Fax: 510-547-5043 Phone: 510-450-6000 93 OCT 15 PM 12: 21 September 29, 1993 Juliet Shin Alameda County Department of Environmental Health 80 Swan Way, Room 200 Oakland, CA 94621-1426 > Re: Shell Service Station WIC #204-0072-0502 2160 Otis Drive Alameda, California WA Job #81-429-203 Dear Ms. Shin: This letter describes recently completed and anticipated activities at the Shell service station referenced above (Figure 1). This status report satisfies the quarterly reporting requirements prescribed by California Administrative Code Title 23 Waters, Chapter 3, Subchapter 16, Article 5, Section 265.d. Included below are descriptions and results of activities performed in the third quarter 1993 and proposed work for the fourth quarter 1993. #### Third Ouarter 1993 Activities: - Blaine Tech Services, Inc., (BTS) of San Jose, California measured depths to ground water in the three site wells and collected ground water samples from one of the three site wells. Wells MW-1 and S-1 are sampled annually during the first quarter and were not sampled this quarter. BTS' report describing these sampling activities and including the laboratory analytic report for ground water samples is included as Attachment A. - Weiss Associates (WA) compiled the ground water elevation data (Table 1) and the laboratory analytic results (Tables 2A and 2B) and prepared a ground water elevation contour map (Figure 2). ## Anticipated Fourth Quarter 1993 Activities: WA will submit a report presenting the results of the fourth quarter 1993 ground water sampling and ground water depth measurements. The report will include tabulated chemical analytic results, ground water elevations and a ground water elevation contour map. ### Conclusions and Recommendations - The ground water flow direction is consistent with second quarter results. - Hydrocarbon and volatile organic compound (VOC) concentrations are consistent with previous results. Please call if you have any questions. Sincerely, Weiss Associates Malieka Bundy Technical Assistant N. Scott MacLeod, R.G. Project Geologist MB/NSM:mb J:\SHELL\425\OMRPTS\429QMSE3.WP Attachments: Figures **Tables** A - BTS's Ground Water Monitoring Report cc: Dan Kirk, Shell Oil Company, P.O. Box 5278, Concord, CA 94520 Tom Callaghan, Water Quality Control Board, San Francisco Bay Region, 2101 Webster Street, Suite 500, Oakland, CA 94612 Figure 1. Site Location Map - Shell Service Station, WIC# 204-0072-0502, 2160 Otis Drive, Alameda, CA Figure 2. Monitoring Well Locations, Soil Boring Locations and Ground Water Elevation Contours - July 20, 1993 - Shell Service Station WIC #204-0072-2160, 2160 Otis Drive, Alameda, California Table 1. Ground Water Elevations - Shell Service Station WIC #204-0072-0502, 2160 Otis Drive, Alameda, California | Well
ID | Date | Top-of-Casing Elevation (ft above msl) | Depth to
Water
(ft) | Ground Water Elevation (ft above msl) | |------------|----------|--|---------------------------|---------------------------------------| | MW-1 | 04/11/90 | 6.00 | 5.23 | 0.77 | | 14211 1 | 07/10/90 | 0.00 | 5.40 | 0.60 | | | 10/09/90 | | 5.61 | 0.39 | | | 01/17/91 | | 5.66 | 0.34 | | | 04/09/91 | | 4.96 | 1.04 | | | 07/10/91 | | 5.52 | 0.48 | | | 10/09/91 | | 5.70 | 0.30 | | | 01/24/92 | | 5.51 | 0.49 | | | 04/23/92 | | 5.14 | 0.86 | | | 07/01/92 | | 4.48 | 1.52 | | | 10/02/92 | | 5.80 | 0.20 | | | 01/05/93 | | 5.34 | 0.66 | | | 04/08/93 | | 4.62 | 1.38 | | | 07/20/93 | | 520 | 0.80 | | MW-2 | 04/11/90 | 3.29 | 4.51 | -1.22 | | | 07/10/90 | | 4,61 | -1.32 | | | 10/09/90 | | 4.74 | -1.45 | | | 01/17/91 | | 4.73 | -1.44 | | | 04/09/91 | | 4.09 | -0.80 | | | 07/10/91 | | 4.66 | -1.37 | | | 10/09/91 | | 4.81 | -1.52 | | | 01/24/92 | | 4.66 | -1.37 | | | 04/23/92 | | 4.51 | -1.22 | | | 07/01/92 | | 4.57 | -1.28 | | | 10/02/92 | | 4.80 | -1.51 | | | 01/05/93 | | 4.39 | -1.1 | | | 04/08/93 | | 4.15 | -0.86 | | | 07/20/93 | | 4.40 | | | S-1 | 09/11/90 | 5.10 | 4.29 | 0.81 | | | 04/11/90 | | 4.00 | 1.10 | | | 07/10/90 | | 4.25 | 0.85 | | | 10/09/90 | | 4.46 | 0.64 | | | 01/17/91 | | 4.53 | 0.57 | | | 04/09/91 | | 4.20 | 0.90 | | | 07/10/91 | | 4.42 | 0.68 | | | 10/09/91 | | 4.87 | 0.23 | | | 01/24/92 | | 4.90 | 0.20 | | | 04/23/92 | | 4.66 | 0.44 | Table 1. Ground Water Elevations - Shell Service Station WIC #204-0072-0502, 2160 Otis Drive, Alameda, California (continued) | Well
ID | Date | Elevation (ft above msl) | Water
(ft) | Elevation (ft above msl) | |------------|----------|--------------------------|---------------|--------------------------| | | 07/01/92 | | 4.85 | 0.25 | | | 10/02/92 | | 4.80 | 0.30 | | | 01/05/93 | | 5.38 | -0.28 | | | 04/08/93 | | 3.69 | 1.41 | | lell
ID | Date | Depth to | TPH-G | TPH-D | В | E | T | X | TOG | |-----------------------|-----------------------|------------|---------------------------------------|-------|------|---------------|------------|--------------|---------| | Sampling
requency) | Sampled | Water (ft) | < | | part | s per billion | (μg/L) | | > | | :-1 | 09/04/87 | | | | ⋖5 | ব | <5 | <5 | | | Annually | 09/11/89 ^a | 4.29 | <50 | <100 | <0.5 | <1 | <1 | ⋖Ӡ | <1,000 | | st Qtr) | 04/11/90 | 4.00 | <50 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <10,000 | | | 07/10/90 | 4.25 | <90 | | <0.5 | <0.5 | <0.5 | <0.5 | <10,000 | | | 10/09/90 | 4.46 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | <5,000 | | | 01/17/91 | 4.53 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | *** | | | 04/09/91 | 4.20 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 07/10/91 | 4.42 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 10/09/91 | 4.87 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 01/24/92 | 4.90 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 04/23/92 | 4.66 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 07/01/92 | 4.85 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 10/02/92 | 5.80 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 01/05/93 | 5.38 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | • | | -1 | 04/11/90 | 5.23 | <50 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <10,000 | | nnually | 07/10/90 | 5.40 | 100 | | <0.5 | <0.5 | <0.5 | <0.5 | <10,000 | | st Qtr) | 10/09/90 | 5.61 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | <5,000 | | | 01/17/91 | 5.66 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 04/09/91 | 4.96 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 07/10/91 | 5.52 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 10/09/91 | 5.70 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 01/24/92 | 5.51 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 04/23/92 | 5.14 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 07/01/92 | 4.48 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 10/02/92 | 4.80 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 01/05/93 | 5.34 | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | -2 | 04/11/90 | 4.51 | 200 ^b | 220 | 2.7 | <0.5 | 0.5 | 2.4 | <10,000 | | uarterly) | 07/10/90 | 4.61 | 570 ^b | 450 | 150 | <0.5 | 0.9 | 3.1 | <10,000 | | | 10/09/90 | 4.74 | 190 ^b | 51 | 55 | <0.5 | <0.5 | <0.5 | <5,000 | | | 01/17/91 | 4.73 | 350 ^b | <50 | 51 | <0.5 | <0.5 | | | | | | | | | | | | <0.5 | | | | 04/09/91 | 4.09 | b | <50 | 21 | <5_ | < <u>5</u> | < <u>5</u> _ | | | | 07/10/91 | 4.66 | 50 ^b | <50 | 8.4 | <0.5 | <0.5 | <0.5 | | | | 10/09/91 | 4.81 | 150 | | 22 | <0.5 | <0.5 | <0.5 | | | | 01/24/92 | 4.66 | <50 | | 4.8 | <0.5 | <0.5 | <0.5 | | | | 04/23/92 | 4.51 | <50 | | 2.3 | 1.5 | <0.5 | <0.5 | | | | 07/01/92 | 4.57 | 130 | | 19 | <0.5 | <0.5 | <0.5 | | | | 10/02/92 | 4.80 | 120 | | 7.8 | <0.5 | <0.5 | <0.8 | * | | | 01/05/93 | 4.39 | 200 | | 9.0 | <0.5 | 0.6 | 1.8 | | | | 04/08/93
07/20/93 | 4.15 | 170
Nacio nio (1919) | | 9.6 | <0.5 | <0.5 | 1.6 | - | ⁻⁻ Table 2A continues on next page -- Table 2A. Analytic Results for Ground Water - Petroleum Hydrocarbons - Shell Service Station WIC #204-0072-0502, 2160 Otis Drive, Alameda, California (continued) | Well | B-4- | Bankh Aa | TPH-G | TPH-D | В | E | T | x | TOG | |-------------------------------|-----------------|----------|------------------------|------------|------------|---------|------------------|-------------|-----| | ID
(Sampling
Frequency) | Date
Sampled | | ts per billion | on (#g/L)> | | | | | | | зн-с | 12/17/92 | 5.0 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | BH-D | 12/17/92 | 5.0 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | вн-Е | 12/17/92 | 5.5 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | | Trip | 07/10/90 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | 3 lank | 10/09/90 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 01/17/91 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 04/09/91 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 07/10/91 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 10/09/91 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 01/24/92 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | *** | | | 04/23/92 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 07/01/92 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 10/02/92 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 01/05/93 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 04/08/93 | | <50 | | <0.5 | <0.5 | <0.5 | <0.5 | | | | 07/20/93 | | \$14. 50 41 5.5 | | 0.5 | | 0.5 | *0.5 | | | TSC MCLs | | | NE | NE | 1 | 680 | 100 ^d | 1,750 | *** | #### Abbreviations: TPH-G = Total petroleum hydrocarbons as gasoline by Modified EPA Method 8015 TPH-D = Total petroleum hydrocarbons as diesel by Modified EPA Method 8015 B = Benzene by EPA Method 8020, or 8240 E = Ethylbenzene by EPA Method 8020, or 8240 T = Toluene by EPA Method 8020, or 8240 X = Xylenes by EPA Method 8020, or 8240 POG = Petroleum oil and grease by American Public Health Association Standard Methods 503 DTSC MCLs = Department of Toxic Substances Control maximum contaminant levels <n = Not detected above detection limit of n ppb</pre> NE = DTSC MCL not established BH-C = Grab Ground Water Sample #### Notes: - a = 0.090 ppm chromium, 0.090 ppm lead and 0.10 ppm Zn detected; no cadmium detected above detection limit of 0.010 ppm by EPA Method 6010. No semi-volatile organic compounds or PCBs detected by EPA Method 625. DHS MCLs for Cr = 0.05 ppm; Pb = 0.05 ppm; secondary MCL for Zn = 5 ppm. - b = Chromatographic pattern not typical for gasoline; the concentration is due mostly to lighter hydrocarbon compounds. - c = The concentration reported as gasoline is primarily due to the presence of discrete peaks not indicative of gasoline. - d = DTSC recommended action level for drinking water; MCL not established Table 2B. Analytic Results for Ground Water - Volatile Organic Compounds - Shell Service Station WIC #204-0072-0502, 2160 Otis Drive, Alameda, California | Well | Date | Depth to | TCE | TCA | PCE | Cloroform | cis-
1,2-DCE | trans-
1,2-DCE | 1,2-DCA | Carbon
Disulfate | Vinyl
Chloride | |-----------|-----------------------|------------|-------------|------|--|-----------|-----------------|-------------------|---------|---------------------|-------------------| | ID | Sampled | Water (ft) | < | | | Par | ts Per Bill | ion (μg/l) | | | > | | s-1 | 09/04/87 ⁴ | * | | | | | | | | ••• | | | | 09/11/89 | 4.29 | ND | | 04/11/90 | 4.00 | <0.4 | <0.4 | <0.4 | 1.7 | <0.4 | <0.4 | <0.4 | * | <0.4 | | | 07/10/90 | 9.25 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | | <2 | | | 10/09/90 | 4.96 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <2 | | MW-1 | 04/11/90 | 5.23 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | | <0.4 | | | 07/10/90 | 5.40 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | | <2 | | | 10/09/90 | 5.61 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | <2 | | MW-2 | 04/11/90 | 4.51 | 1.2 | <0.4 | <0.4 | 4.5 | <0.4 | 16 | <0.4 | | <2 | | | 07/10/90 | 4.61 | 0.93 | <0.4 | <0.4 | 1.7 | <0.4 | 11 | 0.44 | | <2 | | | 10/09/90 | 4.74 | 1.3 | <0.5 | 1.6 | 15 | 46 | 6.7 | <0.5 | | 2.5 | | | 01/17/91 ^b | 4.73 | 1.2 | <0.5 | 0.6 | 2.6 | 74 | 12 | 0.5 | | 3.0 | | | 04/09/91 | 4.09 | <5 | <5 | <5 | <5 | 64 | <5 | <5 | <0.5 | <10 | | | 07/10/91 | 4.66 | <0.5 | <0.5 | 6.9 | 43 | <0.5 | <0.5 | <0.5 | 14 | <10 | | | 10/09/91 | 4.81 | 1.9 | <1 | 28 | 7.4 | 54 | 16 | <1 | *** | 1.7 | | | 01/24/92 | 4.66 | 2.5 | <0.5 | 7.0 | 19 | 16 | 4.3 | 0.6 | | <0.5 | | | 04/23/92 | 4.51 | <3 | <3 | 3.0 | <3 | 84 | 18 | <3 | | <3 | | | 07/01/92 | 4.57 | 2.0 | <1 | 2.0 | <1 | 54 | 14 | <1 | | 1.0 | | | 10/92/92 | 4.80 | 1.0 | <1 | <1 | <1 | 61 | 12 | <1 | | <1 | | | 01/05/93 | 4.39 | 1.7 | <0.5 | 2.2 | <0.5 | 33 | 8.7 | <0.5 | | 6.7 | | | 04/08/93 | 4.15 | 1.3 | <1 | <1 | <1 | 38 | 7.8 | <1 | | <1 | | | 07/20/93 | 4.40 | 2.4 | 相談 | ************************************** | | 4 3 000 | 36 19 3333 | <0.5 | | 40.5 | | вн-с | 12/17/93 | 5.0 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 2 | | BH-D | 12/17/93 | 5.0 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 2 | | BH-E | 12/17/93 | 5.5 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 2 | | DTSC MCLs | | | 5 | 200 | 5 | NE | 6 | 10 | 0.5 | NE | 0.5 | #### Abbreviations: TCE = Trichloroethene by EPA Method 601/8010 or 8240 TCA = 1,1,1-Trichloroethane by EPA Method 601/8010 or 8240 PCE = Tetrachloroethene by EPA Method 601/8010 or 8240 cis-1,2-DCE = cis-1,2-Dichloroethene by EPA Method 601/8010 or 8240 trans-1,2-DCE = trans-1,2-Dichloroethene by EPA Method 601/8010 or 8240 --- = Not analyzed <n = Not detected above detection limit of n ppb</pre> 1,2-DCA = 1,2 dichloroethane by EPA Method 601/8010 or 8240 DTCS MCLs = Department of Toxic Substance control maximum contaminant Levels NE = DTSC MCL not established ND = Analyte not detected, detection limit not known #### Notes: a = 7.0 ppb unknown alcohol and 270 ppb acetone detected b = 5.0 ppb chlorobenzene detected # ATTACHMENT A BTS GROUND WATER MONITORING REPORT ## BLAINE TECH SERVICES INC. 985 TIMOTHY DRIVE SAN JOSE, CA 95133 (408) 995-5535 FAX (408) 293-8773 August 3, 1993 Shell Oil Company P.O. Box 5278 Concord, CA 94520-9998 Attn: Daniel T. Kirk SITE: Shell WIC #204-0072-0502 2160 Otis Drive Alameda, California QUARTER: 3rd quarter of 1993 ## QUARTERLY GROUNDWATER SAMPLING REPORT 930720-A-2 This report contains data collected during routine inspection, gauging and sampling of groundwater monitoring wells performed by Blaine Tech Services, Inc. in reponse to the request of the consultant who is overseeing work at this site on behalf of our mutual client, Shell Oil Company. Data collected in the course of our field work is presented in a TABLE OF WELL GAUGING DATA. The field information was collected during our preliminary gauging and inspection of the wells, the subsequent evacuation of each well prior to sampling, and at the time of sampling. Measurements taken include the total depth of the well and the depth to water. The surface of water was further inspected for the presence of immiscibles which may be present as a thin film (a sheen on the surface of the water) or as a measurable free product zone (FPZ). At intervals during the evacuation phase, the purge water was monitored with instruments that measure electrical conductivity (EC), potential hydrogen (pH), temperature (degrees Fahrenheit), and turbidity (NTU). In the interest of simplicity, fundamental information is tabulated here, while the bulk of the information is turned over directly to the consultant who is making professional interpretations and evaluations of the conditions at the site. #### STANDARD PROCEDURES #### Evacuation Groundwater wells are thoroughly purged before sampling to insure that the sample is collected from water that has been newly drawn into the well from the surrounding geologic formation. The selection of equipment to evacuate each well is based on the physical characteristics of the well and what is known about the performance of the formation in which the well has been installed. There are several suitable devices which can be used for evacuation. The most commonly employed devices are air or gas actuated pumps, electric submersible pumps, and hand or mechanically actuated bailers. Our personnel frequently employ USGS/Middleburg positive displacement pumps or similar air actuated pumps which do not agitate the water standing in the well. Normal evacuation removes three case volumes of water from the well. More than three case volumes of water may be removed in cases where more evacuation is needed to achieve stabilization of water parameters. Less than three case volumes of water may be obtained in cases where the well dewaters and does not recharge to 80% of its original volume within two hours and any additional time our personnel have reason to remain at the site. In such cases, our personnel return to the site within twenty four hours and collect sample material from the water which has recharged into the well case. #### Decontamination All apparatus is brought to the site in clean and serviceable condition. The equipment is decontaminated after each use and before leaving the site. ## Free Product Skimmer The column headed, VOLUME OF IMMISCIBLES REMOVED (ml) is included in the TABLE OF WELL GAUGING DATA to cover situations where a free product skimming device must be removed from the well prior to gauging. Skimmers are installed in wells with a free product zone on the surface of the water. The skimmer is a free product recovery device which often prevents normal well gauging and free product zone measurements. The 2.0" and 3.0" PetroTraps fall into the category of devices that obstruct normal gauging. In cases where the consultant elects to have our personnel pull the skimmers out of the well and gauge the well, our personnel perform the additional task of draining the accumulated free product out of the PetroTrap before putting it back in the well. This recovered free product is measured and logged in the VOLUME OF IMMISCIBLES REMOVED column. Gauging at such site is performed in accordance with specific directions from the professional consulting firm overseeing work at the site on Shell's behalf. ## Sample Containers Sample material is collected in specially prepared containers which are provided by the laboratory that performs the analyses. ## Sampling Sample material is collected in stainless steel bailer type devices normally fitted with both a top and a bottom check valve. Water is promptly decanted into new sample containers in a manner which reduces the loss of volatile constituents and follows the applicable EPA standard for handling volatile organic and semi-volatile compounds. Following collection, samples are promptly placed in an ice chest containing prefrozen blocks of an inert ice substitute such as Blue Ice or Super Ice. The samples are maintained in either an ice chest or a refrigerator until delivered into the custody of the laboratory. ## Sample Designations All sample containers are identified with a site designation and a discrete sample identification number specific to that particular groundwater well. Additional standard notations (e.g. time, date, sampler) are also made on the label. Either the requested analyses or the specific analytes are written on the sample label (e.g. TPH-G, BTEX). #### Chain of Custody Samples are continuously maintained in an appropriate cooled container while in our custody and until delivered to the laboratory under a standard Shell Oil Company chain of custody. If the samples are taken charge of by a different party (such as another person from our office, a courier, etc.) prior to being delivered to the laboratory, appropriate release and acceptance records are made on the chain of custody (time, date, and signature of the person releasing the samples followed by the time, date and signature of the person accepting custody of the samples). ## **Hazardous Materials Testing Laboratory** The samples obtained at this site were delivered to Anametrix, Inc. in San Jose, California. Anametrix, Inc. is a California Department of Health Services certified Hazardous Materials Testing Laboratory and is listed as DOHS HMTL #1234. ## **Objective Information Collection** Blaine Tech Services, Inc. performs specialized environmental sampling and documentation as an independent third party. In order to avoid compromising the objectivity necessary for the proper and disinterested performance of this work, Blaine Tech Services, Inc. performs no consulting and does not become involved in the marketing or installation of remedial systems of any kind. Blaine Tech Services, Inc. is concerned only with the generation of objective information, not with the use of that information to support evaluations and recommendations concerning the environmental condition of the site. Even the straightforward interpretation of objective analytical data is better performed by interested regulatory agencies, and those engineers and geologists who are engaged in the work of providing professional opinions about the site and proposals to perform additional investigation or design remedial systems. ## Reportage Submission of this report and the attached laboratory report to interested regulatory agencies is handled by the consultant in charge of the project. Any professional evaluations or recommendations will be made by the consultant under separate cover. Please call if we can be of any further assistance. Richard C. Blaine RCB/lpn attachments: table of well gauging data chain of custody certified analytical report cc: Weiss Associates 5500 Shellmound Street Emeryville, CA 94608-2411 ATTN: Michael Asport ## TABLE OF WELL GAUGING DATA | WELL
I.D. | DATA
COLLECTION
DATE | MEASUREMENT
REFERENCED
TO | QUALITATIVE OBSERVATIONS (sheen) | DEPTH 10 FIRST
IMMISCIBLES
LIQUID (FPZ)
(feet) | THICKNESS OF
IMMISCIBLES
LIQUID ZONE
(feet) | VOLUME OF
IMMISCIBLES
REMOVED
(mi) | DEPTH
TO
WATER
(feet) | DEPTH
TO WELL
BOTTOM
(feet) | |--------------|----------------------------|---------------------------------|----------------------------------|---|--|---|--------------------------------|--------------------------------------| | S-1 | 7/20/93 | TOC | _ | NONE | _ | | 4.20 | 18.76 | | MW-1 | 7/20/93 | TOC | - | NONE | ~ | | 5.20 | 16.56 | | MW-2 * | 7/20/93 | TOC | | NONE | _ | | 4.40 | 17.15 | ^{*}Sample DUP was a duplicate sample taken from well MW-2. 9307212 SHELL OIL COMPANY CHAIN OF CUSTODY RECORD Date: RETAIL ENVIRONMENTAL ENGINEERING - WEST Serial No: Page Analysis Required LAB: WIC#: CHECK OHE (1) BOX ONLY 204 0072 0502 C1/01 TURN AROUND TIME Phone No.510 ₩ eui Fax #:675 6/68 ☐ 6401 Consultant Name & Address: Combination TPH 8015 & BTEX 8020 Soll Cloudy/Disposal | 6442 Consultant Contact: Phone No.: 408 iii iii (EPA 8240) Clouity/Disposal TPH (EPA 8015 Mod. Diesel) Soll/Air Rom. or Sys. Fax #: 293,8773 5462 NOTE: Notify tob as soon as Possible of 24/46 hrs. TAT. Wofer Rem. or \$71. TPH (EPA 8015 Mod. BIEX (EPA 8020/602) 6463 Volatile Organics Preparation Used Test for Disposal Sampled by: Container Size Printed Name: Asbestos SAMPLE MATERIAL CONDITION/ DESCRIPTION Sample ID No. of Dale Sludge Soll Water COMMENTS 1/20 20 mu z Ground 7/19 TRIP Blank Printed Name: Jim Keller Date: 7-22 Gales eved (signature): Time: 4:50 / M.M. Date: 7-22 Gales eved (signature): Time: (0.2) Date frame Printed Name: Printed Name: SiMON Printed Name: Joseph Printed Name: Hacko Dote: 7 1961 Concourse Drive Suite E San Jose, CA 95131 Tel: 408-432-8192 Fax: 408-432-8198 MR. JIM KELLER BLAINE TECH 985 TIMOTHY DRIVE SAN JOSE, CA 95133 Workorder # : 9307212 Date Received : 07/22/93 Project ID : 204-0072-0502 Purchase Order: MOH-B813 The following samples were received at Anametrix, Inc. for analysis: | ANAMETRIX ID | CLIENT SAMPLE ID | |--------------|------------------| | 9307212- 1 | MW 2 | | 9307212- 2 | T. BLANK | This report consists of 11 pages not including the cover letter, and is organized in sections according to the specific Anametrix laboratory group or section which performed the analysis(es) and generated the data. The Report Summary that precedes each section will help you determine which Anametrix group is responsible for those test results, and will bear the signatures of the department supervisor and the chemist who have reviewed the analytical data. Please refer all questions to the department supervisor who signed the form. Anametrix is certified by the California Department of Health Services (DHS) to perform environmental testing under Certificate Number 1234. A detailed list of the approved fields of testing can be obtained by calling our office, or the DHS Environmental Laboratory Accreditation Program at (415)540-2800. If you have any further questions or comments on this report, please give us a call as soon as possible. Thank you for using Anametrix. Sarah Schoen, Ph.D. Laboratory Director 08-03-93 Date ## ANAMETRIX REPORT DESCRIPTION GC ## Organic Analysis Data Sheets (OADS) OADS forms contain tabulated results for target compounds. The OADS are grouped by method and, within each method, organized sequentially in order of increasing Anametrix ID number. ## Surrogate Recovery Summary (SRS) SRS forms contain quality assurance data. An SRS form will be printed for each method, <u>if</u> the method requires surrogate compounds. They will list surrogate percent recoveries for all samples and any method blanks. Any surrogate recovery outside the established limits will be flagged with an "*", and the total number of surrogates outside the limits will be listed in the column labelled "Total Out". ## Matrix Spike Recovery Form (MSR) MSR forms contain quality assurance data. They summarize percent recovery and relative percent difference information for matrix spikes and matrix spike duplicates. This information is a statement of both accuracy and precision. Any percent recovery or relative percent difference outside established limits will be flagged with an "*", and the total number outside the limits will be listed at the bottom of the page. Not all reports will contain an MSR form. ## Qualifiers Anametrix uses several data qualifiers (Q) in its report forms. These qualifiers give additional information on the compounds reported. They should help a data reviewer to verify the integrity of the analytical results. The following is a list of qualifiers and their meanings: - U Indicates that the compound was analyzed for, but was not detected at or above the specified reporting limit. - B Indicates that the compound was detected in the associated method blank. - J Indicates that the compound was detected at an amount below the specified reporting limit. Consequently, the amount should be considered an approximate value. Tentatively identified compounds will always have a "J" qualifier because they are not included in the instrument calibration. - E Indicates that the reported amount exceeded the linear range of the instrument calibration. - D Indicates that the compound was detected in an analysis performed at a secondary dilution. Absence of a qualifier indicates that the compound was detected at a concentration at or above the specified reporting limit. #### REPORTING CONVENTIONS - ◆ Due to a size limitation in our data processing step, only the first eight (8) characters of your project ID and sample ID will be printed on the report forms. However, the report cover letter and report summary pages display up to twenty (20) characters of your project and sample IDs. - ♦ Amounts reported are gross values, i.e., not corrected for method blank contamination. ## REPORT SUMMARY ANAMETRIX, INC. (408) 432-8192 MR. JIM KELLER BLAINE TECH 985 TIMOTHY DRIVE SAN JOSE, CA 95133 Workorder # : 9307212 Date Received : 07/22/93 Project ID : 204-0072-0502 Purchase Order: MOH-B813 Department : GC Sub-Department: VOA ## SAMPLE INFORMATION: | ANAMETRIX
SAMPLE ID | CLIENT
SAMPLE ID | MATRIX | DATE
SAMPLED | METHOD | |------------------------|---------------------|--------|-----------------|--------| | 9307212- 1 | MW 2 | WATER | 07/20/93 | 8010 | ## REPORT SUMMARY ANAMETRIX, INC. (408)432-8192 MR. JIM KELLER BLAINE TECH 985 TIMOTHY DRIVE SAN JOSE, CA 95133 Workorder # : 9307212 Date Received: 07/22/93 Project ID: 204-0072-0502 Purchase Order: MOH-B813 Department : GC Sub-Department: VOA ## QA/QC SUMMARY : - No QA/QC problems encountered for this sample. Tayhi Memarzadeh ## ORGANIC ANALYSIS DATA SHEET -- EPA METHOD 8010 ANAMETRIX, INC. (408)432-8192 Anametrix ID : 9307212-01 Project ID Sample ID : 204-0072 : MW 2 Analyst Supervisor : WATER Matrix Date Sampled : 7/20/93 Date Analyzed : 8/ 1/93 Instrument ID : HP24 Dilution Factor: 2.0 Conc. Units : ug/L | CAS No. | COMPOUND NAME | REPORTING
LIMIT | AMOUNT
DETECTED | Q | |--|---|--|--|---| | 75-71-8
74-87-3
75-01-4
74-83-9
75-00-3
75-69-4
76-13-1
75-35-4
75-09-2
156-60-5
75-34-3
156-59-2
67-66-3
71-55-6
56-23-5
107-06-2
79-01-6
78-87-5
75-27-4
110-75-8 | Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Trichlorotrifluoroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dichloroethane Trichloroethane Trichloroethane Trichloroethane 1,2-Dichloropropane Bromodichloromethane 2-Chloroethylvinylether cis-1,3-Dichloropropene | 2.0
2.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | | ס מממ מממ מממ מממ מממ מממ מממ מממ מממ מ | | 10061-01-5
10061-02-6
79-00-5
127-18-4
124-48-1
108-90-7
75-25-2
79-34-5
541-73-1
106-46-7
95-50-1 | trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene Dibromochloromethane Chlorobenzene Bromoform 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene | 1.0
1.0
1.0
1.0
1.0 | ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | מממטטט
ממטטט
ממטטט | ## ORGANIC ANALYSIS DATA SHEET -- EPA METHOD 8010 ANAMETRIX, INC. (408)432-8192 Project ID : 204-00 Sample ID : BLK801 Matrix : WATER Date Sampled : 0/0/0 Date Analyzed : 8/1/93 Instrument ID : HP24 Anametrix ID : 24B0801H01 Analyst : TM Supervisor : CP Dilution Factor : Conc. Units : ug/L 1.0 | · · · · · · · · · · · · · · · · · · · | | ···· | | | |---------------------------------------|---------------------------|--------------------|--------------------|--------------| | CAS No. | COMPOUND NAME | REPORTING
LIMIT | AMOUNT
DETECTED | Q | | 75-71-8 | Dichlorodifluoromethane | 1.0 | ND | υ | | 74-87-3 | Chloromethane | 1.0 | ND | U | | 75-01-4 | Vinyl chloride | .50 | ND | U | | 74-83-9 | Bromomethane | .50 | ND | U | | 75-00-3 | Chloroethane | .50 | ND | U | | 75-69-4 | Trichlorofluoromethane | .50 | ND | U | | 76-13-1 | Trichlorotrifluoroethane | .50 | ND | U | | 75-35-4 | 1,1-Dichloroethene | .50 | ND | U | | 75-09-2 | Methylene chloride | 1.0 | ND | U | | 156-60-5 | trans-1,2-Dichloroethene | .50 | ND | שַ | | 75-34-3 | 1,1-Dichloroethane | .50 | ND | U | | 156-59-2 | cis-1,2-Dichloroethene | .50 | ND | ū | | 67-66-3 | Chloroform | .50 | ND | U | | 71-55-6 | 1,1,1-Trichloroethane | .50 | ND | U | | 56-23-5 | Carbon tetrachloride | .50 | \overline{ND} | ַּ <u></u> | | 107-06-2 | 1,2-Dichloroethane | .50 | ND | U | | 79-01-6 | Trichloroethene | .50 | ND | U | | 78 - 87-5 | 1,2-Dichloropropane | .50 | ND | ū | | 75-27-4 | Bromodichloromethane | .50 | ND | Ū | | 110-75-8 | 2-Chloroethylvinylether | 1.0 | ND | ũ | | 10061-01-5 | cis-1,3-Dichloropropene | .50 | ND | U | | 10061-02-6 | trans-1,3-Dichloropropene | .50 | ND | Ü | | 79-00-5 | 1,1,2-Trichloroethane | .50 | ND | U | | 127-18-4 | Tetrachloroethene | .50 | ND | U | | 124-48-1 | Dibromochloromethane | .50 | ND | Ü | | 108-90-7 | Chlorobenzene | .50 | ND | U | | 75-25-2 | Bromoform | .50 | ND | Ü | | 79-34-5 | 1,1,2,2-Tetrachloroethane | .50 | ND | ប្ | | 541-73-1 | 1,3-Dichlorobenzene | 1.0 | ND | U | | 106-46-7 | 1,4-Dichlorobenzene | 1.0 | ND | U . | | 95-50-1 | 1,2-Dichlorobenzene | 1.0 | ND | U | | | | | | l | ## SURROGATE RECOVERY SUMMARY -- EPA METHOD 8010 ANAMETRIX, INC. (408)432-8192 Project ID : 204-0072 Matrix : LIQUID 204-0072 Anametrix ID: 9307212 LIQUID Analyst : TM Supervisor : Co | | | | <u> </u> | | |--|----------------|----------|----------|-----| | | SAMPLE ID | SU1 | SU2 | su3 | | 1 | BLK801
MW 2 | 84
88 | | | | 4 | | | | | | 5
6 | | | | | | 8 | | | | | | 10 | | | | | | 12
13 | | | | | | 12345678901234567
11111111 | | | | | | 16 | | | | | | 19 | | | | | | 21
22 | | | | | | 18
19
22
22
23
24
25
27
28 | | | | | | 26 | | | | | | 28
29 | | | | | | 30 | | | | | SU1 = Chlorofluorobenzene (51-136) * Values outside of Anametrix QC limits ### LABORATORY CONTROL SAMPLE EPA METHOD 601/8010 ANAMETRIX, INC. (408) 432-8192 Anametrix I.D.: W0080193 Project/Case : LABORATORY CONTROL SAMPLE Matrix : WATER Analyst : TM Supervisor : CA Instrument I.D.: HP24 Matrix SDG/Batch SDG/Batch : N/A Date analyzed : 08/01/93 | COMPOUND | SPIKE
AMOUNT
(ug/L) | AMOUNT
RECOVERED
(ug/L) | PERCENT
RECOVERY | %RECOVERY
LIMITS | |---|--|---|---|--| | FREON 113 1,1-DICHLOROETHENE trans-1,2-DICHLOROETHENE 1,1-DICHLOROETHANE cis-1,2-DICHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROETHENE TETRACHLOROETHENE CHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE | 10
10
10
10
10
10
10
10
10 | 10.7
7.8
10.3
10.4
9.9
10.3
10.2
10.1
10.4
9.8
10.2
10.3 | 107%
78%
102%
104%
99%
103%
102%
101%
103%
98%
102%
103% | 34 - 128
63 - 133
55 - 145
49 - 121
66 - 168
72 - 143
63 - 147
60 - 133
70 - 148
49 - 139
70 - 133
69 - 140 | ^{*} Limits based on data generated by Anametrix, Inc., August, 1992. ## REPORT SUMMARY ANAMETRIX, INC. (408) 432-8192 MR. JIM KELLER BLAINE TECH 985 TIMOTHY DRIVE SAN JOSE, CA 95133 Workorder # : 9307212 Date Received: 07/22/93 Project ID : 204-0072-0502 Purchase Order: MOH-B813 Department : GC Sub-Department: TPH #### SAMPLE INFORMATION: | ANAMETRIX
SAMPLE ID | CLIENT
SAMPLE ID | MATRIX | DATE
SAMPLED | METHOD | |------------------------|---------------------|--------|-----------------|----------| | 9307212- 1 | MW 2 | WATER | 07/20/93 | TPHgBTEX | | 9307212- 2 | T. BLANK | WATER | 07/19/93 | TPHgBTEX | ## REPORT SUMMARY ANAMETRIX, INC. (408)432-8192 MR. JIM KELLER BLAINE TECH 985 TIMOTHY DRIVE SAN JOSE, CA 95133 Workorder # : 9307212 Date Received : 07/22/93 Project ID : 204-0072-0502 Purchase Order: MOH-B813 Department : GC Sub-Department: TPH ## QA/QC SUMMARY : - The concentration reported as gasoline for sample MW 2 is primarily due to the presence of discrete peaks not indicative of gasoline. Department Supervisor 29/53 Date Peggie Dawson 7/29/93 Chemist #### ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS (GASOLINE WITH BTEX) ANAMETRIX, INC. - (408) 432-8192 Anametrix W.O.: 9307212 Project Number: 204-0072-0502 Matrix : WATER Date Released: 07/29/93 Date Sampled : 07/19-20/93 | | Reporting
Limit | Sample
I.D.#
MW 2 | I.D.# T. BLANK | | | |---|--------------------|--|--|--|--| | COMPOUNDS | (ug/L) | -01 | -02 | BLANK | | | Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline % Surrogate Reco | | 16
1.4
1.3
6.1
80
108%
HP4
07/26/93 | ND
ND
ND
ND
ND
91%
HP4
07/26/93 | ND
ND
ND
ND
ND
93%
HP4
07/26/93 | | | RLMF | | 1 | 1 | 1 | | ND - Not detected at or above the practical quantitation limit for the method. TPHg - Total Petroleum Hydrocarbons as gasoline is determined by GCFID using modified EPA Method 8015 following sample purge and trap by EPA Method 5030. BTEX - Benzene, Toluene, Ethylbenzene, and Total Xylenes are determined by modified EPA Method 8020 following sample purge and trap by EPA Method 5030. RLMF - Reporting Limit Multiplication Factor. Anametrix control limits for surrogate p-Bromofluorobenzene recovery are 61-139%. All testing procedures follow California Department of Health Services (Cal-DHS) approved methods. Peggie Duvison 7/29/43 ## TOTAL VOLATILE HYDROCARBON LABORATORY CONTROL SAMPLE REPORT EPA METHOD 5030 WITH GC/FID ANAMETRIX, INC. (408) 432-8192 Sample I.D. : LAB CONTROL SAMPLE Matrix : WATER Date Sampled : N/A Date Analyzed : 07/27/93 Anametrix I.D. : ML2602E1 Analyst : RD Supervisor : M Date Released : 07/29/93 Instrument I.D.: HP4 | COMPOUND | SPIKE
AMT.
(ug/L) | REC
LCS
(ug/L) | %REC
LCS | % REC
LIMITS | |----------|-------------------------|----------------------|-------------|-----------------| | GASOLINE | 500 | 460 | 92% | 67-127 | | p-BFB | | | 91% | 61-139 | ^{*} Quality control established by Anametrix, Inc.