RECEIVED

By Alameda County Environmental Health at 2:31 pm, Jan 09, 2014

SCANLANKEMPERBARD COMPANIES

December 18, 2013

881.060.03.010

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Attention: Mr. Jerry Wickham

Transmittal
Groundwater Monitoring Report, Second Semi-Annual 2013 Event
Sparkle Cleaners
Eastmont Town Center
7000 Bancroft Avenue
Oakland, California
SLIC Case RO0002942

Dear Mr. Wickham:

Submitted herewith for your review is the Groundwater Monitoring Report for the Second Semi-Annual 2013 Event, prepared by PES Environmental, Inc.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Yours very truly,

Eastmont Oakland Associates, LLC

James V. Paul

Executive Vice President – Asset Management

cc: Gary Thomas – PES Environmental, Inc.

Ms. Beena Standig - Cushman & Wakefield

88106003T010.docx

A Report Prepared for:

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Attention: Mr. Jerry Wickham

GROUNDWATER MONITORING REPORT SECOND SEMI-ANNUAL 2013 EVENT SPARKLE CLEANERS EASTMONT TOWN CENTER 7000 BANCROFT AVENUE OAKLAND, CALIFORNIA

JANUARY 6, 2014

By:

Gary Thomas, P.G.

Senior Geologist

William W. Mast, P.G.

Principal Engineer

881.060.03.010

TABLE OF CONTENTS

LIST OF TABLES		iii
LIST OF ILLUSTRA	TIONS	Siii
1.0 INTRODUCTIO	N	1
2.0 BACKGROUND) INFO	RMATION1
3.0 SITE DESCRIPT	ΓΙΟN .	2
4.1 Depth to Grou	ındwate	onitoring well sampling activities
5.1 Groundwater I5.2 Groundwater I	Elevatio Sample	ONITORING RESULTS3On Measurements3Analytical Results3Quality Control Assessment of Chemical Data4
6.0 SUMMARY		4
7.0 REFERENCES.		4
TABLES		
ILLUSTRATIONS		
APPENDICES	A	MONITORING WELL SAMPLING FORMS
	В	LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

88106003R010.doc ii

DISTRIBUTION

LIST OF TABLES

Table 1	Groundwater Monitoring Well Construction Details
Table 2	Groundwater Elevation Data
Table 3	Summary of Analytical Results for Groundwater Monitoring Well Samples

LIST OF ILLUSTRATIONS

Plate 1	Site Location Map
Plate 2	Interpretive Groundwater Potentiometric Surface Map – September 27, 2013

88106003R010.doc iii

1.0 INTRODUCTION

This report presents the results of groundwater monitoring activities conducted during the second semi-annual 2013 monitoring event at the Sparkle Cleaners facility (Site). The Site is located at 7000 Bancroft Avenue, Oakland, California and is situated in the northwest portion of Eastmont Town Center (Plates 1 and 2). Sparkle Cleaners is an active dry-cleaning facility. Until December 2008, tetrachloroethene (PCE) was used as the dry-cleaning solvent. At that time the PCE-based equipment was decommissioned, removed from the property, and replaced with new clothes cleaning equipment that utilizes "wet-cleaning" technology with a soy-based cleaner (i.e., no hazardous chemicals are used or stored on the Site). This report has been prepared for the Alameda County Environmental Health Department (ACEH) by PES Environmental, Inc. (PES) on behalf of SKB – Eastmont Oakland Associates, LLC (SKBEOA), the property owner.

2.0 BACKGROUND INFORMATION

The groundwater monitoring activities were conducted in accordance with the Remedial Action Workplan (RAW) that was approved by ACEH in a letter dated February 27, 2007 (PES, 2007a; ACEH, 2007a). The scope of work in the RAW also included removing the source of PCE soil contamination beneath Sparkle Cleaners and installing four groundwater monitoring wells. Excavation activities to remove the source of PCE in soil were successfully completed in July 2007 and documented in the report titled *Post-Remediation Report*, Voluntary Soil Remediation, Sparkle Cleaners, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California (PES, 2007b) that was previously submitted to ACEH. The groundwater monitoring wells were installed in July 2007 and the baseline groundwater sampling event was conducted in August 2007. The details of the well installations and the results of the baseline sampling event are presented in the *Third Quarter 2007 Groundwater Monitoring Report* (PES, 2007c). In a letter dated October 4, 2007, ACEH provided comments on the Post-Remediation Report and requested additional analytical testing during two quarters of groundwater monitoring (ACEH, 2007b). After four quarters of groundwater monitoring were completed in June 2008, PES recommended that the frequency of monitoring be reduced to a semi-annual basis (PES, 2008). ACEH agreed with this recommendation in a letter dated October 23, 2008 (ACEH, 2008).

As described in the RAW, the purpose of the groundwater monitoring is to: (1) document the initial concentrations of volatile organic compounds (VOCs) in the newly installed wells at the Site; (2) monitor groundwater flow directions(s), gradient, and seasonal fluctuations; (3) evaluate the groundwater chemical response to the removal of the source of contamination; and (4) verify that groundwater quality down gradient of Sparkle Cleaners is not declining.

3.0 SITE DESCRIPTION

The Sparkle Cleaners tenant space (Suite 11) covers approximately 1,800 square feet in the northwest portion of Eastmont Town Center (Plate 2). The area in front (north) of Sparkle Cleaners includes storefront parking and a mall driveway. The rear (south) of the tenant space opens into a common hallway that traverses the width of the building from east to west. An alleyway is located approximately 20 feet to the east.

The ground surface elevation at Sparkle Cleaners is approximately 60 feet above mean seal level (MSL). The Site topography slopes gently to the southwest. To the east and northeast of the Site, the topography steepens and continues to rise to approximately 360 feet MSL (Plate 1).

4.0 GROUNDWATER MONITORING WELL SAMPLING ACTIVITIES

Groundwater monitoring activities for the current event consisted of: (1) collection of depth to groundwater measurements and calculation of groundwater elevations; (2) groundwater sample collection; and (3) laboratory analysis of the samples for halogenated VOCs. Field activities were conducted by Blaine Tech Services (BTS) of San Jose, California on September 27, 2013¹. Construction details for the four monitoring wells are provided in Table 1.

4.1 Depth to Groundwater Measurements

Depth-to-groundwater measurements were obtained for the monitoring wells using an electronic water-level indicator and recorded to the nearest 0.01-foot. The portion of the water-level indicator that was submerged in the wells was cleaned with a solution of Alconox and deionized (DI) water, and then rinsed with DI water between measurements. Decontamination fluids were stored temporarily on the Site in a DOT-approved 55-gallon drum pending off-Site disposal. Depth-to-groundwater data were converted to groundwater elevations referenced to mean sea level and are presented in Table 2. Groundwater elevation contours are presented on Plate 2.

4.2 Monitoring Well Sampling

After collecting water-level data, BTS collected monitoring well samples for laboratory analysis. Three casing volumes of groundwater were purged from the wells prior to collecting the samples. The wells were purged using a positive air displacement pump for each well. Samples were collected using a disposable bailer and decanted into laboratory-provided sample containers. Groundwater temperature, pH, conductivity, and turbidity were monitored during purging. The BTS monitoring well sampling forms are presented in Appendix A.

¹ Because well MW-02 was not accessible on September 27, the depth-to-groundwater measurement and sample were collected on October 4.

The samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) under chain-of-custody protocol and analyzed for halogenated VOCs (8010 list) using U.S. Environmental Protection Agency (EPA) Test Method 8260B.

5.0 GROUNDWATER MONITORING RESULTS

5.1 Groundwater Elevation Measurements

Groundwater elevations measured during the current monitoring event ranged from 23.82 feet MSL in well MW-01 to 34.07 feet MSL in well MW-02 (see Table 2 and Plate 2). As indicated on Plate 2, the elevation data from well MW-02 is not used for contouring because the groundwater elevation in this well is significantly higher than the elevations in the other wells. As described in the previous monitoring reports, the cause of the higher water-level elevation at well MW-02 appears to be from a screen interval that is at least 9 feet shallower (i.e., relative to the ground surface) than the other three wells. Well MW-2 was constructed in this manner because groundwater was observed at a shallower depth while drilling the borehole for this well.

Based on the groundwater elevation data from wells MW-01, MW-03, and MW-04, the hydraulic gradient during the current monitoring event was approximately 0.041 foot per foot to the west (see Plate 2). In addition, the analytical results discussed below suggest a westerly to northwesterly direction for groundwater flow.

5.2 Groundwater Sample Analytical Results

The analytical results for the groundwater samples collected during the current monitoring event are summarized below and presented in Table 3. The laboratory analytical report and chain-of-custody documentation are provided in Appendix B.

PCE was detected in three of the four monitoring wells at concentrations ranging from 1.6 micrograms per liter (μ g/L) in well MW-03 to 120 μ g/L in well MW-01 (PCE was also detected at 120 μ g/L in the duplicate sample from well MW-01). TCE was detected at concentrations of 3.1 and 0.91 μ g/L in wells MW-01 and MW-02, respectively. Cis-1,2-dichloroethene (cis-1,2-DCE) was detected at a concentration of 0.68 μ g/L in well MW-03. No other VOCs were detected at concentrations exceeding laboratory reporting limits in the samples from wells MW-01 through MW-03, and no VOCs were detected in well MW-04 (Table 3).

The distribution of PCE and TCE in groundwater is consistent with the observed westerly groundwater flow direction, and with prior monitoring data.

5.3 Quality Assurance/Quality Control Assessment of Chemical Data

The quality of the chemical data reported by TestAmerica was assessed from the results of internal laboratory spike and method blank. The data are within acceptable recovery limits. The results for the duplicate sample collected at MW-01 indicate good reproducibility with PCE and TCE detected in both the regular and duplicate sample. The relative percent differences for the PCE and TCE concentrations detected in this sample are 0 and 3.3 percent, respectively. The water samples were analyzed within acceptable EPA holding times. The data from TestAmerica are considered to be representative and of good quality.

6.0 SUMMARY

The second semi-annual 2013 groundwater monitoring event has been conducted in accordance with approved procedures.

Based on the groundwater elevation data from wells MW-01, MW-03, and MW-04, groundwater flow at the Site during this sampling event continues to be westerly (see Plate 2). The only VOC constituents detected above laboratory reporting limits in groundwater during this monitoring event were PCE, TCE, and cis-1,2-DCE. The maximum concentrations of PCE and TCE were detected in well MW-01 at 120 μ g/L and 3.1 μ g/L, respectively. PCE and TCE were also detected at 120 μ g/L and 3.0 μ g/L, respectively, in the duplicate sample from well MW-01. These concentrations are generally similar to those observed during previous monitoring events. Groundwater monitoring data collected since removal of the vadose zone source area in 2007 indicate that VOC concentrations are fairly stable in downgradient monitoring wells MW-01 and MW-02.

The next monitoring event is scheduled for March 2013.

7.0 REFERENCES

- Alameda County Environmental Health (ACEH), 2007a. SLIC Case RO0002942 and Geotracker Global ID SLT19735483, Sparkle Cleaners, 7000 Bancroft Avenue, Oakland, CA 94605 Work Plan Approval. February 27.
- ACEH, 2007b. SLIC Case RO0002942 and Geotracker Global ID SLT19735483, Sparkle Cleaners, 7000 Bancroft Avenue, Oakland, CA 94605 – Post-Remediation Report Review. October 4.
- ACEH, 2008. SLIC Case RO0002942 and Geotracker Global ID SLT19735483, Sparkle Cleaners, 7000 Bancroft Avenue, Oakland, CA 94605 – Post-Remediation Report Review. October 23.

- ACEH, 2009. SLIC Case RO0002942 and Geotracker Global ID SLT19735483, Sparkle Cleaners, 7000 Bancroft Avenue, Oakland, CA 94605 – Groundwater Monitoring. September 4.
- PES Environmental, Inc. (PES), 2007a. Remedial Action Workplan, Voluntary Soil Remediation, Sparkle Cleaner, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California. January 5.
- PES, 2007b. Post-Remediation Report, Voluntary Soil Remediation, Sparkle Cleaners, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California. September 9.
- PES, 2007c. Third Quarter 2007 Groundwater Monitoring Report, Sparkle Cleaners, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California. October 8.
- PES, 2008. Second Quarter 2008 Groundwater Monitoring Report, Sparkle Cleaners, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California. September 29.

5

TABLES

Table 1 Groundwater Monitoring Well Construction Details Sparkle Cleaners Eastmont Town Center 7000 Bancroft Avenue Oakland, California

Well ID	Date Completed	Top of Casing Elevation (feet MSL)	Borehole Diameter (inches)	Borehole Depth (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Sand Filter Pack Interval (feet bgs)	Screen Slot Size (inches)
MW-01	7/23/2007	49.51	8	47	47	2	31.5 to 46.5	29.5 to 47	0.020
MW-02	7/24/2007	49.07	8	36.5	35	2	19.5 to 34.5	17.5 to 36.5	0.020
MW-03	7/24/2007	50.43	8	44	44	2	28.5 to 43.5	26.5 to 44	0.020
MW-04	7/23/2007	49.81	8	48.5	48.5	2	33 to 48	31 to 48.5	0.020

Note:

bgs - Below ground surface MSL - Mean sea level

88106003R010.xlsx - Table 1 1/6/2014

Table 2
Groundwater Elevation Data
Sparkle Cleaners
Eastmont Town Center
7000 Bancroft Avenue
Oakland, California

Well	Date	Top of Casing	Depth to Groundwater	Groundwater Elevation
ID	Measured	Elevation (feet MSL)	(feet BTOC)	(feet MSL)
MW-01	8/7/2007	49.51	23.62	25.89
MW-01	11/19/2007	49.51	24.85	24.66
MW-01	2/6/2008	49.51	22.93	26.58
MW-01	5/15/2008	49.51	23.52	25.99
MW-01	11/19/2008	49.51	26.80	22.71
MW-01	5/14/2009	49.51	23.92	25.59
MW-01	1/5/2010	49.51	25.64	23.87
MW-01	5/20/2011	49.51	21.02	28.49
MW-01	3/18/2013	49.51	23.40	26.11
MW-01	9/27/2013	49.51	25.69	23.82
MW-02	8/7/2007	49.07	14.30	34.77
MW-02	11/19/2007	49.07	14.83	34.24
MW-02	2/6/2008	49.07	14.11	34.96
MW-02	5/15/2008	49.07	13.07	36.00
MW-02	11/19/2008	49.07	17.57	31.50
MW-02	5/14/2009	49.07	14.21	34.86
MW-02	1/5/2010	49.07	15.05	34.02
MW-02	5/20/2011	49.07	10.28	38.79
MW-02	3/18/2013	49.07	13.02	36.05
MW-02	10/4/2013	49.07	15.00	34.07
MW-03	8/7/2007	50.43	17.82	32.61
MW-03	11/19/2007	50.43	24.70	25.73
MW-03	2/6/2008	50.43	22.86	27.57
MW-03	5/15/2008	50.43	22.27	28.16
MW-03	11/19/2008	50.43	23.64	26.79
MW-03	5/14/2009	50.43	22.37	28.06
MW-03	1/5/2010	50.43	24.00	26.43
MW-03	5/20/2011	50.43	18.31	32.12
MW-03	3/18/2013	50.43	18.93	31.50
MW-03	9/27/2013	50.43	20.26	30.17
MW-04	8/7/2007	49.81	22.43	27.38
MW-04	11/19/2007	49.81	23.81	26.00
MW-04	2/6/2008	49.81	22.80	27.01
MW-04	5/15/2008	49.81	22.32	27.49
MW-04	11/19/2008	49.81	25.60	24.21
MW-04	5/14/2009	49.81	23.50	26.31
MW-04	1/5/2010	49.81	24.52	25.29
MW-04	5/20/2011	49.81	19.39	30.42
MW-04	3/18/2013	49.81	22.07	27.74
MW-04	9/27/2013	49.81	24.81	25.00

Note:

MSL - Mean sea level BTOC - Below top of casing

88106003R010.xlsx - Table 2 1/6/2014

Table 3 Summary of Analytical Results for Groundwater Monitoring Well Samples Sparkle Cleaners **Eastmont Town Center** 7000 Bancroft Avenue Oakland, California

0	0	Petroleum H	ydrocarbons				Vola	atile Organic	Compounds				
Sample Location	Sample Date	TPHg	TPHd	PCE	TCE	cis-1,2-DCE	Naphthalene	MTBE	TAME	TBA	DIPE	ETBE	Other VOCs
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-01	8/7/2007	NA	NA	60	3.1	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-01 (D)	8/7/2007	NA	NA	71	3.1	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-01	11/19/2007	110 ⁽¹⁾	52	110	5.2	ND (1.0)	ND (2.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-01 (D)	11/19/2007	110 ⁽¹⁾	79	100	5.0	ND (1.0)	ND (2.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-01	2/6/2008	140 ⁽¹⁾	57	130	5.8	0.58	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-01 ^(D)	2/6/2008	140 ⁽¹⁾	65	130	5.7	0.60	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-01	5/15/2008	NA	NA	130	5.5	0.53	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-01 ^(D)	5/15/2008			140	5.4	0.54	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-01	11/19/2008	NA NA	NA NA	110	4.4	ND (1.0)	ND (2.0)	NA	NA	NA	NA	NA	ND
MW-01 ^(D)	11/19/2008			110	4.3	ND (1.0)	ND (2.0)	NA	NA NA	NA	NA	NA NA	ND
MW-01	5/14/2009	NA NA	NA NA	160	5.3	ND (1.0)	NA	NA	NA NA	NA	NA	NA NA	ND
MW-01 ^(D)		NA	NA	140	4.9	ND (1.0) ND (2.0)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND
MW-01	5/14/2009	NA NA	NA	110	4.1	ND (1.0)	NA NA	NA	NA	NA	NA	NA NA	ND
MW-01 ^(D)	1/5/2010	NA	NA	120	4.1	ND (1.0)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND
MW-01	1/5/2010	NA NA	NA	110	4.0	ND (1.0)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND
MW-01 ^(D)	5/20/2011	NA	NA	120	4.0	ND (1.0)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND
MW-01	5/20/2011	NA NA	NA	150	3.4	ND (0.50)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND
MW-01 ^(D)	3/18/2013	NA	NA	150	3.4	ND (0.50)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND
MW-01	3/18/2013	NA	NA	120	3.1	ND (0.50)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND
MW-01 ^(D)	9/27/2013	NA	NA	120	3.1	ND (0.50)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND
IVIVV-U1 \ /	9/27/2013	NA	NA	120	3.0	ND (0.50)	INA	INA	INA	INA	INA	INA	ND
MW-02	8/7/2007	NA	NA	25	1.2	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-02	11/19/2007	ND (50)	120	26	0.93	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-02	2/6/2008	ND (50)	200	25	0.90	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-02	5/15/2008	NA	NA	20	0.91	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-02	11/19/2008	NA	NA	23	0.88	ND (0.50)	ND (1.0)	NA	NA	NA	NA	NA	ND
MW-02	5/14/2009	NA	NA	31	0.84	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-02	1/5/2010	NA	NA	24	0.60	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-02	5/20/2011	NA	NA	39	1.2	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-02	3/18/2013	NA	NA	36	0.95	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-02	10/4/2013	NA	NA	26	0.91	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-03	8/7/2007	NA	NA	1.6	ND (0.50)	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-03	11/19/2007	ND (50)	79	2.1	ND (0.50)	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-03	2/6/2008	ND (50)	70	2.0	ND (0.50)	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-03	5/15/2008	NA	NA	1.5	ND (0.50)	0.50	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-03	11/19/2008	NA	NA	2.0	ND (0.50)	ND (0.50)	ND (1.0)	NA	NA	NA	NA	NA	ND
MW-03	5/14/2009	NA	NA	1.8	ND (0.50)	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-03	1/5/2010	NA	NA	1.5	ND (0.50)	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-03	5/20/2011	NA	NA	1.8	ND (0.50)	0.57	NA NA	NA	NA	NA	NA	NA	ND
MW-03	3/18/2013	NA	NA	1.6	ND (0.50)	0.67	NA NA	NA	NA NA	NA	NA	NA	ND
MW-03	9/27/2013	NA	NA	1.6	ND (0.50)	0.68	NA	NA	NA	NA	NA	NA	ND
MW-04	8/7/2007	NA	NA	ND (0.50)	ND (0.50)	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-04	11/19/2007	ND (50)	69	ND (0.50)	ND (0.50)	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-04	2/6/2008	ND (50)	ND (50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-04	5/15/2008	NA	NA	ND (0.50)	ND (0.50)	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-04	11/19/2008	NA	NA	ND (0.50)	ND (0.50)	ND (0.50)	ND (1.0)	NA NA	NA NA	NA	NA NA	NA	ND
MW-04 MW-04	5/14/2009 1/5/2010	NA NA	NA NA	ND (0.50) ND (0.50)	ND (0.50) ND (0.50)	ND (0.50) ND (0.50)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND
MW-04	5/20/2010	NA NA	NA NA	ND (0.50) ND (0.50)	ND (0.50) ND (0.50)	ND (0.50) ND (0.50)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND
MW-04	3/18/2013	NA NA	NA NA	ND (0.50)	ND (0.50)	ND (0.50)	NA NA	NA NA	NA NA	NA	NA NA	NA NA	ND
MW-04	9/27/2013	NA NA	NA NA	ND (0.50)	ND (0.50)	ND (0.50)	NA	NA.	NA.	NA	NA.	NA NA	ND
-				()	()	(/							

MTBE - Methyl tert-butyl ether TAME - Tert-amyl methyl ether TBA - Tert-butyl alcohol

DIPE - Diisopropyl ether

ETBE - Ethyl tert-butyl ether

88106003R010.xlsx - Table 3

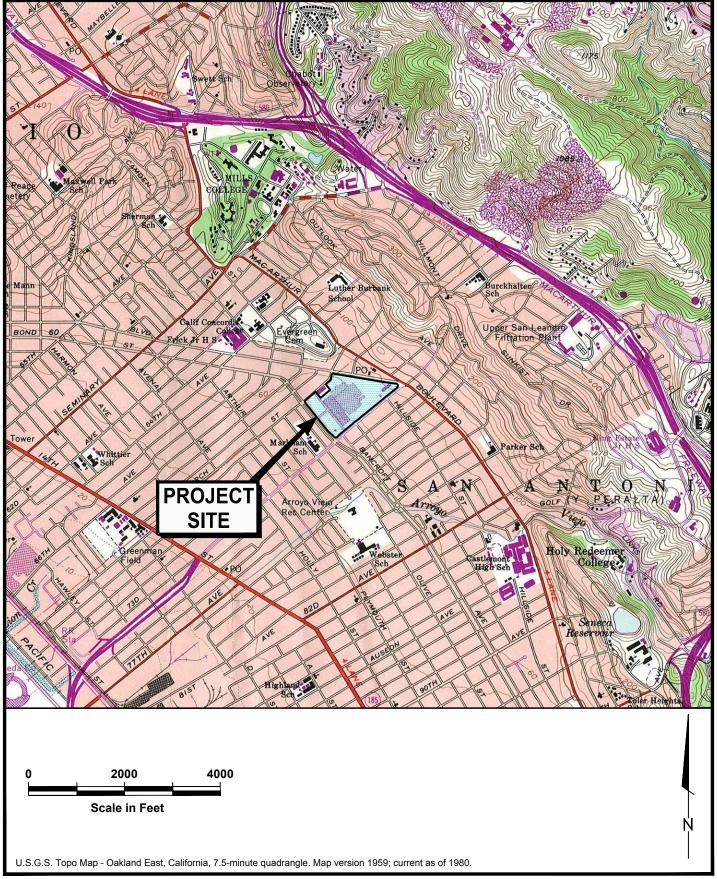
Notes:
TPHg - Gasoline range organics (C5-C12)
TPHd - Diesel range organics (C10-C28)
DCE - Dichloroethene

PCE - Tetrachloroethene TCE - Trichloroethene

cis-1,2-DCE = cis-1,2-dichloroethene

μg/L - Micrograms per liter

NA - Not Analyzed

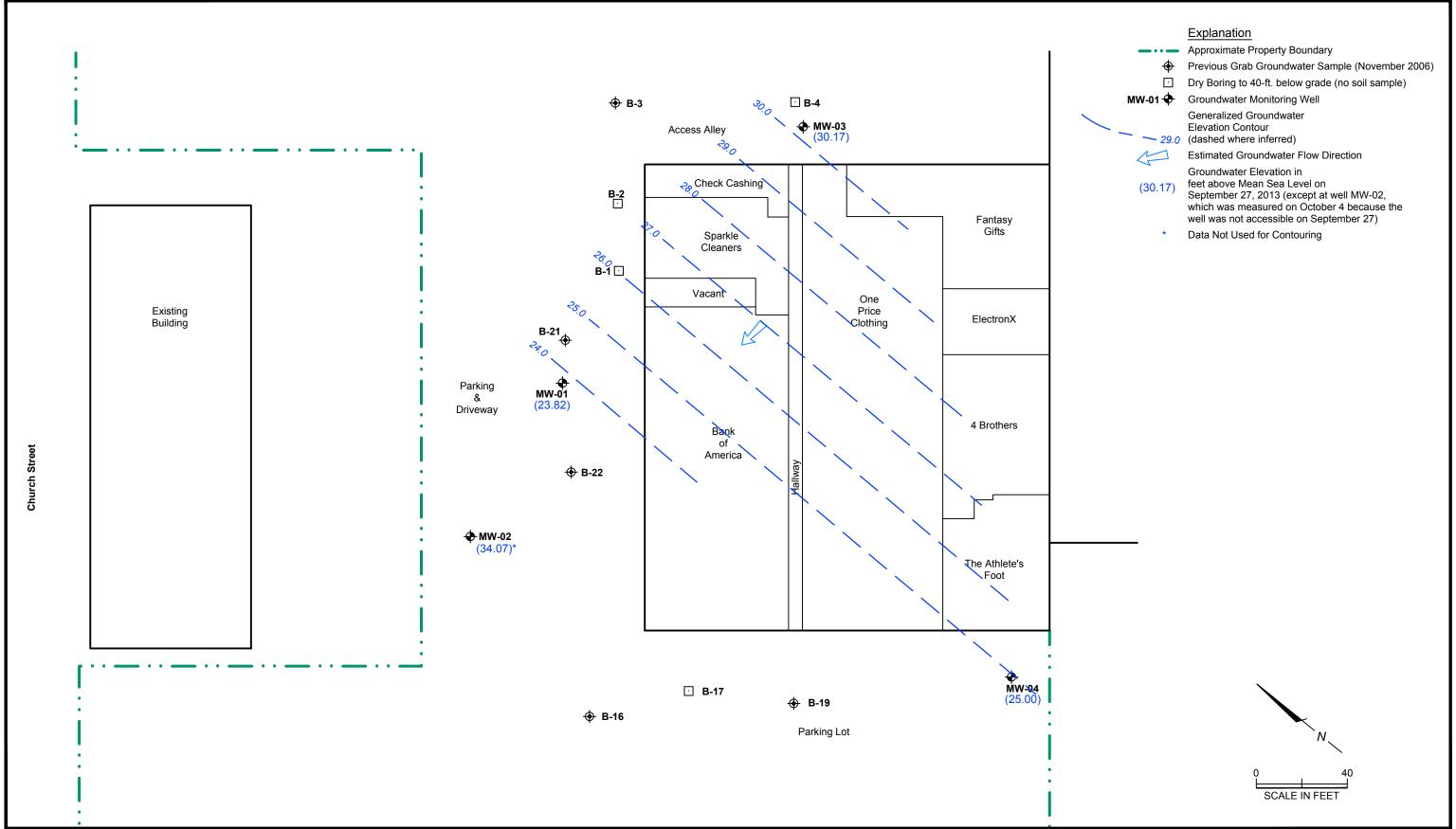

ND (0.50) - Not detected at or above indicated laboratory reporting limit

ND - Not detected at or above the laboratory reporting limit (varies by analyte)

(D) - Field duplicate sample

^{(1) -} The analytical laboratory narrative states that the reported gasoline range organics concentration is due to the presence of PCE.

ILLUSTRATIONS



Site Location Map Sparkle Cleaners Eastmont Town Center Oakland, California

PLATE

1

Interpretive Groundwater Potentiometric Surface Map - September 27, 2013 Sparkle Cleaners **Eastmont Town Center** Oakland, California

PLATE

881.060.03.010 881-06003-010_H2_2013_2 JOB NUMBER

GDTREVIEWED BY

APPENDIX A

MONITORING WELL SAMPLING FORMS

WELL GAUGING DATA

Project # 130927 - MM1	Date 9-27-13	Client Per	S
Site 7200 Bancroff Ame	Chillend Cd.	9	

Well ID	Time	Well Size (in.)	Sheen / Odor		Thickness of Immiscible Liquid (ft.)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
MW-01	0840	2				25.69	46,99	12.2	
MW-02	1 1 1 1 1 1 1 1	1860	016	g					
MW-03	0830	2				20,26	43,99		
mw-04	0822	2_				20,26 24.81	48.34	$\sqrt{}$	
	¥								
									X .
			·						
			-						

WELL GAUGING DATA

Proje	ect # <u>13)00</u>	4-Pul Date	10/4/	13	Client _	<u>PES</u>	
Site _	7200	Bancroft	Ave.	Och	eland	CA	
			7				~~~~~~

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Immiscibles Removed	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
MW-CZ	0845	2	÷.				15,00	34.75	J.	
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		·								
-1.										**.
								1		
										N.
							· · · · · · · · · · · · · · · · · · ·			
									, à.	

WELLHEAD INSPECTION CHECKLIST

Page __/_ of ____)_

Client PES					Date	9-27-	13	
Site Address	1200 Bar	croft	Ave	Oak.	land,	cA.	······································	
Site Address	30927-MA	1/	***************************************	Tech	nician	MM		
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
Mu)-01	X		***************************************					·
MW-02	PAZKE	0 0	VER					
MW-03	X		****					
MW-04	X							
				4				
			47					

			-					
NOTES:								

		······································						
	of control of the second of th			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·			
	**						***************************************	
							, , , , , , , , , , , , , , , , , , , ,	***************************************

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	1E 7 200 Ban	croft. Ave	Dakland, CA	PROJECT NUMBER 130927-MM1				
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	ТЕМР.	INITIALS	
MYRON C LITICAMETER	6214213	9-27-13	PH 7.0	PH 7.0 10:01 3.99 -	yes		m	
			Cend. 39005	Cend 3901	Yes		un	
							`	
	·		;	,				
	v							
		·						
-								

WELL MONITORING DATA STILET

				<u> </u>						
Project #: /	30927-	MMI		Client	PES					
Sampler:		·····		1	9-27-1	13				
Well I.D.:	1W-01			1	Diameter		4 (5 8		
Total Well):46.0	99	Depth	to Water	r (DTW): Z	5.60	7		
Depth to Fr			`	Thickness of Free Product (feet):						
Referenced	to:	PVC	Grade	D.O. 1	Aeter (if	req'd):	YS	SI HACH		
DTW with	80% Rech	arge [(F	Ieight of Water	Colum	n x 0.20)) + DTW]: 2	9,9	5		
	Bailer Disposable B Positive Air I Electric Subn	ailer Displacem		Waterra Peristaltic tion Pump	ı ;	Sampling Met		Bailer Disposable Bailer Extraction Port Dedicated Tubing		
					Well Diamete		Well Diam 4"	eter <u>Multiplier</u> 0.65		
1 Case Volume	Gals.) X	<u> </u>	= 10,2	_Gals.	2" 3"	0.16	6" Other	1.47 radius ² * 0.163		
1 Case volume	Speci	nea voiui	nes Calculated Vo	lume						
Time	Temp (°F or °C)	pН	Cond. (mS or µS)	1	bidity TUs)	Gals. Remov	/ed	Observations		
1007	17.8	6.90	845	6	06	3.5	ĵ	Brown		
10/2	18.1	6.74	871	>10	co	7.0		1		
1018	18.8	6.73	907	>10	00	1015		V		
					٠			·		
						·				
Did well dev	water?	Yes <	No)	Gallon	s actually	y evacuated:	10.	5		
Sampling Da	ate: 9-27	7-/3	Sampling Time	e: 10Z	20	Depth to W	ater:	26.95		
Sample I.D.:				Labora		Kiff CalScie		Other TA SI		
Analyzed for	•	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: See	o (200		
EB I.D. (if a	pplicable):	•	@ .	Duplic		(if applicable)UP		
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:				
D.O. (if req'o	d): Pr	e-purge:	-	^{mg} /L	Po	ost-purge:		mg/L		
O.R.P. (if red	q'd): Pr	e-purge:		mV	P	ost-purge:		mV		

WELL MONITORING DATA SHEET

Project #:	[3	2/00	4-Dul	Client	Pf	ES					
Sampler:	Dn)	,	Date:	1	0/4/13					
Well I.D.:	Mu	1-07		Well I	Diameter	: 2 3 4	6 8				
Total Well	Depth (TI)): 3ª	4.75	Depth	to Wate	er (DTW): / <	,00				
Depth to Fr	ee Produc	t:		Thickness of Free Product (feet):							
Referenced	to:	PVC	Grade	D.O. N	D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	arge [(H	leight of Water	Colum	1 x 0.20)) + DTW]:	18,95				
Purge Method:	Bailer Disposable E Positive Air Electric Subr	Displaceme		Waterra Peristaltic tion Pump	;	Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing				
			•		Well Diamete	er Multiplier Well	Diameter Multiplier				
2 1		う	0/		1"	0.04 4"	0.65				
5.2 (= 1.6	_Gals.	2" 3"	0.16 6" 0.37 Othe	1.47 er radius ² * 0.163				
1 Case Volume	Speci	fied Volun	nes Calculated Vo	lume		0.37 Othe	radius 70,163				
Time	Temp	pН	Cond. (mS or µS)	ł	bidity ΓUs)	Gals. Removed	Observations				
6853	19,4	6,21	1025	86	08	3.2					
0857	19.6	6,30	1027	9	54_	6,4					
6902	19,7	6,34	1031	8	17	9,6					
				٠							
						·					
Did well dev	water?	Yes (No No	Gallon	s actuall	y evacuated: C	7.6				
Sampling Da	ate: 10/4	1/13	Sampling Time	: 0°	110	Depth to Wate	er: 18, 29				
Sample I.D.:	MU	<u> </u>	2	Labora	tory:	Kiff CalScienc	e Other TA-SF				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: SEE	COC				
EB I.D. (if a	pplicable)	•	@ ·	Duplica	ate I.D. ((if applicable):					
Analyzed for	r: TPH-G	BTEX		Oxygena	ates (5)	Other:					
D.O. (if req'o	i): Pr	e-purge:		$^{ m mg}/_{ m L}$	P	ost-purge:	mg/ _L				
O.R.P. (if red	q'd): Pr	e-purge:		mV	P	ost-purge:	mV				

WELL MONITORING DATA STLEET

Project #: 1	30927-1	MMI		Client	PES					
Sampler:				1	9-27-	- 13				
Well I.D.:	MW-03			Well Diameter: 2 3 4 6 8						
Total Well) : 43,	99	Depth to Water (DTW): 20.26						
Depth to Fr	ee Product			Thickness of Free Product (feet):						
Referenced	to:	PVC	Grade	D.O. 1	Meter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)	+DTW]: 25	.00			
Purge Method:	Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Other Well Diameter Multiplier Well Diameter Multiplier									
38 (0 1 Case Volume		3 fied Volum	es Calculated Vo		1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47			
Time	Temp (°F or °C)	pН	Cond. (mS or µS)	i	bidity TUs)	Gals. Removed	Observations			
0933	18.6	6.87	661	20		4	Zran			
0939	19,2	6,73	650	">1C		8	1			
0944	19.1	6.84	671	710	e c	145	$\overline{}$			
·				·						
			,			<u>.</u>				
Did well dev	water?	Yes 🤇	No)	Gallon	s actually	y evacuated: (1,5			
Sampling Da	ate: 9-27	-/3	Sampling Time			Depth to Wate				
Sample I.D.:	MW-02	3		Labora		Kiff CalScience				
Analyzed for	r: трн-с	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: 500	Coc			
EB I.D. (if a	pplicable):		@ ·	Duplica		if applicable):				
Analyzed for	r: трн-G	BTEX		Oxygena	ates (5)	Other:				
D.O. (if req'o	d): Pro	e-purge:		mg/L	Po	ost-purge:	mg/ _L			
O.R.P. (if red	q'd): Pro	e-purge:		mV	Po	ost-purge:	mV			

WELL MONITORING DATA STLET

r			•							
Project #: /	30927-A	1M1		Client:	PES					
Sampler: M		, ,		1	7-27-/	· 3				
Well I.D.:	141-04			1		:2 3 4	6 8			
Total Well): 4g 3	34 .	Depth	to Water	r (DTW): 24,	\$1			
Depth to Fr		,		Thickness of Free Product (feet):						
Referenced	to:	PVC) Grade	D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	arge [(H	leight of Water	Colum	1 x 0.20)	+DTW]: 29	7.51			
Purge Method:	Bailer Øisposable B Positive Air I Electric Subn	ailer Displaceme		Waterra Peristaltic tion Pump		Sampling Method	: Bailer Disposable Bailer Extraction Port Dedicated Tubing			
3, 8 (0 1 Case Volume	Gals.) X Speci	3 fied Volum	${\text{nes}} = \frac{1/\sqrt{2}}{\text{Calculated Vo}}$	_Gals.	2" 3"	0.16 6" 0.37 Other	1.47			
Time 0907	Temp (°F or °C) 19.8	pH 7.49 6.84	Cond. (mS or (uS)) 518	i .	***************************************	Gals. Removed	Observations Braun			
6917	19,3	6.80	553	>/00		8 U. S	1			
·			, .							
Did well dev		<u>-</u>				y evacuated: /	1.5			
Sampling Da	ate: 9-27	-/3	Sampling Time	:092	<u> </u>	Depth to Wate	r: 26.04			
Sample I.D.:	MW-04			Labora	tory:	Kiff CalScience	Other <u>TASF</u>			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: See C	30			
EB I.D. (if a	pplicable):	•	@ · Time	Duplica		if applicable):				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:				
O.O. (if req'o	i): Pro	e-purge:		mg/ _L	Po	ost-purge:	. ^{mg} / _L			
O.R.P. (if red	q'd): Pro	e-purge:		mV	Po	ost-purge:	mV			

APPENDIX B

LABORATORY ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY DOCUMENTATION

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-52633-1

Client Project/Site: Eastmont Town Center

For:

PES Environmental, Inc. 1682 Novato Boulevard Suite 100 Novato, California 94947-7021

Attn: Mr. Gary Thomas

Authorized for release by: 10/2/2013 3:30:46 PM

Afsaneh Salimpour, Project Manager I (925)484-1919

afsaneh.salimpour@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	15
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

11

12

Definitions/Glossary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 720-52633-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52633-1

- 1

Job ID: 720-52633-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-52633-1

Comments

No additional comments.

Receipt

The samples were received on 9/27/2013 6:24 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.9° C.

GC/MS VOA

No analytical or quality issues were noted.

E

6

0

9

10

10

13

11

Detection Summary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Client Sample ID: MW-01

TestAmerica Job ID: 720-52633-1

3

Lab Sample ID: 720-52633-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	3.1	 -	0.50		ug/L	1	_	8260B	Total/NA
Tetrachloroethene	120		0.50		ug/L	1		8260B	Total/NA

Client Sample ID: MW-03 Lab Sample ID: 720-52633-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.68		0.50		ug/L	1	_	8260B	Total/NA
Tetrachloroethene	1.6		0.50		ug/L	1		8260B	Total/NA

7

Client Sample ID: MW-04 Lab Sample ID: 720-52633-3

No Detections.

Client Sample ID: DUP Lab Sample ID: 720-52633-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Trichloroethene	3.0	0.50	ug/L		8260B	Total/NA
Tetrachloroethene	120	0.50	ug/L	1	8260B	Total/NA

Client Sample ID: TB-1 Lab Sample ID: 720-52633-5

No Detections.

This Detection Summary does not include radiochemical test results.

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Method: 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID: MW-01

Date Collected: 09/27/13 10:20

Lab Sample ID: 720-52633-1

Matrix: Water

Date Received: 09/27/13 18:24 MDL Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac ND 0.50 1,1-Dichloroethene ug/L 10/01/13 14:04 ND 1,1-Dichloroethane 0.50 ug/L 10/01/13 14:04 Dichlorodifluoromethane ND 0.50 ug/L 10/01/13 14:04 ND 0.50 Vinyl chloride ug/L 10/01/13 14:04 Chloroethane ND 1.0 ug/L 10/01/13 14:04 Trichlorofluoromethane ND 1.0 ug/L 10/01/13 14:04 Methylene Chloride ND 5.0 ug/L 10/01/13 14:04 ug/L trans-1,2-Dichloroethene ND 0.50 10/01/13 14:04 cis-1,2-Dichloroethene ND 0.50 ug/L 10/01/13 14:04 Chloroform ND 1.0 ug/L 10/01/13 14:04 1,1,1-Trichloroethane ND 0.50 ug/L 10/01/13 14:04 Carbon tetrachloride ND 0.50 ug/L 10/01/13 14:04 ND 1,2-Dichloroethane 0.50 ug/L 10/01/13 14:04 **Trichloroethene** 0.50 ug/L 10/01/13 14:04 3.1 1,2-Dichloropropane ND 0.50 ug/L 10/01/13 14:04 Dichlorobromomethane ND 0.50 10/01/13 14:04 ug/L trans-1,3-Dichloropropene NΠ 0.50 ug/L 10/01/13 14:04 cis-1,3-Dichloropropene ND 0.50 ug/L 10/01/13 14:04 0.50 1,1,2-Trichloroethane ND ug/L 10/01/13 14:04 0.50 ug/L 10/01/13 14:04 Tetrachloroethene 120 Chlorodibromomethane ND 0.50 ug/L 10/01/13 14:04 Chlorobenzene ND 0.50 ug/L 10/01/13 14:04 Bromoform ND 1.0 ug/L 10/01/13 14:04 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 10/01/13 14:04 1,3-Dichlorobenzene ND 0.50 ug/L 10/01/13 14:04 1,4-Dichlorobenzene ND 0.50 ug/L 10/01/13 14:04 1,2-Dichlorobenzene ND 0.50 ug/L 10/01/13 14:04 Chloromethane ND 1.0 ug/L 10/01/13 14:04 Bromomethane ND 1.0 ug/L 10/01/13 14:04 ND 0.50 ug/L 1,1,2-Trichloro-1,2,2-trifluoroethane 10/01/13 14:04 **EDB** ND 0.50 ug/L 10/01/13 14:04 1,2,4-Trichlorobenzene ND 1.0 ug/L 10/01/13 14:04

Surrogate	%Recovery Qua	ıalifier Limits	Prepared Anal	lyzed Dil Fac
Toluene-d8 (Surr)	97	70 - 130	10/01/1	3 14:04 1
4-Bromofluorobenzene	95	67 - 130	10/01/1	3 14:04 1
1,2-Dichloroethane-d4 (Surr)	103	72 - 130	10/01/1	3 14:04 1

Client Sample ID: MW-03

Lab Sample ID: 720-52633-2

Date Collected: 09/27/13 09:55

Matrix: Water

Date Received: 09/27/13 18:24

Date (1000) (0012) (1012)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			10/01/13 14:30	1
1,1-Dichloroethane	ND		0.50		ug/L			10/01/13 14:30	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/01/13 14:30	1
Vinyl chloride	ND		0.50		ug/L			10/01/13 14:30	1
Chloroethane	ND		1.0		ug/L			10/01/13 14:30	1
Trichlorofluoromethane	ND		1.0		ug/L			10/01/13 14:30	1
Methylene Chloride	ND		5.0		ug/L			10/01/13 14:30	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			10/01/13 14:30	1

TestAmerica Pleasanton

Page 6 of 20

3

6

8

10

12

13

10/2/2013

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Client Sample ID: MW-03

1,2,4-Trichlorobenzene

Lab Sample ID: 720-52633-2

10/01/13 14:30

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ND

Date Collected: 09/27/13 09:55 **Matrix: Water** Date Received: 09/27/13 18:24 Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 0.50 10/01/13 14:30 cis-1,2-Dichloroethene 0.68 ug/L Chloroform ND 1.0 ug/L 10/01/13 14:30 1,1,1-Trichloroethane ND 0.50 ug/L 10/01/13 14:30 Carbon tetrachloride ND 0.50 ug/L 10/01/13 14:30 1,2-Dichloroethane ND 0.50 ug/L 10/01/13 14:30 Trichloroethene ND 0.50 ug/L 10/01/13 14:30 1,2-Dichloropropane ND 0.50 ug/L 10/01/13 14:30 Dichlorobromomethane ND 0.50 ug/L 10/01/13 14:30 trans-1,3-Dichloropropene ND 0.50 ug/L 10/01/13 14:30 cis-1,3-Dichloropropene ND 0.50 ug/L 10/01/13 14:30 1,1,2-Trichloroethane ND 0.50 ug/L 10/01/13 14:30 0.50 ug/L Tetrachloroethene 1.6 10/01/13 14:30 Chlorodibromomethane ND 0.50 ug/L 10/01/13 14:30 Chlorobenzene ND 0.50 ug/L 10/01/13 14:30 Bromoform ND 1.0 ug/L 10/01/13 14:30 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 10/01/13 14:30 ND 0.50 ug/L 1,3-Dichlorobenzene 10/01/13 14:30 1,4-Dichlorobenzene ND 0.50 ug/L 10/01/13 14:30 1,2-Dichlorobenzene ND 0.50 ug/L 10/01/13 14:30 Chloromethane ND 1.0 ug/L 10/01/13 14:30 Bromomethane ND 1.0 ug/L 10/01/13 14:30 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/01/13 14:30 EDB ND 0.50 ug/L 10/01/13 14:30

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyz	ed Dil Fa	ac
Toluene-d8 (Surr)	97		70 - 130	10/01/13	14:30	1
4-Bromofluorobenzene	92		67 - 130	10/01/13	14:30	1
1,2-Dichloroethane-d4 (Surr)	99		72 - 130	10/01/13	14:30	1

1.0

ug/L

Client Sample ID: MW-04 Lab Sample ID: 720-52633-3 Date Collected: 09/27/13 09:20 **Matrix: Water**

Date Received: 09/27/13 18:24

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			10/01/13 14:56	1
1,1-Dichloroethane	ND		0.50		ug/L			10/01/13 14:56	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/01/13 14:56	1
Vinyl chloride	ND		0.50		ug/L			10/01/13 14:56	1
Chloroethane	ND		1.0		ug/L			10/01/13 14:56	1
Trichlorofluoromethane	ND		1.0		ug/L			10/01/13 14:56	1
Methylene Chloride	ND		5.0		ug/L			10/01/13 14:56	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			10/01/13 14:56	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			10/01/13 14:56	1
Chloroform	ND		1.0		ug/L			10/01/13 14:56	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/01/13 14:56	1
Carbon tetrachloride	ND		0.50		ug/L			10/01/13 14:56	1
1,2-Dichloroethane	ND		0.50		ug/L			10/01/13 14:56	1
Trichloroethene	ND		0.50		ug/L			10/01/13 14:56	1
1,2-Dichloropropane	ND		0.50		ug/L			10/01/13 14:56	1
Dichlorobromomethane	ND		0.50		ug/L			10/01/13 14:56	1

TestAmerica Pleasanton

Page 7 of 20

10/2/2013

6

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Client Sample ID: MW-04

Date Collected: 09/27/13 09:20

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 720-52633-3

Matrix: Water

Date Received: 09/27/13 18:24									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/01/13 14:56	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/01/13 14:56	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/01/13 14:56	1
Tetrachloroethene	ND		0.50		ug/L			10/01/13 14:56	1
Chlorodibromomethane	ND		0.50		ug/L			10/01/13 14:56	1
Chlorobenzene	ND		0.50		ug/L			10/01/13 14:56	1
Bromoform	ND		1.0		ug/L			10/01/13 14:56	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/01/13 14:56	1
1,3-Dichlorobenzene	ND		0.50		ug/L			10/01/13 14:56	1
1,4-Dichlorobenzene	ND		0.50		ug/L			10/01/13 14:56	1
1,2-Dichlorobenzene	ND		0.50		ug/L			10/01/13 14:56	1
Chloromethane	ND		1.0		ug/L			10/01/13 14:56	1
Bromomethane	ND		1.0		ug/L			10/01/13 14:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/01/13 14:56	1
EDB	ND		0.50		ug/L			10/01/13 14:56	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/01/13 14:56	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130	_		10/01/13 14:56	1
4-Bromofluorobenzene	95		67 - 130			10/01/13 14:56	1
1,2-Dichloroethane-d4 (Surr)	102		72 - 130			10/01/13 14:56	1

Client Sample ID: DUP

Lab Sample ID: 720-52633-4

Date Collected: 09/27/13 00:00

Matrix: Water

Date Received: 09/27/13 18:24 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L		<u> </u>	10/01/13 17:58	1
1,1-Dichloroethane	ND		0.50		ug/L			10/01/13 17:58	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/01/13 17:58	1
Vinyl chloride	ND		0.50		ug/L			10/01/13 17:58	1
Chloroethane	ND		1.0		ug/L			10/01/13 17:58	1
Trichlorofluoromethane	ND		1.0		ug/L			10/01/13 17:58	1
Methylene Chloride	ND		5.0		ug/L			10/01/13 17:58	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			10/01/13 17:58	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			10/01/13 17:58	1
Chloroform	ND		1.0		ug/L			10/01/13 17:58	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/01/13 17:58	1
Carbon tetrachloride	ND		0.50		ug/L			10/01/13 17:58	1
1,2-Dichloroethane	ND		0.50		ug/L			10/01/13 17:58	1
Trichloroethene	3.0		0.50		ug/L			10/01/13 17:58	1
1,2-Dichloropropane	ND		0.50		ug/L			10/01/13 17:58	1
Dichlorobromomethane	ND		0.50		ug/L			10/01/13 17:58	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/01/13 17:58	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/01/13 17:58	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/01/13 17:58	1
Tetrachloroethene	120		0.50		ug/L			10/01/13 17:58	1
Chlorodibromomethane	ND		0.50		ug/L			10/01/13 17:58	1
Chlorobenzene	ND		0.50		ug/L			10/01/13 17:58	1
Bromoform	ND		1.0		ug/L			10/01/13 17:58	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/01/13 17:58	1

TestAmerica Pleasanton

Page 8 of 20

3

5

9

11

13

1 4

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: DUP Lab Sample ID: 720-52633-4 Date Collected: 09/27/13 00:00 **Matrix: Water** Date Received: 09/27/13 18:24 Analyte Result Qualifier RL MDL Unit D Prenared Analyzed Dil Fac

Allalyte	Result G	Ruaillei ILL	WIDE (Jilit	 riepaieu	Allalyzeu	Diriac
1,3-Dichlorobenzene	ND	0.50	ī	ıg/L		10/01/13 17:58	1
1,4-Dichlorobenzene	ND	0.50	ι	ıg/L		10/01/13 17:58	1
1,2-Dichlorobenzene	ND	0.50	ι	ug/L		10/01/13 17:58	1
Chloromethane	ND	1.0	ι	ıg/L		10/01/13 17:58	1
Bromomethane	ND	1.0	ι	ug/L		10/01/13 17:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ι	ug/L		10/01/13 17:58	1
EDB	ND	0.50	ι	ıg/L		10/01/13 17:58	1
1,2,4-Trichlorobenzene	ND	1.0	ι	ug/L		10/01/13 17:58	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		70 - 130		10/01/13 17:58	1
4-Bromofluorobenzene	97		67 - 130		10/01/13 17:58	1
1,2-Dichloroethane-d4 (Surr)	102		72 - 130		10/01/13 17:58	1

Client Sample ID: TB-1 Lab Sample ID: 720-52633-5 Date Collected: 09/27/13 08:00 **Matrix: Water**

Date Received: 09/27/13 18:24 Analyte	Regult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L		Териси	10/01/13 11:02	1
1,1-Dichloroethane	ND		0.50		ug/L			10/01/13 11:02	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/01/13 11:02	1
Vinyl chloride	ND		0.50		ug/L			10/01/13 11:02	
Chloroethane	ND		1.0		ug/L			10/01/13 11:02	1
Trichlorofluoromethane	ND		1.0		ug/L			10/01/13 11:02	1
Methylene Chloride	ND		5.0		ug/L			10/01/13 11:02	 1
trans-1,2-Dichloroethene	ND		0.50		ug/L			10/01/13 11:02	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			10/01/13 11:02	1
Chloroform	ND		1.0		ug/L			10/01/13 11:02	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/01/13 11:02	1
Carbon tetrachloride	ND		0.50		ug/L			10/01/13 11:02	1
1,2-Dichloroethane	ND		0.50		ug/L			10/01/13 11:02	1
Trichloroethene	ND		0.50		ug/L			10/01/13 11:02	1
1,2-Dichloropropane	ND		0.50		ug/L			10/01/13 11:02	1
Dichlorobromomethane	ND		0.50		ug/L			10/01/13 11:02	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/01/13 11:02	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/01/13 11:02	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/01/13 11:02	1
Tetrachloroethene	ND		0.50		ug/L			10/01/13 11:02	1
Chlorodibromomethane	ND		0.50		ug/L			10/01/13 11:02	1
Chlorobenzene	ND		0.50		ug/L			10/01/13 11:02	1
Bromoform	ND		1.0		ug/L			10/01/13 11:02	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/01/13 11:02	1
1,3-Dichlorobenzene	ND		0.50		ug/L			10/01/13 11:02	1
1,4-Dichlorobenzene	ND		0.50		ug/L			10/01/13 11:02	1
1,2-Dichlorobenzene	ND		0.50		ug/L			10/01/13 11:02	1
Chloromethane	ND		1.0		ug/L			10/01/13 11:02	1
Bromomethane	ND		1.0		ug/L			10/01/13 11:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/01/13 11:02	1
EDB	ND		0.50		ug/L			10/01/13 11:02	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/01/13 11:02	1

TestAmerica Pleasanton

Page 9 of 20

Client Sample Results

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52633-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	70 - 130		10/01/13 11:02	1
4-Bromofluorobenzene	95	67 - 130		10/01/13 11:02	1
1,2-Dichloroethane-d4 (Surr)	103	72 - 130		10/01/13 11:02	1

3

4

5

7

9

10

12

TestAmerica Job ID: 720-52633-1

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 720-145261/4

Matrix: Water

Analysis Batch: 145261

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch. 143201	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50		ug/L			10/01/13 08:27	1
1,1-Dichloroethane	ND		0.50		ug/L			10/01/13 08:27	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/01/13 08:27	1
Vinyl chloride	ND		0.50		ug/L			10/01/13 08:27	1
Chloroethane	ND		1.0		ug/L			10/01/13 08:27	1
Trichlorofluoromethane	ND		1.0		ug/L			10/01/13 08:27	1
Methylene Chloride	ND		5.0		ug/L			10/01/13 08:27	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			10/01/13 08:27	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			10/01/13 08:27	1
Chloroform	ND		1.0		ug/L			10/01/13 08:27	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/01/13 08:27	1
Carbon tetrachloride	ND		0.50		ug/L			10/01/13 08:27	1
1,2-Dichloroethane	ND		0.50		ug/L			10/01/13 08:27	1
Trichloroethene	ND		0.50		ug/L			10/01/13 08:27	1
1,2-Dichloropropane	ND		0.50		ug/L			10/01/13 08:27	1
Dichlorobromomethane	ND		0.50		ug/L			10/01/13 08:27	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/01/13 08:27	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/01/13 08:27	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/01/13 08:27	1
Tetrachloroethene	ND		0.50		ug/L			10/01/13 08:27	1
Chlorodibromomethane	ND		0.50		ug/L			10/01/13 08:27	1
Chlorobenzene	ND		0.50		ug/L			10/01/13 08:27	1
Bromoform	ND		1.0		ug/L			10/01/13 08:27	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/01/13 08:27	1
1,3-Dichlorobenzene	ND		0.50		ug/L			10/01/13 08:27	1
1,4-Dichlorobenzene	ND		0.50		ug/L			10/01/13 08:27	1
1,2-Dichlorobenzene	ND		0.50		ug/L			10/01/13 08:27	1
Chloromethane	ND		1.0		ug/L			10/01/13 08:27	1
Bromomethane	ND		1.0		ug/L			10/01/13 08:27	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/01/13 08:27	1
EDB	ND		0.50		ug/L			10/01/13 08:27	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/01/13 08:27	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130		10/01/13 08:27	1
4-Bromofluorobenzene	97		67 - 130		10/01/13 08:27	1
1,2-Dichloroethane-d4 (Surr)	100		72 ₋ 130		10/01/13 08:27	1

Lab Sample ID: LCS 720-145261/5

Matrix: Water

Analysis Batch: 145261

Client Sample ID: Lab Control Sampl	е
Prep Type: Total/N	A

Spike	LCS	LCS			%Rec.
Analyte Added	Result	Qualifier Ur	it D	%Rec	Limits
1,1-Dichloroethene 25.0	22.5	ug	/L	90	64 - 128
1,1-Dichloroethane 25.0	23.5	ug	/L	94	70 - 130
Dichlorodifluoromethane 25.0	27.1	ug	/L	108	34 - 132
Vinyl chloride 25.0	24.9	ug	/L	100	54 - 135
Chloroethane 25.0	23.3	ug	/L	93	62 _ 138

TestAmerica Pleasanton

Page 11 of 20

10/2/2013

TestAmerica Job ID: 720-52633-1

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-145261/5

Matrix: Water

Analysis Batch: 145261

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Trichlorofluoromethane	25.0	25.4	-	ug/L		102	66 - 132
Methylene Chloride	25.0	22.1		ug/L		88	70 - 147
trans-1,2-Dichloroethene	25.0	24.1		ug/L		96	68 - 130
cis-1,2-Dichloroethene	25.0	23.4		ug/L		94	70 - 130
Chloroform	25.0	24.2		ug/L		97	70 - 130
1,1,1-Trichloroethane	25.0	24.5		ug/L		98	70 - 130
Carbon tetrachloride	25.0	24.9		ug/L		100	70 - 146
1,2-Dichloroethane	25.0	23.6		ug/L		94	61 - 132
Trichloroethene	25.0	25.1		ug/L		100	70 - 130
1,2-Dichloropropane	25.0	23.0		ug/L		92	70 - 130
Dichlorobromomethane	25.0	24.1		ug/L		96	70 - 130
trans-1,3-Dichloropropene	25.0	24.9		ug/L		100	70 - 140
cis-1,3-Dichloropropene	25.0	24.1		ug/L		96	70 - 130
1,1,2-Trichloroethane	25.0	24.6		ug/L		98	70 - 130
Tetrachloroethene	25.0	25.3		ug/L		101	70 - 130
Chlorodibromomethane	25.0	25.2		ug/L		101	70 - 145
Chlorobenzene	25.0	24.5		ug/L		98	70 - 130
Bromoform	25.0	26.2		ug/L		105	68 - 136
1,1,2,2-Tetrachloroethane	25.0	24.8		ug/L		99	70 - 130
1,3-Dichlorobenzene	25.0	24.4		ug/L		98	70 - 130
1,4-Dichlorobenzene	25.0	24.0		ug/L		96	70 - 130
1,2-Dichlorobenzene	25.0	24.2		ug/L		97	70 - 130
Chloromethane	25.0	23.5		ug/L		94	52 ₋ 175
Bromomethane	25.0	24.4		ug/L		98	43 - 151
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.6		ug/L		94	42 - 162
ne							
EDB	25.0	25.3		ug/L		101	70 - 130
1,2,4-Trichlorobenzene	25.0	23.7		ug/L		95	70 - 130

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Toluene-d8 (Surr)	99	70 - 130
4-Bromofluorobenzene	96	67 - 130
1,2-Dichloroethane-d4 (Surr)	92	72 - 130

Lab Sample ID: LCSD 720-145261/6

Matrix: Water

Analysis Batch: 145261

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	25.0	23.1		ug/L		93	64 - 128	3	20
1,1-Dichloroethane	25.0	23.5		ug/L		94	70 - 130	0	20
Dichlorodifluoromethane	25.0	28.5		ug/L		114	34 - 132	5	20
Vinyl chloride	25.0	26.2		ug/L		105	54 - 135	5	20
Chloroethane	25.0	24.1		ug/L		97	62 - 138	3	20
Trichlorofluoromethane	25.0	26.3		ug/L		105	66 - 132	4	20
Methylene Chloride	25.0	22.8		ug/L		91	70 - 147	3	20
trans-1,2-Dichloroethene	25.0	24.8		ug/L		99	68 - 130	3	20
cis-1,2-Dichloroethene	25.0	23.5		ug/L		94	70 - 130	0	20

TestAmerica Pleasanton

Page 12 of 20

10/2/2013

QC Sample Results

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center TestAmerica Job ID: 720-52633-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-145261/6

Matrix: Water

Analysis Batch: 145261

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroform	25.0	24.1		ug/L		96	70 - 130	0	20
1,1,1-Trichloroethane	25.0	24.3		ug/L		97	70 - 130	1	20
Carbon tetrachloride	25.0	25.1		ug/L		100	70 - 146	1	20
1,2-Dichloroethane	25.0	24.0		ug/L		96	61 - 132	2	20
Trichloroethene	25.0	25.3		ug/L		101	70 - 130	1	20
1,2-Dichloropropane	25.0	23.3		ug/L		93	70 - 130	1	20
Dichlorobromomethane	25.0	24.9		ug/L		100	70 - 130	3	20
trans-1,3-Dichloropropene	25.0	25.7		ug/L		103	70 - 140	3	20
cis-1,3-Dichloropropene	25.0	25.0		ug/L		100	70 - 130	4	20
1,1,2-Trichloroethane	25.0	25.6		ug/L		103	70 - 130	4	20
Tetrachloroethene	25.0	25.6		ug/L		102	70 - 130	1	20
Chlorodibromomethane	25.0	26.6		ug/L		107	70 - 145	6	20
Chlorobenzene	25.0	24.9		ug/L		100	70 - 130	2	20
Bromoform	25.0	28.6		ug/L		114	68 - 136	9	20
1,1,2,2-Tetrachloroethane	25.0	26.6		ug/L		106	70 - 130	7	20
1,3-Dichlorobenzene	25.0	25.1		ug/L		101	70 - 130	3	20
1,4-Dichlorobenzene	25.0	25.2		ug/L		101	70 - 130	5	20
1,2-Dichlorobenzene	25.0	25.3		ug/L		101	70 - 130	4	20
Chloromethane	25.0	24.4		ug/L		97	52 - 175	4	20
Bromomethane	25.0	25.5		ug/L		102	43 - 151	4	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	24.5		ug/L		98	42 - 162	4	20
ne									
EDB	25.0	26.6		ug/L		106	70 - 130	5	20
1,2,4-Trichlorobenzene	25.0	25.5		ug/L		102	70 - 130	7	20

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
Toluene-d8 (Surr)	100	70 - 130
4-Bromofluorobenzene	100	67 - 130
1 2-Dichloroethane-d4 (Surr)	93	72 130

TestAmerica Pleasanton

Page 13 of 20

QC Association Summary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52633-1

GC/MS VOA

Analysis Batch: 145261

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-52633-1	MW-01	Total/NA	Water	8260B	
720-52633-2	MW-03	Total/NA	Water	8260B	
720-52633-3	MW-04	Total/NA	Water	8260B	
720-52633-4	DUP	Total/NA	Water	8260B	
720-52633-5	TB-1	Total/NA	Water	8260B	
LCS 720-145261/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-145261/6	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 720-145261/4	Method Blank	Total/NA	Water	8260B	

3

4

5

7

8

9

10

12

13

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Lab Sample ID: 720-52633-1

Matrix: Water

Client Sample ID: MW-01
Date Collected: 09/27/13 10:20
Date Received: 09/27/13 18:24

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	145261	10/01/13 14:04	LPL	TAL PLS

Lab Sample ID: 720-52633-2

Matrice Water

Matrix: Water

Date Collected: 09/27/13 09:55
Date Received: 09/27/13 18:24

Client Sample ID: MW-03

	Batch	Batch		Dilution	Dilution Batch			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	145261	10/01/13 14:30	LPL	TAL PLS

Client Sample ID: MW-04 Lab Sample ID: 720-52633-3

Date Collected: 09/27/13 09:20 Matrix: Water

Date Received: 09/27/13 18:24

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	145261	10/01/13 14:56	LPL	TAL PLS

Client Sample ID: DUP

Lab Sample ID: 720-52633-4

Date Collected: 09/27/13 00:00

Matrix: Water

Date Received: 09/27/13 18:24

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	145261	10/01/13 17:58	LPL	TAL PLS

Client Sample ID: TB-1 Lab Sample ID: 720-52633-5

Date Collected: 09/27/13 08:00 Matrix: Water

Date Received: 09/27/13 18:24

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B		1	145261	10/01/13 11:02	LPL	TAL PLS	_

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52633-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

Ć

4

ا

1 V

12

13

Method Summary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52633-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

3

4

9

10

11

40

Sample Summary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52633-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-52633-1	MW-01	Water	09/27/13 10:20	09/27/13 18:24
720-52633-2	MW-03	Water	09/27/13 09:55	09/27/13 18:24
720-52633-3	MW-04	Water	09/27/13 09:20	09/27/13 18:24
720-52633-4	DUP	Water	09/27/13 00:00	09/27/13 18:24
720-52633-5	TB-1	Water	09/27/13 08:00	09/27/13 18:24

3

4

5

6

8

9

12

13

							AVENUE			COV	IDUCT	ANAL	YSIS T	O DE	TECT		LAB			A - San Fr			DHS#
	BLAI TECH SER			N JOSE,	FA	X (408)	5112-1108 573-7771 573-0558	1	8260B		1	n		· •) –	LIMITS S			RNIA DHS A	FICATIONS AN ND □ RWQCB RE		CTION
	CHAIN OF CUS	TODY	BTS#	130	927-	 ->1M	·/	S	by EPA		d	ν.	•	GL (0 0	5					1		48929
	CLIENT	PES		<u> </u>		<u> </u>	1	CONTAINERS	(8010 List) by								SPECIAL	INSTRUC	TION	S	-		
	SITE	Eastmor	nt Town	Center	r	· · · · · · · · · · · · · · · · · · ·		TNO.	3010								Invoice	and Re	port	to: PES	3		
		7200 Ba	ncroft A	ve.				ALL C	Cs (8								Attn: (Gary The	- oma	s			
		Oakland,	CA						d VC								Repor	t in Geo	trac	ker Fori	nat		
				MATRIX	CC	NTAINE	ERS	COMPOSITE	enate														
	SAMPLE I.D.	DATE	TIME_	S= SOIL W=H ₂ 0	TOTAL) = ၁	Halogenated VOCs								ADD'L IN	FORMATIC	NC	STATUS	CONDITION	LAB	SAMPLE#
	<u> MW-01</u>	9-27-13	1020	w	4	Ha	WAS		/	<u> </u>													
	<u>MW-03</u>		0955		4	1			V	<u> </u>											,		
Page	MW-04		0920		4				/	<u> </u>	<u> </u>											<u> </u>	
le 19	DUP				4				/	<u> </u>		<u> </u>				_				м		<u> </u>	
of 20	<u> TB-1</u>		0800	V	2				$\sqrt{}$		ļ					······································							
0																		 72	0-52	333 Chain c			
																			1	- ondiii (on Custody		
	SAMPLING	DATE	TIME	SAMPLI	ING	<u></u>				<u> </u>	<u> </u>						RESULTS	NEEDED				<u> </u>	***************************************
	COMPLETED	9-27-13	•	PERFO		Y	1ark	M	100	0/10	pcf	ר ר					NO LATE			TANDARI			5.90
	RELEASED BY						i li	DAT	21		TIME	.40		REGE	IVED E	BY 供 し:	: 556	5			DATE 9.27	-(3 ¹	TIME L641
	RELEASED BY	} {					1	DATE	=	`	TIME			RECE	IVED E	ЗҮ					DATE	T	TIME
	RELEASED BY	5565	·····		····		1	DATE 7		/13	TIME	3 24		RECE	IVED E	3 Y	m (1	ller			DATE 9-27-	,	TIME 1824
10/2/20	SHIPPED VIA							DATE	E SEN	T	TIME	SENT		COOL									

10/2/2013

Login Sample Receipt Checklist

Client: PES Environmental, Inc. Job Number: 720-52633-1

Login Number: 52633 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

Creator. Gorizales, Justinii		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-52809-1

Client Project/Site: Eastmont Town Center

For:

PES Environmental, Inc. 1682 Novato Boulevard Suite 100 Novato, California 94947-7021

Attn: Mr. Gary Thomas

Akanef Sal

Authorized for release by: 10/11/2013 5:09:17 PM

Afsaneh Salimpour, Project Manager I (925)484-1919

afsaneh.salimpour@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

4

0

8

9

11

46

Definitions/Glossary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 720-52809-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

10/11/2013

Case Narrative

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52809-1

Job ID: 720-52809-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-52809-1

Comments

No additional comments.

Receipt

The samples were received on 10/4/2013 5:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.1° C.

GC/MS VOA

No analytical or quality issues were noted.

4

D

6

Ŏ

1 1

12

Detection Summary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Client Sample ID: MW-02

TestAmerica Job ID: 720-52809-1

Lab Sample ID: 720-52809-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Trichloroethene	0.91	0.50	ug/L		8260B	Total/NA
Tetrachloroethene	26	0.50	ug/L	1	8260B	Total/NA

4

5

9

10

12

13

Client Sample Results

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Client Sample ID: MW-02

4-Bromofluorobenzene

1,2-Dichloroethane-d4 (Surr)

Date Collected: 10/04/13 09:10

TestAmerica Job ID: 720-52809-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 720-52809-1

Matrix: Water

Date Received: 10/04/13 17:40									
Analyte	Result	Qualifier	RL	MDL I	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		0.50	ī	ug/L			10/10/13 04:34	1
1,1-Dichloroethane	ND		0.50	ι	ug/L			10/10/13 04:34	1
Dichlorodifluoromethane	ND		0.50	ι	ug/L			10/10/13 04:34	1
Vinyl chloride	ND		0.50		ug/L			10/10/13 04:34	1
Chloroethane	ND		1.0	ι	ug/L			10/10/13 04:34	1
Trichlorofluoromethane	ND		1.0	ι	ug/L			10/10/13 04:34	1
Methylene Chloride	ND		5.0		ug/L			10/10/13 04:34	1
trans-1,2-Dichloroethene	ND		0.50	ι	ug/L			10/10/13 04:34	1
cis-1,2-Dichloroethene	ND		0.50	ι	ug/L			10/10/13 04:34	1
Chloroform	ND		1.0		ug/L			10/10/13 04:34	1
1,1,1-Trichloroethane	ND		0.50	ι	ug/L			10/10/13 04:34	1
Carbon tetrachloride	ND		0.50	ι	ug/L			10/10/13 04:34	1
1,2-Dichloroethane	ND		0.50		ug/L			10/10/13 04:34	1
Trichloroethene	0.91		0.50	ι	ug/L			10/10/13 04:34	1
1,2-Dichloropropane	ND		0.50	ι	ug/L			10/10/13 04:34	1
Dichlorobromomethane	ND		0.50	ι	ug/L			10/10/13 04:34	1
trans-1,3-Dichloropropene	ND		0.50	ι	ug/L			10/10/13 04:34	1
cis-1,3-Dichloropropene	ND		0.50	ι	ug/L			10/10/13 04:34	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/10/13 04:34	1
Tetrachloroethene	26		0.50	ι	ug/L			10/10/13 04:34	1
Chlorodibromomethane	ND		0.50	ι	ug/L			10/10/13 04:34	1
Chlorobenzene	ND		0.50		ug/L			10/10/13 04:34	1
Bromoform	ND		1.0	ι	ug/L			10/10/13 04:34	1
1,1,2,2-Tetrachloroethane	ND		0.50	ι	ug/L			10/10/13 04:34	1
1,3-Dichlorobenzene	ND		0.50		ug/L			10/10/13 04:34	1
1,4-Dichlorobenzene	ND		0.50	ι	ug/L			10/10/13 04:34	1
1,2-Dichlorobenzene	ND		0.50	ι	ug/L			10/10/13 04:34	1
Chloromethane	ND		1.0		ug/L			10/10/13 04:34	1
Bromomethane	ND		1.0	ι	ug/L			10/10/13 04:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ι	ug/L			10/10/13 04:34	1
EDB	ND		0.50	ι	ug/L			10/10/13 04:34	1
1,2,4-Trichlorobenzene	ND		1.0	ι	ug/L			10/10/13 04:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130			_		10/10/13 04:34	1

10/10/13 04:34

10/10/13 04:34

67 - 130

72 - 130

97

TestAmerica Job ID: 720-52809-1

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Method: 8260B - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 720-145872/4

Matrix: Water

Analysis Batch: 145872

Client Sample ID: Method Blank

Prep Type: Total/NA

1.1-Dichloroethene ND 0.50 ug/L 1009/13 19:29 1 1.1-Dichloroethane ND 0.50 ug/L 1009/13 19:29 1 Vinyl chloride ND 0.50 ug/L 1009/13 19:29 1 Vinyl chloride ND 0.50 ug/L 1009/13 19:29 1 Chloroethane ND 1.0 ug/L 1009/13 19:29 1 Methylene Chloride ND 6.0 ug/L 1009/13 19:29 1 Methylene Chloride ND 6.0 ug/L 1009/13 19:29 1 Methylene Chloride ND 6.0 ug/L 1009/13 19:29 1 Methylene Chloride ND 0.50 ug/L 1009/13 19:29 1 Methylene Chloride ND 0.50 ug/L 1009/13 19:29 1 Chloroform ND 0.50 ug/L 1009/13 19:29 1 Chlorofore Chane ND 0.50 ug/L 1009/13 19:29 1 1,1,1-Trichloroethane </th <th>Analyte</th> <th>Result</th> <th>Qualifier</th> <th>RL</th> <th>MDL Unit</th> <th>D</th> <th>Prepared</th> <th>Analyzed</th> <th>Dil Fac</th>	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane ND 0.50 ug/L 10/09/13 19:29 1 Vinyi chioride ND 0.50 ug/L 10/09/13 19:29 1 Chioroethane ND 1.0 ug/L 10/09/13 19:29 1 Tichilorofluoromethane ND 1.0 ug/L 10/09/13 19:29 1 Methylene Chloride ND 5.0 ug/L 10/09/13 19:29 1 Itaras-1,2-Dichloroethene ND 0.50 ug/L 10/09/13 19:29 1 Chloroform ND 0.50 ug/L 10/09/13 19:29 1 Chloroform ND 0.50 ug/L 10/09/13 19:29 1 1,1-1-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorothane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorothane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorothane ND 0.50 ug/L 10/09/13 19:29 1	1,1-Dichloroethene	ND		0.50	ug/L			10/09/13 19:29	1
Vinyl chloride ND 0.50 ug/L 10/09/13 19:29 1 Chloroethane ND 1.0 ug/L 10/09/13 19:29 1 Trichlorofluoromethane ND 1.0 ug/L 10/09/13 19:29 1 Methylene Chloride ND 5.0 ug/L 10/09/13 19:29 1 trans-1,2-Dichloroethene ND 0.50 ug/L 10/09/13 19:29 1 dis-1,2-Dichloroethene ND 0.50 ug/L 10/09/13 19:29 1 Chloroform ND 0.50 ug/L 10/09/13 19:29 1 Chloroform ND 0.50 ug/L 10/09/13 19:29 1 Carbon tetrachloride ND 0.50 ug/L 10/09/13 19:29 1 Carbon tetrachloride ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroptopane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroptopane ND 0.50 ug/L 10/09/13 19:29 1	1,1-Dichloroethane	ND		0.50	ug/L			10/09/13 19:29	1
Chloroethane ND 1.0 ug/L 10/09/13 19:29 1 Trichlorofluoromethane ND 1.0 ug/L 10/09/13 19:29 1 Methylene Chloride ND 5.0 ug/L 10/09/13 19:29 1 cis-1,2-Dichloroethene ND 0.50 ug/L 10/09/13 19:29 1 cis-1,2-Dichloroethene ND 0.50 ug/L 10/09/13 19:29 1 Chloroform ND 0.50 ug/L 10/09/13 19:29 1 1,1,1-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroptopane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroptopane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroptopane ND 0.50 ug/L 10/09/13 19:29 1	Dichlorodifluoromethane	ND		0.50	ug/L			10/09/13 19:29	1
Trichlorofluoromethane ND 1.0 ug/L 1009/13 19:29 1 Methylene Chloride ND 5.0 ug/L 1009/13 19:29 1 trans-1,2-Dichloroethene ND 0.50 ug/L 1009/13 19:29 1 cis-1,2-Dichloroethene ND 0.50 ug/L 1009/13 19:29 1 Chloroform ND 1.0 ug/L 1009/13 19:29 1 Chloroform ND 0.50 ug/L 1009/13 19:29 1 Carbon tetrachloride ND 0.50 ug/L 1009/13 19:29 1 Carbon tetrachloride ND 0.50 ug/L 1009/13 19:29 1 Carbon tetrachloride ND 0.50 ug/L 1009/13 19:29 1 Trichloroethane ND 0.50 ug/L 1009/13 19:29 1 Trichloroethane ND 0.50 ug/L 1009/13 19:29 1 1.2-Dichloropropene ND 0.50 ug/L 1009/13 19:29 1 <td< td=""><td>Vinyl chloride</td><td>ND</td><td></td><td>0.50</td><td>ug/L</td><td></td><td></td><td>10/09/13 19:29</td><td>1</td></td<>	Vinyl chloride	ND		0.50	ug/L			10/09/13 19:29	1
Methylene Chloride ND 5.0 ug/L 10/09/13 19:29 1 trans-1,2-Dichloroethene ND 0.50 ug/L 10/09/13 19:29 1 dis-1,2-Dichloroethene ND 0.50 ug/L 10/09/13 19:29 1 Chloroform ND 1.0 ug/L 10/09/13 19:29 1 Chlorofethane ND 0.50 ug/L 10/09/13 19:29 1 Carbon tetrachloride ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 1 trans-1,3-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 trans-1,3-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 trans-1,3-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 <td< td=""><td>Chloroethane</td><td>ND</td><td></td><td>1.0</td><td>ug/L</td><td></td><td></td><td>10/09/13 19:29</td><td>1</td></td<>	Chloroethane	ND		1.0	ug/L			10/09/13 19:29	1
trans-1,2-Dichloroethene ND 0.50 ug/L 10/09/13 19:29 1 cis-1,2-Dichloroethene ND 0.50 ug/L 10/09/13 19:29 1 Chloroform ND 1.0 ug/L 10/09/13 19:29 1 1,1-1-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropthane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 trans-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 trans-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 test-achloroethene ND 0.50 ug/L 10/09/13 19:29 1	Trichlorofluoromethane	ND		1.0	ug/L			10/09/13 19:29	1
cis-1,2-Dichloroethene ND 0.50 ug/L 10/09/13 19:29 1 Chloroform ND 1.0 ug/L 10/09/13 19:29 1 1,1,1-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Carbon tetrachloride ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 1 trans-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29 1	Methylene Chloride	ND		5.0	ug/L			10/09/13 19:29	1
Chloroform ND 1.0 ug/L 10/09/13 19:29 1	trans-1,2-Dichloroethene	ND		0.50	ug/L			10/09/13 19:29	1
1,1,1-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Carbon tetrachloride ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 1 trans-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 cis-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 1,1,2-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,1,2-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29	cis-1,2-Dichloroethene	ND		0.50	ug/L			10/09/13 19:29	1
Carbon tetrachloride ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 Dichlorobromomethane ND 0.50 ug/L 10/09/13 19:29 1 trans-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 cis-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 trans-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 tis-1,3-Dichloroptane ND 0.50 ug/L 10/09/13 19:29 1 Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1	Chloroform	ND		1.0	ug/L			10/09/13 19:29	1
1,2-Dichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Trichloroethene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 Dichlorobromomethane ND 0.50 ug/L 10/09/13 19:29 1 trans-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 cis-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 cis-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 cis-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 f.1,2-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Bromoform ND 0.50 ug/L 10/09/13 19:29 1	1,1,1-Trichloroethane	ND		0.50	ug/L			10/09/13 19:29	1
Trichloroethene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 Dichlorobromomethane ND 0.50 ug/L 10/09/13 19:29 1 trans-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 cis-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 1,1,2-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Bromoform ND 0.50 ug/L 10/09/13 19:29 1 1,1,2,2-Tetachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,3-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1	Carbon tetrachloride	ND		0.50	ug/L			10/09/13 19:29	1
1,2-Dichloropropane ND 0.50 ug/L 10/09/13 19:29 1 Dichlorobromomethane ND 0.50 ug/L 10/09/13 19:29 1 trans-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 cis-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 1,1,2-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,2-2-Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1	1,2-Dichloroethane	ND		0.50	ug/L			10/09/13 19:29	1
Dichlorobromomethane ND 0.50 ug/L 10/09/13 19:29 1 trans-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 cis-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 1,1,2-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Tetrachloroethene ND 0.50 ug/L 10/09/13 19:29 1 Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Bromoform ND 0.50 ug/L 10/09/13 19:29 1 1,2,2-Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,3-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1	Trichloroethene	ND		0.50	ug/L			10/09/13 19:29	1
trans-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 cis-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 1,1,2-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Tetrachloroethene ND 0.50 ug/L 10/09/13 19:29 1 Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Bromoform ND 0.50 ug/L 10/09/13 19:29 1 1,2-2-Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,3-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1	1,2-Dichloropropane	ND		0.50	ug/L			10/09/13 19:29	1
cis-1,3-Dichloropropene ND 0.50 ug/L 10/09/13 19:29 1 1,1,2-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Tetrachloroethene ND 0.50 ug/L 10/09/13 19:29 1 Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Bromoform ND 1.0 ug/L 10/09/13 19:29 1 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,3-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1 Bromomethane ND 0.50 ug/L 10/09/13 19:29 1	Dichlorobromomethane	ND		0.50	ug/L			10/09/13 19:29	1
1,1,2-Trichloroethane ND 0.50 ug/L 10/09/13 19:29 1 Tetrachloroethene ND 0.50 ug/L 10/09/13 19:29 1 Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Bromoform ND 1.0 ug/L 10/09/13 19:29 1 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,3-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1 Bromomethane ND 1.0 ug/L 10/09/13 19:29 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1	trans-1,3-Dichloropropene	ND		0.50	ug/L			10/09/13 19:29	1
Tetrachloroethene ND 0.50 ug/L 10/09/13 19:29 1 Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Bromoform ND 1.0 ug/L 10/09/13 19:29 1 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,3-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1 Bromomethane ND 1.0 ug/L 10/09/13 19:29 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1 EDB ND 0.50 ug/L 10/09/13 19:29 1	cis-1,3-Dichloropropene	ND		0.50	ug/L			10/09/13 19:29	1
Chlorodibromomethane ND 0.50 ug/L 10/09/13 19:29 1 Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Bromoform ND 1.0 ug/L 10/09/13 19:29 1 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,3-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1 Bromomethane ND 1.0 ug/L 10/09/13 19:29 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1 EDB ND 0.50 ug/L 10/09/13 19:29 1	1,1,2-Trichloroethane	ND		0.50	ug/L			10/09/13 19:29	1
Chlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Bromoform ND 1.0 ug/L 10/09/13 19:29 1 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,3-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1 Bromomethane ND 1.0 ug/L 10/09/13 19:29 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1 EDB ND 0.50 ug/L 10/09/13 19:29 1	Tetrachloroethene	ND		0.50	ug/L			10/09/13 19:29	1
Bromoform ND 1.0 ug/L 10/09/13 19:29 1 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,3-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1 Bromomethane ND 1.0 ug/L 10/09/13 19:29 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1 EDB ND 0.50 ug/L 10/09/13 19:29 1	Chlorodibromomethane	ND		0.50	ug/L			10/09/13 19:29	1
1,1,2,2-Tetrachloroethane ND 0.50 ug/L 10/09/13 19:29 1 1,3-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1 Bromomethane ND 1.0 ug/L 10/09/13 19:29 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1 EDB ND 0.50 ug/L 10/09/13 19:29 1	Chlorobenzene	ND		0.50	ug/L			10/09/13 19:29	1
1,3-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1 Bromomethane ND 1.0 ug/L 10/09/13 19:29 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1 EDB ND 0.50 ug/L 10/09/13 19:29 1	Bromoform	ND		1.0	ug/L			10/09/13 19:29	1
1,4-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 1,2-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1 Bromomethane ND 1.0 ug/L 10/09/13 19:29 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1 EDB ND 0.50 ug/L 10/09/13 19:29 1	1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			10/09/13 19:29	1
1,2-Dichlorobenzene ND 0.50 ug/L 10/09/13 19:29 1 Chloromethane ND 1.0 ug/L 10/09/13 19:29 1 Bromomethane ND 1.0 ug/L 10/09/13 19:29 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1 EDB ND 0.50 ug/L 10/09/13 19:29 1	1,3-Dichlorobenzene	ND		0.50	ug/L			10/09/13 19:29	1
Chloromethane ND 1.0 ug/L 10/09/13 19:29 1 Bromomethane ND 1.0 ug/L 10/09/13 19:29 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1 EDB ND 0.50 ug/L 10/09/13 19:29 1	1,4-Dichlorobenzene	ND		0.50	ug/L			10/09/13 19:29	1
Bromomethane ND 1.0 ug/L 10/09/13 19:29 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1 EDB ND 0.50 ug/L 10/09/13 19:29 1	1,2-Dichlorobenzene	ND		0.50	ug/L			10/09/13 19:29	1
1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 10/09/13 19:29 1 EDB ND 0.50 ug/L 10/09/13 19:29 1	Chloromethane	ND		1.0	ug/L			10/09/13 19:29	1
EDB ND 0.50 ug/L 10/09/13 19:29 1	Bromomethane	ND		1.0	ug/L			10/09/13 19:29	1
•	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			10/09/13 19:29	1
1,2,4-Trichlorobenzene ND 1.0 ug/L 10/09/13 19:29 1	EDB	ND		0.50	ug/L			10/09/13 19:29	1
	1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/09/13 19:29	1

МВ	MB	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	100		70 - 130		10/09/13 19:29	1	
4-Bromofluorobenzene	96		67 - 130		10/09/13 19:29	1	
1,2-Dichloroethane-d4 (Surr)	92		72 - 130		10/09/13 19:29	1	

Lab Sample ID: LCS 720-145872/5

Matrix: Water

Analysis Batch: 145872

Client Sample ID	: Lab Control Sample
	Pron Type: Total/NA

Spike	LCS	LCS				%Rec.
Analyte Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene 25.0	24.1		ug/L		96	64 - 128
1,1-Dichloroethane 25.0	22.8		ug/L		91	70 - 130
Dichlorodifluoromethane 25.0	16.9		ug/L		68	34 - 132
Vinyl chloride 25.0	18.5		ug/L		74	54 - 135
Chloroethane 25.0	20.0		ug/L		80	62 - 138

TestAmerica Pleasanton

10/11/2013

Page 7 of 16

TestAmerica Job ID: 720-52809-1

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-145872/5

Matrix: Water

Analysis Batch: 145872

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Trichlorofluoromethane	25.0	22.9		ug/L		92	66 - 132	
Methylene Chloride	25.0	23.9		ug/L		96	70 - 147	
trans-1,2-Dichloroethene	25.0	24.8		ug/L		99	68 - 130	
cis-1,2-Dichloroethene	25.0	22.5		ug/L		90	70 - 130	
Chloroform	25.0	24.3		ug/L		97	70 - 130	
1,1,1-Trichloroethane	25.0	24.7		ug/L		99	70 - 130	
Carbon tetrachloride	25.0	25.4		ug/L		101	70 - 146	
1,2-Dichloroethane	25.0	23.3		ug/L		93	61 - 132	
Trichloroethene	25.0	27.0		ug/L		108	70 - 130	
1,2-Dichloropropane	25.0	23.8		ug/L		95	70 - 130	
Dichlorobromomethane	25.0	24.4		ug/L		98	70 - 130	
trans-1,3-Dichloropropene	25.0	25.0		ug/L		100	70 - 140	
cis-1,3-Dichloropropene	25.0	25.0		ug/L		100	70 - 130	
1,1,2-Trichloroethane	25.0	26.2		ug/L		105	70 - 130	
Tetrachloroethene	25.0	28.0		ug/L		112	70 - 130	
Chlorodibromomethane	25.0	27.1		ug/L		108	70 - 145	
Chlorobenzene	25.0	26.0		ug/L		104	70 ₋ 130	
Bromoform	25.0	29.8		ug/L		119	68 - 136	
1,1,2,2-Tetrachloroethane	25.0	24.5		ug/L		98	70 - 130	
1,3-Dichlorobenzene	25.0	26.1		ug/L		105	70 - 130	
1,4-Dichlorobenzene	25.0	26.4		ug/L		106	70 - 130	
1,2-Dichlorobenzene	25.0	26.3		ug/L		105	70 - 130	
Chloromethane	25.0	16.6		ug/L		66	52 ₋ 175	
Bromomethane	25.0	22.2		ug/L		89	43 - 151	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.9		ug/L		108	42 - 162	
ne								
EDB	25.0	27.2		ug/L		109	70 - 130	
1,2,4-Trichlorobenzene	25.0	26.9		ug/L		107	70 - 130	

LCS LCS

Surrogate	%Recovery Qua	alifier Limits
Toluene-d8 (Surr)	100	70 - 130
4-Bromofluorobenzene	95	67 - 130
1,2-Dichloroethane-d4 (Surr)	87	72 - 130

Lab Sample ID: LCSD 720-145872/6

Matrix: Water

Analysis Batch: 145872

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	25.0	23.7		ug/L		95	64 - 128	2	20
1,1-Dichloroethane	25.0	22.7		ug/L		91	70 - 130	1	20
Dichlorodifluoromethane	25.0	16.7		ug/L		67	34 - 132	1	20
Vinyl chloride	25.0	18.7		ug/L		75	54 - 135	1	20
Chloroethane	25.0	19.8		ug/L		79	62 - 138	1	20
Trichlorofluoromethane	25.0	22.9		ug/L		92	66 - 132	0	20
Methylene Chloride	25.0	23.8		ug/L		95	70 - 147	0	20
trans-1,2-Dichloroethene	25.0	24.8		ug/L		99	68 - 130	0	20
cis-1,2-Dichloroethene	25.0	22.6		ug/L		90	70 - 130	0	20

TestAmerica Pleasanton

Page 8 of 16

_

3

<u>:</u>

0

10

12

13

М

QC Sample Results

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52809-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-145872/6

Matrix: Water

Analysis Batch: 145872

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

/ maryoto Batom 110012	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
Chloroform	25.0	24.0	ug/L		96	70 - 130	1	20
1,1,1-Trichloroethane	25.0	24.2	ug/L		97	70 - 130	2	20
Carbon tetrachloride	25.0	25.1	ug/L		100	70 - 146	1	20
1,2-Dichloroethane	25.0	23.2	ug/L		93	61 - 132	0	20
Trichloroethene	25.0	26.8	ug/L		107	70 - 130	1	20
1,2-Dichloropropane	25.0	23.6	ug/L		94	70 - 130	1	20
Dichlorobromomethane	25.0	24.3	ug/L		97	70 - 130	1	20
trans-1,3-Dichloropropene	25.0	25.3	ug/L		101	70 - 140	1	20
cis-1,3-Dichloropropene	25.0	25.6	ug/L		102	70 - 130	2	20
1,1,2-Trichloroethane	25.0	26.4	ug/L		106	70 - 130	1	20
Tetrachloroethene	25.0	27.9	ug/L		111	70 - 130	0	20
Chlorodibromomethane	25.0	27.1	ug/L		108	70 - 145	0	20
Chlorobenzene	25.0	25.5	ug/L		102	70 - 130	2	20
Bromoform	25.0	29.5	ug/L		118	68 - 136	1	20
1,1,2,2-Tetrachloroethane	25.0	24.2	ug/L		97	70 - 130	1	20
1,3-Dichlorobenzene	25.0	26.1	ug/L		104	70 - 130	0	20
1,4-Dichlorobenzene	25.0	26.2	ug/L		105	70 - 130	1	20
1,2-Dichlorobenzene	25.0	26.1	ug/L		104	70 - 130	1	20
Chloromethane	25.0	16.1	ug/L		64	52 - 175	3	20
Bromomethane	25.0	22.1	ug/L		88	43 - 151	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	26.5	ug/L		106	42 - 162	2	20
ne								
EDB	25.0	27.6	ug/L		110	70 - 130	1	20
1,2,4-Trichlorobenzene	25.0	27.1	ug/L		108	70 - 130	1	20

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
Toluene-d8 (Surr)	100	70 - 130
4-Bromofluorobenzene	94	67 - 130
1 2-Dichloroethane-d4 (Surr)	91	72 130

TestAmerica Pleasanton

Page 9 of 16

4

6

0

11

13

QC Association Summary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52809-1

GC/MS VOA

Analysis Batch: 145872

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-52809-1	MW-02	Total/NA	Water	8260B	
LCS 720-145872/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-145872/6	Lab Control Sample Dup	Total/NA	Water	8260B	
MB 720-145872/4	Method Blank	Total/NA	Water	8260B	

2

5

6

8

9

11

10

Lab Chronicle

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52809-1

Lab Sample ID: 720-52809-1

Matrix: Water

Client Sample ID: MW-02 Date Collected: 10/04/13 09:10 Date Received: 10/04/13 17:40

Batch Batch Dilution Batch Prepared Prep Type Method Run Factor Number or Analyzed Type Analyst Lab Total/NA Analysis 8260B 145872 10/10/13 04:34 ASC TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

5

8

9

11

13

Certification Summary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52809-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date	
California	State Program	9	2496	01-31-14	

3

4

6

8

9

IU

12

13

Method Summary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52809-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

3

4

5

6

9

10

11

12

Sample Summary

Client: PES Environmental, Inc. Project/Site: Eastmont Town Center

TestAmerica Job ID: 720-52809-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-52809-1	MW-02	Water	10/04/13 09:10	10/04/13 17:40

4

5

6

8

9

4 4

12

BLANE SAN JOSE, CALIFORNIA 95112-1103 FAX (408) 573-7777 TECH SERVICES, INC PHONE (408) 573-0558	5	8260B	CONI	DUCT A	NALY D	'SIS TO	DETE	CT DQ		LAB ALL ANALYSES MU LIMITS SET BY CAI EPA LIA	LIFORNIA DHS AI	FICATIONS AN		0/11/2013
CHAIN OF CUSTODY BTS # [31604~0~1] CLIENT PES SITE Eastmont Town Center 7200 Bancroft Ave.	E ALL CONTAINERS	Halogenated VOCs (8010 List) by EPA			V					OTHER SPECIAL INSTRUC Invoice and Re Attn: Gary The	port to: PES			
SAMPLE I.D. DATE TIME \$\frac{1}{5} \frac{1}{5} \tag{7}	C = COMPOSITE	X Halogenated								ADD'L INFORMATION	DN STATUS	CONDITION	LAB SAMPLE #	1 1 1
									7	720-52809 Chain of	f Custody			
SAMPLING DATE TIME SAMPLING PERFORMED BY Dane						F	ECEN	/ED DV	l	RESULTS NEEDED NO LATER THAN	STANDARE		IT SAG	 -
RELEASED BY Symple Bustolin 1875 RELEASED BY WILL W.C. S	DATE DATE	1/13 1/13	<u>.</u>	TIME 161	10 :47		EGEN Mu	/ED BY /ED BY /ED BY	rdu	oun (lurud Councer #gza	DATE 0/14/13 DATE DATE DATE	TIME	<u> </u>

5.12

Login Sample Receipt Checklist

Client: PES Environmental, Inc.

Job Number: 720-52809-1

Login Number: 52809 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

orontorr oonizatoo, odoliini	
Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td>	N/A
The cooler's custody seal, if present, is intact.	N/A
Sample custody seals, if present, are intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

DISTRIBUTION

GROUNDWATER MONITORING REPORT SECOND SEMI-ANNUAL 2013 EVENT SPARKLE CLEANERS EASTMONT TOWN CENTER 7000 BANCROFT AVENUE OAKLAND, CALIFORNIA

JANUARY 6, 2014

	COPY NO.	
		Copy No
1 Copy	Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502	PDF only
	Attention: Mr. Jerry Wickham	
1 Copy	Eastmont Oakland Associates, LLC c/o ScanlanKemperBard Companies 810 NW Marshall Street, Suite 300 Portland, Oregon 97209	1
	Attention: Mr. James V. Paul	
1 Copy	Unico Properties, LLC 7200 Bancroft Avenue, Suite 1 Oakland, California 94605	2
	Attention: Ms. Beena Standig	
1 Copy	PES Job File	3
1 Copy	Unbound Original	4