ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-93

September 8, 2009

Natale and Darlene Piazza 7613 Peppertree Road Dublin, CA 94568-2243

Subject: Fuel Leak Case No. RO0002739 and Geotracker Global ID T06019758706, Nat Piazza Property, 20957 Baker Road, Castro Valley, CA 94546 – Case Closure

Dear Natale and Darlene Piazza:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25299.37[h]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Health (ACEH) is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed. This case closure letter and the case closure summary can also be viewed on the State Water Resources Control Board's Geotracker website (http://geotracker.swrcb.ca.gov) and the Alameda County Environmental Health website (http://www.acgov.org/aceh/index.htm).

SITE INVESTIGATION AND CLEANUP SUMMARY

Please be advised that the following conditions exist at the site:

Total petroleum hydrocarbons as diesel remain in soil at concentrations up to 5 ppm.

If you have any questions, please call Jerry Wickham at (510) 567-6791. Thank you.

Sincerely,

Donna L. Drogos, P.E.

LOP and Toxics Program Manager

Enclosures:

- Remedial Action Completion Certification
- 2. Case Closure Summary

CC:

Franklin and Priscilla May (w/enc) 7567 Amarillo Road Dublin, CA 94568-2223

Mr. Robert Flory (w/o enc) AEI Consultants 2500 Camino Diablo, Suite 100 Walnut Creek, CA 94597

D. Drogos (w/enc)
Jerry Wickham (w/orig enc),
Geotracker (w/enc)
File (w/enc)

Closure Unit (w/enc) State Water Resources Control Board UST Cleanup Fund P.O. Box 944212 Sacramento, CA 94244-2120

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES
ENVIRONMENTAL PROTECTION
1131 Harbor Bay Parkway. Suite 250
Alameda. CA 94502-6577
(510) 567-6700
FAX (510) 337-9335

REMEDIAL ACTION COMPLETION CERTIFICATION

September 8, 2009

Natale and Darlene Piazza 7613 Peppertree Road Dublin, CA 94568-2243

Subject: Fuel Leak Case No. RO0002739 and Geotracker Global ID T06019758706, Nat Piazza Property, 20957 Baker Road, Castro Valley, CA 94546 – Case Closure

Dear Natale and Darlene Piazza:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

This notice is issued pursuant to subdivision (h) of Section 25296.10 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerely,

Ariu Levi Director

Alameda County Environmental Health

CASE CLOSURE SUMMARY LEAKING UNDERGROUND FUEL STORAGE TANK - LOCAL OVERSIGHT PROGRAM

I. AGENCY INFORMATION

Date: July 1, 2009

Agency Name: Alameda County Environmental Health	Address: 1131 Harbor Bay Parkway
City/State/Zip: Alameda, CA 94502-6577	Phone: (510) 567-6791
Responsible Staff Person: Jerry Wickham	Title: Senior Hazardous Materials Specialist

II. CASE INFORMATION

Site Facility Name: Nat Piazza Property					
Site Facility Address: 20957 Baker Road, Castro Valley, CA 94546					
RB Case No.: LOP Case No.: RO0002739					
URF Filing Date: 4/22/2004 Geotracker ID: T06019758706 APN: 84A-16-6-4					
Responsible Parties	Addresses	Phone Numbers			
Responsible Parties Natale and Darlene Piazza	Addresses 7613 Peppertree Road, Dublin, CA 94568-2243	Phone Numbers 925-828-1577			
	7613 Peppertree Road,				

Tank I.D. No	Size in Gallons	Contents	Closed In Place/Removed?	Date
1	1,000 gallons	Gasoline	Removed	04/16/2004
2	1,000 gallons	Diesel	Removed	04/16/2004
	Piping		Removed	04/16/2004

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and Type of Release: Unknown. Minor rust and corrosion was observed on the surface of the tanks during removal.

Site characterization complete? Yes

Date Approved By Oversight Agency: ---
Monitoring wells installed? Yes

Number: 5

Proper screened interval? Yes

Highest GW Depth Below Ground Surface: 8.0 feet bgs

Number: 5

Proper screened interval? Yes

How Direction: Variable but to the southwest more often

Most Sensitive Current Use: Potential drinking water source.

Summary of Production Wells in Vicinity: No water supply wells within ½ mile of the site.	
Are drinking water wells affected? No	Aquifer Name: East Bay Plain
Is surface water affected? No	Nearest SW Name: South Reservoir is approximately 2,500 feet south of the site.
Off-Site Beneficial Use Impacts (Addresses/Locat	ions): None
Reports on file? Yes	Where are reports filed? Alameda County Environmental Health

	TREATMENT AND DISPOSAL OF AFFECTED MATERIAL					
Material	Amount (Include Units)	Action (Treatment or Disposal w/Destination)	Date			
Tank	2 tanks	Disposed off-site at Ecology Control Industries in Richmond, CA	04/21/2004			
Piping	Not reported	Disposed off-site at Ecology Control Industries in Richmond, CA	04/21/2004			
Free Product						
Soil						
Groundwater						

MAXIMUM DOCUMENTED CONTAMINANT CONCENTRATIONS BEFORE AND AFTER CLEANUP (Please see Attachments 1 through 6 for additional information on contaminant locations and concentrations)

Contaminant	Soil	(ppm)	Water (ppb)		
Contaminant	Before	After	Before	After	
TPH (Gas)	1,400	<1	7,300(1)	<50(2)	
TPH (Diesel)	10,000	5.1	23,000(3)	<50(4)	
TPH (Motor Oil)	<5	<5	1,400(5)	<250(6)	
Benzene	<1	<0.005	<0.5	<0.5	
Toluene	<1	<0.005	11	<0.5	
Ethylbenzene	<1	<0.005	<0.5	<0.5	
Xylenes	<1	<0.005	27	<0.5	
Heavy Metals (Cd, Cr, Pb, Ni, Zn)	7.4(7)	7.4(7)	<0.5(8)	<0.5(8)	
MTBE	<10(9)	<0.005(10)	<5(11)	<5(11)	
Other (8240/8270)	Not analyzed	Not analyzed	Not analyzed	Not analyzed	

- (1) Grab groundwater sample collected from boring SB-2 on 05/18/2005.
- (2) Not detected in groundwater samples from monitoring wells during the most recent sampling event on
- (3) Grab groundwater sample collected from boring SB-2 on 05/18/2005.
- (4) Not detected in groundwater samples from monitoring wells during the most recent sampling event on 08/20/2008.
- Grab groundwater sample collected from boring SB-1 on 05/18/2005.
- (6) Not detected in groundwater samples from monitoring wells during sampling event on 10/18/2007.
- (7) Lead = 7.4 ppm; Cd <0.25 ppm; Cr = 22 ppm; Ni = 27 ppm; and Zn = 39 ppm. (8) Lead <0.5 ppb; Cd <0.25 ppb; Cr = 0.57 ppb; Ni = 2.0 ppb; and Zn = 190 ppb.
- (9) <10 ppm MTBE, no other fuel oxygenates analyzed.
- (10)<0.5 ppm MTBE; no other fuel oxygenates analyzed.
- (11) < 5 ppb MTBE; no other fuel oxygenates analyzed.

Site History and Description of Corrective Actions:

The site is within a mixed residential and commercial area of Castro Valley. The site is currently undeveloped with the surface of the site partially covered by asphalt or concrete slabs with the remainder of the site covered by gravel.

A geotechnical investigation for the design of a proposed construction project was conducted at the site in 1986. Nine soil borings (GT-1 through GT-9) were advanced to the top of bedrock (boring logs attached). Bedrock was encountered at depths ranging from 6 to 13 feet bgs. Groundwater was encountered at depths of 6 to 9 feet bgs in the geotechnical borings.

On April 21, 2004, a 1.000-gallon gasoline and 1,000-gallon diesel UST were removed from the site. Prior to removal, a small amount of fuel and sludge was removed from the tanks. Two soil samples were collected from beneath each UST. Petroleum hydrocarbons were detected in each of the four tank removal soil samples. TPH as gasoline was reported at concentrations ranging from 160 to 1,400 ppm and TPH as diesel was reported at concentrations ranging from 1,400 to 10,000 ppm in the tank removal soil samples. The USTs were reportedly not used for 15 years prior to removal in 2004. Observations during the tank removal indicated that the tanks were intact with no obvious holes or other signs of failure.

On May 18, 2005, eight direct-push soil borings were advanced to depths of 14 to 18 feet bgs. TPHg, TPHd, TPHmo, and BTEX were not detected at concentrations above the reporting limits in any of the soil samples, which were collected between depths of 7.5 to 11 feet bgs. TPHg was reported in the groundwater sample from boring SB-2 (SB-2W) at a concentration of 7,300 ppm. TPHg was not detected at concentrations above the reporting limit in groundwater samples collected from any of the soil borings other than SB-2. TPHd was detected in groundwater samples from 7 of the 8 soil borings at concentrations ranging from 56 to 23,000 ppb. Benzene and MTBE were not detected at concentrations above the reporting limits in groundwater samples from any of the 8 soil borings.

Five groundwater monitoring wells (MW-1 though MW-4 and IN-1) were installed at the site in October 2007. The monitoring well borings were advanced to depths of 16.5 feet bgs. Soil samples were typically collected from the monitoring well borings at depths of 5, 8, 10, and 12 feet bgs. TPHg, TPHd, TPHmo, BTEX, and MTBE were not detected at concentrations above the reporting limits in any soil samples from boring MW-1 through MW-4. TPHd was the only analyte detected in soil samples from boring IN-1. TPHd was detected at concentrations of 4.0 and 5.1 ppm in soil samples collected at depths of 8.5 and 10.0 feet bgs, respectively. The boring for well IN-1 was advanced in the center of the former tank pit only a few feet from the locations of two soil samples collected during the tank removal (T1E-EB8' and T2W-EB8'). It is notable that TPHd was detected at concentrations of 10,000 ppm and 2,400 ppm in tank removal soil samples -EB8' and T2W-EB8', respectively; however, TPHd was not detected in the soil sample collected at a similar depth in boring IN-1, which was only a few feet away and located between the tank removal samples.

Groundwater samples were collected from the five monitoring wells for four quarters from October 18, 2007 to August 20, 2008. TPHg, BTEX, and MTBE were not detected in any groundwater samples collected. TPHd was detected only in the initial groundwater sample from well MW-1 but was not detected during the subsequent three quarterly monitoring events. Three of the monitoring wells are located immediately adjacent to soil boring locations where grab groundwater samples were collected during the 2005 direct-push soil boring investigation. Results from sampling of the groundwater monitoring wells indicated that a significant decrease in dissolved hydrocarbon concentrations in groundwater had occurred or the grab groundwater sample results were biased high.

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? Yes

Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? Yes

Does corrective action protect public health for current land use? Alameda County Environmental Health staff does not make specific determinations concerning public health risk. However, based upon the information available in our files to date, it does not appear that the release would present a risk to human health based upon current land use and conditions.

Site Management Requirements: None

Should corrective action be reviewed if land use changes? No

Was a deed restriction or deed notification filed? No

Date Recorded: -
Monitoring Wells Decommissioned: No

Number Decommissioned: 0

Number Retained: 5

List Enforcement Actions Taken: None

List Enforcement Actions Rescinded: --

V. ADDITIONAL COMMENTS, DATA, ETC.

Considerations and/or Variances:

No soil vapor sampling was conducted at the site. Based on the absence of BTEX compounds in soil and groundwater samples from the site and the likely age of the release (prior to 1989), the potential for vapor intrusion appears to be low.

No analyses for fuel oxygenates other than MTBE were performed. Based on the likely age of the release and absence of MTBE, analyses for other fuel oxygenates does not appear to be warranted.

Conclusion:

Alameda County Environmental Health staff believe that the levels of residual contamination do not pose a significant threat to water resources, public health and safety, and the environment based upon the information available in our files to date. No further investigation or cleanup is necessary. ACEH staff recommend case closure for this site.

VI. LOCAL AGENCY REPRESENTATIVE DATA

Prepared by: Jerry Wickham	Title: Senior Hazardous Materials Specialist
Signature: Signature:	Date: 07/29/09
Approved by Donna L. Drogos, P.E.	Title: Supervising Hazardous Materials Specialist
Signature:	Date: 07/29/09

This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions.

VII. REGIONAL BOARD NOTIFICATION

Regional Board Staff Name: Cherie McCaulou	Title: Engineering Geologist
RB Response: Concur, based solely upon information contained in this case closure summary.	Date Submitted to RB: 7/29/09
Signature: Che McCoulon	Date: 7/29/09

VIII. MONITORING WELL DECOMMISSIONING

Date Requested by ACEH: 07/29/09	Date of Well Decommissioning Re	port: 04/08/09
All Monitoring Wells Decommissioned: Yes No	Number Decommissioned: 5	Number Retained:
Reason Wells Retained: NA	I	
Additional requirements for submittal of groundwa	ater data from retained wells: No	Ne
ACEH Concurrence - Signature:	modelsian	Date: 69/08/09
The state of the s		

Attachments:

- Site Location Map (1 p) 1.
- Site Plans (3 pp) 2.
- Soil Analytical Maps, Groundwater Analytical Maps, Cross Sections, and Depth to Bedrock Map (8 pp) 3.
- Soil and Soil Vapor Analytical Data (3 pp) 4.
- 5.
- Groundwater Analytical Data (3 pp)
 Groundwater Elevation Data and Well Construction Details (2 pp) 6.
- Boring Logs (22 pp)

This document and the related CASE CLOSURE LETTER & REMEDIAL ACTION COMPLETION CERTIFICATE shall be retained by the lead agency as part of the official site file.

AEI CONSULTANTS

SITE LOCATION MAP

20957 BAKER ROAD CASTRO VALLEY, CALIFORNIA FIGURE 1 PROJECT No. 273928

ATTACHMENT 2

Table 1 Soil Analytical Data Piazza, 20957 Baker Road, Castro Valley, CA

ral 4/21/2004 4/21/2004 4/21/2004 4/21/2004 Investigati	160 190 1,400 460	4,900 10,000 2,400 1,400		<0.50	/kg <0.05	8021 B		
4/21/2004 4/21/2004 4/21/2004 4/21/2004 Investigati	190 1,400 460	4,900 10,000 2,400			<0.05			
4/21/2004 4/21/2004 4/21/2004 4/21/2004 Investigati	190 1,400 460	10,000 2,400			<0.05	10.05		
4/21/2004 4/21/2004 4/21/2004 4/21/2004 Investigati	190 1,400 460	10,000 2,400			< 0.05	-0.05		
4/21/2004 4/21/2004 Investigat i	1,400 460	10,000 2,400		-1.7		< 0.05	< 0.05	< 0.05
4/21/2004 Investigat i	460			<1.7	< 0.17	< 0.17	< 0.17	8.4
Investigati		1,400		<10	<1.0	<1.0	<1.0	<1.0
				< 0.50	< 0.05	< 0.05	< 0.05	0.25
	ion							
3/18/2003	<1.0	<1.0	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
5/18/2005	<1.0	<1.0	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
5/18/2005	<1.0	<1.0	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
5/18/2005	<1.0	<1.0	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
5/18/2005	<1.0	<1.0	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
5/18/2005	<1.0	<1.0	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
5/18/2005	<1.0	<1.0	< 5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
5/18/2005	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
tion								
	<1.0	4.0	<5.0	<0.05	<0.005	< 0.005	< 0.005	< 0.005
								< 0.005
10/12/2008	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
					0.005	0.005	.0.005	.0.005
								< 0.005
10/12/2008	<1.0	<1.0	<5.0	< 0.05	<0.005	<0.005	<0.005	< 0.005
10/12/2008	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
10/12/2008	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
10/12/2008	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
10/12/2008	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
10/12/2008	<1.0	<1.0	<5.0	<0.05	<0.005	< 0.005	< 0.005	< 0.005
								< 0.005
10/12/2008	<1.0	<1.0	<5.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
	83	Q2	370	0.25	0.044	0.29	23	2.3
								2.3
	5/18/2005 5/18/2005 5/18/2005 5/18/2005 5/18/2005 5/18/2005 5/18/2005 tion 10/12/2008 10/12/2008 10/12/2008 10/12/2008 10/12/2008 10/12/2008 10/12/2008 10/12/2008 10/12/2008 10/12/2008 10/12/2008 10/12/2008	5/18/2005 <1.0 5/18/2005 <1.0 5/18/2005 <1.0 5/18/2005 <1.0 5/18/2005 <1.0 5/18/2005 <1.0 5/18/2005 <1.0 5/18/2005 <1.0 5/18/2005 <1.0 10/12/2008 <1.0	5/18/2005 <1.0	5/18/2005 <1.0	5/18/2005 <1.0	5/18/2005 <1.0	5/18/2005 <1.0	5/18/2005 <1.0 <1.0 <5.0 <0.05 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.00

Notes:

Values in Bold above reporting limit

Values in Bold Orange are above ESL

ESL <9 ft DW = Shallow soil groundwater having potential for drinking water use

ESL <9 ft NDW = Shallow soil groundwater with no potential for drinking water use

Table 5 Soil Analytical Data - Metals and Misc.
Piazza, 20957 Baker Road, Castro Valley, CA

	Samj	ple ID	
Analyte	IN-1-8.5	MW-2-11.5	
	mg/kg	mg/kg	
Antimony	0.51	0.60	
Arsenic	4.4	5.3	
Barium	73	80	
Beryllium	<0.5	<0.5	
Cadmium	<0.25	<0.25	
Chromium (Total)	22	22	
Chromium VI	<0.8	<0.2	
Cobalt	4.3	11	
Copper	11	14	
Lead	4	7.4	
Mercury	< 0.05	< 0.012	
Molybdenum	<0.5	<0.5	
Nickel	18	27	
Selenium	<0.5	< 0.5	
Silver	<0.5	<0.5	
Thallium	<0.5	< 0.5	
Vanadium	26	34	
Zinc	26	39	
COD	2400	1800	
рН	7.37 @24.1 C	5.86 @ 23.8 (
F	, , , , , , , , , , , , , , , , , , ,	0	

Sampled 10/12/07 mg/kg = micrograms per kilogram

Table 7 Soil Vapor Data - RKI Eagle Gas Detector Piazza, 20957 Baker Road, Castro Valley, CA

7?

Sample ID	Date	Vacuum	TVH	Methane	Oxygen	Carbon Dioxide
		ii.	ppmv		Percent (%)	
MW-1	10/18/2007	11.64	0.0	0.0	20.8	0.4
	7/12/2008		0.0	0.0	9.8	8.8
MW-2	10/18/2007	11.74	0.0	0.0	15.9	2.9
	7/12/2008		0.0	0.0	10.5	7.7
MANY 2	10/19/2007		0.0	0.0	7.9	7.3
MW-3	10/18/2007	11.1	0.0	0.0		
	7/12/2008		0.0	0.0	10.5	7.7
MW-4	10/18/2007	14.92	0.0	0.0	19.0	1.3
	7/12/2008		0.0	0.0	11.3	6.0
INL1	10/18/2007	10.80	0.0	0.0	12.4	5.0
114-1		10.09				9.4
IN-1	10/18/2007 7/12/2008	10.89	0.0 0.0	0.0 0.0	12.4 9.2	

TVH - Total Volatile Hydrocarbons

Table 2 Groundwater Analytical Data - Soil Borings and Paired Monitoring Wells Piazza, 20957 Baker Road, Castro Valley, CA

Sample ID	Date	Depth to Water	TPH-g C6-C12	TPH-d C10-C23	TPH-mo C18+	TPH-bo C10+	MTBE	Benzene	Toluene	Ethyl- benzene	Xylenes
ш		feet	μg/L	C10-C23	μg/L	CIUT	μg/L	μg/L	μg/L	μg/L	μg/L
		Teet	μg/L	PA Method 8			μg/L		A Method 802		μg/ L
			L	1 A Methoa o	015			111	1 Memou 002	10	
SB-1 W	5/18/2005	8.75	< 50	190	1,400		< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
IN-1	10/18/07	10.89	< 50	< 50	ND<250	<100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	1/14/2008	8.39	< 50	< 50		<250	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	04/16/08	10.21	< 50	< 50		<100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	08/20/08	11.39	< 50	<50		<100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
SB-2 W	5/18/2005	9.20	7,300	23,000	1,300		< 5.0	< 0.5	11	ND<5.0	27
MW-2	10/18/07	11.74	< 50	< 50	ND<250	<100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	1/14/2008	8.49	< 50	< 50		<250	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	04/16/08	10.38	< 50	< 50		<100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	08/20/08	11.56	< 50	< 50		<100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
SB3-W	5/18/2005	8.56	< 50	62	ND<250		< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
MW-3	10/18/07	11.10	< 50	< 50	ND<250	<100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	1/14/2008	8.41	< 50	< 50		<250	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	04/16/08	10.19	< 50	< 50		<100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	08/20/08	11.38	< 50	< 50		<100	< 5.0	<0.5	< 0.5	< 0.5	< 0.5
SB4-W	5/18/2005	9.60	<50	56	ND<250		< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
SB5-W	5/18/2005	11.60	< 50	670	1,400	-	<5.0	< 0.5	< 0.5	< 0.5	< 0.5
MW-1	10/18/07	11.64	< 50	56	ND<250 (86)	140	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	1/14/2008	8.81	< 50	< 50		<250	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	04/16/08	8.98	< 50	< 50		<100	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	08/20/08	11.09	< 50	< 50		<100	<5.0	< 0.5	< 0.5	< 0.5	< 0.5
SB6-W	5/18/2005	8.62	<50	160	300		< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
MW-3	10/18/07	11.10	<50	<50	ND<250	<100	<5.0	< 0.5	< 0.5	< 0.5	< 0.5
SB7-W	5/18/2005	8.56	ND<50	ND<50	ND<250		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
SB8-W	5/18/2005	8.70	ND<50	320	480		ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
RWQCB ES	Ls**		100	100	100		5.0	1.0	- 40	30	20

Notes

Soil boring data from 2005 is paired with twin 2007 groundwater monitoring well data for comparison purposes.

BOLD = Current groundwater data

MTBE = methyl tert-butyl ether

TPH-g = total petroleum hydrocarbons as gasoline

 μ g/L = micrograms per liter (parts per billion)

TPH-d = total petroleum hydrocarbons as diesel

ft amsl = feet above mean sea level

TPH-mo = total petroleum hydrocarbons as motor oil

ND = Not reported at or above the indicated method detection limit

^{** =} RWQCB ESLs November 2007, TABLE F-1a. Groundwater Screening levels, Groundwater is a current or potential drinking water resource

Table 6 Groundwater Analytical Data Piazza, 20957 Baker Road, Castro Valley, CA

Sample ID	Date	Depth to Water	TPH-g C6-C12	TPH-d C10-C23	TPH-mo C18+	TPH-bo C10+	MTBE	Benzene	Toluene	Ethyl- benzene	Xylenes
		feet	μg/L	μg/L	μg/L		μg/L	μg/L	μg/L	μg/L	μg/L
				PA Method 80				EP	A Method 802	1 <i>B</i>	
IN-1	10/18/07	10.89	ND<50	ND<50	ND<250	ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
111-1	1/14/2008	8.39	ND<50	ND<50		ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	04/16/08	10.21	ND<50	ND<50		ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	08/20/08	11.39	ND<50	ND<50		ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-1	10/18/07	11.64	ND<50	56	ND<250	140	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	1/14/2008	8.81	ND<50	ND<50		ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	04/16/08	8.98	ND<50	ND<50		ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	08/20/08	11.09	ND<50	ND<50		ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-2	10/18/07	11.74	ND<50	ND<50	ND<250	ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	1/14/2008	8.49	ND<50	ND<50		ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	04/16/08	10.38	ND<50	ND<50		ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	08/20/08	11.56	ND<50	ND<50		ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-3	10/18/07	11.10	ND<50	ND<50	ND<250	ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	1/14/2008	8.41	ND<50	ND<50		ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	04/16/08	10.19	ND<50	ND<50		ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	08/20/08	11.38	ND<50	ND<50		ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-4	10/18/07	14.82	ND<50	ND<50	ND<250	ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	1/14/2008	8.77	ND<50	ND<50		ND<250	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	04/16/08	9.94	ND<50	ND<50		ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	08/20/08	11.42	ND<50	ND<50		ND<100	ND<5.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
ESLs Resider	ntial		100	100	100		5.0	1.0	40	30	20
ESLs Comme	ercial Industrial		210	210	210		1800	46	130	43	100

Notes

Bold concetration above detection limit

TPH-g = total petroleum hydrocarbons as gasoline

TPH-d = total petroleum hydrocarbons as diesel

TPH-mo = total petroleum hydrocarbons as motor oil

TPH-bo = total petroleum hydrocarbons as bunker oil

MTBE = methyl tert-butyl ether

 μ g/L = micrograms per liter (parts per billion)

ft amsl = feet above mean sea level

ND = Not reported at or above the indicated method detection limit

** = RWQCB ESLs November 2007, TABLE F-1a. Groundwater Screening levels, Groundwater is a current or potential drinking water resource

Table 6 Groundwater Analytical Data - Metals
Piazza, 20957 Baker Road, Castro Valley, CA

	Sample ID				
Analyte	MW-2	MW-3			
NAME OF THE PARTY	μg/L	μg/L			
Antimony	0.72	<0.5			
*		0.000			
Arsenic	2.3	0.82			
Barium	300	360			
Beryllium	<0.5	<0.5			
Cadmium	<0.25	<0.25			
Chromium (Total)	0.57	0.55			
Chromium VI	<0.2	<0.2			
Cobalt	<0.2	<0.5			
Copper	2.00	1.3			
Lead	<0.5	<0.5			
Mercury	0.017	< 0.012			
Molybdenum	4.7	0.70			
Nickel	1.6	2.0			
Selenium	1.9	1.4			
Silver	<0.19	<0.19			
Thallium	<0.5	<0.5			
Vanadium	2.1	1.3			
Zinc	180	190			

 $Sampled \ 10/18/07$ $\mu g/L = micrograms \ per \ kilogram$

Table 4 Groundwater Elevation Data
Piazza, 20957 Baker Road, Castro Valley, CA

Well ID	Date	Well Elevation (ft amsl)	Depth to Water (ft)	Groundwater Elevation (ft amsl)	Elevation Change (ft)
IN-1	10/15/07	159.85	11.00	148.85	
	10/18/07	159.85	10.89	148.96	0.11
	10/22/2007*	159.85	10.93	148.92	-0.04
	11/06/07	159.85	11.20	148.65	-0.27
	01/14/08	159.85	8.39	151.46	2.81
	04/16/08	159.85	10.21	149.64	-1.82
	08/20/08	159.85	11.39	148.46	-1.18
MW-1	10/15/07	159.62	14.30	145.32	
	10/18/07	159.62	11.64	147.98	2.66
	10/22/07	159.62	10.86	148.76	0.78
	11/06/07	159.62	10.95	148.67	-0.09
	01/14/08	159.62	8.81	150.81	2.14
	04/16/08	159.62	9.98	149.64	-1.17
	08/20/08	159.62	11.09	148.53	-1.11
MW-2	10/15/07	160.00	13.28	146.72	
	10/18/07	160.00	11.74	148.26	1.54
	10/22/07	160.00	11.32	148.68	0.42
	11/06/07	160.00	11.35	148.65	-0.03
	01/14/08	160.00	8.49	151.51	2.86
	04/16/08	160.00	10.38	149.62	-1.89
	08/20/08	160.00	11.56	148.44	-1.18
MW-3	10/15/07	159.79	11.01	148.78	
	10/18/07	159.79	11.10	148.69	-0.09
	10/22/07	159.79	10.95	148.84	0.15
	11/06/07	159.79	11.20	148.59	-0.25
	01/14/08	159.79	8.41	151.38	2.79
	04/16/08	159.79	10.19	149.60	-1.78
	08/20/08	159.79	11.38	148.41	-1.19
MW-4	10/15/07	159.69	14.57	145.12	
	10/18/07	159.69	14.92	144.77	-0.35
	10/22/07	159.69	14.65	145.04	0.27
	10/22/07 Well loaded	d with fresh water- sur		water level dropping slo	
	11/06/07	159.69	8.00	151.69	6.65
	01/14/08	159.69	.8.77	150.92	-0.77
	04/16/08	159.69	9.94	149.75	-1.17
	08/20/08	159.69	11.42	148.27	-1.48

Depth to water measured from the top of well casing ft amsl = feet above mean sea level

Table 3: Well Construction Details
Piazza, 20957 Baker Road, Castro Valley, CA

Well ID	Date Installed (feet)	Top of casing (feet)	Top of Well Box (feet)	Depth To Water 08/20/08 (feet)	Casing Material	Boring Total Depth (feet)	Well Total Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (feet)	Filter Pack Sand (feet)	Bentonite Interval (feet)	Grout Interval (feet)
IN-1	10/12/07	160.12	159.85	11.39	PVC	16.5	16.5	8 1/4	2.0	6.5-16.5	0.020	6.0-16.5	2/12	5.0-5.5	.05-5.0
MW-1	10/12/07	159.84	159.62	11.09	PVC	16.5	16.5	8 1/4	2.0	6.5-16.5	0.020	6.0-16.5	2/12	5.0-6.5	.05-5.0
MW-2	10/12/07	160.30	160.00	11.56	PVC	16.5	16.5	8 1/4	2.0	6.5-16.5	0.020	6.0-16.5	2/12	5.0-6.5	.05-5.0
MW-3	10/12/07	160.04	159.79	11.38	PVC	16.5	16.5	8 1/4	2.0	6.5-16.5	0.020	6.0-16.5	2/12	5.0-6.5	.05-5.0
MW-4	10/12/07	159.95	159.69	11.42	PVC	16.5	16.5	8 1/4	2.0	6.5-16.5	0.020	6.0-16.5	2/12	5.0-6.5	.05-5.0

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 273928

Log of Boring MW-1

Sheet 1 of 1

Date(s) Drilled October 12, 2007	Logged By Leah Levine-Goldberg	Checked By Robert F. Flory, PG
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 8 1/4 inch	Total Depth of Borehole 16.5 feet bgs
Drill Rig Type CME-75	Drilling Contractor HEW Drilling	Surface Elevation 159.84 feet MSL
Groundwater Level and Date Measured 14.75 feet ATD	Sampling Method(s) ModCal	Permit # W2007-0964
Borehole Backfill Well Completion	Location	

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 273928

Log of Boring MW-2

Sheet 1 of 1

Date(s) Drilled October 12, 2007	Logged By Leah Levine-Goldberg	Checked By Robert F. Flory, PG
Orilling Method Hollow Stem Auger	Drill Bit Size/Type 8 1/4 inch	Total Depth of Borehole 18 feet bgs
Orill Rig Type CME-75	Drilling Contractor HEW DRILLING	Surface Elevation 160.3 feet
Groundwater Level and Date Measured 13.7 feet ATD	Sampling Method(s) ModCal	Permit # W2007-0965
Borehole Backfill Well Completion	Location	

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 273928

Log of Boring MW-3

Sheet 1 of 1

Date(s) Drilled October 12, 2007	Logged By Leah Levine-Goldberg	Checked By Robert F. Flory, PG
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 8 1/4 inch	Total Depth of Borehole 16.5 feet bgs
Drill Rig Type CME-75	Drilling Contractor HEW Drilling	Surface Elevation 160.04 feet MSL
Groundwater Level and Date Measured 13.3 feet ATD	Sampling Method(s) ModCal	Permit # W2007-0966
Borehole Backfill Well Completion	Location	•

ENVIRONMENTAL & CMIL ENGINEEPING

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 273928

Log of Boring MW-4

Sheet 1 of 1

Date(s) Drilled October 12, 2007	Logged By Leah Levine-Goldberg	Checked By Robert F. Flory, P.G
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 8 1/4 inch	Total Depth of Borehole 16.5 feet bgs
Drill Rig Type CME-75	Drilling Contractor HEW Drilling	Surface Elevation 159.95 feet MSL
Groundwater Level and Date Measured 15.4 feet ATD	Sampling Method(s) ModCal	Permit # W2007-0967
Borehole Backfill Well Completion	Location	

EMPONMENTAL & CMIL ENGINEETING

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 273928

Log of Boring IN-1

Sheet 1 of 1

Date(s) Drilled October 12, 2007	Logged By Leah Levine-Goldberg	Checked By Robert F. Flory, P.G
Drilling Method Hollow Stem Auger	Drill Bit Size/Type 8 1/4 inch	Total Depth of Borehole 16.5 feet bgs
Drill Rig Type CME-75	Drilling Contractor HEW Drilling	Surface Elevation 160.12 feet MSL
Groundwater Level and Date Measured 11.3 feet ATD	Sampling Method(s) ModCal	Permit # W2007-0968
Borehole Backfill Well Completion	Location	

ENVIRONMENTAL & CMILENGINEERING

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-1

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type	Total Depth of Borehole 14 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 8.75 feet ATD	Sampling Method(s) Tube	Permit#
Borehole Backfill Cement Slurry	Location	

ENVIRONMENTAL &CML ENGINEETANG

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-2

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 9.2 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-3

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 8.56 feet ATD	Sampling Method(s) Tube	Permit#
Borehole Cement Slurry	Location	

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-4

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 13.5 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 9.6 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	

ENVRONMENTAL & CML ENGINEEPING

Figure

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-5

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level Dry feet ATD, 11.1 feet and Date Measured after 2.5 hrs	Sampling Method(s) Tube	Permit#
Borehole Backfill Cement Slurry	Location	

CONSULTANTS

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-6

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 14 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 8.62 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	

AEI
CONSULTANTS
ENVIRMENTA SCALENGINETERS

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-7

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 8.56 feet ATD	Sampling Method(s) Tube	Permit#
Borehole Backfill Cement Slurry	Location	•

Project Location: 20957 Baker Road, Castro Valley, CA

Project Number: 10509

Log of Boring SB-8

Sheet 1 of 1

Date(s) Drilled May 18, 2005	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Geoprobe	Drill Bit Size/Type 2 inch	Total Depth of Borehole 15 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 8.7 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location	

ENVIRONMENTAL & CML ENGINEEPING

Project: Baker Road Apartments Log of Boring No. Castro Valley, California Project Number: 86204 Type of Boring: 4½ inch Auger Hammer Weight: 140 lbs. Date Drilled: August 29, 1986 LABORATORY TESTS Samples Unconfined Compressive Strength, psf Density, pcf Depth, MATERIAL DESCRIPTION Surface Elevation: 158.0 ft. GRAVELLY CLAY (CL) FILL stiff, moist, brown 21 101 5430 16 1 SILTY CLAY (CL) very stiff, moist, dark brown to black with traces of coarse sands and weathered light 10 20 101 5000 2 brown sandstone deposits 5 47 WEATHERED CLAYSTONE 24 99 6590 3 plastic, light brown 30* light grey-brown 10-4 2" 5 = 50* 15-Bottom of boring at 15'-1". No groundwater encountered at time of drilling. *Blow count during seating of sampler. 20 25 30-A-4

Project: Baker Road Apartments Log of Boring No. 2 Castro Valley, California Project Number: 86204 Type of Boring: 45 inch Auger Hammer Weight: 140 lbs. Date Drilled: August 29, 1986 LABORATORY TESTS Ē Samples Unconfined Compressive Strength, psf Moisture Content, % MATERIAL DESCRIPTION Surface Elevation: 157.7 ft. GRAVELLY CLAY (CL) FILL 12 112 6660 19 very stiff, moist, mottled orange-brown with silts, sands, and angular rock fragments 16 5680 111 2 13 SILTY CLAY (CL) very stiff, moist, brown with traces of fine sands and orange-brown sandstone deposits 5 -5030 16 112 3 15 orange-brown with fine gravels and coarse sands 123 2100 21 11 10-WEATHERED CLAYSTONE plastic, orange-brown 30* 3" 5 田 Bottom of boring at 13'-3". *Blow count during seating of sampler. 15 **Groundwater at 10'-0" at time of drilling. 20-25-30-A-5

Project: Baker Road Apartments Log of Boring No. 3 Castro Valley, California Type of Boring: 42 inch Auger Project Number: 86204 Hammer Weight: 140 lbs. Date Drilled: August 29, 1986 Blows/Ft. LABORATORY TESTS Ė Samples Unconfined Compressive Strength, psf Depth, MATERIAL DESCRIPTION Surface Elevation: 158.2 ft. A.C. pavement approximately 6 inches thick FILL GRAVELLY (CL) CLAY 9850 20 101 17 very stiff, moist, mottled brown SILTY CLAY (CL) 119 13,210 14 20 2 hard, moist, dark brown to black with 5. traces of sands 30 4" 13 6010 120 3 grey-brown with some coarse sands WEATHERED CLAYSTONE plastic, brown, indurated 37*** 4** 田 Bottom of boring at 9'-0". 10-No groundwater at time of drilling. *Blow count during seating of sampler. 15-20-25. 30-A-6

Project: Baker Road Apartments Log of Boring No. 4 Castro Valley, California Type of Boring: 41/2 inch Auger Project Number: 86204 Date Drilled: August 29, 1986 Hammer Weight: 140 lbs. LABORATORY TESTS ť Unconfined Compressive Strength, psf Density, pcf MATERIAL DESCRIPTION Surface Elevation: 157.9 ft. GRAVELLY CLAY FILL (CL) stiff, moist, mottled brown with 13 104 12 1 rock fragments SILTY CLAY (CL) 15 111 10,530 12 2 hard, moist, dark brown to black with traces of sands 117 12,820 3 16 CLAYEY SILT (ML) hard, moist, brown with some fine sands SAND (SC-SW) CLAYEY 17 109 1340 17 medium dense, moist, brown with varying -amounts of silt and clay 10wet 5 26 WEATHERED SHALE 6 39 plastic, brown 15-20 grey with fine sands 7 stronger with depth 8 + 50* 20-Bottom of boring at 20'-2". *Blow count during seating of sampler. **Groundwater at 11'-6" at time of drilling. ***Groundwater at 10'-3" on September 2, 1986. 25-30

Project: Baker Road Apartments Log of Boring No. 5 Castro Valley, California Project Number: 86204 Type of Boring: 42 inch Auger Hammer Weight: 140 lbs. Date Drilled: August 29, 1986 LABORATORY TESTS Samples Unconfined Compressive Strength, psf Moisture Content,% Density, pcf MATERIAL DESCRIPTION Surface Elevation: 157.3 ft. A.C. pavement and aggregate baserock 18 SILTY CLAY (CH) 24 101 8180 1 hard, moist, black mottled brown-grey 5. 2 14 SILTY CLAY (CL) stiff, moist, light brown, silt content increasing with depth 3 12 SILT-SILTY SANDY SAND (ML-SM) 10stiff, moist, light brown-orange brown 30* 4 1" with very find sands WEATHERED SHALE weak, brown Bottom of boring at 11'-1". 15. *Blow count during seating of sampler. **Groundwater at 11'-0" at time of drilling. 20-25. 30-A-8

Project: Baker Road Apartments Log of Boring No. 6 Castro Valley, California Type of Boring: 41 inch Auger Project Number: 86204 Date Drilled: August 29, 1986 Hammer Weight: 140 lbs. LABORATORY TESTS Samples Unconfined Compressive Strength, psf Moisture Content, % Density, pcf MATERIAL DESCRIPTION Surface Elevation: 156.8 ft. A.C. pavement GRAVELLY CLAY FILL 16 23 97 6520 stiff, moist, mottled brown SILTY CLAY very stiff, moist, black 5 mottled brown-grey with traces of sands 13 2 17 111 6370 increasing silt content SILTY 21 3 SAND (SM) dense, moist, mottled 10 orange-brown WEATHERED SHALE 20 5" weak, grey with clay seams Bottom of boring at 12'-11". *Groundwater at 9'-6" at time of drilling. 15. 20-25. 30. A-9

Project: Baker Road Apartments Log of Boring No. 7 Castro Valley, California Project Number: 86204 Type of Boring: 42 inch Auger Date Drilled: August 29, 1986 Hammer Weight: 140 lbs. LABORATORY TESTS Unconfined Compressive Strength, paf Moisture Content, % MATERIAL DESCRIPTION Surface Elevation: 158.1 ft. FILL GRAVELLY CLAY (CL) stiff, moist, mottled brown 11 12 113 17,050 1 SILTY CLAY (CL) very stiff to hard, moist, dark brown with 2 11 15 113 6700 scattered organics and fine sands 5 15 3 increasing silt content SANDY SILT-SILTY SAND (ML-SM) 46 4 hard, moist, mottled dark brown 10-WEATHERED SHALE weak, light brown Bottom of boring at 10'-0". No groundwater encountered at time of drilling. 15 20-25-30. A - 10

Project Number: 86204 Date Drilled: August 29, 1986 MATERIAL DESCRIPTION Surface Elevation: 158.0 ft. GRAVELLY CLAY (CL) Stiff, moist, mottled brown SILTY CAN (CR) very stiff, moist, dark brown Total dense, wet, mottled brown Bottom of boring at 13'-0". *Groundwater at 9'-0" at time of drilling.	Pro	ject	: Bai	ker Road Apartments stro Valley, California	Log	of	Boring		No.	8	
MATERIAL DESCRIPTION Surface Elevetien: 158.0 ft. GRAVELLY CLAY (CL) stiff, moist, mottled brown SILTY CLAY (CL) very stiff, moist, dark brown mottled brown SILTY SAND (SM) dense, wet, mottled brown SILTY SAND (SM) and the second stiff of t	Pro	roject Number: 86204 Type of Boring: 4½ inch Auger									
MATERIAL DESCRIPTION Surface Elevation: 158.0 ft. GRAVELLY CLAY (CL) Stiff, moist, mottled brown SILTY CLAY (CL) Very stiff, moist, dark brown mottled brown SILTY SAND (SM) dense, wet, mottled brown WEATHERED CLAYSTONE weak, brown Bottom of boring at 13'-0". *Groundwater at 9'-0" at time of drilling.	Date	Date Drilled: August 29, 1986 Hammer Weight:									
GRAVELLY CLAY (CL) STILL Stiff, moist, mottled brown SILTY CLAY (CL) Very stiff, moist, dark brown mottled brown SILTY SAND (SM) Adense, wet, mottled brown WEATHERED CLAYSTONE Weak, brown Bottom of boring at 13'-0". *Groundwater at 9'-0" at time of drilling.	Depth, Ft.	Samples	Blows/Ft.			ON				Density, pcf	
stiff, moist, mottled brown SILTY CLAY (CL) very stiff, moist, dark brown mottled brown SILTY SAND (SM) dense, wet, mottled brown WEATHERED CLAYSTONE weak, brown Bottom of boring at 13'-0". *Groundwater at 9'-0" at time of drilling.	_		Т						≥ိပ္ပ	۵	7 S &
Δ—11	10			GRAVELLY CLAY stiff, moist, mottled brown SILTY CLAY (CL) very stiff, moist, dark brown mottled brown SILTY SAND (SM) dense, wet, mottled brown WEATHERED CLAY weak, brown Bottom of boring at 13'-0"	(CL) n OWN		FILL				
					\-11			Ш	لــــا		

Ξ.

, 14

Project Number: 86204 Date Drilled: August 29, 1986 MATERIAL DESCRIPTION Surface Elevation: 158.0 ft. GRAVELLY CLAY (CL) very stiff, moist, dark brown GRAVELLY CLAY (CL) very stiff, moist Bottom of boring at 13'-0". No groundwater encountered at time of drilling. Weathered claystone encountered at bottom of boring.	Pro	ject	: Bal	ker Road Apartments stro Valley, California	Log	of	Boring	N	lo.	9	
MATERIAL DESCRIPTION Surface Elevotion: 158.0 ft. GRAVELLY CLAY (CL) SILTY CLAY (CL) very stiff, moist, dark brown Total description of boring at 13'-0". No groundwater encountered at time of drilling. Weathered claystone encountered at bottom of boring.	Project Number: 86204 Type of Boring: 4½ inch							luge	r		
Surface Elevation: 158.0 ft. Surface Elevation: 158.0 ft. GRAVELLY CLAY (CL) very stiff, moist, dark brown GRAVELLY CLAY (CL) very stiff, moist stime of drilling. weighted a continue of boring. stime of borin							9				
Surface Elevation: 158.0 ft. GRAVELLY CLAY (CL) very stiff, moist, brown SILTY CLAY (CL) very stiff, moist, dark brown mottled brown GRAVELLY CLAY (CL) very stiff, moist GRAVELLY CLAY (CL) very stiff, moist Bottom of boring at 13'-0". No groundwater encountered at time of drilling. Weathered claystone encountered at bottom of boring.	ť										Name and Address of the Owner, where the Owner, which is the O
Surface Elevation: 158.0 ft. GRAVELLY CLAY (CL) very stiff, moist, brown SILTY CLAY (CL) very stiff, moist, dark brown mottled brown GRAVELLY CLAY (CL) very stiff, moist GRAVELLY CLAY (CL) very stiff, moist Bottom of boring at 13'-0". No groundwater encountered at time of drilling. Weathered claystone encountered at bottom of boring.	epth,	Sample	llows,	MATERIAL DI	ESCRIPTI	ON			%, tue	ensity, cf	nfined ressive ngth, af
GRAVELLY CLAY (CL) very stiff, moist, dark brown mottled brown GRAVELLY CLAY (CL) very stiff, moist, dark brown mottled brown Bottom of boring at 13'-0". No groundwater encountered at time of drilling. Weathered claystone encountered at bottom of boring.				Surface Elevation: 158.0 ft.				- 3	Cont	Dry D	Unco Comp Stre
A-12	10-			GRAVELLY CLAY stiff, moist, brown SILTY CLAY (CL) very stiff, moist, dark brown mottled brown GRAVELLY CLAY very stiff, moist Bottom of boring at 13'-0" No groundwater encountered Weathered claystone encount	(CL)		lling.		0	Δ	
			1	Δ-	12						

A . F