ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

(510) 567-6700 FAX (510) 337-9335

September 25, 2013

Ms. Katherine Chandler
The Olson Company
2010 Old Panch Barkway

3010 Old Ranch Parkway, Suite 100

Seal Beach, CA 90740

Ms. Carol Wallace

Christopher and Carol P. Wallace Trust

509 Ironwood Road Alameda, CA 94502

(Sent via E-mail to: kchandler@theolsoncompany.com)

Subject: Closure Transmittal; Fuel Leak Case No. RO0002737, (Global ID #T06019771179), Impulse

Motors, 1210 Bockman Road, San Lorenzo, CA 94580

Dear Ms. Chandler and Ms. Wallace:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25299.37[h]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Health (ACEH) is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed.

SITE INVESTIGATION AND CLEANUP SUMMARY

Please be advised that the following conditions exist at the site:

 Disposal destination of all soil excavated during UST removal not fully reported, "clean" stockpile was redeposited in UST excavation; disposition of "contaminated" stockpile is not reported.

If you have any questions, please call Mark Detterman at (510) 567-6876. Thank you.

Sincerely,

Donna L. Drogos, P.E.

Division Chief

Enclosures:

Remedial Action Completion Certificate

Case Closure Summary

cc: Ms. Cherie McCaulou (w/enc.), SF- Regional Water Quality Control Board, 1515 Clay Street,

Suite 1400, Oakland, CA 94612, (sent via electronic mail to CMacaulou@waterboards.ca.gov)

Dilan Roe, (sent via electronic mail to: dilan.roe@acgov.org)

Donna Drogos, (sent via electronic mail to donna.drogos@acgov.org)

Mark Detterman (sent via electronic mail to mark.detterman@acgov.org)

Electronic File, GeoTracker

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY ALEX BRISCOE, Agency Director

DEPARTMENT OF ENVIRONMENTAL HEALTH
OFFICE OF THE DIRECTOR
1131 HARBOR BAY PARKWAY
ALAMEDA, CA 94502
(510) 567-6777
FAX (510) 337-9135

REMEDIAL ACTION COMPLETION CERTIFICATION

September 25, 2013

Ms. Katherine Chandler The Olson Company 3010 Old Ranch Parkway, Suite 100

Ms. Carol Wallace Christopher and Carol P. Wallace Trust 509 Ironwood Road Alameda, CA 94502

Seal Beach, CA 90740

(Sent via E-mail to: kchandler@theolsoncompany.com)

Subject: Case Closure for Fuel Leak Case Fuel Leak Case No. RO0002737, (Global ID #T06019771179), Impulse Motors, 1210 Bockman Road, San Lorenzo, CA 94580

Dear Ms. Chandler and Ms. Wallace:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25299.37 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.77 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

Claims for reimbursement of corrective action costs submitted to the Underground Storage Tank Cleanup Fund more than 365 days after the date of this letter or issuance or activation of the Fund's Letter of Commitment, whichever occurs later, will not be reimbursed unless one of the following exceptions applies:

- Claims are submitted pursuant to Section 25299.57, subdivision (k) (reopened UST case); or
- Submission within the timeframe was beyond the claimant's reasonable control, ongoing work is required
 for closure that will result in the submission of claims beyond that time period, or that under the
 circumstances of the case, it would be unreasonable or inequitable to impose the 365-day time period.

This notice is issued pursuant to subdivision (h) of Section 25299.37 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerely,

Ariu Levi Director

Alameda County Environmental Health

CASE CLOSURE SUMMARY LEAKING UNDERGROUND FUEL STORAGE TANK - LOCAL OVERSIGHT PROGRAM

I. AGENCY INFORMATION

Date:

September 25, 2013

Agency Name: Alameda County Environmental Health Address: 1131 Harbor Bay Parkway	
City/State/Zip: Alameda, CA 94502-6577	Phone: (510) 567-6876
Responsible Staff Person: Mark Detterman	Title: Senior Hazardous Materials Specialist

II. CASE INFORMATION

Site Facility Name: Impulse Motors				
Site Facility Address: 1210 Bockman	Road, San Lorenzo, CA 94580			
RB Case No.: N/A	STID.: 4769	LOP Case No.: RO0002737		
URF Filing Date: 06/11/2004	Filing Date: 06/11/2004 Geotracker ID: T06019771179			
Responsible Parties	Addresses	Phone Numbers		
Carol Wallace Christopher & Carol P Wallace Trust	509 Ironwood Rd Alameda, CA 94502			
Dale Hines In Town Communities LLC	3130 Crow Canyon Place, Ste 210 San Ramon, CA 94583-4631	(925) 244-9216		

Tank I.D. No	Size in Gallons	Contents	Closed In Place/Removed?	Date
	8,000	Gasoline Removed		4/14/2004
	6,000	Gasoline	Removed	4/14/2004
	6,000	Gasoline	Removed	4/14/2004
	Piping		Removed	4/14/2004

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and Type of Release: Leaking Disp	ensers			
Site characterization complete? Yes Date Approved By Oversight Agency:				
Monitoring wells installed? Yes		Number: 4	Proper screened interval? Yes	
Highest GW Depth Below Ground Surface:	7.65	Lowest Depth: 9.14	Flow Direction: Northwest	
Most Sensitive Current Use: Potential drink	king water	source.	I	

Summary of Production Wells in Vicinity: Sixteen water supply wells are known within a ¼ mile radius of the site. Three wells are classified as domestic water supply wells, and thirteen are classified as irrigation wells. Two domestic wells are over 900 feet cross-gradient from the site. Both do not appear to be receptors for the site due to the direction of groundwater flow and distance. One domestic well is at a distance of 530 feet downgradient, and is 33 feet in depth. It does not appear to be a receptor due to distance from the site, and the lack of significant dissolved-phase contamination in grab groundwater concentrations, and subsequent sampling at a previously unknown offsite irrigation water supply well located approximately 155 downgradient of the site at 17109 Via Chiquita (see below).

Ten of the 13 irrigation wells are in upgradient or cross-gradient positions relative to the site, with the closest at an approximate distance of 425 feet to the southeast (ACPWA Permit No. 88345). This well is 29 feet in depth. Each of these wells do not appear to be a receptor due to the direction of groundwater flow, distance from the site, and the depth of the wells. Three of the 13 irrigation wells can be characterized as cross to downgradient from the site (ACPWA Permit Nos. 77353, 77619 and an un-numbered well permit). The closest well is at a distance of approximately 760 feet. These wells do not appear to be receptors based on distance from the site, and the lack of significant dissolved-phase contamination in grab groundwater, and subsequent sampling at a previously unknown offsite irrigation water supply well located approximately 155 downgradient of the site at 17109 Via Chiquita (see below).

During the Public Participation notification period, ACEH was contacted by a residential well owner not previously known to ACEH or to ACPWA. The well is reported to be primarily used as a residential irrigation well and is located approximately 155 feet downgradient of the release area at the subject site. The well was sampled on September 25, 2012. TPHg and BTEX were not detected at standard limits of reporting; however, TPHd was detected, at a concentration of 68 µg/l. Silica gel cleanup was not preformed on the sample prior to analysis. The concentration of TPHd is less than the San Francisco Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL) of 83 parts per billion (ppb) that is considered to be safe under all situations for human health and protection of groundwater. The owner of this well state the well will be utilized for irrigation purposes only and declined to have it decommissioned.

Are drinking water wells affected? No Aquifer Name: East Bay Plain				
Is surface water affected? No Nearest SW Name: San Francisco Bay (1.75 miles west)				
Off-Site Beneficial Use Impacts (Addresses/L	ocations): None			
Reports on file? Yes Where are reports filed? Alameda County Environmental Health				

	TREATMENT	AND DISPOSAL OF AFFECTED MATERIAL			
Material Amount (Include Units) Action (Treatment or Disposal w/Destination) Date					
Tanks	8,000 gallon 6,000 gallon 6,000 gallon	Disposal/Ecology Control Industries	4/17/2004		
Piping	Not Reported	Disposal/Ecology Control Industries	4/17/2004		
Free Product	None Reported	MM 6-	NAM And And San		
Soil	300 / 500 cubic yards	Disposal / Not Reported	12/2006		
Groundwater	Not Reported	and a dead	and fast loss com.		

MAXIMUM DOCUMENTED CONTAMINANT CONCENTRATIONS BEFORE AND AFTER CLEANUP (Please see Attachments 1 – 6 for additional information on contaminant locations and concentrations)

Contaminant	Soil	(ppm)	Water (ppb)		
Contaminant	Before	After	Before	After	
TPH (Gas)	5,900	120	2,100	590	
TPH (Diesel)	23	23	110,000	66	
Oil and Grease					
Benzene	8.5	<0.5	<0.5	<0.5	
Toluene	30	0.021	<0.5	<0.5	
Ethylbenzene	37	0.15	<0.5	<0.5	
Xylenes	290	0.18	<0.5	<1.0	
Heavy Metals (Cd, Cr, Pb, Ni, Zn)	16.5 ¹	16.5 ¹	Not analyzed	Not analyzed	
MTBE	0.003 ²	0.003 ²	9.2 3	9.2 ³	
Other (EPA 8270)	0.017 4	0.017 4	21 ⁵	21 ⁵	

Lead only; Cd, Cr, Ni, and Zn not analyzed.

Site History and Description of Corrective Actions:

The Site is located on the southwest corner of Bockman Road and Via Chiquita Road within a residential area of the City of San Lorenzo. The Site was developed with a gasoline fuel station from the 1950s until 2004. In April 2004, one 8,000 gallon and two 6,000 gallon double-wall steel gasoline fuel tanks were removed from the Site. Upon removal the three USTs were observed to be in good condition and no field indications of hydrocarbon release were observed. Analytical results of soil samples collected from the UST excavation detected 0.018 mg/kg TBA in one of the three samples. Discolored soil with odors was noted beneath the dispenser islands. Soil samples collected from beneath the fuel dispensers and piping run detected concentrations of TPHg ranging from 690 to 5,900 mg/kg, and up to 3.3 mg/kg benzene, 30 mg/kg toluene, 33 mg/kg ethylbenzene, and 180 mg/kg total xylenes.

In November 2004 a pre-purchase Phase 1 Environmental Site Assessment (ESA) was performed for the subject site. The Phase 1 ESA also covered the land parcel north across Bockman Road; however, that parcel was verbally reported not to have been purchased by the Olsen Company for redevelopment. The ESA found evidence of at least one hydraulic lift at the former Impulse Motors site, as well as a sump. The ESA found evidence of previous agricultural use of the land and recommended evaluation of these potential contaminants at the site.

In December 2004 eight soil bores were installed at the site, using Geoprobe, hand augering, and hydropunch technologies. The bores were installed in followup to the ESA recommendations. SP-1 to SP-3 were installed to investigate for potential pesticides in shallow soil; none were detected. SB-2 & SB-7 were installed to evaluate two former hydraulic hoists and the sump previously documented. Hydrocarbons of all C-range groups were not detected between 2 and 8 feet bgs. SB-4 and SB-5 were installed in proximity to the former dispenser island, subsequently overexcavated, detected concentrations up to 4.0 mg/kg TPHg and 0.003 mg/kg benzene at a depth of five feet bgs. Groundwater was evaluated with grab groundwater samples collected from HP-1 to HP-3. Only a concentration of 1.0 µg/l total xylenes was

² 0.003 mg/kg MTBE, <0.002 mg/kg EtOH, <0.002 ppm TAME, <0.002 ppm ETBE, <0.002 ppm DIPE, <0.020 ppm TBA, <0.001 ppm EDB, and <0.01 ppm EDC

³ 9.2 μg/l MTBE, <1.0 μg/l EtOH, <1.0 μg/l TAME, 5.4 μg/l ETBE, <1.0 μg/l DIPE, <1.0 μg/l TBA, <0.5 μg/l EDB, and <0.5 μg/l EDC

⁴ 0.006 mg/kg n-Butylbenzene, 0.004 mg/kg sec-Butylbenzene, 0.003 mg/kg Isopropylbenzene, 0.017 mg/kg naphthalene, 0.011 mg/kg n-propylbenzene, and 0.011 mg/kg 1,2,4-Trimethylbenzene.

⁵ 1.4 μg/l n-Propylbenzene, 13 μg/l n-Butylbenzene, 10 μg/l sec-Butylbenzene, 6.7 μg/l iso-Propylbenzene, 0.8 μg/l naphthalene, and 21 μg/l n-Propylbenzene.

detected at HP-1 in proximity to the former USTs and downgradient of the hydraulic hoists. Groundwater collected from bores HP-1 to HP-3 also was submitted for a full VOC analysis scan to evaluate for the possibility of an unreported dry cleaner to have present at the former strip mall west of the former Impulse Motors site. No chlorinated solvent compounds were detected.

In December 2006 the overexcavation of the area of the former fuel dispensers was performed. Approximately 500 cubic yards of soil was removed from two excavation areas and stockpiled on-site. Verification soil samples were collected from the bottom and sidewalls of each excavation and analytical results up to 120 mg/kg TPHg, 19 mg/kg TPHd, 0.15 mg/kg ethylbenzene, 0.4 mg/kg MTBE, and 0.028 TBA were detected. Benzene, toluene, total xylenes, all other fuel oxygenates, and lead scavengers were non-detectable at standards limits of detection. Lead concentrations ranged up to 16.5 mg/kg. The clean soil stockpile was used as backfill.

In April 2007 seven soil bores were installed, and soil, soil vapor, and groundwater samples were collected from downgradient of the former fuel dispensers and in the vicinity of the former USTs. In soil up to 0.68 mg/kg TPHg was detected; TPHd, TPHmo, BTEX, all fuel oxygenates, and lead scavengers were non-detectable at standard limits of detection. Lead was detected up to 6.98 mg/kg in soil. In soil vapor, up to $52,000 \, \mu g/m^3$ TPHg was detected; BTEX and fuel oxygenates were non-detectable at standard limits of detection. Grab groundwater samples detected up to $2,100 \, \mu g/l$ TPHg, $110,000 \, \mu g/l$ TPHd, $9.2 \, \mu g/l$ MTBE and $5.4 \, \mu g/l$ ETBE; BTEX was non-detectable at standard limits of detection.

Three undocumented PVC wells were decommissioned under permit in April 2007. The wells were reported to range in depth between 8 and 18 feet.

In November 2007, four groundwater monitoring wells (MW-1 to MW-4) were installed down-gradient from the former fuel dispensers. Well MW-4 was installed, developed, sampled, and decommissioned due to conflicts with site development activities. Soil samples detected up to 6.1 mg/kg TPHg, <10 mg/kg TPHd, 0.021 toluene, 0.041 ethylbenzene, and 0.18 total xylenes; benzene, all fuel oxygenates, and lead scavengers were non-detectable at standard limits of detection. Concentrations of acetone, n-butylbenzene, sec-butylbenzene, 1,3,5, trimethylbenzene, 1,2,4 trimethylbenzene, and isopropylbenzene (0.40, 0.002, 0.003, 0.001, 0.002, and 0.001 mg/kg, respectively) were also detected. Several additional VOCs were also present at similar trace concentrations. In groundwater up to 0.71 µg/l TPHg was detected; TPHd, BTEX, all fuel oxygenates, and lead scavengers were not detected at standard limits of detection. Naphthalene was present up to 0.8 µg/l in one of the samples.

Quarterly groundwater monitoring was conducted in 2008. Depth to water ranged between 7.65 and 9.14 feet bgs during this period, and generally flows northwest. Concentrations up to 590 μ g/l TPHg and 230 μ g/l TPHd were detected (MW-2) during this period; BTEX, all fuel oxygenates, and lead scavengers were not detected at standard limits of detection. Concentrations up to 1.1 μ g/l n-Butylbenzene, 1.2 μ g/l sec-Butylbenzene, and 1.0 μ g/l isoproylbenzene were also detected.

In December 2010 soil bores SB-1 and SB-2 were installed offsite and downgradient of the former dispenser locations to evaluate offsite migration of the contaminant plume. In soil concentrations up to 10 mg/kg TPHd were detected; TPHg, TPHmo, BTEX, all fuel oxygenates and lead scavengers, and other VOCs were non-detectable at standards limits of detection. In groundwater concentrations up to 110 µg/l TPHd were detected; TPHg, BTEX, all fuel oxygenates and lead scavengers and other VOCs were non-detectable at standard limits of detection.

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? Yes

Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? Yes

Does corrective action protect public health for current land use? Alameda County Environmental Health staff does not make specific determinations concerning public health risk. However, based upon the information available in our files to date, it does not appear that the release would present a risk to human health based upon current land use and conditions.

Site Management Requirements:

This fuel leak case has been evaluated for closure consistent with the State Water Resources Control Board Low-Threat Underground Storage Tank Closure Policy (LTCP). Based on this evaluation, no site management requirements appear to be necessary. However, excavation or construction activities in areas of residual contamination require planning and implementation of appropriate health and safety procedures by the responsible party prior to and during excavation and construction activities.

Should corrective action be reviewed if land use changes? No

Was a deed restriction or deed notification filed? No		Date Recorded:	
Monitoring Wells Decommissioned: No Number Decommissioned: 4		Number Retained: 3	
List Enforcement Actions Taken: None			
List Enforcement Actions Rescinded:			

V. ADDITIONAL COMMENTS, DATA, ETC.

Considerations and/or Variances:

The site meets the general criteria for case closure under the LTCP.

The site does not appear to meet scenarios 1, 2, 3, or 4 of the groundwater media-specific criteria for closure under the LTCP because the closest groundwater supply well is at an approximate distance of 155 feet downgradient of the site.

However, ACEH believes case closure is appropriate based on an analysis of site-specific conditions:

- 1. The plume is stable or decreasing in size.
- The plume is less than 250 feet in length.
- There is no free product.
- 4. The dissolved concentration of benzene is less than 1,000 ppb.
- 5. The dissolved concentration of MTBE is less than 1,000 ppb.
- 6. Based on the age of the plume, site hydrogeology, and apparent stability of the plume, the potential for the plume to pose a threat to the residential use of groundwater for irrigation purposes appears to be low.

The site appears to meet scenario 3 of the numerical media-specific criteria in the LTCP for petroleum vapor intrusion to indoor air (with a bioattenuation zone) for the following reasons:

- 1. No oxygen data is available, so the site is not considered to have a bioattenuation zone under the LTCP.
- 2. TPH appears to be less than 100 ppm within the upper five feet of soil.
- 3. The concentration of benzene detected in soil vapor is less than 100 micrograms per cubic meter ($\mu g/m^3$) which is less than the commercial LTCP soil gas criteria of 280 $\mu g/m^3$ (without a bioattenuation zone), but above the residential LTCP soil gas criteria of 85 $\mu g/m^3$.
- 4. The concentration of ethylbenzene in soil vapor is less than 8.8 micrograms per cubic meter (μg/m³), which is significantly less than the residential and commercial LTCP soil gas criteria of <1,100 μg/m³ and 3,600 μg/m³ (without a bioattenuation zone).</p>
- 5. Naphthalene was not an analyte in soil vapor samples. However, since the release at the site consisted primarily of gasoline and benzene and ethylbenzene were not detected at concentrations above commercial ESLs in soil vapor, naphthalene concentrations in soil vapor are not likely to exceed the media-specific criteria in the LTCP.
- 6. The maximum concentration of benzene in groundwater during the most recent groundwater monitoring event was <0.5 ppb.

The site appears to meet the media-specific criteria for direct contact and outdoor air exposure under the LTCP. The maximum concentrations of benzene and ethylbenzene detected in soil samples collected to date within the upper 10 feet are less than the media-specific criteria in Table 1 of the LTCP for direct contact and outdoor air exposure. Since the release at the site consisted primarily of gasoline, naphthalene concentrations are not likely to exceed the media-specific criteria in Table 1 of the LTCP.

• Disposal destination of all soil excavated during UST removal not fully reported, stockpile identified as clean was redeposited in UST excavation; disposition of contaminated stockpile was not reported.

Conclusion:

Alameda County Environmental Health staff believe that the site meets the conditions for case closure under the State Water Resources Control Board Low-Threat Underground Storage Tank Closure Policy. Based upon the information available in our files to date, no further investigation or cleanup for the fuel leak case is necessary at this time.

VI. LOCAL AGENCY REPRESENTATIVE DATA

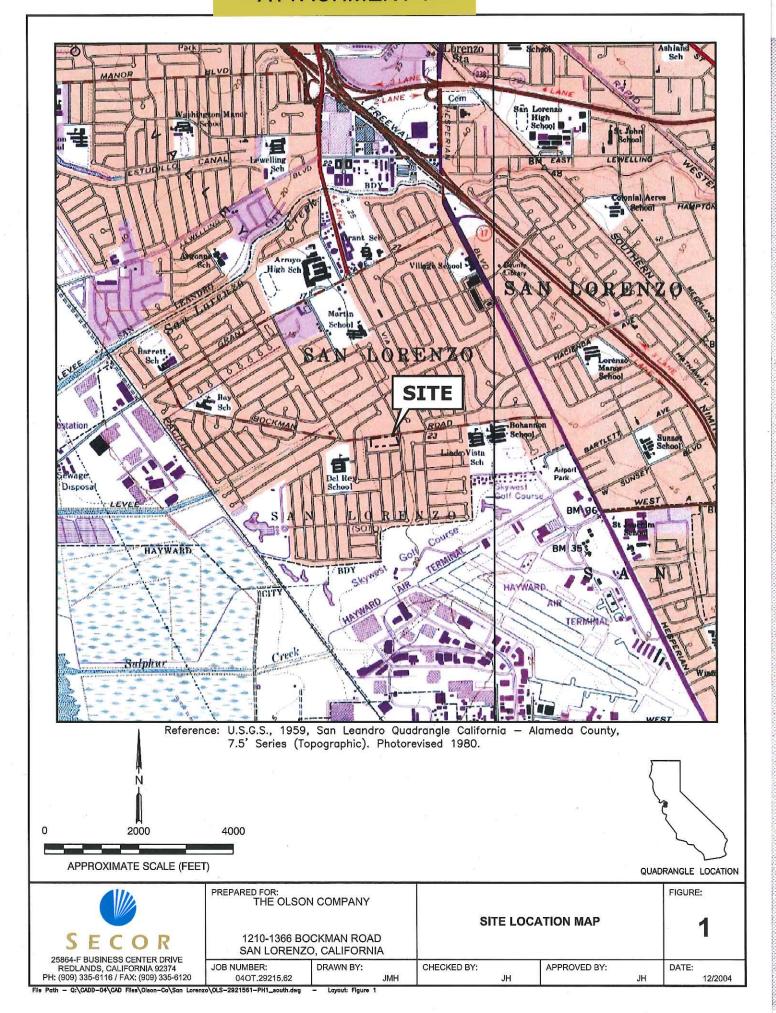
Prepared by: Mark Detterman	Title: Senior Hazardous Materials Specialist
Signature:	Date: 9/25/2013
Approved by: Donna L. Drogos, P.E.	Title: Division Chief
Signature: Lamber Signature:	Date: 09/25/13

This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions.

VII. REGIONAL BOARD NOTIFICATION

Regional Board Staff Name: Cherie McCaulou	Title: Engineering Geologist
Notification Date: October 17, 2011	

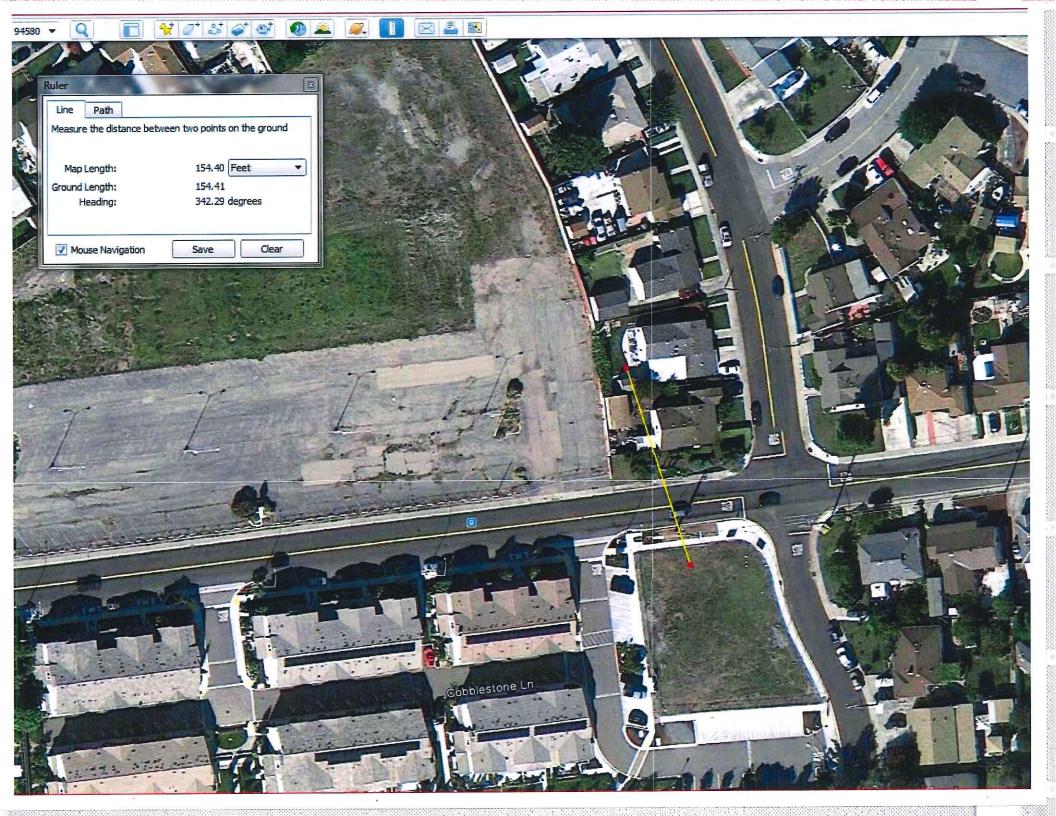
VIII. MONITORING WELL DECOMMISSIONING

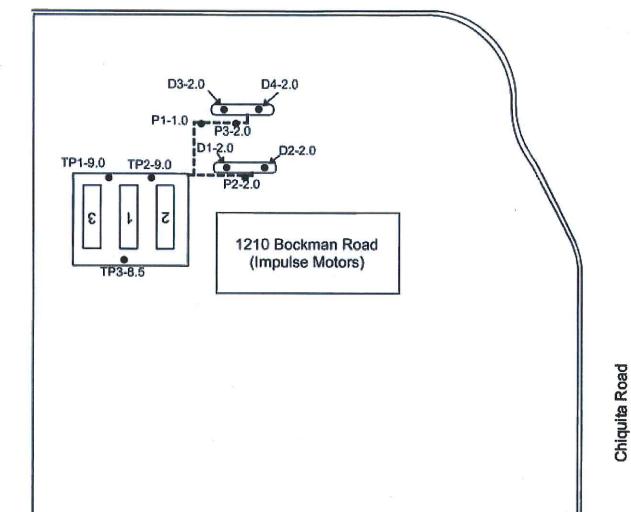

Date Requested by ACEH: December 17, 2012	uested by ACEH: December 17, 2012 Date of Well Decommissioning Report: June 3, 2013				
All Monitoring Wells Decommissioned: Yes Number Decommissioned: 3 Number Retained: 0					
Reason Wells Retained: Not Applicable					
Additional requirements for submittal of groundwater data from retained wells: Not Applicable					
ACEH Concurrence - Signature:	200	Date: 9 25 2013			

Attachments:

- Site Vicinity Map (4 pp)
- 2. Site Plans (6 pp)
- 3. Soil Analytical Data (29 pp)
- Groundwater Analytical Data (11 pp)
- Soil Vapor Analytical Data (2 pp)
- 6. Boring Logs (21 pp)

This document and the related CASE CLOSURE LETTER & REMEDIAL ACTION COMPLETION CERTIFICATE shall be retained by the lead agency as part of the official site file.


ATTACHMENT 1


Impulse Motors 1210 Bockman Road, San Lorenzo, CA 94580

ATTACHMENT 2

Bockman Road



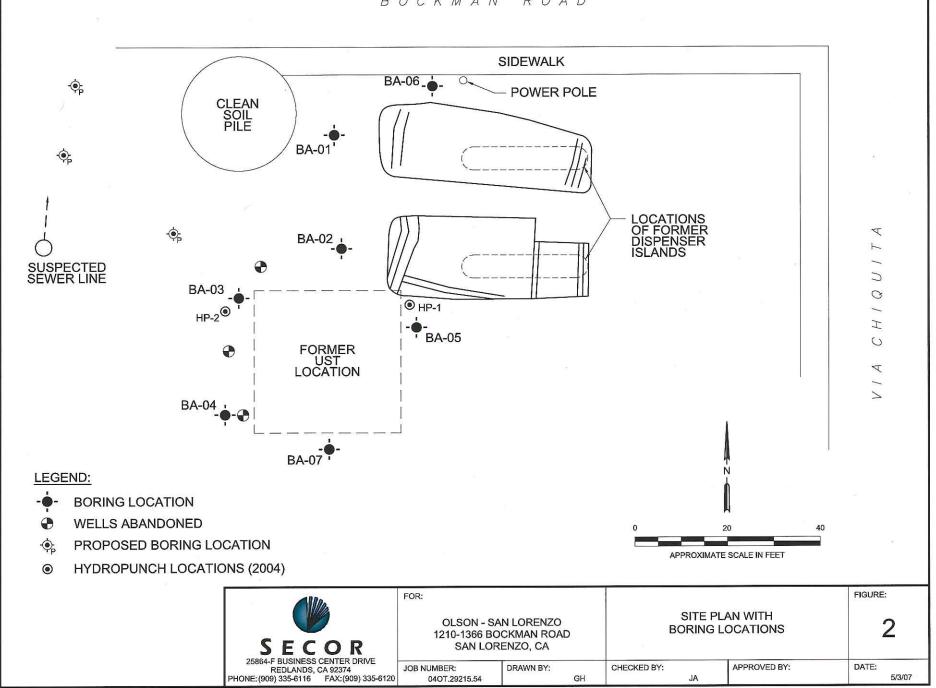
Title: Site Plan 1210 Bockman Road Hayward, California

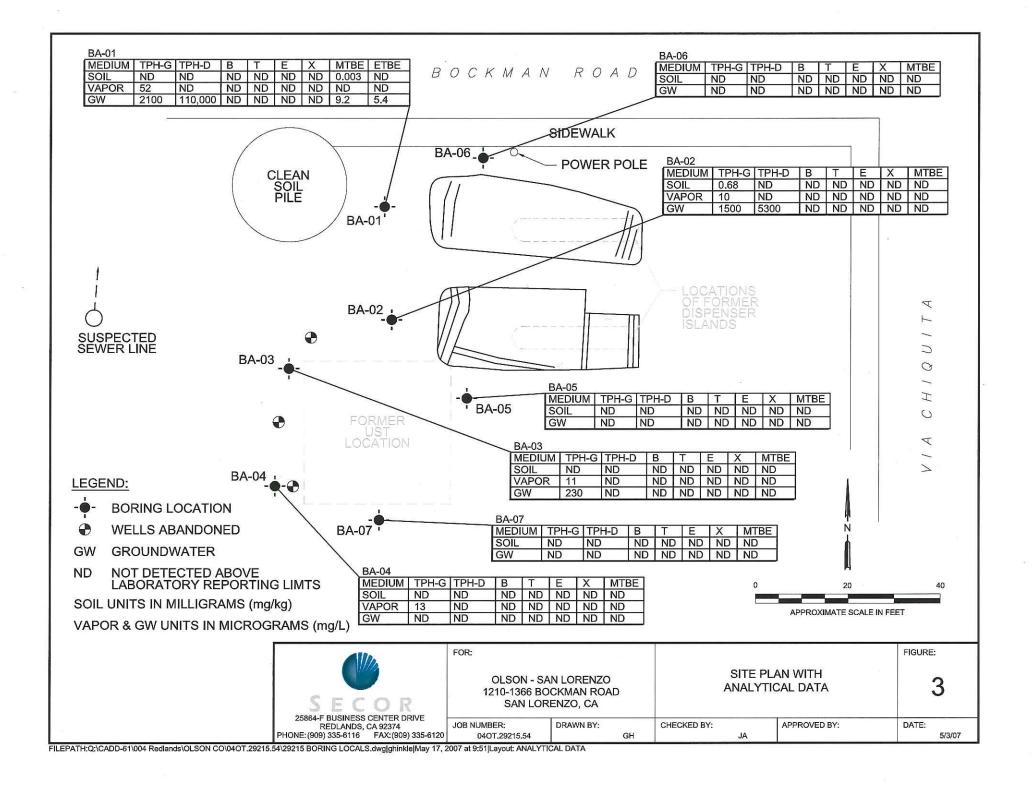
Legend

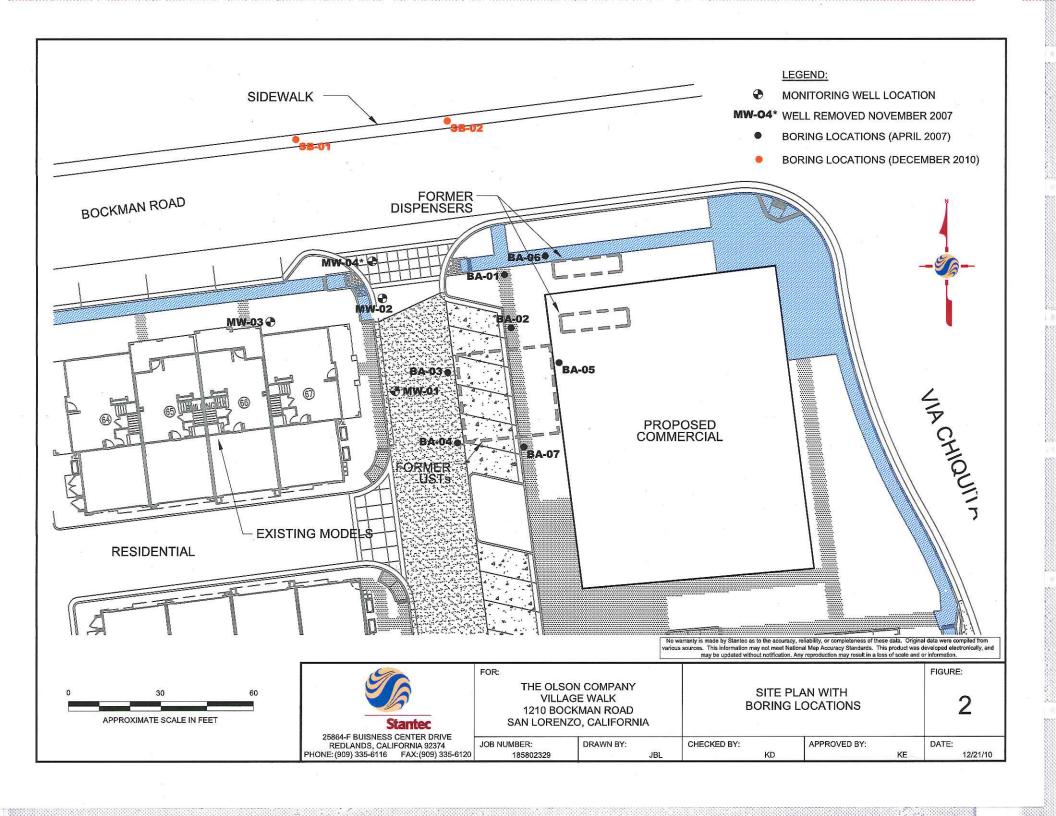
P1-1.0 • - Soil Sample Locations

- Piping Locations

BOCKMAN ROAD SIDEWALK POWER POLE N-1-5 CLEAN SOIL PILE N-2-5 B-1 CLEAN SOIL PILE (CS-5) S-1-5 S-2-5 E-1-5 N-3-5 N-4-5 SUSPECTED GROUNDWATER MONITORING WELLS ₹ E-2-5 \subset G S-3-5 \mathcal{I} S IMPACTED SOIL PILE (CS-1,2,3) APPROXIMATE SCALE IN FEET FOR: FIGURE: SITE PLAN SHOWING OLSON - SAN LORENZO 1210-1366 BOCKMAN ROAD SAMPLE LOCATIONS SECOR 25864F BUSINESS CENTER DRIVE REDLANDS, CA 92374 PHONE: (909) 335-6116 FAX: (909) 335-6120 SAN LORENZO, CA JOB NUMBER: CHECKED BY: DRAWN BY: APPROVED BY: DATE:


04OT.29215.54


GH


JΑ

12/21/06

BOCKMAN ROAD

ATTACHMENT 3

Submission #: 2004-04-0932

Total Lead

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Sulte 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00

1210 Bockman Rd

Received: 04/29/2004 18:50

D1-2.0

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Lead	8.2	1.0	mg/Kg	1.00	05/03/2004 20:02	

Total Lead

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00

1210 Bockman Rd

Received: 04/29/2004 18:50

D2-2.0

till på i det til til te som i til	State of the state

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Lead	5.9	1.0	mg/Kg	1.00	05/03/2004 20:29	

Total Lead

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00

1210 Bockman Rd

Received: 04/29/2004 18:50

D3-2.0

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Lead	11	1.0	mg/Kg	1.00	05/03/2004 20:32	

Total Lead

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00

1210 Bockman Rd

Received: 04/29/2004 18:50

D4-2.0

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Lead	7.9	1.0	mg/Kg	1.00	05/03/2004 20:36	

Total Lead

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100 Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00

1210 Bockman Rd

Received: 04/29/2004 18:50

P2-2.0

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Lead	5.7	1.0	mg/Kg	3		

Total Lead

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00

1210 Bockman Rd

Received: 04/29/2004 18:50

P3-2.0

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Lead	6.5	1.0	mg/Kg	1.00	05/03/2004 20:43	

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00

1210 Bockman Rd

Received: 04/29/2004 18:50

P2-20

Maria January and Maria	promote the following of the first of the	 10000000	PORTERIO WAS DELIVED TO THE PROPERTY OF	
Company of the Compan				
and the same of the same of the				
COVE TO STATE OF THE PARTY OF T				

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	ND	1000	ug/Kg	1.00	05/11/2004 12:01	
tert-Butyl alcohol (TBA)	ND	10	ug/Kg	· 1.00		
Methyl tert-butyl ether (MTBE)	ND	5.0	ug/Kg	1.00		
Di-isopropyl Ether (DIPE)	ND	10	ug/Kg	1.00	05/11/2004 12:01	
Ethyl tert-butyl ether (ETBE)	ND	5.0	ug/Kg	1.00		
tert-Amyl methyl ether (TAME)	ND	5.0	ug/Kg	1.00	[전문][전문] [전문][전문][전문] - 20 - 1000-100700.000	
Benzene	ND	5.0	ug/Kg	1.00		
Toluene	ND	5.0	ug/Kg	1.00	electronic (ii) reconstruction to reconstruction.	
Ethyl benzene	ND	5.0	ug/Kg	1.00	05/11/2004 12:01	
Total xylenes	ND	5.0	ug/Kg	1.00		
Surrogate(s)					307 1 12 10 1	
1,2-Dichloroethane-d4	82.2	70-121	%	1.00	05/11/2004 12:01	
Toluene-d8	93.7	81-117	%	1.00	05/11/2004 12:01	

Gas/BTEXFuel Oxygenates by 8260B (High Level)

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00

1210 Bockman Rd

Received: 04/29/2004 18:50

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	3600000	250000	ug/Kg	5.00	05/10/2004 14:57	
Benzene	3300	2500	ug/Kg	5.00	05/10/2004 14:57	
Toluene	30000	2500	ug/Kg	5.00	05/10/2004 14:57	
Ethyl benzene	33000	2500	ug/Kg	5.00	05/10/2004 14:57	
Total xylenes	180000	2500	ug/Kg	5.00	05/10/2004 14:57	
tert-Butyl alcohol (TBA)	ND	13000	ug/Kg	5.00	05/10/2004 14:57	
Methyl tert-butyl ether (MTBE)	ND	2500	ug/Kg		05/10/2004 14:57	
Di-isopropyl Ether (DIPE)	ND	5000	ug/Kg		05/10/2004 14:57	
Ethyl tert-butyl ether (ETBE)	ND	2500	ug/Kg	5.00	05/10/2004 14:57	
tert-Amyl methyl ether (TAME) Surrogate(s)	ND	2500	ug/Kg	5.00	05/10/2004 14:57	
1,2-Dichloroethane-d4	NA	70-121	%	5.00	01/01/1900	sd
Toluene-d8	NA	81-117	%	5.00	01/01/1900	sd

Gas/BTEXFuel Oxygenates by 8260B (High Level)

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00

1210 Bockman Rd

Received: 04/29/2004 18:50

D2-2.0

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	730000	50000	ug/Kg	1.00	05/10/2004 13:27	W
Benzene	ND	500	ug/Kg	1.00	05/10/2004 13:27	
Toluene	1600	500	ug/Kg	1.00	05/10/2004 13:27	
Ethyl benzene	7200	500	ug/Kg	1.00	05/10/2004 13:27	
Total xylenes	59000	500	ug/Kg	1.00	05/10/2004 13:27	
tert-Butyl alcohol (TBA)	ND	2500	ug/Kg	1.00	05/10/2004 13:27	
Methyl tert-butyl ether (MTBE)	ND	500	ug/Kg	1.00	05/10/2004 13:27	
Di-isopropyl Ether (DIPE)	ND	1000	ug/Kg	1.00	05/10/2004 13:27	
Ethyl tert-butyl ether (ETBE)	ND	500	ug/Kg	1.00	05/10/2004 13:27	
tert-Amyl methyl ether (TAME)	ND	500	ug/Kg	1.00	05/10/2004 13:27	
Surrogate(s)						
1,2-Dichloroethane-d4	81.4	70-121	%	1.00	05/10/2004 13:27	
Toluene-d8	94.3	81-117	%	1.00	05/10/2004 13:27	

Gas/BTEXFuel Oxygenates by 8260B (High Level)

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00

1210 Bockman Rd

Received: 04/29/2004 18:50

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	3200000	500000	ug/Kg	10.00	05/10/2004 18:56	
Benzene	ND	5000	ug/Kg	10.00	05/10/2004 18:56	
Toluene	ND	5000	ug/Kg	10.00	05/10/2004 18:56	
Ethyl benzene	24000	5000	ug/Kg	10.00	05/10/2004 18:56	
Total xylenes	140000	5000	ug/Kg	10.00	05/10/2004 18:56	
tert-Butyl alcohol (TBA)	ND	25000	ug/Kg	10.00	05/10/2004 18:56	
Methyl tert-butyl ether (MTBE)	ND	5000	ug/Kg	10.00	05/10/2004 18:56	
Di-isopropyl Ether (DIPE)	ND	10000	ug/Kg	10.00	05/10/2004 18:56	
Ethyl tert-butyl ether (ETBE)	ND	5000	ug/Kg	7-20-100-100-100-1	05/10/2004 18:56	
tert-Amyl methyl ether (TAME) Surrogate(s)	ND	5000	ug/Kg		05/10/2004 18:56	
1,2-Dichloroethane-d4	NA	70-121	%	10.00	05/10/2004 18:56	sd
Toluene-d8	NA	81-117	%		05/10/2004 18:56	sd

Gas/BTEXFuel Oxygenates by 8260B (High Level)

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00

1210 Bockman Rd

D4-2.0

Received: 04/29/2004 18:50

1774		Were the	
10 m 14 m 14 m	ive some elegation		

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	5900000	500000	ug/Kg	10.00	05/10/2004 15:33	
Benzene	ND	5000	ug/Kg	10.00	05/10/2004 15:33	
Toluene	ND	5000	ug/Kg	10.00	05/10/2004 15:33	
Ethyl benzene	37000	5000	ug/Kg	10.00	05/10/2004 15:33	
Total xylenes	290000	5000	ug/Kg	10.00	05/10/2004 15:33	
tert-Butyl alcohol (TBA)	ND	25000	ug/Kg	10.00	05/10/2004 15:33	
Methyl tert-butyl ether (MTBE)	ND	5000	ug/Kg	10.00	05/10/2004 15:33	
Di-isopropyl Ether (DIPE)	ND	10000	ug/Kg	10.00	05/10/2004 15:33	
Ethyl tert-butyl ether (ETBE)	ND	5000	ug/Kg	10.00	05/10/2004 15:33	
tert-Amyl methyl ether (TAME)	ND	5000	ug/Kg	10.00	05/10/2004 15:33	
Surrogate(s)						
1,2-Dichloroethane-d4	NA	70-121	%	10.00	05/10/2004 15:33	sd
Toluene-d8	NA	81-117	%	10.00	05/10/2004 15:33	sd

Gas/BTEXFuel Oxygenates by 8260B (High Level)

ACC Environmental Consultants

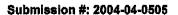
Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 6546-006.00


1210 Bockman Rd

Received: 04/29/2004 18:50

P3-2.0

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	690000	50000	ug/Kg	1.00	05/11/2004 12:19	
Benzene	8500	500	ug/Kg	1.00	05/11/2004 12:19	
Toluene	9200	500	ug/Kg	1.00	05/11/2004 12:19	
Ethyl benzene	3300	500	ug/Kg	1.00	05/11/2004 12:19	
Total xylenes	18000	500	ug/Kg	1.00	05/11/2004 12:19	
tert-Butyl alcohol (TBA)	ND	2500	ug/Kg	1.00	05/11/2004 12:19	
Methyl tert-butyl ether (MTBE)	ND	500	ug/Kg	1.00		
Di-isopropyl Ether (DIPE)	ND	1000	ug/Kg	1.00	05/11/2004 12:19	
Ethyl tert-butyl ether (ETBE)	ND	500	ug/Kg	1.00	05/11/2004 12:19	
tert-Amyl methyl ether (TAME) Surrogate(s)	ND	500	ug/Kg	1.00	05/11/2004 12:19	
1,2-Dichloroethane-d4	2.7	70-121	%	1.00	05/11/2004 12:19	sl
Toluene-d8	3.2	81-117	%	1.00		si

ACC Environmental Consultants

Attn.: Ed Glacometti

7977 Capwell Drive, Suite 100

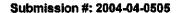
Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 1210 Bockman Road

Received: 04/15/2004 17:15

 Prep(s):
 5030B
 Test(s):
 5260B


 Sample ID:
 TPT-9.0
 Lab ID:
 2004-04-0505-1

 Sampled:
 04/14/2004-13:45
 Extracted:
 4/20/2004-10:33

mpled: 04/14/2004 13:45 Extracted: 4/20/2004 10:33

Mattix: Soil QC Batch#: 2004/04/20-01.69

Compound	Conc.	RL.	Unit	Dilution	Analyzed	Flag
Gasoline	ND	1000	ug/Kg	1.00	04/20/2004 10:33	
tert-Butyl alcohol (TBA)	ND	10	ug/Kg	1.00	04/20/2004 10:33	
Methyl tert-butyl ether (MTBE)	ND	5.0	ug/Kg	1.00	04/20/2004 10:33	
Di-isopropyl Ether (DIPE)	ND	10	ug/Kg	1.00	04/20/2004 10:33	
Ethyl tert-butyl ether (ETBE)	ND	5.0	ug/Kg	1.00	04/20/2004 10:33	
tert-Amyl methyl ether (TAME)	ND	5.0	ug/Kg	1.00	04/20/2004 10:33	
1,2-DCA	ND	5.0	ug/Kg	1.00	04/20/2004 10:33	
EDB	ND	5.0	ug/Kg	1.00	04/20/2004 10:33	
Benzene	ND	5.0	ug/Kg	1.00	04/20/2004 10:33	
Toluene	ND	5.0	ug/Kg	1.00	04/20/2004 10:33	
Ethyl benzene	ND	5.0	ug/Kg	1.00	04/20/2004 10:33	
Total xylenes	ND	5.0	ug/Kg	1.00	04/20/2004 10:33	
Surrogate(s)						
1,2-Dichloroethane-d4	85.2	70-121	%	1.00	04/20/2004 10:33	
Toluene-d8	95.5	81-117	%	1.00	04/20/2004 10:33	

ACC Environmental Consultants

Attn.: Ed Giacometti

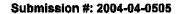
7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 1210 Bockman Road

Received: 04/15/2004 17:15


Prep(s): 5030B Test(s): 8260B

Sample ID: TR2-9:0 Lab ID: 2004-04-0505 - 2

Sampled: 04/14/2004 14:40 Extracted: 4/20/2004 11:28

Matrix: Soil QC Batch#: 2004/04/20-01.69

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	ND	1000	ug/Kg	1.00	04/20/2004 11:28	
tert-Butyl alcohol (TBA)	18 ⊬	10	ug/Kg	1.00	04/20/2004 11:28	
Methyl tert-butyl ether (MTBE)	ND	5.0	ug/Kg	1.00	04/20/2004 11:28	
Di-isopropyl Ether (DIPE)	ND	10	ug/Kg	1.00	04/20/2004 11:28	
Ethyl tert-butyl ether (ETBE)	ND	5.0	ug/Kg	1.00	04/20/2004 11:28	
tert-Amyl methyl ether (TAME)	ND	5.0	ug/Kg	1.00	04/20/2004 11:28	
1,2-DCA	ND	5.0	ug/Kg	1.00	04/20/2004 11:28	
EDB	ND	5.0	ug/Kg	1.00	04/20/2004 11:28	
Benzene	ND	5.0	ug/Kg	1.00	04/20/2004 11:28	
Toluene	ND	5.0	ug/Kg	1.00	04/20/2004 11:28	
Ethyl benzene	ND	5.0	ug/Kg	1.00	04/20/2004 11:28	
Total xylenes	ND	5.0	ug/Kg	1.00	04/20/2004 11:28	
Surrogate(s)						
1,2-Dichloroethane-d4	84.2	70-121	%	1.00	04/20/2004 11:28	
Toluene-d8	94.0	81-117	%	1.00	04/20/2004 11:28	

ACC Environmental Consultants

Attn.: Ed Giacometti

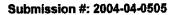
7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 638-8404

Project: 1210 Bockman Road

Received: 04/15/2004 17:15


 Prep(s):
 5636B
 Test(s):
 8260B

 Sample ID:
 TP3-8.5
 Lab ID:
 2004-04-0508 - 3

 Sampled:
 04/14/2004 14:45
 Extracted:
 4/20/2004 11:46

 Matrix:
 Spil
 OC Batch#:
 2004/04/20-01-69

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	ND	1000	ug/Kg	1.00	04/20/2004 11:46	
tert-Butyl alcohol (TBA)	ND	10	ug/Kg	1.00	04/20/2004 11:46	
Methyl tert-butyl ether (MTBE)	ND	5.0	ug/Kg	1.00	04/20/2004 11:46	
Di-isopropyl Ether (DIPE)	ND	10	ug/Kg	1.00	04/20/2004 11:46	
Ethyl tert-butyl ether (ETBE)	ND	5.0	ug/Kg	1.00	04/20/2004 11:46	
tert-Amyl methyl ether (TAME)	ND	5.0	ug/Kg	1,00	04/20/2004 11:46	
1,2-DCA	ND	5.0	ug/Kg	1.00	04/20/2004 11:46	
EDB	ND ·	5.0	ug/Kg	1.00	04/20/2004 11:46	
Benzene	ND	5.0	ug/Kg	1.00	04/20/2004 11:46	
Toluene	ND	5.0	ug/Kg	1.00	04/20/2004 11:46	
Ethyl benzene	ND	5.0	ug/Kg	1.00	04/20/2004 11:46	
Total xylenes	ND	5.0	ug/Kg	1.00	04/20/2004 11:46	
Surrogate(s)						
1,2-Dichloroethane-d4	85.5	70-121	%	1.00	04/20/2004 11:46	
Toluene-d8	91.5	81-117	%	1.00	04/20/2004 11:46	

ACC Environmental Consultants

Attn.: Ed Giacometti

7977 Capwell Drive, Suite 100

Oakland, CA 94621

Phone: (510) 638-8400 Fax: (510) 636-8404

Project: 1210 Bockman Road

Received: 04/15/2004 17:15

Prep(s):	5030B	Tes(6): 8260B
Sample ID:	P1:40	Lab (D: 2004-04-0505 - 4
Sampled	04/14/2004 15:30	Extracted: 4/20/2004 12:04
Matrix:	Soil	QC Batch#: 2004/04/20-01.69

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	ND	1000	ug/Kg	1.00	04/20/2004 12:04	
tert-Butyl alcohol (TBA)	ND	10	ug/Kg	1.00	04/20/2004 12:04	
Methyl tert-butyl ether (MTBE)	ND	5.0	ug/Kg	1.00	04/20/2004 12:04	
Di-isopropyl Ether (DIPE)	ND	10	ug/Kg	1.00	04/20/2004 12:04	
Ethyl tert-butyl ether (ETBE)	ND	5.0	ug/Kg	1.00	04/20/2004 12:04	
tert-Amyl methyl ether (TAME)	ND	5.0	ug/Kg	1.00	04/20/2004 12:04	
1,2-DCA	ND	5.0	ug/Kg	1.00	04/20/2004 12:04	
EDB	ND	5.0	ug/Kg	1.00	04/20/2004 12:04	
Benzene	ND	5.0	ug/Kg	1.00	04/20/2004 12:04	
Toluene	ND	5.0	ug/Kg	1.00	04/20/2004 12:04	
Ethyl benzene	ND	5.0	ug/Kg	1.00	04/20/2004 12:04	
Total xylenes	ND	5.0	ug/Kg	1.00	04/20/2004 12:04	
Surrogate(s)						
1,2-Dichloroethane-d4	89.0	70-121	%	1.00	04/20/2004 12:04	
Toluene-d8	88.3	81-117	%	1.00	04/20/2004 12:04	

Table 1
Summary of Chemical Analysis of Soil Samples Collected from Soil Borings SB-4 and SB-5, EPA Test Methods 8260B and 8015M

Lecation	Depth (ft)	Date	Gasoline	Benzene	n-Butylbenzene	tert-Butylbenzene	Ethylbenzene	Isopropylbenzene	p-IsopropyItoluene	Methyl-tert-butyl ether (MtBE)	Naphthalene	n-Propylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Xylenes, m., p.	Xylenes, o-
SB-4	2	11/3/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-4	5	11/3/2003	4,9	0.003	0.050	0.002	0.007	0.030	0.004	0.11	0.088	0.11	0.024	0.002	0.005	ND
SB-5	2	11/3/2003	ND	ND	ND	ND	0.002	ND	ND	ND	ND	ND	ND	ND	0.009	0.003
SB-5	5	11/3/2003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Rep	porting Limit	mg/Kg	0.50	0.001	0.002	0.002	0.001	0.001	0.002	0.005	0.002	0.001	0.001	0.001	0.002	0.001

*Only VOCs detected in one or more sample are included in this table. All other VOCs were not detected above laboratory reporting limits in any of the samples.

Table 1 (Continued)

Summary of Chemical Analysis of Select Soil Samples Collected from Soil Borings SB-2 and SB-7, EPA Test

Methods GCMS and GC/FID

Location	Depth (ft)	Date	Carbon Chain C6-C12	Garbon Chain C12-C2	Carbon Chain C22-C4
SB-2	2	12/15/2004	ND	ND	ND
SB-2	5	12/15/2004	ND	ND	ND
SB-7	2	12/15/2004	ND	ND	ND
SB-7	8	12/15/2004	ND	ND	ND
CRWQCB Maxir	num Soil Screeni	ng Levels mg/Kg	100	100	1,000
Re	eporting Limit mg/	Kg	0.50	10	10

Table 1 (Continued)
Summary of Chemical Analysis of Select Soil Samples Collected from Soil Borings SP-1 through SB-3, EPA Test Methods 8081

Location	Depth (ff)	Date	Aldrin	Alpha-BHC	Beta-BHC	Delta-BHC	Gamma-BHC (Lindane)	Chlordane	4,4'-DDD	4,4'-DDE	4,4'-DDT	Dieldrin	Endosulfan I	Endosulfan II	Endrin	Wethoxychlor
SP-1	0.5	12/16/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SP-2	0.5	12/16/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SP-3	0.5	12/16/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Repo	rting Limit	μg/Kg	10	10	10	10	10	100	20	20	20	20	10	20	20	100

Table 1 (Continued)

Summary of Chemical Analysis of Select Soil Samples Collected from Soil Boring SB-7 by EPA Test

Method 8082

Repo	rting Limit	μg/Kg	50	50	50	50	50	50	50
SB-7	8	12/15/2004	ND	ND	ND ·	ND	ND	ND	ND
Location	Depth (ft)	Date	Arochlor 1016 (PCB)	Arochlor 1221 (PCB)	Arochlor 1232 (PCB)	Arochior 1242 (PCB)	Arochlor 1248 (PCB)	Arochior 1254 (PCB)	Arochlor 1260 (PCB)

Table 1 Summary of Soil Analytical Results Olson - San Lorenzo 1245 - 1415 Bockman Road San Lorenzo, California SECOR Job No.: 040T.29215.67

	Sample ID	Sampling Depth ⁽¹⁾	Sampling Date		H ⁽²⁾ 15) ⁽³⁾ C13-C22 ⁽⁵⁾
	USEPA PRG (mg/Kg))		100°	100 ⁸
- 23-112	N-1 - 5	5	12/20/2006	<0.02	<10
	N-2-5	5	12/20/2006	<0.02	<10
Everyntian 1	S-1-5	5,	12/20/2006	<0.02	<10
Excavation 1	S-2-5	5	12/20/2006	<0.02	<10
(North)	E-1-5	5	12/20/2006	<0.02	<10
	W-1-5	5	12/20/2006	<0.02	<10
	B-1	10	12/20/2006	120	13
	N-3-5	5	12/20/2006	<0.02	<10
	N-4-5	5	12/20/2006	<0.02	<10
Excavation 2	S-3-5	5	12/20/2006	<0.02	<10
	S-4-5	5	12/20/2006	0.78	19
(South)	E-2-5	5	12/20/2006	<0.02	<10
	W-2-5	5	12/20/2006	manuscript of the second secon	23
	B-2	10	12/20/2006	2.7	<10
,	CS-1	Composite	12/20/2006	4.4	<10
Impacted Soil	CS-2	Composite	12/20/2006		14
	CS-3	Composite	12/20/2006	47	<10
Ciona Scil	CS-4	Composite			21
Clean Soil	CS-5	Composite	12/20/2006	<0.02	<10

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in mg/Kg
- (3) EPA Test Method
- (4) Characteristic carbon chain of Gasoline
- (5) Characteristic carbon chain of Diesel
- a Maximum Soil Screening Levels in mg/Kg; soil located <20 feet above groundwater;
 Source: Cal/EPA CRWQCB-LA Interim Site Assessment & Cleanup Guidebook, 1!
- Indicates the concentration was not detected about the laboratory method detection limit.
 Only samples analyzed which reported detections were included on the table.

ABBREVIATIONS:

TPH - Total petroleum hydrocarbons

JSEPA PRG - United States Environmental Protection Agency Preliminary Remediation Goals

Table-2 Summary of Soil Analytical Results Olson - San Lorenzo 1245 - 1415 Bockman Road San Lorenzo, California SECOR Job No.: 040T.29215.67

i	Š							300 110 070	
·		Sampling	Sampling			VOCs (8260) ⁶			
	Sample ID	Depth (1)	Date	Methyl-tert-butyl ether (MtBE)	tert-Butanol (TBA)	Benzene	Ethylbenzene	Toluene	Total Xylenes
	USEPA PRG for Res	idential Soils(r	ng/Kg)	62		0.6	8.9	5200	2700
	Samples								
	N-1-5	5	12/20/2006	<0.01	<0.02	<0.005	<0.005	<0.001	<0.003
	N-2-5	5	12/20/2006	<0.01	· <0.02	<0.005	<0.005	<0.001	<0.003
Excavation 1	S-1-5	5	12/20/2006	0.015	0.057	<0.005	<0.005	<0.001	<0,003
	S-2-5	5	12/20/2006	0.002	<0.02	<0.005	<0.005	<0.001	<0.003
(North)	E-1-5	5	12/20/2006	<0.01	<0.02	<0.005	<0.005	<0.001	<0.003
	W-1-5	5	12/20/2006	<0.01	<0.02	<0.005	<0.005	<0.001	<0.003
	B-1	10	12/20/2006	0.4	<0.02	<0,005	0.15	<0.001	<0.003
	N-3-5	5	12/20/2006	<0.01	<0.02	<0.005	<0.005	<0,001	<0.003
	N-4-5	5	12/20/2006	0.015	0.028	<0.005	<0.005	<0.001	< 0.003
Excavation 2	S-3-5	5	12/20/2006	<0.01	<0.02	<0.005	<0,005	<0.001	<0.003
	S-4-5	5	12/20/2006	< 0.01	<0.02	<0.005	<0.005	<0.001	<0.003
(South)	E-2-5	5	12/20/2006	<0.01	<0.02	<0,005	<0,005	<0.001	<0.003
	W-2-5	5	12/20/2006	<0.01	<0.02	<0,005	<0.005	<0,001	<0,003
	B-2	10	12/20/2006	0.003	<0.02	<0.005	0.003	<0.001	<0.003
Imported	CS-1	Composite	12/20/2006	0.005	<0.02	<0.005	0.053	0.002	0.29
Impacted Soil	CS-2	Composite	12/20/2006	<0.01	<0.02	<0.005	0.023	<0.001	0.74
3011	CS-3	Composite	12/20/2006	<0.01	<0.02	<0.005	0.18	<0.001	0.27
Clean Soil	CS-4	Composite	12/20/2006	<0.01	<0.02	<0.005	<0.005	0.004	0.005
Ciean Sui	CS-5	Composite	12/20/2006	<0.01	<0.02	<0.005	<0.005	0.002	0.003

NOTES:

- (1) Sample depth is reported as feet below ground surface (2) Concentrations reported in mg/Kg (3) EPA Test Method

- < Indicates the concentration was not detected above the laboratory method detection limit.

ABBREVIATIONS:

VOCs - volatile organic compounds

SEPA PRG - United States Environmental Protection Agency Preliminary Remediation Goals

Table 3 Summary of Soil Analytical Results Olson - San Lorenzo 1245 - 1415 Bockman Road San Lorenzo, California

SECOR Job No.: 04OT.29215.67

·	Sample ID	Sampling Depth ⁽¹⁾	Sampling Date	Lead by 6010
	USEPA PRG (mg/Kg)			150
	Samples			
	N-1-5	5	12/20/2006	4.06
	N-2-5	5	12/20/2006	3.97
Evenuetion 1	S-1-5	5	12/20/2006	4.27
Excavation 1	S-2-5	5	12/20/2006	4.10
(North)	E-1-5	5	12/20/2006	4.03
	W-1-5	5	12/20/2006	3.88
	B-1	10	12/20/2006	6.34
	N-3-5	5	12/20/2006	4.36
	N-4-5	5	12/20/2006	3.47
	S-3-5	5	12/20/2006	4.08
Excavation 1	S-4-5	5	12/20/2006	16.5
(South)	E-2-5	5	12/20/2006	3.89
	W-2-5	5	12/20/2006	4.24
<u> </u>	B-2	10	12/20/2006	3.86
Olean Cail	CS-4	Composite	12/20/2006	5.84
Clean Soil	CS-5	Composite	12/20/2006	4.82

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in mg/Kg
- (3) EPA Test Method
- < Indicates the concentration was not detected about the laboratory method detection lir ABBREVIATIONS:

SEPA PRG - United States Environmental Protection Agency Preliminary Remediation G
Pb - Lead

Table 1
Summary of Soil Analytical Results
TPH by modified EPA 8015B (mg/Kg)
Olson - San Lorenzo
1210 Bockman Road
San Lorenzo, California
SECOR Joh No. 040T 29215 68

			OLOC	71 000 NO O	401.29210.00						
Sample ID	Sampling Depth ⁽¹⁾	Depth ⁽¹⁾ Date		TPH ⁽²⁾ (8015) ⁽³⁾ C4-C12 ⁽⁴⁾ C12-C22 ⁽⁶⁾ C22-C4							
RWQCB MCL (mg/Kg	9)		100ª	100ª	1000ª						
BA-01-5	5	4/26/2007	<0.5	<10	<20						
BA-02-7	7	4/26/2007	0.68	<10	<20						
BA-03-7	7	4/26/2007	<0.5	<10	<20						
BA-04-7	7	4/26/2007	<0.5	<10	<20						
BA-05-8	8	4/27/2007	<0.5	<10	<20						
BA-06-7	7	4/27/2007	<0.5	<10	<20						
BA-07-7	7	4/27/2007	<0.5	<10	<20						

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in mg/Kg
- (3) EPA Test Method
- (4) Characteristic carbon chain of Gasoline
- (5) Characteristic carbon chain of Diesel
- (6) Characteristic carbon chain of Oil
- a Maximum Soil Screening Levels in mg/Kg; soil located <20 feet above groundwater;
 Source: Cal/EPA CRWQCB-LA Interim Site Assessment & Cleanup Guidebook, 1996.
- < Indicates the concentration was not detected above the laboratory method detection limit.
- Only samples analyzed which reported detections were included on the table.

ABBREVIATIONS:

TPH - Total petroleum hydrocarbons

RWQCB MCL - Regional Water Quality Control Board Maximum Contaminant Level

Table 2 Summary of Soil Analytical Results VOCs by EPA 8260B (mg/Kg) Olson - San Lorenzo 1245 - 1415 Bockman Road San Lorenzo, California SECOR Job No : 040T 20215 68

											SECOR JOB	770 0701	.23219.00				
	Sampling	Sampling		VOCs ⁽²⁾ (8260) ⁽³⁾													
Sample ID	Depth (1)	Date	Methyl-tert- butyl ether (MtBE)	tert-Amyl Methyl Ether (TAME)	Diisopropyl Ether (DIPE)	Ethyl tert- Butyl Ether (EtBE)	tert- Butanol (TBA)	Benzene	Dibromoethane (EDB)	Dichloroethane (EDC)	Ethylbenzene	Toluene	Total Xylenes				
USEPA PRG for	Residential 5	Soils(mg/Kg)	62	NR	NR	NR	NR	0.6	0.007	120	8.9	5200	2700				
Samples								,									
BA-01-5	5	4/26/2007	0.003	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.005	<0.001	<0,003				
BA-02-7	7	4/26/2007	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.005	<0.001	<0.003				
BA-03-7	7	4/26/2007	<0.002	<0.002	<0.002	<0,002	<0.02	<0.005	<0.001	<0.01	<0.005	<0.001	<0.003				
BA-04-7	7	4/26/2007	<0.002	<0.002	<0.002	<0,002	<0.02	<0.005	<0,001	<0.01	<0.005	<0.001	<0.003				
BA-05-8	8	4/27/2007	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.005	<0.001	<0.003				
BA-06-7	7	4/27/2007	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.005	<0.001	<0.003				
BA-07-7	7	4/27/2007	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.005	<0.001	<0.003				

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in mg/Kg
 (3) EPA Test Method
- < Indicates the concentration was not detected above the laboratory method detection limit.

ABBREVIATIONS:

VOCs - volatile organic compounds

USEPA PRG - United States Environmental Protection Agency Preliminary Remediation Goals

NR - Not Reported

Table 3 Summary of Soil Analytical Results Total Lead By EPA 6010B (mg/Kg) Olson - San Lorenzo 1245 - 1415 Bockman Road San Lorenzo, California SECOR Job No.: 040T.29215.68

		0E001 000 No.: 040	71.20270.00
Sample ID	Sampling Depth ⁽¹⁾	Sampling Date	Lead by 6010
USEPA PRG (mg/Kg)	}		150
Typical Background C	Concentrations	in California Soils	12.4-97.1
Samples			
BA-01-5	5	4/26/2007	4.28
BA-02-7	7	4/26/2007	4.16
BA-03-7	7	4/26/2007	5.15
BA-04-7	7	4/26/2007	4.25
BA-05-8	8	4/27/2007	5.33
BA-06-7	7	4/27/2007	6.98
BA-07-7	7	4/27/2007	5.14

NOTES:

(1) Sample depth is reported as feet below ground surface

Summary of Soil Analytical Results TPH by modified EPA 8015B (mg/Kg) Olson - San Lorenzo 1210 Bockman Road San Lorenzo, California

SECOR Job No.: 040T.29215.69

		0_001	000 NO., 040	J1.29210.09
Sample ID	Sampling Depth ⁽¹⁾	Sampling Date		H ⁽²⁾ 5) ⁽³⁾ C12-C22 ⁽⁵⁾
RWQCB MCL (mg/Ko	g)		100ª	100ª
MVV-01-18	18	11/7/2007	<0.5	<10
MVV-01-20	20	11/7/2007	<0.5	<10
MVV-02-17	17	11/7/2007	<0.5	<10
MW-02-20	20	11/7/2007	2.0	<10
MW-03-13	13	11/7/2007	<0.5	<10
MW-03-20	20	11/7/2007	<0.5	<10
MW-04-13	13	11/7/2007	6.1	<10
MW-04-20	20	11/7/2007	2.9	<10

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in mg/Kg
- (3) EPA Test Method
- (4) Characteristic carbon chain of Gasoline
- (5) Characteristic carbon chain of Diesel
- a Maximum Soil Screening Levels in mg/Kg; soil located <20 feet above groundwater;
 - Source: Cal/EPA CRWQCB-LA Interim Site Assessment & Cleanup Guidebook, 1996.
- < Indicates the concentration was not detected above the laboratory method detection limit. Only samples analyzed which reported detections were included on the table.

ABBREVIATIONS:

TPH - Total petroleum hydrocarbons

RWQCB MCL - Regional Water Quality Control Board Maximum Contaminant Level

Summary of Soil Analytical Results VOCs by EPA 8260B (mg/Kg) Olson - San Lorenzo 1210 Bockman Road San Lorenzo, California SECOR Job No.: 04OT.29215.69

																	OLO	/N 30D NO	0 1 0 1 1 1	72.70.00
	Samplin										VOCs (2 (8260) ⁽³)			·					
Sample ID	g Depth		Acetone	n- Butylbenzene	sec- butylbenzene	Methyl-tert butyl ether (MtBE)	tert-Amyl Methyl Ether (TAME)	Diisopropyl Ether (DIPE)	Ethyl tert- Butyl Ether (EtBE)	tert- Butanol (TBA)	Benzene	Dibromo ethane (EDB)	1,3,5 Trimethyl benzene	1,2,4 Trimethyl benzene	Dichloro ethane (EDC)	Isopropyl benzene	n- Propylbenz ene	Ethylbenzene	Toluene	Total Xylenes
USEPA PRG for Re	esidential		1600	240	220	62	NR	NR	NR	NR	0.6	0.007	21	52	120	NR	240	8,9	5200	2700
Samples															•	•				
MW-01-18	18	11/7/2007	<0.050	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	0.001	<0.003
MW-01-20	20	11/7/2007	0.083	<0.002	<0,002	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.01	< 0.01	<0.01	<0.01	0.002	<0.001	0.011
MW-02-17	17	11/7/2007	<0.050	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	<0.001	<0.003
MW-02-20	20	11/7/2007	<0.050	0.015	0.010	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.01	<0.01	0.004	0,016	<0.005	<0.001	<0,003
MW-03-13	13	11/7/2007	<0.050	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.02	<0.005	<0.001	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.005	0.002	<0.003
MW-03-20	20	11/7/2007	<0.050	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.02	<0,005	<0.001	<0.01	<0.01	<0.01	<0.01	<0.01	<0.005	0.001	<0,003
MW-04-13	13	11/7/2007	0,27	0,006	0.011	<0.002	<0.002	<0.002	<0,002	<0,02	<0.005	<0.001	0.002	0.003	<0.01	0.003	0.005	0,041	0.021	0.18
MW-04-20	20	11/7/2007	0,40	0.002	0.003	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	0.001	0.002	<0.01	0.001	0.002	0.026	0.013	0.116

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in mg/Kg
- (3) EPA Test Method
- < Indicates the concentration was not detected above the laboratory method detection limit.

- VOCs volatile organic compounds
 USEPA PRG United States Environmental Protection Agency Preliminary Remediation Goals
 - NR Not Reported

Summary of Soil Analytical Results - TPH and VOCs The Olson Company 1210 Bockman Road San Lorenzo, California

Stantec Job No.: 185802329

	6 - 1 - 5 - 3		TPH ⁽²⁾ 8015m ^{SI}				VOCs ⁽²⁾ bzec ⁽⁶⁾						
Sample (D ⁽¹⁾	Sample Depth (feet bgs)	Sampling Date	ТРНд	TPHd	TPHo	Benzene	Toluene	Ethylbenz ene	Total Xylenes	Methyl- tert-butyl ether (MtBE)	All Other VQCs		
USEPA PRGs (mg/kg)			NA	NA	NΑ	1.1	5,000	5.4	630	43	varies		
CRWQCB ESLs (mg/kg)			100	100	370	0.12	9.3	2.3	11	8,4	varies		
Samples						"					<u> </u>		
SB-01@17'	17	12/7/2010	<0.230	7.6	<49	<0.0047	<0.0047	<0.0047	<0.0093	<0.0047	ND <varies< td=""></varies<>		
SB-02@15'	15	12/7/2010	<0.240	10	<50	<0.0048	<0.0048	<0.0048	<0.0097	<0.0048	ND <varies< td=""></varies<>		

NOTES:

- (1) Refer to Figure 2 for sampling locations
- (2) Concentrations reported in milligrams per kilogram (mg/kg)
- (3) EPA Test Method
- < Indicates the concentration was not detected above the laboratory method detection limit.

ABBREVIATIONS:

TPHg - Total Petroleum Hydrocarbons as gasoline

TPHd - Total Petroleum Hydrocarbons as diesel

TPHo - Total Petroleum Hydrocarbons as oil

VOCs - Volatile Organic Compounds

CRWQCB ESL - California Regional Water Quality Control Board Environmental Screening Level, shallow soils and groundwater not a source of drinking water

USEPA PRGs - United States Environmental Protection Agency Preliminary Remediation Goals

Table 2
Summary of Chemical Analysis of Groundwater Samples Collected from Borings HP-1 through HP-3, EPA Test Methods 8260B and GCMS

Name of the last o						and G	CIAIO							
Location	Depth (ft)	Date	TPH-g	Acetone	2-Butanone (MEK)	1,2-Dichloroethane	cis-1,2-Dichloroether	Methylene Chloride	Tetrachloroethene	Tetrachloroethene	Vinyl chloride	Xylenes, o-	Methyl-tert-butyl ether (MtBE)	Xylenes, m-, p-
HP-1	13	12/15/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0
HP-2	9	12/16/2004	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
HP-3	8	12/16/2004	NA	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND
	al/State Mo											1,750		1,750
Rep	orting Limi	t μg/L	500	50	10	0.5	0.5	50	0.5	0.5	0.5	0.5	1.0	1.0
	*NIA - NIA A	diaghla thaga av					TDIL		16	7				

*NA= Not Applicable, these groundwater samples were not analyzed for TPH-g

Table 6 Summary of Groundwater Analytical Results TPH by modified EPA 8015B (μg/L) Olson - San Lorenzo 1210 Bockman Road San Lorenzo, California

SECOR Job No.: 04OT.29215.68

Sample ID	Sampling Depth ⁽¹⁾	Sampling Date		PH ⁽²⁾ 15) ⁽³⁾ C12-C22 ⁽⁵⁾
USEPA PRG (μg/L))		100	100
BA-01-W	9	4/26/2007	2,100	110,000
BA-02-W	9	4/26/2007	1,500	5,300
BA-03-W	9	4/26/2007	230	<50
BA-04-W	9	4/26/2007	<50	<50
BA-05-W	9	4/27/2007	<0.1	<0.4
BA-06-W	9	4/27/2007	<0.1	<0.4
BA-07-W	9	4/27/2007	<0.1	<0.4

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in µg/L
- (3) EPA Test Method
- (4) Characteristic carbon chain of Gasoline
- (5) Characteristic carbon chain of Diesel
- < Indicates the concentration was not detected about the laboratory method detection limit.

ABBREVIATIONS:

TPH - Total petroleum hydrocarbons

USEPA PRG - United States Environmental Protection Agency Preliminary Remediation Goals

Table 7 Summary of Groundwater Analytical Results VOCs by EPA 8260B (μg/L) Olson - San Lorenzo 1210 Bockman Road San Lorenzo, California

SECOR Job No.: 040T.29215.68

								VOCs ⁽²⁾ (8260) ⁽³⁾					
Sample ID	Sampling Depth ⁽¹⁾		Methyl- tert-butyl ether (MtBE)	tert-Amyl Methyl Ether (TAME)	Diisoprop yl Ether (DIPE)	Ethyl tert- Butyl Ether (EtBE)	tert- Butanol (TBA)	Benzene	Dibromo ethane (EDB)	Dichloro ethane (EDC)	Ethyl- benzene	Toluene	Total Xylenes
CA MCLs (µg/L)			13	NR	NR	NR	NR	1	0.5	0.5	700	150	1750
Fedral MCLs (μg/L	.)		NR	NR	NR	NR	NR	5	0.05	5	700	1000	10000
Samples													
BA-01-W	9	4/26/2007	9.2	<0.5	<0.5	5.4	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BA-02-W	9	4/26/2007	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BA-03-W	9	4/26/2007	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BA-04-W	9	4/26/2007	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BA-05-W	9	4/27/2007	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.005	<0.001	<0.003
BA-06-W	9	4/27/2007	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.005	0.5	<0.003
BA-07-W	9	4/27/2007	<0.002	<0.002	<0.002	<0.002	<0.02	<0.005	<0.001	<0.01	<0.005	0.7	<0.003

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in μg/L
- (3) EPA Test Method
- < Indicates the concentration was not detected above the laboratory method detection limit.

ABBREVIATIONS:

VOCs - volatile organic compounds

CA MCLs - Maximum Contaminant Levels for Drinking Water set by the California Department of Health Services

Federal MCLs - Maximum Contaminant Levels for Drinking Water set by the US Environmental Protection Agency

NR - Not Reported

Summary of Groundwater Analytical Results TPH by modified EPA 8015B (µg/L) Olson - San Lorenzo 1210 Bockman Road San Lorenzo, California

SECOR Job No.: 04OT.29215.68

Sample ID	Sampling Date		PH ⁽²⁾ 15) ⁽³⁾ C12-C22 ⁽⁵⁾
MW-01-W	11/9/2007	<0.5	<0.4
MW-02-W	11/9/2007	0.71	<0.4
MW-03-W	11/9/2007	<0.5	<0.4
MW-04-W	11/7/2007	<0.5	<0.4

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in μg/L
- (3) EPA Test Method
- (4) Characteristic carbon chain of Gasoline
- (5) Characteristic carbon chain of Diesel
- < Indicates the concentration was not detected above the laboratory method detection limit.

ABBREVIATIONS:

TPH - Total Petroleum Hydrocarbons

Summary of Groundwater Analytical Results VOCs by EPA 8260B (µg/L) Olson - San Lorenzo 1210 Bockman Road San Lorenzo, California

SECOR Job No.: 04OT.29215.68

									VOC: (8260								
Sample ID	Sampling Date	Methyl- tert-butyl ether (MtBE)	tert-Amyl Methyl Ether (TAME)	Diisoprop yl Ether (DIPE)	Ethyl tert- Butyl Ether (EtBE)	tert- Butanol (TBA)	Benzene	1,2 Dibromoe thane (EDB)	1,2 Dichloro ethane (EDC)	Ethyl- benzene	Toluene	Total Xylenes	n- Butylben zene	sec- Butylben zene	n- Propylbe nzene	Isopropyl benzene	Napthalene
CA MCLs (μg/L)		13	NR	NR	NR	NR	1	NR	0.5	300	150	1750	NR	NR	NR	NR	: NR
Fedral MCLs (μg/L)	NR	NR	NR	NR	NR	5	NR	5	700	1000	10000	NR	NR	NR	NR	NR
Samples																	
MW-01-W	11/9/2007	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0,5	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5
MW-02-W	11/9/2007	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	13	10	21	6.7	0.8
MW-03-W	11/9/2007	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5	<0,5	<0.5
MW-04-W	11/7/2007	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5	<0.5	<0.5

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in μg/L
- (3) EPA Test Method
- < Indicates the concentration was not detected above the laboratory method detection limit.

- VOCs Volatile Organic Compounds
- CA MCLs Maximum Contaminant Levels established by the State of California
- Federal MCLs Maximum Contaminant Levels established by the Federal Environmental Protection Agency
 - NR Not Reported

Summary of Groundwater Analytical Results TPH and VOCs Detected in Groundwater Olson - San Lorenzo 1210 Bockman Road San Lorenzo, California

Stantec Job No.: 04OT.29215.69

	Sampling		PH ⁽¹⁾ 015 ⁽²⁾		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/OCs ⁽¹⁾ 8260 ⁽²⁾	
Sample ID	Date	C4-C12 ⁽³⁾	C12-C22 ⁽⁴⁾	n- Butylbenzene	sec- Butylbenzene	n- Propylbenzene	Isopropylbenzene
CA MCLs (µg/L)		NR	NR	NR	NR	NR	NR
Fedral MCLs (µg/L)		NR	NR	NR	NR	NR	NR
RWQCB ESLs (µg/L)		100	100	NR	NR	NR	NR
Samples							
	3/17/2008	<1.0	<1.0	<1.0	<0.5	<0.5	<0,5
MW-01-W	6/10/2008	<50	64	<1,0	<1.0	<1.0	<0,5
14144-O 1-44	9/8/2008	<50	<50	<10	<1.0	<1 ₋ 0	<0.5
	12/8/2008	<50	<50	NA	NA NA	NA	NA NA
	3/17/2008	0.41	<1.0	3.4	<0.5	2.2	1.0
MW-02-W	6/10/2008	400	230	1.4	1.7	<1.0	0.91
10104-0%-44	9/80/2008	300	170	1.1	1.2	<1_0	<0,5
	12/8/2008	590	64	NA .	NA NA	NA	NA
	3/17/2008	<1.0	<1.0	<1.0	<0,5	<0.5	<0.5
MANAY OO AM	6/10/2008	<50	<50	<1.0	<1,0	<1,0	<0.5
MW-03-W	9/8/2008	<50	<50	<1.0	<1,0	<1.0	<0.5
	12/8/2008	<50	68	NA NA	NA	NA NA	NA
MW-04-W ⁽⁵⁾	11/7/2007	<1.0	<1.0	<1.0	<0.5	<0.5	<0.5

NOTES:

- (1) Concentrations reported in micrograms per liter (µg/L)
- (2) EPA Test Method
- (3) Characteristic carbon chain of Gasoline
- (4) Characteristic carbon chain of Diesel
- (5) MW-04 was removed due to conflict with construction activities
- < Indicates the concentration was not detected above the laboratory method detection limit. Highlighted yellow boxes indicate most recent laboratory data.

- VOCs Volatile Organic Compounds
- TPH Total Petroleum Hydrocarbons
- CA MCLs Maximum Contaminant Levels established by the State of California
- Federal MCLs Maximum Contaminant Levels established by the Federal Environmental Protection Agency
- RWQCB ESLs Environmental Screening Levels for Potential Source of Drinking Water established by the San Fransisco Bay Regional Water Quality Control Board (February 2005)
 - NR Not Reported
 - NA Not Analyzed

Summary of Groundwater Analytical Results
VOCs by EPA 8260B (μg/L)
Olson - San Lorenzo
1210 Bockman Road
San Lorenzo, California
SECOR Job No.: 0407.29215.69

	_													140., 0-7-0-7	
								VOCs (8260)(8							
Sample ID	Sampling Date	Methyl- tert-butyl ether (MtBE)	tert-Amyl Methyl Ether (TAME)	Diisoprop yl Ether (DIPE)	Ethyl tert- Butyl Ether (EtBE)	tert-	Benzene	Ethylene Dibromide	1,2 Dichloro ethane (DCA)	Ethyl- benzene	Toluene	Total Xylenes	n- Butylben zene	n- Propylbe nzene	Isopropyl benzene
CA MCLs (µg/L)		13	NR	NR	NR	NR	1	NR	0.5	300	150	1750	NR	NR	NR
Fedral MCLs (μg/L)		NR	NR	NR	NR	NR	5	NR	5	700	1000	10000	NR	NR	NR
RWQCB ESLs (μg/l	L)	5	NR	NR	NR	12	1	0.05	0.5	30	40	20	NR	NR	NR
Samples															
MW-01-W	3/17/2008	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
MW-02-W	3/17/2008	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	3.4	2.2	1.0
MW-03-W	3/17/2008	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
MW-04-W ⁽⁴⁾	11/7/2007	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in micrograms per liter (μg/L)
- (3) EPA Test Method
- (4) MW-04 was removed due to conflict with construction activities
- < Indicates the concentration was not detected above the laboratory method detection limit.

- VOCs Volatile Organic Compounds
- CA MCLs Maximum Contaminant Levels established by the State of California
- Federal MCLs Maximum Contaminant Levels established by the Federal Environmental Protection Agency
- RWQCB ESLs Environmental Screening Levels for Potential Source of Drinking Water established by the San Fransisco Bay Regional Water Quality Control Board (February 2005)
 - NR Not Reported

Summary of Groundwater Analytical Results VOCs by EPA 8260B (µg/L) Olson - San Lorenzo 1210 Bockman Road San Lorenzo, California

SECOR	Job N	lo.: 040	OT.2921	5.69

								VOCs (8260) ⁽							
Sample ID	Sampling Date	Methyl- tert-butyl ether (MtBE)	tert-Amyl Methyl Ether (TAME)	Diisoprop yl Ether (DIPE)	Ethyl tert- Butyl Ether (EtBE)	tert-	Benzene	Ethylene Dibromide	1,2 Dichloro ethane (DCA)	Ethyl- benzene	Toluene	Total Xylenes	n- Butylben zene	sec- Butylben zene	Isopropyl benzene
CA MCLs (µg/L)		13	NR	NR	NR	NR	1	NR	0.5	300	150	1750	NR	NR	NR
Fedral MCLs (μg/L)		NR	NR	NR	NR	NR	5	NR	5	700	1000	10000	NR	NR	NR
RWQCB ESLs (µg/l	L)	5	NR	NR	NR	12	1	0.05	0.5	30	40	20	NR	NR	NR
Samples															
MW-01-W	6/10/2008	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
MW-02-W	6/10/2008	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	1.4	1.7	0.91
MW-03-W	6/10/2008	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
MW-04-W ⁽³⁾	11/7/2007	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5

NOTES:

- (1) Concentrations reported in micrograms per liter (µg/L)
- (2) EPA Test Method
- (3) MW-04 was removed due to conflict with construction activities
- < Indicates the concentration was not detected above the laboratory method detection limit.

- VOCs Volatile Organic Compounds
- CA MCLs Maximum Contaminant Levels established by the State of California
- Federal MCLs Maximum Contaminant Levels established by the Federal Environmental Protection Agency
- RWQCB ESLs Environmental Screening Levels for Potential Source of Drinking Water established by the San Fransisco Bay Regional Water Quality Control Board (February 2005)
 - NR Not Reported

Summary of Groundwater Analytical Results VOCs by EPA 8260B (µg/L) Olson - San Lorenzo 1210 Bockman Road San Lorenzo, California

Sta	nted	: Job	No.:	040	T.2921	15.69
				_		_

Sample ID	ing specially described							VOCs (8260) ⁵							
Sample ID	Sampling Date	Methyl- tert-butyl ether (MtBE)	tert-Amyl Methyl Ether (TAME)	Diisoprop yl Ether (DIPE)	Ethyl tert- Butyl Ether (EtBE)	tert- Butanol (TBA)	Benzene	Ethylene Dibromide	1,2 Dichloro ethane (DCA)	Ethyl- benzene	Toluene	Total Xylenes	n- Butylben zene	sec- Butylben zene	Isopropyl benzene
CA MCLs (µg/L)		13	NR	NR	NR	NR	1	NR	0.5	300	150	1750	NR	NR	NR
Fedral MCLs (μg/L)		NR	NR	NR	NR	NR	5	NR	5	700	1000	10000	NR	NR	NR
RWQCB ESLs (µg/	L)	5	NR	NR	NR	12	1	0.05	0.5	30	40	20	NR	NR	NR
Samples		Z	·,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							•					
MW-01-W	9/80/2008	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
MW-02-W	9/8/2008	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	1.1	1.2	<0.5
MW-03-W	9/8/2008	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5
MW-04-W ⁽³⁾	11/7/2007	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<1.0	<1.0	<0.5	<0.5

NOTES:

- (1) Concentrations reported in micrograms per liter (μg/L)
- (2) EPA Test Method
- (3) MW-04 was removed due to conflict with construction activities
- < Indicates the concentration was not detected above the laboratory method detection limit.

- VOCs Volatile Organic Compounds
- CA MCLs Maximum Contaminant Levels established by the State of California
- Federal MCLs Maximum Contaminant Levels established by the Federal Environmental Protection Agency
- RWQCB ESLs Environmental Screening Levels for Potential Source of Drinking Water established by the San Fransisco Bay Regional Water Quality Control Board (February 2005)
 - NR Not Reported

Summary of Groundwater Analytical Results
VOCs by EPA 8260B (μg/L)
Olson - San Lorenzo
1210 Bockman Road
San Lorenzo, California
Stantec Job No.: 040Τ.29215.69

							VOCs (1) (8260) ⁽²⁾					
Sample ID	Sampling Date	Methyl- tert-butyl ether (MtBE)	tert-Amyl Methyl Ether (TAME)	Diisoprop yl Ether (DIPE)	Ethyl tert- Butyl Ether (EtBE)	tert- Butanol (TBA)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Ethylene Dibromide	1,2 Dichloro ethane (DCA)
CA MCLs (μg/L)		13	NR	NR	NR	NR	1	150	300	1750	NR	0,5
(یر) Fedral MCLs		NR	NR	NR	NR	NR	5	1000	700	10000	NR	5
RWQCB ESLs (µg/	L)	5	NR	NR	NR	12	1	40	30	20	0.05	0,5
Samples												
MW-01-W	12/8/2008	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5
MW-02-W	12/8/2008	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5
MW-03-W	12/8/2008	<1.0	<1.0	<1.0	<1.0	<10	<0,5	<0.5	<0.5	<1.0	<0.5	<0.5
MW-04-W ⁽³⁾	11/7/2007	<1.0	<1.0	<1.0	<1.0	<10	<0.5	<0.5	<0,5	<1.0	<0.5	<0.5

NOTES:

- (1) Concentrations reported in micrograms per liter (μg/L)
- (2) EPA Test Method
- (3) MW-04 was removed due to conflict with construction activities
- < Indicates the concentration was not detected above the laboratory method detection limit.

- VOCs Volatile Organic Compounds
- CA MCLs Maximum Contaminant Levels established by the State of California
- Federal MCLs Maximum Contaminant Levels established by the Federal Environmental Protection Agency
- RWQCB ESLs Environmental Screening Levels for Potential Source of Drinking Water established by the
 - San Fransisco Bay Regional Water Quality Control Board (November 2007)
 - NR Not Reported

Summary of Groundwater Analytical Results The Olson Company 1210 Bockman Road San Lorenzo, California

Stantec Job No.: 185802329

			TPH ⁽²⁾ 8015m ⁽³⁾				VO(826	200127022578296597004		
Sample ID ^[1]	Sampling Date	TPHg	TPHd	трно	Benzene	Toluene	Ethylbenzene	Total	Methyl- tert-buryl ether (MtBE)	All Other VOCs
CRWQCB ESLs (ug/L	.)	210	210	210	46	130	43	100	1800	varies
Samples										
SB-01-GW	12/7/2010	<50	110	<540	<0.50	<0.50	<0.50	<1.0	<0.50	< varies
SB-02-GW	12/7/2010	<50	<92	<550	<0.50	<0.50	<0.50	<1.0	<0.50	< varies

NOTES:

- (1) Refer to Figure 2 for sampling locations
- (2) Concentrations reported in micrograms per liter (ug/L)
- (3) EPA Test Method
- < Indicates the concentration was not detected above the laboratory method detection limit.

ABBREVIATIONS:

VOCs - Volatile Organic Compounds

CRWQCB ESL - California Regional Water Quality Control Board Environmental Screening Level, shallow soils and groundwater not a source of drinking water

ATTACHMENT 5

Table 4 Summary of Soil Vapor Analytical Results TPH by modified EPA 8015B (μg/L) Olson - San Lorenzo 1210 Bockman Road San Lorenzo, California

SECOR Job No.: 04OT.29215.68

Sample ID	Sampling Depth ⁽¹⁾	Sampling Date	TPH ⁽²⁾ (8015) ⁽³⁾ C4-C12 ⁽⁴⁾ C12-C22 ⁽⁵⁾ Metha				
RWQCB ESLs			26	26	NR		
BA-01-V	5	4/26/2007	52	<50	<500		
BA-02-V	5	4/26/2007	10	<50	<500		
BA-03-V	5	4/26/2007	11	<50	<500		
BA-04-V	5	4/26/2007	13	<50	<500		

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in $\mu g/L$ of air
- (3) EPA Test Method
- (4) Characteristic carbon chain of Gasoline
- (5) Characteristic carbon chain of Diesel
- < Indicates the concentration was not detected about the laboratory method detection limit.

ABBREVIATIONS:

TPH - Total petroleum hydrocarbons

RWQCB ESLs - Regional Water Quality Control Board Environmental Screening Levels

Table 5 Summary of Soil Vapor Analytical Results VOCs by EPA 8260B (μg/L) Olson - San Lorenzo 1210 Bockman Road San Lorenzo, California SECOR Job No.: 04ΟΤ.29215.68

		Sampling Date		VOCs ⁽²⁾ (8260) ⁽³⁾											
Sample ID	Sampling Depth ⁽¹⁾		Methyl-tert butyl ether (MtBE)		Diisopro pyl Ether (DIPE)		теп-	Benzene		Dichloroe thane (EDC)	Ethyl- benzene	Toluene	Total Xylenes		
CHHSLs			4	NR	NR	NR	NR	0.036	NR	0.05	NR	135	319		
RWQCB ESLs			9.4	NR	NR	NR	2.6	0.085	0.034	0.12	420	63	150		
Samples															
BA-01-V	5	4/26/2007	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3		
BA-02-V	5	4/26/2007	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3		
BA-03-V	5	4/26/2007	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3		
BA-04-V	5	4/26/2007	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3		

NOTES:

- (1) Sample depth is reported as feet below ground surface
- (2) Concentrations reported in μg/L of air
- (3) EPA Test Method
- < Indicates the concentration was not detected about the laboratory method detection limit.

ABBREVIATIONS:

VOCs - volatile organic compounds

CHHSLs - California Human Health Screening Levels

RWQCB ESLs - Regional Water Quality Control Board Environmental Screening Levels

NR - Not Reported

ATTACHMENT 6

LUG UF BUHING

Logged By	12/16/0	,4 · D	rilling Contractor:	PHECT PHA	H. A. SP-1
Time Start 0650	Boring Dia	m.: Surla	os Elev. (ft.) Groundwater De	epth (IL): Tot	
Time End: 07-00	2"				al Depth(II): Hammer Drop
JOB NO. 040T. 29215	5.62	Project:	LORENZO PHASE I	1210 -141	5 BOCKMAN ROAD
WELL CONSTRUCTION Casing Dia.	Depty Sampling Method Inferval	Graphic Log	DESCRIPTION Soil Type, Gradation, Co Moisture, Color, USC	nsistency.	COMMENTS
backAll	0		ASPITAL T		
in constituy Converte patela	H./t.	× 5P-1	day n/ sand, It -	> dk bin,	0700
	T 14		no color		
	2	-			
<mark> </mark>		-			
	3				
	4				
			ı.		
]	. 5				
	6				
	_ -				
	7				
<u> </u>	8				
	9				
		-			
	0	1		······································	
	'[]]				
	2				
	.		3		
	а				
	4				
	5				
	5				
8	6				
		ļ			
	7		<u> </u>		
	[- -				
	. 8				
	9			1	I com
	9				The second secon
	0		.		
				l	

(Sheel ol

Logg	ed By FH	Date (Orilled 15	10	4	O.	rilling Contractor. VIRONEX		DIRE	Equipment CT PUSI	4//	1.A.	Bonng Number,
Time	Start: 1400		oring Z	Diar		Surla	ice Elev. (lt.).	Groundwater D	epth (IL);			epth(ft.):	Hammer Drop
Joh h	End: 1435				Pro	oject				Location:		•	
09	101.29215	5.64	<u>-</u> 		Ļ	54h	LORENZO	1418E -4		1210-1	1915.	BOCKIMA	N ROAD
C	WELL ONSTRUCTION Casing Dia.	Sampling Mathod	Interval	Blow Cotto	Graphic Log	Sample	1	DESCRIPTION e, Gradation, Co sure, Color, USC	l Insistency S, etc.	'	HNU.	. c	OMMENTS
M			ìH-		Ť.		KSPHALT				Ī		
			-		ŀ			•			1		
		1			-								
		[2	H-	\dashv	-	•			***********	***	 	<u></u>	
		44	-		-								
		3		\Box	-								
		. 4	H-	\dashv	-	-			· ·				
		5											
			-	4	-			· · · · · · · · · · · · · · · · · · ·		······································			
		. 6	H	\dashv	-					····			
	1	06.7											,
	A WIND	(1) y	-		-				·				
	constraint	8	H	\dashv	-				- , ,				······································
	'	9											
		•		_	-			·	•		ļ		
		. 0	 	\dashv	}-								***************************************
	·	1											4-1 - 40 - 70 - 70 - 70 - 70 - 70 - 70 - 70
		,		-	-	·					ļ		
		. 2	H-	\dashv	-								
		, 3											
	Productive for the control of the production of the control of the]-		Ų.	HP-1	6.W.	No od	or, n	∞		152	<u>S</u>
		4	H^-		F			<u> </u>	SZZ1				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		5		.,	[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				*************		- 40-()-87-41-51-6-7-7-	
				-,		•••••••			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
		6	H										
		7]		ļ.,								
				****	ļ	e614414)/ 1 m	-8 8 1 8 8 7 1 1 9 9 1 9 7 1 5 6 1 1 1 2 2 1 1 2 2 2 1 2 2 2 2 2 2 2 2			1##1**********************************			
		8	d		ļ						,		
		9	<u> </u>		[.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ma 54-4-4-7-1-4-1-4-4-4-4-4-4-4-4-4-4-4-4-4-						
			[}	,		••••••••••••	***********				
	<u> </u>	0	<u> </u>		<u> </u>							xhibil	

Logg	od By PH	Dalo [rilled	04	, D	niling Contractor: VIRONEX		DI LE	quipment.	1/4	A.	Boring Number.
	Stan: 0705		onng Di			ce Elev. (ft.)	Groundwater D	epti (fL):		Idial Di	opth(It.),	Hammer Drop.
Time	End: 0745		2"				9-1	0'		$\perp \mid 2$	21	Hammer Drop. (14915.) /VA
Joh N	10T. 29215	5.62		ρ	roject: S4A	LORENZA	PHASE II		Location: 1210 ~ 1	415.	BOCKMA.	N ROAD
c	WELL DNSTRUCTION Casing Dia.	Depth/ Sampling Method	Blow Count	Graphic Log	Sample	Soil Typ Mod	DESCRIPTION De, Gradation, Co sture, Color, USC	insistency.	•	HNU. ppm	С	OMMENTS
		1 1 1 1 1 1 2		X	5\$P-2	Clay w/ si		dk bra	\$wA		071	6
		- 5 6										
	grant	}			· · · · · · · · · · · · · · · · · · ·							
		9 0 1		X	HP-2	No odes	, no s	heen			074	0
		3										
		5) 6) 7	100000000000000000000000000000000000000					, 				
		\$ 9										
	<u> </u>										xhibu	

(Sheer

ol

)

Logged By	12/16/	104	Drilling Contractor. VIRONEX		Method/Equipment DIRECT PUSH		
Time Start;	Bonng	iam,. Su	rlace Elev. (ft.):	Groundwater De	ipth (IL).	Total Oep	th(II.): Hammer Drop.
Time End.	Z				Location:		1 1/4
Job No: 0407. 29215	7.62	Project S/	HN LORENZO	PHASE I	1210-1	415 8	OCKMAN ROHD
WELL CONSTRUCTION Casing Dia.	Depty Sampling Method Interval	Graphic Log Sample	Soil Tyl Moi	DESCRIPTION De, Gradation, Cor sture, Color, USC:	nsistency,	HNU, ppm	COMMENTS
avent.	1 2 3 4 4 5 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 6 6 9 5	X SP.	H-2-11	bittion	Order		0840
	3 4 5 5 6 7 7 8 8 9 9						1

Logge	d By:	Doin Dr 12/	Is /c	>4	Dr	VIRONEX		Method/Eq	r /4/5/	1/17	1.A.	Bonng Number:
Time S	Start: 0930	Boi	ring Dia	m .	Surfac	os Elev. (N.):	Groundwater D	epth (IL):	1	T6tal Do S	opth(ft.):	Hammer Drop: (1,49 ts.) /V/
lab No	ind. 0950			Pi	rojeci:	LORENZO	Pute TI	Lo	cation:	415		N ROAD
040	OT 29215	1.62	T			LORENZA	PHASE -4		210.1	113	DOCKMA	NO KOND
CO	WELL NSTRUCTION Casing Dia.	Depth Sampling Method	Blow Count	Graphic Log	Sample #	Soil Typ Moi:	DESCRIPTION De, Gradation, Co sture, Color, USC	v onsistency, CS, etc.		HNU. Ppm	C	OMMENTS ·
		0	1									
	1	1	<u> </u>			,		<u> </u>		<u> </u>		
	market of the state of the stat	2	_		24/1.27						1994	
	970	4.43	-	X	687 621	brewn Clay	1 high pla	t-, no	adev		079	<u> </u>
		17. 3					·					
		4										
		- 5	-	V	567	hrow car	u laida e	olast., in	o chor		odej	<u> </u>
	,	6			051	10 X 17 - 11 Q A						
		_	_	Ì							-	
	•	7	-		,							
		B										
		9						<u> </u>				
	·	. 0										
									.,			***************************************
		'[:						41/22/44
		2	<u> </u>									
	! ! .	3									•===::::::::::::::::::::::::::::::::::	
		4	<u> </u>				4. 7					\$4.444.97 · #***********************************
	* ·		 `								a m	ay lore agong a mara ribir a from a fall of a little of the con-
		5			. } tu yshud Bhid u			-4	,			
		6	ļ						,			*************************
		7]			'						
		8	d	<u> </u> -		***************************************					m 4-144 12144-114	
			 		, ,,4,784 stwast P		-224 bings gli kgter by cr -7 (42 7446 5					.,.,
		9	-							i		
Ш	<u></u>	o	<u> </u>								Exhibit	

(Sheel

اه

ZLH roddog ga	Date D	piled /	04	Dn	Tilling Contractor: VIRONEX			Equipment ECT PUSI		. h.	Signal Number:
Time Start: 8 4 10		oring Dia		Surlac	ce Elev. (ft.).	Groundwater D	epth (IL)	:	Tólal Do	թփ(li.). >	Hammer Drop. (140.b.) /VA
Job No: 040T. 29215	7.62		Pro	S4N	LORENZO	PHASE IT		Location: 1210 -	1415 2	<i>Воскма</i> л	
	Daptiv Sampling Mathod	11 _	Graphic Log	Sample #	Soil Typ Mols	DESCRIPTION e, Gradation, Co ture, Color, USC		. .	HNU, Ppm	CC	MMENTS
	0							-			
O Vent of the second	¥ 3		X	62	brdk br.	Clay , V	lighty	plastice		083	υ
	•										
	6	│ ┤	X	SRY OS	mode odo		y pla	otte,		08H)
	. 7		-					,			
	9										
	0							·			
	2									no 196 ato parte parte parte parte Al Arabi (Arrado parte parte parte Al Arabi (Arrado parte parte parte Arra	
	3										
	5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(Q) of Educat rand gar				**************************************		00 400 40 40 40 40 40 40 40 40 40 40 40	
	6),,fr1		**************************************		,	1 1		
	8						••••••••				
	. 6			22 · · · · · · · · · · · · · · · · · ·						#	
	0	Н	<u> </u>							Exhibit	

(Sheel) of /

Logged By	Date Dolled	4	lling Contractor: VIRONEX		DIRECT PU	<u>SH</u>	S13-5
TIPH Time Start: 0720	Boring Diar		a Elev. (ft.)	Groundwater D		Total Depth(II) Hammer Drop
Time End: 0800	2"				Location	<u> </u>	NA NA
JOB NO. 040T. 29215	5.62	Project SAN	LORENZO	PHASE IT	1210	-1415 Back	MAN ROHD
WELL CONSTRUCTION Casing Dia.	Deptv Sampling Method Inlevel	Graphic Log Sample	`Soil Ty Moi	DESCRIPTION pe, Gradation, Co sture, Color, USC	insistency,	HNU, ppm	COMMENTS
C. Ward	2	X 58-38 Z 0745	ak brow-bl	ak Clay, ne oder	highly		→4 5
		≯ 28·25.€	Clay of 1	ock, hoyld	y plustic	6	900
	7 - 8	(\$00	110° cdot ;	<u> </u>			
	9						
	3						
	5						***************************************
	8						
	9					Exhib	
						(Shed	1 1 .

Logged By:	12/15/0	Dalling Onling	Contractor; 20 NEX	DILECT PUSH /	H.A. SR-1		
Time Start:	Boring Dia	1 -		Pepth (IL): Tota	Depth(II.) Hammer Drop		
Time End:	Z"			Location;	8 NA NA		
JOB NO: 040T. 29215	7.62	SAN Los	RENZO AHASE I	1210-1415	415 BOCKMAN ROHO		
WELL CONSTRUCTION Casing Dia,	Deptv Sampling Method Inleval	Graphic Log Sample	DESCRIPTION Soil Type, Gradation, Co Moisture, Color, USC	N onsistency,	COMMENTS		
CONSTRUCTION Casing Dia. Xnaub	30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 8 9 10 1 2 3 4 7 7 7 7 8 9 10 1 2 3 4 7 7 7 7 8 9 10 1 2 3 4 7 7 7 7 8 9 10 1 2 3 4 7 7 7 7 8 9 10 1 2 3 4 7 7 7 7 8 9 10 1 2 3 4 7 7 7 7 8 9 10 1 2 3 4 7 7 7	X 58-7, de 2 m	brusa clay, his	Nich play.	0905		
	9						
	0						

(Sheci oi

PROJECT: Olson - San Lorenzo WELL / PROBEHOLE / BOREHOLE NO: LOCATION: 1210 Bockman Road, San Lorenzo, CA BA-01 PAGE 1 OF 1 PROJECT NUMBER: **04OT.29215.68** SECOR DATE: STARTED: 4/26/2007 NORTHING (ft): COMPLETED: 4/26/2007 EASTING (ft): LATITUDE: LONGITUDE: TOC ELEV (ft): GROUND ELEV (ft): DRILLING COMPANY: Vironex INITIAL DTW (ft): 8 4/26/07 BOREHOLE DEPTH (ft): 12.0 DRILLING EQUIPMENT: Geoprobe 6600 STATIC DTW (ft): NE WELL DEPTH (ft): --DRILLING METHOD: Direct Push WELL CASING DIAMETER (in): ---BOREHOLE DIAMETER (in): 2 SAMPLING EQUIPMENT: Sleeves LOGGED BY: J. Adelaars CHECKED BY: Sample **NSCS** Depth (feet) Time Borehole Description Sample ID Backfill CL CL; CLAY, black (5Y 2.5/1), slightly moist, very hard, low plasticity, no odor 0.0 Becomes dark greenish gray (GLEY1 4/1), silty, slighty moist, hard to very hard, medium plasticity, slight HC odor BA-1-V 1330 BA-01-5 6.8 Grout ML; SILT, dark greenish gray (GLEY1 4/1), moist, firm to hard, low plasticity, slight hydrocarbon (HC) odor ML 1335 1.0 BA-1-7 1500 BA-1-W 10-Borehole terminated at 12 feet bgs. Groundwater encountered at 8' bgs. Vapor collected at 5' bgs. Groundwater collected at 11' bgs. Backfilled with neat grout 0-12' bgs. OLSON BORINGS (20070426).GPJ SECOR037.GDT 5/17/07 15-15 20-20

PROJECT: Olson - San Lorenzo WELL / PROBEHOLE / BOREHOLE NO: LOCATION: 1210 Bockman Road, San Lorenzo, CA **BA-02** PAGE 1 OF 1 PROJECT NUMBER: **040T.29215.68** SECOR DATE: STARTED: 4/26/2007 NORTHING (ft): COMPLETED: 4/26/2007 EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Vironex INITIAL DTW (ft): 8 4/26/07 BOREHOLE DEPTH (ft): 12.0 **DRILLING EQUIPMENT: Geoprobe 6600** STATIC DTW (ft): NE WELL DEPTH (ft): ---DRILLING METHOD: Direct Push WELL CASING DIAMETER (in): ---BOREHOLE DIAMETER (in): 2 SAMPLING EQUIPMENT: Sleeves LOGGED BY: J. Adelaars CHECKED BY: Graphic Log Blow Count/ft SSS Fime 8 Depth (feet) Time Borehole Description Sample ID Backfill CL; CLAY, very dark grayish brown (10YR 3/2), slightly moist, hard, medium to high CL plasticity, no odor BA-2-V 1400 0.0 BA-2-5 Grout ML; SILT, dark greenish gray (GLEY1 5/1), slightly moist, firm to hard, low to medium plasticity, slight HC odor ML 1410 1.3 BA-2-7 10 CL CL; CLAY, very dark greenish gray (GLEY1 3/1), slightly moist, hard, high plasticity, no 1420 odor 0.0 BA-2-11 1513 Borehole terminated at 12 feet bgs. BA-2-W Groundwater encountered at 8' bgs. Vapor collected at 5' bgs. Groundwater collected at 12' bgs. Backfilled with neat grout 0-12' bgs. GEO FORM 304_SECOR037 OLSON BORINGS (20070426).GPJ SECOR037.GDT 5/17/07 15 15 20 20-

PROJECT: Olson - San Lorenzo WELL / PROBEHOLE / BOREHOLE NO: LOCATION: 1210 Bockman Road, San Lorenzo, CA **BA-03** PAGE 1 OF 1 PROJECT NUMBER: **04OT.29215.68** SECOR DATE: STARTED: 4/26/2007 NORTHING (ft): COMPLETED: 4/26/2007 EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Vironex INITIAL DTW (ft): NE BOREHOLE DEPTH (ft): 20.0 **DRILLING EQUIPMENT: Geoprobe 6600** STATIC DTW (ft): NE WELL DEPTH (ft): --DRILLING METHOD: Direct Push WELL CASING DIAMETER (in): ---BOREHOLE DIAMETER (in): 2 SAMPLING EQUIPMENT: Sleeves LOGGED BY: J. Adelaars CHECKED BY: eadspace PID (ppm) Depth (feet) Graphic Log SSS Time Borehole Description Sample ID Backfill CL CL; CLAY, black (5Y 2.5/1), slightly moist, hard, high plasticity, no odor 0.0 BA-3-V 1450 0.0 BA-3-7 Becomes dark grayish brown (10YR 4/2), silty, slightly moist, hard, high plasticity, no Olive brown (2.5Y 4/3), slightly moist, firm low 1445 0.0 BA-3-9 to medium plasticity, no odor 1500 10 -Grout BA-3-W 15

DRM 304_SECOR037_OLSON BORINGS (20070425).GPJ_SECOR037.GDT_5/17//

20

Borehole terminated at 20 feet bgs.

Missed perched groundwater at 10' bgs.

Vapor collected at 5' bgs. Groundwater collected at 11' bgs. Backfilled with neat

grout 0-20' bgs.

PROJECT: Olson - San Lorenzo WELL / PROBEHOLE / BOREHOLE NO: LOCATION: 1210 Bockman Road, San Lorenzo, CA BA-04 PAGE 1 OF 1 PROJECT NUMBER: 040T.29215.68 SECOR DATE: STARTED: 4/26/2007 COMPLETED: 4/26/2007 NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Vironex INITIAL DTW (ft): 8 4/26/07 BOREHOLE DEPTH (ft): 12.0 DRILLING EQUIPMENT: Geoprobe 6600 STATIC DTW (ft): NE WELL DEPTH (ft): ---DRILLING METHOD: Direct Push WELL CASING DIAMETER (in): ---BOREHOLE DIAMETER (in): 2 SAMPLING EQUIPMENT: Sleeves LOGGED BY: J. Adelaars CHECKED BY: Graphic Log Sample leadspack PID (ppm) Depth (feet) **USCS** Blow Count/ft Time Borehole Description Sample ID Backfill CL CL; CLAY, black (5Y 2.5/1), slightly moist, hard, high plasticity, no odor Becomes dark grayish brown (10YR 4/2), silty **BA-4-V** 1540 BA-4-5 0.0 -Grout 1545 0.0 Trace sand BA-4-7 ML; SILT, olive brown (2.5Y 4/3), moist, firm, ML low to medium plasticity, no odor 10-1630 Borehole terminated at 12 feet bgs. BA-4-W Groundwater encountered at 8' bgs. Vapor collected at 5' bgs. Groundwater collected at 15' bgs. Backfilled with neat grout 0-12' bgs. GEO FORM 304_SECOR037 OLSON BORINGS (20070426).GPJ SECOR037.GDT 5/17/07 15 15-20 20-

PROJECT: Olson - San Lorenzo LOCATION: 1210 Bockman Road, San Lorenzo, CA PROJECT NUMBER: **040T.29215.68** DATE: STARTED: 4/27/2007 COMPLETED: 4/27/2007 DRILLING COMPANY: Vironex DRILLING EQUIPMENT: Geoprobe 6600 DRILLING METHOD: Direct Push SAMPLING EQUIPMENT: Sleeves Description FILL CL homogeneous, no odor

WELL / PROBEHOLE / BOREHOLE NO:

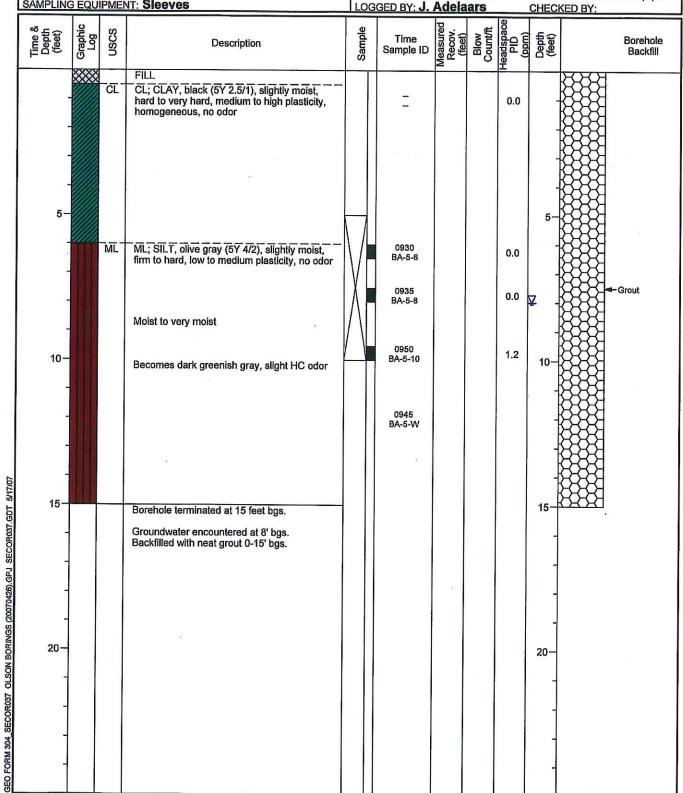
LATITUDE:

GROUND ELEV (ft):

STATIC DTW (ft): NE

INITIAL DTW (ft): 8 4/27/07

WELL CASING DIAMETER (in): ---


BA-05 PAGE 1 OF 1 NORTHING (ft):

EASTING (ft): LONGITUDE: TOC ELEV (ft):

BOREHOLE DEPTH (ft): 15.0 WELL DEPTH (ft): --

SECOR

BOREHOLE DIAMETER (in): 2

PROJECT: Olson - San Lorenzo

LOCATION: 1210 Bockman Road, San Lorenzo, CA

PROJECT NUMBER: **040T.29215.68**

DATE: STARTED: 4/27/2007

COMPLETED: 4/27/2007

DRILLING COMPANY: Vironex

DRILLING EQUIPMENT: Geoprobe 6600

DRILLING METHOD: Direct Push SAMPLING EQUIPMENT: Sleeves

WELL / PROBEHOLE / BOREHOLE NO:

BA-06 PAGE 1 OF 1

NORTHING (ft): LATITUDE:

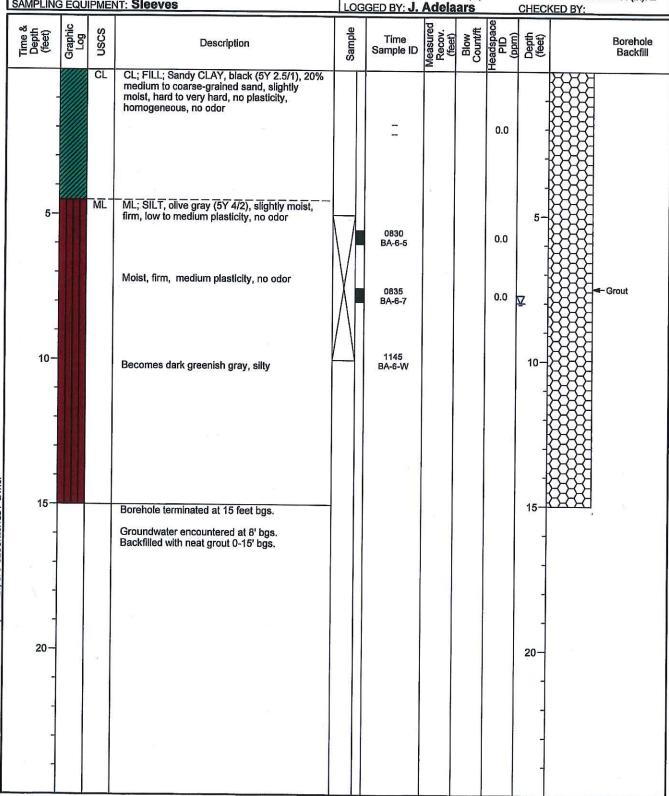
GROUND ELEV (ft):

INITIAL DTW (ft): 8 4/27/07

STATIC DTW (ft): NE

WELL CASING DIAMETER (in): ---

BOREHOLE DEPTH (ft): 15.0


WELL DEPTH (ft): ---BOREHOLE DIAMETER (in): 2

SECOR

EASTING (ft):

LONGITUDE:

TOC ELEV (ft):

FORM 304_SECOR037_OLSON BORINGS (20070426).GPJ_SECOR037.GDT_5/17/07

PROJECT: Olson - San Lorenzo WELL / PROBEHOLE / BOREHOLE NO: LOCATION: 1210 Bockman Road, San Lorenzo, CA **BA-07** PAGE 1 OF 1 SECOR PROJECT NUMBER: **040T.29215.68** DATE: STARTED: 4/27/2007 COMPLETED: 4/27/2007 NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Vironex INITIAL DTW (ft): NE BOREHOLE DEPTH (ft): 15.0 DRILLING EQUIPMENT: Geoprobe 6600 STATIC DTW (ft): NE WELL DEPTH (ft): ---DRILLING METHOD: Direct Push WELL CASING DIAMETER (in): ---BOREHOLE DIAMETER (in): 2 SAMPLING EQUIPMENT: Sleeves LOGGED BY: J. Adelaars CHECKED BY: Graphic Log Sample Time & Depth (feet) SOSD Time Borehole Description Sample ID Backfill FILL CL CL; CLAY, black (5Y 2.5/1), slightly moist, hard to very hard, medium to high plasticity, homogeneous, no odor 1245 0.0 BA-7-5 ML; SILT, olive gray (5Y 4/2), slightly moist, firm to hard, low to medium plasticity, no odor 1250 0.0 **BA-7-7** Grout Moist to very moist 1300 10-Becomes dark greenish gray, slight HC odor BA-7-W GEO FORM 304_SECOR037 OLSON BORINGS (20070426).GPJ SECOR037.GDT 5/17/07 15 Borehole terminated at 15 feet bgs.

20

No Groundwater encountered. Backfilled with

neat grout 0-15' bgs.

20

PROJECT: Olson - San Lorenzo LOCATION: 1210 Bockman Road, San Lorenzo, CA PROJECT NUMBER: 040T.29215.69 DRILLING: STARTED 11/7/07 COMPLETED: 11/7/07 INSTALLATION: STARTED 11/7/07 **COMPLETED: 11/7/07** DRILLING COMPANY: Gregg Drilling DRILLING EQUIPMENT: D-32 DRILLING METHOD: Hollow Stem Auger/Direct Push SAMPLING EQUIPMENT: Continuous Core Description 10

WELL / PROBEHOLE / BOREHOLE NO:

MW-01 PAGE 1 OF 1

NORTHING (ft): LATITUDE: GROUND ELEV (ft): INITIAL DTW (ft): 18 11/7/07

STATIC DTW (ft): 7.5 11/7/07 WELL CASING DIAMETER (in): 4 EASTING (ft): LONGITUDE: TOC ELEV (ft): BOREHOLE DEPTH (ft): 20.0 WELL DEPTH (ft): 13.0 BOREHOLE DIAMETER (in): 10

SECOR

LOGGED BY: Jason Adelaars CHECKED BY: Sample Blow Time Depth (feet) Well Sample ID Construction Native Soil Gravel CLAY; CL; 2.5Y 2.5/1 black; medium to high plasticity; hard; slightly moist; no odor Grout Chips ...same as above; 5Y 4/1 dark gray; silty; 0810 medium plasticity; firm to hard; moist; no 0.6 MW-01-7 Sand 20 10 ...same as above; 2.5Y 4/3 olive brown; silty; medium plasticity; firm to hard; moist ...same as above ; soft; very moist 15 15 0830 ..same as above; 5Y 4/3 olive; medium to 0.0 ∇ MW-01-18 high plasticity; firm to hard GEO FORM 304 OLSON-SAN LORENZO.GPJ SECOR INTL.GDT 11/27/07 0820 ...same as above ; soft; wet 0.0 20 MW-01-20 20 Groundwater Encountered @ 18' BGS Geoprobe Borehole Depth - 20' BGS -Backfilled With Cement Grout. Monitoring Well Installed Adjacent To Geoprobe Hole terminated at 20 feet. 25 25

PROJECT: Olson - San Lorenzo WELL / PROBEHOLE / BOREHOLE NO: LOCATION: 1210 Bockman Road, San Lorenzo, CA MW-02 PAGE 1 OF 1 PROJECT NUMBER: 040T.29215.69 SECOR NORTHING (ft): DRILLING: STARTED 11/7/07 **COMPLETED: 11/7/07** EASTING (ft): LATITUDE: LONGITUDE: INSTALLATION: STARTED 11/7/07 **COMPLETED: 11/7/07** GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Greag Drilling INITIAL DTW (ft): 18 11/7/07 BOREHOLE DEPTH (ft): 20.0 **DRILLING EQUIPMENT: D-32** STATIC DTW (ft): 7.5 11/7/07 WELL DEPTH (ft): 13.0 DRILLING METHOD: Hollow Stem Auger/Direct Push WELL CASING DIAMETER (in): 4 BOREHOLE DIAMETER (in): 10 SAMPLING EQUIPMENT: Continuous Core LOGGED BY: Jason Adelaars CHECKED BY: Graphic Log nscs Sample Time Well Description Sample ID Construction Native Soil Gravel CLAY; CL; 2.5Y 4/2 dark grayish brown; trace sand; hard; high plasticity; slightly moist; no odor Grout Chips ..same as above; 2.5Y 5/3 olive brown; silty; firm to hard; medium plasticity; slightly moist; no odor 0850 0.1 MW-02-8 Sand 10 20 10 ...same as above; GLEY 4/10Y dark greenish gray; firm to hard; high to medium plasticity; no odor; moist ...same as above; 2.5Y 5/3 light olive brown; firm to hrad; medium plasticity; moist; no 15 15 0900 0.0 MW-02-17 ∇ GEO FORM 304 OLSON-SAN LORENZO.GPJ SECOR INTL.GDT 11/27/0; 0905 ..same as above; 5Y 4/2 olive gray; wet; 22.8 20 MW-02-20 20 slight hydrocarbon odor Groundwater Encountered @ 18' BGS Geoprobe Borehole Depth - 20' BGS -Backfilled With Cement Grout. Monitoring Well Installed Adjacent To Geoprobe Borehole. Hole terminated at 20 feet. 25 25

PROJECT: Olson - San Lorenzo WELL / PROBEHOLE / BOREHOLE NO: LOCATION: 1210 Bockman Road, San Lorenzo, CA MW-03 PAGE 1 OF 1 PROJECT NUMBER: 040T.29215.69 SECOR EASTING (ft): NORTHING (ft): DRILLING: STARTED 11/7/07 **COMPLETED: 11/7/07** LATITUDE: LONGITUDE: INSTALLATION: STARTED 11/7/07 **COMPLETED: 11/7/07** GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Gregg Drilling INITIAL DTW (ft): 17 11/7/07 BOREHOLE DEPTH (ft): 20.0 DRILLING EQUIPMENT: D-32 STATIC DTW (ft): 10 11/7/07 WELL DEPTH (ft): 16.0 DRILLING METHOD: Hollow Stem Auger/Direct Push WELL CASING DIAMETER (in): 4 BOREHOLE DIAMETER (in): 10 SAMPLING EQUIPMENT: Continuous Core LOGGED BY: Jason Adelaars CHECKED BY: Time & Depth (feet) Sample eadspa PID (units) Blow Time Recov (feet) Well Description Sample ID Construction Native Soil Gravel CLAY; CL; 2.5Y 2.5/1 black; trace gravel CL and sand; hard to very hard; high plasticity; slightly moist; no odor Grout Chips ...same as above ; 2.5Y 4/4 olive brown; trace sand; firm; medium plasticity; slightly moist; no odor <u>¥</u> 10-10 20 Sand ...same as above; 2.5Y 4/3 olive brown; silty; firm; moist; no odor 15 15 ...same as above; very moist 1115 0.0 MW-03-16 GEO FORM 304 OLSON-SAN LORENZO.GPJ SECOR INTL.GDT 11/27/07 1110 0.0 MW-03-20 20 .same as above ; wet 20 Groundwater Encountered @ 17' BGS Geoprobe Borehole Depth - 20' BGS -Backfilled With Cement Grout. Monitoring Well Installed Adjacent To Geoprobe Borehole. Hole terminated at 20 feet. 25 25

PROJECT: Olson - San Lorenzo WELL / PROBEHOLE / BOREHOLE NO: LOCATION: 1210 Bockman Road, San Lorenzo, CA MW-04 PAGE 1 OF 1 PROJECT NUMBER: 040T.29215.69 SECOR DRILLING: STARTED 11/7/07 COMPLETED: 11/7/07 NORTHING (ft): EASTING (ft): INSTALLATION: STARTED 11/7/07 LATITUDE: LONGITUDE: COMPLETED: 11/7/07 GROUND ELEV (ft): DRILLING COMPANY: Gregg Drilling TOC ELEV (ft): INITIAL DTW (ft): 17 11/7/07 BOREHOLE DEPTH (ft): 20.0 DRILLING EQUIPMENT: D-32 STATIC DTW (ft): 8 11/7/07 WELL DEPTH (ft): 13.0 DRILLING METHOD: Hollow Stem Auger/Direct Push WELL CASING DIAMETER (in): 4 BOREHOLE DIAMETER (in): 10 SAMPLING EQUIPMENT: Continuous Core LOGGED BY: Jason Adelaars CHECKED BY: Sample Time & Depth (feet) Blow Depth (feet) Time Well Description Sample ID Construction Soil CLAY; CL; 2.5Y 4/3 dark grayish brown; trace sand; hard; high plasticity; slightly moist, no odor ...same as above; 2.5Y 4/3 olive brown; firm; Well medium plasticity; moist; no odor Abandonded Backfilled With Cement Grout 10 20 ...same as above; GLEY1 5/10Y greenish gray; silty; medium plasticity; firm; slightly 1315 0.2 MW-04-13 ...same as above; 5Y 4/3 olive; firm to hard; medium plasticity; moist to wet 15 15 ...same as above; hard to very hard; medium plasticity; moist to wet 1300 20 3.7 MW-04-20 ...same as above 20 Groundwater Encountered @ 17' BGS Geoprobe Borehole Depth - 20' BGS -Backfilled With Cement Grout - Temporary Monitoring Well Installed, Purged Dry, Sampled, And Abandonded With Cement Grout. Hole terminated at 20 feet. 25 25

PROJECT: Former Impulse Motors WELL / PROBEHOLE / BOREHOLE NO: LOCATION: 1210 Bockman Road, San Lorenzo CA **SB-01** PAGE 1 OF 1 PROJECT NUMBER: 185802329 DRILLING: STARTED 12/7/10 COMPLETED: 12/7/10 NORTHING (ft): EASTING (ft): INSTALLATION: STARTED 12/7/10 LATITUDE: COMPLETED: 12/7/10 LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: WDC INITIAL DTW (ft): 17 12/7/10 BOREHOLE DEPTH (ft): 20.0 DRILLING EQUIPMENT: Geoprobe STATIC DTW (ft): NE WELL DEPTH (ft): ---DRILLING METHOD: Direct Push WELL CASING DIAMETER (in): ---BOREHOLE DIAMETER (in): 2.5 SAMPLING EQUIPMENT: Acetate sleeves LOGGED BY: KT CHECKED BY: KD Geotechnical Lab Testing Graphic Log Time & Depth (feet) Sample Blow Count Headspace PID (units) **NSCS** Depth (feet) Time Borehole Description Sample ID Backfill 4" Concrete CL CLAY; CL; dark brown; no odor; no odor Concrete 5-... same as above 940 0.5 0.0 SB-01@5' 10-10 ... same as above 0.5 0.0 SB-01@10' Cement bentonite grout GEO FORM 304 SAN LORANZO DOWN-GRADIENT BORINGS.GPJ SECOR INTL.GDT 12/23/10 15-950 ... same as above; light brown; slightly moist 0.5 0.0 SB-01@15' 955 0.5 0.0 SB-01@17' 0 1140 ... same as above; moist SB-01-GW 0.5 0.0 20 1000 20 Hole terminated at 20 feet. SB-01@20'

PROJECT: Former Impulse Motors WELL / PROBEHOLE / BOREHOLE NO: LOCATION: 1210 Bockman Road, San Lorenzo CA SB-02 PAGE 1 OF 1 **PROJECT NUMBER: 185802329** DRILLING: STARTED 12/7/10 COMPLETED: 12/7/10 NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: INSTALLATION: STARTED 12/7/10 COMPLETED: 12/7/10 GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: WDC INITIAL DTW (ft): 17 12/7/10 BOREHOLE DEPTH (ft): 20.0 DRILLING EQUIPMENT: Geoprobe STATIC DTW (ft): NE WELL DEPTH (ft): ---DRILLING METHOD: Direct Push WELL CASING DIAMETER (in): ---BOREHOLE DIAMETER (in): 2.5 SAMPLING EQUIPMENT: Acetate sleeves LOGGED BY: KT CHECKED BY: KD Geotechnical Lab Testing Graphic Log Sample uscs leadspac PID (units) Blow Depth (feet) Time Borehole Description Sample ID Backfill 4" Concrete CLAY; CL; dark brown; no odor; no odor Concrete 900 ... same as above 0.5 0.0 SB-02@5' 10 905 SB-02@10' 10-... same as above 0.5 0.0 Cement bentonite grout SECOR INTL.GDT 15-913 15 ... same as above; light brown; slightly moist 0.5 0.0 SB-02@15' GEO FORM 304 SAN LORANZO DOWN-GRADIENT BORINGS.GPJ ∇ 0 1030 ... same as above; moist SB-02-GW 0.5 0.0 917 20 20 Hole terminated at 20 feet. SB-02@20'