilize for approximately 15 minutes. Subsequently, each well was purged of at least three e casing volumes and until conductivity, temperature, and pH stabilized. The well purge water was transferred to 55-gallon, DOT-approved, steel drums. The drums were temporarily stored onsite pending transport and disposal to a licensed facility.

After purgin g the wells, groundwater samples were colle cted. The water samples were discharged directly into laboratory cleaned 40-millileter volatile organic analysis (VOA) vials with HCL preservative to prevent loss of any volatile constituents. The vials were filled slowly and in such a manner that the meniscus e xtended above the top of the VOA vial. After the vials were filled and capped, they were inverted to ensure there is no headspace or entrapped air bubbles. The groundwater VOAs were labeled and pla ced in a cooler chilled to approximately 4°C. Equipment wash and rinse water were transferred to a 55-g allon storage drum. The drum was sealed with a steel lid and labeled. Other containers, amber jars, one liter plastic bottles, were obtained from the laboratory and filled with wat er from the bailer for the TPH-D, TPH-mo, and LUFT-Five-Metal analysis.

The water samples were placed on ice, in an ice cooler, a ccompanied by a completed chain of custody. The samples were sent to Curtis & Tompkins Laboratory in Berkeley and analyzed for the following:

- Total Petroleum Hydrocarbons as Gasoline (TPH-G) by EPA Method 8015B;
- Total Petroleum Hydrocarbons as Stoddard Solvent (TPHss) by EPA Method 8015B;
- Total Petroleum Hydrocarbons as Diesel (TPH-D) by EPA Method 8015B;
- Volatile Organics by the GC/MS EPA Method 8260, MTBE, BTEX, and Naphthalene (no other chlorinated organic compounds were considered for analysis because all previous results from sampling the boreholes did not detect chlorinated solvents);
- Total Recoverable Petroleum Hydrocarbons (TRPH) as Motor Oil and Hydraulic Oil, EPA Method 8015; and
- LUFT 5 Metals by EPA Method 6010/7471 (with filtering before analysis).

3.0 Groundwater Elevations and Flow Direction

The groundwater flow direction and gradient were calculated based on the depth to groundwater from top of casing in each well and the surve yed top of casing elevations. The well data are presented in the attached Table 1. Due to the measurable rain f all in November and ear ly December 2012, the groundwater elevations in the wells increased by an average o f 1.22 foot. The calculated ground water flow direction was to the south at a gradient of 0.024 or 2.4 % (Figure 2).

4.0 Groundwater Samples Laboratory Results

The laboratory report is included in Appendix B. Table 2 summarizes the analytical result s. Also, Figure 3 depicts the laboratory results from July and December 2012. Laboratory analysis of groundwater samples collected from the monitoring wells indicated the following:

- Floating product was not observed in any of the wells.
- Similar to the first sampling event in July 2012, none of the analyzed petroleum hydrocarbons was detected in monitoring wells MW-1 and MW-4.
- Similar to the first sampling event in July 2012, the most petroleum hydrocarbon impact was detected in monitoring well MW-2, downgradient from the former sources on site; USTs, piping, and fuel dispenser. Groundwater from monitoring well MW-2 exceeded the ESL for drinking water scenario for TPH-G; TPH-D; TPHss; BTEX; and Naphthalene.
- Petroleum hydrocarbon concentra tions in g roundwater samples collected from monitoring MW-3 were slightly high er than in the previous sampling event. For example

benzene increased from 0.8 μ g/I to 36 μ g/I (Table 2). This increase may be attributed to the rise in the water table.

5.0 Waste Management

A total of two (2) purge water drums were generated from the purging and sampling activities onsite. These drums are stored onsite pending profiling and disposal.

6.0 Conclusions and Recommendations

Based on the analytical findings EEC presents the following conclusions and recommendations:

Conclusions

- Similar to the first sampling event in July 2012, none of the analyzed petroleum hydrocarbons was detected in monitoring wells MW-1 and MW-4.
- Groundwater in the remaining monitoring wells MW-2 and MW-3 is impacted with petroleum hydrocarbons above the ESLs for drinking and non-drinking water scenarios.

Recommendations

- Continue the quarterly sampling of wells until at least four monitoring events are completed.
- As request ed in the r egulatory letter from Alameda County Enviro nmental Health (ACEH), da ted December 18, 20 12, Laboratory analysis of Polycyclic Aromatic Hydrocarbons (PAHs) By EPA Me thod 8270-SIM will be conducted in the upcomining sampling events. Due to the non-detected of results for all the anialyzed petroleum hydrocarbon compounds in both sampling events (in July and Decomber 2012) in monitoring wells MW-1 and MW-4, analysis for PAHs will be conducted on only the groundwater from monitoring wells MW-2 and MW-3.
- As request ed in the r egulatory letter from Alameda County Enviro nmental Health (ACEH), dated December 18, 2012, the full lab oratory analysis for the LUFT 5 met als will be discontinued in the upcoming events except the analysis for Lead (Pb) and Nickel (Ni) will be continued.

Thank you for your cooperation. If you have any questions, please call at (925) 858-9608 or email Sami Malaeb at s.malaeb@comcast.net.

All engineering information, conclusions, and recommendations contained in this report have been prepared by a California Professional Engineer.

Sami Malaeb, P.E., QSP/QSD

Project Manager

I declare under penalty of perjury, that the information and/or recommendations contained in this report are true and correct to the best of my knowledge.

Salisbury Avenue Associates LLC

Peter Robertson

Property Owner

TABLES

- TABLE 1 WELL DATA AND GROUNDWATER ELEVATIONS
- TABLE 2 SUMMARY OF CHEMICAL ANALYSIS OF GROUNWATER SAMPLES COLLECTED FROM THE MONITORING WELLS

TABLE 1 WELL DATA AND GROUNDWATER ELEVATIONS 2145 35th Avenue Oakland, California

DATE	WELL INFORMATION	MW-1	MW-2	MW-3	MW-4
	Casing Diameter (in)	2	4	4	2
	Total Well Depth (ft)	18	16	18	18
07/18/2012	Depth to Water (ft)	10.13	10.92	11.01	10.85
	Top of Casing Elevation	94.21	94.43	94.61	94.91
	Top of Water Elevation	84.08	83.51	83.60	84.06
	Casing Diameter (in)	2	4	4	2
	Total Well Depth (ft)	18	16	18	18
12/06/2012	Depth to Water (ft)	7.98	10.40	10.40	9.25
	Top of Casing Elevation	94.21	94.43	94.61	94.91
	Top of Water Elevation	86.23	84.03	84.21	85.66

TABLE 2 SUMMARY OF CHEMICAL ANALYSES GROUNWATER SAMPLES COLLECTED FROM THE MONITORING WELLS 2145 35th Avenue

Oakland, California

Sample ID	Date Sampled	TPH-G ⁽¹⁾ (μg/l) ⁽²⁾	TPH-ss ⁽³⁾ (μg/l)	TPH-D ⁽⁴⁾ (μg/l)	TPH as Motor Oil (μg/l)	TPH as Hydraulic Oil (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl benzene (µg/l)	Total Xylenes (μg/l)	Naphthalene (μg/l)	MTBE ⁽⁵⁾ (μg/l)	Nickel (Ni) (µg/l)
MW-1		< 50	< 50	< 50	<300	<300	< 0.5	< 0.5	< 0.5	<1.0	<2.0	< 0.5	< 5.0
MW-2	07/09/2012	3,800	3,900 (Y) (6)	1,200 Y	< 300	660Y	82	42	350	189.4	44	< 0.5	< 5.0
MW-3	07/09/2012	85Y	86Y	180Y	< 300	<300	0.8	< 0.5	< 0.5	<1.0	<2.0	< 0.5	< 5.0
MW-4		< 50	< 50	< 50	<300	<300	< 0.5	< 0.5	< 0.5	<1.0	<2.0	< 0.5	6.6
MW-1		<50	<50	< 50	<300	<300	< 0.5	< 0.5	< 0.5	<1.0	<2.0	< 0.5	7.6
MW-2	12/06/2012	5,000	3,300 (Y) (4)	2,300	<300	1,500Y	92	42	460	179.6	62	< 0.5	<5.0
MW-3		1,200	800Y	2,000	<300	1,600Y	36	0.8	9.2	1.1	120	< 0.5	6.1
MW-4		<50	< 50	< 50	<300	<300	< 0.5	< 0.5	< 0.5	<1.0	<2.0	< 0.5	9.7
Groundwater Screening drinking water	7)	100	100	100	100	100	1.0	40	30	20	17	5.0	8.2
Groundwater Screening L drinking water (8	evels, non-	210	210	210	210	210	46	130	43	100	24	1,800	8.2
Groundwater Screening Evaluation of Potential Var Concerns (Volatile Chemic	oor Intrusion	Use Soil Gas	Use Soil Gas	Use Soil Gas	Use Soil Gas	Use Soil Gas	540	380,000	170,000	160,000	3,200	24,000	NA

TPH-G (1) = Total petroleum hydrocarbons as gasoline by EPA Method 8015B

 $(\mu g/I)^{(2)} =$ Microgram per liter

TPH-ss (3) = Total petroleum hydrocarbons as Stoddard solvent by EPA Method 8015B

TPH-D (4) = Total petroleum hydrocarbons as diesel by EPA Method 8015B

MTBE (5) = Methyl Tertiary Butyl Ether

(Y) (6) = Sample exhibits chromatographic pattern which does not resemble standard

Tier 1 Environmental Screening Levels (ESLs), Groundwater Screening Levels, Groundwater is Current or Potential Source of Drinking Water (Table F-1A), Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Prepared by: California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, California 94612, Interim Final - November 2007, (Revised May 2008).

(8) = Tier 1 Environmental Screening Levels (ESLs), Groundwater Screening Levels, Groundwater is not Current or Potential Source of Drinking Water

- (Table F-1B), Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Prepared by: California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, California 94612, Interim Final November 2007, (Revised May 2008).
- (8) = Tier 1 Environmental Screening Levels (ESLs), Groundwater Screening Levels, Groundwater is not Current or Potential Source of Drinking Water (Table E-1), Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Prepared by: California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, California 94612, Interim Final November 2007, (Revised May 2008).
- **Bold** = Concentration presented in bold where such a value is at or exceeds one of the environmental screening levels (ESLs) listed

FIGURES

FIGURE 1	SITE LOCATION
FIGURE 2	WELL LOCATIONS AND GROUNDWATER FLOW DIRECTIONS AND GRADIENT
FIGURE 3	GROUNDWATER CONTAMINANT CONCENTRATIONS, JULY AND DECEMBER 2012

OAKLAND EAST QUADRANGLE CALIFORNIA 7.5-MINUTE SERIES

OAKLAND EAST, CA 2012

1485 BAYSHORE BOULEVARD, SUITE 374 SAN FRANCISCO, CA 94124 SITE LOCATION 2145 35TH AVENUE OAKLAND, CA 94601 FIGURE 1

DECEMBER 2012

oundwater Monitoring Report, 2145 35TH Avenue, Oakland, California 94601	December 2012
PPENDIX A	
ELL PURGING AND SAMPLING LOGS	

Project No. :		-	Well ID:		MW-	<u>- 1</u>
Project Name: Salis	bury	_	Sampled b	y:	EEC	Sami Malaeb ber 6, 2012
Location: 2145 35th	Avenue		Date:		Decem	ben 6.2012
Oakland, (CA					
Well Diameter:	2"			Purge \	/olume Cal	culations
Total Well Depth:	17.70'			for Three	Casing Vol	ume Purge
Depth to Water:	17.70 ' 7.85 '		Volume Pe	r One Foot	of Well:	0.1632 gallous
Water Column:	9.851		$\pi r^2 x 1$			
Calculated Purge:	5 gallons		Volume of	One Casing	1.60	6 gallons
Actual Purge:						
Free Product:			Volume of	Three Casin	gs: 4,9 §	~ 5.00 gallows
Product Sheen:					-	
Post Purge Depth to V	vater (DTW)		Sample Tir Analyze fo		12:00 2	etil b geronetary
Time	DTW					
11:58 0 -	7.98 Bt					
		٠				
	1				r	
Time	Conductivity MS	Tem	یر perature	рН	Salinity	Volume Purged
10+05	7/3/JL	18	rist .	ma		paddins
11:30 cm	625		8·0	7.33		1901/ou
11:3500	557		² . a	7.24		290/100
11:40 av	580		3.2	7.23		3501/02
11:45 6-	556	12	.]	7.19		U gallor

<u> </u>	·		
C			
Comments:			
•			

7.20

481

Project No. :		Well ID:		MW-	_ 2
و Project Name:	SALISBURY	Sampled I	by:	EEC	Somi Malael ber 6, 2012
Location: 2145 35th		Date:		Decen	Len 6 2012
Oakland, O	^۸			<u> </u>	2.2.0
Oakiana, C					
Well Diameter:	4"		Purge \	olume Cald	culations
Total Well Depth:	15.401		for Three	Casing Vol	ume Purge
Depth to Water:	9.561	Volume Po	er One Foot	of Well: 6	0.653 gellons
Water Column:	5.84/	$\pi r^2 x 1$			
Calculated Purge:	11.5099(10)	Volume of	f One Casing	3.8	
Actual Purge:	3			•	
Free Product:		Volume of	f Three Casin	gs: // .44	9910ns~11.5 9011
Product Sheen:					
Purge Method: Did Well go dry? Post Purge Depth to V	using disposable baiter Vater (DTW)	Sampling Sample Ti Analyze fo	me:	3 volum Pareme 3:00 f	e gurge ov ter stabilizations
Time	DTW	7.11017221	/ · ·		
2:56 P.n	10.40'				
2:36 J.n	70.90			· · · · · · · · · · · · · · · · · · ·	
		,		***************************************	
			What is a second of the second		
Time	Conductivity 2	00	I.,	I	
		Temperature	pH	Salinity	Volume Purged
2:20 P.M.	686		6.84		1 Ge//a
2:30 P.	8/3	18.8	6.84		5 Ge//w.
2:40 8-	754 706 735 724	18.8	6.89		8 Gellong 9 Gellong 10 Gel = 11 Gellong 12 Gellons
2:45 p	706	18 8	6.93		7 00/10/25
2:508-	(3)	18.8	6.94	<u></u>	10 601 =
	7.09	18.9	6.74		11 001/029
2:55	721	10.7	6.92		12 60//005
			<u> </u>		
Comments:				<u> </u>	

Project No.:		Well ID:		MU	1-3
Project Name:	SALTSBURY	Sampled b	y:	ÊĒC	Jami Malach
Location: 2145 35th		Date:	Ĵ	De Cem	Sami Malaeb ber 6, 2010
Oakland,	CA				
		p			
Well Diameter:	4"			olume Cal	
Total Well Depth:	17.60				ume Purge
Depth to Water:	9.67'	Volume Pe	er One Foot o	of Well: ز	0.653
Water Column:	3.01/	<u></u>			0.653
Calculated Purge:	4.0 gellon	Volume of	One Casing:		gollon s
Actual Purge:	16 Go/			5,23	
Free Product:	No	Volume of	Three Casin	gs: 34	12 gollar
Product Sheen:	No			15.70	~ 4= sallors
Purge Method:	using disposable	Sampling	Method:	3 VO(11	ne pur se on
Did Well go dry?	bailor	Sample Ti	me:	Stabil	ize him g perom
2.0. 1.0 80 0 7.					
Post Purge Depth to	Water (DTW)	Analyze fo	r:		
Time	DTW				
1:40 0-	10.40'				
		<u> </u>		 	

<u> </u>		<u> </u>			
Time	Conductivity N-S	Temperature	Hq	Salinity	Volume Purged
12:45 P.W.	631	19.6	6.93		1 GALLON
1:00 p.m	815	19.4	6.86		5 Gollons
1:10 f-		19.5	6.88		7 sellas
1:15 0-	723	19.5	6.29		10 601/02
1:20 f-	664	19.3	6.90		12 60/10
1:25 1-	676	1300			13 Ge110 7
	665	19.4 -	6.96		14 90/10-1
1:30 P	(0.2.)		\$ 6.93	†	1 7 7 5 110 LJ
1125 0.	643	19,4	6.91		15 501/00
1:35 p	651	19.5	6.96	<u> </u>	16 2011
110 12		17.0	16.76		1.5 / 5//
Comments:					

Project No. :		Well ID:		MW-	4
Project Name: ა	ALISBURY	Sampled	by:	FEC (Sami Makel
Location: 2145 35th		Date:	•	Daca	2010
			•	Decema	32 S, 201C
Oakland, (.A				
Well Diameter:	2"		Purge '	Volume Cal	culations
Total Well Depth:	17.721		for Three	Casing Vol	ume Purge
Depth to Water:	9.17/	Volume P	er One Foot	of Well: d	0, 163
Water Column:	8.551	$\pi r^2 x 1$			8
Calculated Purge:	4.20 90/6-	Volume o	f One Casing	: 0,65	A Sectlors F
Actual Purge:	4.20 solls-	-			
Free Product:		Volume o	f Three Casir	ngs: 4,	10 go/L
Product Sheen:					
Purge Method: Did Well go dry?	By Disposeble	Sampling Sample Ti	Method:	Berov Perov	ues netur stabiliza
Post Purge Depth to V	Vater (DTW)	Analyze fo	•		
Time	DTW				
11:15 a	9.25'				

		Learning to the second			
Time	Conductivity MS	Temperature	рН	Salinity	Volume Purged
10:05 a.n.	731	18.5	7.19		1 Gallon
10:25 a.m		19.0	7.19		20
10:30 0.~	586	19.1	7.18		3 //
14:25	500	19.3	7.10		4 gall
10:48 0-	564		7.13		4 gella 5 gella s 5.5 g6//s Sapla
10:45 2	55,5	18.8	7.05		5.5 06//05
				<u> </u>	Saple
			_		V
			-		<u> </u>
Comments:					

Groundwater Monitoring Report, 2145 35TH Avenue, Oakland, California 94601	December 2012
APPENDIX B	
LABORATORY REPORT	

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 241776 ANALYTICAL REPORT

Eagle Env. Construction Project : SALISBURY PROJECT 3150 Hilltop Road Location : Salisbury Project

Richmond, CA 94806 Level : II

Sample ID	<u>Lab ID</u>
MW-1	241776-001
MW-2	241776-002
MW-3	241776-003
MW-4	241776-004
TB	241776-005

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Desiree N. Tetrault Project Manager (510) 486-0900

Deine 7. Tetralt

Date: 12/20/2012

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 241776

Client: Eagle Env. Construction

Project: SALISBURY PROJECT Location: Salisbury Project

Request Date: 12/06/12 Samples Received: 12/06/12

This data package contains sample and QC results for five water samples, requested for the above referenced project on 12/06/12. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Metals (EPA 6010B):

No analytical problems were encountered.

CHAIN OF CUSTODY

Curtis & Tompl	kins Labo	oratori	മ	G	cot	rac	Ke	<u>, </u>	GL	OB.	AL	ID:	TO	061	97	78	384	F0		Pa	ge_	_ _0	of
CUTTIS & TOMPOLENVIRONMENTAL ANALYS	ICAL TESTING	LABORATO	RY	ĺ							_						Cha	in c	of Cu				
2323 Fifth Street		isiness Since			C&I	LOG	in #		717	7 4	<u>U</u>				ANA				REQ	UES			
Berkeley, CA 94710		10) 486-0 10) 486-0										82/08		90	•	1 2							
Project No:	\$c	ampler:	EE	C		(2m	_				g	•	0		કું જે	3	را					
Project Name: SALISBURY PRO	DIECT RE	eport To:		MZ								1	75	82		·	1	7					
Project P. O. No: 2145 35+4 A	Ve gerland	ompany:		F.C.		L/ / J.	. /i ./.					4	PHTHALFUE			- Z	┪	METALS					
EDD Format: Report Level ☐ II		lephone:		_	00	-0	Ol	ΛĐ)			73	3	3	. •	§ <	3	3					
		ogilu C	_74	• • • •		20:	*7 <i>0</i>	<u>U</u> A				7	7 7	1	70	9 3	4	7	1				
	En elandara En	nail: S. M	AL	alk			<u>cas</u>	<u>+</u> .	Ne	_		H. J. J.		3E				FIVE	8				
Lab Sample ID.	SAMPI	LING	М	IATRI	x suppliers				CAL			-	NA.	1				T	60101		į		
No.			\vdash	П	→ ₹		PRES	Т	Aliv	-		9	X	' य	6	1	P	N					
	Date Collected	Time Collected	ē	미	jo		H2SO4	8	딍	e e		TPH-	BTEX	ame	70	4		4	d				
	Collected	Collected	\$.	င္တ	#		H28	HN03	NaOH	Š		R	100	g	1	1 8	}	77	4				
MW-I	12/06/12	12:009_	X		3							X				 '`		寸	_	+	+		_
- MW-I	- "		x		3								X		+			\dashv	\neg	\top	+	\Box	+
MW-I	<u> </u>	<u> </u>	X	$\perp \downarrow \downarrow$	2								1		×			\dashv	十		+	\Box	+
MW-1			X	$\perp \! \! \! \! \! \! \! \! \perp$	1													¥	\top		1		
2 (MW-2	<u> </u>	200pm	x	$\perp \! \! \perp \! \! \! \perp$	3							X			T						1		\top
C NW-2		V	4	$\perp \perp$	3	┛.						-	×						\top		1		
MW-L		N	x	\perp	2										x			\neg	\top		\dagger	\Box	
MW-2	1/2	1	x	$\perp \downarrow$	1													×	\top		1		\top
3 / MW-3	"	1:50P-	x		3							x							\top	\top	1		
\ MW-3	4	N	1	$\perp \downarrow \downarrow$	3								x								1		+
\Mw_3	- 11	<u> </u>	X	$\bot \bot$	2										×			\top		1			
1MW-3		-	X	++	$\perp \iota$													x	\top				\top
Notes: - I																							
Notes: please filter Plastic containers	SAMPLE				INQL			-								RE	CEI	VED	BY:				
Plastic Containers	RECEIPT	M	//	1	-	14	J6/ DATI	n	TI	5! ME:	100		-			_			DAT	12/	6	ME: 17	1900
same day for LUFT	☐ Intact ☐	100										- -							DAT	E: \	TIN	VE: / I	-0
Same day for LUFT 5 METAL ANALYSIS	Cold _						DATE	<u> </u>	TI	ME:		_ _				-			DAT	E:	TIP	ME:	
/	On Ice		_				DATE	: :	ŢI	ME:									DAT	Е.	***	45	
	LI Ambient							·				- -							DAT	<u> </u>	111	ME:	
	—·L																						

CHAIN OF CUSTODY

ct	Curtis & Tompk	ins Labo	ratori	<u>es</u>	Ge	otv	rac	Ker	· 6	5 20	BAI	ιΩ	D:	TO	619	77				of Cu		ge _ dy #		of _	2
	ENVIRONMENTAL ANALYT	CAL TESTING L	ABORATO iness Since 1	RY 878		C&1	r LO	GIN	#	241	177	H0			Δ	NA			L R			•			
	Fifth Street ey, CA 94710	Phone (5) Fax (5)	10) 486-09 10) 486-09										SR	2 med		5	, 4								
Project	No:	Sai	mpler:	E	_		8.4	ب					89168	.			200								İ
Project	Name: SALISBURY PR	ATÉCT Re	port To:	AL	12	N	14	(A)	FB				3	9	4	.	\	0	77						1
Project	P. O. No: 2145 35+4. AVE.	Dakland co	mpany:	ΕĒ	<u>`</u> _								13,	aleuc	9		5 6	•	ÉTI						
EDD For	mat: Report Level	□ III □ IV Tel	ephone: (92	5)	85	8-	91	60	8			3		377		į. Į		1	Y					
Turnarou	und Time: Rush		ail: S. A								NE	7	55-HQI	Naphth		5	3 2		14	6010					
							'					7	F	B	4		1 3		ETVI	9					
Lab	Sample ID.	SAMPL	ING	М	ATRIX	X	Conidiner			AICA EVATI			v	-		6	1 4		1.1	64					į
No.		Date Collected	Time Collected	Water	Solid	7	- 1	HCI	H2504	NOOH	None		TPM-	87EX	MTB	1-4CT	14		10F7	by El					l
4/	MW-4	12/06/11	1		\top	_	2	_ -	_	+=	1		x	H	- -	†	'			十	+	+	+	H	
	MW-4	11	//_	x			3							X	7	1				\top	\top	+			
\vdash	MW-4		<u> </u>	×	$\bot \downarrow$	1	2]				X					$oldsymbol{\mathbb{I}}$				
	M W-4			X	$\dashv \downarrow$	#			\perp	-	ļ	4			_	4			×	4		╇	<u> </u>	\sqcup	
	TB	"		x		1				1				×						$\frac{1}{4}$	$\frac{1}{2}$		L		
				$\parallel \parallel$	+	+		+	-	-	-				_	-			\vdash	+	+	+	+	\vdash	
		-										1								\top	+	\top	T		
		-			$\perp \downarrow \downarrow$																丄				
			ļ. <u></u>	$\vdash \downarrow$	$\bot \!\!\! \bot$	-	_	_	\perp	\bot	_					\perp			\sqcup		\bot				
				\vdash	+		-	+	-	+	┼		 		_	+			\dashv	-	_	+	+-		
Notes:	please gilter	SAMPLE			^ PFI	JNQ	11151	1ED	RV-		<u> </u>						Ш	· C [<u> Т</u>			
Plai	ctic container	RECEIPT			NEL		1	_ /2	2/06	1/1	- 5	(g)	_	1	A		KE	CEI	IVED	BY	: イス	,			
San	ne day sol	☐ Intact -	1	W.	111	4		D/	ATE:		TIME	:' <i>0</i>	_	/ Q	$\stackrel{\smile}{=}$	<u> </u>				DA	ſE:	(@ T	IME:	170	<u>0'</u>
LUF	rfic containers he day fol 5 METAL	Cold _		·				D	ATE:		TIME	: :								DA	ſE:	T	IME:		
ANA	Lysis	On Ice				-		D/	ATE:		TIME	:	$ \begin{vmatrix} - \\ - \end{vmatrix}$							DA	ſE:	Ţ	IME:		_
ANA	Lysis	1						D/	ATE:		TIME	:								_DA1	<u>ΓΕ:</u>		IMI	<u> </u>	E:

COOLER RECEIPT CHECKLIST

C1'	241771	Date	Received	12	16/12 Caliphys	Number of	f cooler:	s	
Client	€(<u> </u>	Pro	oject	Sailinnin	1 myect			
Date Opened _ Date Logged in				l	(sign)_ (sign)	8. L	e L	1	
1. Did cooler c Shippir		shipping sl	ip (airbill, e	etc)			YES	NO)
2A. Were custo How m 2B. Were custo	ody seals prany	resent?	☐ YES (c	circle)	on cooler	on samDate	nples		NO
2B. Were custod 3. Were custod 4. Were custod 5. Is the projec 6. Indicate the	y papers di y papers fi et identifial	y and intact lled out propole from cust	when receiverly (ink, sited to be standard) when the whole when the whole when the whole when the whole when receivers to be sufficient to be	ved? igned, e ? (If so	tc)?		YES YES	NO NO NO	N/A
☐ Bubb ☐ Cloth 7. Temperature	material	⊠ Foam □ Cardb ation:	oard	☐ St	yrofoam	I	None Paper to	wels	
Type of	fice used:	⊠ Wet	⊠Blue/Ge	el 🗆	None	Temp(°C)2	.0	
☐ Sam	ples Receiv	ed on ice &	cold witho	ut a ten	perature b	lank; temp	. taken	with II	R gun
💢 Sam	ples receiv	ed on ice dir	ectly from t	the field	l. Cooling	process had	d begun		
9. Did all bottle	what time	were they tr						YES &	1 0
10. Are there as 11. Are sample 12. Are sample 13. Do the sam 14. Was suffici 15. Are the sam 16. Did you che 17. Did you doe 18. Did you che 19. Did you che 20. Are bubbles 21. Was the clic If YES,	ny missing is in the apple labels present amount apples appropriately of the preservoument you ange the hot as > 6mm about the preservous contact.	/ extra sample for control of sample statives for all ar preservation ld time in Losent in VOA	pened?	indicate and com rs? s reques each sa preserved eserved	ed tests? aplete? ted? ample? ed VOAs? terracores?		YES YES YES YES YES	YES 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO I/A I/A I/A
11. Are sample 12. Are sample 13. Do the sam 14. Was suffici 15. Are the sam 16. Did you che 17. Did you doe 18. Did you che 19. Did you che 20. Are bubbles 21. Was the clic If YES,	ny missing is in the apple labels present amount apples appropriately of the preservoument you ange the hot as > 6mm about the preservous contact.	/ extra sample repriate consent, in good agree with cut of sample surface for all ar preservational time in Library in VOzed concernir	pened?	indicate and com rs? s reques each sa preserved eserved	ed tests? aplete? ted? ample? ed VOAs? terracores?		YES YES YES YES YES YES	YES 1 PES 1	
11. Are sample 12. Are sample 13. Do the sam 14. Was suffici 15. Are the sam 16. Did you che 17. Did you doe 18. Did you che 19. Did you che 20. Are bubbles 21. Was the clic If YES,	ny missing is in the apple labels present amount apples appropriately of the preservoument you ange the hot as > 6mm about the preservous contact.	/ extra sample repriate consent, in good agree with cut of sample surface for all ar preservational time in Library in VOzed concernir	pened?	indicate and com rs? s reques each sa preserved eserved	ed tests? aplete? ted? ample? ed VOAs? terracores?		YES YES YES YES YES YES	YES 1 PES 1	

Rev 10, 11/11

	Total Volatil	e Hydrocarbons	
Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B
Matrix:	Water	Sampled:	12/06/12
Units:	ug/L	Received:	12/06/12
Diln Fac:	1.000		

Field ID: MW-1 Batch#: 193613
Type: SAMPLE Analyzed: 12/07/12

Lab ID: 241776-001

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
Stoddard Solvent C7-C12	ND	50	

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	113	75-124

Field ID: MW-2 Batch#: 193675

Type: SAMPLE Analyzed: 12/10/12

Lab ID: 241776-002

Analyte	Result	RL	
Gasoline C7-C12	5,000	50	
Stoddard Solvent C7-C12	3,300 Y	50	

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	103	75-124

Field ID: MW-3 Batch#: 193675 Type: SAMPLE Analyzed: 12/10/12

Lab ID: 241776-003

Analyte	Result	RL	
Gasoline C7-C12	1,200	50	
Stoddard Solvent C7-C12	800 Y	50	

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	102	75-124	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

3.1

Total Volatile Hydrocarbons Lab #: 241776 Location: Salisbury Project Client: Eagle Env. Construction EPA 5030B Prep: SALISBURY PROJECT EPA 8015B Project#: Analysis: Matrix: Water 12/06/12 Sampled: Units: ug/L Received: 12/06/12 1.000 Diln Fac:

Field ID: MW-4 Batch#: 193613
Type: SAMPLE Analyzed: 12/07/12

Lab ID: 241776-004

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
Stoddard Solvent C7-C12	ND	50	

Surrog	%REC	Surrogate %REG	Limits
Bromofluorobenze	112	uorobenzene (FID) - 112	75-124

Type: BLANK Batch#: 193613 Lab ID: QC669174 Analyzed: 12/07/12

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
Stoddard Solvent C7-C12	ND	50	

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	106	75-124

Type: BLANK Batch#: 193675 Lab ID: QC669439 Analyzed: 12/10/12

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
Stoddard Solvent C7-C12	ND	50	

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	95	75-124	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

3.1

	Total Volat	ile Hydrocarbo	ons
Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC669173	Batch#:	193613
Matrix:	Water	Analyzed:	12/07/12
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	975.6	98	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	105	75-124

Page 1 of 1 4.0

	Total Volat	ile Hydrocarbo	ons
Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZZ	Batch#:	193613
MSS Lab ID:	241783-001	Sampled:	12/05/12
Matrix:	Water	Received:	12/06/12
Units:	ug/L	Analyzed:	12/07/12
Diln Fac:	1.000		

Type: MS

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	17.88	2,000	2,060	102	71-120

Lab ID: QC669175

Surrogate %REC Lim	mits
Bromofluorobenzene (FID) 119 75-	

Type: MSD Lab ID: QC669176

Analyte	Spiked	Result	%REC	Limits	RPD Lim
Gasoline C7-C12	2,000	1,923	95	71-120	7 22

Surrogate %REC Limits
Bromofluorobenzene (FID) 117 75-124

	Total Volat	ile Hydrocarbo	ons
Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC669438	Batch#:	193675
Matrix:	Water	Analyzed:	12/10/12
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,041	104	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	100	75-124

Page 1 of 1 6.0

	Total Volat	ile Hydrocarbo	ons
Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B
Field ID:	MW-2	Batch#:	193675
MSS Lab ID:	241776-002	Sampled:	12/06/12
Matrix:	Water	Received:	12/06/12
Units:	ug/L	Analyzed:	12/10/12
Diln Fac:	1.000		

Type: MS

Lab ID: QC669440

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	4,979	2,000	6,417	72	71-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	105	75-124

Type: MSD Lab ID: QC669441

Analyte	Spiked	Result	%REC	Limits	RPD Lim
Gasoline C7-C12	2,000	6,492	76	71-120	1 22

Surroga	ate %REC	Limits
Bromofluorobenzen	ne (FID) 106	75-124

\Lims\gdrive\ezchrom\Projects\GC07\Data\345-010, A

\Lims\gdrive\ezchrom\Projects\GC07\Data\345-013, A

\Lims\gdrive\ezchrom\Projects\GC04\Data\342-001, A

\Lims\gdrive\ezchrom\Projects\GC04\Data\342-004, A

Total Extractable Hydrocarbons Lab #: 241776 Location: Salisbury Project Client: Eagle Env. Construction Prep: EPA 3520C Project#: SALISBURY PROJECT EPA 8015B Analysis: Matrix: Water 12/06/12 Sampled: Units: 12/06/12 ug/L Received: Diln Fac: 1.000 Prepared: 12/11/12 Batch#: 193711 Analyzed: 12/12/12

Field ID: MW-1 Lab ID: 241776-001

Type: SAMPLE

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	
Hydraulic Fluid, C12-40	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	103	61-134

Field ID: MW-2 Lab ID: 241776-002

Type: SAMPLE

Analyte	Result	RL	
Diesel C10-C24	2,300	50	
Motor Oil C24-C36	ND	300	
Hydraulic Fluid, C12-40	1,500 Y	300	

Surrogate	%REC	Limits
o-Terphenyl	107	61-134

Field ID: MW-3 Lab ID: 241776-003

Type: SAMPLE

Analyte	Result	RL	
Diesel C10-C24	2,000	50	
Motor Oil C24-C36	ND	300	
Hydraulic Fluid, C12-40	1,600 Y	300	

Surrogate	%REC	Limits
o-Terphenyl	105	61-134

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2 11.0

Total Extractable Hydrocarbons						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 3520C			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B			
Matrix:	Water	Sampled:	12/06/12			
Units:	ug/L	Received:	12/06/12			
Diln Fac:	1.000	Prepared:	12/11/12			
Batch#:	193711	Analyzed:	12/12/12			

Field ID: MW-4 Lab ID: 241776-004

Type: SAMPLE

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	
Hydraulic Fluid, C12-40	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	103	61-134

Type: BLANK Lab ID: QC669591

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	
Hydraulic Fluid, C12-40	ND	300	

Surrogate	%REC	Limits
o-Terphenyl	104	61-134

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Total Extractable Hydrocarbons					
Lab #:	241776	Location:	Salisbury Project		
Client:	Eagle Env. Construction	Prep:	EPA 3520C		
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC669592	Batch#:	193711		
Matrix:	Water	Prepared:	12/11/12		
Units:	ug/L	Analyzed:	12/12/12		

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	1,899	76	60-120

Surrogate	%REC	Limits
o-Terphenyl	104	61-134

Page 1 of 1

Total Extractable Hydrocarbons							
Lab #:	241776	Location:	Salisbury Project				
Client:	Eagle Env. Construction	Prep:	EPA 3520C				
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B				
Field ID:	ZZZZZZZZZ	Batch#:	193711				
MSS Lab ID:	241722-003	Sampled:	12/03/12				
Matrix:	Water	Received:	12/05/12				
Units:	ug/L	Prepared:	12/11/12				
Diln Fac:	1.000	Analyzed:	12/12/12				

Type: MS Lab ID: QC669593

Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	2,365	2,500	4,840	99	44-135

Surrogate	%REC	Limits	
o-Terphenyl	103	61-134	

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	5,000	7,465	102	44-135	2	42

Surrogate	%REC	Limits
o-Terphenyl	102	61-134

\\lims\gdrive\ezchrom\Projects\GC27\Data\347a019.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\347a020.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\347a010.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\347a011.dat, Front Signal

\\lims\gdrive\ezchrom\Projects\GC27\Data\347a009.dat, Front Signal

Purgeable Aromatics by GC/MS							
Lab #:	241776	Location:	Salisbury Project				
Client:	Eagle Env. Construction	Prep:	EPA 5030B				
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B				
Field ID:	MW-1	Batch#:	193815				
Lab ID:	241776-001	Sampled:	12/06/12				
Matrix:	Water	Received:	12/06/12				
Units:	ug/L	Analyzed:	12/13/12				
Diln Fac:	1.000						

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	112	80-127	
1,2-Dichloroethane-d4	115	69-148	
Toluene-d8	100	80-120	
Bromofluorobenzene	113	80-121	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Page 1 of 1

Purgeable Aromatics by GC/MS						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Field ID:	MW-2	Units:	ug/L			
Lab ID:	241776-002	Sampled:	12/06/12			
Matrix:	Water	Received:	12/06/12			

Analyte	Result	RL	Diln Fac	Batch# Analyzed
MTBE	ND	0.5	1.000	193815 12/13/12
Benzene	92	0.5	1.000	193815 12/13/12
Toluene	42	0.5	1.000	193815 12/13/12
Ethylbenzene	460	4.2	8.333	193870 12/14/12
m,p-Xylenes	170	4.2	8.333	193870 12/14/12
o-Xylene	9.6	0.5	1.000	193815 12/13/12
Naphthalene	62	2.0	1.000	193815 12/13/12

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	108	80-127	1.000	193815 12/13/12
1,2-Dichloroethane-d4	113	69-148	1.000	193815 12/13/12
Toluene-d8	100	80-120	1.000	193815 12/13/12
Bromofluorobenzene	105	80-121	1.000	193815 12/13/12

Page 1 of 1

Purgeable Aromatics by GC/MS					
Lab #:	241776	Location:	Salisbury Project		
Client:	Eagle Env. Construction	Prep:	EPA 5030B		
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B		
Field ID:	MW-3	Units:	ug/L		
Lab ID:	241776-003	Sampled:	12/06/12		
Matrix:	Water	Received:	12/06/12		

Analyte	Result	RL	Diln Fac	Batch# Analyzed
MTBE	ND	0.5	1.000	193870 12/14/12
Benzene	36	0.5	1.000	193870 12/14/12
Toluene	0.8	0.5	1.000	193870 12/14/12
Ethylbenzene	9.2	0.5	1.000	193870 12/14/12
m,p-Xylenes	0.6	0.5	1.000	193870 12/14/12
o-Xylene	ND	0.5	1.000	193870 12/14/12
Naphthalene	120	10	5.000	194007 12/19/12

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	99	80-127	1.000	193870 12/14/12
1,2-Dichloroethane-d4	96	69-148	1.000	193870 12/14/12
Toluene-d8	101	80-120	1.000	193870 12/14/12
Bromofluorobenzene	100	80-121	1.000	193870 12/14/12

Page 1 of 1

	Purgeable A	romatics by GC	C/MS
Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	MW-4	Batch#:	194007
Lab ID:	241776-004	Sampled:	12/06/12
Matrix:	Water	Received:	12/06/12
Units:	ug/L	Analyzed:	12/19/12
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-127	
1,2-Dichloroethane-d4	73	69-148	
Toluene-d8	99	80-120	
Bromofluorobenzene	100	80-121	

Page 1 of 1

	Purgeable A	romatics by GC	C/MS
Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	TB	Batch#:	193815
Lab ID:	241776-005	Sampled:	12/06/12
Matrix:	Water	Received:	12/06/12
Units:	ug/L	Analyzed:	12/13/12
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	116	80-127	
1,2-Dichloroethane-d4	117	69-148	
Toluene-d8	100	80-120	
Bromofluorobenzene	116	80-121	

Page 1 of 1

	Purgeable Aromatics by GC/MS					
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	193815			
Units:	ug/L	Analyzed:	12/13/12			
Diln Fac:	1.000					

Type: BS Lab ID: QC670029

Analyte	Spiked	Result	%REC	Limits
MTBE	12.50	11.90	95	59-120
Benzene	12.50	12.38	99	80-123
Toluene	12.50	12.13	97	80-120
Ethylbenzene	12.50	12.79	102	80-123
m,p-Xylenes	25.00	25.76	103	80-123
o-Xylene	12.50	11.98	96	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	108	80-127
1,2-Dichloroethane-d4	112	69-148
Toluene-d8	101	80-120
Bromofluorobenzene	110	80-121

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	12.50	12.45	100	59-120	4	20
Benzene	12.50	12.67	101	80-123	2	20
Toluene	12.50	12.09	97	80-120	0	20
Ethylbenzene	12.50	12.55	100	80-123	2	20
m,p-Xylenes	25.00	25.86	103	80-123	0	20
o-Xylene	12.50	11.88	95	80-122	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	110	80-127
1,2-Dichloroethane-d4	117	69-148
Toluene-d8	98	80-120
Bromofluorobenzene	109	80-121

Purgeable Aromatics by GC/MS						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC670031	Batch#:	193815			
Matrix:	Water	Analyzed:	12/13/12			
Units:	ug/L					

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
m,p-Xylenes o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	110	80-127	
1,2-Dichloroethane-d4	116	69-148	
Toluene-d8	99	80-120	
Bromofluorobenzene	113	80-121	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Purgeable Aromatics by GC/MS						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	193870			
Units:	ug/L	Analyzed:	12/14/12			
Diln Fac:	1.000					

Type: BS Lab ID: QC670246

Analyte	Spiked	Result	%REC	Limits
MTBE	12.50	11.92	95	59-120
Benzene	12.50	11.69	94	80-123
Toluene	12.50	11.81	94	80-120
Ethylbenzene	12.50	12.12	97	80-123
m,p-Xylenes	25.00	23.32	93	80-123
o-Xylene	12.50	11.45	92	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-127
1,2-Dichloroethane-d4	102	69-148
Toluene-d8	102	80-120
Bromofluorobenzene	99	80-121

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	12.50	12.15	97	59-120	2	20
Benzene	12.50	12.09	97	80-123	3	20
Toluene	12.50	12.15	97	80-120	3	20
Ethylbenzene	12.50	12.29	98	80-123	1	20
m,p-Xylenes	25.00	24.13	97	80-123	3	20
o-Xylene	12.50	11.82	95	80-122	3	20

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-127
1,2-Dichloroethane-d4	103	69-148
Toluene-d8	102	80-120
Bromofluorobenzene	100	80-121

Purgeable Aromatics by GC/MS						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC670248	Batch#:	193870			
Matrix:	Water	Analyzed:	12/14/12			
Units:	ug/L					

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
m,p-Xylenes o-Xylene Naphthalene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	105	80-127
1,2-Dichloroethane-d4	103	69-148
Toluene-d8	103	80-120
Bromofluorobenzene	102	80-121

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Aromatics by GC/MS						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	194007			
Units:	ug/L	Analyzed:	12/19/12			
Diln Fac:	1.000					

Type: BS Lab ID: QC670803

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	18.72	75	59-120
Benzene	25.00	28.88	116	80-123
Toluene	25.00	28.66	115	80-120
Ethylbenzene	25.00	27.51	110	80-123
m,p-Xylenes	50.00	55.00	110	80-123
o-Xylene	25.00	26.03	104	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-127
1,2-Dichloroethane-d4	72	69-148
Toluene-d8	99	80-120
Bromofluorobenzene	96	80-121

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	18.71	75	59-120	0	20
Benzene	25.00	29.72	119	80-123	3	20
Toluene	25.00	28.74	115	80-120	0	20
Ethylbenzene	25.00	27.86	111	80-123	1	20
m,p-Xylenes	50.00	53.71	107	80-123	2	20
o-Xylene	25.00	26.41	106	80-122	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-127
1,2-Dichloroethane-d4	73	69-148
Toluene-d8	101	80-120
Bromofluorobenzene	99	80-121

Purgeable Aromatics by GC/MS						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC670807	Batch#:	194007			
Matrix:	Water	Analyzed:	12/19/12			
Units:	ug/L					

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-127	
1,2-Dichloroethane-d4	72	69-148	
Toluene-d8	99	80-120	
Bromofluorobenzene	99	80-121	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Dissolved California LUFT Metals						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	METHOD			
Project#:	SALISBURY PROJECT	Analysis:	EPA 6010B			
Matrix:	Filtrate	Sampled:	12/06/12			
Units:	ug/L	Received:	12/06/12			
Diln Fac:	1.000	Prepared:	12/12/12			
Batch#:	193793	Analyzed:	12/14/12			

Field ID: MW-1

Type: SAMPLE

Analyte	Result	RL	
Cadmium	ND	5.0	
Chromium	ND	5.0	
Lead Nickel	ND	5.0	
Nickel	7.6	5.0	
Zinc	ND	20	

Lab ID: 241776-001

Field ID: MW-2 Lab ID: 241776-002

Type: SAMPLE

Analyte	Result	RL	
Cadmium	ND	5.0	
Chromium	ND	5.0	
Lead Nickel	ND	5.0	
Nickel	ND	5.0	
Zinc	ND	20	

Field ID: MW-3 Lab ID: 241776-003

Type: SAMPLE

Analyte	Result	RL	
Cadmium	ND	5.0	
Chromium	ND	5.0	
Lead Nickel	ND	5.0	
Nickel	6.1	5.0	
Zinc	ND	20	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Dissolved California LUFT Metals					
Lab #:	241776	Location:	Salisbury Project		
Client:	Eagle Env. Construction	Prep:	METHOD		
Project#:	SALISBURY PROJECT	Analysis:	EPA 6010B		
Matrix:	Filtrate	Sampled:	12/06/12		
Units:	ug/L	Received:	12/06/12		
Diln Fac:	1.000	Prepared:	12/12/12		
Batch#:	193793	Analyzed:	12/14/12		

Field ID: MW-4 Lab ID: 241776-004

Type: SAMPLE

Analyte	Result	RL
Cadmium	ND	5.0
Chromium	ND	5.0
Lead Nickel	ND	5.0
Nickel	9.7	5.0
Zinc	ND	20

Type: BLANK Lab ID: QC669938

Analyte	Result	RL	
Cadmium	ND	5.0	
Chromium	ND	5.0	
Lead Nickel	ND	5.0	
Nickel	ND	5.0	
Zinc	ND	20	

ND= Not Detected RL= Reporting Limit

Page 2 of 2

Dissolved California LUFT Metals						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	METHOD			
Project#:	SALISBURY PROJECT	Analysis:	EPA 6010B			
Matrix:	Filtrate	Batch#:	193793			
Units:	ug/L	Prepared:	12/12/12			
Diln Fac:	1.000	Analyzed:	12/14/12			

Type: BS Lab ID: QC669939

Analyte	Spiked	Result	%REC	Limits
Cadmium	50.00	50.44	101	80-120
Chromium	200.0	194.1	97	80-120
Lead	100.0	96.18	96	78-120
Nickel	500.0	475.7	95	80-120
Zinc	500.0	501.4	100	80-120

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Cadmium	50.00	49.62	99	80-120	2	20
Chromium	200.0	192.8	96	80-120	1	20
Lead	100.0	94.78	95	78-120	1	20
Nickel	500.0	470.5	94	80-120	1	20
Zinc	500.0	492.6	99	80-120	2	20

Dissolved California LUFT Metals						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	METHOD			
Project#:	SALISBURY PROJECT	Analysis:	EPA 6010B			
Field ID:	ZZZZZZZZZZ	Batch#:	193793			
MSS Lab ID:	241820-001	Sampled:	12/07/12			
Matrix:	Filtrate	Received:	12/10/12			
Units:	ug/L	Prepared:	12/12/12			
Diln Fac:	1.000	Analyzed:	12/14/12			

Type: MS Lab ID: QC669941

Analyte	MSS Result	Spiked	Result	%REC	Limits
Cadmium	<0.4753	50.00	48.08	96	76-120
Chromium	<0.6310	200.0	185.5	93	74-120
Lead	<1.552	100.0	92.11	92	65-120
Nickel	2.979	500.0	455.4	90	74-120
Zinc	201.4	500.0	666.1	93	75-124

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Cadmium	50.00	49.03	98	76-120	2	20
Chromium	200.0	191.0	96	74-120	3	21
Lead	100.0	93.97	94	65-120	2	29
Nickel	500.0	464.9	92	74-120	2	21
Zinc	500.0	675.1	95	75-124	1	27