

By dehloptoxic at 11:10 am, Dec 20, 2006

2500 Camino Diablo, Suite 100, Walnut Creek, CA 94597

Fax: (925) 944-2895

Phone: (925) 944-2899

February 3, 2006 Mr. Amir Gholami Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Work Plan for Soil and Groundwater Investigation

Nat Piazza

20957 Baker Road

Castro Valley, California 94546

Leak Case RO0002739 AEI Project # 10509

Dear Mr. Gholami:

Attached is a copy of the work plan for the proposed investigation at the above referenced site. The Piazzas would like to move forward with the investigation as soon as possible.

If you have any questions or need additional information, I can be reached at (925) 944-2899 extension 122.

Sincerely,

AEI Consultants

Robert F. Flory, P.G.

Project Manager

cc: Nat & Darlene Piazza

file

Phone: (925) 944-2899 Fax: (925) 944-2895

January 30, 2006

Darlene and Nat Piazza 7613 Peppertree Road Dublin, California 94568-3343

Re: Workplan for Soil and groundwater Investigation

20957 Baker Road Castro Valley, California 94546 Leak Case RO0002739 AEI Project # 10509

Dear Mr. and Mrs. Piazza,

The following workplan has been prepared on behalf of Mr. And Mrs. Nat Piazza, owners of the above referenced property. AEI Consultants (AEI) has been retained by Mr. Nat Piazza to provide environmental engineering and consulting services associated with a previously removed underground storage tank (UST) on the property. This workplan has been prepared in response to a request from the Alameda County Health Care Services (ACHCSA) to prepare work plan for a soil and groundwater investigation to determine the horizontal and vertical extent of impacted groundwater resulting from the hydrocarbon release from the former USTs.

SITE DESCRIPTION AND BACKGROUND

The subject property (hereafter referred to as the "site" or "property") is located at 20957 Baker Road in Castro Valley, California (Figure 1: Site Location Map). The site is located in a mixed residential and commercial/light-industrial area of Castro Valley. The site is approximately 160 feet by 300 feet in area and is currently undeveloped. The site is partially covered with asphalt surfacing and concrete slabs with the balance of the site graveled.

Tank Removal

On April 21, 2004, AEI removed two 1,000 gallon underground tanks from the site. The removal was performed under permit from the Alameda County Health Services Agency (ACHCSA). The tank removal was observed by Robert Weston, Inspector for the ACHCSA. Two soil samples were collected from underneath each UST and analyzed for Total Petroleum Hydrocarbons as gasoline (TPH-g), benzene, toluene, ethylbenzene, xylenes (BTEX) and Methyl ter- butyl ether (MTBE) by EPA Method 8021B/8015Cm. Fuel oxygenates and 1,2 Dibromoethane (EDB) and 1,2 Dichloroethane (1,2 DCA) were analyzed by EPA Method 8260. Total Petroleum Hydrocarbons as diesel (TPH-d) was analyzed by EPA Method 8015C and total lead by EPA method 7010.

Hydrocarbons were detected in all the soil samples, TPH-g at concentrations ranging from 160 mg/Kg (T1W-EB8') to 1,400 mg/Kg (T2W-EB8') and TPH-d at concentrations ranging from 1,400 mg/Kg (T2E-EB8') to 10,000 mg/Kg (T1E-EB8'). Total xylenes were reported in two samples at 8.4 mg/Kg (T2W-E8') and 0.25 mg/kg (T2E-EB8'). No fuel oxygenates, EDB, or DCA were detected in the samples. Total lead was reported at concentrations ranging from 6.1 mg/Kg to 24 mg/Kg (stockpile sample STKP1-4).

Preliminary Site Assessment

AEI performed the subsurface investigation at the property on May 18, 2005. Eight (8) soil borings (SB-1 through SB-8) were advanced to depths ranging from 14 ft. to 18 ft. below ground surface (bgs) using a Geoprobe[®] model 5410 direct-push drilling rig. The locations of the soil borings are shown on Figure 2.

No detectable concentrations of TPH-g, TPH-d, TPH-mo, MTBE or BTEX, were reported in any of the soil samples from depths of 7.5 to 11.0 feet bgs above detection limits of 1.0 mg/kg, 1.0 mg/kg, 5.0 mg/kg, 0.05 mg/kg and 0.005 mg/kg respectively.

TPH-g was reported at a concentration of 7,300 micrograms per liter (μ g/L) in SB-2 (SB2-W). No TPH-g was reported in groundwater samples from any other borings at or above a detection limit of 50 μ g/L.

The maximum concentration of TPH-d was reported in the groundwater sample from boring SB-2-W at a concentration of 23,000 μ g/L. LNAPL was observed in the field and reported by the laboratory in the groundwater sample from SB-2. TPH-d was reported in the other seven borings at concentrations ranging from ND<50 μ g/L (SB-7) to 670 μ g/L (SB-5).

TPH-mo was not reported in groundwater samples from borings SB-3, SB-4 and SB-7 at or above a detection limit of 250 μ g/L. TPH-mo was reported in groundwater samples from borings SB-1, SB-2, SB-5, SB-6 and SB-8 at concentrations ranging from 300 μ g/L (SB-6) to 1400 μ g/L (SB-1 and SB-5).

MTBE was not reported by EPA Method 8021B in groundwater samples from any of the eight soil borings at or above a detection limit of $0.05~\mu g/L$.

The results of the groundwater analyses are summarized in Table 2 (Groundwater Sample Analytical Data) and shown on Figures 3 through 6.

ENVIRONMENTAL SETTING

The site is located at approximately 180 feet above mean sea level (msl). The site is relatively flat and the local topography slopes very gently to south-southwest toward the nearest stream (Figure 1).

The lithology observed in the borings drilled to date typically consists of 1 to 2 feet of gravelly clay – clayey gravel (Fill). The fill is underlain by silty clay which becomes clayey silt downward to a depth of 6 to 8 feet bgs. The silt and clay are underlain by silty and gravelly sands to the top of the bedrock at depth of 13 to 17 feet bgs (Figure 7). In several borings saprolitic clay is present between the sandy sediments and the siltstone bedrock. Groundwater, where present, was encountered at depths of 9 to 11 feet bgs. The relationships of the sediments which underlie the site are shown on cross sections A-A' and B-B' (Figure 8).

The nearest surface water body to the site is a small unnamed creek, located approximately 500 feet southwest of the site that drains into San Lorenzo Creek.

SCOPE OF WORK

Based on the results of the soil and groundwater analyses from the UST removal, and the preliminary site investigation, the ACHCSA has requested a scope of work to define the extent of the dissolved phase plume.

AEI proposes to drill three (3) temporary soil borings (labeled SB-9 through SB-11), three (3) 2-inch diameter monitoring wells and one (1) 4-inch monitoring/extraction well, as shown on Figure 2. The locations of the borings and wells were chosen to further assess the extent of the impact to soil and groundwater in the area around the former tank hold. All proposed work will be done under the direct supervision of an AEI Professional Geologist.

A summary of the rationale for the proposed boring and monitoring well locations is presented below.

Proposed Boring Location Summary

Boring IDs	Rationale
SB-9	20 feet west of SB-5, delineate western extent of groundwater plume.
SB-10	20 feet north of SB-5, delineate northwestern extent of groundwater plume.
SB-11	20 feet northeast of SB-2, delineate northeastern extent of groundwater plume.
MW-1	East end of former tank hold, twin to SB-2 which contained LNAPL, monitoring/extraction
MW-2	Up gradient of tank hold, clean up gradient background monitoring well
MW-3	Down gradient monitoring well
MW-4	Down gradient monitoring well

SOIL BORINGS

The soil borings will be advanced by Greg Drilling, a California C57 licensed drilling contractor using a Rhino drilling rig. A drilling permit will be obtained from Alameda County Public Works Department (ACPWA). The borings will be advanced into groundwater or to a maximum depth of 20 feet bgs or refusal in each boring, as needed to collect groundwater samples from the water table aquifer. Soil samples will be collected from each boring at approximately 5 foot intervals, with at least one sample from the capillary fringe. Selected sample will be placed in a 1-quart zipper locking plastic bag and used for field screening. The samples will be screened using a Mini RAE Plus Classic (Model PGM-76IS) photo ionization detector (PID). The tip of the PID will be inserted into the sealed 1-quart bag through a small diameter hole poked into the bag. The PID readings will be recorded on the boring logs. Additional samples may be collected based on field observations and organic vapor measurements collected in the field. A minimum of one soil sample will be analyzed from each boring, typically from the capillary fringe.

Those borings to be completed as monitoring wells will be drilled out using nominal 8-inch or 10-inch augers depending on the diameter of well to be installed.

All samples selected for laboratory analysis will be analyzed for TPH-g, TPH-d, and TPH-mo (EPA method 8015M); benzene, toluene, ethyl-benzene, and xylenes (BTEX) and MTBE (EPA method 8021M).

The soil borings will be logged by an AEI geologist using the Unified Soil Classification System (USCS). Copies of the boring logs, including depth of samples collected are included in Appendix B.

Upon completing the three (3) temporary soil borings, ¾" slotted PVC casing will be installed to allow for groundwater recharge. Groundwater samples will be collected using a drop tube or mini bailer. Following collection of samples, all drilling equipment and temporary casing material will be removed from the boreholes and each boring will be backfilled with neat cement grout as per ACPWA guidelines.

Drill cuttings will be stored in 55-gallon drums, pending the results of sample analyses. On-site treatment or off-site disposal of cuttings is not included in this scope of work. Equipment rinse water and well purge water will be stored in 55-gallon drums.

MONITORING WELL COMPLETION

The groundwater monitoring wells will be drilled to a depth of 20 feet bgs or refusal which ever is encountered first. Well MW-1, which is to be installed near boring SB-2 which contained LNAPL, will be drilled using nominal 10-inch augers and completed by installing 4-inch diameter schedule 40 PVC casing. Wells MW-2 through MW-4 will be drilled with nominal 8-

inch augers and competed with 2-inch diameter schedule 40 PVC casing. Both 4 and 2-inch wells will be completed with schedule 40 PVC casing with 0.010 slots. The slotted intervals will extend from total depth to approximately 7 feet bgs. A traffic-rated, flush-mounted well box will be installed at the surface.

The wells will be developed no sooner than 72 hours after seal placement by surging, bailing, and purging to remove accumulated fines from the casing and sand pack.

Each well will be surveyed relative to each other, mean sea level, and a known datum by a California licensed land surveyor. The survey and sample data will be uploaded to GeoTracker.

REPORTING

The report will detail the methods and findings of the first phase of temporary borings and installation and sampling of the wells. Following receipt of all analytical and well survey data, a technical report will be prepared. The final report will include figures, data tables, logs of borings and well construction details, and interpretation of the contaminant distributions. Recommendations may be made for further assessment necessary for the preparation of a closure report or in anticipation of the corrective action planning. Quarterly monitoring reports will be submitted within approximately one month of monitoring and sample collection activities.

SITE SAFETY

Prior to commencement of field activities, a site safety meeting will be held at a designated command post near the working area. Emergency procedures will be outlined at this meeting, including an explanation of the hazards of the known or suspected chemicals of interest. All site personnel will be in Level D personal protection equipment, which is the anticipated maximum amount of protection needed. A working area will be established with barricades and warning tape to delineate the zone where hard hats and steel-toed shoes must be worn, and where unauthorized personnel will not be allowed. A site safety plan conforming to Part 1910.120 (i) (2) of 29 CFR will be on site at all times during the project.

ESTIMATED SCHEDULE

Once the scope of work has been agreed upon by the ACEHS, project permitting will begin. Drilling will be scheduled upon approval of permits. Reports will be available within approximately 1 month of receipt of all necessary data.

REFERENCED REPORTS

- 1. Geotechnical Exploration and Engineering Study, Proposed Baker Road Apartments, December 3, 1986, prepared by JMK Environmental Solutions, Inc.
- 2. *Underground Storage Tank removal Final Report*, May 19, 2004, prepared by AEI Consultants
- 3. Preliminary Site Investigation Report, June 5, 2005, prepared by AEI Consultants

AEI requests your comments and approval to proceed with this project. Please contact me at (925) 944-2899, extension 122, if you have any questions or need any additional information.

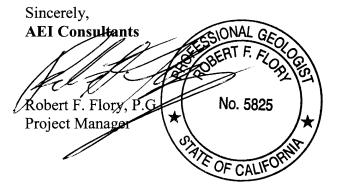
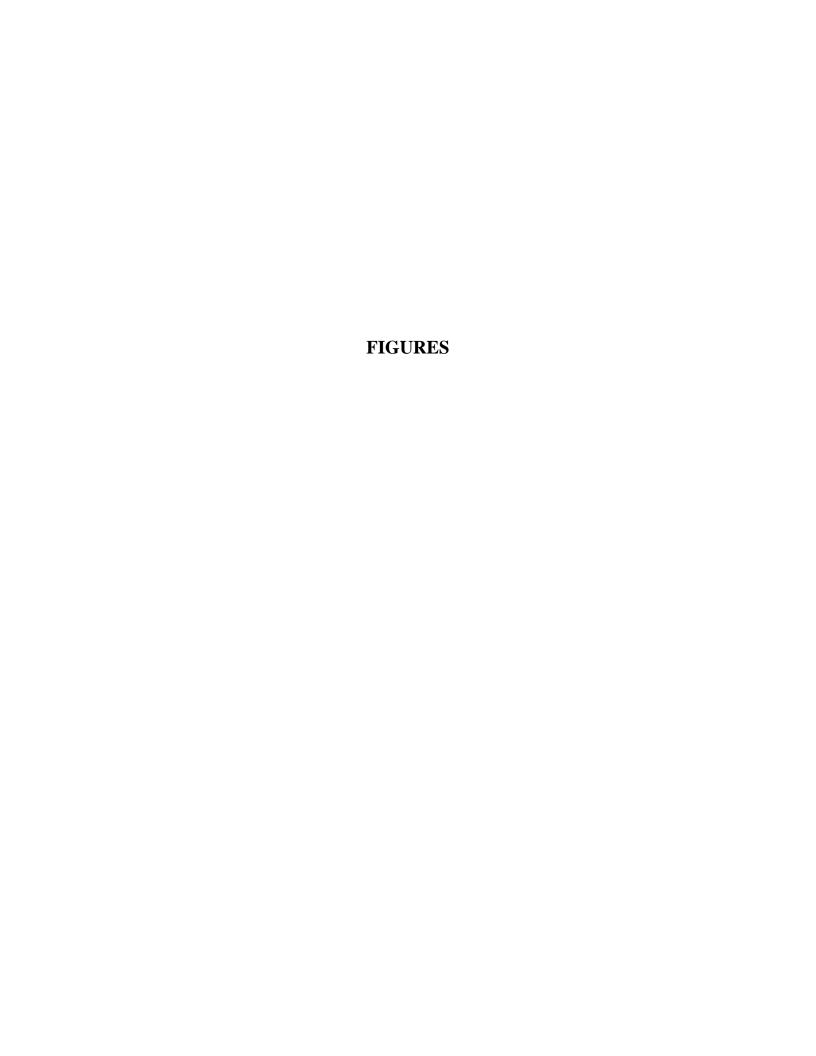
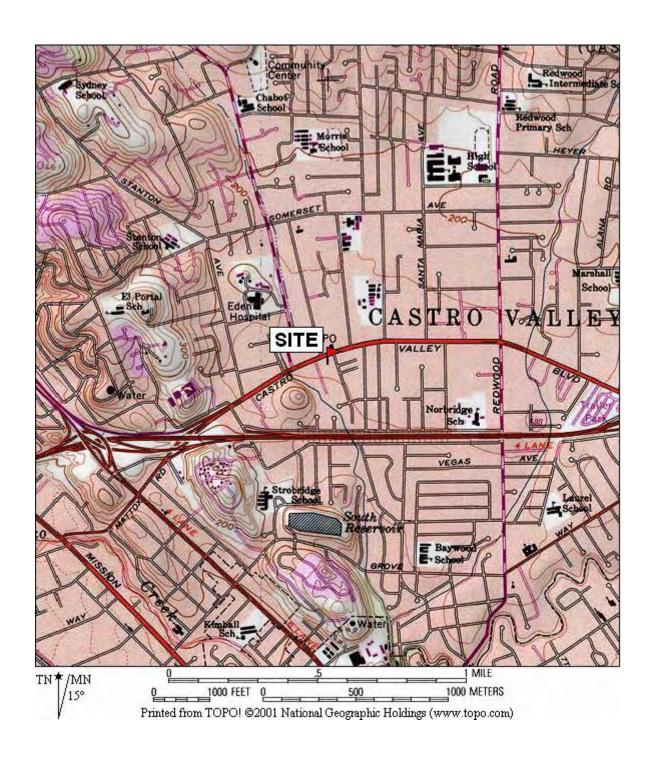


Figure 1 – Site Location Map

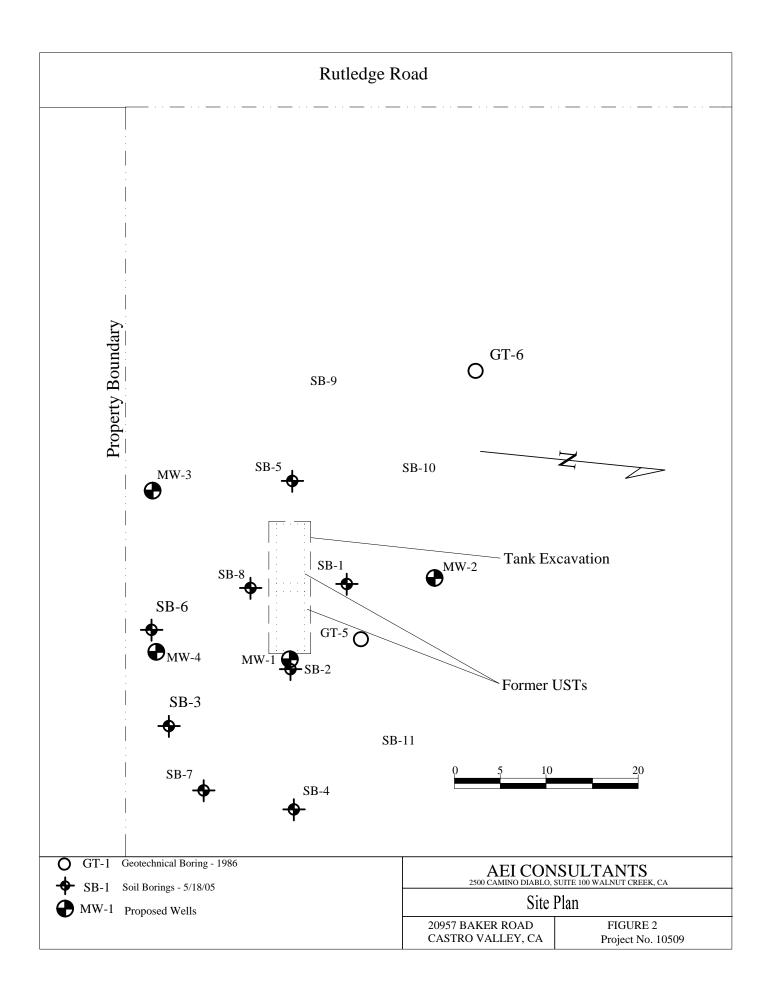
Figure 2 – Site Map

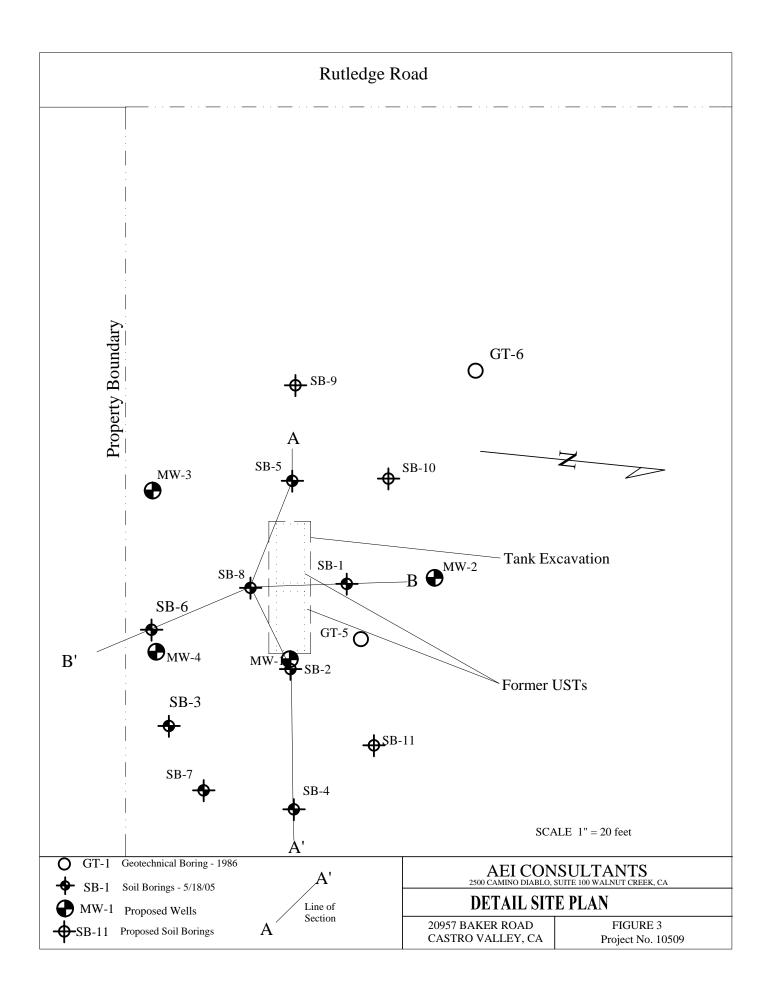

Distribution:

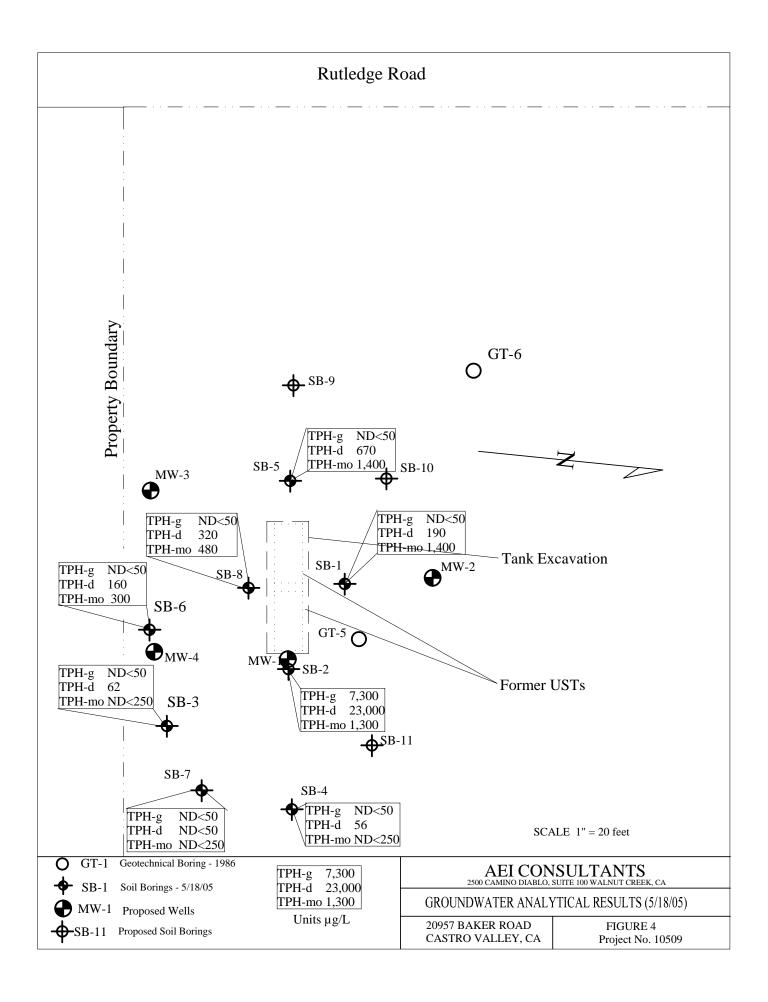

File

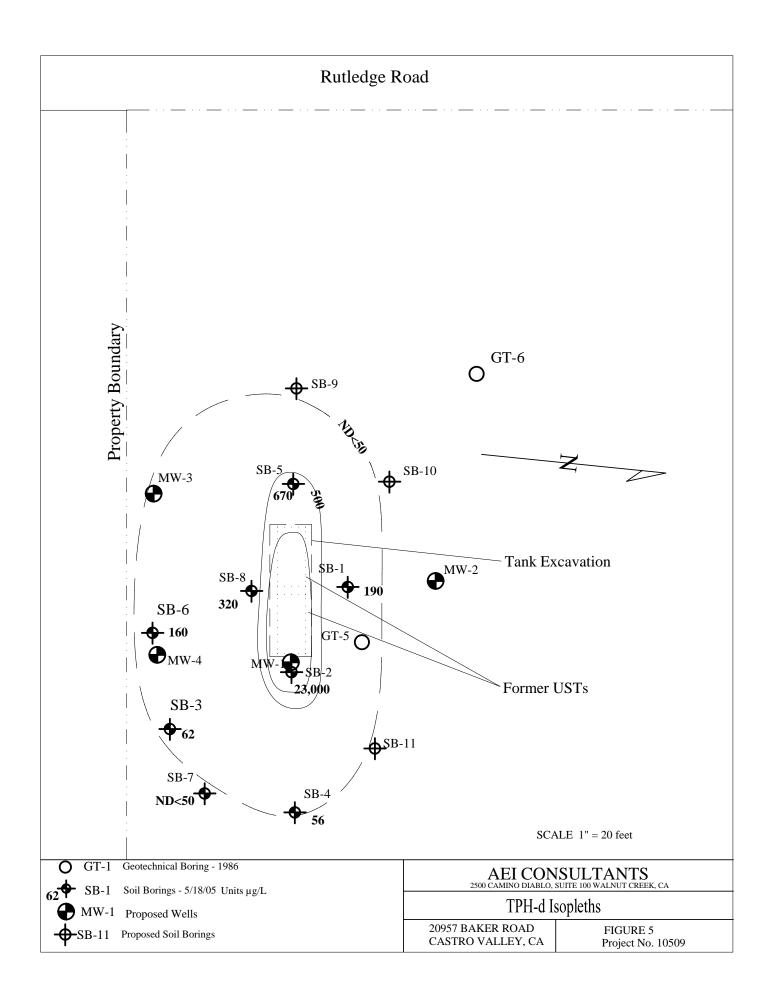
Nat Piazza, 7613 Pepper Tree Road, Dublin, California, 94568-3343 -2 copies

Amir Gohlami, Alameda County Environmental Health Care Services, 1131 Harbor Bay parkway, Suite 250,

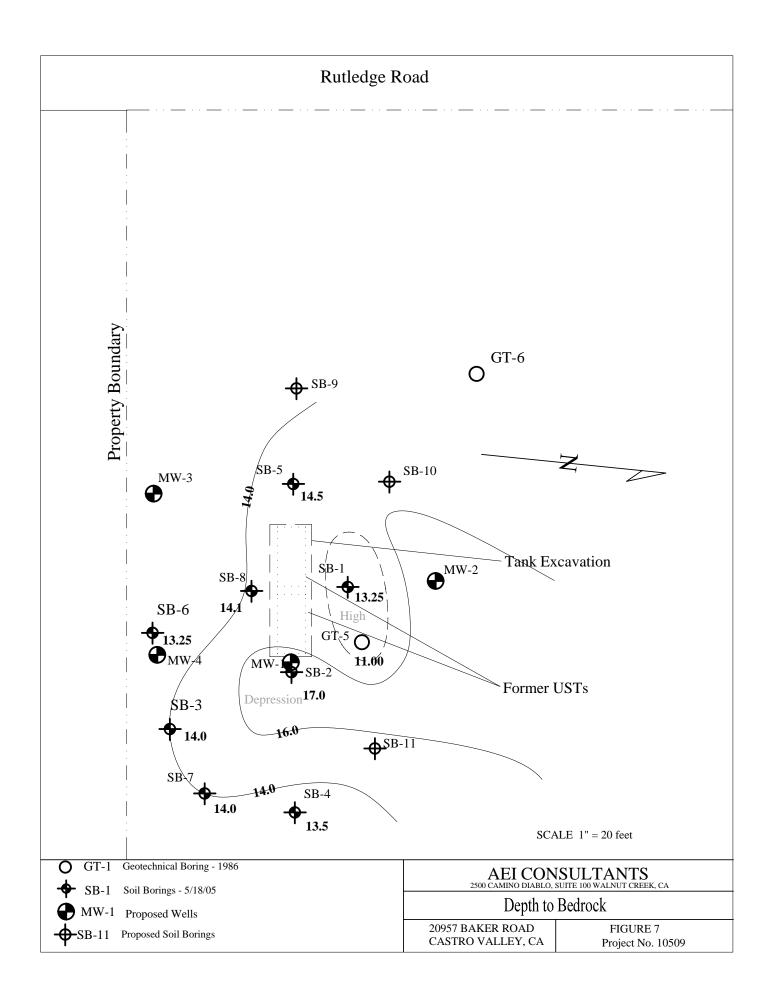

Alameda, California 94502-6577

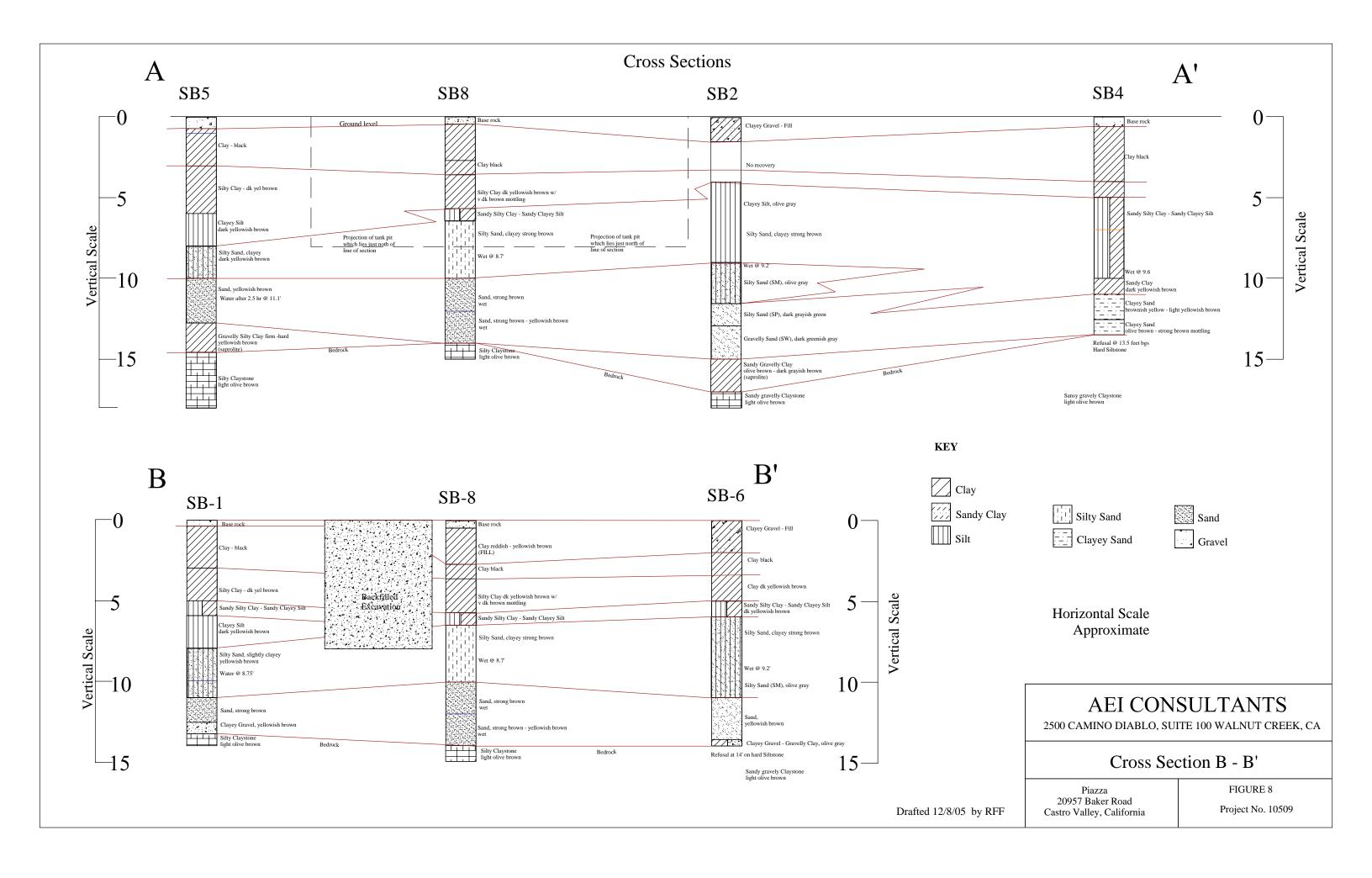





AEI CONSULTANTS SITE LOCATION MAP

20957 BAKER ROAD CASTRO VALLEY, CALIFORNIA FIGURE 1 PROJECT No. 10509





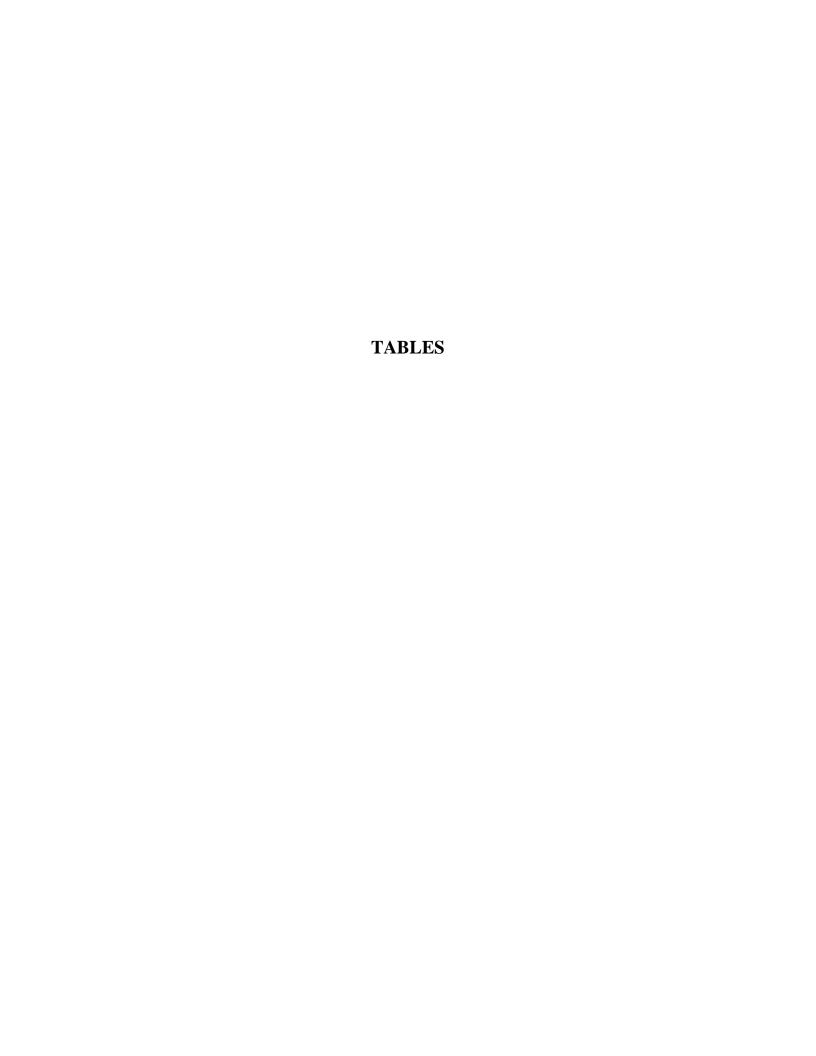


Table 1, Soil Sample Analytical Data, 20957 Baker Road, Castro Valley, California

Sample	TPH-g	TPH-d	TPH-mo	MTBE	Benzene	Toluene	E'benzene	Xylenes
ID	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	E	PA method 801	15		EF	PA method 802	1B	
SB1-11.5	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB2-10	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB3-7.5	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB4-7.5	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB5-7.5	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB6-7.5	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB7-8	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005
SB8-7.5	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005

Notes

TPH-g = total petroleum hydrocarbons as gasoline

TPH-d = total petroleum hydrocarbons as diesel

TPH-mo = total petroleum hydrocarbons as motor oil

MTBE = methyl tert-butyl ether

mg/kg = micrograms per liter (parts per billion)

Table 2, Groundwater Sample Analytical Data, 20957 Baker Road, Castro Valley, California

Sample	TPH-g	TPH-d	TPH-mo	MTBE	Benzene	Toluene	E'benzene	Xylenes
ID	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
	E	EPA method 801.	5		EF	PA method 802	1B	
SB-1 W	ND<50	$190^{1,2}$	1400	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB-2 W	7,300 ^{3,4}	$23,000^{1,2,4,5}$	1300	ND<50	ND<5.0	11	ND<5.0	27
SB3-W	ND<50	62	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB4-W	ND<50	56 ²	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB5-W	ND<50	$670^{1,2}$	1400	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB6-W	ND<50	$160^{1,2}$	300	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB7-W	ND<50	ND<50	ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB8-W	ND<50	$320^{1,2}$	480	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5

Notes

- 1 oil range compounds are significant
- 2 = diesel range compounds are significant, no recognizablr pattern
- 3 = no recognizable pattern
- 4 = lighter than water immiscible sheen/product is present
- 5 = gasoline rage compounds are significant

TPH-g = total petroleum hydrocarbons as gasoline

TPH-d = total petroleum hydrocarbons as diesel

TPH-mo = total petroleum hydrocarbons as motor oil

 $MTBE = methyl \ tert-butyl \ ether$

 μ g/l = micrograms per liter (parts per billion)

APPENDIX A

Boring Logs

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

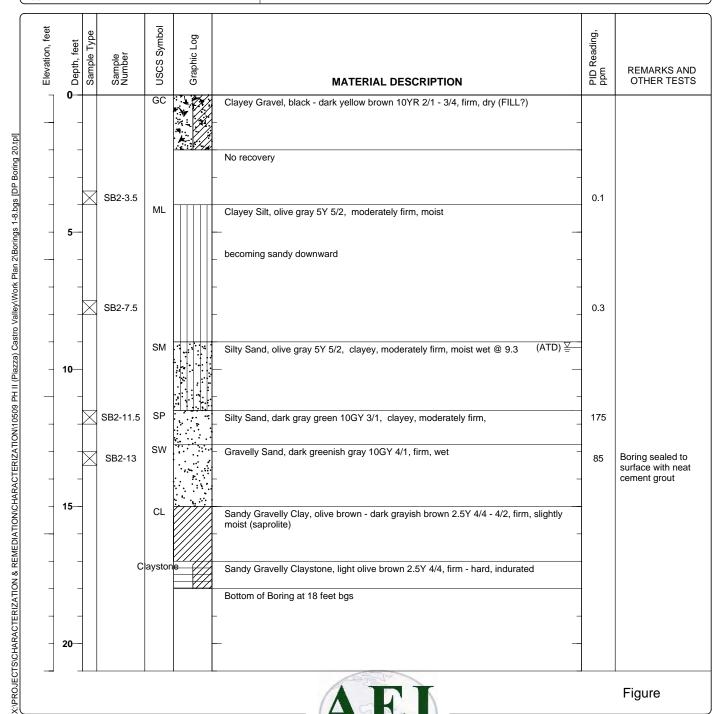
Log of Boring SB-1

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type	Total Depth of Borehole 14 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 8.75 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	

Elevation, feet Depth, feet	Sample Type	Sample Number	USCS Symbol	Oraphic Log MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
- 0-			Asphal CL	Asphalt 2", base rock 4" Clay, black 10YR 2/1, firm, stiff, moist	-	
		SB1-3.5	CL- ML SM	Silty Clay, dark yellowish brown 10YR3/4 with very dark brown mottling 10YR 2/2 Sandy silty Clay - Clayey Sand Silt, dark yellowish brown 10YR3/4 with some 10YR 4/6 mottling Silty Sand, yellowish brown 10YR 4/6, very fine grained, slightly clayey, firm -	0.3	
 - 10-		SB1-7.5		moderately firm, friable, very moist becoming wet @ 9 feet (ATD) (ATD) (ATD)	0.5	
		SB1-11.5	SP GC aystor	///	0.9	Boring sealed to surface with neat cement grout.
- 15 				Bottom of Boring at 14 feet bgs	_	
20-						
						Figure

CONSULTANTS ENVIRONMENTAL & CMIL ENGINEERING

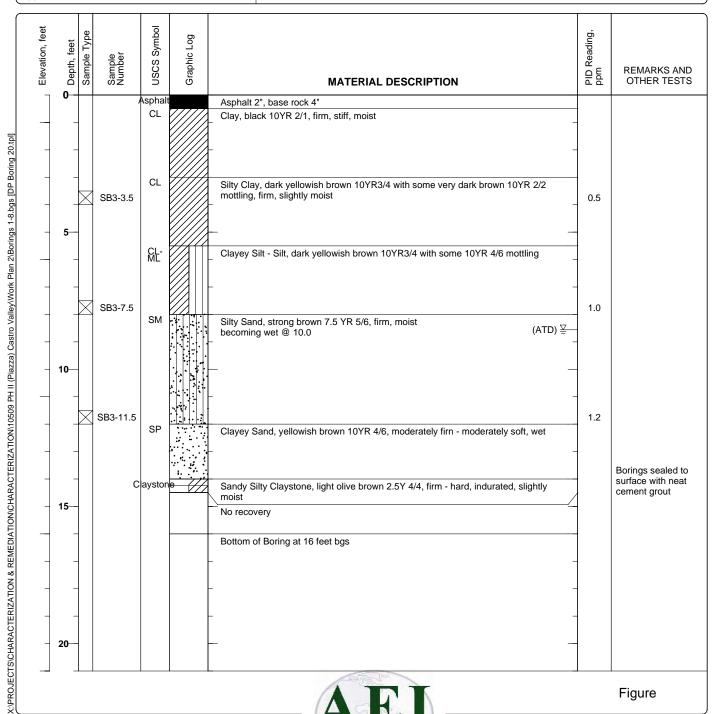

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-2

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 9.2 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	


Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-3

Sheet 1 of 1

Date(s) May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 8.56 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

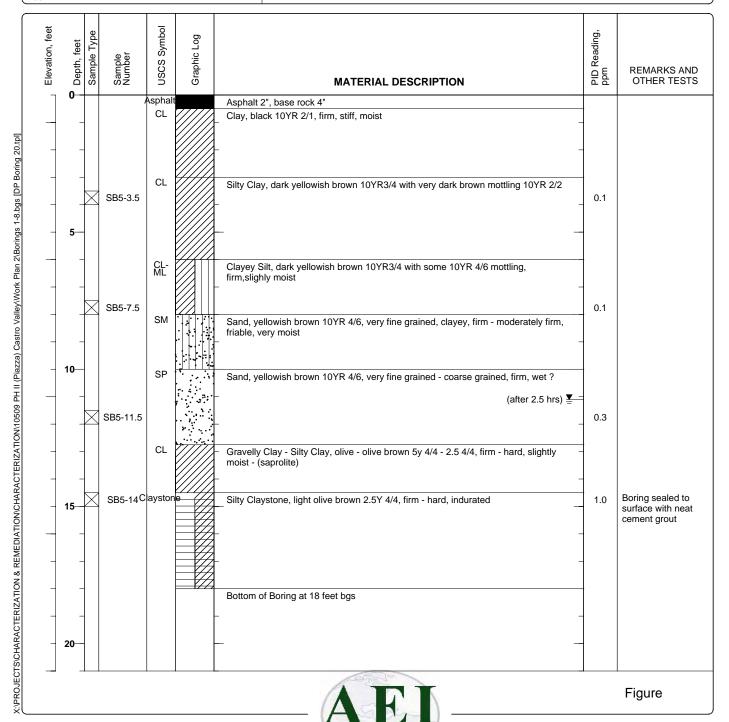
Log of Boring SB-4

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 13.5 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 9.6 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	

Elevation, feet Depth, feet	Sample Type	Sample Number	USCS Symbol	Boy pipe Page 19 MATERIAL DESCRIPTION	PID Reading,	REMARKS AN OTHER TEST
0-			Asphal CL	Asphalt 2", base rock 4" Clay, black 10YR 2/1, firm, stiff, moist	-	
 - 5-	-	SB4-3.5	CL CL- ML	Silty Clay, dark yellowish brown 10YR3/4 with very dark brown mo Sandy Silty Clay - Clayey Sandy Silt, dark yellowish brown 10YR		
 		SB4-7.5	CL- ML	Silty Clay - Clayey Silt, yellowish brown 10YR 4/6, moderately firm becoming wet @ 9.6 feet	n, moist 0.3 (ATD) \(\subseteq \tau \)	
- 10- 	-	SB4-11.5 SB4-12	CL SC	Sandy Clay grading downward to Clayey Sand, dark yellowish brofirm, moist Clayey Sand, brownish yellow - light yellowish brown 10YR 6/6 - 6 moderately firm, very moist Clayey Sand, light olive brown 2.5Y 5/6 - strong brown 7.5 YR 5/8 moderately firm, wet Refusal at 13.5 feet	own - 10YR 6/6, 6/4, firm - 0.5 0.5	Boring sealed to surface with neat cement grout
- 15	-			-		
20	-				_	Figure

CONSULTANTS
ENVIRONMENTAL & CML ENGINEERING

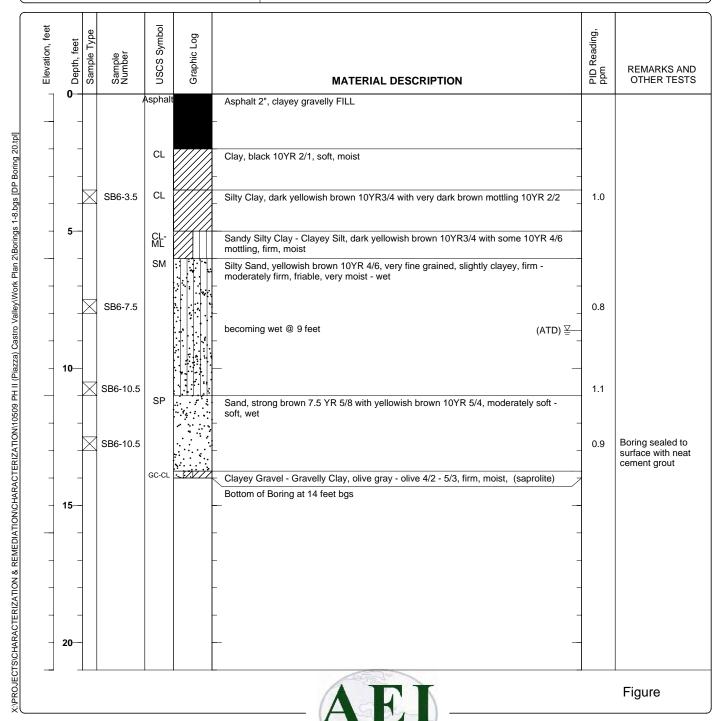

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-5

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 18 feet bgs
Drill Dia	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level Dry feet ATD, 11.1 feet and Date Measured after 2.5 hrs	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	

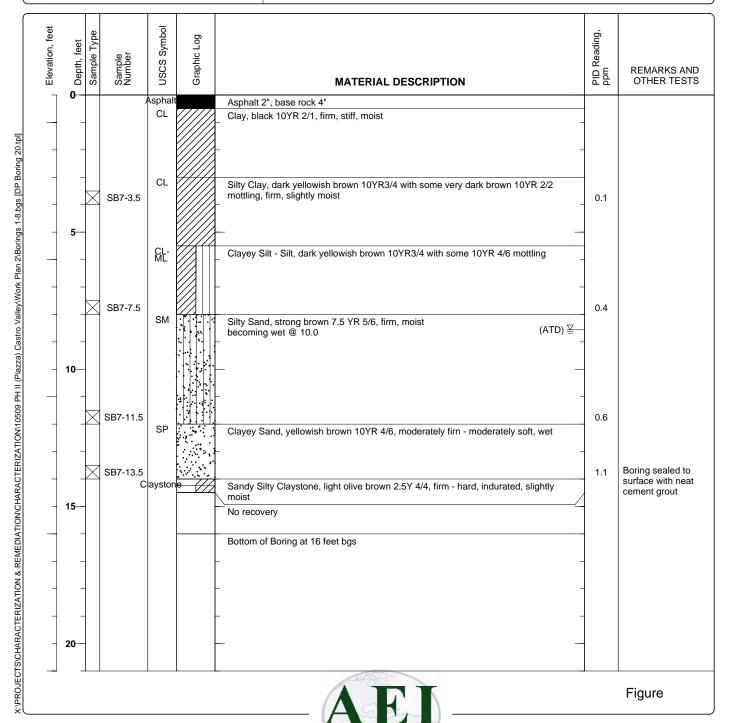

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-6

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 8.62 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	


Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-7

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 8.56 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-8

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 8.7 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	

Elevation, feet Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log		PID Reading, ppm	REMARKS ANI
	Sa	SS	🖺	<u> </u>	MATERIAL DESCRIPTION	E d	OTHER TESTS
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			GC CL		Base rock		
-			OL.		Sandy Silty Clay, reddish brown 5YR 5/4 - yellowish brown 10YR 5/6, mottled, firm slightly moist	-	
-			CL		Clay, black 10YR 2/1, firm, moderately firm, moist	-	
-					_ Glay, black 1011(21, iiiii, iiioacialoly iiiii, iiioloc		
5		SB8-3.5	CL		Silty Clay, dark yellowish brown 10YR3/4 with very dark brown mottling 10YR 2/2	0.2	
			CL- ML		Sandy silty Clay - Clayey Sand Silt, dark yellowish brown 10YR3/4 with some 10YR 4/6 mottling	-	
			SP		Silty Sand, yellowish brown 10YR 4/6, very fine grained, slightly clayey, firm - moderately firm, friable, very moist		
	X	SB8-7.5			Moisture content increasing downward	1.1	
-					- becoming wet @ 9 feet (ATD) \(\frac{\subset}{=}\)	_	
10-			SP		Sand, strong brown 7.5 4/6, soft - moderately soft, wet		
		SB8-11.5			-	0.1	
			SP		Sand, strong brown 7.5 4/6 - yellowish brown 10YR 5/6 mottled, locally clayey, moderately soft - moderately firm, wet		
	\times	SB8-13			-	2.3	Boring sealed wit neat cement grou
- 15		С	laystor		Sandy Silty Claystone, light olive brown 2.5Y 4/4, firm - hard, indurated	-	
					Bottom of Boring at 15 feet bgs	_	
-				-			
-				-	-		
-	1						
20-				-		_	
			1			1	Figure

AEI

CONSULTANTS

EMIROMENTALS CIAL ENGINEERING

APPENDIX B

Laboratory Analyses
With
Chain of Custody Documentation

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

AEI Consultants	Client Project ID: #10509; Piazza	Date Sampled: 05/18/05
2500 Camino Diablo, Ste. #200		Date Received: 05/19/05
W. L. & Co1 CA 04507	Client Contact: Robert Flory	Date Reported: 05/24/05
Walnut Creek, CA 94597	Client P.O.:	Date Completed: 05/24/05

WorkOrder: 0505282

May 24, 2005

Dear Robert:

Enclosed are:

- 1). the results of 9 analyzed samples from your #10509; Piazza project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

1/2

Company: AEI Consultants			D	OR		E	R	DY	O	ST	CU	F (Ol	IN	Al	CH	(AEI Consultants														
Telephone: (925) 944-2899 Fax: (925) 944-2895 EDF Required? Coelt (Normal) No Write On (DW) No	(<u>P</u>	-						100					Œ	IM	T	JNI	JO	AR	IN.	UR	T	113														2:		
Report To: Robert Flory	5 DAY	2 HR														_	-		5	/	_				ens	112	2) 0/	025	(A 94	k, C	Creek,			(025) 0		
Company: AEI Consultants	onte	Comm			1000	STREET, SQUARE, SQUARE	On	rite	WI		No							uire	Req)F I	EI	_(_	,	07.	**-2) 34	943	X: (-		99	44-28			
2500 Camino Diablo, Suite 100 Walnut Creek, CA 94597 Tele: (925) 944-2899 ext. 122 Fax: (925) 944-2895 Project Name: Piazza Project Location: Castro Valley Sampler Signature: SAMPLE ID (Field Point Name) Fax 601 / 8010 / 9820 / 9820 / 9805 Sampler Signature: SAMPLE ID (Field Point Name) Time T	ents	Commi		Her	Ou							est	equ	SK	iysi	Ana	-										14		TO		To	Bil						
5B1-3.5 6-18-05 0800 5B1-7.5 1 0802 5B1-11.5 0805 5B2-10 0905 5B2-10 0905 5B2-13 0900	-	2	4																&F)			-			5	ants	suita	ons	10	AL			100	G *4.				Compa
5B1-3.5 6-18-05 0800 5B1-7.5 1 0802 5B1-11.5 0805 5B2-10 0905 5B2-10 0905 5B2-13 0900	'P	HY						ad			10								EF/B	6	BE		177	te en	tant	enl	icon	000	m (a)	rflor	Aoil.	EN						
5B1-3.5 6-18-05 0800 5B1-7.5 1 0802 5B1-11.5 0805 5B2-10 0905 5B2-10 0905 5B2-13 0900		1						tal le			/83							=	E&	8015	J/MT		III	13.00	lan	isui			_					391				Tolor
5B1-3.5 6-18-05 0800 5B1-7.5 1 0802 5B1-11.5 0805 5B2-10 0905 5B2-10 0905 5B2-13 0900			- 41					Toat			3270				6	020		(418	552) lic	8015											_			_	599 EXt. 12	1	
5B1-3.5 6-18-05 0800 5B1-7.5 1 0802 5B1-11.5 0805 5B2-10 0905 5B2-10 0905 5B2-13 0900						2		(01			3/57			ILY.	826	2/8		Suoc	ase (otor	+									1100	/			1	flev	Castro Va		
5B1-3.5 6-18-05 0800 5B1-7.5 1 0802 5B1-11.5 0805 5B2-10 0905 5B2-10 0905 5B2-13 0900						801		2/60			A 62			SON	(by	A 60	list	cart	Gre	l/mc	2/802	3.4								7	/	1	4	1-1	21			
5B1-3.5 6-18-05 0800 5B1-7.5 1 0802 5B1-11.5 0805 5B2-10 0905 5B2-10 0905 5B2-13 0900						EPA	1	239.		5	y EP		8260	CB,	c list	EP.	oasic	lydro	il &	diese	s (60°					RIX	ATR	MA	1	8		1	ING	MPI	SA	110		
5B1-3.5 6-18-05 0800 5B1-7.5 1 0802 5B1-11.5 0805 5B2-10 0905 5B2-10 0905 5B2-13 0900				ΰ	-	nge		421/	slı	als	's b	02	40/	10 P	basi	(B)	10 (1	Im F	III C	nge	ıs Ga	VED	SER	PRES	+					ine	SIS	4			Dis	//		
5B1-3.5 6-18-05 0800 5B1-7.5 1 0802 5B1-11.5 0805 5B2-10 0905 5B2-10 0905 5B2-13 0900				STI	Tot	lti-ra	3	40/7	Met	Me	PNA	/ 82	/ 82	/ 80	- 01	NE	/ 80	role	role	lti-ra	TPH a						1			onta	ain			1		LOCATION		
5B1-3.5 6-18-05 0800 5B1-7.5 1 0802 5B1-11.5 0805 5B2-10 0905 5B2-10 0905 5B2-13 0900				9	ė	I III		1 (72	T 5	A-17	l's/	625	624	809	80	0 X	109	l Pet	l Pet	Mu	X & 7	er 5	_		er	dge			ter	C	ont	e	Time	9	Date		Point Name)	(Field P
5B1-3.5 6-18-05 0800 5B1-7.5 1 0802 5B1-11.5 1 0805 5B2-10 0900 5B2-10 0900 5B2-13 0900		E Date		LE/	LE	TPH	RCI	Lead	LUF	CAN	PAF	EPA	EPA	EPA	EPA	BTE	EPA	Tota	Tota	TPH	BTE	Oth		lce	OFF	Sluc	Air	Soil	Wa	Lyp	D#							
5B1-7.5 0802 5B1-11.5 0805 5B2-7.5 0900 5B2-10 0905 5B2-13 0906		M ON													- /								+					1				20	0000	-26	1.14		2/	501
5B1-11.5 5B2-10 5B2-13 0900 XX 0905																												1			2			-00	5-10		-0.5	161
562-715 0900 562-10 0905 XX 5B2-13 0910	region of	7 15																	7	1	7		+		-			1				100			-		7.5	761-
562-10 562-13 0905 XX		97 - 1 -		H		1							1							7	_		+												-		11.5	501-
582-13 0910																																			-		719	5BQ-
	11-												7111							X	X		1									5	0900				-10	5B2.
0000									+					1																		0	0940				1-13	532
1566 -1/2								4 1												X	X											30	0930				-7.5	583
563-165																																56	095				-	583
584-35 1045				4																												5	1045				- 35	584
384-7.5 1050 XX																				X	X																	3BL/
384-1/15 1054	100																																				- 11/5	SBH
564-12-1105																																/	/		`		- 12	564
	*																																		4	12	//	337
Relinquished By: Date: Time: Received By: VOAS O&G METALS	OTHER	AETAT G	. 1.	220	. 1.	20.1											,						/	,	1	/		11	y:	ved P	Reee		Marin Charles	1	7 ~	1/2	rished By:	Relinqu
MAN JI/909 11/0 JI/10/00 ICE/t° PRESERVATION	OTHER	ALIALS	, 1	U&G	9	VUAS	ON_	ATIC	RVA	ESE	PRE	1	/				/	1	/t°	ICE			0		1	6	//	11	11		111	_		109	1//	///	MA	M
Refinquished By: GOOD CONDITION APPROPRIATE						/	E	AT	PRI	PRO	APP		/	V	V_	rio	IDI	CÓN	OD	GO									By:	ived E	Rece	:	Time:		Date	//	uished By:	Relingu
HEAD SPACE ABSENT CONTAINERS DECHLORINATED IN LAB PERSERVED IN LAB					В	II.A						- (R																		P.				_		/	1
Relinquished By: Date: Time: Received By: DECHLORINATED IN LAB							11.	. 232	LIN			4	_	LIFE	11	A MUE	LI VE	M	LIL	DE			ived By:					Rece	*	Time:	:	Date		uished By:	Relinqu			

aev 0505282

AEI Consultants													(CH	A	IN	Ol	FC	U	ST	O	DY	R	E	CC	R	\mathbf{D}'		,			
2500 Camin											1	TU	JR	NA	AR		JNI					-										X
	Creek, C	CA 945		(0)	25) 0	44.3	on	_					7	_	-								SH		24 H			18 H			2 HR	5 DAY
Telephone: (925) 944-2899			Fax	x: (9.	25) 9	44-2	09:	3		(T	EDI	FR	equ	iire	and the latest designation of	Coe	THE REAL PROPERTY.		TO SHARE THE PARTY OF	200	No		Wi	rite	Un T	101	- 10	N	0	C	
Report To: Robert Flory	Bi	ll To:			-		_				F	-	_				Ana	lysi	s R	equ	est	1				-		Otl	ner		Com	ments
Company: AEI Consultants	100		AE	I Co	nsul	tants	5				-			&F)													17				Dr	1
2500 Camino Diablo, Suite		M-3	G.	- 6			40	40.5			H	7		F/B								0			pa						PD	1
Walnut Creek, CA 94597		Mail:		-			tan	ts.c	om		- IN	TIMIN	(8015)	E&	-							/ 83			al le							
Tele: (925) 944-2899 ext. 122		roject									ROISVMTBE	6100	(S)	5520	(418		020)	6				270			Toat.							
Project #: 10509 Project Location: Castro Valley	//	oject	TATH	ic. I	IALL						1	+	tor	se (ous		2/8	8260	LY			2/8			(0)		16					
Sampler Signature:	1										1602/	7007	/mo	Gree	carb	list)	091	(by 8	ON			4 62			109/		801					
SAMPI	ANG	4	ers	N	(AT	RIX			ETH	OD	009) 30	(00) spi	TPH Multi-range diesel/motor ou	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 (basic list)	BTEX ONLY (By EPA 602 / 8020)	EPA 8010 - basic list (by 8260)	EPA 608 / 8010 PCB's ONLY	EPA 624 / 8240 / 8260		PAH's / PNA's by EPA 625 / 8270 / 8310			Lead (7240/7421/239.2/6010) Toatal lead		TPH multi-range EPA 8015					
A I		# Containers	Containers								90	di dis	range	enm	enm	010	Y (E	- bas	010	\$240	EPA 625 / 8270	A's	CAM-17 Metals	tals	742		range	tal	STLC			
SAMPLE ID (Field Point Name) LOCATION	-	tair	Con			9				_	TDE	111	ulti-	etrol	etrol	1/8	ONI	010	8/80	8/18	8/57	/PN	7 M	5 Me	7240		ulti-1	. To	rs.		-	
Date	Time	Con	Type (Water	1	Sludge	Other	43	5	HNO3	DTEV & TEU	EVØ	HW	tal P	tal P	A 60	EX	8 Y	A 60	A 62	A 62	S,H	I-M	LUFT 5 Metals	ad ()	17	H m	LEAD - Total	LEAD -		-	
		#	Ty	M	Soil	S	ō	Ice	HC	E	Ta	19	Th	To	To	EP	BT	EP	EP	EP	EP	PA	Ü	LL	Le	RCI	TF	1	LI			53.0
585-7.5 5-16-05	The state of the state of	4	245								X	4	X																			
565-11.5	1130		1								1																					
786-7.5	1220										y	4	X																			
986-10.5	1230																								4						2	
587 - 8	1315										1	4	X																			
587-11.5	1320																															
588-7.5	1410										y	4	X																			
587-11.5 588-7.5 568-10.5	1416		1								1																					
		1									1													1								
											1																					
											1														V							
1 18											1																					
Relinquished By Date:	Time:	Recei	ved B	y:		/	/	7	_	/	T					/										V	OAS	1)&G	1	METALS	OTHER
MING / Other	1110	111		W	1	-		_	2)	4	10	CE/t	0	/										TIC	ON_	UNO	1	, a. G	1	LIALIS	O THEN
Relinquished By: Date:	Time:	Receiv	ved By	y:							1						FIOI		-						ERS		/					
Relinquished By: Date:	Time:	Receiv	ved D.	w.			-				-						ABS			B					VED		LA	B_				
Relinquished By: Date:	Time:	Recel	reu D	y.																												

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0505282 ClientID: AEL

Report to: Bill to: Requested TAT: 5 days

Robert Flory TEL: (925) 283-6000 Diane

FAX: (925) 283-6121 All Environmental, Inc. **AEI Consultants**

Date Received: 05/19/2005 2500 Camino Diablo, Ste. #200 ProjectNo: #10509; Piazza 2500 Camino Diablo, Ste. #200

PO: Walnut Creek, CA 94597 Walnut Creek, CA 94597 Date Printed: 06/03/2005

									F	Request	ed Test	s (See I	egend b	elow)					
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0505282-001	SB1-3.5	Soil	05/18/2005			Α													
0505282-003	SB1-11.5	Soil	05/18/2005		Α		Α												
0505282-005	SB2-10	Soil	05/18/2005		Α		Α												
0505282-007	SB3-7.5	Soil	05/18/2005		Α		Α												
0505282-010	SB4-7.5	Soil	05/18/2005		Α		Α												
0505282-013	SB5-7.5	Soil	05/18/2005		Α		Α												
0505282-015	SB6-7.5	Soil	05/18/2005		Α		Α												
0505282-017	SB7-8	Soil	05/18/2005		Α		Α												
0505282-019	SB8-7.5	Soil	05/18/2005		Α		Α												

Test Legend:

1 G-MBTEX_S	2 PREDF REPORT	3 TPH(DMO)_S	4	5
6	7	8	9	10
11	12	13	14	15

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 $Telephone: 925\text{-}798\text{-}1620 \quad Fax: 925\text{-}798\text{-}1622$ Website: www.mccampbell.com E-mail: main@mccampbell.com

AEI Consultants	Client Project ID: #10509; Piazza	Date Sampled: 05/18/05
2500 Camino Diablo, Ste. #200		Date Received: 05/19/05
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 05/19/05
wallat creek, cri 54377	Client P.O.:	Date Analyzed: 05/20/05

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods: SW8021B/8015Cm Extraction method: SW5030B Work Order: 0505282

Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
003A	SB1-11.5	S	ND	ND	ND	ND	ND	ND	1	94
005A	SB2-10	S	ND	ND	ND	ND	ND	ND	1	99
007A	SB3-7.5	S	ND	ND	ND	ND	ND	ND	1	92
010A	SB4-7.5	S	ND	ND	ND	ND	ND	ND	1	90
013A	SB5-7.5	S	ND	ND	ND	ND	ND	ND	1	95
015A	SB6-7.5	S	ND	ND	ND	ND	ND	ND	1	100
017A	SB7-8	S	ND	ND	ND	ND	ND	ND	1	105
019A	SB8-7.5	S	ND	ND	ND	ND	ND	ND	1	99
	g Limit for DF =1;	W	NA	NA	NA	NA	NA	NA	1	ug/L
	ns not detected at or the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg

above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg
ND means not detected at or		1111	1111	1111	1111	1111	1111	-	ug/ L

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

AEI Consultants	Client Project ID: #10509; Piazza	Date Sampled: 05/18/05
2500 Camino Diablo, Ste. #200		Date Received: 05/19/05
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 05/19/05
Wallact Crock, Cri 7 1377	Client P.O.:	Date Analyzed: 05/20/05

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW3550C Analytical methods: SW8015C Work Order: 0505282

Extraction method: S	W 3330C		Analytical methods: SW8015C		WOIK OI	der: 0505282
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0505282-003A	SB1-11.5	S	ND	ND	1	116
0505282-005A	SB2-10	S	ND	ND	1	110
0505282-007A	SB3-7.5	S	ND	ND	1	102
0505282-010A	SB4-7.5	S	ND	ND	1	113
0505282-013A	SB5-7.5	S	ND	ND	1	106
0505282-015A	SB6-7.5	S	ND	ND	1	94
0505282-017A	SB7-8	S	ND	ND	1	110
0505282-019A	SB8-7.5	S	ND	ND	1	106
	Limit for DF =1;	W	NA	NA	uş	g/L
	not detected at or reporting limit	S	1.0	5.0	mg	/Kg

* water samples are reported in µg/	L, wipe samples in μg/wipe, soil	/solid/sludge samples in	ı mg/kg, product/oil/non-	-aqueous liquid samples in m	ng/L,
and all DISTLC / STLC / SPLP / To	CLP extracts are reported in µg/I	٠.			

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0505282

EPA Method: SW8021B/8015	Cm E	Extraction: SW5030B			BatchID: 16289			Spiked Sample ID: 0505280-034A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(btex) [£]	ND	0.60	95.9	93.2	2.82	98.6	92.2	6.76	70 - 130	70 - 130
MTBE	ND	0.10	93.3	87.3	6.66	91.3	94.8	3.74	70 - 130	70 - 130
Benzene	ND	0.10	106	102	3.48	103	110	5.98	70 - 130	70 - 130
Toluene	ND	0.10	83.7	84.4	0.844	85.7	88.9	3.69	70 - 130	70 - 130
Ethylbenzene	ND	0.10	100	98.7	1.74	102	106	3.67	70 - 130	70 - 130
Xylenes	ND	0.30	90.7	87	4.13	91.7	91	0.730	70 - 130	70 - 130
%SS:	109	0.10	108	112	3.64	105	108	2.82	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 16289 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0505282-003A	5/18/05 8:05 AM	5/19/05	5/20/05 8:49 AM	0505282-005A	5/18/05 9:05 AM	5/19/05	5/20/05 9:19 AM
0505282-007A	5/18/05 9:50 AM	5/19/05	5/20/05 10:19 AM	0505282-010A	5/18/05 10:50 AM	5/19/05	5/20/05 10:48 AM
0505282-013A	5/18/05 11:30 AM	5/19/05	5/20/05 11:18 AM	0505282-015A	5/18/05 12:20 PM	5/19/05	5/20/05 11:48 AM
0505282-017A	5/18/05 1:15 PM	5/19/05	5/20/05 7:19 AM	0505282-019A	5/18/05 2:10 PM	5/19/05	5/20/05 7:52 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

____QA/QC Officer

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0505282

EPA Method: SW8015C	E	Extraction: SW3550C				BatchID: 16282			Spiked Sample ID: 0505282-019A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD		
TPH(d)	ND	20	81.1	81.8	0.826	98.8	100	1.18	70 - 130	70 - 130		
%SS:	106	50	89	91	1.19	106	107	1.32	70 - 130	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 16282 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0505282-003A	5/18/05 8:05 AM	5/19/05	5/20/05 2:50 PM	0505282-005A	5/18/05 9:05 AM	5/19/05	5/20/05 2:50 PM
0505282-007A	5/18/05 9:50 AM	5/19/05	5/20/05 8:42 PM	0505282-010A	5/18/05 10:50 AM	5/19/05	5/20/05 7:36 PM
0505282-013A	5/18/05 11:30 AM	5/19/05	5/20/05 5:24 PM	0505282-015A	5/18/05 12:20 PM	5/19/05	5/20/05 6:30 PM
0505282-017A	5/18/05 1:15 PM	5/19/05	5/20/05 4:13 PM	0505282-019A	5/18/05 2:10 PM	5/19/05	5/20/05 4:13 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

____QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

AEI Consultants	Client Project ID: #10509; Piazza	Date Sampled: 05/18/05
2500 Camino Diablo, Ste. #200		Date Received: 05/19/05
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported: 05/26/05
Wallet Cleek, CA 74371	Client P.O.:	Date Completed: 05/26/05

WorkOrder: 0505283

May 26, 2005

Dear Robert:

Enclosed are:

- 1). the results of 8 analyzed samples from your #10509; Piazza project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Angela Rydelius, Lab Manager

Och Cero fer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

AEI Consultants	Client Project ID: #10509; Piazza	Date Sampled: 05/18/05
2500 Camino Diablo, Ste. #200		Date Received: 05/19/05
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 05/20/05
Wallut Cicck, CA 34331	Client P.O.:	Date Analyzed: 05/20/05

Extraction	method: SW5030B		ge (Co-C12)	•	methods: SW8021		ith BTEX and		Order: 0:	505283
Lab ID	Client ID	Matrix	TPH(g)	МТВЕ	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% S
001A	SB1-W	w	ND,i	ND	ND	ND	ND	ND	1	96
002A	SB2-W	w	7300,m,h,i	ND<50	ND<5.0	11	ND<5.0	27	10	100
003A	SB3-W	w	ND,i	ND	ND	ND	ND	ND	1	92
004A	SB4-W	w	ND,i	ND	ND	ND	ND	ND	1	97
005A	SB5-W	w	ND,i	ND	ND	ND	ND	ND	1	96
006A	SB6-W	w	ND,i	ND	ND	ND	ND	ND	1	100
007A	SB7-W	w	ND,i	ND	ND	ND	ND	ND	1	95
A800	SB8-W	w	ND,i	ND	ND	ND	ND	ND	1	96
										ļ
	g Limit for DF =1; s not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/
. D means	a not ucitetica at 01	~	27.1		1					+

* water and vapor samples and all TCLP & SPLP	extracts are reported	in ug/L, soil/sludge/so	lid samples in mg/kg	wine samples in ug/wine
water and vapor samples and all Teel & St Er	extracts are reported	in ag L, soil stadge se	me sumples in mg/kg,	wipe samples in µg/wipe,
product/oil/non-aqueous liquid samples in mg/L.				

NA

NA

NA

NA

NA

mg/Kg

above the reporting limit

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

AEI Consultants	Client Project ID: #10509; Piazza	Date Sampled: 05/18/05
2500 Camino Diablo, Ste. #200		Date Received: 05/19/05
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Extracted: 05/19/05
Wallut Cicck, CA 94397	Client P.O.:	Date Analyzed: 05/20/05-05/24/05

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

	Diesel (C10-2	3) and Oil (C18	+) Range Extractable Hydro	carbons as Diesel and Moto	or Oil*	
xtraction method: SW	3510C		Analytical methods: SW8015C		Work Or	der: 050528
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0505283-001B	SB1-W	w	190,g,b,i	1400	1	105
0505283-002B	SB2-W	w	23,000,d,b,g,h,i	1300	1	102
0505283-003B	SB3-W	w	62,i	ND	1	102
0505283-004B	SB4-W	w	56,b,i	ND	1	106
0505283-005B	SB5-W	w	670,g,b,i	_ 1400	1	113
0505283-006B	SB6-W	w	160,g,b,i	300	1	111
0505283-007B	SB7-W	w	ND,i	ND	1	105
0505283-008B	SB8-W	w	320,g,b,i	480	1	115
						-
	mit for DF =1;	w	50	250	μ	<u> </u> g/L
	ot detected at or eporting limit	S	NA	NA	mg	/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0505283

EPA Method: SW8015C	E	Extraction: SW3510C			BatchID: 16279			Spiked Sample ID: N/A		
Analyte	Sample	Sample Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance		Criteria (%)						
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
TPH(d)	N/A	1000	N/A	N/A	N/A	99.4	98.9	0.467	N/A	70 - 130
%SS:	N/A	2500	N/A	N/A	N/A	108	107	0.752	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 16279 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	_ Date Sampled	Date Extracted	Date Analyzed
0505283-001B	5/18/05 8:30 AM	5/19/05	5/24/05 12:41 AM	0505283-002B	5/18/05 9:30 AM	5/19/05	5/23/05 10:20 PM
0505283-003B	5/18/05 10:20 AM	5/19/05	5/24/05 9:55 AM	0505283-004B	5/18/05 11:00 AM	5/19/05	5/23/05 11:31 PM
0505283-005B	5/18/05 3:00 PM	5/19/05	5/24/05 7:35 AM	0505283-006B	5/18/05 12:50 PM	5/19/05	5/20/05 1:44 PM
0505283-007B	5/18/05 1:45 PM	5/19/05	5/24/05 12:30 PM	0505283-008B	5/18/05 2:30 PM	5/19/05	5/24/05 6:26 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0505283

EPA Method: SW8021B/	Batc	hID: 1628	1	Spiked Sample ID: 0505283-006A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Analyte	μg/L μg/L % Rec. % Rec. % RPD % Rec.		% Rec.	% RPD	MS / MSD	LCS / LCSD				
TPH(btex) [£]	ND	60	92.3	93.9	1.70	94.4	93.3	1.21	70 - 130	70 - 130
мтве	ND	10	82	82.4	0.505	91	88.7	2.60	70 - 130	70 - 130
Benzene	ND	10	103	105	1.62	93.2	98.2	5.16	70 - 130	70 - 130
Toluene	ND	10	104	110	5.50	101	102	1.11	70 - 130	70 - 130
Ethylbenzene	ND	10	105	102	2.77	99	101	1.67	70 - 130	70 - 130
Xylenes	ND	30	91.3	90.7	0.733	86.3	90.3	4.53	70 - 130	70 - 130
%SS:	100	10	109	112	2.42	100	103	2.46	70 - 130	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 16281 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0505283-001A	5/18/05 8:30 AM	5/20/05	5/20/05 1:48 AM	0505283-002A	5/18/05 9:30 AM	5/20/05	5/20/05 10:06 PM
0505283-003A	5/18/05 10:20 AM	5/20/05	5/20/05 3:59 AM	0505283-004A	5/18/05 11:00 AM	5/20/05	5/20/05 7:14 AM
0505283-005A	5/18/05 3:00 PM	5/20/05	5/20/05 9:24 AM	0505283-006A	5/18/05 12:50 PM	5/20/05	5/20/05 7:46 AM
0505283-007A	5/18/05 1:45 PM	5/20/05	5/20/05 8:51 AM	0505283-008A	5/18/05 2:30 PM	5/20/05	5/20/05 9:57 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

aet 0505283

I			AEI	Consul	tants	<u> </u>								Т					CH	AI	N	OF	C	US	TC	D	Y I	RE	CC	OR	D	·	
l		2	500 Camir	10 Diable	, Sui	te 100)								ΓUI	RN	AF						Ŭ	Ğ							~		Ø
	77-11	(02 5) (t Creek,	CA 9			025	04	1-289	0.5			1_			1							RUS	H	24 1			48 H			2 HR	5 DAY
		ne: (925) 9	44-2899				ix: (923,	944	1-20				\F	ÐF	Req	uire							Vo	<u> </u>	rite	On	ı (D'		N	0		
	Report To: Rober			<u>.</u>	ill To		21 C	onsi	14.0.					\vdash		-		<u>.</u>	Ana	lysi	SK	que	st			Τ	1	╁	Otl	ier		Com	ments
	Company: AEI (Camino Di		100		Ar	er C	ons	uita	uts	-			-	İ	&F)												ļ					
		ut Creek,			-Mail	: rflo		nei(ons	ulta	nts.	com		JBE	<u>ه</u> ا	ŁF/B					ŀ		5	2		pag	İ	ł				Λ	
	Tele: (925) 944-2					925)				uitu		COM		8015)/MTBE	(8015)	0 E8	8.1)				ŀ		6	3		Toatal lead						# [)/
	Project #: 10509		//			t Nar								8015	oii	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)		BTEX ONLY (By EPA 602 / 8020)	6			0100100001303	7 1								1 4	
	Project Location:	Castro Va	Hey	16	1		/			· ·] + 02	TPH Multi-range diesel/motor oil	ase	suoc		3 / 8	EPA 8010 - basic list (by 8260)	EPA 608 / 8010 PCB's ONLY		,	5		61		S					
	Sampler Signatur		M	75	7	/	7							7/80	et/m	Gre	ocari	list	A 60	(py	S O			5		2/60		EPA 8015					
		19	SAMP	LING		13		MA.	TRI	X	DD	AETI	IOD RVEI	Gas (602/8020	dies	Sil &	lydr	EPA 601 / 8010 (basic list)	Y EP	c list	ğ	EPA 624 / 8240 / 8260	9 2 2			Lead (7240/7421/239.2/6010)		EPA					
				1	er.	in	M		1	<u> </u>	11.6	TE STE	VEI		nge) Um	um F	010	(B)	basi	101	40/	2 1	tads	Sign	421/		nge	a	ပု			
	SAMPLE ID (Field Point Name)	LOCATION			Containers	Containers			1					BTEX & TPH as	lti-ra	trole	trole	08/	Ž.	10-	28/	7 82	EPA 625 / 82/0	CAM-17 Metals	LUFT 5 Metals	707		TPH multi-range	LEAD - Total	LEAD - STLC			
	(Field Foint Name)	j	Date	Time) e	Water		.	Other			HNO3	8 ×	M Mu	al Pe	al Pe	09	X C	8	9	762	70 /	M-17	FT 5	d (72		E .	AD-	4D			
	1)#	Type	Wa	Soil	Air	3 3	Ice	HCI	HINO3		15	Tota	Tot	EP/	BTI	EP/	EP/	EP/	H =	: 3	5	Lea	RCI	ĮĘ.	LE,	LE			
12	581-11)		5-18-04	0830	u	310A 14114		\dashv					\top	1/	v					7		十	┪										
<i>‡</i>]0	581-W	<u> </u>	1	0930	1	1441							_	╎	7															П			
	563-42			1020						 -	\vdash			∜	X							1	7					1					
116	563-W	 		1100	1		H		+	-	-			17	V		_					\top			1			1					-
	515 112			1500	\vdash	\vdash			+	-	 		+	Ι <u>χ</u>	<u>V</u>						_	+	+	†	+								
440	565-W 566-W 567-W 568-W			1250		H	H	-	_		┢			~	\ \ V	ļ			-	-		+	+	+-	+	+				\vdash	\dashv		
+10	256-6	 		· · · · · · · · · · · · · · · · · · ·	-	+-	$\left\{ \cdot \right\}$				1		+	X	V						+	+			+	-	\vdash	-		\Box	\dashv		
130	981-00		1,	1345	╂┼╴	H-					-	-	+	X	X	-				-	-	\dashv	+-		+	-	-			 	-		
1/0	368-60			1480	┞┷	'	┟∸	\dashv	-		╂		-	4×	+	-				-+		+	+	+	+					\vdash			
				ļ	ļ <u>.</u> .	 			-		-			-	+`							-+	+	+	+		ļ						
					ļ	<u> </u>	\vdash		+		╂		_		-	-				-	\dashv			+-	+-	-	ļ				-		· ·
ŀ				ļ		 	\blacksquare		_	\perp	<u> </u>		+	1							-			\bot	-	 	-	_		\vdash	\dashv		
		2.			ļ	<u> </u>		_	-	4-	 	-		1_	-						_	4			4		-			\vdash	_		
					<u> </u>		للِل			<u>. </u>	<u> </u>			⇂	ļ											<u> </u>							
	Relinguished By:	1/1	Date:		Rece	ived B	g: Teles	ر ورو			//		4	1			,	/									v	OAS	4	&G	M	ETALS	OTHER
	Relinquished By:		7/19/85 Date:			// E	0	(10	7			_	<u></u>	4	ICE	/tº	\checkmark					/	PR	ESE	RV	ATI(V				LIALS	
X	Reinquisned by:		Date:	Time:	Received By:						OD (<u>/</u>		AF	PRO	PR	IATI	E	/										
4	Relinquished By:		Date:	Time:	Rece	ived B	v:			****						AD S CHL										ERS_ VED			3_		_		
	····																						_								-		

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0505283

ClientID: AEL

Requested TAT: 5 days Bill to: Report to:

(925) 283-6000 Diane TEL: Robert Flory

All Environmental, Inc. (925) 283-6121 FAX: **AEI Consultants**

Date Received: 05/19/2005 2500 Camino Diablo, Ste. #200 ProjectNo: #10509; Piazza 2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597 Date Printed: 05/19/2005 Walnut Creek, CA 94597 PO:

		Matrix		Hold	Requested Tests (See legend below)																				
Sample ID	ClientSampID		Collection Date H		1	2	3	3	4		5	(6	7		8	!	9	10	11	12	:	13	14	15
0505283-001	SB1-W	Water	5/18/05 8:30:00 AM		Α	Α	E	3				T								<u>-</u>					
0505283-002	SB2-W	Water	5/18/05 9:30:00 AM		Α		Е	3																	
0505283-003	SB3-W	Water	5/18/05 10:20:00		Α		E	3						<u></u>						<u> </u>					
0505283-004	SB4-W	Water	5/18/05 11:00:00		Α		E	3																<u></u>	
0505283-005	SB5-W	Water	5/18/05 3:00:00 PM		A		E	3														\perp		L	
0505283-006	SB6-W	Water	5/18/05 12:50:00		Α		Е	3	_											<u></u>		_		L	
0505283-007	SB7-W	Water	5/18/05 1:45:00 PM		Α		E	3																<u> </u>	
0505283-008	SB8-W	Water	5/18/05 2:30:00 PM		Α		E	3											<u></u>					<u> </u>	

Test Legend:

1 G-MBTEX_W	2 PREDF REPORT	3 TPH(DMO)_W	4	5
6	7	8	9	10
11	12	13	14	15

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.