RECEIVED

10:13 am, Apr 30, 2009

Alameda County Environmental Health

FIRST SEMIANNUAL 2009 GROUNDWATER MONITORING AND PRODUCT EXTRACTION REPORT

EMERYBAY CONDO PHASE I PARKING GARAGE 6400 CHRISTIE AVENUE EMERYVILLE, CALIFORNIA

Prepared for:

EMERYBAY COMMERCIAL ASSOCIATION EMERYVILLE, CA 94608

April 2009

FIRST SEMI-ANNUAL 2009 GROUNDWATER MONITORING AND PRODUCT EXTRACTION REPORT

EMERYBAY CONDO PHASE I PARKING GARAGE 6400 CHRISTIE AVENUE EMERYVILLE, CALIFORNIA

Prepared for:

EMERYBAY COMMERCIAL ASSOCIATION 6475 CHRISTIE AVENUE, SUITE 550 EMERYVILLE, CA 94608

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

April 30, 2009

Project No. 2007-65

GEOSCIENCE & ENGINEERING CONSULTING

April 30, 2009

Ms. Barbara Jakub Hazardous Materials Specialist Alameda County Department of Environmental Health Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: First Semiannual 2009 Groundwater Monitoring & Product Extraction Report

EmeryBay Phase I Condo Parking Garage 6400 Christie Avenue, Emeryville, California

Dear Ms. Jakub:

Enclosed is the Stellar Environmental Solutions, Inc. report summarizing the site activities conducted between January 2009 and March 2009 at the referenced site. This report is being submitted on behalf of the owner and Responsible Party, Emerybay Commercial Association. The subject site activities included a product extraction event and the first semiannual 2009 groundwater monitoring event. In the same timeframe, we also completed an indoor air survey and preferential pathway evaluation, and the report of those activities was submitted earlier this month.

While historical monitoring at the subject site had been sporadic, quarterly sampling conducted in 2008 firmly established hydrological and contaminant trends; therefore, in November 2008, the Alameda County Department of Environmental Health (ACEH) and the Responsible Party agreed that the sampling schedule would be reduced to semiannual events. This report summarizes the 11th sampling event conducted at the site since 1988. In accordance with regulatory requirements, an electronic copy of this report has been uploaded to ACEH and to the State Water Resources Control Board's GeoTracker system.

We declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report are true and correct to the best of our knowledge. If you have any questions regarding this report, please contact us at (510) 644-3123.

Sincerely,

Richard S. Makdisi, R.G., R.E.A.

Brudle S. Mildin

Principal

Teal Glass, R.E.A. Project Manager

Tool Dliss

cc: Ms. Sarah Irving, Emerybay Commercial Association

TABLE OF CONTENTS

Secti	Section			
1.0	INTRODUCTION	1		
	Project Background	1		
	Previous Investigations Objectives and Scope of Work Regulatory Oversight	6		
2.0	PHYSICAL SETTING	7		
	Topography and DrainageGeologyGroundwater Hydrology	7		
3.0	MARCH 2009 GROUNDWATER MONITORING AND SAMPLING ACTIVITIES	10		
	Sampling Methods and Activities Current Monitoring Event	10		
4.0	REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS, AND DISCUSSION OF FINDINGS	13		
	Regulatory Considerations			
5.0	FREE-PHASE HYDROCARBON PRODUCT REMEDIATION SYSTEM	20		
	LNAPL Remediation System Construction Historical Free Product Extraction March 2009 Product Removal Event Discussion	21		
6.0	SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS	25		
	Findings and Conclusions			

TABLE OF CONTENTS (continued)

Section	n	Page
7.0	REFE	RENCES AND BIBLIOGRAPHY
8.0	LIMIT	ATIONS
Appen	dices	
Append	dix A	Historical Groundwater Well Analytical Results
Append	dix B	Groundwater Monitoring Field Data Sheets
Append	dix C	Analytical Laboratory Report and Chain-of-Custody Record
Append	dix D	Historical Groundwater Elevation Data
Append	dix E	Historical Product Extraction Data Table
Append	dix F	Groundwater Disposal Documentation

TABLES AND FIGURES

Tables	Pa	age
Table 1	Groundwater Monitoring Well Construction and Groundwater Elevation Data 6400 Christie Avenue, Emeryville, California	. 11
Table 2	Groundwater Sample Analytical Results – March 19, 20, and 23, 2009 6400 Christie Avenue, Emeryville, California	. 14
Table 3	Passive Trench Product Extraction – March 17 and 18, 2009	. 21
Table 4	Active Product Extraction – March 2009	. 23
Figures	Pa	age
Figure 1	Site Location Map	2
Figure 2	Site Plan	3
Figure 3	Monitoring Well and Trench Locations	5
Figure 4	Groundwater Elevation Map – March 2009	9
Figure 5	Groundwater Monitoring Well Analytical Results – March 2009	. 15
Figure 6	Total Petroleum Hydrocarbon Plume as Gasoline – March 2009	. 16
Figure 7	Total Petroleum Hydrocarbon Plume as Diesel – March 2009	. 18

1.0 INTRODUCTION

PROJECT BACKGROUND

The subject property, located at 6400 Christie Avenue in Emeryville, California, is owned by the Emerybay Commercial Association, for which Stellar Environmental Solutions, Inc. (SES) provides environmental consulting services. The site has undergone fuel tank-related investigations and remediation since 1988 (by SES since 2007). All known environmental documents for the subject property are listed in the References and Bibliography section (Section 7.0) of this report. Previous remediation and investigation activities are outlined in the final subsection of this chapter.

SITE AND VICINITY DESCRIPTION

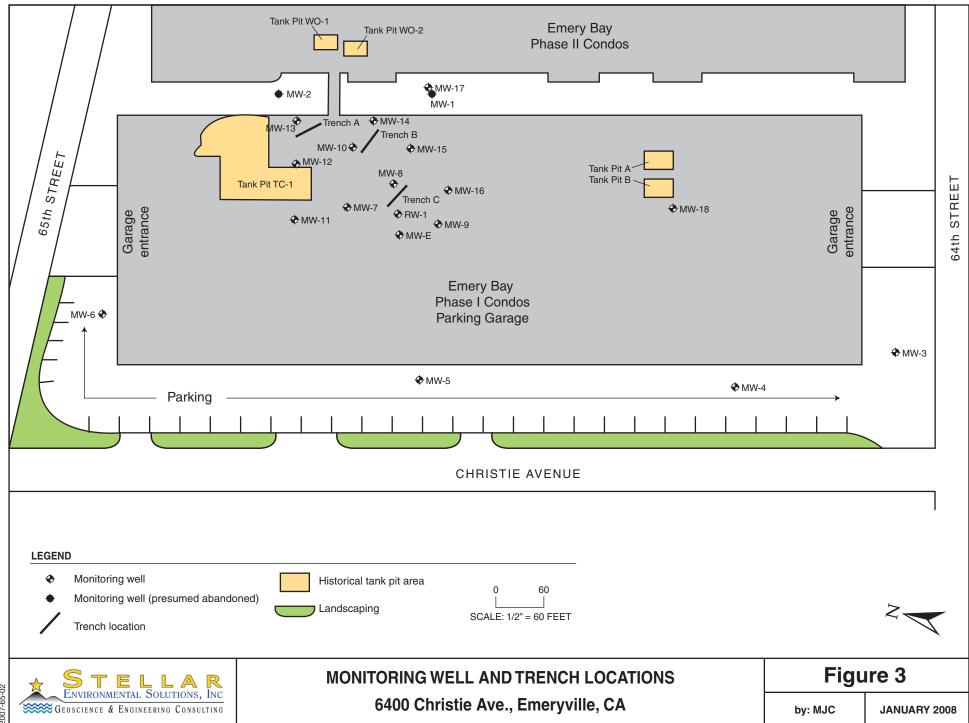
The project site is located at 6400 Christie Avenue in Emeryville, California (see Figure 1). The project site, which slopes to the south, is wholly developed with an open ground-floor parking area and apartment complex known as the Emery Bay Phase I Condos and parking garage. The area of monitoring and product extraction is primarily located in the northeastern portion of the parking garage. Figure 2 is a site plan. The site is bordered to the east by the Emery Bay Phase II Condos and parking garage, to the north by 65th Avenue, beyond Christie Avenue and to the west by the Bay Center Offices, and to the south by 64th Avenue. The surrounding area is developed with apartment complexes, offices, and commercial stores.

PREVIOUS INVESTIGATIONS

Historical groundwater well analytical results are presented in Appendix A, and are discussed in detail in Section 5.0 of this report.

The subject property parcel was developed as early as 1958 with the Garrett Motor Freight Station, associated with Delta Lines, Inc. The Delta Lines complex contained an "Oil and Gas" building, located at the site of the present-day Emery Bay Phase I Condo complex and parking garage. The building remained on the property until 1986, when it was demolished to build the present-day structures. Twelve underground fuel storage tanks (UFSTs) containing diesel and gasoline were removed from the Emery Bay Phase I and Phase II Condo complex parcels in 1987, at which time soil and groundwater contamination was discovered.

SITE PLAN AND ADJACENT LAND USE


6400 Christie Ave. Emeryville, CA By: MJC JANUARY 2008
Figure 2

The subsurface contamination originated from the trucking terminal that was operated by the Garrett Freight Line and Delta Lines, and existed at the site of the Bay Center Apartments before its development in the late 1980s. Site investigations identified a total of 12 UFSTs in three areas of the trucking terminal. These UFST areas were referred to as: 1) Tank Pits A and B (each containing one 10,000-gallon diesel tank); 2) Tank Pit TC-1 (four 12,000-gallon diesel tanks, two 10,000-gallon diesel tanks, and one 6,000-gallon gasoline tank); and 3) Tank Pit WO-1 and WO-2 (one 6,000-gallon tank, one 4,000-gallon tank, and one 1,000-gallon tank). Nine UFSTs were located beneath the current footprint of the Emery Bay Phase I Condo complex, while three were beneath the Emery Bay Phase II Condo complex. Figure 2 shows the historical locations where the tanks were removed.

To address the contamination in the garage area of the Emery Bay Phase I Condo complex, a light non-aqueous phase liquid (LNAPL) groundwater pump-and-treat system was installed by Groundwater Technology, Inc. (GTI) in 1989. The system extracted approximately 1 million gallons of groundwater, yielding approximately 100 gallons of LNAPL from recovery well RW-1 from July 1990 to March 1991. Three monitoring wells had previously been installed in 1985. GTI installed (and repaired) several more monitoring wells between 1987 and 1990, for a total of seven monitoring wells and one extraction well by 1990. The system and groundwater monitoring wells were designed and monitored as a condition of discharge permits granted by the East Bay Municipal Utility District (EBMUD) and the Bay Area Air Quality Management District (BAAQMD). The first groundwater monitoring event for MW-1 through MW-6 occurred in December 1988. The second monitoring event, which also included MW-E and RW-1, was conducted in March 1989. Subsequently, the groundwater extraction system operated by GTI was closed in late 1990 when corrosion and other mechanical problems caused the system to fail. Recovery of LNAPL continued manually on RW-1 until 1991, and a third groundwater sampling event occurred in February 1991. In 1994, the GTI recovery system was abandoned. Appendix A contains the historical analytical results. Figure 3 shows the locations of the monitoring wells and trenches.

No groundwater monitoring events had occurred at the site between 1991 and 2004, when PES Environmental, Inc. (PES) was retained to evaluate and implement remediation of the residual contamination at the TC-1 (former location of seven UFSTs) Emery Bay Phase I Condo complex area. (Note: Harding Lawson Associates conducted soil and groundwater sampling on the Phase II Apartment complex area during this time, but not for the purpose of product extraction or remediation.) In 2004, PES installed an additional 10 groundwater monitoring wells (monitoring wells MW-1 and MW-2 were either abandoned or paved over with asphalt during construction), bringing the current total to 17 monitoring wells and 1 extraction well in the Phase I parking garage area. The first groundwater monitoring event for the current wells was conducted in March 2004, and the second event was conducted in December 2006.

A previous SES report (SES, 2007) fully discusses previous site remediation and investigations, site geology and hydrogeology, and residual site contamination. Tabular summaries of historical groundwater well water elevations and analytical results are included in Appendix A.

OBJECTIVES AND SCOPE OF WORK

This report discusses the following activities conducted/coordinated by SES in the current annual monitoring period:

- LNAPL passive product extraction from Trenches A and C, and active product extraction on select groundwater monitoring wells, trench sump wells, and recovery well RW-1
- Collection of water levels in site wells to determine groundwater flow direction
- Sampling of site wells for contaminant analysis
- Evaluation of hydrochemical and groundwater elevation trends in the context of plume stability and case closure assessment

REGULATORY OVERSIGHT

ACEH is the lead regulatory agency for the case, acting as a Local Oversight Program for the Regional Water Quality Control Board (Water Board). There are currently no ACEH or Water Board cleanup orders for the site; however, all site work has been conducted under the oversight of ACEH. ACEH assigned the site to its fuel leak case system (RO #2799), and the case officer is Ms. Barbara Jakub. In a November 2008 meeting with the Responsible Party (represented by Ms. Sarah Irving), SES (represented by Ms. Teal Glass and Mr. Richard Makdisi), and ACEH (represented by Ms. Jakub and Ms. Donna Drogas), it was agreed that quarterly sampling could be reduced to a semiannual schedule with the stipulation that an indoor air and preferential pathway study be completed. SES submitted a letter on November 24, 2008 to ACEH documenting the change in sampling frequency. The Indoor Air Survey and Preferential Pathway Report (SES, 2009b) was submitted to ACEH on April 6, 2009.

The case has been assigned No. SLT2O05561 in the Water Board's GeoTracker system. Electronic uploads of required data/reports are submitted to both agencies.

2.0 PHYSICAL SETTING

The following evaluation of the physical setting of the site—including topography, drainage, and geologic and hydrogeologic conditions—is based on previous (1986 through 2006) site investigations conducted by others, and site inspections and subsurface data collection by SES in 2007 and 2008.

TOPOGRAPHY AND DRAINAGE

The mean elevation of the property is about 13 feet above mean sea level, and the general topographic gradient in the vicinity of the property is to the southwest, although the regional gradient is to the west-southwest.

The nearest receiving water body is San Francisco Bay, located approximately 700 feet to the west of the subject property. East of the site lies the Oakland Hills, which rise to an elevation of approximately 1,000 feet and are situated 2.5 miles east of the subject property. The subject property is not listed within a 100- or 500-year flood zone.

Storm drains from the roof collect storm runoff for discharge onto the asphalt-paved parking lots. Drainage collected in storm sewers from the parking lot and from Christie, 64th, and 65th Streets discharges into San Francisco Bay. SES noted several storm drains, in the parking lot area and on the surrounding streets.

GEOLOGY

The subject property area is underlain with material mapped "Qhbm," designated early pleistocene alluvium, that is moderately consolidated, deeply weathered, poorly sorted, irregularly interbedded clay, silt, sand, and gravel. A geotechnical survey conducted in 1985 revealed that the upper 15 to 20 feet of soil consists of a combination of fill and soft bay sediment. The upper 1 to $2\frac{1}{2}$ feet of soil is generally pavement and imported fill. This is underlain by approximately 20 feet of firm soil consisting of primarily dense silty sand with intermittent layers of silty and sandy clay. Stiff to very stiff clay lies a depth of approximately 40 feet and extends to the depth of the borings, approximately 101.5 feet (Geomatrix, 1988).

The closest major fault, the Hayward Fault, is located about 3 miles east of the property. While the site is located in a seismically active area, it is not within an Alquist-Priolo Special Studies active

fault zone, the legislatively defined zone of restricted land use 200 feet around an active fault due to the high probability of ground rupture.

GROUNDWATER HYDROLOGY

Regulatory agency records indicate that the direction of shallow groundwater flow in the site vicinity is to the west-northwest, toward San Francisco Bay. However, water levels and flow direction in this area are influenced by tidal patterns, and the groundwater gradient measured during the March 2009 monitoring event ranged from the southwest (on the northern portion of the site) to the west (on the central portion of the site) to the northwest (on the southern portion of the site). According to current and historical water level data obtained from onsite monitoring wells, depth to groundwater ranges from approximately 6 to 11 feet below ground surface (bgs). Groundwater elevations during the March 2009 event ranged from 7.41 to 10.37 feet above mean sea level. The average groundwater gradient was 0.001 foot/foot.

Figure 4 is a groundwater elevation map from the recent groundwater monitoring event (activities discussed in Section 4.0).

3.0 MARCH 2009 GROUNDWATER MONITORING AND SAMPLING ACTIVITIES

This section presents the groundwater sampling and analytical methods for the most recent event. Table 1 summarizes monitoring well construction and groundwater monitoring data. Groundwater analytical results are summarized in Section 4.0.

SAMPLING METHODS AND ACTIVITIES

Activities for this event include:

- Measuring static water levels in all 18 wells
- Collecting post-purge groundwater samples from the 18 wells for laboratory analysis of the following contaminants:
 - benzene, toluene, ethyl benzene, and xylenes (BTEX)
 - methyl tertiary-butyl ether (MTBE)
 - total petroleum hydrocarbons as gasoline (TPHg)
 - total petroleum hydrocarbons as diesel (TPHd)

The site monitoring well sampling locations are shown on Figure 3. Well construction information and water level data are summarized in Table 1. Appendix B contains the groundwater monitoring field records.

CURRENT MONITORING EVENT

Blaine Tech Services conducted groundwater monitoring well water level measurements, purging, sampling, and field analyses on March 19, 20, and 23 under the supervision of SES personnel. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking UFSTs. As the first task of the monitoring event, static water levels and free product levels were measured in the 18 wells using an electric water level indicator. The depth of free product was recorded, and the water level was adjusted to reflect the groundwater elevation.

Table 1
Groundwater Monitoring Well Construction and Groundwater Elevation Data 6400 Christie Avenue, Emeryville, California

Well	Well Depth (feet bgs)	Screened Interval	Top of Well Casing Elevation (a)	Depth to Free Product (TOC)	Thickness of Free Product (feet)	Groundwater Elevation (March 19, 2009)
MW-3	25	5 to 20	16.65	NA	NA	8.71
MW-4	25	5 to 20	16.29	NA	NA	9.39
MW-5	25	5 to 20	16.72	NA	NA	7.41
MW-6	25	5 to 20	16.82	NA	NA	10.37
MW-7	20	5 to 20	17.73	NA	NA	7.60
MW-8	16	5 to 16	17.84	8.89	0.73	8.22
MW-9	20	5 to 20	17.84	NA	NA	8.47
MW-10	20	5 to 20	17.83	8.54	0.04	9.25
MW-11	20	5 to 20	17.76	NA	NA	7.56
MW-12	20	5 to 20	17.83	NA	NA	9.33
MW-13	20	5 to 20	17.66	9.14	0.12	8.40
MW-14	20	5 to 20	17.60	NA	NA	9.25
MW-15	20	5 to 20	17.80	NA	NA	9.10
MW-16	20	5 to 20	17.74	NA	NA	8.86
MW-17	20	5 to 20	18.17	NA	NA	9.28
MW-18	20	5 to 20	16.35	NA	NA	8.60
MW-E	47	7 to 40	17.47	NA	NA	7.68
RW-1	30	unknown	16.70	9.06	NM	NM ^(b)
TA-E	11-13	6-8 to 11-13	17.20	NM	NM	NM
TA-M	11-13	6-8 to 11-13	17.21	NM	NM	NM
TA-W	11-13	6-8 to 11-13	17.28	NM	NM	NM
ТВ-Е	11-13	6-8 to 11-13	17.24	NM	NM	NM
TB-M	11-13	6-8 to 11-13	17.30	NM	NM	NM
TB-W	11-13	6-8 to 11-13	17.33	NM	NM	NM
ТС-Е	11-13	6-8 to 11-13	17.07	NM	NM	NM
TC-M	11-13	6-8 to 11-13	17.37	NM	NM	NM
TC-W	11-13	6-8 to 11-13	17.32	NM	NM	NM

Notes:

bgs = below ground surface

TOC = below top of casing

NA = not applicable (no free product in well)

NM = depth to groundwater and/or free product could not be determined due to the presence of tar

MW-3 through MW-6 and MW-E are 2-inch PVC. MW-7 through MW-18 are 34-inch PVC. RW-1 is 10-inch PVC.

⁽a) Relative to mean sea level.

⁽b) Depth to groundwater and/or of free product could not be determined because free product density would not allow a clear delineation.

Approximately 47 gallons of purge water and equipment decontamination rinse water from the current groundwater sampling event was containerized onsite in a labeled 55-gallon drum. In addition, 718.25 gallons of water and 1.5 gallons of product were removed/purged from select wells during the passive and active product removal events. All purged groundwater and free product were containerized in a 1,100-gallon onsite aboveground storage tank (AST). On March 27, 2009, Evergreen Oil, Inc. vacuumed and transported the water to its recycling facility under manifest number 004004667 (EPA ID No. CAD982413282). Appendix F contains copies of the manifest and recycling certificate.

4.0 REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS, AND DISCUSSION OF FINDINGS

This section presents the analytical results of the most recent monitoring event and summarizes the relevant regulatory considerations. Appendix C contains the certified analytical laboratory report and chain-of-custody record.

REGULATORY CONSIDERATIONS

As specified in the East Bay Plain Groundwater beneficial Use Evaluation Report by the San Francisco Bay Region Water Board (Water Board, 1999), all groundwater is considered a potential source of drinking water unless otherwise indicated by the Water Board, and is assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. The subject property is listed as occurring within Zone B, designated as groundwater that is unlikely to be used as a drinking water resource. The basin is shallow in this area, with depths of less than 300 feet. Groundwater in this area is used for backyard irrigation, industrial supply, and commercial irrigation. There is a low likelihood that this water will be used as a public water supply in the near future.

The Water Board publishes Environmental Screening Levels (ESLs) for residential and commercial/industrial properties where groundwater <u>is/is not</u> a potential drinking water resource. As stipulated in the ESL document (Water Board, 2008), ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments. The groundwater ESLs are composed of one or more components—including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional remediation and/or investigation (e.g., monitoring plume stability to demonstrate no risk to sensitive receptors where drinking water is not threatened) may be warranted. Because the subject property is a residential property where groundwater <u>is not</u> a potential drinking water resource, the contaminant levels at the site will be compared to the ESLs for these criteria.

Contaminants detected above the ESLs during this sampling event include gasoline, diesel, benzene, toluene, ethylbenzene, and total xylenes. In general, concentrations of gasoline have decreased in the majority of the wells from the last sampling event; however, concentrations of

diesel have increased, with historic highs observed in eight of the wells (MW-4, MW-5, MW-9, MW-12, MW-13, MW-15, MW-16, and MW-18).

GROUNDWATER SAMPLE RESULTS

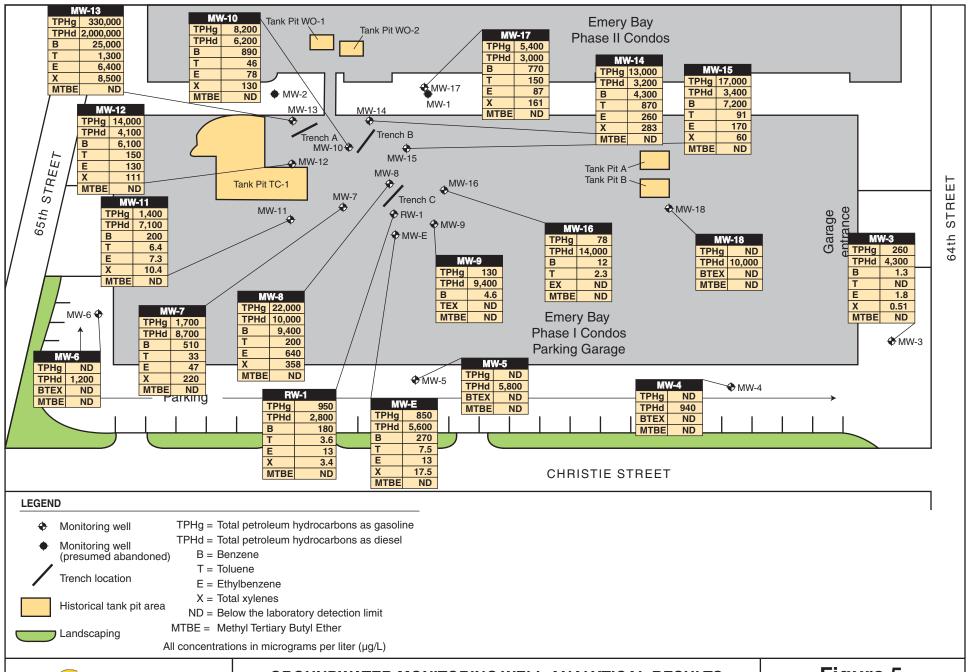
Table 2 and Figure 5 summarize the contaminant analytical results of the current monitoring event samples.

Table 2
Groundwater Sample Analytical Results – March 19, 20, and 23, 2009
6400 Christie Avenue, Emeryville, California

	Analytical Results						
Well ID	ТРНд	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ
MW-3	260	4,300	1.3	<0.5	1.8	0.51	2.9
MW-4	<50	940	< 0.5	<0.5	< 0.5	<0.5	<2.0
MW-5	<50	5,800	< 0.5	<0.5	< 0.5	<0.5	<2.0
MW-6	<50	1,200	< 0.5	<0.5	< 0.5	<0.5	<2.0
MW-7	1,700	8,700	510	33	47	220	<10
MW-8	22,000	10,000	9,400	200	640	358	< 50
MW-9	130	9,400	4.6	<0.5	< 0.5	<0.5	<2.0
MW-10	8,200	6,200	890	46	78	130	<20
MW-11	1,400	7,100	200	6.4	7.3	10.4	<2.0
MW-12	14,000	4,100	6,100	150	130	111	<40
MW-13	330,000	2,000,000	25,000	1,300	6,400	8,500	<1,000
MW-14	13,000	3,200	4,300	870	260	283	<50
MW-15	17,000	3,400	7,200	91	170	60	< 50
MW-16	78	14,000	12	2.3	< 0.5	<0.5	<2.0
MW-17	5,400	3,000	770	150	87	161	<2.0
MW-18	<50	10,000	< 0.5	<0.5	< 0.5	<0.5	<2.0
MW-E	850	5,600	270	7.5	13	17.5	<2.0
RW-1	950	2,800	180	3.6	13	3.4	<2.0
ESLs (a)	100 / 210	100 / 210	1.0 / 46	40 / 130	30 / 43	20 / 100	5.0 / 1,800

Notes:

MTBE = methyl tertiary-butyl ether


TPHd = total petroleum hydrocarbons - diesel range (equivalent to total extractable hydrocarbons - diesel range)

TPHg = total petroleum hydrocarbons – gasoline range (equivalent to total volatile hydrocarbons – gasoline range)

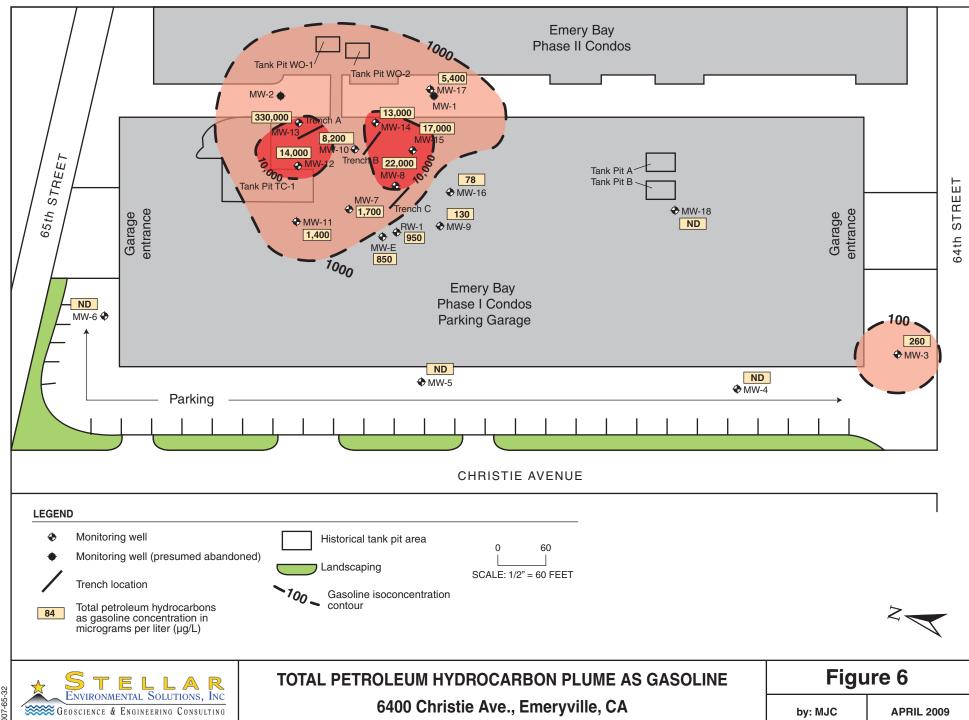
All concentrations are expressed in micrograms per liter (µg/L), equivalent to parts per billion (ppb).

Results listed in **bold-face type** are at or above the ESLs where groundwater is not a drinking water resource.

⁽a) Water Board Environmental Screening Levels for residential sites where groundwater <u>is/is not</u> a drinking water resource (Water Board, 2008).

2007-65-33

Hydrocarbon Contaminants


During the March 2009 sampling event, several wells had reported hydrocarbon concentrations greatly in excess of the Water Board ESLs. However, hydrocarbon concentrations in wells can be significantly affected by the purging of accumulated hydrocarbons product, so large swings in concentration (both reductions and increases) could be seen due to this occurrence.

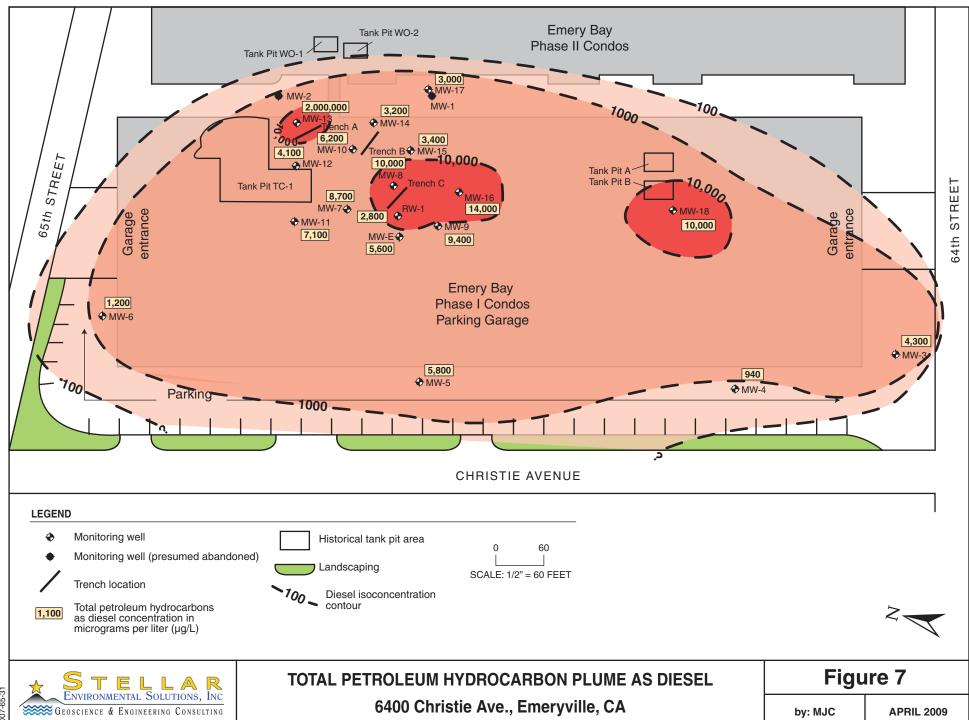

Gasoline was detected in MW-3, MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17, MW-E, and RW-1 above the ESL where groundwater <u>is not</u> a drinking water resource (210 micrograms per liter [μ g/L]). Gasoline was also detected in MW-9 and MW-16, but at concentrations below the ESL. The highest concentration (330,000 μ g/L) was observed in MW-13. This concentration is well below the 2,700,000 μ g/L observed during the December 2008 event, but above the 98,000 observed during the March 2008 event.

Figure 6 shows an isoconcentration contour map of TPHg concentrations in groundwater based on the December 2008 monitoring well analytical results. Increases compared to the December 2008 monitoring event were observed in wells MW-7, MW-9, MW-11, MW-13, MW-15, MW-16, and RW-1; and decreases were observed in wells MW-3, MW-8, MW-10, MW-12, MW-14, MW-17, and MW-E. Concentrations in perimeter wells MW-4, MW-5, MW-6, and MW-18 remained the same. When comparing the concentrations to the March 2008 sampling event, wells MW-3, MW-8, MW-9, MW-10, MW-14, and MW-16 exhibited increases; wells MW-7, MW-11, MW-12, MW-13, MW-15, MW-17, MW-E, and RW-1 showed decreases; and perimeter wells MW-4, MW-5, MW-6, and MW-18 remained the same.

Diesel was detected in all site wells above the ESL of 210 µg/L (where groundwater <u>is not</u> a drinking water resource). The highest concentration (2,000,000 µg/L) was observed in MW-13. This diesel concentration is a new historic high. In addition, new historically high concentrations were observed in MW-4, MW-5, MW-9, MW-12, MW-13, MW-16, and MW-18. A new historic high was also observed in MW-15, but was the same as the concentration observed in September 2008. Overall, diesel concentrations increased compared to both the December 2008 (12 of 18 wells) and March 2008 (10 of 18 wells) sampling events. Decreases in diesel concentrations compared to the December 2008 event were observed in MW-6, MW-11, MW-17, MW-E, and RW-1. Decreases in diesel concentrations compared to the March 2008 event were observed in MW-3, MW-10, MW-11, MW-14, MW-17, MW-E, and RW-1.

Figure 7 is an isoconcentration contour map of TPHd concentrations in groundwater based on the December 2008 monitoring well analytical results.

In MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17, MW-E, and RW-1, concentrations of benzene exceeded the ESL of $46 \,\mu\text{g/L}$ where groundwater is not a drinking water resource. Benzene was also found in MW-3, MW-9, and MW-16, but at concentrations below the ESL.

Toluene was detected above the ESL of 130 μ g/L in monitoring wells MW-8, MW-12 MW-13, MW-14, and MW-17. Ethylbenzene was detected above the 43- μ g/L ESL (where groundwater <u>is not</u> a drinking water resource) in monitoring wells MW-7, MW-8, MW-10, MW-12, MW-13, MW-14, MW-15, MW-17, MW-E, and RW-1. Total xylene concentrations in monitoring wells MW-7, MW-8, MW-10, MW-12, MW-13, MW-14, MW-17, MW-E, and RW-1 were above the 100- μ g/L ESL where groundwater <u>is not</u> a drinking water resource. MTBE was not detected above the ESL of 1,800 μ g/L in any of the monitoring wells. MTBE was detected in MW-3 at 2.9 μ g/L, which is well below the ESL.

Quality Control Sample Analytical Results

Laboratory quality control (QC) samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the laboratory in accordance with the requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (Appendix C).

5.0 FREE-PHASE HYDROCARBON PRODUCT REMEDIATION SYSTEM

This section describes the extraction of the historical free product in the Emery Bay Phase I Condo parking garage, the construction details of the current LNAPL remediation system located on the northeastern portion of the garage, and the most recent product removal activities conducted on March 17 and 18, 2009 (immediately prior to the sampling event). Table 3 summarizes the product removed from the skimmers during these events. Appendix E summarizes historical product removal.

LNAPL REMEDIATION SYSTEM CONSTRUCTION

In an attempt to maximize free product removal, PES constructed three trenches, each containing three sump wells, in the northeastern area of the Emery Bay Phase I Condo parking garage. Historically, this area has had the highest concentrations of contamination and accumulation of free product. The trenches (TA, TB, and TC) extend to depths of approximately 12.5 to 13 feet bgs, while the collection sumps (TA-W, TA-M, TA-E, TB-W, TB-M, TB-E, TC-W, TC-M, and TC-E) extend to approximately 11 to 13 feet bgs. The sumps were constructed using 10-inch-diameter schedule 40 polyvinyl chloride (PVC) casing. Blank casing was used from approximately 0.5 feet bgs to between 6 and 8 feet bgs. Slotted 0.06-inch PVC was used from between 6 and 8 feet bgs to 6 inches from the total depth of the trench. The trenches were then backfilled with high-porosity, high-permeability gravel designed to promote LNAPL migration (PES, 2007). Passive skimmers, manufactured by QED Environmental Systems (of Oakland, California) were then placed in each of the sumps in Trench A and in one of the sumps (TC-E) in Trench C.

The skimmers operate by floating on the surface of the water. Water and free product collect in a filtration reservoir, which allows water to pass through. A tube connected to the reservoir then filters the collected free product into a collection reservoir located below the water surface. The reservoir can be emptied by opening a valve located on the bottom of the cylindrical shaped reservoir. Each of these skimmers is attached to the sump lid by a rope, and can be removed and transferred to another sump as needed.

Table 3
Passive Trench Product Extraction – March 17 and 18, 2009

Trench ID	Number of Skimmers in Well	Total Product Removed (gallons)
TA-E	2	0.3
TA-M	2	0.5
TA-W	2	0.2
ТВ-Е	0	NM
TB-M	0	NM
TB-W	0	NM
TC-E	1	0.5
TC-M	0	NM
TC-W	0	NM
Total Product Remove	ed	1.5

Note:

NM = Not measures. No skimmer was located in the well, or no product was present.

HISTORICAL FREE PRODUCT EXTRACTION

As mentioned under the "Previous Investigations" subsection in Section 1.0, in approximately 1986, contaminated soil and groundwater were discovered during the removal of 12 UFSTs from the Emery Bay Phase I and Phase II parcels. To dewater the excavation during the Phase I and Phase II Condo construction, a groundwater extraction and remediation system was installed by GTI in 1988. Approximately 1 million gallons of water yielding 100 gallons of hydrocarbon product was removed from RW-1 during its operation (PES, 2007). However, corrosion and other mechanical problems caused the system to fail in 1991, and it was decommissioned in 1994. In February 2008, SES removed all of the old parts of the system from the well vault.

In 2004, PES began manual extraction on RW-1, and was reported to have removed approximately 48 gallons of LNAPL (PES, 2004a)—although it is unclear whether the removed material was pure product or product mixed with water. To accelerate free product removal, PES constructed a new LNAPL hydrocarbon remediation system (described below) between April and May 2004 (PES, 2007). Several extraction events were conducted by PES from May 2004 through March 2007; the extraction events yielded a total of approximately 51 gallons of LNAPL. No extraction events were conducted by PES in 2005; approximately 50 gallons of hydrocarbons was removed in 2006; and approximately 0.6 gallon of hydrocarbons was removed by PES between January and November

2007. In November and December 2007, after SES was retained for the project, the skimmer system only yielded 2.82 gallons. Figure 11 graphs the comparison of free product extraction on a yearly basis.

It should be noted that no historical product extraction reports were provided to SES by the previous owner or by PES. Therefore, there is little to no information on how active product extraction occurred during 2004 and 2006. The amount of free product removed during 2004 and 2006 appears to have been high, as only 100 gallons of free product was obtained from actively pumping over 1 million gallons of water continuously between 1989 and 1991.

MARCH 2009 PRODUCT REMOVAL EVENT

Historical yield from the trench recovery system has been unproductive, with the 1-liter passive skimmer collection reservoirs not filling up completely, or filling up with water rather than product. The highest hydrocarbon product yield has occurred from active pumping on recovery well RW-1 or at various other wells.

To determine the recharge rate of free product in wells, SES conducted both passive and active product removal events during the 2 days prior (March 17 and 18) to the groundwater sampling event (March 19, 20, and 23). A total of approximately 718.25 gallons of groundwater and 6.4 gallons of free product were removed during the March 2009 active product removal event, in addition to 1.5 gallons removed passively from the skimmers. A sample taken from the AST on December 31, 2008 contained a TVHg concentration of 6,900 μ g/L and TEHd concentration of 340,000 μ g/L. Based on the total amount of groundwater removed, 718.25 gallons, SES calculated that approximately 0.04 pound of gasoline and 1.9 pounds of diesel were removed with the purged groundwater.

Table 3 shows the allocation of free product removed from the collection skimmers in Trenches A and C. Table 4 shows the total amount of product actively removed by pumping based on the total amount of groundwater/product removed for the March 2009 extraction event.

The removal activities occurred as follows:

■ On March 17 2009, SES removed a total of 0.5 gallon of groundwater from MW-13, 20 gallons from MW-12, 25 gallons from MW-10, 1.5 gallons from MW-14, 4 gallons from MW-15, 18 gallons from MW-8, 30 gallons from MW-17, and 10 gallons from MW-3. A total of 0.2 gallon was removed from the skimmers in trench well TA-W, and an additional 40 gallons were removed by active purging; 0.5 gallon was removed from the skimmers on trench well TA-M, and an additional 25 gallons were actively purged; and 0.3 gallon was removed from the skimmers on TA-E, and 25 gallons were actively purged.

Table 4
Active Product Extraction – March 2009

Well	Total Gallons of Product Removed	Well	Total Gallons of Product Removed
MW-3	0.279	MW-17	0.342
MW-5	NP	MW-18	NP
MW-6	NP	MW-E	0.023
MW-7	NP	RW-1	1.800
MW-8	0.378	TA-E	0.450
MW-9	NP	TA-M	0.450
MW-10	0.369	TA-W	0.810
MW-11	NP	TB-E	0.153
MW-12	0.261	TB-M	0.153
MW-13	0.007	TB-W	0.153
MW-14	0.023	ТС-Е	0.153
MW-15	0.117	TC-M	0.153
MW-16	NP	TC-W	0.153
		Total	6.38

Notes:

NP = not purged

Product removal estimates are based on the total amount of free product measured in the purge tank (6.4 gallons) per total amount of groundwater purged (718.25 gallons), which yields 0.009 gallon of product per 1 gallon of purge water.

A total of 0.3 gallon was removed from the skimmer in trench well TC-E, and 17 gallons were purged from TC-E, TC-M, and TC-W. On trench wells TB-E, TB-M, and TB-W, 17 gallons were removed from each. A total of 100 gallons was removed from recovery well RW-1.

■ On March 18, 2009, 0.25 gallon was removed from MW-13, 9 gallons from MW-12, 16 gallons from MW-10, 1 gallon from MW-14, 9 gallons from MW-15, 24 gallons from MW-8, 2.5 gallons from MW-E, and 21 gallons from MW-3. The skimmers in trench A were filled with water; however, product was noticeably present. SES purged 50 gallons from trench well TA-W and 25 gallons from trench wells TA-M and TA-E. SES also purged 100 gallons from RW-1, 0.5 gallon from MW-13, 25 gallons from MW-8, and 8 gallons from MW-17.

All of the purge water and free product extracted during these events was containerized onsite in the 1,100-gallon AST located in the northeastern gated area of the garage. On March 27, 2009, Evergreen Oil vacuumed and transported the water to its recycling facility in Newark, California. The waste manifest and recycling certificate are included in Appendix F.

DISCUSSION

As mentioned under the "Historical Free Product Extraction" subsection of this chapter, no product extraction was conducted by PES in 2005. "Product" removal in 2006 was reported at a significant 52 gallons by PES; however, it was not achieved through collection from the trench hydrocarbon skimmers, but rather through active pumping; in addition, the "product" referred to by PES appears to actually have been a mixture of petroleum product and water. The PES report provides no documentation (e.g., manifests) of the removal of actual recovered petroleum product. The recovery by PES from the start of 2007 through October 2007 (when SES assumed environmental consulting activities) was limited to 0.6 gallon collected from the skimmers. In addition, there had been no removal of free product from well RW-1 since 2004, at which time approximately 50 gallons of freefloating product was apparently removed by active pumping. The majority of this petroleum product apparently was removed by active pumping and removal activities rather than from the trench well skimmers. Much of this may also have been a mixture of water and hydrocarbons. Thus, we conclude that the trench recovery system on its own has never been particularly effective. In 2007, passive extraction of free product through trench well skimmers removed only 3.41 gallons. SES removed approximately 5.65 gallons of free product from these passive skimmers during the 2008 removal events. Approximately 10.34 gallons were removed by active pumping on wells during 2008.

As demonstrated by the analytical data, active pumping on certain wells has generally reduced gasoline concentrations; however, wells not included in the pumping schedule showed a lesser or no decrease. Diesel concentrations seem to be less affected by active pumping, even in wells that were included in the pumping schedule, such as RW-1. More active remediation will likely be required on this site to reduce the concentrations to levels acceptable to the regulatory community and to achieve eventual regulatory closure. However, with the exception of the current program of LNAPL removal from the skimmers and wells, no additional active remedies are proposed until a more cost-effective and productive method of removal is found.

6.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

FINDINGS AND CONCLUSIONS

- The subject property parcel was developed as early as 1958 with the Motor Freight Station, associated with Delta Lines, Inc. The Delta Lines complex contained an "Oil and Gas" building, located at the site of the present-day Emery Bay Phase I Condo complex and parking garage. In 1986, the building was demolished, and 12 UFSTs containing diesel and gasoline were removed from the Emery Bay Phase I and Phase II Condo complex parcels. Soil and groundwater contamination was discovered.
- In response to the contamination, a LNAPL groundwater pump-and-treat system was installed in 1989, but failed in 1991. Active pumping of free product began again in 2004, and a product extraction system consisting of passive product removal was installed in 2006. Groundwater monitoring events have been sporadically conducted since 1988; quarterly groundwater monitoring events were conducted for the first time in 2008. The quarterly sampling was reduced to semiannual frequency in 2009.
- The site currently contains 17 monitoring wells, 1 recovery well, and 9 product extraction trench wells. This is the 11th sampling event conducted since 1988.
- Site geological conditions consist of a combination of fill and soft bay sediment to between 15 and 20 feet bgs, covered by approximately 1 to 2½ feet of pavement and imported fill. This is underlain by approximately 20 feet of firm soil consisting of primarily dense silty sand with intermittent layers of silty and sandy clay. Stiff to very stiff clay extends from a depth of approximately 40 feet to approximately 102 feet.
- The groundwater direction during this monitoring event was found to range from the southwest (on the northern portion of the site) to the west (on the central portion of the site) to the northwest (on the southern portion of the site).
- Groundwater elevations during the March 2009 event ranged from 7.41 to 10.37 feet above mean sea level. The average groundwater gradient was 0.001 foot/foot.
- Current contaminants of concern include TPHg, TPHd, and BTEX. Current groundwater concentrations exceeded the ESLs for these contaminants. MTBE was detected only in MW-3 during this event, and the concentrations was well below the ESL.

- Gasoline was detected in MW-3, MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17, MW-E, and RW-1 above the ESL where groundwater is not a drinking water resource (210 µg/L). Gasoline was also detected in MW-9 and MW-16, but at concentrations below the ESL. The highest concentration (330,000 µg/L) was observed in MW-13. This concentration is well below the 2,700,000 µg/L observed during the December 2008 event, but above the 98,000 observed during the March 2008 event.
- When comparing the concentrations to the March 2008 sampling event, wells MW-3, MW-8, MW-9, MW-10, MW-14, and MW-16 exhibited increases; wells MW-7, MW-11, MW-12, MW-13, MW-15, MW-17, MW-E, and RW-1 showed decreases; and perimeter wells MW-4, MW-5, MW-6, and MW-18 remained the same.
- Diesel was detected in all site wells above the ESL of 210 µg/L (where groundwater is not a drinking water resource). The highest concentration (2,000,000 µg/L) was observed in MW-13. This concentration is a new historic high. In addition, new historic high concentrations were observed in MW-4, MW-5, MW-9, MW-12, MW-13, MW-16, and MW-18. A new historic high was also observed in MW-15, but matched the concentration detected in September 2008.
- Overall, diesel concentrations increased compared to both the December 2008 (12 of 18 wells) and March 2008 (10 of 18 wells) sampling events.
- In MW-7, MW-8, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15, MW-17, MW-E, and RW-1, concentrations of benzene exceeded the ESL of 46 μg/L where groundwater is not a drinking water resource. Benzene was also found in MW-3, MW-9, and MW-16, but at concentrations below the ESL.
- Toluene was detected above the ESL of 130 µg/L in monitoring wells in MW-8, MW-12, MW-13, MW-14, and MW 17.
- Ethylbenzene was detected above the 43-µg/L ESL (where groundwater is not a drinking water resource) in monitoring wells MW-7, MW-8, MW-10, MW-12, MW-13, MW-14, MW-15, MW-17, MW-E, and RW-1.
- Total xylene concentrations in monitoring wells MW-7, MW-8, MW-10, MW-12, MW-13, MW-14, MW-17, MW-E, and RW-1 were above the 100-µg/L ESL where groundwater is not a drinking water resource.
- MTBE was not detected above the ESL of 1,800 μg/L in any of the monitoring wells. MTBE was detected in MW-3 at 2.9 μg/L, which is well below the ESL.
- SES conducted passive skimmer product removal on the trench wells during the March 2009 removal event. A total of approximately 1.5 gallons was removed from trench wells TA-E, TA-M, TA-W, and TC-E.

- SES also conducted active product removal on the trench wells, source area wells, recovery well, and monitoring well MW-3 during the March 2009 event. A total of approximately 718.25 gallons of groundwater and 6.4 gallons of free product were removed. A sample taken from the AST on December 31, 2008 contained concentrations of TVHg at 6,900 μg/L and TEHd at 340,000 μg/L. Based on the total amount of groundwater removed, 718.25 gallons, SES calculated that approximately 0.04 pound of gasoline and 1.9 pounds of diesel were removed with the purged groundwater.
- The trench recovery system, where free product is designed to collect in 1-liter skimmers, is effective in removing small amounts of free product, but is not effective in decreasing the size of the plume overall. Active pumping at various wells appears to have some effect in lowering gasoline concentrations; however, it does not appear to be affecting the concentrations of diesel (which appear to be steadily increasing).

RECOMMENDATIONS

- Groundwater monitoring should be continued on a semiannual basis to document contaminant concentrations over time.
- Both active and passive free product removal events should be continued to ascertain their effectiveness in reducing the plume size over time. Active product removal is being conducted on a semiannual basis immediately prior to the sampling event. Passive product removal from the skimmers is being conducted on a quarterly basis.
- Emergent best available technologies should continue to be evaluated, as a new technology might cost-effectively remediate the site to move it toward full regulatory closure.
- Electronic uploads to ACEH's ftp system and the State Water Board's GeoTracker system should be continued as required.

7.0 REFERENCES AND BIBLIOGRAPHY

- Aqua Science Engineers (Aqua), 1986a. Hydrocarbon Contamination Abatement Plan for Bay Center, Emeryville, CA. May 23.
- Aqua Science Engineers (Aqua), 1986b. Report Soil Sampling and Determination of Hydrocarbon Contamination from Tank Removal at the Bay Port Development, 64th and Lacoste Street, Emeryville, CA. May 27.
- Aqua Science Engineers (Aqua), 1986c. A Proposal for Installing a Fuel Contamination and Recovery System. August 27.
- Aqua Science Engineers (Aqua), 1986d. Phase II Extent of Groundwater Contamination Investigation, Bay Center. August 27.
- Aqua Science Engineers (Aqua), 1986e. Project Report Soils Gas Investigation, Bay Center. August 27.
- Aqua Science Engineers (Aqua), 1986f. Request for Additional Information Regarding Aeration and Sampling Soils Contaminated with Motor Fuel Hydrocarbons. Information addressed to the Alameda County Health Care Services, Hazardous Materials Unit. July 28.
- Aqua Science Engineers (Aqua), 1986g. Additional Information Regarding Aeration and Sampling Soils Contaminated with Motor Fuel Hydrocarbons. July 11.
- Bay Area Air Quality Management District (BAAQMD), 1987. Letter to the Martin Company authorizing the contaminated groundwater and oil recovery system. April 13.
- Chan, Barney, 2007. Project Officer, Alameda County Department of Environmental Health. Personal communication to Richard Makdisi of Stellar Environmental Solutions, Inc. April 10.
- Creps, Rob, 2007. PES Environmental, Inc. Project Manager for the Phase I Apartment Complex Remediation. Personal communication to Teal Glass and Richard Makdisi of Stellar Environmental Solutions, Inc. April 19.

- Earth Metrics, Inc., 1986a. Draft Soils Contamination Characterization for Garret Freight Lines Emeryville Site, 64th Street and Lacoste, Emeryville, CA. March 14.
- Earth Metrics, Inc., 1986b. Environmental Assessment for the Proposed Bay Center Apartment Complex in the Redevelopment Project Area of the City of Emeryville. May.
- Earth Metrics, Inc., 1986c. Draft Work Plan for Soils Contamination Characterization of Bay Center Site, Emeryville, CA. May 19.
- Earth Metrics, Inc., 1986d. Soils and Groundwater Contamination Characterization of Bay Center Site, Emeryville, CA. August 20.
- Earth Metrics, Inc., 1987. Safety Plan for Bay Center Offices and Apartments in Emeryville, CA. September 15.
- Geomatrix, 1988. Observation and Testing of Earthwork Construction, Bay Center Apartments. May 20.
- Groundwater Technology, Inc. (GTI), 1987a. Letter to Alameda County Health Department Hazardous Materials Division citing irregularities in the Aqua Science Laboratory Results. August 19.
- Groundwater Technology, Inc. (GTI), 1987b. Report of Further Subsurface Hydrocarbon Investigation, Emeryville, CA, Bay Center Project. September 8.
- Groundwater Technology, Inc. (GTI), 1989a. Well Replacement and Groundwater Assessment Report, Bay Center Project, Emeryville, CA. June.
- Groundwater Technology, Inc. (GTI), 1989b. Water Treatment System Start-Up Report, Bay Center Project, Christie and 64th Streets, Emeryville, CA. April 10.
- Groundwater Technology, Inc. (GTI), 1990a. First Quarter Sampling Event. Laboratory Analyses at the Bay Center Project. July 24.
- Groundwater Technology, Inc. (GTI), 1990b. Letter to the Bay Center Apartment Associates detailing problems with the groundwater extraction system. August 14.
- Groundwater Technology, Inc. (GTI), 1990c. Quarterly Report, Bay Center Apartment Associates, Bay Center Project, Christie and 64th Streets, Emeryville, CA. October 31.
- Groundwater Technology, Inc. (GTI), 1991a. Quarterly Report, Bay Center Project, Christie and 64th Streets, Emeryville, CA. January.

- Groundwater Technology, Inc. (GTI), 1991b. Quarterly Status Report. April 15.
- Harding Lawson Associates (HLA), 1991. Preliminary Hazardous Materials Site Assessment. December 16.
- Harding Lawson Associates (HLA), 1992a. Results of Soil and Groundwater Investigation. May 6.
- Harding Lawson Associates (HLA), 1992b. Hazardous Waste Management Plan. May 26.
- Harding Lawson Associates (HLA), 1992c. Conceptual Design of Venting System, Emerybay II Apartments. November 24.
- Harding Lawson Associates (HLA), 1993. Results of Soil Sampling, Emerybay II Apartments. April 21.
- Harding Lawson Associates (HLA), 1994. Results of Services During Construction, Emerybay Apartments Phase II. May 19.
- Johnson, Mark, 2007. Project Officer, Regional Water Quality Control Board. Personal communication to Teal Glass of Stellar Environmental Solutions, Inc. April 11.
- Martin Company, 1986a. Letter to Lowell Miller of Alameda County Health Care Services documenting agreements for the construction workplan involving contaminated soil. June 5.
- Martin Company, 1986b. Letter to Tom Owens of Emeryville Community Developers, Inc. documenting recognized contamination issues. May 21.
- Martin Company, 1986c. Letter to Rafat Shahid of Alameda County Health Care Services documenting agreement of drum removal. May 16.
- Martin Company, 1986d. Letter to the State Water Resources Control Board documenting unused underground storage tanks. December 11.
- PES Environmental, Inc. (PES), 2004a. Status Report, Investigation of Subsurface Petroleum Hydrocarbon Residuals. Bay Center Apartments, Christie Avenue and 64th Street, Emeryville, CA. April 5.
- PES Environmental, Inc. (PES), 2004b. Investigation for Missing Wells. April 5.
- PES Environmental, Inc. (PES), 2004c. Status Report. August 30.

- PES Environmental, Inc. (PES), 2007. Construction Implementation and Semi-Annual Operations Report. Free-Phase Hydrocarbon Product Remediation System. EmeryBay Commercial Association, Christie Avenue and 64th Street, Emeryville, CA. March 30.
- Regional Water Quality Control Board (Water Board), 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report.
- Regional Water Quality Control Board (Water Board), 2008. Environmental Screening Levels for residential properties on shallow soils where groundwater is a drinking water resource / is not a drinking water resource. Written February 2005, revised May 2008.
- Stellar Environmental Solutions, Inc. (SES), 2007. Phase I Environmental Site Assessment 6425-6475 Christie Avenue, Emeryville, CA. April 17.
- Stellar Environmental Solutions, Inc. (SES), 2008a. 2007 Annual Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. January 28.
- Stellar Environmental Solutions, Inc. (SES), 2008b. Quarter One 2008 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. May 7.
- Stellar Environmental Solutions, Inc. (SES), 2008c. Second Quarter 2008 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. July 18.
- Stellar Environmental Solutions, Inc. (SES), 2008d. Third Quarter 2008 Groundwater Monitoring and Product Extraction Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. October 15.
- Stellar Environmental Solutions, Inc. (SES), 2009a. Fourth Quarter 2008 Groundwater Monitoring, Product Extraction Report, and Annual Summary. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. January 16.
- Stellar Environmental Solutions, Inc. (SES), 2009b. Indoor Air and Preferential Pathway Survey Report. EmeryBay Condo Phase I Parking Garage 6400 Christie Avenue, Emeryville, CA. April 4.

8.0 LIMITATIONS

This report has been prepared for the exclusive use of Emerybay Commercial Association, their authorized representatives and assigns, and the regulatory agencies. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on a review of previous investigators' findings at the site, as well as site investigations conducted by SES in 2007, 2008, and 2009. This report has been prepared in accordance with generally accepted methodologies and standards of practice. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the date of this report. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the activities completed.

APPENDIX A

Historical Groundwater Well Analytical Results

TABLE A Historical Groundwater Monitoring Well Groundwater Analytical Results Petroleum and Aromatic Hydrocarbons (µg/L) 6400 Christie Avenue, Emeryville, California

	MW-1												
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE				
1	Dec-88	380	17,000	NA	8,600	940	250	570	NA				
2	May-89	130	24,000	NA	16,000	2,100	300	1,200	NA				
3	Feb-91	<10	22,000	NA	6,800	3,500	410	2,000	NA				
	Monitoring well abandoned - date unclear												

	MW-2												
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE				
1	Dec-88	72	22	NA	< 0.5	< 0.5	< 0.5	< 0.5	NA				
2	May-89	40	18	NA	< 0.5	< 0.5	< 0.5	< 0.5	NA				
3	Feb-91	83	<10	NA	< 0.3	< 0.3	< 0.3	< 0.6	NA				
	Monitoring well abandoned - date unclear												

				MW	7-3				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	<10	4,200	NA	77	1,400	140	560	NA
2	May-89	110	1,800	NA	64	250	61	110	NA
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	3,400	440	3,900	< 0.5	< 0.5	1.5	<1.0	9.7
5	Dec-06	350	280	230	< 0.5	< 0.5	< 0.5	< 0.5	2.0
6	Dec-07	960	150	NA	0.54	0.54	< 0.5	< 0.5	< 2.0
7	Mar-08	6,600	450	NA	< 0.5	< 0.5	1.8	2.0	4.3
8	Jun-08	4,500	440	NA	< 0.5	< 0.5	4.0	2.0	9.5
9	Sep-08	1,700	280	NA	< 0.5	< 0.5	1.0	< 0.5	<2.0
10	Dec-08	2,300	240	NA	< 0.5	< 0.5	1.1	< 0.5	<2.0
11	Mar-09	4,300	260	NA	1.3	< 0.5	1.8	0.5	2.9

				MW	-4				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	<10	100	NA	2.0	1.0	< 0.5	2.0	NA
2	May-89	60	18	NA	1.0	< 0.5	< 0.5	< 0.5	NA
3	Feb-91	<10	<10	NA	< 0.3	< 0.3	< 0.3	< 0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	<50	50	<200	< 0.5	< 0.5	< 0.5	< 0.5	<1.0
6	Dec-07	710	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
7	Mar-08	680	57	NA	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
8	Jun-08	620	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
9	Sep-08	440	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
10	Dec-08	730	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
11	Mar-09	940	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<2.0

				MW	-5				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	530	890	NA	<1.0	<1.0	1.0	3.0	NA
2	May-89	90	5.0	NA	1.0	< 0.5	< 0.5	< 0.5	NA
3	Feb-91	58	<10	NA	0.6	< 0.3	< 0.3	< 0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	330	<25	<200	0.6	< 0.5	< 0.5	< 0.5	<1.0
6	Dec-07	5,100	1.3	NA	1.3	< 0.5	< 0.5	1.23	< 2.0
7	Mar-08	4,500	<50	NA	0.53	< 0.5	< 0.5	< 0.5	<2.0
8	Jun-08	3,300	<50	NA	0.64	< 0.5	< 0.5	< 0.5	<2.0
9	Sep-08	4,200	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0
10	Dec-08	5,200	<50	NA	0.61	< 0.5	< 0.5	< 0.5	<2.0
11	Mar-09	5,800	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<2.0

				MW	7-6				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	<10	52	NA	1.0	< 0.5	< 0.5	< 0.5	NA
2	May-89	140	31	NA	1.0	< 0.5	< 0.5	< 0.5	NA
3	Feb-91	130	40	NA	0.8	< 0.3	< 0.3	< 0.6	NA
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	200	43	<200	1.1	< 0.5	< 0.5	< 0.5	<1.0
6	Dec-07	1,000	< 50	NA	0.98	0.81	< 0.5	0.5	<2.0
7	Mar-08	940	<50	NA	0.87	1.0	< 0.5	< 0.5	< 2.0
8	Jun-08	1,100	56	NA	0.92	< 0.5	< 0.5	< 0.5	2.9
9	Sep-08	1,000	<50	NA	0.91	< 0.5	< 0.5	< 0.5	< 2.0
10	Dec-08	1,400	< 50	NA	1	< 0.5	< 0.5	< 0.5	<2.0
11	Mar-09	1,200	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<2.0

				MW	7-7				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in M	March 2004				
1	Mar-04	1,600	490	1,900	240	100	14	56	<2.5
2	Dec-06	420	<25	470	< 0.5	< 0.5	< 0.5	< 0.5	<1.0
3	Dec-07	6,300	3,100	NA	640	28	48	231	<10
4	Mar-08	7,000	360	NA	140	5.8	11	58	<2.0
5	Jun-08	5,400	1,700	NA	480	15	28	139	< 2.0
6	Sep-08	9,400	1,200	NA	330	12	21	88	< 2.0
7	Dec-08	8,700	2,200	NA	640	100	43	185	<4.0
8	Mar-09	8,700	1,700	NA	510	33	47	220	<10

				MW	-8				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in I	Aarch 2004				
1	Mar-04	140,000	51,000	56,000	19,000	720	2,400	3,300	< 50
2	Dec-06	2,400	29,000	<380	13,000	<100	640	500	<200
3	Dec-07	5,900	30,000	NA	11,000	180	650	561	<100
4	Mar-08	21,000	47,000	NA	10,000	260	1,200	458	< 2.0
5	Jun-08	7,300	27,000	NA	9,300	140	790	290	<2.0
6	Sep-08	13,000	35,000	NA	11,000	190	900	402	<100
7	Dec-08	7,600	19,000	NA	6,800	110	380	236	< 50
8	Mar-09	10,000	22,000	NA	9,400	200	640	358	<50

				MW	7-9				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in !	March 2004				
1	Mar-04	1,300	95	1,500	4.7	0.68	< 0.5	<1.0	< 0.5
2	Dec-06	<50	92	<200	2.8	< 0.5	< 0.5	< 0.5	<1.0
3	Dec-07	8,400	84	NA	4.7	1.1	< 0.5	1.9	<2.0
4	Mar-08	8,600	100	NA	4.1	1.1	< 0.5	< 0.5	2.0
5	Jun-08	5,900	98	NA	4.9	< 0.5	< 0.5	< 0.5	2.3
6	Sep-08	9,300	130	NA	4.6	< 0.5	< 0.5	< 0.5	< 50
7	Dec-08	7,800	95	NA	4	0.54	< 0.5	< 0.5	<2.0
8	Mar-09	9,400	130	NA	4.6	< 0.5	< 0.5	< 0.5	< 2.0

				MW	-10				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in N	March 2004				
1	Mar-04	840,000	14,000	<100,000	4,000	77	200	120	< 50
2	Dec-06	19,000	12,000	<4,000	4,600	42	90	52	< 50
3	Dec-07	4,700	13,000	NA	5,300	96	42	86	< 50
4	Mar-08	280,000	10,000	NA	2,600	50	37	58.7	22
5	Jun-08	4,800	10,000	NA	3,800	62	24	61	<2.0
6	Sep-08	4,700	1,200	NA	350	11	3.4	11	<2.0
7	Dec-08	3,200	2,900	NA	550	45	15	56	<20
8	Mar-09	6,200	8,200	NA	890	46	78	130	<20

	MW-11												
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE				
				Installed in	May 2004								
1	Dec-06	< 50	920	<200	26	4.5	1.8	5.4	<1.0				
2	Dec-07	6,900	1,500	NA	320	44	53	140	<2.0				
3	Mar-08	7,500	1,200	NA	120	7.6	10	24.9	3.0				
4	Jun-08	5,100	2,000	NA	190	11	7.7	16.3	<2.0				
5	Sep-08	5,600	2,200	NA	260	20	34	60	<2.0				
6	Dec-08	7,800	2,100	NA	270	14	7.6	15.6	<2.0				
7	Mar-09	7,100	1,400	NA	200	6.4	7.3	10.4	<2.0				

				MW	-12				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	May 2004				
1	Dec-06	< 50	19,000	<200	9,100	51	<50	110	<100
2	Dec-07	2,700	17,000	NA	8,000	110	25	115	<40
3	Mar-08	3,300	33,000	NA	9,200	140	85	116	<2.0
4	Jun-08	3,000	17,000	NA	6,600	95	50	110	<2.0
5	Sep-08	3,100	14,000	NA	6,200	79	18	83	<10
6	Dec-08	3,600	19,000	NA	7,900	140	72	124	<50
7	Mar-09	4,100	14,000	NA	6,100	150	130	111	<40

	MW-13													
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE					
				Installed in	April 2004									
1	Dec-06	12,000	87,000	2,100	18,000	470	2,400	3,500	<400					
2	Dec-07	NA	68,000	NA	19,000	650	1,700	2,440	<100					
3	Mar-08	1,100,000	98,000	NA	19,000	820	2,300	3,190	<100					
4	Jun-08	71,000	44,000	NA	12,000	510	1,600	1,950	<2.0					
5	Sep-08	440,000	52,000	NA	<100	500	1,600	1,500	<100					
6	Dec-08	1,100,000	2,700,000	NA	23,000	<250	40,000	45,000	<1,000					
7	Mar-09	2,000,000	330,000	NA	25,000	1,300	6,400	8,500	<1,000					

	MW-14													
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE					
				Installed in	April 2004									
1	Dec-06	< 50	8,300	<200	3,700	240	230	260	<50					
2	Dec-07	2,600	6,800	NA	3,100	150	220	168	<20					
3	Mar-08	4,400	18,000	NA	4,400	330	340	245	<2.0					
4	Jun-08	2,600	7,700	NA	2,600	180	200	141	<2.0					
5	Sep-08	2,500	4,100	NA	1,300	50	80	61	<10					
6	Dec-08	2,800	2,300	NA	830	27	45	30.7	<10					
7	Mar-09	3,200	13,000	NA	4,300	870	260	283	<50					

				MW	-15				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
				Installed in	April 2004				
1	Dec-06	<50	9,200	<200	3,700	<25	60	57	< 50
2	Dec-07	3,300	8,100	NA	3,000	48	28	44.5	<20
3	Mar-08	3,000	13,000	NA	3,600	66	210	59.5	<64
4	Jun-08	2,900	15,000	NA	5,800	61	230	56.4	< 2.0
5	Sep-08	3,400	18,000	NA	7,800	73	270	59.9	<10
6	Dec-08	3,000	20,000	NA	7,600	95	300	84.2	< 50
7	Mar-09	3,400	17,000	NA	7,200	91	170	60	< 50

	MW-16													
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE					
				Installed in	April 2004									
1	Dec-06	< 50	190	<200	11.0	1.4	< 0.5	< 0.5	<1.0					
2	Dec-07	8,500	71	NA	13	2.6	< 0.5	1.46	<2.0					
3	Mar-08	12,000	60	NA	11	0.73	< 0.5	< 0.5	<2.0					
4	Jun-08	10,000	120	NA	13	2.2	< 0.5	< 0.5	2					
5	Sep-08	8,200	64	NA	9.9	1.9	< 0.5	< 0.5	<2.0					
6	Dec-08	8,800	60	NA	11	2.8	< 0.5	0.53	<2.0					
7	Mar-09	14,000	78	NA	12	2.3	< 0.5	< 0.5	<2.0					

				MW	-17				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
				Installed in	April 2004				
1	Dec-06	< 50	14,000	<200	3,400	1,100	480	< 0.5	<1.0
2	Dec-07	2,900	5,000	NA	1,100	260	110	206	<10
3	Mar-08	3,100	6,800	NA	1,200	110	91	94	21
4	Jun-08	2,900	7,200	NA	1,100	45	75	66	< 2.0
5	Sep-08	3,300	5,500	NA	900	63	69	69	<10
6	Dec-08	3,200	7,100	NA	1,100	530	190	390	<10
7	Mar-09	3,000	5,400	NA	770	150	87	161	< 2.0

	MW-18													
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE					
				Installed in	May 2004									
1	Dec-06	< 50	120	<200	22	6.2	3.2	6.2	< 2.0					
2	Dec-07	8,600	< 50	NA	0.98	< 0.5	< 0.5	< 0.5	<2.0					
3	Mar-08	9,800	< 50	NA	0.52	< 0.5	< 0.5	< 0.5	2.0					
4	Jun-08	8,800	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	3.1					
5	Sep-08	8,600	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<2.0					
6	Dec-08	9,300	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<2.0					
7	Mar-09	10,000	<50	NA	< 0.5	< 0.5	< 0.5	< 0.5	<2.0					

				MW	-E				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	100	5,400	NA	3,200	690	97	330	NA
2	May-89	NS	NS	NS	NS	NS	NS	NS	NS
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	470	810	< 500	340	6.1	2.2	7.7	<1.0
5	Dec-06	280	1,900	<200	910	<10	10	<10	<20
6	Dec-07	6,900	7,000	NA	3,300	50	51	80	<20
7	Mar-08	6,300	2,700	NA	780	17	20	20.9	12
8	Jun-08	5,200	7,400	NA	2,900	43	85	50	< 2.0
9	Sep-08	7,800	11,000	NA	3,800	170	130	257	<50
10	Dec-08	9,400	9,100	NA	3,400	110	180	182	<50
11	Mar-09	5,600	850	NA	270	7.5	13	17.5	<2.0

				RW	-1				
Sampling Event No.	Date Sampled	TEH-d	TVH-g	TEH-mo	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
1	Dec-88	NS	NS	NS	NS	NS	NS	NS	NS
2	May-89	NS	NS	NS	NS	NS	NS	NS	NS
3	Feb-91	NS	NS	NS	NS	NS	NS	NS	NS
4	Mar-04	NS	NS	NS	NS	NS	NS	NS	NS
5	Dec-06	< 50	640	<200	100	1.3	2	1.6	<1.0
6	Dec-07	2,100	770	NA	110	< 0.5	3.8	1.96	<2.0
7	Mar-08	11,000	890	NA	100	4.2	4.4	2.0	< 2.0
8	Jun-08	1,500	1,200	NA	290	4.8	10	4.8	<2.0
9	Sep-08	1,900	1,400	NA	280	9.8	10	6.7	<2.0
10	Dec-08	54,000	1,100,000	NA	500	<250	3,200	530	<1,000
11	Mar-09	2,800	950	NA	180	3.6	13	3	<2.0

Notes:
The 1988, 1989, and 1991 sampling events were conducted by Groundwater Technology, Inc.

The 2004 and 2006 sampling events were conducted by PES Environmental. $\label{eq:permitted}$

NS = Not sampled

NA = Not analyzed for this constituent

All concentrations shown in $\mu g/L$

APPENDIX B

Groundwater Monitoring Field Data Sheets

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME STELLAR (e Bay cen	THE	PROJECT NUM	MBER MOSIA-	· IPI	
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIAĻS
Myron L	6226032	3/19/09	7.0 pt, (0.0 pt, 4.0 pt, 3900 gs			18.7	A
ULTEAMETED ANYROW L.	6209574	3/19/09	pd 7, 10, 4, 3900	7.16, 9.56, 4,10,	Yes	18.9	P
HALLI TULBUNSTEE	680100027400	3119109	106/20	911/21	YES		JP
MACH TURBIDIMAR	0706003524	3119/09	100/20	104/22	455		A
HACH TURBIDIMETE	08030c028731	3/20/09	100/20	92 21	YES		2
MUBON L	6215691	3/20109	PH 7, 10, 4 3900 ME	7.02,9.95, 3.97 3912	755	17.6	R
HACH TURBIDIMETER	07060023524	3/23/09	160120	21/109	રોદંડ	ent-magazina	S
MURDN L	6226032	3 23109	PH 7,10,4 3900mm	7.10, 10.18, 407	YES	13.7	R
	ar, .					-	

WELL GAUGING DATA

Project # 090319-5P1 Date 3/19/03 Client Stellar Environmental

Site 65th & Bay Streets, Congryville, CA

		Well Size	Sheen /	1	Thickness of Immiscible		Depth to water	Depth to well	Survey Point: TOB or	
Well ID	Time	(in.)	Odor		Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	100	Notes
MW-3	MIS	2		24.71			794	2491	1	
mw-4	1042	2					690	24.88		
mw-5	1024	ح					931	24.74		
mw-6	1059	2					6.45	23.25		
MW-17	0955	3/4					8.89 +0.1-3-**	19.50 14.46-1		
MW-7	CEOI	-3/4					10.13	19.86		
MW-9		314	02002			·	9.31	19.63		
MW-11	1113	3/4	, .				10.20	1965		
MW-12	1	3/4	oder				8.50	18.97		00
mw-16		3/4	-				8.88	19.03		
MW-18		3/4					7.75	19.49		
MW-E	1100	7.					9.79	44.92		
MW-14	1005	3/4					පි.ෂිදි	18,35		
MW-15	0955	3/4	-				8.70	18.85		
mw-8	1048	3/4		8.89			40.13	19-86		
MW-10	1000	314		8.54	0.04		8.58	***		
MW-13	1021	3/4		9.14	0.12	- NO.	9.26	- Chippengal	V	

WELL GAUGING DATA

Project # <u>0903/9-JP/</u> Date <u>3/19/09</u> Client <u>Stellar Gruinmenti</u>

Site <u>65th & Bay Streets, Conerquille, CA</u>

Time	Well Size (in.)	Sheen / Odor		Immiscible	Immiscibles Removed		Depth to well bottom (ft.)	Survey Point: TOB or	Notes
150	12		1.06			· · · · · · · · · · · · · · · · · · ·		1	
,									
,									
			A. Carrier and Car						
				W. W. C.					
							·		
	,								
		Time (in.)	Time (in.) Odor	Time (in.) Odor Liquid (ft.) 150 12 996	Time (in.) Odor Liquid (ft.) Liquid (ft.) 150 12 906	Time (in.) Odor Liquid (ft.) Liquid (ft.) (ml)	Time (in.) Odor Liquid (ft.) Liquid (ft.) (ml) (ft.) 150 12 906 ——— 150 12 906 ——— 150 12 906 ——— 150 12 906 ——— 150 12 906 ———————————————————————————————————	Time (in.) Odor Liquid (ft.) Liquid (ft.) (ml) (ft.) bottom (ft.) 150 12 9166	Time (in.) Odor Liquid (ft.) Liquid (ft.) (ml) (ft.) bottom (ft.)

Page 1 of 2

WELLHEAD INSPECTION CHECKLIST

Date 3/9/0	Я	Client	शहा	LAR				
Site Address _	65th BAY 8	reser,	EMBRY18	A) au				
Job Number _	MD314-761			Tec	hnician	JP, CM, E	<u>L</u>	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
Mw-3					VVCHDOX		×	
MW-4				<i>.</i>			×	
Mw-5							Х	
Mw-6			,				X	
MW-17						14	X	
Mw-7							X	
MW ² q			7				X	
Mw-li	X							
MW-12							Х	
MW-10							X	
MW-18	X							
MW-E	-78						X	
Mw -14	X							
Nn-15	X							
Nm-8	X							
Wm-10							X	·
NOTES: N	1W-3-6: CHE	BOX,	MW-17:	1/2 804	s M8SIN	G Man : '	1/2 BOUTS, MM	n-9: 100ch
SK BOUS MY	ssing, hm-10:	1/2 8043	, MN-16: 3	h BOUTS,	MM-E:	2/2 BOUR	MISSARIEM	ack, MW-IT
1/2 BOLTS N							·	

SAN JOSE

Page 2 of 2

WELLHEAD INSPECTION CHECKLIST

χ,	Client	SELL	<u> </u>				
24 BM 81	EMERY	VIUER	ŧ				
MO319-JM				hnician	1P, CM, 1	<u> </u>	
Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
X						·	
X			٨				
		,					
					r.f		
		*		,			
			• • •				
					17		
W-1: VALE,							
			1				

				, , , , , , , , , , , , , , , , , , ,			
	Well Inspected - No Corrective Action Required X X	Well Inspected - No Corrective Action Required X X	Well Inspected - No Corrective Action Required X X X X X X X X X X X X X	Well Inspected No Corrective Action Required X X X X X X X X X X X X X	Well Inspected No Corrective Action Required X X X A Technician Technician Cap Replaced From Wellbox Cleaned Cleaned Cleaned Cleaned Cleaned Components Cleaned Cleaned Cleaned Components Cleaned Cleaned Components Cleaned Components Cleaned Cap Replaced From Wellbox Cleaned Cap Replaced From Wellbox A A A A A A A A A A A A A	Wetl Inspected No Corrective Action Required X X X X A Technician JR, CM, A Lock Removed From Wetlbox Replaced Neglaced No Corrective Action Required A A A A A A A A A A A A A	Well Inspected No Corrective Action Required X X X A Cap Replaced Repl

LL MONITORING DATA SH . I

Project #:	0903	19-	JP(Clien	t: 5	tello	ur (Che.		
Sampler:	(JP)C	m/-	fc	Date:	3	119/0	29			
Well I.D.:	mw	- =		Well	Diametei	(2) 3	4	6 8		
Total Well	Depth (TI	D): 40	1.72	Depth	Depth to Water (DTW): 9.79					
Depth to Fi	ree Produc	:t:		Thick	Thickness of Free Product (feet):					
Referenced	to:	#VC) Grade	D.O. I	Meter (if	req'd):		YSI HACH		
DTW with	80% Rech	arge [(I	Height of Water	Colum	ın x 0.20) + DTW]: 16	.78		
Purge Method:	Bailer Disposable F Positive Air Electric Subr	Displaceme	· · · · · · · · · · · · · · · · · · ·	Waterra Peristaltic etion Pump	Well Diamete		Other:	Extraction Port Dedicated Tubing Subject Diameter Multiplier		
5.6 (Clase Volume		3 ified Volum	mes Calculated Vo	_ Gals. olume	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163		
Time	Temp (°F or (e)	рН	Cond. (mS or μ S)	(N	bidity TUs)	Gals. Rer	noved	Observations		
1327	13.7	7.81	3751	57		S.(
1350	13.8	7.88	3/9)	6/1	/	lled				
1405	14.2	7.87	4202	71000)	16.8				
Did well dev			·			y evacuat	ed: [6.8		
Sampling Da	ate: 3/23	109	Sampling Time	:M35	>	Depth to	Water	:15.63		
Sample I.D.:	$M\omega$	- 5		Labora	tory:	Kiff Cal	Science	Other CRT		
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: 5	LL (COC		
EB I.D. (if a	pplicable):		@ Time	Duplica	ate I.D. (if applica	ble):			
Analyzed for	TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:				
O.O. (if req'o	d): Pre	e-purge:		mg/L	Po	st-purge:		· mg/L		
D.R.P. (if red	ŋ'd): Pre	e-purge:		mV	1 0					

LL MONITORING DATA SI

		·				
Project #:	0903	19-3	JP1	Client:	Stellar	Cov.
Sampler:	OP/C	m//	tc	Date:	3/19/09	3/23/59
Well I.D.:	mw	-3		Well Diame	eter: 2 3 4	6 8
Total Well			1.91	Depth to W	ater (DTW): 7.0	74
Depth to Fi	ree Produc	t: 2	4.71	Thickness o	f Free Product (fe	eet):
Referenced	to:	#VC)) Grade	D.O. Meter	(if req'd):	YSI HACH
DTW with	80% Rech	arge [(H	Height of Water	Column x 0.	20) + DTW]: -	
	Positive Air Electric Subr	Displacement of the second of	ent Extrac Other	Waterra Peristaltic ction Pump Gals. Well Dia 1" 2" 3"	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47
I Case volume	Speci	fied Volum	nes Calculated Vo	lume		
Time	Temp (°F or °C)	pН	Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations
1124	NO	PARAM	ETER DUE TO E	PEROUST/SHEE	22 187 MAST	DW: 8.21
1127		Puese	2 400 cm ML	MM		DIW: 8.72
1133						BW: 8,96
Did well de	water?	Yes	No	Gallons actu	ally evacuated:	
Sampling D	ate: 3 2 3	X179	Sampling Time	: 1135	Depth to Wate	er: 8,9 6
Sample I.D.	: mw	- 3		Laboratory:	Kiff CalScience	e Other CRT
Analyzed fo	r: TPH-G	ВТЕХ	MTBE TPH-D	Oxygenates (5)	Other: See	COC
EB I.D. (if a	pplicable)	•	@ . Time .	Duplicate I.D). (if applicable):	
Analyzed fo	r: TPH-G	BTEX		Oxygenates (5)		
D.O. (if req'	d): Pr	e-purge:	A. A. S.	mg/L	Post-purge:	nng/L
O.R.P. (if re	q'd): Pro	e-purge:		mV	Post-purge:	mV

LL MONITORING DATA SH . 1

Project #:	0903	19-3	5P(Client: 5	tellar	CNU.			
Sampler:	(P)/C	-m/A	-C	Date: 3	119/09				
Well I.D.:	MW	-4		Well Diamete	r:② 3 4	6 8			
Total Well	Depth (TI): 24	.88	Depth to Water (DTW): 6.90					
Depth to Fr	ee Produc	t:		Thickness of Free Product (feet):					
Referenced	to:	PVC) Grade	D.O. Meter (it	freq'd):	YSI HACH			
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20)) + DTW]: lo	-50			
2.9 (Bailer Control	Displaceme	ent Extrac Other	Well Diamer	0.04 4" 0.16 6"	Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47			
l Case Volume	Speci	ified Volun	nes Calculated Vo	2"	0.37 Othe	r radius ² * 0.163			
Time	Temp	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations			
1250	15.5	7.%	1067	106	2.9				
1250	15.3	7.57	973.1	198	5.8				
1360	15.6	7.60	990.5	170	8.7				
Did well dev	water?	Yes (N ₀	Gallons actuall	y evacuated:	8.7			
Sampling D	ate: 3/19/	09	Sampling Time	: 1305	Depth to Wate	r: 070 0			
Sample I.D.	: mw	-4		Laboratory:	Kiff CalScience	e Other CRT			
Analyzed fo	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other: See	Coc			
EB I.D. (if a	pplicable)		@ Time	Duplicate I.D.	(if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'o	d): Pr	e-purge:		mg/ _L P	ost-purge:	mg/L			
D.R.P. (if re	q'd): Pro	e-purge:		mV P	ost-purge:	mV			

LL MONITORING DATA SE T

Project #:	0903	19-:	JP(Client	: 5	tellar	Cou.	
Sampler:	JP/C	M/A	0	Date:	3	119/09		
Well I.D.:	MW	-5		Well I	Diameter	:(2) 3 4	6 8	
Total Well	Depth (TI	D): 24	-74	Depth to Water (DTW): Q3(
Depth to Fr				Thickr	ness of F	ree Product (fe	et):	
Referenced	to:	₽VC)) Grade	D.O. N	Aeter (if	req'd):	YSI HACH	
DTW with	80% Rech	arge [(F	Height of Water	Colum	n x 0.20) + DTW]: 12. ¹	10	
2.5 (Bailer Oisposable E Positive Air I Electric Subr	Displacement of the second of	Other	Waterra Peristaltic ction PumpGals.	Well Diamete 1" 2"	0.04 4" 0.16 6"	X Disposable Bailer Extraction Port Dedicated Tubing : Diameter Multiplier 0.65 1.47	
l Case Volume	Speci	fied Volun	nes Calculated Vo	olume	3"	0.37 Other	radius ² * 0.163	
Time	Temp) pH	Cond. (mS or as)	(NT	oidity ΓUs)	Gals. Removed	Observations	
1247	17.7	7,11				2.5	black	
1256	17.6	7.68	2510	>10	00	5.0	black	
1305	17.8	7.77	2549	>10	00	7.5	black	
Did well dev	water?		No)			y evacuated:	7.5	
Sampling D	ate: $3/19$	109	Sampling Time	e: <u>'(31</u>	5	Depth to Wate	r: 12.35	
Sample I.D.	: mw	- 5		Labora	tory:	Kiff CalScience	Other CRT	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: See	COC	
EB I.D. (if a	pplicable)	•	(i) Time	Duplica	ite I.D. (if applicable):		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:		
D.O. (if req'	d): Pr	e-purge:	CONTRACTOR AND	$^{ m mg}/_{ m L}$	Po	ost-purge:	mg/L	
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:	mV	

LL MONITORING DATA SE

Project #:	0903	19-3	JP(Client	: 5	tellar	Cou.			
Sampler:	JP/C	-m/A	1-C	Date:	3	119/09				
Well I.D.:	MW	- 6		Well I	Diamete:	r: 🕢 3 4	6 8			
Total Well	Depth (TI)): <u>2</u> 3	3.25	Depth	Depth to Water (DTW): 6.45					
Depth to Fi	ee Produc	t:		Thick	Thickness of Free Product (feet):					
Referenced	to:	PVC) Grade	D.O. N	D.O. Meter (if req'd): YSI HACH					
DTW with	80% Rech	arge [(F	Height of Water	Colum	Column x 0.20) + DTW]: 7,8					
Purge Method:	Bailer Disposable E Positive Air Electric Subr	Displacem	ent Extrac Other	_	Sampling Method Othe	Disposable Bailer Extraction Port Dedicated Tubing r:				
1" 0.04 4" 0.65										
1 Case Volume	Gals.) X Spec	ified Volur	mes Calculated Vo	_ Gals. olume	3"	0.16 6" 0.37 Othe	1.47 er radius ² * 0.163			
Time [257	Temp (°F or 🕥	1284	Cond. (mS or (ms)	1	bidity TUs)	Gals. Removed	Observations			
1303	15.0	11.09	162/	6/		5.4				
1309	14.8	11.14	159/	66	**************************************	8-1				
			2							
Did well de	water?	Yes	(No)	Gallon	s actuall	y evacuated:	8./			
Sampling D	ate: 3//	1/09	Sampling Time	e: 13 2	0	Depth to Wate	er: 6.5]			
Sample I.D.	: mw	- 6		Labora	tory:	Kiff CalScienc	e Other CRT			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: See	Coc			
EB I.D. (if a	pplicable)	:	@ Time	Duplic	ate I.D.	(if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:				
D.O. (if req'	d): Pr	e-purge:		mg/ _L	Р	ost-purge:	mg/L			
O.R.P. (if re	q'd) : Pr	e-purge:		mV	Р	ost-purge:	mV			

LL MONITORING DATA SI

Project #:	0903	19-3	JP(Client:	5	fellan	- (En.	
Sampler:	(JP)	m/A	-C	Date:	3	119/0	a		
Well I.D.:	MW	1		Well Di	ameter	:: 2 3	4	6 8 (3)4)	
Total Well	Depth (TI	D):19.6	6	Depth to Water (DTW): 0,13					
Depth to Fr	ee Produc	:t:		Thickne	Thickness of Free Product (feet):				
Referenced	to:	₽VC)	Grade	D.O. Me	eter (if	req'd):		YSI HACH	
DTW with	80% Rech	arge [(F	leight of Water	Column	x 0.20) + DTW]:	12.	D7	
Purge Method:	Bailer Disposable E Positive Air Electric Subi	Displaceme	•			Sampling M	Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing	
0,19 (Case Volume	Gals.) XSpec	3 ified Volun	es Calculated Vo	_ Gals.	/ell Diamete 1" 2" 3"	0.04 0.16 0.37	Well D 4" 6" Other	iameter Multiplier 0.65 1.47 radius ² * 0.163	
Time	Temp	pН	Cond. (mS or μS)	Turbio (NTU	-	Gals. Rem	oved	Observations	
1357	150	8.40	13.96	129		0.19			
1400	14.9	8.23	13.34	135		0,20			
1404	14.9	8.22	12.96	15%		0.57			

	T1V21								
Did well dev	water?	Yes	10	Gallons a	actuall	y evacuate	d: 7	0,57	
Sampling Da	ate: 3 19	[09_	Sampling Time	e:1410		Depth to V	Water	1200	
Sample I.D.:	mw	-7		Laborato	ry:	Kiff CalS	cience	Other CRT	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenate	es (5)	Other: 5	el (Coc	
EB I.D. (if a	pplicable)	•	@ Time	Duplicate	e I.D. (if applicat	ole):		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenate	s (5)	Other:			
D.O. (if req'o	d): Pr	e-purge:		mg/L	Po	ost-purge:		mg/L	
D.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:		mV	

LL MONITORING DATA SI

Project #:	0903	19-3	5P(Client: 5	tellar	CN.			
Sampler:	OP/C	M/A	-C	Date: 3	119/09				
Well I.D.:	MW	-8		Well Diamete	r: 2 3 4	6 8 34			
Total Well	Depth (TI)):		Depth to Wate	er (DTW): 9, (02			
Depth to Fi	ee Produc	t: 8,8		Thickness of I	Thickness of Free Product (feet):				
Referenced	to:	₽VC)) Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	Height of Water	Column x 0.20)) + DTW]:				
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme	·	Waterra Ceristaltic Cotion Pump Well Diamet	Sampling Method Other Multiplier Well 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing			
l Case Volume	Gals.) X	<u> </u>	=	_ Gals. 2"	0.16 6" 0.37 Other	1.47			
1 Case volume	Speci	fied Volum	nes Calculated Vo	olume		The state of the s			
Time	Temp (°F or °C)	рН	Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations			
1336		S	1 111 MEI	L NO PAI	STINETIESS	DTW: 9.21			
1339				L		DTW: 9.21			
1342			·	1	V	DTW: 9.22			
		V							
Did well de	water?	Yes (No	Gallons actuall	y evacuated:				
Sampling D	ate: 3/ze	2009	Sampling Time	: 1350	Depth to Wate	r:			
Sample I.D.	· mw	-8		Laboratory:	Kiff CalScience	other CRT			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	Coc			
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):				
Analyzed fo	r: TPH-G	BTEX	······································	Oxygenates (5)	Other:				
D.O. (if req'	d): Pro	e-purge:		mg/L P	ost-purge:	mg/L			
O.R.P. (if re	q'd): Pro	e-purge:	300 300 400 400 400 400 400 400 400 400	mV P	ost-purge:	mV			

LL MONITORING DATA SH . I

				CICILIO DILL	а. пои					
Project #:	0903	19-	5P(Client: 5	itellar	Cou.				
Sampler:	JP/C	m//-	fc	Date: 3	119/09					
Well I.D.:	mw	-9		Well Diamete	er: 2 3 4	6 8. (3)4)				
Total Well	Depth (T)	D): 19,	63	Depth to Wate	er (DTW): 9. 4	37				
Depth to Fi					Thickness of Free Product (feet):					
Referenced	to:	₽VC .	Grade	D.O. Meter (i						
DTW with	80% Recl			Column x 0.20						
Purge Method:	Bailer Disposable I Positive Air Electric Sub	Bailer Displacem	×	Waterra Peristaltic ction Pump	Sampling Method	d: Bailer Disposable Bailer Extraction Port Dedicated Tubing				
O. 23 O. 20 I Case Volume		3 ified Volur		Gals. Solume Well Diame 1" 2" 3"	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r • • • • • • • • • • • • • • • • • • •				
Time	Temp	рН	Cond. (mS or (tS)	Turbidity (NTUs)	Gals. Removed	, Observations				
1508	15.1	9.14	2386	39	0.23					
1511	15.0	9.46	2097	502	0.46					
1514	15.0	9.50	2053	571	0.69					
						X				
Did well dev	water?	Yes	NO)	Gallons actuall	y evacuated: (0.69				
Sampling Da	ate: 3/19/	O	Sampling Time	:1525	Depth to Wate					
Sample I.D.:	mW	_ 0		Laboratory:	Kiff CalScience	0.0				
Analyzed for	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other: See	Coc				
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.						
Analyzed for	r: TPH-G	BTEX		Oxygenates (5)	Other:					
O.O. (if req'o	d): Pr	e-purge:		mg/L P	ost-purge:	mg/ _L				
).R.P. (if red	u'd): Pr	e-nurge:			ost purgo:	7 7				

	A TO A CE	CLE.	707
LL MONITORING	·	№	i i
	LLLLL	C) H.	- д

Project #:	0903	19-	JP(Clier	Client: Stellar Cau.					
Sampler:	(JP)C	-M/1	1C	Date	3	119/00	73	20/09		
Well I.D.:	MW	-10		Well	Diamete	er: 2 3	4 6	8 (3/4)		
Total Well	Depth (TI	D):		Dept	Depth to Water (DTW): 8.58					
Depth to F	ree Produc	t: 8.	54	Thick	Thickness of Free Product (feet):					
Referenced	l to:	PVC	Grade	D.O.	Meter (it	f req'd):	YSI	НАСН		
DTW with	80% Rech	arge [(]	Height of Wate	er Colun	nn x 0.20)) + DTW]:				
Purge Method:	Bailer Disposable E Positive Air I Electric Subr	Displacem	ent Extr Other	Water Peristalt action Pun	ic		hod: ther:	Bailer Disposable Bailer Extraction Port Dedicated Tubing		
((l Case Volume	Gals.) XSpeci	fied Volui	=enesCalculated \	Gals. Volume	1" 2" 3"	0.04 0.16	ļ"	r <u>Multiplier</u> 0.65 1.47 radius ² * 0.163		
Time	Temp (°F or °C)	рН	Cond. (mS or μS)	1	bidity TUs)	Gals. Remov	ed	Observations		
	UNABUE	TO DE	TERMINE DI	TU DUE	TO PRZ	OUG ON PE	>B€			
1420						DEPTH TO	> Pika	Not: 8.46		
1425								8.46		
1428								8.46		
Did well dev	vater?	Yes (NI.	C 11	. 11					
Sampling Da			No Samuli Ti			y evacuated:				
		109	Sampling Tim	1e: 143	<u> </u>	Depth to Wa	iter:			
Sample I.D.:	1/100	<u>- 10</u>		Labora	tory:	Kiff CalScie	nce O	ther CRT		
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: See	2 CO	C		
EB I.D. (if a			@ Time	Duplic	ate I.D. (if applicable):			
Analyzed for	TPH-G	BTEX	MTBE TPH-D	Oxygen	` '	Other:				
O.O. (if req'o	i): Pre	-purge:	***	mg/L	Po	ost-purge:		^{mg} /L		
).R.P. (if red	g'd): Pre	-purge:		mV	Po	ost-purge:		mV		

LL MONITORING DATA SH. .T

Project #:	0903	19-3	JP(Client	: 5	tella	r (PW.		
Sampler:	JP/C	m/A	1-C	Date:	Date: 3/19/09					
Well I.D.:	MW.	- []		Well Diameter: 2 3 4 6 8 3/4						
Total Well	Depth (TI)):	19.65	Depth	Depth to Water (DTW): 10.20					
Depth to Fr	ee Produc	· .		Thick	ness of F	Free Produ				
Referenced	to:	#VC)) Grade		Meter (if			YSI HACH	1	
DTW with	80% Rech	arge [(F	Height of Water	Colum	n x 0.20)) + DTW]	: /	2.09		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	ailer Displaceme)	Waterra Peristaltic	;	Sampling I	Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing New funity Viameter Multiplier 0.65		
Case Volume	Gals.) X	fied Volum	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	_ Gals.	2"	0.16 0.37	6" Other	1.47 radius ² * 0.163	0.0:	
Time 1450	Temp (°F or °C) 15.3	рН 769	Cond. (mS or (aS))		bidity ΓUs)	Gals. Ren	noved	Observations		
1453	15.1	7.70	3906	33		0.4		Òdo		
1456	15.1	7.69	2901	13		0.6		(/		
Did well dev	water?	Yes (No)	Gallon	s actuall	ly evacuate	<u> </u>	0.6		
Sampling Da	ate: 3/19	1/09	Sampling Time	· · · · · · · · · · · · · · · · · · ·	00	Depth to		: 10-51		
Sample I.D.	mw	_ [/		Labora	tory:	Kiff Cals	Science	Other CRT		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: 5	el (Coc		
EB I.D. (if a	pplicable)	•	@ Time	Duplica	ate I.D.	(if applica				
Analyzed fo		BTEX		Oxygena		Other:	<i>J</i> -			
D.O. (if req'o	d): Pr	e-purge:	And report	mg/L	P	ost-purge:	and the state of t	^{mg} /L		
O.R.P. (if re	g'd): Pr	e-purge:		тV	P	ost-nurge:		mV		

			LL MUNI	LURING DA	IASH I	
Project #:	0903	19-	JP(Client:	Stellar	Car.
Sampler:	JPX	m//	fc.	Date:	5/19/09	3/20/09
Well I.D.:	MW	-12		Well Diamet	er: 2 3 4	6 8 (314)
Total Well	Depth (TI	D): 18,9	77	Depth to Wa	ter (DTW): 83	50
Depth to Fi	ree Produc	et:		Thickness of	Free Product (fe	eet):
Referenced	to:	₽VC)) Grade	D.O. Meter (YSI HACH
DTW with	80% Rech	narge [(H	Height of Water		(0) + DTW]: 10	
Purge Method:	Bailer Disposable E Positive Air Electric Subi	Bailer Displacem	*	Waterra Peristaltic ction Pump	Sampling Method	d: Bailer Disposable Bailer Extraction Port Dedicated Tubing TOBING
O.Z1 (C 1 Case Volume	Gals.) XSpec	3 ified Volun	$= \frac{0.63}{\text{Calculated Vo}}$	Gals. Gull Diam 1" 2" 3"	Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 ◆ ○2 er radius² * 0.163
Time	Temp (°F or Ĉ)	pH	Cond. (mS or (LS))	Turbidity (NTUs)	Gals. Removed	Observations
0905	14.9	7.16	1689	92	0.51	ODOR
0909	14.5	7.32	1550	81	0.42	, i
0913	14.4	7.34	1514	153	0.63	(I
Did well dev	vater?	Yes (No	Gallons actual	lly evacuated: 2)63
Sampling Da	ate: 3/20	0/09	Sampling Time		Depth to Wate	
Sample I.D.:	$M\omega$	_ 12		Laboratory:	Kiff CalScience	2.0
Analyzed for	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other: See	COC
EB I.D. (if a _l	pplicable)	•	@ . Time .	Duplicate I.D.	(if applicable):	
Analyzed for	:: ТРН-G	BTEX	MTBE TPH-D (Oxygenates (5)	Other:	
O.O. (if req'o	d): Pre	e-purge:		mg/L	Post-purge:	mg/L
D.R.P. (if red	g'd): Pre	e-purge:		mV I	Post-purge:	mV

LL MONITORING DATA SH

Project #: 6	090319	1-JP1		Client: Steu	LUR	
ال Sampler:	P			Client: Steu Date: 3/20/0	9	
Well I.D.:	Mw-13			Well Diameter		6 8 3/4
Total Well	Depth (TI	D):		Depth to Wate	r (DTW): 9.	 2b
Depth to Fr	ee Produc	t: 9.14			ree Product (fe	
Referenced	to:	(PVC)	Grade	D.O. Meter (if		YSI HACH
DTW with	80% Rech	arge [(F	Height of Water	Column x 0.20) + DTW]:	
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	Displaceme	· · · · · · · · · · · · · · · · · · ·	Waterra Peristaltic tion Pump Well Diamete	0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65
1 Case Volume	,	fied Volun	····	Gals. 2" lume 3"	0.16 6" 0.37 Other	1.47 radius ² * 0.163
Time	Temp (°F or °C)		Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations
***************************************	THE UNABLE	10 DETE	EMINE DIW	NE-TO PRODUCT		
1455	_					PRODUCT: 9.12
1458	BEGO	270	PUMP MOSTLY	1 Azonosa, u	DUSRED TUBING	4 ALLOWED BELLEGE
1520	BEGAN		AP PRODUCT @	3 miles		15,89
3/23/09	GRAS	SAM	E @123	0		
Did well de	water?	Yes	No	Gallons actuall	y evacuated:	
Sampling D	ate: $3/\lambda$	3/09	Sampling Time	:1230	Depth to Wate	r:
Sample I.D.	: MW-	-13		Laboratory:	Kiff CalScience	Other_ CET
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: see C)C
EB I.D. (if a	ipplicable)	:	@ Time	Duplicate I.D. (
Analyzed fo	r: TPH-G	BTEX		Oxygenates (5)	Other:	
D.O. (if req'	d): Pr	e-purge:		mg/L Po	ost-purge:	mg/L
O.R.P. (if re	q'd): Pr	e-purge:		mV Po	ost-nurge	ın V

LL MONITORING DATA SI

					I. ICARI	
Project #:	0903	19-	JP(Client:	Stellar	Car.
Sampler:	JP/C	-m/-	fc	Date:	3/19/09	3/20/09
Well I.D.:	mw	-14		Well Diame	eter: 2 3 4	6 8 314
Total Well	Depth (T)	D): 18	135	Depth to W	ater (DTW): 8.3	
Depth to F	ree Produc	et:	, , , , , , , , , , , , , , , , , , , ,	Thickness of	f Free Product (f	eet):
Referenced	l to:	#VC)) Grade	D.O. Meter		YSI HACH
DTW with	80% Recl	narge [(H	Height of Water		20) + DTW]: /C	
Purge Method:	Bailer Disposable I Positive Air Electric Subr	Bailer Displacem	>	Waterra (Peristaltic ction Pump	Sampling Metho	d: Bailer Disposable Bailer Extraction Port Dedicated Tubing r: New TVB ING
0.2 (Case Volume	, <u> </u>	3 ified Volum	nes Calculated Vo	Gals. Gals.	Multiplier Wel	<u>Multiplier</u> 0.65 1.47 er radius ² * 0.163
Time	Temp	рН	Cond. (mS or AS)	Turbidity (NTUs)	Gals. Removed	Observations
1202	14.5	8,91	1915	280	0.2	STIPHE SHEED/DOOK
1206	14.5	8,55	1681	114	0.4	
120	14.7	838	1662	78	0,6	
Did well dev	water?	Yes (Ño	Gallons actua	ally evacuated:	0.6
Sampling D	ate: 3/20	dog	Sampling Time	: 1215	Depth to Wate	er: 8,28
Sample I.D.	· mw	_ 14		Laboratory:	Kiff CalScience	e Other CRT
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	Coc
EB I.D. (if a	pplicable)		@ Time	Duplicate I.D	o. (if applicable):	
Analyzed fo	r: TPH-G	BTEX		Oxygenates (5)	Other:	
D.O. (if req'o	d): Pro	e-purge:		mg/L	Post-purge:	mg/L
O.R.P. (if re	q'd): Pre	e-purge:		mV	Post-purge:	mV

LL MONITORING DATA SE . I

1								
Project #:	0903	19-	JP(Client	: 5	fellar	Car.	
Sampler:	(JP)/C	m//-	fc.	Date:	3	119/09		
Well I.D.:	mw	-15		Well I	Diamete:	r: 2 3 4	686	3(4)
Total Well	Depth (T)	D): 18	·85	Depth	to Wate	er (DTW): 81	70	
Depth to F	ree Produc	et:		Thickr	ness of F	Free Product (fe	*** ***********************************	
Referenced	l to:	PVC)) Grade	D.O. N	Aeter (if	req'd):	YSI	НАСН
DTW with	80% Recl	narge [(I	Height of Water	Colum	n x 0.20) + DTW]: (O,	73	
Purge Method:	Bailer Disposable I Positive Air Electric Sub	Bailer Displacem	×	Waterra Peristaltic ction Pump Gals.		Sampling Method	: Ba Disposa Extrac Dedicate	ailer able Bailer tion Port ed Tubing TUBING
l Case Volume		ified Volum			3"	0.37 Other		² * 0.163
Time	Temp	1	Cond. (mS or (\overline{\mu}S))		oidity TUs)	Gals. Removed	Obser	vations
1300	16.5	7.91	1431	>100	0	0,2	BLACK GR	ey/axoe
1304	15,4	7.51	1373	31000	>	0,4	CULARIA	JG/DWOR
1308	15.2	7.43	1379	1508	5	016	h	17
Did well dev	water?	Yes (No)	Gallons	actually	y evacuated: ()	10	
Sampling Da	ate: 3/20	0/09	Sampling Time			Depth to Water		
Sample I.D.:	mw	-15	9/4	Laborat		Kiff CalScience		1.PT
Analyzed for	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenat	tes (5)	Other: See		
EB I.D. (if a	pplicable)	•	@			if applicable):		
Analyzed for	r: TPH-G	BTEX		Oxygenat		Other:		
O.O. (if req'o	d): Pro	e-purge:		mg/L	Pc	ost-purge:		mg/L
).R.P. (if red	q'd): Pre	e-purge:		mV	Po	st-purge:		mV

LL MONITORING DATA SH . I

Project #:	0903	19-	JP(Client	: 5	tellar	CN.
Sampler:	JP/0	-m//-	fc	Date:	3		-3/20/09
Well I.D.:	MW	- 1b		Well I	Diamete	r: 2 3	4 6 8 (314)
Total Well	Depth (T)	D): 19	.03	Depth	to Wate	er (DTW): B	188
Depth to F	ree Produc	et:				Free Product (
Referenced	i to:	₽VC)) Grade		Meter (if		YSI HACH
DTW with	80% Rech	narge [(I	Height of Water				
Purge Method:		Bailer Displacem	<u> </u>	Waterra ≰Peristaltic ction Pump	ļ	Sampling Meth	od: Bailer Disposable Bailer Extraction Port Dedicated Tubing
O.20 (1) Case Volume	Gals.) XSpec	3 ified Volur	nes Calculated Vo	_ Gals.	1" 2" 3"	0.04 4" 0.16 6"	0.65 1.47 her radius ² * 0.163
Time	Temp	рН	Cond. (mS or μ S)	1	oidity (TUs)	Gals. Remove	d Observations
0952	14.5	10.27	3890	29-	7	0.2	
0956	14.8	10.59	3733	188		0.4	
1000	14.8	10.65	3706	99		06	
Did well dev	water?	Yes (No	Gallons	actuall	y evacuated:	0.10
Sampling Da	ate: 3/20	109	Sampling Time			Depth to Wat	
Sample I.D.:	: mw	-lb		Laborat		Kiff CalScienc	0.0
Analyzed for	r: TPH-G	ВТЕХ	MTBE TPH-D	Oxygenat	tes (5)	Other: Soe	COC
EB I.D. (if a	pplicable):	•	@ Time	Duplica	te I.D. (if applicable):	
Analyzed for	r: TPH-G	BTEX		Oxygenat		Other:	
O.O. (if req'o	d): Pre	e-purge:		mg/L	Po	ost-purge:	mg/L
R.P. (if red	q'd): Pre	e-purge:		mV	Po	st-purge:	mV

пп	A CELLA SE DIVERSE CONTINUED BY A CELLA SERVICE	OF	781
بالا	MONITORING DATA	SI	

Project #:	0903	9-	JP(Clien	t: 5	fellar	Ca.	
Sampler:	JP/6	M/4	I-C	Date:	3	119/09		
Well I.D.:	MW	- 17		Well	Diamete	r: 2 3 4	6 8 3/4"	
Total Well	Depth (TI	D): /	9.50	Deptl	n to Wate	er (DTW):	7.69	
Depth to Fr	ee Produc	t:		Thick	ness of F	Free Product (f	eet):	
Referenced	to:	#VC)) Grade		Meter (if	····	YSI HACH	
DTW with	80% Rech	arge [(F	Height of Water	Colun	nn x 0.20) + DTW]:	11,01	
Purge Method:	Bailer Disposable E Positive Air I Electric Subr	Bailer Displaceme		Watern Peristalti etion Pum	a c	Sampling Metho	Disposable Bailer Extraction Port Dedicated Tubing	
10.61		<u> </u>	^ /		Well Diamete	er Multiplier Wel 0.04 4"	Diameter Multiplier 0.65	
O. 2 1 Case Volume	Gals.) X	fied Volun	= 0.6	Gals.	2"	0.16 6" 0.37 Oth	1.47	
r case y ordine	Speci	lied volum	nes Calculated Vo	lume	<u> </u>	T	110703 0.103	
Time 1358 1401 1405	Temp (°F or ©) 16.8 16.5 16.5	pH 7.51 7.38 7.39	Cond. (mS or (µS)) /085 /030	į.	rbidity TUs)	Gals. Removed O.4 O.6	Observations Slight abor	
Did well dev Sampling Da	7	- / 200	No Sampling Time	0/1	16	y evacuated: Depth to Wate	0.6 er: 8.98	
Sample I.D.:	-///	101		· · · /			0.0	-
Analyzed for	17100	- / /		Labora		Kiff CalScience		-
		·····	<u></u>	Oxygen			Coc	_
EB I.D. (if a			Time			if applicable):		
Analyzed for			MTBE TPH-D	Oxygena		Other:		
O.O. (if req'o		e-purge:	10.00	mg/L	Po	st-purge:	mg	L
).R.P. (if red	ŋ'd): Pre	e-purge:		тV	Po	st-purge:	m\	/

IT MONITORING DATA ST

		<u> </u>		LUMING DAL	A 31 .1		
Project #:	0903	19-	JP(Client: 5	itellar	Cou.	
Sampler:	GP/C	m/A	fc	Date: 3	119/09		****
Well I.D.:	mω	-19		Well Diamete	er: 2 3 4	6 8 (314)
Total Well	l Depth (TI		49	Depth to Wate	er (DTW): 7.7 5	5	
Depth to F	ree Produc	et:			Free Product (fe		
Reference	d to:	#VC)	Grade	D.O. Meter (if		YSI	НАСН
DTW with	80% Rech	narge [(F	Height of Water	Column x 0.20			
Purge Method:		Bailer Displaceme	>	Waterra xPeristaltic ction Pump	Sampling Method	l: I Dispos Extra Dedica	Bailer sable Bailer action Port ated Tubing
O.23 I Case Volume	· /	ろ ified Volun	= O. G mes Calculated Vo	Gals. Gumet - Gals. Solume - Gals. Substitute of the substitute	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Other	0.65 1.47	
Time	Temp	pН	Cond. (mS or as)	Turbidity (NTUs)	Gals. Removed	Obse	ervations
1036	14.2	7.40	7696	71000	6.23	DK.GRE	y cary
1040	14.6	7.22	7115	71000	0.46	2 P	99
1044	14.7	7.22	7705	71000	0.69	29	6.8
Did well de	water?	Yes (No	Gallons actuall	y evacuated:	0,69	
Sampling D	ate: 3/Z	00	Sampling Time		Depth to Wate		
Sample I.D				Laboratory:	Kiff CalScience		CRT
Analyzed fo			МТВЕ ТРН-D	Oxygenates (5)	Other: See	COC	
EB I.D. (if a	applicable)		@ Time	Duplicate I.D. (
Analyzed fo	or: TPH-G	BTEX		Oxygenates (5)	Other:		
D.O. (if req	'd): Pr	e-purge:	ACT -	mg/L P	ost-purge:		mg/ _L
O.R.P. (if re	eq'd): Pr	e-purge:		mV Po	ost-purge:		mV

Post-purge:

LL MONITORING DATA SH. .T

												
Project #: (D90319	-JPI			Client	: Sieu	LAR					
Sampler: 3						3/20/						
Well I.D.:	RW-1		Well I	Well Diameter: 2 3 4 6 8 12"								
Total Well	Depth (TD)):	Depth	to Wate	r (DT\	W):						
Depth to Fi	ree Produc	t: 9,0	6		Thickr	ness of F	ree Pro	oduct (fe	et):			
Referenced	to:	PVC)	Grade		Aeter (if			YSI		НАСН	
DTW with	80% Rech	arge [(H	Height	of Water	Colum	n x 0.20) + DT	`W]:				
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	ailer Displaceme			Waterra ∕Peristaltic ction Pump	-		ling Method Other:		Dispo Extr Dedic	Bailer sable Bailer action Port ated Tubing	
(Case Volume	· -	fied Volun		Calculated Vo	_ Gals.	Well Diamete 1" 2" 3"	0.04 0.16 0.37	olier Well I 4" 6" Other	Diameter	0.6: 1.4		
Time	Temp	рН	i	Cond. S or µS)	1	oidity ΓUs)	Gals.	Removed		Obs	ervations	
1467	No 1	wanet	et du	ets pro	educt/s	heen in	wel	***************************************	DT	v=9	145	
1410		Purge	D	400 mL	/min				DTh	/= /=	1.51	
1413		•							DTW	= 9	1.54	
												-
Did well de	water?	Yes	(NO)		Gallons	s actually	y evacı	uated:				
Sampling D	ate: 3/)	3/69	Samp	ling Time	e: 1420)	Depth	to Water	r: 9,	54		
Sample I.D.	: RW-1	***************************************			Labora	tory:	Kiff	CalScience	0	ther_	C+T	
Analyzed fo	r: TPH-G	BTEX	MTBE	TPH-D	Oxygena	ites (5)	Other:	See	C.C	<u> </u>	9	
EB I.D. (if a	pplicable):	•	@	Time	Duplica	ate I.D. (if appl	icable):				
Analyzed fo	r: TPH-G	BTEX	MTBE	TPH-D	Oxygena	` '	Other:			`		-
D.O. (if req	d): Pre	e-purge:		Acceptance 1988 Process	mg/L	Po	ost-purg	ge:				nng/L
O.R.P. (if re	g'd): Pre	e-purge:			mV	Po	ost-purg	e:			1	mV

SPH or Purge Water Drum Los

		,				
Client:	ζ/,	eller Env.				
Site Address:	65th	+ Ban Sts	Smary	rille Cf.		
					Programme Works and March State Control	

STATUS OF DRUM(S) UPON	ARRIVAL					
Date	12/27/07	12/28/07	3/24/08	06/25/88	12/29/28	3/19/09
Number of drum(s) empty:				2	2	2
Number of drum(s) 1/4 full:		1				
Number of drum(s) 1/2 full:		\$	1 Steller		1 (5011)	
Number of drum(s) 3/4 full:						
Number of drum(s) full:			211875	1 steller		
Total drum(s) on site:		ユ	3 (1) 875	3	3	3
Are the drum(s) properly labeled?	No (BTS)	7	4	y	4	Y
Drum ID & Contents:	7	purgersate & S.	43 -	7 -	⇒ -	→
If any drum(s) are partially or totally filled, what is the first use date:						

- ا المحال المحال
- -If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.
- -All BTS drums MUST be labeled appropriately.

DEPARTU	JŘE ,				
12/27/07	12/27/07	3/25/08	06/23/58	12/3/08	3/23/09
	ÇMEKME				
	1	e (Stellmor)		1 (SPH)	2
		(BTS)	1 111	NA NA	
	F (1946)	2 (1) BTS			
2	2	4	3	3	3
1 45 No	9	7	y	4	Ч
PuzelLo (BIS)	H20 3 5PH	-	\Rightarrow	> -	-
	12/27/07 1 1 2 1 us 1 No	1 1 1 2 2 1 is 1 No y	1 1 (Skilling) 1 (8TS) 1 2 2 4	12/27/07 12/27/07 3/25/08 06/25/08 1	12/27/27 12/27/27 3/25/08 06/25/08 12/3-68 1

Describe location of drum(s): (crown of garage next to 65th St. 3/25/49 1500 gal. P.l.

FINAL STATUS						
Number of new drum(s) left on site this event		Ø		D	0	0
Date of inspection:	12/27/07	12/28/07	3/25/08	06/25/88	12/30/8	3/23/09
Drum(s) labelled properly:	Y		Y	9	, Y	Y
Logged by BTS Field Tech:	DR	KF	MY	mo	ر ال	JP
Office reviewed by:			M	(7)	7	10

APPENDIX C

Analytical Laboratory Report and Chain-of-Custody Record

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 210867 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2007-65

Location: Bay Center Apts

Level : II

<u>Lab ID</u>
210867-001
210867-002
210867-003
210867-004
210867-005
210867-006
210867-007
210867-008
210867-009
210867-010
210867-011
210867-012
210867-013
210867-014
210867-015
210867-016
210867-017
210867-018

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Date: <u>04/07/2009</u>

Signature:

Senior Program Manager

Date: <u>04/09/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 210867

Client: Stellar Environmental Solutions

Project: 2007-65

Location: Bay Center Apts

Request Date: 03/23/09 Samples Received: 03/23/09

This data package contains sample and QC results for eighteen water samples, requested for the above referenced project on 03/23/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

MW-7 (lab # 210867-006) and MW-18 (lab # 210867-011) had pH greater than 2. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

MW-13 (lab # 210867-017) was diluted due to the dark and viscous nature of the sample extract. No other analytical problems were encountered.

Chain of Custody Record

Laboratory C 4T				М	ethod of Shipment	MB	Conrun									Page of	2
Address 2323 BACK	FFR REV, C	1 5T			nipment No			_		/ \$	77		nalysis F				
				Ai	rbill No					15	4	f 3	nalysis F	tequired	ı ———		
Project Owner					ooler No.			/ ,	/" ,	80° 6	1000	/ /				/ / /	
Site Address 6400 C	HRIST	IF A	NE.	Pr	oject Manager TE	92	GLASS /	p /	'ainer'		7 5			/ /	/ /	' / /	
BERKI	ery,	م		Te	elephone No. (510) 644-	3123		No. of Co.				/ /	/ /				
roject Name BAY CE	where	A 844	JME	≥ TFa	ax No(510) 644-	3859	/ / ,	/ & /			/ /يو		• /		/ ,	Remai	ks
roject Number2 🗢					amplers: (Signature)		/ /		ú\$.	I L			/ /	/ /	' /		
Field Sample Number	Location/	Date	Time	Sample Type	Type/Size of Container	Pr Cooler	eservation Chemical	/K		T CO	//	/ /					
Mw-3	Dop.,,	3/23	1135	w	HCL VOR YOMIXY			X	X	X							
MW-4		3/19	1305	Y				X	٧.	y							
Mw-5		3/19	315					У	Y	X							
Mw-6		319	1320					χ	X	χ					<u> </u>		
Mw-17		319	1410					Х	χ	X							
MW-7		B 119	1410					χ	χ	X							
MW-9		3101	isss					У	χ	Х							
MW -1]		319	1500					X	ゝ	Х					ļ		
MW-12		3120	920					Х	X	X				<u> </u>			
Wh -10		3120	1005					X	X	X				-	1		
MW-18		3/20	1020					Х	X	X	1				-		
MW-E		3 23	1435	1	V			X	X	X				λ		ΙΔ	
Relinquished by: Signature		Date	Receive Signa	•		Date -	Relinquished by: Signature	****			Date 3/23		ived by: gnature	יג		atajato	9ate
Printed		Time	Printe	ed		Time	,	ke	2		Time	Pr	inted	HM O	na.	Paydallo	Time 15
Company			Com	any		-	Company 1313				1530	Co	ompany	<u> </u>	<u> </u>		<u> </u>
	ANDAR						Relinquished by:				Date	i	ived by: anature				Date
Comments:EDI	F 220	Mil	led				Signature					31	gnature			· · · · · · · · · · · · · · · · · · ·	
GLOBAL ID #	- SL	T2	00	55	61		Printed				Time	Pi	rinted				Time
							Company						ompany				

* Stellar Environmental Solutions

Cold+ Introl.

2198 Sixth Street #201, Berkeley, CA 94710

Laboratory	(4T 2323 BACKE	FFR REY, C	1 st		s	Method of Shipment	LAB					- ,	,	<u>₹</u>	· •					Lab job no	2108 123/09 of _2	367 - -
		HRIST.	TE A	VE	C	Cooler No Project Manager Telephone No (510)	EAL			Filleren	, ov. ov.	Omainers Name of the second o	$\mathbf{\mathcal{V}}$	Y	277	/)	alysis F	Require	d //		Remarks	
Project Number		Cocation/		Time		Samplers: (Signature	9)	eservation		/	\ \L		TA A			//		//	//			
7		Depth	3/20	<u> </u>	Type ω	IL AMBER NIP	Cooler	Chemical	<u> </u>	{			ſ	7 /	-	-	-	_	_	(-
//			3/20		1	40 ML 4LL VOA	44		\dashv	-	<u>ソ</u> マ	<u>×</u> د	<i>X</i>		+			-	 			-
4 MW-15				1350	-	-			\dashv		x	^ x	<u>X</u>	+	+	+		+	-			-
) MW B			1/20	 							2		<u>х</u>	-	+				+			-
7 MW-10			+	1230							<u> </u>	^ ~	$\frac{2}{x}$		\dashv			+	╁			-
8 RW-1	PARENT OF		3/23	1420		V				1		`	$\stackrel{\wedge}{\parallel}$		\dagger			+	 			1
								-,						_	+				<u> </u>			1
																						1
]
																				ů.		
									1													
				<u></u>					14									1	<u> </u>	\bigcap		_
Relinquished by: Signature	····		Date	Received Signal	•		Date	Relinquished by	1						Date 23	Receiv Sigr	red by: nature	X	Ma	Yazatt	Date 3/23/	9
Printed			Time	Printe	d		Time	Printed	1 7.1	MIK	હ	<u>-</u>		_ 1	rime -	Prin	ted	HN	na	Heijari	Ilo Time	†
Company				Comp	any			Company	T31	<u>></u>				_ is	SC	Con	npany _	(<u>U</u>	<u>- T</u>	_ 155	7
Turnaround Time		NDARS						Relinquished by			-			(Date		ed by:		**********		Date	
Comments:	EDF 1212#	200 SL	41R	ed OØ	55	-61		Printed						_	Time		ited				Time	-

Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710

Tracy Babjar

From:

"Teal Glass" <tglass@stellar-environmental.com>

To:

"Tracy Babjar" <tracy.babjar@ctberk.com>

Sent: Subject:

Tuesday, March 24, 2009 8:58 AM RE: 2007-65 - C&T Login Summary (210867)

Hi Tracy,

RW-1 should be analyzed for TEH and TVH/MBTEX like the others.

Thanks!

Teal Glass

Stellar Environmental Solutions, Inc. (T) 510-644-3123 (F) 510-644-3859 tglass@stellar-environmental.com

From: Tracy Babjar [mailto:tracy.babjar@ctberk.com]

Sent: Tuesday, March 24, 2009 8:54 AM To: TGlass@stellar-environmental.com

Cc: Rmakdisi@stellar-environmental.com; HPietropaoli@stellar-environmental.com

Subject: 2007-65 - C&T Login Summary (210867)

Please not that we put sample RW-1 on hold because no analysis was checked off.

C&T Login Summary for 210867

Project: 2007-65	Report To: Stellar Environmental Solutions	Bill To: Stellar Enviro
Site: Bay Center Apts	2198 6th Street	2198 6th Stre
Lab Login #: 210867	Suite 201	Suite 201
Report Due: 03/30/09	Berkeley, CA 94710	Berkeley, CA
PO#:	ATTN: Teal Glass	ATTN: Teal (
C&T Proj Mgr: Tracy Babjar	(510) 644-3123	(510) 644-312

Client ID	Lab ID	Sampled	Received	Matrix	Analyses	COC#	Comments
MW-3	001	03/23	03/23				
				Water	EDF		
				Water	TEH		
				Water	TVH/MBTXE		
MW-4	002	03/19	03/23				
				Water	ТЕН		
				Water	TVH/MBTXE		
MW-5	003	03/19	03/23				
				Water	ТЕН		

COOLER RECEIPT CHECKLIST

Login # 210867 Date Received 3/23/09 Number of co Client 3ES Project BAY CENTER APA	olers Z RTMENT
Date Opened 3/23/09 By (print) N. VILLEN W. (sign) Date Logged in - By (print) (sign)	The
1. Did cooler come with a shipping slip (airbill, etc)Shipping info	YES 🍪
	(ES NO MA)
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ Non ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Pape 7. Temperature documentation:	e er towels
Type of ice used: ☐ Wet ☐ Blue/Gel ☐ None Temp(°C)_	
Samples Received on ice & cold without a temperature blank	
☐ Samples received on ice directly from the field. Cooling process had b	egun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers?	YES NO YES NO YES NO YES NO
13. Was sufficient amount of sample sent for tests requested?	TES NO
	TO 17/1
	S NO N/A
15. Are bubbles > 6mm absent in VOA samples?YI	es (NO) N/A
	ES (NO) N/A YES NO
15. Are bubbles > 6mm absent in VOA samples? YF 16. Was the client contacted concerning this sample delivery?	ES (NO N/A YES NO te:
15. Are bubbles > 6mm absent in VOA samples? YE 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By Da COMMENTS	ES (NO N/A YES NO te:
15. Are bubbles > 6mm absent in VOA samples?YE 16. Was the client contacted concerning this sample delivery? If YES, Who was called?ByDa COMMENTS SLEATED 10 3/4 VOA 1PH OF SAMPLE MW-6 3/20/09	YES NO te:
15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By Da COMMENTS SLIATET 10 3/4 VOA 1PH ON SIMPLIE MW-6 3/20/09 SAMPLET 3 2/4 VOL W/ BUBBLIE	ES (NO N/A YES NO te:

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3

Effective: 23 July 2008

Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Field ID: MW-3 Batch#: 149358
Type: SAMPLE Sampled: 03/23/09
Lab ID: 210867-001 Analyzed: 03/28/09

Diln Fac: 1.000

Analyte	Result	RL	Analysis	
Gasoline C7-C12	260 Y	50	EPA 8015B	
MTBE	2.9	2.0	EPA 8021B	
Benzene	1.3	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	1.8 C	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	0.51	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	127	63-146	EPA 8015B	
Bromofluorobenzene (FID)	133	70-140	EPA 8015B	
Trifluorotoluene (PID)	92	50-140	EPA 8021B	
Bromofluorobenzene (PID)	89	56-132	EPA 8021B	

Field ID: MW-4 Batch#: 149459
Type: SAMPLE Sampled: 03/19/09
Lab ID: 210867-002 Analyzed: 03/31/09
Diln Fac: 1.000

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	108	63-146	EPA 8015B	
Bromofluorobenzene (FID)	104	70-140	EPA 8015B	
Trifluorotoluene (PID)	108	50-140	EPA 8021B	
Bromofluorobenzene (PID)	102	56-132	EPA 8021B	

Page 1 of 10

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Field ID: MW-5 Batch#: 149459
Type: SAMPLE Sampled: 03/19/09
Lab ID: 210867-003 Analyzed: 03/31/09

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	109	63-146	EPA 8015B	
Bromofluorobenzene (FID)	101	70-140	EPA 8015B	
Trifluorotoluene (PID)	107	50-140	EPA 8021B	
Bromofluorobenzene (PID)	99	56-132	EPA 8021B	

Field ID: MW-6 Batch#: 149459
Type: SAMPLE Sampled: 03/19/09
Lab ID: 210867-004 Analyzed: 03/31/09
Diln Fac: 1.000

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	112	63-146	EPA 8015B	
Bromofluorobenzene (FID)	106	70-140	EPA 8015B	
Trifluorotoluene (PID)	106	50-140	EPA 8021B	
Bromofluorobenzene (PID)	102	56-132	EPA 8021B	

Page 2 of 10

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Field ID: MW-17 Batch#: 149459
Type: SAMPLE Sampled: 03/19/09
Lab ID: 210867-005 Analyzed: 04/01/09
Diln Fac: 5.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	5,400	250	EPA 8015B
MTBE	ND	10	EPA 8021B
Benzene	770 C	2.5	EPA 8021B
Toluene	150 C	2.5	EPA 8021B
Ethylbenzene	87 C	2.5	EPA 8021B
m,p-Xylenes	120 C	2.5	EPA 8021B
o-Xylene	41 C	2.5	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	129	63-146	EPA 8015B	
Bromofluorobenzene (FID)	108	70-140	EPA 8015B	
Trifluorotoluene (PID)	106	50-140	EPA 8021B	
Bromofluorobenzene (PID)	129	56-132	EPA 8021B	

Field ID: MW-7 Batch#: 149459
Type: SAMPLE Sampled: 03/19/09
Lab ID: 210867-006 Analyzed: 03/31/09
Diln Fac: 5.000

Analyte	Result	RL	Analysis	
Gasoline C7-C12	1,700	250	EPA 8015B	
MTBE	ND	10	EPA 8021B	
Benzene	510 C	2.5	EPA 8021B	
Toluene	33 C	2.5	EPA 8021B	
Ethylbenzene	47 C	2.5	EPA 8021B	
m,p-Xylenes	160 C	2.5	EPA 8021B	
o-Xylene	60 C	2.5	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	111	63-146	EPA 8015B	
Bromofluorobenzene (FID)	102	70-140	EPA 8015B	
Trifluorotoluene (PID)	113	50-140	EPA 8021B	
Bromofluorobenzene (PID)	114	56-132	EPA 8021B	

ND= Not Detected

Page 3 of 10

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

RL= Reporting Limit

Field ID: MW-9 Batch#: 149459
Type: SAMPLE Sampled: 03/19/09
Lab ID: 210867-007 Analyzed: 04/01/09

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	130	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	4.6 C	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	111	63-146	EPA 8015B	
Bromofluorobenzene (FID)	104	70-140	EPA 8015B	
Trifluorotoluene (PID)	108	50-140	EPA 8021B	
Bromofluorobenzene (PID)	102	56-132	EPA 8021B	

Field ID: MW-11 Batch#: 149459
Type: SAMPLE Sampled: 03/19/09
Lab ID: 210867-008 Analyzed: 04/01/09
Diln Fac: 1.000

Analyte	Result	RL	Analysis	
Gasoline C7-C12	1,400	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	200 C	0.50	EPA 8021B	
Toluene	6.4 C	0.50	EPA 8021B	
Ethylbenzene	7.3 C	0.50	EPA 8021B	
m,p-Xylenes	8.0 C	0.50	EPA 8021B	
o-Xylene	2.4	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	141	63-146	EPA 8015B	
Bromofluorobenzene (FID)	107	70-140	EPA 8015B	
Trifluorotoluene (PID)	127	50-140	EPA 8021B	
Bromofluorobenzene (PID)	103	56-132	EPA 8021B	

ND= Not Detected

Page 4 of 10

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

RL= Reporting Limit

Field ID: MW-12 Batch#: 149459
Type: SAMPLE Sampled: 03/20/09
Lab ID: 210867-009 Analyzed: 04/01/09

Diln Fac: 20.00

Analyte	Result	RL	Analysis
Gasoline C7-C12	14,000	1,000	EPA 8015B
MTBE	ND	40	EPA 8021B
Benzene	6,100 C	10	EPA 8021B
Toluene	150 C	10	EPA 8021B
Ethylbenzene	130 C	10	EPA 8021B
m,p-Xylenes	100 C	10	EPA 8021B
o-Xylene	11 C	10	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	123	63-146	EPA 8015B	
Bromofluorobenzene (FID)	101	70-140	EPA 8015B	
Trifluorotoluene (PID)	123	50-140	EPA 8021B	
Bromofluorobenzene (PID)	98	56-132	EPA 8021B	

Field ID: MW-16 Batch#: 149459
Type: SAMPLE Sampled: 03/20/09
Lab ID: 210867-010 Analyzed: 04/01/09
Diln Fac: 1.000

Analyte	Result	RL	Analysis	
Gasoline C7-C12	78	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	12 C	0.50	EPA 8021B	
Toluene	2.3 C	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	109	63-146	EPA 8015B	
Bromofluorobenzene (FID)	105	70-140	EPA 8015B	
Trifluorotoluene (PID)	105	50-140	EPA 8021B	
Bromofluorobenzene (PID)	102	56-132	EPA 8021B	

ND= Not Detected

Page 5 of 10

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

RL= Reporting Limit

Field ID: MW-18 Batch#: 149459
Type: SAMPLE Sampled: 03/20/09
Lab ID: 210867-011 Analyzed: 04/01/09

Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	111	63-146	EPA 8015B	
Bromofluorobenzene (FID)	107	70-140	EPA 8015B	
Trifluorotoluene (PID)	108	50-140	EPA 8021B	
Bromofluorobenzene (PID)	105	56-132	EPA 8021B	

Field ID: MW-E Batch#: 149459
Type: SAMPLE Sampled: 03/23/09
Lab ID: 210867-012 Analyzed: 04/01/09
Diln Fac: 1.000

Analyte	Result	RL	Analysis	
Gasoline C7-C12	850	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	270 C	0.50	EPA 8021B	
Toluene	7.5 C	0.50	EPA 8021B	
Ethylbenzene	13 C	0.50	EPA 8021B	
m,p-Xylenes	12 C	0.50	EPA 8021B	
o-Xylene	5.5	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	113	63-146	EPA 8015B	
Bromofluorobenzene (FID)	106	70-140	EPA 8015B	
Trifluorotoluene (PID)	107	50-140	EPA 8021B	
Bromofluorobenzene (PID)	107	56-132	EPA 8021B	

ND= Not Detected

Page 6 of 10

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

RL= Reporting Limit

Field ID: MW-14 Batch#: 149459
Type: SAMPLE Sampled: 03/20/09
Lab ID: 210867-013 Analyzed: 04/01/09
Diln Fac: 25.00

Analyte	Result	RL	Analysis
Gasoline C7-C12	13,000	1,300	EPA 8015B
MTBE	ND	50	EPA 8021B
Benzene	4,300 C	13	EPA 8021B
Toluene	870 C	13	EPA 8021B
Ethylbenzene	260 C	13	EPA 8021B
m,p-Xylenes	200 C	13	EPA 8021B
o-Xylene	83 C	13	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	115	63-146	EPA 8015B	
Bromofluorobenzene (FID)	103	70-140	EPA 8015B	
Trifluorotoluene (PID)	115	50-140	EPA 8021B	
Bromofluorobenzene (PID)	105	56-132	EPA 8021B	

Field ID: MW-15 Batch#: 149459
Type: SAMPLE Sampled: 03/20/09
Lab ID: 210867-014 Analyzed: 04/01/09
Diln Fac: 25.00

Analyte	Result	RL	Analysis
Gasoline C7-C12	17,000	1,300	EPA 8015B
MTBE	ND	50	EPA 8021B
Benzene	7,200 C	13	EPA 8021B
Toluene	91 C	13	EPA 8021B
Ethylbenzene	170 C	13	EPA 8021B
m,p-Xylenes	60 C	13	EPA 8021B
o-Xylene	ND	13	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	121	63-146	EPA 8015B	
Bromofluorobenzene (FID)	105	70-140	EPA 8015B	
Trifluorotoluene (PID)	112	50-140	EPA 8021B	
Bromofluorobenzene (PID)	99	56-132	EPA 8021B	

Page 7 of 10

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Curtis & Tompkins Laboratories Analytical Report 210867 Lab #: Location: Bay Center Apts EPA 5030B Client: Stellar Environmental Solutions Prep: Project#: 2007-65 Matrix: Water Received: 03/23/09 Units: ug/L

Field ID: MW-8 Batch#: 149459
Type: SAMPLE Sampled: 03/20/09
Lab ID: 210867-015 Analyzed: 04/01/09
Diln Fac: 25.00

Result RLAnalysis Analyte Gasoline C7-C12 22,000 1,300 EPA 8015B MTBE ND 50 EPA 8021B 9,400 C Benzene 13 EPA 8021B

Toluene 13 EPA 8021B 200 C 640 C Ethylbenzene 13 EPA 8021B m,p-Xylenes o-Xylene 290 C 13 EPA 8021B 68 C 13 EPA 8021B Surrogate %REC Limits Analysis

Trifluorotoluene (FID) 127 63-146 EPA 8015B Bromofluorobenzene (FID) 99 70-140 EPA 8015B 126 Trifluorotoluene (PID) 50-140 **EPA 8021B** Bromofluorobenzene (PID) 100 56-132 EPA 8021B

Field ID: MW-10 Batch#: 149459
Type: SAMPLE Sampled: 03/20/09
Lab ID: 210867-016 Analyzed: 04/01/09
Diln Fac: 10.00

Analyte	Result		RL	Analysis	
Gasoline C7-C12	8,200		500	EPA 8015B	
MTBE	ND		20	EPA 8021B	
Benzene	890	C	5.0	EPA 8021B	
Toluene	46	C	5.0	EPA 8021B	
Ethylbenzene	78	C	5.0	EPA 8021B	
m,p-Xylenes	99	C	5.0	EPA 8021B	
o-Xylene	31	C	5.0	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	127	63-146	EPA 8015B	
Bromofluorobenzene (FID)	108	70-140	EPA 8015B	
Trifluorotoluene (PID)	118	50-140	EPA 8021B	
Bromofluorobenzene (PID)	107	56-132	EPA 8021B	

Page 8 of 10

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Field ID: MW-13 Batch#: 149459
Type: SAMPLE Sampled: 03/23/09
Lab ID: 210867-017 Analyzed: 04/01/09

Diln Fac: 500.0

Analyte	Result	RL	Analysis
Gasoline C7-C12	330,000	25,000	EPA 8015B
MTBE	ND	1,000	EPA 8021B
Benzene	25,000 C	250	EPA 8021B
Toluene	1,300	250	EPA 8021B
Ethylbenzene	6,400 C	250	EPA 8021B
m,p-Xylenes	6,800 C	250	EPA 8021B
o-Xylene	1,700 C	250	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	131	63-146	EPA 8015B	
Bromofluorobenzene (FID)	105	70-140	EPA 8015B	
Trifluorotoluene (PID)	109	50-140	EPA 8021B	
Bromofluorobenzene (PID)	106	56-132	EPA 8021B	

Field ID: RW-1 Batch#: 149459
Type: SAMPLE Sampled: 03/23/09
Lab ID: 210867-018 Analyzed: 04/01/09
Diln Fac: 1.000

Analyte	Result	RL	Analysis	
Gasoline C7-C12	950	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	180 C	0.50	EPA 8021B	
Toluene	3.6 C	0.50	EPA 8021B	
Ethylbenzene	13 C	0.50	EPA 8021B	
m,p-Xylenes	2.3 C	0.50	EPA 8021B	
o-Xylene	1.1 C	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	128	63-146	EPA 8015B	
Bromofluorobenzene (FID)	111	70-140	EPA 8015B	
Trifluorotoluene (PID)	110	50-140	EPA 8021B	
Bromofluorobenzene (PID)	109	56-132	EPA 8021B	

Page 9 of 10

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Type: BLANK Batch#: 149358
Lab ID: QC489309 Analyzed: 03/28/09
Diln Fac: 1.000

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	106	63-146	EPA 8015B	
Bromofluorobenzene (FID)	101	70-140	EPA 8015B	
Trifluorotoluene (PID)	87	50-140	EPA 8021B	
Bromofluorobenzene (PID)	82	56-132	EPA 8021B	

Type: BLANK Batch#: 149459
Lab ID: QC489722 Analyzed: 03/31/09
Diln Fac: 1.000

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	104	63-146	EPA 8015B	
Bromofluorobenzene (FID)	100	70-140	EPA 8015B	
Trifluorotoluene (PID)	104	50-140	EPA 8021B	
Bromofluorobenzene (PID)	100	56-132	EPA 8021B	

Page 10 of 10

C= Presence confirmed, but RPD between columns exceeds 40%

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #:	210867	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC489310	Batch#:	149358
Matrix:	Water	Analyzed:	03/28/09
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	988.5	99	76-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	123	63-146
Bromofluorobenzene (FID)	101	70-140

Page 1 of 1 3.0

	Curtis & Tompkins Labo	oratories Anal	Lytical Report
Lab #:	210867	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	149358
Units:	ug/L	Analyzed:	03/28/09
Diln Fac:	1.000		

Type: BS Lab ID: QC489311

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	8.868	89	53-152
Benzene	10.00	9.207	92	79-120
Toluene	10.00	10.22	102	76-122
Ethylbenzene	10.00	10.78	108	77-125
m,p-Xylenes	10.00	11.08	111	76-126
o-Xylene	10.00	10.65	106	77-126

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	85	50-140	
Bromofluorobenzene (PID)	80	56-132	

Type: BSD Lab ID: QC489312

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	18.12	91	53-152	2	37
Benzene	20.00	19.90	100	79-120	8	20
Toluene	20.00	17.52	88	76-122	15	21
Ethylbenzene	20.00	19.59	98	77-125	10	21
m,p-Xylenes	20.00	20.34	102	76-126	9	23
o-Xylene	20.00	19.03	95	77-126	11	21

Surrogate	%REC	Limits
Trifluorotoluene (PID)	82	50-140
Bromofluorobenzene (PID)	86	56-132

	Curtis & Tompkins Labo	oratories Anal	ytical Report
Lab #: 21086	7	Location:	Bay Center Apts
Client: Stella	ar Environmental Solutions	Prep:	EPA 5030B
Project#: 2007-6	55	Analysis:	EPA 8015B
Field ID:	MW-3	Batch#:	149358
MSS Lab ID:	210867-001	Sampled:	03/23/09
Matrix:	Water	Received:	03/23/09
Units:	ug/L	Analyzed:	03/28/09
Diln Fac:	1.000		

Type: MS Lab ID: QC489313

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	257.4	2,000	2,157	95	66-120

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	139	63-146	
Bromofluorobenzene (FID)	114	70-140	

Type: MSD Lab ID: QC489314

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,176	96	66-120	1	20

	Curtis & Tompkins Labo	oratories Anal	Lytical Report
Lab #:	210867	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	149459
Units:	ug/L	Analyzed:	03/31/09
Diln Fac:	1.000		

Type: BS Lab ID: QC489723

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	11.34	113	53-152
Benzene	10.00	11.47	115	79-120
Toluene	10.00	10.54	105	76-122
Ethylbenzene	10.00	11.33	113	77-125
m,p-Xylenes	10.00	11.33	113	76-126
o-Xylene	10.00	10.93	109	77-126

Surrogate	%REC	Limits
Trifluorotoluene (PID)	110	50-140
Bromofluorobenzene (PID)	98	56-132

Type: BSD Lab ID: QC489724

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	9.927	99	53-152	13	37
Benzene	10.00	9.868	99	79-120	15	20
Toluene	10.00	9.918	99	76-122	6	21
Ethylbenzene	10.00	9.688	97	77-125	16	21
m,p-Xylenes	10.00	10.50	105	76-126	8	23
o-Xylene	10.00	9.607	96	77-126	13	21

Surrogate	%REC	Limits
Trifluorotoluene (PID)	108	50-140
Bromofluorobenzene (PID)	102	56-132

	Curtis & Tompkins Labo	oratories Anal	lytical Report
Lab #:	210867	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	149459
Units:	ug/L	Analyzed:	03/31/09
Diln Fac:	1.000		

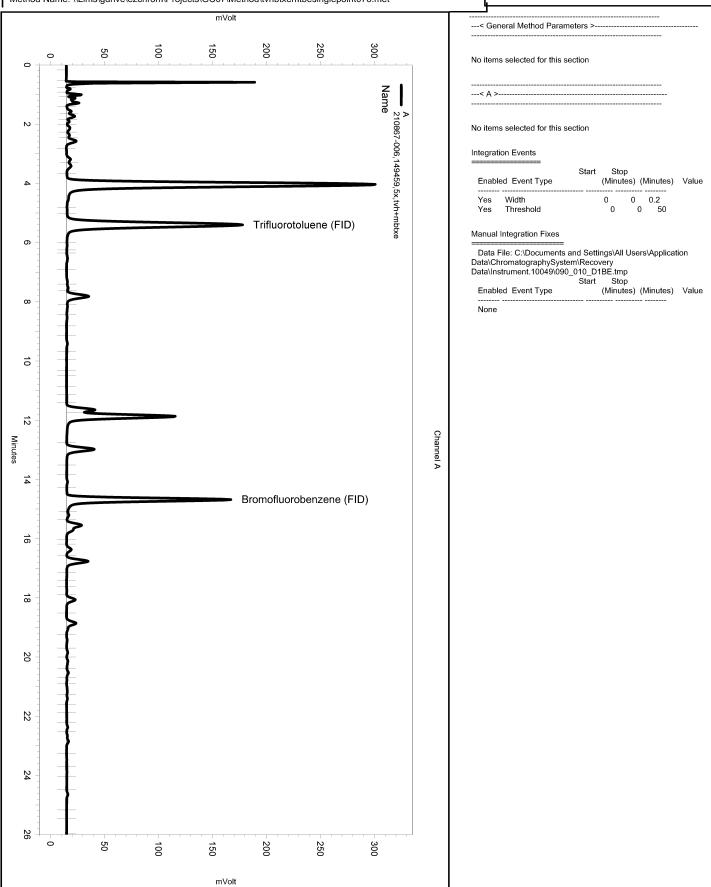
Type: BS Lab ID: QC489725

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	941.9	94	76-121

	Surrogate	%REC	Limits
Trifluorot	otoluene (FID)	121	63-146
Bromofluor	orobenzene (FID)	99	70-140

Type: BSD Lab ID: QC489726

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	1,000	968.0	97	76-121	3	21

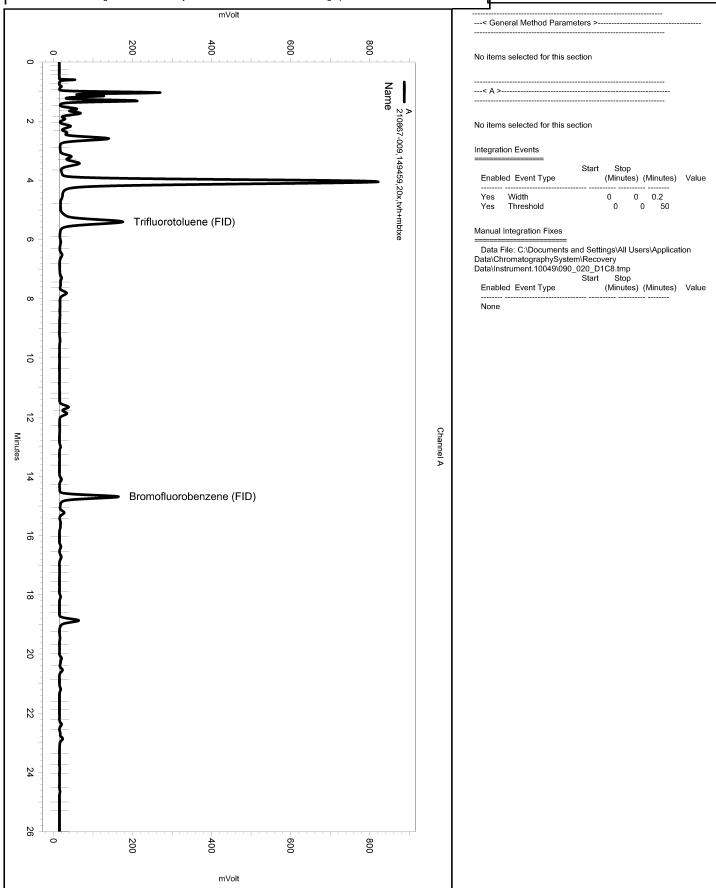

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	122	63-146	
Bromofluorobenzene (FID)	101	70-140	

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\090.seq Sample Name: 210867-006,149459,5x,tvh+mbtxe

Instrument: GC07 Vial: N/A Operator: lims2k3\tvh3

Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxemtbesinglepoint078.met

Software Version 3.1.7 Run Date: 3/31/2009 9:23:56 PM Analysis Date: 3/31/2009 9:52:36 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: B7

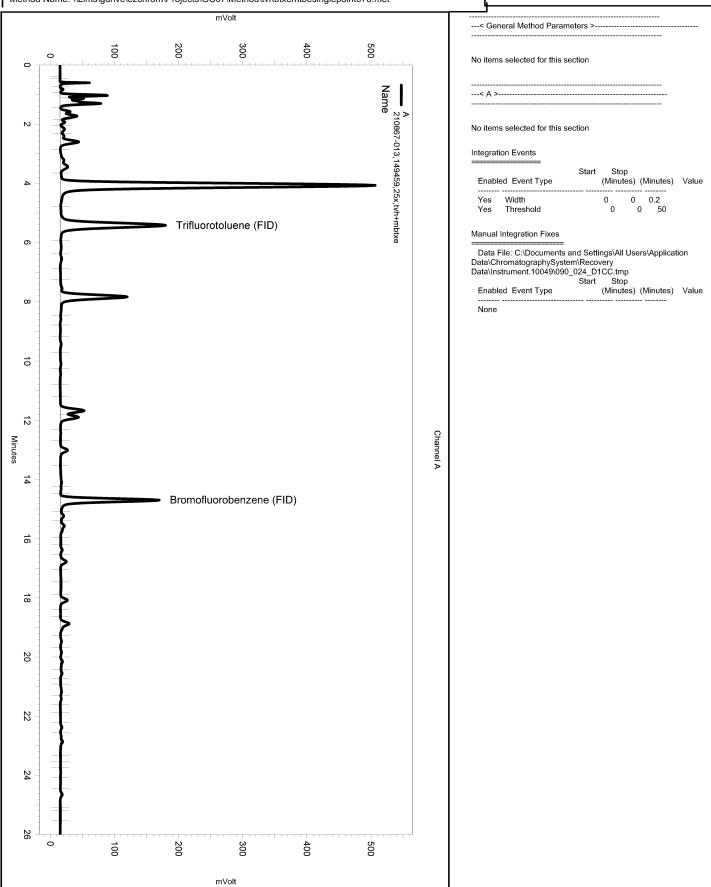


Sequence File: \\Lims\\gdrive\ezchrom\\Projects\\GC07\\Sequence\\090.seq Sample Name: 210867-009,149459,20x,tvh+mbtxe

Instrument: GC07 Vial: N/A Operator: lims2k3\tvh3

Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxemtbesinglepoint078.met

Software Version 3.1.7 Run Date: 4/1/2009 3:17:09 AM Analysis Date: 4/1/2009 3:45:51 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: b1.3

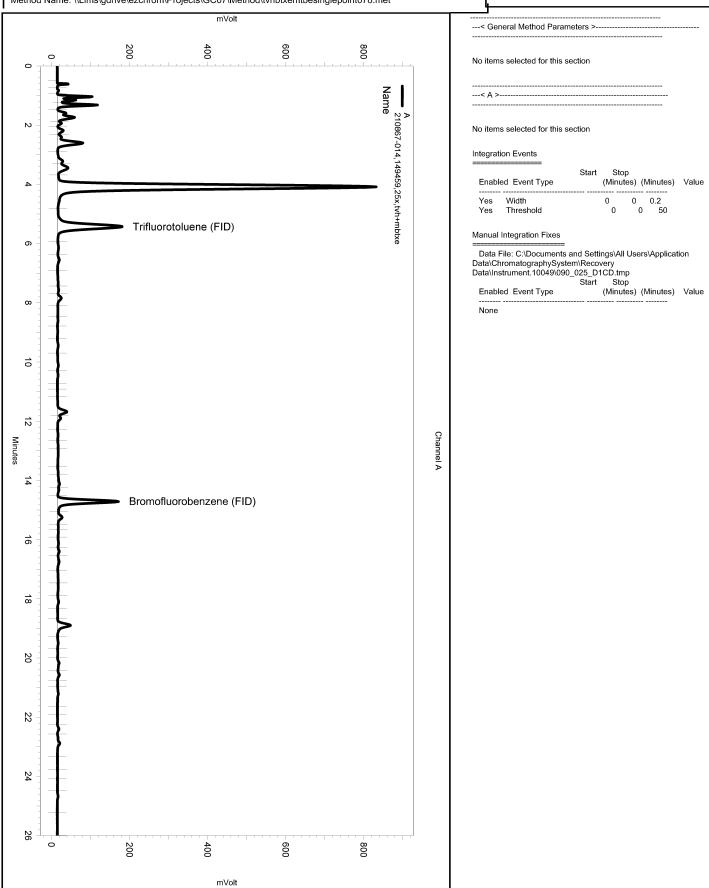


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\090.seq Sample Name: 210867-013,149459,25x,tvh+mbtxe

Instrument: GC07 Vial: N/A Operator: lims2k3\tvh3

Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxemtbesinglepoint078.met

Software Version 3.1.7 Run Date: 4/1/2009 5:39:58 AM Analysis Date: 4/1/2009 6:08:41 AM Sample Amount: 5 Multiplier: 5
Vial & pH or Core ID: b1.3

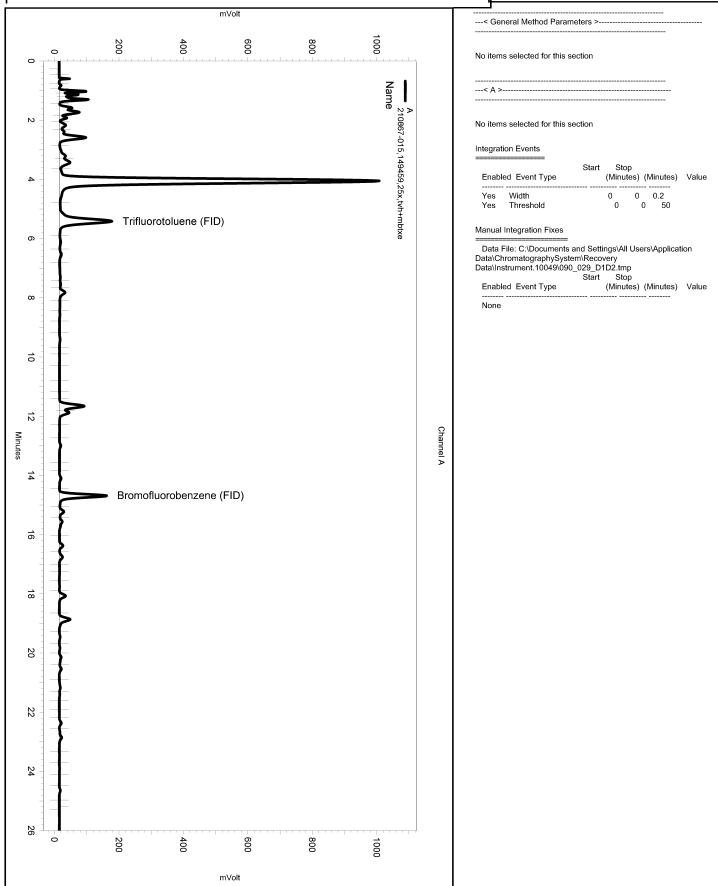


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\090.seq Sample Name: 210867-014,149459,25x,tvh+mbtxe

Instrument: GC07 Vial: N/A Operator: lims2k3\tvh3

Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxemtbesinglepoint078.met

Software Version 3.1.7 Run Date: 4/1/2009 6:15:50 AM Analysis Date: 4/1/2009 6:44:33 AM Sample Amount: 5 Multiplier: 5
Vial & pH or Core ID: b1.3



Sequence File: \\Lims\gdrive\ezchrom\Projects\GC07\Sequence\090.seq Sample Name: 210867-015,149459,25x,tvh+mbtxe

Instrument: GC07 Vial: N/A Operator: lims2k3\tvh3

Method Name: \\Lims\gdrive\ezchrom\Projects\GC07\Method\tvhbtxemtbesinglepoint078.met

Software Version 3.1.7 Run Date: 4/1/2009 8:54:46 AM Analysis Date: 4/1/2009 9:23:29 AM Sample Amount: 5 Multiplier: 5
Vial & pH or Core ID: b1.3

Total Extractable Hydrocarbons

Bay Center Apts EPA 3520C Lab #: 210867 Location: Client: Stellar Environmental Solutions Prep:

Project#: 2007-65 Analysis: EPA 8015B 03/23/09 Matrix: Water Received: 03/26/09 Units: ug/L Prepared: Batch#: 149298

Field ID: MW-3Diln Fac: 1.000 Sampled: Type: SAMPLE 03/23/09 Lab ID: 210867-001 04/04/09 Analyzed:

Result Analyte RLDiesel C10-C24 4,300 50

Surrogate %REC Limits o-Terphenyl 118 61-127

Field ID: MW-4Diln Fac: 1.000 SAMPLE Sampled: 03/19/09 Type: 04/04/09 210867-002 Lab ID: Analyzed:

Analyte Result RL Diesel C10-C24 940 Y 50

%REC Surrogate Limits o-Terphenyl 119 61-127

1.000 Field ID: MW-5Diln Fac: Type: SAMPLE Sampled: 03/19/09 04/04/09 Lab ID: 210867-003 Analyzed:

Analyte Result RL5,800 Y Diesel C10-C24 50

Surrogate %REC Limits o-Terphenyl 61-127

Field ID: MW-6Diln Fac: 1.000 SAMPLE 03/19/09 Type: Sampled: Lab ID: 210867-004 04/04/09

Analyzed: Analyte Result 1,200 Y

Surrogate %REC Limits o-Terphenyl 61-127

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out

Diesel C10-C24

ND= Not Detected

RL= Reporting Limit

Page 1 of 5

Total Extractable Hydrocarbons

210867 Lab #: Location: Bay Center Apts Client: Stellar Environmental Solutions EPA 3520C Prep:

EPA 8015B 03/23/09 Project#: 2007-65 Analysis: Matrix: Water Received: Prepared: 03/26/09

Units: ug/L Batch#: 149298

Field ID: MW-17Diln Fac: 1.000 03/19/09 Type: SAMPLE Sampled: Lab ID: 210867-005 Analyzed: 04/06/09

Analyte Result Diesel C10-C24 3,000 Y 50

Limits Surrogate %REC o-Terphenyl 105 61-127

Field ID: MW-7Diln Fac: 1.000 03/19/09 Type: SAMPLE Sampled: 210867-006 Lab ID: 04/06/09 Analyzed:

Result Analyte RLDiesel C10-C24 8,700 Y 50

%REC Limits Surrogate 61-127 o-Terphenyl

Field ID: MW - 9Diln Fac: 1.000 Sampled: SAMPLE 03/19/09 Type: Lab ID: 210867-007 04/06/09 Analyzed:

Result Analyte RLDiesel C10-C24 9,400 Y 50

%REC Limits Surrogate o-Terphenyl 61-127

1.000 Field ID: MW-11Diln Fac: SAMPLE Sampled: 03/19/09 Type: Lab ID: 210867-008 04/06/09 Analyzed:

Analyte Result RLDiesel C10-C24 7,100 Y 50

Surrogate %REC Limits o-Terphenyl 61-127

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 2 of 5

Total Extractable Hydrocarbons

Lab #: 210867 Location: Bay Center Apts

4,100 Y

Client: Stellar Environmental Solutions Prep: EPA 3520C Project#: 2007-65 Analysis: EPA 8015B Matrix: Water Received: 03/23/09 Units: ug/L Prepared: 03/26/09

Batch#: 149298

Diesel C10-C24

Field ID: MW-12 Diln Fac: 1.000
Type: SAMPLE Sampled: 03/20/09
Lab ID: 210867-009 Analyzed: 04/06/09

Lab ID: 210867-009 Analyzed: 04/06/09

Analyte Result RL

Surrogate %REC Limits
o-Terphenyl 106 61-127

50

Field ID: MW-16 Diln Fac: 1.000
Type: SAMPLE Sampled: 03/20/09
Lab ID: 210867-010 Analyzed: 04/06/09

 Analyte
 Result
 RL

 Diesel C10-C24
 14,000 Y
 50

Surrogate %REC Limits
o-Terphenyl 123 61-127

Field ID: MW-18 Diln Fac: 1.000
Type: SAMPLE Sampled: 03/20/09
Lab ID: 210867-011 Analyzed: 04/06/09

 Analyte
 Result
 RL

 Diesel C10-C24
 10,000 Y
 50

Surrogate %REC Limits
o-Terphenyl 108 61-127

Field ID: MW-E Diln Fac: 1.000
Type: SAMPLE Sampled: 03/23/09
Lab ID: 210867-012 Analyzed: 04/06/09

 Analyte
 Result
 RL

 Diesel C10-C24
 5,600 Y
 50

Surrogate %REC Limits
o-Terphenyl 119 61-127

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 3 of 5

9.0

Total Extractable Hydrocarbons

210867 Lab #: Location: Bay Center Apts Client: Stellar Environmental Solutions EPA 3520C

Prep: EPA 8015B 03/23/09 Project#: 2007-65 Analysis: Matrix: Water Received: Units: ug/L Prepared: 03/26/09

Batch#: 149298

Field ID: MW-14Diln Fac: 1.000 03/20/09 Type: SAMPLE Sampled: Lab ID: 210867-013 Analyzed: 04/06/09

Analyte Result Diesel C10-C24 3,200 Y 50

Limits Surrogate %REC o-Terphenyl 105 61-127

Field ID: MW-15 Diln Fac: 1.000 03/20/09 Type: SAMPLE Sampled: 210867-014 Lab ID: 04/06/09 Analyzed:

Analyte Result RL Diesel C10-C24 3,400 Y 50

%REC Limits Surrogate 105 61-127 o-Terphenyl

Field ID: 8-WMDiln Fac: 1.000 Sampled: SAMPLE 03/20/09 Type: Lab ID: 210867-015 04/04/09 Analyzed:

Result Analyte RLDiesel C10-C24 10,000 Y 50

%REC Limits Surrogate o-Terphenyl 61-127

1.000 Field ID: MW-10Diln Fac: SAMPLE Sampled: 03/20/09 Type: 04/04/09 Lab ID: 210867-016 Analyzed:

Analyte Result RLDiesel C10-C24 6,200 Y 50

Surrogate %REC Limits o-Terphenyl 61-127

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 4 of 5

Total Extractable Hydrocarbons

Lab #: 210867 Location: Bay Center Apts Client: Stellar Environmental Solutions Prep: EPA 3520C Project#: 2007-65 Analysis: EPA 8015B

 Project#:
 2007-65
 Analysis:
 EPA 8015B

 Matrix:
 Water
 Received:
 03/23/09

 Units:
 ug/L
 Prepared:
 03/26/09

 Batch#:
 149298

 Field ID:
 MW-13
 Diln Fac:
 100.0

 Type:
 SAMPLE
 Sampled:
 03/23/09

 Lab ID:
 210867-017
 Analyzed:
 04/03/09

 Lab ID:
 210867-017
 Analyzed:
 04/03/09

 Analyte
 Result
 RL

Diesel C10-C24 2,000,000 Y 10,000

Surrogate %REC Limits

61-127

Field ID: RW-1 Diln Fac: 1.000

DO

Type: SAMPLE Sampled: 03/23/09 Lab ID: 210867-018 Analyzed: 04/04/09

 Analyte
 Result
 RL

 Diesel C10-C24
 2,800 Y
 50

Surrogate %REC Limits
o-Terphenyl 111 61-127

Type: BLANK Diln Fac: 1.000 Lab ID: QC489077 Analyzed: 04/04/09

AnalyteResultRLDiesel C10-C24ND50

 Surrogate
 %REC
 Limits

 o-Terphenyl
 109
 61-127

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

o-Terphenyl

RL= Reporting Limit

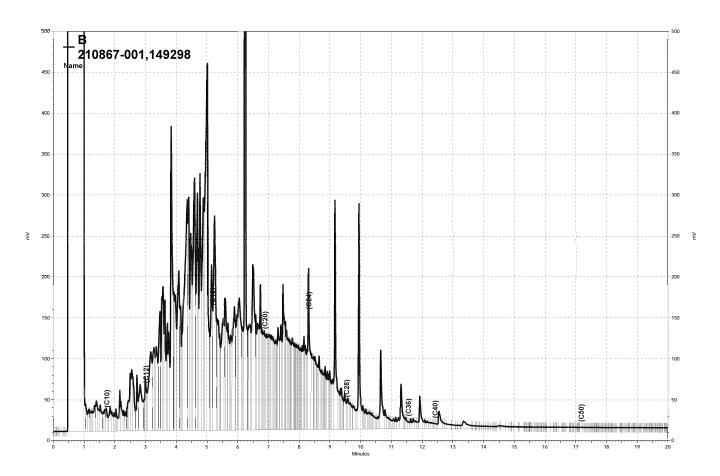
Page 5 of 5

9.0

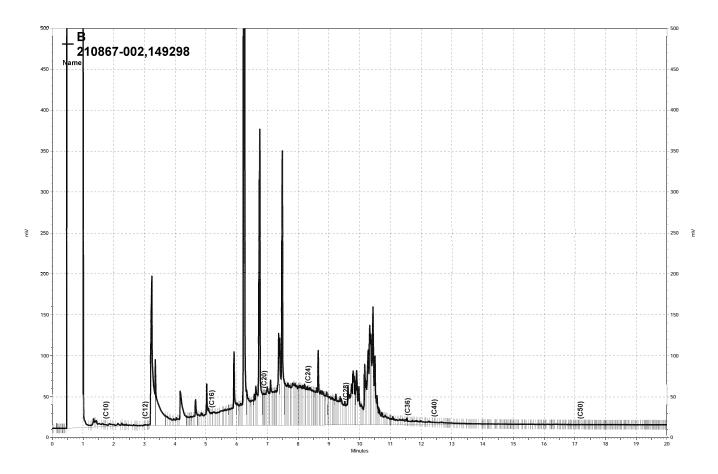
	Total Extractable Hydrocarbons									
Lab #:	210867	Location:	Bay Center Apts							
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C							
Project#:	2007-65	Analysis:	EPA 8015B							
Matrix:	Water	Batch#:	149298							
Units:	ug/L	Prepared:	03/26/09							
Diln Fac:	1.000	Analyzed:	04/04/09							

Type: BS

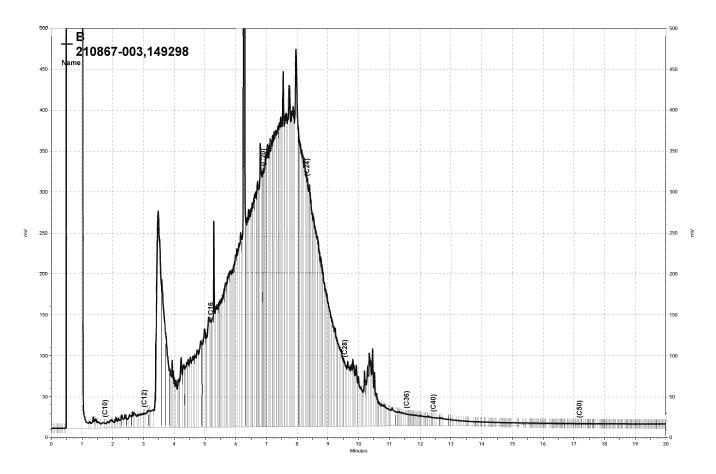
Lab ID: QC489078

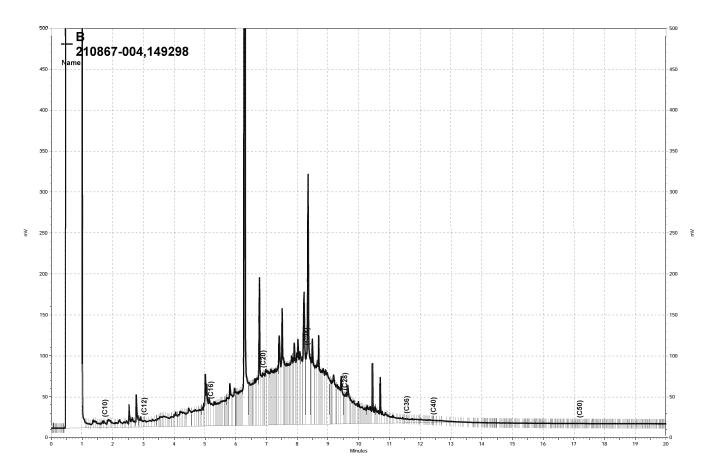

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,712	108	50-120

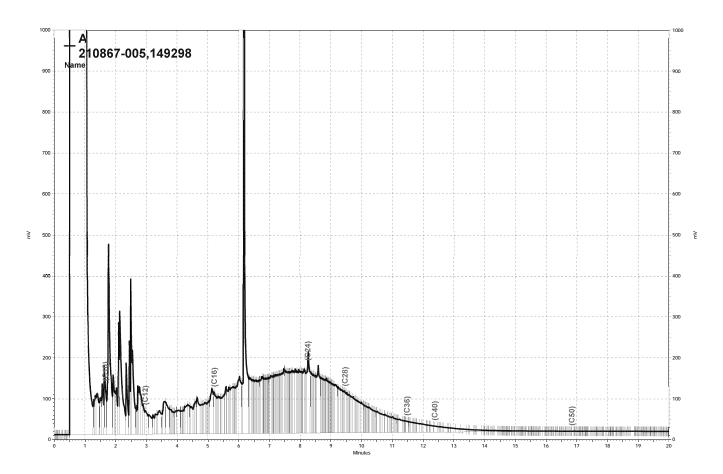
Surrogate	%REC	Limits
o-Terphenyl	104	61-127

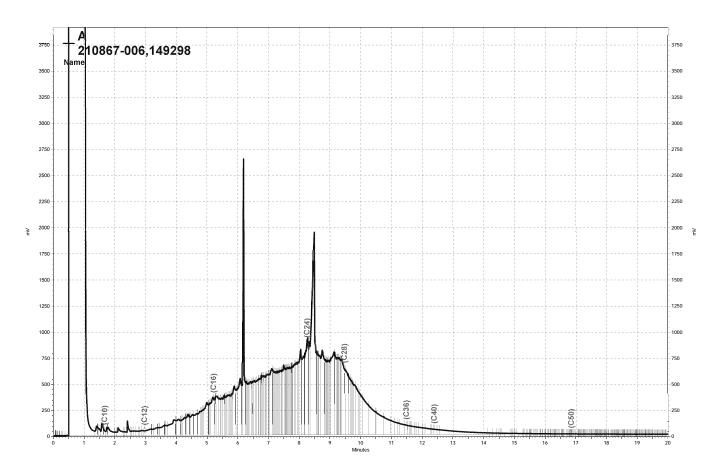

Type: BSD Lab ID: QC489079

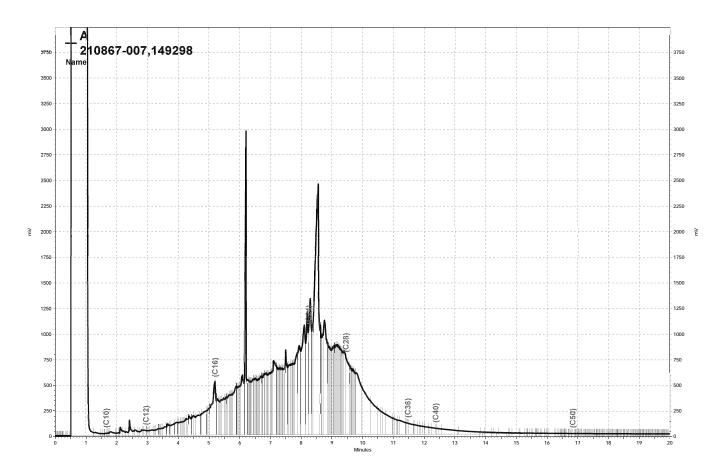
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,638	106	50-120	3	37

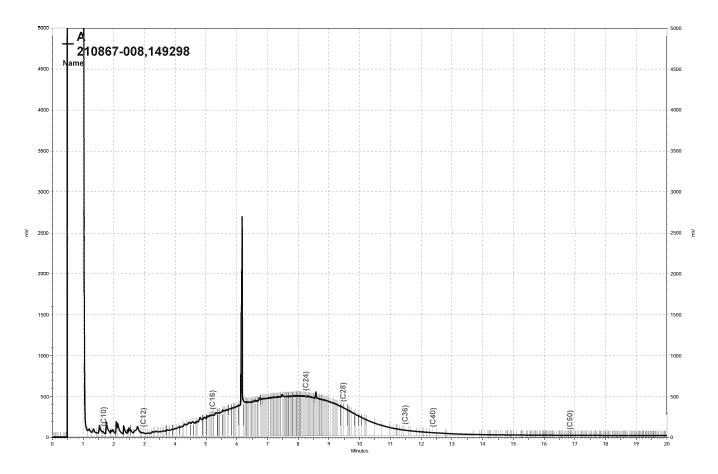

Surrogate	%REC	Limits
o-Terphenyl	104	61-127

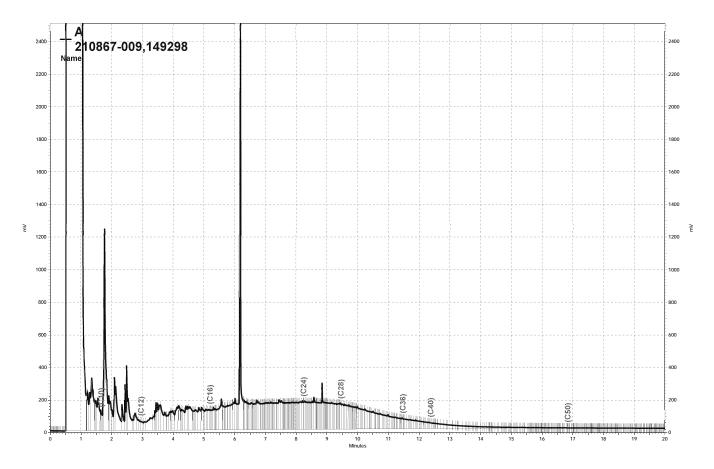

\\Lims\gdrive\ezchrom\Projects\GC14B\Data\093b076, B

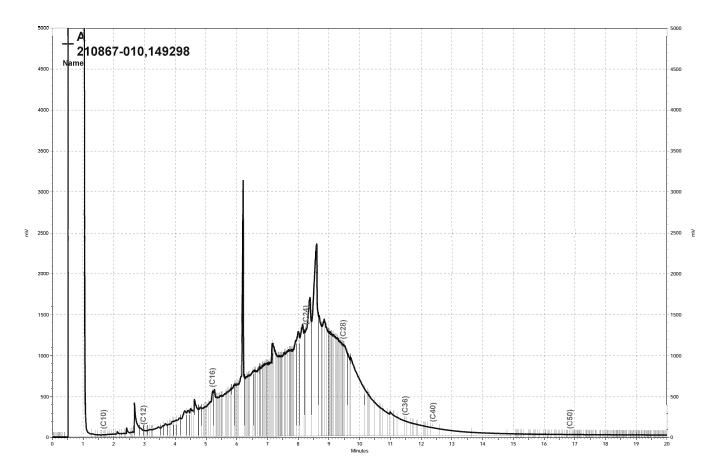

\Lims\gdrive\ezchrom\Projects\GC14B\Data\093b077, B

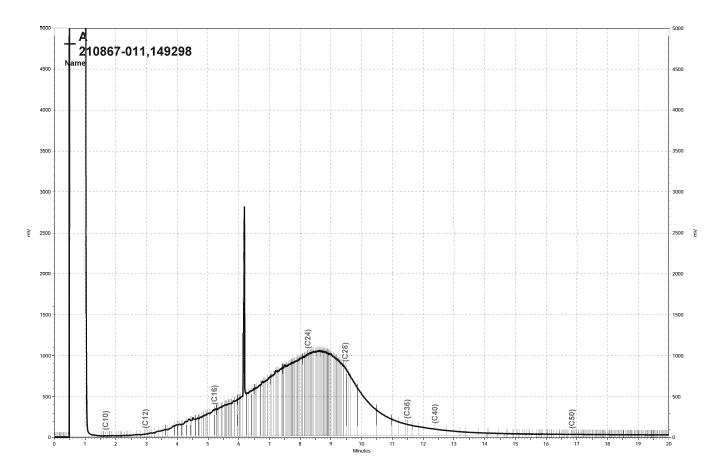

\\Lims\gdrive\ezchrom\Projects\GC14B\Data\093b078, B

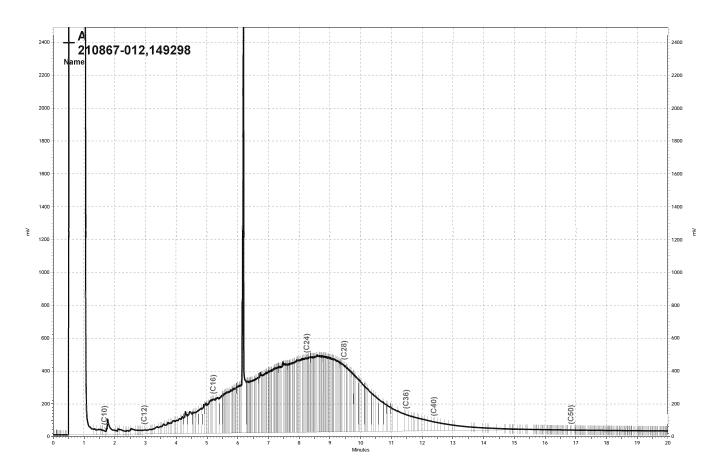

\\Lims\gdrive\ezchrom\Projects\GC14B\Data\093b079, B

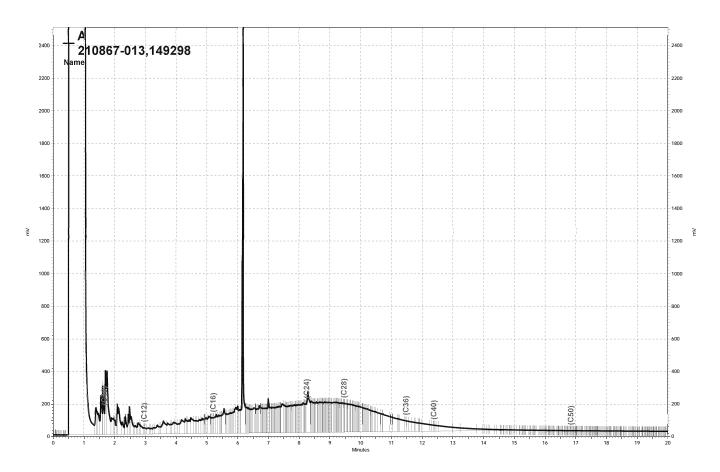

\Lims\gdrive\ezchrom\Projects\GC17A\Data\096a015, A

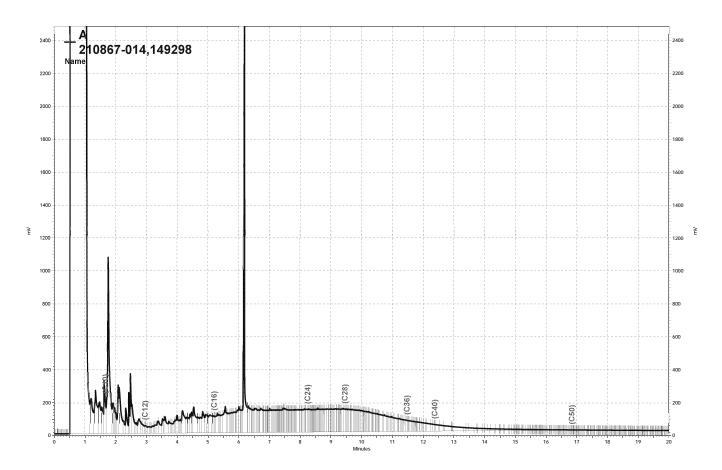

\Lims\gdrive\ezchrom\Projects\GC17A\Data\096a016, A

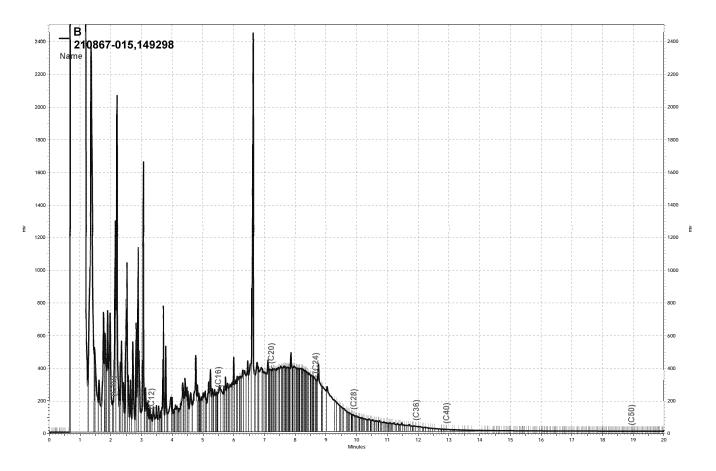

\Lims\gdrive\ezchrom\Projects\GC17A\Data\096a017, A

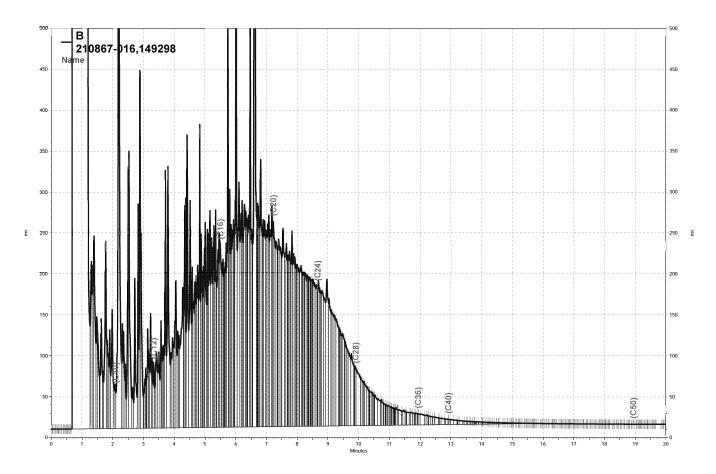

\Lims\gdrive\ezchrom\Projects\GC17A\Data\096a018, A

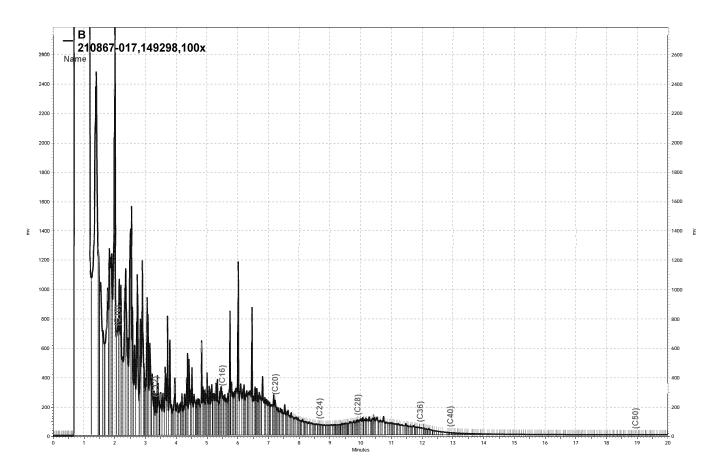

\Lims\gdrive\ezchrom\Projects\GC17A\Data\096a019, A

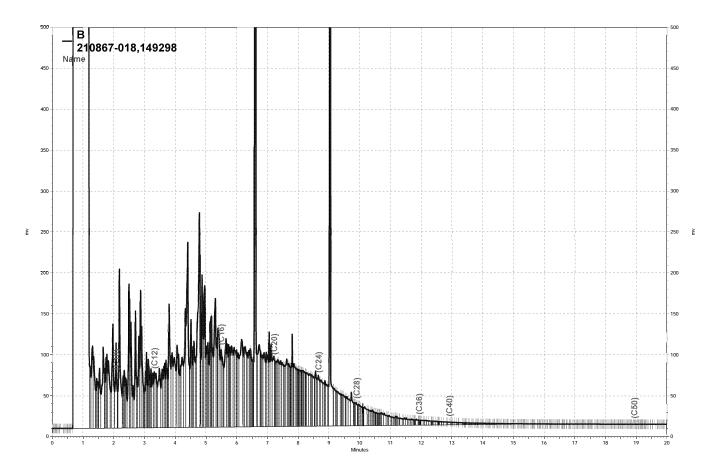

\Lims\gdrive\ezchrom\Projects\GC17A\Data\096a020, A

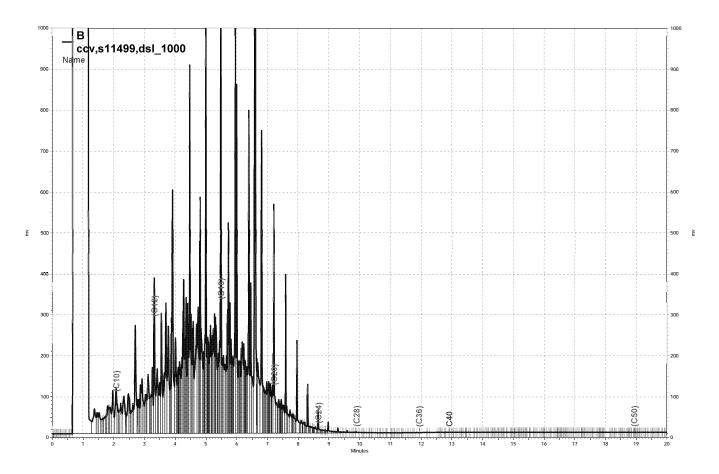

\Lims\gdrive\ezchrom\Projects\GC17A\Data\096a021, A


\Lims\gdrive\ezchrom\Projects\GC17A\Data\096a022, A


\Lims\gdrive\ezchrom\Projects\GC17A\Data\096a023, A


\Lims\gdrive\ezchrom\Projects\GC17A\Data\096a024, A


\Lims\gdrive\ezchrom\Projects\GC15B\Data\093b037, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\093b036, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\093b032, B

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\093b035, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\093b028, B

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 210983 ANALYTICAL REPORT

Stellar Environmental Solutions

2198 6th Street

Berkeley, CA 94710

Project : 2007-65

Location : Bay Center Apts

Level : II

Sample ID TANK-1 <u>Lab ID</u> 210983-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Droject Manager

Date: <u>04/07/2009</u>

Signature:

Senior Program Manager

Date: <u>04/09/2009</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 210983

Client: Stellar Environmental Solutions

Project: 2007-65

Location: Bay Center Apts

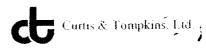
Request Date: 03/27/09 Samples Received: 03/27/09

This data package contains sample and QC results for one water sample, requested for the above referenced project on 03/27/09. The sample was received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):


High surrogate recovery was observed for o-terphenyl in the method blank for batch 149353; no target analytes were detected in the sample. TANK-1 (lab # 210983-001) was diluted due to the dark and viscous nature of the sample extract. No other analytical problems were encountered.

Chain of Custody Record

Lab job no. _

Laboratory	Curtis and Ton				Ме	ethod of Shipment <u>H</u>	and De	livery												Date1	1	
Address	2323 Fifth Stre Berkeley, Calif				Sh	nipment No														Page	of	—
	510-486-0900	Offila 947 I	U			rbill No					/	$\overline{}$	/\	<u> </u>		Ana	ılvsis R	equired			7	_
		Investor L	I C			ooler No								/ /		7	/	7			/	
Project Own	Bay Center 6400 Christi	e Avenue					Glass				/ ,	/ g		′ /		/				/ / /		
Site Addres	s <u>Emeryville, (</u>	California				lephone No. (510) 644	-3123	**	_	/	Mered (ontain	37		/ /	/	/ /	/ /	/ /	' / /		
Project Nan	Emerybay	Phase I Co	ndos			x No(510) 644						Containers	7-D	7 /								
Project Nun	0007.0	55	•			mplers: (Signature)	72		D	/ ,	/ * /				/ /	/	/ ,	/ /	/ /	/ / '	Remarks	
		Location/	T	Γ -					<u>,</u> /		/i	ا /د_	4	/ /								
	Sample Number	Depth	Date	Time	Sample Type	Type/Size of Container	Cooler	eservation Chemical			/Γ	7,5	7 /	′ /								
Tank	-1	AST	337.	1135	W	1 L, VOA	Υ	(a)	N	5	X	X				1						\exists
									†						<u> </u>		<u> </u>					_
			1				 		 	-			\dashv		-			-				\dashv
		 	ļ		 		 		-				_		_		<u> </u>					
			-				 		<u> </u>													
			<u> </u>													i						
				<u></u>																		
														+							·	\dashv
									 			-		_ -	 	-	├	 -	-	: 		\dashv
									├						-		├-	-				_
				-									_				<u> </u>					
			-			•	<u> </u>															
																1						
													\neg			7					,	-
Relinquished	7//	(U)	Date	Received	Бу:	1100	Dayte	Relinquished	by:		L .			Date	I / Re	ceived	 1 bv:		Ll		Date	
Signature -	A/()	<u> </u>	3 27	Signa	ure	(15/5)	136	Signature								<i>∏</i> Signat					_	
Printed	leal 6	as)	Time	Printe	1	acy Bobio	1	Printed _							_						-	_
	Stellar Environr	mental I	w			17	Time // -							Time		Printe	d			-/-	Time	€
Company _			<u></u>	Comp	any	-23 [Company								Comp	any					
Turnaround Ti	ne: Sta	nda	101					Relinquished	-					Date	Re	ceivec	by:				Date	•
Comments: _	(a) VOA w/ HCI	<u> </u>						Signature					-		X	Signat	ture	,				
					· · · · · · · · · · · · · · · · · · ·			Printed				-	Ν,	Time	-	Printe	d				Time	\dashv
																					-	
							<u> </u>	Company						!		Compa	any _					
★ Stellar	Environmental S	Solutions				1 / 51	\prec		<u>-</u>	~/	/					219	8 Sixi	th Str	eet #2	201, Berkele	v. CA 947	10
					(- 4	(0 1/2		//	•										-	

COOLER RECEIPT CHECKLIST

Login # 710953 Date Received 3-27-9 Number of coolers Client STELMS Project EMECY RPY PHASE 1 (CONSO)
Date Opened 3-1-9 By (print) S. (sign) (sign) Date Logged in By (print) (sign)
Date Logged in By (print) (sign)
1. Did cooler come with a shipping slip (airbill, etc)YES NO Shipping info
2A. Were custody seals present? YES (circle) on cooler on samples How many Name Date
2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form) NO 6. Indicate the packing in cooler: (if other, describe)
Bubble Wrap Foam blocks Bags None Cloth material Cardboard Styrofoam Paper towels 7. Temperature documentation:
Type of ice used: Wet Blue/Gel None Temp(°C)
Samples Received on ice & cold without a temperature blank
☐ Samples received on ice directly from the field. Cooling process had begun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete? 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? 17. Are SNO 18. Was the client contacted concerning this sample delivery? 19. NO N/A 10. Was the client contacted concerning this sample delivery? 19. NO N/A 10. Was the client contacted concerning this sample delivery? 10. NO N/A 11. Are bubbles > 6mm absent in VOA samples? 11. Are bubbles > 6mm absent in VOA samples? 12. NO N/A 13. Was the client contacted concerning this sample delivery? 16. Was the client contacted concerning this sample delivery? 17. Are bubbles > NO Date: 18. NO N/A 19. Are bubbles > NO N/A 19. Are bubbles > NO N/A 10. Was the client contacted concerning this sample delivery? 19. Are bubbles > NO N/A 10. Was the client contacted concerning this sample delivery? 10. Are bubbles > NO N/A 11. Are samples in the appropriate contacted concerning this sample delivery? 10. Are bubbles > NO N/A 11. Are samples in the appropriate contacted concerning this sample delivery? 19. Are bubbles > NO N/A 10. Was the client contacted concerning this sample delivery? 19. Are bubbles > NO N/A 10. Was the client contacted concerning this sample delivery? 19. Are bubbles > NO N/A 10. Was the client contacted concerning this sample delivery? 10. Are bubbles > NO N/A

Section:

1.1.2

Page: 1 of 1

Rev. 6 Number 1 of 3

Effective: 23 July 2008
Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

Curtis & Tompkins Laboratories Analytical Report Bay Center Apts Lab #: 210983 Location: Client: Stellar Environmental Solutions EPA 5030B Prep: Project#: 2007-65 TANK-1 Field ID: Sampled: 03/27/09 Matrix: Water Received: 03/27/09 Units: ug/L Analyzed: 04/02/09 Batch#: 149547

Type: SAMPLE Diln Fac: 10.00

Lab ID: 210983-001

Analyte	Result	RL	Analysis
Gasoline C7-C12	6,900	500	EPA 8015B
MTBE	ND	20	EPA 8021B
Benzene	1,300	5.0	EPA 8021B
Toluene	38	5.0	EPA 8021B
Ethylbenzene	13	5.0	EPA 8021B
m,p-Xylenes	250	5.0	EPA 8021B
o-Xylene	50	5.0	EPA 8021B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	103	63-146	EPA 8015B
Bromofluorobenzene (FID)	89	70-140	EPA 8015B
Trifluorotoluene (PID)	103	50-140	EPA 8021B
Bromofluorobenzene (PID)	90	56-132	EPA 8021B

Type: BLANK Diln Fac: 1.000

Lab ID: QC490092

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015B
MTBE	ND	2.0	EPA 8021B
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis	
Trifluorotoluene (FID)	80	63-146	EPA 8015B	
Bromofluorobenzene (FID)	73	70-140	EPA 8015B	
Trifluorotoluene (PID)	75	50-140	EPA 8021B	
Bromofluorobenzene (PID)	75	56-132	EPA 8021B	

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

2.0

	Curtis & Tompkins Labo	oratories Anal	Lytical Report
Lab #:	210983	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	149547
Units:	ug/L	Analyzed:	04/02/09
Diln Fac:	1.000		

Type: BS Lab ID: QC490093

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	989.8	99	76-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	104	63-146
Bromofluorobenzene (FID)	93	70-140

Type: BSD Lab ID: QC490094

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	1,793	90	76-121	10	21

Surrogate	%REC	Limits
Trifluorotoluene (FID)	102	63-146
Bromofluorobenzene (FID)	94	70-140

	Curtis & Tompkins Lab	oratories Anal	Lytical Report
Lab #:	210983	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 5030B
Project#:	2007-65	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	149547
Units:	ug/L	Analyzed:	04/02/09
Diln Fac:	1.000		

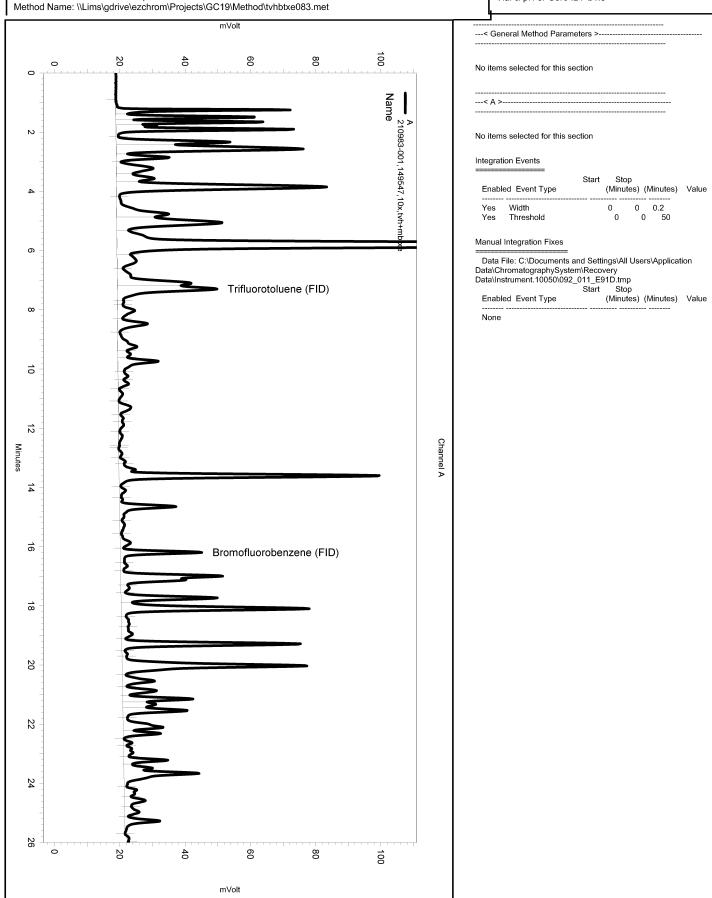
Type: BS Lab ID: QC490095

Analyte	Spiked	Result	%REC	Limits
MTBE	10.00	10.11	101	53-152
Benzene	10.00	9.624	96	79-120
Toluene	10.00	11.20	112	76-122
Ethylbenzene	10.00	11.31	113	77-125
m,p-Xylenes	10.00	11.36	114	76-126
o-Xylene	10.00	11.24	112	77-126

Surrogate	%REC	Limits
Trifluorotoluene (PID)	73	50-140
Bromofluorobenzene (PID)	78	56-132

Type: BSD Lab ID: QC490096

	- 11 1	_ •	^			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	10.00	9.550	95	53-152	6	37
Benzene	10.00	8.518	85	79-120	12	20
Toluene	10.00	9.250	92	76-122	19	21
Ethylbenzene	10.00	9.290	93	77-125	20	21
m,p-Xylenes	10.00	9.227	92	76-126	21	23
o-Xylene	10.00	9.401	94	77-126	18	21


Surrogate	%REC	Limits
Trifluorotoluene (PID)	82	50-140
Bromofluorobenzene (PID)	88	56-132

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\092.seq Sample Name: 210983-001,149547,10x,tvh+mbtxe

Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\092_011

Instrument: GC19 Vial: N/A Operator: lims2k3\tvh3

Software Version 3.1.7
Run Date: 4/2/2009 3:01:03 PM
Analysis Date: 4/2/2009 3:30:11 PM
Sample Amount: 5 Multiplier: 5
Vial & pH or Core ID: b1.3

Total Extractable Hydrocarbons Lab #: 210983 Location: Bay Center Apts Client: Stellar Environmental Solutions EPA 3520C Prep: Project#: 2007-65 EPA 8015B Analysis: TANK-1 Field ID: 03/27/09 Sampled: Matrix: Water Received: 03/27/09 Units: uq/L Prepared: 03/27/09 Batch#: 149353

Type: SAMPLE Diln Fac: 50.00 Lab ID: 210983-001 Analyzed: 04/03/09

 Analyte
 Result
 RL

 Diesel C10-C24
 340,000
 2,500

Surrogate %REC Limits
o-Terphenyl DO 61-127

Type: BLANK Diln Fac: 1.000 Lab ID: QC489294 Analyzed: 04/01/09

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

Surrogate %REC Limits
o-Terphenyl 131 * 61-127

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

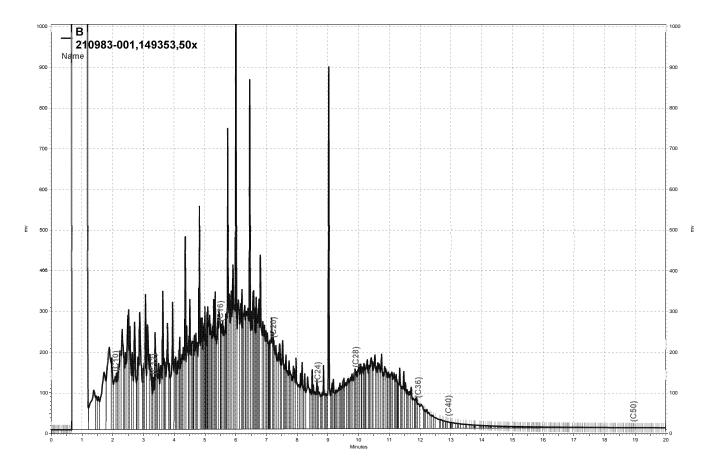
^{*=} Value outside of QC limits; see narrative

	Total Extract	able Hydrocar	rbons
Lab #:	210983	Location:	Bay Center Apts
Client:	Stellar Environmental Solutions	Prep:	EPA 3520C
Project#:	2007-65	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	149353
Units:	ug/L	Prepared:	03/27/09
Diln Fac:	1.000	Analyzed:	03/30/09

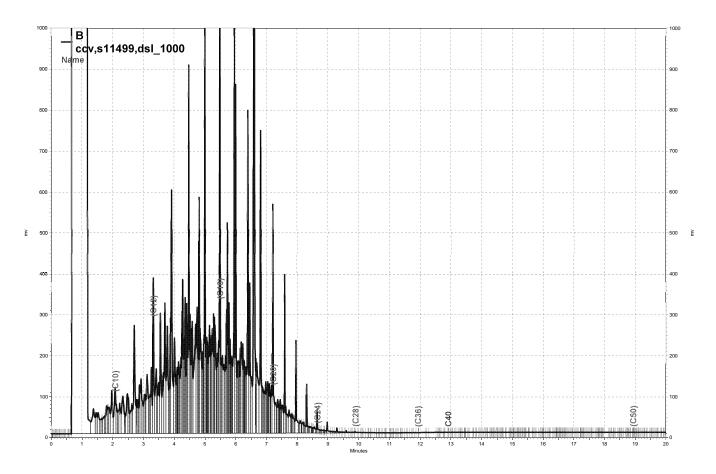
Type: BS Cleanup Method: EPA 3630C

Lab ID: QC489295

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,507	100	50-120


Surrogate	%REC	Limits	
o-Terphenvl	112	61-127	

Type: BSD Cleanup Method: EPA 3630C


Lab ID: QC489296

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,733	109	50-120	9	37

Surrogate	%REC	Limits	
o-Terphenyl	121	61-127	

\Lims\gdrive\ezchrom\Projects\GC15B\Data\093b033, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\093b028, B

APPENDIX D

Historical Groundwater Elevation Data

TABLE B
Historical Monitoring, Extraction, and Trench Well Elevations
6400 Christie Avenue, Emeryville, California

MW-1								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
1	Dec-88	14.39	9.60	NP	4.79			
2	May-89	14.31 ^(a)	8.73	NP	5.58			
3	Feb-91	14.31	9.18	NP	5.13			
	Monitoring well abandoned - date unclear							

MW-2								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
1	Dec-88	14.36	9.64	NP	4.72			
2	May-89	14.28 ^(a)	8.78	NP	5.50			
3	Feb-91	14.28	9.61	NP	4.67			
	Monitoring well abandoned - date unclear							

	MW-3								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
1	Dec-88	14.53	8.93	trace	5.60				
2	May-89	14.43 ^(a)	8.69	NP	5.74				
3	Feb-91	14.43	8.31	NP	6.12				
4	Mar-04	16.96 ^(b)	9.47	NP	7.49				
5	Dec-06	NA	NA	NA	NA				
6	Dec-07	16.65 ^(c)	7.76 ^(e)	7.76	8.89				
7	Mar-08	16.65	8.72	8.70	7.93				
8	Jun-08	16.65	8.56	NP	8.09				
9	Sep-08	16.65	9.27	7.95	7.38				
10	Dec-08	16.65	8.36	7.49	8.29				
11	Mar-09	16.65	7.94	NP	8.71				

MW-4								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation			
1	Dec-88	14.21	8.29	NP	5.92			
2	May-89	14.12 ^(a)	7.75	NP	6.37			
3	Feb-91	14.12	8.04	NP	6.08			
4	Mar-04	16.74 ^(b)	6.90	NP	7.49			
5	Dec-06	NA	NA	NA	NA			
6	Dec-07	16.29 ^(c)	6.61	NP	9.68			
7	Mar-08	16.29	7.24	NP	9.05			
8	Jun-08	16.29	6.94	NP	9.35			
9	Sep-08	16.29	6.85	NP	6.85			
10	Dec-08	16.29	7.42	NP	8.87			
11	Mar-09	16.29	6.90	NP	9.39			

	MW-5								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
1	Dec-88	14.65	10.23	NP	4.42				
2	May-89	14.56 ^(a)	9.29	NP	5.27				
3	Feb-91	14.56	10.04	NP	4.52				
4	Mar-04	17.11 ^(b)	9.10	NP	8.01				
5	Dec-06	NA	NA	NA	NA				
6	Dec-07	16.72 ^(c)	9.66	NA	7.06				
7	Mar-08	16.72	9.72	NP	7.00				
8	Jun-08	16.72	9.72	NP	7.00				
9	Sep-08	16.72	8.56	NP	8.16				
10	Dec-08	16.72	9.75	NP	6.97				
11	Mar-09	16.72	9.31	NP	7.41				

	MW-6								
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
1	Dec-88	14.75	8.10	NP	6.65				
2	May-89	14.67 ^(a)	7.58	NP	7.09				
3	Feb-91	14.67	7.05	NP	7.62				
4	Mar-04	17.22 ^(b)	6.51	NP	10.71				
5	Dec-06	NA	NA	NA	NA				
6	Dec-07	16.82 ^(c)	6.61	NP	10.21				
7	Mar-08	16.82	7.02	NP	9.80				
8	Jun-08	16.82	7.55	NP	9.27				
9	Sep-08	16.82	6.06	NP	10.76				
10	Dec-08	16.82	6.91	NP	9.91				
11	Mar-09	16.82	6.45	NP	10.37				

MW-7									
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
		Install	led March 2004						
1	Mar-04	18.09	9.93	NP	8.16				
2	Dec-06	NA	NA	NA	NA				
3	Dec-07	17.73 ^(c)	10.30	NP	7.43				
4	Mar-08	17.73	10.51	NP	7.22				
5	Jun-08	17.73	10.50	NP	7.23				
6	Sep-08	17.73	10.37	NP	7.36				
7	Dec-08	17.73	10.60	NP	7.13				
8	Mar-09	17.73	10.13	NP	7.60				

MW-8									
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
		Instal	led March 2004						
1	Mar-04	18.25	9.32	8.15	8.93				
2	Nov-06 ^(d)	16.96	10.59	NP	6.37				
3	Dec-07	17.84 ^(c)	9.42	NP	8.42				
4	Mar-08	17.84	10.50	9.18	7.34				
5	Jun-08	17.84	9.68	9.10	8.16				
6	Sep-08	17.84	9.63	8.89	8.21				
7	Dec-08	17.84	9.58	8.89	8.26				
8	Mar-09	17.84	9.62	8.89	8.22				

MW-9									
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
•		Installe	d March 2004	<u> </u>					
1	Mar-04	18.27	9.38	NP	8.89				
2	Dec-06	NA	NA	NA	NA				
3	Dec-07	17.84 ^(c)	9.54	NP	8.30				
4	Mar-08	17.84	9.77	NP	8.07				
5	Jun-08	17.84	9.68	NP	9.27				
6	Sep-08	17.84	9.30	NP	8.54				
7	Dec-08	17.84	9.83	NP	8.01				
8	Mar-09	17.84	9.37	NP	8.47				

MW-10									
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
		Instal	led March 2004						
1	Mar-04	18.21	9.87	8.24	8.34				
2	Dec-06	18.21	9.30	8.86	8.91				
3	Dec-07	17.83 ^(c)	8.98 ^(e)	8.98	8.85				
4	Mar-08	17.83	9.28	8.98	8.55				
5	Jun-08	17.83	8.86	8.78	7.23				
6	Sep-08	17.83	8.95	8.84	8.88				
7	Dec-08	17.83	8.97	8.74	8.86				
8	Mar-09	17.83	9.25	8.54	9.25				

MW-11									
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation				
		Inst	alled May 2004						
1	Nov-06 ^(d)	17.76 ^(c)	10.33	NP	7.43				
2	Dec-07	17.76	10.27	NP	7.49				
3	Mar-08	17.76	10.34	NP	7.42				
4	Jun-08	17.76	10.20	NP	8.16				
5	Sep-08	17.76	10.03	NP	7.73				
6	Dec-08	17.76	10.34	NP	7.42				
7	Mar-09	17.76	10.20	NP	7.56				

	MW-12									
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation					
	Installed between 2004-2006									
1	Nov-06 ^(d)	17.83 ^(c)	9.37	NP	8.46					
2	Dec-07	17.83	9.15	NP	8.68					
3	Mar-08	17.83	9.11	NP	8.72					
4	Jun-08	17.83	8.86	NP	8.97					
5	Sep-08	17.83	8.76	NP	9.07					
6	Dec-08	17.83	8.98	NP	8.85					
7	Mar-09	17.83	8.50	NP	9.33					

	MW-13													
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation									
	Installed between 2004-2006													
1	Dec-06	17.66 ^(c)	9.81	9.44	7.85									
2	Dec-07	17.66	9.95	9.39	7.71									
3	Mar-08	17.66	10.02	9.54	7.64									
4	Jun-08	17.66	9.86	9.45	7.80									
5	Sep-08	17.66	10.34	9.54	7.32									
6	Dec-08	17.66	10.54	9.65	7.12									
7	Mar-09	17.66	9.26	9.14	8.40									

	MW-14													
Sampling Event No.	Date	Date TOC Elevation DTW DTP												
Installed between 2004-2006														
1	Nov-06 ^(d)	17.60 ^(c)	9.11	9.11(sheen)	8.49									
2	Dec-07	17.60	8.86	8.84	8.74									
3	Mar-08	17.60	8.91	8.88	8.69									
4	Jun-08	17.60	8.66	8.62	8.94									
5	Sep-08	17.60	8.64	NP	8.96									
6	Dec-08	17.60	8.70	NP	8.90									
7	Mar-09	17.60	9.25	NP	9.25									

	MW-15													
Sampling Event No.	Date	TOC Elevation	GW Elevation											
Installed between 2004-2006														
1	Dec-06	17.80 ^(c)	9.15	NP	8.65									
2	Dec-07	17.80	9.30	NP	8.50									
3	Mar-08	17.80	9.20	9.18	8.60									
4	Jun-08	17.80	9.60	9.63	8.20									
5	Sep-08	17.80	8.84	8.84 ^(f)	8.96									
6	Dec-08	17.80	9.19	8.36	8.61									
7	Mar-09	17.80	8.70	NP	9.10									

	MW-16														
Sampling Event No.	Date	TOC Elevation	GW Elevation												
	Installed between 2004-2006														
1	Dec-06	NA	NA	NA	NA										
2	Dec-07	17.74 ^(c)	9.36	NP	8.38										
3	Mar-08	17.74	9.88	NP	7.86										
4	Jun-08	17.74	9.25	NP	7.80										
5	Sep-08	17.74	9.07	NP	8.67										
6	Dec-08	17.74	9.45	NP	8.29										
7	Mar-09	17.74	8.88	NP	8.86										

	MW-17														
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation										
	Installed between 2004-2006														
1	Dec-06	NA	NA	NA	NA										
2	Dec-07	18.17 ^(c)	9.40	9.32	8.77										
3	Mar-08	18.17	9.34	9.18	8.83										
4	Jun-08	18.17	8.98	8.97	9.19										
5	Sep-08	18.17	9.21	7.92	8.96										
6	Dec-08	18.17	9.25	9.11	8.92										
7	Mar-09	18.17	8.89	NP	9.28										

	MW-18												
Sampling Event No.	Date	TOC Elevation	GW Elevation										
Installed between 2004-2006													
1	Dec-06	NA	NA	NA	NA								
2	Dec-07	16.35 ^(c)	8.30	NP	8.05								
3	Mar-04	16.35	8.34	NP	8.01								
4	Jun-08	16.35	8.34	NP	8.20								
5	Sep-08	16.35	8.48	NP	7.87								
6	Dec-08	16.35	8.61	NP	7.74								
7	Mar-09	16.35	7.75	NP	8.60								

			MW-E		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
1	Dec-88	NM	NM	NM	NM
2	May-89	15.32	10.39	NP	4.93
3	Feb-91	NM	NM	NM	NM
4	Mar-04	17.80	9.92	NP	7.88
5	Nov-06 ^(d)	17.80	10.22	NP	7.58
6	Dec-07	17.47 ^(c)	10.03	NP	7.44
7	Mar-08	17.47	10.21	NP	7.26
8	Jun-08	17.47	10.20	NP	7.27
9	Sep-08	17.47	9.55	NP	7.92
10	Dec-08	17.47	10.32	NP	7.15
11	Mar-09	17.47	9.79	NP	7.68

			RW-1		
Sampling Event No.	Date	TOC Elevation	DTW	DTP	GW Elevation
1	Dec-88	NM	NM	NM	NM
2	May-89	14.54	10.17	10.14	4.37
3	Feb-91	14.54	11.46	10.85	3.57
4	Mar-04	18.32	7.20	5.62	11.12
5	Nov-06 ^(d)	18.32	9.15	9.11	9.17
6	Dec-07	16.70 ^(c)	9.53 ^(e)	9.53	7.17
7	Mar-08	16.70	8.99	8.92	7.71
8	Jun-08	16.70	8.95	8.87	7.75
9	Sep-08	16.70	NM ^(c)	NM ^(c)	NM ^(c)
10	Dec-08	16.70	NM ^(c)	NM ^(c)	NM ^(c)
11	Mar-09	16.70	9.06 ^(c)	9.06 ^(c)	7.64

Notes:

The 1988, 1989, and 1991 water elevations were measured by Groundwater Technology, Inc.

The 2004 and 2006 water elevations were measured by PES Environmental.

NS = Not sampled

NP = No product

NM - Not measured

NA = data not available from the previous consultant for this event

TOC Elevation = Top of Casing Elevation

DTW = Depth to water from the top of the casing

DTP - Depth to product from the top of the casing

GW Elevation - Groundwater elevation as compared to mean sea level

⁽a) Wells resurveyed in May 1989

⁽b) New elevation recorded by PES. Date of survey unclear.

 $^{^{\}rm (c)}$ Wells resurveyed by PES in April 2007

 $^{^{(}d)}$ no water level data available for the December 2006 sampling event

 $[\]ensuremath{^{(e)}}$ Thickness of product interfered with determining oil/water interface.

 $^{^{(}f)}$ Depth to groundwater = depth to free product as difference could not be determined

APPENDIX E

Historical Product Extraction Data Table

Table D Historical Trench and Monitoring Well Product Recovery 6400 Christie Avenue, Emeryville, CA

												Well or	Trencl	ı Locati	on												
																											Total
Extraction Date	MW-3	MW-5	MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	MW-18	MW-E	RW-1	TA-E	TA-M	TA-W	TB-E	TB-M	TB-W	TC-E	TC-M	TC-W	Extracted
Apr-04					1		1										19.75										21.75
May-04																	22.5										22.50
Sep-04																	0.74										0.74
Oct-04																	5.22										5.22
2004 Total																											50.21
Jan-05			-																								0.00
Apr-06																				3.3							3.30
Jun-06																		8.9	9.2	10.3							28.40
Jul-06																		3.6	5	5.3							13.90
Aug-06					0.8		0.8			1	0.2	0.2						0.2	0.2	0.4							3.80
Sep-06							0.8			0.2	0.3							0.6		0.6							2.50
Nov-06																		0.2									0.20
Dec-06			-															0.2									0.20
2006 Total																											52.30
Jan-07																		0.2									0.20
Feb-07			-															0.2									0.20
Mar-07																		0.2									0.20
Nov-07			-																0.81	0.68				0.63			2.12
Dec-07			-															0.01	0.61	0.07				0.002			0.69
2007 Total																											3.41
Feb-08	0.03		-														0.45	0.08	0.06	0.18	0.04	0.06	0.06	0.08	0.05	0.05	1.14
Feb-08		0.05															0.45	0.15	0.15	0.30							1.10
Mar-08			0.02	0.002	0.02	0.001	0.04	0.02	0.03	0.004	0.01	0.02	0.01	0.01	0.003	0.012	0.3	0.09	0.06	0.09				0.06			0.80
Mar-08																			0.002	0.008							0.01
May-08	0.09						0.075		0.075	0.019	0.009			0.13			1.397	0.866	1.466	1.431							5.56
Jun-08																		0.15	0.11	0.57							0.83
Aug-08	0.12						0.048		0.024	0.009							0.75	0.9	1.6	0.7	0.3	0.3		0.15			4.90
Sep-08																		0.03	0.09	0.048							0.17
Nov-08	0.078				0.009				0.06	0.009			0.003	0.06			0.6	0.1	0.03		0.06	0.06	0.06	0.06	0.09	0.09	1.37
Dec-08																		0.0003	0.08					0.03			0.11
2008 Total																											15.99
Mar-09	0.279				0.378		0.369		0.261	0.007	0.023	0.117		0.342		0.023	1.800	0.750	0.950	1.010	0.153	0.153	0.153	0.653	0.153	0.153	7.73
2009 Total																											7.73
Total Extracted	0.60	0.05	0.02	0.00	2.21	0.00	3.13	0.02	0.45	1.25	0.54	0.34	0.01	0.54	0.00	0.04	53.96	17.43	20.42	24.99	0.55	0.57	0.27	1.67	0.29	0.29	129.64

Note:

All free product quantities presented in gallons

Product extraction events conducted before November 2007 were completed by PES Environmental

APPENDIX F

Groundwater Disposal Documentation

Ple	ase print or type. (Form designed for use on elite (12-pitch) typewriter.)							m Approved	d. OMB No.	2050-003				
1	UNIFORM HAZARDOUS 1. Generator ID Number	2. Page 1 of 1	3. Emer 80	gency Response 30-424-93	Phone	4. Manifest			7 1	IV				
	WASTE MANIFEST CALOOO331636		Generate	or's Site Address	(if different th			<u> 1468</u>) 0	UN				
\prod	5 Generator's Name and Mailing Address Generator's Phone: Generator's Name and Mailing Address Generator's Phone: Generator's Phon		Ochorac	or a Otte Address	(ii diiioi diii dii	an maning addit	.55)							
	6400 CM 15416 35 PARSINGSILE CA 94604.													
	Generator's Phone: 510 594 - 2000													
	6 Transport 1 Company Name NVIRONMENTAL SERVICES					U.S. EPA ID Number CAD982413262								
$\ $	7. Transporter 2 Company Name					U.S. EPA ID								
\prod	Thursdore 2 doings wants					1								
	8. Designer Herry Standart NC.					U.S. EPA ID	Number	·····						
	6880 SMITH AVENUE													
	NEWARK CA 94560 510-795-4400					, CA	D9808	37418						
	r adility's r none.		 1			<u> </u>	1	Γ						
\parallel	9a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))		}	10. Contain	ers Type	11. Total Quantity	12. Unit Wt./Vol.	13.	Waste Code	es				
11	NON-RCRA HAZARDOUS WASTE, LIQUID)			3,5	-		221	223	1				
GENERATOR	(Dil & water)			001	TT	1150	G	-	1223	 				
ER	(OIL & Wighter))				1120	ļ	ļ		ļ				
GEN	2.													
11														
$\ $	3.						<u> </u>	1		 				
$\ $			i					<u> </u>						
							 	ļ						
	4.						1							
	14. Special Handling Instructions and Additional Information				L		-L		·	!				
	PROFILE #			-				# 50						
	DOT ERG# 171 WEAR PROTECTIVE CLOTHING					Sales Order # OL D35)								
	15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this	consignment	are fully a	nd accurately des	scribed above									
$\ $	marked and labeled/placarded, and are in all respects in proper condition for transport according to the contents of this consignment conform to the terms of the attached	ording to appli	icable inte	mational and nation										
	I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large	e quantity ger	nerator) or		Il quantity ger	erator) is true.								
\prod	Generator's/Offeror's Printed/Typed Name	Sig	gnature	7 1)	7/11				onth Day					
H	Jean 61055 HOVER OF LUC			<u> </u>	300)3 ₁₂ -	210				
INT.	Transporter signature (for exports only):	Export from	U.S.	Port of ent Date leaving	•									
_	<u> </u>			541515411	<u></u>									
TRANSPORTER	Transporter 1 Printed/Typed Name	Sig	gnature	اسرده	ST	/280		Mo	· · · · ·					
SP(Transporter 2 Printed/Typed Name	Sic	gnature	200	<u> </u>	2/4			77 57					
R	Transporter 2 i finicul ryped Hame	 	gnature					l	onth Da	y Year 				
-	18. Discrepancy													
	18a. Discrepancy Indication Space Quantity Type			Residue		Partial Re	ejection		Full Be	ejection				
			_			rantarive	geodori		ruii ixe	Jection				
\	18b. Alternate Facility (or Generator)	····	Ma	anifest Reference	Number:	LLC EDAID	Mumbar							
	Toc. Alternate Facility (or Generator)					U.S. EPA ID	Number							
FAC	Facility's Phone:					1								
Ш	18c. Signature of Alternate Facility (or Generator)							M	lonth Da	y Year				
N.														
DESIGNATED FACILITY	19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treat	tment, disposa	al, and rec	ycling systems)										
٥	1 4135	3.				4.								
	20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covere	ed by the man	nifest exce	ot≱as noted in Iten	n 18a 🔨									
\parallel	Printed/Typed Name A Faller	. Siq	gnature	1	()	/1	· · · · · · · · · · · · · · · · · · ·	. M	onth Day	Year				
14	I MANU SAFERS		$-1 \cup$	71214	int () (10	216	11 CY				

Gertificate of Kecycling

Dear Valued Customer:

Evergreen certifies that the used oil, used antifreeze, oily water, and used oil filters collected from your facility were fully recycled in accordance with all applicable state and federal regulations. Evergreen Environmental Services also provides emergency spill response: vacuum cleaning of tanks, clarifiers, and sumps; transportation of hazardous waste, steam cleaning, management of oily solids, and treatment of non-hazardous wastewater.

For more information regarding the services Evergreen provides, please call:

1-800-972-5284

We appreciate your business!

This certificate also serves as notification, as required by Title 22, Section 66264.12, that Evergreen Oil, Inc. has the appropriate permits for, and will accept the wastes manifested to Evergreen facilities.

"dedicated to the protection of the environment"

