RECEIVED By Alameda County Environmental Health at 1:58 pm, Feb 23, 2015 February 9, 2015 Ms. Donna Drogos Alameda County Environmental Health 1131 Harbor Parkway, Suite 250 Oakland, CA 94502-6577 Subject: Third Quarter 2014 Groundwater Monitoring Report **Shore Acres Gas** 403 East 12th Street, Oakland, Alameda County, California RO #0002931 ECG # GHA.19009 Dear Ms. Drogos: Enclosed please find a copy of the December 18, 2014 *Third Quarter 2014 Groundwater Monitoring Report* for the above referenced site prepared by our consultant Environmental Compliance Group, LLC. I declare, under penalty and perjury, that the information and/or recommendations contained in this report are true and correct to the best of my knowledge. Respectfully, Rashid Ghafoor 270 Vintage Drive Turlock, CA 95382 P: 209.664.1035 F: 209.664.1040 # THIRD QUARTER 2014 GROUNDWATER MONITORING AND REMEDIATION STATUS REPORT SHORE ACRES GAS 403 EAST 12TH STREET OAKLAND, CALIFORNIA Prepared for: Rashid Ghafoor ECG Project Number: GHA.19009 Alameda County Fuel Leak Case No. RO0002931 December 18, 2014 Drew Van Allen Senior Project Manager Michael S. Sgourakis Principal Geologist CA P.G. No. 7194 Mil S Syla ### TABLE OF CONTENTS | Limitations | | 3 | |---------------------|--|---| | | d Hydrogeologic Conditions | | | | | | | | onditions | | | | | | | | 1 | | | | | | | | | | | | 5 | | | Corrective Action | ns | 5 | | Third Quarter 2014 | Monitoring Event | 5 | | Work Performed | and Proposed | 5 | | Work Performe | ed Third Quarter 2014 | 5 | | | d for Fourth Quarter 2014 | | | | ent Monitoring Activities | | | | ent Remediation Activities | _ | | | sions | | | results and conclus | 010110 | / | | Figures | | | | Figure 1: | Site Location Map | | | Figure 2: | Site Map | | | Figure 3: | Potentiometric Surface Map | | | Figure 4: | TPHg in Groundwater Isoconcentration Map | | | Figure 5: | Benzene in Groundwater Isoconcentration Map | | | Figure 6: | MTBE in Groundwater Isoconcentration Map | | | Tables | | | | Table 1: | Well Construction Details | | | Table 2a: | Historical Soil Analytical Data, TPH and BTEX | | | Table 2b: | Historical Soil Analytical Data, Oxygenates and Lead Scavengers | | | Table 3a: | Grab Groundwater Sample Results, TPH and BTEX | | | Table 3b: | Grab Groundwater Sample Results, Oxygenates and Lead Scavengers | | | Table 4a: | Monitoring Well Data, Water Level, TPH, and BTEX | | | Table 4b: | Monitoring Well Data, Oxygenates and Lead Scavengers | | | Table 5a: | Soil Vapor Extraction System Performance Calculations | | | Table 5b: | Soil Vapor Extraction Destruction Efficiency and Emission Calculations | | | Table 5c: | Groundwater Treatment System Performance Data | | Third Quarter 2014 Groundwater Monitoring and Remediation Status Report Shore Acres Gas 403 East 12th Street, Oakland, California ### **Appendices** Appendix A: Standard Operating Procedures Appendix B: Laboratory Analytical Reports Appendix C: Field Notes ### INTRODUCTION Environmental Compliance Group (ECG) has been authorized by Mr. Rashid Ghafoor to provide this report for the site. This report describes activities conducted during Third Quarter 2014 groundwater monitoring event. Site information is as follows: Site Location: 403 East 12th Street Oakland, California Geotracker Global ID: T0600174667 ### LIMITATIONS This report has been prepared for use by Rashid Ghafoor and the relevant regulatory agencies. The conclusions in this report are professional opinions based on the data presented in this report. This report was prepared in general accordance with hydrogeologic and engineering methods and standards. No other warranties are made as to the findings or conclusions presented in this report. The work described in this report was performed under the direct supervision of the professional geologist whose signature and State of California registration are shown above. ### SITE DESCRIPTION AND HYDROGEOLOGIC CONDITIONS ### SITE DESCRIPTION The site occupies a parcel on the southeast corner of 4th Avenue and East 12th Street in Oakland, Alameda County, California (Figure 1). The site is situated in a commercial and residential area in central Oakland and is currently vacant. The site was historically used as a gasoline station. The area of interest at the site is the former location of three underground storage tanks (USTs) and fuel dispensers where impacted soil and groundwater was first identified in 2006. A detailed site plan is shown on Figure 2. ### HYDROGEOLOGIC CONDITIONS The site is underlain by Quaternary-age dune sand deposits referred to as the Merritt Sand. The Merritt Sand is typically described as loose, well-sorted fine- to medium-grained sand with a large silt component. The sand is reported to reach a maximum depth of 50-feet bgs in the area. Based on boring logs from the advancement of 11 soil borings and the installation of six monitoring wells and four extraction wells, the stratigraphy of the site and vicinity consists of silt to approximately 30-feet bgs with discontinuous thin intervals of sandy silt and clayey sand present in the area. Depth to groundwater is shallow, ranging between 10- to 14-feet bgs. The groundwater flow direction appears to be generally toward the south or southwest. ### CLEANUP CRITERIA It is prudent to establish cleanup goals for soil and groundwater based upon reaching the residential Environmental Screening Levels (ESLs) established by Region II for sites with shallow soil where groundwater is not a current or potential drinking water source. The primary constituents of concern relative to the site appear to be total petroleum hydrocarbons as diesel (TPHd) and gasoline (TPHg) benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tertiary butyl ether (MTBE), and tertiary butyl alcohol (TBA). Accordingly, the following cleanup goals are proposed: | Constituent | Soil (mg/kg) | Groundwater (ug/L) | |--------------|--------------|--------------------| | TPHd | 100 | 210 | | TPHg | 100 | 210 | | Benzene | 0.12 | 46 | | Toluene | 9.3 | 130 | | Ethylbenzene | 2.3 | 43 | | Xylenes | 11 | 100 | | MTBE | 8.4 | 1,800 | | TBA | 100 | 18,000 | ### PROJECT BACKGROUND ### INVESTIGATIONS In July 2006, Geofon Incorporated (Geofon) advanced soil borings GP-1 and GP-2 and collected and analyzed soil samples. Results are detailed in Geofon's report entitled *Summary of Phase II Assessment Activities*, dated July 25, 2006. In August 2009, Wright Environmental Services, Inc. (Wright) removed three USTs, associated fuel dispensers, and all associated piping. Results are detailed in Wright's *Closure Report for Three Underground Storage Tanks*, dated September 2009. In April 2010, Apex Envirotech, Inc. (Apex) advanced nine soil borings to evaluate the lateral extent of impacted soil and groundwater. Results are documented in Apex's Subsurface Investigation Results Report dated June 23, 2010. In June 2011, ECG supervised the installation of six groundwater monitoring wells (MW-1 through MW-6) and two extraction wells (EW-1 and EW-2). Results are documented in ECG's Off-Site Investigation and Dual Phase Pilot Test Results with Fourth Quarter 2011 Monitoring Report, dated January 26, 2012. #### RISK ASSESSMENTS In January 2011, ECG conducted a preferential pathway study for the site. Results are detailed in ECG's Site Assessment and Soil Vapor Extraction Pilot Test Workplan, dated February 9, 2011. In January 2011, ECG conducted a sensitive receptor survey for the site. Results are detailed in ECG's Site Assessment and Soil Vapor Extraction Pilot Test Workplan, dated February 9, 2011. A soil vapor survey has not been completed for the site. ### CORRECTIVE ACTIONS In June 2011, ECG supervised the installation of six groundwater monitoring wells (MW-1 through MW-6) and two extraction wells (EW-1 and EW-2). ECG also performed a 5-day dual phase extraction (DPE) test in June 2011. Results are documented in ECG's Off-Site Investigation and Dual Phase Pilot Test Results with Fourth Quarter 2011 Monitoring Report, dated January 26, 2012. In May 2013, ECG supervised the installation of two extraction wells (EW-3 and EW-4). In September 2013, ECG installed the subsurface piping network from the remediation wells to the remediation compound and the subsurface conduit required by PG&E to install the electrical service required to operate the remediation compound. In April 2014, the dual phase extraction system began operation. The DPE system includes a 25-horsepower liquid-ring blower capable of up to 400 standardized cubic feet per minute (scfm) flowrate, thermal/catalytic oxidizer, a conveyance piping network, and four individual extraction wells. The blower extracts vapors and groundwater from each extraction wells and through the conveyance piping where the impacted vapor is destroyed in the thermal/catalytic oxidizer prior to discharge to the atmosphere and the groundwater is treated with an air stripper and granular activated carbon prior to discharge to the municipal sewer system. The DPE system is operated under Bay Area Air Quality Management District (BAAQMD) permit number 25354 and East Bay Municipal Utility District (EBMUD) Discharge Permit No. 68508758. The DPE system has removed approximately 6,083 pounds of TPHg, 30 pounds of benzene, and 2 pounds of MTBE from the subsurface. The remediation system was started on April 30, 2014 and shut down on June 27, 2014 due to carbon change out requirements. The system was restarted on August 15, 2014. ### THIRD QUARTER 2014 MONITORING EVENT ### WORK PERFORMED AND PROPOSED The following is a summary of work performed during the third quarter 2014 and work proposed for next quarter at the site. ### WORK PERFORMED THIRD QUARTER 2014 - 1. Carbon was changed out and the propane tank was relocated in August 2014. - 2. The third quarter 2014 groundwater monitoring event was performed on September 19, 2014. - 3. ECG
performed DPE system startup, troubleshooting, and maintenance to the O&M unit. ### WORK SCHEDULED FOR FOURTH QUARTER 2014 - 1. Prepare and finalize the third quarter 2014 monitoring report. - 2. Continue to operate the remediation system. 3. Perform fourth quarter 2014 monitoring event. ### DISCUSSION OF RECENT MONITORING ACTIVITIES ECG performed the third quarter 2014 groundwater monitoring and sampling event at the site on September 19, 2014. Gauging, development, purging, and sampling were conducted in accordance with ECG's SOPs included in Appendix A. The collected groundwater samples were submitted to Argon Analytical Services, Inc. located in Ceres, California for laboratory analysis under COC protocols (Appendix B). The following is a summary of the current status of the groundwater monitoring program at the site: Current Phase of Project: Remediation Groundwater Sampling Schedule: Quarterly Wells MW-1 through MW-6, EW-1 through EW-4 Analysis: TPHg by EPA Method 8015M, BTEX, 5 oxygenates, and 2 lead scavengers by EPA Method 8260B Is Free Product Present On-Site: Nο The following is a summary of recent field and analytical data: Average Depth to Groundwater 12.45-feet below ground surface (bgs) 18.81 -feet above mean sea level Average Groundwater Elevation Groundwater Gradient Direction Inward drawdown induced by active remediation Not Calculated Groundwater Gradient TPHg Detected Range 990 ug/L (MW-2) to 56,000 ug/L (MW-5) 42 ug/L (MW-2) to 1,000 ug/L (MW-5) Benzene Detected Range 7.1 ug/L (MW-6) to 390 (MW-3) MTBE Detected 7.1 ug/L (MVV-6) to 390 (MVV-3) Laboratory analytical reports and COCs are provided in Appendix B. Field notes are located in Appendix C. Summaries of groundwater monitoring and analytical data are presented in Tables 4a. ### DISCUSSION OF RECENT REMEDIATION ACTIVITIES The system was shut down on June 27, 2014 for carbon change out activities and restarted on August 15, 2014. ECG performed remediation system monitoring and operations and maintenance activities on August 22 and 29 and September 5, 16, 19, and 25, 2014. Multiple additional visits were made to the site to ensure the operation of the remediation systems and restart them as needed as the unit needed. Operating parameters are recorded twice each month and are included on the field notes in Appendix C. Influent and effluent vapor samples are field screened each visit with a photoionization detector and samples are collected monthly in accordance with BAAQMD permit requirements. The collected vapor samples were submitted to Kiff Analytical, LLC, located in Davis, California for laboratory analysis under COC protocols. The following is a summary of the third quarter 2014 remediation results at the site: **SVE System Operating Hours** 547.5 hours, 23 days Third Quarter 2014 Groundwater Monitoring and Remediation Status Report Shore Acres Gas 403 East 12th Street, Oakland, California > Active SVE Extraction Points Average Influent Flowrate TPHg Detected Range in SVE Influent Varied 144 scfm 33 parts per million by volume (ppmv) to 2,100 ppmv Benzene Detected Range in SVE Influent MTBE Detected in SVE Influent **SVE Destruction Efficiency** 0.79 ppmy to 15 ppmy 0.13 ppmy to 1.0 ppmy >97% or less than 0.109 pounds of benzene per day emission Average Groundwater Extraction Rate 1.2 gallons per minute (gpm) Average TPHg Detected in Groundwater Influent Average Benzene Detected in Groundwater Influent 760 ug/L 17,500 ug/L Average MTBE Detected in Groundwater Influent 148 ug/L Summaries of remediation system operating parameters and analytical data are presented in Tables 5a, 5b, and 5c. ### RESULTS AND CONCLUSIONS Water levels and the gradient data were consistent with historical data. Tables 2a, 2b, 3a, 3b, 4a, and 4b tabulate the analytical data for soil and monitoring well sampling data. The DPE system operated for 23 days during the third quarter of 2014 from August 15 to September 25, 2014. The system removed approximately 3,264 pounds of TPHg, 17.4 pounds of benzene, and 1.3 pound of MTBE from the vapor phase during this reporting period (Table 5a). Approximately 15 pounds of TPHg, 0.65 pounds of benzene, and 0.13 pounds of MTBE were removed from the groundwater phase during this quarter (Table 5c). The DPE system operated within the rules of the BAAQMD permit issued to the facility. ECG will continue DPE remediation activities. The next groundwater monitoring event will be in fourth quarter 2014. ### **FIGURES** ### FIGURE 1 Project Number: GHA.19009 Date: February 9, 2011 ### SITE LOCATION MAP Shore Acre Gas 403 East 12th Street Oakland, California 270 Vintage Drive, Turlock, CA 95382 Phone: (209) 664-1035 ### FIGURE 3 Project Number: GHA.19009 **Date:** February 9, 2015 ### POTENTIOMETRIC SURFACE MAP SEPTEMBER 19, 2014 Shore Acre Gas 403 East 12th Street Oakland, California ♦ Monitoring Well Location ♦ Vapor Extraction Well Location Concentration Of TPHg In Groundwater Measured In ug/L - (50,000) - Line Of Equal Concentration Of TPHg In Groundwater Measured In ug/L (Dashed Where Inferred) Approximate Scale In Feet 1 inch = 50 feet (56,000) ### FIGURE 4 Project Number: GHA.19009 **Date:** February 9, 2015 ### TPHg IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 19, 2014 Shore Acre Gas 403 East 12th Street Oakland, California 270 Vintage Drive, Turlock, CA 95382 Phone: (209) 664-1035 Monitoring Well Location ♦ Vapor Extraction Well Location Concentration Of Benzene In Groundwater Measured In ug/L -(500) Line Of Equal Concentration Of Benzene In Groundwater Measured In ug/L (Dashed Where Inferred) Approximate Scale In Feet 1 inch = 50 feet 50 (1,000) 100 ### FIGURE 5 Project Number: GHA.19009 **Date:** February 9, 2015 ### BENZENE IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 19, 2014 Shore Acre Gas 403 East 12th Street Oakland, California ### FIGURE 6 Project Number: GHA.19009 Date: February 9, 2015 ## MTBE IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 19, 2014 Shore Acre Gas 403 East 12th Street Oakland, California ### **TABLES** ### Table 1 Well Construction Details Shore Acres Gas 403 East 12th Street Oakland, California | Well
ID | Date
Installed | TOC
Elevation
(ft amsl) | Well
Depth
(ft bgs) | Casing
Diameter
(inches) | Casing
Material | Screen/
Filter | Screen
Interval
(ft bgs) | | | | |------------------|-------------------|-------------------------------|---------------------------|--------------------------------|--------------------|-------------------|--------------------------------|--|--|--| | Monitoring Wells | | | | | | | | | | | | MW-1 | | 30.81 | 20 | 2 | PVC | 0.020/#3 | 10-20 | | | | | MW-2 | | 31.29 | 20 | 2 | PVC | 0.020/#3 | 10-20 | | | | | MW-3 | June 2011 | 31.30 | 18 | 2 | PVC | 0.020/#3 | 8-18 | | | | | MW-4 | June 2011 | 31.21 | 19 | 2 | PVC | 0.020/#3 | 9-19 | | | | | MW-5 | | 31.35 | 20 | 2 | PVC | 0.020/#3 | 10-20 | | | | | MW-6 | | 30.79 | 20 | 2 | PVC | 0.020/#3 | 10-20 | | | | | Dual Phase I | Extraction We | ells | | | | | | | | | | EW-1 | June 2011 | 31.46 | 20 | 4 | PVC | 0.020/#3 | 5-20 | | | | | EW-2 | Julie 2011 | 31.43 | 20 | 4 | PVC | 0.020/#3 | 5-20 | | | | | EW-3 | May 2012 | | 20 | 6 | PVC | 0.020/#3 | 5-20 | | | | | EW-4 | Ividy ZUIZ | | 20 | 6 | PVC | 0.020/#3 | 5-20 | | | | ### Notes: TOC - denotes top of casing ft - denotes feet amsl - denotes above mean sea level bgs - denotes below ground surface PVC - denotes polyvinyl chloride # Table 2a Historical Soil Analytical Data TPH and BTEX Shore Acres Gas 403 East 12th Street Oakland, California | Boring ID | Sample | Collection | TPHd | TPHg | Benzene | Toluene | Ethyl- | Total | |------------------------|--------|----------------|---------|---------|---------|---------|---------|---------| | | Depth | Date | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | benzene | xylenes | | | (feet) | | | | | | (mg/kg) | (mg/kg) | | UST Removal San | nples | | | | | | | | | SS-D1 | 2 | | 1,800* | 3,000 | <0.25 | 0.34 | 39 | 180 | | SS-D2 | 2 | | 900* | 2,400 | <0.25 | <0.25 | 36 | 120 | | SS-D3 | 2 | | 460* | 1,000 | <0.15 | <0.15 | 12 | 14 | | SS-D4 | 2 |] [| 540* | 640 | <0.090 | 1.0 | 6.1 | 51 | | SS-D5 | 2 |] [| 320 | 140 | <0.025 | <0.025 | 1.3 | 3.2 | | SS-D6 | 2.0 |] [| 320* | 260 | <0.025 | 0.054 | 1.0 | 8.0 | | SS-J1 | 2.0 |) A | 39* | 160 | <0.025 | <0.025 | 0.71 | 0.94 | | SS-Isle | 4.0 | August | 560* | 100 | <0.025 | <0.025 | 0.30 | 0.084 | | SS-7 | 18.0 | 2009 | 310* | 1,600 | 6.9 | 76 | 39 | 200 | | Tank 1-SS-1 | 14.0 | 1 | 830* | 2,500 | 4.2 | 100 | 69 | 360 | | Tank 1-SS-2 | 14.0 |]] | 62* | 480 | 1.8 | 5.3 | 14 | 62 | | Tank 2-SS-1 | 14.0 | 1 | 120* | 290 | 0.37 | 2.4 | 6.3 | 31 | | Tank 2-SS-2 | 14.0 | 1 | 330* | 80 | 0.074 | 0.051 | 1.2 | 5.8 | | Tank 3-SS-1 | 14.0 | 1 1 | 480* | 2,100 | 2.4 | 41 | 62 | 320 | | Tank 3-SS-2 | 14.0 | 1 1 | 75* | 130 | 0.23 | 0.26 | 3.1 | 15 | | Soil Borings | | <u> </u> | | | | | | | | GP-1-15.5 | 15.5 | | 13.0 | 18.0 | 0.63 | 0.052 | 0.69 | 0.13 | | GP-1-18.0 | 18.0 | 1 } | <1.0 | <1.0 | 0.0056 | 0.0082 | <0.005 | 0.019 | | GP-2-12.0 | 12.0 | July 2006 | 600 | 3,600 | 17 | 180 | 98 | 440 | | GP-2-20.0 | 20.0 | j † | 79 | 1,100 | 3.2 | 41 | 25 | 130 | | SB-1-9.5 | 9.5 | | | 1,600 | 5.1 | 43 | 30 | 180 | | SB-1-24.5 | 24.5 | | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-1-29.5 | 29.5 | 1 | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-2-9.5 | 9.5 | 1 | | 2.2 | 0.26 | <0.010 | 0.066 | <0.020 | | SB-2-24.5 | 24.5 | 1 1 | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-2-29.5 | 29.5 |] | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-3-14.5 | 14.5 | | | 17 | 17 | 100 | 42 | 240 | | SB-3-24.5 | 24.5 | 1 1 | | <1.0 | <0.005 | 0.005 | <0.005 | 0.013 | | SB-3-29.5 | 29.5 | 1 1 | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-4-14.5 | 14.5 | | | 1,700 | 13 | 79 | 28 | 170 | | SB-4-19.5 | 19.5 | April 2010 | | <1.0 | <0.005 | 0.009 | <0.005 | 0.026 | | SB-4-29.5 | 29.5 | 1 [*] | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-5-14.5 |
14.5 | | | 470 | <0.20 | 0.45 | 6.2 | 37 | | SB-5-24.5 | 24.5 | | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-5-29.5 | 29.5 | | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-6-9.5 | 9.5 | | | 6,100 | 21 | 170 | 95 | 580 | | SB-6-29.5 | 29.5 | | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-6-32 | 32.0 | <u> </u> | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-7-9.5 | 9.5 | | | 4,000 | 12 | 46 | 55 | 360 | | SB-7-29.5 | 29.5 | | | <1.0 | <0.005 | <0.005 | <0.005 | | | SB-7-32 | 32.0 | | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | ### Table 2a **Historical Soil Analytical Data TPH and BTEX** **Shore Acres Gas** 403 East 12th Street Oakland, California | Boring ID | Sample | Collection | TPHd | TPHg | Benzene | Toluene | Ethyl- | Total | |------------------|--------|------------|---------|---------|---------|---------|---------|---------| | | Depth | Date | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | benzene | xylenes | | | (feet) | <u> </u> | | | | | (mg/kg) | (mg/kg) | | SB-8-9.5 | 9.5 | | | 2,500 | 16 | 110 | 63 | 370 | | SB-8-24.5 | 24.5 | | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-8-29.5 | 29.5 | April 2010 | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-9-14.5 | 14.5 | April 2010 | | 390 | 3.0 | 3.0 | 9.1 | 41 | | SB-9-29.5 | 29.5 | | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | SB-9-32 | 32.0 | | | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | Groundwater Well | S | | | | | | | | | MW-1-5 | 5 | | <5.0 | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | MW-1-15 | 15 | | <5.0 | 18 | 0.55 | <0.050 | 0.87 | 1.2 | | MW-1-20 | 20 |] | <5.0 | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | MW-2-5 | 5 |] | <5.0 | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | MW-2-10 | 10 | | <5.0 | 69 | <0.005 | <0.005 | <0.005 | <0.010 | | MW-2-15 | 15 |] | <5.0 | 50 | <0.050 | 0.48 | 3.1 | 19 | | MW-2-20 | 20 | | <5.0 | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | MW-3-5 | 5 |] [| <5.0 | <1.0 | <0.010 | <0.010 | <0.010 | <0.020 | | MW-3-10 | 10 |] [| <15 | 840 | 3.4 | 33 | 20 | 140 | | MW-3-15 | 15 | | <5.0 | 380 | 3.0 | 4.5 | 7.3 | 41 | | MW-3-20 | 20 | | <5.0 | <1.0 | 0.019 | <0.005 | 0.006 | <0.010 | | MW-4-5 | 5 | | <5.0 | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | MW-4-10 | 10 | | <15 | 420 | 1.7 | 2.6 | 9.2 | 51 | | MW-4-15 | 15 | | <5.0 | 3.1 | 0.036 | 0.20 | 0.15 | 0.95 | | MW-4-20 | 20 | June 2011 | <5.0 | <1.0 | 0.007 | 0.017 | 0.010 | 0.039 | | MW-5-5 | 5 | Julie SOTT | <5.0 | 76 | <0.10 | <0.10 | 1.3 | 0.76 | | MW-5-10 | 10 | | <15 | 3,200 | 4.6 | 6.5 | 72 | 410 | | MW-5-15 | 15 | | <5.0 | 600 | 1.3 | 13 | 15 | 110 | | MW-6-5 | 5 | | <5.0 | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | MW-6-10 | 10 | | <5.0 | 5.1 | 0.015 | <0.010 | 3.4 | 1.0 | | MW-6-15 | 15 | | <5.0 | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | MW-6-20 | 20 | | <5.0 | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | VW-1-5 | 5 | | <5.0 | 34 | <0.005 | <0.005 | 0.16 | 0.31 | | VW-1-10 | 10 | | <15 | 85 | <0.10 | <0.10 | 2.2 | 0.89 | | VW-1-15 | 15 | | <15 | 420 | 2.1 | 4.1 | 9.4 | 55 | | VW-1-20 | 20 | | <5.0 | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | VW-2-5 | 5 | | <5.0 | <1.0 | <0.005 | <0.005 | <0.005 | <0.010 | | VW-2-10 | 10 | | <5.0 | 130 | <0.10 | <0.10 | 2.9 | 15 | | VW-2-15 | 15 | | <15 | 5,500 | 29 | 430 | 120 | 910 | | VW-2-20 | 20 | | <5.0 | <1.0 | 0.14 | 0.054 | 0.025 | 0.14 | | | | | | | | | | | ### Notes: TPHd - denotes total petroleum hydrocarbons as diesel TPHg - denotes total petroleum hydrocarbons as gasoline mg/kg - denotes milligrams per kilogram < - denotes less than the detection limit --- denotes no data Page 2 of 2 GHA.19009 ### Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers Shore Acres Gas 403 East 12th Street Oakland, California | Boring ID | Sample | Collection | DIPE | ETBE | MTBE | TAME | ТВА | 1,2-DCA | EDB | |-----------------|-----------------|------------|---------|---------|---------|---------|----------|---------|---------| | | Depth
(feet) | Date | (mg/kg) | UST Removal San | | | | | | 1 | <u> </u> | | L | | SS-D1 | 2 | | <0.25 | <0.25 | <0.25 | <0.25 | <1.5 | | | | SS-D2 | 2 | 1 | <0.25 | <0.25 | <0.25 | <0.25 | <1.5 | | | | SS-D3 | 2 | 1 | <0.15 | <0.15 | <0.15 | <0.15 | <0.70 | | | | SS-D4 | 2 | 1 | <0.090 | <0.090 | <0.090 | <0.090 | <0.50 | | | | SS-D5 | 2 | 1 | <0.025 | <0.025 | <0.025 | <0.025 | <0.15 | | | | SS-D6 | 2 | | <0.025 | <0.025 | <0.025 | <0.025 | <0.15 | | | | SS-J1 | 2 | 1 | <0.025 | <0.025 | <0.025 | <0.025 | <0.15 | | | | SS-Isle | 4 | August | <0.025 | <0.025 | <0.025 | <0.025 | <0.15 | | | | SS-7 | 18 | 2009 | <0.25 | <0.25 | <0.25 | <0.25 | <1.5 | <0.25 | <0.25 | | Tank 1-SS-1 | 14 | 1 i | <0.50 | <0.50 | <0.50 | <0.50 | <2.5 | <0.50 | <0.50 | | Tank 1-SS-2 | 14 | 1 | <0.040 | <0.040 | 0.37 | <0.040 | 0.51 | <0.040 | <0.040 | | Tank 2-SS-1 | 14 | | <0.050 | <0.050 | 0.18 | <0.050 | 0.35 | <0.050 | <0.050 | | Tank 2-SS-2 | 14 | 1 | <0.025 | <0.025 | 0.090 | <0.025 | 0.16 | <0.025 | <0.025 | | Tank 3-SS-1 | 14 | | <0.50 | <0.50 | <0.50 | <0.50 | <2.5 | <0.50 | <0.50 | | Tank 3-SS-2 | 14 |] ! | <0.025 | <0.025 | 0.19 | <0.025 | 0.15 | <0.025 | <0.025 | | Soil Borings | | 1. | | | | | 1 | 0.020 | -01023 | | GP-1-15.5 | 15.5 | | <0.005 | <0.005 | 0.029 | <0.005 | 0.27 | | | | GP-1-18.0 | 18.0 | 1 | <0.005 | <0.005 | 0.54 | <0.005 | 0.33 | | | | GP-2-12.0 | 12.0 | July 2006 | <0.50 | <0.50 | <0.50 | <0.50 | <2.5 | | | | GP-2-20.0 | 20.0 | 1 . | <0.025 | <0.025 | 0.041 | <0.025 | <0.15 | | | | SB-1-9.5 | 9.5 | | <0.80 | <0.80 | <0.80 | <0.80 | <8.0 | <0.80 | <0.80 | | SB-1-24.5 | 24.5 | 1 | <0.005 | <0.005 | 0.11 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-1-29.5 | 29.5 | 1 | <0.005 | <0.005 | <0.005 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-2-9.5 | 9.5 | 1 | <0.010 | <0.010 | <0.010 | <0.010 | <0.10 | <0.010 | <0.010 | | SB-2-24.5 | 24.5 | 1 | <0.005 | <0.005 | 0.053 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-2-29.5 | 29.5 | 1 | <0.005 | <0.005 | <0.005 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-3-14.5 | 14.5 | 1 | <2.0 | <2.0 | <2.0 | <2.0 | <20 | <2.0 | <2.0 | | SB-3-24.5 | 24.5 |] | <0.005 | <0.005 | 0.10 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-3-29.5 | 29.5 | Ĭ Ì | <0.005 | <0.005 | 0.010 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-4-14.5 | 14.5 | 1 | <1.0 | <1.0 | <1.0 | <1.0 | <10 | <1.0 | <1.0 | | SB-4-19.5 | 19.5 | April 2010 | <0.005 | <0.005 | <0.005 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-4-29.5 | 29.5 | 1 | <0.005 | <0.005 | <0.005 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-5-14.5 | 14.5 |] | <0.20 | <0.20 | <0.20 | <0.20 | <2.0 | <0.20 | <0.20 | | SB-5-24.5 | 24.5 | | <0.005 | <0.005 | <0.005 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-5-29.5 | 29.5 | 1 | <0.005 | <0.005 | <0.005 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-6-9.5 | 9.5 |] . [| <2.0 | <2.0 | <2.0 | <2.0 | <20 | <2.0 | <2.0 | | SB-6-29.5 | 29.5 |] | <0.005 | <0.005 | 0.20 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-6-32 | 32.0 |] | <0.005 | <0.005 | 0.18 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-7-9.5 | 9.5 |] | <1.0 | <1.0 | 4.0 | <1.0 | <10 | <1.0 | <1.0 | | SB-7-29.5 | 29.5 | | <0.005 | <0.005 | 0.18 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-7-32 | 32.0 | † † | <0.005 | <0.005 | 0.11 | <0.005 | <0.050 | <0.005 | <0.005 | # Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers Shore Acres Gas 403 East 12th Street Oakland, California | Boring ID | Sample | Collection | DIPE | ETBE | MTBE | TAME | ТВА | 1,2-DCA | EDB | |--------------------|--------|------------|---------|---------|---------|---------|---------|---------|---------| | | Depth | Date | (mg/kg) | | (feet) | | | | | | | | | | SB-8-9.5 | 9.5 | | <2.0 | <2.0 | <2.0 | <2.0 | <20 | <2.0 | <2.0 | | SB-8-24.5 | 24.5 | | <0.005 | <0.005 | 0.033 | <0.005 | <0.050 | <0.005 | <0.005 | | SB-8-29.5 | 29.5 | April 2010 | <0.005 | <0.005 | <0.005 | <0.005 | <0.050 | < 0.005 | <0.005 | | SB-9-14.5 | 14.5 | April 2010 | <0.20 | <0.20 | 5.5 | <0.20 | <2.0 | <0.20 | <0.20 | | SB - 9-29.5 | 29.5 | | <0.005 | <0.005 | 0.090 | <0.005 | 0.15 | <0.005 | <0.005 | | SB-9-32 | 32.0 | | <0.005 | <0.005 | 0.11 | <0.005 | <0.050 | < 0.005 | <0.005 | | Groundwater Wel | s | | | | | | | | | | MW-1-5 | 5 | | <0.005 | <0.005 | 0.35 | <0.005 | 0.093 | <0.005 | <0.005 | | MW-1-15 | 15 | | <0.050 | <0.050 | 1.1 | <0.050 | <0.50 | < 0.050 | <0.050 | | MW-1-20 | 20 |] | <0.005 | <0.005 | 0.31 | <0.005 | 0.58 | <0.005 | <0.005 | | MW-2-5 | 5 |] | <0.005 | <0.005 | <0.005 | <0.005 | <0.050 | <0.005 | <0.005 | | MW-2-10 | 10 | | <0.050 | <0.050 | <0.050 | <0.050 | <0.50 | <0.050 | <0.050 | | MW-2-15 | 15 | | < 0.050 | <0.050 | <0.050 | <0.050 | <0.50 | < 0.050 | <0.050 | | MW-2-20 | 20 | | <0.005 | <0.005 | 0.006 | <0.005 | <0.050 | <0.005 | <0.005 | | MW-3-5 | 5 | | <0.010 | <0.010 | 1.5 | <0.010 | 0.37 | <0.010 | <0.010 | | MW-3-10 | 10 | | <0.80 | <0.80 | 1.3 | <0.80 | <8.0 | <0.80 | <0.80 | | MW-3-15 | 15 | | <0.20 | <0.20 | 3.0 | <0.20 | <2.0 | <0.20 | <0.20 | | MW-3-20 | 20 | | <0.005 | <0.005 | 0.036 | <0.005 | 0.16 | <0.005 | <0.005 | | MW-4-5 | 5 | | <0.005 | <0.005 | <0.005 | <0.005 | <0.050 | <0.005 | <0.005 | | MW-4-10 | 10 | | <0.40 | <0.40 | <0.40 | <0.40 | <4.0 | <0.40 | <0.40 | | MW-4-15 | 15 | | <0.010 | <0.010 | <0.010 | <0.010 | <0.10 | <0.010 | <0.010 | | MW-4-20 | 20 | June 2011 | <0.005 | <0.005 | <0.005 | <0.005 | <0.050 | <0.005 | <0.005 | | MW-5-5 | 5 | Julie 2011 | <0.10 | <0.10 | <0.10 | <0.10 | <1.0 | <0.10 | <0.10 | | MW-5-10 | 10 | : | <4.0 | <4.0 | <4.0 | <4.0 | <40 | <4.0 | <4.0 | | MW-5-15 | 15 | | <0.40 | <0.40 | <0.40 | <0.40 | <4.0 | <0.40 | <0.40 | | MW-6-5 | 5 | | <0.005 | <0.005 | <0.005 | <0.005 | <0.050 | <0.005 | <0.005 | | MW-6-10 | 10 | | <0.010 | <0.010 | <0.010 | <0.010 | <0.10 | < 0.010 | <0.010 | | MW-6-15 | 15 | | <0.005 | <0.005 | 0.026 | <0.005 | 0.088 | <0.005 | <0.005 | | MW-6-20 | 20 | | <0.005 | <0.005 | 0.010 | <0.005 | 0.37 | <0.005 | <0.005 | | VW-1-5 | 5 | | <0.050 | <0.050 | <0.050 | <0.050 | <0.50 | <0.050 | <0.050
| | VW-1-10 | 10 | | <0.10 | <0.10 | <0.10 | <0.10 | <1.0 | <0.10 | <0.10 | | VW-1-15 | 15 | | <0.40 | <0.40 | 0.59 | <0.40 | <4.0 | <0.40 | <0.40 | | VW-1-20 | 20 | | <0.005 | <0.005 | 0.009 | <0.005 | 0.16 | <0.005 | <0.005 | | VW-2-5 | 5 | | <0.005 | <0.005 | 0.25 | <0.005 | 0.14 | <0.005 | <0.005 | | VW-2-10 | 10 | | <0.10 | <0.10 | 0.33 | <0.10 | <1.0 | <0.10 | <0.10 | | VW-2-15 | 15 | | <4.0 | <4.0 | <4.0 | <4.0 | <40 | <4.0 | <4.0 | | VW-2-20 | 20 | | <0.005 | <0.005 | 0.008 | <0.005 | 0.26 | <0.005 | <0.005 | | | | | | | | | | | | ### Notes: mg/kg - denotes milligrams per kilogram MTBE - denotes methyl tertiary butyl ether < - denotes less than the detection limi DIPE - denotes di-isopropyl ether --- - denotes not analyzed/applicable ETBE - denotes ethyl tertiary butyl ether DCA - denotes dichloroethane TAME - denotes tertiary amyl ether EDB - denotes ethylene dibromide TBA - denotes tertiary butyl alcohol GHA.19009 # Table 3a Grab Groundwater Sample Results TPH and BTEX Shore Acres Gas 403 East 12th Street Oakland, California | Sample ID | Collection | | | | | Ethyl- | Total | |-----------------|------------|-----------|--------|---------|---------|---------|---------| | | Date | TPHd | TPHg | Benzene | Toluene | benzene | Xylenes | | | | (ug/L) | (ug/L) | (ug/L) | (ug/L) | (ug/L) | (ug/L) | | Excavation | | | | W | | | | | , | August | | | | | | | | Pit Sample 1 | 2009 | 21,000 | 21,000 | 3,800 | 1,000 | 1,200 | 3,700 | | Direct Push Gra | b Groundwa | ter Sampl | es | | | | | | SB-1 | | | 60 | 2.9 | 6.7 | 2.1 | 9.7 | | SB-2 | | | <50 | <0.5 | <0.5 | <0.5 | <1.0 | | SB-3 | | | 170 | 1.5 | 11 | 4.8 | 27 | | SB-4 | | | 6,500 | 78 | 440 | 190 | 960 | | SB-5 | April 2010 | | <50 | <0.5 | <0.5 | <0.5 | <1.0 | | SB-6 | | | 440 | <20 | <20 | <20 | <40 | | SB-7 | | | 270 | <12 | <12 | <12 | <25 | | SB-8 | | | <50 | 0.6 | 1.3 | 0.6 | 3.3 | | SB-9 | | | <50 | <10 | <10 | <10 | <20 | | SB-10 | | | <50 | <0.5 | <0.5 | <0.5 | <1.0 | | SB-11 | | | 2,300 | 83 | 1.9 | 140 | 43 | | SB-12 | [| | 4,700 | 620 | 290 | 84 | 400 | | SB-13 | | | 400 | 51 | 2.4 | 4.2 | 9.7 | | SB-14 | December | | <50 | 1.7 | <0.5 | 2.1 | <1.0 | | SB-15 | 2011 | | 320 | 32 | 0.7 | 33 | 25 | | SB-16 | 2011 | | 4,800 | 1,600 | 10 | 49 | <20 | | SB-17 | | | 990 | 290 | 7.2 | 27 | 4.3 | | SB-18 | | | 560 | 8.7 | 4.9 | 23 | 83 | | SB-19 | | | 260 | 7.1 | <0.5 | 16 | 7.0 | | SB-21 | | | <50 | <0.5 | <0.5 | <0.5 | <1.0 | | | | | | | | | | ### Notes: TPHd - denotes total petroleum hydrocarbons as diesel TPHg - denotes total petroleum hydrocarbons as gasoline ug/L - denotes micrograms per liter < - denotes less than the detection limit --- - denotes not analyzed/applicable Page 1 of 1 GHA.19009 # Table 3b Grab Groundwater Sample Results Oxygenates and Lead Scavengers Shore Acres Gas 403 East 12th Street Oakland, California | Sample ID | Collection | DIPE | ETBE | MTBE | TAME | TBA | 1,2-DCA | EDB | |-----------------|------------|-----------|--------|--------|--------|----------|-------------|--------| | | Date | (ug/L) | | | | | | | <u> </u> | | | | Excavation | | | | | | | | | | | February | <10 | <10 | 15,000 | 39 | 17,000 | <10 | <10 | | Water | 2000 | | | | | | | | | Direct Push Gra | b Groundwa | ter Sampl | es | | | | | *** | | SB-1 | | <0.5 | <0.5 | 14 | <0.5 | <5.0 | <0.5 | <0.5 | | SB-2 | | <0.5 | <0.5 | 45 | <0.5 | <5.0 | <0.5 | <0.5 | | SB-3 | | <0.5 | <0.5 | 110 | <0.5 | 32 | <0.5 | <0.5 | | SB-4 | | <5.0 | <5.0 | <5.0 | <5.0 | <50 | <5.0 | <5.0 | | SB-5 | April 2010 | <0.5 | <0.5 | 0.6 | <0.5 | <5.0 | <0.5 | <0.5 | | SB-6 | | <20 | <20 | 4,000 | <20 | <200 | <20 | <20 | | SB-7 | | <12 | <12 | 2,500 | <12 | <120 | <12 | <12 | | SB-8 | | <0.5 | <0.5 | 26 | <0.5 | 98 | <0.5 | <0.5 | | SB-9 | | <10 | <10 | 1,800 | <10 | 5,300 | <10 | <10 | | SB-10 | | <0.5 | <0.5 | <0.5 | <0.5 | <5.0 | <0.5 | <0.5 | | SB-11 | | <1.0 | <1.0 | 22 | <1.0 | 140 | <1.0 | <1.0 | | SB-12 | | <5.0 | <5.0 | 100 | <5.0 | 550 | <5.0 | <5.0 | | SB-13 | | <2.0 | <2.0 | 39 | <2.0 | 3,900 | <2.0 | <2.0 | | SB-14 | December | <0.5 | <0.5 | <0.5 | <0.5 | <5.0 | <0.5 | <0.5 | | SB-15 | 2011 | <0.5 | <0.5 | <0.5 | <0.5 | <5.0 | <0.5 | <0.5 | | SB-16 | 2011 | <10 | <10 | <10 | <10 | <100 | <10 | <10 | | SB-17 | | <2.0 | <2.0 | <2.0 | <2.0 | <20 | <2.0 | <2.0 | | SB-18 | | <0.5 | <0.5 | <0.5 | <0.5 | <5.0 | <0.5 | <0.5 | | SB-19 | | <0.5 | <0.5 | <0.5 | <0.5 | <5.0 | <0.5 | <0.5 | | SB-21 | | <0.5 | <0.5 | <0.5 | <0.5 | <5.0 | <0.5 | <0.5 | | | | | | | | | | | ### Notes: ug/L - denotes micrograms per liter < - denotes less than the detection limit DCA - denotes dichloroethane EDB - denotes ethylene dibromide MTBE - denotes methyl tertiary butyl ether DIPE - denotes di-isopropyl ether ETBE - denotes ethyl tertiary butyl ether TAME - denotes tertiary amyl ether TBA - denotes tertiary butyl alcohol Page 1 of 1 GHA.19009 Shore Acres Gas 403 East 12th Street Oakland, California | Well | Date | Depth to | Groundwater | | | | | Ethyl- | Total | |------------|------------|-------------|-------------|--------|-------------|---------|---------|---------|---------| | ID | Measured | Groundwater | Elevation | TPHd | TPHg | Benzene | Toluene | benzene | Xylenes | | тос | | (ft bgs) | (ft amsl) | (ug/L) | (ug/L) | (ug/L) | (ug/L) | (ug/L) | (ug/L) | | Monitoring | Wells | 1 | | | • | | | <u></u> | | | MW-1 | 6/23/2011 | 10.46 | 20.35 | <250 | 23,000 | 4,500 | 820 | 1,700 | 3,800 | | | 9/22/2011 | 12.13 | 18.68 | <50 | 21,000 | 4,000 | 1,500 | 980 | 3,000 | | | 12/11/2011 | 11.69 | 19.12 | | 23,000 | 2,900 | 1,000 | 720 | 3,000 | | | 3/30/2012 | | | | Inaccessibl | e | **** | | | | | 6/1/2012 | 11.04 | 19.77 | | 40,000 | 4,100 | 800 | 2,700 | 6,100 | | | 9/14/2012 | 12.96 | 17.85 | <100 | 20,000 | 2,700 | 160 | 830 | 2,600 | | | 3/27/2013 | 8.57 | 22.24 | <50 | 15,000 | 1,700 | 150 | 400 | 830 | | | 5/20/2013 | 8.57 | 22.24 | <100 | 22,000 | 2,800 | 870 | 560 | 2,000 | | | 9/4/2013 | 9.29 | 21.52 | <250 | 12,000 | 2,900 | 130 | 190 | 370 | | | 12/6/2013 | 9.11 | 21.70 | <120 | 15,000 | 3,000 | 780 | 580 | 2,400 | | <u>.</u> | 6/27/2014 | 8.92 | 21.89 | <120 | 15,000 | 2,500 | 280 | 2,400 | 2,400 | | | 9/19/2014 | 10.98 | 19.83 | | 11,000 | 530 | 190 | 460 | 950 | | | | | | | | | | | | | MW-2 | 6/23/2011 | 10.70 | 20.59 | <250 | 13,000 | 1,000 | 160 | 370 | 1,600 | | | 9/22/2011 | 12.42 | 18.87 | <50 | 12,000 | 300 | 130 | 470 | 1,400 | | | 12/11/2011 | 11.98 | 19.31 | | 8,300 | 170 | 120 | 450 | 1,500 | | | 3/30/2012 | 8.55 | 22.74 | <250 | 17,000 | 850 | 700 | 710 | 2,900 | | | 6/1/2012 | 11.26 | 20.03 | | 5,300 | 830 | 260 | 630 | 1,700 | | | 9/14/2012 | 13.11 | 18.18 | <50 | 10,000 | 260 | 190 | 600 | 1,900 | | | 3/27/2013 | 9.43 | 21.86 | <50 | 12,000 | 440 | 98 | 320 | 810 | | | 5/20/2013 | 9.41 | 21.88 | <100 | 6,600 | 300 | 74 | 190 | 500 | | | 9/4/2013 | 10.11 | 21.18 | <100 | 5,300 | 300 | 50 | 180 | 280 | | | 12/6/2013 | 9.93 | 21.36 | <50 | 4,300 | 280 | 39 | 140 | 160 | | | 6/27/2014 | 9.93 | 21.36 | <50 | 1,300 | 200 | 22 | 85 | 160 | | | 9/19/2014 | 12.49 | 18.80 | | 990 | 42 | 12 | 97 | 110 | | | | | | | | | | | | | MW-3 | 6/23/2011 | 10.79 | 20.51 | <250 | 55,000 | 15,000 | 3,600 | 2,000 | 4,300 | | | 9/22/2011 | 12.60 | 18.70 | <250 | 77,000 | 15,000 | 3,900 | 1,700 | 4,900 | | | 12/11/2011 | 12.13 | 19.17 | | 64,000 | 12,000 | 3,100 | 1,600 | 4,500 | | | 3/30/2012 | 7.90 | 23.40 | <120 | 100,000 | 17,000 | 10,000 | 2,000 | 8,400 | | | 6/1/2012 | 11.47 | 19.83 | | 83,000 | 15,000 | 6,000 | 2,900 | 10,000 | | | 9/14/2012 | 13.42 | 17.88 | <200 | 69,000 | 10,000 | 1,500 | 1,800 | 5,900 | | | 3/27/2013 | 9.15 | 22.15 | <200 | 63,000 | 7,100 | 2,100 | 1,900 | 7,700 | | | 5/20/2013 | 9.16 | 22.14 | <250 | 80,000 | 9,700 | 2,900 | 2,400 | 8,600 | | | 9/4/2013 | 9.87 | 21.43 | <250 | 47,000 | 7,200 | 470 | 1,200 | 5,000 | | | 12/6/2013 | 9.69 | 21.61 | <50 | 19,000 | 5,600 | 240 | 520 | 1,600 | | | 6/27/2014 | 9.49 | 21.81 | <50 | 12,000 | 5,800 | 240 | 860 | 760 | | | 9/19/2014 | 11.62 | 19.68 | | 9,500 | 610 | 160 | 220 | 400 | | 11 | | | | | , | | | | | Page 1 of 4 DIC.14244 Shore Acres Gas 403 East 12th Street Oakland, California | Well
ID
TOC | Date
Measured | Depth to
Groundwater
(ft bgs) | Groundwater
Elevation
(ft amsl) | TPHd
(ug/L) | TPHg
(ug/L) | Benzene
(ug/L) | Toluene
(ug/L) | Ethyl-
benzerne
(ug/L) | Total
Xylenes
(ug/L) | | | |-------------------|------------------|-------------------------------------|---------------------------------------|---|----------------|-------------------|---------------------------------------|------------------------------|----------------------------|--|--| | MW-4 | 6/23/2011 | 10.62 | 20.59 | <250 | 47,000 | 3,500 | 7,100 | 2,300 | 11,000 | | | | | 9/22/2011 | 12.25 | 18.96 | <250 | 46,000 | 2,000 | 2,400 | 1,100 | 5,300 | | | | | 12/11/2011 | 11.89 | 19.32 | | 46,000 | 2,100 | 3,400 | 1,800 | 7,000 | | | | | 3/30/2012 | 8.51 | 22.70 | <250 | 60,000 | 6,800 | 8,200 | 1,200 | 5,700 | | | | | 6/1/2012 | 11.14 | 20.07 | 444 | 72,000 | 9,700 | 8,500 | 2,300 | 9,000 | | | | | 9/14/2012 | 12.97 | 18.24 | <50 | 15,000 | 940 | 880 | 450 | 1,700 | | | | | 3/27/2013 | 9.05 | 22.16 | <50 | 25,000 | 1,800 | 2,200 | 660 | 2,500 | | | | | 5/20/2013 | 9.03 | 22.18 | <250 | 18,000 | 1,600 | 1,700 | 470 | 1,900 | | | | | 9/4/2013 | 9.68 | 21.53 | <50 | 15,000 | 510 | 410 | 260 | 820 | | | | | 12/6/2013 | 9.54 | 21.67 | <50 | 9,600 | 630 | 650 | 240 | 970 | | | | | 6/27/2014 | 9.58 | 21.63 | <50 | 3,300 | 550 | 2,900 | 200 | 420 | | | | | 9/19/2014 | 11.61 | 19.60 | | 2,100 | 110 | 54 | 92 | 210 | | | | MW-5 | 6/23/2011 | 10.12 | 21.23 | <250 | 130,000 | 7,100 | 25,000 | 13,000 | 94,000 | | | | | 9/22/2011 | 12.53 | 18.82 | <250 | 120,000 | 6,900 | 7,600 | 3,800 | 17,000 | | | | | 12/11/2011 | 12.09 | 19.26 | | 110,000 | 7,800 | 14,000 | 4,200 | 20,000 | | | | • | 3/30/2012 | 8.06 | 23.29 | | 110,000 | | · · · · · · · · · · · · · · · · · · · | 4,200 |
2.0,000 | | | | | 6/1/2012 | 11.38 | 19.97 | Sheen - not sampled Sheen - not sampled | | | | | | | | | | 9/14/2012 | 13.61 | 17.74 | | E | ***** | - not sample | nd | | | | | | 3/27/2013 | 9,21 | 22.14 | | | • | - not sample | | | | | | | 5/20/2013 | 9.17 | 22.18 | | | | - not sample | | | | | | * | 9/4/2013 | 9.70 | 21.65 | | | ' | - not sample | | | | | | | 12/6/2013 | 9.67 | 21.68 | <250 | 81,000 | 10,000 | 13,000 | 5,500 | 21,000 | | | | : | 6/27/2014 | 9.51 | 21.84 | \230 | | · | - not sample | | 21,000 | | | | | 9/19/2014 | 12.91 | 18.44 | *** | 56,000 | 1,000 | 270 | 1,000 | 4,100 | | | | | 3/13/2014 | 12.91 | 18.44 | | 36,000 | 1,000 | 270 | 1,000 | 4,100 | | | | MW-6 | 6/23/2011 | 10.43 | 20.36 | <250 | 11,000 | 2,400 | 120 | 480 | 840 | | | | | 9/22/2011 | 12.10 | 18.69 | <50 | 15,000 | 1,500 | 270 | 880 | 2,500 | | | | | 12/11/2011 | 11.69 | 19.10 | | 13,000 | . 660 | 190 | 610 | 1,500 | | | | | 3/30/2012 | 7.50 | 23.29 | <250 | 9,500 | 1,200 | 160 | 250 | 520 | | | | | 6/1/2012 | 11.04 | 19.75 | | 23,000 | 2,200 | 220 | 1,300 | 3,000 | | | | | 9/14/2012 | 12.96 | 17.83 | <50 | 14,000 | 1,000 | 86 | 420 | 1,200 | | | | | 3/27/2013 | | | | | Inacc | essible | | | | | | | 5/20/2013 | | | | | | ccessible | | | | | | | 9/4/2013 | 9.19 | 21.60 | <100 | 9,500 | 1,400 | 120 | 1,400 | 1,600 | | | | | 12/6/2013 | 9.03 | 21.76 | <100 | 14,000 | 1,200 | 24 | 1,400 | 810 | | | | | 6/27/2014 | 8.80 | 21.99 | <100 | 9,800 | 1,200 | 75 | 2,800 | 530 | | | | | 9/19/2014 | 10.68 | 20.11 | | 6,500 | 240 | 21 | 490 | 110 | | | Shore Acres Gas 403 East 12th Street Oakland, California | Well
ID
TOC | Date
Measured | Depth to
Groundwater
(ft bgs) | Groundwater
Elevation
(ft amsl) | TPHd
(ug/L) | TPHg
(ug/L) | Benzene
(ug/L) | Toluene
(ug/L) | Ethyl-
benzene
(ug/L) | Total
Xylenes
(ug/L) | |-------------------|------------------|-------------------------------------|---------------------------------------|----------------|----------------|-------------------|-------------------|-----------------------------|----------------------------| | DPE Wells | | | | | | | | | | | EW-1 | 6/28/2011 | | | | 20,000 | 2,000 | 490 | 1,000 | 2,400 | | | 9/22/2011 | 12.55 | 18.71 | <120 | 39,000 | 3,900 | 610 | 1,400 | 4,600 | | | 12/11/2011 | 12.09 | 19.17 | | 27,000 | 2,600 | 270 | 1,400 | 4,400 | | | 3/30/2012 | 8.06 | 23.20 | <120 | 21,000 | 3,100 | 160 | 910 | 2,300 | | | 6/1/2012 | 11.42 | 19.84 | | 21,000 | 2,800 | 100 | 1,200 | 3,100 | | | 9/14/2012 | 13.37 | 17.89 | <50 | 22,000 | 1,900 | 50 | 1,000 | 2,600 | | | 3/27/2013 | 9.06 | 22.20 | <50 | 15,000 | 630 | 36 | 360 | 590 | | | 5/20/2013 | 9.06 | 22.20 | <100 | 11,000 | 600 | 28 | 210 | 350 | | | 9/4/2013 | 9.77 | 21.49 | <50 | 9,300 | 610 | 19 | 170 | 250 | | | 12/6/2013 | 9.63 | 21.83 | <100 | 11,000 | 740 | 17 | 260 | 340 | | | 6/27/2014 | 9.55 | 21.91 | <100 | 12,000 | 1,400 | 210 | 1,900 | 2,400 | | | 9/19/2014 | 12.41 | 19.05 | | 28,000 | 1,000 | 450 | 1,400 | 3,900 | | | | | | • | | | | | | | EW-2 | 6/28/2011 | | *** | | 33,000 | 3,100 | 2,000 | 790 | 3,500 | | | 9/22/2011 | 12.50 | 18.90 | <250 | 66,000 | 2,400 | 4,500 | 2,000 | 11,000 | | | 12/11/2011 | 12.12 | 19.28 | | 70,000 | 2,800 | 6,900 | 2,700 | 13,000 | | | 3/30/2012 | 8.48 | 22.92 | <250 | 57,000 | 5,800 | 5,500 | 1,200 | 5,400 | | | 6/1/2012 | 11.40 | 20.00 | | 82,000 | 8,800 | 8,600 | 3,300 | 13,000 | | | 9/14/2012 | 13.27 | 18.13 | <100 | 32,000 | 2,600 | 2,400 | 1,000 | 4,500 | | | 3/27/2013 | 9.24 | 22.16 | <100 | 18,000 | 940 | 790 | 390 | 1,700 | | | 5/20/2013 | 9.21 | 22.19 | <50 | 10,000 | 540 | 430 | 220 | 790 | | | 9/4/2013 | 9.88 | 21.52 | <250 | 10,000 | 680 | 580 | 480 | 1,700 | | | 12/6/2013 | 9.96 | 21.47 | <50 | 13,000 | 620 | 380 | 350 | 1,600 | | | 6/27/2014 | 9.85 | 21.58 | <50 | 27,000 | 3,200 | 5,600 | 1,200 | 8,000 | | | 9/19/2014 | 16.80 | 14.63 | | 18,000 | 690 | 1,300 | 360 | 2,400 | | | | | | | | | | - | | | EW-3 | 5/20/2013 | 8.82 | | <50 | 1,300 | 430 | 540 | 280 | 1,000 | | | 9/4/2013 | 9.49 | | <100 | 9,800 | 480 | 220 | 560 | 1,800 | | | 12/6/2013 | 10.05 | | <50 | 10,000 | 810 | 580 | 260 | 1,100 | | | 6/27/2014 | 9.90 | | <50 | 27,000 | 4,300 | 4,300 | 1,200 | 7,900 | | | 9/19/2014 | 13.00 | | | 15,000 | 670 | 650 | 530 | 2,400 | | | | | | | | , | | | ·········· | | EW-4 | 5/20/2013 | 9.12 | | <50 | 8,100 | 720 | 160 | 94 | 430 | | | 9/4/2013 | 9.85 | | <250 | 11,000 | 990 | 580 | 310 | 1,200 | | | 12/6/2013 | 9.62 | | <50 | 4,400 | 150 | 170 | 140 | 670 | | | 6/27/2014 | 9.47 | | <50 | 8,400 | 1,500 | 940 | 540 | 2,100 | | | 9/19/2014 | 12.48 | | | 9,000 | 680 | 1,600 | 450 | 3,000 | | | | | | | -,,, | | , | | -, | Shore Acres Gas 403 East 12th Street Oakland, California | Well | Date | Depth to | Groundwater | | | | | Ethyl- | Total | |------|----------|-------------|-------------|--------|--------|---------|---------|---------|---------| | ID | Measured | Groundwater | Elevation | TPHd | TPHg | Benzene | Toluene | benzene | Xylenes | | тос | | (ft bgs) | (ft amsl) | (ug/L) | (ug/L) | (ug/L) | (ug/L) | (ug/L) | (ug/L) | ### Notes: TOC - denotes top of casing elevation TPHg - denotes total petroleum hydrocarbons as gasoline TPHd - denotes total petroleum hydrocarbons as diesel ft bgs - denotes feet below top of casing ft bgs - denotes feet below top of casing ft amsl - denotes feet above mean sea level ug/L - denotes micrograms per liter <- denotes less than the detection limit</p> -- denotes not available/applicable ELH - denotes floating liquid hydrocarbons FLH - denotes floating liquid hydrocarbons * - denotes less than six inches of water and considered dry Page 4 of 4 DIC.14244 ### Table 4b Monitoring Well Data Oxygenates and Lead Scavengers Shore Acres Gas 403 East 12th Street Oakland, California | Well | Date | DIPE | ETBE | MTBE | TAME | TBA | 1,2-DCA | EDB | |------------|------------|--------|--------------|-------------|--------------|--------|---------|--------| | ID | Measured | (ug/L) | TOC | <u> </u> | | | | | | | , | | Monitoring | | | | | | | · | | | MW-1 | 6/23/2011 | <25 | <25 | 3,000 | <25 | 3,900 | <25 | <25 | | | 9/22/2011 | <50 | <50 | 2,600 | <50 | 2,500 | <50 | <50 | | | 12/11/2011 | <20 | <20 | 1,800 | <20 | 1,600 | <20 | <20 | | | 3/30/2012 | | r | | inaccessible | 2 | | | | | 6/1/2012 | <20 | <20 | 2,800 | <20 | 1,300 | <20 | <20 | | | 9/14/2012 | <10 | <10 | 2,200 | <10 | 1,600 | <10 | <10 | | | 3/27/2013 | <0.5 | <0.5 | 590 | <0.5 | 350 | <0.5 | <0.5 | | | 5/20/2013 | <10 | <10 | 1,100 | <10 | . 620 | <10 | <10 | | | 9/4/2013 | <10 | <10 | 240 | <10 | <100 | <10 | <10 | | | 12/6/2013 | <5.0 | <5.0 | 350 | <50 | <100 | <5.0 | <5.0 | | | 6/27/2014 | <10 | <10 | 97 | <10 | <100 | <10 | <10 | | | 9/19/2014 | <10 | <10 | 150 | <10 | <100 | <10 | <10 | | | | | | | | | | | | MW-2 | 6/23/2011 | <10 | <10 | 240 | <10 | 640 | <10 | <10 | | | 9/22/2011 | <5.0 | <5.0 | 110 | <5.0 | 260 | <5.0 | <5.0 | | | 12/11/2011 | <2.5 | <2.5 | 45 | <2.5 | 110 | <2.5 | <2.5 | | | 3/30/2012 | <5.0 | <5.0 | 140 | <5.0 | 490 | <5.0 | <5.0 | | | 6/1/2012 | <5.0 | <5.0 | 180 | <5.0 | 490 | <5.0 | <5.0 | | | 9/14/2012 | <5.0 | <5.0 | 65 | <5.0 | 190 | <5.0 | <5.0 | | | 3/27/2013 | <0.5 | <0.5 | 120 | <0.5 | 930 | <0.5 | <0.5 | | | 5/20/2013 | <2.5 | <2.5 | 120 | <2.5 | 1,800 | <2.5 | <2.5 | | | 9/4/2013 | <5.0 | <5.0 | 100 | <5.0 | 780 | <5.0 | <5.0 | | | 12/6/2013 | <5.0 | <5.0 | 63 | <5.0 | 230 | <5.0 | <5.0 | | | 6/27/2014 | <5.0 | <5.0 | 21 | <5.0 | <50 | <5.0 | <5.0 | | | 9/19/2014 | <5.0 | <5.0 | 16 | <5.0 | <50 | <5.0 | <5.0 | | | | | | | | | | | | MW-3 | 6/23/2011 | <100 | <100 | 8,200 | <100 | 6,400 | <100 | <100 | | <u>.</u> | 9/22/2011 | <100 | <100 | 11,000 | <100 | 2,800 | <100 | <100 | | | 12/11/2011 | <100 | <100 | 7,400 | <100 | 1,800 | <100 | <100 | | | 3/30/2012 | <100 | <100 | 13,000 | <100 | <1,000 | <100 | <100 | | | 6/1/2012 | <50 | <50 | 12,000 | <50 | <500 | <50 | <50 | | | 9/14/2012 | <50 | <50 | 9,400 | <50 | <500 | <50 | <50 | | | 3/27/2013 | <0.5 | <0.5 | 7,900 | <0.5 | 3,800 | <0.5 | <0.5 | | | 5/20/2013 | <25 | <25 | 10,000 | <25 | 5,000 | <25 | <25 | | | 9/4/2013 | <25 | <25 | 5,300 | <25 | 2,100 | <25 | <25 | | | 12/6/2013 | <25 | <25 | 1,400 | <25 | 640 | <25 | <25 | | | 6/27/2014 | <25 | <25 | 520 | <25 | 260 | <25 | <25 | | | 9/19/2014 | <25 | <25 | 390 | <25 | 370 | <25 | <25 | | | | | | | | | | | # Table 4b Monitoring Well Data Oxygenates and Lead Scavengers Shore Acres Gas 403 East 12th Street Oakland, California | Well | Date | DIPE | ETBE | MTBE | TAME | TBA | 1,2-DCA | EDB | | | | | |------|------------|----------------------------|--------|---------|---------------|---------|---------|--------|--|--|--|--| | ID | Measured | (ug/L) | | | | | тос | | | | | | | | | | | | | | MW-4 | 6/23/2011 | <50 | <50 | <50 | <50 | <500 | <50 | <50 | | | | | | | 9/22/2011 | <25 | <25 | <25 | <25 | <250 | <25 | <25 | | | | | | | 12/11/2011 | <25 | <25 | <25 | <25 | <250 | <25 | <25 | | | | | | | 3/30/2012 | <50 | <50 | 56 | <50 | <500 | <50 | <50 | | | | | | | 6/1/2012 | <50 | <50 | 180 | <50 | <500 | <50 | <50 | | | | | | | 9/14/2012 | <20 | <20 | <20 | <20 | <200 | <20 | <20 | | | | | | | 3/27/2013 | <0.5 | <0.5 | 77 | <0.5 | 450 | <0.5 | <0.5 | | | | | | | 5/20/2013 | <10 | <10 | 61 | <10 | 360 | <10 | <10 | | | | | | | 9/4/2013 | <2.5 | <2.5 | 17 | <2.5 | 64 | <2.5 | <2.5 | | | | | | | 12/6/2013 | <2.5 | <2.5 | 6.6 | <2.5 | <25 | <2.5 | <2.5 | | | | | | | 6/27/2014 | <2.5 | <2.5 | <2.5 | <2.5 | <25 | <2.5 | <2.5 | | | | | | | 9/19/2014 | <2.5 | <2.5 | <2.5 | <2.5 | <25 | <2.5 | <2.5 | MW-5 | 6/23/2011 | <120 | <120 | 440 | <120 | <1,200 | <120 | <120 | | | | | | | 9/22/2011 | <50 | <50 | 670 | <50 | 1,500 | <50 | <50 | | | | | | | 12/11/2011 | <120 | <120 | 690 | <120 | 1,600 | <120 | <120 | | | | | | | 3/30/2012 | | · | She | en - not sam | <u></u> | | | | | | | | | 6/1/2012 | Sheen - not sampled | | | | | | | | | | | | | 9/14/2012
| Free product - not sampled | | | | | | | | | | | | | 3/27/2013 | Free product - not sampled | | | | | | | | | | | | | 5/20/2013 | Free product - not sampled | | | | | | | | | | | | | 9/4/2013 | | | Free pr | oduct - not : | sampled | | | | | | | | | 12/6/2013 | <25 | <25 | 270 | <25 | <250 | <25 | <25 | | | | | | - | 6/27/2014 | | | Free pr | oduct - not | ampled | | | | | | | | | 9/19/2014 | <25 | <25 | 75 | <25 | <250 | <25 | <25 | MW-6 | 6/23/2011 | <25 | <25 | 1,100 | <25 | 4,000 | <25 | <25 | | | | | | | 9/22/2011 | <12 | <12 | 600 | <12 | 2,800 | <12 | <12 | | | | | | | 12/11/2011 | <10 | <10 | 290 | <10 | 1,300 | <10 | <10 | | | | | | | 3/30/2012 | <10 | <10 | 990 | <10 | 3,500 | <10 | <10 | | | | | | | 6/1/2012 | <10 | <10 | 1,400 | <10 | 2,200 | <10 | <10 | | | | | | | 9/14/2012 | <10 | <10 | 580 | <10 | 2,000 | <10 | <10 | | | | | | | 3/27/2013 | | | | Inaccessible | | | | | | | | | | 5/20/2013 | · <u>-</u> | | | Inaccessible | | | | | | | | | | 9/4/2013 | <5.0 | <5.0 | 29 | <5.0 | 140 | <5.0 | <5.0 | | | | | | | 12/6/2013 | <2.5 | <2.5 | 12 | <2.5 | <25 | <2.5 | <2.5 | | | | | | | 6/27/2014 | <2.5 | <2.5 | 4.9 | <2.5 | <25 | <2.5 | <2.5 | | | | | | | 9/19/2014 | <2.5 | <2.5 | 7.1 | <2.5 | <25 | <2.5 | <2.5 | | | | | | | | | | | · | | | | | | | | # Table 4b Monitoring Well Data Oxygenates and Lead Scavengers Shore Acres Gas 403 East 12th Street Oakland, California | Well | Date | DIPE | ETBE | МТВЕ | TAME | ТВА | 1,2-DCA | EDB | |-----------|------------|--------|--------|--------|--------|--------|---------|---------------| | ID | Measured | (ug/L) | тос | | | | | | | | ,- <u>,</u> , | | DPE Wells | | | | | | • | | | | EW-1 | 6/28/2011 | <25 | <25 | 1,500 | <25 | 5,300 | <25 | <25 | | | 9/22/2011 | <50 | <50 | 640 | <50 | 1,800 | <50 | <50 | | | 12/11/2011 | <25 | <25 | 490 | <25 | 1,000 | <25 | <25 | | | 3/30/2012 | <20 | <20 | 370 | <20 | 1,100 | <20 | <20 | | | 6/1/2012 | <25 | <25 | 500 | <25 | 1,700 | <25 | <25 | | | 9/14/2012 | <10 | <10 | 370 | <10 | 1,400 | <10 | <10 | | | 3/27/2013 | <0.5 | <0.5 | 270 | <0.5 | 560 | <0.5 | <0.5 | | <u></u> | 5/20/2013 | <5.0 | <5.0 | 250 | <5.0 | 560 | <5.0 | <5.0 | | | 9/4/2013 | <2.5 | <2.5 | 220 | <2.5 | 590 | <2.5 | <2.5 | | | 12/6/2013 | <2.5 | <2.5 | 130 | <2.5 | 270 | <2.5 | <2.5 | | | 6/27/2014 | <10 | <10 | 40 | <10 | <100 | <10 | <10 | | | 9/19/2014 | <20 | <20 | 300 | <20 | <200 | <20 | <20 | | | | | | | | | | | | EW-2 | 6/28/2011 | <25 | <25 | 670 | <25 | 4,100 | <25 | <25 | | | 9/22/2011 | <50 | <50 | 740 | <50 | 1,600 | <50 | <50 | | | 12/11/2011 | <50 | <50 | 540 | <50 | 880 | <50 | <50 | | | 3/30/2012 | <50 | <50 | 1,800 | <50 | 2,800 | <50 | <50 | | | 6/1/2012 | <50 | <50 | 2,600 | <50 | 3,300 | <50 | <50 | | | 9/14/2012 | <20 | <20 | 1,100 | <20 | 2,400 | <20 | <20 | | | 3/27/2013 | <0.5 | <0.5 | 360 | <0.5 | 1,800 | <0.5 | <0.5 | | | 5/20/2013 | <2.5 | <2.5 | 390 | <2.5 | 2,600 | <2.5 | <2.5 | | | 9/4/2013 | <5.0 | <5.0 | 460 | <5.0 | 1,400 | <5.0 | <5.0 | | | 12/6/2013 | <10 | <10 | 210 | <10 | 560 | <10 | <10 | | | 6/27/2014 | <10 | <10 | 110 | <10 | <50 | <10 | <10 | | | 9/19/2014 | <25 | <25 | 96 | <25 | <250 | <25 | <25 | | | | | | | | | | | | EW-3 | 5/20/2013 | <2.5 | . <2.5 | 140 | <2.5 | 1,100 | <2.5 | <2.5 | | | 9/4/2013 | <2.5 | <2.5 | 120 | <2.5 | 650 | <2.5 | <2.5 | | | 12/6/2013 | <2.5 | <2.5 | 96 | <2.5 | 690 | <2.5 | <2.5 | | | 6/27/2014 | <5.0 | <5.0 | 150 | <5.0 | 360 | <5.0 | <5.0 | | | 9/19/2014 | <25 | <25 | 75 | <25 | <250 | <25 | <25 | | | | | | | | | | | | EW-4 | 5/20/2013 | <5.0 | <5.0 | 480 | <5.0 | 1,900 | <5.0 | <5.0 | | | 9/4/2013 | <5.0 | <5.0 | 220 | <5.0 | 1,300 | <5.0 | <5.0 | | | 12/6/2013 | <5.0 | <5.0 | 58 | <5.0 | 430 | <5.0 | <5.0 | | | 6/27/2014 | <2.5 | <2.5 | 82 | <2.5 | 65 | <2.5 | <2.5 | | | 9/19/2014 | <20 | <20 | 120 | <20 | 520 | <20 | <20 | | | | | | | | | | | ### Notes: ug/L - denotes micrograms per liter < - denotes less than the detection limit DCA - denotes dichloroethane EDB - denotes ethylene dibromide MTBE - denotes methyl tertiary butyl ether DIPE - denotes di-isopropyl ether ETBE - denotes ethyl tertiary butyl ether TAME - denotes tertiary amyl ether TBA - denotes tertiary butyl alcohol --- - denotes no data available ### Table 5a **Soil Vapor Extraction System Performance Calculations** Shore Acres Gas 403 East 12th Street Oakland, California | | | Influent | Influe | nt Sample R | esults | Extrac | tion Rates (| lb/day) | Cumulative Extraction (lb) | | | |----------|-------------------|---------------------|----------------|-------------------|----------------|------------------|---------------------|------------------|----------------------------|-----------------|--------------| | Date | Meter*
(hours) | Flow Rate
(scfm) | TPHg
(ppmv) | Benzene
(ppmv) | MTBE
(ppmv) | TPHg
(lb/day) | Benzene
(lb/day) | MTBE
(lb/day) | TPHg (lb) | Benzene
(lb) | MTBE
(lb) | | 05/27/14 | 590.3 | 106.0 | 2,500 | 14 | 0.73 | 112 | 0.5 | 0.0 | 2,745 | 11.4 | 0.7 | | 06/17/14 | 961.5 | 125.0 | 40 | 1.4 | 0.18 | 2.1 | 0.05 | 0.0 | 2,778 | 12.3 | 0.8 | | 06/27/14 | 988.2 | | | | Unit shu | ıt down for | Carbon Chai | nge Out | | | | | 08/15/14 | 988.2 | | | | | Resta | art Unit | | | | | | 08/19/14 | 992.6 | 125.0 | 33 | 0.79 | 0.13 | 1.7 | 0.03 | 0.0 | 2,780 | 12.3 | 0.8 | | 09/25/14 | 1,535.7 | 163.0 | 2,100 | 15 | < 1.0 | 144 | 0.77 | 0.1 | 6,042 | 29.7 | 2.1 | | | | | | | | | | | | | | $MW_{TPHq} = Molecular Weight of TPHg = 105$ MW_{MTBF} = Molecular Weight of Methyl tert-butyl ether = 88.15 MW_{Benzene} = Molecular Weight of Benzene = 78.11 days of operation during quarter 22.8 ft3 = cubic feet min = minutes lb/day = pounds per day ppmv = parts per million by volume = $ft^3 / 1x10^6 ft^3$ scfm = standard cubic feet per minute NS = not sampled NA = not analyzed NC = not calculated Extraction rate = (flow rate(ft³/min) x concentration (ft³ / 1x106 ft³) x MW_{TPHo}(lb/lb-mol) x 1440 min/day)/(359 ft³/lb-mol*) * - Hour meter readings does not match field data sheets because hour meter was 5472.6 when unit was started. ### Table 5b ### Soil Vapor Extraction System Destruction Efficiency and Emission Calculations Shore Acres Gas 403 East 12th Street Oakland, California | Date | Stack | Stack Sa | mple Result | s (ppmv) | Emiss | ion Rates (| lb/day) | Destruction Efficiency (%) | | | | |----------|---------------------|----------|-------------|----------|-------|-------------|---------|----------------------------|---------|-------|--| | | Flow Rate
(scfm) | TPHg | Benzene | MTBE | TPHg | Benzene | MTBE | TPHg | Benzene | MTBE | | | | | | | * | | | | <u> </u> | | | | | 05/27/14 | 106.0 | < 5.0 | < 0.050 | < 0.10 | < 0.2 | < 0.002 | < 0.004 | 100.0 | 100.0 | 100.0 | | | 06/17/14 | 125.0 | < 5.0 | < 0.050 | < 0.10 | < 0.2 | < 0.002 | < 0.004 | 100.0 | 100.0 | 100.0 | | | 08/19/14 | 125.0 | < 5.0 | < 0.050 | < 0.10 | < 0.2 | < 0.002 | < 0.004 | 100.0 | 100.0 | 100.0 | | | 09/25/14 | 163.0 | < 5.0 | < 0.050 | < 0.10 | < 0.3 | < 0.003 | < 0.006 | 100.0 | 100.0 | 100.0 | | | | | | | | ** : | | | | 1 | | | Note: "<" indicates analytical method detection limit; method detection limits are used as stack concentrations to estimate emission rates. Destruction efficiency is assumed to be 100%. ### Sample Calculations Emission rate = flow rate(ft^3 /min) x concentration (ft^3 / 1x10⁶ ft^3) x MW (lb/lb-mole)/359 (ft^3 /lb-mole*) x 1440 min/day Destruction Efficiency = [(Extraction rate - Emission rate)/Extraction rate] x 100% Stack flow = Catox Influent + Natural Gas flow rate lb/day = pounds per day ft3 = cubic feet ppmv = parts per million by volume = ft³ / 1x10⁶ ft³ NS = not sampled min = minutes scfm = standard cubic feet per minute NA = Not applicable #### Table 5c **Groundwater Treatment System Performance Data** Shore Acres Gas 403 East 12th Street Oakland, California | I. II | | AVG. PERIOD Influent Water Analytical Results | | | | Estimated Removal Rates | | | Estimated Removal (Period) | | | Estimated Removal (Cumulative) | | | |----------|-------------------|---|----------------|-------------------|----------------|-------------------------|---------------------|------------------|----------------------------|---------------------|------------------|--------------------------------|---------------------|------------------| | DATE | FLOW
(gallons) | FLOW RATE
(gallons/min) | TPHg
(ug/L) | Benzene
(ug/L) | MTBE
(ug/L) | TPHg
(lb/day) | Benzene
(lb/day) | MTBE
(lb/day) | TPHg
(pounds) | Benzene
(pounds) | MTBE
(pounds) | TPHg
(pounds) | Benzene
(pounds) | MTBE
(pounds) | | 04/30/14 | 189,810 | | | | | | | Unit Start Up | | | | <u> </u> | <u> </u> | | | 06/27/14 | 358,850 | 2.02 | 18,600 | 2,600 | 96 | 0.45 | 0.063 | 0.002 | 26.21 | 3.66 | 0.13 | 26,21 | 3.66 | 0.13 | | 08/19/14 | 360,060 | | | | | | Unit Stut Do | wn for Carbon | Change Out | | | | | | | 09/25/14 | 463,050 | 1.93 | 17,500 | 760 | 148 | 0.41 | 0.018 | 0.003 | 15.03 | 0.65 | 0.13 | 41.24 | 4.32 | 0.26 | | | | | | | | | | | | | | | - | | 104,200 total gallons pumped during current reporting period 1737 average gallons per day during current reporting period 1.2 average gallons per minute during current reporting period #### Notes: Influent concentrations are an average of extraction wells EW-1 through EW-4 Groundwater flow meter was 189,910 when unit was started up Sample Calculations: Extraction/ disposal rate = flow rate(gallons/min) * concentration (ug/L) * 3.785 L/gallon *lb/454,000,000 ug * 1440 min/day NC - Not calculated MTBE - Methyl tertiary butyl ether NS - Not Sampled TPHg - Total Petroleum Hydrocarbons as gasoline - Not Analyzed TBA -Tertiary butyl ether lb/day - pounds per day ug/L - micrograms per liter 15.03 0.65 0.13 ### **APPENDICES** ### ENVIRONMENTAL COMPLIANCE GROUP, LLC STANDARD OPERATING AND SAFETY AND LOSS CONTROL PROCEDURES ### 1.0
SOIL BORING/DRILLING SAMPLE COLLECTION AND CLASSIFICATION PROCEDURES ECG will prepare a site-specific Health and Safety Plan as required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR.1910.120). The document will be reviewed and signed by all ECG personnel and subcontractors prior to performing work at the site. Prior to conducting and subsurface work at the site, Underground Services Alert (USA) will be contacted to delineate subsurface utilities near the site with surface markings. In addition, the first five feet of every location will be hand cleared to a diameter larger than the diameter of the auger or probe as a further precaution against damaging underground utilities. Sites that are currently operated as gas stations will be cleared with a private utility locator prior to drilling activities. Soil samples to be submitted for chemical analyses are collected into brass or stainless steel tubes. The tubes are placed in an 18-inch long split-barrel sampler. The split-barrel sampler is driven its entire length hydraulically or by 140-pound drop hammer. The split-barrel sampler is removed from the borehole and the tubes are removed. When the tubes are removed from the split-barrel sampler, the tubes are trimmed and capped with Teflon sheets and plastic caps or the soil is removed from the tubes and placed in other appropriate sample containers. The samples are sealed, labeled, and placed in ice under chain-of-custody to be delivered to the analytical laboratory. All samples will be kept refrigerated until their delivery to the analytical laboratory. One soil sample collected from each split-barrel sampler is field screened with a photoionization detector (PID), flame ionization detector (FID), or other equivalent field screening meter. The soil sample is sealed in a plastic bag or other appropriate container to allow volatilization of volatile organic compounds (VOCs). The field meter is used to measure the VOC concentration in the container's headspace and is recorded on the boring logs at the appropriate depth interval. Other soil samples collected from each split-barrel sampler are inspected and documented to identify the soil stratigraphy beneath the site and classify the soil types according to the United Soil Classification System. The soil types are recorded on boring logs with the appropriate depth interval and any pertinent field observations. Drilling and sampling equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections and boreholes and after use. #### 2.0 SOIL EXCAVATION SAMPLE COLLECTION AND CLASSIFICATION PROCEDURES Soil samples to be submitted for chemical analyses are collected into brass or stainless steel tubes or other appropriate containers. The samples are sealed, labeled, and placed in ice under chain-of-custody (COC) to be delivered to the analytical laboratory. All samples will be kept refrigerated until their delivery to the analytical laboratory. Select soil samples are placed into a sealed plastic bag or other appropriate container and field screened using a PID, FID, or equivalent meter. Other soil samples collected are inspected and documented to identify the soil stratigraphy beneath the site and classify the soil types according to the United Soil Classification System. The soil types are recorded field notes with the appropriate depth interval and any pertinent field observations. Sampling equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections, and after use. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal. ### 3.0 SAMPLE IDENTIFICATION AND COC PROCEDURES Sample containers are labeled with job number, job name, sample collection time and date, sample collection point, and analyses requested. Sampling method, sampler's name, and any pertinent field observations are recorded on boring logs or excavation field notes. COC forms track the possession of the sample from the time of its collection until the time of its delivery to the analytical laboratory. During sample transfers, the person with custody of the samples will relinquish them to the next person by signing the COC and documenting the time and date. The analytical laboratory Quality Control/Quality Assurance (QA/QC) staff will document the receipt of the samples and confirm the analyses requested on the COC matches the sample containers and preservative used, if any. The analytical laboratory will assign unique log numbers for identification during the analyses and reporting. The log numbers will be added to the COC form and maintained in a log book maintained by the analytical laboratory. #### 4.0 ANALYTICAL LABORATORY QA/QC PROCEDURES The analytical laboratory analyzes spikes, replicates, blanks, spiked blanks, and certified reference materials to verify analytical methods and results. The analytical laboratory QA/QC also includes: Routine instrument calibration, Complying with state and federal laboratory accreditation and certification programs, Participation in U.S. EPA performance evaluation studies, Standard operating procedures, and Multiple review of raw data and client reports #### 5.0 HOLLOW STEM AUGER WELL INSTALLATION Boreholes for wells are often drilled with a truck-mounted hollow stem auger drill rig. The borehole diameter is at least 4 inches wider than the outside diameter of the well casing. Soil samples are collected and screened as described in **Section 1.0** and decontamination procedures are also the same as described in **Section 1.0**. Wells are cased with both blank and factory-perforated Schedule 40 PVC. The factory perforations are typically 0.020 inches wide by 1.5 inch long slots, with 42 slots per foot. A PVC cap is typically installed at the bottom of the casing with stainless steel screws. No solvents or cements are used in the construction of the wells. Well stabilizers or centering devices may be installed around the casing to ensure the filter material and grout in the annulus are evenly distributed. The casing is purchased pre-cleaned or steam cleaned and washed prior to installation in the borehole. The casing is set inside the augers and sand, gravel, or other filter material is poured into the annulus to fill the borehole from the bottom to approximately 1-2 feet above the perforations. A two foot thick bentonite plug is placed above the filter material to prevent the grout from filling the filter pack. Neat cement or sand-cement grout is poured into the annulus from the top of the bentonite plug to the surface. For wells located in parking lots or driveways, or roads, a traffic rated well box is installed around the well. For wells located in landscaped areas or fields, a stovepipe well protection device is installed around the well. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal. #### 6.0 MUD AND AIR ROTARY WELL INSTALLATION Boreholes for wells can also be drilled with a truck-mounted air rotary or mud rotary drill rig. Air or mud can be used as a drill fluid to fill the borehole and prevent the borehole from caving in and remove drill cuttings. Mud or air can be chosen depending on the subsurface conditions. Soil samples are collected and screened as described in **Section 1.0** and decontamination procedures are also the same as described in **Section 1.0**. Wells are cased with both blank and factory-perforated Schedule 40 PVC. The factory perforations are typically 0.020 inches wide by 1.5 inch long slots, with 42 slots per foot. A PVC cap is typically installed at the bottom of the casing with stainless steel screws. No solvents or cements are used in the construction of the wells. Well stabilizers or centering devices may be installed around the casing to ensure the filter material and grout in the annulus are evenly distributed. The casing is purchased pre-cleaned or steam cleaned and washed prior to installation in the borehole. Soil cuttings and drilling fluids are temporarily stored onsite pending laboratory analytical results and proper transport and disposal. The casing is set inside the augers and sand, gravel, or other filter material is poured into the annulus to fill the borehole from the bottom to approximately 1-2 feet above the perforations. A two foot thick bentonite plug is placed above the filter material to prevent the grout from filling the filter pack. Neat cement or sand-cement grout is poured into the annulus from the top of the bentonite plug to the surface. For wells located in parking lots or driveways, or roads, a traffic rated well box is installed around the well. For wells located in landscaped areas or fields, a stovepipe well protection device is installed around the well. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal. #### 7.0 WELL DEVELOPMENT After well installation, the wells are developed to remove residual drilling materials from the annulus and to improve well production by fine materials from the filter pack. Possible well development methods include pumping, surging, bailing, jetting, flushing, and air lifting. Development water is temporarily stored onsite pending laboratory analytical results and proper transport and disposal. Development equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections and after use. After well development the wells are typically allowed to stabilize for at least 24 hours prior to purging and sampling. #### 8.0 LIQUID LEVEL MEASUREMENTS Liquid level measurements are made with a water level meter and/or interface probe and disposable bailers. The probe tip attached
to a measuring tape is lowered into the well and into the groundwater when a beeping tone indicates the probe is in the groundwater. The probe and measuring tape (graduated to hundredths of a foot) are slowly raised until the beeping stops and the depth to water measurement is recorded. If the meter makes a steady tone, this indicates the presence of floating liquid hydrocarbons (FLH) and the probe and measuring tape are raised until the steady tone stops and the depth to the FLH is measured. Once depth to water and depth to FLH (if present) has been recorded, the probe and measuring tape are lowered to the bottom of the well where the total depth of the well is measured. The depth to water, depth to FLH, and depth to bottom are measured again to confirm the results. If FLH is encountered in the well, a disposable bailer is lowered into the well and brought back to the surface to confirm the thickness/presence of FLH. To minimize potential for cross contamination between wells, all measurements are done from cleanest to dirtiest well. Prior to beginning liquid level measurements, in between measurements in all wells, and at the completion of liquid level measurements, the water level probe and measuring tape is cleaned with solution (Alconox, Simple Green, or equivalent) and rinsed with deionized water. #### 9.0 WELL PURGING AND SAMPLING Each well is typically purged of at least three well casing volumes of groundwater prior to collecting a groundwater sample. Purging can continue beyond three well casing volumes if field parameters including pH, temperature, electrical conductivity are not stabilizing during the purging process. If the well is purged dry before the three well casing volumes has been purged, the well is typically allowed to recharge to 80 percent of its initial water level before a groundwater sample is collected. Purging equipment can include submersible pumps, PVC purging bailers, disposable bailers, air lift pumps, or pneumatic pumps. Prior to beginning well purging, in between each well purging, and at the completion of purging activities, all non-dedicated purging equipment is cleaned with solution (Alconox, Simple Green, or equivalent) and rinsed with deionized water. Once the well has been purged, it will be sampled with a disposable bailer, PVC bailer, stainless steel bailer, or through a low flow groundwater pump. The groundwater sample is transferred from the bottom of the bailer to reduce volatilization to the appropriate sample container. The sample containers are specified by the analytical laboratory depending on the analyses requested. Sample containers typically include volatile organic compound (VOA) vials with septa of Teflon like materials. The groundwater sample is collected into the VOAs to minimize air bubbles and once the cap has been placed on the VOA, the VOA is tipped upside down to see if air bubbles are present in the VOA. Typically a duplicate VOA is collected from each well to be analyzed by the analytical laboratory, if warranted, to verify results. Sample containers are labeled as described in **Section 3.0** and placed immediately in an ice chest and kept refrigerated until its delivery to the analytical laboratory. A trip blank may also be prepared by the analytical laboratory to travel with the ice chest during transport to the laboratory. Field blanks from equipment that has been decontaminated may be collected in between use in different wells to verify the decontamination procedure is effective. To minimize potential for cross contamination between wells, all wells are purged and sampled from cleanest to dirtiest well. #### 10.0 TEDLAR BAG SOIL VAPOR SAMPLING Sampling equipment to collect Tedlar bag soil vapor samples includes an air pump, a Tedlar bag which can range in size from 1 to 10 liters, and 3/16-inch diameter polyethylene tubing. The air pump should be equipped with 3/16-inch hose barbs for the polyethylene tubing to attach to. The Tedlar bag must be equipped with a valve for filling and sealing the bag. When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with a 3/16-inch hose barb. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. One end of the polyethylene tubing is connected to the sample collection port and one end is connected to the influent of the air pump, creating an air tight seal. The air pump is turned on and soil vapor from the sample collection port is pumped through the air pump for at least one minute. The air pump is turned off and one end of another piece of polyethylene tubing is connected to the effluent of the air pump and one end is connected to the valve on the Tedlar bag. The valve is opened and the air pump is turned on filling the Tedlar bag with the soil vapor sample until the bag has reached 75% capacity, when the valve on the Tedlar bag is closed and the air pump is turned off. Tedlar bags are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing. #### 11.0 SUMMA CANISTER SOIL VAPOR SAMPLING Sampling equipment to collect Summa canister soil vapor samples includes a sterilized Summa stainless steel canister under vacuum, ¼-inch diameter polyethylene tubing, and a laboratory calibrated flow meter, if required. When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with brass connection with silicone septa that has been threaded into a tapped hole on the piping network. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. One end of the polyethylene tubing is connected to the brass sample collection port and one end is connected to the canister valve or flow meter, creating an air tight seal. Prior to collecting the soil vapor sample, the valve on the Summa canister is opened to verify the Summa canister has the required vacuum which is recorded. Three well volumes of vapor will be purged at a rate less than 200 milliliters per minute (ml/min.), including sand pack pore volume from each soil vapor probe prior to sample collection. The sample valve or flow meter is opened and the soil vapor sample is collected into the Summa canister and the sample valve is closed and the final vacuum reading (typically greater than 5 inches per square inch) on the Summa canister is recorded. Per the DTSC Advisory Active Soil Gas Investigations, April 2012, high quality soil gas data collection is driven by project-specific data quality objectives (DQOs) and can be enhanced by using a shroud and a gaseous tracer compound. This method of leak detection ensures that soil gas wells are properly constructed and the sample train components do not leak. Most gaseous tracer compounds do not affect target analyte measurements nor does their detection require sample dilution. Also, gaseous leak tracer compounds allow a quantitative determination of a leak either in the sampling train or from ambient air intrusion down the borehole. The shroud will be designed to contain the entire sampling train and the soil gas well annulus. The sampling train will be constructed of material that does not react with the sample analytes and will not off gas or adsorb volatile compounds. The sampling equipment will be clean and shut-in tested prior to use. The gaseous leak tracer compound (isobutylene 100 ppm) concentration inside the shroud will be monitored frequently to verify initial concentrations. A photoionization detector will be used to monitor tracer gas concentrations. Summa canisters are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. #### 12.0 SYRINGE SOIL VAPOR SAMPLING Sampling equipment to collect syringe soil vapor samples includes a sterilized, 100 cubic centimeter, gas tight syringe and silicone septa. When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with brass connection with silicone septa that has been threaded into a tapped hole on the piping network. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. The syringe is inserted into the silicone septa and the plunger is purged or pumped at least three times. The sample is collected the fourth time the syringe plunger is extracted and the syringe is removed from the sample collection port and the needle on the syringe is capped with a rubber stopper. Syringes are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. #### 13.0 TEMPORARY SAMPLING POINTS A temporary borehole is advanced using either a slam bar or a direct push drill rig. In the case of the slam bar, once the borehole has been created, a temporary soil vapor probe is inserted into the borehole and advanced with a slide hammer or other physical force two additional feet. A bentonite seal is then placed in the borehole above the soil vapor probe to create an air tight seal and prevent ambient air from entering the sample collection space. In the case of the direct push drill rig, the sampling rod is advanced to the desired depth with a 6-inch retractable vapor screen at the tip. The sample screen on the 6-inch vapor screen is
removed and a bentonite seal is then placed in the borehole above the soil vapor probe to create an air tight seal and prevent ambient air from entering the sample collection space. Once the bentonite seal has set, at least one hour, the soil vapor survey samples are collected into Tedlar bags as described in **Section 10.0** or Suma canisters as described in **Section 11.0**. Samples are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing. #### 14.0 REPEATABLE SAMPLING POINTS A borehole is advanced using either a hand auger or a drill rig. A 6-inch slotted probe with caps on both ends is placed in the borehole. A Swagelok fitting is attached to one end cap and 3/16-inch diameter Nylon tubing is attached to the Swagelok fitting. A one foot sand pack is placed around the probe and the remainder of the borehole is sealed with a layer of dry bentonite powder, followed by a layer of bentonite chips, and an additional layer of dry bentonite powder. A well box is placed on the surface of the repeatable sampling point and the excess Nylon tubing is placed inside the well box. Soil vapor survey samples will be collected at least one week after probe installation. In addition, soil vapor survey samples will only be collected after five consecutive precipitation free days and after any onsite irrigation has been suspended. The soil vapor survey samples are collected into Tedlar bags as described in **Section 10.0** or Summa canisters as described in **Section 11.0**. Tedlar bags or Summa canisters are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing. ## argon laboratories 07 October 2014 Mike Sgourakis Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382 RE: Shore Acres Gas Project Data Enclosed are the results for sample(s) received on 09/24/14 15:40 by Argon Laboratories. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages. Please see quality control report for a summary of QC data pertaining to this project. The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Sample(s) may be archived by prior arrangement. Thank you for the opportunity to service the needs of your company. Sincerely Hiram Cueto Lab Manager # Argon Analytical Services, Inc. CHAIN OF CUSTODY | | Pre | oject Informati | on: | | | | | | Report To | | | | | Samples Submitted To: | | | | |-------------------|----------------------------|-----------------|--|---|-----------------------------|--|---|--------------|-----------------------|----------|----------|-----|-------|-----------------------|-----------|-------------|--------------------------------| | Project No: | GHA.19009 | | | | Consul | | Environ | mental C | Complianc | e Group | LLC | | | i_abora | | | Argon Labs | | Project Title: | Shore Acres G | as | | | Addres | S : | | tage Driv | | | | | | Addres | s: | | 2905 Railroad Avenue | | Location: | 403 East 12th 9 | Street | | | | | | , CA 953 | 82 | | | | | | | | Ceres. CA 95307 | | | Oakland, CA | | | | Contact | t: | Mike Sg | | | | | | | Contac | | | | | Sampler's Name: | | | | | Phone: | | 916,600 | 0.4580 | | | | | | Phone: | | | (209) 581-9280 | | (print) | | | | | Fax:
 | 209.664 | 1.1040 | | | | | | Fax: | | | (209) 581-9282 | | Sampler's Signatu | re: | | | | | | | | Bill To: | | | | | Date Re | sults Req | uired: | | | | | | | | Client:
Addres | 5: | | | mental C
tage Driv | e ` | • | LLC | | Date Re | port Requ | uired: | | | | ΤL | JRN AROUND TI | ME | | | | | | | ANA | LYSIS | | | | | | | | RUSH | 24 Hour | 48 Hour | Standard | Special | - P | <u>₹</u> | T | | | | | | | | | | | | | | | (5 days) | (10-14 days) | TPHg by EPA Method
8015M | BTEX, 5 oxygenates,
1,2-DCA, EDB by EPA
Method 8260B | | | | | | | | | | EDF Reports | COMMENTS | | Sample ID. | ; Date | Time | # Containers | Matrix | | <u> </u> | | † | | | | | | | | | Preservative | | | | | 3 | | | 17 | † | | <u> </u> | | | | | | | | | | MW-1 | नावाम | 1202 | | - referri | X | - | | ļ | | <u> </u> | | | | | | - | | | MW-2 | | 1108 | | | | | ļ | | | | | | | | | <u> </u> | | | MVV-3 | OPT Address | 1217 | | Tary Canada | | | | | <u> </u> | | | | | | | | | | MW-4 | et autorities and a second | 1127 | THE REAL PROPERTY OF THE PERSON NAMED IN COLUMN TWO COL | | | | | | | | | | | | | <u> </u> | | | MW-5 | ******* | 1235 | architecture. | 30000000000000000000000000000000000000 | Variation (| | | | | | <u> </u> | | | | | | | | MW-6 | 2777 | 1144 | - T- | 200 Triviale | - | No Marie Con | | | 1 | | | | | | | | | | EW-1 | | 1245 | | | 1,1 | are in contract the | | | | | | | | | | | | | EW-2 | | 1250 | | | | - Andrews | | | | | | | | | | | | | EW-3 | | 1255 | The state of s | ACCUPACION OF THE PARTY | | and the same of th | | | | | | | | | | | | | EW-4 | J | (35) | J | J | V | J | - | Relinguished By: | iAy. | | Date: 6/124/14 | Time:
 Sou(0 | Receive | | 1 | | ×, | | Date: | | Time: | <u>(Ç</u> , | 10 | SPECIA | aL INSTRUCTIONS;
Global ID# | | Relinquished By; | | | Dåte: | Time: | Receive | | *************************************** | | | | Date: | | Time: | | | | T0600174667 | | Relinquished By: | | | Date: | Time: | Receive | d By: | | | | | Date: | | Time: | | | | | ! ## **Argon Laboratories Sample Receipt Checklist** | Client Name: | Environmental | Comp | liance Gr | roup | | | | Date | & Time Red | eived: | 09 | /24/14 | 1 | 5:40 | |-----------------------|---------------------|--------|-----------|---------|---------|----------|------------|-----------------|-----------------------|----------|------|---|---------------|-------------| | Project Name: | Shore Acres G | as | | | | | | Clien | it Project Nu | ımber: | | GHA | .19009 | | | Received By: | HC | | | Matr | ix: | Water | V | Soil | | | Slud | ge | | | | Sample Carrier: | Client 🔽 | Lab | oratory | | Fed Ex | | UPS | | Other | | | | | | | Argon Labs Project | Number: | P40 | 9041 | | | | | | | | | | | | | Shipper Container in | good condition? | | | | | Sample | es receive | d in prop | er containers | ? | Yes | ₹. | Nο | | | | N/A | Yes | V | No | | Sample | es receive | d intact? | | | Yes | V | No | | | Samples received und | der refrigeration? | Yes | ✓ | No | | Sufficie | ent sample | volume | for requester | d tests? | Yes | ✓ | No | | | Chain of custody pres | sent? | Yes | √ | No | | Sample | es receive | d within i | holding time? | , | Yes | V | No | | | Chain of Custody sign | ned by all parties? | Yes | | No | | Do san | nples cont | ain prop | er preservativ
N/A | /e?
□ | Yes | Image: section of the content | No | | | Chain of Custody mat | tches all sample la | abels? | | | | Do VOA | vials cont | ain zero h | eadspace? | | | | | | | | | Yes | 7 | No | | | | (None | submitted | □} | Yes | V | No | | | | ΔNV " | No" RI | FSPONSE | TRIUST | RE DETA | M ED IN | I THE CO | MMENT: | S SECTION | RELOW | ı | | | | | | | | | | | | | | | | - | | | | | Date Client Contac | ted: | | | | Pe | rson Co | ontacted: | | | | | | | _ | | Contacted By: | • | | | | Subject | · | | | | | | × -1 | | | | Comments: | | | | | | | | | | | | · | Action Taken: | | | | | | | | | | | | | | | | Action raken. | L | | | <i>‡</i> | ADDITIO | NAL TES | T(S) RE | QUEST / | OTHER | | | | | | | | On-trade d Divi | | | | | | | \ | | | | T: | | | | | Contacted By: | | | | | | L |)ate: | , , | | | HM | e: | - | | | Call Received By: | | | | - | _ | | | | | | | | | | | Comments: | * * | | | | | | | | | · · · · · · · · | | | Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: P409041 #### ANALYTICAL REPORT FOR SAMPLES | | | | **** | | |-----------|---------------|--------|----------------|----------------| | Sample ID | Laboratory ID | Matrix | Date Sampled | Date Received | | MW-I | P409041-01 | Water | 09/19/14 12:02 | 09/24/14 15:40 | | MW-2 | P409041-02 | Water | 09/19/14 11:08 | 09/24/14 15:40 | | MW-3 | P409041-03 | Water | 09/19/14 12:17 | 09/24/14 15:40 | | MW-4 | P409041-04 | Water | 09/19/14 11:27 | 09/24/14 15:40 | | MW-5 | P409041-05 | Water | 09/19/14 12:35 | 09/24/14 15:40 | | MW-6 | P409041-06 | Water | 09/19/14 11:44 | 09/24/14 15:40 | | EW-1 | P409041-07 | Water | 09/19/14 12:45 | 09/24/14 15:40 | | EW-2 | P409041-08 | Water | 09/19/14 12:50 | 09/24/14 15;40 | | EW-3 | P409041-09 | Water | 09/19/14 12:55 | 09/24/14 15:40 | | EW-4 | P409041-10 | Water | 09/19/14 13:00 | 09/24/14 15:40 | | | | | | | Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: P409041 #### Total Petroleum Hydrocarbons @ Gasoline | Analyte MW-1 (P409041-01) Water Sampled: 19-Sep- Total Petroleum Hydrocarbons @ Gasoline Surr. Rec.: MW-2 (P409041-02) Water Sampled: 19-Sep- Total Petroleum Hydrocarbons @ Gasoline | 11000
14 11:08 Receiv
990 | 1000 103 % red: 24-Sep-1 50 106 % | ug/L | Dilution 20 | 26-Sep-14
26-Sep-14 | Method
8015M
"
8015M | Notes | |---|--|---------------------------------------|-----------------|-------------|------------------------|-------------------------------|-------| | Total Petroleum Hydrocarbons @ Gasoline Surr. Rec.: MW-2 (P409041-02) Water Sampled: 19-Sep- Total Petroleum Hydrocarbons @ | 11000
14 11:08 Receiv
990
14 12:17 Receiv | 1000 103 % red: 24-Sep-1 50 106 % | ug/L
4 15:40 | | ."
26-Sep-14 | 8015M | | | Gasoline Surr. Rec.: MW-2 (P409041-02) Water Sampled: 19-Sep- Total Petroleum Hydrocarbons @ | 14 11:08 Receiv
990
14 12:17 Receiv | 103 %
red: 24-Sep-1
50 | 4 15:40 | | ."
26-Sep-14 | 8015M | | | MW-2 (P409041-02) Water Sampled: 19-Sep-
Total Petroleum Hydrocarbons @ | 990
14 12:17 Receiv | 50 106 % | | 1 | 26-Sep-14 | 8015M | | | Total Petroleum Hydrocarbons @ | 990
14 12:17 Receiv | 50
106 % | | 1 | | | | | | 14 12:17 Receiv | 106 % | ug/L | 1 | | | | | | | | | | n | -1 | | | Surr. Rec.: | | ed: 24-Sep-1 | | | | " | | | MW-3 (P409041-03) Water Sampled: 19-Sep- | 9500 | | 4 15:40 | | | | | | Total Petroleum Hydrocarbons @
Gasoline | 2300 | 1000 | ug/L | 20 | 26-Sep-14 | 8015M | | | Surr. Rec.: | | 100 % | | | n | н | | | MW-4 (P409041-04) Water Sampled: 19-Sep- | 14 11:27 Receiv | ed: 24-Sep-1 | 4 15:40 | | | | | | Total Petroleum Hydrocarbons @
Gasoline | 2100 | 100 | ug/L | 2 | 26-Sep-14 | 8015M | | | Surr. Rec.: | | 104 % | | | п | # | |
 MW-5 (P409041-05) Water Sampled: 19-Sep- | 14 12:35 Receiv | ed: 24-Sep-1 | 4 15;40 | | | | | | Total Petroleum Hydrocarbons @
Gasoline | 56000 | 2000 | ug/L | 40 | 26-Sep-14 | 8015M | | | Surr. Rec.: | | 109 % | | | n | " | | | MW-6 (P409041-06) Water Sampled: 19-Sep- | 14 11:44 Receiv | ed: 24-Sep-1 | 4 15:40 | | | | | | Total Petroleum Hydrocarbons @
Gasoline | 6500 | 500 | ug/L | 10 | 26-Sep-14 | 8015M | | | Surr. Rec.: | | 105 % | | | и | 11 | | | EW-1 (P409041-07) Water Sampled: 19-Sep-1 | 4 12:45 Receive | ed: 24-Sep-14 | 15:40 | | | | | | Total Petroleum Hydrocarbons @
Gasoline | 28000 | 1000 | ug/L | 20 | 26-Sep-14 | 8015M | | | Surr. Rec.; | | 106 % | | | " | n . | | Approved By Environmental Compliance Group, LLC 270 Vintage Drive Turiock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: P409041 #### Total Petroleum Hydrocarbons @ Gasoline | Analyte | Result | Reporting
Limit | Units | Dilution | Analyzed | Method | Notes | |--|-------------------|--------------------|----------------|----------|-----------|--------|-------| | EW-2 (P409041-08) Water Sampled: 19-S | ep-14 12:50 Recei | ved: 24-Sep-14 | 4 15:40 | | | | | | Total Petroleum Hydrocarbons @
Gasoline | 18000 | 1000 | ug/L | 20 | 26-Sep-14 | 8015M | | | Surr. Rec.: | | 109 % | | | n | n | | | EW-3 (P409041-09) Water Sampled: 19-S | ep-14 12:55 Recei | ved: 24-Sep-1 | 4 15:40 | | | | | | Total Petroleum Hydrocarbons @
Gasoline | 15000 | 500 | ug/L | 10 | 26-Sep-14 | 8015M | | | Surr. Rec.; | | 97 % | | | n | н | | | EW-4 (P409041-10) Water Sampled: 19-S | ep-14 13:00 Recei | ved: 24-Sep-1 | 4 15:40 | | | | | | Total Petroleum Hydrocarbons @
Gasoline | 9000 | 250 | ug/L | 5 | 26-Sep-14 | 8015M | | | Surr. Rec.: | | 106 % | | | ij | tt. | | Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: P409041 #### Volatile Organic Compounds by EPA Method 8260B | Analyte | Result | Reporting
Limit | Units | Dilution | Analyzed | Method | Notes | |-------------------------|------------------------------|--------------------|---------|---|-----------|-------------|-------| | MW-1 (P409041-01) Water | Sampled: 19-Sep-14 12:02 Rec | eived: 24-Sep-1 | 4 15:40 | *************************************** | | | | | Benzene | 530 | 10 | ug/L | 20 | 29-Sep-14 | 8260B | | | Foluene | 190 | 10 | " | ч | U | tf. | | | Xylenes, total | 950 | 20 | u | a | n | " | | | Ethylbenzene | 460 | 10 | | н | ı) | 4 | | | -Butanol | ND | 100 | | " | II | п | | | Methyl tert-Butyl Ether | 150 | 10 | " | п | » | n | | | Di-Isopropyl Ether | ND | 10 | " | H | ıı . | 71 | | | Ethyl tert-Butyl Ether | ND | 10 | # | н | » | n | | | ert-Amyl Methyl Ether | ND | 10 | 11 | n | D | 11 | | | ,2-Dichloroethane | ND | 10 | 11 | n | n | fτ | | | ,2-Dibromoethane (EDB) | ND | 10 | 11 | Ħ | n | и | | | Surr. Rec.: | | 110% | | | " | " | | | MW-2 (P409041-02) Water | Sampled: 19-Sep-14 11:08 Rec | eived: 24-Sep-1 | 4 15:40 | | | | | | Зепzепе | 42 | 1.0 | ug/L | 2 | 29-Sep-14 | 8260B | | | Toluene | 12 | 1.0 | 11 | u | n | ** | | | Cylenes, total | 110 | 2.0 | " | m . | n | 11 | | | Ethylbenzene | 97 | 1.0 | # | | , | ** | | | -Butanol | 41 | 10 | 11 | | * | ** | | | Methyl tert-Butyl Ether | 16 | 1.0 | ** | и | " | и | | | Di-Isopropyl Ether | ND | 1.0 | ч | H . | n | 4 | | | thyl tert-Butyl Ether | ND | 1.0 | " | n | н | n | | | ert-Amyl Methyl Ether | ND | 1.0 | " | n | 'n | ji | | | ,2-Dichloroethane | ND | 1.0 | " | " | " | n | | | ,2-Dibromoethane (EDB) | ND | 1.0 | | 11 | " | n | | | Surr. Rec.; | | 118% | | | n | r/ | | Approved By ETISION | laboratories | 2905 Railroad Ave. | Ceres, CA 95307 (209)581-9280 | Fax (209)581-9282 Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: P409041 #### Volatile Organic Compounds by EPA Method 8260B | Analyte | Result | Reporting
Limit | Units | Dilution | Analyzed | Method | Notes | |-------------------------|-------------------------------|--------------------|---------|----------|-----------|--------|-------| | MW-3 (P409041-03) Water | Sampled: 19-Sep-14 12:17 Reco | eived: 24-Sep-1 | 4 15:40 | | | | | | Benzene | 610 | 10 | ug/L | 20 | 29-Sep-14 | 8260B | | | Toluene | 160 | 10 | " | ** | п | a | | | Xylenes, total | 400 | 20 | " | ** | u | n | | | Ethylbenzene | 220 | 10 | a | · · | п | U | | | t-Butanol | 370 | 100 | u | · · | u | п | | | Methyl tert-Butyl Ether | 390 | 10 | | " | a | n | | | Di-Isopropyl Ether | ND | 10 | | u | . " | " | | | Ethyl tert-Butyl Ether | ND | 10 | • | u | ď | n | | | tert-Amyl Methyl Ether | ND | 10 | | | и | n | | | 1,2-Dichloroethane | ND | 10 | n | u | ű | rr | | | 1,2-Dibromoethane (EDB) | ND | 10 | " | п | u | ΙT | | | Surr. Rec.: | | 112 % | | | ,, | " | | | MW-4 (P409041-04) Water | Sampled: 19-Sep-14 11:27 Rece | eived: 24-Sep-1 | 4 15:40 | | | | | | Benzene | 110 | 2.5 | ug/L | 5 | 29-Sep-14 | 8260B | | | Toluene | 54 | 2.5 | 11 | п | it | ď | | | Xylenes, total | 210 | 5.0 | Ħ | II . | Ħ | " | | | Ethylbenzene | 92 | 2.5 | 11 | II . | H | | | | t-Butanol | ND | 25 | 11 | " | t† | u . | | | Methyl tert-Butyl Ether | ND | 2.5 | 11 | ıı . | rt | u u | | | Di-Isopropyl Ether | ND | 2.5 | 11 | II . | H | U | | | Ethyl tert-Butyl Ether | ND | 2.5 | 11 | п | II | u u | | | tert-Amyl Methyl Ether | ND | 2,5 | и | n | U | U | | | 1,2-Dichloroethane | ND | 2.5 | 11 | n | п | u | | | 1,2-Dibromoethane (EDB) | ND | 2.5 | ** | u . | 11 | п | | | Surr. Rec.; | | 107 % | | | n | " | | Approved By Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: P409041 Volatile Organic Compounds by EPA Method 8260B | | | Reporting | | | | | | |-------------------------|-----------------------------------|---------------|---------|----------|-----------|-----------|------| | Analyte | Result | Limit | Units | Dilution | Analyzed | Method | Note | | MW-5 (P409041-05) Water | Sampled: 19-Sep-14 12:35 Recei | ved: 24-Sep-1 | 4 15:40 | - | | | | | Benzene | 1000 | 25 | ug/L | 50 | 29-Sep-14 | 8260B | | | Toluene | 270 | 25 | | " | " | # | | | Xylenes, total | 4100 | 50 | | 19 | ıı . | π | | | Ethylbenzene | 1000 | 25 | " | 11 | ij | ч | | | t-Butanol | ND | 250 | U | 1* | n . | u | | | Methyl tert-Butyl Ether | 75 | 25 | " | | ıı | n | | | Di-Isopropyl Ether | ND | 25 | P | u | n | и | | | Ethyl tert-Butyl Ether | ND | 25 | 11 | u | n | n | | | tert-Amyl Methyl Ether | ND | 25 | 11 | u | п | " | | | 1,2-Dichforoethane | ND | 25 | 10 | н | n | н | | | 1,2-Dibromoethane (EDB) | ND | 25 | ** | п | II | tt. | | | Surr. Rec.: | | 94 % | | | n | " | | | MW-6 (P409041-06) Water | Sampled: 19-Sep-14 11:44 Received | ved: 24-Sep-1 | 4 15:40 | | | | | | Велzene | 240 | 2.5 | ug/L | 5 | 29-Sep-14 | 8260B | | | Foluene | 21 | 2.5 | н | H | " | n | | | Xylenes, total | 110 | 5.0 | " | # | H | u | | | Ethylbenzene | 490 | 2.5 | * | # | " | n | | | -Butanol | ND | 25 | " | " | · | 11 | | | Methyl tert-Butyl Ether | 7.1 | 2.5 | # | * ' | " | " | | | Di-Isopropyl Ether | ND | 2.5 | IT | w | ıı | * | | | Ethyl tert-Butyl Ether | ND | 2.5 | 11 | " | n n | н | | | ert-Amyl Methyl Ether | ND | 2.5 | п | u | ŋ | ** | | | ,2-Dichloroethane | ND | 2,5 | 11 | и | п | ŧŧ | | | ,2-Dibromoethane (EDB) | ND | 2.5 | " | u | n | 41 | | | Surr, Rec.; | | 97 % | | | н | " | | Approved By ETISION | laboratories | 2905 Railroad Ave. | Ceres, CA 95307 (209)581-9280 | Fax (209)581-9282 Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: P409041 #### Volatile Organic Compounds by EPA Method 8260B | Analyte | Result | Reporting
Limit | Units | Dilution | Analyzed | Method | Notes | |----------------------------------|-------------------------|--------------------|---------|----------|-----------|--------|-------| | EW-1 (P409041-07) Water Sampled: | 19-Sep-14 12:45 Receive | d: 24-Sep-1 | 4 15;40 | | | | | | Benzene | 1000 | 20 | ug/L | 40 | 29-Sep-14 | 8260B | | | Toluene | 450 | 20 | u | th: | | н | | | Xylenes, total | 3900 | 40 | u | 11 | Я | ц | | | Ethylbenzene | 1400 | 20 | U | M. | 11 | II . | | | t-Butanol | ND | 200 | | 11 | u | и | | | Methyl tert-Butyl Ether | 300 | 20 | D | " | п | ч | | | Di-Isopropyl Ether | ND | 20 | 11 | " | u | | | | Ethyl tert-Butyl Ether | ND | 20 | II | • | ц | " | | | tert-Amyl Methyl Ether | ND | 20 | п | u | ü | h | | | 1,2-Dichloroethane | ND | 20 | n | u | a | n n | | | 1,2-Dibromoethane (EDB) | ND | 20 | " | u | п | " | | | Surr. Rec.: | | 92 % | | | н | u | | | EW-2 (P409041-08) Water Sampled: | 19-Sep-14 12:50 Receive | d: 24-Sep-14 | 4 15:40 | | | | | | Benzene | 690 | 25 | ug/L | 50 | 29-Sep-14 | 8260B | | | Toluene | 1300 | 25 | " | n | ч | 17 | | | Xylenes, total | 2400 | 50 | u | 1) | 11 | 17 | | | Ethylbenzene | 360 | 25 | | Ü | 11 | 41 | | | t-Butano! | ND | 250 | u | н . | 11 | ч | | | Methyl tert-Butyl Ether | 96 | 25 | U | n . | 11 | и | | | Di-Isopropyl Ether | ND | 25 | n | H | н | и | | | Ethyl tert-Butyl Ether | ND | 25 | " | ir . | 11 | u | | | tert-Amyl Methyl Ether | ND | 25 | " | 11 | 17 | | | | 1,2-Dichloroethane | ND | 25 | n | †I | D | ч | | | 1,2-Dibromoethane (EDB) | ND | 25 | " | 11 | II | | | | | | 010/ | | | n n | rt . | | Surr. Rec.: 94% Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas Project Manager: Mike Sgourakis <u>يالىسىال</u> Work Order No.: P409041 Volatile Organic Compounds by EPA Method 8260B | | | Reporting | | | | | |
-------------------------|--------------------------------|-----------------|---------|----------|---------------|--------|-------| | Analyte | Result | Límit | Units | Dilution | Analyzed | Method | Notes | | EW-3 (P409041-09) Water | Sampled: 19-Sep-14 12:55 Rece | ived: 24-Sep-14 | 1 15:40 | | | | | | Benzene | 670 | 25 | ug/L | 50 | 29-Sep-14 | 8260B | | | Toluene | 650 | 25 | " | 10 | u | 0 | | | Xylenes, total | 2400 | 50 | " | II. | u | 0 | | | Ethylbenzene | 530 | 25 | " | п | | 0 | | | t-Butanol | ND | 250 | u | 0 | " | Tr. | | | Methyl tert-Butyl Ether | 75 | 25 | ** | n | " | 0 | | | Di-Isopropyl Ether | ND | 25 | # | D | n | 17 | | | Ethyl tert-Butyl Ether | ND | 25 | u | IF. | 11 | 0 | | | tert-Amyl Methyl Ether | ND | 25 | u | 0 | 11 | 17 | | | 1,2-Dichloroethane | ND | 25 | a | n | 11 | 17 | | | 1,2-Dibromoethane (EDB) | ND | 25 | ш | 11 | n | 17 | | | Surr, Rec.; | | 88 % | | | # | " | | | EW-4 (P409041-10) Water | Sampled: 19-Sep-14 13:00 Recei | ived: 24-Sep-14 | 15:40 | | | | | | Benzene | 680 | 20 | ug/L | 40 |
29-Sep-14 | 8260B | | | Toluene | 1600 | 20 | | II. | u u | Ħ | | | Xylenes, total | 3000 | 40 | | 11 | | " | | | Ethylbenzene | 450 | 20 | u | If | " | ** | | | t-Butanol | 520 | 200 | | | " | " | * | | Methyl tert-Butyl Ether | 120 | 20 | u | 0 | # | н | | | Di-Isopropyl Ether | ND | 20 | п | 11 | 11 | u | | | Ethyl tert-Butyl Ether | ND | 20 | n | 11 | 19 | н | | | tert-Amyl Methyl Ether | ND | 20 | | It | n | ч | | | 1,2-Dichloroethane | ND | 20 | h | II | ,, | | | | 1,2-Dibromoethane (EDB) | ND | 20 | n | Tr. | II . | " | | | | | 01.07 | | |
| n | | Surr. Rec.: 91% Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: P409041 #### Total Petroleum Hydrocarbons @ Gasoline - Quality Control #### **Argon Laboratories** | | | Reporting | | Spike | Source | | %REC | | RPD | | |---|--------|--------------|-------|------------|-------------|------------|--------|-----|-------|-------| | Analyte | Result | Limit | Units | Level | Result | %REC | Limits | RPD | Limit | Notes | | Batch P401102 - EPA 5030B | | | | | | | | | | | | Blank (P401102-BLK1) | | | | Prepared & | Analyzed: | 09/26/14 | | | | | | Surrogate: a,a,a-Trifluorotoluene | 45.5 | <u>-</u> | ug/L | 50 | | 91 | 70-130 | | | | | Total Petroleum Hydrocarbons @ Gasoline | ND | 50 | 11 | | | | | | | | | LCS (P401102-BS1) | | | | Prepared & | : Analyzed: | 09/26/14 | | | | | | Total Petroleum Hydrocarbons @ Gasoline | 1030 | | ug/L | 1000 | | 103 | 80-120 | | | | | LCS Dup (P401102-BSD1) | | | | Prepared & | Analyzed: | 09/26/14 | | | | | | Total Petroleum Hydrocarbons @ Gasoline | 1040 | | ug/L | 1000 | | 104 | 80-120 | 1 | 20 | | | Matrix Spike (P401102-MS1) | Sour | ce: P409041- | 02 | Prepared & | . Analyzed: | 09/26/14 | | | | | | Total Petroleum Hydrocarbons @ Gasoline | 2120 | | ug/L | 1000 | 990 | 113 | 70-130 | | | | | Matrix Spike Dup (P401102-MSD1) | Sour | ce: P409041- | 02 | Prepared & | . Analyzed: | : 09/26/14 | | | | | | Total Petroleum Hydrocarbons @ Gasoline | 2040 | | ug/L | 1000 | 990 | 105 | 70-130 | 4 | 20 | . – | Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: P409041 #### Volatile Organic Compounds by EPA Method 8260B - Quality Control #### **Argon Laboratories** | | | Reporting | | Spike | Source | | %REC | | RPD | | |---------------------------|--------|-----------|-------|-------|--------|------|--------|-----|-------|-------| | Analyte | Result | Limit | Units | Level | Result | %REC | Limits | RPD | Limit | Notes | | Batch P401101 - EPA 5030B | • | | | | Blank (P401101-BLK1) | | | | Prepared & | : Analyzed: | 09/29/14 | | | | | |---------------------------------|--------------------|----------------|------|------------|-------------|----------|--------|---|----|--| | Surrogate: Fluorobenzene | 44.0 | | ug/L | 50 | | 88 | 70-130 | | | | | Benzene | ND | 0.5 | 11 | | | | | | | | | Toluene | ND | 0.5 | 11 | | | | | | | | | Xylenes, total | ND | 1.0 | 11 | | | | | | | | | Ethylbenzene | ND | 0.5 | u | | | | | | | | | -Butanol | ND | 5.0 | ш | | | | | | | | | Methyl tert-Butyl Ether | ND | 0.5 | ч | | | | | | | | | Di-Isopropyl Ether | ND | 0,5 | U | | | | | | | | | Ethyl tert-Butyl Ether | ND | 0.5 | | | | | | | | | | ert-Amyl Methyl Ether | ND | 0,5 | n | | | | | | | | | ,2-Dichloroethane | ND | 0.5 | n | | | | | | | | | ,2-Dibromoethane (EDB) | ND | 0,5 | IF | | | | | | | | | LCS (P401101-BS1) | | | | Prepared & | : Analyzed: | 09/29/14 | | | | | | Benzene | 23.6 | | ug/L | 25 | | 94 | 80-120 | | | | | CS Dup (P401101-BSD1) | | | | Prepared & | Analyzed: | 09/29/14 | | | | | | Benzene | 24.5 | | ug/L | 25 | | 98 | 80-120 | 4 | 20 | | | Matrix Spike (P401101-MS1) | Source | ce: P409041-02 | | Prepared & | Analyzed: | 09/29/14 | | | | | | -Butanol | 150 | | ug/L | 120 | 41.0 | 91 | 70-130 | | | | | Matrix Spike Dup (P401101-MSD1) | Source: P409041-02 | | | Prepared & | Analyzed: | 09/29/14 | | | | | | Butanol | 164 | | ug/L | 120 | 41.0 | 102 | 70-130 | 9 | 20 | | Approved By Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: P409041 #### Notes and Definitions DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported dry Sample results reported on a dry weight basis RPD Relative Percent Difference Report Number: 88976 Date: 08/22/2014 #### Laboratory Results Drew Van Allen Environmental Compliance Group 270 Vintage Dr Turlock, CA 95382 Subject: 2 Vapor Samples Project Name: Shore Acres Gas Project Number: GHA.19009 Dear Mr. Van Allen, Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the Environmental Laboratory Accreditation Program (ELAP), lab number 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800. Sincerely, Troy Turpen Troy D. Turpen Project Name: Shore Acres Gas Project Number: GHA.19009 Sample: Effluent Matrix: Air Lab Number: 88976-01 Report Number: 88976 Date: 08/22/2014 Sample Date :08/19/2014 | Parameter | Measured
Value | Method
Reporting
Limit | Units | Analysis
Method | Date/Time
Analyzed | |------------------------------|-------------------|------------------------------|------------|--------------------|-----------------------| | Benzene | < 0.050 | 0.050 | ppmv | EPA 8260B | 08/21/14 19:33 | | Toluene | < 0.050 | 0.050 | ppmv | EPA 8260B | 08/21/14 19:33 | | Ethylbenzene | < 0.050 | 0.050 | ppmv | EPA 8260B | 08/21/14 19:33 | | Total Xylenes | < 0.050 | 0.050 | ppmv | EPA 8260B | 08/21/14 19:33 | | Methyl-t-butyl ether (MTBE) | < 0.10 | 0.10 | ppmv | EPA 8260B | 08/21/14 19:33 | | TPH as Gasoline | < 5.0 | 5.0 | ppmv | EPA 8260B | 08/21/14 19:33 | | 1,2-Dichloroethane-d4 (Surr) | 112 | | % Recovery | EPA 8260B | 08/21/14 19:33 | | Toluene - d8 (Surr) | 102 | | % Recovery | EPA 8260B | 08/21/14 19:33 | Sample: Influent Matrix: Air Lab Number : 88976-02 Sample Date :08/19/2014 | Parameter | Measured
Value | Method
Reporting
Limit | Units | Analysis
Method | Date/Time
Analyzed | |------------------------------|-------------------|------------------------------|------------|--------------------|-----------------------| | Benzene | 0.79 | 0.050 | ppmv | EPA 8260B | 08/21/14 20:07 | | Toluene | 0.60 | 0.050 | ppmv | EPA 8260B | 08/21/14 20:07 | | Ethylbenzene | 0.31 | 0.050 | ppmv | EPA 8260B | 08/21/14 20:07 | | Total Xylenes | 1.1 | 0.050 | ppmv | EPA 8260B | 08/21/14 20:07 | | Methyl-t-butyl ether (MTBE) | 0.13 | 0.10 | ppmv | EPA 8260B | 08/21/14 20:07 | | TPH as Gasoline | 33 | 5.0 | ppmv | EPA 8260B | 08/21/14 20:07 | | 1,2-Dichloroethane-d4 (Surr) | 112 | | % Recovery | EPA 8260B | 08/21/14 20:07 | | Toluene - d8 (Surr) | 109 | | % Recovery | EPA 8260B | 08/21/14 20:07 | Report Number: 88976 Date: 08/22/2014 QC Report : Method Blank Data Project Name: Shore Acres Gas Project Number: GHA.19009 | | Measured | Method
Reporti | | Analysis | Date | |------------------------------|----------|-------------------|-------|-----------|------------| | Parameter | Value | Limit | Units | Method | Analyzed | | Benzene | < 0.050 | 0.050 | ppmv | EPA 8260B | 08/21/2014 | | Ethylbenzene | < 0.050 | 0.050 | ppmv | EPA 8260B | 08/21/2014 | | Toluene | < 0.050 | 0.050 | ppmv | EPA 8260B | 08/21/2014 | | Total Xylenes | < 0.050 | 0.050 | ppmv | EPA 8260B | 08/21/2014 | | Methyl-t-butyl ether (MTBE) | < 0.10 | 0.10 | ppmv | EPA 8260B | 08/21/2014 | | TPH as Gasoline | < 5.0 | 5.0 | ppmv | EPA 8260B | 08/21/2014 | | 1,2-Dichloroethane-d4 (Surr) | 114 | | % | EPA 8260B | 08/21/2014 | | Toluene - d8 (Surr) | 104 | | % | EPA 8260B | 08/21/2014 | | | | Method | i | | | |-----------|----------|---------|-------|----------|----------| | | Measured | Reporti | ing | Analysis | Date | | Parameter | Value | Limit | Units | Method | Analyzed | | | | | | | | | KIFF | 2) | |----------------|-----| | Analytical u.c | A.P | 2795 2nd Street, Suite 300 Davis, CA 95618 Lab: 530.297.4800 Fax: 530.297.4802 SRG#/Lab No. <u>\$8976</u> | | Tux. Coo. |
--|-----------|--------------|--------------------|--------------|------------|------------|--------------|----------|----------|----------------|----------|----------|-------|----------|--------------------|----------------------------|------------------|---------------------|------------------------------|---|--|----------------------------------|---|--|---------------------------|---|----------------------------------|--|-----------------------------------|-------------------------------|--------------------|-----------------------------------|-----|--------|----------|-------------|-----------------| | Project Contact (Hardcopy or PDF | To): | | Ca | liforn | nia E | DF | Repo | t? | | v | Yes | | □N | 0 | | | | | (| Cha | ain- | of-(| Dus | tod | y F | Rec | orc | l ar | nd A | ۱na | ılys | is F | Reg | ues | t | | | | Drew Van Allen | | |

 | molic | | om | any l | ۸α C | ode | | | 4 | : | <u>-</u> | | Analysis Request | | | | | | | | TAT | | | | | | | | | | | | | | | Company / Address:
270 Vintage Drive, Turlock, C/ | V 0E383 | | | :GT | ıy C | oniț | Jany L | .og c | .JUC | • | | | | | | \vdash | | | | | | | · | | ary s | 1 | | EASE | | CLE | 1 | Т | Τ | | _ | | | | Phone Number: | - 9030Z | | | bal l | D: | | | | | | - | | | | | 1 | | | | | | | | ļ | | | Ĺ | MET | HOD | | | 1 | | | | | | | 209.664.1035 | | | | 600 | | 667 | 7 | | | | | | | | | | | | ξ <u>i</u> | | | | | | | | | | Π | Г | Ī | | 1 | | | 12 hr | | | Fax Number: | | | | | | | e To (| | il Ad | dres | s): | | | | | | | | 8260 | 8 | | | | | | | | _ | · | | 1 | | | | | _ | | | 209.664.1040 | | | | | t@(| <u>qma</u> | ail.co | <u>m</u> | | | | | | | | | | | ΕPΑ | 826 | ê | | | <u>ڇ</u> | | | | 8 | | | | İ | | | | 24 hr | 출 | | Project #: P.O. #: | | | Bill | | | | | | | | | | | | | | | | € | P | 826 | | | Nat | | | | Ē | | | | _ | | | | 24 nr | õ | | GHA.19009 | | | 1 | G L | | | | | | | | | | | | ł | | | ETBE, TAME, TBA) (EPA 8260B) | 9 | Ą | | (SC) | gu | | | | 18 | | | | 8 | i i | | | | or Lab Use Only | | Project Name: | | | | mple
ew V | | | lame: | | | | | | | | | ĺ | | | AM | Ö | ⊛
(E | ĝ | 826 | irk | | | ē | E E | 5 | | ŀ | A 8. | | | | 48hr | qe | | Shore Acres Gas | | | | ew v
mple | | | | | | | | | | | | ê | | |)돈, 기 | Σ | ä | 926(| PA | 2 D | | 5M) | 9 | Ę | 17.4 | ē | | E. | |]] | | 48hr | P
L | | | | | ٦ | mpic | , O, | grical | uic. | | | | | | | | | MTBE @ 0.5 ppb (EPA 8260B) | | | ETI | 7 Oxygenates (5 oxy + EtOH, MeOH) (EPA 8260B) | Lead Scav. (1,2 DCA & 1,2 EDB) (EPA 8260B) | Volatile Halocarbons (EPA 8260B) | Volatile Organics Full List (EPA 8260B) | Volatile Organics (EPA 524.2 Drinking Water) | TPH as Diesel (EPA 8015M) | TPH as Motor Oil (EPA 8015M) | CAM 17 Metals (EPA 200.7 / 6010) | 5 Waste Oil Metals (Cd, Cr, Ni, Pb, Zn) (EPA 200.7 / 6010) | Mercury (EPA 245.1 / 7470 / 7471) | Total Lead (EPA 200.7 / 6010) | 1 | TPHg, BTEX, and MTBE by EPA 8260B | | | | | ш | | Project Address: | Samp | lina | ╁┈ | C | Cont | aine | <u>г</u> | Т | Pres | erva | ative | Т | V | fatrix | (| ď | | ĝ | 5 Oxygenates (MTBE, DIPE, | + | Aß | S (E | 1 | PA | 8 | ¥. | ¥ 2 | õ | 1.1 | 12 | ~ | 厘 | | | ı | | 1 1 | | 403 East 12th Street | | 1 | T | | | | | 1 | | | | T | | Т | Т | ڇًا | (B) | 826 | BE, I | ŏ | 20 | ģ | Ę. | S (F | EP/ | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | ᇤ | ŝ | 6 | % | ĮĔ | 盲 | İ | | | 72hr | <u> </u> | | Oakland, CA | | | | 1 | | 1 | | | | 1 | | - 1 | | | | g | 826 | Æ | ĮW) | se (| (1,2 | ocar | anic | anic | 95 | 5 | 캶 | 쁄 | ¥ | | 18 | Į į | | | | • | 1 1 | | | | | 40 ml VOA | | | | | | | | | -1 | | | 1 | 0 | BTEX (EPA 8260B) | TPH Gas (EPA 8260B) | ates | -nat | ža. | Ŧ | O.G | org | ë | 홀 | ₩ | ≩
 ō | Ē, | ad | W.E.T. Lead (STLC) | III. | ŀ | | | Ø | i i | | | | | 듩 | e e | احا | SS | <u>a</u> | | ဝိ | ည | ĺ | - [, | 重 | . | | Щ, | × | ဗ္ | yger | Š | Š | atile | atile | atile | 435 | + as | N N | aste | 1 5 | 를 | 1- | þ | - | | | ست
1 wk | 1 1 | | Sample Designation | Date | Time | 음
교 | Sleeve | Poly | Gla | Tedlar | 오 | HNO3 | ᅙ | | | Water | } ই | | Ē | B. | Æ | ်
လ | 7.0 | Lea | lοV | ٧o | Λο | 횬 | 臣 | ₹ | 3 | ≗ | 흔 | ĬŠ | 臣 | | Ш | | | Ш | | Effluent | 8/19/2014 | 1245 | | | | | х | | | | | | | x | | <u> </u> | _ | | | | | | | | | L | | ļ | _ | | | ↓× | 上 | | | | 01 | | influent | 8/19/2014 | 1250 | | | | | \mathbf{x} | | ł | | | - 1 | 1 | $ _{x}$ | | İ | | | | | | | | | | 1 | | | | | | ĺχ | | | | | 07 | | ander it | 0,10,2011 | 1.200 | ╁ | 1 | П | | | T | | | T | 1 | | 1 | | | | | | | | | | | | | | П | T | T | | | T | | | | | | | | | ╀ | | ┝╌┤ | \vdash | | ┿ | + | H | \vdash | - | + | ┿ | + | ╂─ | \vdash | \vdash | ┝ | | - | | ├─ | H | | - | - | ╁ | + | ╁ | + | + | ╫ | | | | \vdash | | <u></u> | <u> </u> | | $oldsymbol{\perp}$ | | Ш | | \perp | 上 | | | | 4 | | \bot | | ļ | <u> </u> | <u> </u> | _ | | <u> </u> | | | <u> </u> | | <u> </u> | <u> </u> | <u> </u> | ↓_ | ╄ | ╄ | 4 | ┼ | 1 | Ш | | 1 | | | | | | | | | | | | | | - 1 | | | | | 1 | ĺ | | ļ | | | | | | | | 1 | | | | 1 | | | | | | | | | 1 | ╁╴ | 十 | Н | Н | | ╁ | 1 | | | _ | T | ╅ | 1 | ▮ | | | | | | | | | | | | | | 1 | | | Т | | | | | | | | ↓ | ╄ | ــ | \vdash | Н | - | ╀ | - | - | \vdash | \dashv | + | -∤ | + | ╁ | ┢ | ┢ | | | | | ├ | | | ╁ | 1 | ┼- | ╅╾ | ┪ | ╈ | ╫ | 十 | + | \vdash | | 1 | | | | | L | | | | | \perp | | | Ш | _ | | | $oldsymbol{\perp}$ | ↓_ | <u> </u> | <u> </u> | _ | _ | | ļ | | _ | | Ļ | <u> </u> | ╄ | Ļ | ╄ | ╀ | | ┿ | 1 | | | | | | | | 1 | | | | | | | | | 1 | 1 | 1 | | 1 | | | İ | | ļ | | | | | | | | | | | | 1 | 1 | | | | | | - | 1 | + | - | \vdash | Н | | \top | T | | \Box | ╗ | 7 | \top | | 1 | | <u> </u> | | | | П | | П | | | Π | Т | Т | П | Т | | Т | | | | | | | | <u> </u> | ╀ | + | | \vdash | H | ╀ | ╁ | - | \vdash | - | + | - - | + | ╂ | ╁ | ┢ | \vdash | ┢ | | ╁一 | \vdash | \vdash | | ╁ | + | ╁╌ | + | ╁ | ╁ | ╁ | 十 | + | | | | | | | <u> </u> | | | | | | | | <u>L.</u> | | | | | | <u> </u> | <u> </u> | <u> </u> | Ļ | | <u> </u> | <u>L.</u> . | <u> </u> | L. | <u> </u> | <u> </u> | <u> </u> | <u> </u> | | <u> </u> | | ┸ | | 1 | ł | L | | | Relinquished by: / / / / / | | Date | 1 | | Tim | | Rece | | 1 | | | | | | | | | Rer | nark | S : | | | | | | | | | | | | | | | | | | | Relinguished by: | | 8 % | 기누 | ₹ | الا | Š | . ⊦ | ρo | σ | 0 | | | | | | | | l | Relinquished by: | | Date | | | Tim | 1e | Rece | ved b | y: | | | | | | | | _ | 1 | ag
ge | | T | | | † – | | | | | | | | | | | | | • | | 1 | | | | | | | | | | | | | | | | | | | Relinquished by: | | Date | | | Tim | ne . | Rece | ved h | y La | bora | tory: | | | 3. | 7,7 | 7 | | 1 = | 160 | # | | | | Fo | r La | b Us | se O | nly: | Si | ampl | le R | ecei | pt | | | | | | i | | | | | | | 1 | |
Λ | | , | | 7 | K | 45 | An | ası. | 肿 | emp | •c | | Initia | ls | Γ | | ate | - | Ť | | | ime | Т | | rm. ID | # | Coolar | nt Present | | O1 | | Date
OB2 | 111 | 1 | 12 | 32 | 11 | M | U | o 0 | y. | \geq | מע | (,) | , , | (78 | my | 1 | | | | | | | | | | T | | | | 1 | | | | Yes | / No | | Distribution: White - Lab, Pink - Originator | | 100 | 11 | Щ | ILV. | 10 | 181 | 700 | <u> </u> | <u>~</u> | | | | ~~ | 44 | - | | 1 | | | _ | | | <u>. </u> | | | | | | | | | | | | | | | Rev: 0617D8 | | | | | - | | | | | | | • | Analytical LLC | | | SA | MPL | E R | ECEIPT | CHEC | KLIS | т | | SPG # | : 88 | 926 | |--|------------------|----------------|----------------|---------|------|-------------|---------------|-----------|-------------|--------------|----------|--|---------------| | Sample Receipt | Initials/Date: | im as the | | **** | | : 1032 | - | le Logir | | is/Date: 1/ | 1115 | | .) | | TAT: Standa | | . 115 00 | Split | | lone | Method of | • | | ourier [| Over-the- | | | ্র
Shipped | | Temp °C | N/A The | erm ID | Tim | e | | Coolant pro | esent | ☐Yes | s □ No | Wa | ater | Те | mp Excursion | | For Shipments On | y: Cooler Red | ceipt Initials | /Date/Ti | me: E | 600 | 52114 0 | 738 | Cust | ody Seals | ∑ M/A | ∐ In | tact | Broken | | Chain-of-Custody | | | Yes | | No | Documer | nted on | COC | Labels | | Discr | epanci | es: | | Is COC present? | | | \times | 2 | | Sample IE |) | X | X, | | | | | | Is COC signed by | relinguisher? | | \top | 7 | | Project ID | | Ø | / 3 | | | | | | Is COC dated by re | | | 7 | | | Sample D | | 10 | X | | | ······································ | | | is the sampler's na | | 77 | X | 2 | | Sample T | | X. | × | | } | | | | Are there analyses | | | X | | | Does CO | | project h | nistory? | □ N/A | A | Yes | □No | | Samples: | | | N/A | Yes | No | Commen | its: | | | | *** | | | | Are sample custoo | lv seals intact? | | V | | | | | | · · · | | | | | | Are sample contain | | | ' | Ø | | | | | | | | | | | Is preservation do | | | 1 | - | - | | | | | | | | | | In-house Analysi | | | N/A | Yes | No | | | | | | | | | | Are preservatives | | | $\sqrt{2}$ | | | | | | | | | | | | Are samples within | | | 1 | V | | | | | | | | | | | Are sample contai | | ot? | | W | | | | | | | | | | | Is there adequate | | | | 0 | | | | | | | | | | | Receipt Details: | <u> </u> | | 1 | 1 | | | | | | | | | | | Matrix | Containe | er Type | # of
Co | ontaine | ers | | | | | | | | | | AR | | edav | - | 2 | | | | | | | | | | | 73.1 | | <i>V</i> (23. | | | | | | | | | | CSI | Required: | | P 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | | | | Proceed \ | | | YES 🗌 | NO In | it/Date: | | | | 6 | | | | | · | Client Co | mmunica | ition: | | | | | | | I. | ì | | | | | 1 | | | | | | | | VIELA Report Number: 89247 Date: 09/29/2014 #### Laboratory Results Drew Van Allen Environmental Compliance Group 270 Vintage Dr Turlock, CA 95382 Subject: 2 Vapor Samples Project Name: Shore Acres Gas- 403 E 12th St. Oakland, CA Project Number: GHA.19009 Dear Mr. Van Allen, Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the Environmental Laboratory Accreditation Program (ELAP), lab number 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800. Sincerely, Troy Turpen Troy D. Turpen Report Number: 89247 Date: 09/29/2014 Project Name : Shore Acres Gas- 403 E 12th St. Oakland, CA Project Number: GHA.19009 Sample: Effluent Matrix : Air Lab Number: 89247-01 Sample Date :09/25/2014 | Parameter | Measured
Value | Method
Reporting
Limit | Units | Analysis
Method | Date/Time
Analyzed | |------------------------------|-------------------|------------------------------|------------|--------------------|-----------------------| | Benzene | < 0.050 | 0.050 | ppmv | EPA 8260B | 09/26/14 16:18 | | Toluene | < 0.050 | 0.050 | ppmv | EPA 8260B | 09/26/14 16:18 | | Ethylbenzene | < 0.050 | 0.050 | ppmv | EPA 8260B | 09/26/14 16:18 | | Total Xylenes | < 0.050 | 0.050 | ppmv | EPA 8260B | 09/26/14 16:18 | | Methyl-t-butyl ether (MTBE) | < 0.10 | 0.10 | ppmv | EPA 8260B | 09/26/14 16:18 | | TPH as Gasoline | < 5.0 | 5.0 | ppmv | EPA 8260B | 09/26/14 16:18 | | 1,2-Dichloroethane-d4 (Surr) | 101 | | % Recovery | EPA 8260B | 09/26/14 16:18 | | Toluene - d8 (Surr) | 101 | | % Recovery | EPA 8260B | 09/26/14 16:18 | Sample: Influent Matrix: Air Lab Number: 89247-02 Sample Date :09/25/2014 | Parameter | Measured
Value | Method
Reporting
Limit | Units | Analysis
Method | Date/Time
Analyzed | |------------------------------|-------------------|------------------------------|------------|--------------------|-----------------------| | Benzene | 15 | 1.0 | ppmv | EPA 8260B | 09/26/14 15:45 | | Toluene | 67 | 1.5 | ppmv | EPA 8260B | 09/26/14 15:45 | | Ethylbenzene | 20 | 1.5 | ppmv | EPA 8260B | 09/26/14 15:45 | | Total Xylenes | 160 | 0.70 | ppmv | EPA 8260B | 09/26/14 15:45 | | Methyl-t-butyl ether (MTBE) | < 1.0 | 1.0 | ppmv | EPA 8260B | 09/26/14 15:45 | | TPH as Gasoline | 2100 | 70 | ppmv | EPA 8260B | 09/26/14 15:45 | | 1,2-Dichloroethane-d4 (Surr) | 102 | | % Recovery | EPA 8260B | 09/26/14 15:45 | | Toluene - d8 (Surr) | 98.7 | | % Recovery | EPA 8260B | 09/26/14 15:45 | QC Report : Method Blank Data Project Name: Shore Acres Gas- 403 E 12th St. Oakland, CA Project Number: GHA.19009 | Parameter | Measured
Value | Method
Reporti
Limit | | Analysis
Method | Date
Analyzed | |------------------------------|-------------------|----------------------------|------|--------------------|------------------| | Benzene | < 0.050 | 0.050 | ppmv | EPA 8260B | 09/26/2014 | | Ethylbenzene | < 0.050 | 0.050 | ppmv | EPA 8260B | 09/26/2014 | | Toluene | < 0.050 | 0.050 | ppmv | EPA 8260B | 09/26/2014 | | Total Xylenes | < 0.050 | 0.050 | ppmv | EPA 8260B | 09/26/2014 | | Methyl-t-butyl ether (MTBE) | < 0.10 | 0.10 | ppmv | EPA 8260B | 09/26/2014 | | TPH as Gasoline | < 5.0 | 5.0 | ppmv | EPA 8260B | 09/26/2014 | | 1,2-Dichloroethane-d4 (Surr) | 99.4 | | % | EPA 8260B | 09/26/2014 | | Toluene - d8 (Surr) | 104 | | % | EPA 8260B | 09/26/2014 | Report Number: 89247 Date: 09/29/2014 | | | Method | | | | |-----------|----------|----------|-------|----------|----------| | | Measured | Reportin | ng | Analysis | Date | | Parameter | Value | Limit | Units | Method | Analyzed | | KIFF
Analytical LLC | 0 | |------------------------|-----| | _ | .=- | 2795 2nd Street, Suite 300 Davis, CA 95618 Lab: 530.297.4800 SRG # / Lab No. 89247 | 7 Wany Dean Let. | Fax: 530 | .297.480 | 02 | | | | | | _ | | | | | | | | _ | | | | | | • | | _ | | | | | | , | 5 - | | - | | | |---|-------------|-------------|-----------|--------------|------------|-------------|-------------|----------|----------|-------|-----|--------|-------|------|--------|----------------------------|------------------|---------------------|---|---|--|--|--|---------------------------|------------------------------|----------------------------------|--|-----------------------------------|-------------------------------|--------------------|-----------------------------------|---|--------|-----|------------|-------------| | Project Contact (Hardcopy or PDF | To): | | Cal | liforr | nia E | DF F | ₹epor | t? | | V) | /es | | Νο | • | | | | | | ha | in-o | f-C | istr | dv | P _P | 2011 | 4 21 | nd. | Δns | alve | ie C | | uest | | | | | Drew Van Allen | | | 1 | | | | | | | | | | | | _ | · | | | | 'I JA | | 1-01 | | | | | | | \IIC | ys | 15 [| \ c q | uesi | | | | | Company / Address: | | | | - | _ | ompa | any L | og C | ode: | | | | | | L | | | | | | | , | A | naly | sis | - | ues | , | | | | | | T/ | ١T | | | 270 Vintage Drive, Turlock, CA | 4 95382 | | | GT | | | | | | | | | | | | | | | | | - 1 | | | | | PL | EASI | | | | i | | | | 1 [| | | Phone Number:
209.664.1035 | | | | bal l
600 | ID:
174 | 6 67 | | | | | | | | | | | İ | | 6 | | | | | | | ┡ | ME
T | THOE | Ţ | 1 | | | | 12 | | | | Fax Number: | | | | | | | To (i | | Add | ress |): | | | | \neg | | | | 8260 | <u>@</u> | | | | | | | _ | | | | | ' | | | | | | 209.664.1040 | | | _ | | t@g | gmai | il.cor | <u>n</u> | | | | | | | ╝ | | | | ď I | B26 | 頁 | | 🧟 | | | | 18 | | | | | ' | | |] [| <u>~</u> | | Project #: P.O. #:
GHA.19009 | | | Bill | to:
:G L | LC | | | | | | | | | | | | | | ETBE, TAME, TBA) (EPA 8260B) | EPA | A 826 | ģ | Volatile Organics (EPA 524.2 Drinking Water) | g Wate | | | 00.778 | | | | 8 | | | 24 | hr | se Oniy | | Project Name: | | | Sar | mple | r Pri | nt Na | ame: | | | | | | | | | | | | 팔 : | 휬 | 윤 | 200 | 1 \$ | | | 6 | Y Y | _ | | Ì | 326 | ' | | ٦, | , | ž | | Shore Acres Gas | | | | | | llen | | | | | | | | | | [ي | | | ۲ | Ě | <u>@</u> | o à | 2 5 | | _ | ğ | 12 | 174 | _ | | š | ' | | 48 | 1 | la
l | | | | | Sar | mple | er Sig | gnatu | ıre: | | | | | | | | | 200 | | | | ᅙ | 12 E | 7 00 | 24.2 | SW) | 2
2
2
3
3
4 | 0.776 | Pb,Zr | 7/02 | 6010 | | by El | | | 1 | "" | For Lab Use | | Project Address: | Sam | oling | 1 | C | onta | iner | | F | rese | rvat | ive | | Ma | trix | コ | ž | | 8 | R , | | A & | E CE | EPA : | A 801 | EPA E | ≥A 20 | d C, N | 1/74 | 70.7 | 0 | MTBE | | | |] | | | 403 East 12th Street
Oakland, CA | | | | | | | | | | | İ | | | Ì | | <u>교</u> | 80B
1 | 82 | Ħ | 9 | <u>5</u> | arbo | S | <u> </u> | ₹ | S (E) |) sig | 245 | PA 2 | Ę | and | | | 72 | hr | | | Canana, CA | | | Ş | | | | | | | | | | | | | 0.51 | PA 8 | S (EP. | ates (N | nates | ا هر
ا | Tailoc | | Diese | Motor | Meta | Met: | PA | ad (E | ead | Ä | | | | , | | | Sample Designation | Date (| Time | 40 ml VOA | Sleeve | oly | Glass | ediar | 모 | ος
NH | one | | Water | Soil | Αįτ | ı | MTBE @ 0.5 ppb (EPA 8260B) | BTEX (EPA 8260B) | TPH Gas (EPA 8260B) | 5 Oxygenates (MTBE, DIPE, | 7 Oxygenates (5 oxy + EtOH, MeOH) (EPA 8260B) | Lead Scav. (1,2 DCA & 1,2 EDB) (EPA 8260B) | Volatile Practice Euli 1st (EDA 82605) | /olatile | TPH as Diesel (EPA 8015M) | TPH as
Motor Oil (EPA 8015M) | CAM 17 Metals (EPA 200.7 / 6010) | 5 Waste Oil Metals (Cd,Cr,Ni,Pb,Zn) (EPA 200.7 / 6010) | Mercury (EPA 245.1 / 7470 / 7471) | Total Lead (EPA 200.7 / 6010) | W.E.T. Lead (STLC) | TPHg, BTEX, and MTBE by EPA 6260B | | | 1 \ | uk | | | Effluent | 925 | | b | Ű | | | x | | _ | | ╅ | | Ĭ, | X | 1 | _ | | | <u>" </u> | `\ | | | T | - | F | Ť | 1 57 | <u>-</u> | - | ŕ | x | T | | 1 | 1 | 0/ | | Influent | | 64 | | П | | | x | | 1 | | + | | | x | Ť | 1 | 1 | 1 | _ | | 1 | T | 1 | T | | 1 | 1 | T | | T | x | | | 1 | | 02 | | | | | | П | | \Box | T | П | | | | | П | | | | | | Ť | | | | | | | | | | | Γ | | \Box | | T | | | | | | | | П | | | Τ | | | | | | П | | | | | | | | | | | | | | Γ | Γ | | Γ | Т | Г | | | T | | | | | | Т | П | | | ╗ | | | | | | | | T | | | | T | | | | Τ | | | | | Γ | | Γ | Γ | | | | 7 | \neg | | | | | | П | | | | | | | | : | L | | $oldsymbol{ol}}}}}}}}}}}}}}}}}$ | ı | | | | | | | | | | | | | | Relinquished by: | 1 | Date
P(Z | 7 | (4) | Time | 9 F | Receiv
S | - | :
Zee | بر. | b | | | | | | | Rema | ırks: | • | , | | | | | | | | | | | | | | | | | Relinguished by: | | Date | | | Time | | Receiv | ed by | | | | | | | | _ | ┨ | Relinguished by: | Relinquished by: | | Date | | | Time | e R | Receiv | ed by | Labo | rator | у: | VI | 1/ | A | U/CE | 11. | F | 40 | Z | | | | F | or La | b Us | se Q | nly: | Sa | mple | ∍ Re | ceip | | | | | | | | | Date 092 | | ارر | | | 1. | | ı | nn | 1 | \sim | . # C | •)• | سنا - | ~ | " '] | Text | ήp °C | ; | lni | tials | + | | ate | | \bot | | Ti | ime | ₩ | Therr | n. ID# | - | olant F | | | Distribution: White - Lab Pink - Originator | | 1072 | wl' | | IJź. | 5 | M | | u | Ÿ | 7 | De | u | W | 4 | | | | | | | | | | | | 1_ | | | | 上 | | | Y | es / | No | Rev. 061708 | KIFF (| | | | | | | | | | | |-----------------------|-------------------------|------------|--------------|--------|--------------------|-------------|-------------|---------------------------------------|-------------|---------------------------------------| | Analytical LLC | | SA | MP | LE R | ECEIPT CHEC | <u>KLIS</u> | Τ | | SRG #: 8 | 9247 | | Sample Receipt II | nitials/Date: Mかっ | 92614 | Storag | e Time | e: 1035 Samp | le Logir | n Initia | als/Date: Mu | AS OPZLE | 14 | | TAT: ∑Standard | Rush |] Split | | lone | Method of Receipt: | □с | ourier | Over-the- | counter 🛵 | Shipped | | Temp °C | D tN/A Therm ID | Tin | ne | | Coolant present | Yes | 5 <u></u> N | o 🗌 Wa | ter T | emp Excursion | | For Shipments Only: | Cooler Receipt Initia | ls/Date/Ti | me: γ | NAS | 292614 1018 | Cust | ody Seals | ⊠N/A | ☐ Intact | Broken | | Chain-of-Custody: | | Yes | 5 | No | Documented on | COC | Labels | | Discrepand | ies: | | Is COC present? | | X | | | Sample ID | × | K | ERF & INF | on lakels | | | Is COC signed by reli | inquisher? | \times | | | Project ID | ኦ | 1 | | | | | Is COC dated by relir | nquisher? | X | | | Sample Date | <u> </u> | X | | | | | Is the sampler's name | e on the COC? | \times | / | | Sample Time | <u> </u> | Y | | | | | Are there analyses or | r hold for all samples? | <u> </u> | 2 | | Does COC match | project r | nistory? | N/A | XYes | □No | | Samples: | | N/A | Yes | No | Comments: | | | | , | | | Are sample custody s | seals intact? | <u>\</u> | | | | | • | | | | | Are sample container | rs intact? | | $ \infty $ | | | | | | | | | Is preservation docur | mented? | | ' | | | | | | | · · · · · · · · · · · · · · · · · · · | | In-house Analysis: | | N/A | Yes | No | | | | | | .,, | | Are preservatives acc | ceptable? | | | | | | | | | | | Are samples within h | olding time? | | \ <u>\</u> | | | | | <u>-</u> . | | <u></u> | | Are sample container | r types correct? | | 10 | | | | | | | | | Is there adequate sar | mple volume? | | \mathbf{y} | | | | | | | | | Receipt Details: | | | | | **** | | | · · · · · · · · · · · · · · · · · · · | | | | Matrix | Container Type | # of C | ontain | ers | | | | | | | | AR | Tedlar | | 2 | | | | | | Part 1000 v | | Proceed With Analysis: YES NO Client Communication: CS Required: Init/Date: Page 5 of 5 ## **GROUNDWATER LEVEL DATA FORM** PROJECT NAME: Shore Acres Gas PROJECT NUMBER: GHA.19009 PROJECT MANAGER: MSS SITE ADDRESS: 403 East 12th Street, Oakland, CA TASK NUMBER: | WELL ID | TIME | DEPTH TO
BOTTOM | DEPTH TO
WATER | DEPTH TO
PRODUCT | PRODUCT
THICKNESS | PRODUCT
THICKNESS
X 0.8 | COMMENTS | |---------|------|--------------------|-------------------|---------------------|--|-------------------------------|-------------| | MVV-1 | 1035 | 19.92 | 10.98 | | | | | | MW-2 | 1030 | 19.95 | 12,49 | | | | | | MW-3 | 1037 | 17.31 | 14.62 | | | | | | MW-4 | 1032 | 18,79 | 1161 | | | | | | MW-5 | 1047 | 19.4 | 12,91 | | | | | | MW-6 | 1034 | 19.92 | 12,91 | | | | | | EW-1 | 1247 | 19.70 | 12,41 | | | | | | EW-2 | 645 | 19,82 | (6,80 | | | | | | EW-3 | 1501 | 19.97 | 11.00 | \$ 5 | 199 | | | | EW-4 | 1039 | 19.95 | 12.48 | | 4 | | | | | | | | | e se e e e e e e e e e e e e e e e e e | | ·
 | | | | - | , | / | | | | | | | en e | · | FIELD TECHNICIAN: | Dust 1 | ١٨ | | |-------------------|--------|-----|----------| | DATE: | 9.119 | 160 | <u> </u> | | PROJECT I
PROJECT I
SITE ADDR | MANAGER: | Shore Acres
MSS
403 East 12t | Gas
h Street, Oakl | -
and, CA | PROJECT NU
TASK NUMBE | | GHA.19009 | |-------------------------------------|---------------------------|--|---|------------------|---|--------------------------------|-------------------| | | WELL ID: | <u>MW-1</u> | | | TYPE C | OF WELL: | <u>Monitoring</u> | | WATER CO | De | :
I Total Depth:
pth to Water:
lumn Length: | 10.90° | -
- | WELL DIAME
2-inch: _
4-inch: _
6-inch: _ | TER: | -
-
- | | | Water Column
B, GY | n Length x M
_ x | ultiplier x No. | Volumes =
x | Purge Volume > No. Volumes | = | Purge Volume | | MULTIPLIE | | Schedule 40
2-inch:
4-inch:
6-inch: | PVC; Gallons/
0.17
0.65
1.5 | Linear Foot | Based on Casi | ng Diame | ter: | | PURGE ME | Disp | osable Bailer
PVC Bailer
ersible Pump
Other | | SAMPLE I | | able Bailei
Pump:
Other: | | | TIME | VOLUME
PURGED
(gal) | рН | TEMP. | COND.
(uS/cm) | DO (mg/l) | ORP
(mV) | COMMENTS | | 1152 | 1-5 | 7.02 | 21.5 | 677 | | | | | 1150 | 3.0 | 7.02 | 21-1 | 697 | | | | | 1253 | ^ .> | 7.07 | 77.7 | 666 | | | same | | | | | *************************************** | | | | | | | | | | | | | | | | 1 | | | | | | | | 14 | | | | | | | | | | | | | | | | _ | | | | | | | | | | | ANAGER: | MSS | | and, CA | | | GHA.19009 | |--------------------------------------|---|--
--|---|--|--| | WELL ID: | MW. | -2 | - | TYPE (| OF WELL: | Monitoring | | Well
De _l
Water Col | oth to Water:
umn Length: | 19.95
12.49
7.46 | -
-
- | WELL DIAME
2-inch:
4-inch:
6-inch: | ETER: | •
•
• | | Vater Colum
7 , りん | n Length x Mi | ultiplier x No. 1
0.17
Multiplier | Volumes = I | Purge Volume 3 No. Volumes | = | 3.75 Purge Volume | | | Schedule 40 F
2-inch:
4-inch:
6-inch: | PVC; Gallons/l
0.17
0.65
1.5 | Linear Foot | Based on Cas | ing Diamei | ter: | | Dispo | PVC Bailer | <u> </u> | SAMPLE N | | Pump: | | | VOLUME
PURGED
(gal) | рН | TEMP.
(°C) | COND.
(uS/cm) | DO (mg/l) | ORP
(mV) | COMMENTS | | 1.5 | 6.90 | 21.9
21.5
21.5 | 907
759
749 | | | sample | | | UMN DATA: Well De Water Col JME CALCU Vater Column Column Le Column Le DATA: Multiplier for S Subme VOLUME PURGED (gal) | WELL ID: WELL ID: WELL ID: WHIN DATA: Well Total Depth: Depth to Water: Water Column Length: Vater Column Length x Ming T Column Length A Column Length DATA: Multiplier for Schedule 40 For 2-inch: 4-inch: 6-inch: HOD: Disposable Bailer PVC Bailer Submersible Pump Other VOLUME PURGED (gal) 1.5 6.35 | WELL ID: Total Depth: Depth to Water: Vater Column Length: Vater Column Length x Multiplier x No. Tolumn Length x Multiplier x No. Water Column Length x Multiplier x No. Tolumn Length x Multiplier x No. Water Column Length x Multiplier x No. Tolumn Length x Multiplier x No. Well Total Depth: 1 2 . 4 9 Water Column Length: Water Column Length x Multiplier x No. Water Column Length x Multiplier x No. Well Total Depth: 1 2 . 4 9 Water Column Length: Water Column Length x Multiplier x No. L | ANAGER: MSS SS: 403 East 12th Street, Oakland, CA WELL ID: MW - Z UMN DATA: (feet) Depth to Water: 12 . 9 9 Water Column Length: 7 9 6 UMRE CALCULATION: Vater Column Length x Multiplier x No. Volumes = Foot x x Multiplier DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5 HOD: SAMPLE M VOLUME PVC Bailer Submersible Pump Other VOLUME PURGED pH TEMP. COND. (uS/cm) 1.5 6.32 21.9 807 | WELL ID: DIAME Vell Total Depth: Depth to Water: Water Column Length: Water Column Length x Multiplier x No. Volumes = Purge Volume 7, 10 x Multiplier TOlumn Length WELL DIAME 2-inch: 6-inch: 12, 49 WELL DIAME 2-inch: 4-inch: 0-inch: 1, 17 4-inch: 0.65 6-inch: 1.5 MUltiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Case 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5 MOD: Disposable Bailer PVC Bailer Submersible Pump Other VOLUME PURGED (gal) TEMP. (°C) (uS/cm) DO (mg/l) (mg/l) 1.5 COND. DO (mg/l) | ANAGER: MSS 403 East 12th Street, Oakland, CA WELL ID: MW-7 TYPE OF WELL: UMN DATA: Well Total Depth: 19,99 46 | | FIELD TECHNICIAN: | Dins | | |-------------------|--------|---| | DATE: | 9/9/19 | _ | | PROJECT N
PROJECT N
SITE ADDRI | MANAGER: | Shore Acres
MSS
403 East 12t | Gas
h Street, Oakl | -
and, CA | PROJECT NUTASK NUMBI | | GHA.19009 | |--------------------------------------|---------------------------|--|--------------------------------------|-------------------------|---|--------------------------------|-------------------| | | WELL ID: | Mos- | 3 | - | TYPE (| OF WELL: | Monitoring | | WATER CO | De | Total Depth:
pth to Water:
lumn Length: | 11.62 | -
-
- | WELL DIAME
2-inch: _
4-inch: _
6-inch: _ | ETER: | -
-
- | | | LUME CALCU
Water Colum | | ultiplier x No. ' | Volumes = I | Purge Volume | | | | | 6,19
er Column Le | x | O.(7
Multiplier | | No. Volumes | = | 3.25 Purge Volume | | MULTIPLIEF | | Schedule 40 I
2-inch:
4-inch:
6-inch: | PVC; Gallons/
0.17
0.65
1.5 | Linear Foot | Based on Cas | ing Diame | ter: | | PURGE MET | Disp | osable Bailer
PVC Bailer
ersible Pump
Other | | SAMPLE I
-
-
- | | able Bailer
Pump:
Other: | | | TIME | VOLUME
PURGED
(gal) | рН | TEMP.
(°C) | COND.
(uS/cm) | DO (mg/l) | ORP
(mV) | COMMENTS | | 1200 | 1.25 | 6.85 | 20.9 | 847 | | | | | 1215 | 3.25 | 6.67 | 20.5 | 859
804 | | | | | 1217 | 7 | | | | | | Saupl | | | | | | | | , | <u> </u> | | | | FIELD TECHNICIAN: DATE: | PROJECT IN
PROJECT IN
SITE ADDR | MANAGER: | Shore Acres
MSS
403 East 12t | Gas
h Street, Oak | -
-
and, CA | PROJECT NUTASK NUMBI | | GHA.19009 | |---------------------------------------|---|--|--------------------------------------|-------------------|---|--------------------------------|-------------------| | | WELL ID: | MN | 1 | - | TYPE (| OF WELL: | Monitoring | | WATER CO | De | Total Depth:
pth to Water:
lumn Length: | | -
- | WELL DIAME
2-inch: _
4-inch: _
6-inch: _ | | ·
· | | | LUME CALCU
Water Colum
LOC
ter Column Le | in Length x Mi | ultiplier x No. O, () Multiplier | | Purge Volume 3 No. Volumes | = | 3.75 Purge Volume | | MULTIPLIE | | Schedule 40 F
2-inch:
4-inch:
6-inch: | PVC; Gallons/
0.17
0.65
1.5 | Linear Foot | Based on Cas | ing Diame | ter: | | PURGE ME | Disp | osable Bailer
PVC Bailer
ersible Pump
Other | | SAMPLE I | | able Bailer
Pump:
Other: | | | TIME | VOLUME
PURGED
(gal) | рН | TEMP.
(°C) | COND.
(uS/cm) | DO (mg/l) | ORP
(mV) | COMMENTS | | 1117 | 1.5 | 6.95 | U.8 | 622 | 1 | • | | | 1121 | 2.75 | 12:07 | 22.6 | 617 | | | | | 1127 | 3.73 | 7.03 | 22.7 | 610 | | | same | | | | | | | | | | | | ECHNICIAN: | • | W. | | 3. M 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 - 1924 | | | | | | | | | | 1 | | |------------|--|---|-----------------|-------------------------|---|--------------------------------|--------------| | | WELL ID: | 1W-S | • | _ | TYPE C | OF WELL: | Monitoring | | WATER CO | De | :
I Total Depth:
pth to Water:
lumn Length: | 12,91 | -
-
- | WELL DIAME
2-inch: _
4-inch: _
6-inch: _ | TER: | | | PURGE VOI | L <mark>UME CALC</mark> U
Water Colum | | ultiplier x No. | Volumes = | Purge Vo l ume | | | | Wai | ्रि ३ ।
ter Column Le | _ x
ength | Multiplier | _ x | No. Volumes | = | Purge Volume | | PURGE ME | Disp | 4 2-inch:
4-inch:
6-inch:
osable Bailer
PVC Bailer
ersible
Pump
Other | 0.65 | SAMPLE I
-
-
- | | able Bailer
Pump:
Other: | | | TIME | VOLUME
PURGED
(gal) | рН | TEMP.
(°C) | COND.
(uS/cm) | DO (mg/l) | ORP
(mV) | COMMENTS | | 1226 | (- Z) | 6.89 | 23.0 | 1115 | | | | | 229
237 | 2.5 | 7.01 | <u> 22. 3</u> | 1150 | | | | | 13)
135 | 3-7 | 710 | 722.4 | 1010 | | | sayu | | | | | , , | | | | | | | | | | | 7 | | | | | | | | i gen | | | | DATE: | PROJECT NAME
PROJECT MANA
SITE ADDRESS: | AGER: | Shore Acres
MSS
403 East 12t | Gas
h Street, Oakl | and, CA | PROJECT NU
TASK NUMBE | | GHA.19009 | |---|---------------------|--|------------------------|-------------|---|-------------------------------|--------------| | V | VELL ID: | MW- | 6 | - | TYPE C | F WELL: | Monitoring | | WATER COLUM | Well | Total Depth:
pth to Water:
lumn Length: | 19.92
19.68
9.24 | -
-
- | WELL DIAME
2-inch: _
4-inch: _
6-inch: _ | | -
-
- | | PURGE VOLUMI
Wat | | | uitiplier x No. ' | Volumes = | Purge Volume | | | | 9.
Water C | /건
olumn Le | x | O-(ナ
Multiplier | _ x | No. Volumes | = | Purge Volume | | MULTIPLIER DA
Mult | | Schedule 40 I
2-inch:
4-inch:
6-inch: | | Linear Foot | Based on Casi | ng Diame | ter: | | PURGE METHOI | Disp | osable Bailer
PVC Bailer
ersible Pump
Other | | SAMPLE N | | ble Bailer
Pump:
Other: | | | TIME PU | JRGED | рН | TEMP. | COND. | DO ///\ | ORP | COMMENTS | | 1 1 | (gal) | | (°C) | (uS/cm) | DO (mg/l) | (mV) | COMMENTS | | 107 [.] | (gal)
1-5 | 6.96 | 21.4 | (uS/cm) | DO (mg/l) | (mV) | COMMENTS | | 1137 1.
438 3.
1142 4. | (gal)
T-3 | 6,96
6,98
702 | | 1 | DO (mg/l) | (mV) | Sample | | 1137 1.
438 3.
1142 4.
1144 | (gal)
7-3
7-5 | 6.90
6.90
702 | 21.4 | 1 | DO (mg/l) | (mV) | |