RECEIVED

By Alameda County Environmental Health at 4:17 pm, Apr 10, 2014

Mr. Jerry Wickham Alameda County Environmental Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: 6310 Houston Place, Dublin, California 94568

ACEHS Case No. RO0002862, GeoTracker ID T0600113164

Dear Mr. Wickham:

I declare, under penalty of perjury, that the information and or recommendations contained in the attached document are true and correct to the best of my knowledge.

Sincerely,

Mr. Cary Grayson

April 7, 2014 Project No. 2094-6310-01

Mr. Jerry Wickham Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: Semi-Annual Monitoring and Sampling Report – First Quarter 2014 6310 Houston Place, Dublin, California 94568

ACEHD Case No. RO0002862, GeoTracker ID T0600113164

Dear Mr. Wickham:

Stratus Environmental, Inc. (Stratus) is submitting the attached report, which presents an update of work performed during the first quarter 2014 on behalf of Mr. Cary Grayson for the facility located at 6310 Houston Place, Dublin, California. Stratus representatives, whose signatures appear below, declare under penalty of perjury, that the information contained in the attached report are true and correct to the best of our knowledge.

If you have any questions regarding this project, please contact Mr. Trevor Hartwell at (530) 313-9966.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

TREVOR

TREVOR

Trevor M. Hartwell, P.G

Project Manager

Jay R. Johnson, P.G.

Principal Geologist

Attachment: Semi-Annual Monitoring and Sampling Report, First Quarter 2014

HARTWELL No. 8774

OF CALIFOR

cc: Mr. Cary Grayson (via email <u>carybgrayson@gmail.com</u>)

Ms. Cherie McCaulau

6310 HOUSTON PLACE SEMI-ANNUAL MONITORING AND SAMPLING REPORT

Facility Address: 6310 Houston Place, Dublin, California 94568

Consulting Co. / Contact Person: Stratus Environmental, Inc. / Trevor Hartwell

Consultant Project No: 2094-6310-01

Primary Agency/Regulatory ID No: Jerry Wickham, Alameda County Environmental Health Department

_(ACEHD) Case No. RO0002862

WORK PERFORMED THIS QUARTER (First Quarter 2014):

- The State Water Resources Control Board (SWRCB) conducted a Low Threat Closure Plan (LTCP) review of the site in January 2014 and determined that the site is eligible for closure under the LTCP guidelines.
- 2. Per ACEHD correspondence dated January 6, 2014, Stratus will cease any work associated with the December 2013 Work Plan while site closure is evaluated.
- 3. ACEHD, on January 28, 2014, began the landowner and public notification process, as required for all sites being considered for closure. The public comment period ended on March 31, 2014.
- 4. On March 4, 2014, Stratus conducted the first quarter 2014 groundwater monitoring and sampling event. During this event, all wells (DW-1 through DW-7) were gauged for depth to water, temperature, pH, conductivity, dissolved oxygen (DO) and oxygen-reduction potential (ORP), purged, and groundwater samples were collected. All samples were forwarded to a state-certified analytical laboratory for analysis. Field data sheets, sampling procedures and laboratory analytical reports are included as Appendices A, B, and C, respectively. Analytical results of sampled wells and depth to groundwater measurements have been uploaded to the State of California's GeoTracker database. Documentation of these data uploads is attached in Appendix D.

WORK TO BE PERFORMED NEXT QUARTER (Second Quarter 2014):

1. In accordance with ACEHD correspondence dated January 28, 2014, Stratus will proceed with destroying all wells at the site, as the public comment period has ended.

Current Phase of Project:

Frequency of Groundwater Monitoring and Sampling:

Groundwater Sampling Date:

Is Free Product (FP) Present on Site:

Approximate Depth to Groundwater:

Groundwater Flow Direction / Gradient:

Soil and Groundwater Investigation (SWI)

Wells DW-1 through DW-7 = Semi-annual 1st & 3rd

March 4, 2014

No

7.65 to 9.10 feet below top of well casing

West-northwest / 0.01 to 0.02 ft/ft

DISCUSSION:

Stratus conducted groundwater monitoring and sampling activities on March 4, 2014. During this event, wells DW-1 through DW-7 were gauged for depth to water, evaluated for the presence of free product,

purged, and sampled. Groundwater samples were collected and forwarded to a state-certified analytical laboratory. All samples were analyzed for diesel range organics (DRO), with silica gel cleanup, by EPA Method SW8015B, and benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds), methyl tert-butyl ether (MTBE), and naphthalene by EPA Method SW8260B. At the direction of ACEHD, Stratus also collected samples for metals analysis of chromium (Cr), Iron (Fe), copper (Cu), arsenic (As), selenium (Se), cadmium (Cd), barium (Ba), and lead (Pb) all by EPA Method 200.8 and for Cr⁶⁺ by EPA Method 218.6.

At the time of the March 2014 groundwater monitoring event, depth to groundwater was measured between 7.65 and 9.10 feet below ground surface (bgs) in all gauged wells. Groundwater elevations increased between 0.06 and 0.92 feet in all wells since the last monitoring event (November 4, 2013). Groundwater monitoring data were converted to feet above mean sea level (MSL) and used to prepare a groundwater elevation contour map (Figure 2). Groundwater flow direction at the site was generally to the west-northwest with a calculated gradient between 0.01 and 0.02 ft/ft.

Concentrations of DRO were reported in five of the seven sampled wells during the first quarter 2014. Onsite cross-gradient well DW-3 increased two orders of magnitude since the previous sampling event, with a reported concentration of 11,000 micrograms per liter (µg/L) during the first quarter 2014 (440 µg/L reported during the November 2013 sampling). DRO concentrations also increased in wells DW-1 (140 µg/L), DW-4 (99 µg/L), and DW-5 (120 µg/L) and decreased in well DW-2 (74 µg/L). Only one low concentration of MTBE was reported (DW-4 [0.97 µg/L]), and no concentrations of BTEX compounds or naphthalene were reported in any of the sampled wells during the first quarter 2014 sampling event. Additionally, no concentrations of DRO, BTEX compounds, MTBE or naphthalene were reported in offsite wells DW-6 or DW-7 during first quarter 2014, which is consistent with historical information. Tabulated groundwater analytical data are summarized in Table 2. DRO, benzene, and MTBE concentrations for groundwater samples collected during the first quarter 2014 are presented in Figure 3.

Concentrations of Cu increased in all wells during the first quarter 2014, with five of the seven wells reporting concentrations above the San Francisco Bay Regional Water Quality Control Board (SF Bay RWQCB) Tier 1 environmental screening level (ESL) of 3.1 μ g/L¹. Arsenic levels above the current ESL of 10 μ g/L¹ were reported in wells DW-1, DW-2, DW-3, DW-4, and DW-5 with a maximum concentration of 40.8 μ g/L (DW-5). Concentrations of both Cr and Cr⁶⁺ were reported in well DW-6 (2.82 μ g/L and 2.7 μ g/L, respectively) and DW-3 reported Cr at 1.07 μ g/L on March 4, 2014. While concentrations of barium and Fe increased in all reporting wells, the concentrations were either below the current ESL or there is currently no screening level available. Dissolved metal concentrations (including historical data) are included in Table 3.

ATTACHMENTS:

•	Table 1	Well Construction and Soil Boring Details
---	---------	---

- Table 2 Groundwater Elevation and Analytical Summary
- Table 3 Groundwater Analytical Dissolved Metals Summary
- Figure 1 Site Location Map
- Figure 2 Groundwater Elevation Contour Map, First Quarter 2014
- Figure 3 Groundwater Analytical Summary, First Quarter 2014
- Appendix A Field Data Sheets
- Appendix B Sampling and Analyses Procedures
- Appendix C Laboratory Analytical Reports and Chain-of-Custody Documentation
- Appendix D GeoTracker Electronic Submittal Confirmations

¹(SF Bay RWOCB, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table F-1a, Groundwater

Screening Levels [groundwater is a current or potential drinking water resource], updated May 2013).

TABLE 1
WELL CONSTRUCTION AND SOIL BORING DETAILS

Well I.D.	Date Installed	Boring Depth (feet)	Well Diameter (inches)	Screen Interval (feet bgs)	Slot Size (inches)	Consultant
Monitoring	Well					
DW-1	03/14/07	17	2	7-17	0.010	AEI
DW-2	03/14/07	17	2	7-17	0.010	AEI
DW-3	03/14/07	17	2	7-17	0.010	AEI
DW-4	03/14/07	17	2	7-17	0.010	AEI
DW-5	03/15/07	17	2	7-17	0.010	AEI
DW-6	03/15/07	17	2	7-17	0.010	AEI
DW-7	03/15/07	17	2	7-17	0.010	AEI
Soil Boring	<u>s</u>					
SB-1	03/14/06	16				AEI
SB-2	03/14/06	16				AEI
SB-3	03/14/06	16				AEI
SB-4	03/14/06	20				AEI
SB-5	03/14/06	16				AEI
Notes						

Notes

feet bgs = Feet below ground surface

AEI = AEI Consultants

-- = Not applicable

Well and boring information taken from a review of boring logs provided on the State Water Resources

Control Board GeoTracker database.

TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	DRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	Naphthalene (μg/L)
DW-1	04/10/07	7.44	334.23	326.79	8,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/12/07	7.72	334.23	326.51	30,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	7.88	334.23	326.35	18,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	6.16	334.23	328.07	13,000	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	6.96	334.23	327.27	15,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.55	334.23	326.68	5,200	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	8.02	334.23	326.21	11,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	7.58	334.23	326.65	5,600	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	
	08/03/10	7.43	334.23	326.80	540	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/13/11	6.81	334.23	327.42	1,700	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	07/05/11	6.47	334.23	327.76	380	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/04/12	8.05	334.23	326.18	390	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	05/02/12	6.40	334.23	327.83	89,000	<500[3]	<500[3]	<500[3]	<500[3]	<500[3]	<4,000[3]
	05/14/12*	6.69	334.23	327.54	71	<25[3]	<25[3]	<25[3]	<25[3]	<25[3]	<200[3]
	05/14/12**	6.69	334.23	327.54	100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	09/27/12	8.10	334.23	326.13	230	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	12/13/12	6.61	334.23	327.62	310	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/04/13	8.77	334.23	325.46	120	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	03/04/14	7.85	334.23	326.38	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
DW-2	04/10/07	7.09	334.00	326.91	8,200	<0.5	<0.5	<0.5	<0.5	< 0.5	
	07/12/07	7.40	334.00	326.60	34,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	7.55	334.00	326.45	14,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	5.89	334.00	328.11	17,000	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	6.63	334.00	327.37	27,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.25	334.00	326.75	16,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	7.74	334.00	326.26	11,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	7.23	334.00	326.77	6,900	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	
	08/03/10	7.40	334.00	326.60	550	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
	01/13/11	6.27	334.00	327.73	7,500	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	07/05/11	6.12	334.00	327.88	210	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/04/12	7.77	334.00	326.23	1,600	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	05/02/12	6.06	334.00	327.94	23,000	<250[3]	<250[3]	<250[3]	<250[3]	<250[3]	<2,000[3]
	05/14/12*	6.39	334.00	327.61	450	<10[3]	<10[3]	<10[3]	<10[3]	<10[3]	<80[3]
	05/14/12**	6.39	334.00	327.61	260	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
	09/27/12	8.25	334.00	325.75	340	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	12/13/12	6.29	334.00	327.71	580	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
	11/04/13	8.54	334.00	325.46	340	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	03/04/14	7.65	334.00	326.35	74	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50

TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	DRO (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	Naphthalene (μg/L)
DW-3	04/10/07	7.90	334.56	326.66	27,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/12/07	8.19	334.56	326.37	210,000	< 0.5	<1.7	<1.7	<1.7	<1.7	
	10/11/07	8.29	334.56	326.27	71,000	<25	<25	<25	<25	< 0.5	
	01/25/08	6.63	334.56	327.93	66,000	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.38	334.56	327.18	58,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.94	334.56	326.62	38,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	8.41	334.56	326.15	29,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	8.12	334.56	326.44	29,000	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	
	08/03/10	8.02	334.56	326.54	6,300	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/13/11	7.06	334.56	327.50	1,800	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	07/05/11	6.88	334.56	327.68	780	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
1	01/04/12	8.43	334.56	326.13	9,000	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	05/02/12	6.92	334.56	327.64	53,000	<250[3]	<250[3]	<250[3]	<250[3]	<250[3]	<2,000[3]
	05/14/12*	7.13	334.56	327.43	1,300	<25[3]	<25[3]	<25[3]	<25[3]	<25[3]	<200[3]
	05/14/12**	7.13	334.56	327.43	740	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	09/27/12	8.54	334.56	326.02	740	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	12/13/12	7.02	334.56	327.54	3,200	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/04/13	9.13	334.56	325.43	440	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	03/04/14	8.35	334.56	326.21	11,000	< 0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50
DW-4	04/10/07	7.99	334.49	326.50	65	< 0.5	< 0.5	<0.5	< 0.5	0.67	
	07/12/07	8.22	334.49	326.27	300	< 0.5	< 0.5	< 0.5	< 0.5	0.87	
	10/11/07	8.33	334.49	326.16	640	< 0.5	< 0.5	< 0.5	< 0.5	0.80	
	01/25/08	6.62	334.49	327.87	240	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.39	334.49	327.10	340	< 0.5	< 0.5	< 0.5	< 0.5	0.94	
	07/23/08	7.94	334.49	326.55	< 50	< 0.5	< 0.5	<0.5	<0.5	0.94	
	10/30/08	8.39	334.49	326.10	<50	< 0.5	< 0.5	<0.5	< 0.5	0.92	
	01/11/10	8.13	334.49	326.36	65	<1.0	<1.0	<1.0	<1.0	<5.0	
	08/03/10	8.00	334.49	326.49	370	< 0.50	< 0.50	< 0.50	< 0.50	0.76	
	01/13/11	7.08	334.49	327.41	370	< 0.50	< 0.50	<0.50	< 0.50	0.74	<4.0[3]
	07/05/11	6.91	334.49	327.58	300	< 0.50	< 0.50	< 0.50	< 0.50	0.96	<2.0
	01/04/12	8.38	334.49	326.11	88	< 0.50	< 0.50	< 0.50	<0.50	0.80	<2.0
	05/02/12	6.85	334.49	327.64	33,000	<100[3]	<100[3]	<100[3]	<100[3]	<100[3]	<800[3]
	05/14/12*	7.20	334.49	327.29	140	<10[3]	<10[3]	<10[3]	<10[3]	<10[3]	<80[3]
Duplicate	05/14/12*	7.20	334.49	327.29	<50	<25[3]	<25[3]	<25[3]	<25[3]	<25[3]	<200[3] <0.50
	05/14/12**	7.20	334.49	327.29	110[4]	< 0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50
	05/14/12**	7.20	334.49	327.29	4,000[5]	<0.50	<0.50 <0.50	< 0.50	< 0.50	1.2	<0.50
	09/27/12	8.59	334.49	325.90	63 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	1.4	<0.50
	12/13/12	7.06	334.49	327.43	<30 72	< 0.50	< 0.50	< 0.50	< 0.50	1.4	<0.50
i	11/04/13 03/04/14	9.16 9.10	334.49 334.49	325.33 325.39	99	< 0.50	<0.50	<0.50	<0.50	0.97	<0.50

TABLE 2 GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

6310 Houston Place, Dublin, CA

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	DRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	Naphthalene (μg/L)
DW-5	04/10/07	7.00	333.91	326.91	800	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	
	07/12/07	7.36	333.91	326.55	990	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	7.52	333.91	326.39	880	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	5.93	333.91	327.98	730	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	6.52	333.91	327.39	780	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.24	333.91	326.67	340	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	7.68	333.91	326.23	1,200	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	7.47	333.91	326.44	130	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	7.32	333.91	326.59	490[1,2]	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/13/11	6.23	333.91	327.68	470	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0
	07/05/11	6.12	333.91	327.79	220	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/04/12	7.72	333.91	326.19	380	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<4.0[3]
	05/02/12	6.04	333.91	327.87	38,000	<250[3]	<250[3]	<250[3]	<250[3]	<250[3]	<2,000[3]
	05/14/12*	6.36	333.91	327.55	190	<50[3]	<50[3]	<50[3]	<50[3]	<50[3]	<400[3]
	05/14/12**	6.36	333.91	327.55	250[6]	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	09/27/12	7.84	333.91	326.07	660	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	12/13/12	6.31	333.91	327.60	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/04/13	8.43	333.91	325.48	110	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	03/04/14	7.75	333.91	326.16	120	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
DW-6	04/10/07	8.62	334.99	326.37	<50	<0.5	<0.5	<0.5	< 0.5	<0.5	
	07/12/07	8.81	334.99	326.18	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	8.53	334.99	326.46	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	7.16	334.99	327.83	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.53	334.99	327.46	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	8.24	334.99	326.75	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	8.62	334.99	326.37	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	8.18	334.99	326.81	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	8.25	334.99	326.74	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
	01/13/11	7.69	334.99	327.30	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	07/05/11	7.06	334.99	327.93	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/04/12	8.52	334.99	326.47	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	05/02/12	7.65	334.99	327.34	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	05/14/12	NM	334.99	NM				eduled for			
	09/27/12	8.54	334.99	326.45	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	12/13/12	7.26	334.99	327.73	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/04/13	9.40	334.99	325.59	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	03/04/14	8.68	334.99	326.31	<50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50

TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	DRO (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	Naphthalene (μg/L)
DW-7	04/10/07	8.11	335.18	327.07	<50	< 0.5	<0.5	< 0.5	< 0.5	<0.5	
	07/12/07	8.34	335.18	326.84	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	8.96	335.18	326.22	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	6.75	335.18	328.43	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.95	335.18	327.23	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	8.55	335.18	326.63	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
li .	10/30/08	8.96	335.18	326.22	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	8.62	335.18	326.56	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	8.58	335.18	326.60	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/13/11	7.85	335.18	327.33	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	07/05/11	7.49	335.18	327.69	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/04/12	9.17	335.18	326.01	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<4.0[3]
	05/02/12	7.46	335.18	327.72	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	05/14/12	NM	335.18	NM			Not sch	eduled for	sampling		
	09/27/12	9.20	335.18	325.98	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1	12/13/12	7.65	335.18	327.53	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
	11/04/13	9.77	335.18	325.41	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	03/04/14	8.91	335.18	326.27	<50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50

Votes

Data through January 11, 2010, reported by AEI Contultants.

Prior to 8/3/10, reported as TPH-D

* = Sample was collected as a split grab sample. Sample was forwarded to Alpha Analytical.

NM = Not measured

DRO = total petroleum hydrocarbons as diesel (C13-C-22)

MTBE = methyl-tertiary butyl ether

μg/L = micrograms per liter

- [1] = Reported concentration includes additional compounds uncharacteristic of common fuels and lubricants.
- [2] = DRO concentration may include contributions from heavier-end hydrocarbons that elute in the DRO range.
- [3] = Reporting limits were increased due to sample foaming.
- [4] = Discrete peaks in diesel range, atypical for diesel fuel.
- [5] = Hydrocarbons are higher-boiling than typical diesel fuel.
- [6] = Lower boiling hydrocarbons present, atypical for diesel fuel.

Analytical Laboratory / Method:

Alpha Analytical Laboratory DRO by EPA Method 8015B

All others by EPA Method 8260B

^{** =} Sample was collected as a split grab sample. Sample was forwarded to Kiff Analytical.

^{-- =} Not analyzed

TABLE 3
GROUNDWATER ANALYTICAL - DISSOLVED METALS SUMMARY

6310 Houston Place, Dublin, California

	Date	Cu	As	Cd	Ba	Cr ⁺⁶	Cr	Fe	Se	Pb
Well Number	Collected	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
DW-1	08/03/10	<10	9.4	<1.0	28	<1.0	6.8	7,300	<5.0	<5.0
DW-1	10/07/10	23	9. 4 87	<1.0	28	1.6	17	5,200	<5.0 <5.0	<5.0 <5.0
	10/07/10	28	79	<1.0	20	<1.0	22	13,000	<5.0	6.3
	11/30/10	13	43.0	<1.0	32	<1.0	13	3,900	<5.0	<5.0
	01/13/11	49	41	<1.0	37	<1.0	72	35,000	<5.0	16
	05/09/12	<40	37	<4.0	<20		<20	1,200	<20	<20
	09/27/12	2.13	28.3	<1.0	11.6	<1.0	<1.0	94.6	<1.0	<1.0
	12/13/12	3.78	15.5	<1.0	20.8	<1.0	1.25	1,570	<1.0	<1.0
	11/04/13	2.47	9.92	<1.0	12.7	<1.0	<1.0	70	1.02	<1.0
	03/04/14	3.11	11.1	<1.0	38.8	<1.0	<1.0	1,900	<1.02	<1.0
	03/04/14	5.11	11.1	~1.0	30.0	\1.0	\1.0	1,900	\1.0	~1.0
DW-2	08/03/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/07/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/19/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/30/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
1	01/13/11	NS	NS	NS	NS	NS	NS	NS	NS	NS
	05/09/12	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09/27/12	<1.0	43	<1.0	50.5	<1.0	<1.0	<50	<1.0	<1.0
	12/13/12	1.75	44.4	<1.0	35.6	<1.0	<1.0	1,910	<1.0	<1.0
	11/04/13	<1.0	38.3	<1.0	16	<1.0	<1.0	123	<1.0	<1.0
	03/04/14	1.69	34.8	<1.0	38.5	<1.0	<1.0	1,740	<1.0	<1.0
DW-3	08/03/10	<10	<2.0	<1.0	58	<1.0	<5.0	2,300	<5.0	<5.0
	10/07/10	13	6.4	<1.0	87	<1.0	6.3	2,600	<5.0	<5.0
	10/19/10	14	6.7	<1.0	96	<1.0	16	12,000	<5.0	<5.0
	11/30/10	<10	6.7	<1.0	76	<1.0	9.4	3,000	<5.0	<5.0
	01/13/11	14	5.4	<1.0	69	<1.0	29	16,000	<5.0	7.4
	05/09/12	<40	26	<4.0	62		<20	1,800	<20	<20
	09/27/12	<1.0	9.01	<1.0	62.9	<1.0	<1.0	410	<1.0	<1.0
	12/13/12	5.17	8.33	<1.0	77	<1.0	3.68	6,260	<1.0	1.37
	11/04/13	<1.0	10.7	<1.0	58	<1.0	<1.0	391	<1.0	<1.0
	03/04/14	2.17	13.0	<1.0	139	<1.0	1.07	2,840	<1.0	<1.0
DW 4	00/02/10	NO	NO) TO	NG	3.70	2.00	270	2.70	2.70
DW-4	08/03/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/07/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/19/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/30/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	01/13/11	NS	NS	NS	NS	NS	NS	NS	NS	NS
	05/09/12	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09/27/12	2.07	11.7	<1.0	19.1	<1.0	<1.0	139	<1.0	<1.0
	12/13/12	3.74	11.7	<1.0	32.3	<1.0	2.02	3,420	1.14	<1.0
	11/04/13	1.57	31.5	<1.0	23.3	<1.0	<1.0	1,550	<1.0	<1.0
	03/04/14	5.33	34.9	<1.0	80.0	<1.0	<1.0	2,530	<1.0	<1.0

TABLE 3
GROUNDWATER ANALYTICAL - DISSOLVED METALS SUMMARY

6310 Houston Place, Dublin, California

	Date	Cu	As	Cd	Ba	Cr ⁺⁶	Cr	Fe	Se	Pb
Well Number	Collected	(μg/L)	(μg/L)	(μg/L)	μg/L)	CI (μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
DW-5	08/03/10	<10	5.8	<1.0	48	<1.0	<5.0	540	<5.0	<5.0
	10/07/10	11	5.1	<1.0	53	<1.0	< 5.0	640	< 5.0	<5.0
	10/19/10	69	5.1	<1.0	53	<1.0	< 5.0	1,700	<5.0	<5.0
	11/30/10	<10	5.5	<1.0	55	<1.0	8.5	1,200	< 5.0	<5.0
	01/13/11	11	4.9	<1.0	69	<1.0	19	8,800	< 5.0	< 5.0
	05/09/12	<40	17	<4.0	45		<20	3,600	<20	<20
	09/27/12	2.12	31.7	<1.0	29.4	<1.0	<1.0	72	<1.0	<1.0
	12/13/12	3.41	22.9	<1.0	40.2	<1.0	1.59	2,620	1.29	<1.0
	11/04/13	1.88	26	<1.0	40.8	<1.0	<1.0	1,200	<1.0	<1.0
	03/04/14	5.38	40.8	<1.0	98.1	<1.0	<1.0	2,710	<1.0	<1.0
DW-6	08/03/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/07/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/19/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	11/30/10	NS	NS	NS	NS	NS	NS	NS	NS	NS
	01/13/11	NS	NS	NS	NS	NS	NS	NS	NS	NS
	05/09/12	NS	NS	NS	NS	NS	NS	NS	NS	NS
	09/27/12	1.73	3.12	<1.0	70.7	2.4	2.47	< 50	<1.0	<1.0
	12/13/12	6.02	4.16	<1.0	87.3	3.1	10.4	3,710	1.09	1.50
	11/04/13	2.27	4.43	<1.0	66.5	2.0	2.46	< 50	1.54	<1.0
	03/04/14	6.89	3.56	<1.0	99.6	2.7	2.82	<50	<1.0	<1.0
DW-7	08/03/10	<10	5.6	<1.0	45	<1.0	45	29,000	5.7	15
	10/07/10	71	5.7	<1.0	51	<1.0	92	57,000	< 5.0	< 5.0
	10/19/10	69	4.2	<1.0	49	<1.0	110	69,000	< 5.0	< 5.0
	11/30/10	23	< 2.0	<1.0	50	<1.0	42	21,000	< 5.0	< 5.0
	01/13/11	32	6.0	<1.0	48	<1.0	79	36,000	7.8	12
	05/09/12	<40	34	<4.0	71		30	3,400	<20	<20
	09/27/12	1.95	3.1	<1.0	66.8	<1.0	<1.0	<50	<1.0	<1.0
	12/13/12	18.1	6.83	<1.0	189	<1.0	24.7	13,300	<1.0	6.42
	11/04/13	2.54	4.07	<1.0	51.8	<1.0	<1.0	< 50	1.69	<1.0
	03/04/14	7.42	3.44	<1.0	114	<1.0	<1.0	<50	<1.0	<1.0
Notes:	- .					Analytical				
μg/L = microgra	ams per liter		Fe = Iron			Cr6+ = Kiff	Analytical	by EPA Me	thod 218.6	
Cu = Copper	opper Se = Selenium Remaining Metals = Calscience Enviornmental							ıl		
As = Arsenic			Pb = Lea	_		Laboratorie	s by EPA m	ethod 200.8		
Cd = Cadmium				t Sampled						
Ba = Barium			= Not	Analyzed						
Cr = Chromium										
$Cr^{+6} = Hexavaler$	nt Chromium									

GENERAL NOTES: BASE MAP FROM U.S.G.S. DUBLIN, CA. 7.5 MINUTE TOPOGRAPHIC PHOTOREVISED 1989

6310 HOUSTON PLACE DUBLIN, CALIFORNIA

SITE LOCATION MAP

FIGURE

1PROJECT NO.
2094-6310-01

STRATUS ENVIRONMENTAL, INC.

APPENDIX A FIELD DATA SHEETS

Site Address	6310 Houston Place	
City -	Dublin, CA	
Sampled by:	Javen Gonzales	

Signature ___

Site Number Bay Counties
Project Number 2094-6310-01
Project PM Trevor Hartwell
DATE 3-4-14

	167	to a Lorent D				Pume V	olume Calc	ulations			Purge	Metho	d	S	ample Reco	rd	Field Data
Well ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (feet)	Water column (feet)	Diameter (inches)	Multiplier	3 casing volumes (gallons)	Actual water purged (gallons)	No Purge	Deiles			DTW at sample time (feet)	Sample I.D	Sample Time	DO (mg/L)
					7 60	7/1	0.5	(/3	\$ 0	_		X		945	DW-X	1015	1.55 0.97
DW-1	713		7.85	1650	8.65	2"		4.4	5,0	┢		/-		885	DW-3	9.50	1,24
DW-5			7.65	16 58		211	0.5	4.15						9.42	Dw-g		1.27
DM-3	7:08		8:35	1665 1678	8.3	2"	0.5	3.89	4.5	1				940	DW-8	850	1.54
DW 4			7.75	1680	9.05		0.5	4-5	5-0					8.09	Dw.	975	197
DW-5			868	16.80	8.12	Z'	0.5	4.0	4.5					9,03	Dw-B	8/0	1.72
	700		8.91	16.68		2"	0.5	3.8	4.5		** ,	. 19		891	DW 5	9.45	
<u> </u>	,			-						<u> </u>	<u> </u>		<u> </u>	Q ²			
				ė					ļ	├	├─					-	
						200			<u> </u>	\vdash	┝	├					
										\vdash	 	-					
	ļ																
								4									
	 																
								· E 7			Ļ			ļ		ļ	
											<u> </u>	ļ	├—			 	
									<u> </u>	_	├	<u> </u>	 				
										-				 	 	 	é
											-	-					
									-								137
			-					<u> </u>		•			 				

Multiplier $2'' = 0.5 \ 3'' = 1.0 \ 4'' = 2.0 \ 6'' = 4.4$

Please refer to groundwater sampling field procedures pH/Conductivity/temperature Meter - Oakton Model PC-10 DO Meter - Oakton 300 Series (DO is always measured before purge)

PH 3/3/14 Conductivity DO	, (CALIBRATION DATE
	pH	3/3/14
DO	Conductivity	
	DO	7

Site Address 6310 Houston Place

City <u>Dublin</u>

Sampled By: Jerry: Gonzales

Signature

Site Number Bay Counties Project Number 2094-6310-01 Project PM Trevor Hartwell DATE 3-4-14

Well ID ADW-	7				Weil ID BW-6						
Purge start time	730		Odor	Y (N)	Purge start time	Odor	YW				
	Temp #	pН	cond	gallons		Temp C	pН	cond	gallons		
time 73 /	610	689	2749	1.5	time 801	65.4	6.85	3524	1.5		
time 732	643	6.83	3037	3.0	time 80'%	65.6	6.84	3736			
time 733	644	6.87	3191	4.5	time 8:03	65.8	686	3725	4.5		
time 754	•	4			time						
purge stop time	739		ORP /	30	purge slop time 🕏	09		ORP Z	37		
Well ID Bu					Well ID DU	v-5	***************************************				
Purge start time	840		Odor	Y 🔞	Purge start time	9:11		Odor	Y 🕅		
	Temp C	рН	cond	gallons		Temp	рН	cond	gallons		
time 841	67,8	684	3281		time 9.1/2	655	692	3589	1.6		
time 892	63.9	6.81	32/5		time 9/3	6 S.S	6.93	3983	3.2		
time 843	640	6.78	2522		time 9.14	65.5	6.91	7899	5.0		
time					time						
purge stop time			ORP	クコ	purge stop time	915		ORP -	31		
Well ID	w-2				Well ID D	N-1					
Purge start time	935	>	Odor	YN	Purge start time / 0 0 Z Odor Y						
	Temp C	pН	cond	gallons		Temp	рН	cond	gallons		
time 9 J G	624	7.06	2/06	1-6	time Zoo Z	67.2	2.23	34/8			
time 973	68.1	207	1767		time /009	650	7.24	36 38			
time 938	68.6	7.//	1708	5.0	time 1005	64.5	725	3723	5.0		
time				· ·	time		i i				
purge stop time			ORP -	45	purgė stop time	1006		ORP -	44		
Well ID D W		· · · · · · · · · · · · · · · · · · ·			Well ID						
Purge start time	1		Odor	Y N	Purge start time			Odor	YN		
	Temp C	pH	cond	gallons		Temp C	pΗ	cond	gallons		
time /0 7 G	65.4		26 75	1.5	time			·			
time /02 7	64.3	7.79	2475	3.0	time	-					
time / 07 8	64-4	1.00	2463	4.5	time						
time	M 7 0	1	OPP -	W2	time			ļ			
purge stop time	027		ORP,	y C	purge stop time		<u>-</u> -	QRP			

APPENDIX B SAMPLING AND ANALYSES PROCEDURES

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures as well as the quality assurance plan are contained in this appendix. The procedures and adherence to the quality assurance plan will provide for consistent and reproducible sampling methods; proper application of analytical methods; accurate and precise analytical results; and finally, these procedures will provide guidelines so that the overall objectives of the monitoring program are achieved.

Ground Water and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the ground water depth in monitoring wells that do not contain LPH. Depth to ground water or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typical a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Ground Water

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Purging and Sampling

Monitoring wells are purged using a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water have been removed. If three well volumes can not be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a ground water sample is then removed from each of the wells using a disposable bailer.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air from remaining in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped.

The water sample is collected, labeled, and handled according to the Quality Assurance Plan. Water generated during the monitoring event is disposed of accruing to regulatory accepted method pertaining to the site.

QUALITY ASSURANCE PLAN

Procedures to provide data quality should be established and documented so that conditions adverse to quality, such as deficiencies, deviations, nonconforments, defective material, services, and/or equipment, can be promptly identified and corrected.

General Sample Collection and Handling Procedures

Proper collection and handling are essential to ensure the quality of a sample. Each sample is collected in a suitable container, preserved correctly for the intended analysis, and stored prior to analysis for no longer than the maximum allowable holding time. Details on the procedures for collection and handling of samples used on this project can be found in this section.

Soil and Water Sample Labeling and Preservation

Label information includes a unique sample identification number, job identification number, date, and time. After labeling all soil and water samples are placed in a Ziploc[®] type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Upon recovery, the sample container is sealed to minimize the potential of volatilization and cross-contamination prior to chemical analysis. Soil sampling tubes are typically closed at each end with Teflon® sheeting and plastic caps. The sample is then placed in a Ziploc® type bag and sealed. The sample is labeled and refrigerated at approximately 4° Celsius for delivery, under strict chain-of-custody, to the analytical laboratory.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded on the borehole log or in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and

noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

Sample bottles, caps, and septa used in sampling for volatile and semivolatile organics will be triple rinsed with high-purity deionized water. After being rinsed, sample bottles will be dried overnight at a temperature of 200°C. Sample caps and septa will be dried overnight at a temperature of 60°C. Sample bottles, caps, and septa will be protected from solvent contact between drying and actual use at the sampling site. Sampling containers will be used only once and discarded after analysis is complete.

Plastic bottles and caps used in sampling for metals will be soaked overnight in a 1-percent nitric acid solution. Next, the bottles and caps will be triple rinsed with deionized water. Finally, the bottles and caps will be air dried before being used at the site. Plastic bottles and caps will be constructed of linear polyethylene or polypropylene. Sampling containers will be used only once and discarded after analysis is complete. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Before the sampling event is started, equipment that will be placed in the well or will come in contact with groundwater will be disassembled and cleaned thoroughly with detergent water, and then steam cleaned with deionized water. Any parts that may absorb contaminants, such as plastic pump valves, etc. will be cleaned as described above or replaced.

During field sampling, equipment surfaces that are placed in the well or contact groundwater will be steam cleaned with deionized water before the next well is purged or sampled. Equipment blanks will be collected and analyzed from non-disposable sampling equipment that is used for collecting groundwater samples at the rate of one blank per twenty samples collected.

Internal Quality Assurance Checks

Internal quality assurance procedures are designed to provide reliability of monitoring and measurement of data. Both field and laboratory quality assurance checks are necessary to evaluate the reliability of sampling and analysis results. Internal quality assurance procedures generally include:

- Laboratory Quality Assurance

- Documentation of instrument performance checks
- Documentation of instrument calibration
- Documentation of the traceability of instrument standards, samples, and data
- Documentation of analytical and QC methodology (QC methodology includes use
 of spiked samples, duplicate samples, split samples, use of reference blanks, and
 check standards to check method accuracy and precision)

- Field Quality Assurance

- Documentation of sample preservation and transportation
- Documentation of field instrument calibration and irregularities in performance

Internal laboratory quality assurance checks will be the responsibility of the contract laboratories. Data and reports submitted by field personnel and the contract laboratory will be reviewed and maintained in the project files.

Types of Quality Control Checks

Samples are analyzed using analytical methods outlined in EPA Manual SW 846 and approved by the California Regional Water Quality Control Board-Central Valley Region in the Leaking Underground Fuel Tanks (LUFT) manual and appendices. Standard contract laboratory quality control may include analysis or use of the following:

- Method blanks reagent water used to prepare calibration standards, spike solutions, etc. is analyzed in the same manner as the sample to demonstrate that analytical interferences are under control.
- Matrix spiked samples a known amount of spike solution containing selected
 constituents is added to the sample at concentrations at which the accuracy of the
 analytical method is to satisfactorily monitor and evaluate laboratory data quality.
- Split samples a sample is split into two separate aliquots before analysis to assess the reproducibility of the analysis.
- Surrogate samples samples are spiked with surrogate constituents at known concentrations to monitor both the performance of the analytical system and the effectiveness of the method in dealing with the sample matrix.
- Control charts graphical presentation of spike or split sample results used to track the accuracy or precision of the analysis.
- Quality control check samples when spiked sample analysis indicates atypical instrument performance, a quality check sample, which is prepared independently of the calibration standards and contains the constituents of interest, is analyzed to confirm that measurements were performed accurately.

 Calibration standards and devices – traceable standards or devices to set instrument response so that sample analysis results represent the absolute concentration of the constituent.

Field QA samples will be collected to assess sample handling procedures and conditions. Standard field quality control may include the use of the following, and will be collected and analyzed as outlined in EPA Manual SW 846.

- Field blanks reagent water samples are prepared at the sampling location by the same procedure used to collect field groundwater samples and analyzed with the groundwater samples to assess the impact of sampling techniques on data quality. Typically, one field blank per twenty groundwater samples collected will be analyzed per sampling event.
- Field replicates duplicate or triplicate samples are collected and analyzed to
 assess the reproducibility of the analytical data. One replicate groundwater
 sample per twenty samples collected will be analyzed per sampling event, unless
 otherwise specified. Triplicate samples will be collected only when specific
 conditions warrant and generally are sent to an alternate laboratory to confirm the
 accuracy of the routinely used laboratory.
- Trip blanks reagent water samples are prepared before field work, transported
 and stored with the samples and analyzed to assess the impact of sample transport
 and storage for data quality. In the event that any analyte is detected in the field
 blank, a trip blank will be included in the subsequent groundwater sampling
 event.

Data reliability will be evaluated by the certified laboratory and reported on a cover sheet attached to the laboratory data report. Analytical data resulting from the testing of field or trip blanks will be included in the laboratory's report. Results from matrix spike, surrogate, and method blank testing will be reported, along with a statement of whether the samples were analyzed within the appropriate holding time.

Stratus will evaluate the laboratory's report on data reliability and note significant QC results that may make the data biased or unacceptable. Data viability will be performed as outlined in EPA Manual SW 846. If biased or unacceptable data is noted, corrective actions (including re-sample/re-analyze, etc.) will be evaluated on a site-specific basis.

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Date: 03/07/2014

Laboratory Results

Trevor Hartwell Stratus Environmental, Inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682

Subject: 7 Water Samples

Project Name: Bay Counties Petroleum

Project Number: 2094-6310-01

Dear Mr. Hartwell,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC.

Kiff Analytical, LLC is certified by the State of California under the Environmental Laboratory Accreditation Program (ELAP), lab number 08263CA.

If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy Turpen

Troy D. Turpen

Date: 03/07/2014

Project Name: Bay Counties Petroleum

Project Number: 2094-6310-01

Sample: DW-1

Matrix: Water

Lab Number: 87592-01

Sample Date :03/04/2014	Measured	Method		Analysis	Date/Time	
Parameter	Value	Reporting Limit	Units	Analysis Method	Analyzed	
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	03/04/14 17:20	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	03/05/14 18:31	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	03/05/14 18:31	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	03/05/14 18:31	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	03/05/14 18:31	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	03/05/14 18:31	
Naphthalene	< 0.50 0.50		ug/L	EPA 8260B	03/05/14 18:31	
1,2-Dichloroethane-d4 (Surr)	94.9		% Recovery	EPA 8260B	03/05/14 18:31	
Toluene - d8 (Surr)	97.5		% Recovery	EPA 8260B	03/05/14 18:31	
4-Bromofluorobenzene (Surr)	86.7		% Recovery	EPA 8260B	03/05/14 18:31	
TPH as Diesel (Silica Gel)	140	50	ug/L	M EPA 8015	03/06/14 16:10	
Octacosane (Silica Gel Surr)	113		% Recovery	M EPA 8015	03/06/14 16:10	

Date: 03/07/2014

Project Name: Bay Counties Petroleum

Project Number: 2094-6310-01

Sample: **DW-2** Matrix: Water Lab Number: 87592-02

Sample Date :03/04/2014		Method				
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed	
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	03/04/14 17:26	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	03/05/14 18:19	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	03/05/14 18:19	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	03/05/14 18:19	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	03/05/14 18:19	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	03/05/14 18:19	
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	03/05/14 18:19	
1,2-Dichloroethane-d4 (Surr)	100		% Recovery	EP A 8260B	03/05/14 18:19	
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	03/05/14 18:19	
4-Bromofluorobenzene (Surr)	115		% Recovery	EPA 8260B	03/05/14 18:19	
TPH as Diesel (Silica Gel)	74	50	ug/L	M EPA 8015	03/06/14 16:45	
Octacosane (Silica Gel Surr)	110		% Recovery	M EPA 8015	03/06/14 16:45	

Date: 03/07/2014

Project Name: Bay Counties Petroleum

Project Number: 2094-6310-01

Sample: DW-3

Matrix: Water

Lab Number: 87592-03

Oampie Date :00/04/2014		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	03/04/14 17:33
Benzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 02:41
Toluene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 02:41
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 02:41
Total Xylenes	< 0.50		ug/L	EPA 8260B	03/06/14 02:41
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 02:41
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 02:41
1,2-Dichloroethane-d4 (Surr)	93.5		% Recovery	EPA 8260B	03/06/14 02:41
Toluene - d8 (Surr)	97.2		% Recovery	EPA 8260B	03/06/14 02:41
4-Bromofluorobenzene (Surr)	86.8		% Recovery	EPA 8260B	03/06/14 02:41
TPH as Diesel (Silica Gel)	11000	50	ug/L	M EPA 8015	03/06/14 17:20
Octacosane (Silica Gel Surr)	110		% Recovery	M EPA 8015	03/06/14 17:20

Date: 03/07/2014

Project Name: Bay Counties Petroleum

Project Number: 2094-6310-01

Sample: DW-4 Matrix: Water Lab Number: 87592-04

Cample Bate :00/04/2014		Method				
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed	
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	03/04/14 17:40	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 03:14	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 03:14	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 03:14	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 03:14	
Methyl-t-butyl ether (MTBE)	0.97	0.50	ug/L	EPA 8260B	03/06/14 03:14	
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 03:14	
1,2-Dichloroethane-d4 (Surr)	97.9		% Recovery	EPA 8260B	03/06/14 03:14	
Toluene - d8 (Surr)	97.0		% Recovery	EPA 8260B	03/06/14 03:14	
4-Bromofluorobenzene (Surr)	88.8		% Recovery	EPA 8260B	03/06/14 03:14	
TPH as Diesel (Silica Gel)	99	50	ug/L	M EPA 8015	03/06/14 17:55	
Octacosane (Silica Gel Surr)	108		% Recovery	M EPA 8015	03/06/14 17:55	

Date: 03/07/2014

Project Name: Bay Counties Petroleum

Project Number: 2094-6310-01

Sample: DW-5 Matrix: Water Lab Number: 87592-05

Sample Date .03/04/2014		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	03/04/14 17:47
Benzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 03:47
Toluene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 03:47
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 03:47
Total Xylenes			ug/L	EPA 8260B	03/06/14 03:47
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 03:47
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 03:47
1,2-Dichloroethane-d4 (Surr)	94.2		% Recovery	EPA 8260B	03/06/14 03:47
Toluene - d8 (Surr)	97.6		% Recovery	EPA 8260B	03/06/14 03:47
4-Bromofluorobenzene (Surr)	88.9		% Recovery	EPA 8260B	03/06/14 03:47
TPH as Diesel (Silica Gel)	120	50	ug/L	M EPA 8015	03/06/14 18:30
Octacosane (Silica Gel Surr)	107		% Recovery	M EPA 8015	03/06/14 18:30

Date: 03/07/2014

Project Name: Bay Counties Petroleum

Project Number: 2094-6310-01

Sample: **DW-6** Matrix: Water Lab Number: 87592-06

Campic Date 100/04/2014		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Hexavalent Chromium	2.7	1.0	ug/L	EPA 218.6	03/04/14 17:53
Benzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 10:04
Toluene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 10:04
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 10:04
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 10:04
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 10:04
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 10:04
1,2-Dichloroethane-d4 (Surr)	99.1		% Recovery	EPA 8260B	03/06/14 10:04
Toluene - d8 (Surr)	99.0		% Recovery	EPA 8260B	03/06/14 10:04
4-Bromofluorobenzene (Surr)	116		% Recovery	EPA 8260B	03/06/14 10:04
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	03/06/14 19:05
Octacosane (Silica Gel Surr)	111		% Recovery	M EPA 8015	03/06/14 19:05

Date: 03/07/2014

Project Name: Bay Counties Petroleum

Project Number: 2094-6310-01

Sample: **DW-7** Matrix: Water Lab Number: 87592-07

Sample Date .03/04/2014		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	03/04/14 18:00
Benzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 13:19
Toluene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 13:19
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 13:19
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 13:19
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 13:19
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	03/06/14 13:19
1,2-Dichloroethane-d4 (Surr)	99.2		% Recovery	EPA 8260B	03/06/14 13:19
Toluene - d8 (Surr)	98.4		% Recovery	EPA 8260B	03/06/14 13:19
4-Bromofluorobenzene (Surr)	118		% Recovery	EPA 8260B	03/06/14 13:19
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	03/06/14 19:40
Octacosane (Silica Gel Surr)	102		% Recovery	M EPA 8015	03/06/14 19:40

Date: 03/07/2014

QC Report : Method Blank Data

Project Name : Bay Counties Petroleum

Project Number: 2094-6310-01

	Managed	Method	_	Amakain	Date	
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Analyzed	
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	03/06/2014	
Octacosane (Silica Gel Surr)	100		%	M EPA 8015	03/06/2014	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014	
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014	
1,2-Dichloroethane-d4 (Surr)	98.4		%	EPA 8260B	03/06/2014	
4-Bromofluorobenzene (Surr)	118		%	EPA 8260B	03/06/2014	
Toluene - d8 (Surr)	99.3		%	EPA 8260B	03/06/2014	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014	
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014	
1,2-Dichloroethane-d4 (Surr)	100		%	EPA 8260B	03/05/2014	
4-Bromofluorobenzene (Surr)	114		%	EPA 8260B	03/05/2014	
Toluene - d8 (Surr)	99.1		%	EPA 8260B	03/05/2014	

Parameter	Measured Value	Method Reporti Limit		Analysis Method	Date <u>Analyzed</u>
Benzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014
Toluene	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	03/06/2014
1,2-Dichloroethane-d4 (Surr)	99.5		%	EPA 8260B	03/06/2014
4-Bromofluorobenzene (Surr)	114		%	EPA 8260B	03/06/2014
Toluene - d8 (Surr)	99.2		%	EPA 8260B	03/06/2014
Benzene	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014
Toluene	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	03/05/2014
1,2-Dichloroethane-d4 (Surr)	93.3		%	EPA 8260B	03/05/2014
4-Bromofluorobenzene (Surr)	86.3		%	EPA 8260B	03/05/2014
Toluene - d8 (Surr)	97.9		%	EPA 8260B	03/05/2014
Hexavalent Chromium	<1.0	1.0	ug/L	EPA 218.6	03/04/2014

Date: 03/07/2014

Project Name : Bay Counties Petroleum

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: 2094-6310-01

	Spiked	Sample	Spike	Spike Dup.	Spiked Sample	Duplicate Spike Sample	e ed	Analysis	Date	Spiked Sample Percent	Duplicat Spiked Sample Percent	Relative	Spiked Sample Percent Recov.	Relative Percent Diff.
Parameter	Sample	Value	Level	Level	Value	Value	Units	Method	Analyzed	Recov.	Recov.	Diff.	Limit	Limit
Hexavalent Chr	romium													
	87583-01	22	5.00	5.00	27.0	26.9	ug/L	EPA 218.6	3/4/14	102	100	0.205	90.0-110	10
TPH-D (Si Gel)														
	BLANK	<50	1000	1000	933	929	ug/L	M EPA 8015	3/6/14	93.3	92.9	0.462	70-130	25
Benzene														
	87551-03	<0.50	40.0	40.0	40.4	38.1	ug/L	EPA 8260B	3/6/14	101	95.2	6.01	70.0-130	25
Ethylbenzene	87551-03	<0.50	40.0	40.0	44.3	41.0	ug/L	EPA 8260B	3/6/14	111	102	7.73	70.0-130	25
Methyl-t-butyl e	ther						_							
Manhihalana	87551-03	<0.50	39.9	39.9	39.1	38.5	ug/L	EPA 8260B	3/6/14	98.0	96.6	1.44	70.0-130	25
Naphthalene	87551-03	<0.50	40.0	40.0	40.4	38.2	ug/L	EPA 8260B	3/6/14	101	95.6	5.57	70.0-130	25
P + M Xylene														
	87551-03	<0.50	40.0	40.0	42.6	38.7	ug/L	EPA 8260B	3/6/14	106	96.7	9.74	70.0-130	25
Toluene	87551-03	<0.50	40.0	40.0	40.4	37.6	ug/L	EPA 8260B	3/6/14	101	94.0	7.26	70.0-130	25

Date: 03/07/2014

Project Name : Bay Counties Petroleum

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: 2094-6310-01

				Spike	Spiked	Duplicate Spike	e d			Spiked Sample		Relative	Spiked Sample Percent	Relative Percent
Parameter	Spiked Sample	Sample Value	Spike Level	Dup. Level	Sample Value	Sample Value	Units	Analysis M ethod	Date Analyzed	Percent Recov.	Percent Recov.	Percent Diff.	Recov. Limit	Diff. Limit
Benzene														
	87592-02	<0.50	40.0	40.0	40.9	39.5	ug/L	EPA 8260B	3/5/14	102	98.7	3.64	70.0-130	25
Ethylbenzene	07500 00	-0.50	40.0	40.0	40.0	40.0	/1	EDA 9260B	3/5/14	110	107	2.57	70.0-130	25
Methyl-t-butyl e	87592-02 ther	<0.50	40.0	40.0	43.9	42.8	ug/L	EPA 8260B	3/3/14	110	107	2.51	70.0-130	20
Wolfy' Cody' C	87592-02	<0.50	39.9	39.9	41.8	42.2	ug/L	EPA 8260B	3/5/14	105	106	1.16	70.0-130	25
Naphthalene	0,002 02	0.00		****			3							
	87592-02	<0.50	40.0	40.0	41.0	40.2	ug/L	EPA 8260B	3/5/14	102	100	2.08	70.0-130	25
P + M Xylene														
- .	87592-02	<0.50	40.0	40.0	45.3	43.3	ug/L	EPA 8260B	3/5/14	113	108	4.43	70.0-130	25
Toluene	07500 00	-0.50	40.0	40.0	40.4	40.6	/1	EPA 8260B	3/5/14	105	102	3.66	70.0-130	25
	87592-02	<0.50	40.0	40.0	42.1	40.6	ug/L	EPA 0200B	3/3/14	103	102	3.00	70.0-130	20
Benzene														
	87592-06	<0.50	40.0	40.0	38.3	37.7	ug/L	EPA 8260B	3/6/14	95.8	94.3	1.54	70.0-130	25
Ethylbenzene														
	87592-06	<0.50	40.0	40.0	41.6	40.5	ug/L	EPA 8260B	3/6/14	104	101	2.62	70.0-130	25
Methyl-t-butyl e		0.50			00.0	40.0		EDA 0000D	2/0/4/4	100	100	2.20	70.0-130	25
	87592-06	<0.50	39.9	39.9	39.9	40.8	ug/L	EPA 8260B	3/6/14	100	102	2.29	10.0-130	20

Report Number: 87592

Date: 03/07/2014

Project Name : Bay Counties Petroleum

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: 2094-6310-01

				Spike	Spiked	Duplicate Spike	e d			Spiked Sample	Duplicate Spiked Sample	Relative		Relative Percent
Parameter	Spiked Sample	Sample Value	Spike Level	Dʻup. Level	Sample Value	Sample Value	Units_	Analysis Method	Date Analyzed	Percent Recov.	Percent Recov.	Percent Diff.	Recov. Limit	Diff. Limit
Naphthalene														
D . M.V.I.	87592-06	<0.50	40.0	40.0	38.0	38.1	ug/L	EPA 8260B	3/6/14	95.1	95.2	0.108	70.0-130	25
P + M Xylene	87592-06	<0.50	40.0	40.0	42.7	41.8	ug/L	EPA 8260B	3/6/14	107	104	2.09	70.0-130	25
Toluene	67592-00	\0.50	40.0	40.0	42.1	41.0	ug/L	EI A 0200B	0/0/14	107	101	2.00	, 0.0	
	87592-06	<0.50	40.0	40.0	39.6	38.8	ug/L	EPA 8260B	3/6/14	99.0	97.0	2.06	70.0-130	25
Benzene	07500 04	.0.50	40.0	40.0	00.0	27.5	/1	EDA 0260D	2/5/4/4	95.0	93.8	1.26	70.0-130	25
Ethylbenzene	87592-01	<0.50	40.0	40.0	38.0	37.5	ug/L	EPA 8260B	3/5/14	95.0	93.0	1.20	70.0-130	25
Etty ibonzono	87592-01	<0.50	40.0	40.0	39.7	39.7	ug/L	EPA 8260B	3/5/14	99.2	99.2	0.0498	70.0-130	25
Methyl-t-butyl e														
	87592-01	<0.50	39.9	39.9	33.5	33.1	ug/L	EPA 8260B	3/5/14	84.0	83.0	1.18	70.0-130	25
Naphthalene			40.0	40.0	44.0	40.7		EDA 0000D	0/5/4/4	100	100	0.565	70.0.120	25
P + M Xylene	87592-01	<0.50	40.0	40.0	41.0	40.7	ug/L	EPA 8260B	3/5/14	102	102	0.565	70.0-130	25
1 · Wixylone	87592-01	<0.50	40.0	40.0	38.3	38.2	ug/L	EPA 8260B	3/5/14	95.8	95.6	0.223	70.0-130	25
Toluene							J							
	87592-01	<0.50	40.0	40.0	38.1	37.4	ug/L	EPA 8260B	3/5/14	95.2	93.6	1.72	70.0-130	25

Report Number: 87592

Date: 03/07/2014

QC Report : Laboratory Control Sample (LCS)

Project Name: Bay Counties Petroleum

Project Number : 2094-6310-01

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit	
Benzene	40.1	ug/L	EPA 8260B	3/6/14	90.0	70.0-130	
Ethylbenzene	40.1	ug/L	EPA 8260B	3/6/14	97.8	70.0-130	
Methyl-t-butyl ether	40.0	ug/L	EPA 8260B	3/6/14	88.6	70.0-130	
Naphthalene	40.1	ug/L	EPA 8260B	3/6/14	90.8	70.0-130	
P + M Xylene	40.1	ug/L	EPA 8260B	3/6/14	96.2	70.0-130	
Toluene	40.1	ug/L	EPA 8260B	3/6/14	91.0	70.0-130	
Benzene	39.7	ug/L	EPA 8260B	3/5/14	96.0	70.0-130	
Ethylbenzene	39.7	ug/L	EPA 8260B	3/5/14	104	70.0-130	
Methyl-t-butyl ether	39.6	ug/L	EPA 8260B	3/5/14	98.1	70.0-130	
Naphthalene	39.7	ug/L	EPA 8260B	3/5/14	97.4	70.0-130	
P + M Xylene	39.7	ug/L	EPA 8260B	3/5/14	106	70.0-130	
Toluene	39.7	ug/L	EPA 8260B	3/5/14	99.4	70.0-130	
Benzene	40.1	ug/L	EPA 8260B	3/6/14	94.7	70.0-130	
Ethylbenzene	40.1	ug/L	EPA 8260B	3/6/14	102	70.0-130	
Methyl-t-butyl ether	40.0	ug/L	EPA 8260B	3/6/14	99.4	70.0-130	
Naphthalene	40.1	ug/L	EPA 8260B	3/6/14	94.8	70.0-130	
P + M Xylene	40.1	ug/L	EPA 8260B	3/6/14	104	70.0-130	
Toluene	40.1	ug/L	EPA 8260B	3/6/14	97.4	70.0-130	
Benzene	40.1	ug/L	EPA 8260B	3/5/14	96.3	70.0-130	

Report Number: 87592

Date: 03/07/2014

QC Report : Laboratory Control Sample (LCS)

Project Name: Bay Counties Petroleum

Project Number: 2094-6310-01

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit	
Ethylbenzene	40.1	ug/L	EPA 8260B	3/5/14	101	70.0-130	
Methyl-t-butyl ether	40.0	ug/L	EPA 8260B	3/5/14	87.0	70.0-130	
Naphthalene	40.1	ug/L	EPA 8260B	3/5/14	100	70.0-130	
P + M Xylene	40.1	ug/L	EPA 8260B	3/5/14	96.9	70.0-130	
Toluene	40.1	ug/L	EPA 8260B	3/5/14	97.9	70.0-130	
Hexavalent Chromium	5.00	ug/L	EPA 218.6	3/4/14	102	90.0-110	

2795 2nd Street Suite 300 Davis, CA 95616 Lab: 530 297 4800

87592

Relinquished by:				Date	<u>-</u> -	— 4	Tin	ne 26	Rec	eived	3	Labor			 rel		<u> </u>	- N		-	Temp	°C		F Initia		ab I	Jse	_	_	Sam		Rece			nt Present
Relinquished by:			\dashv	Date		-			Rec	eived	by	Labor	atory	<u>.</u>						+	-			F	or l		_	_	_	Sam	ple l	Rece	ipt		
			\neg																								_		_			_			
	_						4		├-						-					В	ill to:						Stra	tus I	Envi	ronr	nent	al, In	C.		
Kelinquished by:				Date			Tim	ne -	Rec	eived	by:																								
News									L											4			1st	Qtr	201	4 Gi	oun	dwa	ter N	vioni	torin	g			
Relinquished by:			ľ	Date			'"										-		-	-[
		<u></u>	\dashv	Date	上	L	Tim	1	Reco	havie	bv.		L		Ш					R	emark	:s:		<u> </u>			<u>.</u>	1	1 [-11	TE	RE	D		
		<u> </u>	_		+	+	\vdash	\vdash	dash	+	+	+	╁	+	H	\dashv	+	+	+	+	十	\vdash	\vdash	+	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash		Н	_		
			\dashv		+	+	-		H	+	+	+	╁	+	H		+	\dashv	+	+	+	+	\vdash	-	-		T	\vdash				Н		1	
DW-7		₽		7.45	#	+	╀	Н	┝┤	+	4	+	+	+	Ĥ		+	+	+	+	+	-		\vdash								П			
DW-6		-				5	3	Н	$\vdash \vdash$	-	6	1	╄	+	X	\dashv	+	-	-	x ,	+-	\vdash	\vdash					Г		х			х	STAT	07
DW-5		-		816	-1-1	+-	3	Н	\vdash	-	6	1	┰	+	x	\dashv	+	1	x i	x ,	1	Τ						Γ		x			х	STAT	06
				9 25		5	3	Н	H	1	6	1	1	T	x	7	7	1	x	x >										х			X	STAT	05
DW-4		1		850	-+-	5	3	Н	\Box	1	6	1	1		x				x ;	K X										X			X	STAT	V
DW-3			一	1040	जा	5	3	П		7	6	1	1		x				x 2	K X										Х		\Box	X	STAT	
DW-2		1	\neg	950	ग्र	5	3				6	1	1		X				x 2	< ×								_		X	Н	\dashv	X	STAT	0 -
DW-1		3-4-	14	1015	5 9		3			1	6	1	1		X	\bot	\perp	-	-	(×	-							Ш	Н	X	Н	4			\mathbf{v}
Sample Designation		Date	е	Time	Ē	Sleeve	Poly	Glass	Tedlar	Ş	2 2	None None	Ñ Ŝ			io Soil	₹	_	_	_	_	5 Oxyg	Naphth	Lead S	Volatile	Volatile	Volatile	тРН в	ТРНа		W.E.T	Chlori	g X	1 wk	
Dublin, CA					§ §													13 /m (M3 100) Odd	TED A BO	BTEX (EPA 8280B)	TPH Gas (EPA 8260B)	5 Oxygenates (EPA 8260B)	Naphthalene (8260B)	Lead Scav. (1,2 DCA	Volatile Halocarbons (EPA 8280B)	Votatile Organics Full List (EPA	Volatile Organics (EPA 524.2 Drinking Water)	TPH as Diesel (EPA 8015M)	TPH as Motor Oil (EPA 8015M)	Dissolved (Cu, As, Cd, Ba, Cr, Fe,	W.E.T. Lead (STLC)	Chlorinated Solvents (EPA 8260B)		72 hr	
Project Address: 6310 Houston Place		38	ampli	ng	十	T	1		T	十	Ϊ	T	T	Н	П	T	T				826	(EPA	3280	8	وا	150 F	80	(EP/	7	As, C	STC				
Bay Counties Petroleum Project Address:		0.			╄		Cont	aini		4	Di	esen	ativ			Mat	rix		5		 @	8260	۵	A 8.1	S (EP	III LIS	PA 5	1 801	PA	d Ba		1 (E		48hr	For Lab Use
2094-6310-01 Project Name:					Sa	mpk	er Si	ignat		1			2.			_		7				<u>6</u>		1,2 EC	A 820	(EP	24.2	(MS	151	ភូ	- 1	A 82			de.
Project #:	P.O.	<i>.</i> #:			PD)F/EI	DF C	Deliv	rerab rech	le To	o (E	mail ratus	Add sinc.	ress net):			Ş						<u> </u>	80	A 826	ğ		Ę	e, Se,		8		24 hr	98
Phone #: 530-676-6004	Fax	# :				obal _						600						- Jan						EDB-EPA 8260B)		8260B)	§			<u>@</u>			1		Only
Company / Address: Stratus			ii, inc	<i>.</i> .					parry	_								Method						_1	٦		1			200.8				12 hr	
Trevor Hartwell; cc Renee	Schei	m			 	Ii.		`amı	pany	Loa	Co	do:				_	-	╁					_	Ana	lysi	s R	equ	est					_	TAT	
Analytical LLC Project Contact (Hardcopy or		Го):			Ca	lifor	nia E	DF	Repo	ort?		7	Yes	;		No				C	hai	n-ol	-Cu	usto	dy	Re	COI	d a	nd	An	alys	sis F	Requ	est	- 1

KIFF (
Analytical LLC	SA	MPL	_E R	ECEIPT CHEC	KLIS'	Γ		srg#: 8	7592
Sample Receipt Initials/Date: 845 030	414 5	Storag	e Time	e: 1320 Sample	le Login	Initia	is/Date: 💯	y 030414	,
	plit		lone	Method of Receipt:	C	ourier	Over-the-	counter [Shipped
Temp °C 4-2 N/A Therm ID /R3	3 Tim	ne (315	Coolant present	✓ Yes	□No	o ☐ Wa	ter 🔲 T	emp Excursion
For Shipments Only: Cooler Receipt Initials/	Date/Ti	me:			Custo	ody Seals	□ N/A	☐ Intact	Broken
Chain-of-Custody:	Yes		No	Documented on	COC	Labels		Discrepan	cies:
Is COC present?	/			Sample ID	/	/			
Is COC signed by relinquisher?	/			Project ID					
Is COC dated by relinquisher?				Sample Date					
Is the sampler's name on the COC?				Sample Time				- any	t
Are there analyses or hold for all samples?				Does COC match	oroject h	istory?	□ N/A	-2 Yes	☑No
01	T N// A	Vac	No	Comments: CR	+ 1	acel in	nes Th	10 PER 100	+ luitry.
Samples:	N/A	Yes	NO	SP ale com	ed ó	2 police	per fan	se se	21264 1570
Are sample custody seals intact? Are sample containers intact?	-			Br may recon		-11-93		7	030414 1300
Is preservation documented?	_	1					<u> </u>		
In-house Analysis:	N/A	Yes	No						
Are preservatives acceptable?	107	/	1.10		7				
Are samples within holding time?		/							
Are sample container types correct?		/							
Is there adequate sample volume?		1							
Receipt Details:		•							
Matrix Container Type	# of Co	ontaine	ers						
WA Voa	-	35							
Doly-250ml	1	4	i					CS	Required:

Proceed With Analysis: YES NO Client Communication:

Init/Date:

Subcontract Laboratory Report Attachments

CALSCIENCE

WORK ORDER NUMBER: 14-03-0264

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Kiff Analytical

Client Project Name: Bay Counties Petroleum

Attention: Joel Kiff

2795 2nd Street, Suite 300 Davis, CA 95618-6505

amande Porter

Approved for release on 03/11/2014 by: Amanda Porter Project Manager

Email your PM >

ResultLink >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name:	
----------------------	--

Bay Counties Petroleum

Work Order Number:

14-03-0264

1	Work Order Narrative	3
2	Client Sample Data	4
3	Quality Control Sample Data. 3.1 MS/MSD. 3.2 LCS/LCSD.	7 7 8
4	Sample Analysis Summary	9
5	Glossary of Terms and Qualifiers	10
6	Chain of Custody/Sample Receipt Form	11

Work Order Narrative

Work Order: 14-03-0264

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain of Custody (COC) on 03/05/14. They were assigned to Work Order 14-03-0264.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

New York NELAP air certification does not certify for all reported methods and analytes, reference the accredited items here: http://www.calscience.com/PDF/New_York.pdf

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Analytical Report

Kiff Analytical

2795 2nd Street, Suite 300 Davis, CA 95618-6505

Date Received:

Work Order:

14-03-0264

03/05/14

Preparation:

Filtered

Method: Units:

EPA 200.8

mg/L

Page 1 of 3

Project: Bay Counties Petroleum

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DW-1	14-03-0264-1-A	03/04/14 10:15	Aqueous	ICP/MS 03	03/05/14	03/06/14 22:33	140305L01F
Parameter		Result	RL		DF	Qua	alifiers
Arsenic		0.0111	0.0	0100	1.00		
Barium		0.0388	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Copper		0.00311	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Selenium		ND	0.0	0100	1.00		
Iron		1.90	0.0	500	1.00		

DW-2	14-03-0264-2-A	03/04/14 09:50	Aqueous	ICP/MS 03	03/05/14	03/06/14 22:36	140305L01F
Parameter	-	Result	RL		DF	Qu	alifiers
Arsenic		0.0348	0.0	00100	1.00		
Barium		0.0385	0.0	00100	1.00		
Cadmium		ND	0.0	00100	1.00		
Chromium		ND	0.0	00100	1.00		
Copper		0.00169	0.0	00100	1.00		
Lead		ND	0.0	00100	1.00		
Selenium		ND	0.0	00100	1.00		
Iron		1.74	0.0	500	1.00		

DW-3	14-03-0264-3-A	03/04/14 10:40	Aqueous	ICP/MS 03	03/05/14	03/06/14 22:40	140305L01F
<u>Parameter</u>		Result	RL	1	<u>DF</u>	Qu	alifiers
Arsenic		0.0130	0.0	0100	1.00		
Barium		0.139	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		0.00107	0.0	0100	1.00		
Copper		0.00217	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Selenium		ND	0.0	0100	1.00		
Iron		2.84	0.0	500	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Analytical Report

Kiff Analytical

2795 2nd Street, Suite 300

Davis, CA 95618-6505

Date Received:

Work Order:

Preparation:

Method:

03/05/14

14-03-0264

Filtered

EPA 200.8

Project: Bay Counties Petroleu	m		Units:			Pa	mg/ ge 2 of 3
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DW-4	14-03-0264-4-A	03/04/14 08:50	Aqueous	ICP/MS 03	03/05/14	03/06/14 07:23	140305L01F
<u>Parameter</u>		Result	RL		DF	Qua	lifiers
Arsenic		0.0349	0.0	0100	1.00		
Barium		0.0800	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Copper		0.00533	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Selenium		ND	0.0	0100	1.00		
Iron		2.53	0.0	500	1.00		
DW-5	14-03-0264-5-A	03/04/14 09:25	Aqueous	ICP/MS 03	03/05/14	03/06/14 07:36	140305L01F
Parameter		Result	RL	:	<u>DF</u>	Qua	alifiers
Arsenic		0.0408	0.0	0100	1.00		
Barium		0.0981	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Copper		0.00538	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Selenium		ND	0.0	0100	1.00		
Iron		2.71	0.0	500	1.00	•	
DW-6	14-03-0264-6-A	03/04/14 08:10	Aqueous	ICP/MS 03	03/05/14	03/06/14 07:39	140305L01F
<u>Parameter</u>		Result	RL		DF	Qua	alifiers
Arsenic		0.00356		0100	1.00		
Barium		0.0996	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		0.00282	0.0	0100	1.00		
Copper		0.00689	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Selenium		ND	0.0	0100	1.00		
Iron		ND	0.0	500	1.00		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Analytical Report

Kiff Analytical

2795 2nd Street, Suite 300

Davis, CA 95618-6505

Date Received:

Work Order:

Preparation:

Method: Units:

03/05/14

14-03-0264

Filtered

EPA 200.8

mg/L

Project: Bay Counties Petroleum

Page 3 of 3

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DW-7	14-03-0264-7-A	03/04/14 07:45	Aqueous	ICP/MS 03	03/05/14	03/06/14 07:43	140305L01F
<u>Parameter</u>		Result	RL	1	<u>DF</u>	Qua	lifiers
Arsenic		0.00344	0.0	0100	1.00		
Barium		0.114	0.0	0100	1.00		
Cadmium		ND	0.0	0100	1.00		
Chromium		ND	0.0	0100	1.00		
Copper		0.00742	0.0	0100	1.00		
Lead		ND	0.0	0100	1.00		
Selenium		ND	0.0	0100	1.00		
Iron		ND	0.0	500	1.00		

DF: Dilution Factor.

MDL: Method Detection Limit.

Quality Control - Spike/Spike Duplicate

Kiff Analytical

2795 2nd Street, Suite 300 Davis, CA 95618-6505

Date Received:

03/05/14

Work Order:

14-03-0264

Preparation:

Filtered

Method:

EPA 200.8

Project: Bay Counties Petroleum

Page 1 of 1

Quality Control Sample ID	Type	Matrix	Inst	rument	Date Ana	lyzed	MS/MSD Batch Number				
DW-1	Sample	120	Aqueous	CONTRACTOR OF THE PROPERTY OF		03/05/14	03/06/14	22:33	140305S01A		
DW-1	Matrix Spike		Aqueous			03/05/14	03/06/14	140305S01A			
DW-1	Matrix Spike I	Aqueous	ICP.	/MS 03	03/05/14	03/06/14	22:27	140305801			
<u>Parameter</u>	ameter <u>Sample Spike MS MS M</u> <u>Conc. Added Conc. %Rec. C</u>		MSD Conc.	MSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers			
Arsenic	0.01113	0.1000	0.1164	105	0.1105	99	80-120	5	0-20		
Barium	0.03882	0.1000	0.1411	102	0.1400	101	80-120	1	0-10		
Cadmium	ND	0.1000	0.09871	99	0.09716	97	80-120	2	0-20		
Chromium	ND	0.1000	0.1069	107	0.1040	104	80-120	3	0-20		
Copper	0.003114	0.1000	0.1045	101	0.1011	98	80-120	3	0-20		
Lead	ND	0.1000	0.1098	110	0.1086	109	80-120	1	0-20		
Selenium	ND	0.1000	0.09676	97	0.09367	94	80-120	3	0-20		
Iron	1.905	5.100	7.489	109	7.167	103	80-120	4	0-20		

Quality Control - LCS

Kiff Analytical

2795 2nd Street, Suite 300 Davis, CA 95618-6505

Date Received:

Work Order:

14-03-0264

Preparation:

Filtered

03/05/14

Method:

EPA 200.8

Project: Bay Counties Petroleum

Page 1 of 1

Quality Control Sample ID	Type	Matrix	Instrument I	Date Prepared	Date Analyzed	LCS Batch Number		
099-16-094-243	LCS	Aqueous	ICP/MS 03	03/05/14	03/05/14 16:52	140305L01F		
Parameter		Spike Added	Conc. Recovere	d LCS %Rec	. %Rec. 0	CL Qualifiers		
Arsenic		0.1000	0.1018	102	80-120			
Barium		0.1000	0.09887	99	80-120			
Cadmium		0.1000	0.1075	108	80-120			
Chromium		0.1000	0.1103	110	80-120			
Copper		0.1000	0.1066	107	80-120			
_ead		0.1000	0.1052	105	80-120			
Selenium		0.1000	0.1031	103	80-120			
Iron		5.100	5.696	112	80-120			

Sample Analysis Summary Report

Work Order: 14-03-0264			_	Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 200.8	Filtered	598	ICP/MS 03	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841

Z

Glossary of Terms and Qualifiers

rk Order:	r: 14-03-0264	Page 1 of 1
Qualifiers	Definition	
*	See applicable analysis comment.	
<	Less than the indicated value.	
>	Greater than the indicated value.	
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was r clarification.	eported without furthe
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate in control and, therefore, the sample data was reported without further clarification.	spike compound was
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected m associated LCS recovery was in control.	atrix interference. The
4	The MS/MSD RPD was out of control due to suspected matrix interference.	
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interf	erence.
6	Surrogate recovery below the acceptance limit.	
7	Surrogate recovery above the acceptance limit.	
В	Analyte was present in the associated method blank.	
BU	Sample analyzed after holding time expired.	
BV	Sample received after holding time expired.	
E	Concentration exceeds the calibration range.	
ET	Sample was extracted past end of recommended max. holding time.	
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.	
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but hear were also present (or detected).	•
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but light also present (or detected).	er hydrocarbons were
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Re estimated.	eported value is
JA	Analyte positively identified but quantitation is an estimate.	
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).	
ND	Parameter not detected at the indicated reporting limit.	
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceedir concentration by a factor of four or greater.	ng the spike
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.	
Χ	% Recovery and/or RPD out-of-range.	

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Analyte presence was not confirmed by second column or GC/MS analysis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

2795 Second Street, Suite 300

Davis, CA 95618 Lab: 530.297.4800

Calscience 7440 Lincoln Way Garden Grove, CA 92841-1427

14-03-0264

Fax: 530.297.4808

97592

								14-0	290.	-043	4				NO.		31 93	_		~age	- 10	<i>I</i> T T
Project Contact (Hardcopy or PDF to):				EDF Report? YES					C	Chain-of-Custody Record and Analysis Request												
		1																				
		Recommended but not mandatory to complete this section:																				
Kiff Analytical Phone No.: FAX No.:			ling Com	pany Lo	g Code:				Analysis Request							TAT						
FAX No.:		Globa	il ID:	T	260011	3164	1	Т	T	TT												
	3	ļ					·	_[\perp		H					f	1 1	ı			
				-								1 1		ı								<u>چ</u>
0/392								٠,	اءِ			1								ွှ		O no y
			ontainer	/ Prese	rvative	+	Matrix											11		á		l se
···		 ₹							g g											귀 .		a G
Samplir	g	齓								1 1								11		4		For Lab Use
		P. P.	$ \cdot $						2 200		ı											ı.
Date	Time	250m				Wate		300	2								1.					
03/04/14	10:15	1				X		,	x			П						П		х		1
03/04/14	09:50	1				X		,	Χ	П		П				П		П	7	хT	\Box	ಎ
03/04/14	10:40	1				X		,	ĸ	П		П	1		Π			П		x		3
03/04/14	08:50	1				X		7	K			П						П		x		4
03/04/14	09:25	1				X		>	K	П										x		4
03/04/14	08:10	1				X		>	K										;	x _		6
03/04/14	07:45	1				X	Ш)	<u> </u>	П				\perp	L			Ш		X.		7
		Щ				Ш			\perp			Ш	_	1		Ц		Ш	1	\bot	Ш	
		Ц.,										Ш	_		Ц			Ш	4	\perp	Ш	
				Ш			Ш					Ш	\perp		Ш		\perp		\perp			
mestal				d by:							eman	(8 :	Plea	se re	eter 1	o at	tache	dles	st De	etaii.		
Relinquished by: Date				Time Received by:																		
	Date	Time	Receive	d by Labo	oratory:					Bill to:												
								Accounts Payable														
	FAX No.: 530-297-4808 P.O. No.: 87592 Samplir Date 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14	FAX No.:	FAX No.: 530-297-4808 P.O. No.: B7592 E E E E E E E E E	FAX No.:	FAX No.:	FAX No.: 530-297-4808 P.O. No.: Deliverables to (Email Address): inbox@kiffanalytical.com Container / Preservative	Recommended but not mandatory to complete this a Sampling Company Log Code:	Post Post	FAX No.:	Container Preservative Matrix Sampling Sampli	FAX No.: Sampling Company Log Code:	Recommended but not mandatory to complete this section: Sampling Company Log Code:	Recommended but not mandatory to complete this section: Sampling Company Log Code: Ana	Recommended but not mandatory to complete this section: Sampling Company Log Code: Analysis	Recommended but not mandatory to complete this section: Sampling Company Log Code: Analysis Ref S30-297-4808 P.O. No.: S7592 Deliverables to (Email Address): inbox@kiffanalytical.com Sampling Date Time Received by: Date Time Ti	FAX No.:	Recommended but not mendatory to complete this section: Sampling Company Log Code: Analysis Request	FAX No.:	Recommended but not mandatory to complete this section: Sampling Company Log Code: Analysis Request	Sampling Container / Preservative Matrix Sampling Sampli	FAX No.: Sampling Company Log Code: Analysis Request TA	Chain-of-Custody Record and Analysis Request Sampling Company Log Code: Analysis Request TAT

to Contents

Test Detail for Kiff Work Order: 87592

ICP-MS 200.8 Dissolved (1)

Arsenic, Dissolved
Barium, Dissolved
Cadmium, Dissolved
Chromium, Dissolved
Copper, Dissolved
Iron, Dissolved
Lead, Dissolved
Selenium, Dissolved

Date Printed 3/4/2014

Shipped From:
KIFF ANALYTICAL
2795 2ND STREET 300
DAVIS, CA 95618

Tracking#D10010663140831

Sent By: SAMPLE RECEIVINGX125

Phone#: (530)297-4800

wgt(lbs): 35

Reference: SUBS 87588,

Reference 2: 600

Ship To Company:

CALSCIENCE ENVIRONMENTAL LABS 7440 LINCOLN WAY GARDEN GROVE, CA 92841 SAMPLE RECEIVING (714)895-5494 Service: S

Sort Code: ORG

Special Services:

Signature Required

WORK ORDER #: 14-03- □ □ □ □

SAMPLE RECEIPT FORM

Cooler _/ of _/

CLIENT: KUS	DATE:	03/05/	<u>14</u>
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, no	ot frozen except se	ediment/tissue)	
Temperature $\frac{1}{\sqrt{7}}$ °C - 0.3 °C (CF) = $\frac{1}{\sqrt{7}}$ °C	C Blank	☐ Sample	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:		•	
☐ Sample(s) outside temperature criteria but received on ice/chilled on	-	lina.	
☐ Received at ambient temperature, placed on ice for transpor		9.	
Ambient Temperature: □ Air □ Filter	t by counter.	Checked by:	836
Ambient remperature. Li Air Li Finter	- 150 A.	Officered by.	
CUSTODY SEALS INTACT:	13.44		
☑ Cooler □ □ No (Not Intact) □ Not F	resent N/A	Checked by:	836
□ Sample □ □ No (Not Intact) □ Not F	resent	Checked by:	lwz
	الانتهام المراجعة ا والمراجعة المراجعة ا	State a succession of	F1. 11.
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	•		
COC document(s) received complete			
☐ Collection date/time, matrix, and/or # of containers logged in based on samp			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquish		_	1
Sampler's name indicated on COC		· _	<i>1</i> 0
Sample container label(s) consistent with COC	•	<u>,</u>	
Sample container(s) intact and good condition	_		
Proper containers and sufficient volume for analyses requested	•		
Analyses received within holding time	<u>J</u>		
Aqueous samples received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfides ☐ Dissolved Oxygen			Z
Proper preservation noted on COC or sample container			
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation CONTAINER TYPE:	🗖 .		-2
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □	EnCores [®] □Terra	aCores [®] □	
Aqueous: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □12	5AGBp □1AGB	□1AGBna₂ □1	AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □25	0CGBs □1PB	□1PBna □5	00PB
□250PB ☑250PBnf□125PB □125PBznna □100PJ □100PJn	a₂ □ □_		
Air: □Tedlar [®] □Canister Other: □ Trip Blank Lot#:			403
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable B	T. S.	Reviewed by: _	653
Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 u: Ultra-pure znna:	: ZnAc2+NaOH f: Filtered	Scanned by:	10

APPENDIX D

GEOTRACKER ELECTRONIC SUBMITTAL CONFIRMATIONS

GeoTracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:GEO_WELLReport Title:1Q14 GeowellFacility Global ID:T0600113164

Facility Name: BAY COUNTIES PETROLEUM

File Name: GEO_WELL.zip

Organization Name: Stratus Environmental, Inc.

<u>Username:</u> STRATUS NOCAL <u>IP Address:</u> 50.192.223.97

<u>Submittal Date/Time:</u> 3/12/2014 8:39:48 AM

Confirmation Number: 6043786227

Copyright © 2014 State of California

GeoTracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF

Report Title: 1Q14 Analytical 1 of 2

Report Type: Monitoring Report - Semi-Annually

Facility Global ID: T0600113164

Facility Name: BAY COUNTIES PETROLEUM

File Name: 14030264.zip

Organization Name: Stratus Environmental, Inc.

<u>Username:</u> STRATUS NOCAL <u>IP Address:</u> 50.192.223.97

<u>Submittal Date/Time:</u> 3/12/2014 7:20:41 AM

Confirmation Number: 6734276950

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2014 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF

Report Title:

1Q14 Analytical 2 of 2

Report Type:

Monitoring Report - Semi-Annually

Facility Global ID:

T0600113164

Facility Name:

BAY COUNTIES PETROLEUM

File Name:

EDF_BayCountiesPetroleum_87592.ZIP

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL 50.192.223.97

IP Address:
Submittal Date/Time:

3/12/2014 7:21:26 AM

Confirmation Number:

2272361099

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2014 State of California