RECEIVED

4:53 pm, Nov 19, 2012

Alameda County Environmental Health

Ms. Dilan Roe Alameda County Environmental Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: 6310 Houston Place, Dublin, California 94568

ACEHS Case No. RO0002862, GeoTracker ID T0600113164

Dear Ms. Roe:

I declare, under penalty of perjury, that the information and or recommendations contained in the attached document are true and correct to the best of my knowledge.

Sincerely,

Mr. Cary Grayson

October 29, 2012 Project No. 2094-6310-01

Ms. Dilan Roe Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: Quarterly Monitoring and Sampling Report – Third Quarter 2012 6310 Houston Place, Dublin, California 94568
ACEHD Case No. RO0002862, GeoTracker ID T0600113164

Dear Ms. Roe:

Stratus Environmental, Inc. (Stratus) is submitting the attached report, which presents an update of work performed during the third quarter 2012 on behalf of Mr. Cary Grayson for the facility located at 6310 Houston Place, Dublin, California. Stratus representatives, whose signatures appear below, declare under penalty of perjury, that the information contained in the attached report are true and correct to the best of our knowledge.

If you have any questions regarding this project, please contact Mr. Kasey Jones at (415) 576-0373.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Kasey L. Jones Project Manager

Attachment:

Quarterly Monitoring and Sampling Report, Third Quarter 2012

cc: Mr. Cary Grayson (via email carybgrayson@gmail.com)

Stephen J. Carter, P.G.

Senior Geologist

No. 5577

6310 HOUSTON PLACE QUARTERLY MONITORING AND SAMPLING REPORT

Facility Address: 6310 Houston Place, Dublin, California 94568

Consulting Co. / Contact Person: Stratus Environmental, Inc. / Kasey Jones

Consultant Project No: 2094-6310-01

Primary Agency/Regulatory ID No: Dilan Roe, Alameda County Environmental Health Department (ACEHD) Case No. RO0002862

WORK PERFORMED THIS QUARTER (Third Quarter 2012):

On September 27, 2012, Stratus conducted the third quarter 2012 semi-annual groundwater monitoring and sampling event. Prior to sampling, all wells (DW-1 through DW-7) were gauged for depth to water, temperature, pH, conductivity, dissolved oxygen (DO) and oxygen-reduction potential (ORP), purged and groundwater samples were collected. All samples were forwarded to a state-certified analytical laboratory, for analysis. Field data sheets, sampling procedures and laboratory analytical reports are included as Appendices A, B, and C, respectively. Analytical results of sampled wells and depth to groundwater measurements have been uploaded to the State of California's GeoTracker database. Documentation of these data uploads is attached in Appendix D.

WORK PROPOSED FOR NEXT QUARTER (Fourth Quarter 2012):

1. During the fourth quarter 2012, Stratus will conduct groundwater monitoring and sampling activities at the site. During this event, all wells will be gauged, purged, and sampled. All samples will be forwarded to a state-certified analytical laboratory for analysis.

Current Phase of Project:

Soil and Groundwater Investigation (SWI)

Wells DW-1 through DW-7 = Quarterly

Groundwater Sampling Date:

September 27, 2012

Is Free Product (FP) Present on Site:

Approximate Depth to Groundwater:

Groundwater Flow Direction / Gradient:

West-northwest / 0.003 to 0.009 ft/ft

DISCUSSION:

During the third quarter 2012, Stratus conducted groundwater monitoring and sampling activities on September 27, 2012. During this event, wells DW-1 through DW-7 were gauged for depth to water, evaluated for the presence of free product, purged and sampled. Groundwater samples were collected, forwarded to a state-certified analytical laboratory, and analyzed for diesel range organics (DRO), with silica gel cleanup, by EPA Method SW8015B/DHS LUFT Manual, and for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tert-butyl ether (MTBE), and naphthalene by EPA Method SW8260B.

At the direction of ACEHD, Stratus also collected samples for metals analysis of chromium (Cr), Iron (Fe), copper (Cu), arsenic (As), selenium (Se), cadmium (Cd), barium (Ba), and lead (Pb) all by EPA Method 200.8 and for hexavalent chromium (Cr⁶⁺) by EPA Method 218.6. Dissolved metal concentrations (including historical data) are included in Table 2.

At the time of the September 2012 groundwater monitoring event, depth to groundwater was measured between 7.84 and 9.20 feet below ground surface (bgs) in all monitoring wells. Groundwater elevations decreased between 0.89 and 1.86 feet in all wells since the last monitoring event (May 14, 2012). Groundwater monitoring data were converted to feet above mean sea level (MSL) and used to prepare a groundwater elevation contour map (Figure 2). Groundwater flow direction at the site was generally west-northwest with a calculated gradient between 0.003 and 0.009 ft/ft. Depth to water measurements reported for well DW-2 were appeared anomalous compared to historical monitoring data. Therefore, this well was not used in contour construction. Historical groundwater flow has been toward the west, southwest and south-southwest.

Concentrations of BTEX or naphthalene were not reported in any of the sampled wells during the third quarter 2012. DRO was reported in wells DW-1 (230 micrograms per liter (μ g/L)), DW-2 (340 μ g/L), DW-3 (740 μ g/L), DW-4 (63 μ g/L), and DW-5 (660 μ g/L). A very low concentration of MTBE was also reported in onsite well DW-4 (1.2 μ g/L). No concentrations of any sampled analytes were reported in offsite wells DW-6 or DW-7 during third quarter 2012. Tabulated groundwater analytical data are summarized in Table 1. Certified Analytical results are presented in Appendix C. DRO, benzene, and MTBE concentrations for groundwater samples collected during the third quarter 2012 are presented in Figure 3.

ATTACHMENTS:

•	Table 1	Groundwater Elevation and Analytical Summary
•	Table 2	Groundwater Analytical – Dissolved Metals Summary
•	Figure 1	Site Location Map
•	Figure 2	Groundwater Elevation Contour Map, Third Quarter 2012
•	Figure 3	Groundwater Analytical Summary, Third Quarter 2012
•	Appendix A	Field Data Sheets

- Appendix B Sampling and Analyses Procedures
- Appendix C Laboratory Analytical Reports and Chain-of-Custody Documentation
- Appendix D GeoTracker Electronic Submittal Confirmations

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	**DRO (µg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (μg/L)	MTBE (μg/L)	Naphthalene (μg/L)
DW-1	04/10/07	7.44	334.23	326.79	8,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/12/07	7.72	334.23	326.51	30,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	7.88	334.23	326.35	18,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	6.16	334.23	328.07	13,000	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	6.96	334.23	327.27	15,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.55	334.23	326.68	5,200	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	8.02	334.23	326.21	11,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	7.58	334.23	326.65	5,600	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	7.43	334.23	326.80	540	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/13/11	6.81	334.23	327.42	1,700	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0
	07/05/11	6.47	334.23	327.76	380	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0
	01/04/12	8.05	334.23	326.18	390	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0
	05/02/12	6.40	334.23	327.83	89,000	<500[3]	<500[3]	<500[3]	<500[3]	<500[3]	<4,000[3]
	05/14/12*	6.69	334.23	327.54	71	<25[3]	<25[3]	<25[3]	<25[3]	<25[3]	<200[3]
	05/14/12**	6.69	334.23	327.54	100	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	09/27/12	8.10	334.23	326.13	230	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
DW-2	04/10/07	7.09	334.00	326.91	8,200	<0.5	<0.5	<0.5	< 0.5	< 0.5	
	07/12/07	7.40	334.00	326.60	34,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	7.55	334.00	326.45	14,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	5.89	334.00	328.11	17,000	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	6.63	334.00	327.37	27,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.25	334.00	326.75	16,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	7.74	334.00	326.26	11,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	7.23	334.00	326.77	6,900	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	7.40	334.00	326.60	550	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
	01/13/11	6.27	334.00	327.73	7,500	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	07/05/11	6.12	334.00	327.88	210	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/04/12	7.77	334.00	326.23	1,600	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0
	05/02/12	6.06	334.00	327.94	23,000	<250[3]	<250[3]	<250[3]	<250[3]	<250[3]	<2,000[3]
	05/14/12*	6.39	334.00	327.61	450	<10[3]	<10[3]	<10[3]	<10[3]	<10[3]	<80[3]
	05/14/12**	6.39	334.00	327.61	260	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	09/27/12	8.25	334.00	325.75	340	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	**DRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	Naphthalene (μg/L)
DW-3	04/10/07	7.90	334.56	326.66	27,000	< 0.5	< 0.5	<0.5	<0.5	<0.5	
	07/12/07	8.19	334.56	326.37	210,000	< 0.5	<1.7	<1.7	<1.7	<1.7	
	10/11/07	8.29	334.56	326.27	71,000	<25	<25	<25	<25	< 0.5	
	01/25/08	6.63	334.56	327.93	66,000	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.38	334.56	327.18	58,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.94	334.56	326.62	38,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	8.41	334.56	326.15	29,000	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	8.12	334.56	326.44	29,000	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	8.02	334.56	326.54	6,300	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/13/11	7.06	334.56	327.50	1,800	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0
	07/05/11	6.88	334.56	327.68	780	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/04/12	8.43	334.56	326.13	9,000	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0
	05/02/12	6.92	334.56	327.64	53,000	<250[3]	<250[3]	<250[3]	<250[3]	<250[3]	<2,000[3]
	05/14/12*	7.13	334.56	327.43	1,300	<25[3]	<25[3]	<25[3]	<25[3]	<25[3]	<200[3]
	05/14/12**	7.13	334.56	327.43	740	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	09/27/12	8.54	334.56	326.02	740	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
DW-4	04/10/07	7.99	334.49	326.50	65	<0.5	<0.5	<0.5	<0.5	0.67	
	07/12/07	8.22	334.49	326.27	300	< 0.5	< 0.5	< 0.5	< 0.5	0.87	
	10/11/07	8.33	334.49	326.16	640	< 0.5	< 0.5	< 0.5	< 0.5	0.80	
	01/25/08	6.62	334.49	327.87	240	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.39	334.49	327.10	340	< 0.5	< 0.5	< 0.5	< 0.5	0.94	
	07/23/08	7.94	334.49	326.55	<50	< 0.5	< 0.5	< 0.5	< 0.5	0.94	
	10/30/08	8.39	334.49	326.10	<50	< 0.5	< 0.5	< 0.5	< 0.5	0.92	
	01/11/10	8.13	334.49	326.36	65	<1.0	<1.0	<1.0	<1.0	< 5.0	
	08/03/10	8.00	334.49	326.49	370	< 0.50	< 0.50	< 0.50	< 0.50	0.76	
	01/13/11	7.08	334.49	327.41	370	< 0.50	< 0.50	< 0.50	< 0.50	0.74	<4.0[3]
	07/05/11	6.91	334.49	327.58	300	< 0.50	< 0.50	< 0.50	< 0.50	0.96	<2.0
	01/04/12	8.38	334.49	326.11	88	< 0.50	< 0.50	< 0.50	< 0.50	0.80	<2.0
	05/02/12	6.85	334.49	327.64	33,000	<100[3]	<100[3]	<100[3]	<100[3]	<100[3]	<800[3]
	05/14/12*	7.20	334.49	327.29	140	<10[3]	<10[3]	<10[3]	<10[3]	<10[3]	<80[3]
Duplicate	05/14/12*	7.20	334.49	327.29	< 50	<25[3]	<25[3]	<25[3]	<25[3]	<25[3]	<200[3]
	05/14/12**	7.20	334.49	327.29	110[4]	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
	05/14/12**	7.20	334.49	327.29	4,000[5]	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
	09/27/12	8.59	334.49	325.90	63	<0.50	< 0.50	< 0.50	< 0.50	1.2	<0.50

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	**DRO (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (μg/L)	MTBE (μg/L)	Naphthalene (μg/L)
DW-5	04/10/07	7.00	333.91	326.91	800	< 0.5	< 0.5	<0.5	< 0.5	<0.5	
	07/12/07	7.36	333.91	326.55	990	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	7.52	333.91	326.39	880	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	5.93	333.91	327.98	730	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	6.52	333.91	327.39	780	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	7.24	333.91	326.67	340	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	7.68	333.91	326.23	1,200	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	7.47	333.91	326.44	130	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	7.32	333.91	326.59	490[1,2]	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/13/11	6.23	333.91	327.68	470	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	07/05/11	6.12	333.91	327.79	220	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/04/12	7.72	333.91	326.19	380	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<4.0[3]
	05/02/12	6.04	333.91	327.87	38,000	<250[3]	<250[3]	<250[3]	<250[3]	<250[3]	<2,000[3]
	05/14/12*	6.36	333.91	327.55	190	<50[3]	<50[3]	<50[3]	<50[3]	<50[3]	<400[3]
	05/14/12**	6.36	333.91	327.55	250[6]	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
	09/27/12	7.84	333.91	326.07	660	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
DW-6	04/10/07	8.62	334.99	326.37	<50	< 0.5	<0.5	<0.5	<0.5	< 0.5	
	07/12/07	8.81	334.99	326.18	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	8.53	334.99	326.46	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/25/08	7.16	334.99	327.83	<50	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.53	334.99	327.46	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	8.24	334.99	326.75	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	8.62	334.99	326.37	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	8.18	334.99	326.81	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	8.25	334.99	326.74	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
	01/13/11	7.69	334.99	327.30	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	07/05/11	7.06	334.99	327.93	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/04/12	8.52	334.99	326.47	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	05/02/12	7.65	334.99	327.34	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	05/14/12	NM	334.99	NM			Not sch	eduled for s	sampling		
	09/27/12	8.54	334.99	326.45	<50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	**DRO (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (μg/L)	MTBE (μg/L)	Naphthalene (μg/L)
DW-7	04/10/07	8.11	335.18	327.07	< 50	< 0.5	<0.5	<0.5	<0.5	<0.5	
	07/12/07	8.34	335.18	326.84	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/11/07	8.96	335.18	326.22	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1	01/25/08	6.75	335.18	328.43	< 50	< 0.5	< 0.5	< 0.5	< 0.5		
	04/23/08	7.95	335.18	327.23	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/23/08	8.55	335.18	326.63	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	10/30/08	8.96	335.18	326.22	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	01/11/10	8.62	335.18	326.56	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	
	08/03/10	8.58	335.18	326.60	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 2.0
	01/13/11	7.85	335.18	327.33	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	07/05/11	7.49	335.18	327.69	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	01/04/12	9.17	335.18	326.01	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<4.0[3]
	05/02/12	7.46	335.18	327.72	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.0
	05/14/12	NM	335.18	NM			Not sch	eduled for	sampling		
	09/27/12	9.20	335.18	325.98	<50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50

Notes:

Data through January 11, 2010, reported by AEI Contultants.

Prior to 8/3/10, reported as TPH-D

-- = Not analyzed

NM = Not measured

DRO = total petroleum hydrocarbons as diesel (C13-C-22)

MTBE = methyl-tertiary butyl ether

 $\mu g/L = micrograms per liter$

- ||[1]| = reported concentration includes additional compounds uncharacteristic of common fuels and lubricants.
- ||[2]| = DRO concentration may include contributions from heavier-end hydrocarbons that elute in the DRO range.
- [3] = Reporting limits were increased due to sample foaming.
- [4] = Discrete peaks in diesel range, atypical for diesel fuel.
- [5] = Hydrocarbons are higher-boiling than typical diesel fuel.
- [6] = Lower boiling hydrocarbons present, atypical for diesel fuel.

^{* =} Sample was collected as a split grab sample. Sample was forwarded to Alpha Analytical.

^{** =} Sample was collected as a split grab sample. Sample was forwarded to Kiff Analytical.

GROUNDWATER ANALYTICAL - DISSOLVED METALS SUMMARY TABLE 2

6310 Houston Place, Dublin, California

DW-6	DW-5	DW-4	DW-3	DW-2	DW-1	Well Number
08/03/10 10/07/10 10/19/10 11/30/10 01/13/11 05/09/12 09/27/12	08/03/10 10/07/10 10/19/10 11/30/10 01/13/11 05/09/12 09/27/12	08/03/10 10/07/10 10/19/10 11/30/10 01/13/11 05/09/12 09/27/12	08/03/10 10/07/10 10/19/10 11/30/10 01/13/11 05/09/12 09/27/12	08/03/10 10/07/10 10/19/10 10/19/10 11/30/10 01/13/11 05/09/12 09/27/12	08/03/10 10/07/10 10/19/10 11/30/10 01/13/11 05/09/12 09/27/12	Date Collected
NS N	<10 11 69 <10 11 <40 2.12	NS N	<10 13 14 <10 14 <40 <1.0	VS N N N N N N N N N N N N N N N N N N N	<10 23 28 13 49 <40 2.13	Cu (µg/L)
NS NS NS NS	5.8 5.1 5.1 5.5 4.9 17 31.7	NS N	<2.0 6.4 6.7 6.7 5.4 26 9.01	43 N S N S N S N S N S N S N S N S N S N	9.4 87 79 43.0 41 37 28.3	As (µg/L)
^1.0	<pre><1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0</pre>	V N N N N N N N N N N N N N N N N N N N	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	V N N N N N N N N N N N N N N N N N N N	<pre><1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0</pre>	Cd (µg/L)
NS N	48 53 53 55 69 45 29.4	NS N	58 87 96 76 69 62	20.5 NS NS NS NS NS NS NS NS NS NS NS NS NS	28 21 20 32 37 37 <20 11.6	Ba (μg/L)
NS N	^1.0 - ^1.0 - ^1.0	^1.0	<u></u>	VS NS	<1.0 <1.0 <1.0 <1.0 6.1 6.1 6.1	Сr ⁺⁶ (µg/L)
NS NS NS NS NS	<5.0 <5.0 <5.0 8.5 19 <20 <1.0	O. 1.0 N. N. N	<5.0 6.3 16 9.4 9.4 29 <20 <1.0	^1.0	6.8 17 22 13 72 <20 <1.0	Cr (µg/L)
95 N S N S N S N S N S N S N S N S N S N S	540 640 1,700 1,200 8,800 3,600	139 N.	2,300 2,600 12,000 3,000 16,000 1,800 410	20 NS	7,300 5,200 13,000 3,900 35,000 1,200 94.6	Fe (µg/L)
2.1° S. S. S	<5.0 <5.0 <5.0 <5.0 <5.0 <1.0	V N N N N N N N N N N N N N N N N N N N	<pre><5.0 <5.0 <5.0 <5.0 <5.0 <7.0 </pre>	^1.0 NS NS NS NS	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <4.0	Se (µg/L)
^1.0 NS NS N	<5.0 <5.0 <5.0 <5.0 <5.0 <1.0	S S S S S S S S S S S S S S S S S S S	<5.0 <5.0 <5.0 <5.0 <7.4 <20 <1.0	^1.0 N N N N N N N N N N N N N N N N N N N	<5.0 <5.0 6.3 <5.0 16 <20 <1.0	Pb (μg/L)

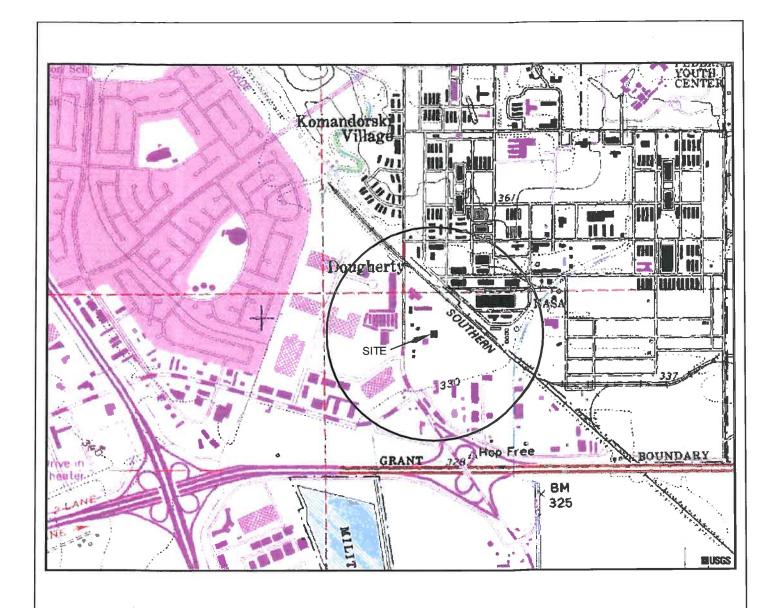

Bay Counties Quarterly Metals STRATUS

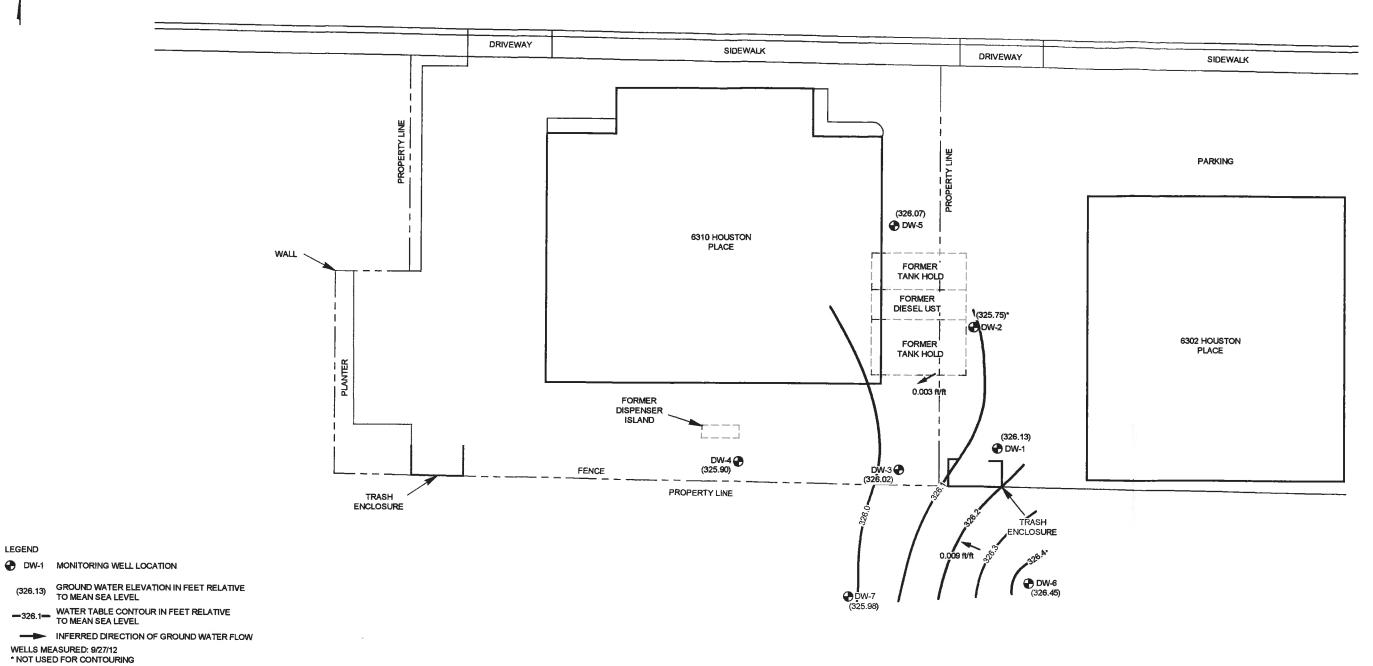
TABLE 2
GROUNDWATER ANALYTICAL - DISSOLVED METALS SUMMARY

6310 Houston Place, Dublin, California

Well Number	Date	Cu	As	Cd	Ba	Cr ⁺⁶	Cr	Fe	Se	Pb
Well Number	Collected	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	(µg/L)
DW-7	08/03/10	<10	5.6	<1.0	45	<1.0	45	29,000	5.7	15
	10/07/10	71	5.7	<1.0	51	<1.0	92	57,000	< 5.0	< 5.0
1	10/19/10	69	4.2	<1.0	49	<1.0	110	69,000	< 5.0	< 5.0
	11/30/10	23	< 2.0	<1.0	50	<1.0	42	21,000	< 5.0	< 5.0
	01/13/11	32	6.0	<1.0	48	<1.0	79	36,000	7.8	12
	05/09/12	<40	34	<4.0	71		30	3,400	<20	<20
	09/27/12	1.95	3.1	<1.0	66.8	<1.0	<1.0	<50	<1.0	<1.0
Notes:	<u> </u>			_			 _			
μg/L = microgran	ms per liter		Cr = Chro	mium			NS = Not	Sampled		
Cu = Copper			$Cr^{+6} = H$	exavalen	t Chromiu	m	= Not A			
As = Arsenic			Fe = Iron					,		
Cd = Cadmium			Se = Selenium							
Ba = Barium			Pb = Lead							

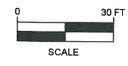
Bay Counties Quarterly Metals STRATUS

GENERAL NOTES: BASE MAP FROM U.S.G.S. DUBLIN, CA. 7.5 MINUTE TOPOGRAPHIC PHOTOREVISED 1989


6310 HOUSTON PLACE DUBLIN, CALIFORNIA

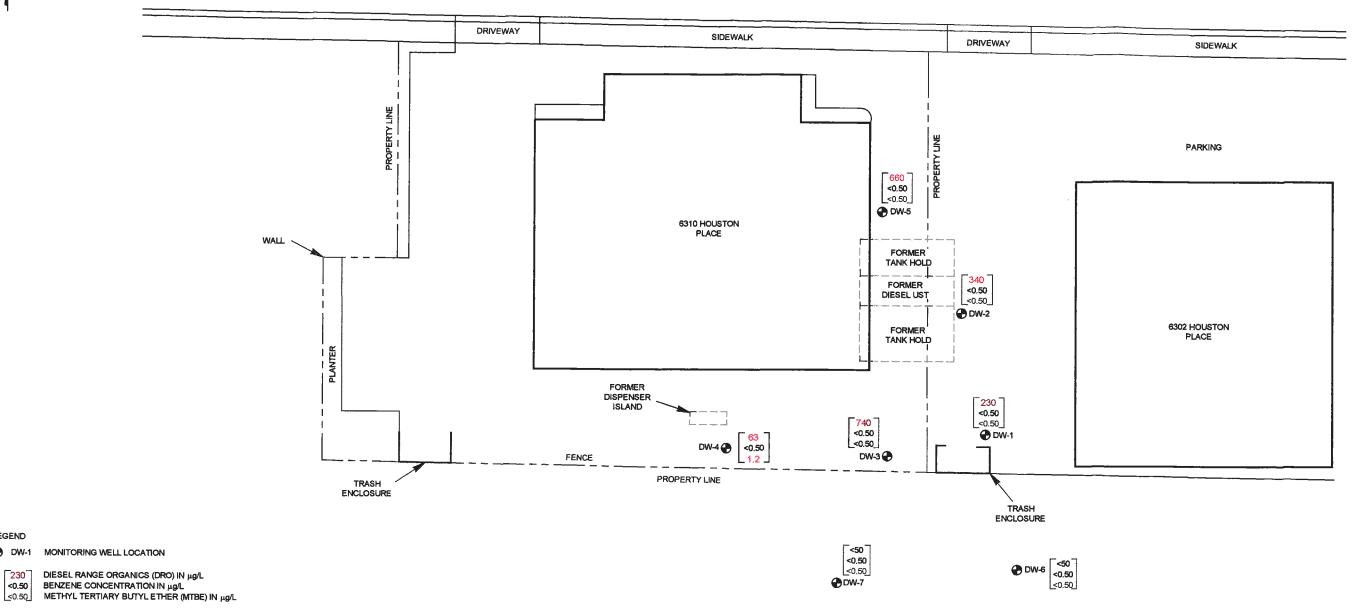
SITE LOCATION MAP

FIGURE


1 PROJECT NO. 2094-6310-01

STRATUS ENVIRONMENTAL, INC.

LEGEND


6310 HOUSTON PLACE DUBLIN, CALIFORNIA

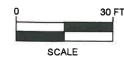
GROUNDWATER ELEVATION CONTOUR MAP 3rd QUARTER 2012

FIGURE

PROJECT NO. 2094-6310-01

HOUSTON PLACE

LEGEND


DW-1 MONITORING WELL LOCATION

WELLS SAMPLED 9/27/12

DRO ANALYZED BY EPA METHOD 8015B

BENZENE & MTBE ANALYZED BY EPA METHOD 8260B

STRATUS ENVIRONMENTAL, INC.

6310 HOUSTON PLACE

DUBLIN, CALIFORNIA

GROUNDWATER ANALYTICAL SUMMARY 3rd QUARTER 2012

FIGURE

PROJECT NO. 2094-6310-01

APPENDIX A FIELD DATA SHEETS

Site Address	6310 Houston Pla	ice
City	Dublin, CA	The same of the same
	Chris Hill	
Signature	CHILL	

Site Number	Bay Counties	
Project Number	2094-6310-01	
Project PM	Kasev Jones	
DATE	9-27-12	

	Wa	ater Level D	ata			Purge V	olume Calc	ulations			Purge	Metho	d	S	ample Reco	ord	Field Data	1
Well ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (feet)	Water column (feet)	Diameter (inches)	Multiplier	3 casing volumes (gallons)	Actual water purged (gallons)	No Purge	Bailer	Pump	other	DTW at sample time (feet)	Sample I.D	Sample Time	DO (mg/L)	
DW-1			8.10	16.49	8.39	2	.5	4	Ц		乂	<u> </u>		8.14	DW-1	0555	8.90	ł
Dw-Z	0432		8-25	16.56	8-31	Z	,5	4	4		K			8.40		0546	1.80	ł.
DW-3			8,54	16.61	8-07	Z	15	4	4		文			8.71		0000	1.23	ľ
	0824		8.59	16.78		Z	15	Ч	4		X			8.71		7845	1,50	ł
	0431		7.84	16.84	90	2	,5	5	3		X			7.86	15		1.16	Į,
DV-6			8.54	16.83		Z	,5	4	4		X			8.57		4.	1.38	
Dw-7	0644		9.20	14.75	7.51	2	.5	4	4		人			9,22		0712	1.80	ļ
				ļ														
										L								l
							-											ı
										<u> </u>								
														_				
									-									
						-												
					-													
													$\neg \neg$					
															- 			
													$\neg \neg$					

Multiplier 2" = 0.5 3" = 1.0 4" = 2.0 6" = 4.4

Please refer to groundwater sampling field procedures
pH/Conductivity/temperature Meter - Oakton Model PC-10
DO Meter - Oakton 300 Series (DO is always measured before purge)

	CALIBRATION DATE								
pH 9-17-12									
Conductivity	\	_							
DO									

Site Address 6310 Houston Place Site Number Bay Counties

City Dublin .

Sampled By: Chris Hill Signature

Project Number 2094-6310-01
Project PM Kasey Jones
DATE 9 27 / 2

Well ID DW	5			· ;	Well ID DW	7			·
Purge start time			Odor	12 N	Purge start time			0.1	<i>6</i> 0
	Temp C	рН	cond	gallons	a go dian (time	Temp C	- all	Odor	(Y) N
time 0445	18-9	7.07	1027	8	time 0501	20.8	693	908	gallons
time 0 4 49	19.4	7.04	1075	2	time 0512	21.0	6.95	4	8
time 0452	14.3	7.00	1033	5	time 0515	21.2	4.85	869	2
time				-	time	4110	100	869	4
purge stop time	1-16		ORP	212	purge stop time	1.80	<u> </u>	ORP Z	77
Well ID RWI					Well ID PW			OKF 2	
Purge start time			Odor	(Y) N	Purge start time			Odor	Ø N
	Temp C	рН	cond	gallons		Temp C	рН	cond	gallons
time 0520	19.3	7.21	1289	8	time 6532	19.0	7.02	1017	B
time 9524	19.3	7.74	1368	2	time 1535	19.Z	7.06	989	3
time 0527	19.3	7.24	1388	4	time / 538	18.6	7.00	946	4
time					lime			110	7
purge stop time	8.90		ORP	49	purge stop time	1.23		ORP /	98
Well ID DU	7	· .			Well ID BWO				70
Purge start time			Odor		Purge start time			Odor	Y (N)
	Temp C	рН	cond	gallons		Temp C	рН	cond	gallons
time 0649	1913	6-97	1131	8	time 0700	20.0	6-75	1040	8
ime 0(153	19.4	6.81	1058	2	time 0 10 3	19.7	6.77	1051	2
ime 0699	19.6	6.80	1051	4	time 0 706	19.4	6.80	1047	4
ime					time	, , , , , , , , , , , , , , , , , , , ,			
ourge slop time	1.80		ORP 2	145	purge stop time	1.38		ORP Z	168
Vell ID Rw4	<i>l</i>				Well ID				
urge start time			Odor	Ø N	Purge start time			Odor	YN
	Temp C	рH	cond	gallons		Temp C	РН	cond	gallons
me 0827	1815	6.94	992	Ø	lime				
me 832	18.6	6.78	1014	2	ime				
me 0833	18.6	6-73	1005	4	ime				
me					ime				
urge stop time	1.50		ORP Z	55	ourge stop time			ORP	

APPENDIX B SAMPLING AND ANALYSES PROCEDURES

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures as well as the quality assurance plan are contained in this appendix. The procedures and adherence to the quality assurance plan will provide for consistent and reproducible sampling methods; proper application of analytical methods; accurate and precise analytical results; and finally, these procedures will provide guidelines so that the overall objectives of the monitoring program are achieved.

Ground Water and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the ground water depth in monitoring wells that do not contain LPH. Depth to ground water or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typical a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Ground Water

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Purging and Sampling

Monitoring wells are purged using a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water have been removed. If three well volumes can not be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a ground water sample is then removed from each of the wells using a disposable bailer.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air from remaining in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped.

The water sample is collected, labeled, and handled according to the Quality Assurance Plan. Water generated during the monitoring event is disposed of accruing to regulatory accepted method pertaining to the site.

QUALITY ASSURANCE PLAN

Procedures to provide data quality should be established and documented so that conditions adverse to quality, such as deficiencies, deviations, nonconforments, defective material, services, and/or equipment, can be promptly identified and corrected.

General Sample Collection and Handling Procedures

Proper collection and handling are essential to ensure the quality of a sample. Each sample is collected in a suitable container, preserved correctly for the intended analysis, and stored prior to analysis for no longer than the maximum allowable holding time. Details on the procedures for collection and handling of samples used on this project can be found in this section.

Soil and Water Sample Labeling and Preservation

Label information includes a unique sample identification number, job identification number, date, and time. After labeling all soil and water samples are placed in a Ziploc type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Upon recovery, the sample container is sealed to minimize the potential of volatilization and cross-contamination prior to chemical analysis. Soil sampling tubes are typically closed at each end with Teflon® sheeting and plastic caps. The sample is then placed in a Ziploc® type bag and sealed. The sample is labeled and refrigerated at approximately 4° Celsius for delivery, under strict chain-of-custody, to the analytical laboratory.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded on the borehole log or in the field records. The samples are analyzed by a Califomia-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and

noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

Sample bottles, caps, and septa used in sampling for volatile and semivolatile organics will be triple rinsed with high-purity deionized water. After being rinsed, sample bottles will be dried overnight at a temperature of 200°C. Sample caps and septa will be dried overnight at a temperature of 60°C. Sample bottles, caps, and septa will be protected from solvent contact between drying and actual use at the sampling site. Sampling containers will be used only once and discarded after analysis is complete.

Plastic bottles and caps used in sampling for metals will be soaked overnight in a 1-percent nitric acid solution. Next, the bottles and caps will be triple rinsed with deionized water. Finally, the bottles and caps will be air dried before being used at the site. Plastic bottles and caps will be constructed of linear polyethylene or polypropylene. Sampling containers will be used only once and discarded after analysis is complete. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the

Before the sampling event is started, equipment that will be placed in the well or will come in contact with groundwater will be disassembled and cleaned thoroughly with detergent water, and then steam cleaned with deionized water. Any parts that may absorb contaminants, such as plastic pump valves, etc. will be cleaned as described above or replaced.

During field sampling, equipment surfaces that are placed in the well or contact groundwater will be steam cleaned with deionized water before the next well is purged or sampled. Equipment blanks will be collected and analyzed from non-disposable sampling equipment that is used for collecting groundwater samples at the rate of one blank per twenty samples collected.

Internal Quality Assurance Checks

Internal quality assurance procedures are designed to provide reliability of monitoring and measurement of data. Both field and laboratory quality assurance checks are necessary to evaluate the reliability of sampling and analysis results. Internal quality assurance procedures generally include:

- Laboratory Quality Assurance

- Documentation of instrument performance checks
- Documentation of instrument calibration
- Documentation of the traceability of instrument standards, samples, and data
- Documentation of analytical and QC methodology (QC methodology includes use of spiked samples, duplicate samples, split samples, use of reference blanks, and check standards to check method accuracy and precision)

- Field Quality Assurance

- Documentation of sample preservation and transportation
- Documentation of field instrument calibration and irregularities in performance

Internal laboratory quality assurance checks will be the responsibility of the contract laboratories. Data and reports submitted by field personnel and the contract laboratory will be reviewed and maintained in the project files.

Types of Quality Control Checks

Samples are analyzed using analytical methods outlined in EPA Manual SW 846 and approved by the California Regional Water Quality Control Board-Central Valley Region in the Leaking Underground Fuel Tanks (LUFT) manual and appendices. Standard contract laboratory quality control may include analysis or use of the following:

- · Method blanks reagent water used to prepare calibration standards, spike solutions, etc. is analyzed in the same manner as the sample to demonstrate that analytical interferences are under control.
- Matrix spiked samples a known amount of spike solution containing selected constituents is added to the sample at concentrations at which the accuracy of the analytical method is to satisfactorily monitor and evaluate laboratory data quality.
- Split samples a sample is split into two separate aliquots before analysis to assess the reproducibility of the analysis.
- Surrogate samples samples are spiked with surrogate constituents at known concentrations to monitor both the performance of the analytical system and the effectiveness of the method in dealing with the sample matrix.
- · Control charts graphical presentation of spike or split sample results used to track the accuracy or precision of the analysis.
- Quality control check samples when spiked sample analysis indicates atypical instrument performance, a quality check sample, which is prepared independently of the calibration standards and contains the constituents of interest, is analyzed to confirm that measurements were performed accurately.

Calibration standards and devices - traceable standards or devices to set instrument response so that sample analysis results represent the absolute concentration of the constituent.

Field QA samples will be collected to assess sample handling procedures and conditions. Standard field quality control may include the use of the following, and will be collected and analyzed as outlined in EPA Manual SW 846.

- Field blanks reagent water samples are prepared at the sampling location by the same procedure used to collect field groundwater samples and analyzed with the groundwater samples to assess the impact of sampling techniques on data quality. Typically, one field blank per twenty groundwater samples collected will be analyzed per sampling event.
- Field replicates duplicate or triplicate samples are collected and analyzed to assess the reproducibility of the analytical data. One replicate groundwater sample per twenty samples collected will be analyzed per sampling event, unless otherwise specified. Triplicate samples will be collected only when specific conditions warrant and generally are sent to an alternate laboratory to confirm the accuracy of the routinely used laboratory.
- Trip blanks reagent water samples are prepared before field work, transported
 and stored with the samples and analyzed to assess the impact of sample transport
 and storage for data quality. In the event that any analyte is detected in the field
 blank, a trip blank will be included in the subsequent groundwater sampling
 event.

Data reliability will be evaluated by the certified laboratory and reported on a cover sheet attached to the laboratory data report. Analytical data resulting from the testing of field or trip blanks will be included in the laboratory's report. Results from matrix spike, surrogate, and method blank testing will be reported, along with a statement of whether the samples were analyzed within the appropriate holding time.

Stratus will evaluate the laboratory's report on data reliability and note significant QC results that may make the data biased or unacceptable. Data viability will be performed as outlined in EPA Manual SW 846. If biased or unacceptable data is noted, corrective actions (including re-sample/re-analyze, etc.) will be evaluated on a site-specific basis.

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Date: 10/04/2012

Laboratory Results

Kasey Jones Stratus Environmental, Inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682

Subject: 7 Water Samples

Project Name: BAY COUNTIES PETROLEUM

Project Number:

Dear Mr. Jones,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the National Environmental Laboratory Accreditation Program (NELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy Turpen

Troy D. Turpen

Date: 10/04/2012

Project Name : BAY COUNTIES PETROLEUM

Project Number:

Sample: DW-1

TPH as Diesel (Silica Gel)

Octacosane (Silica Gel Surr)

Matrix : Water

Lab Number: 82765-01

Sample Date :09/27/2012		B.A Ale - I			
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	09/27/12 15:30
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:28
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:28
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:28
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:28
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:28
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:28
1,2-Dichloroethane-d4 (Surr)	98.5		% Recovery	EPA 8260B	10/04/12 02:28
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	10/04/12 02:28
4-Bromofluorobenzene (Surr)	98.8		% Recovery	EPA 8260B	10/04/12 02:28

50

ug/L

M EPA 8015

% Recovery M EPA 8015

230

108

10/01/12 19:59

10/01/12 19:59

Date: 10/04/2012

Project Name: BAY COUNTIES PETROLEUM

Project Number:

Sample: DW-2

Matrix: Water

Lab Number: 82765-02

Parameter	Measured Value_	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	09/27/12 15:40
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 09:12
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 09:12
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 09:12
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 09:12
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 09:12
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 09:12
1,2-Dichloroethane-d4 (Surr)	100		% Recovery	EPA 8260B	10/03/12 09:12
Toluene - d8 (Surr)	103		% Recovery	EPA 8260B	10/03/12 09:12
4-Bromofluorobenzene (Surr)	98.3		% Recovery	EPA 8260B	10/03/12 09:12
TPH as Diesel (Silica Gel)	340	50	ug/L	M EPA 8015	10/01/12 20:28
Octacosane (Silica Gel Surr)	100		% Recovery	M EPA 8015	10/01/12 20:28

Date: 10/04/2012

Project Name : BAY COUNTIES PETROLEUM

Project Number:

Sample: DW-3

Matrix: Water

Lab Number: 82765-03

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	09/27/12 15:50
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 08:58
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 08:58
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 08:58
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 08:58
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 08:58
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 08:58
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	10/03/12 08:58
Toluene - d8 (Surr)	96.1		% Recovery	EPA 8260B	10/03/12 08:58
4-Bromofluorobenzene (Surr)	94.3		% Recovery	EPA 8260B	10/03/12 08:58
TPH as Diesel (Silica Gel)	740	50	ug/L	M EPA 8015	10/01/12 20:58
Octacosane (Silica Gel Surr)	94.5		% Recovery	M EPA 8015	10/01/12 20:58

Date: 10/04/2012

Project Name: BAY COUNTIES PETROLEUM

Project Number:

Sample: DW-4

Matrix: Water

Lab Number: 82765-04

Sample Date .09/2/72012		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	09/27/12 16:00
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 09:08
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 09:08
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 09:08
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 09:08
Methyl-t-butyl ether (MTBE)	1.2	0.50	ug/L	EPA 8260B	10/03/12 09:08
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 09:08
1,2-Dichloroethane-d4 (Surr)	99.2		% Recovery	EPA 8260B	10/03/12 09:08
Toluene - d8 (Surr)	99.5		% Recovery	EPA 8260B	10/03/12 09:08
4-Bromofluorobenzene (Surr)	93.6		% Recovery	EPA 8260B	10/03/12 09:08
TPH as Diesel (Silica Gel)	63	50	ug/L	M EPA 8015	10/01/12 21:27
Octacosane (Silica Gel Surr)	101		% Recovery	M EPA 8015	10/01/12 21:27

Date: 10/04/2012

Project Name: BAY COUNTIES PETROLEUM

Project Number:

Sample: DW-5

Matrix: Water

Lab Number: 82765-05

Parameter	Measured Value	Method Reporting	l leite	Analysis	Date/Time
rarameter	value	Limit	Units	Method	Analyzed
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	09/27/12 16:09
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:21
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:21
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:21
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:21
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:21
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:21
1,2-Dichloroethane-d4 (Surr)	102		% Recovery	EPA 8260B	10/03/12 15:21
Toluene - d8 (Surr)	96.3		% Recovery	EPA 8260B	10/03/12 15:21
4-Bromofluorobenzene (Surr)	98.0		% Recovery	EPA 8260B	10/03/12 15:21
TPH as Diesel (Silica Gel)	660	50	ug/L	M EPA 8015	10/01/12 21:56
Octacosane (Silica Gel Surr)	90.8		% Recovery	M EPA 8015	10/01/12 21:56

Date: 10/04/2012

Project Name : BAY COUNTIES PETROLEUM

Project Number:

Sample: **DW-6** Matrix: Water Lab Number: 82765-06

Sample Date :03/2/1/2012		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Hexavalent Chromium	2.4	1.0	ug/L	EPA 218.6	09/27/12 16:19
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:53
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:53
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:53
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:53
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:53
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	10/03/12 15:53
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	10/03/12 15:53
Toluene - d8 (Surr)	97.2		% Recovery	EPA 8260B	10/03/12 15:53
4-Bromofluorobenzene (Surr)	102		% Recovery	EPA 8260B	10/03/12 15:53
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	10/01/12 22:26
Octacosane (Silica Gel Surr)	100		% Recovery	M EPA 8015	10/01/12 22:26

Date: 10/04/2012

Project Name: BAY COUNTIES PETROLEUM

Project Number:

Sample: DW-7 Matrix: Water Lab Number: 82765-07

Sample Bate .55/2/12012	Measured	Method Reporting		Analysi s	Date/Time
Parameter	Value	Limit	Units	Method	Analyzed
Hexavalent Chromium	< 1.0	1.0	ug/L	EPA 218.6	09/27/12 16:29
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:59
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:59
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:59
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:59
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:59
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	10/04/12 02:59
1,2-Dichloroethane-d4 (Surr)	99.2		% Recovery	EPA 8260B	10/04/12 02:59
Toluene - d8 (Surr)	104		% Recovery	EPA 8260B	10/04/12 02:59
4-Bromofluorobenzene (Surr)	98.9		% Recovery	EPA 8260B	10/04/12 02:59
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	10/04/12 11:53
Octacosane (Silica Gel Surr)	85.4		% Recovery	M EPA 8015	10/04/12 11:53

Date: 10/04/2012

QC Report : Method Blank Data

Project Name: BAY COUNTIES PETROLEUM

Parameter	Measured Value	Method Reporting	g Units	Analysis Method	Date Analyzed
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	10/01/2012
Octacosane (Silica Gel Surr)	107		%	M EPA 8015	10/01/2012
Benzene Ethylbenzene	< 0.50 < 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Toluene	< 0.50	0.50 0.50	ug/L ug/L	EPA 8260B EPA 8260B	10/03/2012 10/03/2012
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
1,2-Dichloroethane-d4 (Surr)	101		%	EPA 8260B	10/03/2012
4-Bromofluorobenzene (Surr)	96.6		%	EPA 8260B	10/03/2012
Toluene - d8 (Surr)	105		%	EPA 8260B	10/03/2012
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
1,2-Dichloroethane-d4 (Surr)	99.5		%	EPA 8260B	10/03/2012
4-Bromofluorobenzene (Surr)	95.1		%	EPA 8260B	10/03/2012
Toluene - d8 (Surr)	104		%	EPA 8260B	10/03/2012

Parameter	Measured Value	Method Report Limit		Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
1,2-Dichloroethane-d4 (Surr)	101		%	EPA 8260B	10/03/2012
4-Bromofluorobenzene (Surr)	96.6		%	EPA 8260B	10/03/2012
Toluene - d8 (Surr)	95.8		%	EPA 8260B	10/03/2012
Benzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Toluene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
Naphthalene	< 0.50	0.50	ug/L	EPA 8260B	10/03/2012
1,2-Dichloroethane-d4 (Surr)	98.1		%	EPA 8260B	10/03/2012
4-Bromofluorobenzene (Surr)	94.4		%	EPA 8260B	10/03/2012
Toluene - d8 (Surr)	100		%	EPA 8260B	10/03/2012
Hexavalent Chromium	<1.0	1.0	ug/L	EPA 218.6	09/27/2012

Date: 10/04/2012

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Name: BAY COUNTIES PETROLEUM

	Spiked	Sample	Spike	Spike	Spiked	Duplicate Spike		Omahai.	Date	Spiked Sample	Duplicat Spiked Sample	Relative	Spiked Sample Percent	Relative Percent
Parameter	Sample	Value	Level	Dup. Level	Sample Value	Sample Value	Units	Analysis Method	Date Analyzed	Percent Recov.	Percent Recov.	Percent Diff.	Recov. Limit	Diff. Limit
Hexavalent Chr	omium							-						
	82759-01	1.1	5.00	5.00	6.11	6.12	ug/L	EPA 218.6	9/27/12	101	101	0.0458	90.0-110	10
TPH-D (Si Gel)														
	BLANK	<50	1000	1000	827	867	ug/L	M EPA 8015	10/1/12	82.7	86.7	4.67	70-130	25
Benzene														
Ethylbenzene	82765-02	<0.50	40.0	40.0	39.6	39.0	ug/L	EPA 8260B	10/3/12	99.1	97.6	1.53	80-120	25
Methyl-t-butyl e	82765-02	<0.50	40.0	40.0	41.0	40.5	ug/L	EPA 8260B	10/3/12	102	101	1.38	80-120	25
wearyi-t-butyi e	82765-02	<0.50	40.0	40.0	20.6	24.0		EDA 2000D	10/0/10					
Naphthalene	02/03-02	~0.50	40.0	40.0	39.6	34.9	ug/L	EPA 8260B	10/3/12	98.9	87.3	12.4	69.7-121	25
P + M Xylene	82765-02	<0.50	40.0	40.0	39.6	39.2	ug/L	EPA 8260B	10/3/12	99.1	97.9	1.16	70.0-130	25
Toluene	82765-02	<0.50	40.0	40.0	39.5	39.1	ug/L	EPA 8260B	10/3/12	98.8	97.7	1.08	76.8-120	25
roluene	82765-02	<0.50	40.0	40.0	41.7	41.2	ug/L	EPA 8260B	10/3/12	104	103	1.12	80-120	25

Date: 10/04/2012

Project Name: BAY COUNTIES PETROLEUM

QC Report : Matrix Spike/ Matrix Spike Duplicate

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	d Units	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Benzene							_					-		
	82815-07	<0.50	40.0	40.0	38.3	37.9	ug/L	EPA 8260B	10/3/12	95.8	94.7	1.13	80-120	25
Ethylbenzene														
	82815-07	1.2	40.0	40.0	40.3	41.1	ug/L	EPA 8260B	10/3/12	97.7	99.5	1.85	80-120	25
Methyl-t-butyl e	ether													
N 14 1	82815-07	<0.50	40.0	40.0	39.1	39.2	ug/L	EPA 8260B	10/3/12	97.7	98.1	0.383	69.7-121	25
Naphthalene														
D I M Video	82815-07	<0.50	40.0	40.0	38.1	38.0	ug/L	EPA 8260B	10/3/12	95.2	95.1	0.197	70.0-130	25
P + M Xylene														
Toluene	82815-07	5.3	40.0	40.0	42.5	43.0	ug/L	EPA 8260B	10/3/12	93.0	94.3	1.34	76.8-120	25
roluene														
	82815-07	3.5	40.0	40.0	43.0	42.6	ug/L	EPA 8260B	10/3/12	98.7	97.6	1.07	80-120	25
Benzene														
Benzene	82765-03	<0.50	40.0	40.0	40.9	40.0		EDA 0000D	10/0/10	400				
Ethylbenzene	02703-03	~ 0.50	40.0	40.0	40.9	40.2	ug/L	EPA 8260B	10/3/12	102	101	1.62	80-120	25
	82765-03	<0.50	40.0	40.0	40.0	40.0		EDA 0000D	40/0/40	4.0.5	400			
Methyl-t-butyl e		~0.50	40.0	40.0	42.2	40.8	ug/L	EPA 8260B	10/3/12	105	102	3.39	80-120	25
ouryr c butyr c		<0.50	40.0	40.0	27.2	27.0		ED4 00000	40.0440					
	82765-03	\U.3U	40.0	40.0	37.3	37.8	ug/L	EPA 8260B	10/3/12	93.2	94.6	1.45	69.7-121	25

Date: 10/04/2012

Project Name: BAY COUNTIES PETROLEUM

QC Report : Matrix Spike/ Matrix Spike Duplicate

	Spiked	Sample	Spike	Spi ke Dup.	Spiked Sample	Duplicate Spike Sample	e d	Analysis	Date	Spiked Sample	Duplicate Spiked Sample Percent	Relative	Spiked Sample Percent	Relative Percent
Parameter	Sample	Value	Level	Level	Value	Value	Units	Method	Analyzed	Recov.	Recov.	Diff.	Limit	Diff. Limit
Naphthalene								_			_	·		
	82765-03	<0.50	40.0	40.0	41.1	40.6	ug/L	EPA 8260B	10/3/12	103	101	1.32	70.0-130	25
P + M Xylene														
	82765-03	<0.50	40.0	40.0	40.6	39.7	ug/L	EPA 8260B	10/3/12	102	99.3	2.30	76.8-120	25
Toluene														
	82765-03	<0.50	40.0	40.0	39.8	38.9	ug/L	EPA 8260B	10/3/12	99.6	97.2	2.45	80-120	25
_														
Benzene														
	82765-04	<0.50	40.0	40.0	41.1	40.5	ug/L	EPA 8260B	10/3/12	103	101	1.49	80-120	25
Ethylbenzene														
	82765-04	<0.50	40.0	40.0	39.3	39.1	ug/L	EPA 8260B	10/3/12	98.3	97.7	0.621	80-120	25
Methyl-t-butyl e	ther													
	82765-04	1.2	40.0	40.0	37.5	38.2	ug/L	EPA 8260B	10/3/12	90.9	92.6	1.87	69.7-121	25
Naphthalene														
	82765-04	<0.50	40.0	40.0	39.6	39.7	ug/L	EPA 8260B	10/3/12	99.0	99.3	0.338	70.0-130	25
P + M Xylene														
	82765-04	<0.50	40.0	40.0	39.5	39.0	ug/L	EPA 8260B	10/3/12	98.8	97.6	1.24	76.8-120	25
Toluene														
	82765-04	<0.50	40.0	40.0	41.9	41.1	ug/L	EPA 8260B	10/3/12	105	103	1.98	80-120	25

Date: 10/04/2012

Project Name: BAY COUNTIES PETROLEUM

QC Report : Laboratory Control Sample (LCS)

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	40.1	ug/L	EPA 8260B	10/3/12	94.0	80-120
Ethylbenzene	40.1	ug/L	EPA 8260B	10/3/12	99.0	80-120
Methyl-t-butyl ether	40.1	ug/L	EPA 8260B	10/3/12	97.2	69.7-121
Naphthalene	40.1	ug/L	EPA 8260B	10/3/12	94.5	70.0-130
P + M Xylene	40.1	ug/L	EPA 8260B	10/3/12	95.1	76.8-120
Toluene	40.1	ug/L	EPA 8260B	10/3/12	98.6	80-120
Benzene	40.4		ED 1 0000D	10/0/10		
	40.1	ug/L	EPA 8260B	10/3/12	95.6	80-120
Ethylbenzene	40.1	ug/L	EPA 8260B	10/3/12	97.2	80-120
Methyl-t-butyl ether	40.1	ug/L	EPA 8260B	10/3/12	82.8	69.7-121
Naphthalene	40.1	ug/L	EPA 8260B	10/3/12	94.5	70.0-130
P + M Xylene	40.1	ug/L	EPA 8260B	10/3/12	93.8	76.8-120
Toluene	40.1	ug/L	EPA 8260B	10/3/12	102	80-120
Benzene	39.8	ug/L	EPA 8260B	10/3/12	101	80-120
Ethylbenzene	39.8	ug/L	EPA 8260B	10/3/12	103	80-120
Methyl-t-butyl ether	39.8	ug/L	EPA 8260B	10/3/12	84.0	69.7-121
Naphthalene	39.8	ug/L	EPA 8260B	10/3/12	99.6	70.0-130
P + M Xylene	39.8	ug/L	EPA 8260B	10/3/12	99.0	76.8-120
Toluene	39.8	ug/L	EPA 8260B	10/3/12	97.3	80-120
	00.0	ug/L	LI-74 0200B	10/3/12	31.3	00-120
Benzene	40.1	ug/L	EPA 8260B	10/3/12	98.3	80-120

Report Number: 82765

Date: 10/04/2012

QC Report : Laboratory Control Sample (LCS)

Project Name: BAY COUNTIES PETROLEUM

Project Number:

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit	
Ethylbenzene	40.1	ug/L	EPA 8260B	10/3/12	94.8	80-120	
Methyl-t-butyl ether	40.1	ug/L	EPA 8260B	10/3/12	94.5	69.7-121	
Naphthalene	40.1	ug/L	EPA 8260B	10/3/12	96.6	70.0-130	
P + M Xylene	40.1	ug/L	EPA 8260B	10/3/12	95.3	76.8-120	
Toluene	40.1	ug/L	EPA 8260B	10/3/12	100	80-120	
Hexavalent Chromium	5.00	ug/L	EPA 218.6	9/27/12	92.5	90.0-110	

KIFF (a)	Fav: 5	30.297.48 30.297.48	ივ		<u> </u>						SRG	# / L:	ab No	o.	_	8												Page		<u> </u>	of	
Kasey Janks	10):		Califo		F Report				Yes		No						C	nair	-of-	Cus	stod	y R	ecor	d ar	nd A	naly	/sis	Req	uest			
Company / Address: 3330	menen }	ok DZ	Samp	oling Co	mpany L	og Co	de:					_						_			Ana	lysis	Req	uest						T	AT	_
Project Contact (Hardcopy or PDF Kasey Jones Company / Address: 3330 C STANUS Phone Number: 9530-676-666 Fax Number: 530 670 600 Project #: P.O. #	94											_				8260B)	<u>@</u>						-	ircle	meth	od		23		13	2 hr	
Fax Number: .530 670 600	150		EDF	Delivera	ble To (E	mail /	Addre	ess):								(EPA	8260	(B)		.	()e			200.7 / 6010)				82603				>
Project #: P.O. #	:		Bill to	:												IE, TBA	(EP)	PA 826		<u> </u>	g wat			4 200.7				80			4 hr	O
Project Name: Bay Countie Project Address:	s Petr	oleum	Samp	oler Sign	nature					_			8260B)			ETBE, TAN	OH, MeOH	2 EDB) (EI	\ 8260B)	(EPA 8260	4.2 Unnkin	m)	7 / 6010)	Pb.Zn) (EP/	0 / 7471)	010)		1	Notals	4	8hr	For Lah Lise Only
Project Address:	Sai	mpling		Contai	iner	Т	Pres	ervat	ive		Matr	ix	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		(a)	DIPE.	, + E	A 4.	(EP	II List	PA 52	PA 80	A 200.	,C,N,	/ 747	7 / 60		3	3	7:	2hr	ш
			VOA				G.						@ 0.5 ppb (EPA	BTEX (EPA 8260B)	TPH Gas (EPA 8260B)	5 Oxygenates (MTBE, DIPE, ETBE, TAME, TBA) (EPA 8260B)	7 Oxygenates (5 oxy + EtOH, MeOH) (EPA 8260B)	.ead Scav. (1,2 DCA & 1,2 EDB) (EPA 8260B)	Volatile Halocarbons (EPA 8260B)	Volatile Organics Full List (EPA 8260B)	Voladile Organics (EPA 524.2 Drinking Water)	TPH as Malor Oil (FPA 8015M)	CAM 17 Metals (EPA 200.7 / 6010)	5 Waste Oil Metals (Cd,Cr,Ni,Pb,Zn) (EPA	Mercury (EPA 245.1 / 7470 / 7471)	Total Lead (EPA 200.7 / 6010)	W.E.T. Lead (STLC)	Sthalan	shul	1	wk	,
Sample Designation	Date	Time	40 ml V	Poly	Glass	도 모	MONH	None		Water	Soil	ž	MTBE (зтех	PHG	O Syg	Oxyg	ead S	/olatile	/olatile		H H	AM 1	Waste	Jercur	otal Le	V.E.T.	3	25		1	
Dw-1	9272	0555	X	X			1. }	A		X			7	_							د	_	T	ų,	_		-	又,	XX			0
Dw. Z Dw. 3	1	0540	//	(I	9							(1	1		ヿ	0
		0600	2				2						\Box									\prod) 1			1	0
DW-4		0845	17			Y	Y			D			7	17														()	1		_	0
DW-5		0500					7	7		C			T)								1				Г			1	217			0
DW-6		0725	1\			15	2	1		3		Т	π									П	\top)				OL
DW-7	1	0712	X	X		/ X	X	Y		X	1	1	X	X			1	_		1	7	4						7	4 c			0
			++			+	3	+	-	H	\dagger	+					+	+		+	+						\dashv	_			+	
0							3						Г				1	\uparrow	1	1	\top		T								\dashv	_
Relinquished by Smrt	n	927	72	Time /23		ed by:								_	Rem	arks:	0	- 3	5./	I Ce	. (اعاد	0	le	~NO	קני	-(ole	uma	Mer	40	- K
Relinquished by:		Date		Time	Receiv	ed by:									M 2	ete	ls 8	٤ (נטב	A	s,c	:d,	B	a , 6	ø	D. E.	Ø,	C R	Z _J F	Met e,Se	, PI)
Relinquished by:		Date		Time	Receiv	ed by	Labo	ratory					·v1		┝				_							npie l						_
		092	ルに	123	12 5	1	1	IK	T	_0	1	enl			Те	mp °C	T	Ini	tials	Τ		Date	,,,,	T.,.	-	Tin		<u>'</u>	erm. ID #	# C	oolant Pr	'esen
								-111	1		L /																			V	es /	No

SAMPLE RECEIPT CHECKLIST

RECEIVER
8
Initials

SRG#:	82765	.	Date: 097	2712	
Project ID:	Bay Counties	ret	Date: 097		
Method of Recei	pt: Courier Over-tl	he-counter	Shipper		
Shipping Only:	FedEx * ☐ OnTrac * ☐ Greyhound ☐ C	Other *Service	e level if not Priority o	r Sunrise (M-F):	
COC Inspection Is COC present? Custody seals on shipping Is COC Signed by Relinqu Is sampler name legibly in Is analysis or hold request Is the turnaround time ind Is COC free of whiteout at Sample Inspection Coolant Present: Temperature °C 13.6	uisher? Yes No idicated on COC? ed for all samples? icated on COC? id uninitialed cross-outs? Yes No (include)		Yes Intact Yes Yes Yes Yes Yes Yes Yes Yes Date/Time	☐ No	ot present N/A No, Cross-outs
Are there custody seals on	sample containers?		Intact	Broken	Not present
Do containers match COC Are there samples matrice	? Yes No No, Co s other than soil, water, air or carb		sent sample(s)	☐ No, Extra san	nple(s) present
Are any sample containers Are preservatives indicate Are preservatives correct if Are samples within holding	s broken, leaking or damaged? d?	iners	Yes Yes, on COC Yes Yes Yes Yes Yes Yes	No Not indicated No No No No	N/A N/A
Does any sample contain p Receipt Details	product, have strong odor or are ot	herwise su	spected to be hot?	Yes	No
Matrix WA Matrix WA Matrix Matrix Date and Time Sample Pu	Container type Container type Container type t into Temp Storage Date:	# of con # of con	tainers received tainers received tainers received Time: 2	14 32	
Is the Project ID indicated If project ID is listed on bo Are the sample collection If collection dates are liste Are the sample collection	n both COC and containers, do the	ey all mate. On sar Il match? On san they all m	mple container(s) Yes The property of the pr	On Both No On Both No On Both No On Both No No No	Not indicated N/A
COMMENTS: Che	int did not keep	w the	e meth	will for	The
ier Chune	analysis at fo	us to	ne Sk	will los	in the
method as) The remark Regnest Set	ey 189 until 1 Es sectain la fan har Drese method un	ias- l by	er danif "DRO" by 8015. 2 Ther d	righting the	Analysis of the CS. 0920 12 1232
Per Scott Fort	ses, the mothed	for	The hex	Quane i	215.6. 2011 092712/25

Subcontract Laboratory Report Attachments

CALSCIENCE

WORK ORDER NUMBER: 12-09-1774

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: Kiff Analytical

Client Project Name: BAY COUNTIES PETROLEUM

Attention: Joel Kiff

2795 2nd Street, Suite 300 Davis, CA 95618-6505

amande Porter

Approved for release on 10/4/2012 by: Amanda Porter

Project Manager

ResultLink > Email your PM >

Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: BAY COUNTIES PETROLEUM

Work Order Number: 12-09-1774

1	Client Sample Data	3
2	Quality Control Sample Data	5 5 7
3	Glossary of Terms and Qualifiers	8
4	Chain of Custody/Sample Receipt Form	9

Analytical Report

Kiff Analytical 2795 2nd Street, Suite 300

Davis, CA 95618-6505

Date Received: Work Order No: Preparation:

Method: Units:

09/28/12 12-09-1774 Filtered **EPA 200.8** mg/L

Project: BAY COUNTIES PETROLEUM

1 of 2	Page						1	THOLLOW	COUNTIES P	7 10,000. 1571
QC Batch II	Date/Time Analyzed	Date Prepared	Instrument	Matrix	Date /Time Collected		Lab Sar Numb		nber	Client Sample Nur
120928L04	10/01/12 14:31	09/28/12	ICP/MS 03	Aqueous	09/27/12 05:55	774-1-A	12-09-1	a17		DW-1
		- DI	Deput		Parameter	<u>Qual</u>	DF	<u>RL</u>	Result	Parameter
Qual	<u>DF</u>	RL 0.004	<u>Result</u> 0.00213			<u>Quai</u>	1	0.00100	0.0283	Arsenic
	•	0.001 0.001	0.00213 ND		Copper		1	0.00100	0.0116	Barium
		0.001	ND		Lead Selenium		1	0.00100	ND	Cadmium
	•	0.050	0.0946		iron		1	0.00100	ND	Chromium
120928L04	10/01/12 14:34	09/28/12	ICP/MS 03	Aqueous	09/27/12 05:46	774-2-A	12-09-1			DW-2
Qual	DF	RL	Result		<u>Parameter</u>	Qual	DF	RL	Result	Parameter
Qual		0.001	ND		Copper		1	0.00100	0.0430	Arsenic
		0.001	ND		Lead		1	0.00100	0.0505	Barium
		0.001	ND		Selenium		1	0.00100	ND	Cadmium
		0.050	ND		Iron		1	0.00100	ND	Chromium
120928L04	10/01/12 14:37	09/28/12	ICP/MS 03	Aqueous	09/27/12 06:00	774-3-A	12-09-1			DW-3
0 -1	DE	DI	Boult		Parameter	Qual	<u>DF</u>	RL	Result	Parameter
<u>Qual</u>	<u>DF</u>	<u>RL</u> 0.001	Result ND			Guai	1	0.00100	0.00901	Arsenic
		0.001	ND		Copper Lead		1	0.00100	0.0629	Barium
		0.001	ND		Selenium		1	0.00100	ND	Cadmium
		0.050	0.410		Iron		1	0.00100	ND	Chromium
120928L04F	10/01/12 14:40	09/28/12	ICP/MS 03	Aqueous	09/27/12 08:45	774-4-A	12-09-17			DW-4
	-							5:	Decil	D
<u>Qual</u>	<u>DF</u>	<u>RL</u>	<u>Result</u>		<u>Parameter</u>	<u>Qual</u>	<u>DF</u>	RL	Result	<u>Parameter</u>
	•	0.001	0.00207		Copper		1	0.00100	0.0117	Arsenic
	00 1	0.001	ND		Lead		1	0.00100	0.0191	Barium
		0.001	ND		Selenium		1	0.00100	ND	Cadmium
	0 1	0.050	0.139		Iron		1	0.00100	ND	Chromium

DF - Dilution Factor ,

Analytical Report

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95618-6505

Date Received: Work Order No: Preparation: Method: Units:

09/28/12 12-09-1774 **Filtered** EPA 200.8 mg/L

Project: BAY COUNTIES PETROLEUM

Project: BAY	COUNTEST	PETROLEUN	//						Page	e 2 of 2
Client Sample Numb	per		Lab Sar Numb		Date /Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
DW-5			12-09-1	774-5-A	09/27/12 05:00	Aqueous	ICP/MS 03	09/28/12	10/01/12 14:43	120928L04F
Danamata	D !!									·
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>D</u> F	<u>Qual</u>
Arsenic	0.0317	0.00100	1		Copper		0.00212	0.00		
Barium	0.0294	0.00100	1		Lead		ND	0.00	•	
Cadmium	ND	0.00100	1		Selenium		ND	0.00	•	
Chromium	ND	0.00100	1		Iron		0.0720	0.05	00 1	
DW-6			12-09-1	774-6-A	09/27/12 07:25	Aqueous	ICP/MS 03	09/28/12	10/01/12 14:46	120928L04F
Parameter	Result	RL	DF	Qual	<u>Parameter</u>		Result	RL	DE	Ougl
Arsenic	0.00312	0.00100	1	<u> </u>	Copper		0.00173	0.00	DF	<u>Qual</u>
Barium	0.0707	0.00100	1		Lead		0.00173 ND	0.00		
Cadmium	ND	0.00100	1		Selenium		ND	0.00		
Chromium	0.00247	0.00100	1		Iron		ND	0.05	-	
DW-7			12-09-1	774-7-A	09/27/12 07:12	Aqueous	ICP/MS 03	09/28/12	10/01/12	120928L04F
		 			07.12				14:49	
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	DF	Qual
Arsenic	0.00310	0.00100	1		Copper		0.00195	0.00	100 1	
Barium	0.0668	0.00100	1		Lead		ND	0.00	100 1	
Cadmium	ND	0.00100	1		Selenium		ND	0.00	100 1	
Chromium	ND	0.00100	1		Iron		ND	0.05	00 1	
Method Blank			099-10-0	008-2,015	N/A	Aqueous	ICP/MS 03	09/28/12	09/28/12 20:20	120928L04F
Parameter Parameter	<u>Result</u>	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual
Arsenic	ND	0.00100	1		Copper		ND	0.00	100 1	
Barium	ND	0.00100	1		Lead		ND	0.00	100 1	

Iron

Selenium

Cadmium

Chromium

ND

ND

DF - Dilution Factor ,

0.00100

0.00100

1

Qual - Qualifiers

ND

ND

0.00100

0.0500

1

Calscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

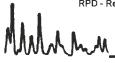
Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95618-6505

Date Received: Work Order No: Preparation: Method:

12-09-1774 N/A EPA 200.8

Project BAY COUNTIES PETROLEUM

Quality Control Sample ID			Matrix Instrument)ate epared	Date Analyzed	MS/MSD Batch Number			
12-09-1815-1	Azaje VV		Aqueou	s IC	ICP/MS 03		28/12	10/01/12	120928S04		
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	MS CONC	MS %REC	MSD CONC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Arsenic	0.006682	0.1000	0.1024	96	0.1062	100	80-120	4	0-20		
Barium	0.001762	0.1000	0.1063	104	0.1057	104	80-120	0	0-10		
Cadmium	ND	0.1000	0.08619	86	0.09078	91	80-120	5	0-20		
Chromium	0.004638	0.1000	0.09480	90	0.1003	96	80-120	6	0-20		
Copper	0.003160	0.1000	0.09712	94	0.1015	98	80-120	4	0-20		
Lead	ND	0.1000	0.1103	110	0.1106	111	80-120	0	0-20		
Selenium	ND	0.1000	0.08124	81	0.08900	89	80-120	9	0-20		
Iron	0.3224	0.1000	0.4100	88	0.4174	95	80-120	2	0-20		

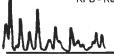

Quality Control - PDS / PDSD

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95618-6505 Date Received Work Order No: Preparation: Method: 09/28/12 12-09-1774 N/A EPA 200.8

Project: BAY COUNTIES PETROLEUM

Quality Control Sample ID 12-09-1815-1		Mat	rix	Instrument		Date Prepared	Date Analy	zed	PDS / PDSD_Batc Number		
		Ади	eous			09/28/12	10/01/1	2	120928\$04		
<u>Parameter</u>	SAMPLE CONC	SPIKE ADDED	PDS CONC	PDS %REC	PDSD CONC	PDSD %REC	%REC CL	RPD	RPD CL	Qualifie	
Arsenic	0.006682	0.1000	0.1027	96	0.1045	98	75-125	2	0-20		
Barium	0.001762	0.1000	0.09932	98	0.1026	101	75-125	3	0-10		
Cadmium	ND	0.1000	0.08786	88	0.08577	86	75-125	2	0-20		
Chromium	0.004638	0.1000	0.09514	91	0.09510	90	75-125	0	0-20		
Copper	0.003160	0.1000	0.09503	92	0.09804	95	75-125	3	0-20		
Lead	ND	0.1000	0.1080	108	0.1086	109	75-125	1	0-20		
Selenium	ND	0.1000	0.08840	88	0.08581	86	75-125	3	0-20		
Iron	0.3224	0.1000	0.4108	88	0.4175	95	75-125	2	0-20		

Quality Control - LCS/LCS Duplicate

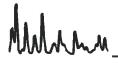


Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95618-6505 Date Received: Work Order No: Preparation: Method:

N/A 12-09-1774 Filtered EPA 200.8

Project: BAY COUNTIES PETROLEUM

Quality Control Sample ID	Matrix	lr	Instrument		ate pared	Date Analyzed	ſ	LCS/LCSD Batch Number	
099-10-008-2,015	Aqueou8		ICP/MS 03		28/12	09/28/12		120928L04F	
<u>Parameter</u>	<u>SPIKE</u> <u>ADDED</u>	LCS CONC	LCS %REC	LCSD CONC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Arsenic	0.1000	0.1028	103	0.1026	103	80-120	0	0-20	
Barium	0.1000	0.09888	99	0.1008	101	80-120	2	0-20	
Cadmium	0.1000	0.09742	97	0.09668	97	80-120	1	0-20	
Chromium	0.1000	0.09686	97	0.09785	98	80-120	1	0-20	
Copper	0.1000	0.1079	108	0.1095	109	80-120	1	0-20	
Lead	0.1000	0.09754	98	0.09895	99	80-120	1	0-20	
Selenium	0.1000	0.09453	95	0.09605	96	80-120	2	0-20	
Iron	0.1000	0.1023	102	0.1023	102	80-120	0	0-20	



Glossary of Terms and Qualifiers

Work Order Number: 12-09-1774

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis. MPN - Most Probable Number

2795 Second Street, Suite 300

Davis, CA 95618 Lab: 530.297.4800 Fax: 530.297.4808

Calscience 7440 Lincoln Way Garden Grove, CA 92841-1427

12-09-1774

714-895-5494 COC No. 82765 Project Contact (Hardcopy or PDF to): **EDF** Report? Chain-of-Custody Record and Analysis Request NO Scott Forbes Company/Address: Recommended but not mandatory to complete this section: TAT Kiff Analytical Sampling Company Log Code: **Analysis Request** Phone No.: FAX No.: Global ID: 530-297-4800 530-297-4808 Project Number: P.O. No.: Deliverables to (Email Address): 82765 or Lab Use Only inbox@kiffanalytical.com Project Name: 4-Days ICP-MS 200.8 Dissolved (1) Container / Preservative **Matrix BAY COUNTIES PETROLEUM** 500 ml Poly None **Project Address:** Sampling Sample Water Designation Date Time DW-1 05:55 1 09/27/12 X X DW-2 09/27/12 05:46 1 X 2 DW-3 09/27/12 06:00 1 X 3 X DW-4 09/27/12 08:45 1 X 4 DW-5 09/27/12 05:00 1 X 5 DW-6 09/27/12 07:25 1 X 6 DW-7 09/27/12 07:12 7 Time Received by: Please refer to attached Test Detail. = KiffAnglytical 092712 1900 Time Received by: Relinquished by: Time Received by Laboratory: **Accounts Payable**

800.334.5000 ontrac.com

Date Printed 9/27/2012

Shipped From: KIFF ANALYTICAL 2795 2ND STREET 300 DAVIS, CA 95618

Service: S

Sort Code: ORG

Special Services:
Signature Required

1774

Page 10 of 11

Tracking#D10010513600844

Sent By: SAMPLE RECEIVINGX125

Phone#: (530)297-4800

wgt(lbs): 1

Reference: SUB SRG SAMPLES

Reference 2:

Ship To Company:

CALSCIENCE ENVIRONMENTAL 7440 LINCOLN WAY GARDEN GROVE, CA 92841 RECEIVING (714)895-5494

B10207210772

SAMPLE RECEIPT FO	ORM d	Cooler <u>l</u> of <u>l</u>
CLIENT: Kiff	DATE:	09/28/12
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C - 6.0 °C, not fro	zen)	. 0
Temperature 2 • 7 °C - 0.3 °C (CF) = 2 • 4 °C	Blank	☐ Sample
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).	. 8	
\square Sample(s) outside temperature criteria but received on ice/chilled on same	e day of sampli	ng.
☐ Received at ambient temperature, placed on ice for transport by	Courier.	
Ambient Temperature: ☐ Air ☐ Filter		Initial:
CUSTODY SEALS INTACT.		

□ Cooler □		□ No (Not Intact)	12 Not Present	□ N/A	Initi	ial: 🎾
□ Sample □		□ No (Not Intact)	☑ Not Present		Initi	al:
SAMPLE COND	ITION		,	/es	, Ma	NI/A
		t(s) received with sam			No	N/A
Chain-Of-Custody (COC) document(s) received with samples COC document(s) received complete						
,						
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.						
□ No analysis requested. □ Not relinquished. □ No date/time relinquished.						
Sampler's name indicated on COC						Ø
Sample container label(s) consistent with COC						
Sample container(s) intact and good condition						
Proper containers and sufficient volume for analyses requested				P		
Analyses received	within holding tin	ne	• • • • • • • • • • • • • • • • • • • •	₽ P		
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours						
Proper preservation	n noted on COC	or sample container				
☐ Unpreserved vials received for Volatiles analysis						
Volatile analysis of	ontainer(s) free of	f headspace,			□ ·	. 💆
			•••••			P
CONTAINER TY	PE:		;			,
Solid: U4ozCGJ U8ozCGJ U16ozCGJ USleeve () UEnCores® UTerraCores® U						
Water: □VOA □	VOAh □VOA na ₂	□125AGB □125AG	Bh □125AGBp [□1AGB □	1AGB na 2	□1AGBs
□500AGB □500A	AGJ □500AGJs	□250AGB □250C	GB □250CGBs	□1PB □	1PBna J	2500PB
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □ □ □ □						
Air: ☐Tedlar® ☐Summa® Other: ☐ Trip Blank Lot#: Labeled/Checked by: ☐ Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Reviewed by: ☐ Container: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 u: Ultra-pure znna: ZnAc2+NaOH f: Fillered Scanned by: ☐ Container: Discourse						

APPENDIX D

GEOTRACKER ELECTRONIC SUBMITTAL CONFIRMATIONS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

GEO_WELL

Report Title:

GeoWell 9-27-12

Facility Global ID:

T0600113164

Facility Name:

BAY COUNTIES PETROLEUM

File Name:

GEO_WELL.zip

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL

IP Address:
Submittal Date/Time:

12.186.106.98 10/16/2012 9:42:01 AM

Confirmation Number:

4462086498

Copyright © 2012 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF

Report Title:

3Q12 QMR - ANALTYICAL

Report Type:

Monitoring Report - Quarterly

Facility Global ID:

T0600113164

Facility Name:

BAY COUNTIES PETROLEUM

File Name:

EDF_BAYCOUNTIESPETROLEUM_82765.ZIP

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u> <u>IP Address:</u> STRATUS NOCAL

Submittal Date/Time:

12.186.106.98 10/26/2012 7:53:41 AM

Confirmation Number:

7159131884

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2012 State of California