

July 30,1997 File No. 10-1682-09/604

Mr. Sum Arigala California Regional Water Quality Control Board San Francisco Bay Region 2101 Webster Street, Suite 500 Oakland, California 94612

SUBJECT: Report of Implementation of Passive Groundwater Remediation, and Semi-Annual Groundwater Monitoring Report; Industrial Asphalt Facility, 52 El Charro Road, Pleasanton, California

Dear Mr. Arigala:

Kleinfelder, Inc. (Kleinfelder) is pleased to present this report of implementation of passive groundwater remediation and semi-annual groundwater monitoring report on behalf of Industrial Asphalt for the above-referenced site (Plate 1). The site is located on a portion (approximately 5 acres) of the 177 acre parcel owned by the Jamieson Company.

SITE INVESTIGATION AND REMEDIATION HISTORY

Industrial Asphalt is an asphalt manufacturing facility that has occupied the subject site since 1963. Industrial Asphalt maintained six underground storage tanks (USTs) for storage of asphalt, and two USTs storing diesel fuel at the site. Diesel product purchased in 1983 and 1984 was used as a burner fuel in the asphalt batch plant. In 1985, a leaking fuel pipe serving the diesel USTs was identified and repaired. Upon removal of two diesel tanks in February 1987, diesel product was observed in the bottom of the excavation. This product was sampled and analyzed for total petroleum hydrocarbons quantified as diesel (TPH-d) and polychlorinated biphenyls (PCBs). The product was found to contain 340,000 milligrams per kilogram (mg/kg) of TPH-d, and 12 mg/kg of PCBs (Arochlor 1260). At that time, approximately 5,000 gallons of a mixture of diesel and water was pumped from the excavation and transported off-site for Class I disposal. In addition, two asphalt tanks were excavated and removed.

Remedial Investigation Activities

In March 1987, Kleinfelder drilled seven soil borings around the UST area. Based on soil sample analytical results from the seven borings, three monitoring wells (MW-1, MW-2, and MW-3) were installed in June 1987. Free product was observed in monitoring wells MW-1 and MW-2 shortly after installation. Free product was not observed in monitoring well MW-3. A sample of free product was collected from monitoring well MW-2 in August 1987, analyzed and found to contain 18 mg/kg of PCBs.

In September 1987, the remaining four asphalt USTs were removed, and contaminated soil and backfill material were excavated. Excavated soils were sampled and found to contain from 1,500 to 150,000 mg/kg of TPH-d. Closure samples representative of remaining soils in the excavation were collected (five sidewall samples and seven samples from the excavation floor) were analyzed for TPH-d, with reported concentrations ranging from non-detect to 26 mg/kg.

Soil gas surveys were conducted at the site in October 1987 and June 1988 to aid in plume definition. Information from the first survey was used to identify the locations of five additional groundwater monitoring wells at the site (MW-4 through MW-8). These wells were installed in March 1988. Soil gas samples in the second survey were analyzed for carbon dioxide; methane; benzene (B); toluene (T); xylenes (X); and total hydrocarbons (C4 to C9 carbon range). Carbon dioxide concentrations in soil gas samples ranged from 56,000 micrograms per liter (ug/L) to 210,000 ug/L. These concentrations, significantly higher than ambient air, suggest that unassisted biological activity was occurring.

In July 1989, two groundwater monitoring wells (MW-9 and MW-10) and one observation well (MW-11) were installed, and a staff gauge was installed in the gravel pit north of the site.

In November 1989, the Alameda County Department of Environmental Health (ACDEH) issued a letter to Industrial Asphalt requiring additional work at the site. In response to the ACDEH letter. Kleinfelder developed and submitted a Remedial Investigation/Remedial Action Workplan to the ACDEH in January 1990. As part of this work, fourteen soil borings (SB-1 through SB-10 and MW-13 through 16) were installed in three separate field events at the site. One of the fourteen borings (MW-13) was completed as an extraction well and later designated as extraction well EW-11. Three borings (MW-14 through MW 16) were completed as monitoring wells. Monitoring well MW-11 also was abandoned as part of these field activities.

At boring SB-1 adjacent to the previous UST excavation, free product was encountered during drilling at a depth of 15 feet. In July 1990, approximately 1,000 cubic yards of soil were excavated in the vicinity of SB-1. Impacted soils were recycled onsite in the asphalt plants.

During the 1990 RI work, a soil sample collected from boring SB-4 at 61 feet below grade (which had contained 340 mg/kg of TPH-d and 0.11 mg/kg of PCBs) was analyzed for polynuclear aromatic hydrocarbons by EPA Method 8270. No PAHs were detected in the sample.

The remedial investigation report summarizing the above work was submitted to ACDEH in December 1990. The RI Report also contained results of aquifer testing performed at the site; a well canvas identifying the location, use, screen interval, and distance of wells from the Industrial Asphalt site; and a baseline health risk assessment.

In January 1991 another 1,000 cubic yards of impacted soil were excavated from an area west of the July 1990 excavation. (This excavation was a follow-up activity from the July 1990 excavation, at which time some impacted soil was not accessible.) Soil was recycled in the asphalt batch process on-site; the excavation was backfilled with clean fill and finished at the surface with asphalt concrete.

In February 1991, ACDEH stipulated that groundwater cleanup should achieve "MCLs (maximum contaminant levels for drinking water) and below levels that could result in a one-in-a-million cancer risk." A feasibility study (FS) for soil and groundwater remediation was submitted to the ACDEH in August 1991. The selected remedy involved (1) extraction wells to pump groundwater; (2) Granular activated carbon to treat extracted groundwater; (3) Discharging treated groundwater to the surface water impoundment north of the facility; and (4) Recycling spent carbon through the onsite asphalt batch manufacturing process.

In May 1992, ten new groundwater extraction wells were installed (EW-1 through EW-10) at the site in support of groundwater remediation. Well and boring locations are shown on Plate 2.

Groundwater Monitoring Program History

Following installation of the first three monitoring wells in June 1987, a monthly groundwater monitoring program was instituted at the site. Depth-to-water, free product thicknesses (as appropriate), groundwater sampling and analysis (for TPH-d and PCBs) were conducted.

Analyses for BTEX (aromatic volatile organic compounds or VOCs) were requested by ACDEH in 1989. Kleinfelder included BTEX analyses in the July/August 1989 groundwater analyses. No BTEX constituents were detected in any groundwater samples, thus BTEX analyses were discontinued. Beginning in July 1990, the groundwater monitoring frequency was reduced to every two months.

Beginning in 1991, the groundwater monitoring frequency was reduced to occur quarterly. At that time, quarterly groundwater samples were analyzed for TPH-d, TPH-o (motor oil), Oil and Grease (O&G), Total Hydrocarbons (TH), and PCBs.

Beginning with the October 1996 sampling event, the revised groundwater monitoring program depicted in Table 1 has been instituted. Selected monitoring wells at the site are on a semi-annual monitoring frequency, and the majority of monitoring wells are on an annual frequency. The groundwater monitoring program now involves analysis for TPHd and TPH-o in all groundwater samples, and PCBs in selected monitoring well samples.

The RWQCB, in their June 26, 1996 letter authorizing the revised monitoring program. stated that, "Polynuclear Aromatic Hydrocarbons (PAHs) have not been included in the proposed groundwater monitoring program. Either provide a rationale for not doing so or include PAH analysis in the monitoring program." Kleinfelder included PAH analyses in the October 1996 monitoring event, to address this RWOCB request.

Groundwater Remediation System History

A groundwater remediation system was constructed by Pacific Mechanical Corporation (the low bidder in a competitive bidding process) in 1994. The system consisted of a total of eleven groundwater extraction wells pumping to an oil-water separator, a bag filter. ultraviolet sterilizer, and activated carbon. Please refer to Plate 3 for a layout of the former groundwater remediation system at the site. Treated water was discharged to Industrial Asphalt's recharge pond north of the facility (pond R4) under Industrial Asphalt's Waste Discharge Requirements (WDR) Order Number 93-037, issued by the RWQCB on April 26, 1993.

Kleinfelder started the groundwater remediation system on July 13, 1994. Within three months, extensive biofouling was observed in the oil-water separator, bag filters, and carbon vessels that cause excessive pressure drop and limited treatment system efficiency. Kleinfelder requested in a letter dated November 16, 1994 to introduce chlorine in tablet form into the oil-water separator to prevent the biofouling. RWQCB authorized chlorine addition in January 1995. The system operated for approximately two years, with limited effectiveness. In the first six months of operation, approximately 16 pounds of hydrocarbons were extracted. In the proceeding eighteen months, only about 5 pounds of hydrocarbons were extracted. Please refer to Plate 4 for a graphical depiction of pounds removed and gallons extracted since start-up.

Kleinfelder submitted a letter report to the RWQCB dated May 21, 1996, requesting authorization to shut down the groundwater remediation system at the site. In that report, we also requested authorization to install oxygen releasing socks (after system shutdown) to enhance passive bioremediation processes in groundwater at the site. The RWQCB approved of the system shutdown and passive bioremediation enhancement in a letter dated June 26, 1996. Following receipt of authorization, Industrial Asphalt turned off the groundwater remediation system on July 19, 1996.

In the 24 months of operation, the groundwater remediation system extracted a total of 7,107,800 gallons of groundwater. This water was treated and discharged in 100% compliance with the WDR issued for the site.

IMPLEMENTATION OF PASSIVE BIOREMEDIATION

Hydrocarbon degrading bacteria are commonly present in soils and groundwater at virtually all hydrocarbon-impacted sites. Kleinfelder believes that natural biological processes are active in groundwater and capillary fringe soils (near the soil/water interface) at the Industrial Asphalt site. This opinion is based on the following observations:

- In the soil gas survey conducted in June 1988 carbon dioxide, the primary bi-product in bacterial degradation of petroleum hydrocarbons, was detected at concentrations significantly higher than ambient conditions; and
- Biofouling was observed in the oil-water separator, bag filters, and carbon vessels shortly after start-up of the groundwater remediation system.

Based on these observations, and on hydrocarbon mass removal rates observed from the groundwater remediation system, Kleinfelder recommended a passive bioremediation approach for the site. Kleinfelder and Industrial Asphalt representatives met with Mr. Sum Arigala of the RWQCB on June 25, 1996 to discuss implementation of the passive bioremediation approach and changes to the site's groundwater monitoring program. In that meeting, Industrial Asphalt agreed to add extraction well EW-8 to the list of passive remediation wells, and to add monitoring wells MW-10 and MW-15 to the list of monitoring wells sampled twice per year (instead of annually). These additions were documented in a letter from the RWQCB to Industrial Asphalt dated June 26, 1996.

In September 1996, groundwater extraction pumps and piping were removed from the well vaults at the passive remediation wells (wells EW-2, EW-3, EW-4, EW-5, EW-8, EW-10, and EW-11) in preparation for sock installation. On September 26 and 27, 15 foot lengths of 4-inch diameter socks containing Oxygen Release Compound (ORC®) were installed in each of the seven passive remediation wells. Please refer to Appendix A for literature describing the ORC® product.

ORC® socks were installed according to manufacturer instructions. Socks are suspended in each well with manufacturer-provided nylon ropes, tied to a 1-inch schedule 40 galvanized steel bar on the top of the casing of each extraction well. PVC slip caps were slotted to allow them to slip over the steel suspension bar, and installed over each well casing.

Approximately one week and four weeks following installation of the ORC® socks (October 3 and 21, 1996), dissolved oxygen (DO) levels were measured in groundwater in surrounding monitoring wells at 5, 15, and 25 feet below static water level (SWL).

DO results for both events are presented in Table 2. DO levels on October 3, 1996 ranged from 1.20 to 7.45 mg/L; DO levels on October 21, 1996 ranged from 1.63 to 7.80 mg/L. A DO concentration of 2.0 mg/L generally represents the amount of oxygen

necessary to initiate and/or maintain bioremediation of soluble hydrocarbons in groundwater. DO readings exceeding 2.0 mg/L were observed in all wells tested, except for wells MW-1 and MW-2.

DO levels were also recorded on April 29, 1997. DO readings ranged from 0.10 to 5.30 mg/L.

SEMI-ANNUAL GROUNDWATER MONITORING RESULTS

Introduction

Semi-annual groundwater monitoring was performed in October 1996 and April 1997.

Water Level Monitoring Data

Groundwater surface elevations were measured in all accessible monitoring wells on October 3, October 21, 1996, and April 29, 1997. These measurements are summarized in Table 3. Water levels in the eleven groundwater extraction wells were not measured. Overall groundwater surface elevations in monitoring wells at the site declined an average of about 12 feet from March 18, 1996 to October 3, 1996. groundwater surface elevation increased an average of about 4 feet from October 3, 1996 to April 29, 1997.

On October 3, 1996 and October 21, 1996, the groundwater gradient beneath the site was nearly flat on the west side of the site; groundwater flow direction on the east side of the site was to the northeast with an average gradient of 0.02 to 0.025 feet per foot (ft/ft) (Plates 5 and 6). The groundwater remediation system had been shut down for approximately 2 1/2 months prior to these observations. On April 29,1997, the groundwater gradient beneath the site was relatively flat on the west side. groundwater flow direction on the east side was to the northeast with a gradient of approximately 0.01 ft/ft (Plate 7).

Groundwater Monitoring Analytical Results - October 1996

The October 1996 groundwater monitoring event represented the first event under the revised monitoring program (Table 1). Under this program, groundwater samples are collected from monitoring wells MW-1, MW-2, MW-3, MW-8, MW-10, and MW-15 twice per year (in September/October and March/April); and all accessible monitoring wells are sampled annually (in March/April). All samples are analyzed for TPH-d and TPH-o. Samples from monitoring wells MW-1, MW-2, MW-3, and MW-8 also are to be analyzed for PCBs. Dissolved oxygen concentrations are measured in all accessible monitoring wells in each monitoring event.

Groundwater monitoring wells MW-1, MW-2, MW-10, and MW-15 were purged with a submersible pump, and sampled with disposable bailers on October 7, 1996. Please refer to Appendix B for purge logs. Monitoring well MW-3 was dry, therefore it was not sampled. Monitoring well MW-8 was not accessible at the time of sampling, due to site constraints.

Groundwater samples collected from the site were analyzed by American Environmental Network (AEN) laboratories, a State-certified analytical laboratory. The samples were analyzed for TPH-d and TPH-o using a modified EPA Test Method 8015 (extraction), for PCBs (except samples from well MW-15) using EPA Test Method 8080, and for PAHs (this event only) by EPA Method 8270. Analytical data are summarized on Table 3. Complete analytical laboratory reports for the October 1996 sampling event along with chain of custody records are included in Appendix C.

Black flecks or a tar-like sheen of immeasurable thickness were observed in purged water and samples collected from monitoring wells MW-1 and MW-2. In January 1996, monitoring well MW-2 was not sampled because of similar observations. Since that time, Kleinfelder has proceeded with purging and sampling in these source area wells if no measurable free product is present after purging.

Detectable concentrations of PCBs were found in samples from monitoring well MW-1 (0.6 μ g/L), and MW-2 (1.2 μ g/L) during the October 1996 sampling round. Petroleum hydrocarbons were detected in all samples collected this event. Note that only those wells expected to contain elevated hydrocarbon concentrations were selected for monitoring on a semi-annual basis (i.e., twice yearly).

Duplicate samples were collected from well MW-15 in October 1996, and labeled as sample numbers KMW-15 and KMW-51. Analytical results for these samples appeared to be in agreement with each other indicating acceptable levels of field and laboratory precision.

Groundwater Monitoring Analytical Results - April 1997

Groundwater monitoring wells MW-1, MW-2, MW-5, MW-6, MW-7, MW-8, MW-14, MW-15, and MW-16 were purged with a submersible pump, and sampled with disposable bailers on April 29 and April 30, 1997. In addition, off-site water supply well 14A2 was sampled from a tap on April 29, 1997. Please refer to Appendix B for purge logs. Monitoring well MW-3 was noted as "Dry" at the time of sampling, therefore it was not sampled. Monitoring wells MW-4, MW-9 and MW-10 were not accessible at the time of sampling due to site constraints.

Groundwater samples collected from the site were analyzed by American Environmental Network (AEN) laboratories, a State-certified analytical laboratory. All the samples were analyzed for TPH-d and TPH-o using modified EPA Test Method 8015 (extraction). Monitoring wells MW-1, MW-2 and MW-8 were also analyzed for PCBs using EPA Test Method 8080. Analytical data are summarized on Table 3. Complete analytical

laboratory reports for the April 1997 sampling event along with chain of custody records are included in Appendix C.

While purging MW-1 and MW-2 a petroleum odor was noticed and a slight sheen was observed in the purge water. In addition, MW-2 had black spots in the purge water.

Detectable concentrations of PCBs were found in monitoring well MW-1 (0.2 µg/L), and MW-2 (0.2 μg/L) during the April 1997 sampling round. The analytical laboratory was instructed to achieve a reporting limit of 0.1 µg/L, significantly lower that the standard reporting limit of 0.5 µg/L. Petroleum hydrocarbons were detected in monitoring wells MW-1, MW-2, MW-6, MW-8, and MW-16.

Duplicate samples were collected from well MW-8 in April 1997, and labeled as sample numbers MW-8 and MW-18. Analytical results for these samples appeared to be in agreement with each other indicating acceptable levels of field and laboratory precision.

SUMMARY OF GROUNDWATER MONITORING DATA

A review of the data from the October 1996 and April 1997 sampling events at the Industrial Asphalt site indicates the following:

- The groundwater surface elevation beneath the site declined an average of about 12 feet since March 1996. On October 3 and October 21, 1996, groundwater flow was nearly flat on the west side of the site, with a north-northeast flow gradient of 0.02 ft/ft on the east side. The groundwater surface elevation increased an average of about 4 feet from October 3, 1996 to April 29, 1997. On April 29, 1997, the groundwater gradient beneath the site was relatively flat on the west side. The groundwater flow direction on the east side was to the northeast with a gradient of approximately 0.01 ft/ft.
- Concentrations of diesel and oil range petroleum hydrocarbons above 1.0 mg/l continue to persist in samples from monitoring wells MW-1 and MW-2. Black flecks observed in purge water and samples from these wells appear to be heavy range petroleum hydrocarbons, causing the elevated TPH-d and TPH-o concentrations in these samples.
- PCBs were detected in samples from wells MW-1 and MW-2 at concentrations of 0.6 and 1.2 µg/L respectively for the October 1996 sampling. These PCB concentrations are higher than those seen in the last two years from these wells, but are within the range observed historically. These detections also correlate well with the diesel and oil detections in these same samples. Concentrations of PCBs in samples from MW-1 and MW-2 decreased to 0.2 µg/L in both wells in the April 1997 sampling event.
- Concentrations of TPH-d and TPH-o in samples from monitoring well MW-15 from the October 1996 sampling event were consistent with recent monitoring events. In the April 1997 sampling event, concentrations of TPH-d and TPH-o were not detected above the laboratory reporting limits.

- In October 1996, concentrations of TPH-d and TPH-o in samples from monitoring well MW-10 were the lowest observed in the last three years.
- PAHs were not detected in any groundwater samples collected during the October 1996 event.

RECOMMENDATIONS

Based on the above, Kleinfelder recommends continued monitoring under the semiannual schedule. We recommend that PAH analyses no longer be performed in groundwater at the site in light of the non-detect results observed in monitoring well samples.

LIMITATIONS

This report was prepared in general accordance with the accepted standard of practice which exists in Northern California at the time the investigation was performed. It should be recognized that definition and evaluation of environmental conditions is a difficult and inexact art. Judgements leading to conclusions and recommendations are generally made with an incomplete knowledge of the conditions present. More extensive studies, including additional environmental investigations, can tend to reduce the inherent uncertainties associated with such studies. If the Client wishes to reduce the uncertainty beyond the level associated with this study, Kleinfelder should be notified for additional consultation.

Our firm has prepared this report for the Client's exclusive use for this particular project and in accordance with generally accepted engineering practices within the area at the time of our investigation. No other representations, expressed or implied, and no warranty or guarantee is included or intended.

This report may be used only by the Client and only for the purposes stated, within a reasonable time from its issuance. Land use, site conditions (both onsite and offsite) or other factors may change over time, and additional work may be required with the passage of time. Any party other than the Client who wishes to use this report shall notify Kleinfelder of such intended use. Based on the intended use of the report, Kleinfelder may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the Client or anyone else will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party.

We trust that the content of this correspondence adequately addresses the needs of the RWQCB. If you have any questions or comments concerning this request, please do not hesitate to call us at 510-484-1700.

Sincerely,

KLEINFELDER, INC.

Daniel S. Carroll, P.E.

Project Manager

Paul A. Baginski, C.E.

Regional Environmental Manager

DSC:PAB:sh

cc: Mr. Michael Munn - Industrial Asphalt

Sita Vicinity Man

Mr. Don ATKINSON-ADMS- Alameda County Department of Environmental Health

Ms. Loretta Barsamian - RWOCB, San Francisco Bay Region

Mr. Craig Mayfiew - Alameda County Flood Control and Water Conservation

District, Zone 7

Enclosures

Diata 1

Plate 1	Site vicinity Map
Plate 2	Site Plan
Plate 3	Cumulative Organics Removal ;
Plate 4	Former Groundwater Treatment System Layout
Plate 5	Groundwater Surface Contours, October 3, 1996
Plate 6	Groundwater Surface Contours, October 21, 1996
Table 1	Revised Groundwater Monitoring Program
Table 2	Dissolved Oxygen Measurements
Table 3	Summary of Groundwater Elevations
Table 4	Summary of Analytical Results, Last 4 Quarters
Appendix A	Oxygen Release Compound Product Literature
Appendix B	Purge Logs, October 1996 Groundwater Monitoring Event
Appendix C	Analytical Results, October 1996 Groundwater Monitoring Event

	@1996, by Kleinfelder, Inc.										
			CUMULATIVE ORGANICS REMOVED	PLATE							
	KLEIN	FELDER	INDUSTRIAL ASPHALT 52 EL CHARRO ROAD	4							
FI.E.	DRAFTED BY: S.T. Davis	DATE: 7-15-96	PLEASANTON, CALIFORNIA								
CAD FIT	CHECKED BY: D. Carroll	DATE: 7-15-96	PROJECT NO. 10-168209-603								

TABLE 1 REVISED GROUNDWATER MONITORING PROGRAM INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON CALIFORNIA

		Analyses							
Monitoring Well Number	Sampling Frequency	TPH-diesel (EPA Method 8015)	TPH-motor oil (EPA Method 8015)	Dissolved Oxygen	PCBs (EPA Method 8080)				
MW-1	Semi-Annual	х	Х	Х	Х				
MW-2	Semi-Annual	х	x	X	х				
MW-3	Semi-Annual	Х	х	х	х				
MW-4	Annual	Х	x	x					
MW-5	Annual	Х	Х	х					
MW-6	Annual	х	х	x					
MW-7	Annual	x	x	х					
MW-8	Semi-Annual	x	x	x	х				
MW-9	Annual	Х	Х	х					
MW-10	Semi-Annual	x	x	x					
MW-11	Annual	Х	Х	Х					
MW-12	Annual	x	х	X					
MW-13	Annual	Х	Х	х					
MW-14	Annual	х	x	x					
MW-15	Semi-Annual	Х	Х	x					
MW-16	Annual	х	х	x					
14A2	Annual	Х	X	Х					

NOTES:

- 1. Revised monitoring program approved by SFBRWQCB by letter dated June 26, 1996.
- 2. TPH Total Petroleum Hydrocarbons quantified against indicated standard.
- 3. PCBs Polychlorinated Biphenyls
- 4. PAHs were analyzed one time, in the October 1996 monitoring event. PAH analyses are not recommended for inclusion in the groundwater monitoring program.

TABLE 2 DISSOLVED OXYGEN MEASUREMENTS INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON, CALIFORNIA

Monitoring	Measurement	Disso	Dissolved Oxygen Reading (mg/L)			
Well	Date		at Indicated Depth Below SWL			
		5'	15'	25'		
MW-1	10/3/96	1.60	NM	NM		
	10/21/96	1.95	NM	NM		
	4/29/97	0.20	0.10	NM		
MW-2	10/7/96	1.20	0.70	NM		
	10/21/96	1.63	NM	NM		
	4/29/97	0.2	0.1	NM		
MW-3	10/3/96	NM	NM	NM		
	10/21/96	NM	NM	NM		
	4/29/97	NM	NM	NM		
MW-4	10/3/96	7.45	7.50	6.20		
	10/4/96	7.80	7.72	NM		
	4/29/97	NM	NM	NM		
MW-5	10/3/96	5.60	4.80	3.20		
	10/21/96	6.03	5.93	NM		
	4/29/97	2.15	1.80	1.40		
MW-6	10/3/96	3.95	3.85	3.70		
	10/21/96	4.05	4.02	3.90		
	4/29/97	1.80	2.00	0.20		
MW-7	10/3/96	2.00	1.90	1.70		
	10/21/96	2.10	2.00	1.90		
	4/29/97	0.40	0.20	0.19		
MW-8	10/3/96		Not Accessible			
	10/21/96		Not Accessible	;		
	4/29/97	0.30	0.30	0.20		
MW-9	10/3/96		Not Accessible			
	10/21/96		Not Accessible	:		
	4/29/97		Not Accessible	;		
MW-10	10/3/96	3.40	3.20	2.50		
	10/21/96	3.50	3.60	3.00		
	4/29/97		Not Accessible			
MW-14	10/3/96	4.50	4.55	4.45		
	10/21/96	4.62	4.68	4.00		
	4/29/97	2.30	2.10	0.80		
MW-15	10/3/96	4.50	1.00	0.75		
	10/21/96	3.47	1.10	0.82		
	4/29/97	2.10	1.80	0.20		
MW-16	10/3/96		Not Accessible			
	10/21/96		Not Accessible			
•	4/29/97	3.20	3.40	1.80		
MW-14A2	10/3/96	7.30	NM	NM		
	10/21/96	NM	NM	NM		
	4/29/97	5.30	NM	NM		

N	0	te	s	

1	Dissolved oxygen (D.O.) readings measured in-situ using a YS1 55 D.O.
	meter with 150 foot lead
2	Temperatures also recorded at time of D.O. measurements, ranging
	from 16.8 to 18.3 degrees C.
3	SWL = static water level
4	NM = Not measured

TABLE 3
SUMMARY OF GROUND WATER ELEVATIONS
INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON, CALIFORNIA

TABLE 3
SUMMARY OF GROUND WATER ELEVATIONS
INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON, CALIFORNIA

TABLE 3
SUMMARY OF GROUND WATER ELEVATIONS
INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON, CALIFORNIA

TABLE 3
SUMMARY OF GROUND WATER ELEVATIONS
INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON, CALIFORNIA

TABLE 3
SUMMARY OF GROUND WATER ELEVATIONS
INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON, CALIFORNIA

Well Number	Date	Product Thickness	Depth to Water	Elevation	Trend
		(ft)	(ft)	(ft, MSL)	
MW-16	2/14/95	NE	73.83	305.82	
MP Elev.	5/23/95	NE	61.16	318.49	325
379.65	9/5/95	NE	75.71	303.94	305
Well Depth	1/3/96	NE	72.42	307.23	295
110	3/18/96	NE	66.06	313.59	285
5,50	10/3/96	NA	Bur		1/1/95 4/2/95 7/2/95 10/1/95 12/31/95 3/31/96 7/1/96 9/30/96 12/30/96 3/31/97
	10/21/96	NA	Bur		
	4/29/97	NE	75.88	303.77	
STAFF	2/14/95	NE	Above St	aff Gage	325 _T
GAGE	5/23/95	NE	Above St	_	315
MP Elev.	9/5/95	NA	Not Me	asured	305
300.00	1/3/96	NA	Not Me	asured	295
	3/18/96	NE	Above St	aff Gage	285
	10/3/96	NA	Not Me	asured	1/1/95 4/2/95 7/2/95 10/1/95 12/31/95 3/31/96 7/1/96 9/30/96 12/30/96
	10/21/96	NA	Not Me	asured	
	4/29/97	NA	Not Me	asured	
w		*			
CJMW-1	2/14/95	NE	77.23	305.52	325 T
MP Elev.	5/23/95	NE	60.31	322.44	315
382.75	9/5/95	NA	Not M	easured	305
Well Depth	1/3/96	NA	Not M	easured	295
NA	3/18/96	NE	70.10	312.65	285
	10/3/96	NA	Not M	easured	1/1/95 4/2/95 7/2/95 10/1/95 12/31/95 3/31/96 7/1/96 9/30/96 12/30/96 3/31/97
	10/21/96	NA	Not M	easured	
	4/29/97	NA	76.95	305.80	

Page 5 of 6

Copyright 1997 Kleinfelder, Inc.

10-1682-09/604/(1017E3P1)/sh

TABLE 3 SUMMARY OF GROUND WATER ELEVATIONS INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON, CALIFORNIA

Well Number	Date	Product Thickness	Depth to Water	Elevation	Trend
		(ft)	(ft)	(ft, MSL)	
NOTES:	MP Elev.	Measuring Poir	nt Elevation re	fers to Top of Cas	sing, Mean Sea Level (USGS Datum)
	Depth to	Water in feet belo	ow Top of Cas	sing	,
	NA	Not Applicable			
	NE	Not Encountere	ed		
	NM	Not measured,	reading not re	corded	

TABLE 4 SUMMARY OF ANALYTICAL RESULTS, LAST FOUR QUARTERS INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON CALIFORNIA

Well	Sample	Sample	TPH as	TPH as	Total Oil &	Total		1
Number	Date	Number	Diesel ¹	Oil	Grease ²	Hydrocarbons ³	PAHs	PCBs ⁴
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)
MW-1			(-8-)	(8-)	(11.6/2)	(8.2)	(481)	(Hg/L)
11111	May-95	2975	0.73	0.2	1	0.6	NA	0.1
	Sep-95	83445	4.4	3.8	19	13	NA NA	0.1
	Jan-96	3168	9.2	7.0	2	2	NA NA	<0.5
	Mar-96	3128	0.17	<0.2	3.1	2.2	NA NA	0.6 <0.1
	Oct-96	KMW-1	19	12	NA	NA	<100	0.6
	Apr-97	MW-1	2.7	3.1	NA NA	NA NA	The second secon	
MW-2	7 tpt 57	141 44 - 1	2.1	3.1	INA	INA	NA	0.2
IVI W -2	May 06	2072	0.55	-0.0				
	May-95	2973	0.75	<0.2	<0.5	<0.5	NA	0.4
3	(duplicate)		0.68	<0.2	<0.5	<0.5	NA	<0.1
	Sep-95	83446	2.4	1	16	14	NA	<0.5
	Jan-96					ell. See field n		
	Mar-96	3125	4.5	3.4	6.7	5.4	NA	0.1
	(duplicate)	3126	2.1	1.3	5.6	4.3	NA	0.1
1	Oct-96	KMW-2	49	30	NA	NA	<100	1.2
	Apr-97	MW-2	5.8	3.3	NA	NA	NA	0.2
MW-3					14			
	May-95	2974	2.5	0.8	3	2	NA	0.1
	Sep-95	NT	NT	NT	NT	NT	NT	NT
	Jan-96	Not sample	ed, free pro	duct enco	untered in w	ell. See field n		
	Mar-96	3127	0.71	0.7	1.5	1.3	NA	0.2
	Oct-96	Not sample	d, well dry	. See fiel	d notes.			
	Apr-97	Not sample	d, well dry	. See fiel	d notes.			
MW-4								
	May-95	2964	< 0.05	<0.5	<0.5	<0.5	NA	<0.1
	Sep-95	83456	< 0.05	<0.2	<0.5	<0.5	NA	<0.5
	Jan-96	3175	< 0.05	<0.2	0.5	<0.5	NA	<0.1
	Mar-96	3133	< 0.05	0.7	0.9	<0.5	NA	<0.1
					ing frequency		14/1	~V.1
					ble at time o			
		P.			at tillio 0.	ominhing.		

TABLE 4
SUMMARY OF ANALYTICAL RESULTS, LAST FOUR QUARTERS
INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON CALIFORNIA

Well	Sample	Sample	TPH as	TPH as	Total Oil &	Total	DATE	non 4
Number	Date	Number	Diesel	Oil¹	Grease ²	Hydrocarbons3	PAHs	PCBs⁴
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)
MW-5								1.0
	May-95	2963	<0.05	<0.5	<0.5	<0.5	NA	<0.1
	Sep-95	83457	<0.05	<0.2	<0.5	<0.5	NA	<0.5
	Jan-96	3174	< 0.05	<0.2	<0.5	<0.5	NA	< 0.1
	Mar-96	3133	< 0.05	<0.2	<0.5	<0.5	NA	< 0.1
	Oct-96	Not sample	d. On ann	ual samp	ling frequence	cy.		
	Apr-97	MW-5	< 0.05	<0.2	NA	NA	NA	NA
MW-6								
	May-95	2965	<0.05	<0.5	<0.5	<0.5	NA	<0.1
	Sep-95	83455	< 0.05	<0.2	<0.5	<0.5	NA	<0.5
	Jan-96	3173	<0.05	<0.2	<0.5	<0.5	NA ·	<0.1
	Mar-96	3138	<0.05	<0.2	<0.5	<0.5	NA	< 0.1
	Oct-96	Not sample	d. On ann	ual samp	ling frequence			
	Apr-97	MW-6	0.1	<0.2	NA	NA	NA	NA
MW-7								
	May-95	2967	<0.05	< 0.05	<0.5	<0.5	NA	<0.1
	Sep-95	83454	0.2	0.4	<0.5	<0.5	NA	<0.5
	Jan-96	3172	<0.05	<0.2	<0.5	<0.5	NA	< 0.1
	Mar-96	3137	<0.05	<0.2	<0.5	<0.5	NA	<0.1
	Oct-96	Not sample	d. On ann	ual samp	ling frequence	cy.		
	Apr-97	MW-7	<0.05	<0.2	NA	NA	NA	NA
MW-8								
40-9-00-00-00-00-00-00-00-00-00-00-00-00-	May 1995	2970	0.3	<0.5	<0.5	<0.5	NA	<0.1
	(duplicate)	652381	0.4	<0.5	<0.5	<0.5	NA	< 0.1
	Sept.1995	83448	0.3	<0.2	<0.5	<0.5	NA	< 0.5
-	(duplicate)	83447	0.3	<0.2	<0.5	<0.5	NA	< 0.5
	Jan. 1996	3167	0.9	1	<0.5	<0.5	NA	< 0.1
	(duplicate)	3166	0.65	0.4	1	<0.5	NA	< 0.1
	Mar. 1996	3132	1.3	0.9	1.5	0.5	NA	< 0.1
	(duplicate)	3131	1.2	0.7	0.8	<0.5	NA	< 0.1
	Oct-96	Not sample	ed. Well n	ot accessi	ble at time o	f sampling.		
	Apr-97	MW-8	0.41	<0.2	577 1000 0000	NA	NA	<0.1
	(duplicate)	MW-18	0.35	< 0.2	NA	NA	NA	<0.1

TABLE 4 SUMMARY OF ANALYTICAL RESULTS, LAST FOUR QUARTERS INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON CALIFORNIA

Well	Sample	Sample	TPH as	TPH as	Total Oil &	Total	DAIL	pop 4
Number	Date	Number	Diesel ¹	Oil ¹	Grease ²	Hydrocarbons3	PAHs	PCBs⁴
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)
MW-9								
	May-95	NT	NT	NT	NT	NT	NT	NT
	Sep-95	NT	NT	NT	NT	NT	NT	NT
	Jan-96	NT	NT	NT	NT	NT	NT	NT
	Mar-96	NT	NT	NT	NT	NT	NT	NT
	Oct-96	Not sample	d. Inacce	ssible ind	efinitely.			
MW-10								
	May-95	2972	2.4	0.5	2	0.9	NA	<0.1
	Sep-95	83452	< 0.05	1	1	<0.5	NA	<0.5
	Jan-96	3164	0.1	0.2	2	0.9	NA	<0.1
	Mar-96	3129	1.9	0.8	1.4	0.7	NA-	< 0.1
	Oct-96	KMW-10	0.08	< 0.2	NA	NA	<10	<0.1
	Apr-97	Not sample	d. Well n	ot accessi	ble at time o	f sampling.		
MW-14								
	May-95	2968	< 0.05	< 0.5	<0.5	<0.5	NA	<0.1
	Sep-95	83449	< 0.05	< 0.2	1	<0.5	NA	<0.5
	Jan-96	3171	< 0.05	< 0.2	<0.5	<0.5	NA	<0.1
	Mar-96	3136	< 0.05	< 0.2	<0.5	<0.5	NA	<0.1
	Oct-96				ling frequence	cy.		
	Apr-97	MW-14	<0.05	<0.2	NA	NA	NA	NA
MW-15								
	May-95	2971	0.1	< 0.5	<0.5	<0.5	NA	<0.1
	Sep-95	83451	0.3	0.4	2	<0.5	NA	<0.5
	Jan-96	3165	0.1	0.3	<0.5	<0.5	NA	<0.1
	Mar-96	3134	0.14	ND	<0.5	<0.5	NA	<0.1
	Oct-96	KMW-15	0.11	<0.2	NA	NA	<10	NA
	(duplicate)	KMW-51	0.1	<0.2	NA	NA	<10	NA
	Apr-97	MW-15	<0.05	<0.2	NA	NA	, NA	NA

TABLE 4
SUMMARY OF ANALYTICAL RESULTS, LAST FOUR QUARTERS
INDUSTRIAL ASPHALT, 52 EL CHARRO ROAD, PLEASANTON CALIFORNIA

Well	Sample	Sample	TPH as	TPH as	Total Oil &	Total	DATT.	DOD 4
Number	Date	Number	Diesel ¹	Oil ¹	Grease ²	Hydrocarbons3	PAHs	PCBs ⁴
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(μg/L)
MW-16		Carl (19 A) (19 CO) (17 CO) (18 CO)						
	May-95	2969	< 0.05	<0.5	<0.5	<0.5	NA	<0.1
	Sep-95	83450	0.06	<0.2	<0.5	<0.5	NA	< 0.5
200	Jan-96	3170	< 0.05	0.3	<0.5	<0.5	NA	< 0.1
	Mar-96	3135	< 0.05	0.9	0.7	<0.5	NA	< 0.1
4	Oct-96	Not sample	d. On ann	ual sampl	ing frequenc	у.		
	Apr-97	MW-16	< 0.05	0.4	NA	'NA	NA	NA
14A2 ⁵								
	May-95	2966	< 0.05	<0.5	<0.5	<0.5	NA	<0.1
	Sep-95	83453	< 0.05	< 0.2	<0.5	<0.5	NA	<0.5
	Jan-96	3169	< 0.05	< 0.2	<0.5	<0.5	NA	< 0.1
	Mar-96	3130	< 0.05	< 0.2	<0.5	<0.5	NA	< 0.1
	Oct-96	Not sample	d. On ann	ual samp	ling frequenc	y.		
	Apr-97	14A2	< 0.05	< 0.2	NA	NA	NA	NA
Drinki	ng Water St	andard6						0.5

NOTES FOR TABLE 4

- ¹ Sample analysis via SM 3510 GCFID.
- ² Sample analysis via SM 5520C.
- 3 Sample analysis via SM 5520F.
- Polychlorinated Biphenyl compounds. Sample analysis via EPA Test Method 8080.
- Jamieson Well sampled via a tap.
- California Department of Health Services Drinking Water Standards, Primary Maximum Contaminant Levels (MCL); secondary MCLs listed in parentheses. Source: Water Quality Goals, California Regional Water Quality Control Board, February 1991.
- TPH Total Petroleum Hydrocarbons.
- <0.1 Not Detected at or above the indicated laboratory reporting limit.
- NT Not Tested (ie., well not sampled)
- NA Sample not analyzed for that constituent
- PCBs Polychlorinated Biphenyls. Only Arochlor 1260 was detected.
- PAHs Polynuclear Aromatic Hydrocarbons by EPA 8270

REGENESIS

BIOREMEDIATION PRODUCTS

Oxygen Release Compound (ORC°)

ORC releases oxygen slowly to enhance bioremediation.

Oxygen Release Compound (ORC®)

Bioremediation—A Natural Process

Bioremediation is a process by which microorganisms degrade hazardous substances. For example, common bacteria can metabolically transform toxic petroleum products into carbon dioxide and water. Aerobic bioremediation requires oxygen, as well as moisture and commonly occurring nutrients.

There are several advantages to implementing a bioremediation system as compared to other technologies. Other remediation methods may simply transfer the contaminants to another medium which requires additional clean up. Excavation and transportation of the contaminant is often required. Bioremediation degrades contaminants on-site and can be more cost effective than other treatment technologies. The EPA actively promotes bioremediation as it is an ecologically sound, natural process.

Oxygen is often the limiting factor in aerobic bioremediation. Moisture and nutrients, such as phosphorus and nitrogen, are generally present in sufficient quantities. However, oxygen is rapidly consumed by microbes which thrive in an oxygen rich environment. Without adequate oxygen, contaminant degradation will slow and then stop. Thus, additional oxygen is needed to stimulate further microbial growth and activity.

Oxygen Release Compound, ORC

Oxygen Release Compound (ORC) is an innovative technology which enhances bioremediation. ORC is a patented formulation of a very fine, insoluble peroxygen that releases oxygen at a slow, controlled rate when hydrated. Its use has been demonstrated to increase the remediation of hydrocarbon contamination in soil and groundwater.

Features

- ► Magnesium peroxide compound is activated by moisture
- Patented technology controls and prolongs the release of oxygen
- ➤ Moderate pH levels are maintained
- ➤ Fine particle size has stable, long shelf life
- No external coating of product is required to control rate of oxygen release
- Pure oxygen source saturates water to higher levels than aeration

Benefits

- ► Provides a passive, low-cost, long-term oxygen source
- Does not generate harmful residue; environmentally safe
- ► Is perfect for in-situ remediation where other methods are impractical
- ▶ Will not disturb the hydraulics of the contaminated plume
- ► Does not volatilize pollurants
- ► Can be used as a redox control agent

ORC Technology

The product releases oxygen when it comes in contact with water as shown by the following equation:

$$MgO_2 + H_2O - \frac{1}{2}O_2 \uparrow + Mg(OH)_2$$

ORC will stop releasing when dry and will again release when rehydrated. The by-products of the reaction are oxygen and magnesium hydroxide (Milk of Magnesia). ORC is environmentally safe to use.

Figure I presents a typical release pattern for ORC. In general terms, the product releases up to 10% of the available oxygen in the first several bundred hours, followed-by a release of an additional 10% every thousand hours. This translates to a longevity of about one year under static conditions.

ORC Application — The "Oxygen Barrier"

ORC should be considered for contaminated sites whenever aerobic bioremediation is the appropriate treatment technology. For application, ORC powder is mixed in a matrix such as Portland Cement or sand and then lowered into a well or trench in an inert filter sock. After the oxygen dissipates, the socks and spent ORC are removed from the ground and, if necessary, new charges of ORC may be added.

Figure 2 depicts the Oxygen Barrier concept which has been successfully demonstrated to significantly suce BTE(levels. RESEVESTS

0 05

Various applications of ORC can meet a wide range of remediation objective. In ground water applications, ORC can be configured to form an Oxygen Barrier across a commitmed plume. A properly placed row of wells or a trench containing ORC will slowly release oxygen, enhance bioremediation, and cut off the plume in the oxygenated zone (see Figure 2 and 3). The Oxygen Barrier concept was successfully demonstrated at both the University of Waterloo and a site in North Carolina, dramatically remediating BTEX compounds downgradient from the Oxygen Barrier. —

As Figure 3 indicates, while the constantinant source in the North Carolina study continually released increasing levels of BTEK, ORC successfully remediated the constantination downgradiens from the "Oxygen Barrier."

Other ORC Applications

► Reduce Risk Surround highly contaminated area with ORC for fast remediation

➤ Replace Other Methods Turn off pump and treat, and use less expensive ORC for final remediation

► Compliment Other Methods Supplement air sparging with ORC for hard-to-reach contamination

► Treat Soil Mix ORC into biopiles or use in land farming for faster clean up

► Clean Up Remote Site May be the best alternative in remote or inclement areas since ORC is a "passive" treatment system

► Control Odor Successfully demonstrated to control odor in anaerobic impoundments

Please print dearly.

If you would like further information regarding Oxygen Release Compound (ORC®), please call (714) 443-3136 or complete and return this short information card.

A REGENESIS representative will contact you to discuss your remediation needs.

Name of Company		-	•
Name/Title			
Activess			
C7	State	Zip	
Phone ()	Fax ()		
Type of Company:			
Remediation Needs:			4
	*		

ORC-Proven Effectiveness

Studies at several recognized private companies and universities proved that ORC releases oxygen, enhances microbial activity and promotes remediation. Subsequent field applications demonstrated that ORC was effective in promoting bioremediation under "real world" conditions.

- University of Waterloo (published, Groundwater Monitoring and Remediation, Winter 1994 edition) conducted at the widely studied Borden Aquifer in Ontario, Canada. The study indicates that an Oxygen Barrier generated by ORC released significant amounts of dissolved oxygen (D.O.). It concluded that the enhancement of D.O. by ORC led to the biodegradation of at least 4 mg/L each of benzene and toluene.
- North Carolina Site (published, Proceedings from the Second International Symposium on In Situ and On-Site Bioreclamation, San Diego, CA, 1993) study demonstrated that the use of ORC in an Oxygen Barrier dramatically reduced BTEX compounds downgradient from leaking gasoline USI.
- Alaska Site A study was completed showing the effectiveness of ORC remediation as compared to air sparging. Sparge points fouled in the high iron environment and there was evidence of channeling a problem common with this technology. ORC was effective in remediation and a full barrier was installed.
- ► New Mexico Site The regulatory community showed interest in ORC barriers. From a single test well, remediation occurred downgradient in a wide dispersive pattern. A full barrier proposal was requested.

ORC vs. Other Remediation Technologies

ORC is a safe and effective remediation technology with many application advantages over other chemical oxygen sources, such as hydrogen perceide and calcium perceide. Because ORC is formulated to release a constant supply of oxygen over an extended period of time, replexishment is less frequent and more convenient. In addition, ORC's harmless by-products — oxygen and magnetium hydroxide — provide confidence in regulatory approval.

ORC can also provide cost and operational advantages over mechanical oxygen sources. In many circumstances, the cost of implementing an ORC remediation application can be substantially lower than a pump and treat or an air sparging system.

REGENESIS BIOREMEDIATION PRODUCTS 27130 PASED ESPADA STE A1407 SAN JUAN CAPISTRANO CA 92675-2758

Safety, Storage and Handling

ORC is an oxidizer. ORC should not come into contact with combustible materials. Though the material itself is not flammable, it can release oxygen to feed a fire. In the event of a fire, the area should be flooded with large volumes of water.

Since ORC can be mildly hazardous to human health, certain precautions should be taken when handling the material. Direct contact with the skin and eyes should be avoided, as irritation may occur. Rubber gloves and protective goggles should be worn as a preventative measure. Should contact with skin occur, wash immediately with soap and water. Flush eyes thoroughly and repeatedly for 15 minutes and contact a physician, if necessary.

Inhalation may also cause mild irritation to the lungs, nose, and throat, but should not result in significant, long-term hazard. A proper dust mask or breathing apparatus should be used when the product is handled in the powder form. If inhalation irritation occurs, move to a well ventilated space, or outside to fresh air.

ORC is a very stable compound. Though it is designed to release oxygen when in contact with water, it will remain stable at up to 3% moisture which facilitates storage. Storage areas should remain dry. Avoid areas with high humidity. Store the product away from combustible material. Keep containers closed when not in use.

REGENESIS—The Company

REGERIES IS Bioremediation Products was formed to continue the development and marketing of ORC. Oxygen Release Compound was first sold commercially in 1994 after three years of development. The inventors originally began working on a similar product used to facilitate the growth of plants in oxygen-poor soils. Formulations of ORC, more appropriate to bioremediation applications, were successfully tested in the laboratory and followed by several field demonstrations. The company is now in the commercialization phase, working with clients to meet their specific remediation needs.

The Scientific Advisory Board and the Board of Directors of REGENESIS Bioremediation Products are composed of recognized leaders from industry, academia and government.

For further information or technical assistance, please contact

REGENESIS Bioremediation Products

27130A Paseo Espada, Suite 1407 San Juan Capistrano, CA 92675 JUL-05-1995 10:31

r

ORC*FILTER SOCK INSTALLATION INSTRUCTIONS

ORC[®] Filter Socks are used to enhance bioremediation of petroleum hydrocarbons in groundwater. The filter sock contains ORC and an inert carrier matrix. The socks come in one foot sections. They are laced together to span the vertical polluted saturated zone in monitoring type wells. Once the socks are laced together and lowered into the wells, they become hydrated and begin releasing oxygen. The following instructions are vital to proper installation and subsequent removal of the socks.

SAFETY PRECAUTIONS

- ORC is completely non-toxic, but is composed of ultra-fine particles.
- · Wear dust masks and goggles to prevent soft tissue irritation.
- Reference the Material Safety Data Sheet for specific technical and physical information.

CONDITION OF SOURCE WELLS

- Test for well deviation and smoothness before ORC installation.
 - For the test, use a 5 foot section of pipe with an outside diameter 1/2 inch smaller than the source well's inside diameter.

KEY REQUIREMENTS FOR INSTALLATION

- A) SOCKS MUST BE INSTALLED WITH BLACK GROMMETS ON TOP.
- B) Wrap socks as independent units (see page 3, figure 5).
- C) A maximum of 20 2-inch socks per section.
- D) A maximum of 8 4-inch socks per section.
- E) A maximum of 6 6-inch socks per section.
- F) Make sure each sock is properly shaped (cylindrical and without bends) to facilitate ease of installation and removal.

HELPFUL HINTS

- ORC matrix hardens into a cement once hydrated.
- · Minimize slack between each sock, by periodically pulling up slack while lacing.
- The off ORC retrieval lines to the well cap. RECENTED recommends the use of a 3/8" diameter x 6" long eyebolt.
- The ORC Socks should be wetted to prevent excessive dusting prior to installation.
- . Make sure your work area is clean to avoid oil and dirt deposits on the socks.

ORC REMOVAL

- ORC Socks will be approximately 20% heavier after water saturation.
- Static friction from screened casing may cause difficulty in removal.
- A winch and stanchion (or comparable equipment) may be necessary to help remove the socks due to increased weight, friction etc.

(SEE DETAILED FIGURES INSIDE)

RECENESIS

Bioremediation Products

27130A Paseo Espada - Suite 1407- San Juan Capistrano - CA 92675 - Ph (714) 443-3136 - Fax (714) 443-3140

2

4 INCH AND 6 INCH LACING DIAGRAM

1) Find the center of the rope. Begin lacing the ORC Socks by threading the two ends of the installation rope through the black grommets and then through the white grommets at the bottom of the same side of the bottom sock.

2) Pull the rope through the bottom sock, making sure the center of the rope is between the black grommets. Cross the ropes over each other.

3) Loop the ends of the rope around the back of the sock and cross them. Repeat this step once again, so the rope is wrapped around the sock with two full turns.

4) Bring the ends of the rope around from the back, cross them, and thread them into the black grommets. The rope ends should be inserted into the black grommets diagonally from the white ones they started from. Threading the black grommets will be tight only on the bottom sock due to the unique lacing pattern.

7:45

Fax:510-944-5625

3

5) To avoid the ORC Socks slipping past each other, the socks must be laced with the grommet flaps of the bottom sock and second sock butting against each other (as shown).

Nov 13 '95

6) The remaining socks on the rope section are laced up according to Figure 6. Make sure that the rope is turned around the sock two full turns, with the grommets of each sock butting up against the next sock as shown in Figure 5.

7) Lace each subsequent ORC Sock exactly the same as in Figure 5 and 6.

IMPORTANT:

- Do not exceed the maximum number of socks per section (see "Key Requirements D & E" on page 1).
- Minimize the slack between the socks.

Well Diagram

2 INCH LACING DIAGRAM

REGENESIS

9) Find the center of the rope. Begin lacing the ORC Socks by threading one end of the installation rope through the white grommet, making sure that the center of the rope is pulled through to the center of the white grommet on the bottom sock.

BLACK GROMMET

WHITE

GROMMET

10) Wrap each end of the installation rope around the sock twice and then cross them through the black grommet.

11) Lace each subsequent sock using the same method as described in Figure 2 above.

IMPORTANT:

- Do not exceed the maximum number of socks per section (see "Key Requirements B" on page 1)
- . Minimize the slack between socks.

Please call our technical support personnel with any application questions at (714) 443-3136 between 8:00 a.m. and 5:00 p.m. Pacific Time.

Proper installation is critical to effective use of ORC and avoiding problems in the well.

Case Study #1

SINGLE WELL REMEDIATION STUDY - 41 Wells at 16 Sites

	E & C FIRM	INITIAL	PERCENT	WEEKS	INITIAL	HIGH
		BTEX	REDUCTION		OXYGEN	READING
Well#		(ppb)	4	. et. 146 inniversalis	(ppm)	(ppm)
	ATEC (MI)					
1	Site 1	19980	98%	7	2.7	29
2		54	91%	7	2	29
3		2929	为1000000000000000000000000000000000000	7	2	24
4	Site 2	151	81%	7	4.7	31
5		137	95%	7	0.9	31
6		1	2. 0%	7	2.6	18
7	Site 3	649	96%	7	2.8	19
	Confidential (MI)					
8		492	24% 1 6	8	2.6	21
9		3331	94%	8	2	15
10		1287	100% 28	8	1	17
	Confidential (WY)					
11		5494	100%:编	8	1.1	7.8
	Enecotech (MI)				H	
12	Site 1	34960	88%	8	1.8	24
13		406	95%	8	1.2	29
14	Site 2	964	97%	8 .	0.8	27
15		14	Mark Contract	8	6	32
16		10500	100%	8	6	32
17		47600	在 100% 定	8	1.8	28
18		6610	100%	8	1.4	24
19		1115	98%====	8	7.4	28
20		1136	346-99%T	8	0.6	15
21	Site 3	21	100%	8	0.6	23
22		5800	\$100% Z \$4	8	0	33
23		253	100%	8	0	23
24		8030	99%	8	2	22
	ESE (CA)	H				
25	1000	8810	99%	8	0	26
26		142	89% - 52		0.2	18
	Frey (CA)	R				
27		4130	200%		0.2	24
28		1480	100%	8	0.2	13
	Geraghty & Miller (OK)	Ä				
29	Site 1	1250	96%	10	0.1	21_
30		2276	71%	10	0.1	11
31	Site 2	8980	23%	12	0.8	17
	Parsons (MI)	1				-
32	Site 1	1168	77%		2.9	9.3
33		118	**************************************	8	4	6.5
34		4		8_	4	20
35	Site 2	406	<i>2</i> 98%-∞	8	5	20
36		300	91%	8_	5.2	20
37		497	49%		6	20
	Parsons (OH)					05
38	Site 1	13	多年39%至于 3		0.2	25
39		180	95%	8	0.2	20
40	Site 2	127	ALC: WATER	8	5	8
41		2018		8	0.3	22

Case Study # 2

ORC TECHNICAL BULLETIN # 1.2c

Oxygen Release Compound, ORC® New Mexico Field Results

A pilot study was conducted during the months of August through December 1994 at the Shell North Main Site in Belen, New Mexico using an ORC® barrier. The site is a State Lead Site and both the pilot study and the subsequent barrier installation were sponsored by the Underground Storage Tank Bureau of the New Mexico Environment Department.

The purpose of the pilot study was to determine the feasibility of using ORC® to increase the levels of dissolved oxygen (DO) and to remediate a dissolved phase petroleum hydrocarbon plume. The pilot study consisted of the installation and sampling of one 6-inch PVC source well (S-11), 26 downgradient monitoring points, and several existing monitoring wells. The pilot system was monitored to determine changes in DO and BTEX concentrations. The results of the pilot study showed that oxygen was released into the aquifer as verified by substantial increases in the DO concentrations away from the source well, and that remediation occurred at various points in the system as indicated by a decrease in the BTEX concentrations.

As a result of the pilot study, a full scale remediation system using ORC® was installed. The full scale remediation system consists of twenty 6-inch ORC® source wells and 54 monitoring points downgradient of the source wells. The vertical distribution of DO and BTEX was measured with probes located 3, 10, and 17 feet below the water table. A total of 342 ORC® socks were installed on April 3, 1995. The system was monitored to determine changes in DO and BTEX.

The data was analyzed to determine the net effect of adding dissolved oxygen, as generated by ORC®, on the hydrocarbon plume. Technical Bulletin IV.3a presents the details of oxygen barrier formation generated by this data set and also provides the site maps relevant to this discussion. This Technical Bulletin focuses on the total mass ("mass curves") of oxygen and BTEX over 93 days (Figure 1) and examines the fate of the BTEX plume as expressed in concentration contour diagrams over the same time period (Figure 2).

Mass curves are generated by first contouring the areal and vertical distribution of oxygen and BTEX with interpolative techniques such as Kriging. From this, the masses can be averaged in each area bounded by a set of contours and then summed

in the region of interest. This then presents a picture of the changing dynamics of oxygen and BTEX in the entire system over time. As can be seen in Figure 1, the oxygen mass increased to a maximum in first 3-5 days and remained relatively constant for the next thirty days. At this point, the rate of oxygen consumption increased in response to an influx of BTEX through the barrier caused by the excavation of the source upgradient of the barrier (discussed below). Field measurements are indicating the ORC[®] Filter Socks will have a longevity of about six months under these conditions.

A significant, correlative reduction of the BTEX plume was documented. A series of contour plots illustrate the reduction of the BTEX plume as a result of oxygen migrating from the ORC® barrier. There was clear evidence of enhanced oxygen dispersion into the formation of at least 20 feet downgradient from the monitoring well network, as detailed in Technical Bulletin IV.3a.

As illustrated, in Figures 2a and 2b, there was a significant reduction in BTEX mass in the treatment zone and at a significant distance away from the barrier. Concentrations of total BTEX in samples from the most downgradient well, 120 feet from the barrier, declined to Non-Detect (ND). Also, at this well, assays of aerobic microbial degraders were two orders of magnitude higher than background indicating the presence of oxygen from the ORC installation was driving bioremediation.

The gasoline spill was in an area approximately 30' X 45' and located at between 50 and 100 feet behind the barrier. Groundwater velocity was 1-2 feet per day. Project timelines dictated that the excavation was to immediately precede barrier placement. This physical activity disturbed the equilibrium of groundwater interaction with sorbed material; rainfall into the open excavation may also have been a factor. The result was that a pulse of increased dissolved phase BTEX was created and carried into the barrier, where it was detected by day 47.

This effect is also seen in the contour plots. The BTEX levels then decreased as further remediation began to bring the situation under control. An increase in the rate of oxygen consumption is noted as a result. Due to the presence of an overhead power line, a 4 well section of Oxygen Barrier was installed in the Northeast corner of the site. Based on the direction of groundwater flow, it was not subject to the pulse of BTEX from the excavated area. Consequently, the area immediately downgradient was remediated.

TOTAL BTEX (PPM) BEFORE ORC INSTALLATION

TOTAL BTEX (PPM) 93 DAYS AFTER ORC INSTALLATION

Figure 1

APPENDIX B

WE	LL DEVE	OPM	ENT &	SAMP	LING LO)G		WE	LL NO.	MW15
Date	: :0/1/9/	,	Weather:		2R/W	ARM			Sheet 2	
		15PHA	I	Submitted	i By: By	DIETZ			Date:	
Ргој	ect No.:10-16	82-0	9	Reviewed	l By:				Date:	
	Purnose of			Developme	ent		Sampling			
	Purging	-	Bailer	Disposable	Suction	Submers-	Dedicated	Other:		
	Equipment			Bailer	Pump (able Pump	Pump	<u>.</u>		
티	Sampling		Bailer	Disposable	Suction	Submers-	•	Other:		
ŧ	Equipment			Builer	Pump	able Pump	Pump	-41 -14-	934	
	Test Equipmen	+	Water	Level	<u>pł</u>		Condu			oidity Z
ınta		eter No.	NT.	· · · · · · · · · · · · · · · · · · ·	9057	3	90340		N/	4
Equipment & Decontamination	Calibration Da		N.		10/7/94(- Rins		10/1/96 (Rins		Din	se III
2	Decontamination Methods)n	Wa (DI	Steam	(DI)	Steam	DI	Steam	Di	Steam Steam
T T	TSP		(DI) Tap	Hot	Tap	Hot	Tap	Hot	Tap	Hot
	Alconox		Other	Cool	Other	Cool	Other	Cool	Other	Cool
詯	Other: ALCON	10K	ALCON	OX	<u></u>					
짇	Vo	ol. (gal):	59		59		<u> </u>		ļ.	
		Source:	BTLE)	ALHAN	BRA	<u> </u>			
	Decon. No	tes:								
	Well S	Security:	good) fa	ir poor	Wel	l Integrity(good fair	poor	Locked:	(yes) no
	Purge Volum	<u>_</u>	T.D.	<u> </u>	DTW	×	Factor	× 1 C.V	_ =	gal gal
	Well Diam.: □			_	78./8 ft.	×	2*= 0.175	× 11.15%	<i>#</i> =	/// gal /
	Free Product?:	, , ,			ng Product:	none	sheen	25. 稻品		feet thick
፲		0001.			-		Lung /50			
	Time (24-hr)		12-15	1220	1238	1295	1200	· · · · · ·	 	Replicate Goals
opment / Purge Record	Galions Purged		0 1	26	2280	753-37	Jast Hen		 -	(dev. only)
Ę	Surged (minute	s)		MA =		ツつり	1272		 -	±0.10
3	pH	<u>~`</u>	S	7.98	7,52 20°c	100	7.72	<u> </u>		±1°C
Hen.	Temperature (°		T	220	 	19%	1-1-1-			±10%
	Cond. (µmhos/o	ла) 	A	780	600	600	100		1	±10%
Devel	Salinity (%)	n_\	R	.01	.0/	101	701	 	 	<50 NTUs
ā	Turbidity (NTU Color	rs)	1	1100	2,000	CLEAK			 	Colorless
	Depth to Water		78,18	CLEAR	CLEAR	CLEHA	CER	 		±0.01'
		ce Point:		Other:	ــــــــــــــــــــــــــــــــــــــ	<u>. </u>	<u> </u>	100	<u> </u>	
\succeq					1 m	1 20	T-124		-1	Lab
	Sample #	Time	Quantity	Volume		Preserv.	Filtration	-	alysis	
	KMW-15	1253	3	H	AMB	N/A	N/A		IPAAS	AGU
Sample Log		 	<u> </u>		-	<u> </u>	-	100	/ <i>F. F/H</i> ->	 -
ä			<u> </u>		 		12 F 187	- CO 7		-
BIII	<u> </u>	-	<u> </u>		 	 	 3 3			-
ြက	160011 21	1000	 	. 1	/Imr	N/A	NA	1 .	<u></u>	+++
	KMW51	#25s	3	16	AMB	10//4	NIT	1		
<u> </u>	(DUP)	<u> </u>	<u> </u>				<u> </u>	1 🕏		
	Other Obser	vations:				4	. '			
Miss						<u> </u>				
🛮							<u></u>	•		
	Final Check:	VOAs fro	ce of bubble	s? yes / n	o /(NA)			-Well Lo	cked? yes	/ no / NA
ien b	PURGELOG XLS -	- General 1	10/01/95 FTN A	L.					C 188	L.Kleinfelder, Inc.
										and the second

WE	ELL DEVELOPM	ENT &	SAMPI	ING LO)G		WEI	LL NO.	MU-10
Date	e: 10/7/96	Weather:_	CLEAK	2 /WAR	M			Sheet 3	of 6
	ect: 0-1681-04		Submitted	By: 💋 🗸	DETI			Date <u>:</u>	
Proj	ect No.: TIP]	Reviewed	Ву:		<u>-</u>		Date:	
	Purpose of Log		Developme	nt	区 :	Sampling			
	Purging	Bailer	Disposable	Suction /	Submers-	Dedicated (Other:	······································	
	Equipment		Beiler	Pump (able Pump	Pump			
티	Sampling	Bailer (Disposable	Suction	Submers-		Other:		
ıati	Equipment	Water	Bailer	Pump -7	able Pump	Pump Conduc	viirity	Turl	<u>bidity</u>
Decontamination	Test Equipment Meter No.	water	<u>LEVEI</u>	9057					<u>///</u>
onta	Calibration Date/Time	N.		10/7/11/6	°	90340		NII	2
33	Decontamination	Wa		Rins	se Î	Rins		Rin	se III
क	Methods	(DI)	Steam	an)	Steam	DI	Steam	DI	Steam
Ħ	TSP .	Tap	Hot	Tap	Hot	Tap	Hot	Tap	Hot
E	Aiconox	Other	Cool	Other	Cool	Other	Cool	Other	Cool
Equipment &	Other: ALOLOX	_	UDXHIJU						
	Vol. (gal):	39		63				`	
	Source:	DIEN		ALHAN	1BPA				
<u>_</u>	Decon. Notes:								=
	Well Security	good fa	іг роог	Wel	l Integrity:	good) fair	-	Locked	
	Purge Volume (CV)	T.D.	–	DTW	×	Factor	× 1 C.V	. =	22 gal
	Well Diam.: □ 2" 54"	//O · ft.	_	7676 ft.	×	5-0.663	<u> × 22</u>	= .	88 gai
-51	Free Product?: Odor:	(no) yes	Floatii	ng Product:	none)	sheen	film		feet thick
opment / Purge Record	Time (24-hr)	1306	1315	1319	1324	1328			Replicate
8	Gallons Purged	0	22	44	66	88			<u>Goals</u>
믬	Surged (minutes)	1	N/A -						(dev. only)
뢷	pН	S	7.85	7.81	787	7.87			±0.10
	Temperature (°C)	T	23%	20°C	20°C	20°C)			±1℃
Ĕ			,)				
2	Cond. (µmhos/cm)	A	700	650	650	650			±10%
1 21	Cond. (µmhos/cm) Salinity (‰)	A R	100	050	.01	.01			±10%
		R T		· -	.01 N/K	.01 N/A			±10% <50 NTUs
Devel	Salinity (‰)	R		.01	.01	.01			±10% <50 NTUs Colorless
Deve	Salinity (%) Turbidity (NTU's) Color Depth to Water	R T	.01 U/A CLEAR	N/A	.01 N/K	.01 N/A			±10% <50 NTUs
Deve	Salinity (%) Turbidity (NTU's) Color	R T	,01 U/A	N/A	.01 N/K	.01 N/A			±10% <50 NTUs Colorless
Deve	Salinity (%) Turbidity (NTU's) Color Depth to Water	R T	.01 U/A CLEAR	N/A	.01 N/K	.01 N/A	An	alysis	±10% <50 NTUs Colorless
Deve	Salinity (%) Turbidity (NTU's) Color Depth to Water Reference Point: Sample # Time	R T ↓	Other:	.01 NA CLEAR	.01 N/k CLEHR	.01 N/A CLAR	And FOR /F	alysis	±10% <50 NTUs Colorless ±0.01'
	Salinity (%) Turbidity (NTU's) Color Depth to Water Reference Point: Sample # Time KMW-10 1330	R T ↓ (TOC) Quantity	Other:	USA CLEAR Type	N/k CLEAR Preserv.	.0/ N/A CLCAL	· · · · · · · · · · · · · · · · · · ·	WA	±10% <50 NTUs Colorless ±0.01' Lab
	Salinity (%) Turbidity (NTU's) Color Depth to Water Reference Point: Sample # Time KMW-10 1330	R T ↓ (TOC) Quantity	Other:	USA CLEAR Type	N/k CLEAR Preserv.	.0/ N/A CLCAL	PCB/F	WA	±10% <50 NTUs Colorless ±0.01' Lab
	Salinity (%) Turbidity (NTU's) Color Depth to Water Reference Point: Sample # Time KMW-10 1330	R T ↓ (TOC) Quantity	Other:	USA CLEAR Type	N/k CLEAR Preserv.	.0/ N/A CLCAL	PCB/F	WA	±10% <50 NTUs Colorless ±0.01' Lab
Sample Log Deve	Salinity (%) Turbidity (NTU's) Color Depth to Water Reference Point: Sample # Time KMW-10 1330	R T ↓ (TOC) Quantity	Other:	USA CLEAR Type	N/k CLEAR Preserv.	.0/ N/A CLCAL	PCB/F	WA	±10% <50 NTUs Colorless ±0.01' Lab
	Salinity (%) Turbidity (NTU's) Color Depth to Water Reference Point: Sample # Time KMW-10 1330	R T ↓ (TOC) Quantity	Other:	USA CLEAR Type	N/k CLEAR Preserv.	.0/ N/A CLCAL	PCB/F	WA	±10% <50 NTUs Colorless ±0.01' Lab
	Salinity (%) Turbidity (NTU's) Color Depth to Water Reference Point: Sample # Time KMW-10 1330	R T ↓ (TOC) Quantity	Other:	USA CLEAR Type	N/k CLEAR Preserv.	.0/ N/A CLCAL	PCB/F	WA	±10% <50 NTUs Colorless ±0.01' Lab
	Salinity (%) Turbidity (NTU's) Color Depth to Water Reference Point: Sample # Time KMW-10 1330	R T ↓ (TOC) Quantity	Other:	USA CLEAR Type	N/k CLEAR Preserv.	.0/ N/A CLCAL	PCB/F	WA	±10% <50 NTUs Colorless ±0.01' Lab
Sample Log	Salinity (%) Turbidity (NTU's) Color Depth to Water Reference Point: Sample # Time KMW/O /330	R T ↓ (TOC) Quantity	Other:	USA CLEAR Type	N/k CLEAR Preserv.	.0/ N/A CLCAL	PCB/F	WA	±10% <50 NTUs Colorless ±0.01' Lab
	Salinity (%) Turbidity (NTU's) Color Depth to Water Reference Point: Sample # Time KMW/O /330	R T ↓ (TOC) Quantity	Other:	USA CLEAR Type	N/k CLEAR Preserv.	.0/ N/A CLCAL	PCB IF	PNA	±10% <50 NTUs Colorless ±0.01' Lab

WE	LL DEVEI							WEI	LL NO.	MU-3
Date	10/2/96		Weather	Submitted	109/	WARM			Sheet 5	of 6
Ргој	ect. I/A			Submitted	By:	DIET	2		Date:	
Proj	ect No.: 10-10	682-0	9	Reviewed	Ву:		-	,	Date:	
	Purpose of	Log		Developme	nt		Sampling			
	Purging		Bailer	Disposable	Suction	Submers-	Dedicated	Other:		
	Equipment			Builce	Pump	able Pump				
loi Oi	Sampling Equipment		Bailer	Disposable	Suction	Submers-	Dedicated	Other:		•
Equipment & Decontamination	Test Equipmen	t	Wate	Railer r Level	Pump	able Pump H	Pump	activity	Turt	idity
am.		eter No.	<u> wate</u>	1 10,01	<u> </u>	11	201.0.		<u> </u>	<u> </u>
out.	Calibration Da		1	VA.						
Ğ	Decontaminatio	n	<u>v</u>	ash	Rin	ise I	Rin	se II	Rins	e III
8	Methods		DI	Steam	DI	Steam	DI	Steam	Dì	Steam
된	TSP Alconox		Tap Other	Hot C1	Tep	Hot	Tap Other	Hot	Tap	· Hot
ţ	Other:		Ould	Cool	Other	Cool	Other	Cool	Other	Cool
四		l. (gal):								
		Source:							_ -	
	Decon. Not								<u> </u>	
	Well S	ecurity:	good 1	air poor	We	ll Integrity:	good fai	r poor	Locked:	yes no
	Purge Volun	ne (CV)	T.D.	_	DTW -	×	Factor	× 1 C.V	=	gal
	Well Diam.: 🛛 :	2")8.4"	75,4 ft	.]]	<i>74,8</i> ft.	1X × 12	2~0.175 4~0.663	×	=	gal
	Free Product?:			-	ig Product:	none	sheen	film	•	feet thick
opment / Purge Record	Time (24-hr)	-			-	,				Replicate
Re	Galions Purged		0							Goals
2	Surged (minutes	i)	1	1		1	1			(dev. only)
147	рН		S					·		±0.10
귾	Temperature (°C	C)	T						·	±1°C
	Cond. (µmhos/c	m)	A	Ì						±10%
Velo	Salinity (‰)		R							±10%
Devel	Turbidity (NTU	s)	T			<u> </u>		<u> </u>		<50 NTUs
	Color		1				<u> </u>			Colorless
	Depth to Water	Ti - ! - 4 . !	2000	Others		<u> </u>	<u> </u>	<u> </u>	<u> </u>	±0.01'
\succeq	Reference		TOC	Other:			Teris :			
	Sample #	Time	Quantity	Volume	Туре	Preserv.	Filtration	Ana	lysis	Lab
				 			-	- 		
3			<u> </u>			ļ	1			<u> </u>
Sample Log	ļ ————		<u> </u>	+	 		+		•	
			 	1	 	 	1	-	<u> </u>	
								†		
						1	†	1		
$\overline{}$	Other Observ	ations:	<i></i>	HIL Z	Y.U 1	KARIE	705	AMPIS		
얾				cut- fo	7 2	411,60		11116	<u></u>	
Miss		·		······						
l	Final Check: V	OAs fre	e of bubble	s? yes / no	/ NA			Well Loc	ked? yes /	no / NA

	LL DEVEL		ENT &	SAMPI	ING L)G		WEI	LL NO.	mw-2
Date	: 10/7/96		Weather:	Submitted	UNY/K	IARM			Sheet 6	of 6
Ргој	ect:	Q	_	Submitted	By: B.	DIETZ	, 		Date:	
Ргој	ect No.: 18/	1682-	09	Reviewed	By:		-		Date:	
	Purpose of I			Developme			Sampling			
	Purging		Bailer	Disposable	Suction (Submers-	Dedicated	Other:		
	Eguipment	· · · ·		Bailer	Pump -	able Pump	Pump			
티	Sampling		Bailer	Disposable)	Suction	Submers-		Other:		
ıati	Equipment		777-4	Bailer	Pump	able Pump	Pump	-airday I	Tuel	idity
Decontamination	Test Equipment	-	Water	Level	<u>pł</u>		Condu			,
2		ter No.			90574		9034		N	
023	Calibration Dat		N.			1115		@115	<u> </u>	
	Decontamination	n	Wa		Rins		Rins		•	se III
11 8	Methods TSP		(DI)	Steam Hot	(DI)	Steam Hot	DI Tap	Steam Hot	Dl Tap	Steam Hot
ПET	Alconox	, 1	Tap Other	Cool	Tap Other	Cool	Other	Cool	Other	Cool
ri	Other: ALCONO	24		LCOLOX	Cuici	.	V11			
Equipment &		L (gal):	En	acm,	20		· · · · · · · · · · · · · · · · · · ·			
1		Source:	232		2g ALHAN	- = 0 0				
			MAD		HLHAM	1BCH	<u> </u>			
	Decon. Note	es:								=
		ecurity:	good (fa	ir poor		l Integrity:	good fair		Locked:	
	Purge Volum		T.D.		DTW	×	Factor	× 1 C.V	= 🦅	7,35 gal
	Well Diam.: D 2	2" 🗖 4"	%) ft.	_	18,91 ft.	×	2-0.175	× <i>1.35</i>	= '	29.4 gal
	Free Product?:	Odor:	no yes)	⊭ Floatii	g Product:	none	sheen	# film		feet thick
Ö	Time (24-hr)		1425	1431	14110	1111114	1450			Replicate
S	Gallons Purged			7,50,	111	1777	29.5			4 "
e)	CONTONS & CAPER						1 /2 /2 3 1	1	B .	Goals
Ň		<u>, </u>		11/00	/7	22	2/.3			Goals (dev. only)
Purg	Surged (minutes)	1	N/A	751					(dev. only)
t / Purg	Surged (minutes pH		↑ S	7.53	7.51	7.56	7.56			(dev. only) ±0.10
nent / Purg	Surged (minutes pH Temperature (°C	()	† S T	7.55 25°c	25°C	7.56 20°C	7.56 22°C			(dev. only) ±0.10 ±1°C
opment / Purge Record	Surged (minutes pH Temperature (°C Cond. (µmhos/cr	()	S T A	7.55 25°c 800	25°C	7.56 20°C	7.56 22°, 700			(dev. only) ±0.10 ±1°C ±10%
retopment / Purg	Surged (minutes pH Temperature (°C Cond. (µmhos/cr Salinity (%)	c) m)	T A R	7.55 25°C 800 1019°C	25°C	7.56 20°C	7.56 22°C			(dev. only) ±0.10 ±1°C ±10% ±10%
Development / Purgo	Surged (minutes pH Temperature (°C Cond. (µmhos/c Salinity (‰) Turbidity (NTU	c) m)	T A R T	7.55 25°C 800 01% N/A	25°C/ 700 ,01%	7.56 22°C 700 .05	7.56 22°C 700 .01			(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs
Development / Purg	Surged (minutes pH Temperature (°C Cond. (µmhos/cr Salinity (%) Turbidity (NTU' Color	c) m)	↑ S T A R T ↓	7.55 25°C 800 1019°C	25°C/ 700 ,01%	7.56 20°C	7.56 22°, 700			(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless
Development / Purg	Surged (minutes pH Temperature (°C Cond. (µmhos/cr Salinity (‰) Turbidity (NTU Color Depth to Water	c) m) s)	↑ S T A R T ↓ 78.9/	7.55 25°C 800 01°Jo N/A CLEAL	25°C/ 700 ,01%	7.56 22°C 700 .05	7.56 22°C 700 .01			(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs
Development / Purg	Surged (minutes pH Temperature (°C Cond. (µmhos/cr Salinity (%) Turbidity (NTU' Color	c) m) s)	↑ S T A R T ↓	7.55 25°C 800 01% N/A	25°C/ 700 ,01%	7.56 22°C 700 .05	7.56 22°C 700 .01			(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless
Development / Purg	Surged (minutes pH Temperature (°C Cond. (µmhos/cr Salinity (‰) Turbidity (NTU Color Depth to Water	s) e Point:	↑ S T A R T ↓ 78.9/ /TOC Quantity	7.55 25°C 800 01°Jo N/A CLEAL	25°C/ 700 ,01%	7.56 22°C 700 .05	7.56 22°C 700 .01	Ana	alysis	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless
Development / Purg	Surged (minutes pH Temperature (°C Cond. (µmhos/ci Salinity (‰) Turbidity (NTU' Color Depth to Water Reference	m) s) e Point:	↑ S T A R T ↓ 78.9/ /TOC Quantity	7.55 25°c 800 01°/0 N/A C/FAL Other:	25°C) 700 ,01% C/D4	7.56 21°C 700 .05	7.56 22°C, 700 .01	Anz TPASTO	-	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless ±0.01'
Devel	Surged (minutes pH Temperature (°C Cond. (µmhos/cr Salinity (‰) Turbidity (NTU Color Depth to Water Reference	s) e Point:	↑ S T A R T ↓ 78.9/ /TOC Quantity	7.55 25°c 800 01°fo N/A (LEAL) Other:	250 700 ,01% CLDY	7.56 22°C 700 .05 CUD'4	7.56 22° 700 .01 .01 .01 .01 Filtration	181610	-	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless ±0.01'
Devel	Surged (minutes pH Temperature (°C Cond. (µmhos/ci Salinity (‰) Turbidity (NTU' Color Depth to Water Reference	s) e Point:	↑ S T A R T ↓ 78.9/ /TOC Quantity	7.55 25°c 800 01°fo N/A (LEAL) Other:	25°C) 700 ,01% C/D4	7.56 22°C 700 .05 CUD'4	7.56 22° 700 .01 .01 .01 .01 Filtration	 	-	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless ±0.01'
Devel	Surged (minutes pH Temperature (°C Cond. (µmhos/ci Salinity (‰) Turbidity (NTU' Color Depth to Water Reference	s) e Point:	↑ S T A R T ↓ 78.9/ /TOC Quantity	7.55 25°c 800 01°fo N/A (LEAL) Other:	25°C) 700 ,01% C/D4	7.56 22°C 700 .05 CUD'4	7.56 22° 700 .01 .01 .01 .01 Filtration	181610	-	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless ±0.01'
Devel	Surged (minutes pH Temperature (°C Cond. (µmhos/ci Salinity (‰) Turbidity (NTU' Color Depth to Water Reference	s) e Point:	↑ S T A R T ↓ 78.9/ /TOC Quantity	7.55 25°c 800 01°fo N/A (LEAL) Other:	25°C) 700 ,01% C/D4	7.56 22°C 700 .05 CUD'4	7.56 22° 700 .01 .01 .01 .01 Filtration	181610	-	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless ±0.01'
Sample Log Development / Purze	Surged (minutes pH Temperature (°C Cond. (µmhos/ci Salinity (‰) Turbidity (NTU' Color Depth to Water Reference	s) e Point:	↑ S T A R T ↓ 78.9/ /TOC Quantity	7.55 25°c 800 01°fo N/A (LEAL) Other:	25°C) 700 ,01% C/D4	7.56 22°C 700 .05 CUD'4	7.56 22° 700 .01 .01 .01 .01 Filtration	181610	-	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless ±0.01'
Devel	Surged (minutes pH Temperature (°C Cond. (µmhos/ci Salinity (‰) Turbidity (NTU' Color Depth to Water Reference	s) e Point:	↑ S T A R T ↓ 78.9/ /TOC Quantity	7.55 25°c 800 01°fo N/A (LEAL) Other:	25°C) 700 ,01% C/D4	7.56 22°C 700 .05 CUD'4	7.56 22° 700 .01 .01 .01 .01 Filtration	181610	-	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless ±0.01'
Devel	Surged (minutes pH Temperature (°C Cond. (µmhos/cr Salinity (%o) Turbidity (NTU Color Depth to Water Reference Sample # **MACHIEL **TOTALINIAN COLORS **TOTALINIAN CO	e Point:	↑ S T A R T ↓ //OC Quantity 4	7.55 25°c 800 01°fo N/A CLEAC Other:	25c, 700, 101% 101% CLDY	7.56 22°C 700 .05 CUD'9 Preserv.	7.56 22°C 700 .0) .0) .0) .0) .0)	TPHÓ TOI POR	T PNA	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless ±0.01'
Sample Log Devel	Surged (minutes pH Temperature (°C Cond. (µmhos/ci Salinity (‰) Turbidity (NTU' Color Depth to Water Reference	e Point:	T A R T J 78.9/ TOC Quantity 4	7.55 25°c 800 01°fo N/A CIFAL Other: Volume 1.1	25°C 700 701% 701% 701% 701% 701% 701% 701%	7.56 22°C 700 .05 CUD'9 Preserv.	7.56 22°C 700 .01 .01 CLDY	TPHÓ TOI POR	T PNA	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless ±0.01'
Sample Log Devel	Surged (minutes pH Temperature (°C Cond. (µmhos/cr Salinity (%o) Turbidity (NTU Color Depth to Water Reference Sample # **MACHIEL **TOTALINIAN COLORS **TOTALINIAN CO	e Point: Time	T A R T J 78.9/ TOC Quantity 4	7.55 25°c 800 01°fo N/A CLEAC Other:	25°C 700 701% 701% 701% 701% 701% 701% 701%	7.56 22°C 700 .05 CUD'9 Preserv.	7.56 22°C 700 .0) .0) .0) .0) .0)	TPHÓ TOI POR	T PNA	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless ±0.01'
Devel	Surged (minutes pH Temperature (°C Cond. (µmhos/ci Salinity (%)) Turbidity (NTU Color Depth to Water Reference Sample # // Mustif	e Point: Time ///	↑ S T A R T ### TOC Quantity ### CFPON	7.55 25°c 800 01°fo N/A N/A Other: Volume 1.1	25°C) 700 701% CIDY Type AMB	7.56 22°C 700 .05 CUD'9 Preserv.	7.56 22°C 700 .0) .0) .0) .0) .0)	TRAB+OI	T PNA	(dev. only) ±0.10 ±1°C ±10% ±10% <50 NTUs Colorless ±0.01' Lab

WE	LL DEVELOPM	IENT &	SAMPI	ING L	OG			L NO.	
Date	: 10/7/96	Weather:	SUNU	WAR	2m			Sheet 4	of 6
	ect: I/A	3	Submitted	By:	SDIET	7_		Date:	
	ect No.: 10-1682-0	// J	Reviewed	By:		-		Date:	
Ĺ	Purpose of Log		Developme			Sampling			
$\overline{\Box}$	Purging	Bailer	Disposable	Suction	Submers-	Dedicated (Other:		
	Equipment		Bailer	Pump	able Pump	Min	24		
티	Sampling	f .	Disposable)	Suction	Submers-		Other:		1
nati	Equipment Test Equipment	Water	Bailer	Pump	able Pump	Conduc	tivity	Turb	idity
Ē	Meter No.	<u> </u>	LCCVCI			9034		إلا	
nt.	Calibration Date/Time	N/	<u> </u>	9051		10/20		NIA	
Decontamination	Decontamination	Wa		Rin		Rins		Rins	
	Methods	(DI	Steam	(DI)	Steam	DI	Steam	DI	Steam
Ħ	TSP (f)	Tap	Hot	Tap	Hot	Тар	Hot	Tap	Hot
E	Alconox	Other	Cool	Other	Cool	Other	Cool O	Other	Cool
Equipment &	Other:	ν_{l}	Q						
3	Vol. (gal):	DISP	BSAL						
	Source:	1/2	H						
	Decon. Notes:								
	Well Security:	good fa	ir poor	We	ll Integrity:	good (air		Locked:	
	Purge Volume (CV)	T.D.	_	DŢW	×	Factor	× 1 C.V	=	/50 gal
1	Well Diam.: 2 2 □ 4	87.4 ft.	-	78,79 ft.	×	2"= 0.175 A"= 0.663	× 1.5	=	60 gal
!	Free Product?: Odor:			ng Product:		sheen	film		feet thick
opment / Purge Record	Time (24-hr)	1334	1338	1339	1313	1352			Replicate
Na Na Na Na Na Na Na Na Na Na Na Na Na N	Gallons Purged	0	1,5	3.0	45	6,0			<u>Goals</u>
胃	Surged (minutes)	1	11/1 -						(dev. only)
리	pH	S	1.52	7.37	7.39	7.39			±0.10
目	Temperature (°C)	T	120	218	2/8	2/8			±1°C
E	Cond. (µmhos/cm)	Α	1100	1100	1100	1100			±10%
[Salinity (‰)	R	101	.01	-01	101		3.	±10%
Devel	Turbidity (NTU's)	T	WA				-		<50 NTUs
"	Color	T.	1104-			\rightarrow			Coloriess
	Depth to Water	78.79						<u> </u>	±0.01'
	Reference Point	(TOC)	Other:				<u> </u>		
7	Sample # Time	Quantity	Volume	Туре	Preserv.	Filtration	An	alysis	Lab
1	KMW-1 1400		1.0	AMB	NA	NA	PNA/P	CB_	AEN
25		 		1			TPHOT	+016	
Sample Log		<u> </u>							
Ē									<u> </u>
S									,
1									
									<u></u>
7	Other Observations:	TOE.	c Pan	DUCT	111511	RE TH	RIMI	r Place	6
ں ا	ن مصری ا	100 July 100	ב אבר איני איני איני			ZITC			
N Si	TOR LIKE	E , TOU SVBSTI	ONA I.	LANGE IN	PPDIS	KTIS 1		SURAB	25
[Final Check: VOAs f				1,000	 /		cked? yes	
•	TOTAL CHOOK, TOTAL		,	~/\/					

NA KL	EINFELL	JEK M	sso lve	y UX YE	yen (.n	9/L)(2) Lepth	50+ 2	10:25	hilara
RECO	RD OF W	ATER	LEVEL	MEASU	REMEN	ITS	<u> </u>		sater to	
Date:	1/29 - 4/3	0/97	Weather:		ear			Sheet (of (
Project:	Judustra	al Asphall	Submitte	d By: {	一分へ	_		Date:	1,197	1
Project N	0.: 10-1687-	09/604	Reviewed	By:				Date:	 	†
1	ıt Number:		-				TLN	· ₆ C ₁ —	y/L	
Well	Time	Sensitivity	Measuring	Measurement	Replicate N	leasurements	500	-21-4	25' 5	`
Number	(opened/meanwed)	Setting	Point	141045ai Ciricii	(if req	nested)	יאכעי	1900S	HTO HELLE	1
	(24-hr)	(est. %)	(M.P.)	1	2	. 3	2	10		İ
MW-)		-					17.5/2	17.80.1		1

Well Number	Time (opened/measured)	Sensitivity Setting	Measuring Point	Measurement		deasurements uested)	500	Notes	25' 5
	(24-hr)	(est. %)	(M.P.)	1	2	3	2	10	
MW-)							17.5/0.2	17.80.1	
Z-WM	:					-	18.16,2	18.4 0.1	
Mis-3	- Dr	ij					70.0	7_0	
M.W. 4	Bur	ted.			<u>, , , , , , , , , , , , , , , , , , , </u>				
mw-5.				83.71	· · ·	٠.	4 45.71 16.1/2.15	43.71	102 11
MW-6	-		-				i i	1	
F-WM				7638			78.38	36.78	17.3/0-2 101.36 17.0/0,19
MW-8	•				-		•		17.5/0,
MX							14.01-13	1 424 1015	143/57
mw-10	Bur	riad							
ومسيخاا									
14422									
M2-43	.						<u> </u>		
MW-14		~	•	~ / ·		-	70/00	17 (10)	174/2
MW-15							12/23	17.6/2.1	17.1/02
MW-16				75.88		-	77.08	82.65	17.1/0,
14AZ				, , , ,			175/5.2		1271.8
EW-8				1		 .	110720		
	<u></u>							;	
<u> `</u>								•	
					· · · · · · · · · · · · · · · · · · ·				
-									
	· · · · · · · · · · · · · · · · · · ·								
									1
MRITOC	' GS Corre	ring, Other		<u> </u>	· -		<u> </u>		- YES / NO

jen b: WL-FORM.XLS, 6/20/95, DRAFT FINAL Sampling order: Tap, 4, 5, 6, 7, 14, 16,

e 1995, Kleinfelder Inc.

Project No Instrument						Ву:				Date:		\supseteq	
Well Number	Time (opened/measured)		itivity Iting		asuring Point	Measurement		icasurements uested)		Notes		(locked? 4)	
	(24-hr) 17109/1135		. %)		M.P.)	1	2	3	Tate Ou C	mersid in	mud	٤	c.f
MM-1	10159	Ho		70	1	7623			180.4				4 4
MW-Z	1015/11:30					76.36							4
MW-3						Try	cannot	d mas	mag or	Sample	1 -		
	Bur	ea			<u> </u>]						
NW-5	1279					83.71					-		
4-WM	12:23/3:32					75.42			Christy	over broke	^`		
Hw-7	12:39/13:28					7638				,	•		
MW-8	9:00					74.89			burred is	mud,			4(7
MW-9	Bu		. 8							·	:		
MW~10	Bu			1									
MW-1	Aband		_			 							
MW-12			ot exi										
MW-13				П		 							
	10:54	1	vote	X	»T	76.51						\vdash	
1100 11	10:55/9:35			H		75.48			1				
MO-13	11:45/6,35			+		75,88			1/- 180	rt cawel		4000	
		I A		11		19,08			1 PH VI	T MILL	COPI	006	
1442	2:27/	177	 	\vdash		7100	<u> </u>		1			\vdash	1
TMWI	2:27/ 16:12	->	#-	1	<u> </u>	76.95	<u> </u>		<u> </u>	;		 	1
			<u> </u>						<u> </u>	<u> </u>	<u> </u>	 	
				_		<u> </u>	 	<u> </u>				—	
									ļ	<u> </u>	<u> </u>		
<u> </u>						1				_	<u> </u>		
												:	
										-			
MRITO	C GS Cove	r rin	a Othe	<u> </u>			_1	. 14.14	A11 V	Vells Locked	- YES	/ NO)

KA	KLEINFELDER								
WE	LL DEVELOPM	ENT &	SAMPI	ING L	OG		WELL	NO. (4	(SA)
Date	:4-29-97	Weather:	. 7 C	rav				Sheet (of l
	ect: Industrial A	usphalt 3	Submitted	Ву:	スのア			Date: 5	(197
	ect Number: 10-1682-		Reviewed	By:				Date:	
	Purpose of Log		Developme	nt	Z	Sampling			
	Purging V 4 h	Bailer	Disposable	Suction	Submers-	Dedicated	Other:		
	Equipment N H		Bailer	Pump	abic Pump	Pump			
티	Sampling	Bailer	Disposable	Suction	2" Submers-	Dedicated	Other:	AP	
ıati	Equipment	***	Bailer	Pump	able Pump	Pump			
Ė	Test Equipment	Water	Level	<u>pl</u>			ictivity	Turb	ally
ınta	Meter No. Calibration Date/Time			9029	AA	021	154		
350	Decontamination	Wa	ch l	Rin		Rin	se II	Rins	- 111
8	Methods	DI _ <u>vv a</u>	Steam Steam	DI	Steam	DI	Steam	DI	Steam
팅	TSP	Тар	Hot	Tap	Hot	Tap	Hot	Tap	Hot
티	Alconox	Other	Cold	Other	Cold	Other	Cold	Other	Cold
Equipment & Decontamination	Other:			X	1-1				
E41	Vol. (gal):			/_	7 . ,	<u> </u>	·····		
	Water Source:							•	
	Decon. Notes:						:	···	
	, Well Security:	good fa	ir poor		ll Integrity:	good fai	 	Locked:	уеѕ по
:	Purge Volume (CV)	T.D.	-	DTW	, X	Factor	1 C.V.	X	C.V.
뒥	Well Diam.: 0 2" 0 4"	لسحسحسا		ft.	X	2" 0.175 4" 0.663		×	
clopment / Purge Record	Free Product?: Odor:	no yes	Floatii	ng Product:	none	sheen	film		feet thick
8	Time (24-hr)	1							Replicate
1 2	Gallons Purged	0							<u>Goals</u>
1	pΗ	1		N F	Λ				±0.50
=	Temperature (°C)	3		Λ	17				±10%
目	Cond. (µmhos/cm)	V							±10%
딀	Salinity (‰)	A							±10%
Dev	Turbidity (NTU's)	R							<50 NTUs
1	Color	T		<u> </u>			<u> </u>		Colorless
	Depth to Water	₩	<u> </u>	<u> </u>		<u> </u>	<u> L</u>		<u> </u>
\subseteq	Reference Point:		Other:						
	Sample Number	Time	Quantity	Volume	Турс	Preserv.	Filtration	Analysis	Lab
	14 AZ	15:32	2	<u> </u>	Ambur	 	-	TPH-d	
떩			ļ	ļ	<u> </u>		1	TPH-mc	
Sample Log		ļ		· · · · · · · · · · · · · · · · · · ·	 	 		ļ	E
		 	<u> </u>	<u> </u>		 	1	<u> </u>	N
Sai		-	ļ <u>-</u>	 		1	-	1	
		 	1	1	 	 		 	
			 	1	 				1
\succ	Louisia	1	1	1	<u>t</u>	(1	
Misc	Other Observations:	·		·					
~ ~	1								

Final Check: VOAs free of bubbles? yes / no (NA)

Well Locked? yes / no / NA

L/A	KLEINFELDER								
WE	LL DEVELOPM	ENT &	SAMPI	LING LO	ЭG		WELL I	10. M	W-1
	: 4-30-97	Weather:	Clas	~ Bre	uty?	2650F	= · · · · · · ·	Sheet 1	of /
Proi	ect: Industrial A	حماد الح	Submitted	Bv: V	280	<u> </u>		Date: 5/	102
Deci	act Number in 1/42	-VO	Reviewed	Bv:	<u>~ ~ / / / / / / / / / / / / / / / / / /</u>			Date:	17.
T VOJ	ect Number: 10-1682-		Developme			Sampling	·	<u> </u>	
<u> </u>	Purpose of Log				(4)	Sampung			= <
	Purging	Bailer	Disposable	Suction	Submers-	Dedicated	Other:	•)
	Equipment	100	. Bailer	Pump	able Pump	Pump			
티	Sampling	Bailer	Disposable	Suction	2" Submers-		Other:		1
ıati	Equipment	737 -4	Bailer	Pump	able Pump	Pump		Turbi	
Decontamination	Test Equipment	Water	Level	<u>pl</u>		Condu		<u> 1 mioi</u>	univ
nts	Meter No.			9029		071	54		
ខ្ល	Calibration Date/Time			4-30					
9	Decontamination	<u>Wa</u>		Rin			se II	Rinse	
	Methods TSP	DI Top	Steam Hot	DI Tos	Steam Hot	DI Tap	Steam Hot	DI Tap	Steam Hot
걸	Alconox	Tap Other	Cold	Tap Other	Cold	Other	Cold	Other	Cold
Ē	Other:			ا ۸	À	-			
Equipment &	Vol. (gal):				1				
	Water Source:					<u> </u>			
	Decon, Notes:						l l		 j
\succeq	Decoil, Notes:						5.		
(·	Well Security:	good fa	ir (poor)	Wel	l Integrity:	good (fai	r) poor	Locked:	yes (no
	Purge Volume (CV)	T.D.	_	DTW	Χ	Factor	1 C.V.	X	₹C.V.
 	Well Diam.: 1 2 ° □ 4 °	87,4 ft.	_	76.2391.	X	2'-0.173 4'-0.443	7.59	× `[225
/ Purge Record	Free Product?: Odor:			ng Product:	none		5005 film		feet thick
2	Time (24 br)				1.5 (1111		1		Replicate
	Time (24-hr)	13:23		5:37	15:44		<u> </u>		Goals
I A	Gallons Purged	0	_2	4	6	<u> </u>			
15	pH	<u> </u>	6,83	6.82	6,91 185	 			±0,50
clopment	Temperature (°C)	5	18.7	18.5		<u> </u>	<u> </u>		±10%
	Cond. (µmhos/cm)	য	610	615	610	<u> </u>			±10%
	Salinity (‰)	A	0,5	0,5	0,5	<u> </u>			±10%
	Turbidity (NTU's)	R		<u> </u>		<u> </u>			<50 NTUs
1	Color	T	Silty	<u> 160010</u>	>				Colorless
	Depth to Water	4		<u> </u>		<u> </u>	<u> </u>		<u> </u>
	Reference Point:	TOC	Other:						
	Sample Number	Time	Quantity	Volume	Туре	Preserv.	Filtration	Analysis	Lab
1	mw-I	15:50	2	(Ambur	 	-	TPH-d	
	11700	10.00	12	1	1 13 MILLE			TPH-MC	A
튁		-	1 7	1,	Amber	 	 	PLBS	E
Sample Log		 	 	16	TMIDLE	 		1000	N
I		ļ	 		1	-			17
Sa		-	1	 	 	-	 	ļ	
		 	 	 				 	
		<u> </u>	ļ	-	-	-		 	
\searrow			1	<u> </u>	<u> </u>			<u> </u>	<u> </u>
	Other Observations:	Sti	2 Scro	won P	uc ca	pwas	Julan	40 01	ากรร
Misc	threaded ov						ip Pottin		
1 =	7.5	- 1						Y 1.31	

Final Check: VOAs free of bubbles? yes / no (NA)

Well Locked? yes / no (NA

KΑ	KLE	INFEL	_DER
----	-----	-------	------

Date: \$\text{\$1-30-97}\$ Weather: \$\text{\$1-20-97}\$ Submitted By: \$\text{\$2-20}\$ Date: \$\text{\$1-32}\$ Project Number: \$\text{\$0-\text{\$65^{\text{\$0-1000}}}\$ Reviewed By: \$\text{\$1-32}\$ Date: \$\text{\$1-32}\$ Purpose of Log \$\text{\$1-32}\$ Development \$\text{\$2-3200}\$ Sampling \$\text{\$2-3200}\$ Purpose of Log \$\text{\$1-320}\$ Development \$\text{\$2-3200}\$ Sampling \$\text{\$2-3200}\$ Purpose of Log \$\text{\$1-3200}\$ Purpos
Project: I_A_A_GATICAL Asphalt Submitted By:
Project Number:
Purmose of Log
Purging Bailer Disposable Bailer Pump Able Pump Pump Pump Pump Pump Pump Pump Pump
Equipment Bailer Pump Shide Pump
Sampling Equipment Pump able Pump able Pump Pump able Pump Pump able Pump Pump Pump Pump Pump Pump Pump Pump
Equipment Bailer Pump able Pump Pump Test Equipment Meter No. Calibration Date/Time Decontamination Methods Di Steam Di Steam Di Steam Di Steam Di Steam Di Steam Other Calib Other Calib Other Calib Other Calib Other Calib Other Calib
Water Source:
Decon. Notes: Hose Scrubbed as 7+ Was removed
Well Security: (good) fair poor Well Integrity (good) fair poor Locked: (yes) no
Purge Volume (CV) T.D. — DTW X Factor 1 C.V. X 2 C.V. Well Diam.: 0 2" 14-4" 70 ft. 76-56 ft. X 7-417 7
Purge Volume (CV) T.D. — DTW X Factor 1 C.V. X 2 C.V. Well Diam.: 0 2" 14-4" 70 ft. 76-56 ft. X 7-417 7
Well Diam.: □ 2" ¼-4" 70 ft. Free Product?: Odor: no fest Floating Product: none Sheen film feet thick Time (24-hr)
Free Product?: Odor: no few floating Product: none sheen film feet thick Time (24-hr) 14:07 14:08 14:10 (4:12 14:14 14:16 14:17 Replicate Gallons Purged 0 5 16 15 20 25 27 Goals pH
Free Froduct?: Odor: no Yes) Floating Product: none Sheen film feet thick Time (24-hr)
Color Depth to Water Reference Point: TOC Other:
Color Depth to Water Reference Point: TOC Other:
Color Depth to Water Reference Point: TOC Other:
Color Depth to Water Reference Point: TOC Other:
Color Depth to Water Reference Point: TOC Other:
Color Depth to Water Reference Point: TOC Other:
Color Depth to Water Reference Point: TOC Other:
Color Depth to Water Reference Point: TOC Other:
Depth to Water Reference Point: TOC Other:
Reference Point: TOC Other:
Sample Number Time Quantity Volume Type Presery Filtration Analysis Lah
MW-2 15:00 2 11 Amber - TPH-a
1 1c Amber RBS E
[
Other Observations: product like 900 on edge of pump hosing and
$\frac{1}{1} \frac{1}{1} \frac{1}$
and goo by tage or turn y nosting and

KA	KLEINFELDER					···			
WE	LL DEVELOPM	ENT &	SAMPI	ING LO)G	•	WELL N	10. M	W-5
Date	: 4-29-97	Weather:	· - ((ow-Pa	_ (Brea	2427	OF S	Sheet c	of
Proj	ect: Industrial A	splalt					I	Date: 5	97
	ect Number: 10-1682-		Reviewed		<u>\\</u>			Date:	
(Purpose of Log		Developme	-	[2]	Sampling			
\succ	Purging	Bailer	Disposable	Suction	Submers-		Other:		= <
	Equipment	Dance	Bailer	Pump	able Pump	Pump			
_,	Sampling	Bailer	Disposable		2" Submers-		Other:		
Ę	Equipment		Bailer	Pump	able Pump	Pump			
Decontamination	Test Equipment	Water	Level	pŀ	I	Conduc	ctivity	<u>Turbi</u>	<u>ditv</u>
E	Meter No.	· · · · · · · · · · · · · · · · · · ·		9029	2	021	54		
5	Calibration Date/Time			4-29-			->		
ă	Decontamination	Wa	sh	Rins		Rins	e II	Rinse	<u>: III</u>
શ્	Methods	DI	Steam	DI	Steam	DI_	Steam	(II)	Steam
1 5	TSP	(Tap)	Hot	(Tap	Hot	(Tap)	Hot	Tap	Hot
	Alconox	Other	खिंत	Other	(Cold)	Other	Cola	Other	(Old)
Equipment	Other: Liquin by								
I	Vol. (gal):	2-3	i	2-3	2	2	3	1-7	
	Water Source:					^		Alamb	ra.
\subseteq	Decon. Notes:	Hor	- & 5 <u>Q</u>	rubed.	d Kinesc	das	~ moved		
\overline{C}	Well Security:	(good fa	ir poor	Wel	l Integrity(good fair	poor	Locked:	(yes) no
	Purge Volume (CV)	T.D.	_	DTW	X	Factor '	1 C.V.	X	3_C.V.
	Well Diam.: [] 2" [3 4"	110,4 ft.		83.71 fl.	X,	25-0.174	17.7	ΧÍ	53
	Free Product?: Odor:			ng Product:	none	sheen	film		feet thick
pment / Purge Record	Time (24-hr)	13:14	13:19	13:21	(3:23	13:26	13:28	13:29	Replicate
비빔	Gallons Purged	0	10.	20	30,	40	50	53	Goals
ے	рН	1	6.97	7.02	7.09	7.11	7.11	7,11	±0.50
달	Temperature (°C)	3	17.1	17./	17.0	170	17.6	17.0	±10%
E	Cond. (µmhos/cm)	7	550	550	550	530	536	530	±10%
	Salinity (%)	A	0.5	0.5	0.5	0,40	6,40	0,40	±10%
Develo	Turbidity (NTU's)	R	013	0,5	<u> </u>	0.0	10770		<50 NTUs
=1	Color	—	clear		>				Colorless
	Depth to Water	1							
l	Reference Point:	ļ	Other:	!			<u> </u>		
\succ				T Tolores	There	D	Tile_tie_	Amplemia	Lab
	Sample Number	Time	Quantity	Volume	Туре	Preserv.	Filtration		Lao
	MW-5	13:55	12	(L	Amber	1	-	TPH-a	
빔		 	ļ	<u> </u>	<u> </u>	 		TPH-MC	
님		<u> </u>	 			 	<u> </u>	-	E
Sample Log			 	<u> </u>	<u> </u>		<u> </u>		N
Sai	ļ	 	<u> </u>	 -	ļ	- 	<u> </u>	<u> </u>	
ĺ			 		 	- 		ļ	
				-	 			1	
\geq		1	1	<u> </u>	1	<u> </u>	<u> </u>		<u></u>
	Other Observations:						•		
<u> </u>	i [_		

Well Locked? Ses Ino / NA

Final Check: VOAs free of bubbles? yes / no / NA)

	KLEINFELDER				<u></u>				
WE	LL DEVELOPM	ENT &	SAMPI	LING L	OG		WELL I	10. M	v-6)
Date	: 4-2930-97	Weather:	· / (× 60°	F	5	Sheet / c	of /
	ect: Industrial A	حمامال آ	Submitted	Bv:	787	_ 	<u>-</u>	Date: 5/1	197
	ect Number: 10-1682-		Reviewed	By:	<u> </u>			Date:	' ' '
1, 10)						C1!		Jaic	
\succeq	Purpose of Log		Developme	11.		Sampling			=
	Purging	Bailer	Disposable	Suction	Submers-	Dedicated	Other:)
	Equipment		Builer	Pump (able Pump	Pump			
티	Sampling	Bailer	Disposable	Suction	2" Submers-		Other:		
ati	Equipment	777 .	Bailer	Pump	able Pump	Pump		Thousand a little	
Ė	Test Equipment	Water	Level	<u>pl</u>		Condu		<u>Turbi</u>	<u>arry</u>
	Meter No.			9029		021	54		
Ş	Calibration Date/Time			4-36					
Iğ	Decontamination	<u>Wa</u>	=	Rin			se II	Rinse	
1 2	Methods	DI Tap	Steam	Di	Steam		Steam		Steam
	TSP Alconox	Other	Hot Cold	(Tap) Other	Hot	Other	Hot Cold	Tap Other	Cold
I	Other: Liquinox	- Outo	الويي	Oute	-	Cul		VEIR	
Equipment & Decontamination	Vol. (gal):	2 -	₹	2-3		2-3		1 - 3	
	Water Source:	2-		<u>ب بب</u>	_			Alamb	
	<u>.</u>			1.1.	4 0				
<u></u>	Decon, Notes:	HOS			a Rin	50 65	it-was	remov	20.
	, Well Security:	good fa	ir poor	E∕P Wei	I Integrity:	good fai	r (poor)	Locked:	yes (10)
1	Purge Volume (CV)	T.D.		DTW	Х	Factor	1 C.V.	X	3 c.v.
	Well Diam.: □ 2" 🗵-4"	106 ft.		75.42A.	X	7-9175 A-0.65	20	Χſ	60
뒬	Free Product?: Odor:	no) yes		ng Product:	none	sheen	film	L	feet thick
ğ				 					
rie I	Time (24-hr)	7:20	7:24	7:27	7:29	7:32	7!34	7:37	Replicate
19	Gallons Purged	0	10	70	30,0	40	50	60	Goals
14	pH	1	6.70	6.87	6.986	6.97	6.98	6.99	±0.50
팀	Temperature (°C)	5	17.0	17.5	17.9	17.8	17.8	17.8	±10%
elonment / Purge Record	Cond. (µmhos/cm)	য	620	620	620	620	620	626	±10%
뒤	Salinity (‰)	A	0,46	0.40	0.40	0.40	0.40	046	±10%
日日	Turbidity (NTU's)	R				 			<50 NTUs
	Color	T	LC4h+ Dow	43 Slight	Llear	>		-	Colorless
1	Depth to Water	4		1	7		1		
	Reference Point:	TOC	Other:						
=	Sample Number	Time	Quantity	Volume	Trme	Preserv.	Filtration	Analysis	Lab
				 	Type	TTCSCLV.	1	T	1,20
1	MW-6	8;∞	<u>2</u>	1-	Amber	 		TPH-d	
병		ļ	-	1	 	- 		TPH-MC	
Sample Log		 	<u> </u>	·	<u> </u>	<u> </u>		<u> </u>	E
클		<u> </u>	<u> </u>		ļ	ļ		ļ	7
Sar		ļ	ļ <u> </u>						
		1	<u> </u>		<u> </u>			<u> </u>	
1									
	<u> </u>		<u> </u>		<u> </u>	1	<u> </u>		:
	Other Observations:	Chr	sty bo	X / COVE	r brox	6.10			
ي	· ·			/	<u> </u>				
M Sisc		· · · · · ·					•		
•	Final Check: VOAs fr	ee of hubbi-	ro) was / =	- (NA)			Well I am	ked? (yes 7)	no / NA
•	TITIMA CHOCK, YUAS IT	ce or oriopic	SI VCS / IX	U II INALI			WELL LOC	.KCQ! (YCS /)	HO I INT.

	KLEINFELDER				-				
WE	LL DEVELOPM	ENT &	SAMPL	ING LO)G		WELL N	`	N-7
1		Weather:	1 (ei	er =	265°7				f
Proie	ect: Industrial A	sphalt 3	Submitted	By: \	787		I	Date: <u>5//</u>	97
Proie	ect Number: 10-1682-	09	Reviewed	By:			I	Date:	
•	Purpose of Log		Developmer		[2]	Sampling			
\succ		Builer	Disposable	Suction	Submais		Other:		$\overline{}$
	Purging Equipment	Buict	Bailer	Pump (able Pump	Pump	, ,		-
	Sampling	Bailer	Disposable		2ª Submers-		Other:		
E	Equipment		Bailer	Pump	able Pump_	Pump			
Decontamination	Test Equipment	Water	Level	pΙ	I	Conduc	tivity	<u>Turbic</u>	dity
Ę	Meter No.			9029	2_	021	54		,
ie i	Calibration Date/Time			4-30-		4-30-	17	\mathcal{O}_{ℓ}	+
ဦ	Decontamination	Wa	sh	Rin		Rins	e II	<u>Rinse</u>	Ш
	Methods	DI	Steam	DI	Steam	Ti Ti	Steam	O1).	Steam
팅	TSP		Gold)		Cold Hot		Hot	Tap	Hot
E	Alconox	Other	Cold	Other	Cold	Other	مروي	Other	(0,0)
Equipment &	Other: <u>Liquinox</u>	· .		7-3	•	2-	2	7 -	,
凹	Vol. (gal):	2-3		<u> </u>	<u> </u>	2-		20/	
1	Water Source:	warch	ouse -					Alamb	ipec.
	Decon, Notes:	Hose	<u>scrubb</u>			as it we		10sec	
	, Well Security:	good fa	ir poor	Wel	l Integrity:	good) fair	poor	Locked:	yes no
	Purge Volume (CV)	T.D.	-	DTW	X	Factor	1 C.V.	X	<u>³_</u> C.V.
	Well Diam.: □ 2" 🗹 4"		_	76.38ft.	X	75-4315 4-0562	21	×	63
틸	Free Product?: Odor:		'	ng Product:	none	sheen	film	•	feet thick
Record							8:36	01:00	Replicate
5	Time (24-hr)	8:24	8:26	8.729	8:31	8:34		8:39	Goals
lopment / Purge	Gallons Purged	0	10	30	30	40	50	6.44	±0.50
14	рН	1	그네	6.91	6.95	6.95	6.95		±0.30
팋	Temperature (°C)	3	17.4	17.8	18.0	18,0	18/	181	±10%
	Cond. (µmhos/cm)	V	610	610	1010	600	600	616	±10%
뒬	Salinity (‰)	A	0,5	05	0.5	0.5	0.5	0.5	
Deve	Turbidity (NTU's)	R			<u> </u>			3.	<50 NTU:
	Color	T	Clear	<u> </u>	<u> </u>	├ >			Colorless
	Depth to Water	1	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>
	Reference Point	TOC	Other:		·····				
	Sample Number	Time	Quantity	Volume	Туре	Preserv.	Filtration	Analysis	Lab
Ì	MW-7	9:00	2	(L	Amber			TPH-d	
ı		/						TPH-mo	A
Š				<u> </u>					E
Sample Log	· · · · · · · · · · · · · · · · · · ·								N
1 5		 			1				
ီ		- 							
1				1	-				
Į		 		 			1		,
\succ	I out or								
	Other Observations:	· · <u></u>							
Z Z							· · · · · · · · · · · · · · · · · · ·		
2	·	,	<u>-</u>						/ 314
(Final Check: VOAs fi	ree of bubble	es? yes / n	10 / (NA/			Well Lo	cked?/yes/	no / NA

O 1995, Kleinselder, Inc.

KA	KLEINFELDER				<u></u>		TOT I NO	0 14/2	·Q
WE	LL DEVELOPM	ENT & S	AMPLI	NG LO	G	W	ELL N		
Data	420.02	Weather:	((0,0	ィ つン (c	7801-			eetof	
Proie	ct: Industrial A	sphalt Si	ibmitted I	3y:∠	<u> 18-</u>			ate: 51	9+
Proje	ect Number: 10-1682-	09 R	eviewed E	}y:			D	ate:	
1 10]	Purpose of Log	De 🗆	evelopment		2 42	ampling			
\succ	Purging	Bailer D	isposable	Suction	Submers-	Dedicated Of	h ar:)
	Furging Equipment		Bailer	Pump (bie Pump	Pump			
	Sampling	Bailer J	isposable	Suction 2	* Submers-	Dedicated Of	her:		1
E I	Equipment		Bailer		able Pump	Pump		Turbid	ity
in a	Test Equipment	Water L	<u>evel</u>	<u>pH</u>		Conduct		101010	
Ę	Meter No.		-	9029		0215	4		
E	Calibration Date/Time			4-30			77	Rinse	
Decontamination	Decontamination	<u>Was</u>	h	Rinse		Rinse	Steam Steam	(DI)	Steam
খ	Methods	DI	Steam	DI.	Steam	Tup		M KP	Hot
팅	TSP		Hot Cold	(Tap) Other	Hot Cold	Other	Hot	Other	(Cold)
팀	Alconox	Other	القاف	OLIG		i			
Equipment	Other: Liquinox	2-3		2-3	3	2-3	3	7-2	
国	Vol. (gal):		/ -				7	Alambi	~.
1	Water Source:	Hosese		as H	was	rem	oved		
	Decon. Notes:							Locked:	yes no
	, Well Security:	good (fai	poor		Integrity:		poor		3 c.v.
1	Purge Volume (CV)	T.D.		DTW	X	Factor	1 C.V.	X	
1	Well Diam.: □ 2" 25 4"		-	74.89L	X	7-0.65	22	× L	66
털	Free Product?: Odor:	no ves	Floatir	g Product:	none	sheen	film_		feet thick
opment / Purge Record	m; (0.4.3-)		11:42	11:44	11.48	11:51	11-54	11:58	Replicate
9	Time (24-hr)	11.36	10	20	30	40	50	66	<u>Goals</u>
Į,	Gallons Purged	 	7.00	6,92	6.93		6.94	6.94	±0.50
	рН	5		19.9	19.9	19.9	19.9	19.9	±10%
5	Temperature (°C)	1	19.8		660	460	666	460	±10%
	Cond. (µmhos/cm)	A	650	660	0.50	0,50	0,50	0.50	±10%
Devel	Salinity (%)	R	6,50	0,30	0.30	10,55	0.5		<50 NTUs
ءَ ا		 	Ch ce			-	7		Colorless
-	Color	+ +-	Clear	-		- 			
- 1	Depth to Water		<u> </u>	<u> </u>	J			<u> </u>	
	Reference Poin		Other:			77	Filtration	Analysis	Lab
	Sample Number	Time	Quantity		Type	Preserv.	FILLIALION	TPH-d	
-1	MW-8	12:15	2_	\ L_	Ambur	-W-P	+		A
- 1			<u> </u>	1-6-	Amber			TPH-MC	E
- 1.	\$		12	11	Amber	<u> </u>		8080	N
_ .	Duplicate Well MW-18							12000	 '\-
1	MW-18	17,30	Sam	2 45	abou			 	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(3)		<u> </u>				 	<u> </u>	
			<u> </u>						+
l			<u> </u>						
7	Other Observations	: D.c	pricate	Samp	le tal	4n/1	1W-18)		
}	ļ						<u> </u>		
1	Miss			$\overline{}$					
1	Final Check: VOAs	free of bubbl	es? ves /	no //NA			Well Lo	ocked yes	/ no / NA
•	Tritial CiteCo. 40/13	7700 01 04001							

KA	KLEINFELDER								
WE	LL DEVELOPM						WELL I	10. M	1W~14
Date	: 4-30-97	Weather:	Cle	ar ?	≤65°F	-		Sheet 1 c	of /
Ргоје	ect: Industrial A	sphalt 3	Submitted	By: \	787		1	Date: 5/1	197
Proie	ect Number: 10-1682-	09	Reviewed	By:			I	Date:	
	Purpose of Log		Developme	nt	- [27]	Sampling			
\succ	Purging	Bailer	Disposable	Suction /	Submers-		Other:		=
[]	Equipment	Dadim	Bailer	Pump (abic Pump	Pump	,		
	Sampling	Bailer	Disposable	Suction	2" Submers-		Other:	·	
	Equipment		Bailer	Pump	able Pump	Pump			
Decontamination	Test Equipment	Water	Level	<u>1</u> q		Conduc	ctivity	<u>Turbi</u>	<u>dity</u>
	Meter No.			9029	2_	021	54		
	Calibration Date/Time			4-30-					
å	Decontamination	Wa	<u>sh</u>	Rin:	<u>se I</u>	Rins	e II	Rinse	Ш
શ્	Methods	DI	Steam	DI	Steam	DI Tap	Steam	<u>(bi</u>)	Steam
5	TSP	(fap)	Hot	(Tag)	For Hot	(Tap) Other	Hot	Tap Other	Colo Hot
	Alconox Other: Liquinox	Other	্রে জ	Other	رووي	Otter	400	Ould	CO19
Equipment		2-3		2-	2	2-3		1-7	
	Vol. (gal):			- X-	<u> </u>			Alamo	
	Water Source:			Λ , Ω		Lila bat	ns vem		7/a
\subseteq	Decon. Notes:		SCIUDOL	S & R					
	, Well Security:	g0000 fa	ir poor	Wel	1 Integrity(good fair	poor	Locked:	
	Purge Volume (CV)	T.D.	_	DTW	X	Factor	1 C.V.	X ;	<u>3_ c.v.</u>
_,	Well Diam.: 0 2" 58.4"	(14 ft.	-	7651 ft.	X	7-145	25	X	75
Ë	Free Product?: Odor:	(no) yes	Floati	ng Product:	tione	sheen	film		feet thick
Record	Time (24-hr)	9:34	9:38	9:42	9:47	19:52	9:57		Replicate
Iopment / Purge	Gallons Purged	0	15	30	45	60	75		Goals
昌	рН	1	7.34	7.24	7.22	7.23	7.22		±0.50
달	Temperature (°C)	3	18.8	19.0	19.1	195	19.5		±10%
립	Cond. (µmhos/cm)	V	610	610	610	610	610		±10%
틥	Salinity (%)	A	0,50	0.50	0.50	0.5	15.5		±10%
Deve	Turbidity (NTU's)	R	ا ال	1	0, 10	17.5	<u> </u>		<50 NTU:
	Color	T	SITTHHY				>		Colorless
	Depth to Water	1	claury				,	<u> </u>	
	Reference Point:	}	Other:		<u> </u>	1	<u> </u>	<u>!</u>	1
\succ	-1			1 32 1	T 00	1.5	T:::::	1 412-	Lab
	Sample Number	Time	Quantity	Volume	Туре	Preserv.	Filtration	Analysis	Lao
	MW-等14	10:15	2_	<u> </u>	Amber			TPH-a	<u></u>
뜅		 			 	 		TPH-MC	
Sample Log	19.				 				E
				 	<u> </u>	1	 	<u> </u>	N
Sai		 	-	 		<u> </u>			
		· · · · · · · · · · · · · · · · · · ·				<u> </u>	 	<u> </u>	
-			-	-	-		<u> </u>	-	
\searrow		<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>
	Other Observations:								
Misc									
ĮΣ				A					
- I	Final Check: VOAs fr	ee of bubble	s? ves / n	o //NA			Well Loc	ked7 yes /	no / NA

KA	KLEINFELDER								
WE	LL DEVELOPM	ENT &	SAMPI	ING LO	OG	•	WELL I	10. MW	-15
Date	: 4-30-97	Weather:	(1	ا د د ا	30027	, 4(65	OE 5	Sheet (o	of (
Proi	ect: Industrial A	42hall	Submitted	Bv:	787		I	Date: 5/	197
Proj	ect Number: 10-1682-	-04	Reviewed	By:		 -		Date:	444
1 10)			Developme		154	Sampling			
\succeq	Purpose of Log								=
	Purging	Bailer	Disposable	Suction Pump	Submers- able Pump	Dedicated 9	Junea :		1
	Equipment Sampling	Bailer	Bailer Disposable	Suction	2" Submers-		Other:		
틢	Equipment	Dana	Bailer	Pump	able Pump	Pump			
na	Test Equipment	Water		pl	1	Condu	ctivity	Turbi	dity
am	Meter No.			9029	2_	021	54		-
Decontamination	Calibration Date/Time				-97-		احتجــــــــــــــــــــــــــــــــــــ		
ĕ	Decontamination	Wa	sh	Rin	se I	Rins	e II	Rinse	· III
શ્ર	Methods	Dĭ	Steam	贝	Steam	DI	Steam	(P) .	Steam
E	TSP	DI	Hot	(To)	Hot	@)	Hot	Tap Other	Hot Cold
	Alconox	Other	(Cold)	Other	(cold)	Other	(91q)	Outer	
Equipment &	Other: Liquinox	FC (2-		2-3	₹	1.7	,
	Vol. (gal):	12-7						Alambi	
	Water Source:			1.0 0.0	~	10 d h	emone	Mamu	<u> </u>
\subseteq	Decon, Notes:			bed as		0			 /
	, Well Security:	good (2	poor p	Wel	ll Integrity:	good (M) K Poor	Locked:	
1	Purge Volume (CV)	T.D.	-	DTW	X	Factor	1 C.V.		<u>3</u> c.v.
 	Well Diam.: [] 2"25.4"	117 ft.	-	75.48ft	X	2-0.175 (- 6.88)	28	×	84
L C	Free Product?: Odor:	(no yes	Floati	ng Product:	none	sheen	film		feet thick
Record	Time (24-hr)	13:17	13:21	13:24	13:28	13:31	13:35	1338	Replicate
目	Gallons Purged	0	14	28	42	56	70	84	<u>Goals</u>
륍	pH	1	7,19	7.10	7.09	7.08	7.08	7.08	±0.50
opment / Purge	Temperature (°C)	3	18.5	18.2	18.0	18.1	18.0	18.0	±10%
	Cond. (µmhos/cm)	V	620	1 1115	650	630	630	436	±10%
I		A	6.5	0.40		0.5	0.5	0.5	±10%
Devel	Turbidity (NTU's)	R	-	0.000			1019		<50 NTUs
	Color	1	Clear						Coloriess
1	Depth to Water	1 1							
	Reference Point		Other:		1			1	·
\succ	Sample Number	Time	Quantity	Volume	Туре	Preserv.	Filtration	Analysis	Lab
	Mw-15					Fiesely.	PHUAUON	TPHA	-
1	1410-12	13:56	<u>2</u>	114	Amber		-	TPH-MC	A
뒽						 		1111-110	1 =
Sample Log	<u> </u>		<u> </u>	-		 	 	 	N_
din						 	.	 	1-13-
Sa			 		 	+	 	+	
ł		-		 	+	 	- 	1	
		-	-	 				 	
\succ		1	1	<u> </u>	1				<u> </u>
	Other Observations:						<u></u>		
M Sc								·	
≥		,		-/				A	
	Final Check: VOAs fr	ce of bubble	es? yes / n	10 // NA /			Well Lo	cked?/yes//	no / NA

	KLEINFELDER							10	1/
WE	LL DEVELOPM	ENT &	SAMPI	ING LO)G	. 7	WELLN	`	W-16
ı		Weather:		~ na (heet <u></u> o	
	ect: Industrial A	solalt 3	Submitted	By: V	782		I)ate: 5/1	197
	ect Number: 10-1682-		Reviewed	·	<u> </u>		I	Date:	
1, 103,	Purpose of Log		Developme		[7]	Sampling		-	
\succ							Other:		=
	Purging	Bailer	Disposable	Suction	Submers-	/	Mua:		1
	Equipment	Bailer	Bailer Disposable	Pump (Suction	able Pump 2" Submers-	Pump Dedicated C	Other:		
티	Sampling Equipment	Patiet	Bailer	Pump	able Pump	Pump	, L		
Equipment & Decontamination	Test Equipment	Water		pl		Conduc	tivity	Turbic	lity
in i	Meter No.	11000		9029		0215			
	Calibration Date/Time			4-30-		11-30			
ÿ	Decontamination	Wa	ch l	Rins		Rins		Rinse	III
2	Methods		Steam		Steam		Steam	DI) .	Steam
	TSP	DI (Tap)	Hot	DI.	Hot	DI.		Tap	₽ót
비	Alconox	Other	(Old)	Other	(M)	Other	Cold	Other	(m)
1 =	Other: Lequinox								
집	Vol. (gal):	2-3		2-3	3	2-3	<u> </u>	1-2	
	Water Source:		use -					Alamo	ra
l	Decon, Notes:		crubbe	d as	it wa	5 PM	ove		
\succ					l Integrity:		poor	Locked:	yes no
	Well Security:		ir poor)			<u> </u>	1 C.V.		3 c.v.
İ	Purge Volume (CV)	T.D.	-	DTW	X	Factor		x ſ	
౼	Well Diam.: 0 2" 18.4"		-	75.88a	X	C-0603	22	^ [66
Record	Free Product?: Odor:	no yes	Floati	ng Product:	none	sheen	film		feet thick
栏	Time (24-hr)	10:38	10:41	10:44	10:46	10:49	10:51	10:55	Replicate
elonment / Purge	Gallons Purged	0	16	20	30	40	SO	66	<u>Goals</u>
蕌	pH	4	7,13	7.09	7.08	7.09	7.08	7.07	±0.50
[달	Temperature (°C)	5	18.9	188	18.8	18.9	18.8	18.8	±10%
	Cond. (µmhos/cm)	V	660	640	640	640	630	630	±10%
틸	Salinity (‰)	A	050	0,46	0.50	0.50	0.50	6,50	±10%
Deve		R	0.50	0,10	OND_	1	0.00	0,-0	<50 NTUs
	Color	 	5944	DC86.0)		 	>		Colorless
- [Depth to Water	1	3.17	1					
1	Reference Point:	1	Other:	1	<u>!</u>	<u> </u>	1		
\geq		<u>. </u>		7	T	1 = -			
(Sample Number	Time	Quantity	Volume	Туре	Preserv.	Filtration	Analysis	Lab
1	MW-16	11:15	2_	<u> </u>	Amber			TPH-0	
64		1				<u> </u>	<u> </u>	TPH-MC	A
Sample Log									E
뒤					<u> </u>		1		N
E									
\sigma									
l							<u> </u>		<u> </u>
								<u> </u>	<u> </u>
7	Other Observations:	1 has	Sty (N	no chock	0.44	christy	easing a	Pane sed)
. ا					, ,			on cop sho	
Misc							LATYGASI	or cody suc	<u> </u>
"	W(Twest Took !				TO VI	113(V radio	Mail I -	ked? yes /	no NA
	Final Check: VOAs fr	cc or ouddle	s/ yes / r	io (NA)			WCII LOX	veni Ace i	<u>/</u>

APPENDIX C

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

KLEINFELDER, INC. 7133 KOLL CENTER PARKWAY. SUITE 100 PLEASANTON, CA 94566

ATTN: DAN CARROLL

CLIENT PROJ. ID: 10-1682-09/603 CLIENT PROJ. NAME: INDUST.ASPHALT

C.O.C. NUMBER: 856

REPORT DATE: 10/17/96

DATE(S) SAMPLED: 10/07/96

DATE RECEIVED: 10/07/96

AEN WORK ORDER: 9610089

PROJECT SUMMARY:

On October 7, 1996, this laboratory received 5 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Larby Klein

Laboratory Director

KLEINFELDER, INC.

SAMPLE ID: KMW-15 AEN LAB NO: 9610089-01 AEN WORK ORDER: 9610089 CLIENT PROJ. ID: 10-1682-09/603

DATE SAMPLED: 10/07/96 DATE RECEIVED: 10/07/96 REPORT DATE: 10/17/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	· <u>-</u>	Į.	Extrn Date	10/08/96
TPH as Diesel	GC-FID	0.11 *	0.05 r	ng/L	10/12/96
TPH as Oil	GC-FID	ND	0.2 r	mg/L	10/12/96
#Extraction for PNAs	EPA 3520	-	ŀ	Extrn Date	10/10/96
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND	10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: KMW-10 AEN LAB NO: 9610089-02 AEN WORK ORDER: 9610089

CLIENT PROJ. ID: 10-1682-09/603

DATE SAMPLED: 10/07/96 DATE RECEIVED: 10/07/96 REPORT DATE: 10/17/96

REPORTING METHOD/ DATE ANALYTE CAS# RESULT LIMIT UNITS ANALYZED #Extraction for TPH EPA 3510 Extrn Date 10/08/96 TPH as Diesel GC-FID 0.08 *0.05 mg/L10/12/96 TPH as Oil GC-FID ND 0.2 mg/L10/12/96 #Extraction for PCBs **EPA 3510** Extrn Date 10/09/96 Polychlorinated Biphenyls EPA 8080 Aroclor 1016 12674-11-2 ND 0.1 ug/L 10/10/96 Aroclor 1221 Aroclor 1232 11104-28-2 0.1 ug/L 10/10/96 ND 11141-16-5 0.1 ug/L 10/10/96 ND Aroclor 1242 53469-21-9 0.1 ug/L 10/10/96 ND Aroclor 1248 12672-29-6 ND $0.1 \, \text{ug/L}$ 10/10/96 11097-69-1 Aroclor 1254 ND 0.1 ug/L 10/10/96 Aroclor 1260 11096-82-5 0.1 ug/L 10/10/96 ND #Extraction for PNAs EPA 3520 10/10/96 Extrn Date PNAs by EPA 8270 **EPA 8270** Acenaphthene 83-32-9 ND 10 ug/L 10/11/96 Acenaphthylene 208-96-8 ND 10 ug/L 10/11/96 120-12-7 10/11/96 Anthracene ND 10 ug/L Benzo(a)anthracene 56-55-3 ND 10 ug/L 10/11/96 Benzo(b)fluoranthene 205-99-2 ND 10 ug/L: 10/11/96 Benzo(k)fluoranthene 207-08-9 ND 10 ug/L 10/11/96 191-24-2 Benzo(g,h,i)perylene ND 10 ug/L 10/11/96 Benzo(a)pyrene 50-32-8 10 ug/L 10/11/96 ND 218-01-9 Chrysene ND 10 ug/L 10/11/96 Dibenzo(a.h)anthracene 53-70-3 10 ug/L 10/11/96 ND Fluoranthene 206-44-0 ND 10 ug/L 10/11/96 86-73-7 10/11/96 Fluorene ND 10 ug/L Indeno(1,2,3-cd)pyrene 193-39-5 ND 10 ug/L 10/11/96 91-20-3 10/11/96 Naphthalene ND 10 ug/L 10/11/96 Phenanthrene 85-01-8 ND 10 ug/L 129-00-0 Pyrene ND 10 ug/L 10/11/96

ND = Not detected at or above the reporting limit

^{* =} Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: KMW-1 AEN LAB NO: 9610089-03 AEN WORK ORDER: 9610089 CLIENT PROJ. ID: 10-1682-09/603

DATE SAMPLED: 10/07/96 DATE RECEIVED: 10/07/96 REPORT DATE: 10/17/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	S UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	-		Extrn Date	10/09/96
TPH as Diesel	GC-FID	19 *	0.6	mg/L	10/12/96
TPH as Oil	GC-FID	12 *	2	mg/L	10/12/96
#Extraction for PCBs	EPA 3510	-		Extrn Date	10/09/96
Polychlorinated Biphenyls Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	EPA 8080 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	ND ND ND ND ND ND	0.1 0.1 0.1 0.1 0.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10/10/96 10/10/96 10/10/96 10/10/96 10/10/96 10/10/96 10/10/96
#Extraction for PNAs	EPA 3520	-		Extrn Date	10/10/96
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND	100 100 100 100 100 100 100 100 100 100	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96

KLEINFELDER, INC.

SAMPLE ID: KMW-1 AEN LAB NO: 9610089-03 AEN WORK ORDER: 9610089

CLIENT PROJ. ID: 10-1682-09/603

DATE SAMPLED: 10/07/96 DATE RECEIVED: 10/07/96

REPORT DATE: 10/17/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE Analyzed

RLs elevated for EPA 8270 due to high levels of non-target compounds; RLs elevated for diesel/oil due to high levels of target compounds. Sample run dilute.

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: KMW-2 AEN LAB NO: 9610089-04 AEN WORK ORDER: 9610089 CLIENT PROJ. ID: 10-1682-09/603

DATE SAMPLED: 10/07/96 DATE RECEIVED: 10/07/96 REPORT DATE: 10/17/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	-	Extrn Date	10/09/96
TPH as Diesel	GC-FID	49 *	0.6 mg/L	10/12/96
TPH as Oil	GC-FID	30 *	2 mg/L	10/12/96
#Extraction for PCBs	EPA 3510	-	Extrn Date	10/09/96
Polychlorinated Biphenyls Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	EPA 8080 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	ND ND ND ND ND ND	0.1 ug/L 0.1 ug/L 0.1 ug/L 0.1 ug/L 0.1 ug/L 0.1 ug/L 0.1 ug/L	10/10/96 10/10/96 10/10/96 10/10/96 10/10/96 10/10/96 10/10/96
#Extraction for PNAs	EPA 3520	-	Extrn Date	10/10/96
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1.2.3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND ND N	100 ug/L 100 ug/L	10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96

KLEINFELDER, INC.

SAMPLE ID: KMW-2 AEN LAB NO: 9610089-04 AEN WORK ORDER: 9610089

CLIENT PROJ. ID: 10-1682-09/603

DATE SAMPLED: 10/07/96 DATE RECEIVED: 10/07/96 **REPORT DATE: 10/17/96**

					
ANALYTE .	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED

RLs elevated for EPA 8270 due to high levels of non-target compounds; RLs elevated for diesel/oil due to high levels of target compounds. Sample run dilute.

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: KMW-51

AEN LAB NO: 9610089-05 AEN WORK ORDER: 9610089 CLIENT PROJ. ID: 10-1682-09/603

DATE SAMPLED: 10/07/96 DATE RECEIVED: 10/07/96 REPORT DATE: 10/17/96

ANALYTE	METHOD/ CAS#	RESULT 1	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	-	Extrn Date	10/09/96
TPH as Diesel	GC-FID	0.1 *	0.05 mg/L	10/12/96
TPH as Oil	GC-FID	ND	0.2 mg/L	10/12/96
#Extraction for PNAs	EPA 3520	-	Extrn Date	10/10/96
PNAs by EPA 8270 Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	EPA 8270 83-32-9 208-96-8 120-12-7 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-20-3 85-01-8 129-00-0	ND ND ND ND ND ND ND ND ND ND ND ND	10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L	10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96 10/11/96

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9610089

CLIENT PROJECT ID: 10-1682-09/603

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

Definitions

Laboratory Control Sample (LCS)/Method Spikes(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analyses.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behaviour, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrument performance.

- D: Surrogates diluted out.
- !: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL REPORT

PAGE QR-2

ANALYSIS: Polychlorinated Biphenyls

MATRIX: Water

METHOD BLANK SAMPLES

SAMPLE TYPE: Blank-Method/Me INSTRUMENT: HP GC FOR 8080PUNITS: ug/L METHOD:			LAB ID: PREPARED: ANALYZED:	BLNK-1009- 10/09/96 10/10/96	1		BBW\96101 BW100996-1 000000	
ANALYTE TCMX (surr) Aroclor 1260 Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	RESULT 83.1 ND ND ND ND ND ND	ref Result	REPORTING LIMIT 0.5 0.1 0.1 0.1 0.1 0.1 0.1	SPIKE VALUE 100	RECOVERY (%) 83.1	REC LIMITS (%) LOW HIGH 30 131	RPD (%)	RPD LIMIT (%)

METHOD SPIKE SAMPLES

SAMPLE TYPE: INSTRUMENT: UNITS: METHOD:	Laboratory Control HP GC FOR 8080PCB ug/L	Spike	****	LAB ID: PREPARED: ANALYZED:		1	INSTR BATCH DILUTI	ID: PC	BBW\96101 3W100996-1 300000	0000000/5/4	••
ANALYTE TCMX Aroclor 1260	(surr)	RESULT 89.1 4.47	REF RESULT 83.1 ND	REPORTING LIMIT 0.5 0.1	SPIKE VALUE 100 4.00	RECOVERY (\$) 89.1 112	REC LIM LOW 30 53	ITS (*) HIGH 131 133	RPD (%)	RPD LIMIT (%)	

SAMPLE SURROGATES

						,		
SAMPLE TYPE: INSTRUMENT: UNITS: METHOD:	Sample-Client HP GC FOR 8080PCB ug/L				9610089-02 10/09/96 10/10/96	В	INSTR RUN: GC BBW\96 BATCH ID: PCBW10099 DILUTION: 0.200000	1010000000/1/ 6-1
ANALYTE		RESULT	ref Result	REPORTING LIMIT	SPIKE VALUE	RECOVERY (な)	REC LIMITS (%) LOW HIGH RPD (RPD な) LIMIT (な)
TCMX	(surr)	62.7	1420001	0.5	100	62.7	30 131	4) LIMII (4)
			• • • • • • • • •					
SAMPLE TYPE: INSTRUMENT: UNITS: METHOD:	Sample-Client HP GC FOR 8080PCB ug/L				9610089 · 03 10/09/96 10/10/96	В	INSTR RUN: GC BBW\96 BATCH ID: PCBW10099 DILUTION: 0.200000	1010000000/2/ 6-1
			REF	REPORTING	SPIKE	RECOVERY	REC LIMITS (%)	RPD
ANALYTE TCHX	(surr)	RESULT 55.5	RESULT	LIMIT 0.5	VALUE 100	(*) 55.5	LOW HIGH RPD (30 131	*) LIMIT (*)
		••••••						
SAMPLE TYPE: INSTRUMENT: UNITS: METHOD:	Sample-Client HP GC FOR 8080PCB ug/L				9610089-04 10/09/96 10/10/96	В	INSTR RUN: GC BBW\96 BATCH ID: PCBW10099 DILUTION: 0.200000	
ANAL VITE		ACCIU T	REF	REPORTING	SPIKE	RECOVERY	REC LIMITS (X)	RPD
ANALYTE TCHX	(surr)	RESULT 52.9	RESULT	LIMIT 0.5	VALUE 100	(X) 52.9	LOW HIGH RPD (30 131	%) → LIMIT (%)

QUALITY CONTROL REPORT

PAGE QR-3

ANALYSIS: Semi-Volatile Organics

MATRIX: Water

METHOD BLANK SAMPLES

SAMPLE TYPE: Blank-Method/Media blank INSTRUMENT: hp mass spec for semi-vo UNITS: ug/L METHOD:		LAB ID: PREPARED: ANALYZED:		• • • • • • • • • • • • • • • • • • • •		CMS11\96101 NAW093096 .00	1000000/10/
INSTRUMENT: hp mass spec for semi-vounts: ug/L METHOD: ANALYTE 2-Fluorophenol (surr) 54,70 Phenol-d5 (surr) 80,30 2-Fluorobiphenyl (surr) 91,90 2,4,6-Tribromophenol (surr) 70,20 Terphenyl-d14 (surr) 82,20 Phenol 2-Chlorophenol ND 2-Chlorophenol ND 2-Chlorophenol ND 1,4-Dichlorobenzene ND N-Nitrosodi-n-propylamine ND 1,2,4-Trichlorobenzene ND 4-Chloro-3-methylphenol ND Acenaphthene ND 4-Nitrophenol ND 2,4-Dinitrotoluene ND 2,4-Dinitrotoluene ND Pentachlorophenol ND Acenaphthylene ND Acenaphthylene ND Acenaphthylene ND Acenaphthylene ND Benzoic Acid Benzo(a) anthracene ND Benzoic Acid ND Benzo(b) fluoranthene ND Benzo(b) fluoranthene ND Benzo(b) fluoranthene ND Benzo(a) pyrene ND Benzo(a) pyrene ND Benzo(a) pyrene ND Bis(2-chloroethoxy) methane ND Bis(2-chloroethoxy) methane ND Bis(2-chloroethoxy) Phthalat ND 4-Chlorophenyl Phenyl Ether ND Bis(2-ethylhexyl) Phthalate ND 4-Chlorophenyl Phenyl Ether ND Bis(2-ethoroethoxy) Phenyl Ether ND Bis(2-othorobenzene ND Dibenzo(a,h) anthracene ND Dibenzo(a,h) anthracene ND Dibenzofuran ND Di-n-butyl Phthalate ND 1,2-Dichlorobenzene ND 3,3'-Dichlorobenzene ND 3,3'-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,3-Dichloro	ols REF	PREPARED:	10/10/96	RECOVERY (X) 54.7 75.0 80.3 91.9 70.2 82.2	BATCH ID: B	NAW093096 .00	1000000/10/ RPD LIMIT (*)
2.Nitroaniline ND 3.Nitroaniline ND 4.Nitroaniline ND Nitrobenzene ND N.Nitrosodimethylamine ND		50 50 50 10 10					
N-Nitrosodiphenylamine ND		10					

QUALITY CONTROL REPORT

PAGE QR-4

ANALYSIS: Semi-Volatile Organics

MATRIX: Water

METHOD BLANK SAMPLES

SAMPLE TYPE: Blank-Method/Me INSTRUMENT: hp mass spec fo UNITS: ug/L METHOO:			LAB ID: PREPARED: ANALYZED:			INSTR RUN: GCMS11\961011000000/10/ BATCH ID: BNAW093096 DILUTION: 1.00	
ANALYTE Phenanthrene 2.4-Dichlorophenol 2.4-Dimethylphenol 4.6-Dimitro-2-methylphenol 2.4-Dinitrophenol 2.4-Dinitrophenol 2-Methylphenol 2-Nitrophenol 2.4.5-Trichlorophenol 2.4.6-Trichlorophenol	RESULT ND ND ND ND ND ND ND ND ND ND ND ND ND	REF RESULT	REPORTING LIMIT 10 10 10 50 50 10 10 10	SPIKE VALUE	RECOVERY (%)	REC LIMITS (%) RPD LOW HIGH RPD (%) LIMIT (%)	

METHOD SPIKE SAMPLES

SAMPLE TYPE: Laboratory Contr INSTRUMENT: hp mass spec for UNITS: ug/L METHOD:	rol Spike semi-vols		D: LCS 1010 RED: 10/I0/96 ZED: 10/12/96	•••••••	BATCH ID: BN	MS11\961011000000/11/10 IAW093096 00
ANALYTE 2-Fluorophenol (surr) Phenol-d5 (surr) Nitrobenzene-d5 (surr) 2-Fluorobiphenyl (surr) 2-fluorobiphenyl (surr) Terphenyl-d14 (surr) Phenol 2-Chlorophenol 1.4-Dichlorobenzene N-Nitrosodi-n-propylamine 1.2.4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2.4-Dinitrotoluene Pentachlorophenol Pyrene	RESULT RE 56.00 54 85.60 75 91.40 80 100.60 91 91.60 70	REF REPORTING SULT LIMIT .70 .00 .30 .90 .20 .10 ND 10	SPIKE VALUE 100 100 100 100 100 100 196 199 198 183 220 197 186 197 254 185 238	RECOVERY (2) 56.0 85.6 91.4 101 91.6 95.0 58.7 81.4 76.8 74.3 80.9 77.7 81.2 54.3 74.8 70.8 64.7	REC LIMITS (x) LOW HIGH 41 104 46 114 50 112 41 111 59 125 37 111 44 126 50 145 51 132 52 151 51 128 52 149 58 139 30 152 60 128 30 160 40 130	RPD (%) LIMIT (%)

SAMPLE SURROGATES

SAMPLE TYPE: Sample-Client INSTRUMENT: hp mass spec UNITS: ug/L METHOD:	for semi-vols		LAB ID: PREPARED: ANALYZED:		В	INSTR BATCH DILUTI	ID: BN	W093096	1000000/1/
ANALYTE 2-FluorophenoI (surr) PhenoI-d5 (surr) Nitrobenzene-d5 (surr) 2-Fluorobiphenyl (surr) 2,4,6-Tribromophenol(surr) TerphenyI-d14 (surr)	RESULT 102.00 89.00 90.20 108.50 91.60 97.30	REF RESULT	REPORTING LIMIT	SPIKE VALUE 100 100 100 100 100 100	RECOVERY (%) 102 89.0 90.2 109 91.6 97.3	REC LIM LOW 41 46 50 41 59 37	ITS (%) HIGH 104 114 112 111 125 111	RPD (*)	RPD LIMIT (%)

QUALITY CONTROL REPORT

PAGE QR-5

ANALYSIS: Semi-Volatile Organics

MATRIX: Water

SAMPLE SURROGATES

SAMPLE TYPE: Sample-Client INSTRUMENT: hp mass spec for semi-vols UNITS: ug/L METHOD:		LAB ID: PREPARED: ANALYZED:		3	INSTR RU BATCH ID DILUTION	N: GCMS11\96101 : BNAW093096 : 1.00	1000000/3/
ANALYTE RESULT 2-Fluorophenol (surr) 96.00 Phenol-d5 (surr) 76.80 Nitrobenzene-d5 (surr) 89.50 2-Fluorobiphenyl (surr) 105.60 2.4.6-Tribromophenol(surr) 92.20 Terphenyl-d14 (surr) 109.40	ref Result	REPORTING LIMIT		RECOVERY (%) 96.0 76.8 89.5 106 92.2 109	41 46 50 41	HIGH RPD (%) 104 114 112 111	RPD LIMIT (%)
SAMPLE TYPE: Sample-Client INSTRUMENT: hp mass spec for semi-vols UNITS: ug/L METHOD:	· · · · · · · · · · · · · · · · · · ·	I AD TD.	9610089-030 10/10/96		INSTR RU	N: GCMS11\96101 : BNAW093096	
ANALYTE RESULT 2-Fluorophenol (surr) 96.90 Phenol-d5 (surr) 83.90 Nitrobenzene-d5 (surr) 94.40 2-Fluorobiphenyl (surr) 104.30 2,4,6-Tribromophenol(surr) 93.20 Terphenyl-d14 (surr) 103.00	ref Result	REPORTING LIMIT	SPIKE VALUE 100 100 100 100 100	RECOVERY (%) 96.9 83.9 94.4 104 93.2 103	41 46 50 41 59	S (%) HIGH RPD (%) 104 114 112 111 125 111	
SAMPLE TYPE: Sample-Client INSTRUMENT: hp mass spec for semi-vols UNITS: ug/L METHOO:	• • • • • • • •	LAB ID: PREPARED: ANALYZED:	9610089-040 10/10/96	<i></i>	INSTR RU	N: GCMS11\96101 : BNAW093096	• • • • • • • • • • • • • • • • • • • •
					0.220.12		
ANALYTE RESULT 2-Fluorophenol (surr) 100.70 Phenol-d5 (surr) 78.30 Nitrobenzene-d5 (surr) 89.60 2-Fluorobiphenyl (surr) 109.20 2.4.6-Tribromophenol(surr) 93.60 Terphenyl-d14 (surr) 110.50	REF RESULT	REPORTING LIMIT	SPIKE VALUE 100 100 100 100 100	RECOVERY (%) 101 78.3 89.6 109 93.6 111	REC LIMIT LOW I 41 46 50	HIGH RPD (*) 104 114 112	RPD LIMIT (%)
2-Fluorophenol (surr) 100.70 Phenol-d5 (surr) 78.30 Nitrobenzene-d5 (surr) 89.60	RESULT	LIMIT	VALUE 100 100 100 100 100 100 9610089-051 10/10/96	(%) 101 78.3 89.6 109 93.6 111	REC LIMIT: LOW I 41 46 50 41 59 37	HIGH RPD (%) 104 114 112 111 125 111	LIMÎT (X)

PAGE QR-6

QUALITY CONTROL REPORT

METHOD: EPA 3510 GCFID

AEN JOB NO: 9610089

DATE EXTRACTED: 10/08/96; 10/09/96

INSTRUMENT: C MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery n-Pentacosane
10/12/96 10/12/96 10/12/96 10/12/96 10/12/96	KMW-15 KMW-10 KMW-1 KMW-2 KMW-51	01 02 03 04 05	104 102 87 I 89
QC Limits:			65-125

I: Interference

DATE EXTRACTED: 10/07/96 DATE ANALYZED: 10/10/96 SAMPLE SPIKED: 9609370-03

INSTRUMENT: C

Matrix Spike Recovery Summary

	C= dla	A		QC Lir	mits
Analyte	Spike Added (mg/L)	Average Percent Recovery	RPD	Percent Recovery	RPD
Diesel	4.00	88	1	60-110	15

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

2	١	5	C	6
---	---	---	---	---

9610089

PROJ NO	PROJECT	A) A LAC		т			, , ,	,			,	, ,	,	, , , , , , , , , , , , , , , , , , ,
10-1682	~~y						′ /	/	//	/ /	/ /		//	/ / / /
/	23 /NDU	STRIAL AST	PHALT	NO		<i>-</i> /	./ ,	/ ,	/ /	./		/ /	/ /	
L P NO -P.O. NO.	SAMPLERS:	: (Signature/Number)		OF	ا پر	$\sqrt{6}$	/ /ı	_/	/, ,	/ /	/ /	//	//	/ / /
******	BILL	2856 SAMPLE		CON-	AN AN AN AN AN AN AN AN AN AN AN AN AN A	(x/	100	1	/5/			/ /	/ /	
DATE	SAMPLE I.D.	SAMPLE	E I D.	TAINERS	1 1/2				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/ /	/ /	//	/ /	/ / REMARKS
MM DD YY	TIME HH MM SS				$\langle \lambda \rangle$	1 /4	(7,	/ Ϋ	7/			/ /	/ /	
100796	1253	KMW-15	DIA-C	3	X	\neg		X		1				STP T/A
1						\top	 		_					
	1330	1-11-10	07A-D	4	 	+	 	1		+			+	
	7550	KMW-10	UCA-V	+7		12		싀	-	+-	+		\dashv	
				 	X	X	 	X		-				
	140%	KMW-1	03A-D	4	V		<u> </u>				igsquare		_	
	,			<u> </u>										
	DEYWELL.	KMW-3/6	MASCETO		X			X	\$4					
		6	BTAIN)			+-	1	Ť		†	1		\neg	*
7	1456	4 M112-7		4	X	X		X	\dashv	 	+	\dashv		
	ITUO	KMW-Z	04A-D	1-7-	14	44	 	4	-		┼┤		+	
				<u> </u>			 	1		<u> </u>		_	\	
$ \forall$	1255	KMW-5	1 05A-C	3	X			X						
,			1] - !										
	. •					1							\top	
			· · · · · · · · · · · · · · · · · · ·	 	 	1		\top		+-	+	\dashv	\dashv	
			•	 	 	+++	_			┼	\vdash	\dashv	+	
				 	 			\dashv	_		\vdash	-	+	1
				<u> </u>		$\perp \perp \downarrow$		\perp						
			·						.]					
													\top	
						1	_	1			1		_	
			N -			++	-	+	\dashv	-	+	+	\dashv	
Relinguished	by: (Signature)	Date/Time	Received by: (Signature)	 	Remark	<u> </u>	L	L			Ш			C (
1/7/2	1	10/1/96 15:55					26	21	ي سار،	_				Send Results 70.
NING	2	1/1/ 3.35	1.45	ensen		17	199		1)	>				KLEINFELDER
Relinquished	by (Signature)	Date/Time	Received by: (Signature)]	ı	4	Δz		1)					7133 KOLL CENTER PARKWAY SUITE 100
		<u> </u>	1		•		15							PLEASANTON, CA 94568
Relinquished	by: (Signature)	Date/Time	Received for Laboratory	y by:	4							•		(510) 484-1700
			(Signature)	i										
			<u> </u>											

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

KLEINFELDER, INC. 7133 KOLL CENTER PARKWAY, SUITE 100 PLEASANTON, CA 94566

ATTN: DAN CAROLL

CLIENT PROJ. ID: 10-1682-09/604 CLIENT PROJ. NAME: INDUST.ASPHALT

C.O.C. NUMBER: 2371 P.O. NUMBER: R4495 REPORT DATE: 05/17/97.

DATE(S) SAMPLED: 04/27/97-04/30/97

DATE RECEIVED: 05/01/97

AEN WORK ORDER: 9705005

PROJECT SUMMARY:

On May 1, 1997, this laboratory received 11 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Larcy Klein

Laboratory Director

KLEINFELDER, INC.

SAMPLE ID: 14A2

AEN LAB NO: 9705005-01 AEN WORK ORDER: 9705005 CLIENT PROJ. ID: 10-1682-09/604

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UN	NITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	-	Extrr	n Date	05/06/97
TPH as Diesel	GC-FID	ND	0.05 mg/L		05/07/97
TPH as 0il	GC-FID	ND	0.2 mg/L		05/07/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: MW-5

AEN LAB NO: 9705005-02

AEN WORK ORDER: 9705005 CLIENT PROJ. ID: 10-1682-09/604

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	-	Extrn Dat	ce 05/06/97
TPH as Diesel	GC-FID	ND	0.05 mg/L	05/07/97
TPH as Oil	GC-FID	ND	0.2 mg/L	05/07/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: MW-6 AEN LAB NO: 9705005-03

AEN WORK ORDER: 9705005 CLIENT PROJ. ID: 10-1682-09/604

ANALYTE	METHOD/ CAS#	R RESULT	EPORTING LIMIT	UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510		Ext	rn Date	05/06/97
TPH as Diesel	GC-FID	0.10 *	0.05 mg/	'L	05/07/97
TPH as 011	GC-FID	ND	0.2 mg/	'L	05/07/97

ND = Not detected at or above the reporting limit \star = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: MW-7

AEN LAB NO: 9705005-04 AEN WORK ORDER: 9705005

CLIENT PROJ. ID: 10-1682-09/604

DATE SAMPLED: 04/30/97

DATE RECEIVED: 05/01/97 REPORT DATE: 05/17/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	-	Ex	xtrn Date	05/06/97
TPH as Diesel	GC-FID	ND	0.05 mg	g/L	05/07/97
TPH as Oil	GC-FID	ND	0.2 mg	g/L	05/07/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: MW-14 AEN LAB NO: 9705005-05 AEN WORK ORDER: 9705005 CLIENT PROJ. ID: 10-1682-09/604

DATE SAMPLED: 04/30/97 DATE RECEIVED: 05/01/97

		00,02,0,
REPORT	DATE:	05/17/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	-	E	xtrn Date	05/06/97
TPH as Diesel	GC-FID	ND	0.05 mg	g/L	05/07/97
TPH as Oil	GC-FID	ND	0.2 mg	g/L	05/07/97

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: MW-16 AEN LAB NO: 9705005-06 AEN WORK ORDER: 9705005 CLIENT PROJ. ID: 10-1682-09/604

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	-	Extrn Date	05/06/97
TPH as Diesel	GC-FID	ND	0.05 mg/L	05/08/97
TPH as Oil	GC-FID	0.4 *	0.2 mg/L	05/08/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: MW-8

AEN LAB NO: 9705005-07 AEN WORK ORDER: 9705005 CLIENT PROJ. ID: 10-1682-09/604

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	G UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	-		Extrn Date	05/06/97
TPH as Diesel	GC-FID	0.41 *	0.05	mg/L	05/07/97
TPH as Oil	GC-FID	ND	0.2	mg/L	05/07/97
#Extraction for PCBs	EPA 3510	-		Extrn Date	05/05/97
Polychlorinated Biphenyls Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	EPA 8080 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	ND ND ND ND ND ND	0.1 0.1 0.1 0.1 0.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	05/10/97 05/10/97 05/10/97 05/10/97 05/10/97 05/10/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: MW-18

AEN LAB NO: 9705005-08 AEN WORK ORDER: 9705005 CLIENT PROJ. ID: 10-1682-09/604

DATE SAMPLED: 04/30/97

DATE RECEIVED: 05/01/97 REPORT DATE: 05/17/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510			Extrn Date	05/06/97
TPH as Diesel	GC-FID	0.35 *	0.05	mg/L	05/08/97
TPH as 0il	GC-FID	ND	0.2	mg/L	05/08/97
#Extraction for PCBs	EPA 3510	-		Extrn Date	05/05/97
Polychlorinated Biphenyls Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	EPA 8080 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	ND ND ND ND ND ND	0.1 0.1 0.1 0.1 0.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	05/10/97 05/10/97 05/10/97 05/10/97 05/10/97 05/10/97 05/10/97

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: MW-15 AEN LAB NO: 9705005-09 AEN WORK ORDER: 9705005 CLIENT PROJ. ID: 10-1682-09/604

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510		E	xtrn Date	05/06/97
TPH as Diesel	GC-FID	ND	0.05 m	g/L	05/08/97
TPH as Oil	GC-FID	ND	0.2 m	g/L	05/08/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: MW-2 AEN LAB NO: 9705005-10 AEN WORK ORDER: 9705005 CLIENT PROJ. ID: 10-1682-09/604

DATE SAMPLED: 04/30/97 DATE RECEIVED: 05/01/97

REPORT DATE: 05/17/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	-		Extrn Date	05/06/97
TPH as Diesel	GC-FID	5.8 *	0.05	mg/L	05/08/97
TPH as Oil	GC-FID	3.3 *	0.2	mg/L	05/08/97
#Extraction for PCBs	EPA 3510	-		Extrn Date	05/05/97
Polychlorinated Biphenyls Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	EPA 8080 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	ND ND ND ND ND ND ND	$egin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	05/10/97 05/10/97 05/10/97 05/10/97 05/10/97 05/10/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

KLEINFELDER, INC.

SAMPLE ID: MW-1

AEN LAB NO: 9705005-11 AEN WORK ORDER: 9705005 CLIENT PROJ. ID: 10-1682-09/604

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
#Extraction for TPH	EPA 3510	-	E	xtrn Date	05/06/97
TPH as Diesel	GC-FID	2.7 *	0.05 m	ıg/L	05/08/97
TPH as Oil	GC-FID	3.1 *	0.2 m	ıg/L	05/08/97
#Extraction for PCBs	EPA 3510	-	Ε	xtrn Date	05/05/97
Polychlorinated Biphenyls Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	EPA 8080 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	ND ND ND ND ND ND	0.1 u 0.1 u 0.1 u 0.1 u 0.1 u 0.1 u	ig/L ig/L ig/L ig/L ig/L	05/10/97 05/10/97 05/10/97 05/10/97 05/10/97 05/10/97

ND = Not detected at or above the reporting limit * = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9705005

CLIENT PROJECT ID: 10-1682-09/604

Quality Control Summary

All laboratory quality control parameters were found to be within established limits.

<u>Definitions</u>

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: EPA 3510 GCFID

AEN JOB NO: 9705005

DATE EXTRACTED: 05/06/97

INSTRUMENT: C MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery
05/07/97 05/07/97 05/07/97 05/07/97 05/07/97 05/08/97 05/08/97 05/08/97 05/08/97	14A2 MW-5 MW-6 MW-7 MW-14 MW-16 MW-18 MW-18 MW-15 MW-15	01 02 03 04 05 06 07 08 09 10	90 90 93 94 91 94 95 88 92 118 89
QC Limits:			65-125

DATE EXTRACTED: 05/05/97 DATE ANALYZED: 05/06/97 SAMPLE SPIKED: 9704278-05 INSTRUMENT: C

Matrix Spike Recovery Summary

	Codle			QC Lim	nits
Analyte	Spike Added (mg/L)	Percent Recovery	RPD	Percent Recovery	RPD
Diesel	4.00	86	12	60-110	15

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

QUALITY CONTROL DATA

METHOD: EPA 8080

AEN JOB NO: 9705005

DATE EXTRACTED: 05/05/97 INSTRUMENT: B

MATRIX: WATER

Surrogate Standard Recovery Summary

			Percent Recovery
Date Analyzed	Client Id.	Lab Id.	2,4,5,6-Tetrachloro-meta-xylene
05/10/97 05/10/97 05/10/97 05/10/97	MW-8 MW-18 MW-2 MW-1	07 08 10 11	80 80 71 66
QC Limits:			30-131

DATE EXTRACTED: 05/05/97

DATE ANALYZED: 05/09/97 SAMPLE SPIKED: 9703098-1

9703098-19

INSTRUMENT: B

Matrix Spike Recovery Summary

	Casta			QC Limi	ts
Analyte	Spike Added (ug/L)	Percent Recovery	RPD	Percent Recovery	RPD
A1260	8.00	115	1	53-133	16

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

		Kleinfe	I DER							3				R	-4	S-E 9705005
,			PROJECT NAME			l .	Ι		$-\chi_{\alpha\dot{\beta}}$	70	7	7	7	7	7"	
	PROJECT NO.	2-09/604	Industrial I	4-sphalt	NO.	TYPE		/	\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00/ }/		//	//	//	//	A EN
	R4495	SAMPLERS: (Sign	nature/Number) SQL 3014		OF	OF	**************************************				$^{\prime}/$	/,	//	/ /	//	INSTRUCTIONS/REMARKS
	DATE	SAMPLE I.D. TIME	SAMPLE 1.D.	MATRIX	CON- TAINEAS	CON- TAINERS	3/1	1/4 2/2		//	//				/ /	Standard T.A.T
	MM/DD/YY	HH-MM-SS	(4 AZ	H20	132	Anker	人			\mathcal{T}	$\overline{}$				ŀ	OIAR
-	4 27-97	12:35	MU-5	#2D	2	Amber										0288
2	4-29-97		MW-6	H2.0		Amas.	_			1	†					O3AB
3	7-30-11			H20	Z	Hmba										OYAB
4		9',00 10:15	MW-14	H20		Umber	X					:				05AB
5		11:15	MW-16	HZC	2	Amber	+			w-						06.88
6		12:15	MW-8	H70	3	Amber		メ								07 ABC
7		12:36	MM-18	H2 D		Amar										08 ABC
8			MW-15	H10.	2	Amber	+	-								09.88
9		13:50	MW-2	H20		Ambir		×								10 ABC
10		15:00	MW-1	H2D	3	Jupin			27	+				" ' <u>"</u>		MABC
11	V	15:50	7-100 1	110	<u> </u>						_				,	
12					-		-		. 15 00	十		<u> </u>				4
13						 '	1	 		+	_					
14						-	╁─			1		╁╌			_	
15			<i></i>			 	十一			-	+	1				
16	 					┼	-	╁┈		+	-	\dagger				
17						-	1			+		1		** \$8	· ·	
18	ļ				1.	 	7	1	\vdash	十		 				
19				<u> </u>			 	-	 	+		+				
20		c (Signature)	Date/Time Rec	eived by: (Signato	je)	<u>.L.</u>	İnstr	uctions	/Remarks:	Щ.		. ł . <u> </u>	<u> </u>	É		Send Results To:
	Relinquished by: (Signature) Date/Time Dete/Time Received by: (Signature)															KLEINFELDER 7133 KOLL CENTER PARKWAY
	Relinquished by: (Signature) Date/Time Received by: (Signature)						7									SUITE 100 PLEASANTON, CA 94566
	Rich'	Inlinore.	5-1-97 13:06	Turena	10	dho		al	*							(510) 484-1700
28	Relinquished b	y: (Signature)	Date/Time Flec	eived for Laborato	ry by: (Signa	ature)			7							Attn. Dan Carroll
	M-80		White - Sampler			СН			- Return C			Y				Pink - Lab Copy 12 2371

CHAIN OF CUSTODY