92 JUL - S PH 2: 48

QUARTERLY REPORT (FEBRUARY - APRIL 1992) INDUSTRIAL ASPHALT PLEASANTON, CALIFORNIA

May 5, 1992

This document was prepared for use only by the client, only for the purposes stated, and within a reasonable time from issuance. Non-commercial, educational and scientific use of this report by regulatory agencies is regarded as a "fair use" and not a violation of copyright. Regulatory agencies may make additional copies of this document for internal use. Copies may also be made available to the public as required by law. The reprint must acknowledge the copyright and indicate that permission to reprint has been received.

This document contains "trade secrets" as defined in Health Safety Code Section 25173. Kleinfelder requests that the regulatory agency notify Kleinfelder, at a reasonable time before disclosure, upon request for disclosure, if the regulatory agency intends to release the document.

KLEINFELDER

May 5, 1992

File: 10-1682-03/38

Mr. Dennis Hunt District Manager Industrial Asphalt P.O. Box 636 Pleasanton, CA 94566

SUBJECT: Quarterly Report (February - April 1992) Industrial Asphalt, Pleasanton, California

Dear Mr. Hunt:

Kleinfelder, Inc., is pleased to submit this quarterly report for the first quarter of 1992 (February - April 1992) the Industrial Asphalt site in Pleasanton, California (Plate 1). Quarterly progress reports were requested by the Alameda County Department of Health Services (ACDHS) in their letter to you dated 13 November 1989.

INTRODUCTION

Thirteen monitoring wells and one extraction well (MW-13) are present onsite. Data collected from these wells were used to evaluate the nature and extent of the plume and the ground water gradient beneath the site. The location of monitoring wells along with the extraction well are shown on Plate 2. All wells are being monitored for depth to water and product thickness on a quarterly basis in accordance with recommendations in the Remedial Investigation Report dated 28 December 1990. Collected ground water samples have been analyzed for the target compounds including total petroleum hydrocarbons (TPH) as diesel and waste oil and polychlorinated biphenyls (PCBs). Additionally, as requested by the ACDHS in their letter to your firm dated February 21, 1991, water samples were also analyzed for Oil and Grease (Standard Method 5520 C & F). A request for sample analysis for BTXE (benzene, toluene, xylenes and ethylbenzene) using EPA Method 8020, and halogenated volatile organics using EPA Method 8010 in that same letter has been subsequently modified by ACDHS to include only wells MW-3 (8010 and 8020) and MW-2 and MW-8 (8020 only).

Water samples were collected on March 4 through 10, 1992, from onsite wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-7, MW-8, MW-10, MW-13, MW-14, MW-15 and MW-16. Monitoring wells MW-6 and MW-9 were not accessible on the sampling days, and therefore, not sampled. In addition to the onsite monitoring wells, an offsite water supply well located on the Jamieson property was sampled via a hose tap. Refer to Plate 2 for the location of all wells and the offsite well.

WATER LEVEL MONITORING DATA

Ground water surface elevation data were collected from sampled wells prior to their sampling. These measurements are provided in Table 1. Generally, the ground water surface elevation at the site has risen an average of 2.8 feet since the last measurement on November 13, 1991. A measurement from the staff gauge located in the adjacent storage pond (R-4) collected during this sampling round indicates that the elevation of the water surface in the pond has fallen approximately 1 foot since the last measurement in November 1991.

Based on the information collected during this round of sampling, a ground water gradient map was constructed (Plate 3). This map indicates a general flow direction towards the northeast, with local flow directions toward the north and northwest beneath the western portion of the site (the vicinity of MW-10). The flow direction is as noted in previous sampling rounds.

Water level elevations beneath the site vary between 301 and 305 feet (MW-5 and MW-10, respectively). Water levels in the area of MW-5 are again the lowest on the site, which conforms with historical observations. The overall gradient is relatively flat (0.007 feet per foot) with locally steeper gradients in the vicinity of MW-10 (0.014 feet per foot).

GROUND WATER CHEMISTRY MONITORING RESULTS

The presence of a sheen in wells is noted on Table 1 along with the water level data. Analytical data are provided on Tables 2 and 3. Complete analytical laboratory reports along with chain of custody records are included in the Appendix.

Sheen was observed in the following wells during this sampling round: MW-1, MW-2, MW-3, and MW-8. In addition, these four wells also exhibited hydrocarbon-like odors.

Detectable concentrations of PCBs were found only in the ground water samples collected from monitoring well MW-1 (0.7 ug/L). PCBs had not been detected in samples collected from that well since February 1991 (9.6 ug/L).

Detectable concentrations of total petroleum hydrocarbons as diesel (TPH(d)) and total petroleum hydrocarbons as waste oil (TPH(wo)) were found in samples collected from MW-1, MW-2, MW-3, MW-8, and MW-13. TPH(d) was detected in the samples collected from MW-15 and MW-16. Detected concentrations for TPH(d) ranged from 11 mg/L in MW-1 to 0.3 mg/L in MW-15. Detected concentrations for TPH(wo) ranged from 4.9 mg/L in MW-1 to 0.1 mg/L in MW-8. TPH(wo) was not detected in MW-15 or MW-16. Generally, analytical data indicate a decrease in the concentrations of TPH as diesel and waste oil in the water samples collected as compared to the November 1991 data.

Detectable concentrations of oil and grease and total hydrocarbons revealed the presence of these compounds in the water samples obtained from wells MW-1, MW-2, MW-3 and MW-4. Oil and grease were detected in MW-8, MW-15, and MW-16. (Table 2). Detected concentrations of oil and grease ranged from 31 mg/L in MW-3 to 0.6 mg/L in MW-8. Detected concentrations of total hydrocarbons ranged from 27 mg/L in MW-3 to 1 mg/L in MW-4. Concentrations of these compounds have generally decreased or remained about the same since the November 1991 sampling round.

Sample analysis for volatile organic compounds has been discontinued for most monitoring wells at this site since the November 1991 sampling round with concurrence from the Alameda Department of Health. Samples collected from three wells only (MW-2, MW-3 and MW-8) were tested for volatile aromatic hydrocarbons via EPA Test Method 8020. Samples collected

from one well only (MW-8) was tested for halogenated volatile organic compounds via EPA Test Method 8010 (Table 3). The following compounds were detected: benzene, ethylbenzene, and total xylenes in MW-2; and benzene only in MW-8. No volatile organic compounds were detected in MW-3.

An offsite water supply well located east of the site (Jamieson Well) was sampled (Plate 2). The well was purged by opening a tap and running the water for about 30 minutes in order to empty the surge tank. Approximately 20 gallons of water were purged prior to collecting a sample. This sample was analyzed for the same constituents as the onsite monitoring wells. None of the target compounds were detected in concentrations above their respective laboratory reporting limits.

SUMMARY

In summary, based on the available data, the ground water surface elevation beneath the site is higher than the previous sampling round and ground water flow remains generally toward the northeast. The ground water chemistry has remained, for the most part, consistent between sampling rounds although concentrations have decreased since November 1991. The ground water samples collected from monitoring wells MW-1, MW-2, MW-3, and MW-8 continue to exhibit higher concentrations of the target compounds with lower concentrations in wells MW-15 and MW-16. The ground water samples collected from the offsite water production well (Jamieson well) did not exhibit concentrations of the target chemicals at concentrations above the laboratory reporting limits for the compounds requested.

RECOMMENDED RI ACTIVITIES

Volatile organic compounds, oil and grease and BTXE were found in the water samples obtained from some of the onsite monitoring wells. Therefore, it is recommended that during the next quarterly round (June 1992), water samples be analyzed for these same compounds. This is to allow an assessment of possible changes in concentrations of these compounds found in selected water samples.

OTHER ACTIVITIES

Bids from three water well drilling companies have been solicited and received for drilling and installation of the proposed groundwater extraction wells. The extraction well construction is underway by the selected drilling company, Water Development Corporation.

LIMITATIONS

This report was prepared in general accordance with the accepted standard of practice which exists in Northern California at the time the investigation was performed. It should be recognized that definition and evaluation of environmental conditions is a difficult and inexact art. Judgements leading to conclusions and recommendations are generally made with an incomplete knowledge of the conditions present. More extensive studies, including additional environmental investigations, can tend to reduce the inherent uncertainties associated with such studies. If the Client wishes to reduce the uncertainty beyond the level associated with this study, Kleinfelder should be notified for additional consultation.

Our firm has prepared this report for the Client's exclusive use for this particular project and in accordance with generally accepted engineering practices within the area at the time of our investigation. No other representations, expressed or implied, and no warranty or guarantee is included or intended.

This report may be used only by the client and only for the purposes stated, within a reasonable time from its issuance. Land use, site conditions (both onsite and offsite) or other factors may change over time, and additional work may be required with the passage of time. Any party other than the client who wishes to use this report shall notify Kleinfelder of such intended use. Based on the intended use of the report, Kleinfelder may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party.

If you have any questions regarding this report or require additional information, please contact the undersigned.

Sincerely,

KLEINFELDER, INC.

Guy A. Jett Staff Geologist

David K. Behrens, P.E., Senior Project Manager

GAJ/DKB:dpb

cc: Dwight Beavers - Industrial Asphalt

Ravi Arulanantham - Alameda County Department of Environmental Services Linda Spencer - California Regional Water Quality Control Board Jerry Killingstad - Alameda County Flood Control and Water

Conservation District, Zone 7

TABLE 1 SUMMARY OF 1992 GROUND WATER ELEVATIONS INDUSTRIAL ASPHALT

-						
		Total Well	Survey	Product	Depth to	
Well	Date	Depth	Elevation	Thickness	Water	Elevation
Number		(ft)	(ft, MSL)	(ft)	(ft)	(ft, MSL)
MW-1	3/03/92	88	379.41	SHEEN	76.01	303.40
	12. II					
MW-2	3/03/92	90	379.80	SHEEN	76.59	303.21
	500 F 35000 F 55					
MW-3	3/03/92	90	378.54	SHEEN	74.72	303.82
MW-4	3/03/92	95	376.26	NE	73.20	303.06
	, ,					
MW-5	3/03/92	110	382.55	NE	81.23	301.32
	-11					
MW-6	3/03/92	109	379.15	NA	NM	
	-11					
MW-7	3/03/92	109	378.94	NE	75.29	303.65
111	0/00/12					
MW-8	3/03/92	109	378.56	SHEEN	75.20	303.36
W W -O	3/03/72	10)	370.50	V. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
MW-9	3/03/92	108	377.40	NA	NM	
101 00 - 9	3/03/32	100	311.40	1471	1111	
MW-10	2 /02 /02	111	378.04	NE	73.10	304.94
IVI VV-10	3/03/92	111	370.04	NL	75.10	501.51
NASV 12	2 /02 /02	116	380.21	NE	76.03	304.18
MW-13	3/03/92	110	360.21	NE	70.03	504.10
Extraction						
Well						
	0 100 100	444.5	200.00	NIT?	76.62	202.46
MW-14	3/03/92	114.5	380.09	NE	76.63	303.46

TABLE 1 SUMMARY OF 1992 GROUND WATER ELEVATIONS INDUSTRIAL ASPHALT

	Well	Date	Total Well Depth	Survey Elevation	Product Thickness	Depth to Water	Elevation
_	Number		(ft)	(ft, MSL)	(ft)	(ft)	(ft, MSL)
	MW-15	3/03/92	117	378.12	NE	75.54	302.58
	MW-16	3/03/92	110	379.65	NE	75.61	304.04
	STAFF GAGE	3/03/92	NA	300.00	NE	-1	299.00

NOTES:

Survey elevations refer to Top of Casing, Mean Sea Level (USGS Datum)

Depth to Water in feet below Top of Casing

NA Not Applicable

NE Not Encountered

NM Not Measured

TABLE 2 MONITORING PARAMETERS INDUSTRIAL ASPHALT

Well Number	Sample Date	TPH as Diesel ⁽¹⁾ (mg/L)	TPH as Waste Oil ⁽¹⁾ (mg/L)	Oil & Grease ⁽²⁾ (mg/L)	Total Hydrocarbons ⁽³⁾ (mg/L)	PCBs ⁽⁴⁾ (μg/L)
MW-1	Apr. 1991	40	27	91	74	ND
*** *** ***	July 1991	29	8	60	55	ND
	Nov. 1991	9.5	4.9	22	19	ND
	Mar. 1992	11	4.9	27	20	0.7
MW-2	Apr. 1991	44	35	150	130	5.1
	July 1991	32	14	73	64	0.8
	Nov. 1991	110	57	110	96	1
	Mar. 1992	4.1	1.5	10	8	ND
MW-3	Apr. 1991	19	14	34	30	0.8
	July 1991	0.7	ND	ND	ND	ND
	Nov. 1991	210	120	360	330	7.4
	Mar. 1992	4.2	2.4	31	27	ND
MW-4	Apr. 1991	0.7	9.7	11	6	ND
	July 1991	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	2	0.9	ND
	Mar. 1992	ND	ND	3	1	ND
MW-5	Apr. 1991	ND	ND	ND	ND	ND
	July 1991	ND	0.8	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND
	Mar. 1992	ND	ND	ND	ND	ND
Laboratory Detection	on Limit ⁽⁵⁾	0.05	0.1	0.5	0.5	0.5
Drinking Water Sta	andard ⁽⁶⁾				-	0.5

Please see notes on last page of Table 2 (74)10-1682-03/38-(C92122)

TABLE 2 (Continued) MONITORING PARAMETERS INDUSTRIAL ASPHALT

Well Number	Sample Date	TPH as Diesel ⁽¹⁾ (mg/L)	TPH as Waste Oil ⁽¹⁾ (mg/L)	Oil & Grease ⁽²⁾ (mg/L)	Total Hydrocarbons ⁽³⁾ (mg/L)	PCBs ⁽⁴⁾ (μg/L)
MW-6	Apr. 1991	NT	NT	NT	NT	NT
	July 1991	NT	NT	NT	NT	NT
	Nov. 1991	NT	NT	NT	NT	NT
	Mar. 1992	NT	NT	NT	NT	NT
MW-7	Apr. 1991	0.5	ND	1	ND	ND
February (2007) (S)	July 1991	0.09	0.1	ND	ND	ND
	Nov. 1991	0.07	ND	ND	ND	ND
	Mar. 1992	ND	ND	ND	ND	ND
MW-8	Apr. 1991	4.1	4.8	15	11	0.8
	July 1991	0.3			ND	ND
	Nov. 1991	4.1	4.8	15	11	0.8
	Mar. 1992	0.5	0.1	0.6	ND	ND
MW-9	Apr. 1991	NT	NT	NT	NT	NT
	July 1991	0.4	ND	ND	ND	ND
	Nov. 1991	0.1	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT
MW-10	Apr. 1991	3	ND	4	1	ND
	July 1991	ND		ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND
	Mar. 1992	ND	ND	ND	ND	ND
				_		
Laboratory Detecti	on Limit ⁽⁵⁾	0.05	0.1	NT NT ND 1 ND 0.1 ND ND ND ND ND ND ND ND 4.8 15 11 ND ND ND 4.8 15 11 0.1 0.6 ND NT NT NT ND ND ND ND ND ND	0.5	
Drinking Water Sta	andard ⁽⁶⁾				g	0.5

Please see notes on last page of Table 2 (74)10-1682-03/38-(C92122)

TABLE 2 (Continued) MONITORING PARAMETERS INDUSTRIAL ASPHALT

Well Number	Sample Date	TPH as Diesel ⁽¹⁾ (mg/L)	TPH as Waste Oil ⁽¹⁾ (mg/L)	Oil & Grease ⁽²⁾ (mg/L)	Total Hydrocarbons ⁽³⁾ (mg/L)	PCBs ⁽⁴⁾ (μg/L)
MW-13 ^(7,8)	Feb. 1991	0.5	0.2	NT	NT	ND
	Apr. 1991	0.7	ND	ND	ND	ND
	July 1991	0.8	0.3	0.9	0.6	ND
	Nov. 1991	0.6(0.6)	ND(ND)	(0.9(0.9)	0.8(0.9)	ND(ND)
	Mar. 1992	0.58(0.61)	ND(0.1)	ND(ND)	ND(ND)	ND(ND)
MW-14	Apr. 1991	ND	ND	ND	ND	ND
	July 1991	ND	0.3	0.6	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND
	Mar. 1992	ND	ND	ND	ND	ND
MW-15	Apr. 1991	0.5	ND	2	1	ND
	July 1991	1.0	1.5	0.7	ND	ND
	Nov. 1991	0.07	ND	2	ND	ND
	Mar. 1992	0.3	ND	0.5	ND	ND
MW-16	Feb. 1991	0.3	0.4	NT	NT	ND
	Apr. 1991	ND	0.5	0.9	ND	ND
	July 1991	ND	0.5	ND	ND	ND
	Nov. 1991	0.08	ND	ND	ND	ND
	Mar. 1992	1.4(1.5)	ND(ND)	1(2)	ND(ND)	ND(ND)
14A2 ⁽⁹⁾	Apr. 1991	ND	ND	ND	ND	ND
	July 1991	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND
	Mar. 1992	ND	ND	ND	ND	ND
Laboratory Detection	n Limit ⁽⁵⁾	0.05	0.1	0.5	0.5	0.5
Drinking Water Stan	dard ⁽⁶⁾					0.5

Please see notes on last page of Table 2 (74)10-1682-03/38-(C92122)

TABLE 2 (Continued) MONITORING PARAMETERS INDUSTRIAL ASPHALT

NOTES:

- (1) Sample analysis via SM 3520 GCFID.
- (2) Sample analysis via SM 5520C.
- (3) Sample analysis via SM 5520F.
- (4) Polychlorinated Biphenyl compounds. Sample analysis via EPA Test Method 8080.
- (5) Routine Laboratory detection limits. Some limits may vary. Please refer to attached laboratory reports for specific detection limits.
- (6) California Department of Health Services Drinking Water Standards, Primary Maximum Contaminant Levels (MCL); secondary MCLs listed in parentheses.

Source: Water Quality Goals, California Regional Water Quality Control Board, February 1991.

- (7) Extraction Well.
- (8) Dplicate analyses in parentheses.
- (9) Jamieson Well sampled via a tap.

TPH Total Petroleum Hydrocarbons.

ND Not Detected at or above laboratory reporting limits

NT Not Tested

TABLE 3
VOLATILE ORGANIC COMPOUNDS⁽¹⁾
INDUSTRIAL ASPHALT

Well Number	Sample Date	Benzene (μg/L)	Ethyl- benzene (μg/L)	Toluene (μg/L)	Total Xylenes (μg/L)	1,1- DCA ⁽²⁾ (μg/L)	1,2- DCE ⁽³⁾ (μg/L)		Vinyl Chloride g/L) (μg	Other 8010 Compounds /L)
MW-1	Apr. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	July 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW-2	Apr. 1991	0.7	ND	ND	ND	ND	ND	ND	ND	ND
	July 1991	0.8	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	1	4	ND	2	NT	NT	NT	NT	NT
MW-3	Apr. 1991	0.9	6	ND	3	2	ND	1	8	ND
	July 1991	ND	ND	ND	ND	2	ND	ND	8	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-4	Apr. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	July 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW-5	Apr. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	July 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
Laboratory I	Detection Limit0.5	0.5	0.5	2	0.5	0.5	0.5	5 0.5	0.5	
Drinking Wa	ater Standard ⁽⁶⁾ 1	680	1,000(40)	1,750(20)	5	6	150	0.5		

Please see notes on last page of Table (74)10-1682-03/38-(C92122)

TABLE 3
(Continued)

VOLATILE ORGANIC COMPOUNDS⁽¹⁾
INDUSTRIAL ASPHALT

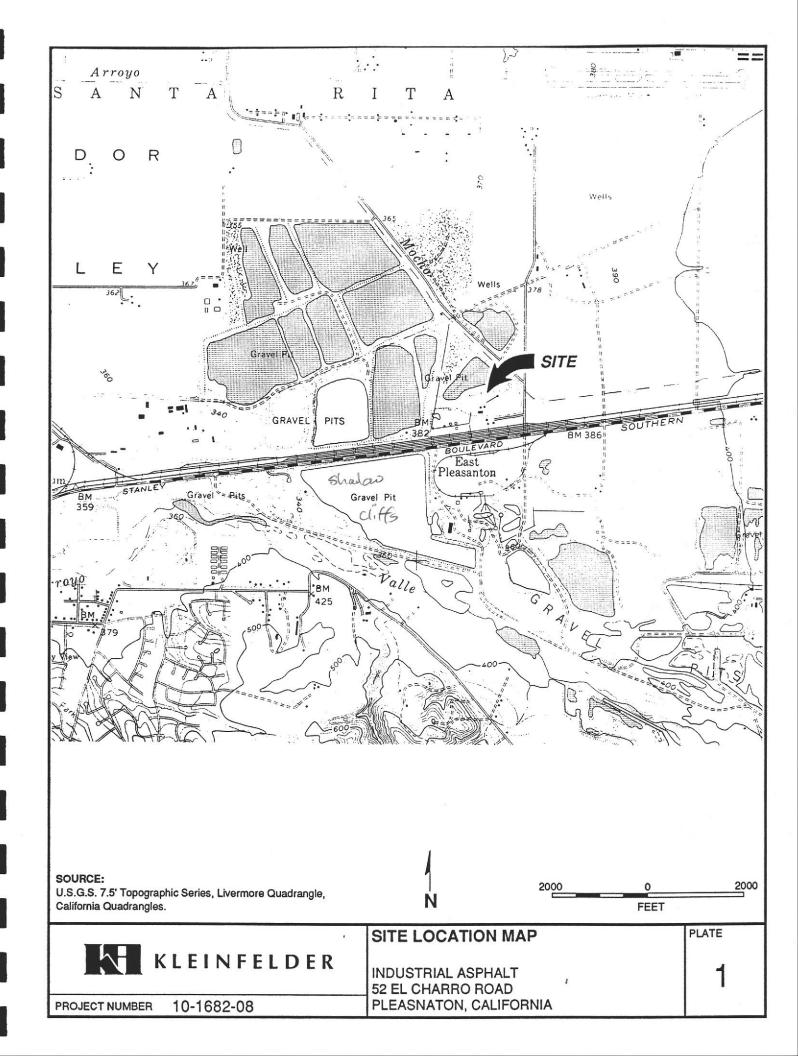
Well Number	Sample Date	Benzene	Ethyl- benzene	Toluene	Total Xylenes	1,1- DCA ⁽²⁾	1,2- DCE ⁽³⁾			Other 8010 Compounds
***************************************		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L) ((μg/L) (μg	/L)
MW-6	Apr. 1991	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW-0	July 1991	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Nov. 1991	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW-7 .	Apr. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	July 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW-8	Apr. 1991	ND	3	ND	ND	ND	1	ND	ND	ND
	July 1991	ND	1	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	ND	0.8	ND	ND	NT	NT	NT	NT	NT
MW-9	Apr. 1991	NT	NT	NT	NT	NT	NT	NT	NT	NT
	July 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW-10	Apr. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	July 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
Laboratory I	Detection Limit0.5	0.5	0.5	2	0.5	0.5	0.5	0.5	0.5	
Drinking Wa	ater Standard ⁽⁶⁾ 1	680	1,000(40)	1,750(20)	5	6	150	0.5		

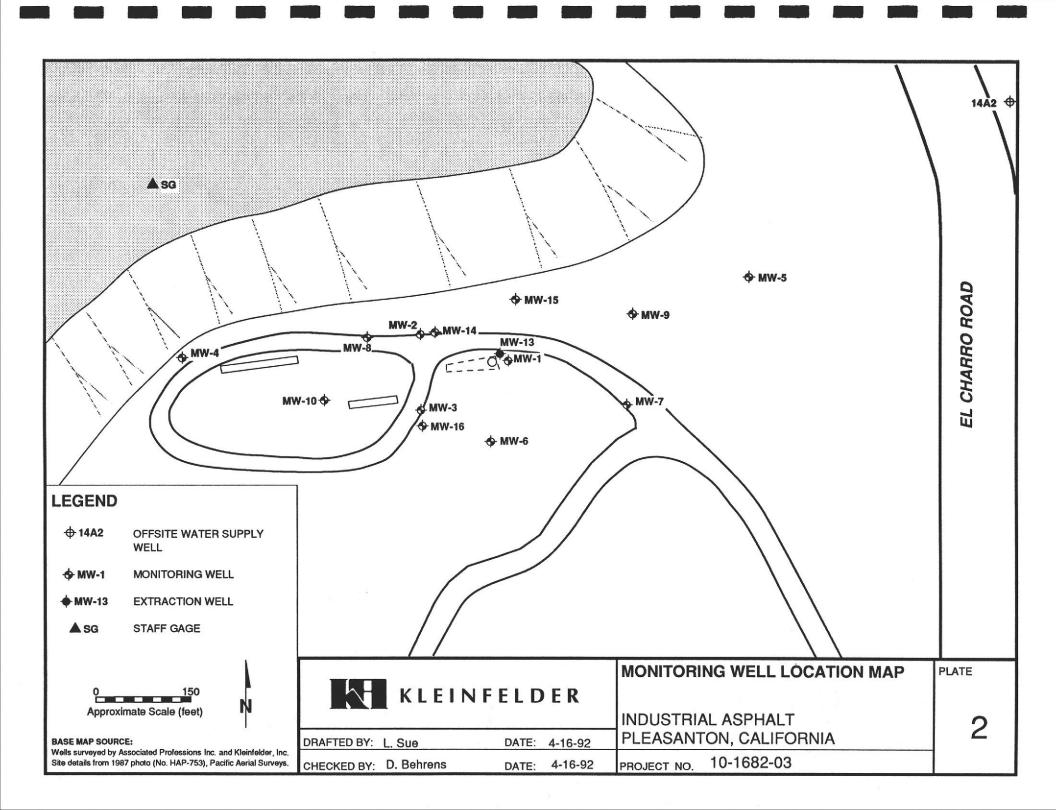
Please see notes on last page of Table (74)10-1682-03/38-(C92122)

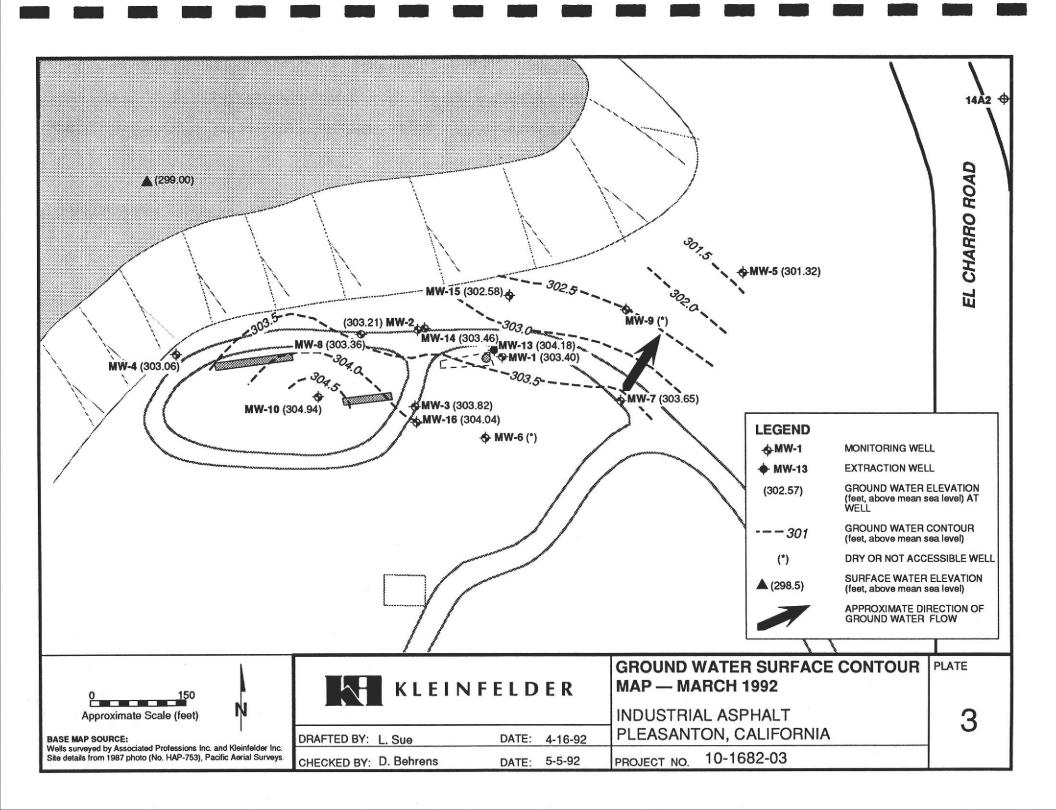
DRAFT

TABLE 3
(Continued)

VOLATILE ORGANIC COMPOUNDS⁽¹⁾
INDUSTRIAL ASPHALT


Well Number	Sample Date	Benzene (µg/L)	Ethyl- benzene (μg/L)	Toluene (μg/L)	Total Xylenes (μg/L)	1,1- DCA ⁽²⁾ (μg/L)	1,2- DCE ⁽³⁾ (μg/L)		Vinyl Chloride g/L) (μg	Other 8010 Compounds /L)
MW-13	Apr. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	July 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW-14	Apr. 1991	ND	0.7	ND	ND	ND	ND	ND	ND	ND
	July 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW-15	Apr. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	July 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
MW-16	Apr. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	July 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
14A2 ⁽⁵⁾	Apr. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	July 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nov. 1991	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Mar. 1992	NT	NT	NT	NT	NT	NT	NT	NT	NT
Laboratory	Detection Limit0.5	0.5	0.5	2	0.5	0.5	0.5	0.5	0.5	
Drinking W	ater Standard ⁽⁶⁾ 1	680	1,000(40)	1,750(20)	5	6	150	0.5		


Please see notes on last page of Table (74)10-1682-03/38-(C92122)


TABLE 3 NOTES VOLATILE ORGANIC COMPOUNDS INDUSTRIAL ASPHALT

NOTES:

- (1) Sample analysis for benzene, ethylbenzene, toluene, and total xylenes via EPA Test Method 8020 (volatile aromatic compounds). Sample analysis for other compounds via EPA Test Method 8010 (halogenated volatile organic compounds). Compounds not listed were not detected at concentrations above the laboratory detection limit.
- (2) 1,1-Dichloroethane
- (3) 1,2-Dichloroethene, total
- (4) Trichlorofluoromethane
- (5) Jamieson water supply well sampled via a tap.
- (6) California Department of Health Services Drinking Water Standards, Primary Maximum Contaminant Levels (MCL); secondary MCLs listed in parentheses. Source: Water Quality Goals, California Regional Water Quality Control Board, February 1991.
- ND Not Detected at or above laboratory detection limits (Only those compounds which were detected in one or more samples are tabulated.
- NT Not Tested

KLEINFELDER 9203029 PROJ. NO. PROJECT NAME 10-1682-03 Endustrial Thephalt NO. (P.O. NO.) CON-REMARKS TAINERS DATE SAMPLE I.D. TIME HH:MM:SS MM/DD/YY 56860 MW-5 8:49 56866 MW-4 9130 56870 MW-7 10:35 56880 MW-15 11:35 56884 MW16 12:22 56894 TUE Blok 12:28 Attribuy Jett
Standard TAT Send Results To Date/Time Received by: (Signature) Relinquished by: (Signature) KLEINFELDER 2121 N. CALIFORNIA BLVD. **SUITE 570** Received by: (Signature) Date/Time WALNUT CREEK, CA 94596 (415) 938-5610 Received for Laboratory by:
(\$idpature)

Line Harrington Relinquished by: (Signature) Canary - Return Copy To Shipper Pink Lab Copy M-60

	KLETN	FEL	DEK								73	4	7	٠				9203063 9203064
/D-/682 L.P. NO. (P.O. NO.)	-03 TNA SAMPLERS	Signature	ial Asph MPhili	halt #1502	NO. OF	ANA,	3/3/0		7	7.		S. A.			7	7	7	
MM/DD/YY	SAMPLE I.D.		SAMPLE	I.D.	TAINERS	Z.	X		Ä	3	Y	Ž,	\angle	\angle	\angle	\angle	_	REMARKS
3/16/97	10134		56920) MW-8	8	X	X	X	X	X	X							
11	8120		56900	MW-10	6	1	1	(
	8:52		56904	MW-14	6	Ш			\prod	П								
	9:58		56910	MW13	6					1								
	10106		56918	MW-13"Dp	6	1	V	1	1									
7/	11:15			MW-1	6	X	×	X	X	X								
3/10/92	12:59			FUC Blake	2	·				Ĺ								Does not need to be run
				TUL Bluk	Z						X							because no sample came in for
																		volitle analysis.
																	_	/
	·																	
											1							
								Π										
					1										П			
										\vdash					П			
						T				\vdash					П			
Relinquished	I by: (Signature)	1	Date/Time	Received by: (Signature))		narks											Send Results To
Well 4 Relinquiphed	MRLL 1 by: (Signature)	1 3/	Date/Time	Received by: (Signature	o)	/	All	Kv)	h	44	J	ची	_					KLEINFELDER 2121 N. CALIFORNIA BLVD. SUITE 570 WALNUT CREEK, CA 94596 (415) 938-5610
	1 by: (Signature)	3/4	Date/Time	Received for Laboratorsignature)	uspic		aru E	Return	Conv	To Sh	inner.							Pink Lab Copy
M-60			White - Sampler	O		Carl	ary - F	io (diri	COPY	, u an	-ppei							Pink Lab Copy Nº 1746

KLETNFEEDER 9203069 PROJ. NO. PROJECT NAME 10-1682-03 NO. L.P. NO. SAMPLERS: (Signature/Number) Will & Mikell #1502 (P.O. NO.) CON-SAMPLE I.D. REMARKS TAINERS SAMPLE I.D. DATE TIME HH:MM:SS MM/DD/YY 9,09 5-6938 MW-Z 3-10-92 56942 MW-3 56956 "TAP" 10:15 10 10:47 56958 TULBINK. X 11:27 Received by: (Signature)

Received by: (Signature)

Repeived for Laboratory by: (Signature)

Attack

Repeived for Laboratory by: Standard

TAT

Whise Farrington Send Results To Date/Time Relinquished by: (Signature) KLEINFELDER 2121 N. CALIFORNIA BLVD. **SUITE 570** Relinquished by: (Signature) Date/Time WALNUT CREEK, CA 94596 (415) 938-5610 Relinquished by: (Signature) Pink Lab Copy M-60 Nº

Quanteq Laboratories An Ecologics Company

WORKING COPY FORMERLY MED-TOX

REPORT DATE:

DATE SAMPLED: 03/10/92

DATE RECEIVED: 03/10/92

QUANTEQ JOB NO: 9203069

Certificate of Analysis

PAGE 1 OF 16

DOHS CERTIFICATION NO. E772

AIHA ACCREDITATION NO. 332

04/08/92

KLEINFELDER, INC. 2121 N. CALIFORNIA BLVD. SUITE 570 WALNUT CREEK, CA 94596 ATTN: GUY JETT

CLIENT PROJ. ID: 10-1682-03 C.O.C. NO: 1745

ANALYSIS OF: WATER SAMPLES

See attached for results

Andrew Bradeen, Manager Organic Laboratory

Results FAXed 03/20/92

An Ecologics Company

PAGE 2 OF 16

KLEINFELDER, INC.

DATE SAMPLED: 03/10/92 DATE RECEIVED: 03/10/92 CLIENT PROJ. ID: 10-1682-03

REPORT DATE: 04/08/92

QUANTEQ JOB NO: 9203069

Client Sample Id.	Quanteq Lab Id.	Extractable Hydrocarbons as Diesel (mg/L)	Extractable Hydrocarbons as Oil (mg/L)	Oil & Grease (mg/L)	Hydrocarbons (mg/L)
56938 MW-Z	01A 01C	4.1	1.5	10	
56942 HW-3	02A 02C	4.2	2.4	31	27
56956 56956 TAP	03A 03C	ND 	ND 	ND	ND ND
Detection Lim	it	0.05	0.1	0.5	0.5
Method:		3520 GCFID	3520 GCFID	5520C	5520F
Instrument:		C	С	IR	IR
Date Extracte Date Analyzed		03/18/92 03/20/92	03/18/92 03/20/92	03/19/92 03/20/92	

An Ecologics Company

PAGE 3 OF 16

KLEINFELDER, INC.

SAMPLE ID: 56942 MW-7 CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/10/92 DATE RECEIVED: 03/10/92 REPORT DATE: 04/08/92

QUANTEQ LAB NO: 9203069-02E QUANTEQ JOB NO: 9203069 DATE ANALYZED: 03/17/92

INSTRUMENT: G

EPA METHOD 8010 (WATER MATRIX) HALOGENATED VOLATILE ORGANICS

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Bromodichloromethane	75-27-4	ND	0.5
Bromoform	75-25-2	ND	0.5
Bromomethane	74-83-9	ND	0.5
Carbon Tetrachloride	56-23-5	ND	0.5
Chlorobenzene	108-90-7	ND	0.5
Chloroethane	75-00-3	ND	0.5
2-Chloroethyl Vinyl Ether	110-75-8	ND	0.5
Chloroform	67-66-3	ND	0.5
Chloromethane	74-87-3	ND	0.5
Dibromochloromethane	124-48-1	ND	0.5
1,2-Dichlorobenzene	95-50-1	ND	0.5
1,3-Dichlorobenzene	541-73-1	ND	0.5
1,4-Dichlorobenzene	106-46-7	ND	0.5
Dichlorodifluoromethane	75-71-8	ND	0.5
1,1-Dichloroethane	75-34-3	ND	0.5
1,2-Dichloroethane	107-06-2	ND	0.5
1,1-Dichloroethene	75-35-4	ND	0.5
cis-1,2-Dichloroethene	156-59-2	ND	0.5
trans-1,2-Dichloroethene	156-60-5	ND	0.5
1,2-Dichloropropane	78-87-5	ND	0.5
cis-1,3-Dichloropropene	10061-01-5	ND	0.5
trans-1,3-Dichloropropene		ND	0.5
Methylene Chloride	75-09-2	ND	0.5
1,1,2,2-Tetrachloroethane	79-34-5	ND	0.5
Tetrachloroethene	127-18-4	ND	0.5
1,1,1-Trichloroethane	71-55-6	ND	0.5
1,1,2-Trichloroethane	79-00-5	ND	0.5
Trichloroethene	79-01-6	ND	0.5
Trichlorofluoromethane 1,1,2-Trichloro-	75-69-4	ND	0.5
1,2,2-trifluoroethane	76-13-1	, ND	0.5
Vinyl Chloride	75-01-4	ND	0.5

An Ecologics Company

PAGE 4 OF 16

KLEINFELDER, INC.

SAMPLE ID: 56958 Travel Blank

CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/10/92 DATE RECEIVED: 03/10/92 REPORT DATE: 04/08/92 QUANTEQ LAB NO: 9203069-04A QUANTEQ JOB NO: 9203069 DATE ANALYZED: 03/17/92

INSTRUMENT: G

EPA METHOD 8010 (WATER MATRIX) HALOGENATED VOLATILE ORGANICS

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Bromodichloromethane	75-27-4	ND	0.5
Bromoform	75-25-2	ND	0.5
Bromomethane	74-83-9	ND	0.5
Carbon Tetrachloride	56-23-5	ND	0.5
Chlorobenzene	108-90-7	ND	0.5
Chloroethane	75-00-3	ND	0.5
2-Chloroethyl Vinyl Ether	110-75-8	ND	0.5
Chloroform	67-66-3	ND	0.5
Chloromethane	74-87-3	ND	0.5
Dibromochloromethane	124-48-1	ND	0.5
1,2-Dichlorobenzene	95-50-1	ND	0.5
1,3-Dichlorobenzene	541-73-1	ND	0.5
1,4-Dichlorobenzene	106-46-7	ND	0.5
Dichlorodifluoromethane	75-71-8	ND	0.5
1,1-Dichloroethane	75-34-3	ND	0.5
1,2-Dichloroethane	107-06-2	ND	0.5
1,1-Dichloroethene	75-35-4	ND	0.5
cis-1,2-Dichloroethene	156-59-2	ND	0.5
trans-1,2-Dichloroethene	156-60-5	ND	0.5
1,2-Dichloropropane	78-87-5	ND	0.5
cis-1,3-Dichloropropene	10061-01-5	ND	0.5
trans-1,3-Dichloropropene		ND	0.5
Methylene Chloride	75-09-2	ND	0.5
1,1,2,2-Tetrachloroethane	79-34-5	ND	0.5
Tetrachloroethene	127-18-4	ND	0.5
1,1,1-Trichloroethane	71-55-6	ND	0.5
1,1,2-Trichloroethane	79-00-5	ND	0.5
Trichloroethene	79-01-6	ND	0.5
<pre>Trichlorofluoromethane 1,1,2-Trichloro-</pre>	75-69-4	ND	0.5
1,2,2-trifluoroethane	76-13-1	ND	0.5
Vinyl Chloride	75-01-4	ND	0.5

An Ecologics Company

PAGE 5 OF 16

KLEINFELDER, INC.

CLIENT ID: 56938 MW-2 CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/10/92

DATE RECEIVED: 03/10/92 REPORT DATE: 04/08/92

QUANTEQ LAB NO: 9203069-01E QUANTEQ JOB NO: 9203069

DATE ANALYZED: 03/17/92

INSTRUMENT: G

EPA METHOD 8020 (WATER MATRIX) AROMATIC VOLATILÈ HYDROCARBONS

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Benzene	71-43-2	1	0.5
Chlorobenzene	108-90-7	ND	0.5
1,2-Dichlorobenzene	95-50-1	ND	0.5
1,3-Dichlorobenzene	541-73-1	ND	0.5
1,4-Dichlorobenzene	106-46-7	ND	0.5
Ethylbenzene	100-41-4	4	0.5
Toluene	108-88-3	ND	0.5
Xylenes, Total	1330-20-7	2	2

An Ecologics Company

PAGE 6 OF 16

KLEINFELDER, INC.

CLIENT ID: 56942 べい・う CLIENT PROJ. ID: 10-1682-03

DATE SAMPLED: 03/10/92 DATE RECEIVED: 03/10/92 REPORT DATE: 04/08/92

QUANTEQ LAB NO: 9203069-02E QUANTEQ JOB NO: 9203069

DATE ANALYZED: 03/17/92

INSTRUMENT: G

EPA METHOD 8020 (WATER MATRIX) AROMATIC VOLATILE HYDROCARBONS

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Benzene	71-43-2	ND	0.5
Chlorobenzene	108-90-7	ND	0.5
1,2-Dichlorobenzene	95-50-1	ND	0.5
1,3-Dichlorobenzene	541-73-1	ND	0.5
1,4-Dichlorobenzene	106-46-7	ND	0.5
Ethylbenzene	100-41-4	ND	0.5
Toluene	108-88-3	ND	0.5
Xylenes, Total	1330-20-7	ND	2

An Ecologics Company

PAGE 7 OF 16

KLEINFELDER, INC.

CLIENT ID: 56958 Trava Stank CLIENT PROJ. ID: 10-1682-03

DATE SAMPLED: 03/10/92 DATE RECEIVED: 03/10/92

REPORT DATE: 04/08/92

QUANTEQ LAB NO: 9203069-04A QUANTEQ JOB NO: 9203069

DATE ANALYZED: 03/17/92

INSTRUMENT: G

EPA METHOD 8020 (WATER MATRIX) AROMATIC VOLATILE HYDROCARBONS

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Benzene	71-43-2	ND	0.5
Chlorobenzene	108-90-7	ND	0.5
1,2-Dichlorobenzene	95-50-1	ND	0.5
1,3-Dichlorobenzene	541-73-1	ND	0.5
1,4-Dichlorobenzene	106-46-7	ND	0.5
Ethylbenzene	100-41-4	ND	0.5
Toluene	108-88-3	ND	0.5
Xylenes, Total	1330-20-7	ND	2

An Ecologics Company

PAGE 8 OF 16

KLEINFELDER, INC.

CLIENT ID: 56938 ~~~~~ CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/10/92 DATE RECEIVED: 03/10/92 REPORT DATE: 04/08/92

QUANTEQ LAB NO: 9203069-01G QUANTEQ JOB NO: 9203069 DATE EXTRACTED: 03/16/92 DATE ANALYZED: 03/18/92

INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

An Ecologics Company

PAGE 9 OF 16

KLEINFELDER, INC.

CLIENT ID: 56942 NW. 2 CLIENT PROJ. ID: 10-1682-03

DATE SAMPLED: 03/10/92 DATE RECEIVED: 03/10/92 REPORT DATE: 04/08/92 QUANTEQ LAB NO: 9203069-02I QUANTEQ JOB NO: 9203069 DATE EXTRACTED: 03/16,19/92 DATE ANALYZED: 03/18-23/92

INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

Duplicate sample extractions showed surrogate recoveries outside our Quality control limits due to sample matrix effects, therefore all results are 'estimated concentrations'.

An Ecologics Company

PAGE 10 OF 16

KLEINFELDER, INC.

CLIENT ID: 56956 〈ぬ CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/10/92 DATE RECEIVED: 03/10/92

REPORT DATE: 04/08/92

QUANTEQ LAB NO: 9203069-03E QUANTEQ JOB NO: 9203069 DATE EXTRACTED: 03/16/92 DATE ANALYZED: 03/18/92

INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

An Ecologics Company

PAGE 11 OF 16

QUALITY CONTROL DATA

DATE EXTRACTED: 03/19/92 DATE ANALYZED: 03/20/92 CLIENT PROJ. ID: 10-1682-03 QUANTEQ JOB NO: 9203069 SAMPLE SPIKED: D.I. WATER

INSTRUMENT: IR

IR DETERMINATION FOR OIL & GREASE/HYDROCARBONS METHOD SPIKE RECOVERY SUMMARY (WATER MATRIX)

ANALYTE	MS Conc. (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
oil	6.03	ND	6.03	5.89	98.9 🗸	2.3 ~

CURRENT QC LIMITS (Revised 01/09/92)

Analyte Percent Recovery RPD Oil (87-112)5.4

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

An Ecologics Company

PAGE 12 OF 16

QUALITY CONTROL DATA

DATE EXTRACTED: 03/18/92 DATE ANALYZED: 03/20/92 CLIENT PROJ. ID: 10-1682-03

QUANTEQ JOB NO: 9203069 SAMPLE SPIKED: D.I. WATER

INSTRUMENT: C

METHOD SPIKE RECOVERY SUMMARY TPH EXTRACTABLE WATERS METHOD 3520 GCFID (WATER MATRIX; EXTRACTION METHOD)

ANALYTE	Spike Conc. (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
Diesel	2.42	ND	1.32	1.45	57.2	9.4 /

CURRENT QC LIMITS (Revised 08/15/91)

Analyte RPD Percent Recovery Diesel (49.3-101.4)29.0

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

An Ecologics Company

PAGE 13 OF 16

QUALITY CONTROL DATA

INSTRUMENT: G

QUANTEQ JOB NO: 9203069

CLIENT PROJ. ID: 10-1682-03

SURROGATE STANDARD RECOVERY SUMMARY

METHOD 8010/8020 (WATER MATRIX)

SAMPLE IDENTIFICATION		ON	SURR	OGATE RECOVERY (PERCE	NT)
Date Analyzed	Client Id.	Lab No.	Bromochloro- methane	1-Bromo-2-chloro- propane	1-Chloro-2-fluoro benzene
03/17/92	56938	01E	104.8 <	109.8 ~	111.4 ~
03/17/92	56942	02E	102.5	104.3 🗸	105.2 -
03/17/92	56958	04A	99.4	103.0 ~	102.0 -

CURRENT QC LIMITS (Revised 01/06/92)

ANALYTE PERCENT RECOVERY Bromochloromethane (69.5-127.1)

1-Bromo-2-chloropropane (70.9-128.3) 1-Chloro-2-fluorobenzene (75.6-124.0)

An Ecologics Company

PAGE 14 OF 16

QUALITY CONTROL DATA

DATE ANALYZED: 03/17/92

QUANTEQ JOB NO:

9203069

INSTRUMENT: G

CLIENT PROJ. ID: 10-1682-03

SAMPLE SPIKED:

D.I. WATER

METHOD SPIKE RECOVERY SUMMARY

METHOD 8010/8020 (WATER MATRIX)

	Spike	Sample	MS	MSD	Average	
	Conc.	Result	Result	Result	Percent	
ANALYTE	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Recovery	RPD
1,1-Dichloroethene	50.0	ND	33.3	33.5	66.8~	0.6
Trichloroethene	50.0	ND	41.8	40.9	82.7	2.2
Benzene	50.0	ND	46.8	46.0	92.8	1.7 -
Toluene	50.0	ND	47.4	46.4	93.8	2.1
Chlorobenzene	50.0	ND	41.4	40.9	82.3 <	1.2

CURRENT QC LIMITS (Revised 01/06/92)

<u>Analyte</u>	Percent Recovery	RPD
1,1-Dichloroethene	(58-116)	8.22
Trichloroethene	(76-130)	5.0
Benzene	(84-114)	5.0
Toluene	(81-114)	5.0
Chlorobenzene	(64-116)	5.0

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

QUALITY CONTROL DATA

DATE EXTRACTED: 03/16,19/92

QUANTEQ JOB NO: 9203069

CLIENT PROJ. ID: 10-1682-03

INSTRUMENT: B

SURROGATE STANDARD RECOVERY SUMMARY

METHOD 8080 (WATER MATRIX)

SAMPLE IDENTIFICATION Date			SURROGATE RECOVERY (PERCENT)
Analyzed	Client Id.	Lab No.	2,4,5,6-Tetrachloro-meta-xylene
03/18/92	56938	01G	61
03/18/92 03/18/92 03/23/92	56942 56956 56942	02I 03E 02J	19 * 79 ✓ 14 *

CURRENT QC LIMITS

ANALYTE

PERCENT RECOVERY

2,4,5,6-Tetrachloro-meta-xylene (23-125)

* Surrogates outside Q.C. limits

An Ecologics Company

PAGE 16 OF 16

QUALITY CONTROL DATA

DATE EXTRACTED: 03/16/92 DATE ANALYZED: 03/18/92 CLIENT PROJ. ID: 10-1682-03

QUANTEQ JOB NO: 9203069 SAMPLE SPIKED: D.I. WATER

INSTRUMENT: B

MATRIX SPIKE RECOVERY SUMMARY

METHOD 8080 (PCBs) (WATER MATRIX)

COMPOUND	Spike Amount (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
A1260	4.30	ND	4.78	4.51	108.0 🗸	5.8

CURRENT QC LIMITS

<u>Analyte</u>	Percent Recovery	RPD
A1260	(57-121)	20

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

MM/DD/YY HH:MM:SS 3-10-92 9:09 014-14 5-6938 1 10:15 12A J56942 10 XXXXXX	ARKS
L.P. NO. (P.O. NO.) SAMPLERS: (Signature/Number) (P.O. NO.) SAMPLERS: (Signature/Number) (P.O. NO.) SAMPLE I.D. SAMPLE I.D. TAINERS TIME HH:MM:SS J-10-92 9:09 014-14 5-6938 1 10:15 \$24-515-6942 10 \$X	ARKS
DATE SAMPLE I.D. SAMPLE I.D. TAINERS J-10-92 9:09 014-14 5-6938 1 10:15 824-25-6942 10 22 22 10 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	ARKS
DATE SAMPLE I.D. TAINERS J-10-92 9:09 014-14 56938 8	ARKS
11 10:15 MAA 5156942 10 XXXXXX	
1 10:15 NDA-2556942 10 XXXXXXX	
10.45 454 35 m g m	
10:47 13A-3F5-6956 6 XXXXX	
11:27 04A,B 56958 TULBINK. 2 XX	
	Water 11 11 12 12 12 13 14 17 17 17 17 17 17 17 17 17 17 17 17 17

	•
Relinquished by: (Signature) Date/Time Received by: (Signature) Remarks Attn. Gruy Jett KLEINFELDER 2121 N. CALIFORNIA BLVD. SUITE 570 SUITE 570	
Relinquished by: (Signature) Date/Time Received by: (Signature) Received by: (Signature) Date/Time Received for Laboratory by: (Signature) ACC Relinquished by: (Signature) Date/Time Received for Laboratory by: (Signature) ACC ACC Date/Time Received for Laboratory by: (Signature) ACC Date/Time Received for Laboratory by: (Signature) ACC Date/Time Received for Laboratory by: (Signature)	

An Ecologics Company

FORMERLY MED-TOX

03/27/92

REPORT DATE:

DATE SAMPLED: 03/09/92

DATE RECEIVED: 03/09/92

QUANTEQ JOB NO: 9203063

Certificate of Analysis

PAGE 1 OF 16

DOHS CERTIFICATION NO. E772

AIHA ACCREDITATION NO. 332

KLEINFELDER, INC. 2121 N. CALIFORNIA BLVD. SUITE 570 WALNUT CREEK, CA 94596

ATTN: GUY JETT

CLIENT PROJ. ID: 10-1682-03 C.O.C. NO: 1746

ANALYSIS OF: WATER SAMPLES

See attached for results

Andrew Bradeen, Manager Organic Laboratory

Results FAXed 03/20/92

PAGE 2 OF 16

KLEINFELDER, INC.

DATE SAMPLED: 03/09/92 DATE RECEIVED: 03/09/92 CLIENT PROJ. ID: 10-1682-03

REPORT DATE: 03/27/92

QUANTEQ JOB NO: 9203063

	Client	Quanteq	Extractable Hydrocarbons as Diesel	Extractable Hydrocarbons as Oil	0il & Grease	Hydrocarbons
	Sample Id.	Lab Id.	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	56920	01A	0.5	0.1		
8-w1	56920	010		0.1	0.6	ND
	55000	02A	ND	ND		
MM-16	56900	02C			ND	ND
- 11	56904	03A	ND	ND		
MW-14	56904	03C			ND	ND
MW -13	56910	04A	0.58	ND		
	56910	04C			ND	ND
1310	56918	05A	0.61	0.1		
	00310	05 C			ND	ND
1	56930	06A	11	4.9		
Mm - 1	56930	060			27	20
	Detection Lin	mit	0.05	0.1	0.5	0.5
	Method:		3520 GCFID	3520 GCFID	5520C	5520F
	Instrument:		С	С	IR	IR
	Date Extracte Date Analyzed	7	03/17/92 03/18/92	03/17/92 03/18/92	03/16/92 03/20/92	
					\$550 SS	(22) 3

PAGE 3 OF 16

KLEINFELDER, INC.

CLIENT ID: 56920 MW 8 CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/09/92 DATE RECEIVED: 03/09/92 REPORT DATE: 03/27/92

QUANTEQ LAB NO: 9203063-01G QUANTEQ JOB NO: 9203063 DATE ANALYZED: 03/17/92

INSTRUMENT: G

EPA METHOD 8020 (WATER MATRIX) AROMATIC VOLATILE HYDROCARBONS

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Benzene	71-43-2	ND	0.5
Chlorobenzene	108-90-7	ND	0.5
1,2-Dichlorobenzene	95-50-1	ND	0.5
1,3-Dichlorobenzene	541-73-1	ND	0.5
1,4-Dichlorobenzene	106-46-7	ND	0.5
Ethylbenzene	100-41-4	0.8	0.5
Toluene	108-88-3	ND	0.5
Xylenes, Total	1330-20-7	ND	2

An Ecologics Company

PAGE 4 OF 16

KLEINFELDER, INC.

CLIENT ID: 62812 Took 5 look
CLIENT PROJ. ID: 10-1682-03

DATE SAMPLED: 03/09/92 DATE RECEIVED: 03/09/92 REPORT DATE: 03/27/92

QUANTEQ LAB NO: 9203063-07A QUANTEQ JOB NO: 9203063

DATE ANALYZED: 03/17/92

INSTRUMENT: G

EPA METHOD 8020 (WATER MATRIX) AROMATIC VOLATILÈ HYDROCARBONS

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Benzene	71-43-2	ND	0.5
Chlorobenzene	108-90-7	ND	0.5
1,2-Dichlorobenzene	95-50-1	ND	0.5
1,3-Dichlorobenzene	541-73-1	ND	0.5
1,4-Dichlorobenzene	106-46-7	ND	0.5
Ethylbenzene	100-41-4	ND	0.5
Toluene	108-88-3	ND	0.5
Xylenes, Total	1330-20-7	ND	2

PAGE 5 OF 16

KLEINFELDER, INC.

CLIENT ID: 56920 MW- 8 CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/09/92 DATE RECEIVED: 03/09/92 REPORT DATE: 03/27/92 QUANTEQ LAB NO: 9203063-01E QUANTEQ JOB NO: 9203063 DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92 INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
1016	12674-11-2	ND	0.5
1221	11104-28-2	ND	0.5
1232	11141-16-5	ND	0.5
1242	53469-21-9	ND	0.5
1248	12672-29-6	ND	0.5
1254	11097-69-1	ND	0.5
1260	11096-82-5	ND	0.5
	1221 1232 1242 1248 1254	1016 12674-11-2 1221 11104-28-2 1232 11141-16-5 1242 53469-21-9 1248 12672-29-6 1254 11097-69-1	CAS # (ug/L) 1016

An Ecologics Company

PAGE 6 OF 16

KLEINFELDER, INC.

CLIENT ID: 56900 MW NO CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/09/92 DATE RECEIVED: 03/09/92 REPORT DATE: 03/27/92

QUANTEQ LAB NO: 9203063-02E QUANTEQ JOB NO: 9203063 DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92 INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

-				
AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

An Ecologics Company

PAGE 7 OF 16

KLEINFELDER, INC.

CLIENT ID: 56904 ~~~ \\docs \docs \\docs \docs \\docs \docs \\docs \docs \\docs \\docs

QUANTEQ LAB NO: 9203063-03E QUANTEQ JOB NO: 9203063 DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92

INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

An Ecologics Company

PAGE 8 OF 16

KLEINFELDER, INC.

CLIENT ID: 56910 ~~~3 CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/09/92 DATE RECEIVED: 03/09/92 REPORT DATE: 03/27/92

QUANTEQ LAB NO: 9203063-04E QUANTEQ JOB NO: 9203063 DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92 INSTRUMENT: B

EPA METHOD 8080
POLYCHLORINATED BIPHENYLS
(WATER MATRIX)

-				
AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

PAGE 9 OF 16

KLEINFELDER, INC.

CLIENT ID: 56918 (\overline{10}) (\delta)
CLIENT PROJ. ID: 10-1682-03
DATE SAMPLED: 03/09/92

DATE SAMPLED: 03/09/92 DATE RECEIVED: 03/09/92 REPORT DATE: 03/27/92 QUANTEQ LAB NO: 9203063-05E QUANTEQ JOB NO: 9203063 DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92

INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

An Ecologics Company

PAGE 10 OF 16

KLEINFELDER, INC.

CLIENT ID: 56930

MW-1

CLIENT PROJ. ID: 10-1682-03

DATE SAMPLED: 03/09/92 DATE RECEIVED: 03/09/92

REPORT DATE: 03/27/92

QUANTEQ LAB NO: 9203063-06E

QUANTEQ JOB NO: 9203063

DATE EXTRACTED: 03/13/92 DATE ANALYZED: 03/16/92

INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	0.7	0.5

An Ecologics Company

PAGE 11 OF 16

QUALITY CONTROL DATA

DATE EXTRACTED: 03/16/92 DATE ANALYZED: 03/20/92 CLIENT PROJ. ID: 10-1682-03 QUANTEQ JOB NO: 9203063 SAMPLE SPIKED: D.I. WATER

INSTRUMENT: IR

IR DETERMINATION FOR OIL & GREASE/HYDROCARBONS METHOD SPIKE RECOVERY SUMMARY (WATER MATRIX)

ANALYTE	MS Conc. (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
Oil	6.19	ND	6.04	5.89	96.4	2.5

CURRENT QC LIMITS (Revised 01/09/92)

Analyte Percent Recovery RPD
Oil (87-112) 5.4

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

PAGE 12 OF 16

QUALITY CONTROL DATA

DATE EXTRACTED: 03/18/92 DATE ANALYZED: 03/20/92 CLIENT PROJ. ID: 10-1682-03 QUANTEQ JOB NO: 9203063 SAMPLE SPIKED: D.I. WATER

INSTRUMENT: C

METHOD SPIKE RECOVERY SUMMARY
TPH EXTRACTABLE WATERS
METHOD 3520 GCFID
(WATER MATRIX; EXTRACTION METHOD)

ANALYTE	Spike Conc. (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
Diesel	2.42	ND	1.32	1.45	57.2 ~	9.4

CURRENT QC LIMITS (Revised 08/15/91)

Analyte Percent Recovery RPD

Diesel (49.3-101.4) 29.0

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

PAGE 13 OF 16

QUALITY CONTROL DATA

INSTRUMENT: G

QUANTEQ JOB NO: 9203063

CLIENT PROJ. ID: 10-1682-03

SURROGATE STANDARD RECOVERY SUMMARY

METHOD 8010/8020 (WATER MATRIX)

SAMP	LE IDENTIFICATION	ON	SURF	SURROGATE RECOVERY (PERCENT)								
Date Analyzed	Client Id.	Client Id. Lab No.		1-Bromo-2-chloro- propane	1-Chloro-2-fluoro- benzene							
03/17/92	56920	01G	103.1	103.8	102.8 🗸							
03/17/92	62812	07A	100.5 ✓	100.0	97.1 ~							

CURRENT QC LIMITS (Revised 01/06/92)

ANALYTE PERCENT RECOVERY Bromochloromethane (69.5-127.1) 1-Bromo-2-chloropropane (70.9-128.3) 1-Chloro-2-fluorobenzene (75.6-124.0)

PAGE 14 OF 16

QUALITY CONTROL DATA

DATE ANALYZED: 03/17/92

INSTRUMENT: G

CLIENT PROJ. ID: 10-1682-03

QUANTEQ JOB NO: 9203063

SAMPLE SPIKED:

D.I. WATER

METHOD SPIKE RECOVERY SUMMARY

METHOD 8010/8020 (WATER MATRIX)

ANALYTE	Spike Conc. (ug/L)	Sample Result (ug/L)	MS Result (ug/L)	MSD Result (ug/L)	Average Percent Recovery	RPD
1,1-Dichloroethene	50.0	ND	33.3	33.5	66.8	0.6
Trichloroethene	50.0	ND	41.8	40.9	82.7	2.2
Benzene	50.0	ND	46.8	46.0	92.8	1.7
Toluene	50.0	ND	47.4	46.4	93.8 🗸	2.1
Chlorobenzene	50.0	ND	41.4	40.9	82.3	1.2

CURRENT QC LIMITS (Revised 01/06/92)

<u>Analyte</u>	Percent Recovery	RPD
1,1-Dichloroethene	(58-116)	8.22
Trichloroethene	(76-130)	5.0
Benzene	(84-114)	5.0
Toluene	(81-114)	5.0
Chlorobenzene	(64-116)	5.0

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

PAGE 15 OF 16

QUALITY CONTROL DATA

DATE EXTRACTED: 03/10/92

QUANTEQ JOB NO: 9203063

CLIENT PROJ. ID: 10-1682-03

INSTRUMENT: B

SURROGATE STANDARD RECOVERY SUMMARY

METHOD 8080 (WATER MATRIX)

SAMPLE Date	IDENTIFICATION		SURROGATE RECOVERY (PERCENT)
Analyzed	Client Id.	Lab No.	2,4,5,6-Tetrachloro-meta-xylene
03/12/92 03/12/92 03/12/92 03/12/92 03/12/92 03/12/92	56920 56900 56904 56910 56918 56930	01E 02E 03E 04E 05E 06E	83 / 89 / 82 / 92 / 93 / 36 /

CURRENT QC LIMITS

<u>ANALYTE</u>

PERCENT RECOVERY

2,4,5,6-Tetrachloro-meta-xylene (23-125)

PAGE 16 OF 16

QUALITY CONTROL DATA

DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92 CLIENT PROJ. ID: 10-1682-03 QUANTEQ JOB NO: 9203063 SAMPLE SPIKED: D.I. WATER

INSTRUMENT: B

MATRIX SPIKE RECOVERY SUMMARY

METHOD 8080 (PCBs) (WATER MATRIX)

COMPOUND	Spike Amount (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
A1260	4.30	ND	4.26	4.35	100.1 ~	2.1

CURRENT QC LIMITS

<u>Analyte</u>	Percent Recovery	<u>RPD</u>
A1260	(57-121)	20

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

	KTEIN	FELDER	Ř	-3.5-	3					13		7		`	***	9203063
/0-/682 L.P. NO. (P.O. NO.)	PROJECT N	AME Signature/Number)	F	NO OF CON	1	3/5			To you	3/1		7/			7	
DATE MM/DD/YY	SAMPLE I.D. TIME HH:MM:SS	SAMPLE	I.D.	TAINERS	Z.	Ž,		X.	37.	y Y	y /	//	$^{\prime}/$			REMARKS
3/16/97	10.34	5692	OOIA-H	8	X	X	X	X	X	X						
1/1	8.20		02A-F	6	1	1	(1	1						4	
	8:52		1 03A-F	6		1										
	9:58		04A-F	6	Ш	\perp	\Box	Ш	1							
	10:06	56918	OSA-F	6	1	卜		J								
11	11:15		06A-F	6	X	×	X	X	X							
3/10/42	1259	625/2	FUL ISTAR	-2				- 1								Does not weed to be run
		62812	TUL Blok 0	ZABZ						X						Beause No Sango came is fil
																volitto analyses.
							1				\perp					
																2 de la constante de la consta
																:
					Ш						_					
*					Ш											
	•				Ш											
											\perp					
			94		Ш											
			_													
Well	by: (Signature) Miller Dy: (Signature)	Date/Time 3/3/42 Date/Time	Received by: (Signature			AM.		64 1	y	Jz,	#		-			Send Results To KLEINFELDER 2121 N. CALIFORNIA BLVD. SUITE 570 WALNUT CREEK, CA 94596 (415) 938-5610
Relinquished	d by: (Signature)	Date/Time 2/1/42 1300 White Sampler	Received for Laborato (Signature)	y by:	Cana	ıv . Rı	eluin C	Copy T	o Shir	nnei						Pink Lab Cops 510 17/6

An Ecologics Company

FORMERLY MED-TOX

Certificate of Analysis

PAGE 1 OF 12

DOHS CERTIFICATION NO. E772

AIHA ACCREDITATION NO. 332

KLEINFELDER, INC. 2121 N. CALIFORNIA BLVD. SUITE 570 WALNUT CREEK, CA 94596

ATTN: GUY JETT

CLIENT PROJ. ID: 10-1682-03 C.O.C. NO: 1747

REPORT DATE: 03/25/92

DATE SAMPLED: 03/04/92

DATE RECEIVED: 03/04/92

QUANTEQ JOB NO: 9203029

ANALYSIS OF: WATER SAMPLES

See attached for results

Andrew Bradeen, Manager Organic Laboratory

Results FAXed 03/16/92

An Ecologics Company

PAGE 2 OF 12

KLEINFELDER, INC.

DATE SAMPLED: 03/04/92 DATE RECEIVED: 03/04/92 CLIENT PROJ. ID: 10-1682-03

REPORT DATE: 03/25/92

QUANTEQ JOB NO: 9203029

	Client Sample Id.	Quanteq Lab Id.	Extractable Hydrocarbons as Diesel (mg/L)	Extractable Hydrocarbons as Oil (mg/L)	Oil & Grease (mg/L)	Hydrocarbons (mg/L)
MW.5	56860 56860	01A 01C	ND	ND	 ND	 ND
MW-4	56866 56866	02A 02C	ND 	ND	3	1
nw-7	56870 56870	03A 03C	ND 	ND 	ND	ND
1w-15	56880 56880	04A 04C	0.3	ND 	0.5	ND
nw 16	56884 56884	05A 05C	1.4	ND 	1	ND
1W-16(d)	56890 56890	06A 06C	1.5	ND 	2	ND
	Detection Li	mit	0.05	0.1	0.5	0.5
	Method:		3510 GCFID	3510 GCFID	5520C	5520F
	Instrument:		C	С	IR	IR
	Date Extractor Date Analyze		03/10,12/92 03/11-14/92	03/10,12/92 03/11-14/92	03/13/92 03/13/92	

An Ecologics Company

PAGE 3 OF 12

KLEINFELDER, INC.

CLIENT ID: 56860 MW-5 CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/04/92 DATE RECEIVED: 03/04/92 REPORT DATE: 03/25/92

QUANTEQ LAB NO: 9203029-01E QUANTEQ JOB NO: 9203029 DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92 INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

	-			
AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

PAGE 4 OF 12

KLEINFELDER, INC.

CLIENT ID: 56866 MW-4 CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/04/92 DATE RECEIVED: 03/04/92 REPORT DATE: 03/25/92 QUANTEQ LAB NO: 9203029-02E QUANTEQ JOB NO: 9203029 DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92 INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

(WATER MATRIX)

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

PAGE 5 OF 12

KLEINFELDER, INC.

CLIENT ID: 56870 MW 7 CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/04/92 DATE RECEIVED: 03/04/92 REPORT DATE: 03/25/92 QUANTEQ LAB NO: 9203029-03E QUANTEQ JOB NO: 9203029 DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92 INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

PAGE 6 OF 12

KLEINFELDER, INC.

MW-15 CLIENT ID: 56880 NW-19 CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/04/92 DATE RECEIVED: 03/04/92 REPORT DATE: 03/25/92

QUANTEQ LAB NO: 9203029-04E QUANTEQ JOB NO: 9203029 DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92

INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

An Ecologics Company

PAGE 7 OF 12

KLEINFELDER, INC.

CLIENT ID: 56884 MW-16 CLIENT PROJ. ID: 10-1682-03 DATE SAMPLED: 03/04/92 DATE RECEIVED: 03/04/92 REPORT DATE: 03/25/92

QUANTEQ LAB NO: 9203029-05E QUANTEQ JOB NO: 9203029 DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92 INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

PAGE 8 OF 12

KLEINFELDER, INC.

CLIENT ID: 56890

MW-16 (d)

CLIENT PROJ. ID: 10-1682-03

DATE SAMPLED: 03/04/92 DATE RECEIVED: 03/04/92

REPORT DATE: 03/25/92

QUANTEQ LAB NO: 9203029-06E

QUANTEQ JOB NO: 9203029

DATE EXTRACTED: 03/10/92

DATE ANALYZED: 03/12/92

INSTRUMENT: B

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS (WATER MATRIX)

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

PAGE 9 OF 11

QUALITY CONTROL DATA

DATE EXTRACTED: 03/13/92 DATE ANALYZED: 03/13/92 CLIENT PROJ. ID: 10-1682-03 QUANTEQ JOB NO: 9203029 SAMPLE SPIKED: D.I. WATER

INSTRUMENT: IR

IR DETERMINATION FOR OIL & GREASE/HYDROCARBONS METHOD SPIKE RECOVERY SUMMARY (WATER MATRIX)

ANALYTE	MS Conc. (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
Oil	6.30	ND	6.00	6.30	97.6	4.9

CURRENT QC LIMITS (Revised 01/09/92)

<u>Analyte</u> Percent Recovery RPD Oil (87-112)5.4

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

PAGE 10 OF 12

QUALITY CONTROL DATA

DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/11/92 CLIENT PROJ. ID: 10-1682-03 QUANTEQ JOB NO: 9203029 SAMPLE SPIKED: D.I. WATER

INSTRUMENT: C

METHOD SPIKE RECOVERY SUMMARY TPH EXTRACTABLE WATERS METHOD 3510 GCFID (WATER MATRIX; EXTRACTION METHOD)

ANALYTE	Spike Conc. (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
Diesel	2.52	ND	2.03	2.04	80.8	0.5

CURRENT QC LIMITS (Revised 08/15/91)

<u>Analyte</u>	Percent Recovery	RPD
Diesel	(49.3-101.4)	29.0

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

PAGE 11 OF 12

QUALITY CONTROL DATA

DATE EXTRACTED: 03/10/92

QUANTEQ JOB NO: 9203029

CLIENT PROJ. ID: 10-1682-03

INSTRUMENT: B

SURROGATE STANDARD RECOVERY SUMMARY

METHOD 8080 (WATER MATRIX)

SAMPLE IDENTIFICATION			SURROGATE RECOVERY (PERCENT)
Date Analyzed	Client Id.	Lab No.	2,4,5,6-Tetrachloro-meta-xylene
03/12/92	56860	01E	85 ×
03/12/92 03/12/92	56866 56870	02E 03E	27 × 53 ×
03/12/92 03/12/92	56880 56884	04E 05E	77 × 53 ×
03/12/92	56890	06E	51 🗸

CURRENT QC LIMITS

ANALYTE

PERCENT RECOVERY

2,4,5,6-Tetrachloro-meta-xylene

(23-125)

PAGE 12 OF 12

QUALITY CONTROL DATA

DATE EXTRACTED: 03/10/92 DATE ANALYZED: 03/12/92 CLIENT PROJ. ID: 10-1682-03 QUANTEQ JOB NO: 9203029 SAMPLE SPIKED: D.I. WATER

INSTRUMENT: B

MATRIX SPIKE RECOVERY SUMMARY

METHOD 8080 (PCBs) (WATER MATRIX)

COMPOUND	Spike Amount (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
A1260	4.30	ND	4.26	4.35	100.1 ~	2.1

CURRENT QC LIMITS

<u>Analyte</u>	Percent Recovery	<u>RPD</u>
A1260	(57-121)	20

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference