RECEIVED

By Alameda County Environmental Health at 2:46 pm, Oct 03, 2014

Soil Vapor Investigation Report METRO VALLEY CLEANERS 224 Rickenbacker Circle, Livermore, California

18 August 2014 AGE Project No. 08-1640

PREPARED FOR:

Mr. Robert Strong
METRO VALLEY CLEANERS

PREPARED BY:

Advanced GeoEnvironmental, Inc.

Stockton • San Francisco Bay Area • Monterey • Los Angeles • Spokane • Reno • Dallas (800) 511-9300 www.advgeoenv.com

PERJURY STATEMENT

Subject: Metro Valley Cleaners

224 Rickenbacker Circle, Livermore, California

Soil-Vapor Investigation Report - dated 18 August 2014

"I declare under penalty of perjury, that the information and/or recommendations in the attached document or report is true or correct to the best of my knowledge."

Mr. Robert Strong

500 Bollinger Canyon Way #A4

San Ramon, CA 94582

Date

Soil Vapor Investigation Report METRO VALLEY CLEANERS 224 Rickenbacker Circle, Livermore, California

18 August 2014 AGE Project No. 08-1640

Advanced GeoEnvironmental, Inc.

Stockton • San Francisco Bay Area • Monterey • Los Angeles • Spokane • Reno • Dallas (800) 511-9300 www.advgeoenv.com

PREPARED BY:

Daniel J. Villanueva Project Geologist

PROJECT MANAGER:

William R. Little

Senior Project Geologist

California Professional Geologist No. 7473

No. 7473

F OF CALIF

No. 7473

REVIEWED BY:

William R. Little

Senior Project Geologist

California Professional Geologist No. 7473

Soil-Vapor Investigation Report METRO VALLEY CLEANERS 224 Rickenbacker Circle, Livermore, California

TABLE OF CONTENTS

SECTION	<u>PAGE</u>
1.0. INTRODUCTION	1
2.0. PROCEDURES	
2.1. SOIL-VAPOR WELL INSTALLATION	2
2.3. EQUIPMENT DECONTAMINATION	
3.0. FINDINGS	3
4.0. CONCLUSIONS	5
5.0. RECOMMENDATIONS	6
6.0. LIMITATIONS	6
<u>FIGURES</u>	

Figure 1 – Location Map

Figure 2 – Site Plan

Figure 3 – Lateral Distribution of Hydrocarbons in Soil-Vapor

Figure 4 – Lateral Extent of Adsorbed PCE 4 to 5 feet bsg

TABLES

Table 1 – Soil Vapor Analytical Data

Table 2 – Soil Analytical Data – Methods 8260B/8015B

<u>APPENDICES</u>

Appendix A – ACEHD Directive Letter

Appendix B – Zone 7 Drilling Permits

Appendix C – Purge Volume Calculations

Appendix D – Soil-Vapor Laboratory Analytical Data- McCampbell

Soil-Vapor Investigation Report METRO VALLEY CLEANERS 224 Rickenbacker Circle, Livermore, California

1.0. INTRODUCTION

At the request of Mr. Bob Strong, *Advanced* GeoEnvironmental, Inc. (AGE) has prepared this, *Soil-Vapor Investigation Report*, for the property located at 224 Rickenbacker Circle, Livermore, California (site). The scope of work included the installation and sampling of four (4) soil-vapor wells to evaluate chlorinated hydrocarbon impact to shallow soil-vapor.

The work was performed as directed by the Alameda County Environmental Health Department (ACEHD) by letter dated 09 June 2014 (Appendix A). Additionally, field work was performed utilizing guidance provided in the California Environmental Protection Agency (EPA) Department of Toxic Substances Control Los Angeles Regional Water Quality Control Board, San Francisco Regional Water Quality Control Board, Advisory Active Soil Gas Investigations, dated April 2012.

The location of the site and surrounding area are illustrated in Figure 1; structures, former dry cleaning machine, chemical storage area locations, soil boring and monitoring well locations are illustrated in Figure 2.

2.0. PROCEDURES

Soil boring advancement, well installation and vapor sampling procedures were outlined in the AGE-prepared, *Soil-Vapor Investigation Work Plan*, dated 28 May 2014. Applicable and required well installation/boring permits are included in Appendix B.

2.1. SOIL-VAPOR WELL INSTALLATION

On 03 July 2014, AGE advanced four (4) soil borings utilizing a 4-inch diameter hand auger to total depths of 5 feet below surface grade (bsg). Upon reaching the total depth each boring was converted into a semi-permanent, soil-vapor well (VP-1 through VP-4) using a six-inch long vapor probe and 1/4-inch diameter Teflon tubing. The probe tip and tubing were lowered to the total depth and filter pack material consisting of #2/12 sand was used to fill the void space between the tip and the borehole to approximately one-foot above the vapor probe. Following filter placement, approximately one foot of dry granular bentonite was placed above the filter pack. The remainder of the void space between the tubing and the open borehole was filled with bentonite that was hydrated at the surface. A drivable well vault was installed within concrete over each soil-vapor sampling point.

2.2. SOIL-VAPOR SAMPLE COLLECTION AND ANALYSIS

On 08 July 2014, soil-vapor samples were collected from wells VP-1 through VP-4. Above ground, the surface around the soil-vapor tubing was sealed with bentonite to prevent ambient air intrusion. To ensure that a reliable soil-vapor sample was collected with no ambient air breakthrough, AGE applied an appropriate amount (approximately 6 to 8 ounces) of isopropyl alcohol (IPA) as a tracer to adequately wet cotton balls; the wetted cotton balls were then placed next to the sampling tubing and then covered with a plastic shroud. Prior to sample collection each well was purged for a total of three purge volumes. One purge volume was determined by calculating the sum of the internal volume of the tubing, the vapor point and the volume of the boring trace (Appendix C).

Following purging, the end of the Teflon tubing, from the soil-vapor probe, was attached to a dedicated sampling inlet manifold using a compression fitting. The sampling inlet manifold was constructed of vapor-tight stainless steel: a particulate filter (5 micron), a calibrated flow restrictor (less than 200 milliliters per minute), a tee fitting, two vacuum gauges and connections for both purge and sampling canisters. A one-liter sample canister was attached at the tee of the sampling manifold assembly. Before attaching the manifold to the tubing, a 10 minute shut-in test was conducted on the manifold assembly to ensure no leaks were occurring in the sampling train.

Following the shut-in test, the sample canister valve was then opened and the initial vacuum was recorded. A sample was collected until the vacuum on the second gauge (located after the flow restriction) was below 5-inches of mercury (Hg). The sampling canister was then closed and the sampling port on the canister was capped with a brass end cap.

All vapor samples were labeled with sample ID, project name, date, time and samplers' initials. The sample was logged on a chain-of-custody form, and placed into a dry container. Subsequently, all the collected soil-vapor samples were delivered to McCampbell Analytical Inc. (MAI), a CDPH-certified analytical laboratory, for analysis of the following chemical constituents:

- Volatile organic compound (VOC) full scan by EPA method TO-15; and
- IPA (tracer) in accordance with EPA Method TO-15.

2.3. EQUIPMENT DECONTAMINATION

Prior to use, all subsurface tools for sample collection were thoroughly rinsed with clean tap water after being washed with a solution of Alconox.

3.0. FINDINGS

The residual soil-vapor contamination at the site was inferred based on laboratory analysis of soil-vapor samples. A total of four soil-vapor samples were collected from site vapor wells on 08 July 2014 and analyzed for the constituents listed in section 2.2. The following is a summary of results:

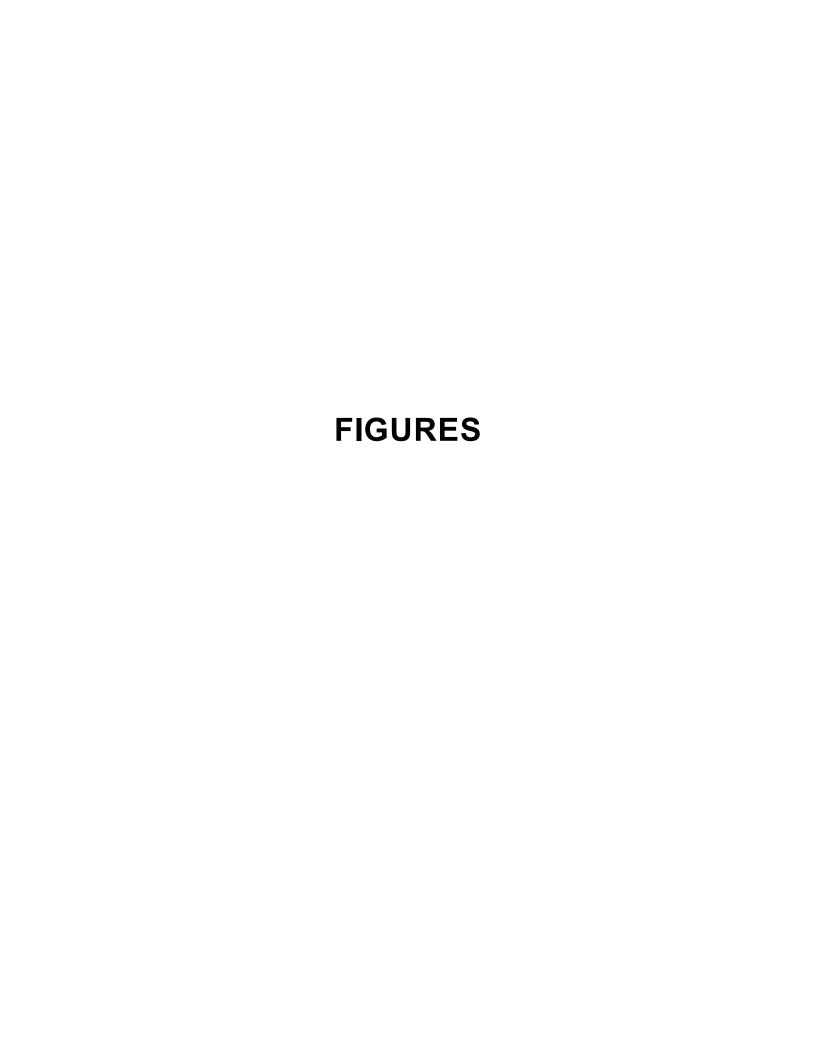
- Acetone was detected in the samples collected from wells VP-3 and VP-4 at concentrations of 110 micrograms per cubic meter (μg/m³) and 270 μg/m³, respectively;
- Acrolein was detected in the samples collected from wells VP-1 and VP-3 at concentrations of 41 μg/m³ and 12 μg/m³, respectively
- Benzene was detected in all four soil-vapor samples at a maximum concentration of 240 μg/m³ (VP-1);
- Toluene ethylbenzene and xylenes were detected in all four vapor samples at maximum concentrations of 880m μg/m³ toluene, 190 μg/m³ ethylbenzene and 940 μg/m³ total xylenes (VP-1);
- Carbon disulfide was detected in all four vapor samples at a maximum concentration of 220 μg/m³ (VP-1);
- Chloroform was detected in VP-1 at a concentration of 100 μg/m³;
- Chloromethane was detected VP-1, VP-3 and VP-4 at a maximum concentration of 24 μg/m³;
- Cyclohexane was detected in all four vapor samples at a maximum concentration of 99 μg/m³ (VP-1);
- Dichlorodifluoromethane was detected in all four vapor samples at a maximum concentration of 180 μg/m³ (VP-1);
- 1,1-dichloroethene was detected in all four vapor samples at a maximum concentration of 2,200 µg/m³ (VP-1);
- Cis-1,2-dichloroethene was detected in all four vapor samples at a maximum concentration of 330,000 μg/m³ (VP-1);
- Trans-1,2-dichloroethene was detected in all four vapor samples at a maximum concentration 250,000 $\mu g/m^3$ (VP-1);
- 1,2-dichloropropane was detected in VP-1 and VP-4 at concentrations of 70 μg/m³ and 11 μg/m³;
- Trans-1,3-dichloropropance was detected in VP-4 at a concentration of 9.1 µg/m³;

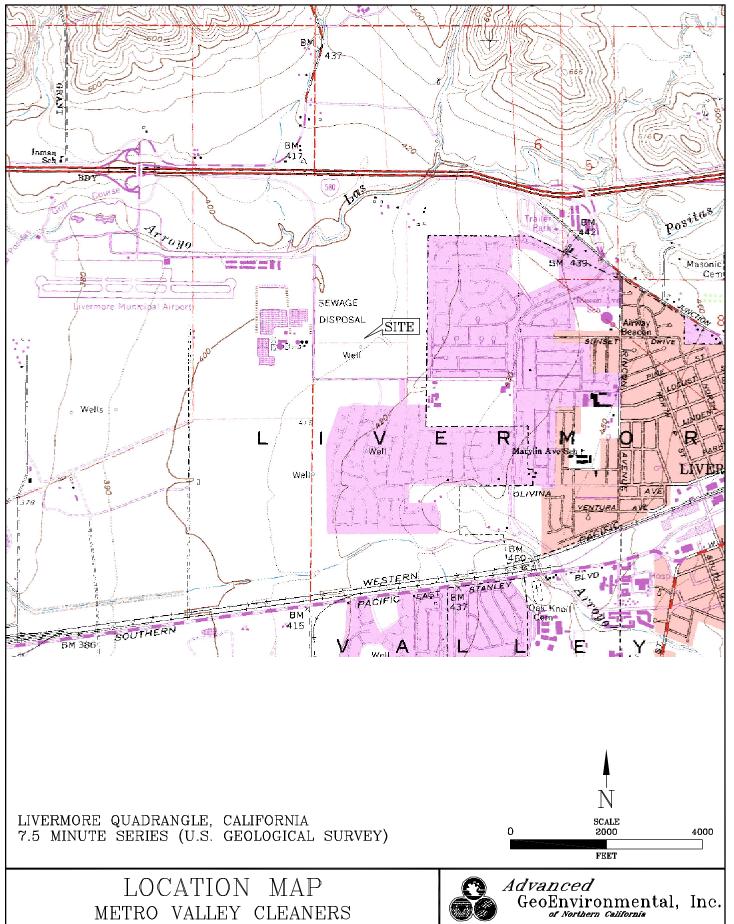
- Ethanol was detected in the vapor sample collected from VP-4 at a concentration of 170 μg/m³;
- Ethyl tertiary butyl ether (ETBE) was detected in the vapor samples collected from VP-1 and VP-3 at concentration of 140 μg/m³ and 2.3 μg/m³;
- 4-ethyltoluene was detected in all four vapor samples at a maximum concentration of 65 μg/m³ (VP-1);
- Heptane was detected in all four vapor samples at a maximum concentration of 140 μg/m³ (VP-4);
- Hexane was detected in vapor samples VP-1, VP-3 and VP-4 at a maximum concentration of 130 μg/m³ (VP-1 and VP-4);
- 2-Hexanone was detected in vapor samples VP-3 and VP-4 at concentrations of 2.3 μg/m³ and 6.6 μg/m³;
- 4-Methyl-2-pentanone (MIBK) was detected in vapor sample VP-4 at a concentration of 5.7 μg/m³;
- Methylene chloride was detected in vapor sample VP-2 at a concentration of 3.2 µg/m³;
- Methyl methacrylate was detected in vapor sample VP-4 at concentration of 2.6 µg/m³;
- Styrene was detected in all four vapor samples at a maximum concentration of 8.7 µg/m³;
- Tetrachloroethene (PCE) was detected in all four vapor samples at a maximum concentration of 130,000 μg/m³ (VP-1);
- Tetrahydrofuran was detected in the vapor sample collected from VP-3 at a concentration of 14 $\mu g/m^3$;
- Trichloroethene (TCE) was detected in all four vapor samples at a maximum concentration of 160,000 μg/m³ (VP-1);
- Trichlorofluoromethane was detected in all four vapor samples at a maximum concentration of 61 μg/m³ (VP-1);
- 1,2,4-trimethylbenezne was detected in all four vapor samples at a maximum concentration of 150 μg/m³ (VP-1);
- 1,3,5-trimethylbenzene was detected in all four vapor samples at a maximum concentration of 56 μg/m³ (VP1);
- Vinyl chloride was detected in VP-1, VP-3 and VP-4 at a maximum concentration of 1,000 $\mu g/m^3$ (VP-1 and VP-4); and

No other analytes were reported in the analyzed soil-vapor samples. Selected analytical results of soil-vapor samples are summarized in Table 1. Laboratory report (MAI Work Order No. 1407290), QA/QC reports and chain of custody forms are included in Appendix D. The laboratory EDF file was QA/QC checked and uploaded to the state GeoTracker database under confirmation number 3995841324.

4.0. CONCLUSIONS

Based upon the findings of this investigation, AGE concludes the following:

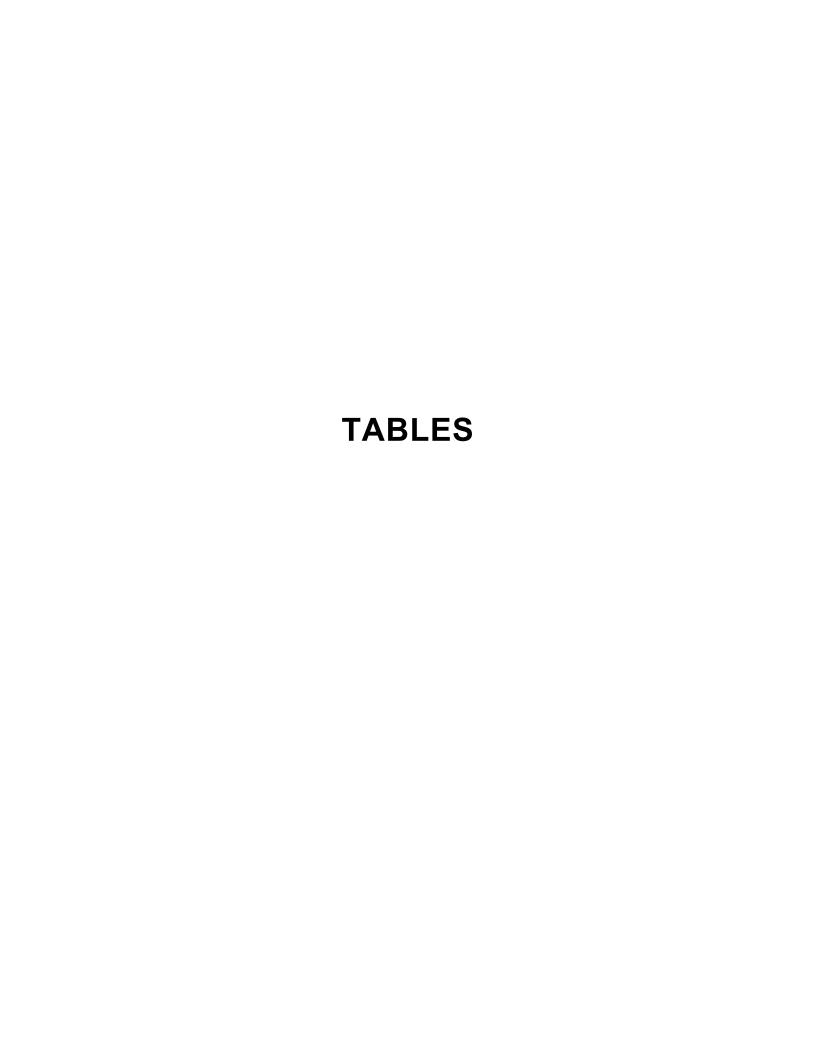

- Petroleum hydrocarbon constituents BTEX were detected in all four of the soilvapor samples collected during the July 2014 investigation. All constituents were below San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels (ESLs) for a commercial setting (Table 1);
- Chlorinated hydrocarbon constituents PCE and TCE were detected at elevated concentrations above ESLs in all vapor samples collected during the July 2014 investigation (Table 1 and Figure 3);
- A total of twenty-three other constituents were detected at low concentrations in selected samples during the July 2014 investigation (Appendix D);
- Tracer gas IPA was not detected in any of the samples collected during the investigation. Based on the general absence of tracer gas in the soil-vapor samples, it appears that vapor samples collected adequately represent subsurface conditions at the site (Table 1);
- Although concentrations in the area of the former dry cleaning unit (near VP-1) are significantly lower than concentrations originally reported in the sample collected at SG-5 (pre-remediation), chlorinated hydrocarbon constituents were reported at elevated levels in samples collected at the southern edge of the building (Table 1 and Figure 3);
- Based on chlorinated hydrocarbon impact reported in soil-vapor samples collected during the July 2014 investigation, and a comparison of historical shallow soil data, a significant adsorbed mass appears to be located at the southern edge of the property in soils at five feet bsg (Figure 4). Previously utilized/installed soil vapor extraction (SVE) wells were screened from five to twenty feet bsg which targeted the lower vadose zone above the groundwater table. Furthermore, remediation did not capture all of the shallow soil-vapor impact encountered during historical investigation at five feet bsg, which appears to be the source for the elevated vapor concentrations encountered during the July 2014 investigation.


5.0. RECOMMENDATIONS

Based on the results of this and historical investigations, AGE recommends preparation of a human health risk assessment of the residual soil-vapor contamination and the residual remaining chlorinated hydrocarbon impact in shallow soils at the site.

6.0. LIMITATIONS

Our professional services were performed using the degree of care and skill ordinarily exercised by environmental consultants practicing in this or similar localities. The findings were based mainly upon analytical results provided by an independent laboratory. Evaluations of the geologic/ hydrogeologic conditions at the site for the purpose of this investigation are made from a limited number of available data points (i.e. soil-vapor samples) and subsurface conditions may vary away from these data points. No other warranty, expressed or implied, is made as to the professional recommendations contained in this report.



224 RICKENBACKER CIRCLE LIVERMORE, CALIFORNIA

PROJECT NO. AGE-NC-08-1640	FILE: LOCATION	FIGURE:
DATE: 03 OCTOBER, 2008	DRAWN BY: MAC	1

TABLE 1

SOIL-VAPOR ANALYTICAL DATA Metro Valley Cleaners 224 Rickenbacker Circle, Livermore, CA (µg/m³)

Sample ID	Date	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	VC	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Tracer Compound
				EPA METI	HOD 8260 / M	lobile Labora	tory / Syrin	ge Sampling ¹				
SG-1	01/22/07	16,000	150	<100	<100	<100	<100	<100	<100	<100	<100	<100
SG-2	01/22/07	15,000	480	<100	<100	<100	<100	<100	320	<100	120	<100
SG-3	01/22/07	38,000	18,000	<100	<100	17,000	<100	<100	220	<100	<100	<100
SG-4	01/22/07	11,000	1,200	<100	<100	450	<100	<100	210	<100	<100	<100
SG-5	01/22/07	860,000	4,600,000	4,700	140,000	780,000	1,800	<100	<100	<100	<100	<100
SG-6	01/22/07	25,000	1,300	<100	<100	<100	<100	<100	250	<100	<100	<100
SG-7	01/22/07	5,700	3,000	<100	<100	470	<100	<100	550	120	450	<100
SG-8	01/22/07	4,300	310	<100	<100	<100	<100	<100	270	<100	100	<100
SG-9	01/22/07	4,100	3,100	<100	500	1,700	<100	<100	270	<100	130	<100
EPA METHOD TO-15 / Summa Cannisters ²												
SG-10	12/17/07	<2.1	<0.86	<1.3	<0.90	<0.90	<0.40	2.8	31	<0.51	48	<2.7
SG-11	12/17/07	64	<0.83	<1.3	<0.88	<0.88	< 0.39	3.5	25	<0.48	49	<2.6
SG-12	12/17/07	10	<0.82	<1.2	<0.86	<0.86	< 0.39	2.5	16	<0.48	31.4	<2.6
SG-12 ³	12/17/07	8.7	<0.78	<1.2	<0.82	<0.82	< 0.37	2.2	14	< 0.46	26.3	<2.6
SG-13	12/17/07	<1.3	< 0.55	< 0.79	< 0.55	< 0.55	<0.25	3.1	48	<0.31	43.2	<1.6
SG-14	12/17/07	<2.0	<0.87	<1.2	<0.87	<0.87	< 0.39	<1.4	3.3	1.7	8.0	<2.6
SG-15	12/17/07	<1.9	<0.77	<1.2	<0.81	<0.81	< 0.37	4.0	68	< 0.46	50	<2.4
SG-16	12/17/07	15	22	<1.2	8.2	7.9	<0.37	6.6	30	8.2	59	
V-1A	09/02/10	<2.5	<2.5	<2.5	<2.5	<2.5	<1.0	<2.5	<2.5	<2.5	<2.5	<2.5
V-2A	09/02/10	<2.5	<2.5	<2.5	<2.5	<2.5	<1.0	<2.5	<2.5	<2.5	<2.5	<2.5
V-3A	09/02/10	<2.5	<2.5	<2.5	<2.5	<2.5	<1.0	<2.5	<2.5	<2.5	<2.5	<2.5
VP-1	07/08/14	130,000	160,000	2,200	250,000	330,000	1,000	240	880	190	940	<200
VP-2	07/08/14	87,000	700	5.8	300	500	<1.3	41	240	48	230	<50
VP-3	07/08/14	47,000	370	5.1	120	220	1.3	6.6	250	58	260	<50
VP-4	07/08/14	120,000	5,600	380	9.1	13,000	1,000	120	460	97	440	<50
	ESL:	2,100	3,000	880,000	2,600,000	-	160	420	1,300,00	580,000	440,000	-
	CHHSL:	180	528		31,900	1,590	13.3	36.2	135,000		315,000	

Notes:

µg/m³ micrograms per cubic meter
PCE: Tetrachloroethene
TCE: Trichloroethene
1,1-DCE: 1,1- Dichloroethene
Tcis 1,2-DCE: Trans 1,2-Dichloroethene
Cis 1,2-DCE: Cis 1,2-Dichloroethene
VC: Vinyl Chloride

Indicates constituents were not detected at a concentration greater than the laboratory reporting limit shown.

Note 1: Tracer compound: 1,1-diflouroethane
Note 2: Tracer compound: isopropanol

Note 3: duplicate sample

ESL: San Francisco Bay Regional Water Quality Control Board California Environmental Protection Agency Environmental Screening Level (soil gas) for commercial/industrial land use.

indicates there is no ESL for the listed constituent

CHHSL: California Human Health Screening Levels (soil gas) for commercial/industrial land use.

--: indicates there is no CHHSL for the listed constituent.

TABLE 2

SOIL ANALYTICAL DATA - EPA METHODS 8260B / 8015B Metro Valley Cleaners 224 Rickenbacker Circle, Livermore, CA (mg/kg)

Sample ID	Depth (ft bsg)	Date	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	VC	TPH-g	TPH-d	TPH-mo
S-1-5*	5	10/25/05	0.23	<0.012	<0.012	<0.012	<0.012	<0.012	-	-	-
S-1-10*	10	10/25/05	0.032	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
S-1-15*	15	10/25/05	0.031	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
S-1-25*	25	10/25/05	0.057	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
S-1-35*	35	10/25/05	0.029	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
S-2-5*	5	10/25/05	0.45	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
S-2-10*	10	10/25/05	0.059	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
S-2-15*	15	10/25/05	0.036	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
S-2-25*	25	10/25/05	0.048	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
S-2-35*	35	10/25/05	0.023	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
S-3-25*	25	10/25/05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
S-3-35*	35	10/25/05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
P-1@1	1	01/22/07	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.24	2.6	<48
P-1@5	5	01/22/07	0.0055	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	<0.23	190	1,000
P-2@1	1	01/22/07	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.24	2.9	<49
P-2@5	5	01/22/07	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	<0.25	< 0.99	<50
S-1@24#	24	03/02/07	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	<0.24	< 0.96	<48
S-2@26#	26	03/02/07	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	<0.22	11	<48
S-3@2#	2	03/01/07	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	0.33	4.5	<47
S-3@4#	4	03/01/07	0.012	0.013	< 0.0049	0.014	0.061	< 0.0049	< 0.23	1.0	<46
S-3@8#	8	03/01/07	0.079	0.0066	<0.0048	<0.0048	<0.0048	<0.0048	<0.24	< 0.96	<48
S-3@10#	10	03/01/07	0.023	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.23	13	<47
S-3@27#	27	03/01/07	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	<0.22	< 0.99	<49
S-4@25#	25	03/01/07	<0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	<0.0049	< 0.23	<0.98	<49
S-5@30#	30	03/01/07	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.22	1.0	<46
1-B1/S-10	10	11/27/07	0.079	< 0.0049	<0.0049	< 0.0049	< 0.0049	<0.0049	< 0.23	<1.0	<50
1-B1/S-20	20	11/27/07	0.017	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.24	17	<50
1-B1/S-30	30	11/27/07	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	<0.0049	< 0.24	< 0.99	<50
1-B1/S-40	40	11/27/07	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.25	< 0.99	<49
1-B1/S-50	50	11/27/07	0.014	<0.0049	<0.0049	< 0.0049	< 0.0049	<0.0049	< 0.23	1.1	<49
1-B1/S-60	60	11/27/07	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.23	< 0.99	<50
1-B1/S-70	70	11/27/07	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	<0.0049	< 0.24	< 0.98	<49
1-B1/S-80	80	11/27/07	< 0.0049	< 0.0049	< 0.0049	< 0.0049	<0.0049	<0.0049	< 0.23	<1.0	<50
1-B1/S-90	90	11/27/07	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.24	< 0.99	<50
MWB1	5.5	12/18/07	0.081	<0.0047	<0.0047	< 0.0047	<0.0047	< 0.0047	< 0.23	<1.0	<50
MWB1	10.5	12/18/07	0.068	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	<0.23	<1.0	<50
MWB2	25.5	12/18/07	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.24	<1.0	<50

TABLE 2

SOIL ANALYTICAL DATA - EPA METHODS 8260B / 8015B

Metro Valley Cleaners 224 Rickenbacker Circle, Livermore, CA (mg/kg)

Sample ID	Depth (ft bsg)	Date	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	VC	TPH-g	TPH-d	TPH-mo
MW-3	26	12/19/07	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.23	2.2	<49
SVE-1-5	5	01/08/09	0.058	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	-	-	-
SVE-1-10	10	01/08/09	0.011	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	-	-	-
SVE-1-15	15	01/08/09	0.014	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	-	-	-
OW-1-5	5	01/08/09	0.040	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	-	-	-
OW-2-5	5	01/08/09	0.036	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	-	-	-
OW-2-10	10	01/08/09	0.026	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	-	-	-
SVE-2-20	20	12/07/09	0.010	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
SVE-3-10	10	12/07/09	0.0094	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	-
SVE-3-20	20	12/07/09	0.0082	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	-	
	ESLs (Shallow Soil):		0.7	0.46	1.0	0.67	0.19	0.047	83	83	2,500
	ESLs (Deep Soil):		0.7	0.46	1.0	0.67	0.19	0.085	83	83	5,000

Notes:

mg/kg: milligrams per kilogram ft bsg: feet below surface grade

<: Indicates constituents were not detected at a concentration greater than the reporting limit shown.

PCE: Tetrachloroethene
TCE: Trichloroethene
1,1-DCE: 1,1- Dichloroethene
Trans 1,2-DCE: Trans 1,2-Dichloroethene
Cis 1,2-DCE: Cis 1,2-Dichloroethene

VC: Vinyl Chloride

*: borings advanced by JML Environmental Solutions in 2005

#: borings advanced by ENGEO in 2007


-: not analyzed

ESL: San Francisco Bay Regional Water Quality Control Board California Environmental Protection Agency Environmental Screening Level (soil) for

commercial/industrial land use.

Shallow soil: soil samples collected at maximum depths of 3 meters below surface grade

Deep Soil: soil samples collected at depths greater than 3 meters below surface grade

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

June 9, 2014

Mr. Lawrence Hancock Country Club Cleaners 500 Bollinger Canyon Way #A4 San Ramon, CA 94582 Mr. Mark Ratto Peter J. Ratto Trust 670 W. Fruit Cive Forest Road Jacksonville, FL 32259

(Sent via E-mail to: <u>larry@blueskycleanersca.com</u>)

Mr. Robert Strong

Country Club Cleaners
500 Bollinger Canyon Way #A4
San Ramon, CA 94582
(Sent via E-mail to: bob@blueskycleanersca.com)

Subject: Conditional Work Plan Approval for SLIC Case RO0002913 and GeoTracker Global ID T06019748481, Perciva/Metro Valley Cleaners, 224 Rickenbacker Circle, Livermore, CA 94550

Dear Mr. Hancock, Mr. Strong, and Mr. Ratto:

County Environmental Health (ACEH) staff has reviewed the Spills, Leaks, Investigations, and Cleanups (SLIC) case file for the above-referenced site including the recently submitted documents entitled, "Soil Vapor Investigation Work Plan," dated May 28, 2014 (Work Plan). The Work Plan, which was prepared on your behalf by Advanced GeoEnvironmental, Inc., presents plans to install and sample three soil vapor probes. The Work Plan was submitted in response to ACEH correspondence dated August 29, 2013, which requested that additional soil vapor sampling be conducted to confirm that soil vapor beneath the building does not pose a risk for vapor intrusion.

The proposed scope of work for soil vapor probe installation and sampling in the Work Plan is conditionally approved and may be implemented provided that the technical comments below are incorporated during the site investigation. Submittal of a revised Work Plan is not required unless an alternate scope of work outside that described in the Work Plan and technical comments below is proposed. We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

TECHNICAL COMMENTS

1. Soil Vapor Probe Locations. We request that the proposed soil vapor well adjacent to former sampling location V-1 be moved adjacent to former soil gas sampling location SG-4. We request that the proposed soil vapor well adjacent to former sampling location V-3 be moved adjacent to former soil gas sampling location SG-6. The proposed soil vapor sampling well adjacent to former sampling location SG-5 is acceptable. We request that one additional soil vapor sample well be installed adjacent to former soil gas sampling location SG-7.

Responsible Parties RO0002913 June 9, 2014 Page 2

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Jerry Wickham), and to the State Water Resources Control Board's GeoTracker website according to the following schedule and file-naming convention:

October 9, 2014 - Soil Vapor Investigation Report File to be named: SWI_R_yyyy-mm-dd RO2913

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Digitally signed by Jerry Wickham
DN: cn=Jerry Wickham, o=Alameda County Environmental
Health, ou, email=jerry.wickham@acgov.org, c=US

Date: 2014.06.10 08:54:42 -07'00'

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297

Senior Hazardous Materials Specialist

Attachment: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Danielle Stefani, Livermore Pleasanton Fire Department, 3560 Nevada St, Pleasanton, CA 94566 (Sent via E-mail to: dstefani@lpfire.org)

Colleen Winey (QIC 8021), Zone 7 Water Agency, 100 North Canyons Pkwy, Livermore, CA 94551 (Sent via E-mail to: cwiney@zone7water.com)

Daniel Villanueva, Advanced GeoEnvironmental, Inc., 837 Shaw Road, Stockton, CA 95215 (Sent via E-mail to: dvillanueva@advgeoenv.com)

Paul Smith, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 94566(Sent via E-mail to: psmith@lpfire.org)

Jerry Wickham, ACEH (Sent via E-mail to: jerry.wickham@acgov.org)

GeoTracker, eFile

Attachment 1

Responsible Party(ies) Legal Requirements / Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). on these requirements Please visit **SWRCB** website for more information the (http://www.waterboards.ca.gov/water issues/programs/ust/electronic submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

REVISION DATE: May 15, 2014

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005;

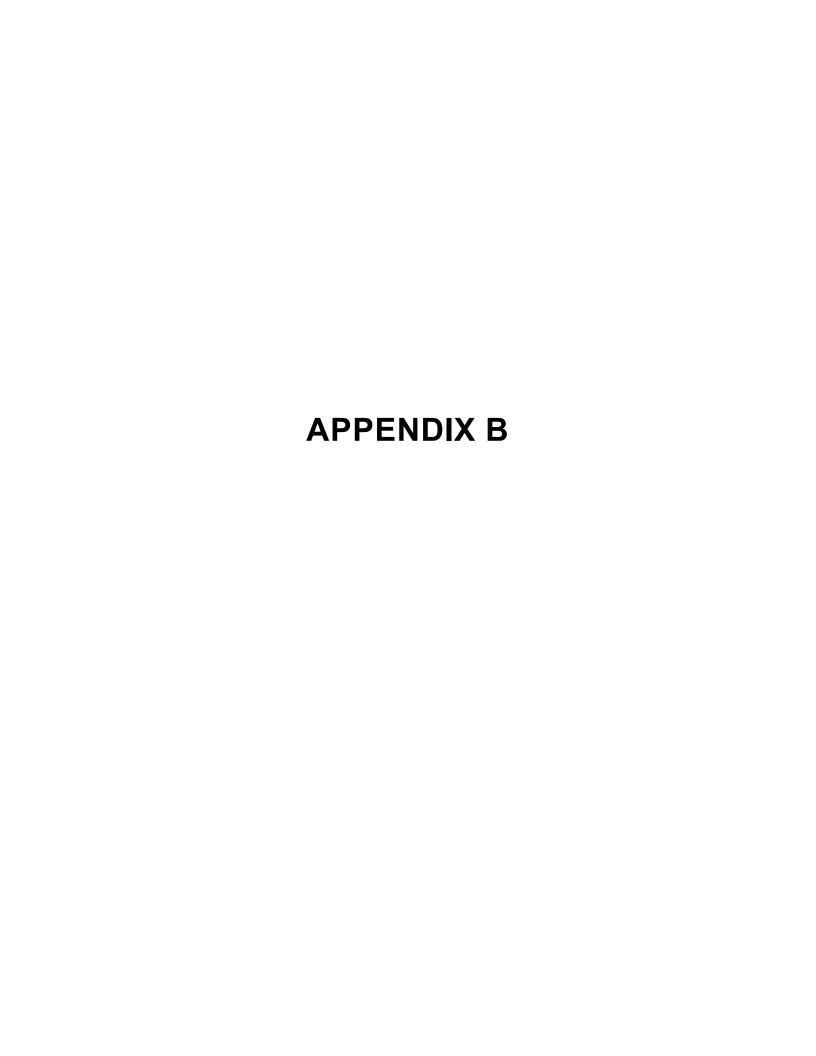
December 16, 2005; March 27, 2009; July 8, 2010,

July 25, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.


REQUIREMENTS

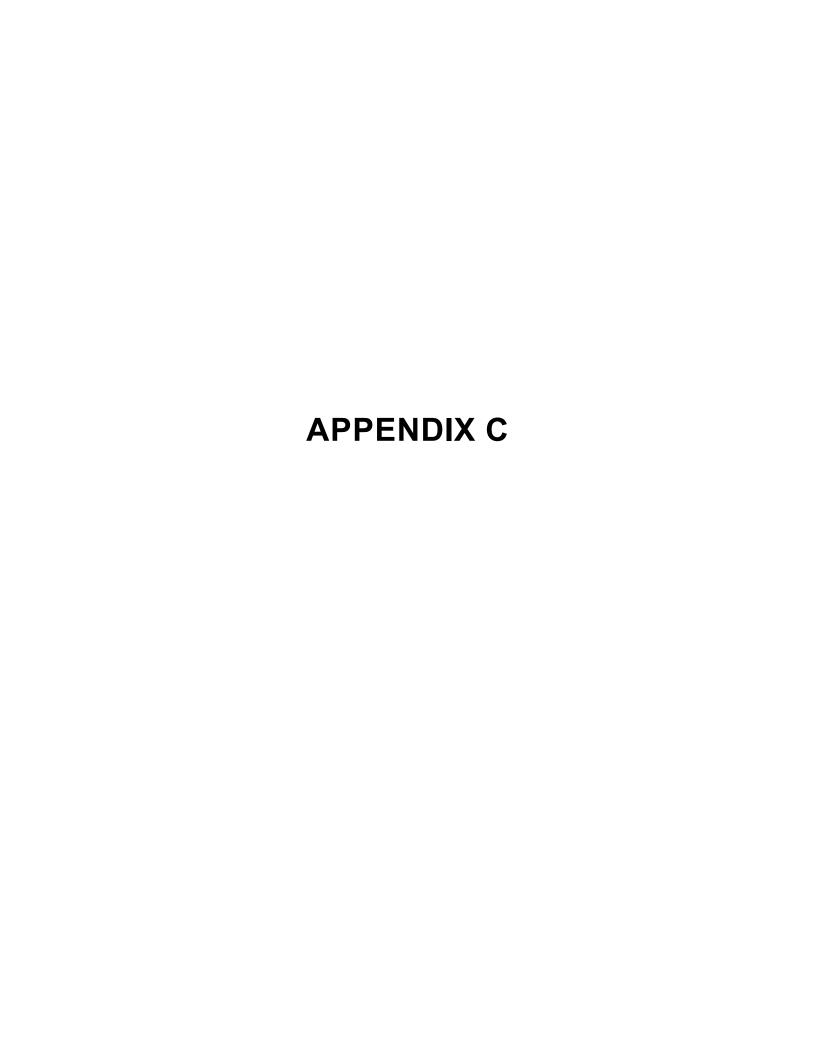
- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password. <u>Documents</u>
 with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to deh.loptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to deh.loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ZONE 7 WATER AGENCY


100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

	FOR APPLIC	ANT TO COMPLETE			
LOCATION	PROJECT ²²⁴	Rickenbacker Circle, Liver	MOTE, CA, 94551	WEL	AIT NUMBER
Coordinates S LAT: APN	Source	ft. Accuracy	vn.		(Circ
CLIENT Name Rober	rt Strong (Metro V	elley Cloaners)		A	GENERAL 1. A permit ap
Address see City San 1	Bollinger Canyon (Ramon	Hay \$34 Phone 92 Zip 94582	5-250-2894		Zone 7 office 2. Submit to 2 work the orl
APPLICANT Name	oed GeoEnvizonmente	ol Inc. (Milliam R. Little)			Drillers Re 3. Permit is vi
Address_837	Shaw Road	Phone	209-467-1006		4. Notify Zone
TYPE OF PRO	ockeas DJECT:	Zip952	13	В.	WATER SUPPL' 1. Minimum su
Well Construct Well Destructi Cathodic Prote	••	Geotechnical Investiga Contamination Investig Other	ation ×		well casing of 2. Minimum se or 20 feet for is specially
PROPOSED V Domestic Municipal	WELL USE:	Irrigation Remediation	_		 Grout places An access p on the wellhe
Industrial Dewatering		Groundwater Monitorir Other Soil-Vapor Hall	9		A sample po wellhead.
DRILLING ME Mud Rotary		ry Hollow Stem Au	197		GROUNDWATEI PIEZOMETERS 1. Minimum si
Cable Tool	Direct Push	Other hand auge	× ×		the well or p 2. Minimum s
	CENSE NO.			;	depth pract 3. Grout place
WELL SPECIF Drill Hole Casing DI Surface S	Diameter 4 (tubia	in. Maximum in. Depth ft. Number 4	ft.	 	GEOTECHNICA heavy bentonite areas of known grout shall be us
SOIL BORING Number o Hole Dian	f Borings	Maximum in. Depth	ft.		CATHODIC. Fill remie.
	TARTING DATE	30 June 2014		_	WELL DESTRU
		TE	····		SPECIAL COND completion of packed and an architecture of the control of the contr
County Ordinar	ice No. 73-68.	requirements of this pen		1	Mindelling all 80
APPLICANT'S	Willian	GALLO Date	06/12/2014	Approv	red ////////////////////////////////////

	TOD OFFICE HOW
	FOR OFFICE USE
	RMIT NUMBER 2014093
APN	11 NUMBER 99-1316-032-00
	PERMIT CONDITIONS
	(Circled Permit Requirements Apply)
	GENERAL
(A.)	A permit application should be submitted so as to arrive at the
	Zone 7 office five days prior to your proposed starting date.
	Submit to Zone 7 within 60 days after completion of permitted work the original <u>Department of Water Resources Water Well</u>
	Drillers Report (DWR Form 188), signed by the driller.
	 Permit is void if project not begun within 90 days of approval date.
	4. Notify Zone 7 at least 24 hours before the start of work.
B.	WATER SUPPLY WELLS
	1. Minimum surface seal diameter is four inches greater than the
	well casing diameter. 2. Minimum seal depth is 50 feet for municipal and industrial walls
	or 20 feet for domestic and imigation wells unless a lesser depth
	is specially approved. 3. Grout placed by tremis.
	4. An access port at least 0.5 inches in diameter is required
	on the wellhead for water level measurements. 5. A sample port is required on the discharge pipe near the
	 A sample port is required on the discharge pipe near the wellhead.
C.	GROUNDWATER MONITORING WELLS INCLUDING
	PIEZOMETERS
	 Minimum surface seal diameter is four inches greater than the well or plezometer casing diameter.
	Minimum seal depth for monitoring wells is the maximum
	depth practicable or 20 feet.
	3. Grout placed by tremie.
D.	GEOTECHNICAL. Backfill bore hole with compacted cuttings or
	heavy bentonite and upper two feet with compacted material. In
	areas of known or suspected contamination, tremted cement
	grout shall be used in place of compacted cuttings.
E.	CATHODIC. Fill hole above anode zone with concrete placed by tremie.
F.	WELL DESTRUCTION. See attached.
(G.)	SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after
	completion of permitted work the well installation report including all soil and water laboratory analysis results.

Date 6/30/14

APPENDIX C

PURGE VOLUME CALCULATIONS

Metro Valley Cleaners

224 Rickenbacker Circle, Livermore, California

Purge Calculations:

- 1. Tubing (0.25" OD, 0.17" ID)
 - a. length of tubing = 8 ft (96 in)
 - b. volume= $\pi r^2 h$

r=ID/2 0.085 in $\pi(0.085^2)96=$ 2.18 in³ 1in³=16.4ml **35.72 ml**

- 2. Volume of sand pack and dry bentonite (4" OD, 0.25" ID)
 - a. height (length) = 1 ft (12 in)
 - b. Outer vol=total vol-inner vol 4"-0.25" = 3.75"
 - c. estimated air space in sand = 30%
 - d. $v_T = \pi r^2 h$

 $\begin{array}{lll} r{=}3.75/2 & 1.875 \text{ in} \\ \pi(2^2)12{=} & 132.47 \text{ in}^3 \\ 1\text{in}^3{=}16.4\text{ml} & \textbf{2,172.49 ml} \\ 30\% \text{ of } v_T & \textbf{651.75 ml} \end{array}$

Volume Formula:

A= # of purge volumes 1
B= volume of tubing 35.72 ml
C= volume of well 0.00 ml
D= volume of sand pack 651.75 ml

E= total volume to be purged

E= A(B+C+D) E= 1(22.32+741.54)

Total volume to be purged= 687.46 ml

APPENDIX C

PURGE VOLUME CALCULATIONS Metro Valley Cleaners 224 Rickenbacker Circle, Livermore, California

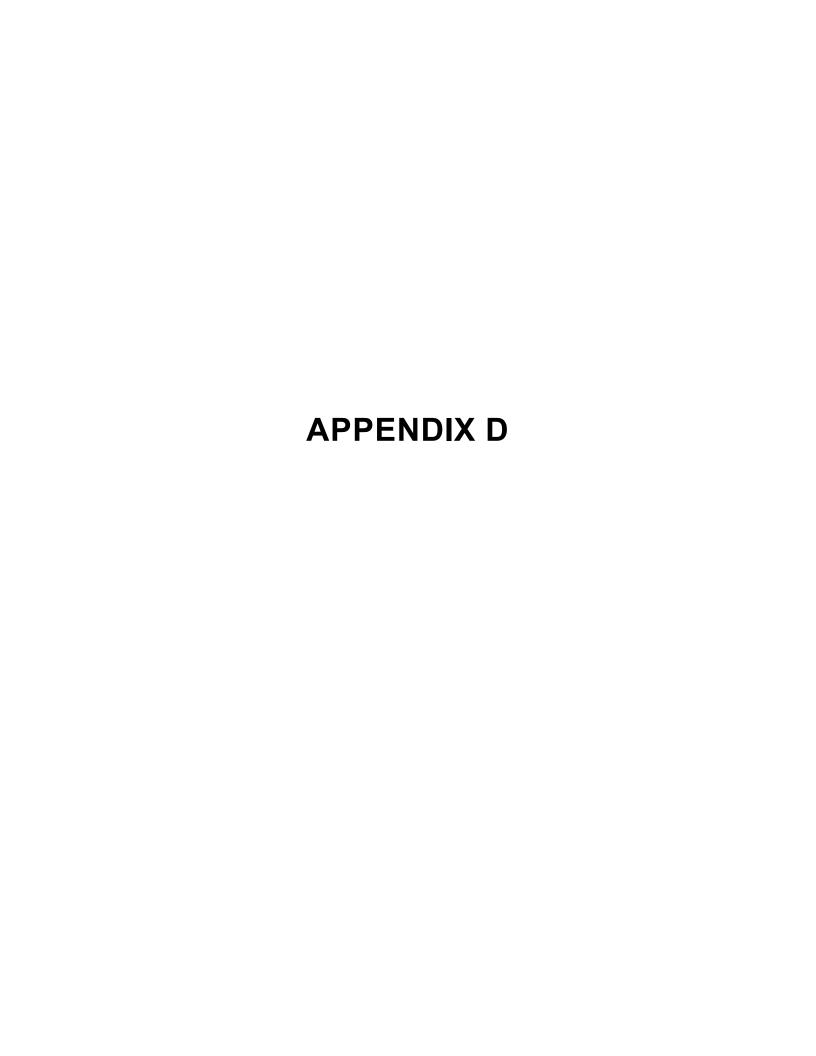
Time Formula:

E= total volume to be purged

F= purge rate (200ml/min peristaltic pump)

G= 60 seconds/min

H= total purge time in seconds at 200 ml (cc) per min


H=(E/F)G

H= 687.46 <u>x 1 min</u> <u>x 60 sec</u> 200ml 1 min

Total purge time= 206.24 sec

or

3.44 min

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1407290

Report Created for: Advanced GeoEnvironmental, Inc.

837 Shaw Road

Stockton, CA 95215

Project Contact: Daniel Villanueva

Project P.O.:

Project Name: Metro Valley Cleaners

Project Received: 07/09/2014

Analytical Report reviewed & approved for release on 07/18/2014 by:

Question about your data?

Click here to email
McCampbell

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: Advanced GeoEnvironmental, Inc.

Project: Metro Valley Cleaners

WorkOrder: 1407290

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

ND Not detected at or above the indicated MDL or RL

NR Matrix interferences, or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x

spike amount for water matrix; or sample diluted due to high matrix or analyte content.

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value TEQ Toxicity Equivalence

Quality Control Qualifiers

F2 LCS recovery for this compound is outside of acceptance limits.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Case Narrative

Client: Advanced GeoEnvironmental, Inc. Work Order: 1407290

Project: Metro Valley Cleaners July 18, 2014

TO-15 ANALYSIS

All summa canisters are EVACUATED 5 days after the reporting of the results. Please call or email if a longer retention time is required.

In an effort to attain the lowest reporting limits possible for the majority of the TO-15 target list, high level compounds may be analyzed using EPA Method 8260B.

Polymer (Tedlar) bags are not recommended for TO15 samples. The disadvantages are listed in Appendix B of the DTSC Advisory of April 2012.

Angela Rydelius, Lab Manager

Analytical Report

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Project:Metro Valley CleanersExtraction Method:SW5030B

Date Received:7/9/14 20:52Analytical Method:SW8260BDate Prepared:7/16/14-7/17/14Unit: $\mu g/m^3$

	Volatile Organi	cs by P&T and	GC/MS in µg/	m ³			
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrum	ent	Batch ID	
VP-1	1407290-001A	Soil Gas	07/08/2014 10:17	GC10		92838	
Initial Pressure (psia)	Final Pressure	e (psia)					
13.41	26.86						
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
cis-1,2-Dichloroethene		330,000		20,000	40	07/17/2014 15:34	
trans-1,2-Dichloroethene		250,000		20,000	40	07/17/2014 15:34	
Tetrachloroethene		130,000		20,000	40	07/17/2014 15:34	
Trichloroethene		160,000		20,000	40	07/17/2014 15:34	
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>				
Dibromofluoromethane	94		70-130			07/17/2014 15:34	
Toluene-d8	97		70-130			07/17/2014 15:34	
VP-2	1407290-002A	Soil Gas	07/08/2014 10:53	GC28		92838	
Initial Pressure (psia)	Final Pressure	e (psia)					
13.34	26.66						
Analytes		Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
Tetrachloroethene		87,000		2000	4	07/16/2014 17:10	
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>				
Toluene-d8	92		70-130			07/16/2014 17:10	
VP-3	1407290-003A	Soil Gas	07/08/2014 11:31	GC28		92838	
Initial Pressure (psia)	Final Pressure	e (psia)					
	20.40						
13.08	26.18						
13.08 Analytes	20.18	Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
	26.18	Result 47,000		<u>RL</u> 2000	<u>DF</u> 4	<u>Date Analyzed</u> 07/16/2014 17:49	
Analytes	REC (%)		<u>Limits</u>				

(Cont.)

Angela Rydelius, Lab Manager

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: Advanced GeoEnvironmental, Inc.

WorkOrder:

1407290

Project: Metro Valley Cleaners

Extraction Method: SW5030B

Date Received: 7/9/14 20:52

Analytical Method: SW8260B

Date Prepared: 7/16/14-7/17/14

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS in μg/m ³									
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instru	ment	Batch ID			
VP-4	1407290-004A	Soil Gas	07/08/2014 12:10	GC28		92838			
Initial Pressure (psia)	Final Pressure	e (psia)							
12.86	25.73								
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed			
cis-1,2-Dichloroethene		13,000		2000	4	07/16/2014 20:23			
trans-1,2-Dichloroethene		6800		2000	4	07/16/2014 20:23			
Tetrachloroethene		120,000		2000	4	07/16/2014 20:23			
Trichloroethene		5600		2000	4	07/16/2014 20:23			
Surrogates	<u>REC (%)</u>		<u>Limits</u>						
Dibromofluoromethane	88		70-130			07/16/2014 20:23			
Toluene-d8	93		70-130			07/16/2014 20:23			

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Project:Metro Valley CleanersExtraction Method:TO15Date Received:7/9/14 20:52Analytical Method:TO15Date Prepared:7/14/14-7/15/14Unit:μg/m³

Leak Check Compound									
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrumen	ıt	Batch ID			
VP-1	1407290-001A	Soil Gas	07/08/2014 10:17	GC24		92763			
Initial Pressure (psia)	Final Pressure	e (psia)							
13.41	26.86								
Analytes		Result		<u>RL</u>	<u>DF</u>	Date Analyzed			
Isopropyl Alcohol		ND		200	4	07/14/2014 18:57			

VP-2	1407290-002A Soil Gas	07/08/2014 10:53	GC24		92763		
Initial Pressure (psia)	Final Pressure (psia)						
13.34	26.66						
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed		
Isopropyl Alcohol	ND		50	1	07/15/2014 10:07		

VP-3	1407290-003A	Soil Gas	07/08/2014 11:31	GC24		92763
Initial Pressure (psia)	Final Pressure	e (psia)				
13.08	26.18					
<u>Analytes</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Isopropyl Alcohol		ND		50	1	07/15/2014 10:47

Analytical Report

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Project:Metro Valley CleanersExtraction Method:TO15Date Received:7/9/14 20:52Analytical Method:TO15Date Prepared:7/14/14-7/15/14Unit:μg/m³

Leak Check Compound							
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrumen	t	Batch ID	
VP-4	1407290-004A	Soil Gas	07/08/2014 12:10	GC24		92763	
Initial Pressure (psia)	Final Pressure	e (psia)					
12.84	25.73						
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
Isopropyl Alcohol		ND		50	1	07/15/2014 11:26	

Client: Advanced GeoEnvironmental, Inc. WorkOrder: 1407290 **Project:** Metro Valley Cleaners **Extraction Method: TO15 Date Received:** 7/9/14 20:52 **Analytical Method: TO15**

Date Prepared: 7/14/14-7/15/14

Date Frepared: 7/14/14-7/13/14		U	ші:	μg/III°		
	Volatile O	rganic Compoui	nds in µg/m³			
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrume	nt	Batch ID
VP-1	1407290-001A	Soil Gas	07/08/2014 10:17	GC24		92763
Initial Pressure (psia)	Final Pressur	e (psia)				
13.41	26.86					
Analytes		Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Acetone		ND		240	4	07/14/2014 18:57
Acrolein		A1		16	1	07/14/2014 18:57

13.41	26.86			
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
Acetone	ND	240	4	07/14/2014 18:57
Acrolein	41	4.6	4	07/14/2014 18:57
Acrylonitrile	ND	4.4	4	07/14/2014 18:57
tert-Amyl methyl ether (TAME)	ND	8.4	4	07/14/2014 18:57
Benzene	240	6.4	4	07/14/2014 18:57
Benzyl chloride	ND	11	4	07/14/2014 18:57
Bromodichloromethane	ND	14	4	07/14/2014 18:57
Bromoform	ND	21	4	07/14/2014 18:57
Bromomethane	ND	7.8	4	07/14/2014 18:57
1,3-Butadiene	ND	4.4	4	07/14/2014 18:57
2-Butanone (MEK)	ND	300	4	07/14/2014 18:57
t-Butyl alcohol (TBA)	ND	120	4	07/14/2014 18:57
Carbon Disulfide	220	6.4	4	07/14/2014 18:57
Carbon Tetrachloride	ND	13	4	07/14/2014 18:57
Chlorobenzene	ND	9.4	4	07/14/2014 18:57
Chloroethane	ND	5.4	4	07/14/2014 18:57
Chloroform	100	9.8	4	07/14/2014 18:57
Chloromethane	24	4.2	4	07/14/2014 18:57
Cyclohexane	99	70	4	07/14/2014 18:57
Dibromochloromethane	ND	17	4	07/14/2014 18:57
1,2-Dibromo-3-chloropropane	ND	0.49	4	07/14/2014 18:57
1,2-Dibromoethane (EDB)	ND	16	4	07/14/2014 18:57
1,2-Dichlorobenzene	ND	12	4	07/14/2014 18:57
1,3-Dichlorobenzene	ND	12	4	07/14/2014 18:57
1,4-Dichlorobenzene	ND	12	4	07/14/2014 18:57
Dichlorodifluoromethane	180	10	4	07/14/2014 18:57
1,1-Dichloroethane	ND	8.2	4	07/14/2014 18:57
1,2-Dichloroethane (1,2-DCA)	ND	8.2	4	07/14/2014 18:57
1,1-Dichloroethene	2200	8.0	4	07/14/2014 18:57
1,2-Dichloropropane	70	9.4	4	07/14/2014 18:57
cis-1,3-Dichloropropene	ND	9.2	4	07/14/2014 18:57
trans-1,3-Dichloropropene	ND	9.2	4	07/14/2014 18:57
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	14	4	07/14/2014 18:57
Diisopropyl ether (DIPE)	ND	8.4	4	07/14/2014 18:57

(Cont.)

CDPH ELAP 1644 ♦ NELAP 4033ORELAP

AK Analyst's Initial

 $\mu g/m^3$

Analytical Report

Unit:

Client: Advanced GeoEnvironmental, Inc. WorkOrder: 1407290 **Project:** Metro Valley Cleaners Extraction Method: TO15 **Date Received:** 7/9/14 20:52 **Analytical Method: TO15 Date Prepared:** 7/14/14-7/15/14

Volatile Organic Compounds in µg/m³ **Client ID** Lab ID Matrix/ExtType Date Collected Instrument **Batch ID**

VP-1 1407290-001A Soil Gas 07/08/2014 10:17 GC24 92763 **Initial Pressure (psia)** Final Pressure (psia) 13.41 26.86 Analytes Result RL DF Date Analyzed ND 7.4 1,4-Dioxane 4 07/14/2014 18:57 4 Ethanol ND 380 07/14/2014 18:57 ND 7.4 Ethyl acetate 4 07/14/2014 18:57 Ethyl tert-butyl ether (ETBE) 140 8.4 4 07/14/2014 18:57 07/14/2014 18:57 Ethylbenzene 190 8.8 4 4-Ethyltoluene 10 4 07/14/2014 18:57 65 Freon 113 22 16 4 07/14/2014 18:57 90 84 Heptane 4 07/14/2014 18:57 Hexachlorobutadiene ND 22 4 07/14/2014 18:57 72 4 07/14/2014 18:57 Hexane 130 2-Hexanone ND 8.4 4 07/14/2014 18:57 4-Methyl-2-pentanone (MIBK) ND 8.4 4 07/14/2014 18:57 7.4 Methyl-t-butyl ether (MTBE) ND 4 07/14/2014 18:57 ND Methylene chloride 7.0 4 07/14/2014 18:57 Methyl methacrylate ND 4 07/14/2014 18:57 8.3 Naphthalene ND 21 4 07/14/2014 18:57 Propene ND 350 4 07/14/2014 18:57 4 07/14/2014 18:57 Styrene 8.7 8.6 1,1,1,2-Tetrachloroethane ND 14 4 07/14/2014 18:57 1,1,2,2-Tetrachloroethane ND 14 4 07/14/2014 18:57 Tetrahydrofuran ND 6.0 4 07/14/2014 18:57 Toluene 880 7.6 4 07/14/2014 18:57 1,2,4-Trichlorobenzene ND 15 4 07/14/2014 18:57 1,1,1-Trichloroethane ND 11 4 07/14/2014 18:57 1,1,2-Trichloroethane ND 11 4 07/14/2014 18:57 4 Trichlorofluoromethane 61 11 07/14/2014 18:57 4 10 07/14/2014 18:57 1,2,4-Trimethylbenzene 150 56 1,3,5-Trimethylbenzene 10 4 07/14/2014 18:57 Vinyl Acetate ND 7.2 4 07/14/2014 18:57 Vinyl Chloride 1000 5.2 07/14/2014 18:57

(Cont.)

Xylenes, Total

AK Analyst's Initial

940

Angela Rydelius, Lab Manager

4

26

07/14/2014 18:57

Analytical Report

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Project:Metro Valley CleanersExtraction Method:TO15Date Received:7/9/14 20:52Analytical Method:TO15Date Prepared:7/14/14-7/15/14Unit:μg/m³

Volatile Organic Compounds in μg/m³							
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrun	nent	Batch ID	
VP-1	1407290-001A	Soil Gas	07/08/2014 10:17	GC24		92763	
Initial Pressure (psia)	Final Pressur	e (psia)					
13.41	26.86						
Analytes		Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
Surrogates	REC (%)		<u>Limits</u>				
1,2-DCA-d4	91		70-130			07/14/2014 18:57	
Toluene-d8	107		70-130			07/14/2014 18:57	
4-BFB	100		70-130			07/14/2014 18:57	

Client: Advanced GeoEnvironmental, Inc. WorkOrder: 1407290 **Project:** Metro Valley Cleaners **Extraction Method: TO15 Date Received:** 7/9/14 20:52 **Analytical Method: TO15 Date Prepared:** 7/14/14-7/15/14 Unit:

Volatile Organic Compounds in µg/m³

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
VP-2	1407290-002A	Soil Gas	07/08/2014 10:53	GC24	92763

Actone ND 60 1 07/15/2014 10:07 Acrolein ND 1.2 1 07/15/2014 10:07 Acrylonitrile ND 1.1 1 07/15/2014 10:07 Acrylonitrile ND 2.1 1 07/15/2014 10:07 Benzene 41 1.6 1 07/15/2014 10:07 Benzy chloride ND 2.6 1 07/15/2014 10:07 Berny chloride ND 3.5 1 07/15/2014 10:07 Bromodichloromethane ND 3.5 1 07/15/2014 10:07 Bromodichloromethane ND 5.2 1 07/15/2014 10:07 Bromodichloromethane ND 5.2 1 07/15/2014 10:07 Bromodichloromethane ND 5.2 1 07/15/2014 10:07 Bromodichloromethane ND 7.6 1 07/15/2014 10:07 Bromodichloromethane ND 3.1 1 07/15/2014 10:07 Bromodichloromethane ND 3.2 1 07/15/2014 10:07 </th <th>Initial Pressure (psia)</th> <th>Final Pressure (psia)</th> <th></th> <th></th> <th></th>	Initial Pressure (psia)	Final Pressure (psia)			
Actolne ND 60 1 07/15/2014 10:07 Acrolein ND 1.2 1 07/15/2014 10:07 Acrylonitrile ND 1.1 1 07/15/2014 10:07 Lett-Amyl methyl ether (TAME) ND 2.1 1 07/15/2014 10:07 Benzene 41 1.6 1 07/15/2014 10:07 Benzyl chloride ND 2.6 1 07/15/2014 10:07 Bernzyl chloride ND 3.5 1 07/15/2014 10:07 Bromoclorim ND 3.5 1 07/15/2014 10:07 Bromoclorim ND 5.2 1 07/15/2014 10:07 Bromoclorim ND 3.5 1 07/15/2014 10:07 Bromoclorim ND 3.0 1 07/15/2014 10:07 Bromoclorim ND 3.1 07/15/2014 10:07 2-Butlanone (MEK) ND 3.1 07/15/2014 10:07 2-Butladicine (MEK) ND 3.1 07/15/2014 10:07 2-Butladicine (MEK) ND 3.2<	13.34	26.66			
Acrolein ND 1,2 1 07/15/2014 10:07 Acrylonitrile ND 1,1 1 07/15/2014 10:07 tert-Amyl methyl ether (TAME) ND 2,1 1 07/15/2014 10:07 Benzene 41 1,6 1 07/15/2014 10:07 Benzyl chloride ND 2,6 1 07/15/2014 10:07 Bromodichloromethane ND 3,5 1 07/15/2014 10:07 Bromodichloromethane ND 5,2 1 07/15/2014 10:07 Bromomethane ND 2,0 1 07/15/2014 10:07 Bromomethane ND 1,1 1 07/15/2014 10:07 Bromomethane ND 1,1 1 07/15/2014 10:07 Bromomethane ND 1,1 1 07/15/2014 10:07 Bromomethane ND 75 1 07/15/2014 10:07 Bromomethane ND 31 1 07/15/2014 10:07 Carbon Tetrachionide 6 7 1,6 1 07/15/2014 10:07	<u>Analytes</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Acty/onitrile ND 1.1 1 07/15/2014 10:07 tert-Amyl methyl ether (TAME) ND 2.1 1 07/15/2014 10:07 Benzene 41 1.6 1 07/15/2014 10:07 Benzyl chloride ND 2.6 1 07/15/2014 10:07 Bromodichloromethane ND 3.5 1 07/15/2014 10:07 Bromodichloromethane ND 5.2 1 07/15/2014 10:07 1,3-Butadiene ND 5.2 1 07/15/2014 10:07 2-Butjanone (MEK) ND 31 1 07/15/2014 10:07 2-Butladiene ND 31 1 07/15/2014 10:07 2-Butjalchene ND 31 1 07/15/2014 10:07 2-Butjalchene ND 31 0 07/15/2014 10:	Acetone	ND	60	1	07/15/2014 10:07
tert-Amyl methyl ether (TAME) ND 2.1 1 07/15/2014 10:07 Benzene 41 1.6 1 07/15/2014 10:07 Benzene 10 1 07/15/2014 10:07 Bromodichloromethane 10 ND 3.5 1 07/15/2014 10:07 Labural Carbon (MEK) 10 ND 3.1 1 07/15/2014 10:07 Labural Carbon (MEK) 10 ND 3.1 1 07/15/2014 10:07 Carbon Disulfide 6.7 1.6 1 07/15/2014 10:07 Carbon Tetrachloride 10 ND 3.2 1 07/15/2014 10:07 Carbon Tetrachloride 10 ND 3.2 1 07/15/2014 10:07 Chloromethane 10 ND 3.2 1 07/15/2014 10:07 Chloromethane 10 ND 3.3 1 07/15/2014 10:07 Chloromethane 10 ND 3.3 1 07/15/2014 10:07 Chloromethane 10 ND 3.3 1 07/15/2014 10:07 Chloromethane 10 ND 3.0 1 07/15/2014 10:07 Dibromochloromethane 10 ND 3.0 1 07/15/2014 10:07 Dibromochloromethane 10 ND 3.0 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane 10 ND 3.0 1 07/15/2014 10:07 1,2-Dibromochane (EDB) ND 3.0 1 07/15/2014 10:07 1,2-Dibromochane (EDB) ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene 10 ND 3.0	Acrolein	ND	1.2	1	07/15/2014 10:07
Benzene 41 1.6 1 07/15/2014 10:07 Benzyl chloride ND 2.6 1 07/15/2014 10:07 Bromodichloromethane ND 3.5 1 07/15/2014 10:07 Bromodichloromethane ND 5.2 1 07/15/2014 10:07 Bromomethane ND 2.0 1 07/15/2014 10:07 1,3-Butadiene ND 1.1 1 07/15/2014 10:07 2-Butanone (MEK) ND 75 1 07/15/2014 10:07 Carbun Disulfide 6.7 1.6 1 07/15/2014 10:07 Carbon Disulfide 6.7 1.6 1 07/15/2014 10:07 Carbon Tetrachloride ND 3.2 1 07/15/2014 10:07 Chlorobenzene ND 2.4 1 07/15/2014 10:07 Chloroform ND 1.3 1 07/15/2014 10:07 Chloroformethane ND 1.0 1 07/15/2014 10:07 Chloroformethane ND 1.0 1 07/15/2014 10:07	Acrylonitrile	ND	1.1	1	07/15/2014 10:07
Benzyl chloride ND 2.6 1 07/15/2014 10:07 Bromodichloromethane ND 3.5 1 07/15/2014 10:07 Bromoform ND 5.2 1 07/15/2014 10:07 Bromomethane ND 2.0 1 07/15/2014 10:07 1,3-Butadiene ND 1.1 1 07/15/2014 10:07 2-Butanone (MEK) ND 31 1 07/15/2014 10:07 Carbon Tetrachloride ND 32 1 07/15/2014 10:07 Carbon Disulfide 6.7 1.6 1 07/15/2014 10:07 Chloroberane ND 2.4 1 07/15/2014 10:07 Chloroberane ND 1.0 1 07/15/2014 10:07 <t< td=""><td>tert-Amyl methyl ether (TAME)</td><td>ND</td><td>2.1</td><td>1</td><td>07/15/2014 10:07</td></t<>	tert-Amyl methyl ether (TAME)	ND	2.1	1	07/15/2014 10:07
Bromodichloromethane ND 3.5 1 07/15/2014 10:07 Bromoform ND 5.2 1 07/15/2014 10:07 Bromomethane ND 2.0 1 07/15/2014 10:07 Ja-Butadiene ND 1.1 1 07/15/2014 10:07 2-Butanone (MEK) ND 75 1 07/15/2014 10:07 t-Butyl alcohol (TBA) ND 31 1 07/15/2014 10:07 Carbon Disulfide 6.7 1.6 1 07/15/2014 10:07 Carbon Tetrachloride ND 3.2 1 07/15/2014 10:07 Chlorobenzene ND 2.4 1 07/15/2014 10:07 Chloroberazene ND 1.3 1 07/15/2014 10:07 Chloroderhane ND 1.3 1 07/15/2014 10:07 Chloroderhane ND 1.0 1 07/15/2014 10:07 Chloroderhane ND 1.0 1 07/15/2014 10:07 Chloroderhane ND 1.0 1 07/15/2014 10:07 <t< td=""><td>Benzene</td><td>41</td><td>1.6</td><td>1</td><td>07/15/2014 10:07</td></t<>	Benzene	41	1.6	1	07/15/2014 10:07
Bromoform ND 5.2 1 07/15/2014 10:07 Bromomethane ND 2.0 1 07/15/2014 10:07 1,3-Butadiene ND 1.1 1 07/15/2014 10:07 2-Butanone (MEK) ND 75 1 07/15/2014 10:07 t-Butyl alcohol (TBA) ND 31 1 07/15/2014 10:07 Carbon Disulfide 6.7 1.6 1 07/15/2014 10:07 Carbon Disulfide ND 3.2 1 07/15/2014 10:07 Carbon Disulfide ND 3.2 1 07/15/2014 10:07 Carbon Disulfide ND 3.2 1 07/15/2014 10:07 Chlorobenzene ND 3.2 1 07/15/2014 10:07 Chloromethane ND 2.4 1 07/15/2014 10:07 Chloromethane ND 1.0 1 07/15/2014 10:07 Cyclobexane 19 18 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 3.9 1 07/15/2014 10:07	Benzyl chloride	ND	2.6	1	07/15/2014 10:07
Bromomethane ND 2.0 1 07/15/2014 10:07 1,3-Butadiene ND 1.1 1 07/15/2014 10:07 2-Butanone (MEK) ND 75 1 07/15/2014 10:07 1-Butyl alcohol (TBA) ND 31 1 07/15/2014 10:07 Carbon Disulfide 6.7 1.6 1 07/15/2014 10:07 Carbon Tetrachloride ND 3.2 1 07/15/2014 10:07 Chlorobenzene ND 2.4 1 07/15/2014 10:07 Chloroberane ND 1.3 1 07/15/2014 10:07 Chlorobethane ND 1.3 1 07/15/2014 10:07 Chloromethane ND 1.0 1 07/15/2014 10:07 Chloromethane ND 1.0 1 07/15/2014 10:07 Chloromethane ND 4.4 1 07/15/2014 10:07 Dibromochloromethane ND 4.4 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 3.9 1 07/15/2014 10:07	Bromodichloromethane	ND	3.5	1	07/15/2014 10:07
1,3-Butadiene ND 1.1 1 07/15/2014 10:07 2-Butanone (MEK) ND 75 1 07/15/2014 10:07 1-Butyl alcohol (TBA) ND 31 1 07/15/2014 10:07 Carbon Disulfide 6.7 1.6 1 07/15/2014 10:07 Carbon Tetrachloride ND 3.2 1 07/15/2014 10:07 Chlorobersene ND 2.4 1 07/15/2014 10:07 Chloroethane ND 1.3 1 07/15/2014 10:07 Chloromethane ND 1.0 1 07/15/2014 10:07 Cyclohexane 19 18 1 07/15/2014 10:07 Dibromochloromethane ND 4.4 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 3.9 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 3.0 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 3.0 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 3.0	Bromoform	ND	5.2	1	07/15/2014 10:07
2-Butanone (MEK) ND 75 1 07/15/2014 10:07 t-Butyl alcohol (TBA) ND 31 1 07/15/2014 10:07 Carbon Disulfide 6.7 1.6 1 07/15/2014 10:07 Carbon Tetrachloride ND 3.2 1 07/15/2014 10:07 Chlorobenzene ND 2.4 1 07/15/2014 10:07 Chlorotethane ND 1.3 1 07/15/2014 10:07 Chloroform ND 2.4 1 07/15/2014 10:07 Chloromethane ND 1.0 1 07/15/2014 10:07 Cyclohexane 19 18 1 07/15/2014 10:07 Cyclohexane 19 18 1 07/15/2014 10:07 1,2-Dibromochloromethane ND 4.4 1 07/15/2014 10:07 1,2-Dibromochlarogropane ND 3.9 1 07/15/2014 10:07 1,2-Dibromochlarogropane ND 3.9 1 07/15/2014 10:07 1,2-Dibromochlarogropane ND 3.0 1 07/15	Bromomethane	ND	2.0	1	07/15/2014 10:07
t-Butyl alcohol (TBA) ND 31 1 07/15/2014 10:07 Carbon Disulfide 6.7 1.6 1 07/15/2014 10:07 Carbon Tetrachloride ND 3.2 1 07/15/2014 10:07 Chlorobenzene ND 2.4 1 07/15/2014 10:07 Chloroethane ND 1.3 1 07/15/2014 10:07 Chloromethane ND 1.0 1 07/15/2014 10:07 Cyclohexane 19 18 1 07/15/2014 10:07 Cyclohexane 19 18 1 07/15/2014 10:07 Ly-Dibromo-3-chloropropane ND 4.4 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 3.9 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 3.9 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 3.0 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 3.0 1 07/15/2014 10:07 1,2-Dichlorobenzene ND 3.0	1,3-Butadiene	ND	1.1	1	07/15/2014 10:07
Carbon Disulfide 6.7 1.6 1 07/15/2014 10:07 Carbon Tetrachloride ND 3.2 1 07/15/2014 10:07 Chlorobenzene ND 2.4 1 07/15/2014 10:07 Chloroethane ND 1.3 1 07/15/2014 10:07 Chloroform ND 1.0 1 07/15/2014 10:07 Chloromethane ND 1.0 1 07/15/2014 10:07 Cyclohexane 19 18 1 07/15/2014 10:07 Dibromochloromethane ND 4.4 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 0.12 1 07/15/2014 10:07 1,2-Dibromoethane (EDB) ND 3.9 1 07/15/2014 10:07 1,2-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichloroethane ND 3.0 1 07/15/2014 10:07 1,1-Dichloroethane ND 2.0 1 07	2-Butanone (MEK)	ND	75	1	07/15/2014 10:07
Carbon Tetrachloride ND 3.2 1 07/15/2014 10:07 Chlorobenzene ND 2.4 1 07/15/2014 10:07 Chloroethane ND 1.3 1 07/15/2014 10:07 Chloroform ND 2.4 1 07/15/2014 10:07 Chloromethane ND 1.0 1 07/15/2014 10:07 Cyclohexane 19 18 1 07/15/2014 10:07 Cyclohexane ND 4.4 1 07/15/2014 10:07 1,2-Dibromo-3-chloroprepane ND 4.4 1 07/15/2014 10:07 1,2-Dibromoethane (EDB) ND 3.9 1 07/15/2014 10:07 1,2-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,1-Dichloroethane 130 2.5 1 07/15/2014 10:07 1,1-Dichloroethane 1,2-Dichloroethane 1,0 2.0	t-Butyl alcohol (TBA)	ND	31	1	07/15/2014 10:07
Chlorobenzene ND 2.4 1 07/15/2014 10:07 Chloroethane ND 1.3 1 07/15/2014 10:07 Chloroform ND 2.4 1 07/15/2014 10:07 Chloromethane ND 1.0 1 07/15/2014 10:07 Cyclohexane 19 18 1 07/15/2014 10:07 Dibromochloromethane ND 4.4 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 0.12 1 07/15/2014 10:07 1,2-Dibromoethane (EDB) ND 3.9 1 07/15/2014 10:07 1,2-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,1-Dichloroethane 130 2.5 1 07/15/2014 10:07 1,2-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane 5.8 2.0 1	Carbon Disulfide	6.7	1.6	1	07/15/2014 10:07
Chloroethane ND 1.3 1 07/15/2014 10:07 Chloroform ND 2.4 1 07/15/2014 10:07 Chloromethane ND 1.0 1 07/15/2014 10:07 Cyclohexane 19 18 1 07/15/2014 10:07 Dibromochloromethane ND 4.4 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 0.12 1 07/15/2014 10:07 1,2-Dibromoethane (EDB) ND 3.9 1 07/15/2014 10:07 1,2-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichloroethane 130 2.5 1 07/15/2014 10:07 1,1-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane 5.8 2.0 1 07/15/2014 10:07 1,2-Dichloroethene 500 2.0 1	Carbon Tetrachloride	ND	3.2	1	07/15/2014 10:07
Chloroform ND 2.4 1 07/15/2014 10:07 Chloromethane ND 1.0 1 07/15/2014 10:07 Cyclohexane 19 18 1 07/15/2014 10:07 Dibromochloromethane ND 4.4 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 0.12 1 07/15/2014 10:07 1,2-Dibromoethane (EDB) ND 3.9 1 07/15/2014 10:07 1,2-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,1-Dichloroethane ND 3.0 1 07/15/2014 10:07 1,2-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane 5.8 2.0 1 07/15/2014 10:07 1,2-Dichloroethene 500 2.0 1	Chlorobenzene	ND	2.4	1	07/15/2014 10:07
Chloromethane ND 1.0 1 07/15/2014 10:07 Cyclohexane 19 18 1 07/15/2014 10:07 Dibromochloromethane ND 4.4 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 0.12 1 07/15/2014 10:07 1,2-Dibromoethane (EDB) ND 3.9 1 07/15/2014 10:07 1,2-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,1-Dichlorothane 130 2.5 1 07/15/2014 10:07 1,2-Dichlorothane ND 2.0 1 07/15/2014 10:07 1,2-Dichlorothane (1,2-DCA) ND 2.0 1 07/15/2014 10:07 1,1-Dichlorothene 5.8 2.0 1 07/15/2014 10:07 1,2-Dichlorothene 5.0 2.0 1 07/15/2014 10:07 1,2-Dichlorothene 5.0 2.0	Chloroethane	ND	1.3	1	07/15/2014 10:07
Cyclohexane 19 18 1 07/15/2014 10:07 Dibromochloromethane ND 4.4 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 0.12 1 07/15/2014 10:07 1,2-Dibromoethane (EDB) ND 3.9 1 07/15/2014 10:07 1,2-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,1-Dichloroethane 130 2.5 1 07/15/2014 10:07 1,1-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 07/15/2014 10:07 1,1-Dichloroethene 5.8 2.0 1 07/15/2014 10:07 cis-1,2-Dichloroethene 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethene 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND	Chloroform	ND	2.4	1	07/15/2014 10:07
Dibromochloromethane ND 4.4 1 07/15/2014 10:07 1,2-Dibromo-3-chloropropane ND 0.12 1 07/15/2014 10:07 1,2-Dibromoethane (EDB) ND 3.9 1 07/15/2014 10:07 1,2-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 Dichlorodifluoromethane 130 2.5 1 07/15/2014 10:07 1,1-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 07/15/2014 10:07 1,1-Dichloroethene 5.8 2.0 1 07/15/2014 10:07 cis-1,2-Dichloroethene 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethene 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropene	Chloromethane	ND	1.0	1	07/15/2014 10:07
1,2-Dibromo-3-chloropropane ND 0.12 1 07/15/2014 10:07 1,2-Dibromoethane (EDB) ND 3.9 1 07/15/2014 10:07 1,2-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,1-Dichloroethane 130 2.5 1 07/15/2014 10:07 1,1-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 07/15/2014 10:07 1,1-Dichloroethene 5.8 2.0 1 07/15/2014 10:07 cis-1,2-Dichloroethene 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethene 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropene ND 2.3 1 07/15/2014 10:07	Cyclohexane	19	18	1	07/15/2014 10:07
1,2-Dibromoethane (EDB) ND 3.9 1 07/15/2014 10:07 1,2-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 Dichlorodifluoromethane 130 2.5 1 07/15/2014 10:07 1,1-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 07/15/2014 10:07 1,1-Dichloroethene 5.8 2.0 1 07/15/2014 10:07 cis-1,2-Dichloroethene 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethene 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropene ND 2.3 1 07/15/2014 10:07	Dibromochloromethane	ND	4.4	1	07/15/2014 10:07
1,2-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorodifluoromethane 130 2.5 1 07/15/2014 10:07 1,1-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 07/15/2014 10:07 1,1-Dichloroethene 5.8 2.0 1 07/15/2014 10:07 cis-1,2-Dichloroethene 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethene 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropene ND 2.3 1 07/15/2014 10:07	1,2-Dibromo-3-chloropropane	ND	0.12	1	07/15/2014 10:07
1,3-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 Dichlorodifluoromethane 130 2.5 1 07/15/2014 10:07 1,1-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 07/15/2014 10:07 1,1-Dichloroethane 5.8 2.0 1 07/15/2014 10:07 cis-1,2-Dichloroethane 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethane 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropane ND 2.3 1 07/15/2014 10:07	1,2-Dibromoethane (EDB)	ND	3.9	1	07/15/2014 10:07
1,4-Dichlorobenzene ND 3.0 1 07/15/2014 10:07 Dichlorodifluoromethane 130 2.5 1 07/15/2014 10:07 1,1-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 07/15/2014 10:07 1,1-Dichloroethane 5.8 2.0 1 07/15/2014 10:07 cis-1,2-Dichloroethane 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethane 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropane ND 2.3 1 07/15/2014 10:07	1,2-Dichlorobenzene	ND	3.0	1	07/15/2014 10:07
Dichlorodifluoromethane 130 2.5 1 07/15/2014 10:07 1,1-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 07/15/2014 10:07 1,1-Dichloroethane 5.8 2.0 1 07/15/2014 10:07 cis-1,2-Dichloroethane 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethane 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropane ND 2.3 1 07/15/2014 10:07	1,3-Dichlorobenzene	ND	3.0	1	07/15/2014 10:07
1,1-Dichloroethane ND 2.0 1 07/15/2014 10:07 1,2-Dichloroethane (1,2-DCA) ND 2.0 1 07/15/2014 10:07 1,1-Dichloroethene 5.8 2.0 1 07/15/2014 10:07 cis-1,2-Dichloroethene 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethene 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropene ND 2.3 1 07/15/2014 10:07	1,4-Dichlorobenzene	ND	3.0	1	07/15/2014 10:07
1,2-Dichloroethane (1,2-DCA) ND 2.0 1 07/15/2014 10:07 1,1-Dichloroethene 5.8 2.0 1 07/15/2014 10:07 cis-1,2-Dichloroethene 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethene 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropene ND 2.3 1 07/15/2014 10:07	Dichlorodifluoromethane	130	2.5	1	07/15/2014 10:07
1,1-Dichloroethene 5.8 2.0 1 07/15/2014 10:07 cis-1,2-Dichloroethene 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethene 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropene ND 2.3 1 07/15/2014 10:07	1,1-Dichloroethane	ND	2.0	1	07/15/2014 10:07
cis-1,2-Dichloroethene 500 2.0 1 07/15/2014 10:07 trans-1,2-Dichloroethene 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropene ND 2.3 1 07/15/2014 10:07	1,2-Dichloroethane (1,2-DCA)	ND	2.0	1	07/15/2014 10:07
trans-1,2-Dichloroethene 300 2.0 1 07/15/2014 10:07 1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropene ND 2.3 1 07/15/2014 10:07	1,1-Dichloroethene	5.8	2.0	1	07/15/2014 10:07
1,2-Dichloropropane ND 2.4 1 07/15/2014 10:07 cis-1,3-Dichloropropene ND 2.3 1 07/15/2014 10:07	cis-1,2-Dichloroethene	500	2.0	1	07/15/2014 10:07
cis-1,3-Dichloropropene ND 2.3 1 07/15/2014 10:07	trans-1,2-Dichloroethene	300	2.0	1	07/15/2014 10:07
	1,2-Dichloropropane	ND	2.4	1	07/15/2014 10:07
trans-1,3-Dichloropropene ND 2.3 1 07/15/2014 10:07	cis-1,3-Dichloropropene	ND	2.3	1	07/15/2014 10:07
	trans-1,3-Dichloropropene	ND	2.3	1	07/15/2014 10:07

(Cont.)

AK Analyst's Initial

Client: Advanced GeoEnvironmental, Inc. WorkOrder: 1407290 **Project:** Metro Valley Cleaners **Extraction Method: TO15 Date Received:** 7/9/14 20:52 **Analytical Method:** TO15 **Date Prepared:** 7/14/14-7/15/14 Unit:

Volatile Organic Compounds in μg/m ²

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
VP-2	1407290-002A	Soil Gas	07/08/2014 10:53	GC24	92763

Initial Pressure (psia)	Final Pressure (psia)			
13.34	26.66			
Analytes	<u>Result</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	3.6	1	07/15/2014 10:07
Diisopropyl ether (DIPE)	ND	2.1	1	07/15/2014 10:07
1,4-Dioxane	ND	1.8	1	07/15/2014 10:07
Ethanol	ND	96	1	07/15/2014 10:07
Ethyl acetate	ND	1.8	1	07/15/2014 10:07
Ethyl tert-butyl ether (ETBE)	ND	2.1	1	07/15/2014 10:07
Ethylbenzene	48	2.2	1	07/15/2014 10:07
4-Ethyltoluene	16	2.5	1	07/15/2014 10:07
Freon 113	13	3.9	1	07/15/2014 10:07
Heptane	31	21	1	07/15/2014 10:07
Hexachlorobutadiene	ND	5.4	1	07/15/2014 10:07
Hexane	ND	18	1	07/15/2014 10:07
2-Hexanone	ND	2.1	1	07/15/2014 10:07
4-Methyl-2-pentanone (MIBK)	ND	2.1	1	07/15/2014 10:07
Methyl-t-butyl ether (MTBE)	ND	1.8	1	07/15/2014 10:07
Methylene chloride	3.2	1.8	1	07/15/2014 10:07
Methyl methacrylate	ND	2.1	1	07/15/2014 10:07
Naphthalene	ND	5.3	1	07/15/2014 10:07
Propene	ND	88	1	07/15/2014 10:07
Styrene	2.2	2.2	1	07/15/2014 10:07
1,1,1,2-Tetrachloroethane	ND	3.5	1	07/15/2014 10:07
1,1,2,2-Tetrachloroethane	ND	3.5	1	07/15/2014 10:07
Tetrahydrofuran	ND	1.5	1	07/15/2014 10:07
Toluene	240	1.9	1	07/15/2014 10:07
1,2,4-Trichlorobenzene	ND	3.8	1	07/15/2014 10:07
1,1,1-Trichloroethane	ND	2.8	1	07/15/2014 10:07
1,1,2-Trichloroethane	ND	2.8	1	07/15/2014 10:07
Trichloroethene	700	2.8	1	07/15/2014 10:07
Trichlorofluoromethane	43	2.8	1	07/15/2014 10:07
1,2,4-Trimethylbenzene	48	2.5	1	07/15/2014 10:07
1,3,5-Trimethylbenzene	20	2.5	1	07/15/2014 10:07
Vinyl Acetate	ND	1.8	1	07/15/2014 10:07
Vinyl Chloride	ND	1.3	1	07/15/2014 10:07
Xylenes, Total	230	6.6	1	07/15/2014 10:07

(Cont.)

CDPH ELAP 1644 ♦ NELAP 4033ORELAP

AK Analyst's Initial

Analytical Report

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Project:Metro Valley CleanersExtraction Method:TO15Date Received:7/9/14 20:52Analytical Method:TO15Date Prepared:7/14/14-7/15/14Unit: $\mu g/m^3$

Volatile Organic Compounds in μg/m³							
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instru	ıment	Batch ID	
VP-2	1407290-002A	Soil Gas	07/08/2014 10:53	GC24		92763	
Initial Pressure (psia)	Final Pressur	re (psia)					
13.34	26.66						
Analytes		Result		<u>RL</u>	DF	Date Analyzed	
<u>Surrogates</u>	REC (%)		<u>Limits</u>				
1,2-DCA-d4	90		70-130			07/15/2014 10:07	
Toluene-d8	110		70-130			07/15/2014 10:07	
4-BFB	100		70-130			07/15/2014 10:07	

Client: Advanced GeoEnvironmental, Inc. WorkOrder: 1407290 **Project:** Metro Valley Cleaners **Extraction Method: TO15 Date Received:** 7/9/14 20:52 **Analytical Method: TO15 Date Prepared:** 7/14/14-7/15/14 Unit:

Volatile Organic Compounds in µg/m³

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
VP-3	1407290-003A	Soil Gas	07/08/2014 11:31	GC24	92763

Initial Pressure (nsia) Final Pressure (nsia)

Initial Pressure (psia)	Final Pressure (psia)			
13.08	26.18			
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
Acetone	110	60	1	07/15/2014 10:47
Acrolein	12	1.2	1	07/15/2014 10:47
Acrylonitrile	ND	1.1	1	07/15/2014 10:47
tert-Amyl methyl ether (TAME)	ND	2.1	1	07/15/2014 10:47
Benzene	39	1.6	1	07/15/2014 10:47
Benzyl chloride	ND	2.6	1	07/15/2014 10:47
Bromodichloromethane	ND	3.5	1	07/15/2014 10:47
Bromoform	ND	5.2	1	07/15/2014 10:47
Bromomethane	ND	2.0	1	07/15/2014 10:47
1,3-Butadiene	ND	1.1	1	07/15/2014 10:47
2-Butanone (MEK)	ND	75	1	07/15/2014 10:47
t-Butyl alcohol (TBA)	ND	31	1	07/15/2014 10:47
Carbon Disulfide	17	1.6	1	07/15/2014 10:47
Carbon Tetrachloride	ND	3.2	1	07/15/2014 10:47
Chlorobenzene	ND	2.4	1	07/15/2014 10:47
Chloroethane	ND	1.3	1	07/15/2014 10:47
Chloroform	ND	2.4	1	07/15/2014 10:47
Chloromethane	2.7	1.0	1	07/15/2014 10:47
Cyclohexane	22	18	1	07/15/2014 10:47
Dibromochloromethane	ND	4.4	1	07/15/2014 10:47
1,2-Dibromo-3-chloropropane	ND	0.12	1	07/15/2014 10:47
1,2-Dibromoethane (EDB)	ND	3.9	1	07/15/2014 10:47
1,2-Dichlorobenzene	ND	3.0	1	07/15/2014 10:47
1,3-Dichlorobenzene	ND	3.0	1	07/15/2014 10:47
1,4-Dichlorobenzene	ND	3.0	1	07/15/2014 10:47
Dichlorodifluoromethane	130	2.5	1	07/15/2014 10:47
1,1-Dichloroethane	ND	2.0	1	07/15/2014 10:47
1,2-Dichloroethane (1,2-DCA)	ND	2.0	1	07/15/2014 10:47
1,1-Dichloroethene	5.1	2.0	1	07/15/2014 10:47
cis-1,2-Dichloroethene	220	2.0	1	07/15/2014 10:47
trans-1,2-Dichloroethene	120	2.0	1	07/15/2014 10:47
1,2-Dichloropropane	ND	2.4	1	07/15/2014 10:47
cis-1,3-Dichloropropene	ND	2.3	1	07/15/2014 10:47
trans-1,3-Dichloropropene	ND	2.3	1	07/15/2014 10:47

(Cont.)

AK Analyst's Initial CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Project:Metro Valley CleanersExtraction Method:TO15Date Received:7/9/14 20:52Analytical Method:TO15Date Prepared:7/14/14-7/15/14Unit:μg/m³

Volatile Organic Compounds in μg/m³

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
VP-3	1407290-003A	Soil Gas	07/08/2014 11:31	GC24	92763

Initial Pressure (psia) Final Pressure (psia)

Initial Pressure (psia)	Final Pressure (psia)			
13.08	26.18			
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	3.6	1	07/15/2014 10:47
Diisopropyl ether (DIPE)	ND	2.1	1	07/15/2014 10:47
1,4-Dioxane	ND	1.8	1	07/15/2014 10:47
Ethanol	ND	96	1	07/15/2014 10:47
Ethyl acetate	ND	1.8	1	07/15/2014 10:47
Ethyl tert-butyl ether (ETBE)	2.3	2.1	1	07/15/2014 10:47
Ethylbenzene	58	2.2	1	07/15/2014 10:47
4-Ethyltoluene	34	2.5	1	07/15/2014 10:47
Freon 113	13	3.9	1	07/15/2014 10:47
Heptane	35	21	1	07/15/2014 10:47
Hexachlorobutadiene	ND	5.4	1	07/15/2014 10:47
Hexane	35	18	1	07/15/2014 10:47
2-Hexanone	2.4	2.1	1	07/15/2014 10:47
4-Methyl-2-pentanone (MIBK)	ND	2.1	1	07/15/2014 10:47
Methyl-t-butyl ether (MTBE)	ND	1.8	1	07/15/2014 10:47
Methylene chloride	ND	1.8	1	07/15/2014 10:47
Methyl methacrylate	ND	2.1	1	07/15/2014 10:47
Naphthalene	ND	5.3	1	07/15/2014 10:47
Propene	ND	88	1	07/15/2014 10:47
Styrene	3.4	2.2	1	07/15/2014 10:47
1,1,1,2-Tetrachloroethane	ND	3.5	1	07/15/2014 10:47
1,1,2,2-Tetrachloroethane	ND	3.5	1	07/15/2014 10:47
Tetrahydrofuran	14	1.5	1	07/15/2014 10:47
Toluene	250	1.9	1	07/15/2014 10:47
1,2,4-Trichlorobenzene	ND	3.8	1	07/15/2014 10:47
1,1,1-Trichloroethane	ND	2.8	1	07/15/2014 10:47
1,1,2-Trichloroethane	ND	2.8	1	07/15/2014 10:47
Trichloroethene	370	2.8	1	07/15/2014 10:47
Trichlorofluoromethane	40	2.8	1	07/15/2014 10:47
1,2,4-Trimethylbenzene	69	2.5	1	07/15/2014 10:47
1,3,5-Trimethylbenzene	46	2.5	1	07/15/2014 10:47
Vinyl Acetate	ND	1.8	1	07/15/2014 10:47
Vinyl Chloride	1.3	1.3	1	07/15/2014 10:47
Xylenes, Total	260	6.6	1	07/15/2014 10:47

(Cont.)

CDPH ELAP 1644 ♦ NELAP 4033ORELAP

AK Analyst's Initial

Analytical Report

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Project:Metro Valley CleanersExtraction Method:TO15Date Received:7/9/14 20:52Analytical Method:TO15Date Prepared:7/14/14-7/15/14Unit: $\mu g/m^3$

Volatile Organic Compounds in μg/m ³							
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instru	ment	Batch ID	
VP-3	1407290-003A	Soil Gas	07/08/2014 11:31	GC24		92763	
Initial Pressure (psia)	Final Pressur	re (psia)					
13.08	26.18						
Analytes		Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
Surrogates	REC (%)		<u>Limits</u>				
1,2-DCA-d4	92		70-130			07/15/2014 10:47	
Toluene-d8	108		70-130			07/15/2014 10:47	
4-BFB	99		70-130			07/15/2014 10:47	

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Project:Metro Valley CleanersExtraction Method:TO15Date Received:7/9/14 20:52Analytical Method:TO15Date Prepared:7/14/14-7/15/14Unit:μg/m³

Volatile Organic Compounds in µg/m³

Client ID	Lab ID	Matrix/ExtType	Date Collected Instrum	nent Batch ID
VP-4	1407290-004A	Soil Gas	07/08/2014 12:10 GC24	92763

Initial Pressure (psia) Final Pressure (psia)

Initial Pressure (psia)	Final Pressure (psia)			
12.84	25.73			
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
Acetone	270	60	1	07/15/2014 11:26
Acrolein	ND	1.2	1	07/15/2014 11:26
Acrylonitrile	ND	1.1	1	07/15/2014 11:26
tert-Amyl methyl ether (TAME)	ND	2.1	1	07/15/2014 11:26
Benzene	120	1.6	1	07/15/2014 11:26
Benzyl chloride	ND	2.6	1	07/15/2014 11:26
Bromodichloromethane	ND	3.5	1	07/15/2014 11:26
Bromoform	ND	5.2	1	07/15/2014 11:26
Bromomethane	ND	2.0	1	07/15/2014 11:26
1,3-Butadiene	3.0	1.1	1	07/15/2014 11:26
2-Butanone (MEK)	ND	75	1	07/15/2014 11:26
t-Butyl alcohol (TBA)	ND	31	1	07/15/2014 11:26
Carbon Disulfide	64	1.6	1	07/15/2014 11:26
Carbon Tetrachloride	ND	3.2	1	07/15/2014 11:26
Chlorobenzene	ND	2.4	1	07/15/2014 11:26
Chloroethane	ND	1.3	1	07/15/2014 11:26
Chloroform	ND	2.4	1	07/15/2014 11:26
Chloromethane	3.2	1.0	1	07/15/2014 11:26
Cyclohexane	86	18	1	07/15/2014 11:26
Dibromochloromethane	ND	4.4	1	07/15/2014 11:26
1,2-Dibromo-3-chloropropane	ND	0.12	1	07/15/2014 11:26
1,2-Dibromoethane (EDB)	ND	3.9	1	07/15/2014 11:26
1,2-Dichlorobenzene	ND	3.0	1	07/15/2014 11:26
1,3-Dichlorobenzene	ND	3.0	1	07/15/2014 11:26
1,4-Dichlorobenzene	ND	3.0	1	07/15/2014 11:26
Dichlorodifluoromethane	110	2.5	1	07/15/2014 11:26
1,1-Dichloroethane	ND	2.0	1	07/15/2014 11:26
1,2-Dichloroethane (1,2-DCA)	ND	2.0	1	07/15/2014 11:26
1,1-Dichloroethene	380	2.0	1	07/15/2014 11:26
1,2-Dichloropropane	11	2.4	1	07/15/2014 11:26
cis-1,3-Dichloropropene	ND	2.3	1	07/15/2014 11:26
trans-1,3-Dichloropropene	9.1	2.3	1	07/15/2014 11:26
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	3.6	1	07/15/2014 11:26
Diisopropyl ether (DIPE)	ND	2.1	1	07/15/2014 11:26

(Cont.)

AK Analyst's Initial

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Project:Metro Valley CleanersExtraction Method:TO15Date Received:7/9/14 20:52Analytical Method:TO15Date Prepared:7/14/14-7/15/14Unit:μg/m³

Volatile Organic Compounds in μg/m³ Client ID Lab ID Matrix/ExtType Date Collected Instrument Batch ID VP-4 1407290-004A Soil Gas 07/08/2014 12:10 GC24 92763 Initial Pressure (psia) Final Pressure (psia)

Initial Pressure (psia)	Final Pressure (psia)			
12.84	25.73			
Analytes	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
1,4-Dioxane	ND	1.8	1	07/15/2014 11:26
Ethanol	170	96	1	07/15/2014 11:26
Ethyl acetate	ND	1.8	1	07/15/2014 11:26
Ethyl tert-butyl ether (ETBE)	ND	2.1	1	07/15/2014 11:26
Ethylbenzene	97	2.2	1	07/15/2014 11:26
4-Ethyltoluene	31	2.5	1	07/15/2014 11:26
Freon 113	12	3.9	1	07/15/2014 11:26
Heptane	140	21	1	07/15/2014 11:26
Hexachlorobutadiene	ND	5.4	1	07/15/2014 11:26
Hexane	130	18	1	07/15/2014 11:26
2-Hexanone	6.6	2.1	1	07/15/2014 11:26
4-Methyl-2-pentanone (MIBK)	5.7	2.1	1	07/15/2014 11:26
Methyl-t-butyl ether (MTBE)	ND	1.8	1	07/15/2014 11:26
Methylene chloride	ND	1.8	1	07/15/2014 11:26
Methyl methacrylate	2.6	2.1	1	07/15/2014 11:26
Naphthalene	ND	5.3	1	07/15/2014 11:26
Propene	ND	88	1	07/15/2014 11:26
Styrene	4.2	2.2	1	07/15/2014 11:26
1,1,1,2-Tetrachloroethane	ND	3.5	1	07/15/2014 11:26
1,1,2,2-Tetrachloroethane	ND	3.5	1	07/15/2014 11:26
Tetrahydrofuran	ND	1.5	1	07/15/2014 11:26
Toluene	460	1.9	1	07/15/2014 11:26
1,2,4-Trichlorobenzene	ND	3.8	1	07/15/2014 11:26
1,1,1-Trichloroethane	ND	2.8	1	07/15/2014 11:26
1,1,2-Trichloroethane	88	2.8	1	07/15/2014 11:26
Trichlorofluoromethane	33	2.8	1	07/15/2014 11:26
1,2,4-Trimethylbenzene	81	2.5	1	07/15/2014 11:26
1,3,5-Trimethylbenzene	41	2.5	1	07/15/2014 11:26
Vinyl Acetate	ND	1.8	1	07/15/2014 11:26
Vinyl Chloride	1000	5.2	4	07/14/2014 20:59
Xylenes, Total	440	6.6	1	07/15/2014 11:26

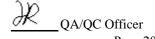
(Cont.)

Analytical Report

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Project:Metro Valley CleanersExtraction Method:TO15Date Received:7/9/14 20:52Analytical Method:TO15Date Prepared:7/14/14-7/15/14Unit:μg/m³

	Volatile O	rganic Compoui	nds in μg/m³			
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instru	ment	Batch ID
VP-4	1407290-004A	Soil Gas	07/08/2014 12:10	GC24		92763
Initial Pressure (psia)	Final Pressur	re (psia)				
12.84	25.73					
Analytes		Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Surrogates	REC (%)		<u>Limits</u>			
1,2-DCA-d4	93		70-130			07/15/2014 11:26
Toluene-d8	107		70-130			07/15/2014 11:26
4-BFB	99		70-130			07/15/2014 11:26

Quality Control Report


Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Date Prepared:7/17/14BatchID:92838Date Analyzed:7/16/14Extraction Method:SW5030BInstrument:GC28Analytical Method:SW8260B

 $\textbf{Matrix:} \qquad \text{Water} \qquad \qquad \textbf{Unit:} \qquad \qquad \mu g/L$

Project: Metro Valley Cleaners **Sample ID:** MB/LCS-92838

QC Summary Report for SW8260B							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	100	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	19.0	5.0	20	-	95.1	70-130
Benzene	ND	20.8	5.0	20	-	104	70-130
Bromobenzene	ND	-	5.0	-	-	-	-
Bromochloromethane	ND	-	5.0	-	-	-	-
Bromodichloromethane	ND	-	5.0	-	-	-	-
Bromoform	ND	-	5.0	-	-	-	-
Bromomethane	ND	-	5.0	-	-	-	-
2-Butanone (MEK)	ND	-	20	-	-	-	-
t-Butyl alcohol (TBA)	ND	63.6	20	80	-	79.5	70-130
n-Butyl benzene	ND	-	5.0	-	-	-	-
sec-Butyl benzene	ND	-	5.0	-	-	-	-
tert-Butyl benzene	ND	-	5.0	-	-	-	-
Carbon Disulfide	ND	-	5.0	-	-	-	-
Carbon Tetrachloride	ND	-	5.0	-	-	-	-
Chlorobenzene	ND	21.6	5.0	20	-	108	70-130
Chloroethane	ND	-	5.0	-	-	-	-
Chloroform	ND	-	5.0	-	-	-	-
Chloromethane	ND	-	5.0	-	-	-	-
2-Chlorotoluene	ND	-	5.0	-	-	-	-
4-Chlorotoluene	ND	-	5.0	-	-	-	-
Dibromochloromethane	ND	-	5.0	-	=	-	-
1,2-Dibromo-3-chloropropane	ND	-	2.0	-	=	-	-
1,2-Dibromoethane (EDB)	ND	17.7	5.0	20	=	88.7	70-130
Dibromomethane	ND	_	5.0	-	-	-	-
1,2-Dichlorobenzene	ND	_	5.0	-	-	-	-
1,3-Dichlorobenzene	ND	=	5.0	-	=	-	-
1,4-Dichlorobenzene	ND	=	5.0	-	=	-	-
Dichlorodifluoromethane	ND	=	5.0	-	=	-	-
1,1-Dichloroethane	ND	=	5.0	-	=	-	-
1,2-Dichloroethane (1,2-DCA)	ND	17.6	5.0	20	=	88.3	70-130
1,1-Dichloroethene	ND	17.3	5.0	20	-	86.5	70-130
cis-1,2-Dichloroethene	ND	-	5.0	-	-	-	-
trans-1,2-Dichloroethene	ND	-	5.0	-	-	-	-
1,2-Dichloropropane	ND	-	5.0	-	-	-	-
1,3-Dichloropropane	ND	-	5.0	-	-	-	-
2,2-Dichloropropane	ND	-	5.0	-	-	-	-
1,1-Dichloropropene	ND	-	5.0	-	-	-	-
cis-1,3-Dichloropropene	ND	_	5.0	-	-	-	-
trans-1,3-Dichloropropene	ND	_	5.0	-	_	_	_

(Cont.)

Quality Control Report

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Date Prepared:7/17/14BatchID:92838Date Analyzed:7/16/14Extraction Method:SW5030BInstrument:GC28Analytical Method:SW8260B

 $\textbf{Matrix:} \qquad \text{Water} \qquad \qquad \textbf{Unit:} \qquad \qquad \mu g/L$

Project: Metro Valley Cleaners **Sample ID:** MB/LCS-92838

	QC Sum	mary Report	for SW8260	В			
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	18.0	5.0	20	-	90	70-130
Ethylbenzene	ND	-	5.0	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	18.6	5.0	20	-	93.1	70-130
Freon 113	ND	-	5.0	=	-	=	-
Hexachlorobutadiene	ND	-	5.0	-	=	-	-
Hexachloroethane	ND	-	5.0	-	-	-	-
2-Hexanone	ND	-	5.0	-	-	-	-
Isopropylbenzene	ND	-	5.0	-	-	-	-
4-Isopropyl toluene	ND	-	5.0	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	18.2	5.0	20	-	91.2	70-130
Methylene chloride	ND	-	5.0	=	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	5.0	=	-	-	-
Naphthalene	ND	-	5.0	=	-	-	-
n-Propyl benzene	ND	-	5.0	-	-	-	-
Styrene	ND	-	5.0	=	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	5.0	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	5.0	=	-	-	-
Tetrachloroethene	ND	-	5.0	=	-	-	-
Toluene	ND	21.8	5.0	20	-	109	70-130
1,2,3-Trichlorobenzene	ND	-	5.0	-	-	•	-
1,2,4-Trichlorobenzene	ND	-	5.0	-	-	•	-
1,1,1-Trichloroethane	ND	-	5.0	-	=	-	-
1,1,2-Trichloroethane	ND	-	5.0	-	=	-	-
Trichloroethene	ND	22.7	5.0	20	=	114	70-130
Trichlorofluoromethane	ND	-	5.0	-	=	-	-
1,2,3-Trichloropropane	ND	-	5.0	-	=	-	-
1,2,4-Trimethylbenzene	ND	-	5.0	-		-	-
1,3,5-Trimethylbenzene	ND	-	5.0	-	=	-	-
Vinyl Chloride	ND	-	5.0	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	225	41.1		45	90	91	70-130
Toluene-d8	226	39.3		45	90	87	70-130
4-BFB	21.7	4.43		4.5	87	98	70-130

nL/L

MB

LCS

LCS

SPK

Soilgas

Quality Control Report

Unit:

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Date Prepared:7/15/14BatchID:92763Date Analyzed:7/14/14Extraction Method:TO15Instrument:GC24Analytical Method:TO15

Project: Metro Valley Cleaners **Sample ID:** MB/LCS-92763

	QC Summary Report for TO15					
Analyte	MB Result	LCS Result	RL			
Acetone	ND	-	25			

	Result	Result		Val	SS %REC	%REC	Limits
Acetone	ND	-	25	-	-	-	-
Acrolein	ND	22.5	0.50	25	-	90.1	60-140
Acrylonitrile	ND	27.1	0.50	25	-	108	60-140
tert-Amyl methyl ether (TAME)	ND	26.0	0.50	25	-	104	60-140
Benzene	ND	21.4	0.50	25	-	85.6	60-140
Benzyl chloride	ND	30.2	0.50	25	-	121	60-140
Bromodichloromethane	ND	22.5	0.50	25	-	90	60-140
Bromoform	ND	38.6	0.50	25	-	154, F2	60-140
Bromomethane	ND	-	0.50	-	-	-	-
1,3-Butadiene	ND	-	0.50	-	-	-	•
2-Butanone (MEK)	ND	-	25	-	-	-	•
t-Butyl alcohol (TBA)	ND	25.3	10	25	-	101	60-140
Carbon Disulfide	ND	23.2	0.50	25	-	92.8	60-140
Carbon Tetrachloride	ND	20.9	0.50	25	-	83.6	60-140
Chlorobenzene	ND	23.4	0.50	25	-	93.6	60-140
Chloroethane	ND	18.0	0.50	25	-	72	60-140
Chloroform	ND	17.9	0.50	25	-	71.6	60-140
Chloromethane	ND	24.2	0.50	25	-	96.7	60-140
Cyclohexane	ND	-	5.0	-	-	-	-
Dibromochloromethane	ND	27.9	0.50	25	-	112	60-140
1,2-Dibromo-3-chloropropane	ND	36.5	0.012	25	-	146, F2	60-140
1,2-Dibromoethane (EDB)	ND	23.9	0.50	25	-	95.8	60-140
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	24.6	0.50	25	-	98.6	60-140
1,4-Dichlorobenzene	ND	23.3	0.50	25	-	93.1	60-140
Dichlorodifluoromethane	ND	20.1	0.50	25	-	80.6	60-140
1,1-Dichloroethane	ND	22.8	0.50	25	-	91.4	60-140
1,2-Dichloroethane (1,2-DCA)	ND	20.6	0.50	25	-	82.3	60-140
1,1-Dichloroethene	ND	-	0.50	-	-	-	-
cis-1,2-Dichloroethene	ND	21.7	0.50	25	-	86.9	60-140
trans-1,2-Dichloroethene	ND	19.5	0.50	25	-	78.1	60-140
1,2-Dichloropropane	ND	23.1	0.50	25	-	92.5	60-140
cis-1,3-Dichloropropene	ND	25.9	0.50	25	-	104	60-140
trans-1,3-Dichloropropene	ND	25.5	0.50	25	-	102	60-140
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	20.4	0.50	25	-	81.8	60-140
Diisopropyl ether (DIPE)	ND	23.0	0.50	25	-	92.1	60-140
1,4-Dioxane	ND	25.0	0.50	25	-	99.9	60-140
Ethanol	ND	-	50	-	-	-	-
Ethyl acetate	ND	21.8	0.50	25	-	87.3	60-140
Ethyl tert-butyl ether (ETBE)	ND	23.8	0.50	25	-	95.3	60-140

(Cont.)

Matrix:

nL/L

Soilgas

Matrix:

Quality Control Report

Unit:

Client:Advanced GeoEnvironmental, Inc.WorkOrder:1407290Date Prepared:7/15/14BatchID:92763Date Analyzed:7/14/14Extraction Method:TO15Instrument:GC24Analytical Method:TO15

Project: Metro Valley Cleaners **Sample ID:** MB/LCS-92763

	QC Su	QC Summary Report for TO15					
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ethylbenzene	ND	24.0	0.50	25	-	95.9	60-140
4-Ethyltoluene	ND	-	0.50	-	-	-	-
Freon 113	ND	15.9	0.50	25	-	63.7	60-140
Heptane	ND	-	5.0	=	-	-	-
Hexachlorobutadiene	ND	22.5	0.50	25	=	90	60-140
Hexane	ND	-	5.0	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	30.3	0.50	25	-	121	60-140
Methyl-t-butyl ether (MTBE)	ND	19.7	0.50	25	-	78.8	60-140
Methylene chloride	ND	19.7	0.50	25	-	78.9	60-140
Methyl methacrylate	ND	26.5	0.50	25	-	106	60-140
Naphthalene	ND	65.6	1.0	50	-	131	60-140
Propene	ND	-	50	-	-	-	-
Styrene	ND	27.0	0.50	25	-	108	60-140
1,1,1,2-Tetrachloroethane	ND	26.2	0.50	25	-	105	60-140
1,1,2,2-Tetrachloroethane	ND	22.7	0.50	25	-	90.7	60-140
Tetrachloroethene	ND	23.8	0.50	25	-	95.1	60-140
Tetrahydrofuran	ND	21.0	0.50	25	-	83.8	60-140
Toluene	ND	23.1	0.50	25	-	92.3	60-140
1,2,4-Trichlorobenzene	ND	28.2	0.50	25	-	113	60-140
1,1,1-Trichloroethane	ND	22.3	0.50	25	-	89.2	60-140
1,1,2-Trichloroethane	ND	20.8	0.50	25	-	83.4	60-140
Trichloroethene	ND	20.9	0.50	25	-	83.5	60-140
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	23.1	0.50	25	-	92.5	60-140
1,3,5-Trimethylbenzene	ND	21.4	0.50	25	-	85.5	60-140
Vinyl Acetate	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	18.6	0.50	25	-	74.4	60-140
Xylenes, Total	ND	67.7	1.5	75	-	90.3	60-140
Surrogate Recovery							
1,2-DCA-d4	462	561		500	92	112	60-140
Toluene-d8	491	509		500	98	102	60-140
4-BFB	529	502		500	106	100	60-140

McCampbell Analytical, Inc.

FAX: (209) 467-1118

CHAIN-OF-CUSTODY RECORD

(209) 467-1006

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1407290 ClientCode: AGES

WaterTrax	J-flag
-----------	--------

Report to: Bill to: Requested TAT: 5 days

dvillanueva@advgeoenv.com Erica Daniel Villanueva Email:

cc/3rd Party: Advanced GeoEnvironmental, Inc. Advanced GeoEnvironmental, Inc.

Date Received: 07/09/2014 837 Shaw Road PO: 837 Shaw Road ProjectNo: Metro Valley Cleaners Stockton, CA 95215 Stockton, CA 95215 Date Printed: 07/09/2014

ebart@advgeoenv.com

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1407290-001	VP-1	Soil Gas	7/8/2014 10:17		Α											
1407290-002	VP-2	Soil Gas	7/8/2014 10:53		Α											
1407290-003	VP-3	Soil Gas	7/8/2014 11:31		Α											
1407290-004	VP-4	Soil Gas	7/8/2014 12:10		Α											

Test Legend:

_					
1 O15_Scan-SIM_SOIL(UG/M3	2	3	4	5	
6	7	8	9	10	
11	12				

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Jena Alfaro

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	ADVANCED GEOENVIRONMENTAL, INC.	QC Level: LEVEL 2		Work Order:	1407290
Project:	Metro Valley Cleaners	Client Contact: Daniel Vil	llanueva	Date Received:	7/9/2014
Comments:		Contact's Email: dvillanuev	va@advgeoenv.com		

		☐ WaterTrax	☐ WriteOn	Excel	Fax Email	HardC	opyThirdPart	ty 🗀	J-flag
Lab ID	Client ID	Matrix	Test Name	Number of Containers	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1407290-001A	VP-1	Soil Gas	TO15 for Soil Vapor	1	1L Summa		7/8/2014 10:17	5 days	
1407290-002A	VP-2	Soil Gas	TO15 for Soil Vapor	1	1L Summa		7/8/2014 10:53	5 days	
1407290-003A	VP-3	Soil Gas	TO15 for Soil Vapor	1	1L Summa		7/8/2014 11:31	5 days	
1407290-004A	VP-4	Soil Gas	TO15 for Soil Vapor	1	1L Summa		7/8/2014 12:10	5 days	

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

1L Summa = 1L Summa Canister

1407290

									THE RESERVE TO SHARE THE PARTY OF THE PARTY				
	Advance	ed GeoEi	ivironmo	ental,	Inc.	www.advgeoenv.com	C	HAIN	OF CUS	STODY	REC	CORD	
	837 Shaw Road, Stockton, California 95215 • Phone (209) 467-1006 • Fax (209) 467-1118							Date: 7-9-14 Page 1 of 1					
	381 Thor Place, Brea, California 92821 • Phone (714) 529-0200 • Fax (714) 529-0203												
	2318 Fourth	Street, Santa Ro	osa, California	95404 •	Phone (70	7) 570-1418 • Fax (707) 570-1461			Analysis	Requi	red		
	395 Del Mor	nte Center, #111	, Monterey, Ca	lifornia 9	3940 • Ph	none (800) 511-9300 • Fax (831) 394-5979							
,							160	1					
Project Name	Valley	Clean	245	Project N	Manager	1 Villamure	0-1			1			
Client	1				(initials & s	signature)	-						
					N		- h	N					
Invoice to: AGE	☐ Client			Lab Proj	ect No.:		90	2					
Sample ID/Location	n/Description	Date	Time	Matrix	Number	Notes	>	7					
JP-1		7-8-14	2501-1012	A		finition pressure: 21/15	X	X					
5		,,											
si					×	s ·							
NP-2		7-08-14	1053-1058	A	1	inited pressure: 29 Hs	X	X					
				7									
WP-3		7-68-14	1121-136	A	1	initial pressur: 28.5 Hg	×	×					
9			11			(, , , , , , , , , , , , , , , , , , ,							
UP-4	v	7-08-14	1210-1215	A	(initial pressur. 26.5 lts	X	X	12			-	
,													
Relinquished by:			Date: 7-9-1	4	Time:	Laboratory:				8			
Courier:	7					Received by:			Date:	111	- 1	Time:	
Relinquished by:			Date:		Time:	Received by:	***************************************		Date:	19	-	1159 Time:	
W A	2		7/9/1	1	13:18	Shana Cotter			7/9	114		13:18	
Relinquished by:			Date:		Time:	Received by:			Date:	1		Time:	
							-						
Requested Turn Around Time	e (circle): 24 hours 4	8 hours 72 hours	5 days (standar	rd) Other:		-			A = Air W				
Special Instructions to lab:							I hereby auth	orize the pe	rformance of	the above i	ndicated w	vork.	
							()		_				
Geotracker EDF to: Kgeotra	acker@advgeoenv.com				Global ID:								

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name.	Advanced GeoEnviro	onmentai, inc.			Date and 1	ime Received.	7/9/2014 8	3:52:28 PW
Project Name:	Metro Valley Cleane	rs			LogIn Revi	ewed by:		Jena Alfaro
WorkOrder №:	1407290	Matrix: Soil Gas	i		Carrier:	Daniel (MAI Co	urier)	
		<u>0</u>	Chain of C	ustody	(COC) Information			
Chain of custody	present?		Yes	✓	No 🗆			
Chain of custody	signed when relinquis	hed and received	? Yes	✓	No 🗆			
Chain of custody	agrees with sample la	bels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗆			
Date and Time of	f collection noted by Cl	ient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No \square			
			Sample	e Recei	ipt Information			
Custody seals int	tact on shipping contai	ner/cooler?	Yes		No 🗌		NA 🗹	
Shipping containe	er/cooler in good cond	tion?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	volume for indicated t	est?	Yes	✓	No 🗌			
		Sample P	reservatio	n and	Hold Time (HT) Info	rmation		
All samples recei	ived within holding time	e?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp	o:		NA 🗸	
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes		No 🗌		NA 🗸	
Sample labels ch	ecked for correct pres	ervation?	Yes	✓	No 🗌			
pH acceptable up	oon receipt (Metal: pH<	:2; 522: pH<4)?	Yes		No 🗌		NA 🗸	
Samples Receive	ed on Ice?		Yes		No 🗹			
* NOTE: If the "N	lo" box is checked, see	e comments below	V.					