5 March 1991 File: 10-1682-03/38

Mr. Dennis Hunt District Manager Industrial Asphalt P.O. Box 636 Pleasanton, CA 94566

SUBJECT: Quarterly Report (November 1990 - January 1991), Industrial Asphalt, Pleasanton,

California

Dear Mr. Hunt:

Kleinfelder, Inc., is pleased to submit this quarterly report for the fourth quarter of 1990 (November 1990 through January 1991) for the Industrial Asphalt site in Pleasanton, California (Plate 1). Quarterly progress reports were requested by the Alameda County Department of Health Services in their letter to you dated 13 November 1989.

INTRODUCTION

Thirteen monitoring wells and one extraction well (MW-13) are present onsite. Data collected from these wells were used to evaluate the contaminant plume. The monitoring wells along with the extraction well are shown on Plate 2. All wells are being monitored for depth to water and product thickness on a quarterly basis in accordance with recommendations in the Remedial Investigation Report dated 28 December 1990. Collected ground water samples have been analyzed for the target compounds including total petroleum hydrocarbons (TPH) as diesel/waste oil and polychlorinated biphenyls (PCBs). Additionally, each well was sampled and analyzed once for benzene, toluene, xylenes and ethylbenzene (BTXE).

Water samples were collected from onsite wells MW-1, MW-2 MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-13, MW-14, MW-15 and MW-16 during this sampling round. In addition to the onsite monitoring wells, an offsite water supply well located on the Jameson property was sampled. Refer to Plate 2 for the location all wells and the offsite well.

WATER LEVEL MONITORING DATA

Ground water surface (GWS) elevation data were collected prior to sampling each onsite ground water monitoring wells. These measurements are provided in Table 1. Generally, the ground water surface elevation has risen since the previous sampling round which occurred on 22 October 1990. This is likely due to the surface water recharge via Arroyo Mocho Creek by the Alameda County Flood District during the period from October 1990 through February 1991.

Based on the information collected during this round of sampling, a ground water gradient map was constructed (Plate 3). This map indicates a general flow direction to the north, which is a slight change in flow direction from the previous sampling round, which indicated a more northeasterly flow. One observation of note, is the apparent difference in GWS elevation measured in monitoring wells MW-2 and MW-14. The GWS measurements from these two wells indicated that the GWS elevation at MW-2 is nearly two feet lower then the GWS elevation at MW-14. Since these two wells are within twenty feet of each other, and MW-14 is screened at a slightly lower elevation then MW-2, there appears to be a slight upward gradient between the water zones which are screened in each monitoring well. Similar vertical gradient differences were observed in monitoring wells MW-3 and MW-16 (nearly 2.5 feet). For this reason, the most recently installed monitoring wells (MW-14, MW-15, and MW-16) and the extraction well (MW-13), all of which have screen sections at roughly the same elevation, have been excluded in the ground water flow map presented on Plate 3.

A measurement from staff gauge located in the adjacent settlement pond collected during this sampling round indicates that the water surface in the pond has decrease in elevation approximately one foot since the last sampling round in October 1990.

GROUND WATER CHEMISTRY MONITORING RESULTS

During the previous sampling round, as reported in the Remedial Investigation report dated 28 December 1990 (1990 R.I. Report), sheen was observed in well MW-1, MW-2, MW-3, MW-8, and MW-13. Sheen was observed in the following wells during this sampling round: MW-1, MW-2, MW-3, MW-9, and MW-16. As previously noted in past reports, the increase in the number of monitoring wells which exhibit the presence of a sheen is probably due to the increase in the ground water surface elevation beneath the site between sampling rounds.

Analytical data are presented in Table 1. Complete analytical laboratory reports along with chain of custody records are provided in Appendix A.

Detectable concentrations of PCBs have been found in the ground water samples collected from monitoring wells MW-1, MW-2, MW-3 and MW-8. The highest concentration detected is in the sample collected from MW-1 at 9.6 micrograms per liter (ug/l). The remaining concentrations for the other three monitoring wells ranged between 1.2 ug/l (MW-8) to 7.2 ug/l (MW-3).

Analyses on the water samples collected from wells MW-1, MW-2, MW-3, MW-8, MW-10, MW-13, MW-14, MW-15, and MW-16 revealed the presence of dissolved hydrocarbons (TPH) as both diesel and waste oil in ground water at these sampling locations. TPH as "waste oil only" was detected in the samples collected from MW-4 and MW-9. However, the sample collected from MW-9 was quantified as motor oil which included hydrocarbons in the diesel range. The highest concentrations of TPH as both diesel and waste oil was detected in monitoring wells MW-1, MW-2, and MW-3 which is consistent with previous sampling rounds. The concentrations range between 63 milligrams per liter (mg/l) to 440 mg/l, with MW-3 exhibiting the highest concentrations. One additional note, analytical data indicated an increase in the concentrations of TPH as diesel and waste oil in the samples collected in MW-3 from 34 mg/l and 24 mg/l in the October 1990 sampling round to 440 mg/l and 320 mg/l, respectively. This is consistent with other sampling rounds in which the ground water surface elevation increased in elevation between sampling rounds. The ground water chemistry for the remaining wells appear to have remained relatively consistent between sampling rounds.

In addition to the above analyses, the ground water sample collected from monitoring well MW-1 was screened for the presence of benzene, toluene, xylene, and ethylbenzene (BTXE). None of these compounds were detected in concentrations above the laboratory reporting limits.

An offsite water supply well located east of the site (Jameson Well) was sampled (Plate 2). The well was purged by opening a tap and running the water for about 30 minutes in order to empty the surge tank. Approximately 300 gallons of water were purged prior to collecting a sample. The ground water samples were analyzed for the same constituents as the onsite monitoring well MW-1. None of the target compounds were detected in concentrations above their respective laboratory reporting limits.

In summary, based on the available data, the ground water surface elevation beneath the site is higher than the previous sampling round and ground water flow is to the north. The ground water chemistry has remained, for the most part, consistent between sampling rounds, except for monitoring well MW-3. The ground water samples collected from this monitoring well exhibited much higher concentrations of the target compounds. The ground water samples collected from the offsite water production well (Jameson well) did not exhibit concentrations of the target chemical above the laboratory reporting limits for each of the compounds requested.

> Feb.

RI ACTIVITIES

At the direction of Industrial Asphalt and under the observation of a Kleinfelder professional, an area adjacent to the north side of the 30,000 gallon asphalt tank was excavated on 2 January 1991. The area of excavation is indicated on Plate 4. The intent of the excavation was to remove additional affected soil not removed during the 14 July 1990 excavation activities (refer to 1990 R.I. Report). Two closure soil samples were collected and analyzed. One sample was collected on the west end of the excavation (sample I.D. 53248) at a depth of approximately 19 feet. The second soil sample was collected on the east end of the excavation (sample I.D. 53247) at a depth of approximately 20 feet, which is the maximum depth of the excavation. Each of the samples were analyzed for the presences of TPH as diesel and waste oil as well as PCBs using the analytical methods reported on the laboratory analysis reports (Appendix A). None of these compounds were detected in concentrations above their respective laboratory reporting limits. The laboratory reports along with the chain of custody record are included in Appendix A.

LIMITATIONS

This report was prepared in general accordance with the accepted standard of practice which exists in Northern California at the time the investigation was performed. It should be recognized that definition and evaluation of environmental conditions is a difficult and inexact art. Judgements leading to conclusions and recommendations are generally made with an incomplete knowledge of the conditions present. More extensive studies, including additional environmental investigations, can tend to reduce the inherent uncertainties associated with such studies. If the Client wishes to reduce the uncertainty beyond the level associated with this study, Kleinfelder should be notified for additional consultation.

Our firm has prepared this report for the Client's exclusive use for this particular project and in accordance with generally accepted engineering practices within the area at the time of our investigation. No other representations, expressed or implied, and no warranty or guarantee is included or intended.

If you have any questions regarding this report or require additional information, please contact the undersigned.

Sincerely,

KLEINFELDER, INC.

Jeffrey Friedman Staff Geologist

Krzysztof (Krys) S. Jesionek,

Project Manager

Lloyd C. Venburg, R.G.

Senior Project Manager

JF:KSJ:LCV:dwl

cc: Dwight Beavers - Industrial Asphalt

Gil Wistar - Alameda County Department of Environmental Services
Rico Duazo - California Regional Water Quality Control Board
Jerry Killingstad - Alameda County Flood Control and Water
Conservation District

Table 1 MONITORING PARAMETERS (JANUARY 1991) INDUSTRIAL ASPHALT

Monitoring Well	Total Depth (feet)	Depth to Water ⁽¹⁾ (feet)	Ground Wate Elevation ⁽²⁾ (feet)	er Product Thickness (feet)	TPH as Diesel ⁽³⁾ (mg/l)	TPH as Waste Oil ⁽⁴⁾ (mg/l)	PCBs μg/l ⁽⁵⁾	BTXE µg/l ⁽¹⁰⁾
MW-1	88	71.76	307.65	SHEEN	110	63	9.6	ND ⁽¹¹⁾
MW-2	90	73.41	306.39	SHEEN	200	140	5.8	NT
MW-3	90	71.55	306.99	SHEEN	440	320	7.3	NT
MW-4	95	67.03	309.23	NE	ND	0.5	ND	NT
MW-5	110	70.94	311.61	NE	ND	ND	ND	NT
MW-6	109	67.75	311.40	NE	ND	ND	ND	NT
MW-7	109	68.08	310.86	NE	ND	ND	ND	NT
MW-8	109	71.22	307.34	SHEEN	12	12	1.2	NT
MW-9	108	70.45	306.95	SHEEN	ND	2.4 (12)	ND	NT
MW-10	111	69.55	308.49	NE	0.1	0.3	ND	NT
MW-11 ⁽⁸⁾	NA	NA	NA	NA	NA	NA	NA	NA
MW-13 ⁽⁹⁾	116	72.00	308.21	NE	0.5	0.2	ND	NT
MW-14	114.5	71.75	308.34	NE	0.3	0.5	ND	NT
MW-15	117	69.65	308.47	NE	0.5	0.6	ND	NT
MW-16	110	70.20	309.45	SHEEN	0.3	0.4	ND	NT
14A25	UNK	UNK	UNK	UNK	ND	ND	ND	ND
SG(13)	NA	1(6)	299(7)	NA	NA	NA	NA	NA

NOTES FOR TABLE:

- (1) Below top of casing
- (2) Feet above mean sea level (USGS Datum)
- (3) Laboratory detection limits 0.05 mg/l
- (4) Laboratory detection limit 0.1 mg/l
- (5) Laboratory detection limit $0.5 \mu g/l$
- (6) Reading on the staff gage
- (7) Surface water elevation in the pit
- (8) Well abandoned on 8 August 1990
- (9) Extraction well
- (10) Laboratory detection limit $0.3 \mu g/l$
- (11) Laboratory detection limit 6 μ g/l (diluted sample)
- (12) Quantitated as motor oil but includes hydrocarbons in the diesel range
- (13) Jameson Well

RTYF	Renzene '	Toluene	Xvlenes	Ethylbenzene
DIAL	DEHZEHE.	i Olucic.	ATTULUS.	LINTOCIACIO

- TPH Total Petroleum Hydrocarbons
- PCBs Polychlorinated Biphenyls (Aroclor 1260)
- NE Not Encountered
- ND Not Detected at or above laboratory detection limits
- NA Not Applicable
- SG Staff Gage
- NC Not Accessible
- NT Not Tested
- UNK Unknown

ENVIRONMENTAL & OCCUPATIONAL HEALTH SERVICES

3440 Vincent Road Pleasant Hill, CA 94523 • (415) 930-9090 • FAX# (415) 930-0256

LABORATORY ANALYSIS REPORT

KLEINFELDER, INC.

2121 N. CALIFORNIA BLVD.

SUITE 570

WALNUT CREEK, CA 94596

ATTN: KRYS JESIONEK

CLIENT PROJ. NO: 10-1682-06

REPORT DATE: 02/15/91

DATE SAMPLED: 02/02/91

DATE RECEIVED: 02/02/91

MED-TOX JOB NO: 9102012

ANALYSIS OF: SOIL SAMPLES

Sample Identification		Extractable Hydrocarbons as Diesel	Extractable Hydrocarbons as Oil
Client Id.	Lab No.	(mg/kg)	(mg/kg)
53247	01A	ND	ND
53248	02A	ND	ND
Detection Lim	nit	10	20

Method: 3550 GCFID

Instrument: C

Date Extracted: 02/05/91

Date Analyzed: 02/06/91

ND = Not Detected

Andrew Bradeen, Manager Organic Laboratory

Results FAXed to Krys Jesionek 02/12/91

CLIENT ID: 53247

CLIENT JOB NO: 10-1682-06 DATE SAMPLED: 02/02/91 DATE RECEIVED: 02/02/91

REPORT DATE: 02/15/91

MED-TOX LAB NO: 9102012-01A

MED-TOX JOB NO: 9102012 DATE EXTRACTED: 02/07/91 DATE ANALYZED: 02/10/91

INSTRUMENT: B

EPA METHOD 8080

POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (mg/kg)	DETECTION LIMIT (mg/kg)
Aroclor	1016	12674-11-2	ND	0.05
Aroclor	1221	11104-28-2	ND	0.05
Aroclor	1232	11141-16-5	ND	0.05
Aroclor	1242	53469-21-9	ND	0.05
Aroclor	1248	12672-29-6	ND	0.05
Aroclor	1254	11097-69-1	ND	0.05
Aroclor	1260	11096-82-5	ND	0.05

ND = Not Detected

CLIENT ID: 53248

CLIENT JOB NO: 10-1682-06 DATE SAMPLED: 02/02/91 DATE RECEIVED: 02/02/91 REPORT DATE: 02/15/91

MED-TOX LAB NO: 9102012-02A MED-TOX JOB NO: 9102012

DATE EXTRACTED: 02/07/91

DATE ANALYZED: 02/10/91

INSTRUMENT: B

EPA METHOD 8080

POLYCHLORINATED BIPHENYLS

	CAS #	CONCENTRATION (mg/kg)	DETECTION LIMIT (mg/kg)
1016	12674-11-2	ND	0.05
1221	11104-28-2	ND	0.05
1232	11141-16-5	ND	0.05
1242	53469-21-9	ND	0.05
1248	12672-29-6	ND	0.05
1254	11097-69-1	ND	0.05
1260	11096-82-5	ND	0.05
	1221 1232 1242 1248 1254	1016 12674-11-2 1221 11104-28-2 1232 11141-16-5 1242 53469-21-9 1248 12672-29-6 1254 11097-69-1	CAS # (mg/kg) 1016 12674-11-2 ND 1221 11104-28-2 ND 1232 11141-16-5 ND 1242 53469-21-9 ND 1248 12672-29-6 ND 1254 11097-69-1 ND

ND = Not Detected

QUALITY CONTROL DATA KLEINFELDER, INC.

CLIENT PROJ. NO: 10-1682-06

MED-TOX JOB NO: 9102012

PAGE 4 OF 6

DATE EXTRACTED: 02/05/91 DATE ANALYZED: 02/06/91

INSTRUMENT: C

MED-TOX JOB NO: 9102012

CLIENT REF: 10-1682-06

MATRIX SPIKE RECOVERY SUMMARY TPH EXTRACTABLE SOILS METHOD 3550 GCFID (SOIL MATRIX; EXTRACTION METHOD)

ANALYTE	Spike Conc. (mg/kg)	Sample Result (mg/kg)	MS Result (mg/kg)	MSD Result (mg/kg)	Average Percent Recovery	RPD
Diesel	84.8	ND	83.1	70.0	90.3	17.1

CURRENT QC LIMITS (Revised 11/12/90)

Analyte Percent Recovery RPD
Diesel (49-124) 22

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

ND = Not Detected

PAGE 5 OF 6

DATE EXTRACTED: 02/07/91

MED-TOX JOB NO: 9102012

INSTRUMENT: B

CLIENT REF: 10-1682-06

SURROGATE STANDARD RECOVERY SUMMARY

METHOD 8080 (SOIL MATRIX)

	IDENTIFICATION		SURROGATE RECOVERY (PERCENT)
Date Analyzed	Client Id.	Lab No.	2,4,5,6-Tetrachloro-meta-xylene
02/10/91	53247	0 1A	76
02/10/91	53248	02A	76

CURRENT QC LIMITS

ANALYTE

PERCENT RECOVERY

2,4,5,6-Tetrachloro-meta-xylene

(59-134)

PAGE 6 OF 6

DATE EXTRACTED: 02/07/91

MED-TOX JOB NO: 9102012

DATE ANALYZED: 02/10/91

INSTRUMENT: B

MATRIX SPIKE RECOVERY SUMMARY

METHOD 8080 (PCBs) (SOIL MATRIX)

COMPOUND	Spike Amount (mg/kg)	Sample Result (mg/kg)	MS Result (mg/kg)	MSD Result (mg/kg)	Average Percent Recovery	RPD	
A1260	183	, ND	161	163	88.5	1.2	

CURRENT QC LIMITS

Analyte	Percent Recovery	RPD
A1260	(64-105)	33

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

ND = Not Detected

	Information:			Invoice To:	K.	-4,	S -	· <i>F</i>	1	1	1	ED	-1	0	X					Page	of
	ent: Keinfeldu ess: LC.	er, Ins	3.								•	4550	ı	REQU Chai	JEST				SIS/		
Con Alt. Con	tact: Lyys Pesign	reli	_							Lab .			er:	-			PAC (0.00) L-0	q	10	2012	
			Sond In	voice To:						Date	Sam	ples :		ped:	-						
Address	Report To:	1-5	4.	VOICE TO.					1	Lab (AY R	lenui	red:						
2	Kleifelder,	140.	- " —							Date					_	1)	ur	r.,,	1 1	AT	
			- -							Clien					-				-		
· Attn:	KRYS DESION	SEK								Clien	t Cor	100 CT	rax I	-	ANA	LYSI	S			y ,	
Send Rep	port To: 1 or 2 (Circle one)	8								f	1	\$1	7	7	7	7	7				
Client Pro	oject/P.O. #: 10-168	2-06									15									//	¥
mple 7	ream Member ('s)								1	/ /		L.,	/ /	/ /	/ ,	/ ,	Ι,	/	/	/ /	
Lab Number	Client Sample Identification		Air Volume	Date/ Time	Sample Type	Pres.	of	of	/	\ \ \ <u>.</u>	3.4	9								Comme	nts/Inst.,
1 Control				Collected	•		Cont	L Cont.	V	19	\(\frac{1}{4}\)	1		\angle	\angle	$oldsymbol{oldsymbol{\angle}}$	\angle	\angle	_	/ Hazaro	-
/A	53247			2/2891			1	Tube	_	J	1						_	-	_	Hormal	TAT
aA	53248			2 FeB 91	Soil		1	the	-	-	V			_	-	_	-	\vdash	\vdash		
						<u> </u>			-	+-	⊢	-		-	_	-	-	\vdash	\vdash		
						-	-	 	\vdash	+-	\vdash	-		-	-		_	十一	+		
							-	+	-	+	\vdash	-	 				\vdash	1	\vdash		
				 		\vdash	-	1	\vdash	\dagger	1	 									
						1			\top												
																_	_	_	-		
									_		_	_	_	_	_	_	-	-	-	ļ	
							<u></u>		_	-	-	-	_	-	-	\vdash	-	+	\vdash		
	Λ					-	_		+	+-	╀	├-		-	┝	-	\vdash	+	╁		
					-	-	-		+	+-	+	+-	-	+-	-	\vdash	\vdash	\dagger	T		
		/		0.175		AAE 14	1	Received b				_		_	_					DATE	TIME
Relinqui (Signati	shed by:	Culo	5	DATE 2 F	691"	ME/4	100	Signature))												711.15
	ished by:			DATE		ME	F	Received b Signature												DATE	TIME
	ished by:		2	DATE	TI	ME	T F	Received a Signature	it La	b by:	H		Va	n l	1	lu	L			2/2/91	TIME 14/0
	of Shipment						Ti	ab Comm	nents										ciac	5) Charc	nal tube
	* Sample type (Specify): 1)	25 mm 0.4	15 Um MCEF	2) 25 mm 0.8 6) Silica ge	Um MCE	F 3) :	25 mr	m 0.4 11m ter (8) So	פ עוו) Bulk	10)	UUH	rvc 1 Br	INTO	dian	I·		hoie	Size	J) Oliaio	An sudd

PAGE 1 OF 8

ENVIRONMENTAL & OCCUPATIONAL HEALTH SERVICES

3440 Vincent Road Pleasant Hill, CA 94523 • (415) 930-9090 • FAX# (415) 930-0256

LABORATORY ANALYSIS REPORT

KLEINFELDER, INC.

2121 N. CALIFORNIA BLVD.

SUITE 570

WALNUT CREEK, CA 94596

ATTN: KRYS JESIONEK

CLIENT PROJ. NO: 10-1682-03

C.O.C. NO: 1139

REPORT DATE: 02/15/91

DATE SAMPLED: 01/29-30/91

DATE RECEIVED: 01/30/91

MED-TOX JOB NO: 9101243

ANALYSIS OF: WATER SAMPLES

Sample Identifi		Extractable Hydrocarbons as Diesel	Extractable Hydrocarbons as Oil
Client Id.	Lab No.	(mg/L)	(mg/L)
53118 MAS	01A	ND	ND
53122 mw-4	02A	ND	0.5
53128 mw- 6	03A	ND	ND
53130 mm-7	04A	ND	ND
Detection Limit	t	0.05	0.1

Method: 3520 GCFID

Instrument: C

Date Extracted: 01/31/91

Date Analyzed: 02/04/91

ND = Not Detected

Andrew Bradeen, Manager Organic Laboratory

Results FAXed to Krys Jesionek 02/13/91

CLIENT ID: 53118 MW-5 CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 01/29/91 DATE RECEIVED: 01/30/91

REPORT DATE: 02/15/91

MED-TOX LAB NO: 9101243-01C MED-TOX JOB NO: 9101243

DATE EXTRACTED: 02/04/91
DATE ANALYZED: 02/05/91

INSTRUMENT: A

POLYCHLORINATED BIPHENYLS

PARTICIPATION OF THE PROPERTY OF THE PARTY O				Company of the Compan
AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

CLIENT ID: 53122 May 4 CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 01/30/91 DATE RECEIVED: 01/30/91 REPORT DATE: 02/15/91 MED-TOX LAB NO: 9101243-02C MED-TOX JOB NO: 9101243 DATE EXTRACTED: 02/04, 07/91 DATE ANALYZED: 02/05-08/91

INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

Analytical Method: EPA 8080, SW-846 3rd Edition, 1986

Duplicate sample extractions showed surrogate recoveries outside our Quality Control limits due to sample matrix effects; therefore, all results are 'estimated concentrations'.

CLIENT ID: 53128 M0-6 CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 01/30/91 DATE RECEIVED: 01/30/91 REPORT DATE: 02/15/91 MED-TOX LAB NO: 9101243-03C MED-TOX JOB NO: 9101243 DATE EXTRACTED: 02/04/91 DATE ANALYZED: 02/05/91

INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

CLIENT ID: 53130 Mac-7 CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 01/30/91 DATE RECEIVED: 01/30/91 REPORT DATE: 02/15/91 MED-TOX LAB NO: 9101243-04C MED-TOX JOB NO: 9101243 DATE EXTRACTED: 02/04/91 DATE ANALYZED: 02/05/91 INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
	1016	12674 11 2	ND	0.5
Aroclor	1016	12674-11-2		0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	10 To
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

QUALITY CONTROL DATA KLEINFELDER, INC.

CLIENT PROJ. NO: 10-1682-03

MED-TOX JOB NO: 9101243

PAGE 6 OF 8

DATE EXTRACTED: 01/31/91 DATE ANALYZED: 02/04/91

INSTRUMENT: C

MED-TOX JOB NO: 9101243

CLIENT REF: 10-1682-03

MATRIX SPIKE RECOVERY SUMMARY TPH EXTRACTABLE WATER METHOD 3510 GCFID (WATER MATRIX; EXTRACTION METHOD)

ANALYTE	Spike Conc. (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
Diesel	0.509	ND	0.414	0.353	75.3	15.9

CURRENT QC LIMITS (Revised 11/12/90)

RPD Analyte Percent Recovery (37-104)32 Diesel

MS = Matrix Spike
MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

ND = Not Detected

PAGE 7 OF 8

DATE EXTRACTED: 02/04-07/91

MED-TOX JOB NO: 9101243

INSTRUMENT: B

CLIENT REF: 10-1682-03

SURROGATE STANDARD RECOVERY SUMMARY

METHOD 8080 (WATER MATRIX)

SAMPLE IDENTIFICATION Date			SURROGATE RECOVERY (PERCENT	
Analyzed	Client Id.	Lab No.	2,4,5,6-Tetrachloro-meta-xylene	
02/05/91	53118	010	77	
02/05/91	53122	0 2C	20 *	
02/05/91 02/05/91	53128 53130	03C 04C	73 67	
02/03/91	53 130 53 122	02D	23 *	

CURRENT QC LIMITS

ANALYTE

PERCENT RECOVERY

2,4,5,6-Tetrachloro-meta-xylene

(46-134)

* Surrogate outside QC limits

PAGE 8 OF 8

DATE EXTRACTED: 02/04/91

MED-TOX JOB NO: 9101243

DATE ANALYZED: 02/05/91

INSTRUMENT: B

MATRIX SPIKE RECOVERY SUMMARY

METHOD 8080 (PCBs) (WATER MATRIX)

COMPOUND	Spike Amount (mg/kg)	Sample Result (mg/kg)	MS Result (mg/kg)	MSD Result (mg/kg)	Average Percent Recovery	RPD
A1260	4.65	ND	4.59	4.29	95.5	6.8

CURRENT QC LIMITS

Analyte Percent Recovery RPD
A1260 (57-127) 24

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

ND = Not Detected

THE FEEDER 10-1682-03 Industrial Asphalt NO. (P.O. NO.) CON-REMARKS SAMPLE I.D. TAINERS SAMPLE I.D. DATE TIME HH:MM:SS MM/DD/YY MW-5 53118 OIA,B,C,P MW-4 53122 O2A,B,C,D MW-6 53128 O3A,B,C,P 9:01 14,30 MU.7 53130 OYA.B.C.D Attn. Krys Jesionek Send Results To Relinquished by: (Signature) Received by: (Signature) Date/Time KLEINFELDER 2121 N. CALIFORNIA BLVD. SUITE 570 Date/Time Relinquis od by: (Signature) Received by: (Signature) WALNUT CREEK, CA 94596 (415) 938-5610 Received for Laboratory by: Date/Time Relinquished by: (Signature) D. 1411 1 de Canary Return Copy To Shipper Pint Lab Copy

M-60

1139

INVIRONMENTAL & OCCUPATIONAL HEALTH SERVICES

3440 Vincent Road Pleasant Hill, CA 94523 • (415) 930-9090 • FAX# (415) 930-0256

LABORATORY ANALYSIS REPORT

KLEINFELDER, INC.

2121 N. CALIFORNIA BLVD.

SUITE 570

WALNUT CREEK, CA 94596

ATTN: KRYS JESIONEK

CLIENT PROJ. NO: 10-1682-03

C.O.C. NO: 1145

REPORT DATE: 02/19/91

DATE SAMPLED: 01/31/91

DATE RECEIVED: 01/31/91

MED-TOX JOB NO: 9101257

ANALYSIS OF: WATER SAMPLES

Sample Identifi	cation	Extractable Hydrocarbons as Diesel	Extractable Hydrocarbons as Oil
Client Id.	Lab No.	(mg/L)	(mg/L)
53134 * Mw-10	01A	0.1	0.3
53138 * ma- 15	02A	0.5	0.6
53144 * Mm '0	03A	0.3	0.4
53148 * MW-14	04A	0.3	0.5
53150 * mw-13	05A	0.5	0.2
Detection Limit		0.05	0.1

Method: 3510 GCFID

Instrument: C

Dates Extracted: 02/04, 14/91

Dates Analyzed: 02/06-14/91

* Sample contained what appears to be weathered diesel and higher molecular weight hydrocarbons.

Andrew Bradeen, Manager Organic Laboratory

Results FAXed to Krys Jesionek 02/15/91

CLIENT ID: 53134 Mx (3)
CLIENT JOB NO: 10-1682-03
DATE SAMPLED: 01/31/91
DATE RECEIVED: 01/31/91

REPORT DATE: 02/19/91

MED-TOX LAB NO: 9101257-01C

MED-TOX JOB NO: 9101257 DATE EXTRACTED: 02/04/91 DATE ANALYZED: 02/05/91

INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

CLIENT ID: 53138 MARCH CLIENT JOB NO: 10-1682-03
DATE SAMPLED: 01/31/91
DATE RECEIVED: 01/31/91
REPORT DATE: 02/19/91

MED-TOX LAB NO: 9101257-02C MED-TOX JOB NO: 9101257 DATE EXTRACTED: 02/04/91 DATE ANALYZED: 02/05/91 INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

CLIENT ID: 53144 Mario CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 01/31/91 DATE RECEIVED: 01/31/91 REPORT DATE: 02/19/91

MED-TOX LAB NO: 9101257-03D MED-TOX JOB NO: 9101257 DATE EXTRACTED: 02/04, 07/91 DATE ANALYZED: 02/04-08/91

INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

PAGE 5 OF 9

KLEINFELDER, INC.

CLIENT ID: 53148 M 2016/ CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 01/31/91 DATE RECEIVED: 01/31/91 REPORT DATE: 02/19/91 MED-TOX LAB NO: 9101257-04C MED-TOX JOB NO: 9101257 DATE EXTRACTED: 02/04/91 DATE ANALYZED: 02/05/91

INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		0.00 #	CONCENTRATION	DETECTION LIMIT
		CAS #	(ug/L)	(ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	···-	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

CLIENT ID: 53150 700 13 CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 01/31/91 DATE RECEIVED: 01/31/91 REPORT DATE: 02/19/91 MED-TOX LAB NO: 9101257-05C MED-TOX JOB NO: 9101257 DATE EXTRACTED: 02/04/91 DATE ANALYZED: 02/05/91

INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

QUALITY CONTROL DATA KLEINFELDER, INC.

CLIENT PROJ. NO: 10-1682-03

MED-TOX JOB NO: 9101257

PAGE 7 OF 9

DATE EXTRACTED: 02/14/91 DATE ANALYZED: 02/14/91

INSTRUMENT: C

MED-TOX JOB NO: 9101257

CLIENT REF: 10-1682-03

MATRIX SPIKE RECOVERY SUMMARY TPH EXTRACTABLE WATER METHOD 3510 GCFID (WATER MATRIX; EXTRACTION METHOD)

ANALYTE	Spike Conc. (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
Diesel	0.510	ND	0.465	0.495	94.1	6.3

CURRENT QC LIMITS (Revised 11/12/90)

<u>Analyte</u>	Percent Recovery	RPD
Diesel	(37-104)	32

MS = Matrix Spike
MSD = Matrix Spike Duplicate
RPD = Relative Percent Difference

ND = Not Detected

PAGE 8 OF 9

DATE EXTRACTED: 02/04-07/91

MED-TOX JOB NO: 9101257

INSTRUMENT: A

CLIENT REF: 10-1682-03

SURROGATE STANDARD RECOVERY SUMMARY

METHOD 8080 (WATER MATRIX)

	IDENTIFICATION		SURROGATE RECOVERY (PERCENT)		
Date Analyzed	Client Id.	Lab No.	2,4,5,6-Tetrachloro-meta-xylene		
02/05/91	53134	010	63 52		
02/05/91 02/08/91 02/05/91	53138 53144 53148	02C 03D 04C	52 55 48		
02/05/91	53150	0 5C	65		

CURRENT QC LIMITS

<u>ANALYTE</u>

PERCENT RECOVERY

2,4,5,6-Tetrachloro-meta-xylene (46-134)

PAGE 9 OF 9

DATE EXTRACTED: 02/04/91

MED-TOX JOB NO: 9101257

DATE ANALYZED: 02/05/91

INSTRUMENT: A

MATRIX SPIKE RECOVERY SUMMARY

METHOD 8080 (PCBs) (WATER MATRIX)

COMPOUND	Spike Amount (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	RSD Result (mg/L)	Average Percent Recovery	RPD
A1260	4.65	ND	4.59	4.29	95.5	6.8

CURRENT QC LIMITS

Analyte Percent Recovery RPD
A1260 (57-127) 24

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

ENVIRONMENTAL & OCCUPATIONAL HEALTH SERVICES

3440 Vincent Road Pleasant Hill, CA 94523 • (415) 930-9090 • FAX# (415) 930-0256

LABORATORY ANALYSIS REPORT

KLEINFELDER, INC.

2121 N. CALIFORNIA BLVD.

SUITE 570

WALNUT CREEK, CA 94596

ATTN: KRYS JESIONEK

CLIENT PROJ. NO: 10-1682-03

C.O.C. NO: 1099

REPORT DATE: 02/19/91

DATE SAMPLED: 02/04/91

DATE RECEIVED: 02/04/91

MED-TOX JOB NO: 9102018

ANALYSIS OF: WATER SAMPLES

Sample Identifi Client Id.		Extractable Hydrocarbons as Diesel (mg/L)	Extractable Hydrocarbons as Oil (mg/L)
53156 MU-9	ALO	ND	2.4 *
53160 ma 8	02A	12	12
53164 mw-3	03A	440	320
53166 mm 2	04A	200	140
53172 Poup + 4+4	0 5A	ND	ND
Detection Limit		0.05	0.1

Method: 3510 GCFID

Instrument: C

Date Extracted: 02/06/91 Date Analyzed: 02/07/91

ND = Not Detected

* Quantitated as motor oil but includes hydrocarbons in the diesel range.

Andrew Bradeen, Manager Organic Laboratory

Results FAXed to Krys Jesionek 02/13/91

SEATTLE

CLIENT ID: 53156 mw-4 CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 02/04/91 DATE RECEIVED: 02/04/91 REPORT DATE: 02/19/91 MED-TOX LAB NO: 9102018-01C MED-TOX JOB NO: 9102018 DATE EXTRACTED: 02/06/91 DATE ANALYZED: 02/07-08/91 INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND .	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

CLIENT ID: 53160 mw-8 CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 02/04/91 DATE RECEIVED: 02/04/91 REPORT DATE: 02/19/91 MED-TOX LAB NO: 9102018-02C MED-TOX JOB NO: 9102018 DATE EXTRACTED: 02/06/91 DATE ANALYZED: 02/07-08/91 INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	1.2	0.5

ND = Not Detected

CLIENT ID: 53164 m w 3 CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 02/04/91 DATE RECEIVED: 02/04/91 REPORT DATE: 02/19/91 MED-TOX LAB NO: 9102018-03C MED-TOX JOB NO: 9102018 DATE EXTRACTED: 02/06/91 DATE ANALYZED: 02/07-08/91 INSTRUMENT: A

EPA METHOD 8080

POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	, ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	7.3	0.5

ND = Not Detected

CLIENT ID: 53166 mar CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 02/04/91 DATE RECEIVED: 02/04/91 REPORT DATE: 02/19/91

MED-TOX LAB NO: 9102018-04C MED-TOX JOB NO: 9102018 DATE EXTRACTED: 02/06/91 DATE ANALYZED: 02/07-08/91 INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	5.8	0.5

ND = Not Detected

CLIENT ID: 53172 CLIENT JOB NO: 10-1682-03
DATE SAMPLED: 02/04/91
DATE RECEIVED: 02/04/91
REPORT DATE: 02/19/91

MED-TOX LAB NO: 9102018-05C MED-TOX JOB NO: 9102018 DATE EXTRACTED: 02/06/91 DATE ANALYZED: 02/07-08/91

INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	· ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	ND	0.5

ND = Not Detected

CLIENT JOB NO: 10-1682-03 CLIENT ID: 53172

DATE SAMPLED: 02/04/91
DATE RECEIVED: 02/04/91
REPORT DATE: 02/19/91

MED-TOX LAB NO: 9102018-05E

MED-TOX JOB NO: 9102018

DATE ANALYZED: 02/06-07/91

INSTRUMENT: F

BTEX

METHOD: EPA 8020 (5030)

	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Benzene	 ND	0.3
Toluene	 ND	0.3
Ethylbenzene	 ND	0.3
Xylenes, Total	 ND -	1
	1	

QUALITY CONTROL DATA

KLEINFELDER, INC.

CLIENT PROJ. NO: 10-1682-03

MED-TOX JOB NO: 9102018

PAGE 8 OF 11

DATE EXTRACTED: 02/06/91 DATE ANALYZED: 02/07/91

INSTRUMENT: C

MED-TOX JOB NO: 9102018

CLIENT REF: 10-1682-03

MATRIX SPIKE RECOVERY SUMMARY TPH EXTRACTABLE WATER METHOD 3510 GCFID (WATER MATRIX; EXTRACTION METHOD)

ANALYTE	Spike Conc. (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
Diesel	0.509	ND	0.374	0.348	70.9	7.2

CURRENT QC LIMITS (Revised 11/12/90)

Analyte Percent Recovery <u>RPD</u> (37-104) Diesel 32

MS = Matrix Spike MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

PAGE 9 OF 11

DATE ANALYZED: 02/06/91

MED-TOX JOB NO: 9102018

ij.

INSTRUMENT: F

CLIENT REF: 10-1682-03

MATRIX SPIKE RECOVERY SUMMARY METHOD 8020/5030 GCFID (PURGE & TRAP)

MS MSD Average Spike Sample Result Percent Conc. Result Result RPD Recovery ANALYTE (ug/L) (ug/L) (ug/L) (ug/L) 17.9 109.8 6.0 19.0 16.8 ND Benzene 55.1 107.7 5.5 58.2 Toluene 52.6 ND Hydrocarbons 496 104.6 2.2 479 ND 506 as Gasoline

CURRENT QC LIMITS (Revised 11/12/90)

<u>Analyte</u>	Percent Recovery	RPD
Benzene	(82-118)	18
Toluene	(89-111)	15
Gasoline	(76-108)	17

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

PAGE 10 OF 11

DATE EXTRACTED: 02/06/91

MED-TOX JOB NO: 9102018

INSTRUMENT: A

CLIENT REF: 10-1682-03

SURROGATE STANDARD RECOVERY SUMMARY

METHOD 8080 (WATER MATRIX)

SAMPLE Date	IDENTIFICATION		SURROGATE RECOVERY (PERCENT)
Analyzed	Client Id.	Lab No.	2,4,5,6-Tetrachloro-meta-xylene
02/07/91	53156	010	55
02/07/91	53160	02C	63
02/07/91	5 3164 5 3166	03C 04C	4 9 6 2
02/07/91 02/07/91	53172	05C	78

CURRENT QC LIMITS

ANALYTE

PERCENT RECOVERY

2,4,5,6-Tetrachloro-meta-xylene

(46-134)

PAGE 11 OF 11

DATE EXTRACTED: 02/06/91

DATE ANALYZED: 02/07/91

MED-TOX JOB NO: 9102018

INSTRUMENT: A

METHOD 8080 (PCBs) (WATER MATRIX)

MATRIX SPIKE RECOVERY SUMMARY

COMPOUND	Spike Amount (mg/kg)	Sample Result (mg/kg)	MS Result (mg/kg)	MSD Result (mg/kg)	Average Percent Recovery	RPD
A1260	4.65	ND	4.14	3.81	85.5	8.3

CURRENT QC LIMITS

Analyte	Percent Recovery	RPD
A1260	(57-127)	24

MS = Matrix Spike MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

	TL t		77-	-15	.		- 11						9101257
PROJ. NO. L.P. NO. (P.O. NO.) DATE MM/DD/YY	SAMPLE I.D. TIME HH: MM:SS	SAMPLE I.D.	NO. OF CON- TAINERS	10 AM. 17.									REMARKS
1/31/9	8:35	MW-10 53134 OLABCI	9 4	X	X							4	AEB Fractions - HCL
134	9:41	MW. 1553138 024BC			1							\perp	cto Unpressived
		MW-1653144 03 ABC		\prod	\prod							\perp	028 Preserved was HCL
		MW-1453148 DYABER										_	AEB Fractions - HCL clo Unpressourd 028 Preserved as/ HCL upon arrival
	The same of the sa	MW-13 53 150 05 ABC											
1.	12.00			V	V								
H-W/-			V									\perp	
												丄	
												4	
									丄			_	
												\perp	
							Ш					\perp	
ı ——													
												\perp	
Wille	d by: (Signature) OPLU od by: (Signature)	Date/Time Received by: (Signature) 1/3//4/		Ren	7#~ <	i. k	() S	J	250		ek		Send Results To KLEINFELDER 2121 N. CALIFORNIA BLVD. SUITE 570 WALNUT CREEK, CA 94596 (415) 938-5610
Relinquish	ed by: (Signature)	Date/Time Received for Lat (Signature) 1/4/9/13:40 RO(91)	Buch	0 -	In	voi l	(E	Yh	دند	p	noj	r'	
M-60		White Sampler	1)	Cana	ry - Re	turn Copy	To Ship)er					Pink Lab Cods 119 1145

A Division of Gillis International

PAGE 1 OF 7

LABORATORY ANALYSIS REPORT

KLEINFELDER, INC. 2121 N. CALIFORNIA BLVD. SUITE 570

WALNUT CREEK, CA 94596 ATTN: KRYS JESIONEK

CLIENT PROJ. NO: 10-1682-03

C.O.C. NO: 0472

REPORT DATE: 02/22/91

DATE SAMPLED: 02/06/91

DATE RECEIVED: 02/06/91

MED-TOX JOB NO: 9102037

ANALYSIS OF: WATER SAMPLE

Sample Identification	ication Lab No.	Extractable Hydrocarbons as Diesel (mg/L)	Extractable Hydrocarbons as Oil (mg/L)
54168 mw-1	01A	110	63
Detection Limit	t	0.05	0.1

Instrument: C

Method: 3510 GCFID

Date Extracted: 02/06/91 Date Analyzed: 02/07/91

Muchael Fruch to AGS Andrew Bradeen, Manager Organic Laboratory

Results FAXed to Krys Jesionek 02/21/91

CLIENT JOB NO: 10-1682-03

CLIENT ID: 54168

DATE SAMPLED: 02/06/91 DATE RECEIVED: 02/06/91

REPORT DATE: 02/22/91

MED-TOX LAB NO: 9102037-01E

MED-TOX JOB NO: 9102037

DATE ANALYZED: 02/07-08/91

INSTRUMENT: F

BTEX

METHOD: EPA 8020 (5030)

	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Benzene	. ND	0.6
Toluene	. ND	0.6
Ethylbenzene	. ND	0.6
Xylenes, Total	. ND	2
	29	

ND = Not Detected

Sample was diluted 2 \times due to significant diesel content. Detection limits have been adjusted accordingly.

PAGE 3 OF 7

KLEINFELDER, INC.

CLIENT ID: 54168

CLIENT JOB NO: 10-1682-03 DATE SAMPLED: 02/06/91 DATE RECEIVED: 02/06/91 REPORT DATE: 02/22/91

MED-TOX LAB NO: 9102037-01C

MED-TOX JOB NO: 9102037 DATE EXTRACTED: 02/13,19/91 DATE ANALYZED: 02/15-19/91

INSTRUMENT: A

EPA METHOD 8080 POLYCHLORINATED BIPHENYLS

				White the same of
AROCLOR		CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Aroclor	1016	12674-11-2	ND	0.5
Aroclor	1221	11104-28-2	ND	0.5
Aroclor	1232	11141-16-5	ND	0.5
Aroclor	1242	53469-21-9	ND	0.5
Aroclor	1248	12672-29-6	ND	0.5
Aroclor	1254	11097-69-1	ND	0.5
Aroclor	1260	11096-82-5	9.6	0.5

ND = Not Detected

QUALITY CONTROL DATA KLEINFELDER, INC.

CLIENT PROJ. NO: 10-1682-03

MED-TOX JOB NO: 9102037

PAGE 4 OF 7

DATE EXTRACTED: 02/06/91 DATE ANALYZED: 02/07/91

INSTRUMENT: C

MED-TOX JOB NO: 9102037

CLIENT REF: 10-1682-03

MATRIX SPIKE RECOVERY SUMMARY TPH EXTRACTABLE WATER METHOD 3510 GCFID (WATER MATRIX; EXTRACTION METHOD)

ANALYTE	Spike Conc. (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
Diesel	0.509	ND	0.374	0.348	70.9	7.2

CURRENT QC LIMITS (Revised 11/12/90)

Analyte Percent Recovery RPD

Diesel (37-104) 32

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

PAGE 5 OF 7

DATE ANALYZED: 02/08/91

MED-TOX JOB NO: 9102037

INSTRUMENT: F

CLIENT REF: 10-1682-03

MATRIX SPIKE RECOVERY SUMMARY

METHOD 8020/5030 GCFID (PURGE & TRAP)

ANALYTE	Spike Conc. (ug/L)	Sample Result (ug/L)	MS Result (ug/L)	MSD Result (ug/L)	Average Percent Recovery	RPD
Benzene Toluene	17.5 57.5	ND ND	16.9 55.0	16.2 52.7	94.6 93.7	4.2
Hydrocarbons as Gasoline	498	ND	514	456	97.4	12.0

CURRENT QC LIMITS (Revised 11/12/90)

<u>Analyte</u>	Percent Recovery	RPD
Benzene	(82-118)	18
Toluene	(89-111)	15
Gasoline	(76-108)	17

MS = Matrix Spike
MSD = Matrix Spike Duplicate
RPD = Relative Percent Difference

PAGE 6 OF 7

DATE EXTRACTED: 02/19/91

MED-TOX JOB NO: 9102037

INSTRUMENT: A

CLIENT REF: 10-1682-03

SURROGATE STANDARD RECOVERY SUMMARY

METHOD 8080 (WATER MATRIX)

	IDENTIFICATION		SURROGATE RECOVERY (PERCENT)
Date Analyzed	Client Id.	Lab No.	2,4,5,6-Tetrachloro-meta-xylene
02/19/91	54168	0 1D	67

CURRENT QC LIMITS

ANALYTE

PERCENT RECOVERY

2,4,5,6-Tetrachloro-meta-xylene (46-134)

PAGE 7 OF 7

DATE EXTRACTED: 02/19/91

MED-TOX JOB NO: 9102037

DATE ANALYZED: 02/19/91

INSTRUMENT: A

MATRIX SPIKE RECOVERY SUMMARY

METHOD 8080 (PCBs) (WATER MATRIX)

COMPOUND	Spike Amount (mg/L)	Sample Result (mg/L)	MS Result (mg/L)	MSD Result (mg/L)	Average Percent Recovery	RPD
A1260	4.70	ND	4.64	4.58	98.1	1.3

CURRENT QC LIMITS

RPD Percent Recovery Analyte 24 (57-127)A1260

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

7	KLEIN	FELDER R-1 R-3	, s - A . S - 4											£°		910203	F
PROJ. NO	SAMPLE I.D.	STKAL ASD (Signature/Number)	B.T	NO. OF CON- TAINERS	A AMAILE											REMARKS	ي معمر
1.6.91	0/A, B	54/18 MI	U-1	Z	M			工							floater	g effluer bet	t
	C, D	1	4	2		工	-	_	Ц						may	be fot	
	$\epsilon_{,F}$	V		2	Ш		H	_	Ш	_	_	_			-		
					Ш	\dashv	_	_	Н	\bot		_	_	_			
					\sqcup		\dashv	_	Н	4		_	_				
					Н		\perp	_	\vdash	4		_	_				
					\sqcup	\dashv	4		\vdash	+	+		_	_			
					\sqcup	-	\dashv	+	$\vdash \vdash$	+	+	├-	-	_			
					\vdash	-	+		\vdash	+	+	\vdash	-	-			
				+	\vdash		+	_	\vdash	+	+	\vdash	-				
					H	-	\dashv	+	\vdash	+	+	\vdash	-				
					H	\dashv	+	-	\vdash	+	+	┼-	-				
					\vdash	-	+	+	\vdash	+	+-	┼-	-			<u></u>	
1-1-				-	\vdash	\dashv	+	+	\vdash	+	+	+-	-	\vdash			
10				-	H	\dashv	+	+	\vdash	+	+	╁	-				
					H		+	+	++	+	+	┼╌	\vdash				—C
-					H	\dashv	+	+	\vdash	+	_	╁	-				
	 				H	\dashv	+	+	+	+	+	\vdash	-				
-				-	H	\dashv	+	+	H	+	+	\vdash		H			
Relinguishe	d by: (Signature)	Date/Time	Received by: (Signatu	re)	Rem	arks			-			<u></u>		Ш	Send Results To		
Refinquish	CCv / CEv / Copy: (Signature)	2.6.1/ 1210 Date/Time 2/2/9, 1210	Received by: (Signature) Received for Laborat (Signature) Curvey	tory by:	1./		tan H 1	clai 1 t	cl ·	T.,	A T	510^	∪€ '	k	KLEINFELDER 2121 N. CALIFOF SUITE 570 WALNUT CREEK, (415) 938-5610		
M-60		White Sampler		,	Cana	ry Re	turn Co	py To Sh	ippei						Pink Lab Copy	Nº	047