Advanced GeoEnvironmental, Inc.

09 March 2009 AGE-NC Project No. 08-1640

Mr. Bob Strong 500 Bollinger Canyon Way #A4 North California Street San Ramon, 94582

Subject:Soil Vapor Extraction Pilot Test ReportMETRO VALLEY CLEANERS224 Rickenbacker Circle, Livermore, California

Dear Mr. Strong:

Advanced GeoEnvironmental, Inc. has prepared this report of environmental activities conducted at the site located at 224 Rickenbacker Circle, Livermore, California. The scope of work included a ground water monitoring event, the installation of one soil vapor extraction well and two soil vapor observation wells, and the performance of a variable speed 24-hour soil vapor extraction pilot test. Copies of this report will be forwarded to Mr. Jerry Wickham of the Alameda County Environmental Health Services (ACEHS).

The opportunity to provide you with this service is greatly appreciated. If you have any questions or require further information, please contact our office at (209) 467-1006.

Sincerely,

Advanced GeoEnvironmental, Inc.

1. un

Daniel J. Villanueva Staff Geologist

cc: Mr. Jerry Wickham, ACEHS

RECEIVED

10:43 am, Apr 13, 2009

Alameda County Environmental Health

Advanced GeoEnvironmental, Inc.

09 March 2009 AGE-NC Project No. 08-1640

Mr. Jerry Wickham Alameda County Environmental Health Services 1131 Harbor Bay Parkway Suite 250 Alameda, California 94502-6577

Subject: Soil Vapor Extraction Pilot Test Report METRO VALLEY CLEANERS 224 Rickenbacker Circle, Livermore, California

Dear Mr. Wickham:

Advanced GeoEnvironmental, Inc. has prepared this report of environmental activities conducted at the site located at 224 Rickenbacker Circle, Livermore, California. The scope of work included a ground water monitoring event, the installation of one soil vapor extraction well and two soil vapor observation wells, the performance of a variable speed 24-hour soil vapor extraction pilot test, and preparation of this report.

If you have any questions or require further information, please contact our office at (209) 467-1006.

Sincerely,

Advanced GeoEnvironmental, Inc.

in

Daniel Villanueva Staff Geologist

09 March 2009 AGE-NC Project No. 08-1640

PREPARED FOR:

Mr. Bob Strong METRO VALLEY CLEANERS

PREPARED BY:

Advanced GeoEnvironmental, Inc.

381 Thor Place, Brea, California 92821 • Phone (714) 529-0200 • Fax (714) 529-0203 837 Shaw Road, Stockton, California 95215 • Phone (209) 467-1006 • Fax (209) 467-1118 2318 Fourth Street, Santa Rosa, California 95404 • Phone (707) 570-1418 • Fax (707) 570-1461 395 Del Monte Center, #111, Monterey, California 93940 • Phone (800) 511-9300 • Fax (831) 394-5979

> 09 March 2009 AGE-NC Project No. 08-1640

Advanced GeoEnvironmental, Inc. 837 Shaw Road, Stockton, California

PREPARED BY:

Vin

Daniel J. Villanueva Staff Geologist

PROJECT MANAGER:

Arthur E. Deicke Jr. Project Scientist

NAL **REVIEWED BY:** No. 7473 William R. Little Senior Project Geologist California Professional Geologist No. 470 CAL

TABLE OF CONTENTS

SECTION

PAGE

1.0.	INTRODUCTION AND BACKGROUND									
	1.1.	BACKGROUND								
	1.2.	PREVIOUS INVESTIGATIONS 1								
2.0.	PROC	EDURES								
	2.1.	GROUND WATER SAMPLE COLLECTION AND ANALYSIS								
	2.2.	REMEDIATION WELL INSTALLATION								
		2.2.1. Pilot Boring Advancement								
		2.2.2. Soil Sample Collection and Analysis								
		2.2.3. Well Installation								
		2.2.4. Waste Management								
	2.3.	SOIL VAPOR EXTRACTION PILOT TEST								
3.0.	FINDINGS									
	3.1.	GROUND WATER ELEVATION								
	3.2.	ANALYTICAL RESULTS								
		3.2.1. Ground Water Samples								
		3.2.2. Soil Samples								
	3.3.	STRATIGRAPHY								
	3.4.	SOIL VAPOR EXTRACTION PILOT TEST								
		3.4.1. Analytical Results of Soil Vapor Samples								
		3.4.2. Soil Vapor Extraction Pilot Test Results								
		3.4.3. Mass Removal								
4.0.	CONC	CLUSIONS								
5.0.	RECO	OMMENDATIONS9								
6.0.	LIMI	ΓΑΤΙΟΝS10								

TABLE OF CONTENTS

FIGURES

Figure 1 - Location Map Figure 2 - Site Plan Figure 3 - Ground Water Elevation Map Figure 4 - Ground Water Elevation Map Figure 5 - SVE-Well Design Figure 6 - Theoretical Radius of Influence

TABLES

- Table 1 Well Construction Details
- Table 2 Ground Water Level Measurements
- Table 3 Ground Water Analytical Data
- Table 4 Soil Analytical Data
- Table 5 Field Parameters-SVE Pilot Test
- Table 6 Soil Vapor Analytical Data SVE Pilot Test
- Table 7 Historical Soil Gas Analytical Data

APPENDICES

- Appendix A Permits and Regulatory Letters
- Appendix B Ground Water Monitoring Procedures
- Appendix C Field Notes
- Appendix D Analytical Laboratory Report Ground Water
- Appendix E Analytical Laboratory Report Soil
- Appendix F Boring Logs
- Appendix G Analytical Laboratory Report Soil Vapor
- Appendix H Distance Vs. Max Vacuum SVE-1
- Appendix I Mass-Volume Calculations

1.0. INTRODUCTION AND BACKGROUND

At the request of Mr. Strong, *Advanced* GeoEnvironmental, Inc. (AGE) has prepared this report of environmental activities conducted at 224 Rickenbacker Circle, Livermore, California (site) in December 2008 and January 2009. The report documents the results of a ground water monitoring event, the installation of one soil vapor extraction (SVE) well and two soil vapor observation wells and the performance of a variable speed 24-hour soil vapor extraction pilot test.

The site and the surrounding area are illustrated on Figure 1; a plan of the site, including soil boring and well locations, is illustrated on Figure 2. Well construction details are included in Table 1.

Field work was performed as detailed in the AGE-prepared *Soil Vapor Extraction Pilot Test Work Plan* dated 02 October 2008 and as modified and approved by Alameda County Environmental Health Services (ACEHS) in their letter dated 07 November 2008 (Appendix A).

1.1. BACKGROUND

The site was formerly used as a dry cleaning facility utilizing a solvent-based dry cleaning machine. Reportedly, the Tetrachloroethene (PCE)-based dry cleaning machine was upgraded in the late 1990s to an Exxon DF2000, which is a clean solvent machine, and then later to silicon-based dry cleaning technology. All dry cleaning equipment was reportedly removed from the site in 2005. A metal fabrication facility is currently in operation at the site.

1.2. PREVIOUS INVESTIGATIONS

In October 2005, JMK Environmental Solutions advanced three soil borings for the collection of soil samples at the site. Soil samples were collected from borings S-1 and S-2 at five-foot intervals from 5 to 15 feet below surface grade (bsg) and in ten-foot intervals between 15 and 35 feet bsg.

In January 2007, ENGEO Inc. advanced nine soil borings (SG-1 to SG-9) to five feet bsg for the collection of soil gas samples and two soil borings (P-1 and P-2) to one and five feet bsg for the collection of soil samples. Soil vapor samples were collected in syringes and analyzed by a mobile laboratory in accordance with EPA Method 8260M. PCE and related daughter products were reported in the soil gas samples. PCE was also reported in soil sample P-1@5 at five feet bsg.

In March 2007, ENGEO, Inc. advanced five soil borings (S-1 through S-5) for the collection of soil and ground water. Soil samples were collected at various depths ranging from 2 to 30 feet bsg. In general, ground water samples were collected from the first water bearing unit at depths ranging from

09 March 2009 AGE-NC Project No. 08-1640 Page 2 of 10

approximately 21 to 26 feet bsg. PCE was reported in soil samples collected from S-3, which is located near the former dry cleaning unit. PCE was reported in each grab water samples collected from boring S-2 through S-5.

In November 2007, ENGEO, Inc. advanced one boring (1-B1) near the current trash holding area to define the vertical extent of soil and ground water. Soil samples were collected at ten-foot intervals from 10 to 90 feet bsg; grab ground water samples were collected at depths of approximately 35, 70 and 95 feet bsg. PCE was reported in soil samples from collected from 10, 20, and 50 feet bsg. No target chemicals were reported in grab ground water samples.

In December 2007, ENGEO, Inc. advanced seven soil borings (SG-10 through SG-16) to five feet bsg and collected eight soil vapor samples utilizing Summa canisters and were analyzed by EPA Method TO-15. Results from the survey indicated that all locations were either non-detect or below environmental screening levels.

In December 2007, ENGEO, Inc. installed three ground water monitoring wells (MW-1 through MW-3). Soil samples were collected from MW-1 at 5.5 and 10 feet bsg; one soil sample was collected during the advancement of MW-2 and MW-3 at depths of 25.5 and 26 feet, respectively. PCE was reported in both samples collected from MW-1.

ENGEO, Inc. performed one ground water monitoring event on-site in January 2008 utilizing wells MW-1 through MW-3. PCE was reported in monitoring wells MW-1 and MW-2; PCE concentrations reported in MW-1 and MW-2 were below Maximum Contaminate Level (MCL) of 5 ug/l. Historical analytical soil, ground water, soil gas and other data is included in Tables 2 through 4 and 7.

2.0. **PROCEDURES**

On 18 December 2008, a ground water monitoring event was performed at the site utilizing wells MW-1 through MW-3. On 19 and 20 January 2009, a 24-hour variable speed pilot test was conducted using SVE well SVE-1, screened from 5 feet to 20 feet bsg.

2.1. GROUND WATER SAMPLE COLLECTION AND ANALYSIS

Monitoring was performed in accordance with AGE's standard monitoring and sampling procedures, provided in Appendix B. Field data and logs are provided in Appendix C. No exceptions to AGE's standard procedures were noted.

09 March 2009 AGE-NC Project No. 08-1640 Page 3 of 10

Ground water samples were analyzed by Cal Tech Environmental Laboratories (CTEL) a California Department of Public Health (CDPH)-certified laboratory for analysis located in Paramount, California for volatile organic compounds (VOCs) in accordance with EPA Method 8260B.

2.2. REMEDIATION WELL INSTALLATION

One SVE well (SVE-1) and two SVE observation wells (OW-1 and OW-2) were installed at the site on 08 January 2009.

2.2.1. Pilot Boring Advancement

Three pilot soil borings were advanced at the site to depths of approximately 20 feet bsg. The borings were advanced utilizing a CME-75 drill rig equipped with 8.25-inch diameter hollow-stem augers. SVE well SVE-1 was advanced south of the former dry-cleaning machine location and adjacent to soil vapor monitoring point SG-5. SVE observation well OW-1 was located approximately 39 feet to the southwest of well SVE-1 and north of the location of borings SG-3 and S-5. SVE observation well OW-2 was located approximately 21 feet west of well SVE-1.

2.2.2. Soil Sample Collection and Analysis

Soil samples will be collected from pilot borings at five-foot intervals. Relatively undisturbed soil samples were collected in each of the pilot borings using a California modified split-spoon sampler fitted with 2-inch diameter by 6-inch long stainless steel sleeves. Upon removal from the sampler, the sleeves were separated with a clean knife. The exposed ends of the second sleeve were covered with Teflon sheets, capped and sealed with tape. The remaining soil will was visually classified by an AGE representative in accordance with the Unified Soil Classification System (USCS). Soil samples were also field screened for the presence of volatile organic compounds using an organic vapor meter (OVM), equipped with a photo ionization detector (PID). Soil sample descriptions and OVM readings are detailed on boring logs included in Appendix D.

Following sample collection, each preserved sample sleeve was labeled with the boring location, depth, time, date and sampler's initials. Appropriately sealed and labeled samples will be placed in a chilled container with ice and transported under chain of custody procedures to CTEL, a CDPH-certified laboratory for analysis of VOCs in accordance with EPA Method 8260B.

Any non-disposable equipment used for sample collection was thoroughly rinsed with clean water after being washed with a solution of Alconox.

09 March 2009 AGE-NC Project No. 08-1640 Page 4 of 10

2.2.3. Well Installation

The three pilot borings were completed as single-casing SVE extraction and SVE observation wells utilizing 2-inch diameter schedule 40 polyvinylchloride (PVC) 0.030-inch slotted well screen and blank well casing. Based on geologic conditions, a 15-foot length of well screen, from 5 to 20 feet bsg was used for each well. After installing each well casing, a filter pack material consisting of #3 sand was added to approximately one foot above the screened interval (Figure 5).

A nominal one-foot bentonite seal (bentonite chips) was placed above the filter pack to minimize the potential for grout penetration into the screened section of the well. The bentonite seal was formed by pouring bentonite chips into the annulus and allowing them to settle on the filter pack. The bentonite chips were hydrated using a few gallons of tap water and allowed to hydrate for a minimum of one-half hour prior to grouting.

The remaining annular space was filled to about 1 foot beneath ground surface with a cement grout. The grout mixture consisted of Type I/II Portland neat cement and not more than 6 gallons of water per 94-pound sack of cement.

2.2.4. Waste Management

Soil cuttings generated during drilling activities were containerized in properly labeled Department of Transportation (DOT)-approved 55-gallon drums. Upon characterization and profiling, the cuttings will be disposed at an appropriate landfill facility.

2.3. SOIL VAPOR EXTRACTION PILOT TEST

One variable flow rate, 24-hour SVE pilot study was conducted at the site on 19 and 20 January 2009 to evaluate the use of the technology to effectively remove chlorinated solvents from the impacted soil.

The pilot study was conducted at the site utilizing a 2.5-horsepower, regenerative vacuum blower; the vacuum blower was rated at a maximum 150 standard cubic feet per minute (scfm). The inlet of the vacuum blower was directly routed through a Blue-White F-452 flow rotometer to the SVE well head and connected by 2-inch diameter PVC piping. The outlet of the vacuum blower was directly routed through a carbon adsorption canisters.

Air-tight, 2-inch diameter PVC well caps fitted with Dwyer Magnehelic® vacuum gauges were attached to SVE observation wells OW-1 and OW-2. The induced vacuum was measured (i.e. inches

09 March 2009 AGE-NC Project No. 08-1640 Page 5 of 10

of water) at those observation points.

The vapor stream from extraction well SVE-1 was monitored for the presence of organic vapor using an OVM equipped with a PID. From the vacuum blower, the extracted vapor was processed and adsorbed through the carbon canisters as part of the treatment process.

During the pilot study, the vapor flow rate extracted was monitored at the inlet of the vacuum blower using a Dwyer DS-200 differential pressure flow sensor (inches of water); the flow rate was converted to scfm using a manufacturer supplied conversion chart. Additionally, the flow rate was measured with flow rotometer; measurements were collected in scfm. The flow rate was increased in three steps in four-hour increments for the first 12 hours of the pilot test. In the beginning of the pilot test, the blower was initially set to 15 scfm and increased to 22 scfm, 31scfm and 33 scfm (maximum capacity) in four-hour increments (Table 5). During the pilot test, flow rates were measured and recorded at 30-minute intervals.

Influent vapor samples were collected at the start-up, following the first increase in flow rate from 15 to 22 scfm, following the second increase from 22 to 31scfm and at the conclusion of the pilot test. Influent vapor samples were collected in Tedlar® bags using a hand-operated air-vacuum pump. An effluent vapor sample was not collected during the pilot test as no carbon breakthrough was noted during periodic field measurements.

Following collection, the influent vapor samples were placed in a container and transported under chain of custody to a CDPH-certified analytical laboratory for analysis. Each influent vapor sample was analyzed within 72 hours for VOCs by EPA method 8260.

3.0. FINDINGS

Ground water elevation, flow direction and gradient were determined from field data collected on 18 December 2008. The contaminant impact to ground water was quantified from laboratory analytical data.

3.1. GROUND WATER ELEVATION

At the time of the December 2008 sampling event, depths to ground water ranged from 27.90 feet (MW-1) to 28.38 feet (MW-2) below the top of the casing (btoc). Ground water elevations ranged from 381.57 feet (MW-3) to 382.10 (MW-1).

09 March 2009 AGE-NC Project No. 08-1640 Page 6 of 10

Ground water flow was inferred to be flowing toward the west under an average hydraulic gradient of approximately 0.006 foot/foot (ft/ft). Figure 3 illustrates the contoured ground water elevations for the water table as measured on 18 December 2008.

3.2. ANALYTICAL RESULTS

Three ground water samples were collected for background data in support of the SVE pilot test. Soil samples were collected during advancement of the pilot borings for the installation of SVE wells SVE-1, OW-1 and OW-2.

3.2.1. Ground Water Samples

Tetrachloroethene (PCE) was reported in the ground water samples collected from monitoring well MW-2 at a concentration of 7.1 micrograms per liter (μ g/l). No other analytes were reported in the ground water samples collected on 18 December 2008.

Analytical results of the ground water samples collected on 18 December 2008 are summarized in Table 3. A map illustrating PCE impact to ground water is included as Figure 4.

The laboratory report (CTEL Project No. CT214-0812178), Quality Assurance/Quality Control report, and chain-of-custody form are included in Appendix D. Laboratory electronic deliverable format (EDF) files and electronic deliverable data (EDD) depth-to-water measurements were uploaded to the State GeoTracker database (confirmation numbers 4288864612 and 943786778).

3.2.2. Soil Samples

Samples collected during the 08 January 2009 well installation were submitted for laboratory analysis for VOCs by EPA method 8260B.

PCE was reported in samples collected at 5, 10 and 15 feet bsg in pilot boring SVE-1 at concentrations of 0.058 milligrams per kilograms (mg/kg), 0.11 mg/kg, and 0.014 mg/kg, respectively. PCE was reported in the sample collected at 5 feet bsg in pilot boring OW-1 at 0.040 mg/kg. PCE was reported in samples collected at 5 and 10 feet bsg in pilot boring OW-2 at concentrations of 0.036 mg/kg and 0.026 mg/kg, respectively.

09 March 2009 AGE-NC Project No. 08-1640 Page 7 of 10

No other target chemicals were reported in samples collected from SVE wells installed on 08 January 2009. Soil analytical results are summarized in Table 4. The laboratory report (CTEL Project No. CT214-0901030), Quality Assurance/Quality Control report, and chain-of-custody form are included in Appendix E. The laboratory electronic deliverable format (EDF) file was uploaded to the State GeoTracker database under confirmation number 3561844348).

3.3. STRATIGRAPHY

During the advancement of pilot borings for SVE well SVE-1 and SVE observation wells OW-1 and OW-2 soil samples were collected at 5-foot intervals between 5 and 20 feet bsg. In general, alternating layers of clay and silt were noted during the advancement of the pilot borings. Distinct layers of sand and gravel were also noted; sand layers encountered were poorly-graded containing some gravel pieces while gravel layers were noted as angular gravel containing some sands and silt. Boring logs documenting the installation of the SVE and observation wells are included as Appendix F.

3.4. SOIL VAPOR EXTRACTION PILOT TEST

One variable rate, 24-hour SVE pilot study was conducted at the site on 19 and 20 January 2009 to evaluate the use of the technology to effectively remove chlorinated solvents from the subsurface impacted soil.

3.4.1. Analytical Results of Soil Vapor Samples

PCE was reported in each of the four soil vapor samples collected from SVE well SVE-1 ranging from 67 μ g/l (SVE-1/End) to 110 μ g/l (Influent St. and Influent 1400).

Trichloroethene (TCE) was reported in soil vapor sample Influent 1400 at concentrations of $3.3 \mu g/l$.

No other analytes were reported in soil vapor samples collected during the pilot test. Analytical results of soil vapor samples are summarized in Table 6. The laboratory report (CTEL Project Nos. CT214-0901115 and -09011028), QA/QC report and chain of custody forms are included in Appendix G. The confirmation numbers for GeoTracker submittal of laboratory electronic deliverable format (EDF) are 1826067268 and 1932946324.

09 March 2009 AGE-NC Project No. 08-1640 Page 8 of 10

3.4.2. Soil Vapor Extraction Pilot Test Results

The flow rates were measured between 15 scfm and 38 scfm for the 24-hour test. Influent vapor readings on the OVM/PID ranged from 26 to 56 parts per million volume (ppmv). Induced vacuum measured at the SVE well SVE-1 ranged between 20 and 80 inches of water (iow). Vacuum at the well heads of the observation wells OW-1 and OW-2 were recorded throughout the pilot test. Vacuum measurements ranged from 0.10 to 0.25 inches in observation well OW-1 and 0.05 to 0.21 inches in observation well OW-2.

During the first several measurements (start-up to approximately 1330), the gauge used to measure the induced vacuum at the SVE observation was improperly set-up. The proper setting and readings were performed from 1330 until the completion of the pilot test.

The maximum vacuum measured at the SVE extraction wells and SVE observation points (OW-1 and OW-2) during the pilot test were plotted versus the distance from SVE well SVE-1 (Appendix G). The theoretical radius of influence (ROI) was determined by drawing a best-fit line though these data points to correlate distance to vacuum data. Based on the United States Environmental Protection Agency (EPA)-prepared document, *How to Evaluate Alternative Cleanup Technologies For UST Sites*, the ROI is considered to be the distance from the extraction well at which a vacuum of at least 0.1 iow is observed. Based upon a vacuum of 0.1 iow, the extrapolated ROI at the site was approximately 35 feet.

A summary of parameters collected during the pilot test is included in Table 5. The theoretical or extrapolated ROI is depicted on Figure 6.

3.4.3. Mass Removal

The hydrocarbon mass of (PCE) removed during the operating period was calculated using the following equation: $M = C \cdot Q \cdot t$

where: M = cumulative mass recovered (kilogram - kg) C = soil-vapor concentration (kilogram per cubic meter - kg/m³) Q = extraction flow rate (cubic meter per hour - m³/hr)t = operational period (hours)

Estimated mass of hydrocarbons removed was based on laboratory analysis of soil-vapor samples, flow rate and operational time. Mass of extracted hydrocarbons was calculated for the time period using average hydrocarbon concentrations of influent soil-vapor sample data, averaged air flow rates, and duration of operation. Operational results are summarized in Table 5.

09 March 2009 AGE-NC Project No. 08-1640 Page 9 of 10

A calculated 0.3 pounds of mass or an approximate volume of 0.05 gallons of PCE was extracted using the SVE system during the 24-hour pilot test. Volume and mass calculations are provided in Appendix I.

4.0. CONCLUSIONS

Based upon the environmental activities performed in December 2008 and January 2009, AGE concludes:

- PCE was reported in monitoring well MW-2 during the 18 December 2008 background ground water monitoring event at a concentration of 7.1 μ g/l, which is slightly above MCL of 5.0 μ g/l.
- PCE impact to ground water is currently undefined south and west of monitoring well MW-2 (Figure 4).
- Continuous influent vapor readings observed with the OVM/PID during the SVE pilot test indicate that volatile organic compounds were effectively extracted from soil vapor soil vapor (Table 5).
- Based the projected 35-foot ROI of soil vapor extraction in the vadose zone, soil vapor extraction would be an effective remediation option for treatment of chlorinated solvent-impacted soil at the site. (Figure 6; Appendix G).

5.0. **RECOMMENDATIONS**

Based upon the environmental activities completed in December 2008 and January 2009, AGE recommends:

- Preparation of work plan for installation, start-up and operation of a SVE system at the site. The two observations wells OW-1 and OW-2 and SVE-1 would be used as SVE points. The work plan should include the installation of an additional SVE well north of theformer drycleaning machine location, based upon historical significant soil vapor concentrations (Table 7) and the projected ROI.
- Performance of annual monitoring, sampling and reporting of site monitoring wells MW-1 through MW-3. Annual monitoring of dissolved PCE is justified due to low PCE concentrations reported during the background monitoring event in monitoring well MW-2 and previous reported low PCE concentrations in samples collected from monitoring wells MW-1 and MW-2 in January 2008.

09 March 2009 AGE-NC Project No. 08-1640 Page 10 of 10

6.0. LIMITATIONS

Our professional services were performed using that degree of care and skill ordinarily exercised by environmental consultants practicing in this or similar localities. The findings were based upon analytical results provided by an independent laboratory. Evaluation of the geologic/hydrogeologic conditions at the site for the purpose of this investigation was made from a limited number of available data points (i.e., soil samples, ground water samples and soil vapor samples) and subsurface conditions may vary away from these data points. No other warranty, expressed or implied, is made as to the professional interpretations, opinions and recommendations contained in this report.

FIGURES

TABLES

TABLE 1WELL CONSTRUCTION DETAILSMetro Valley Cleaners224 Rickenbacker CircleLivermore, CA

Well ID	Installation Date	Borehole Diameter (inches)	Total Depth (ft bsg)	Casing Diameter (inches)	Casing Material	Slot Size (inches)	Casing Elevation (ft MSL) ¹	Screen Interval (ft btoc)	Filterpack Interval (ft btoc)	Bentonite Interval (ft btoc)	Grout Interval (ft btoc)	
Ground Water Monitoring Wells												
MW-1	12-18-2007	8	35	2	PVC	0.010	410.00	10 to 35	13 to 35	12 to 13	1 to 12	
MW-2	12-18-2007	8	35	2	PVC	0.010	409.98	10 to 35	39 to 65	12 to 13	1 to 12	
MW-3	12-18-2008	8	35	2	PVC	0.010	409.48	10 to 35	43 to 65	12 to 13	1 to 12	
					Reme	diation Wells						
SVE-1	01-08-2009	8	20	2	PVC	0.030	ns	5 to 15	4 to 20	3 to 4	1 to 3	
OW-1	01-08-2009	8	20	2	PVC	0.030	ns	5 to 15	4 to 20	3 to 4	1 to 3	
OW-2	01-08-2009	8	20	2	PVC	0.030	ns	5 to 15	4 to 20	3 to 4	1 to 3	

Notes:

ft bsg: feet below surface grade

PVC: polyvinylchloride

ft MSL: feet mean sea level

ft btoc: below top of well casing

ns: not surveyed

note 1: Survey data not available

TABLE 2GROUND WATER LEVEL MEASUREMENTSMetro Valley Cleaners224 Rickenbacker CircleLivermore, CA

	Screened	Well Casing		Depth to Ground	Ground Water	Ground Water Flow and Gradient		
Well ID	Interval (feet bsg)	(ft MSL) ¹	Date	Water (ft btoc)	Elevation (ft MSL)	Quarter/Year	Direction/ Gradient	
MW 1	13-35	410.00	01/28/08	25.25	384.75	1st/2008	NW / 0.00627 ft/ft	
M W - 1			12/18/08	27.90	382.10	4th/2008	W / 0.007 ft/ft	
MW 2	13-35	409.98	01/28/08	25.23	384.75			
IVI VV -2			12/18/08	28.38	381.60			
MW 2	13-35	409.48	01/28/08	25.25	384.23			
IVI W - 3			12/18/08	27.91	381.57			

TABLE 3GROUND WATER ANALYTICAL DATAMetro Valley Cleaners224 Rickenbacker CircleLivermore, California(ug/l)

	Screen	Date			EPA Meth	nod 8260B		
Sample ID	Interval (feet bsg)		PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	VC
S-1	22 - 26	03-02-2007	<1	<1	<1	<1	<1	<1
S-2	22 - 26	03-02-2007	1.8	<1	<1	<1	<1	< 0.5
S-3	24 - 28	03-02-2007	27	2.2	< 0.05	< 0.05	1.6	< 0.05
S-4	26 - 30	03-02-2007	16	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
S-5	23 - 27	03-02-2007	36	2.0	< 0.05	< 0.05	0.054	< 0.05
1-B1/DB-1-35	35 - 39	11-28-2007	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1-B1/DB-1-70	70 - 74	11-28-2007	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1-B1/DB-1-95	95 - 99	11-28-2007	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
MW 1	10 to 25	01-28-2008	0.80	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
IVI VV - 1	10 10 55	12-18-2008	<1	<1	<1	<1	<1	< 0.5
MW 2	10 to 25	01-28-2008	0.95	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
IVI VV -2	10 to 55	12-18-2008	7.1	<1	<1	<1	<1	< 0.5
MW 3	10 to 35	01-28-2008	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
101 00 -3	10 to 35	12-18-2008	<1	<1	<1	<1	<1	<0.5

Notes:

ug/l: micrograms per liter bsg: below surface grade <: non-detect above laboratory reporting limit DB: deep boring PCE: Tetrachloroethene TCE: Trichloroethene 1,1-DCE: 1,1- Dichloroethene Trans 1,2-DCE: Trans 1,2-Dichloroethene

Cis 1,2-DCE: Cis 1,2-Dichloroethene

VC: Vinyl Chloride

TABLE 4

SOIL ANALYTICAL DATA Metro Valley Cleaners 224 Rickenbacker Circle Livermore, California

(mg/kg)

	Denth (feet	_			EPA M	lethod 8260B		
Sample ID	bsg)	Date	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	VC
S-1-5*	5	10-25-2005	0.23	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012
S-1-10*	10	10-25-2005	0.032	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
S-1-15*	15	10-25-2005	0.031	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
S-1-25*	25	10-25-2005	0.057	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
S-1-35*	35	10-25-2005	0.029	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
S-2-5*	5	10-25-2005	0.45	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
S-2-10*	10	10-25-2005	0.059	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
S-2-15*	15	10-25-2005	0.036	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
S-2-25*	25	10-25-2005	0.048	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
S-2-35*	35	10-25-2005	0.023	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
S-3-25*	25	10-25-2005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
S-3-35*	35	10-25-2005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
P-1@1	1	01-22-2007	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048
P-1@5	5	01-22-2007	0.0055	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049
P-2@1	1	01-22-2007	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
P-2@5	5	01-22-2007	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047
S-1@24#	24	03-02-2007	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045
S-2@26#	26	03-02-2007	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049
S-3@2#	2	03-01-2007	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048
S-3@4#	4	03-01-2007	0.012	0.013	< 0.0049	0.014	0.061	< 0.0049
S-3@8#	8	03-01-2007	0.079	0.0066	< 0.0048	< 0.0048	< 0.0048	< 0.0048
S-3@10#	10	03-01-2007	0.023	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
S-3@27#	27	03-01-2007	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047
S-4@25#	25	03-01-2007	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049
S-5@30#	30	03-01-2007	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048
1-B1/S-10	10	11-27-2007	0.079	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049
1-B1/S-20	20	11-27-2007	0.017	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1-B1/S-30	30	11-27-2007	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049

TABLE 4

SOIL ANALYTICAL DATA Metro Valley Cleaners 224 Rickenbacker Circle

Livermore, California

(mg/kg)

	Dopth (foot				EPA N	Iethod 8260B		
Sample ID	bsg)	Date	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	VC
1-B1/S-40	40	11-27-2007	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1-B1/S-50	50	11-27-2007	0.0014	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049
1-B1/S-60	60	11-27-2007	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1-B1/S-70	70	11-27-2007	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049
1-B1/S-80	80	11-27-2007	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049
1-B1/S-90	90	11-27-2007	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048
MWB1	5.5	12-18-2007	0.081	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047
MWB1	10.5	12-18-2007	0.068	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049
MWB2	25.5	12-18-2007	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
MW-3	26	12-19-2007	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046
SVE-1-5	5	01-08-2009	0.058	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
SVE-1-10	10	01-08-2009	0.011	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
SVE-1-15	15	01-08-2009	0.014	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
OW-1-5	5	01-08-2009	0.040	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
OW-2-5	5	01-08-2009	0.036	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
OW-2-10	10	01-08-2009	0.026	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050

Notes:

milligrams per kilogram
below surface grade
Indicates constituents were not detected at a concentration greater than the reporting limit shown.
Tetrachloroethene
Trichloroethene
1,1- Dichloroethene
Trans 1,2-Dichloroethene
Cis 1,2-Dichloroethene
Vinyl Chloride
borings advanced by JML Environmental Solutions in 2005

#: borings advanced by ENGEO in 2007

TABLE 5FIELD PARAMETERS-SVE PILOT TEST

Metro Valley Cleaners 224 Rickenbacker Circle, Livermore, CA

			Influent PID	Effluent PID	Vacuum Measurements					
Time	Date	Flow (iow/scfm)	(ppm)	(ppm)	CVE 1 (cofm)	OW-1	OW-2			
			(pp.iii)	(ppiii)	SVE-1 (scim)	(iow)	(iow)			
Baseline	1/19/2009	-	-	-	0.00	0.00	0.25			
0930	1/19/2009	0.10 / 15	48.4	0	37.00	0.00	0.5			
1000	1/19/2009	0.10 / 15	51.2	0	26.00	0.00	3.1			
1030	1/19/2009	0.10 / 15	48.9	0	22.00	0.00	2.20			
1100	1/19/2009	0.10 / 15	55.2	0	27.00	0.80	1.2			
1130	1/19/2009	0.10 / 15	56.1	0	20.00	1.40	0			
1200	1/19/2009	0.10 / 15	54.3	0	26.00	1.40	0			
1230	1/19/2009	0.10 / 15	49.8	0	26.00	1.25	0.6			
1300	1/19/2009	0.10 / 20	44.4	0	20.00	1.35	0.6			
1330	1/19/2009	0.16 / 22	45.8	0	52.00	1.45	0.05			
Adjustment made to vacuum gauge										
1400	1/19/2009	0.16 / 22	50	0	51.00	0.10	0.05			
1430	1/19/2009	0.16 / 22	42	0	52.00	0.10	0.10			
1500	1/19/2009	0.16 / 22	43	0	52.00	0.11	0.06			
1530	1/19/2009	0.16 / 22	35	0	53.00	0.11	0.08			
1600	1/19/2009	0.16 / 22	39	0	53.00	0.11	0.08			
1630	1/19/2009	0.16 / 22	38	0	53.00	0.11	0.08			
1700	1/19/2009	0.16 / 22	38	0	53.00	0.11	0.08			
1730	1/19/2009	0.325 / 31	38	0	80.00	0.15	0.125			
1800	1/19/2009	0.325 / 31	37	0	79.00	0.175	0.125			
1830	1/19/2009	0.325 / 31	37	0	79.00	0.175	0.13			
1900	1/19/2009	0.35 / 32	37	0	78.00	0.19	0.15			
1930	1/19/2009	0.36 / 33	37	0	77.00	0.19	0.14			
2000	1/19/2009	0.375 / 33	35	0	76.00	0.20	0.15			
2030	1/19/2009	0.375 / 33	35	0	78.00	0.20	0.15			
2100	1/19/2009	0.375 / 33	35	0	78.00	0.20	0.15			
2130	1/19/2009	0.375 / 33	35	0	76.00	0.20	0.15			
2200	1/19/2009	0.40 / 35	34	0	74.00	0.20	0.15			

Advanced GeoEnvironmental, Inc.

TABLE 5FIELD PARAMETERS-SVE PILOT TEST

Metro Valley Cleaners 224 Rickenbacker Circle, Livermore, CA

		Flow (iow/scfm)	Influent PID		Vacuum Measurements			
Time	Date		(ppm)	(ppm)	SVE-1 (scfm)	OW-1 (iow)	OW-2 (iow)	
2230	1/19/2009	0.40 / 35	34	0	74.00	0.20	0.15	
2300	1/19/2009	0.43 / 36	34	0	72.00	0.20	0.16	
2330	1/19/2009	0.43 / 36	35	0	72.00	0.20	0.16	
2400	1/19/2009	0.43 / 36	35	0	72.00	0.21	0.16	
0000	1/20/2009	0.43 / 36	34	0	70.00	0.21	0.16	
0030	1/20/2009	0.42 / 36	34	0	70.00	0.21	0.16	
0100	1/20/2009	0.42 / 36	34	0	70.00	0.21	0.16	
0130	1/20/2009	0.43/36	34	0	70.00	0.21	0.16	
0200	1/20/2009	0.42 / 36	32	0	70.00	0.21	0.16	
0230	1/20/2009	0.43 / 36	34	0	70.00	0.21	0.16	
0300	1/20/2009	0.43 / 36	34	0	70.00	0.21	0.16	
0330	1/20/2009	0.43 / 36	33	0	69.00	0.21	0.16	
0400	1/20/2009	0.43 / 36	34	0	70.00	0.21	0.16	
0430	1/20/2009	0.43 / 36	34	0	70.00	0.21	0.16	
0500	1/20/2009	0.43 / 36	33	0	69.00	0.21	0.16	
0530	1/20/2009	0.43 / 36	34	0	69.00	0.21	0.16	
0600	1/20/2009	0.43 / 36	34	0	69.00	0.21	0.16	
0630	1/20/2009	0.43 / 36	33	0	69.00	0.21	0.16	
0700	1/20/2009	0.43 / 36	33	0	68.00	0.21	0.16	
0730	1/20/2009	0.45 / 38	34	0	68.00	0.25	0.21	
0800	1/20/2009	0.45 / 38	33	0	68.00	0.25	0.21	
0830	1/20/2009	0.45 / 38	29	0	68.00	0.25	0.21	
0900	1/20/2009	0.45 / 38	27	0	68.00	0.25	0.21	
0930	1/20/2009	0.45 / 38	26	0	68.00	0.25	0.21	
post	1/20/2009	_	_	_	0	0	0	

Notes:

iow: Inches of Water

scfm: Standard Cubic Feet per Water

ppm: parts per million PID: Photo Ionization Detector

TABLE 6SOIL VAPOR ANALYTICAL DATA - SVE PILOT TESTMetro Valley Cleaners224 Rickenbacker CircleLivermore, California(ug/l)

Sampla ID	Date	EPA Method 8260B								
Sample ID		PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	VC			
Influent Statrup	01-19-2009	110	<1	<1	<1	<1	<0.5			
Influent 1400	01-19-2009	110	3.3	<1	<1	<1	<0.5			
SVE-1/1800	01-19-2009	91	<1	<1	<1	<1	<0.5			
SVE-1/End	01-20-2009	67	<1	<1	<1	<1	<0.5			

<u>Notes:</u> ug/L

<:

micrograms per liter

Indicates constituents were not detected at a concentration greater than the laboratory reporting limit shown.

PCE: Tetrachloroethene

TCE: Trichloroethene

Advanced GeoEnvironmental Inc.

TABLE 7SOIL GAS ANALYTICAL DATAMetro Valley Cleaners224 Rickenbacker CircleLivermore, California(ug/m³)

Sample ID	Date	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	VC	Tracer Compound					
	EPA METHOD 8260 / Mobile Laboratory / Syringe Sampling ²												
SG-1	01-22-2007	16,000	150	<100	<100	<100	<100	<100					
SG-2	01-22-2007	15,000	480	<100	<100	<100	<100	<100					
SG-3	01-22-2007	38,000	18,000	<100	<100	17,000	<100	<100					
SG-4	01-22-2007	11,000	1,200	<100	<100	450	<100	<100					
SG-5	01-22-2007	860,000	4,600,000	4,700	140,000	780,000	1,800	<100					
SG-6	01-22-2007	25,000	1,300	<100	<100	<100	<100	<100					
SG-7	01-22-2007	5,700	3,000	<100	<100	470	<100	<100					
SG-8	01-22-2007	4,300	310	<100	<100	<100	<100	<100					
SG-9	01-22-2007	4,100	3,100	<100	500	1,700	<100	<100					
			EPA METHOD	TO-15 / Summa Canni	isters ³								
SG-10	12-17-2007	<2.1	<0.86	<1.3	< 0.90	<0.90	< 0.40	<2.7					
SG-11	12-17-2007	64	< 0.83	<1.3	<0.88	< 0.88	< 0.39	<2.6					
SG-12	12-17-2007	10	< 0.82	<1.2	<0.86	< 0.86	< 0.39	<2.6					
SG-12 ¹	12-17-2007	8.7	<0.78	<1.2	< 0.82	< 0.82	< 0.37	<2.6					
SG-13	12-17-2007	<1.3	< 0.55	< 0.79	< 0.55	< 0.55	< 0.25	<1.6					
SG-14	12-17-2007	<2.0	<0.87	<1.2	<0.87	< 0.87	< 0.39	<2.6					
SG-15	12-17-2007	<1.9	<0.77	<1.2	<0.81	< 0.81	< 0.37	<2.4					
SG-16	12-17-2007	15	22	<1.2	8.2	7.9	< 0.37	<2.5					

Notes:

Note 1: duplicate sample

Note 2: Tracer compound: 1,1-diflouroethane

Note 3: Tracer compound: isopropanol

ug/m³ micrograms per cubic meter

<: Indicates constituents were not detected at a concentration greater than the laboratory reporting limit shown.

PCE: Tetrachloroethene

TCE: Trichloroethene

APPENDIX A

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-93

November 7, 2008

Mr. Lawrence Hancock Country Club Cleaners 500 Bollinger Canyon Way #A4 San Ramon, CA 94582 Mr. Mark Ratto Peter J. Ratto Trust 670 W. Fruit Cive Forest Road Jacksonville, FL 32259

Mr. Robert Strong Country Club Cleaners 500 Bollinger Canyon Way #A4 San Ramon, CA 94582

Subject: SLIC Case RO0002913 and Geotracker Global ID T06019748481, Perciva/Metro Valley Cleaners, 224 Rickenbacker Circle, Livermore, CA 94550

Dear Mr. Hancock, Mr. Strong, and Mr. Ratto:

Alameda County Environmental Health (ACEH) staff has reviewed the Spills, Leaks, Investigations, and Cleanups (SLIC) case file for the above referenced site including the recently submitted document entitled, "*Soil Vapor Extraction Pilot Study Work Plan*," dated October 2, 2008 and prepared on your behalf by Advanced GeoEnvironmental, Inc. The work plan proposes a scope of work to conduct a soil vapor extraction (SVE) pilot test.

The proposed scope of work for the SVE pilot test is generally acceptable and may be implemented provided that the technical comments below are addressed during implementation of the pilot study. We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

TECHNICAL COMMENTS

- Observation Wells. The proposed location of observation well OW-1 is in the area of the dumpster approximately 40 feet from the pilot test extraction well. Installation of observation wells at different radial distances is generally required to adequately define the area of influence for SVE pilot tests. We request that you install an additional observation well adjacent to the building and approximately 20 feet from the extraction well to provide data within closer proximity to the extraction well and building.
- Proposed Screen Interval. The proposed scope of work to assess the fill soils and the historical UST and boiler locations is acceptable. Please present the results of the soil and groundwater sampling in the Site Investigation Report requested below.

Mr. Lawrence Hancock Mr. Mark Ratto Mr. Robert Strong RO0002913 November 7, 2008 Page 2

- 3. Flow Rate. We request that the SVE pilot test be conducted with a minimum of three increases (steps) in applied vacuum/flow to evaluate air flow within the vadose zone. The duration of each test will depend upon the time required to achieve responses in the observation wells and reach equilibrium. Operational and monitoring parameters are to be measured and recorded at the beginning and end of each step and at a maximum of 30 minute intervals during the remainder of the each step. Measurements are to be collected more frequently during the initial period of each step.
- 4. **Groundwater Sampling**. We request that you gauge water levels and collect and analyze groundwater samples from each of the three existing monitoring wells prior to conducting the SVE pilot test. The groundwater samples are to be analyzed for volatile organic compounds using EPA Method 8260. Please present the results in the Pilot Test Report requested below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

• March 31, 2009 – Pilot Test Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).
Mr. Lawrence Hancock Mr. Mark Ratto Mr. Robert Strong RO0002913 November 7, 2008 Page 3

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

Mr. Lawrence Hancock Mr. Mark Ratto Mr. Robert Strong RO0002913 November 7, 2008 Page 4

cc: Cheryl Dizon, QIC 80201, Zone 7 Water Agency, 100 North Canyons Parkway, Livermore, CA 94551

Danielle Stefani, Livermore-Pleasanton Fire Department, 3560 Nevada Street, Pleasanton, CA 94566

Paul Smith, Livermore-Pleasanton Fire Department, 3560 Nevada Street, Pleasanton, CA 94566

Daniel Villenueva, Advanced GeoEnvironmental, Inc., 837 Shaw Road, Stockton, CA 95215

Donna Drogos, ACEH Jerry Wickham, ACEH File

Alameda County Environmental Cleanup	ISSUE DATE: July 5, 2005		
Oversight Programs	REVISION DATE: December 16, 2005		
(LOP and SLIC)	PREVIOUS REVISIONS: October 31, 2005		
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions		

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:
 - RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

 A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>
 - or
 - ii) Send a fax on company letterhead to (510) 337-9335, to the attention of Alicia Lam-Finneke.
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.

2) Upload Files to the ftp Site

- a) Using Internet Explorer (IE4+), go to <u>ftp://alcoftp1.acgov.org</u>
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
- b) Click on File, then on Login As.
- c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
- d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
- e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name at acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload)

e e	
ZONE 7 WATER	RAGENCY
100 NORTH CANYONS PARKWAY, LIVERMORE, CAL	LIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com
DRILLING PERM	AIT APPLICATION
FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 224 Rickenberger Civele	
	PERMIT NUMBER 28177
Coordinates Sourceft_Accuracy∀ft_	APN099-1316-032-00
LAT:ft. LONG:ft. APN	PERMIT CONDITIONS
Address 50c Billing: Current in the PAMPhone 1. 175-25C-36944 City Sem Containing Fig. 1.256-2 APPLICANF ADVANCED GEOENTRONMENTAL Name Junit Villametro Email.doitlanatas Galues Fax 1-201-41.7-116 Address B37 Shaw Pcod Phone 201-91.7 Tip Address B37 Shaw Pcod Phone 201-91.7 Tif Address B37 Shaw Pcod Phone 201-91.7 Tif Address B37 Shaw Pcod Phone 201-91.7 Tif Address B37 Shaw Pcod Address B37 Shaw Pcod Vell Construction 9 Geotechnical Investigation 9 Cathodic Protection 9 Other 9 ProPOSED WELL USE: Domestic 9 Remediation 9 Demestic 9 Air Rotary 9 Hollow Stem Auger 9 Dewatering	 A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original <u>Department of Water Resources Water Well Drillers Report (DWR Form 188), signed by the driller</u>. Permit is void if project not begun within 90 days of approval date. WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the wellhead. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. GROUTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings Maximum Hole Diameter in. Depth ft.	E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE January 6, 2008 ESTIMATED COMPLETION DATE January 7, 2008	F. WELL DESTRUCTION. See attached.
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	completion of permitted work the well installation report including all soil and water laboratory analysis results.
APPLICANT'S Date 12/5/09 Daniel Villanueva	Approved <u>11/11/11/11/10</u> Date <u>12/16/08</u> Wyman Hong
ATTACH SITE PLAN OR SKETCH	V Revised: April 23, 2008

e Ara

APPENDIX B

Monitoring and Sampling Procedures METRO VALLEY CLEANERS 224 Rickenbacker Circle, Livermore, California

STATIC WATER LEVEL MEASUREMENTS

Before sampling and during groundwater monitoring, static water levels are measured using an electric water level indicator. Water level data is recorded to the nearest 0.01-foot from a reference point marked on the top of the PVC well casing.

WELL EVACUATION

Subsequent to measurement of depth to water and prior to sampling, each well is purged to ensure samples are representative of the formation, rather than standing water in the well casing. Wells are purged using either a Waterra inertial pump and dedicated 5%-inch plastic tubing or disposable polyethylene bailers.

Wells are purged until a minimum of three casing-water volumes are removed from the well and/or the field-measured ground water parameters (pH, temperature, and conductivity) are stabilized. However, if a well is purged dry prior to evacuating three casing volumes, a sample is collected following 80 percent recovery of ground water within the well, or after a minimum of one hour, but within eight hours, of well evacuation.

Field data and logs are provided in Appendix C.

SAMPLE WITHDRAWAL

Ground water samples were collected from wells MW-1 through MW-3. Water samples are collected from wells using either an inertia pump with dedicated plastic/Teflon tubing or a disposable polyethylene bailer. Bailers are disposed of after a single use (sample) and require no decontaminating; plastic tubing used with the inertia pump is either dedicated to each well point or changed at each sampling event, thereby minimizing cross contamination due to sampling devices. Samples are drawn and collected in such a manner that agitation and exposure of the ground water to the atmosphere is minimal.

SAMPLE HANDLING

Ground water samples are collected into laboratory-supplied 40-ml volatile organic analysis (VOA) vials without preservative and, if appropriate, one-liter amber glass containers without a preservative; samples are collected with no visible air bubbles present in the vials after filling and capping. Following collection, samples are appropriately labeled, placed on ice, and kept in a cooler

Appendix B - Monitoring and Sampling Procedures AGE-NC Project No. 08-1640 Page 2 of 2

until delivered to Cal Tech Environmental Laboratories (CTEL), a State of California Department of Public Health-certified analytical laboratory, for analysis. Samples are analyzed for Volatile Organic Compounds by EPA method 8260.

EQUIPMENT DECONTAMINATION AND WASTE MANAGEMENT

Any non-disposable equipment used for sample collection is thoroughly rinsed with clean water after being washed with a solution of Alconox. Purge water generated during sampling activities was contained on-site in an appropriately labeled 55-gallon drum.

APPENDIX C

Ground Water Depth & Dissolved Oxygen Field Log

Project: Metro Valley cleaners

Date: 12 18 08

Page: _1___ of _____

Field Personnel: KL

Well		Casing	Depth	Ground	Actual	Screened	Dissol	ved Oxy	ygen
I.D.	Time	Elevation	To Water	Water Elevation	Depth	Depth	mg/l	%	۰C
MW-1	1002	410,00	27.90	382.10	34.50				
MW-2	D963	409.98	28.38	381,66	34.38				
MW-3	0957	409.48	27.91	381 57	34.60				
Alexando - Salar Haran Marina									
					· ·				
	1997 - California (1997)				C. C				n Malatina (1997) Malatina (1997)
					Na Na Seren La Calencia de C La Calencia de C				n Sayah A
				s de la companya de En companya de la comp					

Advanced **GeoEnvironmental, Inc.** 837 Shaw Road, Stockton, CA 95205 • (209) 467-1006 • Fax (209) 467-1118

Monitoring Well Field Log

	Well	Data		n even nen her i he Sver signer som her		
Project Name: METRO VALLEY CLE	EANERS	Project No.: Date: AGE-NC- 12/18/08				
Pre-Purge DTW: 27.90 Post-Purge DTW: 27.92	Well I.D.:	MV	V			
Total Depth of Well: V 34.50	Vell Volume:	Casing Diameter: Gal./Ft.:	0.5" 0.01074	0.16	4" 0.65	6" 1.47
Sampler(s): KL		Sample Containers	LOAS	r)		
Sample I.D.: MW- /121808		Analysis:				

Ctah:	inotion	- Data
SLADH	UZAU01	l Data

Time	Volume (gallons)	рН	Temp.	Cond µS/cm	Color/ Turbidity	Notes
1034	D	7.49	17.8	1104	e ear	
1037	1.5	7,50	17.9	1113	tanfiloudy	
1039	2.5	7.5	18.D	1118	N	
1041	3.5	7.52	17.9	1117	N	
			La Carlo Acces			No. No

Purge Method:	Disposable built	· (
Sample Method:	SAME AS ABOVE	Well Integrity:	
Sample Time:	1043	Dissolved O ₂ :	С
Water analyzer: oakt	ion	%	mg/L

Advanced **GeoEnvironmental, Inc.** 837 Shaw Road, Stockton, CA 95205 • (209) 467-1006 • Fax (209) 467-1118

Monitoring Well Field Log

Wel	l Data
Project Name: METRO VALLEY CLEANERS	Project No.:Date:AGE-NC-12/18/08
Pre-Purge DTW: 28,38 Time: 0463 Post-Purge DTW: 28,40 Time: 017	Well I.D.: MW-Z
Total Depth of Well: Well Volume:	Casing Diameter: 0.5" 2" 4" 6" Gal./Ft.: 0.01074 0.16 0.65 1.47
Sampler(s): KL	Sample Containers: 3 VOAS
Sample I.D.: MW- 2 /121808	Analysis: VDL

Stabilization Data

Time	Volume (gallons)	рН	Temp.	Cond µS/cm	Color/ Turbidity	Notes
1009	D	7.31	17.3	1074	Clear	
1012	di d	7.45	18.0	101	+an/cloudy	
1014	2	7.50	18.D	114	N	
ÍOLL	3	7.52	18.1	1112	И	1
	· · · · · · · · · · · · · · · · · · ·	2997 T				
			1	ali an an th	an earlier an	aantaa ahaan ing sana

Purge Method:	Disposable bai	ler	
Sample Method:	SAME AS ABOVE	Well Integrity:	
Sample Time:	1018	Dissolved O ₂ :	С
Water analyzer: oak	ton	%	mg/L

Advanced **GeoEnvironmental, Inc.** 837 Shaw Road, Stockton, CA 95205 • (209) 467-1006 • Fax (209) 467-1118

Monitoring Well Field Log

Well	Data
Project Name: METRO VALLEY CLEANERS	Project No.:Date:AGE-NC-12/18/08
Pre-Purge DTW: 27,91 Time: 0.97 Post-Purge DTW: 27,93 Time: 1/06	Well I.D.: MW-3
Total Depth of Well: Well Volume:	Casing Diameter: 0.5" 2" 4" 6" Gal./Ft.: 0.01074 0.16 0.65 1.47
Sampler(s): KL	Sample Containers: 3 VOAS
Sample I.D.: MW- 3 /121808	Analysis:

			Stab	ilization D	ata	
Time	Volume (gallons)	' pH	Temp.	Cond µS/cm	Color/ Turbidity	Notes
1058	D	7.54	17.9	1094	Clear	
101	1.5	7.54	18.1	1090	+AN/cloudy	
1103	2.5	7.54	18.1	1090	'N '	
1105	3.5	7.54	18.1	1089	И	
			CONC.			
	1 e				-	5-
	A MARANA MANANA	a a nalayan ka kalen katata	a kasa ta sa sa sa sa	a la companya de la c		nia en altar tribuca da an

Purge Method:	Disposable bail	e۲	·
Sample Method:	SAME AS ABOVE	Well Integrity:	
Sample Time:	1107	Dissolved O ₂ :	С
Water analyzer: oakt	on	%	mg/L

APPENDIX D

6814 Rosecrans Avenue,Paramount, CA 90723-3146Telephone: (562) 272-2700Fax: (562) 272-2789

ANALYTICAL RESULTS*

Client Name: Advan 837 Sl Stockt Attention: Mr. Advan	i-0812178 iced Geo Environn naw Road on, CA 95215 rt Deicke	nental, Inc.		Phone:(209) Fax: (209)	467-1006 467-1118	
Project ID:GlobalProject Name:Metro	l ID: Valley Cleaners					
Date Sampled:12/18/Date Received:12/19/Date Analyzed12/19/	08 @ 10:43 am 08 @ 08:30 am 08			Matrix: Wate	r	
Laboratory ID: Client Sample ID: Dilution	0812-178-1 MW1 1	0812-178-2 MW2 1	0812-178-3 MW3 1	Method	Units:	Detection Limit
Dichlorodifluoromethane	ND	ND	ND	EPA 8260B	ug/L	1
Chloromethane	ND	ND	ND	EPA 8260B	ug/L	1
Vinyl Chloride	ND	ND	ND	EPA 8260B	ug/L	0.5
Bromomethane	ND	ND	ND	EPA 8260B	ug/L	1
Chloroethane	ND	ND	ND	EPA 8260B	ug/L	1
Trichlorofluoromethane	ND	ND	ND	EPA 8260B	ug/L	1
Iodomethane	ND	ND	ND	EPA 8260B	ug/L	1
Acetone	ND	ND	ND	EPA 8260B	ug/L	10
1,1-Dichloroethene	ND	ND	ND	EPA 8260B	ug/L	1
t-Butyl Alcohol (TBA)	ND	ND	ND	EPA 8260B	ug/L	25
Methylene Chloride	ND	ND	ND	EPA 8260B	ug/L	10
Freon 113	ND	ND	ND	EPA 8260B	ug/L	5
Carbon disulfide	ND	ND	ND	EPA 8260B	ug/L	1
trans,1,2-Dichloroethene	ND	ND	ND	EPA 8260B	ug/L	1
Methyl-tert-butyl-ether(MtBE)	ND	ND	ND	EPA 8260B	ug/L	5
1,1-Dichloroethane	ND	ND	ND	EPA 8260B	ug/L	l Antonio status series
Vinyl acetate	ND	ND	ND	EPA 8260B	ug/L	50
Diisopropyl Ether (DIPE)	ND	ND	ND	EPA 8260B	ug/L	1
Methyl Ethyl Ketone	ND	ND	ND	EPA 8260B	ug/L	10
cis,1,2-Dichloroethene	ND	ND	ND	EPA 8260B	ug/L	l Samu staale Argenta (1995)
Bromochloromethane	ND	ND	ND	EPA 8260B	ug/L	Santa Barlan
Chloroform	ND	ND	ND	EPA 8260B	ug/L	
2,2-Dichloropropane	ND	ND	ND	EPA 8260B	ug/L	a vaalista distaalita
Ethyl-t-butyl ether (ETBE)	ND	ND	ND	EPA 8260B	ug/L	1
1,1,1-Trichloroethane	ND	ND	ND	EPA 8260B	ug/L	1
1,2-Dichloroethane	ND	ND	ND	EPA 8260B	ug/L	0.5
1,1-Dichloropropene	ND	ND	ND	EPA 8260B	ug/L	1
Carbon Tetrachloride	ND	ND	ND	EPA 8260B	ug/L	0.5
Benzene	ND	ND	ND	EPA 8260B	ug/L	U.3
t-Amyl Methyl Ether (TAME)	ND	ND	ND	EPA 8260B	ug/L	1
1,2-Dichloropropane	ND	ND	ND	EPA 8200B	ug/L	er en general de la companya de la c 1
Irichloroethene	ND	ND	ND	EPA 8200B	ug/L	1
Dibromomethane	ND	ND	ND	EPA 8260B	ug/L	1
Bromodichioromethane	ND	ND ND	ND ND	EPA 82000	ug/L	1 5
2-Chloroethylvinylether	ND	IND.	ND ND	EPA 8200D	ug/L	ی ۱
cis,1,3-Dichloropropene	ND	ND		EFA 8200B	ug/L	1 10
4-Methyl-2-pentanone(MI)	ND	ND ND		EFA 8200B	ug/L	10
trans, 1, 3-Dichloropropene	ND	ND		EPA 8200B	ug/L	1 0 5
1 oluene	ND	IND ND	UNL	EFA 8200B	ug/L	0.5
(Continued)	ND	UN	UN	EFA 6200D	ug/L	1

1

CTEL Project No: CT214-0812178

Project ID:

Project Name:

Global ID: Metro Valley Cleaners

Laboratory ID:	0812-178-1	0812-178-2	0812-178-3	Method	Units	Detection
Client Sample ID:	MW1	MW2	MW3			Limit
1 2-Dibromoethane(FDB)	ND	ND	ND	EPA 8260B	ug/L	0.5
1.3-Dichloropropane	ND	ND	ND	EPA 8260B	ug/L	1
Dibromochloromethane	ND	ND	ND	EPA 8260B	ug/L	1
2-Hexanone	ND	ND	ND	EPA 8260B	ug/L	10
Tetrachloroethene	ND	7.1	ND	EPA 8260B	ug/L	1
Chlorobenzene	ND	ND	ND	EPA 8260B	ug/L	1
1,1,1,2-Tetrachloroethane	ND	ND	ND	EPA 8260B	ug/L	1
Ethylbenzene	ND	ND	ND	EPA 8260B	ug/L	0.5
m.p-Xylene	ND	ND	ND	EPA 8260B	ug/L	0.6
Bromoform	ND	ND	ND	EPA 8260B	ug/L	1
Styrene	ND	ND	ND	EPA 8260B	ug/L	1
o-Xylene	ND	ND	ND	EPA 8260B	ug/L	0.6
1,1,2,2-Tetrachloroethane	ND	ND	ND	EPA 8260B	ug/L	1.5.5
1,2,3-Trichloropropane	ND	ND	ND	EPA 8260B	ug/L	1
Isopropylbenzene	ND	ND	ND	EPA 8260B	ug/L	1
Bromobenzene	ND	ND	ND	EPA 8260B	ug/L	1
2-Chlorotoluene	ND	ND	ND	EPA 8260B	ug/L	1
n-Propylbenzene	ND	ND	ND	EPA 8260B	ug/L	1
4-Chlorotoluene	ND	ND	ND	EPA 8260B	ug/L	1
1,3,5-Trimethylbenzene	ND	ND	ND	EPA 8260B	ug/L	1
tert-Butylbenzene	ND	ND	ND	EPA 8260B	ug/L	1
1,2,4-Trimethylbenzene	ND	ND	ND	EPA 8260B	ug/L	1
sec-Butylbenzene	ND	ND	ND	EPA 8260B	ug/L	1
1,3-Dichlorobenzene	ND	ND	ND	EPA 8260B	ug/L	1
1,4-Dichlorobenzene	ND	ND	ND	EPA 8260B	ug/L	1
p-Isopropyltoluene	ND	ND	ND	EPA 8260B	ug/L	1
1,2-Dichlorobenzene	ND	ND	ND	EPA 8260B	ug/L	1
n-Butylbenzene	ND	ND	ND	EPA 8260B	ug/L	1
1,2 Dibromo-3-Chloropropane	ND	ND	ND	EPA 8260B	ug/L	1
1,2,4-Trichlorobenzene	ND	ND	ND	EPA 8260B	ug/L	1
Naphthalene	ND	ND	ND	EPA 8260B	ug/L	1
1,2,3-Trichlorobenzene	ND	ND	ND	EPA 8260B	ug/L	
Hexachlorobutadiene	ND	ND	ND	EPA 8260B	ug/L	1

ND = Not Detected at the indicated Detection Limit

SURROGATE SPIKE		% SU	RROGATE RECOVERY	Control Limit
Dibromofluoromethane	92	92	92	70-130
1,2 Dichloromethaned4	81	82	84	70-130
Toluene-d8	97	98	97	70-130
Bromofluorobenzene	101	102	102	70-130

houbita R. 7as Greg Tejirian

Laboratory Director

*The results are base upon the sample received.

Cal Tech Environmental Laboratories, Inc. ELAP ID #: 2424

6814 Rosecrans Avenue,Paramount, CA 90723-3146Telephone: (562) 272-2700Fax: (562) 272-2789

QA/QC Report

Method: 8260B

Matrix: Water

Date Analyzed: 12/19/08

Date Extracted: 12/19/08

Perimeters	Conc.	ug/L	Spike	Recovery	%	Control	Limits	RPD
	MS	MSD	Added	MS	MSD	Rec.	RPD	
1,1-Dichloroethene	44	47	50	88	94	70-130	20	6
Benzene	53	49	50	106	98	70-130	20	8
Trichloroethene	50	48	50	100	96	70-130	20	4
Toluene	51	47	50	102	94	70-130	20	8
Chlorobenzene	48	48	50	96	96	70-130	20	0
m,p-Xylenes	105	101	100	105	101	70-130	20	4

MS: Matrix Spike

MSD: Matrix Spike Duplicate

Perimeters	Method Blank	Units	Det. Limit
1,1-Dichloroethene	ND	ug/L	1
Benzene	ND	ug/L	0.5
Trichloroethene	ND	ug/L	0.5
Toluene	ND	ug/L	0.5
Chlorobenzene	ND	ug/L	0.5
m,p-Xylenes	ND	ug/L	0.6
MTBE	ND	ug/L	1
ТВА	ND	ug/L	10
DIPE	ND	ug/L	1
ETBE	ND	ug/L	1
TAME	ND	ug/L	1
1,2-Dichloroethane	ND	ug/L	0.5
EDB	ND	ug/L	0.5
Ethylbenzene	ND	ug/L	0.5
o-Xylene	ND	ug/L	0.6
TCE	ND	ug/L	1
PCE	ND	ug/L	1

RPD: Relative Percent Difference of MS and MSD

TOTALLY DEDICATED TO CUSTOMER SATISFACTION

Advand 837 Shaw	c ed GeoE I Road, Stockton, C	nvironm California 9521	ental, 5 • Phor	Inc. ne (209) 46	<u>www.advgeoenv.com</u> 7-1006 • Fax (209) 467-1118	CH A		TCU	STODY		CORE
381 Thor F	Place, Brea, Califo h Street, Santa Ro	ornia 92821 🏾 osa, California	Phone (7 95404 •	14) 529-02 Phone (70	00 • Fax (714) 529-0203 12 - 1 / 8 7) 570-1418 • Fax (707) 570-1461		AI	alysi	s Requi	red	
Project Name Metro Valles	y clean	, Monterey, Ca	Project 1 Sampler	Vanager (initials & ject No.:	hone (800) 511-9300 • Fax (831) 394-5979	\$ \$260					
Sample ID/Location/Description	Date	Time	Matrix	Number	Notes	12					
MINI-ILINIAND	10/10/00	IALIZ	12	3		X				-	
MW-7/171800	12/18/02	DIR	tŵ	3		X					
MW-3/121808	12/18/08	1107	W	3		X					
	-										
				niciani.							
elinquished by:	n en	12/18/0	8	1700	CTEL						
ourier: Ontrac					Received by: CREGT		D I	ate: 2/1*	1/08		Time:
elinquished by:		Date:		Time:	Received by:		D	at e :	•		Time:
elinquished by:		Date:		Time:	Received by:		D	ate:			Time:
equested Turn Around Time (circle): 24 hours	48 hours 72 hour	5 days (stand	ard))Other	:		Matrix	Codes: A	= Air	W = Water	S = Solic	
pecial Instructions to lab:	na produkti na serien na serie Na serien na serien n Na serien na serien n				I her	eby authoriz	te the perfo	rmance o	of the above	indicated	work.
Peotracker EDE to: X geotracker@advgeoenv.cc	m 🗌		90000000000000000000000000000000000000	Global ID		Th	7	-7	<u>∼</u> c	T	

APPENDIX E

 6814 Rosecrans Avenue,
 Paramount, CA 90723-3146

 Telephone:
 (562) 272-2700
 Fax: (562) 272-2789

ANALYTICAL RESULTS*

CTEL Project No: CT214 Client Name: Advance	-0901030 ced Geo Environn	nental, Inc.				
837 Sh	aw Road			Phone: (209)	467-1006	
Attention: Stockto	m, CA 95215 t Deicke			Fax: (209)	467-1118	
Project ID:GlobalProject Name:Metro V	ID: Valley Cleaners					
Date Sampled: 01/08/0 Date Received: 01/09/0 Date Analyzed 01/09/0)9 @ 08:40 am)9 @ 08:30 am)9			Matrix: Soil		
Laboratory ID: Client Sample ID: Dilution	0901-030-1 SVE1-5 1	0901-030-2 SVE1-10 1	0901-030-3 SVE1-15 1	Method	Units:	Detection Limit
Dichlorodifluoromethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Chloromethane	ND	ND	ND	EPA 8260B	mø/Kø	0.005
Vinyl Chloride	ND	ND	ND	EPA 8260B	mg/K g	0.005
Bromomethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Chloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Trichlorofluoromethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Indomethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Acetone	ND	ND MN	ND	EPA \$260B	mg/Kg	0.005
1 1 Dichloroethene	ND	ND	ND	EI A 8200D	mg/Kg	0.005
t Putul Alashal (TPA)	ND	ND		EDA 0200D	mg/Kg	0.005
Methylana Chlorida	ND	ND	ND	EDA 8260D	mg/Kg	0.020
From 112	ND	ND	ND	EFA 0200D	mg/Kg	0.02
	ND	UNI	ND	EPA 8200D	mg/Kg	0.01
Carbon disuinde	ND	UN	ND	EPA 8200B	mg/Kg	0.005
trans, 1, 2-Dichloroethene	ND	IND NID	ND	EPA 8200B	mg/Kg	0.005
Methyl-tert-butyl-ether(MtBE)	ND	ND	ND	EPA 8260B	mg/Kg	0.002
1,1-Dichloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Vinyl acetate	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Dusopropyl Ether (DIPE)	ND	ND	ND	EPA 8260B	mg/Kg	0.002
Methyl Ethyl Ketone	ND	ND	ND	EPA 8260B	mg/Kg	0.01
cis, 1, 2-Dichloroethene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Bromochloromethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Chloroform	ND	ND	ND	EPA 8260B	mg/Kg	0.005
2,2-Dichloropropane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Ethyl-t-butyl ether (ETBE)	ND	ND	ND	EPA 8260B	mg/Kg	0.002
1,1,1-Trichloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2-Dichloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,1-Dichloropropene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Carbon Tetrachloride	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Benzene	ND	ND	ND	EPA 8260B	mg/Kg	0.001
t-Amyl Methyl Ether (TAME)	ND	ND	ND	EPA 8260B	mg/Kg	0.002
1,2-Dichloropropane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Trichloroethene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Dibromomethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Bromodichloromethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
2-Chloroethylvinylether	ND	ND	ND	EPA 8260B	mg/Kg	0.005
cis,1,3-Dichloropropene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
4-Methyl-2-pentanone(MI)	ND	ND	ND	EPA 8260B	mg/Kg	0.01
trans,1,3-Dichloropropene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Toluene	ND	ND	ND	EPA 8260B	mg/Kg	0.001
1,1,2-Trichloroethane (Continued)	ND	ND	ND	EPA 8260B	mg/Kg	0.005

TOTALLY DEDICATED TO CUSTOMER SATISFACTION

CTEL Project No: CT214-0901030

Project ID: Global	ID:					
Project Name: Metro	Valley Cleaners					
Laboratory ID:	0901-030-1	0901-030-2	0901-030-3	Method	Units	Detection
Client Sample ID:	SVE1-5	SVE1-10	SVE1-15			Limit
1,2-Dibromoethane(EDB)	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,3-Dichloropropane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Dibromochloromethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
2-Hexanone	ND	ND	ND	EPA 8260B	mg/Kg	0.01
Tetrachloroethene	0.058	0.011	0.014	EPA 8260B	mg/Kg	0.005
Chlorobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,1,1,2-Tetrachloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Ethylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.001
m.p-Xylene	ND	ND	ND	EPA 8260B	mg/Kg	0.001
Bromoform	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Styrene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
o-Xylene	ND	ND	ND	EPA 8260B	mg/Kg	0.001
1,1,2,2-Tetrachloroethane	ND	ND	ND	EPA 8260B	mg/K.g	0.005
1,2,3-Trichloropropane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Isopropylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Bromobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
2-Chlorotoluene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
n-Propylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
4-Chlorotoluene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,3,5-Trimethylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
tert-Butylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2,4-Trimethylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
sec-Butylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,3-Dichlorobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,4-Dichlorobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
p-Isopropyltoluene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2-Dichlorobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
n-Butylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2 Dibromo-3-Chloropropane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2,4-Trichlorobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Naphthalene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2,3-Trichlorobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Hexachlorobutadiene	ND	ND	ND	EPA 8260B	mg/Kg	0.005

ND = Not Detected at the indicated Detection Limit

SURROGATE SPIKE		% SUI	RROGATE RECOVERY	Control Limit
Dibromofluoromethane	98	99	98	70-130
1,2 Dichloromethaned4	92	93	91	70-130
Toluene-d8	98	99	99	70-130
Bromofluorobenzene	107	105	104	70-130

2

CTEL Project No:CT214-0Client Name:Advance837 ShareStocktomAttention:Mr. Art	1901030 :d Geo Environn w Road 1, CA 95215 Deicke	iental, Inc.		Phone:(209) 467-1006 Fax: (209) 467-1118				
Project ID:Global IProject Name:Metro V	D: alley Cleaners							
Date Sampled: 01/08/09 Date Received: 01/09/09 Date Analyzed 01/09/09) @ 10:00 am) @ 08:30 am)			Matrix: Soil				
Laboratory ID: Client Sample ID: Dilution	0901-030-4 OW2-5 1	0901-030-5 OW2-10 1	0901-030-6 OW1-5 1	Method	Units:	Detection Limit		
Dichlorodifluoromethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Chloromethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Vinyl Chloride	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Bromomethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Chloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Trichlorofluoromethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
lodomethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Acetone	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
1,1-Dichloroethene	ND	ND	ND	EPA 0200D	mg/Kg	0.005		
t-Butyl Alconol (TBA)	IND NID	ND	ND	EPA 8260B	mg/Kg	0.020		
From 112	ND	ND ND	ND	EFA 8260B	mg/Kg	0.02		
Freen 113 Carbon digulfide	ND	ND	ND	EPA 8260B	mg/Kg	0.01		
trong 1.2 Dichloroothono	ND	ND ND	ND	EPA 8260B	mg/Kg	0.005		
Mothyl tort hutyl other(MtRE)	ND	ND	ND	EPA 8260B	mg/Kg	0.002		
1 1 Dichloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Vinyl acetate	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Dijsopropyl Ether (DIPE)	ND	ND	ND	EPA 8260B	mg/Kg	0.002		
Methyl Ethyl Ketone	ND	ND	ND	EPA 8260B	mg/Kg	0.01		
cis 1 2-Dichloroethene	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Bromochloromethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Chloroform	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
2.2-Dichloropropane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Ethyl-t-butyl ether (ETBE)	ND	ND	ND	EPA 8260B	mg/Kg	0.002		
1,1,1-Trichloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
1,2-Dichloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
1,1-Dichloropropene	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Carbon Tetrachloride	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Benzene	ND	ND	ND	EPA 8260B	mg/Kg	0.001		
t-Amyl Methyl Ether (TAME)	ND	ND	ND	EPA 8260B	mg/Kg	0.002		
1,2-Dichloropropane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
Irichloroethene	ND	ND	ND	EPA 8200B	mg/Kg	0.005		
Dipromometnane	ND ND	ND	ND CIV	EFA 0200D	mg/Kg	0.005		
2 Chloroothylyinylothan		ND		EPA 8260B	mg/Kg	0.005		
cis 1.3-Dichloronronene	ND	שא חא	ND	EPA 8260B	mg/Kg mg/K g	0.005		
4 Methyl 2 pentanona(MI)	ND	ND	ND	EPA 8260B	mø/Kø	0.01		
trans 1.3-Dichloropropene	ND		ND	EPA 8260B	mg/Kg	0.005		
Toluene	ND	ND	ND	EPA 8260B	mg/K g	0.001		
1 1 2-Trichloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005		
(Continued)			2 1 Aur					

.....

3

CTEL Project No: CT214-0901030

Project ID: Globa Project Name: Metro	Valley Cleaners			
Laboratory ID: Client Sample ID:	0901-030-4 OW2-5	0901-030-5 OW2-10	0901-030-6 OW1-5	Method
1,2-Dibromoethane(EDB)	ND	ND	ND	EPA 8260B
1,3-Dichloropropane	ND	ND	ND	EPA 8260B
Dibromochloromethane	ND	ND	ND	EPA 8260B
2-Hexanone	ND	ND	ND	EPA 8260B
Tetrachloroethene	0.036	0.026	0.040	EPA 8260B
Chlorobenzene	ND	ND	ND	EPA 8260B
1,1,1,2-Tetrachloroethane	ND	ND	ND	EPA 8260B
Ethylbenzene	ND	ND	ND	EPA 8260B
m.p-Xylene	ND	ND	ND	EPA 8260B
Bromoform	ND	ND	ND	EPA 8260B
Styrene	ND	ND	ND	EPA 8260B
o-Xylene	ND	ND	ND	EPA 8260B
1,1,2,2-Tetrachloroethane	ND	ND	ND	EPA 8260B
1 2 3 Trichloronronane	ND	ND	ND	EPA \$260B

1,1,1,2-Tetrachloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Ethylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.001
m.p-Xylene	ND	ND	ND	EPA 8260B	mg/Kg	0.001
Bromoform	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Styrene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
o-Xylene	ND	ND	ND	EPA 8260B	mg/Kg	0.001
1,1,2,2-Tetrachloroethane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2,3-Trichloropropane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Isopropylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0,005
Bromobenzene	ND	ND	ND	EPA 8260B	mg/K.g	0.005
2-Chlorotoluene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
n-Propylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
4-Chlorotoluene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,3,5-Trimethylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
tert-Butylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2,4-Trimethylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
sec-Butylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,3-Dichlorobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,4-Dichlorobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
p-Isopropyltoluene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2-Dichlorobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
n-Butylbenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2 Dibromo-3-Chloropropane	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2,4-Trichlorobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Naphthalene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
1,2,3-Trichlorobenzene	ND	ND	ND	EPA 8260B	mg/Kg	0.005
Hexachlorobutadiene	ND	ND	ND	EPA 8260B	mg/Kg	0.005

Units

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Detection Limit

0.005

0.005

0.005

0.01

0.005

0.005

ND = Not Detected at the indicated Detection Limit

SURROGATE SPIKE		% SUI	RROGATE RECOVERY	Control Limit
Dibromofluoromethane	94	97	97	70-130
1,2 Dichloromethaned4	88	93	91	70-130
Toluene-d8	97	99	98	70-130
Bromofluorobenzene	105	105	105	70-130

horbifa K. 123

Greg Tejirian Laboratory Director

*The results are base upon the sample received.

Cal Tech Environmental Laboratories, Inc. ELAP ID #: 2424

 6814 Rosecrans Avenue,
 Paramount, CA 90723-3146

 Telephone:
 (562) 272-2700
 Fax: (562) 272-2789

QA/QC Report

Method:	8260B
Matrix:	Soil
Date Analyzed:	1/9/09

Date Extracted: 1/9/09

Perimeters	Conc.	ug/Kg	Spike	Recovery	%	Control	Limits	RPD
	MS	MSD	Added	MS	MSD	Rec.	RPD	Alexandra Versionale
1,1-Dichloroethene	43	42	50	86	84	70-130	20	2
Benzene	45	45	50	90	90	70-130	20	0
Trichloroethene	52	52	50	104	104	70-130	20	0
Toluene	49	51	50	98	102	70-130	20	4
Chlorobenzene	45	47	50	90	94	70-130	20	4
m,p-Xylenes	91	96	100	91	96	70-130	20	5

MS: Matrix Spike MSD: Matrix Spike Duplicate

RPD: Relative Percent Difference of MS and MSD

Perimeters	Method	Units	Det.
	Blank		Limit
1,1-Dichloroethene	ND	ug/Kg	5
Benzene	ND	ug/Kg	5
Trichloroethene	ND	ug/Kg	5
Toluene	ND	ug/Kg	5
Chlorobenzene	ND	ug/Kg	5
m,p-Xylenes	ND	ug/Kg	5
MTBE	ND	ug/Kg	5
TBA	ND	ug/Kg	100
DIPE	ND	ug/Kg	10
ETBE	ND	ug/Kg	10
TAME	ND	ug/Kg	10
1,2-Dichloroethane	ND	ug/Kg	5
EDB	ND	ug/Kg	5
Ethylbenzene	ND	ug/Kg	5
o-Xylene	ND	ug/Kg	5

TOTALLY DEDICATED TO CUSTOMER SATISFACTION

Advand	ced GeoEr	ivironm	ental	, Inc.	www.advgeoenv.com	CHA	IN OF CUS	FODY R	ECORI
(2) X 837 Shaw	Road, Stockton, C	alifornia 9521	5 • Phor	ne (209) 46	7-1006 • Fax (209) 467-1118 O(- O3C	Date	:1-8-04	Page	of
381 Thor I	Place, Brea, Califo	rnia 92821 •	Phone (7	14) 529-02	00 • Fax (714) 529-0203	P	A		
	n Street, Santa Ro	Monterey C	95404 •	Phone (70)	$(7) 5/0-1418 \bullet Fax (707) 5/0-1461$		Anaiysis	xequirea	<u> </u>
		, wondercy, co	amonna .			13			
Project Name	20 CS		Project	Manager	- ' V 0	- 22			
METTO Valley Ita	Merj		Sampler	(initials &	elete				
Bob Strong			Do	VV	Jri-	~			
Invoice to: 🖌 AGE 🗆 Client			Lab Pro	ject No.:		- 20			
Sample ID/Location/Description	Date	Time	Matrix	Number	Notes	2			
SNE1-5	1-8-08	0840	5			X			
SUE-1-10	1-9-08	0845	5			\times			
SVE 1-15	1-8-08	0350	5			×			
002-5	1-3-08	1000	5	1		X			
()WZ-10	1-8-08	1010	5	1		×			
001-5	1-8-08	1130	5	1		×			
			1						
		ana para para ana ana ana ana ana ana ana ana ana		-					
Retinquished by:		Date:	<u> </u>	Time:	Laboratory:				
Courier:		1-0		1920	Received by:		Date:		Time:
					GREGT		1/9/0	9	8:30
Relinquished by:	Ť.	Date:		Time:	Received by:		Date		Time:
Relinquished by:		Date:		Time:	Received by:		Date:		Time:
an a									
Requested Turn Around Time (circle): 24 hours	48 hours 72 hours	s Adays (stand	ard). Other	r:	-	Matrix C	odes: A = Air W =	Water S = S	iolid
Special Instructions to lab:					I h	ereby authorize	the performance of the	e above indica	ated work.
						$\left(L \right)$	Ze	<u>.</u>	
Geotracker EDF to: Kgeotracker@advgeoenv.c	om 🗆			Global ID:		5	C -		

APPENDIX F

		Advan	ced					BORING	LOG	
		Geol	Envi	ronn	nental, Inc.		BOREHOLE NO.OW-1			
		(209) 467	-1006	FAX: (2	209) 467-1118		TOTAL [DEPTH: 20'		
Proje	ct:	METRO	VALL	EY CLI	EANERS	Drilling Co.	: ALI	L WELL ABANI	DONMENT	
Site L	ocation:	224 RIC	KENBA	ACKER	CIRCLE	Rig/Auger	Type: CM	E 75 HOLLOW	STEM AUGER	
		CALIFO	IORE RNIA			Logged By	: D. V	/ILLANUEVA		
Proje	ct No.:	AGE-NC	C-08-16	40		Reviewed I	By: W. I			
Notes	: Total de	oth of borir	ng equal	to 20 fe	et bsg: boring	v Wate	Level Before	e Drilling		
compl	eted as 2-in	ch diameter	r soil va	por extra	action well	🛥 Water	Level After I	Drilling	Page 1 of 2	
Depth	Sample ID	Blows (per 6")	PID (ppm)	Soil Symbol	USCS Soil D	Class and Description		Well Completion	Well Description	
		1								
0 —									Well cover; water-	
									tight, locking cap.	
-										
									Cement grout seal from 1' to 2' bsg.	
-5									Bentonite seal from 2' to 3' bsg.	
-	UW-1-5	7,8,14	0		CL: brown, moist, stiff, slightly plastic, friable, n	CLAY, some grav	el (5%),		#3 Monterey 4' to 20' bsg.	

BORING LOG Advanced GeoEnvironmental, Inc. BOREHOLE NO.: OW-1837 Shaw Road, Stockton, CA 95215 TOTAL DEPTH: 20' (209) 467-1006 FAX: (209) 467-1118 Project: Date(s) Drilled: 01/08/2009 METRO VALLEY CLEANERS Project No.: AGE-NC-08-1640 Page 2 of 2 Sample Blows PID Soil USCS Class and Well Well Depth ID (per 6") (ppm) Symbol Soil Description Completion Description

	6,10,14	0	ML: brown, to tan, loose to firm, dry, SILT, no sand or gravel, some oxidation, no odor	
-				Screened interval from 5' to 20' bsg. 0.030 Screen
-15	7,10,16	0	CL: tan to brown, dry, firm, CLAY with silt and gravel, 10% gravel, 10% silt, angular gravel pieces, no odor	
-				
			SP: brown to red, dry, loose, SAND with gravel and silt, 25% gravel, 10 % silt, angular gravel, some oxidation, no odor	Well plug at 20'

		Advan	ced					BORING	LOG	
		Geol	Envi	ronn	nental, Inc.		BOREHOLE NO.OW-2			
		(209) 467	-1006	FAX: (2	209) 467-1118		TOTAL [DEPTH: 20'		
Proje	ct:	METRO	VALL	EY CLI	EANERS	Drilling Co.	: ALI	L WELL ABAN	DONMENT	
Site L	ocation:	224 RIC	KENBA	ACKER	CIRCLE	Rig/Auger	Туре: СМ	E 75 HOLLOW	STEM AUGER	
		CALIFO	RNIA			Logged By	: D. V	/ILLANUEVA		
Proje	ct No.:	AGE-NC	C-08-16	40		Date(s) Dri	By: w.1	08/2009		
Notes compl	: Total dep eted as 2-in	oth of borin ch diamete	ng equal r soil va	to 20 fe	et bsg; boring action well	∞ Water ∞ Water	r Level Before r Level After I	e Drilling Drilling	Page 1 of 2	
Depth	Sample ID	Blows (per 6")	PID (ppm)	Soil Symbol	USCS Soil D	Class and Description		Well Completion	Well Description	
0									Well cover; water-	
									tight, locking cap.	
_									Cement grout seal from 1' to 2' bsg.	
-									Bentonite seal from 2' to 3' bsg.	
	OW-1-5	4,5,7	0		CL: brown, stiff, damp, of faint odor	CLAY with gravel	, 15% gravel,		#3 Montery 4' to 20' bsg.	

Advanced
GeoEnvironmental, Inc.
837 Shaw Road, Stockton, CA 95215
(209) 467-1006 FAX: (209) 467-1118BOREING LOG
BOREHOLE NO.: OW-2
TOTAL DEPTH: 20'Project:METRO VALLEY CLEANERS
Project No.: AGE-NC-08-1640Date(s) Drilled: 01/08/2009
Page 2 of 2

Depth	Sample	Blows	PID	Soil	USCS Class and	Well	Well
	ID	(per 6")	(ppm)	Symbol	Soil Description	Completion	Description

-10 -	OW-2-10	7,9,12	0	ML: tan to brown, dry, loose, SILT, no sand or gravel, some oxidation, no odor	
-	-				Screened interval from 5' to 20' bsg. 0.030 Screen
-15		8,10,14	0	CL: tan to brown, loose, dry, SAND with gravel, 10% gravel, some silt (5%), poorly graded, medium to coarse grained,	
- 20	-			SP: gray, loose, damp, SILT, no gravel, no sand, very fine grained, some oxidaton, no odor	Well plug at 20'

		Advan	ced					BORING	LOG
		Geol	Envi	ronn	nental, Inc.		BOREHO	DLE NO. SVE	E-1
		(209) 467	-1006	FAX: (2	209) 467-1118		TOTAL	DEPTH: 20'	
Proje	ct:	METRO	VALL	EY CLI	EANERS	Drilling Co.	: ALI	L WELL ABANI	DONMENT
Site L	ocation:	224 RIC	KENBA	ACKER	CIRCLE	Rig/Auger	Type: CM	E 75 HOLLOW	STEM AUGER
		CALIFO	RNIA			Logged By	D.V	ILLANUEVA	
Proje	ct No.:	AGE-NC	C-08-16	40		Date(s) Dri	Бу. w.1 lled: 01/0	8/2009	
Notes compl	Total de eted as 2-in	pth of borir ch diamete	ng equal r soil va	to 20 fe	et bsg; boring action well	✓ Wate ✓ Wate	r Level Before r Level After I	e Drilling Drilling	Page 1 of 2
Depth	Sample ID	Blows (per 6")	PID (ppm)	Soil Symbol	USCS Soil D	Class and Description		Well Completion	Well Description
0									Well cover; water-
									tight, locking cap.
_									Cement grout seal from 1' to 2' bsg.
-									Bentonite seal from 2' to 3' bsg.
-5	SVE-1-5	6,14,19	0		CL: brown, dry, stiff, CL	AY, some sand (-	<5%), no odor		#3 Monterey 4' to 20' bsg.

Advanced **BORING LOG** GeoEnvironmental, Inc. BOREHOLE NO.: SVE-1 837 Shaw Road, Stockton, CA 95215 TOTAL DEPTH: 20' (209) 467-1006 FAX: (209) 467-1118 Project: METRO VALLEY CLEANERS Date(s) Drilled: 01/08/2009 Page 2 of 2 Project No.: AGE-NC-08-1640 PID USCS Class and Well Sample Soil Well Blows Depth Soil Description ID Completion (per 6") (ppm) Symbol Description -10 -SVE-1-10 10,12,16 0 ML: tan, dry, loose, SILT, no sand, no gravel, fine grained, some oxidation, no odor Screened interval from 5' to 20' bsg. 0.030 Screen

ML: tan to grey to red, dry, loose, SILT with gravel,

GP: grey, GRAVEL, some sand (5%), some silt (5%),

ML: brown to red, loose, dry, SILT with gravel, 20% gravel, some sand (5%), some oxidation, no odor

Well plug at 20'

angular, oxidation, no odor

angular, no odor

-15 -

20

SVE-1-15

5,8,10

0

⊠.∷⊠

APPENDIX G

 6814 Rosecrans Avenue,
 Paramount, CA 90723-3146

 Telephone: (562) 272-2700
 Fax: (562) 272-2789

ANALYTICAL RESULTS*

Client Name: Advan 837 Si Stockt Attention: Mr. Ar	i-0901115 ced Geo Environi iaw Road on, CA 95215 rt Deicke	nental, Inc.	Phone:(209) 467-1006 Fax: (209) 467-1118				
Project ID: Global Project Name: Metro	l ID: Valley Cleaners						
Date Sampled: 01/19/ Date Received: 01/20/ Date Analyzed 01/20/	09 @ 09:35 am 09 @ 09:00 am 09		Matrix: Air				
Laboratory ID: Client Sample ID: Dilution	0901-115-1 Influent St. 1	0901-115-2 Influent 1400 1	Method	Units:	Detection Limit		
Dichlorodifluoromethane	ND	ND	EPA 8260B	ug/L	1		
Chloromethane	ND	ND	EPA 8260B	ug/L			
Vinyl Chloride	ND	ND	EPA 8260B	ug/L	0.5		
Bromomethane	ND	ND	EPA 8260B	ug/L	1		
Chloroethane	ND	ND	EPA 8260B	ug/L			
Trichlorofluoromethane	ND	ND	EPA 8260B	ug/L	1		
Iodomethane	ND	ND	EPA 8260B	ug/L	1		
Acetone	ND	ND	EPA 8260B	ug/L	10		
1.1-Dichloroethene	ND	ND	EPA 8260B	ug/L			
t-Butyl Alcohol (TBA)	ND	ND	EPA 8260B	ug/L	25		
Methylene Chloride	ND	ND	EPA 8260B	119/L	10		
Freon 113	ND	ND	EPA 8260B	ug/L	5		
Carbon disulfide	ND	ND	EPA 8260B	110/I	, i e e e e e e e e e e e e e e e e e e		
trans 1 2-Dichloroethene	ND	ND	EPA 8260B	ug/L	1		
Methyl-tert-butyl-ether(MtBE)	ND	ND	EPA 8260B	ug/L	Ŝ		
1.1-Dichloroethane	ND	ND	EPA 8260B	119/L	1		
Vinvl acetate	ND	ND	EPA 8260B	110/1	50		
Diisopropyl Ether (DIPE)	ND	ND	EPA 8260B	ug/L	1		
Methyl Ethyl Ketone	ND	ND	EPA 8260B	110/I	10		
cis 1 2-Dichloroethene	ND	ND	EPA 8260B	110/I.	1		
Bromochloromethane	ND	ND	FPA 8260B	110/I	i i		
Chloroform	ND	ND	FPA 8260B	ug/L	1		
2 2-Dichloropropane	ND	ND	EPA 8260B	ug/L ug/I			
Ethyl-t-butyl ether (ETBE)	ND	ND	EPA 8260B	ug/L ug/I	i astronominationali anti-		
1.1.1-Trichloroethane	ND	ND	EPA 8260B	ug/L ug/I	n ann an a		
1.2-Dichloroethane	ND	ND	EPA 8260B	ug/L ug/I	0.5		
1 1-Dichloropropene	ND	ND	EPA 8260B	ug/L	1		
Carbon Tetrachloride	ND	ND	EPA 8260B	ug/L	0.5		
Renzene	ND	ND	EPA 8260B	ug/L	0.5		
t-Amyl Methyl Ether (TAME)	ND	ND	EPA 8260B	ug/L	1		
1 2-Dichloropropane	ND	ND	EPA 8260B	ug/L	1		
Trichloroethene	ND	32	ELA 8200D	ug/L	1		
Dibromomethane	ND	S.S ND	EDA 8260B	ug/L	1		
Bromodichloromethane	ND	ND	ETA 8200D EDA 8260D	ug/L	1		
2-Chloroethylyinylether	ND		ELA 0200D	ug/L ug/I	1 5		
cis 1 3-Dichloronronana	ND		ELA 0200D	ug/L	J 1		
4 Methyl 2 pentonono(MI)	ND	עאן תוא	ELA 0200D	ug/L	10		
trops 1.2 Dishlar	IND ND		EFA 8200B	ug/L	10		
Talvara	ND		EPA 8200B	ug/L	1		
1 1 2 Trial 1	ND	ND ND	EPA 8260B	ug/L	U. D		
(Continued)	ND	ND	EPA 8260B	ug/L			

1

CTEL Project No: CT214-0901115

Project ID:GlobalProject Name:Metro V	ID: Valley Cleaners				
Laboratory ID: Client Sample ID:	0901-115-1 Influent St.	0901-115-2 Influent 1400	Method	Units	Detection Limit
1,2-Dibromoethane(EDB)	ND	ND	EPA 8260B	ug/L	0.5
1,3-Dichloropropane	ND	ND	EPA 8260B	ug/L	1
Dibromochloromethane	ND	ND	EPA 8260B	ug/L	ana
2-Hexanone	ND	ND	EPA 8260B	ug/L	10
Tetrachloroethene	110	110	EPA 8260B	ug/L	1
Chlorobenzene	ND	ND	EPA 8260B	ug/L	1
1,1,1,2-Tetrachloroethane	ND	ND	EPA 8260B	ug/L	1
Ethylbenzene	ND	ND	EPA 8260B	ug/L	0.5
m.p-Xylene	ND	ND	EPA 8260B	ug/L	0.6
Bromoform	ND	ND	EPA 8260B	ug/L	1
Styrene	ND	ND	EPA 8260B	ug/L	1
o-Xylene	ND	ND	EPA 8260B	ug/L	0.6
1,1,2,2-Tetrachloroethane	ND	ND	EPA 8260B	ug/L	1
1,2,3-Trichloropropane	ND	ND	EPA 8260B	ug/L	1
Isopropylbenzene	ND	ND	EPA 8260B	ug/L	$1 \sim 1$
Bromobenzene	ND	ND	EPA 8260B	ug/L	1
2-Chlorotoluene	ND	ND	EPA 8260B	ug/L	1
n-Propylbenzene	ND	ND	EPA 8260B	ug/L	1
4-Chlorotoluene	ND	ND	EPA 8260B	ug/L	1
1,3,5-Trimethylbenzene	ND	ND	EPA 8260B	ug/L	1
tert-Butylbenzene	ND	ND	EPA 8260B	ug/L	
1,2,4-Trimethylbenzene	ND	ND	EPA 8260B	ug/L	1
sec-Butylbenzene	ND	ND	EPA 8260B	ug/L	1
1,3-Dichlorobenzene	ND	ND	EPA 8260B	ug/L	1
1,4-Dichlorobenzene	ND	ND	EPA 8260B	ug/L	1
p-Isopropyltoluene	ND	ND	EPA 8260B	ug/L	1
1,2-Dichlorobenzene	ND	ND	EPA 8260B	ug/L	1 = 1 = 1
n-Butylbenzene	ND	ND	EPA 8260B	ug/L	1
1,2 Dibromo-3-Chloropropane	ND	ND	EPA 8260B	ug/L	
1,2,4-Trichlorobenzene	ND	ND	EPA 8260B	ug/L	1
Naphthalene	ND	ND	EPA 8260B	ug/L	1
1,2,3-Trichlorobenzene	ND	ND	EPA 8260B	ug/L	lan nan-kanakaran kakaka kanakaran di sakaran di sakaran di sakaran di sakaran di sakaran di sakaran di sakara
Hexachlorobutadiene	ND	ND	EPA 8260B	ug/L	1

ND = Not Detected at the indicated Detection Limit

SURROGATE SPIKE		% SURR	OGATE RECOVERY	Control Limit
Dibromofluoromethane	95	92		70-130
1,2 Dichloromethaned4	80	80		70-130
Toluene-d8	93	98		70-130
Bromofluorobenzene	93	90		70-130
R. Types. (É.			

Laboratory Director

*The results are base upon the sample received.

Cal Tech Environmental Laboratories, Inc. ELAP ID #: 2424

 6814 Rosecrans Avenue,
 Paramount, CA 90723-3146

 Telephone:
 (562) 272-2700
 Fax: (562) 272-2789

QA/QC Report

	DOCOD
Method:	820UB
Matrix:	Water

Date Analyzed: 1/20/09

Date Extracted: 1/20/09

Perimeters	Conc.	ug/L MSD	Spike Added	Recovery	%	Control	Limits RPD	RPD
	MS			MS	MSD	Rec.		
1 1-Dichloroethane	48	47	50	96	94	70-130	20	2
Benzene	48	47	50	96	94	70-130	20	2
Trichloroethene	52	49	50	104	98	70-130	20	6
Toluene	51	49	50	102	98	70-130	20	4
Chlorobenzene	46	45	50	92	90	70-130	20	2
m.p-Xvlenes	92	88	100	92	88	70-130	20	4

MS: Matrix Spike MSD: Matrix Spike Duplicate

RPD: Relative Percent Difference of MS and MSD

Perimeters	Method Blank	Units	Det. Limit		
1,1-Dichloroethene	ND	ug/L	1		
Benzene	ND	ug/L	0.5		
Trichloroethene	ND	ug/L	0.5		
Toluene	ND	ug/L	0.5		
Chlorobenzene	ND	ug/L	0.5		
m.p-Xylenes	ND	ug/L	0.6		
MTBE	ND	ug/L	1		
ТВА	ND	ug/L	10		
DIPE	ND	ug/L	1		
ETBE	ND	ug/L	1		
TAME	ND	ug/L	1		
1,2-Dichloroethane	ND	ug/L	0.5		
EDB	ND	ug/L	0.5		
Ethylbenzene	ND	ug/L	0.5		
o-Xylene	ND	ug/L	0.6		
TCÉ	ND	ug/L	1		
PCE	ND	ug/L	1		

Advanc 837 Shaw F	ed GeoE	nvironm California 9521	ental,	, Inc. ne (209) 46	<u>www.advgeoenv.com</u> 7-1006 • Fax (209) 467-1118	CHA Date	IN OF CUS :: <u>1 14 09</u>	TODY Page	recor		
381 Thor P	381 Thor Place, Brea, California 92821 • Phone (714) 529-0200 • Fax (714) 529-0203										
2318 Fourth	n Street, Santa R onte Center, #111	osa, California , Monterey, C	alifornia 9	Phone (70 93940 ● Pl	7) 570-1418 • Fax (707) 570-1461 none (800) 511-9300 • Fax (831) 394-5979			Require			
roject Name Metro Valley de Ilient	avers		Project A Sampler	Manager	eicke signature)	8260					
nvoice to: 🕅 AGE 🗌 Client	na adalah kumun katala na kata kata katala katala kata kata kata	******	Lab Pro	ject No.:							
Sample ID/Location/Description	Date	Time	Matrix	Number	Notes						
Influent/Start	1-19-09	0936	A	1		X					
Tollwent/ 1400	1-19-09	1400	A	1		X					
				-							
				-							
linquished by:		Date:		Time:	Laboratory:						
urier: D		1/19/09	terretion in the second se	1730	CTEL Received by:	anna ann an State an State ann an State an State ann an	Date:		Time		
DWTNUL linquished by:		Date:		Time:	Received by:		Date:		Time		
linquished by:		Date:		Time:	Received by: R. Jashan S.		Date:	1.00	Time 93 o		
quested Turn Around Time (circle): 24 hours	48 hours 72 hour	rs 5 days (stand	lard) Other	r:	-	Matrix	Codes: $A = Air$ W	= Water S =	= Solid		
ecial Instructions to lab:	is and the second sequel in an effect of the second second second second second second second second second sec				I	hereby authorize	e the performance of	the above ind	icated work.		
	<u> </u>			Global ID		7hs	1-2	2			
CAL TECH Environmental Laboratories

 6814 Rosecrans Avenue,
 Paramount, CA 90723-3146

 Telephone:
 (562) 272-2700
 Fax: (562) 272-2789

ANALYTICAL RESULTS*

CTEL Project No: CT214- Client Name: Advance 837 Sha Stockton Attention: Mr. Art	ed Geo Environn w Road n, CA 95215 Deicke	nental, Inc.	Phone:(209) 4 Fax: (209) 4	Phone:(209) 467-1006 Fax: (209) 467-1118			
Project Name: Metro V	alley Cleaners						
Date Sampled: 01/19/09 Date Received: 01/21/09 Date Analyzed 01/21/09	9 @ 18:00 p.m. 9 @ 09:00 am 9		Matrix: Air				
Laboratory ID: Client Sample ID: Dilution	0901-128-1 SVE-1/1800 1	0901-128-2 SVE-1/End 1	Method	Units:	Detection Limit		
Dichlorodifluoromethane	ND	ND	EPA 8260B	ug/L			
Chloromethane	ND	ND	EPA 8260B	ug/L	1		
Vinyl Chloride	ND	ND	EPA 8260B	ug/L	0.5		
Bromomethane	ND	ND	EPA 8260B	ug/L	1		
Chloroethane	ND	ND	EPA 8260B	ug/L	1		
Trichlorofluoromethane	ND	ND	EPA 8260B	ug/L	1		
Iodomethane	ND	ND	EPA 8260B	ug/L	1		
Acetone	ND	ND	EPA 8260B	ug/L	10		
1,1-Dichloroethene	ND	ND	EPA 8260B	ug/L	e standing 1 8 Stand		
t-Butyl Alcohol (TBA)	ND	ND	EPA 8260B	ug/L	25		
Methylene Chloride	ND	ND	EPA 8260B	ug/L	10		
Freon 113	ND	ND	EPA 8260B	ug/L	5		
Carbon disulfide	ND	ND	EPA 8260B	ug/L	1		
trans, 1, 2-Dichloroethene	ND	ND	EPA 8260B	ug/L	1		
Methyl-tert-butyl-ether(MtBE)	ND	ND	EPA 8260B	ug/L	5		
1,1-Dichloroethane	ND	ND	EPA 8260B	ug/L	1		
Vinyl acetate	ND	ND	EPA 8260B	ug/L	50		
Diisopropyl Ether (DIPE)	ND	ND	EPA 8260B	ug/L	1		
Methyl Ethyl Ketone	ND	ND	EPA 8260B	ug/L	10		
cis,1,2-Dichloroethene	ND	ND	EPA 8260B	ug/L	1		
Bromochloromethane	ND	ND	EPA 8260B	ug/L	1		
Chloroform	ND	ND	EPA 8260B	ug/L	1		
2.2-Dichloropropane	ND	ND	EPA 8260B	ug/L	1		
Ethyl-t-butyl ether (ETBE)	ND	ND	EPA 8260B	ug/L	1		
1,1,1-Trichloroethane	ND	ND	EPA 8260B	ug/L	1		
1.2-Dichloroethane	ND	ND	EPA 8260B	ug/L	0.5		
1.1-Dichloropropene	ND	ND	EPA 8260B	ug/L	1		
Carbon Tetrachloride	ND	ND	EPA 8260B	ug/L	0.5		
Benzene	ND	ND	EPA 8260B	ug/L	0,5		
t-Amyl Methyl Ether (TAME)	ND	ND	EPA 8260B	ug/L	\mathbf{I}_{i}		
1,2-Dichloropropane	ND	ND	EPA 8260B	ug/L	1		
Trichloroethene	ND	ND	EPA 8260B	ug/L	1		
Dibromomethane	ND	ND	EPA 8260B	ug/L	1		
Bromodichloromethane	ND	ND	EPA 8260B	ug/L	land and the second		
2-Chloroethylvinylether	ND	ND	EPA 8260B	ug/L	5		
cis,1,3-Dichloropropene	ND	ND	EPA 8260B	ug/L	diversity of the second second		
4-Methyl-2-pentanone(MI)	ND	ND	EPA 8260B	ug/L	10		
trans,1,3-Dichloropropene	ND	ND	EPA 8260B	ug/L	1		
Toluene	ND	ND	EPA 8260B	ug/L	0.5		
1,1,2-Trichloroethane (Continued)	ND	ND	EPA 8260B	ug/L	1		

1

CTEL Project No: CT214-	0901128				
Project ID: Global	ID:				
Project Name: Metro	alley Cleaners				
Laboratory ID: Client Sample ID:	0901-128-1 SVE-1/1800	0901-128-2 SVE-1/End	Method	Units	Detection Limit
1.2-Dibromoethane(EDB)	ND	ND	EPA 8260B	ug/L	0.5
1.3-Dichloropropane	ND	ND	EPA 8260B	ug/L	1
Dibromochloromethane	ND	ND	EPA 8260B	ug/L	a service of the service of
2-Hexanone	ND	ND	EPA 8260B	ug/L	10
Tetrachloroethene	91	67	EPA 8260B	ug/L	1
Chlorobenzene	ND	ND	EPA 8260B	ug/L	1
1,1,1,2-Tetrachloroethane	ND	ND	EPA 8260B	ug/L	1
Ethylbenzene	ND	ND	EPA 8260B	ug/L	0.5
m.p-Xvlene	ND	ND	EPA 8260B	ug/L	0.6
Bromoform	ND	ND	EPA 8260B	ug/L	1
Styrene	ND	ND	EPA 8260B	ug/L	and notify 1 886 (even
o-Xylene	ND	ND	EPA 8260B	ug/L	0.6
1,1,2,2-Tetrachloroethane	ND	ND	EPA 8260B	ug/L	1
1,2,3-Trichloropropane	ND	ND	EPA 8260B	ug/L	1
Isopropylbenzene	ND	ND	EPA 8260B	ug/L	1
Bromobenzene	ND	ND	EPA 8260B	ug/L	1
2-Chlorotoluene	ND	ND	EPA 8260B	ug/L	
n-Propylbenzene	ND	ND	EPA 8260B	ug/L	1
4-Chlorotoluene	ND	ND	EPA 8260B	ug/L	1
1,3,5-Trimethylbenzene	ND	ND	EPA 8260B	ug/L	1
tert-Butylbenzene	ND	ND	EPA 8260B	ug/L	1
1,2,4-Trimethylbenzene	ND	ND	EPA 8260B	ug/L	1
sec-Butylbenzene	ND	ND	EPA 8260B	ug/L	1
1,3-Dichlorobenzene	ND	ND	EPA 8260B	ug/L	1
1,4-Dichlorobenzene	ND	ND	EPA 8260B	ug/L	$\sim 10^{-1}$
p-Isopropyltoluene	ND	ND	EPA 8260B	ug/L	1
1,2-Dichlorobenzene	ND	ND	EPA 8260B	ug/L	1
n-Butylbenzene	ND	ND	EPA 8260B	ug/L	1
1,2 Dibromo-3-Chloropropane	ND	ND	EPA 8260B	ug/L	1
1,2,4-Trichlorobenzene	ND	ND	EPA 8260B	ug/L	
Naphthalene	ND	ND	EPA 8260B	ug/L	1
1,2,3-Trichlorobenzene	ND	ND	EPA 8260B	ug/L	
Hexachlorobutadiene	ND	ND	EPA 8260B	ug/L	

ND = Not Detected at the indicated Detection Limit

SURROGATE SPIKE		% SUR	ROGATE RECOVERY	Control Limit
Dibromofluoromethane	99	95		70-130
1,2 Dichloromethaned4	97	85		70-130
Toluene-d8	105	101		70-130
Bromofluorobenzene	111	107		70-130
α i Λ α				

R. Influe . f. F. Greg Tejirian

Laboratory Director

*The results are base upon the sample received.

Cal Tech Environmental Laboratories, Inc. ELAP ID #: 2424

CAL TECH Environmental Laboratories

6814 Rosecrans Avenue,Paramount. CA 90723-3146Telephone: (562) 272-2700Fax: (562) 272-2789

QA/QC Report

Method: 8260B

Matrix: Water

Date Analyzed: 1/21/09

Date Extracted: 1/21/09

Perimeters	Conc.	ug/L	Spike	Recovery	%	Control	Limits	RPD
	MS	MSD	Added	MS	MSD	Rec.	RPD	
1,1-Dichloroethene	48	49	50	96	98	70-130	20	2
Benzene	46	45	50	92	90	70-130	20	2
Trichloroethene	49	48	50	98	96	70-130	20	2
Toluene	53	51	50	106	102	70-130	20	4
Chlorobenzene	46	46	50	92	92	70-130	20	0
m,p-Xylenes	98	96	100	98	96	70-130	20	2

MS: Matrix Spike MSD: Matrix Spike Duplicate

RPD: Relative Percent Difference of MS and MSD

Perimeters	Method Blank	Units	Det. Limit
1,1-Dichloroethene	ND	ug/L	1
Benzene	ND	ug/L	0.5
Trichloroethene	ND	ug/L	0.5
Toluene	ND	ug/L	0.5
Chlorobenzene	ND	ug/L	0.5
m,p-Xylenes	ND	ug/L	0.6
MTBE	ND	ug/L	1
TBA	ND	ug/L	10
DIPE	ND	ug/L	1
ETBE	ND	ug/L	1
TAME	ND	ug/L	1
1,2-Dichloroethane	ND	ug/L	0.5
EDB	ND	ug/L	0.5
Ethylbenzene	ND	ug/L	0.5
o-Xylene	ND	ug/L	0.6
TCE	ND	ug/L	1
PCE	ND	ug/L	1

Advance	ced GeoE	nvironm	ental,	Inc.	<u>www.advgeoenv.com</u>	СНА	IN OF CUS	STODY	RECORD
	lace, Brea, Calif h Street, Santa R onte Center, #11	ornia 92821 • osa, California I, Monterey, Ca	Phone (71 95404 • alifornia 9	4) 529-020 Phone (70 3940 • Ph	00 • Fax (714) 529-0203 0 - 2 < 7) 570-1418 • Fax (707) 570-1461 none (800) 511-9300 • Fax (831) 394-5979	Dat	e:Analysis	Require	d
Project Name Metro Valley Client Invoice to: X AGE Client	clearer	5	Project M Sampler U Lab Proj	lanager A (initials & s L ect No.:	rt Derche signature 7ht M)(s (8261			
Sample ID/Location/Description	Date	Time	Matrix	Number	Notes				
SVE-1/1800	1/19/09	1800	A			X			
SVE-ILEND	1/20/09	0930	A	1		X			
		-							
			-						
	:								
		-							
						-			
Relinquished by:		Date:	9	Time:	Laboratory:				
Courier:				11.00	Received by:		Date:		Time:
Relinquished by:		Date:		Time:	Received by:		Date:		Time:
			and the second secon	TT:			Data		Thereat
Relinquished by:		Date:		1 ime:	Received by: R. Yesha		1 21	0.5	200
Requested Turn Around Time (circle): 24 hours	48 hours 72 hou	rs 5 days (stand	ard) Other			Matrix	Codes: $A = Air V$	V = Water S =	= Solid
Special Instructions to lab:				te dischary An 17 Ann	I he	reby authoriz	e the performance o	f the above ind	licated work.
							A		
		na a Mandala Anala (a a ang ang ang ang ang ang ang ang ang		Global ID:		1	at -	UT	
Geotracker EDF to: AN geotracker@advgeoenv.co		a na na mana na mana na mana ama ana a		-			-		

APPENDIX H

APPENDIX I

APPENDIX I SOIL VAPOR EXTRACTED VOLUME-MASS CALCULATIONS METRO VALLEY CLEANERS 224 Rickenbacker Circle Livermore, California

 $\mathbf{M} = \mathbf{C} \mathbf{x} \mathbf{Q} \mathbf{x} \mathbf{t}$

C = vapor concentration (kg/m3)	To convert, multiply by:	0.000001
Q = extraction flow rate (m3/hr)	To convert, multiply by:	60 min/hr
t = operational period (hrs)	and:	$0.028317 \text{ m}^3/\text{ft}^3$

 $M(kg) = (Avg concentration)(0.000001) x [flow(ft^3/min)](60 min/hr)(0.0283168 m^3/ft^3) x time(hrs)$

Converting kg of M to lbs of M, multiply by: Converting lbs of M to gal of M, multiply by: 2.2046 lbs/kg 0.16 gal/lb

Time Internel	Time Interval Hours		ge Flow	PCE Concentration		PCE Extracted			
Time Interval	Hours	scfm	m ³ /hr	μg/l	kg/m ³	kg	lbs	gallons	
0930 to 0935	0.08	15	25	110	0.00011	0.0002	0.0005	0.0001	
0935 to 1400	4.5	16.9	29	110	0.00011	0.0142	0.0313	0.0050	
1400 to 1800	7.5	24	41	91	0.000091	0.0278	0.0614	0.0098	
1800 to 0930	24	35	59	67	0.000067	0.0956	0.2108	0.0337	
PCE Removed during Pilot Test:						0.14	0.30	0.05	