ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES

ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

January 31, 2007

Richard Rinck
GE Healthcare
389 Oyster Point Blvd.
South San Francisco, CA 94080

August Blasquez and Paul Dresnick TRS P.O. Box 66571 Scotts Valley, CA 95067

August Blasquez and Celia Villar 7026 Santa Teresa Blvd. San Jose. CA 95139

Subject: SLIC Case No. RO0002874, GE Imatron/Caral Manufacturing, 578 Cleveland Avenue, Albany, CA

Dear Richard Rinck, August Blasquez and Paul Dresnick TRS, and Celia Villar:

This letter confirms the completion of site investigation and remedial actions for the soil and groundwater investigation at the above referenced site. We are also transmitting the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported releases at the subject site with the provision that the information provided to this agency was accurate and representative of existing conditions. The subject Spill, Leaks, Investigation, and Cleanup (SLIC) case is closed.

SITE INVESTIGATION AND CLEANUP SUMMARY

Please be advised that the following conditions exist at the site:

- Due to the presence of elevated concentrations of petroleum hydrocarbons, soil was excavated in the area of a Hydrotel sump. Soil contamination originating from the sump was removed by excavation over an area inside and extending outside the building. Confirmation soil samples collected following the excavation indicate that the concentrations of petroleum hydrocarbons in residual soil do not exceed San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels following excavation.
- Soils were excavated and removed in several areas of the North Yard due to elevated concentrations of petroleum hydrocarbons, volatile organic compounds, and metals. Soils were also excavated and removed from the area west of the building due to elevated concentrations of metals.
- Trichloroethene was detected in groundwater upgradient and downgradient of the site at concentrations up to 8.9 parts per billion (ppb).

Richard Rinck
August Blasquez and Paul Dresnick TRS
August Blasquez and Celia Villar
January 31, 2007
Page 2

 Total petroleum hydrocarbons as diesel were detected in groundwater at concentrations up to 92 ppb.

If you have any questions, please call Jerry Wickham at (510) 567-6791. Thank you.

Sincerely,

Donna L. Drogos, P.E.

LOP and SLIC Program Manager

Enclosures: SLIC Case Closure Summary

cc: Cherie McCaulou (w/enc.)
San Francisco Bay Regional Water Quality Control Board
1515 Clay Street, Suite 1400
Oakland, CA 94612

City of Albany Planning and Zoning Department (w/enc.) 1000 San Pablo Avenue Albany, CA 94706

Michael Zimmerman (w/enc.) Clayton Group Services, Inc. 6920 Koll Center Parkway Pleasanton, CA 94566

Donna Drogos, ACEH (w/enc.)
Jerry Wickham, ACEH (w/ original enc)
File

CASE CLOSURE SUMMARY SPILLS, LEAKS, INVESTIGATION, AND CLEANUP PROGRAM

I. AGENCY INFORMATION

Agency Name: Alameda County Environmental Health	Address: 1131 Harbor Bay Parkway
City/State/Zip: Alameda, CA 94502-6577	Phone: (510) 567-6791
Responsible Staff Person: Jerry Wickham	Title: Hazardous Materials Specialist

II. CASE INFORMATION

Site Facility Name: GE Imatron / C	Caral Manufacturing			
Site Facility Address: 5789 Clevel	and, Albany, CA 94710			
RB Case No.: Local Case No.: LOP Case No.: RO0002874				
URF Filing Date: 07/28/2005	SWEEPS No.: APN: 66-2760-13-5			
Responsible Parties	Addresses		Phone Numbers	
Responsible Parties Richard Rinck, GE Healthcare	Addresses 389 Oyster Point Blvd., South San France CA 94080	cisco,	Phone Numbers 650-827-7729	
•	389 Oyster Point Blvd., South San Franc			

Tank, Sump, or OWS	Size	Contents	Closed In Place/Removed?	Date
Oil/water separator	Not reported	Waste oil and sludge	Removed	June 2004
Betts Sump	14 feet by 15 feet by 26 inches deep	Lubricating Oil	Cleaned and left in place	June through July 2004
Hydrotel Sump	29 inches by 66 inches by 14 inches deep	Lubricating Oil	Removed	June through July 2004
W 100-00-				
	Piping		Removed	June 2004

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and Type of Release: Releases occurred in three areas of the site but the specific causes of the releases are not known. Petroleum hydrocarbons were released from a former sump located within the warehouse building. Petroleum hydrocarbons, metals, and volatile organic compounds (VOCs) were released to soil in the North Yard. Metals were released to surface and shallow soils in an area west of the warehouse.

Site characterization complete? Yes	Date Approved By Oversight Agency:
-------------------------------------	------------------------------------

Date: January 18, 2007

Monitoring wells installed? No	Number:	Proper screened interval?	
Highest GW Depth Below Ground Surface: 10 feet below ground surface (bgs)	Lowest Depth: 40 feet bgs	Flow Direction: Assumed to be west toward San Francisco Bay	
Most Sensitive Current Use: Discharge to surface water			

Summary of Production Wells in Vicinity: No known water supply wells within a 2,000-foot radius of the site based on August 2006 well survey completed by Alameda County Public Works Agency.			
Are drinking water wells affected? No Aquifer Name: East Bay Plain			
Is surface water affected? No Nearest SW Name: San Francisco Bay is approximately 300 feet west of the site			
Off-Site Beneficial Use Impacts (Addresses/Locations): No			
Reports on file? Yes Where are reports filed? Alameda County Environmental Health			

	TREATMENT	AND DISPOSAL OF AFFECTED MATERIAL					
Material	Material Amount (Include Units) Action (Treatment or Disposal w/Destination) Date						
Tank							
Piping							
Free Product							
Soil	395 cubic yards	395 cubic yards disposed at the Altamount Landfill in Livermore, CA	October 2004 to April 2005				
3011	111 cubic yards	111 cubic yards disposed at the Altamount Landfill in Livermore, CA	October 2006				
Groundwater		 .					

MAXIMUM DOCUMENTED CONTAMINANT CONCENTRATIONS BEFORE AND AFTER CLEANUP (Please see Attachments 1 through 5 for additional information on contaminant locations and concentrations)

	. Soil (ppm)		Water (ppb)		
Contaminant	Before	After	Before	After	
TPH (Gas)	1,800	11	88	88	
TPH (Diesel)	10,000	90	92	92	
TPH (Motor Oil)	816	816	<300	<300	
Oil & Grease	38,000	100	Not Analyzed	Not Analyzed	
Benzene	<0.005	<0.005	1.7	1.7	
Toluene	<0.005	<0.005	<0.5	<0.5	
Ethylbenzene	<0.005	<0.005	<0.5	<0.5	
Xylenes	<0.005	<0.005	<0.5	<0.5	
Lead	2,200	110	<4	<4	
Chromium	410	41	6.9	9.9	
Cadmium	12	<0.5	<1	<1	
Zinc	4,900	29	7.2	7.2	
MTBE	<0.005(1)	<0.005(1)	<0.01(1)	<0.01(1)	
Trichloroethene (TCE)	29(2)	0.081(2)	8.9(3)	8.9(3)	
Cis 1,2-dichloroethene (cis 1,2-DCE)	9.1(2)	0.066(2)	29(3)	29(3)	
Methyl ethyl ketone (MEK)	0.025(2)	<0.009(2)	<10(3)	<10(3)	
Vinyl chloride	<0.01(2)	<0.01(2)	0.8(3)	0.8(3)	
Other (8240/8270)	0.24(4)	<0.02(5)	210(6)	<20(6)	
			EDD LEDO	4 1 4 4 4 4 4 4 1 2 4	

(1) MTBE was the only fuel oxygenate analyzed in soil and groundwater. EDB and EDC were not detected in soil or groundwater.

(2) TCE, cis 1,2-DCE, and MEK were the only VOCs detected in soil. No other VOCs were detected in soil; detection limits were variable.

(3) TCE, cis 1,2-DCE, and vinyl chloride were the only VOCs detected in groundwater. No other VOCs were detected in groundwater; detection limits were variable.

(4) Aroclor–1268 = 0.24 ppm in soil; Aroclor-1260 = 0.21 ppm in soil; and Aroclor-1254 = 0.031 ppm in soil; no other SVOCs or PCBs were detected in soil.

(5) SVOCs and PCBs were not detected in soil outside the area of excavation.

(6) Pentachlorophenol was detected at 210 ppb in a grab groundwater sample collected in 2001. Pentachlorophenol was not detected in groundwater samples collected in February 2006. No other SVOCs or PCBs were detected in groundwater.

Site History and Description of Corrective Actions:

The site is located in an industrial area that is bordered by Interstates 80 and 580. San Francisco Bay is approximately 300 feet west of the site. The facility operated as a machine shop from the 1950s until mid-2004. An Environmental Site Assessment that included soil, sediment, and groundwater sampling was completed at the site as part of due diligence in 2001. The Environmental Site Assessment was updated in 2004. Data collected during the Environmental Site Assessment indicated that petroleum hydrocarbons were present in shallow subsurface soil in the North Yard. Caral Manufacturing, Inc., which is a wholly owned subsidiary of GE Healthcare, ceased manufacturing operations at the site in mid-2004. During the 2004 activities related to decommissioning of the facility, chemical contamination was detected at the site in the areas described below:

Sumps Inside the Building

Two below grade sumps that contained machinery were located within the facility building. On June 17, 2004, four soil borings were advanced around the perimeter of each sump to a maximum depth of two feet below the bottom of the sumps. No VOCs or SVOCs were detected in soil samples collected around the perimeter of the Betts machine. Total oil and grease was detected at concentrations of 43 to 61 ppm in soil samples collected around the former Betts machine sump. No further investigation of the sump around the Betts machine was conducted. Total oil and grease was detected in soil samples collected around the sump that formerly contained the Hydrotel machine at concentrations ranging from 3,100 to 38,000 ppm. Several soil samples were collected at additional locations around the Hydrotel sump at depths ranging from 3.5 to 6.0 feet bgs in June/July 2004. Concentrations of TPH as diesel and motor oil in soil ranged from not detected to 1,600 ppm. Between October 2004 and January 2005, soil excavation was conducted to remove soil containing greater than 100 ppm of TPH. The contamination appeared to follow the grade beam from the warehouse area of the facility building to the office. Pre-excavation soil borings were advanced within the office area prior to excavation. Soil samples collected from borings in the office area contained not detected to 11,000 ppm of TPH. Following completion of excavation in the warehouse area, the open excavation was backfilled with drain rock and base rock and the excavation was extended along the floor grade beam into the office area. After temporary shoring was emplaced, excavation also took place beneath three of the building structural columns. The excavation was extended outside the building from the office area and front door on the south side of the building. Confirmation soil samples indicated that concentrations of residual TPH were less than 100 ppm.

North Yard

Data collected in 2001 and 2002 for an Environmental Site Assessment, indicated that petroleum hydrocarbons were present in the shallow subsurface soils outside the facility building in the North Yard. Soils were excavated at four locations within the North Yard where elevated concentrations of petroleum hydrocarbons, VOCs, or metals were detected in soil borings. These areas included a former aboveground oil/water separator and steam-cleaning tray and the areas around three soil borings. The excavations extended to depths of approximately three feet bgs. Confirmation samples were collected from soil that appeared to be native soil in each of the four excavations. The excavation in the area of the former oil/water separator was extended several feet in order to remove soil containing elevated concentrations of TPH as diesel. An additional soil boring investigation was conducted in the North Yard in February 2006 to confirm that the excavation removed elevated concentrations of residual contamination.

Area West of Warehouse

During the Environmental Site Assessment performed in 2001 and 2002, elevated concentrations of metals were detected in soils in the area west of the warehouse, which is bordered on the west by railroad tracks. Additional soil samples were collected at depths of 1, 3, and 6 feet bgs in the area west of the facility building in February and May 2006. Lead, antimony, and cobalt were detected at elevated concentrations in the soil samples collected from 1 foot bgs. Soil samples collected at 3 and 6 feet bgs did not contain elevated concentrations of metals. Soils along the west side of the facility building were excavated to a depth of 3 feet bgs in October 2006. The excavated soils were disposed off-site and the excavated area was backfilled using clean fill.

Groundwater

Grab groundwater samples were collected from three soil borings, which were advanced to depths of 30 to 40 feet bgs. One boring was located along the upgradient property boundary and the remaining two borings were located within the North Yard. Trichloroethene was detected in two of the three groundwater samples at a maximum concentration of 8.9 ppb. Cis-1,2-dichloroethene was also detected in two of the three groundwater samples at a maximum concentration of 29 ppb. Benzene was detected in groundwater samples from the upgradient and downgradient borings at concentrations of 1.1 and 1.7 ppb, respectively.

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? -
Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? -
Does corrective action protect public health for current land use? Alameda County Environmental Health staff does not make specific determinations concerning public health risk. However, based upon the information available in our files to date, it does not appear that the release would present a risk to human health based upon current land use and conditions.

Site Management Requirements: None

Should corrective action be reviewed if land use changes? No

Was a deed restriction or deed notification filed? No

Date Recorded: -
Monitoring Wells Decommissioned: No

Number Decommissioned: 0

Number Retained: 0

List Enforcement Actions Taken: None

List Enforcement Actions Rescinded: None

V. ADDITIONAL COMMENTS, DATA, ETC.

Considerations and/or Variances:

This case closure addresses residual soil and groundwater contamination at the site. Potential Issues related to asbestos-containing materials or other industrial hygiene issues are not addressed by this case closure.

No analyses were performed for fuel oxygenates other than MTBE. Since MTBE was not detected in soil or groundwater and gasoline releases are not suspected at the site, fuel oxygenate analyses are not required for the site.

Conclusion:

Alameda County Environmental Health staff believe that the low levels of residual contamination at the site do not pose a significant threat to water resources, public health and safety, and the environment based upon the information in our files to date. No further investigation or cleanup is necessary. ACEH staff recommend case closure for this site.

VI. LOCAL AGENCY REPRESENTATIVE DATA

Prepared by: Jerry Wickham	Title: Hazardous Materials Specialist
Signature: Wicker	Date: 01/10/07
Approved by: Donna L. Drogos, P.E.	Title: Supervising Hazardous Materials Specialist
Signature: Donn Luyd	Date: 01/16/07
1 - my serge	1 , , ,

This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions.

VII. REGIONAL BOARD NOTIFICATION

Regional Board Staff Name: Cherie McCaulou	Title: Engineering Geologist
RB Response: Concur, based solely upon information contained in this case closure summary.	Date Submitted to RB:
Signature: Chair Ne Caul	Date: 1/23/67

VIII. MONITORING WELL DECOMMISSIONING

Date Requested by ACEH: NA	Date of Well Decommissioning Report: NA		
All Monitoring Wells Decommissioned: NA	Number Decommissioned: NA	Number Retained: NA	
Reason Wells Retained: NA			
Additional requirements for submittal of grounds	vater data from retained wells: NA		
ACEH Concurrence - Signature:	Dilsteam	Date: 01/31/07	

Attachments:

1.

Site Location Map (1 page)
Facility Site Plan: Betts & Hydrotel Sumps; Warehouse Area Excavation; Office Area Excavation; North Yard
Excavations; and Excavation West of Warehouse (6 pages) 2.

3.

Analytical Sampling Results for Soils (14 pages)
Analytical Sampling Results for Groundwater (4 pages) 4,

5. Boring Logs (10 pages)

This document and the related CASE CLOSURE LETTER & REMEDIAL ACTION COMPLETION CERTIFICATE shall be retained by the lead agency as part of the official site file.

Q_ Appro	oximate Scale (feet)	<i>‡ !</i>	-	
LEG	END	FACILITY SITE PLAN	FIGURE	CEU VI
•	Approximate Property Line Boring Completed by ERM prior to May 2004 Soil Boring Location Grab Groundwater Sample Location North Yard Excavation Completed in 2004	GE Healthcare Caral Division 578 Cleveland Avenue Albany, California Clayton Project No. 33104-004583.03	2	BUREAU VERITAS

TABLE 2 Summary of Soil Analytical Results-Total Petroleum Hydrocarbons Former GE Caral Manufacturing Facility 578 Cleveland Avenue Albany, California

Sample ID	Sample Date	Sample Depth (ft bgs)	TPH-g [C7-C12] (mg/Kg)	TPH-d [C10-C24] (mg/Kg)	TPH-mo [C24-C36] (mg/Kg)	
\$B-1-1'	5/25/2006	1	< 1.1	< 0.99	< 5.0	
SB-1-3'	2/16/2006	3	< 1.1	< 1.0	< 5.0	
SB-1-6'	2/16/2006	6	< 0.98	1.7	7.9	
SB-2-1.5	5/26/2006	1.5	< 1.1	220	500	
SB-2-3'	2/16/2006	3	< 1.1	54	110	
SB-2-6'	2/16/2006	6	< 1.1	1.3	11	
SB-3-1'	5/25/2006	1 1	< 1.0	38	120	
SB-3-3'	2/16/2006	3	< 1.1	66	93	
SB-3-6'	2/16/2006	6	< 0.95	< 1.0	< 5.0	
\$B-4-2'	5/25/2006	2	< 0.99	3.5	7.9	
SB-4-3'	2/16/2006	3	< 0.93	2.1	< 5.0	
SB-4-6'	2/16/2006	6	< 1.0	3.6	15	
SB-5-1.5'	5/25/2006	1.5	2.8	280	250	
SB-5-3'	2/16/2006	3	< 1.0	2.2	<5.0	
SB-5-6'	2/16/2006	6	< 1.1	< 1.0	< 5.0	
SB-6-1.5'	5/25/2006	1.5	< 1.1	4.9	14	
\$B-6-3'	2/16/2006	3	< 1.0	3.0	< 5.0	
SB-6-6'	2/16/2006	6	< 1.0	3.9	14	
SB-7-3'	2/16/2006	3	< 1.0	2.0	< 5.0	
\$B-7-6'	2/16/2006	6	< 1.1	1.6	7.3	
SB-8-3'	2/16/2006	3	< 1.0	2.3	< 5.0	
SB-8-6'	2/16/2006	6	< 1.1	1.6	< 5.0	
SB-9-3'	2/16/2006	3	< 1.1	2.5	< 5.0	
SB-9-6'	2/16/2006	6	< 1.1	1.8	< 5.0	
SB-12-30'	2/17/2006	30	< 1.1	3.0	16	
Residential ESL			100	100	500	
Commercial/Industr	rial ESL		100	100	1,000	

- 1) All samples were analyzed by EPA Method 8015B w/silica gel cleanup by EPA Method 3630C.
- 2) TPH-g = C7-C12 = petroleum hydrocarbon chains in the gasoline range with 7-12 carbons TPH-d = C10-C24 = petroleum hydrocarbon chains in the diesel range with 10-24 carbons TPH-mo = C24-C36 = petroleum hydrocarbon chains in the motor oil range with 24-36 carbons
- 3) mg/Kg = milligrams per kilogram or parts per million (by weight).
- 4) ft bgs = feet below ground surface.
- 5) Bold concentrations were detected above the reporting limit.
- 6) < 1.0 indicates the analyte was not detected at or above the reporting limit of 1.0 mg/Kg.
- 7) ESL = SF Bay RWQCB Environmental Screening Level, February 2005.

TABLE 1 Soil Samples Collected During May 2004 Phase I Update that Exceeded RWQCB ESLs Former GE Caral Manufacturing Facility 578 Cleveland Avenue Albany, California

Sample Number and	TPH-g	TPH-d	cis-1,2-DCE	TCE (mg/kg)	Arsenic (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Cobalt (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Nickel (mg/kg)	Thallium (mg/kg)	Zinc (mg/kg)
Depth of Sample	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ing/kg)	(mg/kg)	(ilig/kg)	(iiig/kg/	(mg/kg)	(mg/kg)	(nig/kg/	(ing/kg)	(mg/kg)
North Yard	-10	-4.0	اه م	<0.25	<5	<0.05	15	3.1	6.9	4.8	18	41	27
B-1-1.75'	<1.0	<1.0	<0.2		<5			8.5	1.3				
B-2-1.25'	1,800	5,300	5.8	29) 1		2.5			
B-2-1.75'	170	140	9.1	14	5.4	<0.5		5.5	1.9				
B-3-1.0'	<1.0	<1.0	<0.2	<0.2	<5	t .	1	4	6.7	3.3	t .	1	19
B-4-1.5'	-26	82	<0.4	<0.4	<5	Į.			34	2,200	i		
B-4-5.0'	<1.0	3.5	<0.4	<0.4	<5	<0.5	120		5.8	22			
B-9-1.25'	8	1,400	<0.2	<0.2	<5	<0.5	260	23	24	6.2	200	<5	11
B-9-2.5'	<1.0	27	<0.2	<0.2	<5	<0.5	33	11	3.2	6.1	28	<5	14
B-10-1.5'	<1.0	17	<0.2	<0.2	<5	<0.5	270	23	32	<1.0	220	<5	12
B-10-3.0'	11,	8.2	<0.2	<0.2		<0.5	77	11	<0.5	2.8	66	5.9	14
West of Warehouse													
S\$-1	<2.0	66	<0.2	<0.2	<5	12	410	14	280	630	250		
B-5-1.5'	<1.0	<1.0	<0.4	<0.4	2,200	3.5	8.6	<0.5	<0.5	3.2	<1.0	<25	
B-5-5.0'	<1.0	<1.0	<0.4	<0.4	<5	<0.5	290	26	34	3.8	200	<25	30
Other Area Ons <u>ite</u>													
B7-1.5'	<1.0	1.8	<0.2	<0.2	<5	<0.05	20	16	3.7	6.4	14	<5	15
Residential ESL (Note 3)	100	100	0.19	0.46	5.50	1.67	58	10.48	225	150	150	1	600
Commercial/ Industrial							1		_				
ESL (Note 4)	100	100	0.19	0.46	5.50	7.40	58	10.48	225	750	150	12.66	600

Note 1: Soil Samples were collected by ERM in October 2001 and February 2002 at the GE Caral Site. Results were provided in May 2004 Phase I Update Report.

Note 2: Items in boldface exceed the RWQCB ESL.

Note 3: Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL) in shallow soil at residential sites, February 2005. For comparison purposes only since the site is not zoned nor intended to have residential receptors onsite.

Note 4: RWQCB ESL in shallow soil at industrial sites, February 2005.

LEGEND

cis-1,2-DCE = cis-1,2-dichloroethene

PCBs = polychlorinated biphenyls

TCE = trichloroethene

TPH = total petroleum hydrocarbons; TPH-d = TPH as diesel, TPH-g = TPH as gasoline

Table 7 Summary of Pre-Excavation Analytical Data TPH as Motor Oil and Total Oil and Grease in Soil Borings

GE Caral 578 Cleveland Avenue Albany, CA

Sample ID/Depth (in feet)	Date Sampled	TPH-Diesel (mg/kg)	TPH-Diesel w/silica gel cleanup (mg/kg)	TPH-Motor Oil (mg/kg)	TPH-Motor Oil w/silica gel cleanup (mg/kg)	Total Oil and Grease (mg/kg)*
HS-1/3.5 - 4	6/17/2004	NA.	NA	NA	, NA	20,000**
HS-2/3.5 - 4	6/17/2004	NA	NA	NA	NA	38,000**
HS-3/3.5 - 4	6/17/2004	NA	NA	NA	NA	3,100**
HS-4/3.5 - 4	6/17/2004	NA.	NA	NA	NA	22,000**
HS-5/3.5 - 4	7/22/2004	3.9 H Y	3.2 H Y	7.6	< 5.0	16
HS-5/5 - 5.5	7/22/2004	< 1.0	< 1.0	< 5.0	< 5.0	32
HS-6/3.5 - 4	7/22/2004	1.2 H Y	< 1.0	< 5.0	< 5.0	40
HS-6/5.5 - 6	7/22/2004	140 H Y	120 H Y	390	240	320
HS-7/3.5 - 4	7/22/2004	< 1.0	< 1.0	< 5,0	< 5.0	23
HS-7/5.5 - 6	7/22/2004	< 1.0	< 1.0	< 5.0	< 5.0	14
HS-8/3.5 - 4	7/22/2004	< 1.0	< 1.0	< 5.0	< 5.0	31
HS-8/6 - 6.5	7/22/2004	< 1.0	< 1.0	< 5.0	< 5.0	56
HS-8/6.5 - 7	7/22/2004	< 1.0	< 1.0	< 5.0	< 5.0	30
HS-9/3.5 - 4	7/22/2004	70 H Y	66 H Y	99	95	120
HS-9/5.5 - 6	7/22/2004	12 H Y	12 H Y	18	19	70
HS-10/3.5 - 4	7/22/2004	< 1.0	< 1.0	< 5.0	< 5.0	57
HS-10/4.5 - 5	7/22/2004	< 1.0	< 1.0	< 5.0	< 5.0	23
HS-11/3.5 - 4	7/22/2004	< 1.0	< 1.0;	< 5.0	< 5.0	75
HS-11/5.5 - 6	7/22/2004	< 1.0	< 1.0	< 5.0	< 5.0	14
HS-12/3.5 - 4	7/22/2004	< 1.0	< 1.0	< 5.0	< 5.0	59
HS-12/5.5 - 6	7/22/2004	< 1.0	< 1.0	< 5.0	< 5.0	37
HS-13/3.5 - 4	7/22/2004	15 H Y	13 H Y	18	17	44
HS-13/5.5 - 6	7/22/2004	1,600 H Y	1,500 H Y	1,500	1,400	2,100**
HS-14/3.5 - 4	7/22/2004	89 H Y	89 H Y	110	120	71
HS-14/5.5 - 6	7/22/2004	3.9 H Y	4.1 H Y	< 5.0	5.8	< 10
HS-15/3.5 - 4	7/22/2004	110 H Y	110 H Y	180	170	100
HS-15/6 - 6.5	7/22/2004	7.9 H Y	8.0 H Y	11	12	20
HS-16/3.5 - 4	7/22/2004	450 H Y	440 H Y	1,000	1,000	710
HS-16/5.5 - 6	7/22/2004	53 H Y	55 H Y	46	51	50
Soil ESL - Indu		100	100	1,000	1,000	100**
Soil ESL - Resid		100	100	500	500	100**
	strial (mg/kg) ential (mg/kg)					

^{* -} Total Oil and Grease Samples taken from 0.5 feet above ther sampling depths.

mg/kg = milligrams per kilogram

TCE = Trichloroethene

cis-1,2-DCE = cis-1,2-Dichloroethene

H = heavier hydrocarbons contributed to the lab's quantitation

Y = sample exhibits chromatograph pattern which does not resemble standard

NA = not analyzed

PRG = Preliminary Remediation Goal (USEPA, 2002)

ESL = Environmental Screening Levels

--- Denotes no established ESL or PRG

Industrial and Residential ESLs taken from: Volume I, Table A, shallow soils, groundwater is current or potential source of drinking water. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater,

Volume I, Summary Tier I Lookup Tables, Interim Final, Regional Water Quality Control Board (San Francisco Bay Region) July 2003

1 - Appendix 1, ESL Table F-1a for Groundwater as Current of Potential Drinking Water Source. Final ESL is the lowest of ceiling value, drinking water, indoor air, and aquatic habitat impact goals.

^{** -} There is no regulatory standard for oil and grease. TPH (middle distillates) has an established ESL of 100 mg/kg for both industrial and residential use. They are used here for comparison purposes only for total oil and grease.

Clayton GROUP SERVICES

Table 8 Warehouse Excavation Soil Samples Total Petroleum Hydrocarbon (TPH) GE Caral 578 Cleveland Avenue Albany, CA

Sample ID/Depth (in feet)	Date Sampled	TPH-Diesel w/silica gel cleanup (mg/kg)	TPH-Motor Oil w/silica gel cleanup (mg/kg)
SW-1	10/26/2004	<1.0	<5.0
SW-2	10/26/2004	<1.0	<5.0
. SW-3	10/26/2004	<1.0	<5.0
SW-4	10/26/2004	9.8 H Y	35
SW-5	10/26/2004	<1.0	<5.0
HS-IC	10/26/2004	100 H Y	120
HS-1C2	10/29/2004	110 H Y	74
HS-1C3	11/9/2004	58 H Y	38 L Y
HS-2C	10/26/2004	360 H Y	430
HS-2C2	10/29/2004	470 H Y	420
HS-2C3	11/9/2004	120 H Y	77 L Y
HS-2C4	12/14/2004	28 H Y	NA
HS-4C	10/26/2004	1,100 H Y	1,900
HS-4C2	10/29/2004	1,000 H Y	1,200
HS-4C3	11/9/2004	120 H Y	93 L Y
HS-4C4	12/14/2004	49 H Y	NA
SS-1	10/26/2004	1.3 H Y	<5.0
SSC-1	10/26/2004	<1.0	<5.0
SS-2A	10/29/2004	8,600 H Y	6,800
Soil ESL - Indu		100	1,000
Soil ESL - Resid		100	500
	istrial (mg/kg)		
PRG - Resid	ential (mg/kg)		

mg/kg = milligrams per kilogram

H = heavier hydrocarbons contributed to the lab's quantitation

Y = sample exhibits chromatograph pattern which does not resemble standard

NA = not analyzed

PRG = Preliminary Remediation Goal (USEPA, 2002)

ESL = Environmental Screening Levels

--- Denotes no established ESL or PRG

Industrial and Residential ESLs taken from: Volume I, Table A, shallow soils, groundwater is current or potential source of drinking water. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Volume I, Summary Tier I Lookup Tables, Interim Final, Regional Water Quality Control Board (San Francisco Bay Region) July 2003

1 - Appendix 1, ESL Table F-1a for Groundwater as Current of Potential Drinking Water Source. Final ESL is the lowest of ceiling value, drinking water, indoor air, and aquatic habitat impact goals.

Table 9 Office Area Soil Samples Total Petroleum Hydrocarbon (TPH) GE Caral 578 Cleveland Avenue Albany, CA

Sample ID/Depth (in feet)	Date Sampled	TPH-Diesel w/silica gel cleanup (mg/kg)	TPH-Motor Oil w/silica gel cleanup (mg/kg)
PRE-EXCAVATIO	N SAMPLES		
SS-2	10/26/2004	10,000 H Y	11,000 L
SS-2A	10/29/2004	8,600 H Y	6,800
OC-1	11/9/2004	9,900 H Y	11,000 L Y
OC-2	11/9/2004	3,100 H Y	3,300 L Y
OC-3	11/9/2004	5,800 H Y	6,800 L Y
OC-3A	11/9/2004	640 H Y	640 L Y
OC-4	11/9/2004	3,100 H Y	3,800 L Y
OC-5	11/9/2004	2.8 H Y	14 L Y
OC-6	11/9/2004	20 H Y	35 L Y
OC-7	11/9/2004	680 H Y	1,100 L Y
OC-8	11/9/2004	2,000 H Y	3,400 L Y
OC-9	11/9/2004	710 H Y	1,100 L Y
OC-10	11/9/2004	2,200 H Y	4,200 L Y
SAMPLES DURING	G EXCAVATI	ON	
FT-01-2.5'	2/1/2005	2,200 H Y	1,400
FT-02-2.5'	2/1/2005	460 H Y	650
OCS-09-1'	3/9/2005	3,700 H Y	6,300
OCS-12-4.5'	3/31/2005	61 H Y	120 L
POST-EXCAVATION	ON CONFIRM	IATION SAMP	LES
OCS-SW-01-2.0'	2/1/2005	< 0.99	< 5.0
OCS-SW-02-2.0'	2/2/2005	< 0.99	< 5.0
OC8-01-3.3'	1/31/2005	< 0.99	< 5.0
OCS-02-3.3'	2/1/2005	17	24
OCS-03-3.31	2/1/2005	15	20
OCS-04-3.5	2/2/2005	< 1.0	< 5.0
OCS-05-3.5'	2/2/2005	< 1.0	< 5.0
OCS-06-3.5'	2/2/2005	< 1.0	< 5.0
OCS-07-2.5'	2/2/2005	< 1.0	< 5.0
OCS-08-4'	3/9/2005	33 H Y	53
OCS-10-4'	3/15/2005	49 H Y	100
OCS-11-4.5'	3/24/2005	23 H Y	17
OCS-13-5.3'	4/5/2005	1.6 H Y	< 5.0
OCS-14-4'	5/20/2005	< 1.0	< 5.0
OCS-15-4'	5/20/2005	1.1 H Y	< 5.0
Soil ESL - Indu		100	1,000
Soil ESL - Reside	ential (mg/kg) strial (mg/kg)	100	500
	ential (mg/kg)		

mg/kg = milligrams per kilogram

H = heavier hydrocarbons contributed to the lab's quantitation

Y = sample exhibits chromatograph pattern which does not resemble standard

NA = not analyzed

PRG = Preliminary Remediation Goal (USEPA, 2002) ESL = Environmental Screening Levels

--- Denotes no established ESL or PRG

Industrial and Residential ESLs taken from: Volume I, Table A, shallow soils, groundwater is current or potential source of drinking water. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Volume I, Summary Tier I Lookup Tables, Interim Final, Regional Water Quality Control Board (San Francisco Bay Region) July 2003

1 - Appendix 1, ESL Table F-1a for Groundwater as Current of Potential Drinking Water Source. Final ESL is the lowest of ceiling value, drinking water, indoor air, and aquatic habitat impact goals.

Table 11 Summary of Analytical Data TPH, PCBs, VOCs, and SVOCs in Holes 1 through 4 GE Caral 578 Cleveland Avenue Albany, CA

	ТРН-			<u> </u>
•	Gasoline	TEPH-Diesel		cis-1,2-DCE
Sample ID/Former Boring ID	(mg/kg)	(mg/kg)	PCBs*	(mg/kg)
Hole 1/Former Boring B-4				
H1-North	< 1.1	140 H, Y	מא	<0.005
H1-East	< 0.95	88 H Y	ND	<0.005
H1-South	< 1.1	90 H Y	ND	<0.005
H1-West	< 1.0	1,900 H Y	ND	<0.005
H1-Base	< 1.0	2.B H Y	ND	<0.005
H1-North Resample	ŅĀ	46 H Y	NA	NA
H1-North Resample2	NA	19 H Y	NA	NA
H1-West Resample	NA	13 H Y	NA	NA
Hole 2/Former Boring B-10				
H2-North	< 1.1	< 1.0	ND	<0.005
H2-East	< 1.0	< 1.0	ND	<0.005
H2-South	< 1.0	1.6 H Y	ND	<0.005
H2-West	< 0.91	4.9 H Y	ND	<0.005
H2-Base	< 0.99	5.4 H Y	ND	<0.005
Hole 3/Former Boring B-2				
H3-North	< 1.1	< 1.0	ND	<0.005
H3-East	< 1.1	32 H Y	ND	<0.005
H3-South	< 0.98	15 H Y	ND	<0.005
H3-West	< 1.1	< 1.0	מא	<0.005
H3-Base	< 0.91	< 0.99	ND	0.031
Hole 4/Former Boring B-9	10.51	1 4.52		0.031
H4-North	< 1.1	< 1.0	ND	<0.005
H4-East	< 0.93	< 1.0	ND	<0.005
H4-South	< 1.1	8.0 H Y	ND	<0.005
H4-West	< 1.0	< 0.99	ND	0.0052
H4-Base	< 1.1	< 1.0	ND	<0.005
IIV-Isase	1 -1.1	77.0	110	40.005
Sidewall 2/Former Boring B-10	<1	12 H, Y	ND	0.011
Sidewall 3/Former Boring B-2	<1	<0.99	מא	<0.005
	<1	1	ND	
Sidewall 4/Former Boring B-9	· ·	<0.99		<0.005
CP-1/3.5 - 4 (Former Boring B-9)	NS	<0.99 B	ND	0.02
Composite 1 (from soil stockpile #1)	<0.98	67 H, Y	ND	<0,0047
Composite 2 (from soil stockpile #2) Soil Final ESL - Industrial	<0.97	130 H -/00	ND 0.74 .	<0.0048 0.19
Soil Final ESL - Residential	100	100	0.74 .	0.19
Preliminary Remediation Goal - Ind.		122	0.74	/50
Preliminary Remediation Goal - Res.			0.22	4.3

Bold result (e.g., 130) = Sample result exceeds established screening level TPH = Total Petroleum Hydrocarbons

TEPH = Total Extractible Petroleum Hydrocarbons (Note, diesel was analyzed using silica gel cleanup) mg/kg = militigrams per kilogram

B = analyzed after hold time; this analysis was not on the original chain of custody request. It was analyzed later to be consistent with other sample points.

H = Heavier hydrocarbons contributed to the quantitation

Y = Sample exhibits chromotographic pattern which does not resemble standard cis-1,2-DCE = cis-1,2-Dichloroethene

TCE = Trichloroethene

PRG = Preliminary Remediation Goal (USEPA, 2002)

ESI. = Environmental Screening Levels

— Denotes no established ESL or PRG industrial and Residantial ESLs taken from: Volume I, Table A, shallow soils, groundwater is current Total to the control of the control Francisco Bay Region) July 2003

1 - TPH (middle distillates) has an established ESL, but there is no ESL for diesel fuel specifically. 2 - Appendix 1, ESL Table F-1a for Groundwater as Current of Potential Drinking Water Source. Final BSL is the lowest of ceiting value, drinking water, indoor air, and aquatic habitat impact goals.

Composite 3 was put on hold and not analyzed. The soil from hole #4 was added to stockpile #2 since the soil contained similar materials based on visual inspection. CP-1 was collected from the area of hole # 4 before the excavation. Therefore, the results of CP-1 and Composite 2 will be used to evaluate stockpile 2 for waste disposal purposes.

- Dete	ction	Limits	for PCBs:

 - Detection Limits for 	or PCBs:
Aroclor - 1016	0.012 - 0.024 mg/kg
Aroclor - 1221	0.024 - 0.048 mg/kg
Aroclor - 1232	0.012 - 0.024 mg/kj
Aroclor - 1242	0.012 - 0.024 mg/kg
Aroclor - 1248	0.012 - 0.024 mg/kg
Aroclor - 1254	0.012 - 0.024 mg/kj
Arocker - 1260	0.012 - 0.024 mg/kg

Ind. PRG Aroclor 1016 = 21 mg/kg

Res. PRG Arccior 1016 = 3.9 mg/kg

TABLE 3
Summary of Soil Analytical Results-Volatile Organic Compounds
Former GE Caral Manufacturing Facility
578 Cleveland Avenue
Albany, California

Sample ID	Sample Date	Sample Depth (ft bgs)	Methylene Chloride See Note 9 (ug/Kg)	cis-1,2- Dichloroethene (ug/Kg)	Trichloroethene (ug/Kg)	Acetone (ug/Kg)	Methyl Ethyl Ketone or 2- Butanone (ug/Kg)
\$B-1-1'	5/25/2006	1	< 18	< 4.5	< 4.5	< 22	< 8.9
SB-1-3'	2/16/2006	3	28	< 4.9	< 4.9	< 20	< 9.8
SB-1-6'	2/16/2006	6	< 19	< 4.6	< 4.6	< 19	< 9.3
SB-2-1.5	5/26/2006	1.5	< 18	< 4.5	< 4.5	230	25
SB-2-3'	2/16/2006	3	31	< 4.7	< 4.7	< 19	< 9.4
SB-2-6'	2/16/2006	6	28	< 4.6	< 4.6	< 19	< 9.3
SB-3-1'	5/25/2006	1	< 20	< 4.9	< 4.9	< 25	< 9.8
SB-3-3'	2/16/2006	3	42	< 4.8	< 4.8	< 19	< 9.6
SB-3-6'	2/16/2006	6	41	< 4.6	< 4.6	< 19	< 9.3
SB-4-2'	5/25/2006	2	< 17	< 4.3	< 4.3	< 22	< 8.6
SB-4-3'	2/16/2006	3	35	< 5.0	< 5.0	< 20	< 10
SB-4-6'	2/16/2006	6	30	< 5.0	< 5.0	< 20	< 10
SB-5-1.5'	5/25/2006	1.5	< 19	29	25	< 23	< 9.3
SB-5-3*	2/16/2006	3	32	54	5.1	< 19	< 9.6
SB-5-6'	2/16/2006	6	30	32	< 4.7	< 19	< 9.4
SB-6-1.5	5/25/2006	1.5	< 19	8.6	6.2	< 24	< 9.4
SB-6-3'	2/16/2006	3	45	33	81	< 19	< 9.6
SB-6-6'	2/16/2006	6	37	66	< 25	< 20	< 9.8
SB-7-3'	2/16/2006	3	< 19	5.1	< 4.6	< 19	< 9.3
SB-7-6'	2/16/2006	6	33	32	11	< 19	< 9.3
SB-8-3'	2/16/2006	3	45	< 4.5	< 4.5	< 19	< 8.9
SB-8-6'	2/16/2006	6	55	< 4.7	< 4.7	< 19	< 9.4
SB-9-31	2/16/2006	3	31	< 4.6	< 4.6	< 19	< 9.3
SB-9-6'	2/16/2006	6	50	5.1	< 4.7	< 19	< 9.4
SB-12-30'	2/17/2006	30	<19	< 4.8	< 4.8	< 19	< 9.6
esidential ESL			77	187	260	504	3,900
ommercial/Ind	lustrial ESL		77	187	457	504	3,900

- 1) All samples were analyzed by EPA Method 8260.
- 2) Only results above detection limit are shown. All other VOCs analyzed with EPA Method 8260 were below the respective reporting/detection limits.
- 3) ug/Kg = micrograms per kilogram or parts per billion (by weight).
- 4) ft bgs = feet below ground surface.
- 5) Bold concentrations were detected above the reporting limit.
- 6) < 4.9 indicates the analyte was not detected at or above the reporting limit of 4.9 ug/Kg.
- 7) ESL = SF Bay RWQCB Environmental Screening Level, February 2005.
- 8) N/A = Not Applicable there is no applicable ESL for this analyte.
- 9) The laboratory confirmed that the methylene chloride detections were a laboratory contaminant that occurred during extraction of the samples for the 8015B analyses.

Table 5 Summary of Pre-Excavation Analytical Data Hydrocarbons, PCBs, VOCs, SVOCs in Soil Borings GE Caral 578 Cleveland Avenue Albany, CA

Sample ID/Depth (in feet)	Date Sampled	TPH-Diesel (mg/kg)	TPH-Diesel w/silica gel cleanup (mg/kg)	TPH-Motor Oit (mg/kg)	TPH-Motor Oll w/silica gel eleanup (mg/kg)	Total Oil and Grease (mg/kg)*	PCBs***	zis-1,2-DCE (mg/kg)	TCE (mg/kg)		Phenanthrene (mg/kg)	Fluoranthene (mg/kg)	Pyrenes (mg/kg)	Benzo(a)anthracene (mg/kg)	Chrysene (mg/kg)	Fluorene (mg/kg)	4-Chlore-3- methylphenol (mg/kg)	Benzo(b)fluorauthene (mg/kg)	Henzo(a)pyrene (mg/kg)
BS-1/4 - 4.5	6/17/2004	NA.	NA.	N.A.	NA	43	ND	<0.0049	<0.0049	<0.02	<0.067	<0.067	<0.067	<0.067	<0.067	< 0.067	<0.34	<0.067	<0.067
BS-2/4 - 4.5	6/17/2004	NA.	NA.	NA.	NA	NA	ND	- <0.005	<0.005	<0.02	<0.066	<0.066	<0.066	<0.066	<0.066	<0.066	<0.33	<0.066	<0.066
BS-3/4 - 4.5	6/17/2004	NA	NA.	NA.	NA	61	ND	<0,005	<0.005	<0.02	<0.067	<0.067	<0.067	<0.067	<0.067	< 0.067	<0.33	<0.067	<0.067
BS-4/44.5	6/17/2004	NA	NA	N.A.	NA.	44	ND	<0.0048	<0.0048	<0.019	<0.067	<0.067	<0.067	<0.067	<0.067	<0.067	<0.33	<0.067	<0.067
HS-1/3.5 - 4	6/17/2004	NA	NA	NA.	NA.	20,000**	ИD	<0.0049	<0.0049	0.054	<0.66	<0.66	<0.66	<0.66	<0.66	0.88	17.0	<0.66	<0.66
HS-2/3.5 - 4	6/17/2004	NA	NA	NA.	NA	38,600**	מא	<0.0048	<0.0048	0.026	<0.067	<0.067	<0.067	<0.067	<0.067	0.088	2.0		<0,067
HS-3/3.5 - 4	6/17/2004	NA	NA	NA	NA	3,100**	ND	<0.0047	<0.0047	<0.019	<0.067	< 0.067	<0.067	<0.067	<0.067	0.087	< 0.33	<0.067	<0.067
HS-4/3.5 - 4	6/17/2004	NA.	NA:	NA	NA	22,600**	ND	<0.023	<0.023	0.29	<1.7	<1.7	<1.7		<1.7	<1.7	< L.7	<1.7	<1.7
Soil ESL - Indu		100	700	1,000	1,000	100**	0.22	0.19	0.36	0.34	11	40	85	0.38	13	8,9	_	0.38	0.038
Soil ESL - Reside		100	100	500	500	100**	0.74	0.79	0.46	0.24	11	40	85	1.3	3.8	. 89		1.3	0./3
	strial (mg/kg)					-		150	0.11	6,000	NA NA	22,000	29,000	2.1	210	26,000		2./	0.062
PRG - Reside	ential (mg/kg)		-4-					4.3	0.053	1,600	NA	2,300	2,300	0.62	62	2,700		0.62	0.21

^{* -} Total Oil and Grease Samples taken from 0.5 feet above ther sampling depths.

cis-1,2-DCE = cis-1,2-Dichloroethene

H = heavier hydrocarbons contributed to the lab's quantitation

Y = sample exhibits chromatograph pattern which does not resemble standard

NA = not analyzed

PRG = Preliminary Remediation Goal (USEPA, 2002)
ESL = Bovironmental Screening Levels

-- Denotes no established ESL or PRG

Industrial and Residential ESLs taken from: Volume I, Table A, shallow soils, groundwater is current or potential source of drinking water. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Volume I, Summary Tier I Lookup Tables, Interim Final, Regional Water Quality Control Board (San Francisco Bay Region) July 2003

1 - Appendix I, ESL Table F-1a for Groundwater as Current of Potential Drinking Water Source. Final ESL is the lowest of ceiting value, drinking water, indoor air, and aquatic habitat impact goals.

*** - Detection Limits for PCBs:

Arocler - 1016	0.0095 mg/kg
Arocinr - 1221	0.019 mg/kg
Aroctor - 1232	0.0095 mg/kg
Arocior - 1242	0.0095 mg/kg
Aroctor - 1248	0.0095 mg/kg
Aroclor - 1254	0.0095 mg/kg
Aroclor - 1260	0.0095 mg/kg

Ind. PRG Aroclor 1016 = 21 Res. PRG Aroclor 1016 = 3.9

^{** -} There is no regulatory standard for oil and grease. TPH (middle distillates) has an established ESL of 100 mg/kg for both industrial and residential use. They are used here for comparison purposes only for total oil and grease. mg/kg = milligrams per kilogram TCE = Trichlomethene

Table 4 Semivolatile Organic Compound and PCBs Detected Caral Manufacturing Facility Albany, CA

	Bis (2-ethylhexyl) phthalate	Pentachlorophenol	PCB-1254*	PCB-1260*	PCB-1268*
Soil-Industrial Final ESL	66	5	0.74	0.74	0.74
Soil-Residential Final ESL	66	4.4	0.22	0.22	0,22
Units	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg
5S-1	<25	<25	<20	210	240
B1-1.7 5	<0.50	< 0.50	<20	<20	<20
B1-5.5	<0.50	<0.50	<20	<20	<20
B2-1,25	<5.0	<5.0	<20	25	<20
B 2- 1. <i>7</i> 5	<0.50	< 0.50	31	<20	<20
B2-3.5	0.70	< 0.50	<20	<20	<20
B3-1.0	< 0.50	< 0.50	<20	<20	<20
B 4- 1.5	< 0.50	< 0.50	<20	74	<20
B4-5.0	< 0.50	<0.50	<20	35	<20
B5-1.5	< 0.50	<0.50	<20	<20	<20
B5-5.0	< 0.50	<0.50	<20	<20	<20
86-1.25	<0.50	<0.50	<20	<20	<20
87-1.5	<0.50	< 0.50	<20	<20	<20
B8-1.5	<0.50	< 0.50	<20	<20	<20
89-1.25	<0.50	< 0.50	<20	<20	<20
39-2.5	<0.50	<0.50	<20	<20	<20
310-1.5	<0.50	<0.50	<20	<20	<20
310-3.0	<0.50	<0,50	<20	<20	<20

Ground Water		Bis (2-ethylhexyl) phthalate	Pentachlorophenol	PCB-1254	PCB-1260	PCB-1268
	Final ESL b	4	1.0	0.014	0.014	0.014
	Units	ug/l	ug/l	ug/l	ug/l	ug/l
4-W		<10	210	<0.53	< 0.53	< 0.53

mg/kg= milligrams per kilogram ug/kg= micrograms per kilogram ug/l= micrograms per liter

PCB = Polychlorinated biphenyl

< = less than

- Denotes no established ESL

RWQCB

Regional Water Quality Control Board (San Francisco Bay) has developed the Environmental Screening Values (ESLs) the San Francisco Bay Area (http://www.swrcb.ca.gov/rwqcb2/esl.htm)

Industrial Final ESL -

Final Environmental Screening Level is lowest of ceiling value (nuisance concerns etc.), ecotoxicity, direct-exposure, indoor-air impact, and leaching screening levels.

Appendix 1, ESL Table A-2, Shallow soils, (< 3 meters bgs) commercial/industrial land use where ground water is a current or potential source of drinking water

Residential Final ESL -

Final Environmental Screening Level is lowest of ceiling value (nuisance concerns etc.), ecotoxicity, direct-exposure, indoor-air impact, and leaching screening levels.

Appendix 1, ESL Table A-1, Shallow soils, (< 3 meters bgs) residential land use where ground water is a current or potential source of drinking water

a - ESL for polychlorinated biphenyls does not distinguish between the various types of PCBs.

b - Appendix 1, ESL Table F-1a for Groundwater as Current or Potential Drinking Water Source. Final ESL is the lowest of ceiling value, drinking water, indoor air and aquatic habitat impact goals

TABLE 5
Summary of Soil Analytical Results-Polychlorinated Biphenyls
Former GE Caral Manufacturing Facility
578 Cleveland Avenue
Albany, California

Sample ID	Sample Date	Sample Depth (ft bgs)	Aroclor - 1016 (ug/Kg)	Aroclor - 1221 (ug/Kg)	Aroclor - 1232 (ug/Kg)	Aroclor - 1242 (ug/Kg)	Aroclor - 1248 (ug/Kg)	Aroclor - 1254 (ug/Kg)	Aroclor - 1260 (ug/Kg)
SB-13-1'	5/25/2006	1	< 12	< 24	< 12	< 12	< 12	< 12	< 12
SB-13-3'	2/17/2006	3	< 9.5	< 19	< 9.5	< 9.5	< 9.5	< 9.5	< 9.5
SB-13-6'	2/17/2006	6	< 9.6	< 19	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6
SB-14-1'	5/25/2006	1 1	< 12	< 24	< 12	< 12	< 12	< 12	< 12
SB-14-3'	2/17/2006	3	< 9.7	19	< 9.7	< 9.7	< 9.7	< 9.7	< 9.7
SB-14-6'	2/17/2006	6	< 9.6	< 19	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6
SB-15-1'	5/25/2006	1	< 12	< 24	< 12	< 12	< 12	< 12	36
SB-15-3	2/17/2006	3	< 9.6	< 19	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6
SB-15-6'	2/17/2006	6	< 12	< 24	< 12	< 12	< 12	< 12	< 12
SB-16-1'	5/25/2006	1	< 12	< 24	< 12	< 12	< 12	< 12	< 12
SB-16-3'	2/17/2006	3	< 9.5	< 19	< 9.5	< 9.5	< 9.5	< 9.5	< 9.5
SB-16-6'	2/17/2006	6	< 9.6	< 19	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6
SB-17-1,5	5/25/2006	1.5	< 12	< 24	< 12	< 12	< 12	< 12	< 12
SB-17-3'	2/17/2006	3	< 9.5	< 19	< 9.5	< 9.5	< 9.5	. < 9.5	< 9.5
\$B-17-6'	2/17/2006	6	< 9.6	< 19	< 9.6	< 9.6	< 9.6	< 9.6	< 9.6
Residential ES	idential ESL			221 7,436	221 7,436	221 7,436	221 7,436	221 7,436	

- 1) All samples were analyzed by EPA method 8082.
- 2) ug/Kg = micrograms per kilogram or parts per billion (by weight).
- 3) ft bgs = feet below ground surface.
- 4) Bold concentrations were detected above the reporting limit.
- 5) < 9.5 indicates the analyte was not detected at or above the reporting limit of 9.5 ug/Kg.
- 6) ESL = SF Bay RWQCB Environmental Screening Level, February 2005.

TABLE 4
Summary of Soil Analytical Results-Total Metals
Former GE Caral Manufacturing Facility
578 Cleveland Avenue
Albany, California

Sample ID	Sample Date	Sample Depth (ft bgs)	Antimony (mg/Kg)	Arsenic (mg/Kg)	Barium (mg/Kg)	Beryllium (mg/Kg)	Cadmium (mg/Kg)	Total Chromium (mg/Kg)	Cobalt (mg/Kg)	Copper (mg/Kg)	Lead (mg/Kg)	Mercury (mg/Kg)	Molybdenum (mg/Kg)	Nicket (mg/Kg)	Selenium (mg/Kg)	Silver (mg/Kg)	Thallium (mg/Kg)	Vanadium (mg/Kg)	Zinc (mg/Kg)
SB-1-1.0	5/25/2006	. 1	< 3.0	2.0	74	0.65	< 0.25	26	5.8	4.3	3.8	0.021	< 1.0	21	< 0.25	< 0.25	< 0.25	25	
SB-1-3'	2/16/2006	3	< 2.1	2.0	53	0.51	< 0.17	17	4.5	1.6	5.0	0.034	< 0.69	14	< 0.17	< 0.17	< 0.17	20	1
SB-1-6'	2/16/2006	6	< 2.6	1.9	240	0.86	0.43	18	2.0	2.9	11	0,036	1.0	85	< 0.22	< 0.22	< 0.22	28	
SB 2-1.5	5/26/2006	1.5	3.6	3.0	230	0.48	< 0.28	18	6.7	24	81	0.51	1.1	14	0.54	< 0.28	< 0.28	24	
SB-2-3'	2/16/2006	3	< 1.9	4.4	130	0.39	0.59	14	5.9	14	33	0.15	< 62	13	< 0.15	< 0.15	< 0.15	19	
\$B-2-6'	2/16/2006	6	<2.3	2.2	60	0.34	< 0.20	22	3.9	4.3	4.3	0.023	< 0.78	16	<0.20	<0.20	<0.20	25	
SB-3-1'	5/25/2006	1	< 3.0	13	190	0.48	< 0.25	22	5.8	43	110	0.44	2.7	21	< 0.25	< 0.25		23	
SB-3-3'	2/18/2006	3	< 2.4	10	780	0.53	0.41	16	6.4	43	230	0.38	2.5	21	<0.20	<0.20	<0.20	24	
5B-3-6'	2/16/2006	6	< 2.7	2.2	90	0.53	< 0.22	21	44	5.8	6.5	< 0.017	< 0.89	26	< 0.22	< 0.22	< 0.22	23	
SB-4-2'	5/25/2006	2	< 3.0	2.9	53	0.65	< 0.27	42	8.1	8.9	5,0	< 0.020	< 1.0.	32	< 0.27	< 0.27	< 0.27	31	
5B-4-3'	2/16/2006	3	< 2.6	3.3	1,300	0.55	< 0.22	27	4.6	6.7	4.9	0.072	< 0.88	44	< 0.22	< 0.22	< 0.22	28	
\$B-4-6'	2/16/2006	6	< 2.5	2.3	39	0.32	< 0.21	24	1.4	1.5	2.4	0.063	< 0.83	13	< 0.21	< 0.21	< 0.21	15	
\$B-5-1.5'	5/25/2006	1.5	< 3.0	2.9	69	0.66	< 0.25	33	7.5	4.5	5.4	0.035	< 1.0	51	< 0.25			31	
SB-5-3'	2/16/2006	3	< 2.1	3.8	95	0.82	< 0.18	28	5.3	2.8	5.5	0.024	< 0.70	20		< 0.18	< 0.18	33	
\$B-5-6'	2/16/2006	6	< 3.0	2.7	34	0.50	< 0.25	18	2.2	2,4	5.6	0.077	< 1.0	16	< 0.26	< 0.25	< 0.25	34	
\$B-6-1.5'	5/25/2006	1.5	< 3.0	2.2	85	0.47	< 0.25	38	8.6	10	4.6	0.039		41	< 0.25	< 0.25	< 0.25	26	
SB-6-3'	2/16/2006	3	< 2.2	4.0	63	0.70	< 0.19	27	2.6	2.6	5.6	0.040	< 0.75	15		< 0.19	< 0.19	33	
SB-6-6'	2/16/2006	6	< 2.1	1.5	91	0.33	< 0.17	15	1.4	1,3	5.1	0,050	< 0.68	11		< 0.17		27	
SB-7-3'	2/16/2006	3	< 2.9	1.5	120	0.44	< 0.24	32	1.5	1.7	2,8	0,084	< 0.95	19	< 0.24	< 0.24	< 0.24	22	
SB-7-6'	2/16/2006	6	< 2.5	1.7	110	0.54	< 20	9.9	1.0	0.71	4.1	0.033			< 0.20	< 0.20		27	
SB-8-3'	2/16/2006	3	< 2.8	2.5	61	0.49	< 0.23	19	1.6	2.6	4.9	0.018	< 0.93	14	< 0.23	< 0.23	< 0.23	25	
SB-8-6'	2/16/2006	6	< 3.1	2.0	120	0.42	< 0.26	11	1.2	3.7	5.7	< 0.018	< 1.0	10	< 0.26	< 0.26	< 0.26	25	
SB-9-3'	2/16/2006	3	< 2.2	2.5	74	0.52	< 0.18	18	12	1.6	9.2	0.033	< 0.73		< 0.18	< 0.18	< 0.18	24	1
SB-9-6'	2/16/2006	6	< 3.3	2.7	59	0.63	< 0.27	22			4.2	< 0.021	< 1.1	17	< 0.27	< 0.27	< 0.27	29	
SB-12-30*	2/17/2006	30	< 1.8	1.9	46	1.0	0,19	78	4.2	11	9.5	0.098	0.93	11	< 0.15	< 0.15		22	
\$B-13-1'	5/25/2006	1	< 3.0	4.6	370	0.43	< 0.25	18		37	100	1.3		17	1.2	< 0.25		24	
SB-13-3*	2/17/2006	3	< 2.8	2.2	56	0.38	< 0.23	12	2.9	4.1	4.0	0.018		5.7	< 0.23	< 0.23		20	
5B-13-6'	2/17/2006	6	< 2.4	2.1	63	0.5	< 0.20	14		3.5	4.9	< 0.018		12		< 0.20		21	
SB-14-1	5/25/2006	1	8.3	3,9	160	0.39	1.2	59		120	720	0.19		29		5.2		23	
SB-14-3'	2/17/2006	3	< 2.1	3,4	100	0.56	< 0.18	14			5.4	0.067		8.9	1			24	
SB-14-6'	2/17/2006	6	< 2.6		68	0.52	< 0.21	19		4.2	4.8			13		< 0.21	< 0.21	20	i
SB-15-1'	5/25/2006	1	< 3.0	3,2	140	0.46	0.3	22			210		1	20		0.66		26	
SB-15-3'	2/17/2006	3	< 1.7	1.8	77		< 0.14	13		3.3	3.8	0,13		5.7			1	20	
SB-15-6'	2/17/2006	6	< 2.7				< 0.23	10		7.6	62			16				32	
S8-16-1	5/25/2006	1	< 3.0		210		< 0.25	15	1		18								
SB-16-3'	2/17/2006	3	< 2.9	1.4	92		< 0.24	14		3.2	3.5	< 0.015						17	I .
SB-16-6'	2/17/2006	6	< 2.3	2	54	0.5	< 0.19	17		3.5	4.0			17				22	1
\$B-17-1.5	5/25/2006	1.5	< 3.0	4.2	180		0.65	13			43							22	
SB-17-3'	2/17/2006	3	< 2.3				< 0.19	12			5.0							18	
SB-17-6'	2/17/2006	6	< 2.6	2.4	51	0.32	< 0.22	23	2.1	5.7	4.3	0.021	< 0.88	17	< 0.22	< 0.22	< 0.22	27	14
Residential ESL Commercial/Indu	etrial FS1		6.0 40	i	1	4	1.7 7.4	58 58		1 .	150 750			150 150	ł	20 40		106.5 200	1

- 1) All samples were analyzed by EPA methods 6010B/7471A.
- 2) mg/kg = milligrams per kilogram or parts per million (by weight).
- 3) ft bgs = feet below ground surface.

- 4) Bold concentrations were detected above the reporting limit.
- 5) < 2.1 indicates the analyte was not detected at or above the reporting limit of 2.1 mg/Kg.
- 6) ESL = SF Bay RWQCB Environmental Screening Level, February 2005.

Table 6 Summary of Pre-Excavation Analytical Data Metals in Soil Borings Collected June 17, 2004 GE Caral 578 Cleveland Avenue Albany, CA

	Sample Method	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury'	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	Total Metals (mg/kg)	<2.8	5.5	49	1.4	< 0.23	5.4	2.4	7.4	12	0.063	<0.93	13	0.5	<0.23	<0.23	20	29
HS-1 3.5-4'	TCLHESi has (mg/L)	4006	1003	633.5	0.0042	QL005	<0.01	ca 01	eng:	1263	Angol .	KO.02	40.02	40.5	43,003	103	-nay	53.6
	SHE (mg/L)	3	-0.25		(0)	1771	423		963	<0.15	-10001-		2	-025	Can 15	<0.25	-0.5	-1
	Total Metals (mg/kg)	<2.6	2.4	59	0.74	<0.22	6.0	6.8	4.1	12	0.088	<0.87	15	0.34	<0.22	<0.22	14	24
HS-2 3.5-4°	TULP LEach lift (mg 1.)	-B.06	100 S	0.55 h	0.0034	40,005	421.01	0.0h	00.01	(a)	100.00	0.02	0.063		CD.005	-0.3	1000	0.069
	Terror and	THE NAME	<0.25	23	00.1	11275	40.5		4023	0.25	<acopt< td=""><td>×1</td><td>4</td><td>10.25</td><td>-075</td><td>-0.25</td><td><0.5</td><td></td></acopt<>	×1	4	10.25	-075	-0.25	<0.5	
	Total Metals (mg/kg)	43	1.8	32	0.82	<0.24	14	7.2	4.6	5	0.026	<0.95	14	0.54	<0.24	<0.24	20	17
4S-3 3.5-4'	FCLP Leathste (mg/L)	-10	10.5	0.618	0.0064	<0.005	-50.01	0.12	0.010	103	-0.001	10.02	0.046	93	<0.005	-00:5	BIRGO,018	0.075
	571.0 (mg/L)	120			40,5	40.35	915	1	17.5	0.22	<0.0011			50.23	H0.25	N0.25	-0(5)	<1
	Total Metals (mg/kg)	Q2	3.8	610	1.3	<0.18	5.4	2.7	6.5	11	0.039	<0.73	12	0.5	<0.18	<0.18	17	27
15-43.5-4	TELP Leathers mg Li	60,06	<0.5	0.446	0.0071	<0.005	<0.01	0.05	0.015	*00	60,001	50.02	(0.031	500.5	20.00¥	-com	-0.01	1001235
	STAT (out)		<021	14	<0.1	<0.25	<0.5	Poasie	40.5	0.3	<0.001	To be and	i ka	01.75	80.75	×0.23	0.5	1
	Total Metals (mg/kg)	<2.7	1.4	60	0.49	<0.23	16	3.1	2.6	3.2	0.026	<0.9	11	0.31	<0.23	< 0.23	18	12
38-1 4-4.5	TCLP Leachare (mg/L)	×0.06	1100.5	0.95	0/0028	140.005	e0.00	<0001 ·	10,01	160.3	-0.001	-0.02	<0.02	165	0.005	413	- <0.00T	0.0381
	STLU(mg/L)	43.	50.25	4.8	<0.1	<0.25	(4),5.°	100	40.5	0.13	<0.001	100	310	16635	40.25	828	Take O	
	Total Metals (mg/kg)	<2.7	1	63	0.46	<0.23	19	5.3	6.7	3.5	0.034	<0.91	22	0.5	<0.23	<0.23	20	15
3S-2 4-4.5'	TCLP Lauchate (mg/L)	K0.06	192031	To Head	0.0017	60,005	<0.01	<0.02	-0'0t	20.1	let pot	40.02	6022	100	30.005	WALL B	1000	0.0414
100	STIC (mg/L)	Trail I	120.25	10 AM	ke i	40/25	<0.5		c0.5	20.18	20.001		1210	10000	60.25	-0.24	0.5	
	Total Metals (mg/kg)	<2.5	1.4	44	0.33	<0.21	41	4.3	3.4	43	0.077	<0.83	21	< 0.21	<0.21	<0.21	16	12
35-3 4-4.5"	TCLP Leschale (mg L)	<0.66	45	0.91	40 000	60,005	CO.01	<0.02	Separ	503	<0.001	21.02	ex 52	07 40 3	50.005	50	-0.01	0.0471
li li	STEE (mg/L)	i i d	Sed 25.	2 強而	-0.1	<0.25	405		205	40.75	×0.001				0175	1877	<0.5	4
	Total Metals (mg/kg)	<2.3	1.9	58	0.32	<0.19	17	2.8	3.5	3.6	<0.019	<0.75	11	0.7	<0.19	<0.19	21	13
IS-4 4-4.5°	TCI P Leachate (mg/L)	-0.66	THE STATE OF		1002	¢0,005	0.01	60.02	50.01	E800.3	100.001	*12.02	+0.02	35	-0.005	<0.5	+0.010	0.098
1	STATEMEN.)	SP ASSE	40.26	54	(0)	e0.25	10.5		50.5	<0.15		1080200		0.25	50.75	*0.25	S0.51	410
Creaning Criteria for	Soil ESL - Industrial (mg/kg) Soil ESL - Residential (mg/kg)	40	5.5	1,500	//	7.4	58	80	230	750	10	40	150	10	40	13	200	600
Total Metals Sumples Only	PRG - Industrial (mg/kg)	6.3 410	5.5 1.6	730 67,000	1.900	450	58 450	1,900	41,000	200 750	2.5 NE	5,100	150	5,100	5,100	67	7,200	100,000
creaning Criteria for	PRG - Residential (mg/kg)	31	0.39	5,900	150	37	210	900	3,100	150	NE	390		390	390	5.2	350	23,000
Varie Naposal Purposes Only	SHE mg/L	151		100						3	02				3			

Bold result (e.g., 2.9) = Sample result exceeds established screening level

Mercury samples analyzed by EPA method 7471. All other samples analyzed by EPA method 6010B

mg/kg = milligrams per kilogram

TCLP = Toxic Characteristic Leaching Procedure

ESL = Environmental Screening Levels

PRG = Preliminary Remediation Goal (USEPA, 2002)

STLC = Soulable Threshold Limit Concentration

-- Denotes no established ESL, PRG, TCLP, or STLC

Industrial and Residential ESLs taken from: Volume I, Table A, shallow soils, groundwater is current or potential source of drinking water. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Volume I, Summary Tier I Lookup Tables, Interim Final, Regional Water Quality Control Board (San Francisco Bay Region) July 2003

TABLE 1 Soil Samples Collected During May 2004 Phase I Update that Exceeded RWQCB ESLs Former GE Caral Manufacturing Facility 578 Cleveland Avenue Albany, California

Sample Number and Depth of Sample	TPH-g (mg/kg)	TPH-d (mg/kg)	cis-1,2-DCE (mg/kg)	TCE (mg/kg)	Arsenic (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Cobalt (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Nickel (mg/kg)	Thallium (mg/kg)	Zinc (mg/kg)
North Yard													
B-1-1.75'	<1.0	<1.0	<0.2	<0.25	<5	<0.05	15	3.1	6.9	4.8			27
B-2-1,25'	1,800	5,300	5,8	29	<5	<0.5		8.5	1.3	3.8	46	-10.	13
B-2-1.75'	170	140	9.1	14	5.4	<0.5	23	5.5	1.9	2.5			12
B-3-1.0'	<1.0	<1.0	<0.2	<0.2	<5	<0.5	13	4	6.7	3.3	9.2		19
B-4-1.5'	26	82	<0.4	<0.4	<5	<0.5	100	37	34	2,200	220		52
B-4-5.0'	<1.0	3.5	<0.4	< 0.4	<5	<0.5	120	46	5.8	22	240	<25	60
B-9-1.25'	8	1,400	<0.2	<0.2	<5	<0.5	260	23	24	6.2	200	<5	11
B-9-2.5'	<1.0		<0.2	<0.2	<5	<0.5	33	11	3.2	6.1	28	<5	14
B-10-1.5'	<1.0		<0.2	<0.2	<5	<0.5	270	23	32	<1.0	220	<5	12
B-10-3.0'	11	8.2	<0.2	<0.2	<5	<0.5	77	11	<0.5	2.8	66	5.9	14
West of Warehouse					0								
SS-1	<2.0	66	<0.2	<0.2	<5	12	410	14	280	630	250	24	4,900
B-5-1.5'	<1.0		<0.4	<0.4	2,200	3.5	8.6	<0.5	<0.5	3.2	<1.0	<25	<1
B-5-5.0°	<1.0	<1.0	<0.4	<0.4	<5	<0.5	290	26	34	3.8	200	<25	30
Other Area Onsite													
B7-1.5'	<1.0	1.8	<0.2	<0.2	<5	<0.05	20	16	3.7	6.4	14	<5	15
Residential ESL (Note 3)	100	100	0.19	0.46	5.50	1.67	58	10.48	225	150	150	1	600
Commercial/ Industrial													
ESL (Note 4)	100	100	0.19	0.46	5,50	7.40	58	10.48	225	750	150	12.66	600

Note 1: Soil Samples were collected by ERM in October 2001 and February 2002 at the GE Caral Site. Results were provided in May 2004 Phase I Update Report.

Note 2: Items in boldface exceed the RWQCB ESL.

Note 3: Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL) in shallow soil at residential sites, February 2005. For comparison purposes only since the site is not zoned nor intended to have residential receptors onsite.

Note 4: RWQCB ESL in shallow soil at industrial sites, February 2005.

LEGEND

cis-1,2-DCE = cis-1,2-dichloroethene

PCBs = polychlorinated biphenyls

TCE = trichloroethene

TPH = total petroleum hydrocarbons; TPH-d = TPH as diesel, TPH-g = TPH as gasoline

Sample III/Former Boring ID	Sample Method	Antimony	Arsenic	Barion	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenu m	Nickel	Selenium	Silver	Thalliom	Vauadinm	Zinc
Hols 1/Former Boring B-4						- + - 1												
HI-North	Total Metals (mg/kg)	< 3.3	4,0	170,0	0.46	0.4	19.0	6,0	41.0	74.0	0.300	1.9			_	< 0.27	24.0	150.
H1-Hast	Total Metals (mg/kg)	< 2.9	6.0	290.0	0.63	0.6	27.0	6.6	35.0	77.0	0.290	3,3	19.0	0.55	< 0.25	< 0.25		150.
H1-South	Total Metals (mg/kg)	< 2.5	4.7	160.0	0.43	0.7	19.0	5.7	28.0	47.0	0.700	1.8	18.0	0.52	< 0.20	< 0.20	23.0	210.0
H1-West	Total Metals (mg/kg)	< 2.9	4.3	120.0	0,46	0.4	19.0	5.7	24.0	64,0	0.140	3.1	19,0	0.40	< 0.24	< 0.24	23.0	63.0
H1-Base	Total Metals (mg/kg)	< 3.1	3.1	140.0	0,42	0,8	23,0	8.2	12.0	21.0	0.043	13	13.0	0.51	< 0.26	< 0.26	26.0	290.0
Hole 2/Former Boring B-10																		
H2-North	Total Metals (mg/kg)	< 3.0	3.2	74.0	0.72	< 0.25	30.0	8.0	9.1	5.6	0.230	< 1.0	28.0	0.48	< 0.25	< 0.25	30.0	15.0
H2-East	Total Metals (mg/kg)	< 2.9	3.8	70.0	0.80	< 0.24	47.0	20.0	9.3	11.0	0.040	< 0.95	42.0	0,67	< 0.24	< 0.24	34,0	29.0
H2-South	Total Metals (mg/kg)	< 2.9	2.9	52.0	0.70	< 0.25	45.0	3.9	9.6	4.5	0,100	< 0.98	37.0	0.35	< 0.25	< 0.25	29.0	15,0
H2-West	Total Metals (mg/kg)	< 2.8	3.5	54.0	0,73	< 0.23	38.0	6.1	9.5	5.5	0,036	< 0.92	29,0	9.38	< 0.23	< 0.23	32.0	17.0
H2-Base	Total Metals (mg/kg)	< 3.1	1.9	75.0	0.46	< 0.26	25.0	8.8	10.0	5.2	0.063	< 1.0	37.0	< 0.26	< 0.26	< 0.26	23.0	16.0
Hole 3/Former Boring B-2													-					
H3-North	Total Metals (mg/kg)	< 2.7	2.7	110.0	0.58	< 0.22	25.0	6.4	4.0	7.4	-0.061	< 0.89	37,0	035	< 0.22	< 0.22	29.0	12.0
HJ-East	Total Metals (mg/kg)	<2.7	2.9	77.0	0.68	< 0.23	24.0	11.0	5.0	8.1	0.061	< 0.91	49.0	0,30	< 0.23	< 0.23	30.0	13.0
H3-South	Total Metals (mu/kg)	<2.4	1.9	56.0	0.64	< 0,20	29.0	10,0	4.6	5.6	0.057	< 0.80	46.0	0.47	< 0.20	< 0.20	28.0	12.0
HJ-West	Total Metals (mg/kg)	< 3.1	2.7	77.0	0.52	< 0.26	26.0	9.9	5.4	6.5	0.065	< 1.0	36.0	0.44	< 0.26	< 0.26	27.0	14.0
HJ-Base	Total Metals (mg/kg)	< 3.0	2.6	100.0	0.69	< 0.25	33.0	10.0	5.0	6.1	0,090	< 0.99	31.0	0.35	< 0.25	< 0.25	30.0	15.0
Hole 4/Former Boring B-9	John (Holais (Hayrig))	333																
H4-North	Total Metals (mg/kg)	<28	3.4	100.0	0.77	< 0.24	30.0	12.0	4.6	6.4	0.065	< 0.94	35.0	0.50	< 0.24	< 0.24	32.0	14.0
	Total Metals (mg/kg)	<3.2	4.0	120.0	0.90	< 0.26	31.0	9,2	4.2	7.5	0.038	<1.1	20.0	0.56	< 0,26	< 0.26	32.0	11.0
H4-East	Total Metals (mg/kg)	< 2.3	3.6	69.0	0.82	< 0.19	23.0	9.9	4.3	6.1	0.061	< 0.78	23.0	0.43	< 0.19	< 0.19	28.9	12.0
H4-South		< 1.9	3.5	69.0	0.85	0.2	36.0	1.0	1.9	7.2	0.099	< 0.65	27.0	0.41	< 0.16	< 0.16	33.0	11.0
H4-West	Total Metals (mg/kg)	<2.7	3.0	68.0	0.79	< 0.22	19.0	3.0	2.8	6.1	0.071	< 0.88	14.0	0.49	< 0.22	< 0.22	32.0	8.8
154-Base	Total Metals (mg/kg)	747	3.0	04.0	9.77	11.44	12.0	2/0					_			_		
Sidewall 1/Former Boring B-4	Total Metals (mg/kg) TCLF Leachite (mg/k) TTEE (mg/k)	41/8 41/8	6.5	210.0 3.3 #.5	0.55 38.002	1.0	18,0 	5.6	45.0 00	87.0 (0.3	0.290	2.2 -/6.00	18.0	0.44 -0.5	<0.26 <0.005	<0.00026 41.5	22.0 (0.01)	310.0 3.2 77.0
	Total Metals (mo/kg)	43	2.9	72.0	0.56	<0.28	28.0	4.6	5.8	15,0	0.120	<1.1	20.0	0.41	<0.28	<0.28	27.0	630,0
Sidewall 2/Former Boring B-10	TITAP Continue (mg/L)	-9,04	-01 -03	0.5	0.00	(9.00)	equi	-00	61	2 01	40.001	307	(E) (a)		10.00	O.1	- 20 9 1 - 20 1	DA AL
	Total Metals (ma/kx)	- 0	3.0	90.0	0.67	<0.25	30.0	10.0	3.2	5.8	0.046	<1	43.0	0.33	< 0.25	<0.25	30.0	11.0
Sidewall 3/Former Boring B-2	(CIN Leadbille (mail.)	9.0K	(80.) (0.25	() ()	39 002 30 1	6(165 423	(0.0)	10.02	<0.03	- en i - ≪0 i i	-8 001 - 59 000	(0,02 (4)	<0.02 1.6	40.5 40.23	+0.005	(-0.5 (0.75	-00	0.048
Sidewall 4/Former Boving B-9	Total Metals (mg/kg) TCLP Leaches (cos/L)	000	2.5	490.0 6.7	0,68 -01802	0.4	22.0	2.1	4.4	9.0	9,068	<1 2000	18.0	<0.22	<0.22 <0.05	40.22 6 5	26.0	0157
	STLC (mall.)	ESC KG	- 66.15	18.0	(4)	#25	20.5	DESCRIPTION OF	W 1485	1000	-coront	13/100/151		(0.25)	×8/25	20.25	VALUE OF	
	Total Metals (mg/kg)	<2.6	1.1	93.0	0.41	<0.22	9.1	2.9	1.1	4.5	0.058	<0.88	11.0	0,43	<0,22	<0.22	17.0	6.1
CP-1 3.5-4/Former Boring B-9	TOTAL Leachaite (inp/L)	-0.05	>6.5	13	(4) (8)2	40(00)	20.01	<0.02	<0.01	(E) (B)	<0 (ATL	<0.07	100	1 -0.5	90,005	(4.00 p.)	0.0	0.056
	STLC (mg/l)	9	<0.25	5.7	1.085	-0.25	59,5	100	12.5	SHIP	TOUCE	43	9	50.25	70.745	5035	100	
			-	2010020	35.074			10000	127327	-	191200	7000	1929		70047042	7,000	7222	12444
Composite I	Total Metals (mg/kg)	<1.2	5.1	230.0	0,59	0.8	36.0	13.0	76.0	150.0	0.330	5,7	64.0	<0.27	<0.27	<0.27	25.0	310.0
(from soil stockpils #1)	TCLP Leachate (mg/L)	<0.06	40.5	1.3	<0.002	0.0	<0.01	0.1	0.0	<0.3	<0.001	<0.02	0.1	<0.5	<0.005	<0.5	<0.01	1.8
	STLC (mg/L)	<3	0.3	7.4	<0.1	<0.25	<0.5	<1	<9.5	2.1	<0.001	ব	<1	<0.25	<0,25	<0.25	1.1	12.0
Composite 2	Total Metals (markg)	2.8	2.9	36.0	0.48	<0.23	250.0	22.0	37.0	6.8	0.035	<0.91	210.0	0.49	<0.23	<0.23	33.0	29.0
(from soil stockpile #2)	TCLP Leachate (mg/L)	< 0.06	<0.5	0.5	<0.002	<0.005	0.0	0.1	9.0	<0.3	<0.901	<0.2	0.4	<0.5	<0,005	- 0.5	<0.01	0.054
	STLC (mg/L)	- 4	<0,25	2.0	<0.1	<0.25	8.0	13	<0.5	0.3	<0.001	41	3.1	<0.25	<0.25	<0.25	40.5	<1.
Screening Criteria for Total	Soil ESL - Industrial (ing/kg) Soil ESL - Residential (ing/kg)	6.3	5.5 5.5	750.0	4.00	7.4 L.7	58.0	40.0	230.0	200.0	2,500	40.0	150.0	10.00	20.0	13.0	1/0.0	600.0
Metals Samples Only	Soil ESL - Residential (mg/kg) PRG - Industrial (mg/kg)	4/0.0	1.6	67,000.0	1,900,00	7.4	430.0		41,000.0	750.0	-	5,700.0		3,100.00	5,100,0	67.0	7,200.0	100,000,0
AND POST OFFICE AND ADDRESS OF THE PERSON OF	PRG - Residential (mg/kg)	31.0	0.4	5,900.0	150.00	1.7	210.0	900,0	3,700.0	150.0	-	290.0		290.00	390.0	5.2	530.0	25,000.0
Screening Criteria for Waste Disposal Purposes Only	STLC (mg/L)	15.0	5.0	100.0	0.75	1.0	5.0	80.0	25.0	5.0	0.200	350.0	2.0	1.00	5.0	7.0	24.0	250.0

Build result (e.g., 2.9) = Sample result expects established accoming level
Mercury samples analyzed by EPA method 7471. All other samples analyzed by EPA method 6010B
mg/kg = milligrams per kilogram.

mg/L = micrograms per kilogram

ug/L = micrograms per liter

h = thern was burnum or rinn detected in the lab's method blank which is common. The snalytical result is valid because the concentration of the sample is

below the TCLP or STLC limit and/or the method blank detection is less than 1/10th of the sample concentration.

PRG = Preliminary Remediation Goal (USEPA, 2002)

ESL = Environmental Screening Levels

TCLP = Toxic Characteristic Lenshing Procedure

STLC = Souluble Threshold Limit Concentration

— Denotes no established ESL, PRG, TCLP, or STLC

Leductrial and Residential ESL a teaching from Volume I. Table A shallow soils groundwater is current or potential source of drinking water. Screening for Established ESL, PRG, TCLP, or STLC

Lendustrial and Residential ESLs taken from: Volume I, Table A, shallow soils, groundwater is current or potential source of drinking water. Screening for Environmental Concerns at Sites with Contraminated Soil and Groundwater, Volume I, Summary Tier I Lookup Tables, Interior Final, Regional Water Quality Control Board (San Francisco Bay Region) July 2003

Composite 3 was put on hold and not analyzed. The soil from hole #4 was added to stockpile #2 since the soil contained similar materials based on visual inspection. CP-1 was collected from the area of hole #4 before the excavation. Therefore, the results of CP-1 and Composite 2 will be used to evaluate stockpile 2 for waste disposal purposes.

TABLE 6

Summary of Groundwater Analytical Results-Total Petroleum Hydrocarbons Former GE Caral Manufacturing Facility 578 Cleveland Avenue Albany, California

Sample ID	Sample Date	TPH-g [C7-C12] (ug/L)	TPH-d [C10-C24] (ug/L)	TPH-mo [C24-C36] (ug/L)
SB-9-W	2/17/2006	88	92	< 300
SB-10-W	2/17/2006	< 50	< 50	< 300
SB-11-W	2/17/2006	< 50	< 50	< 300
Groundwater ESL		100	100	1,000

- 1) All samples were analyzed by EPA Method 8015B.
- 2) TPH-g = C7-C12 = petroleum hydrocarbon chains in the gasoline range with 7-12 carbons TPH-d = C10-C24 = petroleum hydrocarbon chains in the diesel range with 10-24 carbons TPH-mo = C24-C36 = petroleum hydrocarbon chains in the motor oil range with 24-36 carbons
- 3) ug/L = micrograms per Liter.
- 4) Bold concentrations were detected above the reporting limit.
- 5) < 1.0 indicates the analyte was not detected at or above the reporting limit of 1.0 mg/Kg.
- 6) ESL = SF Bay RWQCB Environmental Screening Level, February 2005.

TABLE 7

Summary of Groundwater Analytical Results-Volatile Organic Compounds Former GE Caral Manufacturing Facility 578 Cleveland Avenue Albany, California

Sample ID	Sample Date	cis-1,2-Dichloroethene (ug/L)	1,2-Dichloroethane (ug/L)	Acetone (ug/L)	Benzene (ug/L)	Trichloroethene (ug/L)	Naphthalene (ug/L)	Vinyl Chloride (ug/L)
SB-9-W	2/17/2006	29	< 0.5	< 10	1.7	3.6	< 2.0	< 0.5
SB-10-W	2/17/2006	21	3.5	< 10	< 0.5	8.9	4.1	0.8
SB-11-W	2/17/2006	< 0.5	< 0.5	13	1.1	< 0.5	< 2.0	< 2.0
Groundwater ESL		6	0.5	1,500	1	N/A	17	0.5

- 1) All samples were analyzed by EPA method 8260B.
- 2) ug/L = Micrograms per Liter.
- 3) Only results above detection limit are shown. All other VOCs analyzed with EPA Method 8260 were below the respective reporting/detection limits.
- 4) Bold concentrations were detected above the reporting limit.
- 5) < 0.5 indicates the analyte was not detected at or above the reporting limit of 0.5 ug/L.
- 6) ESL = SF Bay RWQCB Environmental Screening Level, February 2005.
- 7) N/A = There is no ESL available for this analyte.

TABLE 8

Summary of Groundwater Analytical Results-Pentachlorophenol Former GE Caral Manufacturing Facility 578 Cleveland Avenue Albany, California

		Groundwater Samples	Soil Sample
Sample ID	Sample Date	Pentachlorophenol (ug/L)	Pentachlorophenol (ug/Kg)
SB-9-W	2/17/06	< 19	NA
SB-10-W	2/17/06	< 19	NA
SB-11-W	2/17/06	< 20	NA
SB-12-30'	2/17/06	NS	< 660
Soil Residential ESL		Not Applicable	4,400
Soil Industrial ESL		Not Applicable	5,000
Groundwater ESL		1	Not Applicable

- 1) SB-12-30: Refusal was met at 30 feet below grade surface, and no groundwater was present, so a soil sample was taken at that depth and analyzed.
- 2) All samples were analyzed by EPA method 8270.
- 3) ug/L = Micrograms per Liter; ug/Kg = Micrograms per Kilogram or parts per billion by weight.
- 4) Bold concentrations were detected above the reporting limit.
- < 19 indicates the analyte was not detected at or above the reporting limit of 19 ug/L.
- 6) NA = The analyte was not analyzed for this sample.
- 7) NS = Not sampled (see Note 1).
- 8) ESL = SF Bay RWQCB Environmental Screening Level, February 2005.

TABLE 2 Soil Analytical Results - Excavated Soil and Backfill Samples Former GE Caral Manufacturing Facility 578 Cleveland Avenue Albany, California

	Excavated Soil Waste Profile Sample	Backfill Sample from Quarry
Sample ID	1-4 Point Comp.	RGW Backfill 1
Sample Date	10/4/2006	10/9/2006
Antimony (mg/Kg)	< 3.0	< 2.0
Arsenic (mg/Kg)	2.9	5.9
Barium (mg/Kg)	120	270
Beryllium (mg/Kg)	0.39	< 0.50
Cadmium (mg/Kg)	0.41	< 0.50
Total Chromium (mg/Kg)	13	9.8
Cobalt (mg/Kg)	4.2	5.8
Copper (mg/Kg)	34	11
Lead (mg/Kg)	56	8.2
Mercury (mg/Kg)	0.26	NS
Molybdenum (mg/Kg)	1.2	< 0.99
Nickel (mg/Kg)	14	8.7
Selenium (mg/Kg)	< 0.25	< 2.0
Silver (mg/Kg)	< 0.25	< 0.99
Thallium (mg/Kg)	< 0.25	< 0.99
Vanadium (mg/Kg)	20	27
Zinc (mg/Kg)	100	37

- 1) All samples were analyzed by EPA methods 6010B/7471A.
- 2) mg/kg = milligrams per kilogram or parts per million (by weight).
- 3) Bold concentrations were detected above the reporting limit.

Table 3
Summary of CAM 17 Metals Detected
Caral Manufacturing Facility
Albany, CA

	Antimony	Arsenic	Barium	Bervllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Soil-Industrial ESL	40	5.5	1,500	8.0	7.4	58	80	230	750	10	40	150	10	40	13	200	600
Soil-Residential ESL	6.3	5.5	750	4.0	1.7	58	40	230	200	3	40	150.00	10	20	1	110	600
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SS-1	<5.0	<5.0	330	<0.50	12	410	14	280	630	1.3	32	250	<5.0	2.9	24	4 0	4900
B1-1.75	<5.0	<5.0	42	< 0.50	< 0.05	15	3.1	6.9	4.8	0.021	<0.50	18	<5.0	<0.50	41	18	27
B1-5.5	<5.0	5.4	83	< 0.50	< 0.50	12	3.4	< 0.50	3.4	0.042	< 0.50	13	<5.0	<0.50	<5.0	16	20
B3-1.0	<5.0	<5.0	99	< 0.50	<0.50	13	4.0	6.7	3,3	0.038	<0.50	9.2	<5.0	<0.50	11	14	19
B6-1,25	<5.0	<5.0	76	< 0.50	<0.50	9.2	8.8	5.5	6.6	0.066	<0.50	14	<5.0	<0.50	<5.0	20	29
B7-1.5	<5.0	<5.0	98	< 0.50	< 0.50	20	16	3.7	6.4	0.026	< 0.50	14	<5.0	< 0.50	< 5.0	23	15
B9-1.25	<5.0	<5.0	9.0	< 0.50	<0.50	260	23	24	6.2	0.014	< 0.50	200	<5.0	<0.50	<5.0	12	11
B9-2.5	<5.0	<5.0	76	0.59	< 0.50	33	11	3.2	6.1	0.062	<0.50	28	<5.0	< 0.50	<5.0	27	14
B10-1.5	<5.0	<5.0	7.6	< 0.50	< 0.50	270	23	32	<1.0	0.016	<0.50	220	<5.0	< 0.50	<5.0	15	12
B10-3.0	<5.0	<5.0	29	< 0.50	< 0.50	77	11	< 0.50	2.8	0.017	< 0.50	66	<5.0	0.80	5.9	17	14
B4-1.5	17	<5.0	120	< 0.50	< 0.50	100	37	34	2200	0.16	20	220	<5.0	0.85	<25	21	52
B4-5.0	<5.0	<5.0	77	< 0.50	< 0.50	120	46	5.8	22	0.046	18	240	<5.0	0.55	<25	22	60
B8-1.5	<5.0	<5.0	68	< 0.50	<0.50	21	5.1	9.2	3.5	0.052	< 0.50	18	<5.0	<0.50	<25	22	15
B5-1.5	29	2200	190	<0.50	3.5	8.6	<0.50	< 0.50	<1.0	0.056	< 0.50	<1.0	<5.0	0.65	<25	<0.50	<1.0
B5-5.0	<5.0	<5.0	21	< 0.50	<0.50	290	26	34	3.2	0.026	< 0.50	200	<5.0	<0.50	<25	17	30
B2-1,25	<5.0	<5.0	56	< 0.50	< 0.50	53	8.5	1.3	3.8	0.029	< 0.50	46	<5.0	0.5	<25	23	13
B2-1.75	<5.0	<5.0	72	< 0.50	< 0.50	23	5.5	1.9	2.5	0.04	< 0.50	23	<5.0	<0.50	<25	23	12
B2-3.5	<5.0	<5.0	72	<0.50	<0.50	23	5.5	1.9	2.5	0.046	<0.50	23	<5.0	<0.50	<5.0	23	12

Ground V	Vater	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum_	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	Final ESL T	0.006	0.0036	1	0.0027	0.0022	0.05	0.003	0.0031	0.0025	0.000012	0.035	0.0082	0.005	0.00019	0.002	0.015	0.081
	Units	mg/l	mg/l	mg/l	uv/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
B4-W	GMIS	0.0062	0.0011	0.18	<0.001	<0.001	0.0069	0.24	0.0058	< 0.004	<0.0002	0,0013	0.89	0.0056	0.001	<0.001	< 0.001	0.0072
DX-11		0.0002	0.0022		-0.002	0,000												

NA=Not Analyzed mg/kg= Milligrams per Kilogram ug/kg= Micrograms per Kilogram ug/l= Micrograms per Liter cis-1,2-DCE = cis-1,2-Dichloroethene

	Clayton EXPLORATORY BORING								v	PROJECT NO.:	70-04583.03	DATE:	2/16/06	BORING NO.
(/1 (1)	y LL SERVI	/11 II	ΕX	PL()R/)Rli	410R NG	Y	CLIENT:	G.E. HEALTHCARE	N/ENHE ALBANY OA		SB-1
 		◆ SB-1				שם_	<u>, ati</u>	144		LOCATION: LOGGED BY:	ADNAN	AVENUE, ALBANY, CA		OF 1
FORMS				R FOR	MER HYD	ROTEL SU	MP	TO CLEV	ELÀND UE	DBILLED.		DRILLING M	ETHOD: DIRECT	<u> </u>
CHEMIC STORAG	SB-8 B AL SB-7 GE SB-	9 SI	B-5 Deine	RMER STORAGE	BETTS SUMP	<u>'</u>	DFFICES	s	N			DROP:		
NO	orta Se Arc	9 -4 ♥	ORMER OR				-		OT 10 CALE			DROP: KFILLED WITH NEAT (
то ниу		2-5	SP-10		COMPA COMPA RECEIVE			BORI	NG		ON:		HOLE DIAM	ETER: 2 in.
<u> </u>		Γ							I	DEPTH TO: 🔽		DЕРТН ТО: <u>▼</u>		
1	SAMPLE RECOVERY (N.)	SAMPLE ID	BLOWS/6 IN.	PID/OVM READING (ppm)	TIME	PLE	DEPTH (FT)	BRAPHIC LOG	USGS SYMBOL	TIME:		TIME:		
	SAMPLE ECOVERY (I)	AMP	LOWS	MVO)	🖹	SAMPLE		APHI	GS S	DATE:		DATE:		
<u> </u>	是	S	丽	PIDV				GR	SS			DESCRIPTION		
							ļ -		ļ	ASPHALT				
					<u> </u>		1 -		7	SANDY CLAY,	orange brown, -	~30-40% sand, s	lightly damp, m	nedium stiff, no odor
						<u> </u>		\$///	1					
<u> </u>				0.0	ļ		2 -	1//	1					
				-		<u> </u>	-		CL	orange	, brown, white r	mottled, ~20% s	and, no odor	
		<u> </u>		-	<u></u>		3 -		1					
		ļ			08:45		ļ -	1///	1					
 		ļ	-	0.0		ļ	4 -	1///	1					
-				-	-		-	///	1—		fine sand, no oc		-11-3-0	
		ļ			ļ		5 -	.	0.0	SAND W/SILT	, orange, ~90%	sand, 10% silt,	slightly damp, I	oose, no odor
<u> </u>	-		-	0.0	-		-	.	SP					
<u> </u>			-	-	09:00		6 -		}—	B05:::- ==				
-		-		-		-	-	-		BURING TERM	INATED @ 6 ft bo	gs		
-	-		-	<u> </u>			7 -	-						
\vdash	-		-	-			-	4						
							8 -	-						
<u> </u>	-	 		 			-	1					· · · · · · · · · · · · · · · · · · ·	
			 				9 –	1						
<u> </u>	1	 	 	 		<u> </u>	-	1						
		 	 	 	 	-	10 -	1						
					 		1 .	1						
		<u> </u>	 				11 -	1						
		<u> </u>			—		1.	1						
					†		12 -	1					 -	-
						<u> </u>	1	1						
							13 -							
							1. '							
ļ ——	<u> </u>					 .	14 -							
],-]						
							15							
],,]						
							16 -							
							17							
			\perp			\bot	17 -							
							18 -							
	<u> </u>			<u> </u>	\bot		10-							
			<u> </u>		<u> </u>	<u> </u>	19 –	1						
	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	ļ	- با - ا	_				<u>-</u>		
							l ₂₀₋					_ AT	TACHN	TENT 5

	3 C C C SB-6	Clayton GROUP SERVICES SB-6 * SB-1 LOG OF EXPLORATO BORING								PROJECT NO.: 70-04583.03 DATE: 2/16/06 BORING NO. CLIENT: G.E. HEALTHCARE SB-2 LOCATION: 578 CLEVELAND AVENUE, ALBANY, CA SHEET 1 LOGGED BY: ADNAN 0F 1
C S	NORTH SE YARD SB	9 SE	DRUM S DRMER OH SEPARA	RMER STORAGE L/WATER VIOR A	MER HYDI SETTS SUMP L IR COMPR COMPR RECEIVE	ESSOR	MP OFFICES		N G	DRILLER: GREGG DRILLING METHOD: DIRECT PUSH HAMMER WEIGHT: DROP: BORING COMPLETION DATA: BACKFILLED WITH NEAT CEMENT GROUT
	SAMPLE RECOVERY (IN.)	SAMPLE ID	BLOWS/6 IN.	PID/OVM READING (ppm)	TIME	SAMPLE INTERVAL	T DEPTH (FT)	GRAPHIC LOG	USGS SYMBOL	DEDTUTO -
				3.2			2 -		GM SM	SILTY SAND, dark brown/black, ~15% silt, damp, loose, moderate hydrocarbon odor SANDY CLAY, dark brown/green, ~15% sand, damp, soft, slight hydrocarbon odo
				0.3	09:05		4 - 5 - 6 -		SC	CLAYEY SAND, dark brown/black, ~10-15% clay, very moist, soft, slight hydrocarbon odor SANDY CLAY, green/orange mottled, ~10-15% sand, medium stiff, damp, very slight to no odor
							7 - 8 -			BORING TERMINATED @ 6 ft bgs
							9 - 10 - 11 -			
							12 -			
							15 -			
							17 18 19			

Clayton GROUP SERVICES	LOG O EXPLORA BORIN	TORY IG	PROJECT NO.: 70-04583.03 DATE: 2/16/06 BORING NO. CLIENT: G.E. HEALTHCARE SB-3 LOCATION: 578 CLEVELAND AVENUE, ALBANY, CA SHEET 1 LOGGED BY: ADNAN OF 1
GHEMICAL SB.7 © SB-5 FORMER STORAGE SB-9 DRUM STORAGE MOREN YAND SB-2 PARATOR SB-2 FORMER OUTWATER SEPARATOR TOTAL	AIR COMPRESSOR	TO CLEVELAND AVENUE N NOT TO SCALE RORING	DRILLER: GREGG DRILLING METHOD: DIRECT PUSH HAMMER WEIGHT: DROP: BORING COMPLETION DATA: BACKFILLED WITH NEAT CEMENT GROUT
SAMPLE RECOVERY (N.) SAMPLE SAMPLE ID SET BLOWS/6 IN FINANCIAN FIN	TIME SAMPLE INTERVAL	GRAPHIC LOG GRAPHI	GROUND ELEVATION: HOLE DIAMETER: 2 in. DEPTH TO: ▼ TIME: TIME: DATE: DESCRIPTION ASPHALT
0.0	2 -	ML/ CL	GRAVEL/ASPHALT, base CLAYEY SILT, dark brown/orange, ~10% clay, slightly damp, stiff, no odor very wet
0.0	09:35 1 6	CL	SANDY CLAY, orange/green mottled, ~10% sand, fine-to-medium grained, slightly damp, stiff, no odor
	7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19		BORING TERMINATED @ 6 ft bgs

	C	CUP	ytc)n	EX	(PLC	OR/ OR/	NG_	RY		PROJECT NO.: CLIENT: LOCATION:	G.E. HEALTHCARE 578 CLEVELAND		2/16/06	BORING NO. SB-4 SHEET 1
		• S8-1	- FORME	R FOI	RMFR HYD	OROTEL SU	MP	TO CL	∱ EVELAND ENUE	, ⊢	LOGGED BY:			77.100 PIDEA*	0F 1
FORM CHEMIC STORA SHE	SB-8 R AL SB-7 GF SB-		FOI	RMER STORAGE	BUTTS SUMP	ם	OFFICE	-	N				DRILLING MI		PUSH
N:	HIH SE	-4- F	RMER OF SEPARA						NOT 10 SCALE				KFILLED WITH NEAT (
TO HWY	580 SB-3	2-5	71		COMPR			⊥ BO BO	RING TIONS	4	GROUND ELEVATION			HOLE DIAME	TER: 2 in.
<u> </u>								1			DEPTH TO: <u>\(\naggregar\)</u>		DЕРТН ТО: <u>▼</u>		
	SAMPLE RECOVERY (N.)	SAMPLE ID	BLOWS/6 IN.	A REAL	TIME	SAMPLE	DEPTH (FT)	110 LI	SYMB		TIME:		TIME:		
	13 SE	SAM	BLOW	PID/OVM READING (ppm)		SAN	Ð.	3RAPHIC LOG	USGS SYMBOL	_	DATE:		DATE: DESCRIPTION		
				<u>a</u>			-0			+	ASPHALT		DESCRIPTION		
					_		-	000	0	Т	GRAVEL/ASPH	ALT, base			
				0.0			1 -		o GM	1	GIVIN ELIVIO	ALI, Daoo			
		·			<u> </u>	ļ	2 -		SP)	SILTY SAND, g	reen/gray, ~15	5% silt, damp, loo	se, no odor	
					ļ	ļ	[*] -	112		L	CLAYEY SILT, C	orange/tan, ~10	0% clay, damp, m	edium stiff, no o	dor
				0.0	_		3 -	112		F					
					09:55		-	113	ML	,		-114			
-							4 -	112	ζ'či.		sandy s	SIIE			
						-	٠ -	112	4	ŀ					
****				0.0	<u> </u>		5 -	112	4	t	···				
					10:00		6 -	112	<u> </u>						
							0				BORING TERMI	NATED @ 6 ft b	gs		
				<u> </u>	ļ	ļ	7 -			-					
	ļ <u>.</u>					<u> </u>	ļ ·			-					
				<u> </u>	-	-	8 -			-					
	ļ <u>-</u>			 	+	 				-					
					 		g -			ŀ					. ,
* ***				ļ			40			ľ				_	
							10								
					<u> </u>	ļ .	11 -	_							
<u> </u>					 	ऻ				-					
\vdash				<u> </u>		<u> </u>	12 -			-					
						 	-	-		-					
				 		 	13 -			ł		· · · · · · · · · · · · · · · · · · ·			
						<u> </u>	ĺ [.]			t					
							14 -			İ					
							15								
<u> </u>				<u> </u>	_	-									
\vdash				<u> </u>	\vdash		16 -			-					
				-	 	-				ŀ	, <u>-</u>				
					+-		17 -	1		ł					
					 	 	1			t					
				-		†	18 -			1	<u>.</u>				
							19 -								
<u></u>				ļ	<u> </u>	<u> </u>	.	-							
1			1	1	1	1	100	1	1	- 1					

(ा	lay	yto) 11	EX	PLC	G ()R/)RII	ATOR		LOCATION:	G.E. HEALTHCARE 578 CLEVELAND A	DATE:		BORING NO. SB-5 SHEET 1 OF 1		
NC.	ARD	SIE	RMER OIL	/WATER	IR COMPR	Esson	MP OFFICES	S Nt S	N DE 10 CALE	HAMMER WEIGHT: BORING COMPLETI	RILLER: GREGG DRILLING METHOD: DIRECT PUS AMMER WEIGHT: DROP: ORING COMPLETION DATA: BACKFILLED WITH NEAT CEMENT GROUT					
+	SB-3	• 13 •	SB-10		→ COMPR RECSIVE	RTANKS	1	BORII LOCATI	ONS	GROUND ELEVATI			HOLE DIAME	TER: 2 in.		
	2	₽	Z.	PID/OVM READING (ppm)		ш≓	E	GRAPHIC LOG	BOL	DEPTH TO: 🔽		DEPTH TO: 🔻				
	WERY	SAMPLE ID	BLOWS/6 IN.	M RE	TIME	SAMPLE INTERVAL	DEPTH (FT)	윘	SYIV	TIME:		TIME:				
	SAMPLE RECOVERY (N.)	SAN	BLO) 0/Q		ΑŞĒ	冒	GRAF	USGS SYMBOL	DATE:		DATE: DESCRIPTION				
				<u>a</u>			0-	×××		CONCRETE		DESCRIPTION				
							-	XXX			cango/brown - 2	20% silt, damp, s	tiff no odor			
				8.4			1 -		1	SILIT CLAT, OF	ange/brown, ~2	.0 /0 Sirt, damp, s	an, no odoi			
	ļ			0.4	<u> </u>		-	11/2	1			<u> </u>				
							2 -	11/2		~50%	silt, ~50% clay					
				5.7			-	11/2			/ damp					
					10:20		3 -	HZ	ML/ CL	ongnu	, ашпр					
					10.20		-	11//								
·····							4 -	11//	}		,					
							- ا	11//	1	~75%	clay, ~25% silt,	, very stiff		,		
				1.7			5 -	11/2	1		orange			, , , , , , , , , , , , , , , , , , , ,		
					10:30] ,	112	1							
							6 -			BORING TERM	NATED @ 6 ft bg	js				
]									
							7 -									
										_						
							8 -									
							9 -									
					·		9									
					ļ		10 -									
							١٧ .									
							11 –									
							╽¨.									
	<u> </u>				<u> </u>	ļ	12 -	_			 					
<u> </u>											·					
			-			ļ	13 -									
	-			-									-			
	<u> </u>		<u> </u>	<u> </u>			14 -	1								
	<u> </u>				<u> </u>		┨ .	-								
	 			<u> </u>	<u> </u>	-	15 -	-								
	-							-								
					-	<u> </u>	16 -	_			****					
							- ⊦	1		1						
							17 -	· ·								
			-			 	-	-								
							18 –									
	-	ļ	ļ	 		 	-									
-		ļ		-			19 –									
							าก					4 0000 A 1000 V P 10 P 1				

Clayton GRIGHT SERVICES	EXPLO	G OF PRATORY PRING	PROJECT NO.: 70-04583.03 DATE: 2/16/06 BORING NO. CLIENT: G.E. HEALTHCARE SB-6 LOCATION: 578 CLEVELAND AVENUE, ALBANY, CA SHEET 1 LOGGED BY: ADNAN OF 1						
SB-8 FORMER CHEMICAL SB-7 SB-5 CYCLONE UNIT CHEMICAL SB-7 SB-5 CYCLONE UNIT CYCLONE	A AIR COMPRESSOR	DEFICES NOT TO SCALE BORING	DRILLER: GREGG DRILLING METHOD: DIRECT PUSH HAMMER WEIGHT: DROP: BORING COMPLETION DATA: BACKFILLED WITH NEAT CEMENT GROUT						
V S8-3 € 10 • SR-10	RECEIVER TANKS	LOCATIONS	GROUND ELEVATION: HOLE DIAMETER: 2 in. DEPTH TO: DEPTH TO:						
SAMPLE RECOVERY (N.) SAMPLE ID BLOWS/6 IN.	TIME SAMPLE INTERVAL	DEPTH (FT) GRAPHIC LOG USGS SYMBOL	TIME: TIME: DATE: DATE: DESCRIPTION						
0.		1 -0 0 0 0 GM	ASPHALT						
32.9		2 - SC	SILTY SAND w/CLAY, red/orange mottled, ~70% sand, ~20% silt, ~10% clay, damp, loose, no odor						
40.	10:45	3 CL	CLAY w/minor SILT, orange/red, damp, very stiff, no odor						
6.2	10:55	5- CL	SILTY CLAY, red/orange mottled, ~70% clay, ~30% silt, damp, very stiff, no odor						
	10.00	6 SM	BORING TERMINATED @ 6 ft bgs						
		8 -							
		9 -							
		11 -							
		12 13							
		14 —							
		15 -							
		17 —							
		18 —							
		20							

Clay GREUP'S S8-6 *S8-1	ton	EXPL	OG (ORA ORIN	ATOR'		PROJECT NO.: CLIENT: LOCATION:	G.E. HEALTHCARE 578 CLEVELAND AVENU	DATE: E, ALBANY, CA	2/16/06	BORING NO. SB-7 SHEET 1 OF 1			
FORMER CHEMICAL SB-7 CYC CHEMICAL SB-7 CYC CHEMICAL SB-7 CYC CYC CYC CYC CYC CYC CYC CYC CYC CY	FORMER DRUM STORAGE MER OIL/WATER	MER HYDROTEL S BETTS SUMP IR COMPRESSOR RECEIVER TANKS	OFFICES	BORIA	N OT TO DALE NG	HAMMER WEIGHT:_	DRILLER: GREGG DRILLING METHOD: DIRECT PUSH HAMMER WEIGHT: DROP: BORING COMPLETION DATA: BACKFILLED WITH NEAT CEMENT GROUT						
SAMPLE RECOVERY (N.) SES	BLOWS/6 IN, BLOWS/6 IN, PD/OVM READING (ppm)	SAMPLE NTFRVAI	OPTH(FI)	GRAPHIC LOG	USGS SYMBOL	DEPTH TO: TIME: DATE: ASPHALT		DESCRIPTION	10E DITIL				
	13.6	11:05	3 -		ML/ CL	SILTY CLAY, ora	ange, ~80% clay, ~ ange mottling						
	7.1	11:15	5 - 6 -				CLAY, orange, damp	, loose, no odd	Or				
			7 - 8 - 9 - 1										
			11 -										
			13 -										
			16 — 17 — 18 —										
			19										

(Clayton EXPLOR EXPLOR BOR									CLIENT:	G.E. HEALTHCARE 578 CLEVELAND A	DATE: AVENUE, ALBANY, CA	2/16/06	BORING NO. SB-8 SHEET 1 OF 1		
FORMS CHEMIC STORA- STEE NO YO	SB-8 FR AL SB-7 SB-SB-SB-SB-SB-SB-SB-SB-SB-SB-SB-SB-SB-S	9 SE	ORMER OII SEPARA	L/WATER	IR COMPR	esson	MP OFFICE	s	VCLAND NUE N N N N N N SCALE	DRILLING METHOD: DIRECT PUSH HAMMER WEIGHT: DROP: BORING COMPLETION DATA: BACKFILLED WITH NEAT CEMENT GROUT						
10 827	SB-3	• 🖫 🌜	SB-10		- COMPR RECEIVE	FNSOR R TANKS	1	BOR					HOLE DIAME	TER: 2 in.		
	- (ĝ	_ D	N_ N_	PID/OVM READING (ppm)		ᆈᄺ		GRAPHIC LOG	USGS SYMBOL	DEPTH TO: TIME:		DEPTH TO: TIME:				
	SAMPLE RECOVERY (N.)	SAMPLE ID	BLOWS/6 IN,	WM RI	TIME	SAMPLE INTERVAL	OEPTH (FT)	VPHIC	SS SY	DATE:		DATE:	· · · · · · · · · · · · · · · · · · ·			
	꾶	75	В	PD/C		ωZ				DATE.		DESCRIPTION				
								XXX		CONCRETE						
<u> </u>							1 -		•	SILTY GRAVEL	base, gray					
ļ		: 		0.2	-			입인인	o GIVI							
							2 -	112	1	SILTY CLAY, o	range/gray/blac	k mottled, ~25%	silt, damp, loos	se, no odor		
				0.3				11/2	1				· · · · · · · · · · · · · · · · · · ·			
				0.3	11:30		3 -	112	1							
					11.00	■		11/2	ML	1						
							4 -	11/2	1	orange	/gray/black/red	l mottled				
							5 -	11/2								
				1.0		_		112	1							
					11:35		6 -	$\square 2$	4							
-								-		BORING TERM	INATED @ 6 ft bo	gs				
-							7 -									
<u> </u>							┤ .						 			
					-		8 -									
-			-		 		1									
							9									
							10									
					ļ		10									
							11 -									
									ŀ							
			ļ		-	-	12 -	~								
			-		-		1	1								
							13 -	-								
].,									
							14-									
] - 15 ·									
							١٠									
		ļ	ļ	<u> </u>			16 -									
				ļ												
 				<u></u>			17 -									
				 	 			-								
					 		18 -	1								
] 10]								
							19 -									
							J ₂₀₋									

Section 1 Appendix 1 A		Clayton EXPLORATORY BORING									PROJECT NO.: CLIENT: LOCATION:	G.E. HEALTHCARE 578 CLEVELAND A	2/17/0	6 - 10 to 35 ft bgs	BORING NO. SB-9 SHEET 1 OF 1
SAND W/CLAY, orange/red/gray mottling. —10% clay, damp, loose, slight hydrocarbon odor of clay. Sinty CLAY, orange/red/gray mottling. —20.30% silt. damp, loose, slight hydrocarbon odor of clay. Sinty CLAY, orange/red/gray mottling. —20.30% silt. damp, loose, slight hydrocarbon odor of clay. —20.30% silt. damp, loose, mo odor of clay. —20.30% silt. damp. loose, mo odor of clay. —20.30% silt. damp. loose, silpht hydrocarbon odor of clay. —20.30% silt. damp. loose, mo odor odor odor odor odor odor odor o	FORMS CHEMIC	SB-8	- 58-1	FORMER	R FOR	RMER HYD BETTS SUMP	ROTEI SU	MP		T VELAND INUL	DRILLER:	GREGG			L
Second S			9	DRUM:	STORAGE	Ç		OFFICE		N	HAMMER WEIGHT:_				
The content of the	Ψ,	SBC SBC	·	77					┙						
ASPHALT ASPHALT BASE - SILTY GRAVEL, gray 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20		\$B-3	• !:! •	SB-10			RESSOR RIANKS	1	LOCA	TIONS		N:			TER: 3.75 in.
ASPHAIT ASPHAIT BASE - SILTY GRAVEL, gray 20.0 20.0 21 31.48	1	E	9	<u>z</u>	ADING		ب ا	E	90	BOL				28 ft bgs	
ASPHAIT ASPHAIT BASE - SILTY GRAVEL, gray 20.0 20.0 21 31.48		WERY	MPLE	WS/6	M RE	TIME	ERVA] HE) HC I	SYM.					
ASPHAIT ASPHAIT BASE - SILTY GRAVEL, gray 20.0 20.0 21 31.48		FEC 42	SAN	BL0)0/Qi		SA	B	GRAF	uses	DATE:				
SILTY SANDY CLAY, orange, ~60% clay, ~20% sand, ~20% slit, damp, medium stiff, no ador SILTY SANDY CLAY, orange, ~60% clay, ~20% sand, ~20% slit, damp, medium stiff, no ador Soft Orange/red/gray mottling SAND w/CLAY, orange/red/gray mottling, ~10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, ~10% clay, damp, loose, no odor gray with minor orange mottling, damp, loose, slight hydrocarbon odor oily diesel odor SC SILTY CLAY, orange/brown, ~29-30% slit, damp, loose, no odor CL SILTY CLAY, orange/brown, ~29-30% slit, damp, loose, no odor					α.			+0-		_	ΔΩΡΗΔΙΤ		PEOCULE HOM		
SILTY SANDY CLAY, orange, ~60% clay, ~20% sand, ~20% slit, damp, medium stiff, no odor SILTY SANDY CLAY, orange, ~60% clay, ~20% sand, ~20% slit, damp, medium stiff, no odor CL soft Orange/red/gray mottling SAND w/CLAY, orange/red/gray mottling, ~10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, damp, loose, slight hydrocarbon odor oily diesel odor SC SILTY CLAY, orange/brown, ~20-30% slit, damp, loose, no odor CL SILTY CLAY, orange/brown, ~20-30% slit, damp, loose, no odor								1	000	0	ACDUALT DAC	- SILTY GRAVE			
SILTY CLAY, orange/red/gray mottling. ~10% clay, ~20% sand. ~20% silt, damp, medium stiff, no odor SILTY CLAY, orange/red/gray mottling. ~10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling. ~10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling. ~10% clay, damp, loose, no odor oily diesel odor SC SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor CL SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor						-		1 1 -		이GM 이	AUTHALI DAGI	. OILIT GIIMVE	- <u>-, gruy</u>	.	
stiff, no odor 11.45					20.0			1	17/	7	SILTY SANDY	CLAY, orange. ~	60% clay, ~20%		ilt, damp, medium
SAND w/CLAY, orange/red/gray mottling. ~10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, ~10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, ~10% clay, damp, loose, no odor Gray with minor orange mottling, damp, loose, slight hydrocarbon odor oily diesel odor SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor								2 -	1//	1					
11.45 11.8 11.8 11.8 11.8 12 SAND w/CLAY, orange/red/gray mottling, -10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, damp, loose, slight hydrocarbon odor - oily diesel odor SILTY CLAY, orange/brown, -20-30% slit, damp, loose, no odor									1///						
SAND w/CLAY, orange/red/gray mottling. ~10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, ~10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, damp, loose, slight hydrocarbon odor Oily diesel odor SC SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor CL CL CL CL CL CL CL CL						11:45		3 -	\$///						
SAND w/CLAY, orange/red/gray mottling. ~10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, ~10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, damp, loose, slight hydrocarbon odor Oily diesel odor SCC SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor CCL Soft Orange/red/gray mottling SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor CCL SOFT Orange/brown, ~20-30% silt, damp, loose, no odor					11.8			, _							
SAND w/CLAY, orange/red/gray mottling. —10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, —10% clay, damp, loose, no odor Gray with minor orange mottling, damp, loose, slight hydrocarbon odor Output	L							ļ ⁴ .		CL	soft				
SAND w/CLAY, orange/red/gray mottling. —10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, —10% clay, damp, loose, no odor SC Gray with minor orange mottling, damp, loose, slight hydrocarbon odor — oily diesel odor SC Gray with minor orange mottling, damp, loose, slight hydrocarbon odor — oily diesel odor SC Gray with minor orange mottling, damp, loose, slight hydrocarbon odor — oily diesel odor SILTY CLAY, orange/brown, —20-30% silt, damp, loose, no odor CL 18 Gray with minor orange mottling, damp, loose, slight hydrocarbon odor — oily diesel odor								 5 -		7					
SAND w/CLAY, orange/red/gray mottling, ~10% clay, damp, loose, no odor SAND w/CLAY, orange/red/gray mottling, ~10% clay, damp, loose, no odor Gray with minor orange mottling, damp, loose, slight hydrocarbon odor Oily diesel odor					44.2			Ĭ	1//	4	orange	/red/gray mottlir	ng		
SAND w/CLAY, orange/red/gray mottling, ~10% clay, damp, loose, no odor 10		11:55						3							
gray with minor orange mottling, damp, loose, slight hydrocarbon odor - oily diesel odor 11 13 14 Scc SILTY CLAY, orange/brown, ~20-30% silt, damp, toose, no odor 18 19 -5-10% gravel, subrounded								-							
gray with minor orange mottling, damp, loose, slight hydrocarbon odor - oily diesel odor 11 13 14 Scc SILTY CLAY, orange/brown, ~20-30% silt, damp, toose, no odor 18 19 -5-10% gravel, subrounded		-						7 -		1					
gray with minor orange mottling, damp, loose, slight hydrocarbon odor - oily diesel odor 11 13 14 Scc SILTY CLAY, orange/brown, ~20-30% silt, damp, toose, no odor 18 19 -5-10% gravel, subrounded							 		1//	/ -					
gray with minor orange mottling, damp, loose, slight hydrocarbon odor - oily diesel odor SC 12 SC SILTY CLAY, orange/brown, -20-30% silt, damp, loose, no odor CL 18 5-10% gravel, subrounded						-		8 -		X	SAND w/CLAY	orange/red/gray	y mottling, ~10%	6 clay, damp, loc	se, no odor
gray with minor orange mottling, damp, loose, slight hydrocarbon odor - oily diesel odor SC 12 SC SILTY CLAY, orange/brown, -20-30% silt, damp, loose, no odor CL 18 5-10% gravel, subrounded	-					 		1		X					
- oily diesel odor 11 - 13 - 14 - 14 - 15 - 15 - 15 - 16 - 18 - 19 - 19 - 25-10% gravel, subrounded								9 -							
- oily diesel odor 11 - 13 - 14 - 14 - 15 - 15 - 15 - 16 - 18 - 19 - 19 - 25-10% gravel, subrounded	-		<u> </u>		-	 		1	1/2		grav wi	th minor areas	mattlina dama	Innea clinht h	/drocarbon odor
11								 10		3				, ioose, siigiit ii	rarocarbon buoi
SC 13 14 14 15 15 SILTY CLAY, orange/brown, ~20-30% silt, damp, toose, no odor 16 18 195-10% gravel, subrounded			· · · · · · · · · · · · · · · · · · ·					1		3		ony sicoci odol	<u> </u>		
12 - 13 - 14 - 15 - 15 - 15 - 17 - CL - 18 - 195-10% grave!, subrounded								11 -		2					
13 - 14 - 15 SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor 16 - 17 - 18 - 195-10% gravel, subrounded								7		SC					
SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor 16								12 -	1/2	3					
SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor 16								1				11 000 44 5			
SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor 16 CL 18								$]$ 13 $^-$		3					
SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor 16 CL 18								1/1 -							
SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor 16 - 17 - 18 - 19 - ~5-10% grave!, subrounded								14 -							
SILTY CLAY, orange/brown, ~20-30% silt, damp, loose, no odor 16 - 17 - 18 - 19 - ~5-10% grave!, subrounded								15		3_					
17 CL 18 19 ~5-10% grave!, subrounded							<u> </u>	10	<i>[//</i>		SILTY CLAY, or	ange/brown, ~2	0-30% silt, dam	p, loose, no odor	
17 CL 18 19 ~5-10% grave!, subrounded							ļ	16 -		7					
18 CL CL 75-10% grave!, subrounded		ļ						١,,	1//	1					
18 CL CL 75-10% grave!, subrounded								17 -		1					
19 ~5-10% grave!, subrounded		ļ				-			1//	CL			Mark House V. S. V.		
~5-10% grave!, subrounded	<u> </u>			_				- 18 -	1//	1					
~5-10% grave!, subrounded	ļ	 		-			-	-	1//						
		-	ļ				-	19 -	1//						
	\vdash			-	<u> </u>			+	1//						

1	Clayton EXPLORATORY BORING										PROJECT NO.: CLIENT: LOCATION:				E: <u>2/17/06</u>	BORING NO. SB-10 SHEET 1		
		● SB-1							,		LOGGED BY:					SHEET1 OF1		
FORME	SB-8 F AL SB-7 SE SB-		- FORME YCLONE	R FOR UNIT	MER HYD 8ETTS	ROTEL SUI	MP	710		LANO JE	DRILLER:	GREGG	DRIL	LING METH	od: <u>Direct i</u>			
STORA- SHEE	SE SB-	9.4	DRUM	RMER STORAGE	2020		OFFICES	:		N	HAMMER WEIGHT: DROP:							
N(ARD:	1, ,	IRMER OI SEPARA	L/WATER	IR COMPE	RESSUR			Si	CALE	BORING COMPLET	on data: <u>Bac</u> i	ENT GROUT					
то ниу∙	580 SB-3	2-1	S8-10		- COMPR RECEIVE	RESSOR R TANKS			ORII	NG ONS	GROUND ELEVATI	ON:			HOLE DIAME	TER: 3.75 in.		
				2				T			DEPTH TO: 🔽		DEPTH TO:	y	26 ft bgs			
	SAMPLE COVERY (IN	ᄪ	9,6	REAC III)	TIME	P.E.	Ē	3	ì	YMB	TIME:		TIME:					
	SAMPLE RECOVERY (IN.)	SAMPLE ID	BLOWS/6 IN.	PID/OVM READING (ppn1)	₽	SAMPLE INTERVAL	DEPTH (FT)	PADHIC LOG	Ī Š	USGS SYMBOL	DATE:		DATE:					
<u> </u>	至			윤			L ₀ —	5	5	3			DESCF	RIPTION				
							3 - 3 - 4 - 5 - 6 - 7 - 8 - 8 -			CL	SILTY CLAY, b	rown/orange mo	ange mottle			ip, soft, no oder line-grained sand,		
							9 -				~10%	sand, ~30% s	ilt					
	ļ	<u> </u>		_		<u> </u>	. · ·				CLAY, dark ta	n, 100% clay, da	amp, stiff, n	no odor	·			
	-	ļ		-		-	11 -	{//		1								
	-			-	ļ	-	-		//	CL				-:0 '				
	-	-					12 -				CLAY w/SILT,	tan/orange mot	tied, ~10%	siit, dam	p, stiff, no od	OI		
							1.	竹	П		CLAYEY SILT.	tan/orange mot	tled, ~25%	silt, ~ 7	5% silt, damp	, medium stiff,		
							13 -				no od							
] - 14 -											
							_ '4			ML	SAND w/GRA	VEL, tan/brown/	dark orang	e mottled	, ~10% small	gravel, dry,		
				_	· .		15	↓		""		y stiff, no odor_						
		<u> </u>	<u> </u>		-	-	- 13											
			-				16 -	$\left\ \cdot \right\ $			SILTY SAND,	an/light brown n	nottled, ~75	5% fine sa	and, ~25% si <u>l</u> t	t, dry, loose, no odor		
-		1	-	-	 	-	+	++	╁┤	ML	CHT ton 10	l% clay, slightly o	damn Jooga	no odor				
					 	-	17 -	+	╁┤	IVIL		brown, ~10% c			ind damn loo	se, no odor		
	 	 		-	+	+		\dagger		ML	- SILI, Idil/Udik	₩Π, ~ (U /0 U	14y, 1-1070 c	gunu 30	a.a, aamp, ioo	50,110 5001		
	+-	-					18 -				GRAVELLY SA	ND w/SILT. tan	to brown. ~	70% fine	sand, ~20% (gravel, ~10% silt,		
	1					1	1.			SP	.1	, loose, no odor						
	<u> </u>						19 -											
			1	1			٦				BORING TERM	IINATED @ 35 ft	bas (20 to)	35 ft bas	not loaged)			