RECEIVED

By Alameda County Environmental Health 10:41 am, Nov 30, 2013

November 27, 2017

Ms. Donna Drogos Alameda County Environmental Health 1131 Harbor Parkway, Suite 250 Oakland, CA 94502-6577

Subject:

Third Quarter 2017 Groundwater Monitoring Report

Shore Acres Gas

403 East 12th Street, Oakland, Alameda County, California

RO #0002931 ECG # GHA.19009

Dear Ms. Drogos:

Enclosed please find a copy of the October 23, 2017, *Third Quarter 2017 Groundwater Monitoring Report* for the above referenced site prepared by our consultant Environmental Compliance Group, LLC.

I declare, under penalty and perjury, that the information and/or recommendations contained in this report are true and correct to the best of my knowledge.

Respectfully,

Rashid Ghafoor

R-5 le

270 Vintage Drive Turlock, CA 95382 P: 209.664.1035 F: 209.664.1040

THIRD QUARTER 2017 GROUNDWATER MONITORING REPORT

SHORE ACRES GAS 403 EAST 12TH STREET OAKLAND, CALIFORNIA

Prepared for: Rashid Ghafoor

ECG Project Number: GHA.19009 Alameda County Fuel Leak Case No. RO0002931

October 23, 2017

MECHARI SGOURAKS AO. 7184

Drew Van Allen Senior Project Manager Michael S. Sgourakis Principal Geologist CA P.G. No. 7194

Mul S Syl

TABLE OF CONTENTS

Introduction	3
Limitations	3
Site Description and I	Hydrogeologic Conditions3
Site Description	3
Hydrogeologic Cond	ditions3
Project Background	4
Investigations	4
Risk Assessments	4
Corrective Actions.	4
Third Quarter 2017 M	onitoring Event5
	d Proposed5
Work Performed	Third Quarter 20175
Work Scheduled f	or Fourth Quarter 20175
Discussion of Recen	t Monitoring Activities5
Discussion of Recen	t Remediation Activities6
Results and Conclusio	ns6
Recomendations	6
Figures	
Figure 1:	Site Location Map
Figure 2:	Site Map
Figure 3:	Potentiometric Surface Map
Figure 4: Figure 5:	Rose Diagram TPHg in Groundwater Isoconcentration Map
Figure 6:	Benzene in Groundwater Isoconcentration Map
Figure 7:	MTBE in Groundwater Isoconcentration Map
_	*

Tables

Table 1:	Well Construction Details
Table 2a:	Historical Soil Analytical Data, TPH and BTEX
Table 2b:	Historical Soil Analytical Data, Oxygenates and Lead Scavengers
Table 3a:	Grab Groundwater Sample Results, TPH and BTEX
Table 3b:	Grab Groundwater Sample Results, Oxygenates and Lead Scavengers
Table 4a:	Monitoring Well Data, Water Level, TPH, and BTEX
Table 4b:	Monitoring Well Data, Oxygenates and Lead Scavengers
Table 5a:	Soil Vapor Extraction System Performance Calculations
Table 5b:	Soil Vapor Extraction Destruction Efficiency and Emission Calculations
Table 5c:	Groundwater Treatment System Performance Data

Appendices

Appendix A: Standard Operating Procedures
Appendix B: Laboratory Analytical Reports

Appendix C: Field Notes

INTRODUCTION

Environmental Compliance Group (ECG) has been authorized by Mr. Rashid Ghafoor to provide this report for the site.

This report describes activities conducted during Third Quarter 2017 groundwater monitoring event. Site information is as follows:

Site Location:

403 East 12th Street

Oakland, California

Geotracker Global ID:

T0600174667

LIMITATIONS

This report has been prepared for use by Rashid Ghafoor and the relevant regulatory agencies. The conclusions in this report are professional opinions based on the data presented in this report. This report was prepared in general accordance with hydrogeologic and engineering methods and standards. No other warranties are made as to the findings or conclusions presented in this report. The work described in this report was performed under the direct supervision of the professional geologist whose signature and State of California registration are shown above.

SITE DESCRIPTION AND HYDROGEOLOGIC CONDITIONS

SITE DESCRIPTION

The site occupies a parcel on the southeast corner of 4th Avenue and East 12th Street in Oakland, Alameda County, California (Figure 1). The site is situated in a commercial and residential area in central Oakland and is currently vacant. The site was historically used as a gasoline station. The area of interest at the site is the former location of three underground storage tanks (USTs) and fuel dispensers where impacted soil and groundwater was first identified in 2006. A detailed site plan is shown on Figure 2.

HYDROGEOLOGIC CONDITIONS

The site is underlain by Quaternary-age dune sand deposits referred to as the Merritt Sand. The Merritt Sand is typically described as loose, well-sorted fine- to medium-grained sand with a large silt component. The sand is reported to reach a maximum depth of 50-feet bgs in the area.

Based on boring logs from the advancement of 11 soil borings and the installation of six monitoring wells and four extraction wells, the stratigraphy of the site and vicinity consists of silt to approximately 30-feet bgs with discontinuous thin intervals of sandy silt and clayey sand present in the area.

Depth to groundwater is shallow, ranging between 8- to 14-feet bgs. The groundwater flow direction appears to be generally toward the southeast.

PROJECT BACKGROUND

INVESTIGATIONS

In July 2006, Geofon Incorporated (Geofon) advanced soil borings GP-1 and GP-2 and collected and analyzed soil samples. Results are detailed in Geofon's report entitled *Summary of Phase II Assessment Activities*, dated July 25, 2006.

In August 2009, Wright Environmental Services, Inc. (Wright) removed three USTs, associated fuel dispensers, and all associated piping. Results are detailed in Wright's *Closure Report for Three Underground Storage Tanks*, dated September 2009.

In April 2010, Apex Envirotech, Inc. (Apex) advanced nine soil borings to evaluate the lateral extent of impacted soil and groundwater. Results are documented in Apex's Subsurface Investigation Results Report dated June 23, 2010.

In June 2011, ECG supervised the installation of six groundwater monitoring wells (MW-1 through MW-6) and two extraction wells (EW-1 and EW-2). Results are documented in ECG's *Off-Site Investigation and Dual Phase Pilot Test Results with Fourth Quarter 2011 Monitoring Report*, dated January 26, 2012.

RISK ASSESSMENTS

In January 2011, ECG conducted a preferential pathway study for the site. Results are detailed in ECG's Site Assessment and Soil Vapor Extraction Pilot Test Workplan, dated February 9, 2011.

In January 2011, ECG conducted a sensitive receptor survey for the site. Results are detailed in ECG's Site Assessment and Soil Vapor Extraction Pilot Test Workplan, dated February 9, 2011.

A soil vapor survey has not been completed for the site.

CORRECTIVE ACTIONS

In June 2011, ECG supervised the installation of six groundwater monitoring wells (MW-1 through MW-6) and two extraction wells (EW-1 and EW-2). ECG also performed a 5-day dual phase extraction (DPE) test in June 2011. Results are documented in ECG's Off-Site Investigation and Dual Phase Pilot Test Results with Fourth Quarter 2011 Monitoring Report, dated January 26, 2012.

In May 2013, ECG supervised the installation of two extraction wells (EW-3 and EW-4). In September 2013, ECG installed the subsurface piping network from the remediation wells to the remediation compound and the subsurface conduit required by PG&E to install the electrical service required to operate the remediation compound.

In April 2014, the dual phase extraction system began operation. The DPE system includes a 25-horsepower liquid-ring blower capable of up to 400 standardized cubic feet per minute (scfm) flowrate, thermal/catalytic oxidizer, a conveyance piping network, and four individual extraction wells. The blower extracts vapors and groundwater from each extraction wells and through the conveyance piping where the impacted vapor is destroyed in the thermal/catalytic oxidizer prior to

discharge to the atmosphere and the groundwater is treated with an air stripper and granular activated carbon prior to discharge to the municipal sewer system.

The remediation system was started on April 30, 2014 and shut down on June 27, 2014 due to carbon change out requirements. The system was restarted on August 15, 2014. The remediation system was shut down on February 18, 2015 due to complaints from neighbors regarding the propane tank onsite providing supplemental fuel to the remediation equipment. ECG supervised the installation of natural gas provided by PG&E to the site and the system was restarted on August 11, 2015. The system was shut down on December 16, 2015 due to contaminant breakthrough of the first carbon vessel and scheduled carbon change out. The system was restarted January 21, 2016 and shut down on April 11, 2016 due to decreasing contaminant extraction rates and pending regulatory review of ECG's Fourth Quarter 2015 Monitoring and Remediation System Evaluation Report, dated August 1, 2016.

The DPE system is operated under Bay Area Air Quality Management District (BAAQMD) permit number 25354 and East Bay Municipal Utility District (EBMUD) Discharge Permit No. 68508758. The DPE system has removed approximately 8,434 pounds of TPHg, 39 pounds of benzene, and 2. pounds of MTBE from the subsurface.

THIRD QUARTER 2017 MONITORING EVENT

WORK PERFORMED AND PROPOSED

The following is a summary of work performed during the third quarter 2017 and work proposed for next quarter at the site.

WORK PERFORMED THIRD QUARTER 2017

1. The third quarter 2017 groundwater monitoring event was performed on September 28, 2017.

WORK SCHEDULED FOR FOURTH QUARTER 2017

- 1. Prepare and finalize third quarter 2017 monitoring report.
- 2. Prepare the Data Gap Investigation Work Plan and Site Conceptual Model requested by Alameda County in their correspondence dated August 11, 2017.

DISCUSSION OF RECENT MONITORING ACTIVITIES

ECG performed the third quarter 2017 groundwater monitoring and sampling event at the site on September 28, 2017. Gauging, development, purging, and sampling were conducted in accordance with ECG's SOPs included in Appendix A. The collected groundwater samples were submitted to CAL Labs located in Ceres, California for laboratory analysis under COC protocols (Appendix B).

The following is a summary of the current status of the groundwater monitoring program at the site:

Current Phase of Project: Groundwater Sampling Schedule: Post Remediation Semi-Annual

Wells MW-1 through MW-6, EW-1 through EW-4

Analysis:

TPHg by EPA Method 8015M, BTEX, 5

oxygenates, and 2 lead scavengers by EPA

Method 8260B

Is Free Product Present On-Site:

The following is a summary of recent field and analytical data:

Average Depth to Groundwater Average Groundwater Elevation 11.90-feet below ground surface (bgs) 19.34 -feet above mean sea level

Groundwater Gradient Direction

West southwest

Groundwater Gradient

0.0031

TPHg Detected Range Benzene Detected Range 1,900 ug/L (EW-2) to 22,000 ug/L (MW-1) 8.8 ug/L (EW-2) to 660 ug/L (MW-1)

3.0 ug/L (MW-2) to 130 (MW-1)

MTBE Detected

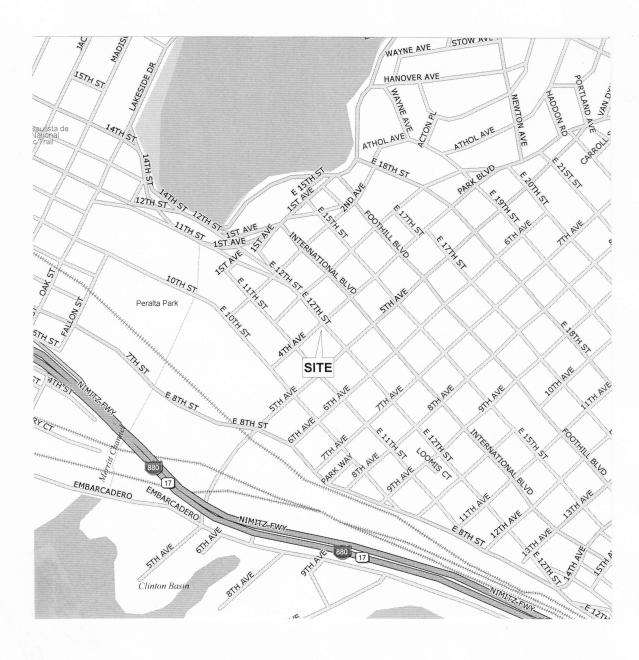
Laboratory analytical reports and COCs are provided in Appendix B. Field notes are located in

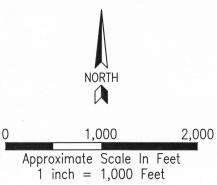
DISCUSSION OF RECENT REMEDIATION ACTIVITIES

Appendix C. Summaries of groundwater monitoring and analytical data are presented in Tables 4a.

The remediation system was shut down April 11, 2016 due to decreasing contaminant extraction rates and pending regulatory review of remediation system evaluation report. Summaries of remediation system operating parameters and analytical data are presented in Tables 5a, 5b, and 5c.

RESULTS AND CONCLUSIONS


Water levels and the gradient data were consistent with historical data. Tables 2a, 2b, 3a, 3b, 4a, and 4b tabulate the analytical data for soil and monitoring well sampling data. ECG will keep the remediation system shut down pending regulatory review of remediation system evaluation report. The next groundwater monitoring event will be in third quarter 2017.


RECOMENDATIONS

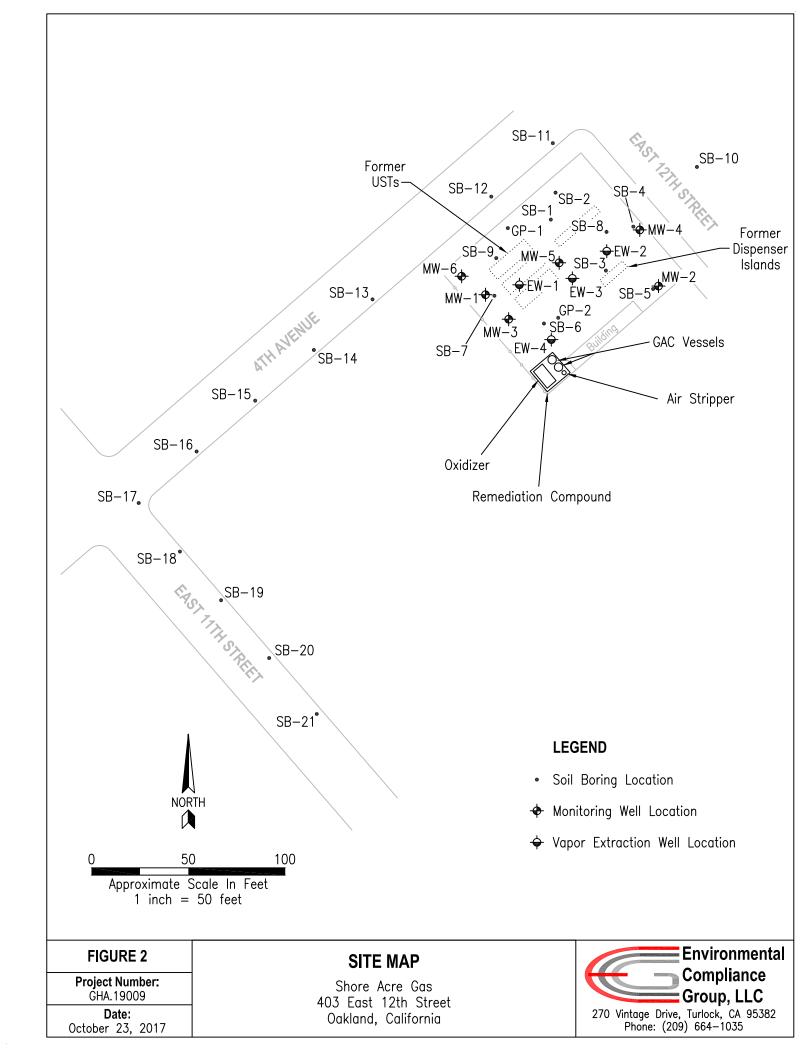
Water levels and the gradient data were consistent with historical data. Tables 2a, 2b, 3a, 3b, 4a, and 4b tabulate the analytical data for soil and monitoring well sampling data.

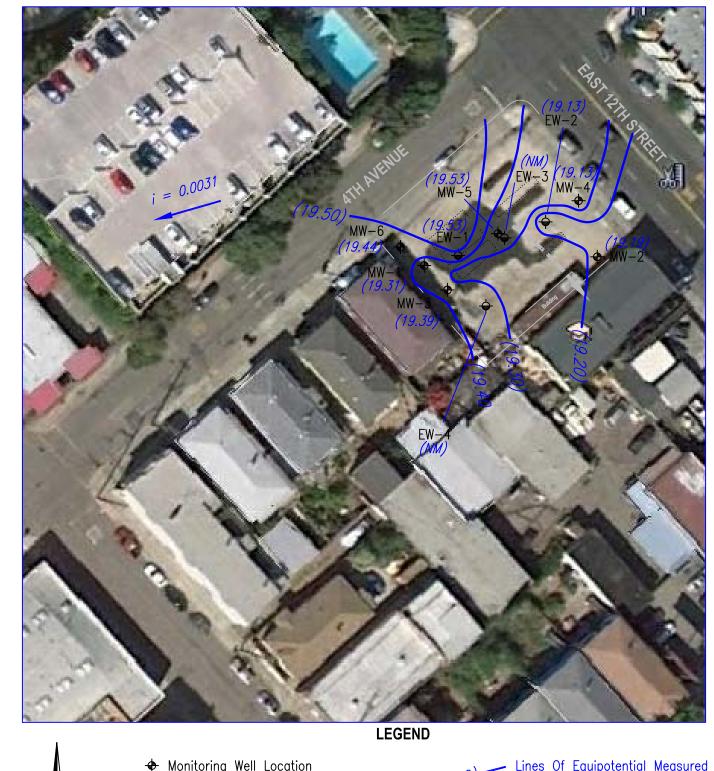
ECG is currently preparing the Data Gap Investigation Work Plan and Site Conceptual Model requested by Alameda County and will make further conclusions and recommendations in that document.

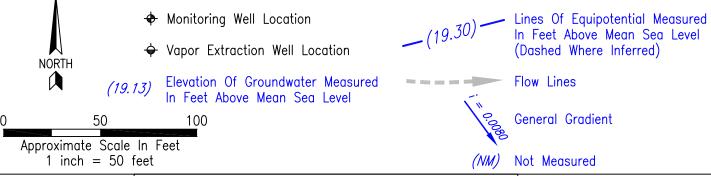
FIGURES

FIGURE 1

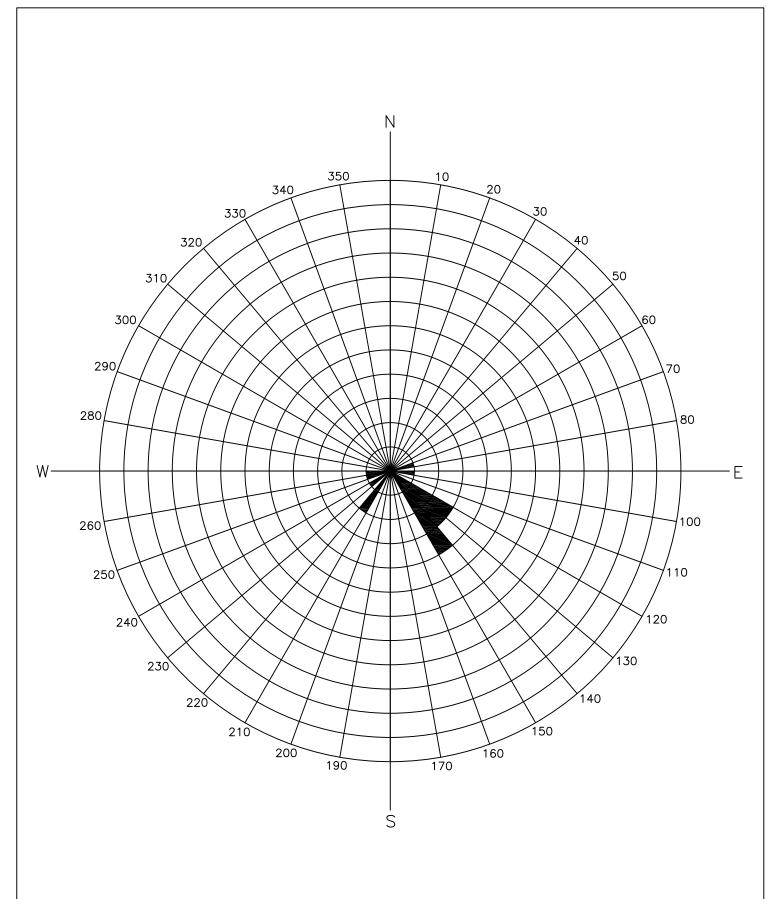
Project Number: GHA.19009


Date: February 9, 2011


SITE LOCATION MAP


Shore Acre Gas 403 East 12th Street Oakland, California

270 Vintage Drive, Turlock, CA 95382 Phone: (209) 664-1035


FIGURE 3

Project Number: GHA.19009

Date: November 16, 2017

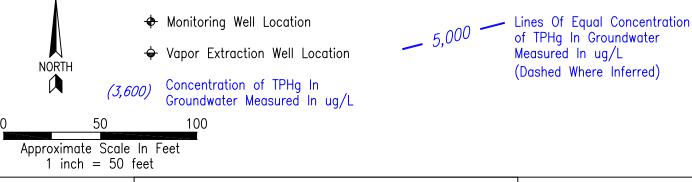
POTENTIOMETRIC SURFACE MAP SEPTEMBER 28, 2017

Thru 3rd Quarter 2017

FIGURE 4

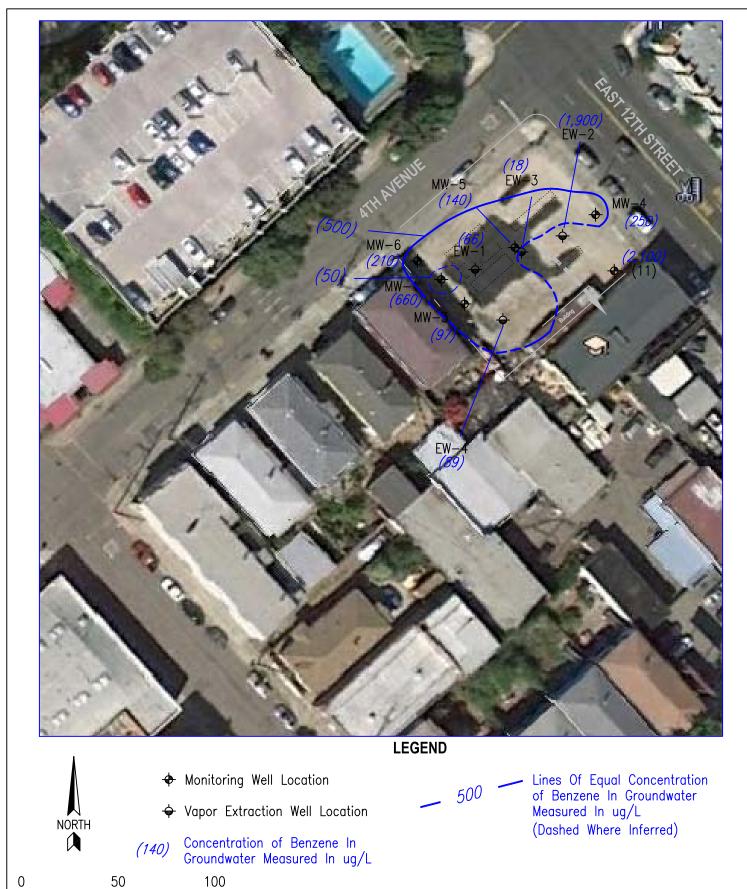
Project Number: GHA.19009

Date: November 16, 2017


ROSE DIAGRAM

Shore Acre Gas 403 East 12th Street Oakland, California

270 Vintage Drive, Turlock, CA 95382 Phone: (209) 664-1035

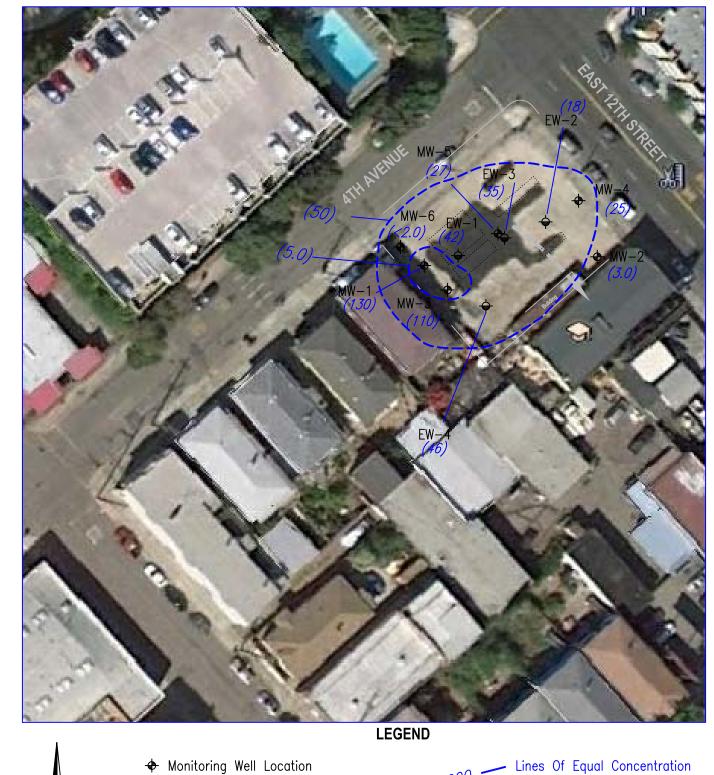

FIGURE 5

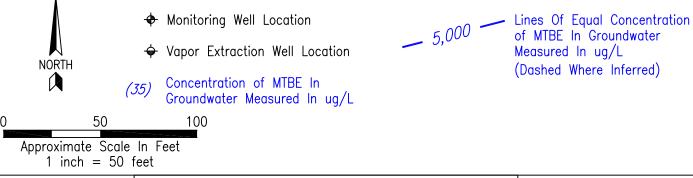
Project Number: GHA.19009

Date: November 16, 2017

TPHg IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 28, 2017

Approximate Scale In Feet 1 inch = 50 feet


FIGURE 6


Project Number: GHA.19009

Date: November 16, 2017

BENZENE IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 28, 2017

FIGURE 7

Project Number: GHA.19009

Date: November 16, 2017

MTBE IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 28, 2017

TABLES

Table 1 Well Construction Details

Shore Acres Gas 403 East 12th Street Oakland, California

Well ID	Date Installed	TOC Elevation (ft amsl)	Well Depth (ft bgs)	Casing Diameter (inches)	Casing Material	Screen/ Filter	Screen Interval (ft bgs)						
Monitoring	Monitoring Wells												
MW-1		30.81	20	2	PVC	0.020/#3	10-20						
MW-2	June 2011	31.29	20	2	PVC	0.020/#3	10-20						
MW-3		31.30	18	2	PVC	0.020/#3	8-18						
MW-4		31.21	19	2	PVC	0.020/#3	9-19						
MW-5	:	31.35	20	2	PVC	0.020/#3	10-20						
MW-6		30.79	20	2	PVC	0.020/#3	10-20						
Dual Phase I	Extraction We	ells											
EW-1	June 2011	31.46	20	4	PVC	0.020/#3	5-20						
EW-2	Julie 2011	31.43	20	4	PVC	0.020/#3	5-20						
EW-3	May 2012		20	6	PVC	0.020/#3	5-20						
EW-4	IVIAY ZUIZ		20	6	PVC	0.020/#3	5-20						

Notes:

TOC - denotes top of casing

ft - denotes feet

amsi - denotes above mean sea level

bgs - denotes below ground surface

PVC - denotes polyvinyl chloride

Table 2a Historical Soil Analytical Data TPH and BTEX

Boring ID	Sample	Collection	TPHd	TPHg	Benzene	Toluene	Ethyl-	Total
Ŭ	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	benzene	xylenes
	(feet)						(mg/kg)	(mg/kg)
UST Removal Sam								
SS-D1	2		1,800*	3,000	<0.25	0.34	39	180
SS-D2	2		900*	2,400	<0.25	<0.25	36	120
SS-D3	2	1 [460*	1,000	<0.15	<0.15	12	14
SS-D4	2] [540*	640	<0.090	1.0	6.1	51
SS-D5	2	1 [320	140	<0.025	<0.025	1.3	3.2
SS-D6	2.0	[320*	260	<0.025	0.054	1.0	8.0
SS-J1	2.0	August	39*	160	<0.025	<0.025	0.71	0.94
SS-Isle	4.0	August 2009	560*	100	<0.025	<0.025	0.30	0.084
SS-7	18.0	2009	310*	1,600	6.9	76	39	200
Tank 1-SS-1	14.0	1 [830*	2,500	4.2	100	69	360
Tank 1-SS-2	14.0] [62*	480	1.8	5.3	14	62
Tank 2-SS-1	14.0	1	120*	290	0.37	2.4	6.3	31
Tank 2-SS-2	14.0] [330*	80	0.074	0.051	1.2	5.8
Tank 3-SS-1	14.0		480*	2,100	2.4	41	62	320
Tank 3-SS-2	14.0		75*	130	0.23	0.26	3.1	15
Soil Borings		•						
GP-1-15.5	15.5		13.0	18.0	0.63	0.052	0.69	0.13
GP-1-18.0	18.0	July 2006	<1.0	<1.0	0.0056	0.0082	<0.005	0.019
GP-2-12.0	12.0] July 2000	600	3,600	17	180	98	440
GP-2-20.0	20.0		79	1,100	3.2	41	25	130
SB-1-9.5	9.5			1,600	5.1	43	30	180
SB-1-24.5	24.5] [<1.0	<0.005	<0.005	<0.005	<0.010
SB-1-29.5	29.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-2-9.5	9.5]		2.2	0.26	<0.010	0.066	<0.020
SB-2-24.5	24.5]		<1.0	<0.005	<0.005	<0.005	<0.010
SB-2-29.5	29.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-3-14.5	14.5]		17	17	100	42	240
SB-3-24.5	24.5]		<1.0	<0.005	0.005	<0.005	0.013
SB-3-29.5	29.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-4-14.5	14.5			1,700	13	79	28	170
SB-4-19.5	19.5	April 2010		<1.0	<0.005	0.009	<0.005	0.026
SB-4-29.5	29.5	_		<1.0	<0.005	<0.005	<0.005	<0.010
SB-5-14.5	14.5			470	<0.20	0.45	6.2	37
SB-5-24.5	24.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-5-29.5	29.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-6-9.5	9.5			6,100	21	170	95	580
SB-6-29.5	29.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-6-32	32.0			<1.0	<0.005	<0.005	<0.005	<0.010
SB-7-9.5	9.5]		4,000	12	46	55	360
SB-7-29.5	29.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-7-32	32.0	1		<1.0	<0.005	<0.005	<0.005	<0.010

Table 2a **Historical Soil Analytical Data TPH and BTEX**

Shore Acres Gas 403 East 12th Street Oakland, California

Boring ID	Sample	Collection	TPHd	TPHg	Benzene	Toluene	Ethyl-	Total
	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	benzene	xylenes
	(feet)			, 0. 0.			(mg/kg)	(mg/kg)
SB-8-9.5	9.5			2,500	16	110	63	370
SB-8-24.5	24.5		~~~	<1.0	<0.005	<0.005	<0.005	<0.010
SB-8-29.5	29.5	A: 1 2010		<1.0	<0.005	<0.005	<0.005	<0.010
SB-9-14.5	14.5	April 2010		390	3.0	3.0	9.1	41
SB-9-29.5	29.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-9-32	32.0			<1.0	<0.005	<0.005	<0.005	<0.010
Groundwater Well	S							
MW-1-5	5		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-1-15	15		<5.0	18	0.55	<0.050	0.87	1.2
MW-1-20	20		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-2-5	5		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-2-10	10]	<5.0	69	<0.005	<0.005	<0.005	<0.010
MW-2-15	15		<5.0	50	<0.050	0.48	3.1	19
MW-2-20	20		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-3-5	5		<5.0	<1.0	<0.010	<0.010	<0.010	<0.020
MW-3-10	10	1	<15	840	3.4	33	20	140
MW-3-15	15		<5.0	380	3.0	4.5	7.3	41
MW-3-20	20		<5.0	<1.0	0.019	<0.005	0.006	<0.010
MW-4-5	5		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-4-10	10		<15	420	1.7	2.6	9.2	51
MW-4-15	15	1	<5.0	3.1	0.036	0.20	0.15	0.95
MW-4-20	20	June 2011	<5.0	<1.0	0.007	0.017	0.010	0.039
MW-5-5	5	June 2011	<5.0	76	<0.10	<0.10	1.3	0.76
MW-5-10	10		<15	3,200	4.6	6.5	72	410
MW-5-15	15		<5.0	600	1.3	13	15	110
MW-6-5	5]	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-6-10	10		<5.0	5.1	0.015	<0.010	3.4	1.0
MW-6-15	15	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-6-20	20		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
VW-1-5	5	1	<5.0	34	<0.005	<0.005	0.16	0.31
VW-1-10	10]	<15	85	<0.10	<0.10	2.2	0.89
VW-1-15	15		<15	420	2.1	4.1	9.4	55
VW-1-20	20]	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
VW-2-5	5]	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
VW-2-10	10]	<5.0	130	<0.10	<0.10	2.9	15
VW-2-15	15		<15	5,500	29	430	120	910
VW-2-20	20		<5.0	<1.0	0.14	0.054	0.025	0.14
]						

Notes:

TPHd - denotes total petroleum hydrocarbons as diesel TPHg - denotes total petroleum hydrocarbons as gasoline mg/kg - denotes milligrams per kilogram

< - denotes less than the detection limit

--- denotes no data

GHA.19009

Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers

Boring ID	Sample	Collection	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
_	Depth	Date	(mg/kg)						
	(feet)			,					
UST Removal Sam	ples								
SS-D1	2		<0.25	<0.25	<0.25	<0.25	<1.5		
SS-D2	2	1	<0.25	<0.25	<0.25	<0.25	<1.5		
SS-D3	2	1	<0.15	<0.15	<0.15	<0.15	<0.70		
SS-D4	2	1	<0.090	<0.090	<0.090	<0.090	<0.50	***	
SS-D5	2	1	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-D6	2		<0.025	<0.025	<0.025	<0.025	<0.15		
SS-J1	2	1	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-Isle	4	August	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-7	18	2009	<0.25	<0.25	<0.25	<0.25	<1.5	<0.25	<0.25
Tank 1-SS-1	14	1	<0.50	<0.50	<0.50	<0.50	<2.5	<0.50	<0.50
Tank 1-SS-2	14	1	<0.040	<0.040	0.37	<0.040	0.51	<0.040	<0.040
Tank 2-SS-1	14	1	<0.050	<0.050	0.18	<0.050	0.35	<0.050	<0.050
Tank 2-SS-2	14	1	<0.025	<0.025	0.090	<0.025	0.16	<0.025	<0.025
Tank 3-SS-1	14	1	<0.50	<0.50	<0.50	<0.50	<2.5	<0.50	<0.50
Tank 3-SS-2	14	1	<0.025	<0.025	0.19	<0.025	0.15	<0.025	<0.025
Soil Borings	•			<u></u>					
GP-1-15.5	15.5		<0.005	<0.005	0.029	<0.005	0.27		
GP-1-18.0	18.0	1	<0.005	<0.005	0.54	<0.005	0.33		
GP-2-12.0	12.0	July 2006	<0.50	<0.50	<0.50	<0.50	<2.5		
GP-2-20.0	20.0	1	<0.025	<0.025	0.041	<0.025	<0.15		
SB-1-9.5	9.5		<0.80	<0.80	<0.80	<0.80	<8.0	<0.80	<0.80
SB-1-24.5	24.5		<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005
SB-1-29.5	29.5	1	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-2-9.5	9.5		<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
SB-2-24.5	24.5	1	<0.005	<0.005	0.053	<0.005	<0.050	<0.005	<0.005
SB-2-29.5	29.5	1	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-3-14.5	14.5		<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-3-24.5	24.5	1	<0.005	<0.005	0.10	<0.005	<0.050	<0.005	<0.005
SB-3-29.5	29.5		<0.005	<0.005	0.010	<0.005	<0.050	<0.005	<0.005
SB-4-14.5	14.5		<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0
SB-4-19.5	19.5	April 2010	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-4-29.5	29.5	1	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-5-14.5	14.5]	<0.20	<0.20	<0.20	<0.20	<2.0	<0.20	<0.20
SB-5-24.5	24.5	<u>-</u>	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-5-29.5	29.5	1	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-6-9.5	9.5	1	<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-6-29.5	29.5	1	<0.005	<0.005	0.20	<0.005	<0.050	<0.005	<0.005
SB-6-32	32.0	1	<0.005	<0.005	0.18	<0.005	<0.050	<0.005	<0.005
SB-7-9.5	9.5	1	<1.0	<1.0	4.0	<1.0	<10	<1.0	<1.0
SB-7-29.5	29.5	1	<0.005	<0.005	0.18	<0.005	<0.050	<0.005	<0.005
SB-7-32	32.0	1	<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005

Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

Boring ID	Sample	Collection	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
	Depth	Date	(mg/kg)						
	(feet)								
SB-8-9.5	9.5		<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-8-24.5	24.5] [<0.005	<0.005	0.033	<0.005	<0.050	<0.005	<0.005
SB-8-29.5	29.5	Aneil 2010	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-9-14.5	14.5	April 2010	<0.20	<0.20	5.5	<0.20	<2.0	<0.20	<0.20
SB-9-29.5	29.5	1 [<0.005	<0.005	0.090	<0.005	0.15	<0.005	<0.005
SB-9-32	32.0] [<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005
Groundwater Well	s								
MW-1-5	5		<0.005	<0.005	0.35	<0.005	0.093	<0.005	<0.005
MW-1-15	15] [<0.050	<0.050	1.1	<0.050	<0.50	<0.050	<0.050
MW-1-20	20		<0.005	<0.005	0.31	<0.005	0.58	<0.005	<0.005
MW-2-5	5		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-2-10	10]	<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
MW-2-15	15		<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
MW-2-20	20	1	<0.005	<0.005	0.006	<0.005	<0.050	<0.005	<0.005
MW-3-5	5]	<0.010	<0.010	1.5	<0.010	0.37	<0.010	<0.010
MW-3-10	10]	<0.80	<0.80	1.3	<0.80	<8.0	<0.80	<0.80
MW-3-15	15]	<0.20	<0.20	3.0	<0.20	<2.0	<0.20	<0.20
MW-3-20	20]	<0.005	<0.005	0.036	<0.005	0.16	<0.005	<0.005
MW-4-5	5]	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-4-10	10]	<0.40	<0.40	<0.40	<0.40	<4.0	<0.40	<0.40
MW-4-15	15].	<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
MW-4-20	20	June 2011	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-5-5	5	June 2011	<0.10	<0.10	<0.10	<0.10	<1.0	<0.10	<0.10
MW-5-10	10		<4.0	<4.0	<4.0	<4.0	<40	<4.0	<4.0
MW-5-15	15]	<0.40	<0.40	<0.40	<0.40	<4.0	<0.40	<0.40
MW-6-5	5]	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-6-10	10		<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
MW-6-15	15		<0.005	<0.005	0.026	<0.005	0.088	<0.005	<0.005
MW-6-20	20]	<0.005	<0.005	0.010	<0.005	0.37	<0.005	<0.005
VW-1-5	5		<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
VW-1-10	10		<0.10	<0.10	<0.10	<0.10	<1.0	<0.10	<0.10
VW-1-15	15		<0.40	<0.40	0.59	<0.40	<4.0	<0.40	<0.40
VW-1-20	20		<0.005	<0.005	0.009	<0.005	0.16	<0.005	<0.005
VW-2-5	5		<0.005	<0.005	0.25	<0.005	0.14	<0.005	<0.005
VW-2-10	10		<0.10	<0.10	0.33	<0.10	<1.0	<0.10	<0.10
VW-2-15	15		<4.0	<4.0	<4.0	<4.0	<40	<4.0	<4.0
VW-2-20	20		<0.005	<0.005	0.008	<0.005	0.26	<0.005	<0.005

Notes:

mg/kg - denotes milligrams per kilogram MTBE - denotes methyl tertiary butyl ether

< - denotes less than the detection limi DIPE - denotes di-isopropyl ether

--- - denotes not analyzed/applicable ETBE - denotes ethyl tertiary butyl ether

DCA - denotes dichloroethane

TAME - denotes tertiary amyl ether

EDB - denotes ethylene dibromide

TBA - denotes tertiary butyl alcohol

Table 3a Grab Groundwater Sample Results TPH and BTEX

Shore Acres Gas 403 East 12th Street Oakland, California

Sample ID	Collection					Ethyl-	Total
	Date	TPHd	TPHg	Benzene	Toluene	benzene	Xylenes
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Excavation							
	August						
Pit Sample 1	2009	21,000	21,000	3,800	1,000	1,200	3,700
Direct Push Gra	b Groundwa	ter Sample	es				
SB-1			60	2.9	6.7	2.1	9.7
SB-2			<50	<0.5	<0.5	<0.5	<1.0
SB-3			170	1.5	11	4.8	27
SB-4			6,500	78	440	190	960
SB-5	April 2010		<50	<0.5	<0.5	<0.5	<1.0
SB-6			440	<20	<20	<20	<40
SB-7			270	<12	<12	<12	<25
SB-8			<50	0.6	1.3	0.6	3.3
SB-9			<50	<10	<10	<10	<20
SB-10			<50	<0.5	<0.5	<0.5	<1.0
SB-11			2,300	83	1.9	140	43
SB-12			4,700	620	290	84	400
SB-13			400	51	2.4	4.2	9.7
SB-14	Danamahar		<50	1.7	<0.5	2.1	<1.0
SB-15	December 2011	***	320	32	0.7	33	25
SB-16	2011		4,800	1,600	10	49	<20
SB-17			990	290	7.2	27	4.3
SB-18			560	8.7	4.9	23	83
SB-19			260	7.1	<0.5	16	7.0
SB-21			<50	<0.5	<0.5	<0.5	<1.0

Notes:

TPHd - denotes total petroleum hydrocarbons as diesel

TPHg - denotes total petroleum hydrocarbons as gasoline

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

--- - denotes not analyzed/applicable

Page 1 of 1 GHA.19009

Table 3b Grab Groundwater Sample Results Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

Sample ID	Collection	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB				
	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)				
		(011	(-01-7	(0) -/	(=0, =,	, 0, ,	` 0.	, ,,				
Excavation												
	February	<10	<10	15,000	39	17,000	<10	<10				
Water	2000											
Direct Push Gra	b Groundwa	ter Sampl	es									
SB-1		<0.5	<0.5	14	<0.5	<5.0	<0.5	<0.5				
SB-2		<0.5	<0.5	45	<0.5	<5.0	<0.5	<0.5				
SB-3		<0.5	<0.5	110	<0.5	32	<0.5	<0.5				
SB-4		<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0				
SB-5	April 2010	<0.5	<0.5	0.6	<0.5	<5.0	<0.5	<0.5				
SB-6	•	<20	<20	4,000	<20	<200	<20	<20				
SB-7	1	<12	<12	2,500	<12	<120	<12	<12				
SB-8]	<0.5	<0.5	26	<0.5	98	<0.5	<0.5				
SB-9	1	<10	<10	1,800	<10	5,300	<10	<10				
SB-10		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5				
SB-11	1	<1.0	<1.0	22	<1.0	140	<1.0	<1.0				
SB-12	1 [<5.0	<5.0	100	<5.0	550	<5.0	<5.0				
SB-13		<2.0	<2.0	39	<2.0	3,900	<2.0	<2.0				
SB-14	December	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5				
SB-15		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5				
SB-16	2011	<10	<10	<10	<10	<100	<10	<10				
SB-17		<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0				
SB-18		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5				
SB-19		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5				
SB-21		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5				

Notes:

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

DCA - denotes dichloroethane

EDB - denotes ethylene dibromide

MTBE - denotes methyl tertiary butyl ether

DIPE - denotes di-isopropyl ether

ETBE - denotes ethyl tertiary butyl ether

TAME - denotes tertiary amyl ether

TBA - denotes tertiary butyl alcohol

Page 1 of 1 GHA.19009

Shore Acres Gas 403 East 12th Street Oakland, California

Well	Date	Depth to	Groundwater	,	l .			Ethyl-	Total
ID	Measured	Groundwater	Elevation	TPHd	TPHg	Benzene	Toluene	benzene	Xylenes
TOC		(ft bgs)	(ft amsl)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Monitoring	Wells	r			1	1		<u>~</u>	
MW-1	6/23/2011	10.46	20.35	<250	23,000	4,500	820	1,700	3,800
	9/22/2011	12.13	18.68	<50	21,000	4,000	1,500	980	3,000
	12/11/2011	11.69	19.12		23,000	2,900	1,000	720	3,000
	3/30/2012				Inaccessibl	е			
	6/1/2012	11.04	19.77		40,000	4,100	800	2,700	6,100
	9/14/2012	12.96	17.85	<100	20,000	2,700	160	830	2,600
	3/27/2013	8.57	22.24	<50	15,000	1,700	150	400	830
	5/20/2013	8.57	22.24	<100	22,000	2,800	870	560	2,000
	9/4/2013	9.29	21.52	<250	12,000	2,900	130	190	370
	12/6/2013	9.11	21.70	<120	15,000	3,000	780	580	2,400
	6/27/2014	8.92	21.89	<120	15,000	2,500	280	2,400	2,400
	9/19/2014	10.98	19.83		11,000	530	190	460	950
	12/15/2014	7.66	23.15		11,000	1,100	140	310	420
	3/31/2015	8.81	22.00		38,000	1,200	230	810	2,600
	9/18/2015	12.23	18.58		7,600	890	38	240	360
	12/16/2015	12.02	18.79		8,900	580	16	110	110
	3/22/2016	10.48	20.33		18,000	690	66	540	1,900
	9/23/2016	9.01	21.80		20,000	1,400	90	1,100	4,500
	3/28/2017	8.73	22.08		47,000	1,600	270	3,600	9,000
	9/28/2017	11.50	19.31		22,000	660	27	700	1,600
MW-2	6/23/2011	10.70	20.59	<250	13,000	1,000	160	370	1,600
	9/22/2011	12.42	18.87	<50	12,000	300	130	470	1,400
	12/11/2011	11.98	19.31		8,300	170	120	450	1,500
	3/30/2012	8.55	22.74	<250	17,000	850	700	710	2,900
	6/1/2012	11.26	20.03		5,300	830	260	630	1,700
	9/14/2012	13.11	18.18	<50	10,000	260	190	600	1,900
	3/27/2013	9.43	21.86	<50	12,000	440	98	320	810
	5/20/2013	9.41	21.88	<100	6,600	300	74	190	500
	9/4/2013	10.11	21.18	<100	5,300	300	50	180	280
	12/6/2013	9.93	21.36	<50	4,300	280	39	140	160
	6/27/2014	9.93	21.36	<50	1,300	200	22	85	160
	9/19/2014	12.49	18.80		990	42	12	97	110
	12/15/2014	8.65	22.64		85	14	3.3	5.2	13
	3/31/2015	9.83	21.46						
	9/18/2015	12.45	18.84		1,300	29	8.9	44	120
	12/16/2015	12.57	18.72		880	8.2	2.9	16	30
	3/22/2016	11.11	20.18		900	7.3	2.4	3.7	16
	9/23/2016	9.90	21.39		570	10	2.9	13	37
	3/28/2017	9.42	21.87		3,000	120	6.2	39	64
	9/28/2017	12.10	19.19		2,100	11	2.5	16	43
	, -, - -				7-7-				

Page 1 of S

Shore Acres Gas 403 East 12th Street Oakland, California

Weli	Date	Depth to	Groundwater					Ethyl-	Total
ID	Measured	Groundwater	Elevation	TPHd	TPHg	Benzene	Toluene	benzene	Xylenes
тос		(ft bgs)	(ft amsl)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-3	6/23/2011	10.79	20.51	<250	55,000	15,000	3,600	2,000	4,300
	9/22/2011	12.60	18.70	<250	77,000	15,000	3,900	1,700	4,900
	12/11/2011	12.13	19.17		64,000	12,000	3,100	1,600	4,500
	3/30/2012	7.90	23.40	<120	100,000	17,000	10,000	2,000	8,400
	6/1/2012	11.47	19.83		83,000	15,000	6,000	2,900	10,000
	9/14/2012	13.42	17.88	<200	69,000	10,000	1,500	1,800	5,900
	3/27/2013	9.15	22.15	<200	63,000	7,100	2,100	1,900	7,700
	5/20/2013	9.16	22.14	<250	80,000	9,700	2,900	2,400	8,600
	9/4/2013	9.87	21.43	<250	47,000	7,200	470	1,200	5,000
	12/6/2013	9.69	21.61	<50	19,000	5,600	240	520	1,600
	6/27/2014	9.49	21.81	<50	12,000	5,800	240	860	760
	9/19/2014	11.62	19.68		9,500	610	160	220	400
	12/15/2014	8.10	23.20		1,300	260	69	39	120
	3/31/2015	9.37	21.93		13,000	1,300	270	230	700
	9/18/2015	13.13	18.17		8,300	1,000	150	150	440
	12/16/2015	13.09	18.21		11,000	1,100	130	290	350
	3/22/2016	11.39	19.91		1,500	230	23	14	53
****	9/23/2016	9.57	21.73		4,200	640	51	58	140
	3/28/2017	9.20	22.10		1,200	47	20	11	67
	9/28/2017	11 .91	19.39		3,400	97	56	84	190
MW-4	6/23/2011	10.62	20.59	<250	47,000	3,500	7,100	2,300	11,000
·····	9/22/2011	12.25	18.96	<250	46,000	2,000	2,400	1,100	5,300
	12/11/2011	11.89	19.32		46,000	2,100	3,400	1,800	7,000
	3/30/2012	8.51	22.70	<250	60,000	6,800	8,200	1,200	5,700
	6/1/2012	11.14	20.07		72,000	9,700	8,500	2,300	9,000
	9/14/2012	12.97	18.24	<50	15,000	940	880	450	1,700
	3/27/2013	9.05	22.16	<50	25,000	1,800	2,200	660	2,500
	5/20/2013	9.03	22.18	<250	18,000	1,600	1,700	470	1,900
	9/4/2013	9.68	21.53	<50	15,000	510	410	260	820
	12/6/2013	9.54	21.67	<50	9,600	630	650	240	970
	6/27/2014	9.58	21.63	<50	3,300	550	2,900	200	420
	9/19/2014	11.61	19.60		2,100	110	54	92	210
	12/15/2014	8.45	22.76		720	58	32	29	33
	3/31/2015	9.46	21.75						
	9/18/2015	12.03	19.18		17,000	130	33	70	200
	12/16/2015	12.41	18.80		8,200	160	44	88	130
	3/22/2016	11.22	19.99		1,900	88	71	43	91
	9/23/2016	9.45	21.76		2,700	520	85	54	120
	3/28/2017	9.22	21.99		4,500	700	56	140	300
	9/28/2017	11.88	19.33		7,100	250	29	220	310
				<u> </u>				<u> </u>	

Page 2 of 5 DIC.14244

Shore Acres Gas 403 East 12th Street Oakland, California

Weli	Date	Depth to	Groundwater					Ethyl-	Total
ID	Measured	Groundwater	Elevation	TPHd	TPHg	Benzene	Toluene	benzene	Xylenes
тос		(ft bgs)	(ft amsl)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-5	6/23/2011	10.12	21.23	<250	130,000	7,100	25,000	13,000	94,000
	9/22/2011	12.53	18.82	<250	120,000	6,900	7,600	3,800	17,000
	12/11/2011	12.09	19.26		110,000	7,800	14,000	4,200	20,000
	3/30/2012	8.06	23.29			Sheen - no	ot sampled		
	6/1/2012	11.38	19.97			Sheen - no	ot sampled		
	9/14/2012	13.61	17.74		F	ree product	- not sample	d	
	3/27/2013	9.21	22.14		F	ree product	- not sample	d	
	5/20/2013	9.17	22.18		F	ree product	- not sample	ed	
	9/4/2013	9.70	21.65		F	ree product	- not sample	d	
	12/6/2013	9.67	21.68	<250	81,000	10,000	13,000	5,500	21,000
	6/27/2014	9.51	21.84		F	ree product	- not sample	ed	
	9/19/2014	12.91	18.44		56,000	1,000	270	1,000	4,100
	12/15/2014	***			13,000	840	530	450	1,700
	3/31/2015	9.36	21.99		34,000	1,100	570	500	2,000
	9/18/2015		****		9,800	290	23	140	270
	12/16/2015				6,100	220	5.8	92	35
	3/22/2016	12.26	19.09		6,300	320	58	190	480
	9/23/2016				10,000	350	48	230	930
	3/28/2017				9,700	310	68	580	1,200
	9/28/2017	11.97	19.38		7,500	140	16	140	370
MW-6	6/23/2011	10.43	20.36	<250	11,000	2,400	120	480	840
	9/22/2011	12.10	18.69	<50	15,000	1,500	270	880	2,500
	12/11/2011	11.69	19.10		13,000	660	190	610	1,500
	3/30/2012	7.50	23.29	<250	9,500	1,200	160	250	520
	6/1/2012	11.04	19.75		23,000	2,200	220	1,300	3,000
	9/14/2012	12.96	17.83	<50	14,000	1,000	86	420	1,200
	3/27/2013					Inaco	essible		
	5/20/2013					Inacc	essible		
	9/4/2013	9.19	21.60	<100	9,500	1,400	120	1,400	1,600
	12/6/2013	9.03	21.76	<100	14,000	1,200	24	1,400	810
	6/27/2014	8.80	21.99	<100	9,800	1,200	75	2,800	530
	9/19/2014	10.68	20.11		6,500	240	21	490	1 10
	12/15/2014	7.62	23.17		4,700	520	25	110	43
	3/31/2015	8.75	22.04		10,000	330	12	80	73
	9/18/2015	11.61	19.18		7,000	430	24	120	110
	12/16/2015	11.58	19.21		8,200	460	12	17	26
	3/22/2016	10.10	20.69		5,900	380	15	87	83
	9/23/2016	8.90	21.89		7,700	170	<5.0	8.0	<10
	3/28/2017	8.70	22.09		8,100	190	11	100	130
	9/28/2017	11.35	19.44		6,100	210	17	27	48

Page 3 of S DIC.14244

Shore Acres Gas 403 East 12th Street Oakland, California

Well	Date	Depth to	Groundwater					Ethyl-	Total
ID	Measured	Groundwater	Elevation	TPHd	TPHg	Benzene	Toluene	benzene	Xylenes
TOC		(ft bgs)	(ft amsi)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
DPE Wells	· · · · · · · · · · · · · · · · · · ·				y				
EW-1	6/28/2011				20,000	2,000	490	1,000	2,400
	9/22/2011	12.55	18.71	<120	39,000	3,900	610	1,400	4,600
	12/11/2011	12.09	19.17		27,000	2,600	270	1,400	4,400
	3/30/2012	8.06	23.20	<120	21,000	3,100	160	910	2,300
	6/1/2012	11.42	19.84		21,000	2,800	100	1,200	3,100
	9/14/2012	13.37	17.89	<50	22,000	1,900	50	1,000	2,600
	3/27/2013	9.06	22.20	<50	15,000	630	36	360	590
	5/20/2013	9.06	22.20	<100	11,000	600	28	210	350
	9/4/2013	9.77	21.49	<50	9,300	610	19	170	250
	12/6/2013	9.63	21.83	<100	11,000	740	17	260	340
	6/27/2014	9.55	21.91	<100	12,000	1,400	210	1,900	2,400
	9/19/2014	12.41	19.05		28,000	1,000	450	1,400	3,900
	12/15/2014	8.20	23.26		4,000	560	29	150	150
	3/31/2015	9.30	22.16						
	9/18/2015	13.25	18.21		6,900	370	5.5	190	210
	12/16/2015	13.22	18.24		6,000	250	3.3	31	31
	3/22/2016	11.54	19.92		3,900	200	<5.0	46	33
	9/23/2016	9.51	21.95		6,200	130	<5.0	35	24
,	3/28/2017	9.24	22.22		9,000	210	3.2	55	95
	9/28/2017	11.93	19.53		8,200	66	2.3	49	28
EW-2	6/28/2011				33,000	3,100	2,000	790	3,500
	9/22/2011	12.50	18.90	<250	66,000	2,400	4,500	2,000	11,000
	12/11/2011	12.12	19.28		70,000	2,800	6,900	2,700	13,000
	3/30/2012	8.48	22.92	<250	57,000	5,800	5,500	1,200	5,400
	6/1/2012	11.40	20.00		82,000	8,800	8,600	3,300	13,000
	9/14/2012	13.27	18.13	<100	32,000	2,600	2,400	1,000	4,500
	3/27/2013	9.24	22.16	<100	18,000	940	790	390	1,700
	5/20/2013	9.21	22.19	<50	10,000	540	430	220	790
	9/4/2013	9.88	21.52	<250	10,000	680	580	480	1,700
	12/6/2013	9.96	21.47	<50	13,000	620	380	350	1,600
	6/27/2014	9.85	21.58	<50	27,000	3,200	5,600	1,200	8,000
	9/19/2014	16.80	14.63		18,000	690	1,300	360	2,400
	12/15/2014	8.73	22.70		11,000	510	500	160	1,100
	3/31/2015	9.90	21.53						***
	9/18/2015	15.10	16.33		16,000	1,400	2,400	520	3,400
	12/16/2015	16.57	14.86		29,000	1,400	3,300	400	2,500
	3/22/2016	16.56	14.87	***	22,000	820	2,100	420	2,800
	9/23/2016	9.82	21.61		6,500	37	38	29	170
	3/28/2017	9.54	21.89		7,100	64	33	51	260
	9/28/2017	12.30	19.13		1,900	8.8	15	23	79

Page 4 of 5

DIC.14244

Shore Acres Gas 403 East 12th Street Oakland, California

Well ID TOC	Date Measured	Depth to Groundwater (ft bgs)	Groundwater Elevation (ft amsl)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
EW-3	5/20/2013	8.82		<50	1,300	430	540	280	1,000
	9/4/2013	9.49		<100	9,800	480	220	560	1,800
	12/6/2013	10.05		<50	10,000	810	580	260	1,100
	6/27/2014	9.90		<50	27,000	4,300	4,300	1,200	7,900
	9/19/2014	13.00			15,000	670	650	530	2,400
	12/15/2014	8.20			26,000	1,200	1,100	350	2,000
	3/31/2015	9.31			8,000	170	18	130	560
	9/18/2015	13.98			12,000	340	110	180	1,900
	12/16/2015	14.31			11,000	360	75	110	920
	3/22/2016	12.63			5,700	120	6.7	90	170
	9/23/2016	9.46			2,800	26	2.2	60	61
	3/28/2017	9.21			4,100	150	3.9	41	32
	9/28/2017	11.87			3,600	18	5.4	25	46
EW-4	5/20/2013	9.12		<50	8,100	720	160	94	430 -
	9/4/2013	9.85		<250	11,000	990	580	310	1,200
	12/6/2013	9.62		<50	4,400	150	170	140	670
	6/27/2014	9.47		<50	8,400	1,500	940	540	2,100
	9/19/2014	12.48			9,000	680	1,600	450	3,000
	12/15/2014	8.50			7,700	570	170	320	1,000
	3/31/2015	9.78			23,000	1,000	1,200	420	1,700
	9/18/2015	15.45			7,200	860	62	55	130
	12/16/2015	16.08			5,200	1,200	35	40	81
	3/22/2016	16.74			7,400	920	83	120	350
	9/23/2016	9.95			8,200	350	27	70	670
	3/28/2017	9.50			10,000	460	12	190	690
	9/28/2017	12.22			8,000	89	6.3	100	410

Notes:

TOC - denotes top of casing elevation

TPHg - denotes total petroleum hydrocarbons as gasoline

TPHd - denotes total petroleum hydrocarbons as diesel

ft bgs - denotes feet below top of casing

ft amsl - denotes feet above mean sea level

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

--- - denotes not available/applicable

FLH - denotes floating liquid hydrocarbons

* - denotes less than six inches of water and considered dry

Page 5 of 5 DIC.14244

Well	Date	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
ID	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
тос								
Monitoring	T	<u> </u>	ı		I			
MW-1	6/23/2011	<25	<25	3,000	<25	3,900	<25	<25
	9/22/2011	<50	<50	2,600	<50	2,500	<50	<50
	12/11/2011	<20	<20	1,800	<20	1,600	<20	<20
	3/30/2012				Inaccessible		1	
	6/1/2012	<20	<20	2,800	<20	1,300	<20	<20
	9/14/2012	<10	<10	2,200	<10	1,600	<10	<10
	3/27/2013	<0.5	<0.5	590	<0.5	350	<0.5	<0.5
	5/20/2013	<10	<10	1,100	<10	620	<10	<10
	9/4/2013	<10	<10	240	<10	<100	<10	<10
	12/6/2013	<5.0	<5.0	350	<50	<100	<5.0	<5.0
	6/27/2014	<10	<10	97	<10	<100	<10	<10
	9/19/2014	<10	<10	150	<10	<100	<10	<10
	12/15/2014	<0.5	<0.5	310	<0.5	98	<0.5	<0.5
	3/31/2015	<5.0	<5.0	330	<5.0	<50	<5.0	<5.0
	9/18/2015	<5.0	<5.0	150	<5.0	<50	<5.0	<5.0
	12/16/2015	<5.0	<5.0	57	<5.0	<50	<5.0	<5.0
	3/22/2016	<50	<50	<50	<50	<500	<50	<50
	9/23/2016	<0.5	<0.5	250	<0.5	250	<0.5	<0.5
	3/28/2017	<20	<20	340	<20	470	<20	<20
	9/28/2017	<10	<10	130	<10	290	<10	<10
MW-2	6/23/2011	<10	<10	240	<10	640	<10	<10
	9/22/2011	<5.0	<5.0	110	<5.0	260	<5.0	<5.0
	12/11/2011	<2.5	<2.5	45	<2.5	110	<2.5	<2.5
	3/30/2012	<5.0	<5.0	140	<5.0	490	<5.0	<5.0
	6/1/2012	<5.0	<5.0	180	<5.0	490	<5.0	<5.0
	9/14/2012	<5.0	<5.0	65	<5.0	190	<5.0	<5.0
	3/27/2013	<0.5	<0.5	120	<0.5	930	<0.5	<0.5
	5/20/2013	<2.5	<2.5	120	<2.5	1,800	<2.5	<2.5
	9/4/2013	<5.0	<5.0	100	<5.0	780	<5.0	<5.0
	12/6/2013	<5.0	<5.0	63	<5.0	230	<5.0	<5.0
	6/27/2014	<5.0	<5.0	21	<5.0	<50	<5.0	<5.0
	9/19/2014	<5.0	<5.0	16	<5.0	<50	<5.0	<5.0
	12/15/2014	<0.5	<0.5	7.3	<0.5	23	<0.5	<0.5
	3/31/2015							
	9/18/2015	<0.5	<0.5	4.1	<0.5	<5.0	<0.5	<0.5
	12/16/2015	<0.5	<0.5	1.0	<0.5	<5.0	<0.5	<0.5
	3/22/2016	<0.5	<0.5	<0.5	<0.5	3.7	<0.5	<0.5
	9/23/2016	<0.5	<0.5	5.3	<0.5	<5.0	<0.5	<0.5
	3/28/2017	<0.5	<0.5	10	<0.5	<5.0	<0.5	<0.5
	9/28/2017	<1.0	<1.0	3.0	<1.0	<10	<1.0	<1.0
	.,,							

Well	Date	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
ID	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
тос								
MW-3	6/23/2011	<100	<100	8,200	<100	6,400	<100	<100
	9/22/2011	<100	<100	11,000	<100	2,800	<100	<100
	12/11/2011	<100	<100	7,400	<100	1,800	<100	<100
	3/30/2012	<100	<100	13,000	<100	<1,000	<100	<100
	6/1/2012	<50	<50	12,000	<50	<500	<50	<50
	9/14/2012	<50	<50	9,400	<50	<500	<50	<50
	3/27/2013	<0.5	<0.5	7,900	<0.5	3,800	<0.5	<0.5
	5/20/2013	<25	<25	10,000	<25	5,000	<25	<25
	9/4/2013	<25	<25	5,300	<25	2,100	<25	<25
	12/6/2013	<25	<25	1,400	<25	640	<25	<25
	6/27/2014	<25	<25	520	<25	260	<25	<25
	9/19/2014	<25	<25	390	<25	370 -	<25	<25
	12/15/2014	<0.5	<0.5	110	<0.5	140	<0.5	<0.5
	3/31/2015	<5.0	<5.0	980	<5.0	610	<5.0	<5.0
	9/18/2015	<5.0	<5.0	410	<5.0	410	<5.0	<5.0
	12/16/2015	<5.0	<5.0	290	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	71	<5.0	56	<5.0	<5.0
	9/23/2016	<5.0	<5.0	380	<5.0	<50	<5.0	<5.0
	3/28/2017	<5.0	<5.0	19	<5.0	95	<5.0	<5.0
	9/28/2017	<1.0	<1.0	110	<1.0	79	<1.0	<1.0
MW-4	6/23/2011	<50	<50	<50	<50	<500	<50	<50
	9/22/2011	<25	<25	<25	<25	<250	<25	<25
	12/11/2011	<25	<25	<25	<25	<250	<25	<25
	3/30/2012	<50	<50	56	<50	<500	<50	<50
	6/1/2012	<50	<50	180	<50	<500	<50	<50
	9/14/2012	<20	<20	<20	<20	<200	<20	<20
	3/27/2013	<0.5	<0.5	77	<0.5	450	<0.5	<0.5
	5/20/2013	<10	<10	61	<10	360	<10	<10
	9/4/2013	<2.5	<2.5	17	<2.5	64	<2.5	<2.5
	12/6/2013	<2.5	<2.5	6.6	<2.5	<25	<2.5	<2.5
	6/27/2014	<2.5	<2.5	<2.5	<2.5	<25	<2.5	<2.5
	9/19/2014	<2.5	<2.5	<2.5	<2.5	<25	<2.5	<2.5
	12/15/2014	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5
	3/31/2015							
	9/18/2015	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0
	12/16/2015	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0
	9/23/2016	<5.0	<5.0	8.0	<5.0	<50	<5.0	<5.0
	3/28/2017	<5.0	<5.0	12	<5.0	<50	<5.0	<5.0
	9/28/2017	<2.0	<2.0	25	<2.0	<20	<2.0	<2.0
	, , , , , , , , , ,							

Well	Date	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
ID	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
тос								
MW-5	6/23/2011	<120	<120	440	<120	<1,200	<120	<120
	9/22/2011	<50	<50	670	<50	1,500	<50	<50
	12/11/2011	<120	<120	690	<120	1,600	<120	<120
	3/30/2012			She	en - not sam	pled		
	6/1/2012			She	en - not sam	pled		
	9/14/2012			Free pr	oduct - not :	sampled		
	3/27/2013			Free pr	oduct - not :	sampled		
	5/20/2013			Free pr	oduct - not :	sampled		
	9/4/2013			Free pr	oduct - not :	sampled		
	12/6/2013	<25	<25	270	<25	<250	<25	<25
	6/27/2014			Free pr	oduct - not	sampled		
	9/19/2014	<25	<25	75	<25	<250	<25	<25
	12/15/2014	<0.5	<0.5	370	<0.5	340	<0.5	<0.5
	3/31/2015	<5.0	<5.0	71	<5.0	280	<5.0	<5.0
	9/18/2015	<5.0	<5.0	15	<5.0	<50	<5.0	<5.0
	12/16/2015	<5.0	<5.0	17	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	26	<5.0	110	<5.0	<5.0
	9/23/2016	<5.0	<5.0	38	<5.0	<50	<5.0	<5.0
	3/28/2017	<0.5	<0.5	27	<0.5	<5.0	<0.5	<0.5
	9/28/2017	<2.0	<2.0	27	<2.0	<20	<2.0	<2.0
MW-6	6/23/2011	<25	<25	1,100	<25	4,000	<25	<25
	9/22/2011	<12	<12	600	<12	2,800	<12	<12
	12/11/2011	<10	<10	290	<10	1,300	<10	<10
	3/30/2012	<10	<10	990	<10	3,500	<10	<10
	6/1/2012	<10	<10	1,400	<10	2,200	<10	<10
	9/14/2012	<10	<10	580	<10	2,000	<10	<10
	3/27/2013				Inaccessible	}		
•••• · · · · ·	5/20/2013				Inaccessible	2		ų···-
	9/4/2013	<5.0	<5.0	29	<5.0	140	<5.0	<5.0
	12/6/2013	<2.5	<2.5	12	<2.5	<25	<2.5	<2.5
	6/27/2014	<2.5	<2.5	4.9	<2.5	<25	<2.5	<2.5
	9/19/2014	<2.5	<2.5	7.1	<2.5	<25	<2.5	<2.5
	12/15/2014	<0.5	<0.5	33	<0.5	88	<0.5	<0.5
	3/31/2015	<5.0	<5.0	12	<5.0	<50	<5.0	<5.0
	9/18/2015	<2.5	<2.5	9.6	<2.5	<25	<2.5	<2.5
	12/16/2015	<5.0	<5.0	10	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	8.7	<5.0	28	<5.0	<5.0
	9/23/2016	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0
	3/28/2017	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	9/28/2017	<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
							1	

Well	Date	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
1D	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
тос								····
DPE Wells								
EW-1	6/28/2011	<25	<25	1,500	<25	5,300	<25	<25
····	9/22/2011	<50	<50	640	<50	1,800	<50	<50
	12/11/2011	<25	<25	490	<25	1,000	<25	<25
	3/30/2012	<20	<20	370	<20	1,100	<20	<20
	6/1/2012	<25	<25	500	<25	1,700	<25	<25
	9/14/2012	<10	<10	370	<10	1,400	<10	<10
	3/27/2013	<0.5	<0.5	270	<0.5	560	<0.5	<0.5
	5/20/2013	<5.0	<5.0	250	<5.0	560	<5.0	<5.0
	9/4/2013	<2.5	<2.5	220	<2.5	590	<2.5	<2.5
	12/6/2013	<2.5	<2.5	130	<2.5	270	<2.5	<2.5
	6/27/2014	<10	<10	40	<10	<100	<10	<10
	9/19/2014	<20	<20	300	<20	<200	<20	<20
	12/15/2014	<0.5	<0.5	170	<0.5	110	<0.5	<0.5
	3/31/2015							
	9/18/2015	<2.5	<2.5	100	<2.5	<25	<2.5	<2.5
	12/16/2015	<5.0	<5.0	24	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	40	<5.0	46	<5.0	<5.0
	9/23/2016	<5.0	<5.0	78	<5.0	<50	<5.0	<5.0
	3/28/2017	<0.5	<0.5	90	<0.5	<5.0	<0.5	<0.5
	9/28/2017	<2.0	<2.0	42	<2.0	<20	<2.0	<2.0
EW-2	6/28/2011	<25	<25	670	<25	4,100	<25	<25
	9/22/2011	<50	<50	740	<50	1,600	<50	<50
	12/11/2011	<50	<50	540	<50	880	<50	<50
	3/30/2012	<50	<50	1,800	<50	2,800	<50	<50
	6/1/2012	<50	<50	2,600	<50	3,300	<50	<50
	9/14/2012	<20	<20	1,100	<20	2,400	<20	<20
	3/27/2013	<0.5	<0.5	360	<0.5	1,800	<0.5	<0.5
	5/20/2013	<2.5	<2.5	390	<2.5	2,600	<2.5	<2.5
	9/4/2013	<5.0	<5.0	460	<5.0	1,400	<5.0	<5.0
	12/6/2013	<10	<10	210	<10	560	<10	<10
	6/27/2014	<10	<10	110	<10	<100	<10	<10
	9/19/2014	<25	<25	96	<25	<250	<25	<25
	12/15/2014	<0.5	<0.5	94	<0.5	66	<0.5	<0.5
	3/31/2015	=						
	9/18/2015	<10	<10	50	<10	<100	<10	<10
	12/16/2015	<50	<50	58	<50	<500	<50	<50
	3/22/2016	<250	<250	<250	<250	<1,000	<250	<250
	9/23/2016	<5.0	<5.0	26	<5.0	<50	<5.0	<5.0
	3/28/2017	<0.5	<0.5	59	<0.5	<5.0	<0.5	<0.5
	9/28/2017	<2.0	<2.0	18	<2.0	65	<2.0	<2.0
								

Shore Acres Gas 403 East 12th Street Oakland, California

Well	Date	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
ID	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
тос								
EW-3	5/20/2013	<2.5	<2.5	140	<2.5	1,100	<2.5	<2.5
	9/4/2013	<2.5	<2.5	120	<2.5	650	<2.5	<2.5
	12/6/2013	<2.5	<2.5	96	<2.5	690	<2.5	<2.5
	6/27/2014	<5.0	<5.0	150	<5.0	360	<5.0	<5.0
	9/19/2014	<25	<25	75	<25	<250	<25	<25
	12/15/2014	<0.5	<0.5	160	<0.5	700	<0.5	<0.5
	3/31/2015	<5.0	<5.0	38	<5.0	68	<5.0	<5.0
	9/18/2015	<5.0	<5.0	120	<5.0	<50	<5.0	<5.0
	12/16/2015	<5.0	<5.0	81	<5.0	<50	<5.0	<5.0
	3/22/2016	<2.5	<2.5	33	<2.5	84	<2.5	<2.5
	9/23/2016	<0.5	<0.5	32	<0.5	34	<0.5	<0.5
	3/28/2017	<0.5	<0.5	51	<0.5	130	<0.5	<0.5
	9/28/2017	<2.0	<2.0	35	<2.0	100	<2.0	<2.0
EW-4	5/20/2013	<5.0	<5.0	480	<5.0	1,900	<5.0	<5.0
	9/4/2013	<5.0	<5.0	220	<5.0	1,300	<5.0	<5.0
	12/6/2013	<5.0	<5.0	58	<5.0	430	<5.0	<5.0
	6/27/2014	<2.5	<2.5	82	<2.5	65	<2.5	<2.5
	9/19/2014	<20	<20	120	<20	520	<20	<20
	12/15/2014	<0.5	<0.5	100	<0.5	110	<0.5	<0.5
	3/31/2015	<5.0	<5.0	140	<5.0	310	<5.0	<5.0
	9/18/2015	<5.0	<5.0	140	<5.0	420	<5.0	<5.0
	12/16/2015	<5.0	<5.0	87	<5.0	390	<5.0	<5.0
	3/22/2016	<25	<25	81	<25	250	<25	<25
	9/23/2016	<5.0	<5.0	150	<5.0	180	<5.0	<5.0
	3/28/2017	<0.5	<0.5	61	<0.5	270	<0.5	<0.5
	9/28/2017	<2.0	<2.0	46	<2.0	170	<2.0	<2.0

Notes:

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

DCA - denotes dichloroethane

EDB - denotes ethylene dibromide

MTBE - denotes methyl tertiary butyl ether

DIPE - denotes di-isopropyl ether

ETBE - denotes ethyl tertiary butyl ether

TAME - denotes tertiary amyl ether

TBA - denotes tertiary butyl alcohol

--- - denotes no data available

Table 5a **Soil Vapor Extraction System Performance Calculations**

Shore Acres Gas 403 East 12th Street Oakland, California

		Influent	Influer	nt Sample F	tesults	Extrac	tion Rates (lb/day)	Cumulative Extraction (lb)				
Date	Meter* (hours)	Flow Rate (scfm)	TPHg (ppmv)	Benzene (ppmv)	MTBE (ppmv)	TPHg (lb/day)	Benzene (lb/day)	MTBE (lb/day)	TPHg (lb)	Benzene (lb)	MTBE (lb)		
05/27/14	590.3	106.0	2,500	14	0.73	112	0.5	0.0	2,745	11.4	0.7		
06/17/14	961.5	125.0	40	1.4	0.18	2.1	0.05	0.0	2,778	12.3	0.8		
06/27/14	988.2		Unit shut down for Carbon Change Out										
08/15/14	988.2		Restart Unit										
08/19/14	992.6	125.0	33	0.79	0.13	1.7	0.03	0.0	2,780	12.3	0.8		
09/25/14	1,535.7	163.0	2,100	15	< 0.1	144	0.77	0.0	6,042	29.7	0.9		
10/28/14	1,750.4	146.0	130	2.4	0.44	8.0	0.11	0.0	6,114	30.6	1.1		
12/09/14	2,142.4	154.0	610	2.6	0.23	40	0.13	0.0	6,760	32.7	1.3		
02/18/15	2,708.3			Sy	stem shut c	lown, propa	ne tank rem	oved from s	ite				
08/11/15	2,708.9					System	restarted						
08/25/15	2,864.4	125.0	344	2.7	< 0.1	18	0.11	0.0	7,305	32.6	1.3		
09/29/15	3,428.0	128.0	91	1.4	< 0.1	5	0.06	0.0	7,420	33.9	1.4		
10/26/15	3,742.1	122.0	225	0.97	< 0.1	12	0.04	0.0	7,571	34.4	1.5		
11/23/15	4,175.9	150.0	407	1.2	< 0.1	26	0.06	0.0	8,036	35.4	1.6		
12/16/15	4,613.3	148.0	102	0.84	< 0.1	6	0.04	0.0	8,152	36.1	1.6		
12/16/15	4,613.3				Unit shu	ut down for	Carbon Cha	nge Out					
01/27/16	4,761.0	146.0	23	0.73	< 0.1	1.4	0.03	0.0	8,161	36.1	1.6		
03/21/16	5,797.5	138.0	20	0.86	< 0.1	1.2	0.04	0.0	8,211	37.7	1.8		
04/11/16	6,279.7	135.0	43	0.86	< 0.1	2.4	0.04	0.0	8,260	38.4	1.9		
				<u> </u>			1			<u> </u>			

MW _{TPHo} = Molecular Weight of TPHg = 105

MW_{MTBE} = Molecular Weight of Methyl tert-butyl ether = 88.15

MW_{Benzene} = Molecular Weight of Benzene = 78.11

days of operation during quarter

69.4

ft3 = cubic feet

min = minutes

lb/day = pounds per day

ppmv = parts per million by volume = $ft^3 / 1x10^6 ft^3$ scfm = standard cubic feet per minute

NS = not sampled

NA = not analyzed

NC = not calculated

Extraction rate = (flow rate(ft³/min) x concentration (ft³ / 1x106 ft³) x MW_{TPto}(lb/lb-mol) x 1440 min/day)/(359 ft³/lb-mol*)

* - Hour meter readings does not match field data sheets because hour meter was 5472.6 when unit was started.

Table 5b Soil Vapor Extraction System Destruction Efficiency and Emission Calculations

Shore Acres Gas 403 East 12th Street Oakland, California

	Stack	Stack Sa	mple Resul	ts (ppmv)	Emiss	ion Rates (lb/day)	Destru	ction Efficie	ncy (%)
Date	Flow Rate (scfm)	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE
05/27/14	106.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100.0
06/17/14	125.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100.0
08/19/14	125.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100.0
09/25/14	163.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.003	< 0.006	100.0	100.0	100.0
10/28/14	146.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
12/09/14	154.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
02/18/15	154.0	•		System sh	nutdown an	d propane ta	ank remove	d from site		
08/11/15	121.0				5	System resta	rt			
08/25/15	125.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100.0
10/26/15	122.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100.0
11/23/15	150.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
12/16/15	148.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
12/16/15				System sh	nutdown an	d propane ta	ank remove	d from site		
01/27/16	146.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
03/21/16	138.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.005	100.0	100.0	100.0
04/11/16	135.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.005	100.0	100.0	100.0
									imate emissis	

Note: "<" indicates analytical method detection limit; method detection limits are used as stack concentrations to estimate emission rates. Destruction efficiency is assumed to be 100%.

Sample Calculations

Emission rate = flow rate(ft^3 /min) x concentration (ft^3 / $1x10^6$ ft^3) x MW (lb/lb-mole)/359 (ft^3 /lb-mole*) x 1440 min/day

Destruction Efficiency = [(Extraction rate - Emission rate)/Extraction rate] x 100%

Stack flow = Catox Influent + Natural Gas flow rate

lb/day = pounds per day

ft3 = cubic feet

ppmv = parts per million by volume = $ft^3 / 1x10^6 ft^3$

NS = not sampled

min = minutes

scfm = standard cubic feet per minute

NA = Not applicable

Table 5c Groundwater Treatment System Performance Data

Shore Acres Gas 403 East 12th Street Oakland, California

	TOTAL	AVG. PERIOD	influent \	Nater Analytica	Results	Estin	nated Removal	Rates	Estima	ted Removal (Period)		d Removal (Cu	mulative)
DATE	FLOW	FLOW RATE	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE
	(gallons)	(gallons/min)	(ug/L)	(ug/L)	(ug/L)	(lb/day)	(lb/day)	(lb/day)	(pounds)	(pounds)	(pounds)	(pounds)	(pounds)	(pounds)
04/30/14	189,810							Unit Start Up						
06/27/14	358,850	2.02	18,600	2,600	96	0.45	0.063	0.002	26.21	3.66	0.13	26.21	3.66	0.13
08/19/14	360,060						Unit Stut Do	wn for Carbon	Change Out					
09/25/14	463,050	1.93	17,500	760	148	0.41	0.018	0.003	15.03	0.65	0.13	41.24	4.32	0.26
12/15/14	613,230	1.29	12,175	710	131	0.19	0.011	0.002	15.24	0.89	0.16	56.48	5.21	0.43
02/18/15	766,392	1.64	15,500	585	89	0.30	0.011	0.002	19.79	0.75	0.11	76.27	5.95	0.54
02/18/15	766,392					Unit S	tut Down for C	hange from Pr	opane to Natur	al Gas				
08/11/15	766,392							Unit Restarted						
09/18/15	849,579	1,52	10,525	743	103	0,19	0.014	0.002	40.72	2.87	0.40	117.00	8.83	0.94
12/16/15	1,082,639	1.82	12,800	803	63	0.28	0.018	0.001	35.49	2.23	0.17	152.49	11.05	1.11
12/16/15	1,082,639						Unit Stut Do	wn for Carbon	Change Out					
01/21/16	1,082,639	<u> </u>						Unit Restarted						
03/22/16	1,239,526	1.79	9,750	515	52	0.21	0.011	0.001	20.28	1.07	0.11	172.77	12.13	1.22
04/11/16	1,340,425						Unit Stut Do	wn for Reboun	d Monitoring					
												<u> </u>		

156,887 total gallons pumped during current reporting period 2615 average gallons per day during current reporting period

1.8 average gallons per minute during current reporting period

Notes:

Influent concentrations are an average of extraction wells EW-1 through EW-4 Groundwater flow meter was 189,910 when unit was started up Sample Calculations:

Extraction/ disposal rate = flow rate(gallons/min) * concentration (ug/L) * 3.785 L/gallon *lb/454,000,000 ug * 1440 min/day

NC - Not calculated NS - Not Sampled MTBE - Methyl tertiary butyl ether

TPHg - Total Petroleum Hydrocarbons as gasoline

--- - Not Analyzed

TBA -Tertiary butyl ether

lb/day - pounds per day ug/L - micrograms per liter

20.28

1.07

0.11

APPENDICES

ENVIRONMENTAL COMPLIANCE GROUP, LLC STANDARD OPERATING AND SAFETY AND LOSS CONTROL PROCEDURES

1.0 SOIL BORING/DRILLING SAMPLE COLLECTION AND CLASSIFICATION PROCEDURES

ECG will prepare a site-specific Health and Safety Plan as required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR.1910.120). The document will be reviewed and signed by all ECG personnel and subcontractors prior to performing work at the site.

Prior to conducting and subsurface work at the site, Underground Services Alert (USA) will be contacted to delineate subsurface utilities near the site with surface markings. In addition, the first five feet of every location will be hand cleared to a diameter larger than the diameter of the auger or probe as a further precaution against damaging underground utilities. Sites that are currently operated as gas stations will be cleared with a private utility locator prior to drilling activities.

Soil samples to be submitted for chemical analyses are collected into brass or stainless steel tubes. The tubes are placed in an 18-inch long split-barrel sampler. The split-barrel sampler is driven its entire length hydraulically or by 140-pound drop hammer. The split-barrel sampler is removed from the borehole and the tubes are removed. When the tubes are removed from the split-barrel sampler, the tubes are trimmed and capped with Teflon sheets and plastic caps or the soil is removed from the tubes and placed in other appropriate sample containers. The samples are sealed, labeled, and placed in ice under chain-of-custody to be delivered to the analytical laboratory. All samples will be kept refrigerated until their delivery to the analytical laboratory.

One soil sample collected from each split-barrel sampler is field screened with a photoionization detector (PID), flame ionization detector (FID), or other equivalent field screening meter. The soil sample is sealed in a plastic bag or other appropriate container to allow volatilization of volatile organic compounds (VOCs). The field meter is used to measure the VOC concentration in the container's headspace and is recorded on the boring logs at the appropriate depth interval.

Other soil samples collected from each split-barrel sampler are inspected and documented to identify the soil stratigraphy beneath the site and classify the soil types according to the United Soil Classification System. The soil types are recorded on boring logs with the appropriate depth interval and any pertinent field observations. Drilling and sampling equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections and boreholes and after use.

2.0 SOIL EXCAVATION SAMPLE COLLECTION AND CLASSIFICATION PROCEDURES

Soil samples to be submitted for chemical analyses are collected into brass or stainless steel tubes or other appropriate containers. The samples are sealed, labeled, and placed in ice under chain-of-custody (COC) to be delivered to the analytical laboratory. All samples will be kept refrigerated until their delivery to the analytical laboratory.

Select soil samples are placed into a sealed plastic bag or other appropriate container and field screened using a PID, FID, or equivalent meter. Other soil samples collected are inspected and documented to identify the soil stratigraphy beneath the site and classify the soil types according to the United Soil Classification System. The soil types are recorded field notes with the appropriate depth interval and any pertinent field observations. Sampling equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections, and after use. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

3.0 SAMPLE IDENTIFICATION AND COC PROCEDURES

Sample containers are labeled with job number, job name, sample collection time and date, sample collection point, and analyses requested. Sampling method, sampler's name, and any pertinent field observations are recorded on boring logs or excavation field notes. COC forms track the possession of the sample from the time of its collection until the time of its delivery to the analytical laboratory. During sample transfers, the person with custody of the samples will relinquish them to the next person by signing the COC and documenting the time and date. The analytical laboratory Quality Control/Quality Assurance (QA/QC) staff will document the receipt of the samples and confirm the analyses requested on the COC matches the sample containers and preservative used, if any. The analytical laboratory will assign unique log numbers for identification during the analyses and reporting. The log numbers will be added to the COC form and maintained in a log book maintained by the analytical laboratory.

4.0 ANALYTICAL LABORATORY QA/QC PROCEDURES

The analytical laboratory analyzes spikes, replicates, blanks, spiked blanks, and certified reference materials to verify analytical methods and results. The analytical laboratory QA/QC also includes:

Routine instrument calibration,

Complying with state and federal laboratory accreditation and certification programs,

Participation in U.S. EPA performance evaluation studies,

Standard operating procedures, and

Multiple review of raw data and client reports

5.0 HOLLOW STEM AUGER WELL INSTALLATION

Boreholes for wells are often drilled with a truck-mounted hollow stem auger drill rig. The borehole diameter is at least 4 inches wider than the outside diameter of the well casing. Soil samples are collected and screened as described in **Section 1.0** and decontamination procedures are also the same as described in **Section 1.0**.

Wells are cased with both blank and factory-perforated Schedule 40 PVC. The factory perforations are typically 0.020 inches wide by 1.5 inch long slots, with 42 slots per foot. A PVC cap is typically installed at the bottom of the casing with stainless steel screws. No solvents or cements are used in the construction of the wells. Well stabilizers or centering devices may be installed around the casing to ensure the filter material and grout in the annulus are evenly distributed. The casing is purchased pre-cleaned or steam cleaned and washed prior to installation in the borehole.

The casing is set inside the augers and sand, gravel, or other filter material is poured into the annulus to fill the borehole from the bottom to approximately 1-2 feet above the perforations. A two foot thick bentonite plug is placed above the filter material to prevent the grout from filling the filter pack. Neat cement or sand-cement grout is poured into the annulus from the top of the bentonite plug to the surface. For wells located in parking lots or driveways, or roads, a traffic rated well box is installed around the well. For wells located in landscaped areas or fields, a stovepipe well protection device is installed around the well. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

6.0 MUD AND AIR ROTARY WELL INSTALLATION

Boreholes for wells can also be drilled with a truck-mounted air rotary or mud rotary drill rig. Air or mud can be used as a drill fluid to fill the borehole and prevent the borehole from caving in and remove drill cuttings. Mud or air can be chosen depending on the subsurface conditions. Soil samples are collected and screened as described in **Section 1.0** and decontamination procedures are also the same as described in **Section 1.0**.

Wells are cased with both blank and factory-perforated Schedule 40 PVC. The factory perforations are typically 0.020 inches wide by 1.5 inch long slots, with 42 slots per foot. A PVC cap is typically installed at the bottom of the casing with stainless steel screws. No solvents or cements are used in the construction of the wells. Well stabilizers or centering devices may be installed around the casing to ensure the filter material and grout in the annulus are evenly distributed. The casing is purchased pre-cleaned or steam cleaned and washed prior to installation in the borehole. Soil cuttings and drilling fluids are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

The casing is set inside the augers and sand, gravel, or other filter material is poured into the annulus to fill the borehole from the bottom to approximately 1-2 feet above the perforations. A two foot thick bentonite plug is placed above the filter material to prevent the grout from filling the filter pack. Neat cement or sand-cement grout is poured into the annulus from the top of the bentonite plug to the surface. For wells located in parking lots or driveways, or roads, a traffic rated well box is installed around the well. For wells located in landscaped areas or fields, a stovepipe well protection device is installed around the well. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

7.0 WELL DEVELOPMENT

After well installation, the wells are developed to remove residual drilling materials from the annulus and to improve well production by fine materials from the filter pack. Possible well development methods include pumping, surging, bailing, jetting, flushing, and air lifting. Development water is temporarily stored onsite pending laboratory analytical results and proper transport and disposal. Development equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections and after use. After well development the wells are typically allowed to stabilize for at least 24 hours prior to purging and sampling.

8.0 LIQUID LEVEL MEASUREMENTS

Liquid level measurements are made with a water level meter and/or interface probe and disposable bailers. The probe tip attached to a measuring tape is lowered into the well and into the groundwater when a beeping tone indicates the probe is in the groundwater. The probe and measuring tape (graduated to hundredths of a foot) are slowly raised until the beeping stops and the depth to water measurement is recorded. If the meter makes a steady tone, this indicates the presence of floating liquid hydrocarbons (FLH) and the probe and measuring tape are raised until the steady tone stops and the depth to the FLH is measured. Once depth to water and depth to FLH (if present) has been recorded, the probe and measuring tape are lowered to the bottom of the well where the total depth of the well is measured. The depth to water, depth to FLH, and depth to bottom are measured again to confirm the results.

If FLH is encountered in the well, a disposable bailer is lowered into the well and brought back to the surface to confirm the thickness/presence of FLH. To minimize potential for cross contamination between wells, all measurements are done from cleanest to dirtiest well. Prior to beginning liquid level measurements, in between measurements in all wells, and at the completion of liquid level measurements, the water level probe and measuring tape is cleaned with solution (Alconox, Simple Green, or equivalent) and rinsed with deionized water.

9.0 WELL PURGING AND SAMPLING

Each well is typically purged of at least three well casing volumes of groundwater prior to collecting a groundwater sample. Purging can continue beyond three well casing volumes if field parameters including pH, temperature, electrical conductivity are not stabilizing during the purging process. If the well is purged dry before the three well casing volumes has been purged, the well is typically allowed to recharge to 80 percent of its initial water level before a groundwater sample is collected.

Purging equipment can include submersible pumps, PVC purging bailers, disposable bailers, air lift pumps, or pneumatic pumps. Prior to beginning well purging, in between each well purging, and at the completion of purging activities, all non-dedicated purging equipment is cleaned with solution (Alconox, Simple Green, or equivalent) and rinsed with deionized water.

Once the well has been purged, it will be sampled with a disposable bailer, PVC bailer, stainless steel bailer, or through a low flow groundwater pump. The groundwater sample is transferred from the bottom of the bailer to reduce volatilization to the appropriate sample container. The sample containers are specified by the analytical laboratory depending on the analyses requested. Sample containers typically include volatile organic compound (VOA) vials with septa of Teflon like materials. The groundwater sample is collected into the VOAs to minimize air bubbles and once the cap has been placed on the VOA, the VOA is tipped upside down to see if air bubbles are present in the VOA. Typically a duplicate VOA is collected from each well to be analyzed by the analytical laboratory, if warranted, to verify results.

Sample containers are labeled as described in **Section 3.0** and placed immediately in an ice chest and kept refrigerated until its delivery to the analytical laboratory. A trip blank may also be prepared by the analytical laboratory to travel with the ice chest during transport to the laboratory. Field blanks from equipment that has been decontaminated may be collected in between use in different wells to verify the decontamination procedure is effective. To minimize potential for cross contamination between wells, all wells are purged and sampled from cleanest to dirtiest well.

10.0 TEDLAR BAG SOIL VAPOR SAMPLING

Sampling equipment to collect Tedlar bag soil vapor samples includes an air pump, a Tedlar bag which can range in size from 1 to 10 liters, and 3/16-inch diameter polyethylene tubing. The air pump should be equipped with 3/16-inch hose barbs for the polyethylene tubing to attach to. The Tedlar bag must be equipped with a valve for filling and sealing the bag.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with a 3/16-inch hose barb. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. One end of the polyethylene tubing is connected to the sample collection port and one end is connected to the influent of the air pump, creating an air tight seal. The air pump is turned on and soil vapor from the sample collection port is pumped through the air pump for at least one minute. The air pump is turned off and one end of another piece of polyethylene tubing is connected to the effluent of the air pump and one end is connected to the valve on the Tedlar bag. The valve is opened and the air pump is turned on filling the Tedlar bag with the soil vapor sample until the bag has reached 75% capacity, when the valve on the Tedlar bag is closed and the air pump is turned off.

Tedlar bags are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

11.0 SUMMA CANISTER SOIL VAPOR SAMPLING

Sampling equipment to collect Summa canister soil vapor samples includes a sterilized Summa stainless steel canister under vacuum, ¼-inch diameter polyethylene tubing, and a laboratory calibrated flow meter, if required.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with brass connection with silicone septa that has been threaded into a tapped hole on the piping network. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. One end of the polyethylene tubing is connected to the brass sample collection port and one end is connected to the canister valve or flow meter, creating an air tight seal. Prior to collecting the soil vapor sample, the valve on the Summa canister is opened to verify the Summa canister has the required vacuum which is recorded. Three well volumes of vapor will be purged at a rate less than 200 milliliters per minute (ml/min.), including sand pack pore volume from each soil vapor probe prior to sample collection. The sample valve or flow meter is opened and the soil vapor sample is collected into the Summa canister and the sample valve is closed and the final vacuum reading (typically greater than 5 inches per square inch) on the Summa canister is recorded.

Per the DTSC Advisory Active Soil Gas Investigations, April 2012, high quality soil gas data collection is driven by project-specific data quality objectives (DQOs) and can be enhanced by using a shroud and a gaseous tracer compound. This method of leak detection ensures that soil gas wells are properly constructed and the sample train components do not leak. Most gaseous tracer compounds do not affect target analyte measurements nor does their detection require sample dilution. Also, gaseous leak tracer compounds allow a quantitative determination of a leak either in the sampling train or from ambient air intrusion down the borehole.

The shroud will be designed to contain the entire sampling train and the soil gas well annulus. The sampling train will be constructed of material that does not react with the sample analytes and will not off gas or adsorb volatile compounds. The sampling equipment will be clean and shut-in tested prior to use. The gaseous leak tracer compound (isobutylene 100 ppm) concentration inside the shroud will be monitored frequently to verify initial concentrations. A photoionization detector will be used to monitor tracer gas concentrations.

Summa canisters are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory.

12.0 SYRINGE SOIL VAPOR SAMPLING

Sampling equipment to collect syringe soil vapor samples includes a sterilized, 100 cubic centimeter, gas tight syringe and silicone septa.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with brass connection with silicone septa that has been threaded into a tapped hole on the piping network. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. The syringe is inserted into the silicone septa and the plunger is purged or pumped at least three times. The sample is collected the fourth time the syringe plunger is extracted and the syringe is removed from the sample collection port and the needle on the syringe is capped with a rubber stopper.

Syringes are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory.

13.0 TEMPORARY SAMPLING POINTS

A temporary borehole is advanced using either a slam bar or a direct push drill rig. In the case of the slam bar, once the borehole has been created, a temporary soil vapor probe is inserted into the borehole and advanced with a slide hammer or other physical force two additional feet. A bentonite seal is then placed in the borehole above the soil vapor probe to create an air tight seal and prevent ambient air from entering the sample collection space. In the case of the direct push drill rig, the sampling rod is advanced to the desired depth with a 6-inch retractable vapor screen at the tip. The sample screen on the 6-inch vapor screen is removed and a bentonite seal is then placed in the borehole above the soil vapor probe to create an air tight seal and prevent ambient air from entering the sample collection space.

Once the bentonite seal has set, at least one hour, the soil vapor survey samples are collected into Tedlar bags as described in **Section 10.0** or Suma canisters as described in **Section 11.0**. Samples are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

14.0 REPEATABLE SAMPLING POINTS

A borehole is advanced using either a hand auger or a drill rig. A 6-inch slotted probe with caps on both ends is placed in the borehole. A Swagelok fitting is attached to one end cap and 3/16-inch diameter Nylon tubing is attached to the Swagelok fitting. A one foot sand pack is placed around the probe and the remainder of the borehole is sealed with a layer of dry bentonite powder, followed by a layer of bentonite chips, and an additional layer of dry bentonite powder. A well box is placed on the surface of the repeatable sampling point and the excess Nylon tubing is placed inside the well box.

Soil vapor survey samples will be collected at least one week after probe installation. In addition, soil vapor survey samples will only be collected after five consecutive precipitation free days and after any onsite irrigation has been suspended.

The soil vapor survey samples are collected into Tedlar bags as described in Section 10.0 or Summa canisters as described in Section 11.0. Tedlar bags or Summa canisters are labeled as described in Section 3.0 and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

California Ag & Environmental Labs

18 October 2017

Mike Sgourakis Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382

RE: Shore Acres Gas

Enclosed are the results for sample(s) received on 09/29/17 11:50 by California Ag & Environmental Laboratories. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages.

Please see quality control report for a summary of QC data pertaining to this project.

The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Sample(s) may be archived by prior arrangement.

Thank you for the opportunity to service the needs of your company.

Sincerely,

Hiram Cueto Lab Manager

Argon Analytical Services, Inc. CHAIN OF CUSTODY

Project Informa	Bon				_	
Project No: GHA.15009 Project Title: Shore Acres Gas Location: 403 East 12th Street Oakland, CA		Address: 270 Vin).4580 K1040	ıc	Laboratory: Address: Contest: Phone: Fax:	Samples Suborkitot To: Anjon (288 2305 Selicular Avenus Cores: CA 95307 (209) 581-9280 (209) 581-9282
Sampler's Signature: TURN AROUND	an Allen	Client: Address:	Environmental Compliance (270 Vintage Drive Turlock, CA		Date Results Required Date Report Required:	
RUSH 24 Hour 48 Hour	Standard Special (10-14 days)	TPHg by EPA Method 8015M BIEX, 5 oxygenates, 12-DCA, EDB by EPA Method 8260B	ANALY	515	DF Roomie	SOLVENIS
Sample (D. 1987) Day Time MW-1 928 7 1105 MW-2 1216 MW-3 1071	# Containers Matrix 3 (a)Xa+6	X		What has been a passed and a pa		Postoreto
MW-5 1251 MW-6 1(21						
EW-1 0945 EW-2 1150 EW-3 1049 EW-4 1001						
Redicquished By: VAM	Said 7.9 (> Time; ET)	Received By:	Λ ο	ate: Time:		CIAL INSTRUCTIONS:
Relinquished By:	Oate: Time:	Received By:	Di	q[24[]) ste: Time:	<i>JI</i> : 00	Global (D# T0500174667

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive

Project Number: GHA.19009

Project Name: Shore Acres Gas

Work Order No.:

T709031

Turlock, CA 95382 Project Manager: Mike Sgourakis

ANALYTICAL REPORT FOR SAMPLES

Sample ID			Laboratory ID	Matrix	Ozte Sampled	Date Beceived
MW-1	4.4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	T709031-01	Water	09/28/17 11:05	69/29/17 57:50
MW-2			T709031-02	Water	09/28/17 12:16	09/29/17 11:50
MW-3	****		T709031-03	Water	09/28/17 10:21	09/29/17 11:50
MW-4		4 /4	T709031-04	Water	09/28/17 12:02	09/23/17 (1:50
MW-5			T709031-05	Water	09/28/17 12:31	09/29/17 11:50
MW-6		×	T709031-06	Water	09/28/17:11:21	09/29/17 45:50
EW-1			T709031-07	Water	09/28/17 09:45	09/29/17 \$1:50
EW-2		•	T709031-08	Water	09/28/17 11:50	09/29/17/11:50
EW-3			T709031-09	Water	09/28/17 10:49	09/29/17 11:50
EW-4			T709031-10	- Water	09/28/17 10:09	09/29/17 11:50

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA,19009

Project Name: Shore Acres Gas

Work Order No.:

Project Manager: Mike Sgourakis

T709031

Total Petroleum Hydrocarbons @ Gasoline

				<u></u>			<u> </u>	
,		Reporting				,ee	"i.,	
Analyte	Result	Limít	Units	Dilution		Analyzed	Method	Note
MW-1 (T709031-01) Water Sampled: 28-Se	p-17 11:05 Recei	ved: 29-Sep-1	7 11:50					
Total Petroleum Hydrocarbons @ Gasoline	22000	500	ug/L	.10	£ #	09-Oct-17	8015M	te se e
Surr. Rec.:		93 %				н	J	
MW-2 (T709031-02) Water Sampled: 28-Se	p-17 12:16 Recei	ved: 29-Sep-1	7 11:50			<i>3</i> .		
Total Petroleum Hydrocarbons @ Gasoline	2100	50	ug/L	1. ;		09-Oct-17	8915M	
Surr. Rec.:		90 %				и	#".	
MW-3 (T709031-03) Water Sampled: 28-Se	p-17 10:21 Recei	ved: 29-Sep-1	7 11:50		•			
Total Petroleum Hydrocarbons @ Gasoline	3400	100	ug/L	2		09-Oct-17	8015M	
Surr. Rec.:	A CONTRACTOR OF THE CONTRACTOR	96 %				'n	n	
MW-4 (T709031-04) Water Sampled: 28-Se	p-17 12:02 Recei	ved: 29-Sep-1	7 11:50			. ,		
Fotal Petroleum Hydrocarbons @ Gasoline	7100	200	ug/L	4		09-Oct-17	8015M	
Surr. Rec.:		95 %				,,	a	
MW-5 (T709031-05) Water Sampled: 28-Se	p-17 12:31 Recei	ved: 29-Sep-1	7 11:50					
Fotal Petroleum Hydrocarbons @ Gasoline	7500	200	ug/L	4		· 09-Oct-17	8015M	
Surr. Rec.:		96 %				**		
MW-6 (T709031-06) Water Sampled: 28-Sej	p-17 11:21 Recei	ved: 29-Sep-1	7 11:50	,			\$ 35g	
Fotal Petroleum Hydrocarbons @ Gasoline	6100	200	ug/L	4		09-Oct-17	SOUSM	
Surr. Rec.:		89 %				**	n-	
CW-1 (T709031-07) Water Sampled: 28-Sep	-17 09:45 Receiv	ved: 29-Sep-1	7 11:50	:				
Total Petroleum Hydrocarbons @	8200	200	ug/L	4		69-Oct-17	8015M	
Gasoline	+ g +		<u>,</u>	A STATE OF S		<u> 11 - 31,500</u>	. 3 , 4388, 3785 	
Surr. Rec.:		101 %				н	u	
		٠					are the second	
•				• 1 . •			3 (50)	

Approved By

California Ag & Environmental Laboratories, Inc., California D.O.H.S. Cert. #2359

Page 2 of 11

2905 Railroad Ave. Gores, CA 95307 (209) 582-9288. Fax (200) 585-9282

Environmental Compliance Group, LLC

Environmental Compilance Group, E.C.

270 Vintage Drive

Project Number: GHA:19009

Project Name: Shore Acres Gas

Work Order No.:

Turlock, CA 95382 Project Manager: Mike Sgowrakis

T709031

Total Petroleum Hydrocarbons @ Gasoline

Analyte	Result	Reporting Limit	Units	Dilution		Analyzed	Method	Notes
EW-2 (T709031-08) Water Sampled	28-Sep-17 11:50 Recei	ved: 29-Sep-17	11:50	,				
Total Petroleum Hydrocarbons @ Gasoline	1900	50	ug/L	1		69-Oct-17	8015M	
Surr. Rec.:		106 %				,,	14	
EW-3 (T709031-09) Water Sampled:	28-Sep-17 10:49 Recei	ved: 29-Sep-17	11:50				*	
Total Petroleum Hydrocarbons @ Gasoline	3609	100	ug/L	2		09-Oct-17	8015M	
Surr, Rec.;		98 %				ic	N .	WW/24/00 2/00/24.11 2 200/24
EW-4 (T709031-10) Water Sampled:	28-Sep-17 10:09 Recei	ved: 29-Sep-17	11:50					
Total Petroleum Hydrocarbons @ Gasoline	8000	200	ug/L	4	· · · · · · · · · · · · · · · · · · ·	69-Gct-17	80.514	
Surr. Rec.:		87 %				н	**	

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA,19009

Project Name: Shore Acres Gas

Work Order No.:

Project Manager: Mike Sgourakis

T709031

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Note
MW-1 (T709031-01) Water	Sampled: 28-Sep-17 11:05 Rec	eived: 29-Sep-1	7 11:50				
Benzene	660	10	ug/L	20	09-Oct-17	8260B	
Toluene	27	10	*	**	n	n	
Xylenes, total	1600	20	n	n	μ	n	
Ethylbenzene	700	10	"	**	n .	**	
t-Butanol	290	100	11	H	· ·		
Methyl tert-Butyl Ether	130	10	11	•	4	a	
Di-Isopropyl Ether	ND	10	и	*	и	**	
Ethyl tert-Butyl Ether	ND	10	п	Ħ	п	н	
tert-Amyl Methyl Ether	ND	10	п	u		. "	
1,2-Dichloroethane	ND	10	n	W	и	*1	
1,2-Dibromoethane (EDB)	ND	10	ıı .	*			
Surr. Rec.;	٠,	107 %			"	"	
	Sampled: 28-Sep-17 12:16 Reco	eived: 29-Sep-1	7 11:50		4		
Велгеле	11	1.0	ug/L	2	09-Oct-17	8260B	
Toluene	2.5	1.0	. "	•	*		
Xylenes, total	43	2.0	"	II .	*	•	
Ethylbenzene	16	1.0	11	ü	"	#	
		10	**	it	"	s	•
-Butanol	ND	10					
-Butanol Methyl tert-Butyl Ether	ND 3.0	1.0	•	и	n	**	
			n n	((n ,	es	
Methyl tert-Butyl Ether	3,0	1.0		() ()	" "	19 er 04	
Methyl tert-Butyl Ether Di-Isopropyl Ether Ethyl tert-Butyl Ether	3.0 ND	1.0 1.0	**	((() ()	n u	9	
Methyl tert-Butyl Ether Di-Isopropyl Ether	3.0 ND ND	1.0 1.0 1.0	"	() () ()	19	0 9 9	

Surr. Rec.:

116 %

Approved By

California Ag & Environmental Laboratories, Inc., California D.O.H.S. Cert. #2359

Page 4 of li

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive

Project Number: GHA.19009

Project Name: Shore Acres Gas

Work Order No.:

Turlock, CA 95382 Project Manager: Mike Sgourakis

T799031

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Avalyzed	Methed No
MW-3 (T709031-03) Water	Sampled: 28-Sep-17 10:21 Rec	eived: 29-Sep-1	7 11:50	• • • • • • • • • • • • • • • • • • • •	8	
Benzene	97	1.0	ug/L	2	09-Oct-17	8260B
Toluene	56	1,0	н	ii .	u ·	er .
Xylenes, total	190	2.0	я	n	4.	*
Ethylbenzene	84	1.0	н	n	н	u
t-Butanol	79	10	n	**	11	tr .
Methyl tert-Butyl Ether	110	1.0	**	11	'n	e.
Di-Isopropyl Ether	ND	1.0	**	"	ı	н
Ethyl tert-Butyl Ether	ND	1.0	**	11	н	4
tert-Amyl Methyl Ether	ND	1.0	н	n	r	P.
1,2-Dichloroethane	ND	1.0	17	11	п	п
1,2-Dibromoethane (EDB)	ND	1.0		·Ħ	п	4
Surr. Rec.:		109 %	-	The second secon	"	r
MW-4 (T709031-04) Water	Sampled: 28-Sep-17 12:02 Reco	eived: 29-Sep-1	7 11:50			
Benzene	250	2.0	ug/L	4	09-Oct-17	8260N
Toluene ·	29	2.0	"	•	. "	. "
Xylenes, total	310	4,0		**	u	п
Ethylbenzene	220	2.0	н	#	"	b.
t-Butanol	ND	20	u	*	u	n
Methyl tert-Butyl Ether	25	2.0	н	"	н	Þ
Di-Isopropyl Ether	ND	2.0		ч	u	,
Ethyl tert-Butyl Ether	ND	2.0	n	"	P	,
ert-Amyl Methyl Ether	ND	2.0	"		tt	ν
-		• •	**	u	,	*
1,2-Dichloroethane	ND	2.0	"			

105 %

Approved By

Surr. Rec.:

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

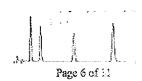
270 Vintage Drive Turlock, CA 95382 Project Number: GHA 19009

Project Name: Shore Acres Gas

Work Order No.:

T709031

Project Manager: Mike Sgourakis


Volatile Organic C	mpounds by	EPA	Method	8260B
--------------------	------------	-----	--------	-------

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-5 (T709031-05) Water	Sampled: 28-Sep-17 12:31	Received: 29-Sep-1	7 11:50				,
Benzene	140	2.0	ug/L	4	99-Oct-17	8260B	
Toluene	16	2.0	*1	u ·	я	н	
Xylenes, total	370	4.0	**	Ħ	n	4	
Ethylbenzene	140	2.0		н .	41	н	
t-Butanol	ND	20	11	n	u u	e	
Methyl tert-Butyl Ether	27	2.0		4		**	
Di-Isopropyl Ether	ND	2.0		*	**	**	
Ethyl tert-Butyl Ether	ND	2.0	n	u	H		
tert-Amyl Methyl Ether	ND	2.0	u	п	a ·	•	
1,2-Dichloroethane	ND	2.0	u	п	ņ	v	
1,2-Dibromoethane (EDB)	ND	2.0	"	и	n		
Surr. Rec.:		112 %		ALL LIVE PORTON TO THE PARTY OF	"	"	
MW-6 (T709031-06) Water	Sampled: 28-Sep-17 11:21	Received: 29-Sep-1	7 11:50				
Benzene	210	2.0	ug/L	4	09-Oct-17	82603	· · · · · · · · · · · · · · · · · · ·
Toluene	17	2.0	#		. " .	. "	
Xylenes, total	48	4,0	**	11	"		
Ethylbenzene	27	2.0	**	**		ti	
t-Butanol	ND	20	**	**	4	•	
Methyl tert-Butyl Ether	ND	2.0	n	**	16	н	
Di-Isopropyl Ether	ND	2.0	n	*	A	*	
Ethyl tert-Butyl Ether	ND	2.0	**	ч	**	" :	
tert-Amyl Methyl Ether	ND	2,0	*1	U	,,		
		2.0	,	и	п	•	
1,2-Dichloroethane	ND	2.0					

Surr. Rec.:

108 %

Approved By

2905 Railroad Ava. Ceres, CA 95307 (209) 581-9280 Fox (209) 531-9282

Environmental Compliance Group, LLC

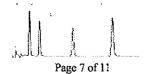
270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Cas

Work Order No.:

Project Manager: Mike Sgourakis

T709031


Volatile Organic Compounds by EPA Method 8266B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed Method	Notes
EW-1 (T709031-07) Water	Sampled: 28-Sep-17 09:45 Receiv	ed: 29-Sep-1	7 11:50			
Вепzепе	66	2.0	ug/L	4	09-Oct-17 \$260B	
Toluene	2.3	2.0	"	*	#	
Xylenes, total	28	4.0	H	н	B) 46	
Ethylbenzene	49	2.0	*	**	tt st	
t-Butanol	ND	20	**	77	Ht H	
Methyl tert-Butyl Ether	42	2.0		**	et, et.	
Di-Isopropyl Ether	ND	2.0	*	*	er e	
Ethyl tert-Butyl Ether	ND	2.0	n	H	· (I	
ert-Amyl Methyl Ether	ND	2.0	u	**	es e	
1,2-Dichloroethane	ND	2.0	ш	H	n n	
1,2-Dibromoethane (EDB)	ND	2.0	п	H	Э	
Surr. Rec.:		117%			, n	
EW-2 (T709031-98) Water	Sampled: 28-Sep-17 11:50 Receiv	ed: 29-Sep-1	7 11:50	·		
Benzene	8.8	2.0	ug/L	4	09-Cec-17 8260B	
Toluene	15	2,0		. "	u v	
Kylenes, total	79	4.0	"	n	ч	
Ethylbenzene	23	2.0	н	и	d μ	
-Butanol	65	20	**	u	я	
Methyl tert-Butyl Ether	18	2.0	n	п	ч .	
Di-Isopropyl Ether	ND	2.0	**	Ħ	P R	
Ethyl tert-Butyl Ether	ND	2.0	**	н	H P	
ert-Amyl Methyl Ether	ND	2.0	**	H	it , n	
,2-Dichloroethane	ND	2.0	**	H	H ***	

Surr. Rec.:

108 %

Approved By

2905 Railroad Avc. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

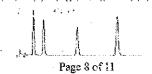
270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas

Work Order No.:

Project Manager: Mike Sgourakis

T709031


Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution		Analyzed	Method	Note
EW-3 (T709031-09) Water	Sampled: 28-Sep-17 10:49 Receiv	ed: 29-Sep-1	7 11:50				·	
Benzene	18	2.0	ug/L	4		09-Oct-17	8260B	
Toluene	5.4	2.0	u	ц		n	п	
Xylenes, total	46	4.0	н	п		ıı	U	
Ethylbenzene	25	2.0	II	li		п	и	
t-Butanol	100	20		п		п	n .	
Methyl tert-Butyl Ether	35	2.0		n		и	п	
Di-Isopropyl Ether	ND	2.0		н			b	
Ethyl tert-Butyl Ether	ND	2.0	n n	u .		ч	. "	
tert-Amyl Methyl Ether	ND	2.0	п	กั		· · · · · · · · · · · · · · · · · · ·	15	
1,2-Dichloroethane	ND	2.0	II	11		u	ø	
1,2-Dibromoethane (EDB)	ND	2.0	, n	₩,		"	н	
Surr. Rec.:		102 %				"	"	
EW-4 (T709031-10) Water	Sampled: 28-Sep-17 10:09 Receiv	ed: 29-Sep-17	7 11:50					
Benzene	89	2.0	ug/L	4		09-Oct-17	82 <i>€</i> 02	
Toluene	6.3	2.0	4			'n	. Б	
Xylenes, total	410	4.0	*	**		•	17	
Ethylbenzene	100	2.0	17	tt		'n	r	
t-Butanol	170	20		n		n	*1	
Methyl tert-Butyl Ether	46	2.0	œ	*		n .	5	
Di-Isopropyl Ether	ND	2.0	u	4		U	**	
Ethyl tert-Butyl Ether	ND	2.0	p	N'		п	. н	
ert-Amyl Methyl Ether	ND	2.0	и			и	**	
1,2-Dichloroethane	ND	2.0	u	**			*	
,2-Dibromoethane (EDB)	ND	2.0		t+		н	# 2 2 3	
O D		111%			***************************************	77	4	

Surr. Rec.:

111%

Approved By

Environmental Compliance Group, LLC

270 Vintage Drive

Turlock, CA 95382

Project Number: GHA 19009

Project Name: Shore Acres Gas Project Manager: Mike Sgourakis

Work Order No.:

T709031

Total Petroleum Hydrocarbons @ Gasoline - Quality Control

Analyte	Result	Reporting Limit	Units ·	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Linat	Notes
Batch T700399 - EPA 5030B										
Blank (T760399-BLK1)				Prepared &	: Analyzed:	10/09/17				
Surrogate: a,a,a-Trifluorotoluene	52.5		ug/L	50		105	70-130			
Total Petrolcum Hydrocarbons @ Gasoline	ND	50	н	*		·	S			
LCS (T700399-BS1)				Prepared &	: Analyzed:	10/09/17				
Total Petroleum Hydrocarbons @ Gasoline	1080		ug/L	1000	A FILL CO. B. T. L. C.	108	80-123			
Matrix Spike (T700399-MS1)	Sou	rce: T710002-0	01	Prepared &	Analyzed	: 10/09/17			•.	
Total Petroleum Hydrocarbons @ Gasoline	960		ug/L	1000	ND	96	70-130	****		
Matrix Spike Dup (T700399-MSD1)	Sou	rce: T710002-0	01	Prepared &	. Analyzed:	10/09/17				
Total Petroleum Hydrocarbons @ Gasoline	920		ug/L	1000	ND	92	70-130	4	20	

2905 Railroad Ave. Ceres, CA 95307 (269) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas

Work Order No.:

T709031

Project Manager: Mike Sgourakis

Volatile Organic Compounds by EPA Method 8260B - Quality Control

'''				and the second second	4 4					
	. •	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD.	Limit	Notes
Batch T700398 - EPA 5030B			***************************************							
Blank (T700398-BLK1)				Prepared &	: Analyzed:	10/09/17				
Surrogate: Fluorobenzene	58.0		ug/I,	50		116	70-130			
Benzene	ND	0.5	u							
Coluene	ND	0.5	u							
Kylenes, total	ND	1.0	и							
Ethylbenzene	ND	0.5								
-Butanol	ND	5.0						•		
Methyl tert-Butyl Ether	ND	0.5								
Di-Isopropyl Ether	ND	0,5								
Ethyl tert-Butyl Ether	ND	0.5								
ert-Amyl Methyl Ether	ND	0,5	n							
,2-Dichloroethane	ND	0.5	"							
,2-Dibromoethane (EDB)	ND	0.5	**							
LCS (T700398-BS1)				Prepared &	: Analyzed:	10/09/17				
-Butanol	136		ug/L	120		113	80-120			THE STATE OF THE S
Matrix Spike (T700398-MS1)	Sou	rce: T710003-	01	Prepared &	: Analyzed:	10/09/17				
,2-Dibromoethane (EDB)	24.0		ug/L	25	ND	96	70-130			*****
Matrix Spike Dup (T700398-MSD1)	Sour	rce: T710003-	01	Prepared &	: Analyzed:	10/09/17				
,2-Dibromoethane (EDB)	22.7		ug/L	25	ND	91	70-130	6.	20	

Approved By

California Ag & Environmental Laboratories, Inc., California D.O.H.S. Cert. #2359

Page 10 of 11

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive

Turlock, CA 95382

Project Number: GHA.19009

Project Name: Shore Acres Gas
Project Manager: Mike Sgourakis

Work Order No.:

T709031

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

GROUNDWATER LEVEL DATA FORM

PROJECT NAME: SHORE ACRES PROJECT NUMBER: GHA 19009
PROJECT MANAGER: MSS . TASK NUMBER:
SITE ADDRESS:

WELL ID	TIME	DEPTH TO BOTTOM	DEPTH TO WATER	DEPTH TO PRODUCT	PRODUCT THICKNESS	PRODUCT THICKNESS X 0.8	COMMENTS
MW-1	6909	19.92	11:50				
MW-2	0906	20.01	12,10		0	, ¹	
MW-3	0913	17.85	11.91	*			
MW-4	0904	18,90	11.88		i Brookyt		
MW-5	0923	19.78	11.97	,			
MW-6	0911	19.90	1(.35				
EW-1	0915	19.57	11.43				
EW-2	0917	19.99	12.30				
EW-3	0919	19.89	11,87				
EW-4	0921	19.95	12,22		ş K		
3							
				· sa			
				*	'	·	_
					·		
						. 🏟	
				*			
					-		
							, was residented
						·	

FIELD TECHNICIAN:	D,	W	12/	
DATE:	q	120	(1	

PROJECT N PROJECT N SITE ADDR	MANAGER:	MSS MSS	RES	-		ECT NUMB	JMBER: ER:	GHA.19009
	WELL ID:	1-WA				TYPE	OF WELL:	Monitoring
WATER CO	De	Total Depth: pth to Water: lumn Length:	11.50	- - -		DIAME 2-inch: 4-inch: 6-inch:	ETER:	- - -
PURGE VOLUME CALCULATION: Water Column Length x Multiplier x No. Volumes = Purge Volume								
Wat	8,42 ter Column Le	x	o.(7 Multiplier		3	olumes	=	4.21 Purge Volume
MULTIPLIEI		Schedule 40 2-inch: 4-inch: 6-inch:	PVC; Gallons/ 0.17 0.65 1.5	Linear Foot	Based	on Cas	ing Diame	ter:
PURGE ME	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE!	ИЕТНС		able Bailer Pump: Other:	
TIME	VOLUME		TEMP.	COND.		((0)	ORP	0011151150

TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO	(mg/l)	ORP (mV)	COMMENTS
1057	1.5	7.0	1.9.9	867				
1100	3	7-04	16.9	<i>भड़ा</i>				
1603	4.5	7.00	187	ए ग्रु				
1105								Saw

FIELD TECHNICIAN:	DVA	
DATE:	9/20/17	

PROJECT I PROJECT I SITE ADDR	MANAGER:	SHORE ACI	RES	_	PROJECT NU TASK NUMB		GHA.19009
	WELL ID:	MW-	2	-	TYPE	OF WELL:	Monitoring
	De Water Co L UME CALC U	(feet) 7.91		WELL DIAME 2-inch: 4-inch: 6-inch:	- - -		
Wa	구,역 l ter Column Le	_	O-(7 Multiplier		No. Volumes	=	4 Purge Volume
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5							
	Disp	osable Bailer PVC Bailer ersible Pump Other		-	Dispos	able Bailer Pump: Other:	
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS
1200	12	7.17	9,05	କ୍ ଟ୍ର			
1211 1214 1216	3	7.19	21.0	શ્રમાં 877			
1216	4	7.0	10. L	872			
1416							saut

FIELD TECHNICIAN:	D	WA 1	۱, ۱
DATE:	9	128	117

PROJECT I PROJECT I SITE ADDR	MANAGER:	SHORE ACI	RES	-	PROJECT N TASK NUMI		GHA.19009			
	WELL ID:	<u>_ MM-</u>	-3		TYPE	OF WELL:	Monitoring			
WATER COLUMN DATA: Well Total Depth: 17-95 Depth to Water: 11-91 Water Column Length: 5 9 4				• - -	WELL DIAMETER: 2-inch: 4-inch: 6-inch:					
PURGE VO	LUME CALCU Water Colum		ultiplier x No.	Volumes =	Purae Volume	9				
Wa	S,94 ter Column Le	_	-		-		Purge Volume			
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5										
PURGE METHOD: Disposable Bailer PVC Bailer Submersible Pump Other				SAMPLE I	METHOD: Dispo	sable Bailer Pump: Other:				
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS			
1015	2	7.07	19,4	851		ļ				
1017	3	7.07	19.7	877 847						
1021							Sample			

-										
					<u> </u>	<u> </u>	<u> </u>			

FIELD TECHNICIAN: DATE:

PROJECT PROJECT SITE ADDR	MANAGER:	SHORE AC	RES	-	PROJECT N TASK NUME		GHA.19009			
	WELL ID:	MW-	4	_	TYPE	OF WELL	: Monitoring			
	WATER COLUMN DATA: Well Total Depth: Depth to Water: Water Column Length: 6 9 2				WELL DIAMETER: 2-inch: 4-inch: 6-inch:					
PURGE VO	LUME CALCU Water Colum		lultiplier x No.	Volumes =	Purge Volume		a			
Wa	6.97 ter Column Le	x ngth	O. (7 Multiplier	_ x	No. Volumes	. =	3. s Purge Volume			
	MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5 PURGE METHOD: SAMPLE METHOD:									
	Subme	PVC Bailer		Disposable Bailer Pump: Other:						
	- Cabin	Other		-		Other.				
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS			
1155	1-5	7.47	21.9	674						
1150	2,71	7,44 7.37	71.9	646						
1202							sample			

	····	····								
						······································				

FIELD TECHNICIAN:

PROJECT PROJECT SITE ADDR	MANAGER:	SHORE AC	RES	_	PROJECT NO TASK NUMB		GHA.19009		
	WELL ID:	<u>ww</u>	-5	_	TYPE OF WELL: Monitoring				
WATER CO	LUMN DATA Wel De Water Co	19,78 10,77 7,81	- -	WELL DIAMETER: 2-inch: 4-inch: 6-inch:					
PURGE VO	LUME CALCU	JLATION:			Purae Valume				
Water Column Length x Multiplier x No. Volumes = Purge Volume 7.01 x							Purge Volume		
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5							er:		
PURGE METHOD: Disposable Bailer PVC Bailer Submersible Pump Other				SAMPLE I	METHOD: Disposa	able Bailer Pump: Other:			
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS		
1224	しか	7.15	19.4	1164					
/US		7,19	19,5	1089	/				
123	4	7.12	(9,6	7089			seruple		

FIELD TECHNICIAN:	Dus 112
DATE:	वारधान

PROJECT NAME: SHORE ACRES PROJECT MANAGER: MSS SITE ADDRESS:				PROJECT NUMBER: GHA.19009 TASK NUMBER:			
	WELL ID:	· WW	-6	_	TYPE (OF WELL:	Monitoring
	VValer Co	JLATION:	19,90 (1.31 8.55	_		ETER:	- - -
					Purge Volume		
	8.55	X.	017	x	No. Volumes	=	4.3
Wa	ter Column Le	ngth	Multiplier	-	No. Volumes		Purge Volume
MULTIPLIE	Multiplier for THOD: Disp	2-inch: 4-inch: 6-inch: osable Bailer PVC Bailer ersible Pump Other	0.17 0.65 1.5	SAMPLE !	Disposa	able Bailer	
TIME	PURGED (gal)	рН	(°C)	(uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS
(11)	(25)	7.21	(9.2 18.9 (9.1	75			
116	>	7.19	18,9	741	* *		
1116 1(19 1(21	4.5	4,01	19-1	<i>+</i> >1	ļ	~~ <u>······</u>	
1000							raugh
					·		······································
	-						
							, , , , , , , , , , , , , , , , , , ,
			-				

FIELD TECHNICIAN:	PUA	l
DATE:	9128	117

PROJECT I PROJECT I SITE ADDR	MANAGER: MSS TASK NUMBER:				GHA.19009		
	WELL ID:	: <u>Ew</u> -	-1	_	TYPE	OF WELL:	: Monitoring
	De	l Total Depth: epth to Water: blumn Length:	11.93	- - -	WELL DIAME 2-inch: 4-inch: 6-inch:	ETER:	<u>→</u>
		n Length x M			Purge Volume		
	7,64	x	Multiplier	x	3	· =	Purge Volume
Wa	iter Column Le	ngth	Multiplier	•	No. Volumes		Purge Volume
PURGE ME	THOD:	2-inch: 4-inch: 6-inch: oosable Bailer	0.17 0.65 1.5	/Linear Foot SAMPLE N		able Bailer	s
	Subme	PVC Bailer ersible Pump Other		- -		Pump: Other:	
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS
0933	5	7.57	19.7	789			
0938	10	7,51	19.2	791	<u> </u>		
0938 0943 0945		4.4 >	19.0	76+			saupit
7010444444444444							
	·	,					1

FIELD TECHNICIAN:	y was loo	
DATE:	7/20/17	

PROJECT PROJECT SITE ADDR	MANAGER:	SHORE ACI	RES	<u>-</u> -	PROJECT N TASK NUME	GHA.19009			
WELL ID: Ew. 2				_	TYPE OF WELL: Monitoring				
WATER COLUMN DATA: Well Total Depth: Depth to Water: Water Column Length: 7 6 7 PURGE VOLUME CALCULATION:					6-inch:	- V	- - -		
Water Column Length x Multiplier x No. V 7,69 Water Column Length Multiplier Multiplier					No. Volumes		Purge Volume		
	MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5								
PURGE ME	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE I		sable Bailer Pump: Other:			
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS		
(()&	5	7-19	21.5	784					
(14)	10	7.21	21.3	770	,	<u>.</u>			
1145 1148 115	(3	*・マノ	21.+	740			sault		
1					· .				

FIELD TECHNICIAN:	pulsion	17
DATE:	4100	<i>((</i>)

PROJECT PROJECT SITE ADDR	MANAGER:	SHORE ACI	RES	- -	PROJECT NO TASK NUMB		GHA.19009	
	WELL ID:	3	_	TYPE OF WELL: Monitoring				
	Water Co	19(18)9 11.87 8.02	- - -	WELL DIAME 2-inch: 4-inch: 6-inch:	ETER:	- - -		
PURGE VOLUME CALCULATION: Water Column Length x Multiplier x No. Volumes = Purge Volume A . O . x .								
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5								
PURGE ME	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE I - - -		able Bailer Pump: Other:		
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS	
1037 1047 1091	\$ [2	7.11 7.01 7.04	<u>(८,१</u> (१,० (१,७	921 919 929			sauph	

FIELD TECHNICIAN: _____

PROJECT!	OJECT NAME: SHORE ACRES OJECT MANAGER: MSS E ADDRESS:				PROJECT NO TASK NUMB		GHA.19009		
	WELL ID:	EWM.		_	TYPE OF WELL: Monitoring				
WATER COLUMN DATA: Well Total Depth: (feet) Depth to Water: 11.71 Water Column Length: 7.73				- 	WELL DIAMETER: 2-inch: 4-inch: 6-inch:				
PURGE VO	LUME CALCU Water Colum		lultiplier x No. \	Volumes =	Purge Volume				
Wa	1.73 ater Column Le	_	Multiplier		-		3 5 Purge Volume		
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5									
PURGE ME	Dispo	osable Bailer PVC Bailer ersible Pump Other		SAMPLE I	Dispos	able Bailer Pump: Other:			
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS		
6956	/2	7.15	19.3	861					
1001	27	7,13	18.9	884 875					
100 100 100 100 100	36	7.07	(9,0	87.5			Saryle		

<i>*</i>	DW4	
FIELD TECHNICIAN:	2/20/2	
DATE:	412011	