RECEIVED

By Alameda County Environmental Health 2:21 pm, Feb 16, 2017

December 29, 2016

Ms. Donna Drogos Alameda County Environmental Health 1131 Harbor Parkway, Suite 250 Oakland, CA 94502-6577

Subject:

Third Quarter 2016 Groundwater Monitoring and Rebound Report

Shore Acres Gas

403 East 12th Street, Oakland, Alameda County, California

RO #0002931 ECG # GHA.19009

Dear Ms. Drogos:

Enclosed please find a copy of the December 29, 2016 *Third Quarter 2016 Groundwater Monitoring and Rebound Report* for the above referenced site prepared by our consultant Environmental Compliance Group, LLC.

I declare, under penalty and perjury, that the information and/or recommendations contained in this report are true and correct to the best of my knowledge.

Respectfully,

Rashid Ghafoor

11-5 hr

270 Vintage Drive Turlock, CA 95382 P: 209.664.1035 F: 209.664.1040

THIRD QUARTER 2016 GROUNDWATER MONITORING AND REBOUND REPORT

SHORE ACRES GAS 403 EAST 12TH STREET OAKLAND, CALIFORNIA

Prepared for: Rashid Ghafoor

ECG Project Number: GHA.19009 Alameda County Fuel Leak Case No. R00002931

December 29, 2016

Mulssala

Drew Van Allen Senior Project Manager

Michael S. Sgourakis Principal Geologist CA P.G. No. 7194

TABLE OF CONTENTS

Introduction	
Limitations	
	lydrogeologic Conditions
Hydrogeologic Cond	ditions
Risk Assessments	
	onitoring Event
	d Proposed
Work Performed	Third Quarter 2016
Work Scheduled f	or Fourth Quarter 2016 and First Quarter 2017
Discussion of Recen	t Monitoring Activities
Discussion of Recen	t Remediation Activities
Results and Conclusio	ns
Figures	
Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7:	Site Location Map Site Map Potentiometric Surface Map Rose Diagram TPHg in Groundwater Isoconcentration Map Benzene in Groundwater Isoconcentration Map MTBE in Groundwater Isoconcentration Map

Tables

Table 1:	Well Construction Details
Table 2a:	Historical Soil Analytical Data, TPH and BTEX
Table 2b:	Historical Soil Analytical Data, Oxygenates and Lead Scavengers
Table 3a:	Grab Groundwater Sample Results, TPH and BTEX
Table 3b:	Grab Groundwater Sample Results, Oxygenates and Lead Scavengers
Table 4a:	Monitoring Well Data, Water Level, TPH, and BTEX
Table 4b:	Monitoring Well Data, Oxygenates and Lead Scavengers
Table 5a:	Soil Vapor Extraction System Performance Calculations
Table 5b:	Soil Vapor Extraction Destruction Efficiency and Emission Calculations
Table 5c:	Groundwater Treatment System Performance Data

Appendices

Regulatory Correspondence Standard Operating Procedures Laboratory Analytical Reports Appendix A: Appendix B: Appendix C:

Appendix D: Field Notes

INTRODUCTION

Environmental Compliance Group (ECG) has been authorized by Mr. Rashid Ghafoor to provide this report for the site.

This report describes activities conducted during Third Quarter 2016 groundwater monitoring event and post remediation rebound testing. Site information is as follows:

Site Location:

403 East 12th Street

Oakland, California

Geotracker Global ID:

T0600174667

LIMITATIONS

This report has been prepared for use by Rashid Ghafoor and the relevant regulatory agencies. The conclusions in this report are professional opinions based on the data presented in this report. This report was prepared in general accordance with hydrogeologic and engineering methods and standards. No other warranties are made as to the findings or conclusions presented in this report. The work described in this report was performed under the direct supervision of the professional geologist whose signature and State of California registration are shown above.

SITE DESCRIPTION AND HYDROGEOLOGIC CONDITIONS

SITE DESCRIPTION

The site occupies a parcel on the southeast corner of 4th Avenue and East 12th Street in Oakland, Alameda County, California (Figure 1). The site is situated in a commercial and residential area in central Oakland and is currently vacant. The site was historically used as a gasoline station. The area of interest at the site is the former location of three underground storage tanks (USTs) and fuel dispensers where impacted soil and groundwater was first identified in 2006. A detailed site plan is shown on Figure 2.

HYDROGEOLOGIC CONDITIONS

The site is underlain by Quaternary-age dune sand deposits referred to as the Merritt Sand. The Merritt Sand is typically described as loose, well-sorted fine- to medium-grained sand with a large silt component. The sand is reported to reach a maximum depth of 50-feet bgs in the area.

Based on boring logs from the advancement of 11 soil borings and the installation of six monitoring wells and four extraction wells, the stratigraphy of the site and vicinity consists of silt to approximately 30-feet bgs with discontinuous thin intervals of sandy silt and clayey sand present in the area.

Depth to groundwater is shallow, ranging between 8- to 14-feet bgs. The groundwater flow direction appears to be generally toward the southeast.

PROJECT BACKGROUND

INVESTIGATIONS

In July 2006, Geofon Incorporated (Geofon) advanced soil borings GP-1 and GP-2 and collected and analyzed soil samples. Results are detailed in Geofon's report entitled *Summary of Phase II Assessment Activities*, dated July 25, 2006.

In August 2009, Wright Environmental Services, Inc. (Wright) removed three USTs, associated fuel dispensers, and all associated piping. Results are detailed in Wright's *Closure Report for Three Underground Storage Tanks*, dated September 2009.

In April 2010, Apex Envirotech, Inc. (Apex) advanced nine soil borings to evaluate the lateral extent of impacted soil and groundwater. Results are documented in Apex's Subsurface Investigation Results Report dated June 23, 2010.

In June 2011, ECG supervised the installation of six groundwater monitoring wells (MW-1 through MW-6) and two extraction wells (EW-1 and EW-2). Results are documented in ECG's Off-Site Investigation and Dual Phase Pilot Test Results with Fourth Quarter 2011 Monitoring Report, dated January 26, 2012.

RISK ASSESSMENTS

In January 2011, ECG conducted a preferential pathway study for the site. Results are detailed in ECG's Site Assessment and Soil Vapor Extraction Pilot Test Workplan, dated February 9, 2011.

In January 2011, ECG conducted a sensitive receptor survey for the site. Results are detailed in ECG's Site Assessment and Soil Vapor Extraction Pilot Test Workplan, dated February 9, 2011.

A soil vapor survey has not been completed for the site.

CORRECTIVE ACTIONS

In June 2011, ECG supervised the installation of six groundwater monitoring wells (MW-1 through MW-6) and two extraction wells (EW-1 and EW-2). ECG also performed a 5-day dual phase extraction (DPE) test in June 2011. Results are documented in ECG's Off-Site Investigation and Dual Phase Pilot Test Results with Fourth Quarter 2011 Monitoring Report, dated January 26, 2012.

In May 2013, ECG supervised the installation of two extraction wells (EW-3 and EW-4). In September 2013, ECG installed the subsurface piping network from the remediation wells to the remediation compound and the subsurface conduit required by PG&E to install the electrical service required to operate the remediation compound.

In April 2014, the dual phase extraction system began operation. The DPE system includes a 25-horsepower liquid-ring blower capable of up to 400 standardized cubic feet per minute (scfm) flowrate, thermal/catalytic oxidizer, a conveyance piping network, and four individual extraction wells. The blower extracts vapors and groundwater from each extraction wells and through the conveyance piping where the impacted vapor is destroyed in the thermal/catalytic oxidizer prior to

discharge to the atmosphere and the groundwater is treated with an air stripper and granular activated carbon prior to discharge to the municipal sewer system.

The remediation system was started on April 30, 2014 and shut down on June 27, 2014 due to carbon change out requirements. The system was restarted on August 15, 2014. The remediation system was shut down on February 18, 2015 due to complaints from neighbors regarding the propane tank onsite providing supplemental fuel to the remediation equipment. ECG supervised the installation of natural gas provided by PG&E to the site and the system was restarted on August 11, 2015. The system was shut down on December 16, 2015 due to contaminant breakthrough of the first carbon vessel and scheduled carbon change out. The system was restarted January 21, 2016 and shut down on April 11, 2016 due to decreasing contaminant extraction rates and pending regulatory review of ECG's Fourth Quarter 2015 Monitoring and Remediation System Evaluation Report, dated August 1, 2016.

The DPE system is operated under Bay Area Air Quality Management District (BAAQMD) permit number 25354 and East Bay Municipal Utility District (EBMUD) Discharge Permit No. 68508758. The DPE system has removed approximately 8,434 pounds of TPHg, 39 pounds of benzene, and 2. pounds of MTBE from the subsurface.

THIRD QUARTER 2016 MONITORING EVENT

WORK PERFORMED AND PROPOSED

The following is a summary of work performed during the third quarter 2016 and work proposed for next quarter at the site.

WORK PERFORMED THIRD QUARTER 2016

- 1. The third quarter 2016 groundwater monitoring event was performed on September 23, 2016.
- 2. The remediation system was shut down April 11, 2016 due to decreasing contaminant extraction rates and pending regulatory review of remediation system evaluation report.

WORK SCHEDULED FOR FOURTH QUARTER 2016 AND FIRST QUARTER 2017

- 1. Prepare and finalize third quarter 2016 monitoring and rebound report.
- 2. Perform first quarter 2017 monitoring event.

DISCUSSION OF RECENT MONITORING ACTIVITIES

ECG performed the third quarter 2016 groundwater monitoring and sampling event at the site on September 23, 2015. Gauging, development, purging, and sampling were conducted in accordance with ECG's SOPs included in Appendix B. The collected groundwater samples were submitted to California Agricultural and Environmental Labs located in Ceres, California for laboratory analysis under COC protocols (Appendix C).

The following is a summary of the current status of the groundwater monitoring program at the site:

Current Phase of Project:
Groundwater Sampling Schedule:

Post Remediation Semi-Annual

Wells MW-1 through MW-6, EW-1 through

EW-4

Analysis: TPHg by EPA Method 8015M, BTEX, 5

oxygenates, and 2 lead scavengers by EPA

Method 8260B

Is Free Product Present On-Site:

No

The following is a summary of recent field and analytical data:

Average Depth to Groundwater Average Groundwater Elevation **Groundwater Gradient Direction**

Groundwater Gradient

TPHg Detected Range Benzene Detected Range

MTBE Detected

9.51-feet below ground surface (bgs) 21.73 -feet above mean sea level

Southeast 0.0080

570 ug/L (MW-2) to 20,000 ug/L (MW-1) 10 ug/L (MW-2) to 1,400 ug/L (MW-1)

5.3 ug/L (MW-2) to 380 (MW-3)

Laboratory analytical reports and COCs are provided in Appendix C. Field notes are located in Appendix D. Summaries of groundwater monitoring and analytical data are presented in Tables 4a.

DISCUSSION OF RECENT REMEDIATION ACTIVITIES

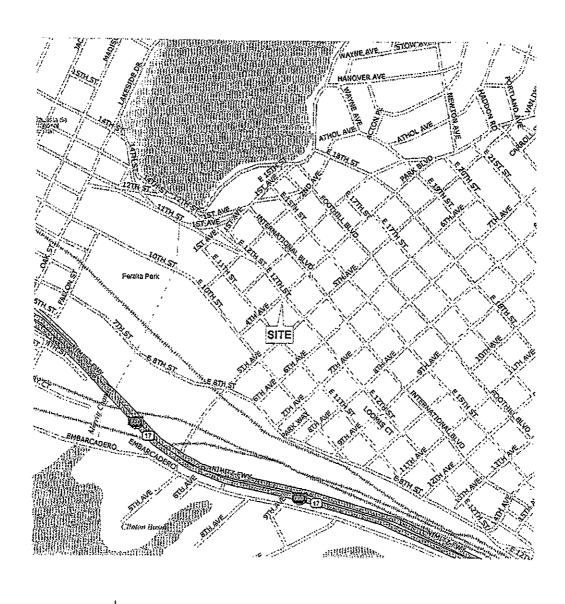
The remediation system was shut down April 11, 2016 due to decreasing contaminant extraction rates and pending regulatory review of remediation system evaluation report. Summaries of remediation system operating parameters and analytical data are presented in Tables 5a, 5b, and 5c.

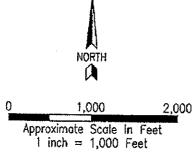
RESULTS AND CONCLUSIONS

Water levels and the gradient data were consistent with historical data. Tables 2a, 2b, 3a, 3b, 4a, and 4b tabulate the analytical data for soil and monitoring well sampling data. ECG will keep the remediation system shut down pending regulatory review of remediation system evaluation report. The next groundwater monitoring event will be in first quarter 2017.

RECOMENDATIONS

Based on the above findings and the results of ECG's Fourth Quarter 2015 Monitoring and Remediation System Evaluation Report, dated August 1, 2016, ECG recommends the following.

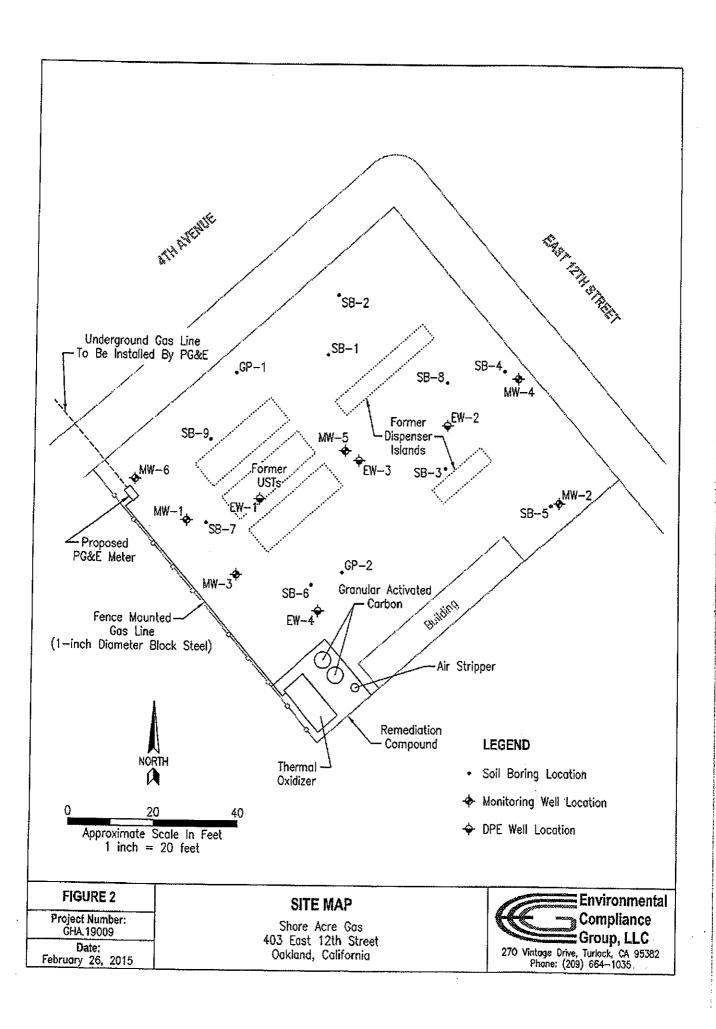

Based on the decreasing trends and rebound observed during times of prolonged operation, ECG recommends continued operation of the DPE system after the rebound samples are collected from the monitoring well network.

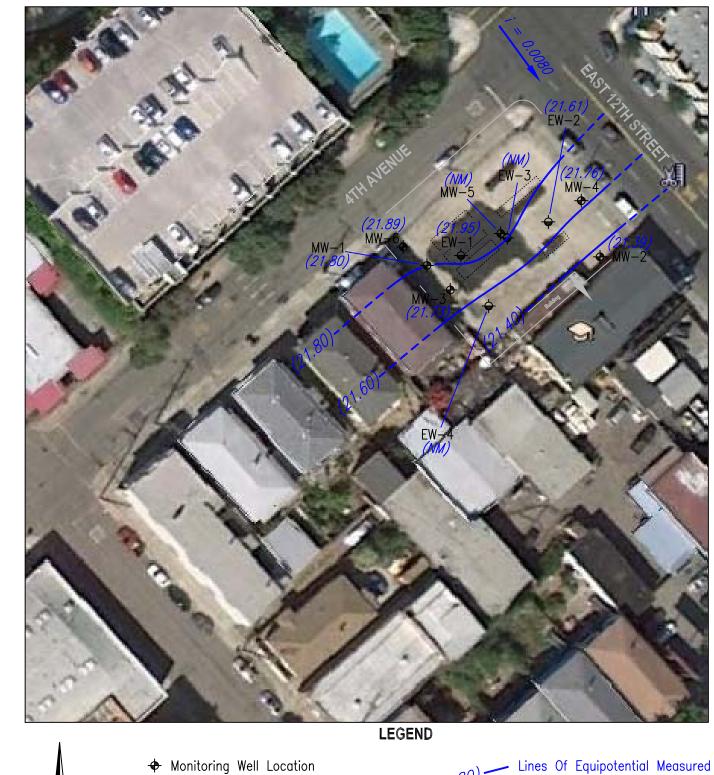

Based on the data that approximately 3,000 pounds of TPHg remains in the subsurface, most likely around approximately 15-feet bgs but lower extraction rates show difficulty removing the contamination with the current DPE configuration, ECG proposes conducting a pilot test consisting of installing submersible pumps into two extraction wells, EW-3 and EW-4, and extracting additional water while the current DPE system operates. The purpose of this pilot test is to determine what groundwater flow rates are required to further dewater the shallow zone aquifer and what increase in concentrations, if any, is observed during low water conditions. It has been documented during operation and maintenance of the system that higher PID readings coincide

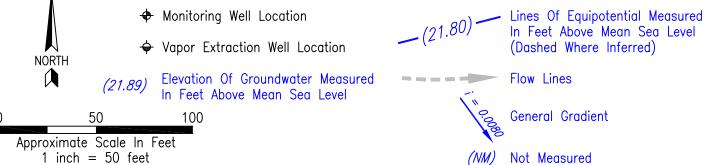
with lower water levels. This pilot test will quantify all the parameters to determine the feasibility of implementing full time groundwater pumping. During the test, groundwater from the submersible pumps will be stored in a poly tank for disposal through the system at a very low, controlled flow rate so the current air stripper and transfer pumps are not inundated during the test. Upon concurrence from the ACEHS, ECG will prepare a workplan report detailing the activities suggested above.

ECG will make further conclusions and recommendations after the rebound samples and pilot test are concluded.

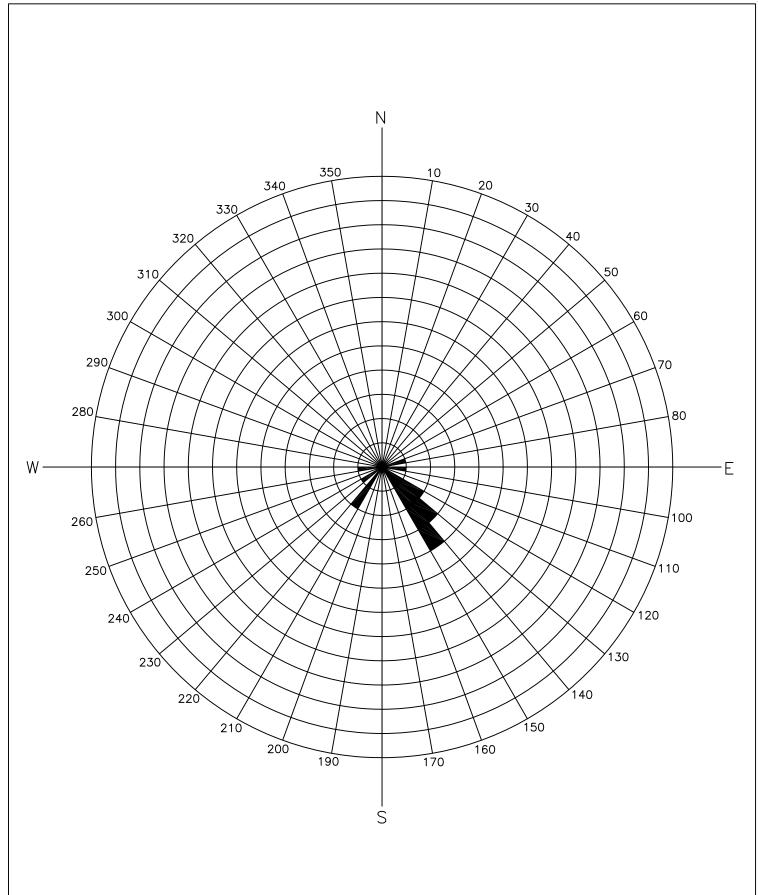
FIGURES




	F	IG	U	RE	1
'n				lum 900	


Date: February 9, 2011

SITE LOCATION MAP


FIGURE 3

Project Number: GHA.19009

Date: February 16, 2017

POTENTIOMETRIC SURFACE MAP SEPTEMBER 23, 2016

Thru 3rd Quarter 2016

FIGURE 4

Project Number: GHA.19009

Date: February 16, 2017

ROSE DIAGRAM

♦ Monitoring Well Location

♦ Vapor Extraction Well Location

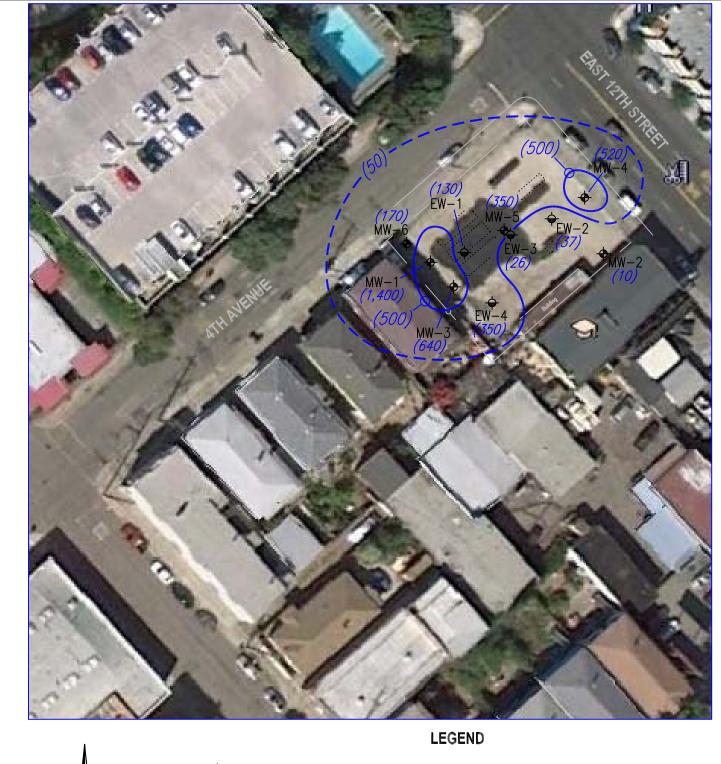
Concentration Of TPHg In Groundwater Measured In ug/L <u></u> (5,000)

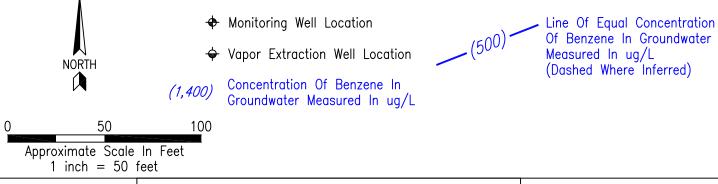
Line Of Equal Concentration Of TPHg In Groundwater Measured In ug/L (Dashed Where Inferred)

O 50 100

Approximate Scale In Feet
1 inch = 50 feet

(20,000)

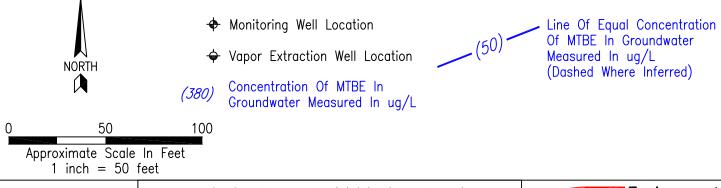

FIGURE 5


Project Number: GHA.19009

Date: February 16, 2017

TPHg IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 23, 2016

FIGURE 6


Project Number: GHA.19009

Date: February 16, 2017

BENZENE IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 23, 2016

FIGURE 7

Project Number: GHA.19009

Date: February 16, 2017

MTBE IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 23, 2016

TABLES

Table 1 Well Construction Details

Shore Acres Gas 403 East 12th Street Oakland, California

Well ID	Date Installed	TOC Elevation (ft amsl)	Well Depth (ft bgs)	Casing Diameter (inches)	Casing Material	Screen/ Filter	Screen Interval (ft bgs)
Monitoring	Wells					<u> </u>	(****
MW-1		30.81	20	2	PVC	0.020/#3	10-20
MW-2		31.29	20	2	PVC	0.020/#3	10-20
MW-3	June 2011	31.30	18	2	PVC	0.020/#3	8-18
MW-4	June 2011	31.21	19	2	PVC	0.020/#3	9-19
MW-5		31.35	20	2	PVC	0.020/#3	10-20
MW-6		30.79	20	2	PVC	0.020/#3	10-20
Dual Phase I	Extraction We	ells					
EW-1	June 2011	31.46	20	4	PVC	0.020/#3	5-20
EW-2	Julie 2011	31.43	20	4	PVC	0.020/#3	5-20
EW-3	May 2012		20	6	PVC	0.020/#3	5-20
EW-4	1V1ay 2012		20	6	PVC	0.020/#3	5-20

Notes:

TOC - denotes top of casing

ft - denotes feet

amsl - denotes above mean sea level

bgs - denotes below ground surface

PVC - denotes polyvinyl chloride

Page 1 of 1 DIC.14244

Table 2a Historical Soil Analytical Data TPH and BTEX

Boring ID	Sample	Collection	TPHd	TPHg	Benzene	Toluene	Ethyl-	Total
	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	benzene	xylenes
	(feet)						(mg/kg)	(mg/kg)
UST Removal San	nples	·						
SS-D1	2		1,800*	3,000	<0.25	0.34	39	180
SS-D2	2]	900*	2,400	<0.25	<0.25	36	120
SS-D3	2	1	460*	1,000	<0.15	<0.15	12	14
SS-D4	2]	540*	640	<0.090	1.0	6.1	51
SS-D5	2	1 [320	140	<0.025	<0.025	1.3	3.2
SS-D6	2.0		320*	260	<0.025	0.054	1.0	8.0
SS-J1	2.0	August	39*	160	<0.025	<0.025	0.71	0.94
SS-Isle	4.0	August 2009	560*	100	<0.025	<0.025	0.30	0.084
SS-7	18.0	2009	310*	1,600	6.9	76	39	200
Tank 1-SS-1	14.0		830*	2,500	4.2	100	69	360
Tank 1-SS-2	14.0		62*	480	1.8	5.3	14	62
Tank 2-SS-1	14.0		120*	2 9 0	0.37	2.4	6.3	31
Tank 2-SS-2	14.0		330*	80	0.074	0.051	1.2	5.8
Tank 3-SS-1	14.0		480*	2,100	2.4	41	62	320
Tank 3-SS-2	14.0		75*	130	0.23	0.26	3.1	15
Soil Borings								
GP-1-15.5	15.5		13.0	18.0	0.63	0.052	0.69	0.13
GP-1-18.0	18.0	July 2006	<1.0	<1.0	0.0056	0.0082	<0.005	0.019
GP-2-12.0	12.0	July 2006	600	3,600	17	180	98	440
GP-2-20.0	20.0	l l	79	1,100	3.2	41	25	130
SB-1-9.5	9.5			1,600	5.1	43	30	180
SB-1-24.5	24.5	Ī [<1.0	<0.005	<0.005	< 0.005	<0.010
SB-1-29.5	29.5] [<1.0	<0.005	<0.005	<0.005	<0.010
SB-2-9.5	9.5] [2.2	0.26	<0.010	0.066	<0.020
SB-2-24.5	24.5] [<1.0	<0.005	<0.005	<0.005	<0.010
SB-2-29.5	29.5] [<1.0	<0.005	<0.005	<0.005	<0.010
SB-3-14.5	14.5] [17	17	100	42	240
SB-3-24.5	24.5] [<1.0	<0.005	0.005	<0.005	0.013
SB-3-29.5	29.5] [<1.0	<0.005	<0.005	<0.005	<0.010
SB-4-14.5	14.5] [1,700	13	79	28	170
SB-4-19.5	19.5	April 2010		<1.0	<0.005	0.009	<0.005	0.026
SB-4-29.5	29.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-5-14.5	14.5			470	<0.20	0.45	6.2	37
SB-5-24.5	24.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-5-29.5	29.5	-		<1.0	<0.005	<0.005	<0.005	<0.010
SB-6-9.5	9.5			6,100	21	170	95	580
SB-6-29.5	29.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-6-32	32.0			<1.0	<0.005	<0.005	<0.005	<0.010
SB-7-9.5	9.5			4,000	12	46	55	360
SB-7-29.5	29.5]		<1.0	<0.005	<0.005	<0.005	<0.010
SB-7-32	32.0]		<1.0	<0.005	<0.005	<0.005	<0.010

Table 2a **Historical Soil Analytical Data TPH and BTEX**

Shore Acres Gas 403 East 12th Street Oakland, California

Boring ID	Sample	Collection	TPHd	TPHg	Benzene	Toluene	Ethyl-	Total
	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	benzene	xylenes
	(feet)			,	, 4		(mg/kg)	(mg/kg)
SB-8-9.5	9.5			2,500	16	110	63	370
SB-8-24.5	24.5	1 1		<1.0	<0.005	<0.005	<0.005	<0.010
SB-8-29.5	29.5	Ammil 2010		<1.0	<0.005	<0.005	<0.005	<0.010
SB-9-14.5	14.5	April 2010		390	3.0	3.0	9.1	41
SB-9-29.5	29.5	1		<1.0	<0.005	<0.005	<0.005	<0.010
SB-9-32	32.0	1		<1.0	<0.005	<0.005	<0.005	<0.010
Groundwater Wells								
MW-1-5	5		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-1-15	15	1	<5.0	18	0.55	<0.050	0.87	1.2
MW-1-20	20	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-2-5	5		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-2-10	10	1	<5.0	69	<0.005	<0.005	<0.005	<0.010
MW-2-15	15	1	<5.0	50	<0.050	0.48	3.1	19
MW-2-20	20	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-3-5	5]	<5.0	<1.0	<0.010	<0.010	<0.010	<0.020
MW-3-10	10	1	<15	840	3.4	33	20	140
MW-3-15	15	1	<5.0	380	3.0	4.5	7.3	41
MW-3-20	20	1 1	<5.0	<1.0	0.019	<0.005	0.006	<0.010
MW-4-5	5	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-4-10	10	1	<15	420	1.7	2.6	9.2	51
MW-4-15	15	1	<5.0	3.1	0.036	0.20	0.15	0.95
MW-4-20	20	luna 2011	<5.0	<1.0	0.007	0.017	0.010	0.039
MW-5-5	5	June 2011	<5.0	76	<0.10	<0.10	1.3	0.76
MW-5-10	10	1	<15	3,200	4.6	6.5	72	410
MW-5-15	15]	<5.0	600	1.3	13	15	110
MW-6-5	5	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-6-10	10		<5.0	5.1	0.015	<0.010	3.4	1.0
MW-6-15	15		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-6-20	20	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
VW-1-5	5	1	<5.0	34	<0.005	<0.005	0.16	0.31
VW-1 -1 0	10		<15	85	<0.10	<0.10	2.2	0.89
VW-1-15	15		<15	420	2.1	4.1	9.4	55
VW-1-20	20]	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
VW-2 - 5	5]	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
VW-2 - 10	10]	<5.0	130	<0.10	<0.10	2.9	15
VW-2 - 15	15		<15	5,500	29	430	120	910
VW-2 - 20	20]	<5.0	<1.0	0.14	0.054	0.025	0.14
] .						

Notes:

TPHd - denotes total petroleum hydrocarbons as diesel TPHg - denotes total petroleum hydrocarbons as gasoline mg/kg - denotes milligrams per kilogram < - denotes less than the detection limit

--- denotes no data

GHA.19009 Page 2 of 2

Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers

Boring ID	Sample	Collection	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
	Depth (feet)	Date	(mg/kg)						
UST Removal San	nples							<u></u>	<u> </u>
SS-D1	2		<0.25	<0.25	<0.25	<0.25	<1.5		
SS-D2	2		<0.25	<0.25	<0.25	<0.25	<1.5		
SS-D3	2		<0.15	<0.15	<0.15	<0.15	<0.70		
SS-D4	2		<0.090	<0.090	<0.090	<0.090	<0.50		
SS-D5	2]	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-D6	2		<0.025	<0.025	<0.025	<0.025	<0.15		
SS-J1	2	A	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-Isle	4	August	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-7	18	2009	<0.25	<0.25	<0.25	<0.25	<1.5	<0.25	<0.25
Tank 1-SS-1	14		<0.50	<0.50	<0.50	<0.50	<2.5	<0.50	<0.50
Tank 1-SS-2	14] .	<0.040	<0.040	0.37	<0.040	0.51	<0.040	<0.040
Tank 2-SS-1	14	1	<0.050	<0.050	0.18	<0.050	0.35	<0.050	<0.050
Tank 2-SS-2	14	1	<0.025	<0.025	0.090	<0.025	0.16	<0.025	<0.025
Tank 3-SS-1	14]	<0.50	<0.50	<0.50	<0.50	<2.5	<0.50	<0.50
Tank 3-SS-2	14]	<0.025	<0.025	0.19	<0.025	0.15	<0.025	<0.025
Soil Borings		•		·		1	L		
GP-1-15.5	15.5		<0.005	<0.005	0.029	<0.005	0.27		
GP-1-18.0	18.0	1	<0.005	<0.005	0.54	<0.005	0.33		
GP-2-12.0	12.0	July 2006	<0.50	<0.50	<0.50	<0.50	<2.5		
GP-2-20.0	20.0	1	<0.025	<0.025	0.041	<0.025	<0.15	707	
SB-1-9.5	9.5		<0.80	<0.80	<0.80	<0.80	<8.0	<0.80	<0.80
SB-1-24.5	24.5]	<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005
SB-1-29.5	29.5]	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-2-9.5	9.5		<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
SB-2-24.5	24.5	1	<0.005	<0.005	0.053	<0.005	<0.050	<0.005	<0.005
SB-2-29.5	29.5		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-3-14.5	14.5	[[<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-3-24.5	24.5	1	<0.005	<0.005	0.10	<0.005	<0.050	<0.005	<0.005
SB-3-29.5	29.5	1 1	<0.005	<0.005	0.010	<0.005	<0.050	<0.005	<0.005
SB-4-14.5	14.5]	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0
SB-4-19.5	19.5	April 2010	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-4-29.5	29.5	1	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-5-14.5	14.5		<0.20	<0.20	<0.20	<0.20	<2.0	<0.20	<0.20
SB-5-24.5	24.5		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-5-29.5	29.5		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-6-9.5	9.5		<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-6-29.5	29.5		<0.005	<0.005	0.20	<0.005	<0.050	<0.005	<0.005
SB-6-32	32.0	1	<0.005	<0.005	0.18	<0.005	<0.050	<0.005	<0.005
SB-7-9.5	9.5	1	<1.0	<1.0	4.0	<1.0	<10	<1.0	<1.0
SB-7-29.5	29.5		<0.005	<0.005	0.18	<0.005	<0.050	<0.005	<0.005
SB-7-32	32.0		<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005

Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

Boring ID	Sample	Collection	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
_	Depth	Date	(mg/kg)						
	(feet)				,				
SB-8-9.5	9.5		<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-8-24.5	24.5		<0.005	<0.005	0.033	<0.005	<0.050	<0.005	<0.005
SB-8-29.5	29.5	April 2010	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-9-14.5	14.5	April ZOTO	<0.20	<0.20	5.5	<0.20	<2.0	<0.20	<0.20
SB-9-29.5	29.5		<0.005	<0.005	0.090	<0.005	0.15	<0.005	<0.005
SB-9-32	32.0		<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005
Groundwater Well	ls								
MW-1-5	5		<0.005	<0.005	0.35	<0.005	0.093	<0.005	<0.005
MW-1-15	15		<0.050	<0.050	1.1	<0.050	<0.50	<0.050	<0.050
MW-1-20	20		<0.005	<0.005	0.31	<0.005	0.58	<0.005	<0.005
MW-2-5	5		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-2-10	10]	<0.050	<0.050	<0.050	<0.050	<0.50	< 0.050	<0.050
MW-2-15	15		<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
MW-2-20	20]	<0.005	<0.005	0.006	<0.005	<0.050	<0.005	<0.005
MW-3-5	5]	<0.010	<0.010	1.5	<0.010	0.37	<0.010	<0.010
MW-3-10	10		<0.80	<0.80	1.3	<0.80	<8.0	<0.80	<0.80
MW-3-15	15]	<0.20	<0.20	3.0	<0.20	<2.0	<0.20	<0.20
MW-3-20	20]	<0.005	<0.005	0.036	<0.005	0.16	<0.005	<0.005
MW-4-5	5]	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-4-10	10]	<0.40	<0.40	<0.40	<0.40	<4.0	<0.40	<0.40
MW-4-15	15]	<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
MW-4 - 20	20	June 2011	<0.005	<0.005	<0.005	<0.005	<0.050	< 0.005	<0.005
MW-5-5	5	June 2011	<0.10	<0.10	<0.10	<0.10	<1.0	<0.10	<0.10
MW-5-10	10		<4.0	<4.0	<4.0	<4.0	<40	<4.0	<4.0
MW-5 - 15	15		<0.40	<0.40	<0.40	<0.40	<4.0	<0.40	<0.40
MW-6 - 5	5] [<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-6-10	10]	<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
MW-6-15	15] [<0.005	<0.005	0.026	<0.005	0.088	<0.005	<0.005
MW-6-20	20		<0.005	<0.005	0.010	<0.005	0.37	<0.005	<0.005
VW-1-5	5		<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
VW-1-10	10		<0.10	<0.10	<0.10	<0.10	<1.0	<0.10	<0.10
VW-1-15	15] [<0.40	<0.40	0.59	<0.40	<4.0	<0.40	<0.40
VW-1-20	20] [<0.005	<0.005	0.009	<0.005	0.16	<0.005	<0.005
VW-2-5	5]	<0.005	<0.005	0.25	<0.005	0.14	<0.005	<0.005
VW-2-10	10]	<0.10	<0.10	0.33	<0.10	<1.0	<0.10	<0.10
VW-2-15	1 5]	<4.0	<4.0	<4.0	<4.0	<40	<4.0	<4.0
VW-2-20	20]	<0.005	<0.005	0.008	<0.005	0.26	<0.005	<0.005
					,				

Notes:

mg/kg - denotes milligrams per kilogram MTBE - denotes methyl tertiary butyl ether

< - denotes less than the detection limi DIPE - denotes di-isopropyl ether

--- denotes not analyzed/applicable ETBE - denotes ethyl tertiary butyl ether

DCA - denotes dichloroethane TAME - denotes tertiary amyl ether
EDB - denotes ethylene dibromide TBA - denotes tertiary butyl alcohol

Page 2 of 2 GHA.19009

Table 3a Grab Groundwater Sample Results TPH and BTEX

Shore Acres Gas 403 East 12th Street Oakland, California

Sample ID	Collection					Ethyl-	Total
	Date	TPHd	TPHg	Benzene	Toluene	benzene	Xylenes
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Excavation							
	August			!	· · · · · · · · · · · · · · · · · · ·		
Pit Sample 1	2009	21,000	21,000	3,800	1,000	1,200	3,700
Direct Push Gra	b Groundwa	ter Sampl	es				
SB-1			60	2.9	6.7	2.1	9.7
SB-2			<50	<0.5	<0.5	<0.5	<1.0
SB-3			170	1.5	11	4.8	27
SB-4			6,500	78	440	190	960
SB-5	April 2010		<50	<0.5	<0.5	<0.5	<1.0
SB-6			440	<20	<20	<20	<40
SB-7			270	<12	<12	<12	<25
SB-8			<50	0.6	1.3	0.6	3.3
SB-9			<50	<10	<10	<10	<20
SB-10			<50	<0.5	<0.5	<0.5	<1.0
SB-11			2,300	83	1.9	140	43
SB-12			4,700	620	290	84	400
SB-13			400	51	2.4	4.2	9.7
SB-14	December		<50	1.7	<0.5	2.1	<1.0
SB-15	2011		320	32	0.7	33	25
SB-16	2011		4,800	1,600	10	49	<20
SB-17			990	290	7.2	27	4.3
SB-18			560	8.7	4.9	23	83
SB-19			260	7.1	<0.5	16	7.0
SB-21			<50	<0.5	<0.5	<0.5	<1.0
			· · · · · · · · · · · · · · · · · · ·				

Notes:

TPHd - denotes total petroleum hydrocarbons as diesel

TPHg - denotes total petroleum hydrocarbons as gasoline

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

--- - denotes not analyzed/applicable

Table 3b Grab Groundwater Sample Results Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

Sample ID	Collection	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB	
-	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
		•		, 0. ,	` 0	,,	` . ,	. 0. ,	
Excavation	<u> </u>			<u> </u>	····	1	<u> </u>		
	February	<10	<10	15,000	39	17,000	<10	<10	
Water	2000								
Direct Push Grab Groundwater Samples									
SB-1		<0.5	<0.5	14	<0.5	<5.0	<0.5	<0.5	
SB-2		<0.5	<0.5	45	<0.5	<5.0	<0.5	<0.5	
SB-3] [<0.5	<0.5	110	<0.5	32	<0.5	<0.5	
SB-4] [<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0	
SB-5	April 2010	<0.5	<0.5	0.6	<0.5	<5.0	<0.5	<0.5	
SB-6		<20	<20	4,000	<20	<200	<20	<20	
SB-7		<12	<12	2,500	<12	<120	<12	<12	
SB-8] [<0.5	<0.5	26	<0.5	98	<0.5	<0.5	
SB-9		<10	<10	1,800	<10	5,300	<10	<10	
SB-10		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	
SB-11		<1.0	<1.0	22	<1.0	140	<1.0	<1.0	
SB-12		<5.0	<5.0	100	<5.0	550	<5.0	<5.0	
SB-13		<2.0	<2.0	39	<2.0	3,900	<2.0	<2.0	
SB-14	December	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	
SB-15	2011	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	
SB-16	2011	<10	<10	<10	<10	<100	<10	<10	
SB-17		<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0	
SB-18		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	
SB-19		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	
SB-21		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5	

Notes:

ug/L - denotes micrograms per liter

<- denotes less than the detection limit

DCA - denotes dichloroethane

EDB - denotes ethylene dibromide

MTBE - denotes methyl tertiary butyl ether

DIPE - denotes di-isopropyl ether

ETBE - denotes ethyl tertiary butyl ether

TAME - denotes tertiary amyl ether

TBA - denotes tertiary butyl alcohol

Page 1 of 1 GHA.19009

Well ID TOC Monitoring	Date Measured Wells	Depth to Groundwater (ft bgs)	Groundwater Elevation (ft amsl)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
MW-1	6/23/2011	10.46	20.35	<250	23,000	4,500	820	1,700	3,800
	9/22/2011	12.13	18.68	<50	21,000	4,000	1,500	980	3,000
	12/11/2011	11.69	19.12		23,000	2,900	1,000	720	3,000
	3/30/2012				Inaccessibl				
	6/1/2012	11.04	19.77		40,000	4,100	800	2,700	6,100
	9/14/2012	12.96	17.85	<100	20,000	2,700	160	830	2,600
	3/27/2013	8.57	22.24	<50	15,000	1,700	150	400	830
	5/20/2013	8.57	22.24	<100	22,000	2,800	870	560	2,000
	9/4/2013	9.29	21.52	<250	12,000	2,900	130	190	370
	12/6/2013	9.11	21.70	<120	15,000	3,000	780	580	2,400
	6/27/2014	8.92	21.89	<120	15,000	2,500	280	2,400	2,400
	9/19/2014	10.98	19.83		11,000	530	190	460	950
	12/15/2014	7.66	23.15		11,000	1,100	140	310	420
	3/31/2015	8.81	22.00		38,000	1,200	230	810	2,600
	9/18/2015	12.23	18.58		7,600	890	38	240	360
	12/16/2015	12.02	18.79		8,900	580	16	110	110
	3/22/2016	10.48	20.33		18,000	690	66	540	1,900
	9/23/2016	9.01	21.80		20,000	1,400	90	1,100	4,500
MW-2	6/23/2011	10.70	20.59	<250	13,000	1,000	160	370	1,600
	9/22/2011	12.42	18.87	<50	12,000	300	130	470	1,400
	12/11/2011	11.98	19.31		8,300	170	120	450	1,500
	3/30/2012	8.55	22.74	<250	17,000	850	700	710	2,900
	6/1/2012	11.26	20.03		5,300	830	260	630	1,700
	9/14/2012	13.11	18.18	<50	10,000	260	190	600	1,900
	3/27/2013	9.43	21.86	<50	12,000	440	98	320	810
	5/20/2013	9.41	21.88	<100	6,600	300	74	190	500
	9/4/2013	10.11	21.18	<100	5,300	300	50	180	280
	12/6/2013	9.93	21.36	<50	4,300	280	39	140	160
	6/27/2014	9.93	21.36	<50	1,300	200	22	85	160
	9/19/2014	12.49	18.80	444	990	42	12	97	110
	12/15/2014	8.65	22.64	7	85	14	3.3	5.2	13
	3/31/2015	9.83	21.46						May par had
	9/18/2015	12.45	18.84		1,300	29	8.9	44	120
	12/16/2015	12.57	18.72		880	8.2	2.9	16	30
	3/22/2016	11.11	20.18		900	7.3	2.4	3.7	16
	9/23/2016	9.90	21.39		570	10	2.9	13	37

Well ID TOC	Date Measured	Depth to Groundwater (ft bgs)	Groundwater Elevation (ft amsi)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
MW-3	6/23/2011	10.79	20.51	<250	55,000	15,000	3,600	2,000	4,300
	9/22/2011	12.60	18.70	<250	77,000	15,000	3,900	1,700	4,900
	12/11/2011	12.13	19.17		64,000	12,000	3,100	1,600	4,500
	3/30/2012	7.90	23.40	<120	100,000	17,000	10,000	2,000	8,400
	6/1/2012	11.47	19.83		83,000	15,000	6,000	2,900	10,000
	9/14/2012	13.42	17.88	<200	69,000	10,000	1,500	1,800	5,900
	3/27/2013	9.15	22.15	<200	63,000	7,100	2,100	1,900	7,700
	5/20/2013	9.16	22.14	<250	80,000	9,700	2,900	2,400	8,600
	9/4/2013	9.87	21.43	<250	47,000	7,200	470	1,200	5,000
	12/6/2013	9.69	21.61	<50	19,000	5,600	240	520	1,600
	6/27/2014	9.49	21.81	<50	12,000	5,800	240	860	760
	9/19/2014	11.62	19.68		9,500	610	160	220	400
	12/15/2014	8.10	23.20		1,300	260	69	39	120
	3/31/2015	9.37	21.93		13,000	1,300	270	230	700
	9/18/2015	13.13	18.17		8,300	1,000	150	150	440
	12/16/2015	13.09	18.21		11,000	1,100	130	290	350
	3/22/2016	11.39	19.91		1,500	230	23	14	53
	9/23/2016	9.57	21.73		4,200	640	51	58	140
MW-4	6/23/2011	10.62	20.59	<250	47,000	3,500	7,100	2,300	11,000
	9/22/2011	12,25	18.96	<250	46,000	2,000	2,400	1,100	5,300
	12/11/2011	11.89	19.32		46,000	2,100	3,400	1,800	7,000
	3/30/2012	8.51	22.70	<250	60,000	6,800	8,200	1,200	5,700
	6/1/2012	11.14	20.07		72,000	9,700	8,500	2,300	9,000
	9/14/2012	12.97	18.24	<50	15,000	940	880	450	1,700
	3/27/2013	9.05	22.16	<50	25,000	1,800	2,200	660	2,500
	5/20/2013	9.03	22.18	<250	18,000	1,600	1,700	· 470	1,900
	9/4/2013	9.68	21.53	<50	15,000	510	410	260	820
	12/6/2013	9.54	21.67	<50	9,600	630	650	240	970
	6/27/2014	9.58	21.63	<50	3,300	550	2,900	200	420
	9/19/2014	11.61	19.60		2,100	110	54	92	210
	12/15/2014	8.45	22.76		720	58	32	29	33
	3/31/2015	9.46	21.75						
	9/18/2015	12.03	19.18		17,000	130	33	70	200
	12/16/2015	12.41	18.80		8,200	160	44	88	130
	3/22/2016	11.22	19.99		1,900	88	71	43	91
	9/23/2016	9.45	21.76		2,700	520	85	54	120
					7				

Well ID TOC	Date Measured	Depth to Groundwater (ft bgs)	Groundwater Elevation (ft amsl)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
MW-5	6/23/2011	10.12	21.23	<250	130,000	7,100	25,000	13,000	94,000
	9/22/2011	12.53	18.82	<250	120,000	6,900	7,600	3,800	17,000
	12/11/2011	12.09	19.26		110,000	7,800	14,000	4,200	20,000
	3/30/2012	8.06	23.29			Sheen - no	ot sampled		
	6/1/2012	11.38	19.97			Sheen - ne	ot sampled		
	9/14/2012	13.61	17.74		F	ree product	- not sample	ed	
	3/27/2013	9.21	22.14		F	ree product	- not sample	ed	
	5/20/2013	9.17	22.18		F	ree product	- not sample	ed	
···	9/4/2013	9.70	21.65		F	ee product	- not sample	ed	
	12/6/2013	9.67	21.68	<250	81,000	10,000	13,000	5,500	21,000
	6/27/2014	9.51	21.84		Fi	ee product	- not sample	ed	
	9/19/2014	12.91	18.44		56,000	1,000	270	1,000	4,100
	12/15/2014				13,000	840	530	450	1,700
	3/31/2015	9.36	21.99		34,000	1,100	570	500	2,000
	9/18/2015		90 March		9,800	290	23	140	270
	12/16/2015				6,100	220	5.8	92	35
	3/22/2016	12.26	19.09		6,300	320	58	190	480
	9/23/2016				10,000	350	48	230	930
MW-6	6/23/2011	10.43	20.36	<250	11,000	2,400	120	480	840
	9/22/2011	12.10	18.69	<50	15,000	1,500	270	880	2,500
	12/11/2011	11.69	19.10		13,000	660	190	610	1,500
	3/30/2012	7.50	23.29	<250	9,500	1,200	160	250	520
	6/1/2012	11.04	19.75		23,000	2,200	220	1,300	3,000
	9/14/2012	12.96	17.83	<50	14,000	1,000	86	420	1,200
	3/27/2013		***			Inacce	essible	<u> </u>	
	5/20/2013						essible		
	9/4/2013	9.19	21.60	<100	9,500	1,400	120	1,400	1,600
	12/6/2013	9.03	21.76	<100	14,000	1,200	24	1,400	810
	6/27/2014	8.80	21.99	<100	9,800	1,200	75	2,800	530
	9/19/2014	10.68	20.11		6,500	240	21	490	110
	12/15/2014	7.62	23.17		4,700	520	25	110	43
	3/31/2015	8.75	22.04		10,000	330	12	80	73
	9/18/2015	11.61	19.18		7,000	430	24	120	110
	12/16/2015	11.58	19.21		8,200	460	12	17	26
	3/22/2016	10.10	20.69		5,900	380	15	87	83
	9/23/2016	8.90	21.89		7,700	170	<5.0	8.0	<10

Well ID	Date Measured	Depth to Groundwater	Groundwater Elevation	TPHd	TOUL		-	Ethyl-	Total
TOC	Wicasurea	(ft bgs)	(ft amsl)	(ug/L)	TPHg (ug/L)	Benzene	Toluene	benzene	Xylenes
DPE Wells		(10080)	((Carrist)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
EW-1	6/28/2011				20,000	2.000	100	1	
	9/22/2011	12.55	18.71		20,000	2,000	490	1,000	2,400
	12/11/2011	12.09	19.17	<120	39,000	3,900	610	1,400	4,600
	3/30/2012	8.06	23.20	-120	27,000	2,600	270	1,400	4,400
	6/1/2012	11.42	19.84	<120	21,000	3,100	160	910	2,300
	9/14/2012	13.37	17.89		21,000	2,800	100	1,200	3,100
· · · · · · · · · · · · · · · · · · ·	3/27/2013	9.06	22.20	<50	22,000	1,900	50	1,000	2,600
	5/20/2013	9.06	22.20	<50	15,000	630	36	360	590
	9/4/2013	9.77		<100	11,000	600	28	210	350
······································	12/6/2013	9.63	21.49	<50	9,300	610	19	170	250
·	6/27/2014	9.55	21.83	<100	11,000	740	17	260	340
	9/19/2014	····	21.91	<100	12,000	1,400	210	1,900	2,400
	12/15/2014	12.41	19.05		28,000	1,000	450	1,400	3,900
	3/31/2015	8.20	23.26		4,000	560	29	150	150
	9/18/2015	9.30	22.16				444		
	12/16/2015	13.25	18.21		6,900	370	5.5	190	210
	3/22/2016	13.22	18.24		6,000	250	3.3	31	31
	9/23/2016	11.54	19.92		3,900	200	<5.0	46	33
	9/25/2016	9.51	21.95		6,200	130	<5.0	35	24
EW-2	6/28/2011				33,000	2.400	2.000		
	9/22/2011	12.50	18.90	4350	33,000	3,100	2,000	790	3,500
	12/11/2011	12.12	19.28	<250	66,000	2,400	4,500	2,000	11,000
	3/30/2012	8.48	22.92		70,000	2,800	6,900	2,700	13,000
	6/1/2012	11.40	20.00	<250	57,000	5,800	5,500	1,200	5,400
	9/14/2012	13.27	18.13		82,000	8,800	8,600	3,300	13,000
	3/27/2013	9.24		<100	32,000	2,600	2,400	1,000	4,500
	5/20/2013	9.21	22.16	<100	18,000	940	790	390	1,700
	9/4/2013	9.88		<50	10,000	540	430	220	790
	12/6/2013	9.96	21.52	<250	10,000	680	580	480	1,700
	6/27/2014	9.85		<50 -150	13,000	620	380	350	1,600
	9/19/2014		21.58	<50	27,000	3,200	5,600	1,200	8,000
	12/15/2014	16.80	14.63		18,000	690	1,300	360	2,400
	3/31/2015	8.73	22.70		11,000	510	500	160	1,100
	9/18/2015	9.90	21.53						
	12/16/2015	15.10	16.33		16,000	1,400	2,400	520	3,400
	3/22/2016	16.57	14.86		29,000	1,400	3,300	400	2,500
		16.56	14.87		22,000	820	2,100	420	2,800
	9/23/2016	9.82	21.61		6,500	37	38	29	170

Shore Acres Gas 403 East 12th Street Oakland, California

Well	Date	Depth to	Groundwater					Ethyl-	Total
ID	Measured	Groundwater	Elevation	TPHd	TPHg	Benzene	Toluene	benzene	Xylenes
тос		(ft bgs)	(ft amsl)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
EW-3	5/20/2013	8.82		<50	1,300	430	540	280	1,000
	9/4/2013	9.49		<100	9,800	480	220	560	1,800
	12/6/2013	10.05		<50	10,000	810	580	260	1,100
	6/27/2014	9.90		<50	27,000	4,300	4,300	1,200	7,900
	9/19/2014	13.00			15,000	670	650	530	2,400
	12/15/2014	8.20			26,000	1,200	1,100	350	2,000
	3/31/2015	9.31			8,000	170	18	130	560
	9/18/2015	13.98			12,000	340	110	180	1,900
	12/16/2015	14.31			11,000	360	75	110	920
-	3/22/2016	12.63			5,700	120	6.7	90	170
	9/23/2016	9.46	775		2,800	26	2.2	60	61
······································							-		
EW-4	5/20/2013	9.12		<50	8,100	720	160	94	430
	9/4/2013	9.85		<250	11,000	990	580	310	1,200
	12/6/2013	9.62		<50	4,400	150	170	140	670
	6/27/2014	9.47		<50	8,400	1,500	940	540	2,100
	9/19/2014	12.48			9,000	680	1,600	450	3,000
	12/15/2014	8.50			7,700	570	170	320	1,000
	3/31/2015	9.78			23,000	1,000	1,200	420	1,700
	9/18/2015	15.45			7,200	860	62	55	130
	12/16/2015	16.08			5,200	1,200	35	40	81
	3/22/2016	16.74			7,400	920	83	120	350
	9/23/2016	9.95			8,200	350	27	70	670

Notes:

TOC - denotes top of casing elevation

TPHg - denotes total petroleum hydrocarbons as gasoline TPHd - denotes total petroleum hydrocarbons as diesel

ft bgs - denotes feet below top of casing

ft amsl - denotes feet above mean sea level

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

--- - denotes not available/applicable

FLH - denotes floating liquid hydrocarbons

* - denotes less than six inches of water and considered dry

Page 5 of 5 DIC.14244

Well ID	Date Measured	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
тос	ivieasureu	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Monitorin	g Wells							
MW-1	6/23/2011	<25	<25	3,000	<25	3,900	-25	-25
	9/22/2011	<50	<50	2,600	<50		<25	<25
	12/11/2011	<20	<20	1,800	<20	2,500	<50	<50
	3/30/2012	120	\20	1,000	Inaccessibl	1,600	<20	<20
	6/1/2012	<20	<20	2,800	<20	T	<20	-20
	9/14/2012	<10	<10	2,200	<10	1,300		<20
	3/27/2013	<0.5	<0.5	590	<0.5	1,600	<10	<10
	5/20/2013	<10	<10	1,100		350	<0.5	<0.5
	9/4/2013	<10	<10	240	<10	620	<10	<10
	12/6/2013	<5.0	<5.0	350	<10 <50	<100	<10	<10
	6/27/2014	<10	<10	97	<10	<100	<5.0	<5.0
	9/19/2014	<10	<10	150		<100	<10	<10
	12/15/2014	<0.5	<0.5	310	<10 <0.5	<100	<10	<10
	3/31/2015	<5.0	<5.0	330		98	<0.5	<0.5
	9/18/2015	<5.0	<5.0	150	<5.0	<50	<5.0	<5.0
	12/16/2015	<5.0	<5.0 <5.0	57	<5.0 <5.0	<50	<5.0	<5.0
	3/22/2016	<50	<50	<50	<50	<50	<5.0	<5.0
	9/23/2016	<0.5	<0.5	250	<0.5	<500 250	<50	<50
	0,00,000	10.0	70.5	230	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	230	<0.5	<0.5
MW-2	6/23/2011	<10	<10	240	<10	640	-10	-40
	9/22/2011	<5.0	<5.0	110	<5.0	260	<10	<10
	12/11/2011	<2.5	<2.5	45	<2.5		<5.0	<5.0
	3/30/2012	<5.0	<5.0	140	<5.0	110 490	<2.5	<2.5
	6/1/2012	<5.0	<5.0	180	<5.0 <5.0	490	<5.0	<5.0
	9/14/2012	<5.0	<5.0	65	<5.0 <5.0	190	<5.0	<5.0
······································	3/27/2013	<0.5	<0.5	120			<5.0	<5.0
	5/20/2013	<2.5	<2.5	120	<0.5 <2.5	930 1,800	<0.5 <2.5	<0.5
	9/4/2013	<5.0	<5.0	100	<5.0	780		<2.5
	12/6/2013	<5.0	<5.0	63	<5.0	230	<5.0	<5.0
	6/27/2014	<5.0	<5.0	21	<5.0 <5.0	<50	<5.0	<5.0
	9/19/2014	<5.0	<5.0	16	<5.0	<50 <50	<5.0 <5.0	<5.0
	12/15/2014	<0.5	<0.5	7.3	<0.5	23		<5.0
	3/31/2015			7.3			<0.5	<0.5
	9/18/2015	<0.5	<0.5	4.1	<0.5	<5.0	<0.5	
-	12/16/2015	<0.5	<0.5	1.0	<0.5	<5.0	<0.5	<0.5
	3/22/2016	<0.5	<0.5	<0.5	<0.5	3.7	<0.5	<0.5
	9/23/2016	<0.5	<0.5	5.3	<0.5	<5.0	<0.5	<0.5
			-0.5		C.07	\3.U	\U.5	<0.5

Well	Date	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
ID	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
TOC		(81 -)	(-6/-)	(46/-)	(46/1/	(48/1)	(ug/L)	(ug/L)
MW-3	6/23/2011	<100	<100	8,200	<100	6,400	<100	<100
	9/22/2011	<100	<100	11,000	<100	2,800	<100	<100
	12/11/2011	<100	<100	7,400	<100	1,800	<100	<100
	3/30/2012	<100	<100	13,000	<100	<1,000	<100	<100
	6/1/2012	<50	<50	12,000	<50	<500	<50	<50
	9/14/2012	<50	<50	9,400	<50	<500	<50	<50
	3/27/2013	<0.5	<0.5	7,900	<0.5	3,800	<0.5	<0.5
	5/20/2013	<25	<25	10,000	<25	5,000	<25	<25
	9/4/2013	<25	<25	5,300	<25	2,100	<25	<25
	12/6/2013	<25	<25	1,400	<25	640	<25	<25
	6/27/2014	<25	<25	520	<25	260	<25	<25
	9/19/2014	<25	<25	390	<25	370	<25	<25
	12/15/2014	<0.5	<0.5	110	<0.5	140	<0.5	<0.5
·	3/31/2015	<5.0	<5.0	980	<5.0	610	<5.0	<5.0
	9/18/2015	<5.0	<5.0	410	<5.0	410	<5.0	<5.0
	12/16/2015	<5.0	<5.0	290	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	71	<5.0	56	<5.0	<5.0
	9/23/2016	<5.0	<5.0	380	<5.0	<50	<5.0	<5.0
MW-4	6/23/2011	<50	<50	<50	<50	<500	<50	<50
	9/22/2011	<25	<25	<25	<25	<250	<25	<25
	12/11/2011	<25	<25	<25	<25	<250	<25	<25
	3/30/2012	<50	<50	56	<50	<500	<50	<50
	6/1/2012	<50	<50	180	<50	<500	<50	<50
	9/14/2012	<20	<20	<20	<20	<200	<20	<20
	3/27/2013	<0.5	<0.5	77	<0.5	450	<0.5	<0.5
	5/20/2013	<10	<10	61	<10	360	<10	<10
	9/4/2013	<2.5	<2.5	17	<2.5	64	<2.5	<2.5
	12/6/2013	<2.5	<2.5	6.6	<2.5	<25	<2.5	<2.5
	6/27/2014	<2.5	<2.5	<2.5	<2.5	<25	<2.5	<2.5
	9/19/2014	<2.5	<2.5	<2.5	<2.5	<25	<2.5	<2.5
	12/15/2014	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5
	3/31/2015							
	9/18/2015	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0
	12/16/2015	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0
	9/23/2016	<5.0	<5.0	8.0	<5.0	<50	<5.0	<5.0
								2.0

Well	Date	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
TOC	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-5	6/23/2011	<120	<120	440	<120	<1,200	<120	<120
	9/22/2011	<50	<50	670	<50	1,500	<50	<50
	12/11/2011	<120	<120	690	<120	1,600	<120	<120
	3/30/2012			She	en - not san	npled	· · · · · · · · · · · · · · · · · · ·	-
	6/1/2012			She	en - not san	npled		
	9/14/2012			Free pr	oduct - not	sampled		
	3/27/2013			Free pr	oduct - not	sampled		
	5/20/2013			Free pr	oduct - not	sampled		
	9/4/2013			Free pr	oduct - not	sampled		
	12/6/2013	<25	<25	270	<25	<250	<25	<25
	6/27/2014			Free pr	oduct - not	sampled		
	9/19/2014	<25	<25	75	<25	<250	<25	<25
	12/15/2014	<0.5	<0.5	370	<0.5	340	<0.5	<0.5
	3/31/2015	<5.0	<5.0	71	<5.0	280	<5.0	<5.0
	9/18/2015	<5.0	<5.0	15	<5.0	<50	<5.0	<5.0
	12/16/2015	<5.0	<5.0	17	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	26	<5.0	110	<5.0	<5.0
	9/23/2016	<5.0	<5.0	38	<5.0	<50	<5.0	<5.0
MW-6	6/23/2011	<25	<25	1,100	<25	4,000	<25	<25
	9/22/2011	<12	<12	600	<12	2,800	<12	<12
	12/11/2011	<10	<10	290	<10	1,300	<10	<10
	3/30/2012	<10	<10	990	<10	3,500	<10	<10
	6/1/2012	<10	<10	1,400	<10	2,200	<10	<10
	9/14/2012	<10	<10	580	<10	2,000	<10	<10
	3/27/2013				Inaccessible			
	5/20/2013		·		Inaccessible			
	9/4/2013	<5.0	<5.0	29	<5.0	140	<5.0	<5.0
	12/6/2013	<2.5	<2.5	12	<2.5	<25	<2.5	<2.5
	6/27/2014	<2.5	<2.5	4.9	<2.5	<25	<2.5	<2.5
	9/19/2014	<2.5	<2.5	7.1	<2.5	<25	<2.5	<2.5
	12/15/2014	<0.5	<0.5	33	<0.5	88	<0.5	<0.5
	3/31/2015	<5.0	<5.0	12	<5.0	<50	<5.0	<5.0
	9/18/2015	<2.5	<2.5	9.6	<2.5	<25	<2.5	<2.5
	12/16/2015	<5.0	<5.0	10	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	8.7	<5.0	- 28	<5.0	<5.0
	9/23/2016	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0
							-3.0	-3.0

Well ID TOC	Date Measured	DIPE (ug/L)	ETBE (ug/L)	MTBE (ug/L)	TAME (ug/L)	TBA (ug/L)	1,2-DCA (ug/L)	EDB (ug/L)
DPE Well	s							
EW-1	6/28/2011	<25	<25	1,500	<25	5,300	<25	<25
	9/22/2011	<50	<50	640	<50	1,800	<50	<50
	12/11/2011	<25	<25	490	<25	1,000	<25	<25
	3/30/2012	<20	<20	370	<20	1,100	<20	<20
	6/1/2012	<25	<25	500	<25	1,700	<25	<25
	9/14/2012	<10	<10	370	<10	1,400	<10	<10
	3/27/2013	<0.5	<0.5	270	<0.5	560	<0.5	<0.5
	5/20/2013	<5.0	<5.0	250	<5.0	560	<5.0	<5.0
	9/4/2013	<2.5	<2.5	220	<2.5	590	<2.5	<2.5
	12/6/2013	<2.5	<2.5	130	<2.5	270	<2.5	
	6/27/2014	<10	<10	40	<10	<100	<10	<2.5 <10
	9/19/2014	<20	<20	300	<20	<200	<20	<20
	12/15/2014	<0.5	<0.5	170	<0.5	110	<0.5	<0.5
	3/31/2015					110	<u> </u>	<0.5
	9/18/2015	<2.5	<2.5	100	<2.5	<25	<2.5	<2.5
	12/16/2015	<5.0	<5.0	24	<5.0	<50	<5.0	
	3/22/2016	<5.0	<5.0	40	<5.0	46	<5.0	<5.0
	9/23/2016	<5.0	<5.0	78	<5.0	<50	<5.0	<5.0 <5.0
	, ,		10.0	,,,	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\30	V3.0	<5.0
EW-2	6/28/2011	<25	<25	670	<25	4,100	<25	<25
	9/22/2011	<50	<50	740	<50	1,600	<50	 <50
	12/11/2011	<50	<50	540	<50	880	<50	<50
	3/30/2012	<50	<50	1,800	<50	2,800	<50	<50
	6/1/2012	<50	<50	2,600	<50	3,300	<50	<50
	9/14/2012	<20	<20	1,100	<20	2,400	<20	<20
	3/27/2013	<0.5	<0.5	360	<0.5	1,800	<0.5	<0.5
	5/20/2013	<2.5	<2.5	390	<2.5	2,600	<2.5	<2.5
	9/4/2013	<5.0	<5.0	460	<5.0	1,400	<5.0	<5.0
	12/6/2013	<10	<10	210	<10	560	<10	
	6/27/2014	<10	<10	110	<10	<100	<10	<10
	9/19/2014	<25	<25	96	<25	<250	<25	<25
	12/15/2014	<0.5	<0.5	94	<0.5	66	<0.5	<0.5
	3/31/2015			,				
	9/18/2015	<10	<10	50	<10	<100	<10	<10
	12/16/2015	<50	<50	58	<50	<500	<50	<50
	3/22/2016	<250	<250	<250	<250	<1,000	<250	<250
	9/23/2016	<5.0	<5.0	26	<5.0	<50	<5.0	
					-3.0	100	73.0	<5.0

Shore Acres Gas 403 East 12th Street Oakland, California

Weil	Date	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
ID	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
тос					, ,,	(-0//	(01-1	(56/2)
EW-3	5/20/2013	<2.5	<2.5	140	<2.5	1,100	<2.5	<2.5
	9/4/2013	<2.5	<2.5	120	<2.5	650	<2.5	<2.5
	12/6/2013	<2.5	<2.5	96	<2.5	690	<2.5	<2.5
	6/27/2014	<5.0	<5.0	150	<5.0	360	<5.0	<5.0
	9/19/2014	<25	<25	75	<25	<250	<25	<25
	12/15/2014	<0.5	<0.5	160	<0.5	700	<0.5	<0.5
	3/31/2015	<5.0	<5.0	38	<5.0	68	<5.0	<5.0
	9/18/2015	<5.0	<5.0	120	<5.0	<50	<5.0	<5.0
	12/16/2015	<5.0	<5.0	81	<5.0	<50	<5.0	<5.0
	3/22/2016	<2.5	<2.5	33	<2.5	84	<2.5	<2.5
	9/23/2016	<0.5	<0.5	32	<0.5	34	<0.5	<0.5
EW-4	5/20/2013	<5.0	<5.0	480	<5.0	1,900	<5.0	<5.0
	9/4/2013	<5.0	<5.0	220	<5.0	1,300	<5.0	<5.0
	12/6/2013	<5.0	<5.0	58	<5.0	430	<5.0	<5.0
- <u>-</u>	6/27/2014	<2.5	<2.5	82	<2.5	65	<2.5	<2.5
	9/19/2014	<20	<20	120	<20	520	<20	<20
	12/15/2014	<0.5	<0.5	100	<0.5	110	<0.5	<0.5
	3/31/2015	<5.0	<5.0	140	<5.0	310	<5.0	<5.0
	9/18/2015	<5.0	<5.0	140	<5.0	420	<5.0	<5.0
	12/16/2015	<5.0	<5.0	87	<5.0	390	<5.0	<5.0
	3/22/2016	<25	<25	81	<25	250	<25	<25
	9/23/2016	<5.0	<5.0	150	<5.0	180	<5.0	<5.0

Notes:

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

DCA - denotes dichloroethane

EDB - denotes ethylene dibromide

MT8E - denotes methyl tertiary butyl ether

DIPE - denotes di-isopropyl ether

ETBE - denotes ethyl tertiary butyl ether

TAME - denotes tertiary amyl ether

TBA - denotes tertiary butyl alcohol

--- - denotes no data available

Table 5a Soil Vapor Extraction System Performance Calculations Shore Acres Gas

403 East 12th Street Oakland, California

		Inflient	Influe	Influent Sample Results	Results	Extrac	Extraction Rates (Ib/day)	(lb/day)	Cumula	Cumulative Extraction (lb)	tion (lb)
Date	Meter* (hours)	Flow Rate (scfm)	TPHg (ppmv)	Benzene (ppmv)	MTBE (ppmv)	TPHg (lb/dav)	Benzene (lb/dav)	MTBE (lb/dav)	TPHg	Benzene	MTBE
								(((21)	(21)	(01)
05/2//14	590.3	106.0	2,500	14	0.73	112	0.5	0.0	2,745	11.4	0.7
06/17/14	961.5	125.0	40	1.4	0.18	2.1	0.05	0.0	2,778	12.3	0.8
06/27/14	988.2				Unit shu	Unit shut down for Carbon Change Out	Sarbon Cha	nge Out			
08/15/14	988.2					Resta	Restart Unit				
08/19/14	992.6	125.0	33	0.79	0.13	1.7	0.03	0.0	2,780	12.3	0.8
09/25/14	1,535.7	163.0	2,100	15	< 0.1	144	0.77	0.0	6,042	29.7	0.9
10/28/14	1,750.4	146.0	130	2.4	0.44	8.0	0.11	0.0	6,114	30.6	1,1
12/09/14	2,142.4	154.0	610	2.6	0.23	40	0.13	0.0	6.760	32.7	13
02/18/15	2,708.3			Sy	stem shut a	System shut down, propane tank removed from site	ne tank rem	oved from s			
08/11/15	2,708.9					System restarted	estarted				
08/25/15	2,864.4	125.0	344	2.7	< 0.1	18	0.11	0.0	7,305	32.6	13
09/29/15	3,428.0	128.0	91	1.4	< 0.1	5	90.0	0.0	7,420	33.9	1.4
10/26/15	3,742.1	122.0	225	0.97	< 0.1	12	0.04	0.0	7,571	34.4	1.5
11/23/15	4,175.9	150.0	407	1.2	< 0.1	56	90.0	0.0	8,036	35.4	1.6
12/16/15	4,613.3	148.0	102	0.84	< 0.1	9	0.04	0.0	8,152	36.1	1.6
12/16/15	4,613.3				Unitsh	Unit shut down for C	Carbon Change Out	nge Out			
01/27/16	4,761.0	146.0	23	0.73	< 0.1	1.4	0.03	0.0	8,161	36.1	1.6
03/21/16	5,797.5	138.0	20	0.86	< 0.1	1.2	0.04	0.0	8,211	37.7	1.8
04/11/16	6,279.7	135.0	43	0.86	< 0.1	2.4	0.04	0.0	8,260	38.4	1.9

 $MW_{TPHg} = Molecular Weight of TPHg = 105$ $MW_{MTRE} = Molecular Weight of Methyl tert-butyl ether = 88.15$ $MW_{Benzene} = Molecular Weight of Benzene = 78.11$

0.0

days of operation during quarter

 $ft^3 = \text{cubic feet} \hspace{1cm} \text{min} = \text{minutes} \hspace{1cm} \text{lb/day} = \text{pounds per day}$ $\text{ppmv} = \text{parts per million by volume} = ft^3 / 1 \times 10^6 \, ft^3 \, \text{scfm} = \text{standard cubic feet per minute}$

NS = not sampled NA = not analyzed

NC = not calculated

Extraction rate = (flow rate($\mathrm{ft}^3/\mathrm{min}$) x concentration ($\mathrm{ft}^3/1\,\mathrm{1x}10^6\,\mathrm{ft}^3$) x MW_{TPHg}(lb/lb-mol) x 1440 min/day)/(359 ft $^3/\mathrm{lb-mol}^3$)

* - Hour meter readings does not match field data sheets because hour meter was 5472.6 when unit was started.

Table 5b

Soil Vapor Extraction System Destruction Efficiency and Emission Calculations 403 East 12th Street Oakland, California Shore Acres Gas

	Stack	Stack Sa	Stack Sample Results (ppmv)	Its (ppmv)	Emiss	Emission Rates (Ib/day)	(lb/day)	Destru	Destruction Efficiency (%)	ncy (%)
Date	Flow Rate (scfm)	ТРН	Benzene	MTBE	ТРН	Benzene	MTBE	ТРН	Benzene	MTBE
05/27/14	106.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100 0	100.0
06/17/14	125.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	1000
08/19/14	125.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100.0
09/25/14	163.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.003	> 0.006	100.0	100.0	100.0
10/28/14	146.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
12/09/14	154.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100 0	100 0
02/18/15	154.0			System sh	lutdown and	1 propane te	System shutdown and propane tank removed from site	I from site		
08/11/15	121.0				S	System restart	ני			
08/25/15	125.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100 0
10/26/15	122.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100.0
11/23/15	150.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
12/16/15	148.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
12/16/15				System sh	utdown and	propane ta	System shutdown and propane tank removed from site	from site		
01/27/16	146.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
03/21/16	138.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.005	100.0	100.0	100.0
04/11/16	135.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.005	100.0	100.0	100.0

Note: "<" indicates analytical method detection limit; method detection limits are used as stack concentrations to estimate emission rates. Destruction efficiency is assumed to be 100%.

Sample Calculations

Emission rate = flow rate(ft³/min) x concentration (ft³ / 1x10⁶ ft³) x MW (lb/lb-mole)/359 (ft³/lb-mole*) x 1440 min/day Destruction Efficiency = [(Extraction rate - Emission rate)/Extraction rate] x 100%

Stack flow = Catox Influent + Natural Gas flow rate

ft3 = cubic feet min = minutes

ppmv = parts per million by volume = $ft^3 / 1 \times 10^6 ft^3$

lb/day = pounds per day NS = not sampled

scfm = standard cubic feet per minute

NA = Not applicable

Groundwater Treatment System Performance Data Shore Acres Gas 403 East 12th Street Oakland, California

	TOTAL	AVG. PERIOD		Influent Water Analytical	al Results	Estir	Estimated Removal Rates	Rates	Fetima	Fetimated Removed (Beginst)	Soriod	1		
DATE	FLOW	FLOW RATE	TPH	Donzono	MTDC	77.00	0		11121	יובת ווכוווסאמולי	COOLS	Estimate	Estimated Removal (Cumulative)	mulative)
!				רפוזלפופ	1011	בר בר	Benzene	M M	TPHg	Benzene	MTBE	TPHo	Benzene	MTRE
	(gallons)	(gallons/min)	(ng/L)	(ng/L)	(ng/L)	(lb/day)	(lb/day)	(lb/day)	(spunod)	(spunoa)	(spunda)	(aboutou)	opanoa,	"Glin"
04/30/14	189,810							Init Ctart II		/	(hanna)	(compad)	(spiinod)	(pounds)
N 17 57 30	250 050	200	2000	2000		11.		OILL SLAFL UP			i			
t1 (17)	00000	20.2	18,000	7,500	96	0.45	0.063	0.002	26.21	3.66	0.13	26.21	3 86	5
08/19/14	360,060						Unit Stut Do	Jnit Stut Down for Carbon Change Out	Change Out				200	27.5
09/25/14	463,050	1.93	17,500	760	148	0.41	0.018	0000	15.03	200	65.0	,3,,		
12/15/14	613 230	1 20	10 175	140					3	335	21.0	41.24	4.32	0.26
	200	77.	12,113	2	2	8.0	0.011	0.002	15.24	0.89	0.16	56.48	5.21	0.43
GL/81/70	766,392	1.64	15,500	585	88	0:30	0.011	0.002	19.79	0.75	0 11	76 27	202	2
02/18/15	766,392					Unit	Unit Stut Down for Change from Propaga to Natural Gas	hange from Pro	Mana to Matery	200		13.51	0.30	40.0
08/11/15	766 302							of the second	לימונה נס וומנמו	Gas				
2	300,00							Unit Restarted						
G1/81/60	849,579	1.52	10,525	743	103	0.19	0.014	0.002	40.72	787	0,40	447.00	500	
12/16/15	1,082,639	1.82	12.800	803	83	0.28	0.040	200	20.00		-	207.1	9.6	95.0
12/18/15	1 002 630				3	7.50	0.0.0	0.001	35.48	2.23	0.17	152.49	11.05	1.1
2 6 7 7 7 7	1,002,003	-					Unit Stut Do	Unit Stut Down for Carbon Change Out	Change Out					
91/17/16	1,082,639							Unit Restarted						1
13/22/16	1,239,526	1.79	9,750	515	52	0.21	0.011	0001	30.28	1 07	0.44	77.04.8	0,0,	
04/11/16	1,340,425						I Init Stut Do	Init Stut Down for Debound Monitoring	4 Monitorion			11.2.11	5.13	7.77
								THING INCOMES	BUILDING			ĺ		
		1												100

total gallons pumped during current reporting period average gallons per day during current reporting period average gallons per minute during current reporting period

Influent concentrations are an average of extraction wells EW-1 through EW-4 Groundwater flow meter was 189,910 when unit was started up

Sample Calculations:

Extraction/ disposal rate = flow rate(gallons/min) * concentration (ug/L) * 3.785 L/gallon *tb/454,000,000 ug * 1440 min/day

NC - Not calculated NS - Not Sampled --- Not Analyzed

MTBE - Methyl tertiary butyl ether TPHg - Total Petroleum Hydrocarbons as gasoline TBA -Tertiary butyl ether

lb/day - pounds per day ug/L - micrograms per liter

APPENDICES

ENVIRONMENTAL COMPLIANCE GROUP, LLC STANDARD OPERATING AND SAFETY AND LOSS CONTROL PROCEDURES

1.0 SOIL BORING/DRILLING SAMPLE COLLECTION AND CLASSIFICATION PROCEDURES

ECG will prepare a site-specific Health and Safety Plan as required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR.1910.120). The document will be reviewed and signed by all ECG personnel and subcontractors prior to performing work at the site.

Prior to conducting and subsurface work at the site, Underground Services Alert (USA) will be contacted to delineate subsurface utilities near the site with surface markings. In addition, the first five feet of every location will be hand cleared to a diameter larger than the diameter of the auger or probe as a further precaution against damaging underground utilities. Sites that are currently operated as gas stations will be cleared with a private utility locator prior to drilling activities.

Soil samples to be submitted for chemical analyses are collected into brass or stainless steel tubes. The tubes are placed in an 18-inch long split-barrel sampler. The split-barrel sampler is driven its entire length hydraulically or by 140-pound drop hammer. The split-barrel sampler is removed from the borehole and the tubes are removed. When the tubes are removed from the split-barrel sampler, the tubes are trimmed and capped with Teflon sheets and plastic caps or the soil is removed from the tubes and placed in other appropriate sample containers. The samples are sealed, labeled, and placed in ice under chain-of-custody to be delivered to the analytical laboratory. All samples will be kept refrigerated until their delivery to the analytical laboratory.

One soil sample collected from each split-barrel sampler is field screened with a photoionization detector (PID), flame ionization detector (FID), or other equivalent field screening meter. The soil sample is sealed in a plastic bag or other appropriate container to allow volatilization of volatile organic compounds (VOCs). The field meter is used to measure the VOC concentration in the container's headspace and is recorded on the boring logs at the appropriate depth interval.

Other soil samples collected from each split-barrel sampler are inspected and documented to identify the soil stratigraphy beneath the site and classify the soil types according to the United Soil Classification System. The soil types are recorded on boring logs with the appropriate depth interval and any pertinent field observations. Drilling and sampling equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections and boreholes and after use.

2.0 SOIL EXCAVATION SAMPLE COLLECTION AND CLASSIFICATION PROCEDURES

Soil samples to be submitted for chemical analyses are collected into brass or stainless steel tubes or other appropriate containers. The samples are sealed, labeled, and placed in ice under chain-of-custody (COC) to be delivered to the analytical laboratory. All samples will be kept refrigerated until their delivery to the analytical laboratory.

Select soil samples are placed into a sealed plastic bag or other appropriate container and field screened using a PID, FID, or equivalent meter. Other soil samples collected are inspected and documented to identify the soil stratigraphy beneath the site and classify the soil types according to the United Soil Classification System. The soil types are recorded field notes with the appropriate depth interval and any pertinent field observations. Sampling equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections, and after use. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

3.0 SAMPLE IDENTIFICATION AND COC PROCEDURES

Sample containers are labeled with job number, job name, sample collection time and date, sample collection point, and analyses requested. Sampling method, sampler's name, and any pertinent field observations are recorded on boring logs or excavation field notes. COC forms track the possession of the sample from the time of its collection until the time of its delivery to the analytical laboratory. During sample transfers, the person with custody of the samples will relinquish them to the next person by signing the COC and documenting the time and date. The analytical laboratory Quality Control/Quality Assurance (QA/QC) staff will document the receipt of the samples and confirm the analyses requested on the COC matches the sample containers and preservative used, if any. The analytical laboratory will assign unique log numbers for identification during the analyses and reporting. The log numbers will be added to the COC form and maintained in a log book maintained by the analytical laboratory.

4.0 ANALYTICAL LABORATORY QA/QC PROCEDURES

The analytical laboratory analyzes spikes, replicates, blanks, spiked blanks, and certified reference materials to verify analytical methods and results. The analytical laboratory QA/QC also includes:

Routine instrument calibration,

Complying with state and federal laboratory accreditation and certification programs,

Participation in U.S. EPA performance evaluation studies,

Standard operating procedures, and

Multiple review of raw data and client reports

5.0 HOLLOW STEM AUGER WELL INSTALLATION

Boreholes for wells are often drilled with a truck-mounted hollow stem auger drill rig. The borehole diameter is at least 4 inches wider than the outside diameter of the well casing. Soil samples are collected and screened as described in **Section 1.0** and decontamination procedures are also the same as described in **Section 1.0**.

Wells are cased with both blank and factory-perforated Schedule 40 PVC. The factory perforations are typically 0.020 inches wide by 1.5 inch long slots, with 42 slots per foot. A PVC cap is typically installed at the bottom of the casing with stainless steel screws. No solvents or cements are used in the construction of the wells. Well stabilizers or centering devices may be installed around the casing to ensure the filter material and grout in the annulus are evenly distributed. The casing is purchased pre-cleaned or steam cleaned and washed prior to installation in the borehole.

The casing is set inside the augers and sand, gravel, or other filter material is poured into the annulus to fill the borehole from the bottom to approximately 1-2 feet above the perforations. A two foot thick bentonite plug is placed above the filter material to prevent the grout from filling the filter pack. Neat cement or sand-cement grout is poured into the annulus from the top of the bentonite plug to the surface. For wells located in parking lots or driveways, or roads, a traffic rated well box is installed around the well. For wells located in landscaped areas or fields, a stovepipe well protection device is installed around the well. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

6.0 MUD AND AIR ROTARY WELL INSTALLATION

Boreholes for wells can also be drilled with a truck-mounted air rotary or mud rotary drill rig. Air or mud can be used as a drill fluid to fill the borehole and prevent the borehole from caving in and remove drill cuttings. Mud or air can be chosen depending on the subsurface conditions. Soil samples are collected and screened as described in **Section 1.0** and decontamination procedures are also the same as described in **Section 1.0**.

Wells are cased with both blank and factory-perforated Schedule 40 PVC. The factory perforations are typically 0.020 inches wide by 1.5 inch long slots, with 42 slots per foot. A PVC cap is typically installed at the bottom of the casing with stainless steel screws. No solvents or cements are used in the construction of the wells. Well stabilizers or centering devices may be installed around the casing to ensure the filter material and grout in the annulus are evenly distributed. The casing is purchased pre-cleaned or steam cleaned and washed prior to installation in the borehole. Soil cuttings and drilling fluids are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

The casing is set inside the augers and sand, gravel, or other filter material is poured into the annulus to fill the borehole from the bottom to approximately 1-2 feet above the perforations. A two foot thick bentonite plug is placed above the filter material to prevent the grout from filling the filter pack. Neat cement or sand-cement grout is poured into the annulus from the top of the bentonite plug to the surface. For wells located in parking lots or driveways, or roads, a traffic rated well box is installed around the well. For wells located in landscaped areas or fields, a stovepipe well protection device is installed around the well. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

7.0 WELL DEVELOPMENT

After well installation, the wells are developed to remove residual drilling materials from the annulus and to improve well production by fine materials from the filter pack. Possible well development methods include pumping, surging, bailing, jetting, flushing, and air lifting. Development water is temporarily stored onsite pending laboratory analytical results and proper transport and disposal. Development equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections and after use. After well development the wells are typically allowed to stabilize for at least 24 hours prior to purging and sampling.

8.0 LIQUID LEVEL MEASUREMENTS

Liquid level measurements are made with a water level meter and/or interface probe and disposable bailers. The probe tip attached to a measuring tape is lowered into the well and into the groundwater when a beeping tone indicates the probe is in the groundwater. The probe and measuring tape (graduated to hundredths of a foot) are slowly raised until the beeping stops and the depth to water measurement is recorded. If the meter makes a steady tone, this indicates the presence of floating liquid hydrocarbons (FLH) and the probe and measuring tape are raised until the steady tone stops and the depth to the FLH is measured. Once depth to water and depth to FLH (if present) has been recorded, the probe and measuring tape are lowered to the bottom of the well where the total depth of the well is measured. The depth to water, depth to FLH, and depth to bottom are measured again to confirm the results.

If FLH is encountered in the well, a disposable bailer is lowered into the well and brought back to the surface to confirm the thickness/presence of FLH. To minimize potential for cross contamination between wells, all measurements are done from cleanest to dirtiest well. Prior to beginning liquid level measurements, in between measurements in all wells, and at the completion of liquid level measurements, the water level probe and measuring tape is cleaned with solution (Alconox, Simple Green, or equivalent) and rinsed with deionized water.

9.0 WELL PURGING AND SAMPLING

Each well is typically purged of at least three well casing volumes of groundwater prior to collecting a groundwater sample. Purging can continue beyond three well casing volumes if field parameters including pH, temperature, electrical conductivity are not stabilizing during the purging process. If the well is purged dry before the three well casing volumes has been purged, the well is typically allowed to recharge to 80 percent of its initial water level before a groundwater sample is collected.

Purging equipment can include submersible pumps, PVC purging bailers, disposable bailers, air lift pumps, or pneumatic pumps. Prior to beginning well purging, in between each well purging, and at the completion of purging activities, all non-dedicated purging equipment is cleaned with solution (Alconox, Simple Green, or equivalent) and rinsed with deionized water.

Once the well has been purged, it will be sampled with a disposable bailer, PVC bailer, stainless steel bailer, or through a low flow groundwater pump. The groundwater sample is transferred from the bottom of the bailer to reduce volatilization to the appropriate sample container. The sample containers are specified by the analytical laboratory depending on the analyses requested. Sample containers typically include volatile organic compound (VOA) vials with septa of Teflon like materials. The groundwater sample is collected into the VOAs to minimize air bubbles and once the cap has been placed on the VOA, the VOA is tipped upside down to see if air bubbles are present in the VOA. Typically a duplicate VOA is collected from each well to be analyzed by the analytical laboratory, if warranted, to verify results.

Sample containers are labeled as described in **Section 3.0** and placed immediately in an ice chest and kept refrigerated until its delivery to the analytical laboratory. A trip blank may also be prepared by the analytical laboratory to travel with the ice chest during transport to the laboratory. Field blanks from equipment that has been decontaminated may be collected in between use in different wells to verify the decontamination procedure is effective. To minimize potential for cross contamination between wells, all wells are purged and sampled from cleanest to dirtiest well.

10.0 TEDLAR BAG SOIL VAPOR SAMPLING

Sampling equipment to collect Tedlar bag soil vapor samples includes an air pump, a Tedlar bag which can range in size from 1 to 10 liters, and 3/16-inch diameter polyethylene tubing. The air pump should be equipped with 3/16-inch hose barbs for the polyethylene tubing to attach to. The Tedlar bag must be equipped with a valve for filling and sealing the bag.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with a 3/16-inch hose barb. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. One end of the polyethylene tubing is connected to the sample collection port and one end is connected to the influent of the air pump, creating an air tight seal. The air pump is turned on and soil vapor from the sample collection port is pumped through the air pump for at least one minute. The air pump is turned off and one end of another piece of polyethylene tubing is connected to the effluent of the air pump and one end is connected to the valve on the Tedlar bag. The valve is opened and the air pump is turned on filling the Tedlar bag with the soil vapor sample until the bag has reached 75% capacity, when the valve on the Tedlar bag is closed and the air pump is turned off.

Tedlar bags are labeled as described in Section 3.0 and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

11.0 SUMMA CANISTER SOIL VAPOR SAMPLING

Sampling equipment to collect Summa canister soil vapor samples includes a sterilized Summa stainless steel canister under vacuum, ¼-inch diameter polyethylene tubing, and a laboratory calibrated flow meter, if required.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with brass connection with silicone septa that has been threaded into a tapped hole on the piping network. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. One end of the polyethylene tubing is connected to the brass sample collection port and one end is connected to the canister valve or flow meter, creating an air tight seal. Prior to collecting the soil vapor sample, the valve on the Summa canister is opened to verify the Summa canister has the required vacuum which is recorded. Three well volumes of vapor will be purged at a rate less than 200 milliliters per minute (ml/min.), including sand pack pore volume from each soil vapor probe prior to sample collection. The sample valve or flow meter is opened and the soil vapor sample is collected into the Summa canister and the sample valve is closed and the final vacuum reading (typically greater than 5 inches per square inch) on the Summa canister is recorded.

Per the DTSC Advisory Active Soil Gas Investigations, April 2012, high quality soil gas data collection is driven by project-specific data quality objectives (DQOs) and can be enhanced by using a shroud and a gaseous tracer compound. This method of leak detection ensures that soil gas wells are properly constructed and the sample train components do not leak. Most gaseous tracer compounds do not affect target analyte measurements nor does their detection require sample dilution. Also, gaseous leak tracer compounds allow a quantitative determination of a leak either in the sampling train or from ambient air intrusion down the borehole.

The shroud will be designed to contain the entire sampling train and the soil gas well annulus. The sampling train will be constructed of material that does not react with the sample analytes and will not off gas or adsorb volatile compounds. The sampling equipment will be clean and shut-in tested prior to use. The gaseous leak tracer compound (isobutylene 100 ppm) concentration inside the shroud will be monitored frequently to verify initial concentrations. A photoionization detector will be used to monitor tracer gas concentrations.

Summa canisters are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory.

12.0 SYRINGE SOIL VAPOR SAMPLING

Sampling equipment to collect syringe soil vapor samples includes a sterilized, 100 cubic centimeter, gas tight syringe and silicone septa.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with brass connection with silicone septa that has been threaded into a tapped hole on the piping network. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. The syringe is inserted into the silicone septa and the plunger is purged or pumped at least three times. The sample is collected the fourth time the syringe plunger is extracted and the syringe is removed from the sample collection port and the needle on the syringe is capped with a rubber stopper.

Syringes are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory.

13.0 TEMPORARY SAMPLING POINTS

A temporary borehole is advanced using either a slam bar or a direct push drill rig. In the case of the slam bar, once the borehole has been created, a temporary soil vapor probe is inserted into the borehole and advanced with a slide hammer or other physical force two additional feet. A bentonite seal is then placed in the borehole above the soil vapor probe to create an air tight seal and prevent ambient air from entering the sample collection space. In the case of the direct push drill rig, the sampling rod is advanced to the desired depth with a 6-inch retractable vapor screen at the tip. The sample screen on the 6-inch vapor screen is removed and a bentonite seal is then placed in the borehole above the soil vapor probe to create an air tight seal and prevent ambient air from entering the sample collection space.

Once the bentonite seal has set, at least one hour, the soil vapor survey samples are collected into Tedlar bags as described in **Section 10.0** or Suma canisters as described in **Section 11.0**. Samples are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

14.0 REPEATABLE SAMPLING POINTS

A borehole is advanced using either a hand auger or a drill rig. A 6-inch slotted probe with caps on both ends is placed in the borehole. A Swagelok fitting is attached to one end cap and 3/16-inch diameter Nylon tubing is attached to the Swagelok fitting. A one foot sand pack is placed around the probe and the remainder of the borehole is sealed with a layer of dry bentonite powder, followed by a layer of bentonite chips, and an additional layer of dry bentonite powder. A well box is placed on the surface of the repeatable sampling point and the excess Nylon tubing is placed inside the well box.

Soil vapor survey samples will be collected at least one week after probe installation. In addition, soil vapor survey samples will only be collected after five consecutive precipitation free days and after any onsite irrigation has been suspended.

The soil vapor survey samples are collected into Tedlar bags as described in Section 10.0 or Summa canisters as described in Section 11.0. Tedlar bags or Summa canisters are labeled as described in Section 3.0 and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

2905 Bailroad Avenue, Ceres, CA 96507 Phone: (200) 581-9280 Fax: (200) 581-1282

07 October 2016

Environmental Compliance Group, LLC Mike Sgourakis 270 Vintage Drive Turlock, CA 95382

RE: Shore Acres Gas Project Data

Enclosed are the results for sample(s) received on 09/30/16 13:57 by California Agriculture & Environmental Laboratory. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages.

Please see quality control report for a summary of QC data pertaining to this project.

The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Sample(s) may be archived by prior arrangement.

Thank you for the opportunity to service the needs of your company.

Sincerely, Varyna S.Azett

Wayne Scott Lab Manager

Argon Analytical Services, Inc. CHAIN OF CUSTODY

5610001 - Report 5609028-Cadaines

		Pi	oject informa	ion:	***************************************	······································		·····	***************************************		Report 1	· · ·					ه وسيد	****	1040 Container
Project No:		19009			*************	***************************************	Consu	iltant:	Enviro		Complian		a Lic	-	************	-	*************		Samples Submitted To:
Project Title:		Acres G					Addre	8S.	270 V	nlage Ori	ve	D 100	p, nay			Labor: Addre			Argon Labs
Location:		ast 12th	Street							k, CA 95						Product.	92.		2905 Railroad Avenue Ceres, CA 95307
Sampler's Name;	Oakte	nd, CA					_{Contac			gourakis						Contac	a£:		Ceres, CA 95307
(print)							Phone	£;	916.60	0.4580						Phone			(209) 581-9250
Sampler's Signatur							Fax:		209.66	4.1040						Fax:			(209) 581-9282
Sambier & Signathi	e;										Bill To:				······································	Date R	suits Re	suired:	(227) 247 4484
			URN AROUND			·····	Glient: Addres			Enviror 270 Vii Turloct	imental (itage Dri k; CA	re:	••••	p. LLC		garan	port Reg	•	
RUSH	54	Hour 1	48 Hour			, , , , , , , , , , , , , , , , , , , 		·			-,	ANA	LYSIS						
					anderd days)	Special (10-14 days)	TPHg by EPA Method 8016M	BTEX, 5 oxygenates, 1.2-DCA, EDB by EPA	Method B260B			vyprominalada spirit kadania komina kadania spirit kadania spirit kadania spirit kadania spirit kadania spirit						EDF Reports	
Sample ID.)zte	Time	#0	ensmistag	Matrix.	1				 	 	 	·	 	┼			COMMENTS
MW-1	4) T		024	137		المعادية	12	سؤرا		1					-			2	Preservative
MW-2			[[0]]		1	<u>}</u>					 		-	 	 	 		34	.A. /
MW-3			133 [©]		1		\Box	11	~	·	 			<u> </u>	 	ļ		-	<u> </u>
MW-4			1129			 	\Box	+	_	 	 			 	 	ļ	 	-	3
MW-5			(%)			 	1	+		-	 		ļ	 	 	 	 	├-}	64
MW-6	Ì		U53	1		 	\Box	╫		 				 	 				
EW-1	-		1434			 	 	1 1		 	 			-	1	 -	 		&
	Ť		12.Sl			-	┼-}	┤──┼		-	 			ļ	ļ			-	- 4
EW-2					·····	 	-	-		<u> </u>	ļ		ļ	ļ	ļ				×. \$
EW-3	$\neg \downarrow$		1411			 	 	├	<i>{</i>	ļ	ļ			ļ	ļ	ļ			- 9
EW-4	13/		12100	***	************	<u>u</u>	W	W	f 	ļ	ļ	·		ļ				À.	-10
	~						ļ	<u> </u>		<u> </u>	ļ								
						<u> </u>	<u></u>	<u> </u>			<u> </u>		_						
Restinguished By:	ÁN.		·	Date:	مااد	Time:	Receive	d By: Bod	us 2	- - 20	<u> </u>	,-	Date:	30 H	Time:	2:5	·*********	SPECIA	AL INSTRUCTIONS: Global ID#
Relinguished By:				Date:		Time:	Receive	2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************		Date:		Time:				T0600174667
Relinquished By:				Date:		Time:	Receivo	d By:					Date:		Times	***************************************	77.		
	*********			L			Ī				***********							<u> </u>	

<u>CAEL Sample Receipt Checklist</u>

Client Name:	Environmental	comi	oliance G	rou		••i		Date	& Time F	Received:	0	9/30/16		13:57
Project Name:	Shore Acres G	as		 -			Will follow, which they will be	Clier	nt Project	Number:		GHA	1900	9
Received By:	WS			Mal	trix:	Water	$ \mathbf{V} $	Soil			Sluc	ge		
Sample Carrier:	Client 2	Lat	oratory		Fed Ex		UPS		Other					
Argon Labs Project	Number:	<u>S61</u>	0001											
Shipper Container in o	good condition?					Sample	s received	i in prop	er contain	ers?	Yes	\Box	No	
	N/A	Yes	\bigcirc	No		Sample	s received	l intact?			Yes	Ø	No	
Samples received unc	ler refrigeration?	Yes	$\overline{\mathbf{Q}}$	No		Sufficie	nt sample	volume:	for reques	ted tests?	Yes	V	No	
Chain of custody pres	ent?	Yes	Image: Control of the	No		Sample	s received	within h	rolding tim	e?	Yes	[]	No	
Chain of Custody sign	ed by all parties?	Yes.		No		Do sam	ples conta	in prope	er preserva N/A		Yes	☑	No	
Chain of Custody mate	ches all sample la	bels?				Do VOA	vials contai	n zero he	adspäce?					
		Yes	$\overline{\mathcal{A}}$	No				(None s	ubmitted	□)	Yes	V	No	
411441111 41141111111111111111111111	ANY "N	lo" RE	SPONSE	MUST	BE DETAI	LED IN	THE COM	MENTS	SECTION	BELOW				·
Date Client Contacte	ed:	********		~	Pers	son Con	itacted:	Jason I	Hunt				•	
Contacted By:					Subject:	Broken	diesel co	ntainer						
Comments:		******	**************	***************************************	~	~~~~~	···········		***************************************					
	·····		·····		~~~~~~	····	******				********			
Action Taken:			***************************************	······································	······································	************								
***************************************			ĀĒ	ODITION	IAL TEST	S) REQ	JEST/O	THER		·····	·····			
Santania de la					······································			<u></u>				~		*****
Contacted By:						Date	e:		•	•	Time:			 .
Call Received By:					********							~*^*		
Comments:														

2905 Railroad Avenue, Ceres, CA 95307

Phone: (209) 581-9280 Fax: (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA, 19009

Work Order No.:

270 Vintage Drive

Project Name: Shore Acres Gas

S610001

Turlock, CA 95382

Project Manager: Mike Sgnorakis

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Luboratory ID	Matrix	Date Sampled	Date Received
MM-1	\$610001-01	Water	09/23/16 13:24	09/30/16 13:57
MW-2	\$610001-02	Water	09/23/16 11:09	09/30/16 13:57
MW-3	\$610001-03	Water	09/23/16 13:38	09/30/16 13:57
/W-4	\$610001-04	Water	09/23/16 11:29	09/30/16 13:57
IW-5	\$610001-05	Water	09/23/16 13:10	09/30/16 13:57
fW-6	S610001-06	Water	09/23/16 11:53	09/30/16 13:57
IA-1	\$610001-07	Water	09/23/16 14:34	09/30/16 13:57
W-2	\$610001-08	Water	09/23/16 12:51	09/30/16 13:57
W-3	\$61000T-09	Water	09/23/16 14:11	09/30/16 13:57
W-4	\$610001-10	Water	09/23/16 15:10	09/30/16 13:57

<u> - Wagsse S. Julk</u> Approved By

LABORATORY 2905 Bailruad Avenuc, Ceres, CA 95307 Phone: (209) 581-9280 Fex: (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GRA, 19009

Work Order No.:

270 Vintage Drive

Project Name: Shore Acres Gas

\$610001

Turlock, CA 95382

Project Manager: Mike Sgourakis

Total Petroleum Hydrocarbons @ Gasoline

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-1 (S610001-01) Water Sampled: 23-Se	p-16 13:24	Received:	30-Sep-	16 13:57		***************************************	14676
Total Petroleum Hydrocarbons @ Gasoline	20000	500	ng/L	10	01-Oct-16	8015M	
Surr. Rec.;	***************************************	87 %	Mariana de deservación de la constantia de) /	<i>"</i>	to the transfer of the second second
MW-2 (S610001-02) Water Sampled: 23-Sep	p-16 11:09	Received:	30-Sep-1	16 13:57			
Total Petroleum Hydrocarbons @ Gasoline	570	50	ug/l,	{	91-Oct-16	801SM	
Surr. Rec.:		86 %		The state of the s	V	η	
MW-3 (S610001-03) Water Sampled: 23-Sep	⊱16 13:38	Received:	30-Sep-1	6 13:57			
Total Petroleum Hydrocarbons @ Gasoline	4200	50	ug/L	Ì	61-Oct-16	8015M	***************************************
Surr. Rec.:		101 %		***************************************	U	<i>y</i>	
MW-4 (S610801-04) Water Sampled: 23-Sep	-16 11:29	Received:	30-Sep-1	6 13:57			
Total Petroleum Hydrucurbons @ Gasoline	2700	50	ng/L	ì	01-Oct-16	8015M	
Sure Rec.:		89 %		·····	ø	Ø.	
MW-5 (S610001-05) Water Sampled: 23-Sep	-16 13:10	Received:	30-Sep-1	6 13:57			
Total Petroleum Hydrocarbons @ Gasoline	10000	500	ng/I,	10	01-Oct-16	8015M	
Surr. Rec.:		104 %	***************************************		ŧ.	*	
MW-6 (\$610001-06) Water Sampled: 23-Sep.	-16 11:53	Received:	30-Sep-1	6 13:57			
Fotal Petroleum Hydrecarbons @ Gasoline	7700	250	ug/L	5	81-Oct-16	8015M	······································
Sun Rec.:	******************************	88 %			#	îi.	
EW-1 (S610001-07) Water Sampled: 23-Sep-	16 14:34	Received: 3	0-Sep-16	13:57			
Fotal Petroleum Hydrocarbons @ Gasoline	6200	250	ug/L	5	:01-Oct-16	8015M	
Surr. Rec.:		84%	**************		ä	ii	***************

Approved By Wayne & Aught

2305 Railroad Avenne, Ceres, CA 95307 Phone: (209) 581-9280

Fax: (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA.19009

Work Order No.:

270 Vintage Drive

Turlock, CA

muss man

Project Name: Shore Acres Gus

8610001

Project Manager: Mike Sgourakis

Total Petroleum Hydrocarbons @ Gasoline

,	~		····	~~	·		
Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Note
EW-2 (S610001-08) Water Sampled: 23-	Sep-16 12:51	Received:	30-Sep-1	6 13:57	······		************
Total Petroleum Hydrocarbons @ Gasoline	6500	250	ug/L	Ś	91-Oct-16	8015M	
Surr. Rec.;		90 %			ŋ	4i	
EW-3 (S610001-09) Water Sampled: 23-	Sep-16 14:11	Received:	30-Sep-1	6 13:57			
Fofal Petroleum Hydrocarbons @ Gasoline	2800	50	ug/i.	J	01-Oct-16	8015M	***************************************
Surr. Rec.;		93 %			ÿ	#	
EW-4 (S610001-10) Water Sampled: 23-	Sep-16 15:10	Received: 3	0-Sep-16	S 13:57			
Fotal Petroleum Hydrocarbons @ Gasoline	8200	250	ng/L	Š	01-Qcs-16	8015M	
Sure, Rec.;		87 %			17	ĸ	

Mayre E Acht
Approved By

2905 Railroad Avenue, Cens., CA 95307 Phone: (209) 581-9280 Fax: (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA.19009

Work Order No.:

270 Vintage Drive

Project Name: Shore Acres Gas

\$610001

Turlock, CA 95382

Project Manager: Mike Sgourakis

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Note
MW-1 (S610001-01) Water	Sampled: 23-Sep-16 13:24	Received:	30-Sep-	16 13:57			
Веплене	1490	0.5	ug/L	1	03-Oct-16	826013	
Toluene	90	0.5	ĸ	ų	ins.4500-16	02001	
Xylenes, total	4500	1.0	pi	н	tı	11	
Ethylbenzene	1100	0.5	н	Ú	吹	12	
t-Butanoi .	250	5:0	ýr	ń	*	is.	
Methyl tort-Butyl Ether	250	0.5	is	'it	ņ	ti.	
Di-Isopropyl Ether	ND	0:5	v	4)	ij	e e	
Ethyl tert-Bulyl Ether	ND	0.5	17	Į¢	ą	8V	
tert-Amyl Methyl Ether	ND	0.5	N	ii	×i	bt .	
1,2-Dichloroethane	ND	0.5	Ą	B	α	u	
1,2-Dibromoethane (EDB)	ND	0.5	()	d	ж.	н	
Surr. Rec.:		107%			W.	tt.	
MW-2 (S610001-02) Water	Sampled: 23-Sep-16 11:09	Received:	30-Sep-1	6 13:57			
Benzene	10	0.5	11g/j	1	03-Oct-16	8260B	
l'oluene	2.9	Ω.5	Ħ	a	b:	,6 ,6	
Xylenes, total	37	1.0	n	26	ĮP	N	
Ethylbenzene	13	0.5	ĸ.	•	14	17	
-Butanol	ND	5.0	13	11	ęı	Ia .	
Methyl tert-Butyl Ether	5,3	0.5	tk	n	11	»)	
Di-Isopropyl Ether	MD	0.5	н	16	•	ÇI	
Sthyl tert-Butyl Ether	ND	0.5	ls e	2)	¥	н	
ert-Amyl Methyl Ether	ND	0.5	и	n	o	ja e	
.2-Dichloroethane	ND	0.5	12	k	Ħ	d	
,2-Dibromoethane (EDB)	ДИ	0.5	D.	13	q	ч	
Surr. Rec.;		99 %	***************************************	en i i handa karan karan karan ara	#	······	*********

Approved By

2305 Railroad Avenne, Ceres, CA 95307

Phone: (209) 581-9280 Fax: (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA, 19009

Work Order No.:

270 Vintage Drive

Project Name: Shore Acres Gas

\$610001

Turlock, CA 95382

Project Manager: Mike Sgourakis

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Note
MW-3 (\$610001-03) Water	Sampled: 23-Sep-16 13:38	Received:	30-Sep-1	6 13:57	***************************************	······································	***
Benzene	640	5.0	n6/f	10	03-Oct-16	\$2608	
Toluene	51	5,0	1)	u	ĸ	14	
Xylenes, total	140	10	ы	17	ta ta	in	
Ethylbenzene	58	5.0	9.	*	·to	(s	
t-Butanol	NĐ	50	s q	9	16	**	
Methyl tert-Butyl Ether	380	5.0	н	ø	ø	ti	
Di-Isopropyl Ether	ND	5.0	н	P	ж.	10	
Ethyl tert-Butyl Ether	ПИ	5.0	**	ÿ.	ø	Q	
tert-Amyl Methyl Ether	ND	5.0	iţ	(4	к	н	
1,2-Dichloroethane	ИD	5.0	0	ıt	¥	31	
1.2-Dibromoethane (EDB)	ND	5,0	nt	b	Ħ	n	
Sur. Rec.:		107 %	t distribute a site a a afte a afteriorista	West-1944		H	
MW-4 (S610001-04) Water	Sampled: 23-Sep-16 11:29	Received:	30-Sep-L	6 13:57			
Benzene	520	5.0	na),r	10	63-Oct-16	8260B	·····
Foluenc	85	5.0	41	11	9.	.0	
Kylénes, total	120	10	*	ń	ń:	6	
Ethylbenzene	54	5.8	в	æ	13	13	
-Butanol	ИN	50	Ħ	41	j•	,\$7	
Methyl tert-Butyl Ether	8.0	5.0	o.	н	a.	*	
Di-Isopropyl Effier	NO	5.0	ĸ	•	it	13	
Ethyl tert-Butyl Ether	ND	5.0	4	30	ţi	{e	
ert-Amyl Methyl Ether	ND	5.0	6	47	41	N	
,2-Dichlorovthane	ND	5.0	и	μ	v	,te	
.2-Dibromoethane (EDB)	ND	5.0	Ŋ	**	u	я	
Sun, Rec.;		95%			*	#	****************

<u> Wayne E Lost</u> Approved By

2905 Railroad Avenue, Ceres, CA 95307 Phone: (209) 581-9280 Fax: (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA, 19009

Work Order No.:

270 Vintage Drive

Project Name: Shore Acres Gas

8610001

Turlock, CA 95382

Project Manager: Mike Sgourakis

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-5 (\$610001-05) Water	Sampled: 23-Sep-16 13:10	Received:	30-Sep-1	6 13:57		The state of the s	~
Benzene	350	5.0	ug/L	10	03-Oct-16	82608	
Toluene	48	5.0	e	18	1)	0	
Xylones, total	930	10	is	0	ŕ	\$*	
Ethylbenzene	230	5.0	17	**	n	н	
t-Butanoi	СIИ	50	(I	ю	Þ	111	
Methyl tert-Butyl Ether	38	5.0	'n	и	H.	'n	
Di-Isopropyl Ether	MD	5.0	и	n	q	.00	
Ethyl tert-Butyl Ether	ND	5,0	ıt	R	н	46	
ert-Amyl Methyl Ether	ПИ	5.0	o	n	¥	N	
i,2-Dichioroethanc	ND	5.0	11	ti	ď		
,2-Dibromoethane (EDB)	ND	5.0	tr	II.	źŧ	я	
Surr. Rec.;		106%	***************************************		17	et et ant a transcription of the second seco	****
WW-6 (S610001-06) Water	Sumpled: 23-Sep-16 11:53	Received:	30-Sep-1	6 13:57			
Senzene	170	5.0	ug/L	10	03-Oct-16	8260B	
Toluene	ND	5.0	ĸ	0	14	#	
Cylenes, total	NO	3.0	n	H	ø	₩	
Ehylbenzene	8.0	5.0	и	स	h	.4	
Butanol	ND	50	1)	H	N	16	
Aethyl tert-Butyl Ether	CIM	5.0	k	· ·	in	10	
i-Isopropyl Ether	ND	5.0	ę ā	.86	it	30	
thyl tert-Butyl Ether	ND	5.0	19	**	15	ıl	
at-Amyl Methyl Ether	CIN	5.0	54	đ	64.	ţ•	
,2-Dichloroethane	ND	5.0	ú	[#	įį	•1	
2-Dibromoethane (EDB)	ND	5.0	8	ii	α	h	

Approved By

2905 Radroad Avenue, Ceres, CA 95367 Phone: (200) 581-9280 Foc: (200) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA, 19009

Work Order No.:

270 Vintage Drive

Project Name: Shore Acres Gas

\$610001

Turlock, CA 95382

Project Manager: Mike Sgourakis.

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Note
EW-1 (S610001-07) Water	Sampled: 23-Sep-16 14;34	Received:	30-Sep-1	6 13:57			
Benzene	130	5.0	ոց/Ն	10	03-Oct-16	\$260B	······································
Toluene	CIVE	5.0	4	₽.	8	0	
Xylenes, total	24	10	b	'n	₩	is .	
Ethylbenzene	35	5.0	ĸ	**	٠	O'	
t-Butano!	ND	50	.11	·in	н	н	
Methyl tert-Butyl Ether	78	5.0	ti	, Pt	4	v	
Di-Isopropyl Ether	ND	5.0	····	-(1	16	a	
Ethyl tert-Butyl Ether	ND	5.0	ð	16	**	25	
tert-Amyl Methyl Ether	ND	5.0	i;	·u	19		
1,2-Dichloroethane	ND	5.0	•	ж	\$\$	16	
1.2-Dibromoethane (EDB)	ND	5.0	36	O		13	
Suar, Rec.;		112%	d a v a a v ateriora state gry y	***************************************	ż	R	
EW-2 (S610001-08) Water	Sampled: 23-Sep-16 12:51	Received: 3	90-Sep-16	13:57			
Benzene	37	5.0	បន្ទ/1.	10	03-Oct-16	82608	
l'oluene	38	5.0	N.	ft	n 00-00-10	4	
Kylenes, total	170	10	1=	'n	ó	je.	
Ethylbenzene	29	5.0	11	1r	ıs	,1	
-Butanoi	ИŊ	50	10 ·	el	•	St.	
Methyl fert-Butyl Ether	26	5,0	NT .	te	ч	'n	
Di-Isopropyi Ether	ND	5.0	*	**	ſi	я	
Ethyl tert-Butyl Ether	ND	5.0	18	ŀ	n	9	
ert-Amyl Methyl Ether	ND	5.0	0	ų.	N	H	
,2-Dichloroethane	ND	5.0	HZ.	s:	e		
.2-Dibromoethane (EDB)	ND	5.0	¥	je	ж	×	
Sur. Rec.;		102 %	****************	***************************************	<i>ų</i> .	ly	

Sur. Rec.:

102 %

Approved By

California Agriculture & Environmental Laboratory, California D.O.H.S. Cert. #2359

Wayne I Sutt

LABORATORY 2905 Ruhiwad Avenne, Ceres, CA 95307 Phona: (209) 581-9280 Fax: (209) 581-9289

Environmental Compliance Group, LLC

Project Number: GHA, 19009

Work Order No.:

270 Vintage Drive

Project Name: Shore Acres Gas

S610001

Turlock, CA 95382

Project Manager: Mike Sgourakis

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result.	Reporting Limit	Dates	Dilution	Analyzed	Method	Note
EW-3 (S610001-09) Water	Sampled: 23-Sep-16 14:11	Received	30-Sep-10	6 13:57	***************************************	····	
Benzeur	26	0.5	ug/L	1	03-Oct-16	82603	
Toluene	2,2	0.5	Þ	11	11	н	
Xylenes, total	61	1.0	ıt	ø	15	ø	
Ethylbenzene	60	0.5	«	rt.	ý.	n	
t-Butanol	34	5.0	ж	9	17	**	
Mothyl tert-Butyl Ether	32	0.5	47	н	ħ	36	
Di-Isopropyl Ether	ND	0.5	11	' q	0	st	
Ethyl tert-Butyl Ether	ND	0.5	#	as a	Ł	n	
ert-Amyl Methyl Ether	ND	0.5	iś	int .	H	**	
,2-Dichloroethane	ND	():5	н	· ·	4	in	
.2-Dibromoethme (EDB)	ND	0.5	u	-10	ıt.	N	
Surr. Rec.:	•	83 %	· ^			Ж	the artists of the experience of the administration of the artists
EW-4 (S610001-10) Water	Sampled: 23-Sep-16 15:10	Received: 3	30-Sep-16	13:57			
lenzene	350	5.0	ug/L	10	03-Oct-16	\$260B	·····
oluone	27	5.0	n	h	W. 154	02000	
lylenes, total	670	10	•	'n	×	·a	
lthylbenzene	70	5.0	th.	×	방	· •	
Butanoi	180	50	nţ	•	ķ	8	
lethyl tert-Butyl Ether	150	5.0	ø	H	n	.(r	
ri-Isopropyl Ether	ND	5.0	ír	0	¥	45	
thyl tert-Butyl Ether	ND	5.0	Φ,	ж	ę i	ir	
rt-Amyl Methyl Ether	ND	5,0	н	ö	*1	15	
2-Dichloroethane	ND	5.0	ų	; 6	ė	tu .	
						Y	
2-Dibromoethane (EDB)	ND	5.0	H	*	ış	17	

Approved By

2905 Railroad Avenue, Ceres, CA 95307

Phone: (200) 581-0280 Fax: (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA.19009

Work Order No.:

270 Vintage Drive

Project Name: Shore Acres Gas

\$610001

Turlock, CA

Project Manager: Mike Sgourakis

Total Petroleum Hydrocarbons @ Gasoline - Quality Control

California Agriculture & Environmental Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch S600849 - EPA 5030B									***************************************	
Blank (\$600849-BLK1)	general and a state of the stat	attention among the control of		Prepared a	& Analyze	d: 10/01/			····	•••••••••••••••••••••••••••••••••••••••
Surrogate: a.a.a-Trifluorotoluene	45.5		ug/L	50		91	70-130	******	***************************************	
Total Petroleum Hydrocarbons @ Gasoline	ND	50		4 .0		7,5	10-120			
LCS (S600849-BS1)				Prepared &	& Analyze	Æ ተብረቤተታ	16			
Total Petroleum Hydrocarbons @ Gasoline	1040	*****************	ug/L	1000		104	80-120	**********		***************************************
LCS Dap (S600849-BSD1)				Prepared &	b Analyze	& 10/6171	۱,6			
fotal Petroleum Hydrocarbons @ Gasoline	1020		ug/i,	1000	o rozatyza	102	80-120	2	20	
Matrix Spike (S600849-MS1)	Šou	mee: \$610001	-02	Prepared &	& Analyze	d: 10/01/1	6			
Total Petroleum Hydrocarbons @ Gasoline	1500		ug/L	1000	566	93	70-130			***************************************
Matrix Spike Dup (\$600849-MSD1)	Sou	iree: \$619001	-02	Prepared &	ž Analyze	d: 10/01/4	6			
Intal Petroleum Hydroearbons @ Gasoline	1610		ug/L	1000	366	804	70-130	7	20	

Wayne Shott Approved By

CALIFORNIA AGRICULTURE & ENVIRONMENTAL

LABORATORY

2905 Railsuad Avenue, Ceres, CA 95307 Phonic (209) 581-9280 Fax: (209) 581-9282

Source

%REC

Environmental Compliance Group, LLC

Project Number: GHA.19009

Work Order No.:

270 Vintage Drive

Project Name: Shore Acres Gas

8610001

RPD

Turlock, CA 95382

Project Manager: Mike Sgourakis.

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Spike

Reporting

California Agriculture & Environmental Laboratory

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch S600842 - EPA 5030B								•••••••••••••••••••••••••••••••••••••••	***************************************	
Blank (\$600842-BLK1)				Prepared	& Analyza	ed: 10/03/	16		···	····
Surragate: Fluorobenzene	51,0	***********************	ug/l,	50		102	70-130			
Benzene	ND	0.5	9	****		102	10.150	•		
Tolttene	ND	0.5	9							
Xylenes, total	NO	1.0	13							
Ethylbenzene	ND	0.5	q							
t-Butanol	MD	5.0	is							
Methyl text-Butyl Ether	ND	0.5	19							
Di-Isopropyl Ether	ND	0.5	l g							
Ethyl ten-Butyl Ether	ND	0.5	16							
tert-Amyl Methyl Ether	ND	0.5	ri-							
1,2-Dichlomethane	NE	0.5	t*							
1,2-Dibromoethane (EDB)	CIN	0.5	0							
LCS (S600842-BS1)				Prepared :	& Analyze	d- 10/03/1	16			
Зепхене	23.1	de e e e e e e e e e e e e e e e e e e	υg/l,	25		92	80-120	das . <u>is</u>		********
LCS Dup (S600842-BSD1)				Prepared a	& Analyze	d: 10/03/1	6			
Senzene	22.9		धद्य/}ः	25		92	80-120	0.9	20	
Matrix Spike (S600842-MS1)	Sourc	e: S609024	-01	Prepared & Analyzed: 10/03/16						
olnene	24.9	Americani, q.,	սց/Ն	25	ND	100	70-130	***********		
Matrix Spike Dup (S600842-MSD1)	Sourc	e: S609024	-01	Prepared &	& Analyze	d: 10/03/1	6			
olume	24.3		119/1.	25	NE)	97	70-130	2	20	

Approved By

California Agriculture & Environmental Laboratory, California D.O.H.S. Cert. #2359

Wane Elich

2905 Railmad Avenue, Ceres, CA 95307

Phone: (209) 581-9280 Fax: (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA,19009

Work Order No.:

270 Vintage Drive

Project Name: Shore Acres Gas

\$610001

Turlock, CA. 9538:

Project Manager: Mike Sgourakis

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

Approved By

GROUNDWATER LEVEL DATA FORM

PROJECT NAME: Shore Acres
PROJECT MANAGER: MSS

PROJECT NUMBER: TASK NUMBER:

GHA.19009

SITE ADDRESS:

403 East 12th Street, Oakland, Ca

	<u> </u>	T	F	<u> </u>			
WELL ID	TIME	DEPTH TO BOTTOM	DEPTH TO WATER	DEPTH TO PRODUCT	PRODUCT THICKNESS	PRODUCT THICKNESS X 0.8	COMMENTS
MW-1	1049	17.94	9.01				
MW-2	1040	19.98	9.90				
MW-3	1054	17.85	9,57				
MW-4	1042	18,75	9.45				-()
MW-5	1055	pm	MU				the broom
MW-6	ાબ્યર	19.40	8.90				
EW-1	1050	19.70	9.5	Y			*******
EW-2	1044	19.93	9.82		4		
EW-3	1046	19.89	9.46		5. (
EW-4	1052	19.95	9.46		÷		
					···		7-
		177.	- W. C.				
, ·	····						
		×-			·····		
							The state of the s
				77.	*************************************		***
			*******		7184		
			1700.			***************************************	, V-1

FIELD TECHNICIAN:	DW JIL	
DATE:	a/(7)/\o	

PROJECT PROJECT SITE ADDI	MANAGER: MSS				PROJECT N TASK NUME		GHA.19009		
	WELL ID	: <u>M</u> W	1-1	TYPE OF WELL: Monitoring					
WATER COLUMN DATA: Well Total Depth: Depth to Water: Water Column Length: Water Column Length: Well DIAMETER: 2-inch: 4-inch: 6-inch: Water Column Length x Multiplier x No. Volumes = Purge Volume							- - -		
Wa	(D,97)	x	Multiplier	х	No. Volumes	=	5.5 Purge Volume		
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5									
PURGE ME	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE		able Bailer Pump: Other:			
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS		
1319	1.5	7,41	21,1	છા(
1318	3.25 5.5	7,39,	20.1	797					
1274	>,1	+,70	10,1	711		-			
1717			!	[samb		
	****	· · · · · · · · · · · · · · · · · · ·	1				***		
						· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·									
					71011				

FIELD TECHNICIAN:	- pur	16	
DATE:	a	101	

	NAME: MANAGER: RESS:	s th Street, Oak	land, Ca	PROJECT NU TASK NUMB		GHA.19009	
	WELL ID	::	.2	_	TYPE	OF WELL:	Monitoring
WATER CO	- - -						
PURGE VO	LUME CALCI Water Colum		ultiplier x No	Volumes =	Purge Volume		
Wa	し.08 ater Column Le	_ x	O- (7	×	No. Volumes	=	S. \ Purge Volume
MULTIPLIE PURGE ME	Multiplier for THOD:	2-inch: 4-inch: 6-inch:	0.17 0.65 1.5	Linear Foot	Based on Casi	ing Diame	ter:
	Disp	osable Bailer PVC Bailer		-		able Bailer Pump:	
	Subm	ersible Pump Other		- -		Other:	
*****	VOLUME			•			
							
TIME	PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS
1059	PURGED (gal) いみら	7.41	(°C)	(uS/cm)	DO (mg/l)		COMMENTS
	PURGED (gal) いみら	7.41	(°C)	(uS/cm)	DO (mg/l)		COMMENTS
1059	PURGED (gal)		(°C)	(uS/cm)	DO (mg/l)		
1059	PURGED (gal) いみら	7.41	(°C)	(uS/cm)	DO (mg/l)		COMMENTS
1059	PURGED (gal) いみら	7.41	(°C)	(uS/cm)	DO (mg/l)		
1059	PURGED (gal) いみら	7.41	(°C)	(uS/cm)	DO (mg/l)		
1059	PURGED (gal) いみら	7.41	(°C)	(uS/cm)	DO (mg/l)		
1059	PURGED (gal) いみら	7.41	(°C)	(uS/cm)	DO (mg/l)		

PROJECT PROJECT SITE ADDE	MANAGER:	Shore Acres MSS 403 East 12	s th Street, Oak	land, Ca	PROJECT N TASK NUME		GHA.19009			
	WELL ID		-3	_	TYPE OF WELL: Monitoring					
	DLUMN DATA Wel De Water Co LUME CALCU Water Colum	ETER:	- -							
Wa	B. 28	Purge Volume								
MULTIPLIE	Water Column Length Multiplier No. Volumes Purge Volume MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5									
PURGE METHOD: Disposable Bailer PVC Bailer Submersible Pump Other Other										
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS			
1328	17	7.4	0, ع	924						
1332	2,7 4,4	7.18	19.4	936						
1778	4,4	7,10	19.9	936			11			
1790		***	**************************************				sayly			
·										

·-	······································									

FIELD TECHNICIAN:	- Julic
DATE:	9/23/6

PROJECT PROJECT SITE ADDI	MANAGER:	Shore Acre MSS 403 East 12	s eth Street, Oak	land, Ca	PROJECT NE TASK NUMB		GHA.19009	
	WELL ID	<u> </u>	-4	_	TYPE	OF WELL	: Monitoring	
WATER CO	De	: I Total Depth epth to Water Dumn Length	1.45	- - -	WELL DIAME 2-inch: 4-inch: 6-inch:	ETER:	- - -	
PURGE VOLUME CALCULATION: Water Column Length x Multiplier x No. Volumes = Purge Volume								
Wa	9.3 0 ater Column Le	_ x ength	O(A) Multiplier	_ x	3 No. Volumes	=	4.75 Purge Volume	
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5								
PURGE METHOD: Disposable Bailer PVC Bailer Submersible Pump Other SAMPLE METHOD: Disposable Bailer Pump: Other								
PURGE ME	Disp	PVC Bailer ersible Pump		SAMPLE		Pump:		
PURGE ME	Disp Subm VOLUME PURGED	PVC Bailer ersible Pump		SAMPLE		Pump:		
TIME	Disp Subm VOLUME	PVC Bailer ersible Pump Other	TEMP. (°C)	COND. (uS/cm)	Dispos	Pump: Other:		
TIME	Disp Subm VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND. (uS/cm)	Dispos	Pump: Other:		
TIME	Disp Subm VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP.	COND. (uS/cm)	Dispos	Pump: Other:	COMMENTS	
TIME	Disp Subm VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND. (uS/cm)	Dispos	Pump: Other:		
TIME	Disp Subm VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND. (uS/cm)	Dispos	Pump: Other:	COMMENTS	
TIME	Disp Subm VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND. (uS/cm)	Dispos	Pump: Other:	COMMENTS	
TIME	Disp Subm VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND. (uS/cm)	Dispos	Pump: Other:	COMMENTS	
TIME	Disp Subm VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND. (uS/cm)	Dispos	Pump: Other:	COMMENTS	

PROJECT PROJECT SITE ADDR	MANAGER:	s eth Street, Oak	land, Ca	PROJECT N TASK NUMB		GHA.19009			
	WELL ID:		1-5		TYPE	OF WELL:	Monitoring		
WATER COLUMN DATA: Well Total Depth: Depth to Water: Water Column Length: WELL DIAMETER: 2-inch: 4-inch: 6-inch: Water Column Length x Multiplier x No. Volumes = Purge Volume									
Wa	ter Column Le	_ x ength	Multiplier	_ x	No. Volumes	=	Purge Volume		
	MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5 PURGE METHOD: Disposable Bailer PVC Bailer PVC Bailer PVC Bailer PUmp:								
		Other		•		Other:			
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS		
13=2 1364 1369 1360 1360	950	7.10 7.17	201 19.7 (4.6	1091			Soulh		
				*****		***************************************			

FIELD TECHNICIAN: _____

WELL ID:	PROJECT PROJECT SITE ADDI	MANAGER:	Shore Acre MSS 403 East 12	s ⊇th Street, Oak	kland, Ca	PROJECT N TASK NUME	GHA.19009				
Well Total Depth: Depth to Water: R 90		WELL ID	OF WELL:	Monitoring							
Water Column Length x Multiplier x No. Volumes = Purge Volume Value	Well Total Depth: 19.40 Depth to Water: 8.90				2-inch:						
Water Column Length Multiplier Multiplier Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5 PURGE METHOD: Disposable Bailer PVC Bailer Submersible Pump Other TIME VOLUME PURGED pH (°C) (°C) ("S/cm) TIME VOLUME PURGED pH (°C) ("C) ("G) ("G) ("G) ("G) ("G) ("G) ("G) ("G											
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5 PURGE METHOD: Disposable Bailer PVC Bailer Submersible Pump Other TIME VOLUME PURGED (gal) PH (°C) (uS/cm) Do (mg/l) ORP (mV) COMMENTS (143 1.77 2.51 19.56 (9.77 (50) 19.77 (50)	Water Column Length x										
Disposable Bailer PVC Bailer Submersible Pump Other TIME VOLUME PURGED (°C) (uS/cm) U-3 1.3-7 7-6-1 19-6 614 U-7 3-6 7-53 19-7 601 U-7 15-5 19-7 601	MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5										
TIME PURGED pH (°C) (US/cm) DO (mg/l) ORP (mV) COMMENTS 143 1.77 7.61 19.6 614 147 3.6 7.51 9.7 601 148 5.6 7.53 19.7 601			PVC Bailer ersible Pump		- - -		Pump:				
1197 3.6 7.59 19.7 601	TIME	PURGED	рН		1	DO (mg/l)		COMMENTS			
1(5) 5.0 7.33 (9.2 6/3	1143	1.75			614						
113) 3.0 4.33 11.0 GO Say	1147	3,6	7,59	19.7	601			****			
	1133	5,0	7.33	. 1.0	(2)			- Co.ud			
								244			
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
				······································							
			***	*****							

PROJECT	PROJECT NAME: PROJECT MANAGER: MSS MSS 403 East 12th Street, Oakland, Ca					UMBER: ER:	GHA.19009	
WELL ID: EW-1 TYPE OF WEI							Monitoring	
WATER COLUMN DATA: Well Total Depth: Depth to Water: Water Column Length: WELL DIAMETE 2-inch: 4-inch: 6-inch:							- - -	
PURGE VO	LUME CALC							
Water Column Length x Multiplier x No. Volumes = Purge Volume Volumes = Purge Volume Water Column Length x Multiplier x No. Volumes							18.9 Purge Volume	
MULTIPLIE	R DATA:							
Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5 PURGE METHOD: Disposable Bailer PVC Bailer Submersible Pump Other Other								
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS	
1422	6.5	7,29	19,9	801		-		
1427 H3U	17.5	7.75	19.7	305				
1434		7 - 2					Sauple	

					1		· •	

PROJECT	OJECT NAME: Shore Acres OJECT MANAGER: MSS TE ADDRESS: 403 East 12th Street, Oakland, Ca					UMBER: ER:	GHA.19009		
	WELL ID:	En-5		_	TYPE OF WELL: Monitoring				
	LUMN DATA: Weli De Water Co	9.82	- - -	WELL DIAME 2-inch: 4-inch: 6-inch:		· ·			
PURGE VOLUME CALCULATION: Water Column Length x Multiplier x No. Volumes = Purge Volume Column Length x Column Length x x x x x x x x x									
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5									
PURGE METHOD: Disposable Bailer /(1) PVC Bailer Submersible Pump Other					METHOD: Disposa	able Bailer Pump: Other:			
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS		
1239 (244 (244 (25)	US US URO	7.41 7.29 7.34	20.6 20.6 21.0	८५१ ७५१ ८५०			saut		

FIELD TECHNICIAN:		w,
DATE:	બ	13/16

PROJECT	PROJECT NAME: Shore Acres PROJECT MANAGER: MSS SITE ADDRESS: 403 East 12th Street, Oakland, Ca				PROJECT NUMBER: GHA.19009 TASK NUMBER:			
	WELL ID	EW-	.3	TYPE OF WELL: Monitoring				
	D	ll Total Depth epth to Water olumn Length		WELL DIAMETER: 2-inch: 4-inch: 6-inch:				
. OROL VC			Multiplier x No.	Volumes =	Purge Volume	e		
Wa	にいいる	x	Multiplier		No. Volumes	=	Purge Volume	
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5								
PURGE METHOD: Disposable Bailer PVC Bailer Submersible Pump Other					METHOD: Dispo:	sable Bailer Pump: Other:		
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS	
1351	6.1	7.4	19,6	552				
1404	19.3	7,21	20.1	841				
HIII !	11.5	7701	3.0	950	10.10.1		south	
						V0.L.		

FIELD TECHNICIAN:	NOR I'C	
DATE:	9/2/14	

PROJECT	PROJECT NAME: Shore Acres PROJECT MANAGER: MSS SITE ADDRESS: 403 East 12th Street, Oakland, Ca			 kland, Ca	PROJECT NUMBER: TASK NUMBER:		GHA.19009	
	Monitoring							
WATER CO	- - -							
PURGE VOLUME CALCULATION: Water Column Length x Multiplier x No. Volumes = Purge Volume								
Wa	ater Column Le	_ x ength	Multiplier	_ x	No. Volumes	. ==	US,S Purge Volume	
Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5 PURGE METHOD: Disposable Bailer PVC Bailer PVC Bailer Submersible Pump Other Other								
TIME	VOLUME PURGED (gal)	рН	TEMP.	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS	
1458 1453	(0,1	7.31	19.6	912				
1880	18.5	7.37	19.2	905 099				
1210							7641/V	

FIELD TECHNICIAN:								