

August 7, 2006

Mr. Glenn Logan Automasters 6200 Shattuck Avenue Oakland, CA 94609

Re: Soil and Groundwater Investigation Report

6200 Shattuck Avenue Oakland, CA 94609

Dear Mr. Logan:

Pangea Environmental Services, Inc. (Pangea) has prepared this Soil and Groundwater Investigation Report (report) for the subject site. The investigation purpose was to provide additional delineation of any residual contamination beyond the limits of the former excavation conducted in 1986 at the site. The excavation was performed during removal of the former underground storage tanks (USTs). The investigation also evaluated conditions near a sanitary sewer line and aboveground oil storage locations at the site. The site background, investigation activities and results, and our conclusions are described below.

SITE BACKGROUND

The automotive repair facility is located at the northeast corner of Shattuck Avenue and 62nd Street in Oakland, California (Figure 1). The site currently contains two structures that function as garages for the automotive repair facility and three locations for oil storage. Land use surrounding the site is mixed residential and commercial. The local topography is essentially flat.

According to site property owner Glenn Logan, two former USTs were removed from the southern portion of the site at his request in 1986 by Ray Walker Hydraulics of Pleasanton, California (Figure 2). During the UST removal, impacted soil was removed between the two USTs. The site pavement variations indicate the apparent location of the removed USTs.

Pangea reviewed available records at the Oakland Fire Services (OFS) to search for UST removal and related documents. The OFS records included a September 27, 1989, letter from the Alameda County Health Care Services Agency (ACHCSA) and a hand-written response from Mr. Logan. The 1989 ACHCSA letter stated 'our records indicate there are USTs at your site. Please...submit a tank closure plan...or apply for a permit.' Mr. Logans' response stated the USTs were removed by Ray Walker Hydraulics in 1986 and that 'core samples were checked and approved by 'state' representatives at that time.' During recent discussions with the OFS, inspectors concluded that site conditions at the time did not merit additional action so the OES did not refer the case to the ACHCSA or Regional Water Quality Control Board (RWQCB). The

Soil and Groundwater Investigation Report 6200 Shattuck Avenue, Oakland, CA August 7, 2006 Page 2 of 5

label on OFS folder for the tank removal file says "Removed". The OFS records are included in Appendix E. No additional records of the USTs removal were found or made available for review by Pangea. No records are available on the Geotracker database of the State Water Resources Control Board.

INVESTIGATION ACTIVITIES

On June 3 and 5, 2006, Pangea implemented soil and groundwater sampling activities. Pangea oversaw the advancement of three soil borings (SB-1, SB-2 and SB-3) to facilitate the soil and groundwater sample collection. One boring was advanced at location SB-1 (adjacent to the eastern former UST and the sanitary sewer line), one boring was advanced at location SB-2 (adjacent to the western former UST and the former dispenser island), and one boring was advanced at location SB-3 (near oil storage on the northern half of the site)(Figure 2). Resonant Sonic International (RSI) of Woodland, California was retained to conduct the soil boring and sampling activities.

Pre-Field Activities

Prior to initiating field activities, the proposed boring locations were pre-marked with white paint and Underground Service Alert (USA) was notified to identify underground utilities. Pangea prepared a health and safety plan and reviewed with site workers prior to assessment. A boring permit was obtained from Alameda County Public Works Agency (Appendix A). Pangea also coordinated with the drilling contractor and analytical laboratory.

Soil Sampling

On June 3, 2006, soil sampling was conducted at each boring location. Prior to drilling, the concrete or asphalt surface was cored. A direct-push sampling rig equipped with a hydraulic hammer and steel drive rods was utilized to advance the borings to the total explored depth. Boring SB-1 was advanced to 20 feet below grade surface (bgs) and soil samples were collected from 8, 12, 16 and 20 ft bgs. Boring SB-2 was advanced to 48 ft bgs and soil samples were collected from 4, 8, 11, 12, 16 and 20 ft bgs. Boring SB-3 was advanced to 20 ft bgs and soil samples were collected from 4, 8, 12, 16 and 20 ft bgs. Soil sampling techniques are described below.

Soil samples were collected continuously using a 48-inch steel core barrel sampler equipped with clear acetate sample liners. The sampler was attached to the end of the steel drive rods and the sampler and the rods were advanced collectively until the end of the sampler had reached the desired sampling depth. The continuously cored soils were collected within the acetate liner and, upon retrieval at the surface, the cores were laid out and prepared for visual inspection by the

Soil and Groundwater Investigation Report 6200 Shattuck Avenue, Oakland, CA August 7, 2006 Page 3 of 5

supervising scientist working under the supervision of a California Registered Engineer. The soil samples were classified according to the Unified Soil Classification System (USCS) and screened for field indications of petroleum hydrocarbons using visual and olfactory observations. Soil samples from approximate 4-foot intervals were prepared for submission to the laboratory by cutting 6-inch sub-sections, trimming the excess soil from the ends, and capping the ends with Teflon® tape and plastic caps. Completed borings were grouted from the bottom of the hole to the surface. Additional soil and assessment procedures are presented in our *Standard Operating Procedures for Soil Borings* (Appendix B).

Detailed lithologic descriptions, and sample collection depths were recorded on boring logs. Boring logs are included in Appendix C.

Groundwater Sampling

Groundwater sampling was conducted at boring SB-2 only. During soil boring on Saturday, June 3, 2006, no significant groundwater was encountered, but relatively more permeable coarse grain soils were observed from 5 to 12 ft bgs, 15 to 17 ft bgs, 20 to 21 ft bgs and 22 to 23 ft bgs. After reaching 20 ft bgs the sampler and drilling rods were removed and the borehole was checked for water, but no water was observed. The boring was continued to 28 ft bgs and the borehole was again checked for water, and again no water was observed. The boring was continued to 36 ft bgs, where the driller advised that drilling was becoming very difficult and the acetate liners were collapsing due to the stiff soil. Pangea decided to continue the borehole to 48 ft bgs with a hydropunch sampler. After reaching the total explored depth of 48 ft bgs, the borehole was checked for water, but again no water was observed. The borehole was left open, and Pangea installed a temporary casing with ten feet of screen at the bottom. After completing the borings at SB-1 and SB-3, boring SB-2 was checked for water and no water was observed. Pangea decided to leave the boring open overnight to await water intrusion. On Monday, June 5, 2006, Pangea returned and measured the water level at approximately 8 ft bgs and collected a grab groundwater sample. Pangea did not purge the temporary casing prior to sampling. Pangea then tremmigrouted the borehole.

Laboratory Analyses

Select soil and groundwater samples collected during this investigation were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by modified Environmental Protection Agency (EPA) Method 8015C, total petroleum hydrocarbons as diesel (TPHd) and motor oil (TPHmo) by EPA Method 8015C, volatile organic compounds (VOCs) by EPA Method 8260B and semi-volatile organic compounds (SVOCs) by EPA Method 8270D. Immediately upon sample collection, containers were labeled and placed in an ice-chilled cooler. Chain-of-custody procedures were followed at all times from sample collection to delivery to the analytical

Soil and Groundwater Investigation Report 6200 Shattuck Avenue, Oakland, CA August 7, 2006 Page 4 of 5

laboratory. Laboratory analyses were conducted by McCampbell Analytical, Inc. of Pacheco, California. The laboratory analytical report and chain-of-custody documents are included in Appendix D.

INVESTIGATION RESULTS

No petroleum hydrocarbons or VOCs were detected in soil samples form borings SB-1 and SB-3.

Soil from 11 ft bgs in boring SB-2 contained concentrations of TPHg (3,000 mg/Kg), TPHd (850 mg/Kg) and VOCs as summarized in Table 1. No benzene was detected. No VOCs or TPHg were detected in shallower or deeper soil samples from SB-2, except for low TPHg (3.9 mg/kg) and TPHd (1.0 mg/kg) concentrations at 8 ft bgs and a low TPHd (1.7 mg/kg) concentration at 16 ft bgs.

Concentrations of TPHg (1,700 μ g/L), TPHd (1,000 μ g/L) and TPHmo (1,200 μ g/L) were detected in the groundwater sample from boring SB-2. Concentrations of select VOCs and SVOCs were also detected as summarized on Table 2, including up to 440 μ g/L naphthalene.

CONCLUSIONS

Based on the findings of the soil and groundwater investigation, Pangea concludes the following:

- Elevated TPH concentrations and lower VOC concentrations detected at 11 ft bgs in boring SB-2, located near the former dispenser island and former western UST. The soil concentrations for TPHg, TPHd, ethlybenzene and naphthalene exceed the Environmental Screening Levels (ESLs) established by the Regional Water Quality Control Board (RWQCB)(Table 1).
- The compounds detected in SB-2 appear to be *limited in vertical extent* since only low TPH concentrations were detected in shallow (8 ft bgs) and deeper (16 ft bgs) soil. No odors or visible staining of soil was observed other than the 11 ft bgs sample interval.
- No petroleum hydrocarbons or VOCs were detected in analyzed soil samples from borings SB-1 and SB-3, suggesting that the compounds detected in SB-2 are *limited in lateral extent*. No petroleum hydrocarbons were detected in soil samples from approximately 12 ft bgs in borings SB-1 (east of SB-2) or SB-3 (northeast of SB-2).
- Elevated TPH concentrations and lower VOC concentrations were also detected in grab groundwater from SB-2. The TPHg, TPHd, TPHmo and naphthalene concentrations exceed select ESLs established by the RWQCB, but do not exceed ESLs protective of indoor air. These concentrations are based on grab groundwater samples. Based on Pangea's experience, grab groundwater samples tend to yield higher concentrations than more representative samples from properly developed monitoring wells.

RECOMMENDATIONS

Based on the above conclusions, Pangea offers the following recommendations:

- Pangea recommends that the property owner apply to the California UST Cleanup Fund (Cleanup Fund) for cost recovery associated with assessment and/or corrective action associated with the prior limited release from the former UST system. Claimants of the Cleanup Fund are eligible to receive up to \$1.5M reimbursement for reasonable costs of corrective action directed by regulatory agencies.
- Pangea recommends providing pertinent site information to the Alameda County Health Care Services Agency (ACHCSA). The ACHCSA will likely open a case and require additional delineation of residual contaminants. Due to the apparent limited extent of contamination, the ACHCSA will likely close the case after completion of the additional delineation and any limited interim remediation required to accelerate case closure.

CLOSING

Pangea appreciates this opportunity to assist you. If you have any questions, please contact me at (510) 435-8664 or briddell@pangeaenv.com.

Sincerely,

Pangea Environmental Services, Inc.

Bob Clark-Riddell, P.E. Principal Engineer

ATTACHMENTS

Figure 1 – Site Vicinity
Figure 2 – Boring Locations

Appendix A - Boring Permit

Appendix B - Standard Field Procedures for Soil Borings

Appendix C – Boring Logs

Appendix D – Laboratory Analytical Report

Appendix E - Oakland Fire Service Records

Bob Clark-Riddell, P.E., Principal Engineer

PANGEA Environmental Services, Inc.

1710 Franklin Street, Suite 200, Oakland, California 94612 Telephone 510.836.3701 • Facsimile 510.836.3709 Mobile 510.435.8664 • Email briddell@pangeaenv.com

www.pangeaenv.com

General Plan & Zoning Map

Parcels
Aerial Imagery

Figure 1

Vicinity Map

Heintz 6200 Shattuck Oakland, California

Figure

2

Site Map

Pangea

Table 1. Soil Analytical Data - 6200 Shattuck Avenue, Oakland, California

			 												
			in the state of th	Trings	Simon Miles	Berne h	1. Charles	Salyhon,	And the Est Method Est.	Story of the state	William by Est A Member 25.	Signal Andrew Co. S. Try.	Mary A File of the Assession of the Asse	Control of the state of the sta	Dilling Company
Residential ES	L for shallow soi	! dw(<3 m bgs).	100	100	500	0.044	N/A	3.3	N/A	4.2	N/A	N/A	15	200	
Residential ES	L for deep soil d	w(>3 m bgs);	100	100	1,000	0.044	N/A	3.3	N/A	4.2	N/A	N/A	1.5	750	
Residential ES	L for shallow soi	l non-dw(<3 m bgs):	100	500	500	0.18	N/A	4.7	N/A	4.5	N/A	N/A	1.5	200	
Residential ES	SL for deep soil no	on-dw(>3 m bgs):	400	500	1,000	0.18	N/A	4,7	N/A	4.5	N/A	N/A	1.5	750	
Commercial E	SL for shallow so	nl non-dw (<3 m bgs):	400	500	1,000	0.38	N/A	13	N/A	4.8	N/A	N/A	1.5	750	
Commercial E	SL for deep soil r	ion-dw (>3 m bgs);	400	500	1,000	0.5	N/A	13	N/A	4.8	N/A	N/A	1.5	750	
			<u> </u>	·				mg	/Kg ——					 →	
Boring/	Date	Sample Depth													
Sample 1D	Sampled	(ft bgs)													
SB-1-8	6/3/2006	8	<1.0	<1.0	<5.0	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<5.0	
SB-1-12	6/3/2006	12	<1.0	<1.0	<5.0										
\$B-2-4	6/3/2006	4												5.5	
SB-2-8	6/3/2006	8	3.9	i 0	<5.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<5.0	
SB-2-11	6/3/2006	11	3,000	850	<50	<5.0	8.2	22	66	10	11	15	<50	8.1	
SB-2-16	6/3/2006	16	<1.0	17	<5.0	< 0.005	< 0.005	< 0.005	< 0.005	<0 005	< 0.005	< 0.005	<0,005	**	
SB-3-4	6/3/2006	4	<1.0	<1.0	<5.0	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	7.1	
SB-3-12	6/3/2006	12	<1.0	<10	<5.0										

Notes:

mg/Kg = milligrams per Kilogram

m bgs = Depth below ground surface (bgs) in meters

ft bgs = Depth below ground surface (bgs) in feet.

< n = Chemical not present at a concentration in excess of detection limit shown.

ESL = Environmental Screening Level for Shallow/Deep Soil with Residential and Commercial/Industrial Land Use, Groundwater is/is not a current or potential source of drunking water. (Table A/Table B/Table C/Table D).

ESL established by the SFBRWQCB, Interim Final - July 2003, and amended in February 2004.

Bold = Concentration above ESLs for Residential Land Use, groundwater is not a current or potential source of drinking water.

non-dw = groundwater is not a current or potential source of drinking water

dw = groundwater is a current or potential source of drinking water

Pangea

Table 2. Groundwater Analytical Data - 6200 Shattuck Avenue, Oakland, California

	in the state of th	TPHE D. P. S. C.	TPHINO, ON SE	P. P. A. A. A. A. B.	The Part of Memory Shorts	Ellinbare	Stuy. The Method Experience of the States.	Lieth Man	Section of the Party of the Par	Stool And	Holoso A Manual Bar A Manual Ba	Listy Branch Pally	Strings by	Linewholes Sons	ouseum.
ESL for groundwater, non-dw	500	640	640	46	N/A	290	N/A	N/A	N/A	24	N/A	N/A	13	N/A	
ESL for groundwater, dw:	100	100	100	1.0	N/A	30	N/A	N/A	N/A	21	N/A	N/A	13	N/A	
Ceiling Value:	100	100	100	170	N/A	30	N/A	N/A	N/A	21	N/A	N/A	20	N/A	
Drinking Water Toxicity:	210	210	210	1.0	N/A	700	N/A	N/A	N/A	170	N/A	N/A	1,800	N/A	
Indoor Air Impacts:	10,000	10,000	N/A	530	N/A	14,000	N/A	N/A	N/A	28,000	N/A	N/A	150,000	N/A	
Aquatic Habitat Goal:	500	640	640	46	N/A	290	N/A	N/A	N/A	8,000	N/A	N/A	13	N/A	
·				·			με	/L			· · · · · · · · · · · · · · · · · · ·				
Date Sample ID Sampled										····					
SB-2-W 6/5/2006	1,700	1,000	1,200	14	13	130	20	180	3.9	16/440	45	37	12	140	

Notes:

µg/L = micrograms per Liter

Bold = Concentration above ESLs for groundwater, not drinking water

non-dw = groundwater is not a current or potential source of drinking water

dw = groundwater is a current or potential source of drinking water

Themical not present at a concentration in excess of detection limit shown.

ESL = Environmental Screening Level for groundwater, Groundwater is not a current or potential source of drinking water. (Table B/Table D).

ESL = Environmental Screening Level for Groundwater, groundwater is a current or potential source of drinking water. (Table F-1a).

ESL established by the SFBRWQCB, Interim Final - July 2003, and amended in February 2004.

APPENDIX A

Boring Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 05/30/2006 By jamesy

Permits Issued:

W2006-0523

Application id:

1148659266687

Site Location:

6200 Shattuck Ave, Oakland, CA 94609

Project Start Date:

06/03/2006

Applicant:

Pangea Environmental - Bob Clark-Ridell 1710 Franklin St. #200, Oakalnd, CA 94612

Property Owner:

Richard Heinz

Client:

2019 Emerson, Berkeley, CA 94703

** same as Property Owner **

Total Due:

\$200.00

Total Amount Paid:

Payer Name: Pangea Environmental Paid By: CHECK

Receipt Number: WR2006-0260

City of Project Site: Oakland

Completion Date:06/03/2007

Permits Valid from 06/03/2006 to 06/03/2007

Phone: 510-836-3700

Phone: 510-649-1911

PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 3 Boreholes

Driller: RSI Drilling - Lic #: 802334 - Method: DP

Work Total: \$200.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number	0510010000	00/04/0000	Boreholes	0.00:	00.00.4
W2006-	05/30/2006	09/01/2006	3	2.00 in.	20.00 ft

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 5. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.
- 6. Spot Check Only

Inspector does not have to be present for grout Inspection.

APPENDIX B

Standard Field Procedures for Soil Borings

STANDARD FIELD PROCEDURES FOR SOIL BORINGS

This document describes Pangea Environmental Services' standard field methods for drilling and sampling soil borings. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality, and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist, scientist or engineer working under the supervision of a California Registered Engineer, California Registered Geologist (RG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e. sand, silt, clay or gravel)
- · Approximate percentage of each grain size category,
- Color.
- · Approximate water or product saturation percentage,
- · Observed odor and/or discoloration,
- · Other significant observations (i.e. cementation, presence of marker horizons, mineralogy), and
- · Estimated permeability.

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or hydraulic-push technologies. At least one and one half ft of the soil column is collected for every five ft of drilled depth. Additional soil samples are collected near the water table and at lithologic changes. With hollow-stem drilling, samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the borehole. With hydraulic-push drilling, samples are typically collected using acetate liners. The vertical location of each soil sample is determined by measuring the distance from the middle of the soil sample tube to the end of the drive rod used to advance the split barrel sampler. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Storage, Handling and Transport

Sampling tubes or cut acetate liners chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

Soil samples collected during drilling will be analyzed in the field for ionizable organic compounds using a photo-ionization detector (PID) with a 10.2 eV lamp. The screening procedure will involve placing an undisturbed soil sample in a sealed container (either a zip-lock bag, glass jar, or a capped soil tube). The container will be set aside, preferably in the sun or warm location. After approximately fifteen minutes, the head space within the container will be tested for total organic vapor, measured in parts per million on a volume to volume basis (ppmv) by the PID. The PID instrument will be calibrated prior to boring using hexane or isobutylene. PID measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

Water Sampling

Water samples collected from borings are either collected from the open borehole, from within screened PVC inserted into the borehole, or from a driven Hydropunch-type sampler. Groundwater is typically extracted using a bailer, check valve and/or a peristaltic pump. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

Pangea often performs electrical conductivity (EC) logging and/or continuous coring to identify potential water-bearing zones. Hydropunch-type sampling is then performed to provide discrete-depth grab groundwater sampling within potential water-bearing zones for vertical contaminant delineation. Hydropunch-type sampling typically involves driving a cylindrical sheath of hardened steel with an expendable drive point to the desired depth within undisturbed soil. The sheath is retracted to expose a stainless steel or PVC screen that is sealed inside the sheath with Neoprene O-rings to prevent infiltration of formation fluids until the desired depth is attained. The groundwater is extracted using tubing inserted down the center of the rods into the screened sampler.

Duplicates and Blanks

Blind duplicate water samples are collected usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite on top of and covered by plastic sheeting. At least four individual soil samples are collected from the stockpiles for later compositing at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Ground water removed during sampling and/or rinsate generated during decontamination procedures are stored onsite in sealed 55 gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Disposal of the water is based on the analytic results for the well samples. The water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

APPENDIX C

Boring Logs

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA, 94612 Telephone: 510-836-3700 Fax: 510-836-3709

BORING NUMBER SB-1

PAGE 1 OF 1

DEPTH DEPTH DESCRIPTION OF THE PHONE OF THE	G CONTRAC G METHOD D BY Morga Hand auger	3/06 TOR _F Direct I in Gillies to 4'	RSI Push - Dua		AT TIME OF DRILLING	HOLE SIZE	2.5
DEILLING DRILLING DRILLING DRILLING DRILLING DRILLING LOGGED AUTOMATICAL DRILLING DR	G CONTRAC G METHOD D BY Morga Hand auger	Direct I	RSI Push - Dua	l Wall	GROUND WATER LEVELS: AT TIME OF DRILLING		
	TYPE 3ER				GROUND WATER LEVELS: AT TIME OF DRILLING		
	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S. GRAPHIC LOG	MATER	IAL DESCRIPTION	ВС	DRING DIAGRAM
0		E		0.5 Asphalt 1.0 Grey baserock.			Concrete
5			CL- ML	trace fine-grain sand; stiff.	5-100% medium plasticity fines; 5% -		
10	SB-1-8	0	CH-	Gravelly Clay/Silt (CH/MH); b fines; 30-40% fine gravel to 3	orown; 40-50% medium to low plasticity 6/4"; 10-20% fine- to coarse-grain sand.		
			CL- VIL	Clay/Silt (CL-ML); brown and 10-20% fine-grain sand.	grey; 80-90% medium plasticity fines;		Portland Cemen
-	SB-1-12		GM P C	to coarse-grain sand; 10-20%	60-70% fine gravel to 3/4"; 10-20% fine blow to medium plasticity fines. black; 80-90% medium plasticity fines; sand; stiff.		
15		N	CH- MH	fines; 30-40% fine gravel to 1 Clay/Silt (CL-ML); brown and	orown; 50-60% medium to low plasticity /2"; 10-20% fine- to coarse-grain sand. black; 80-90% medium plasticity fines;		
-	SB-1-16 /	<u> </u>	ML	Gravelly Clay/Silt (CH-MH); b fines; 30-40% fine gravel to 1	sand; stiff. rown; 50-60% medium to low plasticity /2"; 10-20% fine- to coarse-grain sand.		
-	1170		MH WH	@18' Grey color			
20	SB-1-20	-		20.0	of hole at 20.0 feet.		

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA, 94612 Telephone: 510-836-3700 Fax: 510-836-3709

BORING NUMBER SB-2 PAGE 1 OF 2

	CT NUMBER					PROJECT LOCATION 6200 Shattuck Ave, Oakland				
				COMPLETED 6/3/06						
					GROUND WATER LEVELS:					
DRILLING METHOD Direct Push - Dual Wall					· ·					
LOGGED BY Morgan Gillies CHECKED BY Bob Clark-Ridde										
IOTES	<u> </u>				₹ 23hrs AFTER DRILLING 8.0 ft					
(ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	CKAPHIC LOG	MATERIAL DESCRIPTION	BORING DIAGRAM				
0			è	Concrete		Concrete				
5	SB-2-4		CL- ML	Clay/Silt (CL-ML); b trace fine-grain sand	prown; 95-100% medium plasticity fines; 5%- d; stiff.					
<u> </u>			0,000	Silty gravel with sa	and (GM); brown; 50-60% fine gravel to 1/2"; arse-grain sand; 10-20% medium to low plasticity					
10	SB-2-8		GM P	@8' Grey	·					
	SB-2-11		sw	Poorty sorted sand sand; 10-20% fine of	i with gravel (SW); 80-90% fine- to coarse-grain gravel to 1/2"; moist; hydrocarbon odor.					
15	SB-2-12		CL- ML		prown; 95-100% medium plasticity fines; 5%-d; stiff, no odor.					
	SB-2-16		GC 9	Clavey gravel with	sand (GC); 60-70% fine gravel to 3/4"; 10-20% nes; 10-20% fine grain sand; moist.					
20			CL- ML		orown and grey; 95-100% medium plasticity e-grain sand; soft.					
	SB-2-20		GC	Clayey gravel with medium plasticity fi	sand (GC); 60-70% fine gravel to 3/4"; 10-20% nes; 10-20% fine grain sand; moist.					
			CL- ML	22.0 fines; 5%- trace fine						
			GC	23.0 medium plasticity fil	sand (GC); 60-70% fine gravel to 3/4"; 10-20% nes; 10-20% fine grain sand; moist.					
1			CL- ML	Clay/Silt (CL-ML); b fines; 5%- trace fine	prown and grey; 95-100% medium plasticity					

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200

Oakland, CA, 94612

Telephone: 510-836-3700 Fax: 510-836-3709

CLIENT Richard Heintz

PROJECT NAME Heintz - 6200 Shattuck

BORING NUMBER SB-2
PAGE 2 OF 2

PROJECT NUMBER	1130	0.001		PROJECT LOCATION 6200 Shattuck Av	e, Oakland
DEPTH (ft bgs) SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	BORING DIAGRAM
25		CL- ML		Clay/Silt (CL-ML); brown and grey; 95-100% medium plasticity fines; 5%- trace fine-grain sand; soft. (continued)	Portland Cemen
		MH- CH		Gravelly silt and clay (MH-CH); brown; 60-70% medium plasticity fines; 20-30% fine gravel to 1/2"; trace - 10% fine- to coarse-grain sand.	
30		мн		Sandy silt with gravel (MH); brown; 60-70% low plasticity fines; 10-20% fine gravel to 1/2"; 10-20% fine- to coarse-grain sand.	
1		CL- ML		Clay/Silt with sand (CL-ML); brown; 60-70% medium plasticity fines; 20-30% fine- to coarse-grain sand; 5-10% fine gravel.	
35		CL- ML		Clay/Silt (CL-ML); brown and grey; 80-90% medium plasticity fines; 10-20% fine- to coarse-grain sand; stiff.	
40				@36' Liners collapsing due to stiff clay. Continue to 48' with hydropunch, no water; pull rods and set temporary casing in open borehole. Depth to water was 8.00' after 23 hours. Sample SB-2-W taken. Boring was tremmi-grouted to surface with portland cement.	
45				18.0	
				Bottom of hole at 48.0 feet.	

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA, 94612 Telephone: 510-836-3700

BH COPY HEINTZ SB-3 GPJ GINT US GDT 6/20/06

BORING NUMBER SB-3 PAGE 1 OF 1

	Fax: 51			1	•					
CLIEN	IT Richard He	intz				PROJECT NAME Heintz - 6200 Shattuck	ί			
PROJ	ECT NUMBER	1130	.001					and		
						GROUND ELEVATION	HOLE SI	ZE _	2.5	
DRILL	ING CONTRAC	TOR	RSI		.	GROUND WATER LEVELS:				
DRILL	ING METHOD	Direc	t Pus	h - Dua	al Wall	AT TIME OF DRILLING				
LOGG	ED BY Morga	n Gilli	es		CHECKED BY Bob Clark-Riddell	AT END OF DRILLING				
NOTE	s					AFTER DRILLING				
о DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MATE	ERIAL DESCRIPTION		BOF	RING DIAGRAM	
					Asphalt		X		Concrete	
5	SB-3-4 SB-3-8		CL- ML		5.0 Sitt/Clay (CL-ML); brown; 9 5% fine grain sand; stiff.	brown; 40-50% medium to low plasticity of 1/2"; 10-20% fine- to coarse-grain sand.			Concrete	
10	SB-3-12		CH-MH		fine- to coarse-grain sand.	0-90% medium plasticity fines; 10-20%			Portland Cement	
15			CH- MH			d (CH-MH); brown; 40-50% medium to low gravel to 1/2"; 20-30% fine- to				
	SB-3-16		CL- ML		Clay/Silt with sand (CL-ML 10-20% fine- to coarse-grain); brown; 70-80% medium plasticity fines; in sand; 5-10% fine gravel; stiff.				
]			CH- MH		Gravelly Clay/Silt (CH-MH); plasticity fines; 30-40% fine coarse-grain sand; moist.	brown and grey; 40-50% medium to low gravel to 1/2"; 20-30% fine- to				
20			CL- ML		Clay/Silt with sand (CL-ML); brown; 70-80% medium plasticity fines; n sand; 5-10% fine gravel; stiff.				
20	SB-3-20	ŀ		AAAAAA:		m of hole at 20.0 feet.		-		

APPENDIX D

Laboratory Analytical Report

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.nccampbell.com E-mail: main@nccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: Heintz	Date Sampled: 06/05/06
1710 Franklin Street, Ste. 200		Date Received: 06/05/06
Oakland, CA 94612	Client Contact: Morgan Gillies	Date Reported: 06/12/06
Oakialiu, CA 94012	Client P.O.:	Date Completed: 06/12/06

WorkOrder: 0606075

June 12, 2006

Dear Morgan:

Enclosed are:

- 1). the results of 9 analyzed samples from your Heintz project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: Heintz	Date Sampled: 06/03/06-06/05/06					
1710 Franklin Street, Ste. 200		Date Received: 06/05/06					
Oakland, CA 94612	Client Contact: Morgan Gillies	Date Extracted: 06/05/06-06/07/06					
Odkiand, CA 94012	Client P.O.:	Date Analyzed: 06/06/06-06/07/06					
Casalina Panga (C6 C12) Valatila Hydrogarbone as Casalina*							

raction method: SW5030E	3	Analytica	l methods: SW8015Cm	Work Order:	060607
Lab ID	Client ID	Matrix	ТРН(g)	DF	% S:
003A	SB-2-11	. s	3000,a,m	330	107
005A	SB-2-16	S :	ND	1	90
009A	SB-1-8	S	ND	1	88
010A	SB-1-12	S	ND	1	85
013A	SB-3-4	S	ND	1	82
015A	SB-3-12	s :	ND	1	86
018A	SB-2-W	w	1700,a	1	116
				- control of the cont	
					:
,		•			
					;
•					
•					i
					; ·

Reporting Limit for DF =1;	, W	50	μg/L
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; i) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@nccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: Heintz	Date Sampled: 06/03/06-06/05/06
1710 Franklin Street, Ste. 200		Date Received: 06/05/06
Oakland, CA 94612	Client Contact: Morgan Gillies	Date Extracted: 06/05/06
Cakianu, CA 94012	Client P.O.:	Date Analyzed: 06/06/06-06/09/06

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW3510C/SW3550C		Analytical met	hods: SW8015C	Work Order: 0606			
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS	
0606075-003A	SB-2-11	S	850,d,b	ND<50	10	117	
0606075-005A	SB-2-16	, S	1.7,f	ND	1	93	
9606075-009A	SB-1-8	S	ND	i ND	. 1	109	
0606075-010A	SB-1-12	S .	ND	ND.	1	109	
0606075-013A	SB-3-4	S	ND	ND	1	109	
0606075-015A	SB-3-12	S	ND	ND	1	108	
0606075-018A	SB-2-W	w	1000,d,g	1200	1	109	
•	•			<u> </u>		+	
•						L	
•							
•						- 	
						i	
		1					
		•		· \$e. •	i		
		1				1	

Reporting Limit for DF = I; ND means not detected at or	w	50	250	μg/L
above the reporting limit	S	1.0	5.0	mg/Kg

[•] water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTI.C / STLC / STLC

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: Heintz	Date Sampled: 06/03/06
		Date Received: 06/05/06
1710 Franklin Street, Ste. 200	Client Contact: Morgan Gillies	Date Extracted: 06/05/06
Oakland, CA 94612	Client P.O.:	Date Analyzed: 06/07/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B

Analytical Method: SW8260B

Work Order: 0606075

Lab ID Client ID 0606075-003A SB-2-11

Soil

Matrix				Soil				
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND<50	1000	0.05	Acrolein (Propenal)	ND<50	1000	0.05	
Acrylonitrile	ND<20	1000	0.02	tert-Amyl methyl ether (TAME)	ND<5.0	1000	0.005	
Benzene	ND<5.0	1000	0.005	Bromobenzene	ND<5.0	1000	0.005	
Bromochloromethane	ND<5.0	1000	0.005	Bromodichloromethane	ND<5.0	1000	0.005	
Bromoform	ND<5.0	1000	0.005	Bromomethane	ND<5.0	1000	0.005	
2-Butanone (MEK)	ND<20	1000	0.02	t-Butyl alcohol (TBA)	ND<50	1000	0.05	
n-Butyl benzene	8.2	1000	0.005	sec-Butyl benzene	ND<5.0	1000	0.005	
tert-Butyl benzene	ND<5.0	1000	0.005	Carbon Disulfide	ND<5.0	1000	0.005	
Carbon Tetrachloride	ND<5.0	1000	0.005	Chlorobenzene	ND<5.0	1000	0.005	
Chloroethane	ND<5.0	1000	0.005	2-Chloroethyl Vinyl Ether	ND<10	1000	0.01	
Chloroform	ND<5.0	1000	0.005	Chloromethane	ND<5.0	1000	0.005	
2-Chlorotoluene	ND<5.0	1000	0.005	4-Chlorotoluene	ND<5.0	1000	0.005	
Dibromochloromethane	ND<5.0	1000	0.005	1,2-Dibromo-3-chloropropane	ND<5.0	1000	0.005	
1,2-Dibromoethane (EDB)	ND<5.0	1000	0.005	Dibromomethane	ND<5.0	1000	0.005	
1,2-Dichlorobenzene	ND<5.0	1000	0.005	1,3-Dichlorobenzene	ND<5.0	1000	0.005	
1.4-Dichlorobenzene	ND<5.0	1000	0.005	Dichlorodifluoromethane	ND<5.0	1000	0.005	
1.1-Dichloroethane	ND<5.0	1000	0.005	1,2-Dichloroethane (1,2-DCA)	ND<5.0	1000	0.00	
1.1-Dichloroethene	ND<5.0	1000	0.005	cis-1,2-Dichloroethene	ND<5.0	1000	0.00	
trans-1,2-Dichloraethene	ND<5.0	1000	0.005	1,2-Dichloropropane	ND<5.0	1000	0.00	
1,3-Dichloropropane	ND<5.0	1000	0.005	2,2-Dichloropropane	ND<5.0	1000	0.005	
1,1-Dichloropropene	ND<5.0	1000	0.005	cis-1,3-Dichloropropene	ND<5.0	1000	0.005	
trans-1,3-Dichloropropene	ND<5.0	1000	0.005	Diisopropyl ether (DIPE)	ND<5.0	1000	0.005	
Ethylbenzene	. 22	1000	0.005	Ethyl tert-butyl ether (ETBE)	ND<5.0	1000	0.005	
Freon 113	ND<100	1000	0.1	Hexachlorobutadiene	ND<5.0	1000	0.005	
Hexachloroethane	ND<5.0	1000	0.005	2-Hexanone	ND<5.0	1000	0.005	
Isopropyibenzene	ND<5.0	1000	0.005	4-Isopropyl toluene	ND<5.0	1000	0.005	
Methyl-t-butyl ether (MTBE)	ND<5.0	1000	0.005	Methylene chloride	ND<5.0	1000	0.005	
4-Methyl-2-pentanone (MIBK)	ND<5.0	1000	0.005	Naphthalene	10	1000	0.005	
Nitrobenzene	ND<100	1000	0.1	n-Propyl benzene	11	1000	0.005	
Styrene	ND<5.0	1000	0.005	1,1,1,2-Tetrachloroethane	ND<5.0	1000	0.005	
1,1,2,2-Tetrachloroethane	ND<5.0	1000	0.005	Tetrachloroethene	ND<5.0	1000	0.00	
Toluene	ND<5.0	1000	0.005	1,2,3-Trichlorobenzene	ND<5.0	1000	0.005	
1,2,4-Trichlorobenzene	ND<5.0	1000	0.005	1,1,1-Trichloroethane	ND<5.0	1000	0.00	
1,1,2-Trichloroethane	ND<5.0	1000	0.005	Trichloroethene	ND<5.0	1000	0.00	
Trichlorofluoromethane	ND<5.0	1000	0.005	1,2,3-Trichloropropane	ND<5.0	1000	0.005	
1,2,4-Trimethylbenzene	66	1000 -	0.005	1,3,5-Trimethylbenzene	15	1000	0.005	
Vinyl Chloride	ND<5.0	1000	0.005	Xylenes	ND<5.0	1000	0.005	
Transfer to the second				ecoveries (%)				
B/ CC1.	90		ogate N	%SS2:	99			
%SS1:				/0332:		' .		
%SS3:	91	<i>'</i>						

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: Heintz	Date Sampled: 06/03/06
		Date Received: 06/05/06 Date Extracted: 06/05/06
1710 Franklin Street, Ste. 200	Client Contact: Morgan Gillies	Date Extracted: 06/05/06
Oakland, CA 94612	Client P.O.:	Date Analyzed: 06/07/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B

Analytical Method: SW8260B

Work Order: 0606075

Lab	ID
Client	ID

0606075-005A SB-2-16

Soil

Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	. 1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane	, ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.005
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	: ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	' ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	, ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichtorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes	ND	1.0	0.005
		Sur	rogate Re	ecoveries (%)			
%SS1:	95		-	%SS2:	, 95		
%SS3:	100				:		
70000		<u> </u>					

Comments

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: Heintz	Date Sampled: 06/03/06
		Date Received: 06/05/06
1710 Franklin Street, Ste. 200	Client Contact: Morgan Gillies	Date Extracted: 06/05/06
Oakland, CA 94612	Client P.O.:	Date Analyzed: 06/07/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B

Analytical Method: SW8260B

Work Order: 0606075

Lab ID Client ID 0606075-009A SB-1-8

Acetone				- Soil		Matrix		
Acrylonitrile	Reporting Limit	DF	Concentration *	Compound		* DF	Concentration *	Compound
Benzence ND 1.0 0.005 Bromobenzence ND 1.0 1	0.05	1.0	ND		0.05	1.0	ND	Acetone
Bromochloromethane	0.003	1.0	ND	tert-Amyl methyl ether (TAME)	0.02	1.0	ND	Acrylonitrile
Bromoform	0.005	1.0	ND	Bromobenzene	0.005	1.0	ND	Benzene
2-Butanone (MEK) ND 1.0 0.02 t-Butyl alcohol (TBA) ND 1.0 n-Butyl benzene ND 1.0 0.005 sec-Butyl benzene ND 1.0 tert-Butyl benzene ND 1.0 0.005 Sec-Butyl benzene ND 1.0 Carbon Tetrachloride ND 1.0 0.005 Chloroban Disulfide ND 1.0 Chlorochane ND 1.0 0.005 Chlorochane ND 1.0 Chlorochane ND 1.0 0.005 Chloromethane ND 1.0 2-Ckflorotoluene ND 1.0 0.005 Chloromethane ND 1.0 2-Ckflorotoluene ND 1.0 0.005 Horomethane ND 1.0 1.2-Dibromochloromethane ND 1.0 0.005 1,2-Dibromochloromethane ND 1.0 1.2-Dichlorobenzene ND 1.0 0.005 1,2-Dichloromethane ND 1.1 1.1-Dichlorobenzene ND 1.0 0.005	0.00	1.0	ND	Bromodichloromethane	0.005	1.0	ND	Bromochloromethane
ND	0.005	1.0	ND	Bromomethane	0.005	1.0	ND	Bromoform
tert-Butyl benzene ND 1.0 0.005 Carbon Disulfide ND 1.4 Carbon Tetrachloride ND 1.0 0.005 Chloroebrazene ND 1.4 Chloroethane ND 1.0 0.005 Chloroethyl Vinyl Ether ND 1.4 Chlorotoluene ND 1.0 0.005 Chloromethane ND 1.4 Dibromochloromethane ND 1.0 0.005 Chlorotoluene ND 1.4 Dibromochloromethane (EDB) ND 1.0 0.005 1,2-Dibromoca-chloropropane ND 1.4 1,2-Dibriorochane (EDB) ND 1.0 0.005 1,3-Dichloropropane ND 1.4 1,1-Dichlorochane ND 1.0 0.005 1,3-Dichloromethane ND 1.4 1,1-Dichlorochane ND 1.0 0.005 1,2-Dichlorochane ND 1.0 1,1-Dichlorochane ND 1.0 0.005 1,2-Dichlorochane (1,2-DCA) ND 1.4 1,1-Dichlorochane ND <	0.05	1.0	, ND	t-Butyl alcohol (TBA)	0.02	1.0	ND	2-Butanone (MEK)
Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1.4 Chloroethane ND 1.0 0.005 2-Chloroethyl Vinyl Ether ND 1.4 Chloroethane ND 1.0 0.005 2-Chloroethyl Vinyl Ether ND 1.4 2-Chlorostoluene ND 1.0 0.005 4-Chlorotoluene ND 1.4 2-Chlorostoluene ND 1.0 0.005 1-Chlorostoluene ND 1.4 12-Dichlorothane (EDB) ND 1.0 0.005 1,2-Dichlorome-3-chloropropane ND 1.4 1,2-Dichlorothane (EDB) ND 1.0 0.005 1,3-Dichlorobenzene ND 1.4 1,4-Dichlorothane (EDB) ND 1.0 0.005 1,3-Dichloroethane (1,2-DCA) ND 1.4 1,1-Dichlorothane ND 1.0 0.005 1,2-Dichloropropane ND 1.0 1,1-Dichlorothane ND 1.0 0.005 1,2-Dichloropropane ND 1.4 1,1-Dichloropropane <th< td=""><td>0.005</td><td>1.0</td><td>ND</td><td>sec-Butyl benzene</td><td>0.005</td><td>1.0</td><td>ND</td><td>n-Butyl benzene</td></th<>	0.005	1.0	ND	sec-Butyl benzene	0.005	1.0	ND	n-Butyl benzene
Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1.4 Chloroethane ND 1.0 0.005 2-Chloroethyl Vinyl Ether ND 1.4 Chloroethane ND 1.0 0.005 2-Chloroethyl Vinyl Ether ND 1.4 2-Chlorostoluene ND 1.0 0.005 4-Chlorotoluene ND 1.4 2-Chlorostoluene ND 1.0 0.005 1-Chlorostoluene ND 1.4 12-Dichlorothane (EDB) ND 1.0 0.005 1,2-Dichlorome-3-chloropropane ND 1.4 1,2-Dichlorothane (EDB) ND 1.0 0.005 1,3-Dichlorobenzene ND 1.4 1,4-Dichlorothane (EDB) ND 1.0 0.005 1,3-Dichloroethane (1,2-DCA) ND 1.4 1,1-Dichlorothane ND 1.0 0.005 1,2-Dichloropropane ND 1.0 1,1-Dichlorothane ND 1.0 0.005 1,2-Dichloropropane ND 1.4 1,1-Dichloropropane <th< td=""><td>0.003</td><td>1.0</td><td>ND</td><td>Carbon Disulfide</td><td>0.005</td><td>1.0</td><td>ND</td><td>tert-Butyl benzene</td></th<>	0.003	1.0	ND	Carbon Disulfide	0.005	1.0	ND	tert-Butyl benzene
Chloroform	0.005	1.0	ND	Chlorobenzene	0.005		ND	Carbon Tetrachloride
Chloroform	0.01	1.0	ND	2-Chloroethyl Vinyl Ether	0.005	1.0	ND	Chloroethane
2-Chlorotoluene		1.0			0.005	1.0	ND	Chloroform
Dibromochloromethane ND 1.0 0.005 1,2-Dibromo-3-chloropropane ND 1.4 1,2-Dibromocthane (EDB) ND 1.0 0.005 1,3-Dichlorobenzene ND 1.4 1,2-Dichlorobenzene ND 1.0 0.005 1,3-Dichlorobenzene ND 1.4 1,4-Dichlorocthane ND 1.0 0.005 1,2-Dichlorocthane ND 1.4 1,1-Dichlorocthane ND 1.0 0.005 1,2-Dichlorocthane (1,2-DCA) ND 1.4 1,1-Dichlorocthene ND 1.0 0.005 1,2-Dichloropthane ND 1.4 1,1-Dichlorocthene ND 1.0 0.005 1,2-Dichloroptropane ND 1.4 1,3-Dichloropropane ND 1.0 0.005 1,2-Dichloropropane ND 1.4 1,3-Dichloropropane ND 1.0 0.005 1,2-Dichloropropane ND 1.4 1,3-Dichloropropene ND 1.0 0.005 1,2-Dichloropropane ND 1.4 1,3-Dichloropropene ND 1.0 0.005 1,2-Dichloropropane ND 1.4 1,3-Dichloropropene ND 1.0 0.005 1,3-Dichloropropene ND 1.4 1,3-Dichloropropene ND 1.0 0.005 1,3-Dichloropropene ND 1.4 1,4-Dichloropropene ND 1.0 0.005 1,4-Isopropyl ether (DIPE) ND 1.4 1,4-Dichloropropene ND 1.0 0.005 1,4-Isopropyl ether (ETBE) ND 1.4 1,4-Dichloropropene ND 1.0 0.005 1,4-Isopropyl toluene ND 1.4 1,4-Dichlorocthane ND 1.0 0.005 1,4-Isopropyl toluene ND 1.0 1,4-	0.005	1.0	ND	4-Chlorotoluene		1.0	ND	2-Chlorotoluene
1,2-Dibromoethane (EDB) ND 1,0 0.005 Dibromomethane ND 1,0 1,2-Dichlorobenzene ND 1,0 0.005 1,3-Dichlorobenzene ND 1,4 1,4-Dichlorobenzene ND 1,0 0.005 Dichlorodifluoromethane ND 1,4 1,1-Dichlorocthane ND 1,0 0.005 1,2-Dichloroethane ND 1,0 1,1-Dichlorocthene ND 1,0 0.005 1,2-Dichloropropane ND 1,0 1,3-Dichloropropane ND 1,0 0.005 2,2-Dichloropropane ND 1,0 1,1-Dichloropropane ND 1,0 0.005 2,2-Dichloropropane ND 1,0 1,3-Dichloropropene ND 1,0 0.005 2,2-Dichloropropane ND 1,0 trans-1,3-Dichloropropene ND 1,0 0.005 Eithyloperichloropropane ND 1,0 Ethylbenzene ND 1,0 0.005 Eithyloperichloropropane ND 1,0 Ethylbenzene ND </td <td>0.005</td> <td>1.0</td> <td>ND</td> <td>1,2-Dibromo-3-chloropropane</td> <td>0.005</td> <td>1.0</td> <td>ND</td> <td></td>	0.005	1.0	ND	1,2-Dibromo-3-chloropropane	0.005	1.0	ND	
1,2-Dichlorobenzene ND 1,0 0.005 1,3-Dichlorobenzene ND 1,0 1,4-Dichlorochane ND 1,0 0.005 Dichlorodifluoromethane ND 1,0 1,1-Dichlorocthane ND 1,0 0.005 1,2-Dichlorocthane (1,2-DCA) ND 1,0 1,1-Dichlorocthene ND 1,0 0.005 cis-1,2-Dichlorocthane (1,2-DCA) ND 1,0 1,3-Dichlorocthene ND 1,0 0.005 cis-1,2-Dichlorocthene ND 1,0 1,1-Dichloropropane ND 1,0 0.005 2,2-Dichloropropane ND 1,0 1,1-Dichloropropene ND 1,0 0.005 cis-1,3-Dichloropropane ND 1,0 1,1-Dichloropropene ND 1,0 0.005 Eihyl tenr-butyl ether (DIPE) ND 1,0 Ethylbenzene ND 1,0 0.005 Eihyl tenr-butyl ether (ETBE) ND 1,0 Hexachlorothane ND 1,0 0.005 2-Hexachlorothane ND 1,0 Hexachlo	0.005	1.0	ND		0.005	1.0	ND	1.2-Dibromoethane (EDB)
1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1.6 1,1-Dichlorocthane ND 1.0 0.005 1,2-Dichloroethane (1,2-DCA) ND 1.4 1,1-Dichlorocthene ND 1.0 0.005 cis-1,2-Dichloroethene ND 1.0 trans-1,2-Dichlorocthene ND 1.0 0.005 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 1,1-Dichloropropene ND 1.0 0.005 Diisopropylether (DIPE) ND 1.4 trans-1,3-Dichloropropene ND 1.0 0.005 Eithyl tert-butyl ether (DIPE) ND 1.4 Ethylbenzene ND 1.0 0.005 Eithyl tert-butyl ether (ETBE) ND 1.0 Freon 113 ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.4 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.4 Isopropylbe	0.005	1.0	ND		0.005	1.0	ND	1,2-Dichlorobenzene
1,1-Dichloroethane ND 1.0 0.005 1,2-Dichloroethane (1,2-DCA) ND 1.0 1,1-Dichloroethene ND 1.0 0.005 cis-1,2-Dichloroethene ND 1.0 1,3-Dichloroethene ND 1.0 0.005 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 0.005 cis-1,3-Dichloropropane ND 1.0 1,1-Dichloropropane ND 1.0 0.005 Ethyl cert. DIF ND 1.0 1,1-D		1.0	ND		0.005	1.0	ND	
1,1-Dichloroethene ND 1.0 0.005 cis-1,2-Dichloroethene ND 1.0 trans-1,2-Dichloroethene ND 1.0 0.005 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.4 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.4 Freon 113 ND 1.0 0.05 Ethyl tert-butyl ether (ETBE) ND 1.4 Hexachloroethane ND 1.0 0.05 2-Hexanone ND 1.6 Isopropylbenzene ND 1.0 0.005 4-Isopropyl teluene ND 1.6 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 4-Methyl-t-butyl ether (MTBE	0.00	1.0	ND		141 1411 1 1	1.0	ND	1.1-Dichloroethane
trans-1,2-Dichlorocthene ND 1.0 0.005 1,2-Dichloropropane ND 1.0 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 Freon 113 ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 Nitrobenzene ND		1.0			0.005	1.0	ND	
1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.1 Ethylbenzene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.4 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.6 Freon 113 ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.6 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.6 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Methylene chloride ND 1.0 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 Styrene ND 1.0 0.005 Naphthalene ND 1.0 Toluene ND 1.0 0.005 <td></td> <td>1.0</td> <td>ND</td> <td></td> <td>0.005</td> <td>1.0</td> <td>•</td> <td>· · · · ·</td>		1.0	ND		0.005	1.0	•	· · · · ·
1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.1 Ethylbenzene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.4 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 Freon 113 ND 1.0 0.01 Hexachlorobutadiene ND 1.0 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 4-Mcthyl-2-pentanone (MIBK) ND 1.0 0.005 Methylene chloride ND 1.0 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 Styrene ND 1.0 0.005 Naphthalene ND 1.0 1,1,2-Tetrachloroethane ND 1.0 0.0	0.005	1.0	ND		0.005	1.0		
trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.4 Ethylbenzene ND 1.0 0.005 Ethyl terr-butyl ether (ETBE) ND 1.0 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Methylene chloride ND 1.0 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 Styrene ND 1.0 0.005 Naphthalene ND 1.0 Styrene ND 1.0 0.005 1.1,1,2-Tetrachloroethane ND 1.0 Toluene ND 1.0 0.005	E	1.0	ND			1.0	ND	
Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.6 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.6 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Methylene chloride ND 1.6 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 0.005 </td <td></td> <td>1.0</td> <td>ND</td> <td></td> <td>0.005</td> <td>1.0</td> <td>ND</td> <td>• •</td>		1.0	ND		0.005	1.0	ND	• •
Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.6 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.6 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2-Tetrachloroethane ND 1.0 0.005 1,2,3-Trichloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 0.005 Trich		1.0	ND		0.005	1.0	ND	
Hexachloroethane		1.0	ND		0.1	1.0	ND	-
Sopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 1.0 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 1.0 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 1.0 Naphthalene ND 1.0 N		1.0			*			
Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 Nitrobenzene ND 1.0 0.01 n-Propyl benzene ND 1.0 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 Trichlorofluoromethane ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 Vinyl Chloride ND	0.005	1.0	ND	4-Isopropyl toluene	0.005	1.0	ND	
4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 T,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0	0.005	1.0	ND		0.005		ND	,
Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 Toluene ND 1.0 0.005 1,2,3-Trichloroethane ND 1.0 1,2,4-Trichloroethane ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0	0.00	1.0	ND		0.005	1.0	ND	
Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 1,2,4-Trichloroethane ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0	0.005	1.0	ND		4	1.0	ND	• •
1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 1,2,4-Trichloroethane ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0		1.0	THE STATE OF THE S			1.0		
Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 1,2,4-Trimethylbenzene ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 Vinyl Chloride ND 1.0 0.003 Xylenes ND 1.0	0.00	1.0	ND		0.005	1.0	ND	*
1,2,4-Trichlorobenzene ND 1,0 0.005 1,1,1-Trichloroethane ND 1,0 1,1,2-Trichloroethane ND 1,0 0.005 Trichloroethene ND 1,0 Trichlorofluoromethane ND 1,0 0.005 1,2,3-Trichloropropane ND 1,0 1,2,4-Trimethylbenzene ND 1,0 0.005 1,3,5-Trimethylbenzene ND 1,0 Vinyl Chloride ND 1,0 0.003 Xylenes ND 1,0	4.0 May 2.000 A.0	1.0			0.005	1.0	ND	* * *
1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0		1.0			ate a conserva-			
Trichlorofluoromethane ND 1.0 0.005 1.2,3-Trichloropropane ND 1.0 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0		1.0	4		**			• •
1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0		1.0					and the second of the second	· ·
Vinyl Chloride ND 1.0 0.005 Xylenes ND 1.0		1.0		an Carlana a accesar de adende e e e e e e e e e e e e e e e e e				
a service of the serv		1.0						
Suitogate tecoveries (70)								A SOURCE STATE OF THE SECOND STATE OF THE SECO
%SS1: 91 %SS2: 94			Ω4		. Jane Me		01	0/881
%\$\$1: 91 76532: 94 %\$\$3: 101				70034.		21		

	Surrogate R		
%SS1:	91	%SS2:	94
%SS3:	101		

Comments:

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coclutes with another peak; &) low surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: Heintz	Date Sampled: 06/03/06
		Date Received: 06/05/06
1710 Franklin Street, Ste. 200	Client Contact: Morgan Gillies	Date Extracted: 06/05/06
Oakland, CA 94612	Client P.O.:	Date Analyzed: 06/08/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B

Analytical Method: SW8260B

Work Order: 0606075

Lab ID Client ID 0606075-013A SB-3-4

Matrix			Reporting	Soil .			Reportin
Compound	Concentration *	DF	Limit	Compound	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05
Acrylonitrile	ND .	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.00
Benzene	, ND	1.0	0.005	Bromobenzene	ND	1.0	0.00
Bromochloromethane	, ND	1.0	0.005	Bromodichloromethane	ND .	1.0	0.00
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.00
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.0
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.00
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.00
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.00
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.0
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.00
2-Chlorotaluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.00
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.00
1,2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.00
1,2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	; ND	1.0	0.00
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	, ND	1.0	0.00
1.1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.00
1.1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.00
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.00
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.00
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	; ND	1.0	0.00
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.00
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.00
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.00
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.00
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	, ND	1.0	0.00
Methyl-t-butyl ether (MTBE)	ND .	1.0	0.005	Methylene chloride	ND	1.0	0.00
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.00
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.00
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.00
1,1,2,2-Tetrachloroethane	ND .	1.0	0.005	Tetrachloroethene	ND	1.0	0.00
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.00
1,2,4-Trichlorobenzene	ND .	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.00
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND ND	1.0	0.00
Trichforofluoromethane	ND ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.00
1,2,4-Trimethylbenzene	ND	1.0	0.005	1 3 5 Trimethylbenzene	ND ND	1.0	0.00
Vinyl Chloride	ND ND	1.0	0.005	Xylenes	ND ND	1.0	
Y HOYT CHIOHOC	ND .	•			טאו	1.0	0.00
		Sur	rogate Re	ecoveries (%)			
%SS1:	82			%SS2:	92		
%SS3:	97						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP
extracts are reported in mg/L, wipe samples in μg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than \sim 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Comments:

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: Heintz	Date Sampled: 06/05/06
1710 5 . 141		Date Received: 06/05/06
1710 Franklin Street, Ste. 200	Client Contact: Morgan Gillies	Date Extracted: 06/06/06
Oakland, CA 94612	Client P.O.:	Date Analyzed: 06/06/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B

Analytical Method: SW8260B

Work Order: 0606075

Lab ID Client ID 0606075-018B SB-2-W

Matrix	<u> </u>			Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting
Acetone	ND<25	5.0	5.0	Acrolein (Propenal)	ND<25	5.0	5.0
Acrylonitrile	ND<10	5.0	2.0	tert-Amyl methyl ether (TAME)	ND<2.5	5.0	0.5
Benzene	14	5.0	0.5	Bromobenzene	ND<2.5	5.0	0.5
Bromochloromethane	ND<2.5	5.0	0.5	Bromodichloromethane	ND<2.5	5.0	0.5
Bromoform	ND<2.5	5.0	0.5	Bromomethane	ND<2.5	5.0	0.5
2-Butanone (MEK)	ND<10	5.0	2.0	t-Butyl alcohol (TBA)	ND<25	5.0	5.0
n-Butyl benzene	13	5.0	0.5	sec-Butyl benzene	3.9	5.0	0.5
tert-Butyl benzene	ND<2.5	5.0	0.5	Carbon Disulfide	ND<2.5	5.0	0.5
Carbon Tetrachloride	ND<2.5	5.0	0.5	Chlorobenzene	ND<2.5	5.0	0.5
Chloroethane	ND<2.5	5.0	0.5	2-Chloroethyl Vinyl Ether	ND<5.0	5.0	1.0
Chloroform	ND<2.5	5.0	0.5	Chloromethane	ND<2.5	5.0	0.5
2-Chlorotoluene	ND<2.5	5.0	0.5	4-Chlorotoluene	ND<2.5	5.0	0.5
Dibromochloromethane	ND<2.5	5.0	0.5	1,2-Dibromo-3-chloropropane	ND<2.5	5.0	0.5
1,2-Dibromoethane (EDB)	ND<2.5	5.0	0.5	Dibromomethane	ND<2.5	5.0	0.5
1,2-Dichlorobenzene	ND<2.5	5.0	0.5	1,3-Dichlorobenzene	ND<2.5	5.0	0.5
1,4-Dichlorobenzene	ND<2.5	5.0	0.5	Dichlorodifluoromethane	ND<2.5	5.0	0.5
1,1-Dichloroethane	ND<2.5	5.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND<2.5	5.0	0.5
L.I-Dichloroethene	ND<2.5	5.0	0.5	cis-1,2-Dichloroethene	ND<2.5	5.0	0.5
trans-1,2-Dichloroethene	ND<2.5	5.0	0.5	1,2-Dichloropropane	ND<2.5	5.0	0.5
1,3-Dichloropropane	ND<2.5	5.0	0.5	2,2-Dichloropropane	ND<2.5	5.0	0.5
1,1-Dichloropropene	ND<2.5	5.0	0.5	cis-1,3-Dichloropropene	ND<2.5	5.0	0.5
trans-1,3-Dichloropropene	ND<2.5	5.0	0.5	Diisopropyl ether (DIPE)	ND<2.5	5.0	0.5
Ethylbenzene	130	5.0	0.5	Ethyl tert-butyl ether (ETBE)	ND<2.5	5.0	0.5
Freon 113	ND<50	5.0	10	Hexachlorobutadiene	ND<2.5	5.0	0.5
Hexachloroethane	ND<2.5	5.0	0.5	2-Hexanone	ND<2.5	5.0	0.5
Isopropylbenzene	20	5.0	0.5	4-Isopropyl toluene	ND<2.5	5.0	0.5
Methyl-t-butyl ether (MTBE)	ND<2.5	5.0	0.5	Methylene chloride	ND<2.5	5.0	0.5
4-Methyl-2-pentanone (MIBK)	ND<2.5	5.0	0.5	Naphthalene	16	5.0	0.5
Nitrobenzene	ND<50	5.0	10	n-Propyl benzene	45	5.0	0.5
Styrene	ND<2.5	5.0	0.5	1,1,2-Tetrachloroethane	ND<2.5	5.0	0.5
1,1,2,2-Tetrachloroethane	ND<2.5	5.0	0.5	Tetrachloroethene	ND<2.5	5.0	0.5
Toluene	ND<2.5	5.0	0.5	1,2,3-Trichlorobenzene	ND<2.5	5.0	0.5
1,2,4-Trichlorobenzene	ND<2.5	5.0	0.5	1,1,1-Trichloroethane	ND<2.5	5.0	0.5
1,1,2-Trichloroethane	ND<2.5	5.0	0.5	Trichloroethene	ND<2.5	5.0	0.5
Trichlorofluoromethane	ND<2.5	5.0	0.5	1,2,3-Trichloropropane	ND<2.5	5.0	0.5
1,2,4-Trimethylbenzene	180	5.0	0.5	1,3,5-Trimethylbenzene	37	5.0	0.5
Vinyl Chloride	ND<2.5	5.0	0.5	Xylenes	12	5.0	0.5
		Sur	rogate Re	coveries (%)			
%SS1:	102			%SS2:	97		
%SS3:	95		············	- ······			

water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coefutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: Heintz	Date Sampled: 06/05/06
1710 Franklin Street, Ste. 200		Date Received: 06/05/06
Oakland CA 04612	Client Contact: Morgan Gillies	Date Extracted: 06/05/06
Oakland, CA 94612	Client P.O.:	Date Analyzed: 06/08/06-06/10/06

Semi-Volatile Organics by GC/MS (Basic Target List)*

Extraction Method: SW3510C

Analytical Method: SW8270D

Work Order: 0606075

Lab ID Client ID 0606075-018C

SB-2-W Water

Matri	X			Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acenaphthene	ND	1.0	10	Acenaphthylene	ND	1.0	10
Acetochlor	ND	1.0	10	Anthracene	ND	1.0	10
Benzidine	ND	1.0	50	Benzoic Acid	ND	1.0	50
Benzo(a)anthracene	ND	1.0	10	Benzo(b)fluoranthene	ND	1.0	10
Benzo(k)fluoranthene	ND	1.0	10	Benzo(g,h,i)perylene	ND	1.0	10
Benzo(a)pyrene	ND	1.0	10	Benzyl Alcohol	ND	1.0	20
1,1-Biphenyl	ND	1.0	10	Bis (2-chloroethoxy) Methane	ND	1.0	; 10
Bis (2-chloroethyl) Ether	ND	1.0	10	Bis (2-chloroisopropyl) Ether	ND	1.0	10
Bis (2-ethylhexyl) Adipate	ND	1.0	10	Bis (2-ethylhexyl) Phthalate	ND	1.0	10
4-Bromophenyl Phenyl Ether	ND	1.0	. 10	Butylbenzyl Phthalate	ND	1.0	10
4-Chloroaniline	ND	1.0	20	4-Chloro-3-methylphenol	ND	1.0	10
2-Chloronaphthalene	ND	1.0	10	2-Chlorophenol	ND	1.0	10
4-Chlorophenyl Phenyl Ether	ND	1.0	10	Chrysene	ND	1.0	10
Dibenzo(a,h)anthracene	ND	1.0	10	Dibenzofuran	ND	1.0	10
Di-n-butyl Phthalate	ND	1.0	10	1,2-Dichlorobenzene	ND	1.0	10
1,3-Dichlorobenzene	ND	1.0	10	1,4-Dichlorobenzene	ND	1.0	10
3,3-Dichlorobenzidine	ND	1.0	20	2,4-Dichlorophenol	ND	1.0	. 10
Diethyl Phthalate	ND	1.0	10	2,4-Dimethylphenol	ND	1.0	10
Dimethyl Phthalate	ND	1.0	10	4,6-Dinitro-2-methylphenol	ND	1.0	50
2,4-Dinitrophenol	ND	1.0	50	2,4-Dinitrotoluene	ND	0.1	10
2,6-Dinitrotoluene	ND	1.0	10	Di-n-octyl Phthalate	ND	1.0	10
1,2-Diphenylhydrazine	ND	1.0	10	Fluoranthene	ND	1.0	10
Fluorene	ND	1.0	10	Hexachlorobenzene	ND	1.0	10
Hexachlorobutadiene	ND	1.0	10	Hexachlorocyclopentadiene	ND	1.0	50
Hexachloroethane	ND	1.0	10	Indeno (1,2,3-cd) pyrene	ND	1.0	10
Isophorone	ND	1.0	10	2-Methylnaphthalene	140	10	10
2-Methylphenol (o-Cresol)	ND	1.0	10	3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	10
Naphthalene	440	10	10	2-Nitroaniline	ND	1.0	50
3-Nitroaniline	ND	1.0	50	4-Nitroaniline	ND	1.0	50
Nitrobenzene	ND	1.0	50	2-Nitrophenol	ND	1.0	50
4-Nitrophenol	ND	1.0	50	N-Nitrosodiphenylamine	ND	1.0	10
N-Nitrosodi-n-propylamine	ND	1.0	10	Pentachlorophenol	ND	1.0	50
Phenanthrene	ND	1.0	10	Phenol	ND	1.0	10
Pyrene	ND	1.0	10	1,2,4-Trichlorobenzene	ND	1.0	10
2,4,5-Trichlorophenol	ND	1.0	10	2,4,6-Trichlorophenol	ND	1.0	10
		Sur	rogate Re	ecoveries (%)			
%SS1:	103	4 4 4 4 5 1 1 1 mg	uw	%SS2:	113	Nac (1982 - 1986))	
%SS3:	98			%SS4:	89		
%\$\$5:	122)		%SS6:	113		

comments: i
water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP
tracts are reported in mg/1

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference.

^{#)} surrogate diluted out of range; &) low or no surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Client Project ID: Heintz

Date Sampled: 06/03/06

Date Received: 06/05/06

Client Contact: Morgan Gillies

Date Extracted: 06/05/06

Client P.O.:

Date Analyzed: 06/07/06-06/08/06

Lead by ICP*

xtraction method: SW3050	nΩ	,	analytical methods: 6010		Work Order	060607
Lab ID	Client ID	Matrix	Extraction	Lead	DF	% SS
0606075-001A	SB-2-4	S	TTLC	5.5	!	99
)606075-002A	SB-2-8	S	TTLC	ND	1	101
606075-003A	SB-2-11	. S .	TTLC	8.t	1	106
0606075-009A	SB-1-8	s	TTLC	ND		109
606075-013A	SB-3-4	S	TTLC	7.1	1	109
•						
•						;
						•
			• • • • • • • • • • • • • • • • • • • •			· F · · · ·
•						
:		:	· · · · · · · · · · · · · · · · · · ·			
•						i
		1 1		· · · · · · · · · · · · · · · · · · ·		ļ
			<u>. </u>		··· - · · · · · ·	
						

Reporting Limit for DF =1;	W	,	TTLC	NA		mg/L
ND means not detected at or above the reporting limit	S	;	TTLC	 5.0	1	mg/Kg

^{*}water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/soild samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

[#] means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0606075

EPA Method: SW8021B/8	BatchID: 22007			Spiked Sample ID: 0606042-006A						
Analyte	Sample	Spiked MS		MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)	
ringlyto	mg/Kg	mg/Kg	% Rec. % Rec.		% RPD	% Rec. % Rec.		% RPD	MS / MSD	LCS/LCSD
TPH(btex) [£]	ND	0.60	122	124	1.20	106	102	3.90	70 - 130	70 - 130
мтве	ND	0.10	103	97.5	5.07	103	101	1.57	70 - 130	70 - 130
Benzene	ND	0.10	98.7	98.6	0.0605	95.5	90.2	5.78	70 - 130	70 - 130
Toluene	ND	0.10	83.6	83.4	0.204	94.8	89.1	6.20	70 - 130	70 - 130
Ethylbenzene	ND	0.10	106	104	1.78	93.4	89.6	4.14	70 - 130	70 - 130
Xylenes	ND	0.30	100	96.3	3.74	82	85.3	3.98	70 - 130	70 - 130
%SS:	89	0.10	101	106	4.83	97	94	3.14	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22007 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606075-003A	6/03/06 9:55 AM	6/05/06	6/06/06 5:46 PM	0606075-005A	6/03/06 9:50 AM	6/05/06	6/06/06 5:52 AM
0606075-009A	6/03/06 12:10 PM	6/05/06	6/06/06 6:51 AM	!			

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.nccampbell.com E-mail: main@nccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0606075

EPA Method: SW8021B/	/8015Cm E	xtraction:	SW5030B	Batc	hID: 22024	Spiked Sar	Spiked Sample ID: 0606087-002a		
Analyte	Sample	le Spiked MS MSD		MS-MSD	MS-MSD LCS LCSD		LCS-LCSD Acceptance Criteria (%)		
Analyte	mg/Kg	mg/Kg	% Rec.	% RPD	% Rec. % F	Rec. % RPD	MS / MSD	LCS / LCSD	
TPH(biex) [£]	ND	0.60	105 102	2.70	98.4 i	00 . 1.60	70 - 130	70 - 130	
MTBE	ND	0.10	101 95.4	5.47	97.1 90	0.583	70 - 130	70 - 130	
Benzene	ND	0.10	95.6 92.6	3.17	90.4 91	0.911	70 - 130	70 - 130	
Toluene	ND	0.10	94.6 91.9	2.89	90.1 90	0.798	70 - 130	70 - 130	
Ethylbenzene	ND	0.10	93.2 92.9	0.339	90.6 91	.9 1.38	70 - 130	70 - 130	
Xylenes	ND	0.30	89.7 89.3	0.372	85.3 ; 88	3.83	70 - 130	70 - 130	
%SS:	97	0.10	106 88	18.6	98 10	04 5.94	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22024 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606075-010A	6/03/06 12:13 PM	6/05/06	6/06/06 7:22 PM	0606075-013A	6/03/06 12:45 PM	6/05/06	6/06/06 7:57 PM
0606075-015A	6/03/06 1:00 PM	6/05/06	6/06/06 8:31 PM				

MS = Matrix Spike: MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.nxcampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0606075

EPA Method: SW8021B/8015Cm Extraction: SW5030B					BatchID: 22019			Spiked Sample ID: 0606064-004A		
Analyte	Sample Spike		MS MS		D MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)	
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(btex) [£]	ND	60	112	103	8.10	107	104	2.53	70 - 130	70 - 130
MTBE	ND	10	93.8	108	14.3	102	102	. 0	70 - 130	70 - 130
Benzene	ND	10	105	82.9	23.8	89.4	92.2	3.07	70 - 130	70 - 130
Toluene	ND	10	102	85.3	17.6	92.3	94.5	2.38	70 - 130	70 - 130
Ethylbenzene	ND	10	106	104	1.22	92.1	95.5	3.68	70 - 130	70 - 130
Xylenes	ND	30	96	96.3	0.347	90	94	4.35	70 - 130	70 - 130
%SS:	116	10	105	99	5.29	103	105	2.67	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22019 SUMMARY

Sample ID Date Sampled Date Extracted Date Analyzed Sample ID Date Sampled Date Extracted Date Analyzed

0606075-018A 6/05/06 10:15 AM 6/07/06 6/07/06 2:25 PM

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample dituted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0606075

EPA Method: SW8015C	Extraction: SW3550C				BatchID: 21993			Spiked Sample ID: 0606015-001A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD
TPH(d)	5.8	20	111	110	1.07	106	106	0	70 - 130	70 - 130
%SS:	111	50	104	104	0	111	111	0	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 21993 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606075-003A	6/03/06 9:55 AM	6/05/06	6/07/06 5:16 PM	0606075-005A	6/03/06 9:50 AM	6/05/06	6/09/06 4:48 AM
0606075-009A	6/03/06 12:10 PM	6/05/06	6/06/06 2:12 AM	0606075-010A	6/03/06 12:13 PM	6/05/06	6/06/06 3:22 AM
0606075-013A	6/03/06 12:45 PM	6/05/06	6/06/06 6:50 AM	0606075-015A	6/03/06 1:00 PM	6/05/06	6/06/06 8:00 AM

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@nccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0606075

EPA Method: SW8015C	E	xtraction:	SW3510C	Batch	nID: 22010		Spiked San	nple ID: N/A	,
Analyte	Sample	Spiked	MS MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
	μg/L	μg/L	% Rec. % Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(d)	N/A	1000	N/A N/A	N/A	98.3	96.3	2.02	N/A	70 - 130
%SS:	N/A	2500	N/A N/A	N/A	112	110	1.38	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22010 SUMMARY

Sample ID

Date Sampled

Date Extracted

Date Analyzed Sample ID

Date Sampled

Date Extracted

Date Analyzed

0606075-018A

6/05/06 10:15 AM

6/05/06

6/06/06 9:11 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

AA QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0606075

EPA Method: SW8260B	E	xtraction	: SW5030	В	Batc	hID: 22017	•	Spiked San	nple ID: 060	6060-017A
Analyte	Sample	Spiked	мѕ	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
Allalyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
tert-Amyl methyl ether (TAME)	ND	0.050	97.5	98.6	1.18	100	98	2.00	70 - 130	70 - 130
Benzene	ND	0.050	115	115	0	117	115	2.32	70 - 130	70 - 130
t-Butyl alcohol (TBA)	ND	0.25	106	109	3.07	109	104	4.56	70 - 130	70 - 130
Chlorobenzene	ND	0.050	87.7	87.7	0	89.1	88.4	0.788	70 - 130	70 - 130
1,2-Dibromoethane (EDB)	pethane (EDB) ND 0.050 108		109	1.10	111	109	1.46	70 - 130	70 - 130	
1,2-Dichloroethane (1,2-DCA)	ND	0.050		99.7	0.778	101	98.5	2.45	70 - 130	70 - 130
1,1-Dichloroethene	ND	0.050	118	115	3.00	116	114	2.03	70 - 130	70 - 130
Diisopropyl ether (DIPE)	ND	0.050	101	101	0	103	101	1.53	70 - 130	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	0.050	92.1	92.7	0.619	94	92.1	2.06	70 - 130	70 - 130
Methyl-t-butyl ether (MTBE)	ND	0.050	95.1	95.5	0.342	96.2	93.8	2.51	70 - 130	70 - 130
Toluene	NĐ	0.050	103	103	0	105	103	1.88	70 - 130	70 - 130
Trichloroethene	ND	0.050	81.5	81.6	0.130	83.4	80.6	3.50	70 - 130	70 - 130
%SS1:	97	0.050	103	101	1.73	103	100	2.80	70 - 130	70 - 130
%SS2:	98	0.050	99	99	0	100	99	0.106	70 - 130	70 - 130
%SS3:	100	0.050	106	106	0	106	106	0	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22017 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606075-003A	6/03/06 9:55 AM	6/05/06	6/07/06 3:09 PM	0606075-005A	6/03/06 9:50 AM	6/05/06	6/07/06 5:13 AM
0606075-009A	6/03/06 12:10 PM	6/05/06	6/07/06 5:57 AM	0606075-013A	6/03/06 12:45 PM	6/05/06	6/08/06 4:53 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0606075

EPA Method: SW8260B	E	xtraction	SW5030	В	Batch	hID: 22016	i	Spiked San	npie ID: 060	6060-006A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
ritalyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS/LCSD
tert-Amyl methyl ether (TAME)	ND	10	103	105	1.34	96.6	102	5.14	70 - 130	70 - 130
Benzene	ND	10	116	118	1.79	115	119	3.55	70 - 130	70 - 130
t-Butyl alcohol (TBA)	ND	50	110	103	6.34	99.1	94.8	4.46	70 - 130	70 - 130
Chlorobenzene	ND	10	91.8	91.7	0.116	88.1	90.7	2.99	70 - 130	70 - 130
1,2-Dibromoethane (EDB)	ND	10	113	116	2.04	106	112	5.18	70 - 130	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	105	105	0	99.4	103	3.85	70 - 130	70 - 130
1,1-Dichloroethene	ND	10	116	118	1.84	115	119	2.83	70 - 130	70 - 130
Diisopropyl ether (DIPE)	ND	10	106	108	1.80	101	105	3.53	70 - 130	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	96.8	99.7	2.95	91	95.9	5.21	70 - 130	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	100	104	3.72	93.7	99.8	6.37	70 - 130	70 - 130
Toluene	ND	10	106	108	2.24	104	106	2.31	70 - 130	70 - 130
Trichloroethene	ND	10	85.3	86.1	0.850	81.9	84.3	2.89	70 - 130	70 - 130
%SS1:	117	10	103	101	1.43	102	101	0.965	70 - 130	70 - 130
%SS2:	102	10	98	99	1.22	100	100	; 0	70 - 130	70 - 130
%SS3:	108	10	105	106	1.38	106	106	0	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22016 SUMMARY

Sample ID

Date Sampled

Date Extracted

Date Analyzed S

Date Sampled

Date Extracted

Date Analyzed

0606075-018B

6/05/06 10:15 AM

6/06/06

6/06/06 2:08 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8270D

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0606075

EPA Method: SW8270D	Ε	xtraction	SW3510	С	Batc	hID: 21980)	Spiked San	nple ID: N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptanc	e Criteria (%)
r wildly to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
Acenaphthene	N/A	50	N/A	N/A	N/A	87	85.9	1.21	N/A	30 - 130
4-Chloro-3-methylphenol	N/A	100	N/A	N/A	N/A	89.7	92.2	2.76	N/A	30 - 130
2-Chlorophenol	N/A	100	N/A	N/A	N/A	92.8	92.9	0.0485	N/A	30 - 130
1,4-Dichlorobenzene	N/A	50	N/A	N/A	N/A	84.1	83.8	0.405	N/A	30 - 130
2,4-Dinitrotoluene	N/A	50	N/A	N/A	N/A	83.7	83.7	0	N/A	30 - 130
4-Nitrophenol	N/A	100	N/A	N/A	N/A	84	84.3	0.303	N/A	30 - 130
N-Nitrosodi-n-propylamine	N/A	50	N/A	N/A	N/A	108	109	0.175	N/A	30 - 130
Pentachlorophenol	N/A	100	N/A	N/A	N/A	66.1	68.6	3.64	N/A	30 - 130
Phenol	N/A	100	N/A	N/A	N/A	90.7	90.9	0.226	N/A	30 - 130
Pyrene	N/A	50	N/A	N/A	N/A	100	99.2	1.10	N/A	30 - 130
1,2,4-Trichlorobenzene	N/A	50	N/A	N/A	N/A	76	75.8	0.329	N/A	30 - 130
%SS1:	N/A	5000	N/A	N/A	N/A	103	103	0	N/A	30 - 130
%SS2:	N/A	5000	N/A	N/A	N/A	108	108	0	N/A	30 - 130
%\$\$3:	N/A	5000	N/A	N/A	N/A	118	118	. 0	N/A	30 - 130
%SS4:	N/A	5000	N/A	N/A	N/A	97	96	0.378	N/A	30 - 130
%SS5:	N/A	5000	N/A	N/A	N/A	124	126	0.991	N/A	30 - 130
%SS6:	N/A	5000	N/A	N/A	N/A	114	114	0	N/A	30 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 21980 SUMMARY

Sample ID

Date Sampled Date Extracted

acted Date Analyzed

Sample ID

Date Sampled

Date Extracted

Date Analyzed

0606075-018C 6/05/06 10:15 AM

6/05/06

6/08/06 11:45 PM

0606075-018C

6/05/06 10:15 AM

6/05/06

6/10/06 12:47 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR 6010C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0606075

EPA Method: 6010C	·	Extrac	tion: SW	3050B		Batch	ID: 22014		Spiked Samp	ole ID: 0606	023-004A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	⊢% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
Lead	ND	50	110	101	9.15	10	95.8	110	13.8	75 - 125	80 - 120
%SS:	106	250	104	113	8.76	250	109	109	0	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 22014 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606075-001A	6/03/06 9:40	AM 6/05/06	6/08/06 11:34 AM	0606075-002A	6/03/06 9:45	AM 6/05/06	6/08/06 11:37 AM
0606075-003∧	6/03/06 9:55	AM 6/05/06	6/07/06 4:15 PM	06060 75- 009A	6/03/06 12:10	PM 6/05/06	6/07/06 4:19 PM
0606075-013A	6/03/06 12:45	PM 6/05/06	6/07/06 4:24 PM				1

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0606075

ClientID: PEO

EDF: NO

Report to:

Morgan Gillies

TEL:

(510) 836-3700

FAX:

(510) 836-3709

ProjectNo: Heintz PO: Bill to:

Requested TAT:

5 days

Bob Clark-Riddell

Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Date Received:

06/05/2006

Date Printed:

06/05/2006

								Re	queste	Tests (S		end be	low)			
Sample ID	ClientSamplD	Matrix	Collection Date	Hold	1	2	3	. 4	5	6	7	8	9	10	. 11	12
0606075-001	SB-2-4	Soil	6/3/06 9:40:00 AM													
0606075-002	SB-2-8	Soil	6/3/06 9:45:00 AM	1 🗂 –						A		:				
0606075-003	SB-2-11	Soil	6/3/06 9:55:00 AM		Α	-		A		Α						
0606075-005	SB-2-16	Soil	6/3/06 9:50:00 AM		A		•	A	1		• •	1			•	
0606075-009	SB-1-8	Soil	6/3/06 12:10:00 PM		Α	·		Α	:	Α,						
0606075-010	SB-1-12	Soil	6/3/06 12:13:00 PM					A		:						
0606075-013	SB-3-4	Soil	6/3/06 12:45:00 PM		Α	:	1	A		Α		Ť		1	• • • •	:
0606075-015	SB-3-12	Soil	6/3/06 1:00:00 PM			· · · - · · ·		Α					- 	·····	Ţ	
0606075-018	SB-2-W	Water	6/5/06 10:15:00 AM	́ Г		В	С		A					·	· · · · · · · · · · · · · · · · · · ·	

Test Legend:

1 8260B_S	2 8260B_W	3 8270D_W	4 G-MBTEX_S	5 G-MBTEX_W
6 PB_\$	7	8	9:	10
11:	12		The second secon	

The following SampIDs: 0606075-003A, 0606075-005A, 0606075-009A, 0606075-010A, 0606075-013A, 0606075-015A, 0606075-018A contain testgroup. Please make sure all relevant testcodes are reported. Many thanks.

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

M	IcCAMP	BELL	ANA	LY	ΓIC	Al	L, I	NC						<u> </u>				C	H	Al	N	O	F (CU	ST	O'	DY	R	E	\overline{CC}	RI	D	
		PACHE	CO, CA 94	1553-55	60									T	UF	EN.	AR	JO.	JNI	D T	'IM	E		ζ	3		3		[_			×
Web:	site: <u>www.mc</u> ne: (925) 798	<u>campbell</u> 2-1620	l.com Em	ail: m										FI)E I	Requ	iiro	.d9 4	امه^	[4 Z	N (~	I		RU			HR			HR		72 HR	5 DAY
Report To: Morg		-1020		Bill T				5) 79	78-1	022				-		· · ·		u. v						No		Vrit	e O	n (1)W)		No		
Company: Pange		ental Se			U. I	aug	ca								-	Ţ		·	A	Ana	lysi	Re	que	st			,			1	Othe	<u>er</u>	Comments
1710 Franklin Str					2										1	<u> </u>		•			:					:		i					Filter
				E-Ma		gilli	es(a)	nang	eae	nv.	com			8015)/MTBE	1	3&	_	į	ĺ		į					2	į					1 1	Samples
Tele: (510) 836-3'	702			Fax:								<u></u>		5)/M	:	S.F.I	18.1	ļ	!	İ	!	:	Ì			/8310	!	i			İ		for Metals
Project #:				Proje	ct Na	mea	De	Hin	A.124	A	ash	ile	int	98		30 E	ns (4	į	6	;	İ					8270	İ						analysis:
Project Location:					26						de	lene	10	\$: 	e (55	rbo	1	802		1.7	i				. ~	ି ହ	9					Yes / No
Sampler Signatur	е:												·	02/8		reas	roca	i	7	1	Ó	!			V	A 625	3	603	16	1			
		SAM	Ontainer S NA LAN AND AND AND AND AND AND AND AND AND A										ED D	Gas (602/8020	8015)	% IIC	n Hyd	/ 8021	EPA 6		PCB'		_	8260	8270	oy E.P.	(6010	0109	9/6.0	Scan	Ź		
SAMPLE ID (Field Point Name)	LOCATION	Date	Date Lime # Containers # Containers # Containers # Containers # Containers # Containers										Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petrolcum Oil & Grease (5520 E&F/B&F)	Total Petrolcum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624	EPA 525 / 625 / 8270	PAH'S / PNA'S by EPA	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)	TPH SE	1111		
SB-2-4		6/3	940	17		1	V	_	+	↖	十一	-	<u> </u>								 	-	-	╁	-	-	-	-		 	4	-	
56-2-8	· 	7		-	1	+	\hat{i}		+-	10	•									-	ļ	ļ.,	ļ			ļ				}	<u> </u>		
SB-2-11		1	955	11	 	+-	+		+		 	-										-	-		ļ			ļ 	X	ļ	ļ		
53-2-12	·-·		7+7	+	-	-		+	+	+	+-									ļ	ļ	<u> </u>		X	ļ			ļ	X	X			
50-7-11		 - - 	950	╂╂╌		╁				+}	 										ļ	ļ	<u> </u>		,								HOLD
50 7-70		 	1	H	 	+-		+	\perp	#	-				·						 	ļ <u>.</u>	ļ	X	ļ	i		ļ		X			生 加多 300
CB 2 21	·	 	953	1	 	-	\Box		_	11											ļ	ļ	<u> </u>										HOLD
2P 2 27			ICCO			4_				\coprod	<u> </u>																						HOLD
20-4-2			1005		ļ	4_			ļ		-										!												HOLD
58-1-8			1210			<u> </u>	15 m	_									1							X					X	X		•	Efhits quan
1-1-1/2			1213	1									-	. [`						X	1-1		Fatt and
SB-1-16		7,000	1215				ale a series												•••											<u> </u>	-		1/0/0
SB-1-20		***	1220	and the same					-	17							t												 	 -		 -	iles D
58-3-4	. ""	Pr. Square	1245	· Property		1.			\dagger	1			1	T																	*-	- 13	This aught
58-3-8			1250	- 1		1	1	+		IJ			-		- i				\rightarrow											Д			20-2-00
Relinguished By:		Date:	Time:	Rece	yed E	ـــــــــــــــــــــــــــــــــــــ				T	<u> </u>		\dashv	ICE	/t°	. /							L			<u> </u>		000	لييا				HOLD
	1	15/0	1247	1				-//	for-	K				GO	OD (CON				_/			in se		L	-L				INTS		^	ا برص
Refinquished By:		Date:				- 1	DE(CHE PROI	PAC ORII PRIA IVEI	NAT.	ED I CON	N LA	V AB NEF	- RS_\	7_								ses ly.		9} nº	TPH-Saun							
Relinquished By:		Date:						EVA?		VO.		 / 08	G.	ME pH<	TAI 2	s ·	OTH	ER															

		PACH	AVENUE : ECO, CA 9	SOUTE 4553-5	H, #107 5560	•									ΓU	RN	AB	(O)	CH	Al	N IM	OI F	7 C	CU	ST	Ol	DY	R	E C	ço	RD	1
Wel	osite: <u>www.me</u>	ccampbe	ll.com Er	nail: n	nain@	mcc	tink:	bell.	com					ł										RUS	Н	24	HR		48 1	HR	72 H	
Report To: Mor	ne: (925) 798 gan Gillies	8-1020		Bill T	Pos. D	Fax	: (9:	25) 7	98-1	622	2			E	DF	Req	uire	ed?	Coe	it (Nor	mal)	No	V	Vrit	e Oı	ı (D	W)	N		Juni
Company: Pang		iental S	ervices l	Dis i	0; r	ang	ea							╁			,	,	, 1	Ana	lysis	Re	que	st							Other	Comments
1710 Franklin St	reet, Suite 20	00, Oak	dand. CA	9461	12									┨				İ					Ì			ĺ		Ì				
				E-Ma		gilli	es@	nan	7696		COR			置		(F.F.	_	1		ĺ			ŀ	ļ	ļ	0	1	į l	}			Filter Samples
Tete: (510) 836-3			····	Fax:	(510	83	6-37	09	<u>ş</u> ca c	,11 T .	CUII			S)/MTBE	1	EF/B	18.1				1					831			١,			for Metals
Project #: -				Proje								H	أماز			10 E	S (4					İ		-		8270 / 8310						analysis:
Project Location:					630	<u>ر</u> ، <u> </u>	heit	LJ	c A	ريضا	0	k	2.00	X ±	1	(55)	pou		970		1					. ~	9	=				Yes / No
Sampler Signatur	е:			ددت.	<u>,, — ; ;</u>	<u> </u>	2/80	ĺ	rase	003		27/8		Ö			1		625	697	920	<u>ē</u>										
		SAM	IPLING	MET RES	THO	DD VFD	Gas (602/8020 +	015)	18 G	Hydr	8021	PA 60		CB's		1	8260	9.7	EPA	6010	010	09/6	7,2									
SAMPLE ID (Field Point Name)	LOCATION	Date	ate Time # Container X X X X X X X X X X X X X X X X X X X										Other	TPH as		Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624	EPA 525 / 625 8	PAH's / PNA's by EP	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)	TPH Scan		
SB-3-12		43	1300	1	14.4	*		_	+-	t	+-	┿	+	-	 	<u> </u>	<u> </u>	_	ļ <u> </u>	-				121	<u> </u>	<u>a</u>	0					
SB-3-16 SB-3-20 SB-2-W		1		┺—-	1: W	4-	+			12	-	┼		ļ. <u></u> .	 															X		It hits avail
58-3-70		1		+-/	++	+	X		┿	IX.	,	-																Ī				HOLD
33-7-10		11/2			172		X	_ -		1X	<u> </u>				L																	4010
F - 10		42	1015	8	1/x	4 巻			_	X	X	_											ľ	X	X				1	X		77
			-	1	 	L						L					i												<u> </u>			
				<u> </u>		<u> </u>																						-	1			
			ļ	ļ					_																							
			<u> </u>							Τ					1							+					\rightarrow			-		
										T																						
								7	+-	1																						
					1				-	1																_						
			†		 			+-	 	├-											-							_				
			 	<u> </u>	-					├					_																	
			 		 	\vdash		+-	+	ļ			4																			
Relinguished By:		Date	Time	Poss																				}								
		Date:	# 1_	1	ived in	Y: ,	بسيدين			· ·				CO	?/t⁴ ΟD (ON	nrci	ONI								·	C	OM	MEN	NTS:		
Relinquished By:		Date:	e: Time: Received By:											HE.	AÐ S CHL	PAC ORII	E AI	BSE! ED I	NT_ N LA	B_ NFD	- S	-										
Relinquished By:		Date:	Time:	Recei	ved B	y:			 -				\dashv	PRI	ESER	VEE) IN	LAB	AS			 MFT	AI C		A,tae	7 10						
		لـــــــا	L	me: Received By:												VAT	ION		4.0		 D	ис. Н<2	aLO	· ·	1 3 T L	LK.						1

CHAIN-OF-CUSTODY RECORD

1 of I

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0606075

ClientID: PEO

EDF: NO

Report to:

Morgan Gillies

Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

TEL: FAX:

(510) 836-3700 (510) 836-3709

ProjectNo: Heintz

PO:

Bill to:

Bob Clark-Riddell

Pangea Environmental Sycs., Inc. 1710 Franklin Street, Ste. 200

Oakland, CA 94612

Requested TAT:

Date Received:

06/05/2006 Date Add-On: 96/15/2006

5 days

Date Printed: 06/15/2006

							 			ested	Test	s (See le		v)					
Sample ID	ClientSampID	Matrix	Collection Date Hold	1		2	3	4	<u>I</u>	5	6	7	8	9	10	<u>, </u>	11	1	
	<u>.</u>				٠.														
0606075-002	SB-2-8	Soil	6/3/06 9:45:00 AM	Α	\prod	Α								 	T	T			

Test Legend:

1 8260B_S	2 G-MBTEX_S	3 TPH(DMO)_S	4	5
6	7	8	9	10
11	12			

Prepared by: Melissa Valles

Comments:

TPH Multi-Range and VOCs added on 6/15/06 72hr TAT per fax- Lab ID 002

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Pangea Envir	onmental Svcs., Inc.	Clie	ent Projec	t ID: Heintz	Date Sampled: 06/03.	/06	
1710 Franklin	Street, Ste. 200				Date Received: 06/05.	/06	
Oakland, CA	04612	Clie	ent Conta	ct: Morgan Gillies	Date Extracted: 06/15/	06	
Oakianu, CA	94012	Clie	ent P.O.:		Date Analyzed: 06/16	06	
Extraction method:		2) V		ydrocarbons as Gasoline with lytical methods: SW8021B/8015Cm		rk Order:	0606075
Lab ID	Client ID		Matrix	TPH(g)		DF	% SS
002A	SB-2-8		s	3.9,g,n		1	88
						<u> </u>	
		·					
-							
	,						
				,			
<u> </u>							
	porting Limit for DF =1;		w	NA		N	A
	means not detected at or pove the reporting limit		S	1.0		mg/	′Kg

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: Heintz	Date Sampled: 06/03/06
1710 Franklin Street, Ste. 200		Date Received: 06/05/06
Oakland, CA 94612	Client Contact: Morgan Gillies	Date Extracted: 06/15/06
Outrains, Cr. 74012	Client P.O.:	Date Analyzed: 06/19/06

		Client P.O.:		Date Analyzed: (06/19/06	
Dies Extraction method: SW3550			ectable Hydrocarbo thods: SW8015C	ns as Diesel and Motor ()il* Work Orde	r: 060607
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0606075-002A	SB-2-8	S	1.0,ь	ND	ı	101
·						
	·					

Reporting Limit for DF =1; ND means not detected at or	w	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m)

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: Heintz	Date Sampled: 06/03/06
		Date Received: 06/05/06
1710 Franklin Street, Ste. 200	Client Contact: Morgan Gillies	Date Extracted: 06/15/06
Oakland, CA 94612	Client P.O.:	Date Analyzed: 06/16/06

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B	Analytical Method: SW8260B	Work Order: 0606075
Lab ID	0606075-002A	
Client ID	SB-2-8	
Matrix	Soil	
0 1 0	Reporting Compound	Concentration * DE Reporting

Matrix	Soil	Soil						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.05	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.01	
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.005	
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	МД	1.0	0.005	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane	ND	1.0	0.005	
1.2-Dibromoethane (EDB)	ND	1.0	0.005	Dibromomethane	ND	1.0	0.005	
1.2-Dichlorobenzene	ND	1.0	0.005	1,3-Dichlorobenzene	ND	1.0	0.005	
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.005	
1.1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND _	1.0	0.005	
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.005	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	ND	1.0	0.005	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.005	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.005	
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.005	
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND	1.0	0.005	
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.005	
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene	ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride	ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene	ND	1.0	0.005	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene	ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	. 1.0	0.005	Tetrachioroethene	ND	4.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005	
1.2.4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005	
1.1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005	
Vinyl Chloride	ND	1.0	0.005	Xylenes	ND	1.0	0.005	
		Sur	rrogate R	ecoveries (%)				
%SS1:	10			%SS2:	98	3		
P/CC2	09	-						

%SS1:	100	%SS2:	98						
%SS3:	98								
<u> </u>									

water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620. Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0606075

EPA Method: SW8260B	E	xtraction	: \$W5030	В	BatchID: 22203			Spiked Sample ID 0606328-007A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
tert-Amyl methyl ether (TAME	ND	0.050	97.3	95.5	1.90	95.6	94.8	0.844	70 - 130	70 - 130
Benzene	ND	0.050	120	117	2.15	118	117	0.910	70 - 130	70 - 130
t-Butyl alcohol (TBA)	ND	0.25	97.1	94.5	2.70	95.4	92.4	3.23	70 - 130	70 - 130
Chlorobenzene	ND	0.050	89.5	88.4	1.28	88	87.9	0.0231	70 - 130	70 - 130
1,2-Dibromoethane (EDB)	ND	0.050	108	107	1.57	107	105	1.70	70 - 130	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	0.050	99.8	98.3	1.47	98.5	98	0.481	70 - 130	70 - 130
1,1-Dichloroethene	ND	0.050	120	119	0.690	119	118	0.802	70 - 130	70 - 130
Diisopropyl ether (DIPE)	ND	0.050	99.9	99.3	0.580	99.5	98.6	0.905	70 - 130	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	0.050	91.5	91	0.531	89.5	87.7	1.99	70 - 130	70 - 130
Methyl-t-butyl ether (MTBE)	ND	0.050	93.9	93.3	0.645	92.4	90.2	2.43	70 - 130	70 - 130
Toluene	ND	0.050	105	99.9	4.69	101	98.4	2.66	70 - 130	70 - 130
Trichloroethene	ND	0.050	83.9	81.9	2.38	83.3	81.1	2.60	70 - 130	70 - 130
%SS1:	79	0.050	102	100	1.92	101	99	1.57	70 - 130	70 - 130
%SS2:	90	0.050	96	95	1.58	95	94	0.671	70 - 130	70 - 130
%SS3:	101	0.050	103	102	0.719	102	102	0	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 22203 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606075-002A	6/03/06 9:45 AM	6/15/06	6/16/06 2:36 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

110 2nd Avenuc South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0606075

EPA Method: SW8021B/8015Cm Extraction: SW5030B				В	BatchID: 22201			Spiked Sample ID 0606327-016a		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Allayto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(btex)	ND	0.60	101	103	2.60	99.2	102	2.68	70 - 130	70 - 130
МТВЕ	ND	0.10	98.4	97.3	1.17	96.2	97.4	1.27	70 - 130	70 - 130
Benzene	ND	0.10	92.7	92.4	0.284	90.2	92.6	2.68	70 - 130	70 - 130
Toluene	ND	0.10	91.9	91.4	0.598	90.1	92.1	2.21	70 - 130	70 - 130
Ethylbenzene	ND	0.10	91	92.1	1.17	90.7	93.4	2.86	70 - 130	70 - 130
Xylenes	ND	0.30	82.7	89.3	7.75	88.7	89	0.375	70 - 130	70 - 130
%SS:	90	0.10	97	94	3.14	97	95	2.08	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 22201 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606075-002A	6/03/06 9:45 AM	6/15/06	6/16/06 2:02 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous, AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0606075

EPA Method: SW8015C	Ε	Extraction: SW3550C				BatchID: 22217			Spiked Sample ID 0606373-006A		
Analyte	Sample	Spiked mg/Kg	MS % Rec.	MSD % Rec.	MS-MSD % RPD	LCS % Rec.	LCSD % Rec.	LCS-LCSD % RPD	Acceptance Criteria (%)		
	mg/Kg								MS / MSD	LCS / LCSD	
TPH(d)	1.7	20	90.6	90	0.609	101	105	3.36	70 - 130	70 - 130	
%\$\$:	109	50	115	-99	15.3	109	103	5.47	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 22217 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0606075-002A	6/03/06 9:45 AM	6/15/06	6/19/06 8:05 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

APPENDIX E

Oakland Fire Service Records

AGENCY

Agency Director

14184

470-27th Street, Third Floor Oakland, California 94612 (415)

September 27, 1989

Automasters 6200 Shattuck Ave. Oakland, CA 94609

RE:6200 Shattuck Ave.

NOTICE OF LEGAL OBLIGATION

Dear owner/operator:

Our records indicate that there are underground tank(s) at your site at the above facility.

In accordance with the California Administrative Code, Title 23, Chapter 3, Subchapter 16 Underground Tank Regulations you must perform one of the following actions:

- 1. Submit a tank closure plan to this Department as required by Article 7, 2670, or
- 2. Apply for a permit as required by Article 10, 2710.

Notify this Department within 10 days of your intentions and to obtain the necessary instructions and forms.

Please note that section 25299 of the California Health and Safety Code states that any operator or owner of an undergound storage tank is liable for a civil penalty of not less than five hundred dollars or more than five thousand dollars per day for failure to obtain a permit, or failing to properly close an undergound storage tank, as required by section 25298.

If you have any questions concerning this matter, please contact Tom Peacock, Senior Hazardous Material Specialist, at 271-4320.

Sincerely,

Rafat A. Shahid, Chief,

Hazardous Materials Program

RAS:mnc

cc: Gil Jensen, Alameda County District Attorney, Consumer and Environmental Protection Agency

Lisa McCann, RWQCB

SINS

THE COPPLERED AND
THE COPPLERED AND
LICE TITLES COPPLERED
THE PLANTAGE THE PRINTERS
THE RESIDENCE THE PRINTERS

THE COLLECTIONS

WEIGHT WILLIAM

REPRESENTATIONS

THE COLLECTIONS

THE COLLECTION IN THE PROPERTY OF THE PROPE

PLANTER CHROPE THE

Continue to