ExxonMobil Environmental Services Company

4096 Piedmont Avenue #194 Oakland, California 94611 510 547 8196 Telephone 510 547 8706 Facsimile Jennifer C. Sedlachek Project Manager

RECEIVED

3:58 pm, Feb 28, 2011 Alameda County Environmental Health

February 25, 2011

Mr. Jerry T. Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, California 94502-6577

Subject:

Fuel Leak Investigation Site No. RO0002635

Former Exxon RAS #74121, 10605 Foothill Boulevard, Oakland, California

Dear Mr. Wickham:

Attached for your review and comment is a copy of the *Soil Vapor Sampling Report* for the above-referenced site. The report, prepared by ETIC Engineering, Inc. of Pleasant Hill, California, details the results of the soil vapor sampling in January 2011.

Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Jennifer C. Sedlachek

Project Manager

Attachment: ETIC Soil Vapor Sampling Report

c: w/ attachment;

Mr. Ken Phares - MacArthur Boulevard Associates, Oakland, California

Mr. Peter McIntyre - AEI Consultants

c: w/o attachment:

Mr. Bryan Campbell - ETIC Engineering, Inc.

25 February 2011

Ms. Jennifer C. Sedlachek ExxonMobil Environmental Services Company 4096 Piedmont Avenue #194 Oakland, California 94611

Subject:

Soil Vapor Sampling Report

Former Exxon Retail Site 74121, 10605 Foothill Boulevard, Oakland, California

Fuel Leak Investigation Site No. RO0002635

Dear Ms. Sedlachek:

ETIC Engineering, Inc. (ETIC) has prepared this Soil Vapor Sampling Report for ExxonMobil Environmental Services Company on behalf of ExxonMobil Oil Corporation for former Exxon Retail Site 74121, located at 10605 Foothill Boulevard in Oakland, California. This report was prepared in response to a letter from the Alameda County Health Care Services Agency (ACHCSA) dated 29 December 2010 (Attachment A), following the procedures described in ETIC's Vapor Sampling Report dated 10 December 2010.

Introduction

In the Vapor Sampling Report, ETIC recommended that additional soil vapor samples be collected from vapor wells VW2 and VW11. The additional sampling was expected to provide soil vapor data for the area between the former excavation boundary and the residential property (VW2) and near former dispenser islands (VW11) in order to further evaluate the potential risk of vapor intrusion to existing adjacent residential properties and future commercial onsite properties following excavation activities (ETIC 2010).

In addition, the ACHCSA requested in their response letter dated 29 December 2010 that collection of soil vapor samples be attempted again from vapor probes VW3 and VW4. Well construction details are provided in Table 1.

Soil Vapor Sample Collection

An advisory published by the Department of Toxic Substances Control and the California Regional Water Quality Control Board, Los Angeles Region was used as a guideline for the collection of the soil vapor samples (DTSC/LARWQCB 2003 and DTSC 2004).

A purge volume test was conducted during the previous soil vapor sampling performed in October 2010, and three purge volumes was determined to be the preferred purge volume prior to collecting the soil vapor samples at the site (ETIC 2010).

Prior to the collection of the soil vapor samples, irrigation of the onsite landscaping was discontinued. On 19 January 2011, the collection of soil vapor samples was attempted from vapor wells VW2 through VW4 and VW11. Soil vapor samples could not be collected from vapor wells VW3 and VW4 due to the presence of water in the wells. Attempts were not made to remove water as this may preclude performing proper purging of soil vapor before sampling. Wells VW2 and VW11 were purged of three well volumes using Summa canisters, prior to sampling. After purging, 1-liter Summa canisters were used to collect samples from each soil vapor well. The initial pressure and the final pressure readings taken from the gauges on the Summa canisters were recorded. During sampling, helium was used as a tracer to check for leaks.

Field protocols are provided in Attachment B. The field documents are included in Attachment C.

Soil Vapor Sample Analytical Methods and Results

Soil vapor samples collected from vapor wells VW2 and VW11 were submitted to Calscience Environmental Laboratories, Inc., a state-certified laboratory in Garden Grove, California, for analysis.

The samples were analyzed for Total Petroleum Hydrocarbons as gasoline (TPH-g) by EPA Method TO-3M and for benzene, toluene, ethylbenzene, and total xylenes (BTEX), the oxygenates methyl tertiary butyl ether, tertiary butyl alcohol, diisopropyl ether, ethyl tertiary butyl ether, and tertiary amyl methyl ether, and the additives 1,2-dibromoethane and 1,2-dichloroethane by EPA Method TO-15. The samples were also analyzed for oxygen + argon, methane, and carbon dioxide by ASTM D-1946.

The analytical results for the soil vapor samples are presented in Table 2 and on Figure 1. The laboratory analytical report and chain-of-custody documentation are included in Attachment D.

Conclusions

The collection of soil vapor samples from soil vapor wells VW2 and VW11 was recommended at the site to provide data in order to further evaluate the potential risk of vapor intrusion to existing adjacent residential properties and future commercial onsite properties following excavation activities. Also, an additional attempt to collect soil vapor samples from vapor probes VW3 and VW4 was requested by the ACHCSA.

Soil vapor samples were collected from wells VW2 and VW11 and analyzed. Soil vapor samples could not be collected from wells VW3 and VW4 due to the presence of water in each well. Results for different areas of the site are listed below and compared with Environmental Screening Levels (ESLs) (RWQCB-SF 2007):

• Former dispenser islands: Well VW11 is located near the former dispenser islands. TPH-g was detected in soil vapor sample VW11 at a concentration exceeding the residential and

commercial ESLs. Benzene was detected in soil vapor sample VW11 at a concentration less than the residential and commercial ESLs.

• Between the excavation boundary and the residential property: Vapor well VW2 is located between the former excavation boundary and the adjacent residential property to the southwest. TPH-g, BTEX, the five fuel oxygenates, 1,2-dibromoethane, and 1,2-dichloroethane were not detected in sample VW2.

Recommendations will be submitted under separate cover. If you have any questions, please contact me at (925) 602-4710 ext. 32.

Sincerely,

Thomas E. Neely, PG, CHG, REA II

Senior Hydrogeologist

Attachments:

Figure 1: Site Map Showing Soil Vapor Sample Analytical Results

Table 1: Well Construction Details

Table 2: Soil Vapor Sample Analytical Results

Attachment A: Regulatory Correspondence

Attachment B: Field Protocols
Attachment C: Field Documents

Attachment D: Laboratory Analytical Reports and Chain-of-Custody Documentation

References

DTSC/LARWQCB (Department of Toxic Substances Control and California Regional Water Quality Control Board – Los Angeles Region). 2003. Advisory – Active Soil Gas Investigations. DTSC and LARWQCB, Glendale and Los Angeles, California. 28 January.

DTSC (Department of Toxic Substances Control). 2004. Guidance for the Evaluation and Mitigation of Substance Vapor Intrusion to Indoor Air – Interim Final. 15 December.

ETIC (ETIC Engineering, Inc.). 2010. Vapor Sampling Report, Former Exxon Retail Site 74121, 10605 Foothill Boulevard, Oakland, California. ETIC, Pleasant Hill, California. 10 December.

RWQCB-SF (California Regional Water Quality Control Board, San Francisco Bay Region). 2007. Screening for Environmental Concerns At Sites With Contaminated Soil and Groundwater. RWQCB-SF, Oakland, California. November 2007, revised May 2008.

Figures

SITE MAP SHOWING SOIL VAPOR SAMPLE ANALYTICAL RESULTS
FORMER EXXON RS 74121
10605 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA
19 JANUARY 2011

TABLE 1 WELL CONSTRUCTION DETAILS, FORMER EXXON RS 74121, 10605 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

Weil Number		Well Installation Date	Elevation TOC (feet)	Casing Material	Total Depth (feet)	Well Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (feet)	Filter Pack Material
MW1	a	01/23/07	82.47	PVC	26.5	25	8	2	10 - 25	0.010	8 - 25	#2/12 Sand
MW2	a	01/23/07	84.40	PVC	26.5	25	8	2	10 - 25	0.010	8 - 25	#2/12 Sand
MW3	a	01/24/07	83.25	PVC	26.5	25	8	2	10 - 25	0.010	8 - 25	#2/12 Sand
MW5	a	01/23/07	82.65	PVC	26.5	25	8	2	10 - 25	0.010	8 - 25	#2/12 Sand
VW1	a	01/22/07		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW2	a	01/22/07		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW3	a	01/22/07		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW4	a	01/22/07		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW5	a	01/22/07		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW6	b	03/23/09		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW7	c	03/23/09		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW8	c	03/23/09		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW9	b	03/23/09		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW10	ь	03/23/09		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW11	b	03/23/09		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW12	b	03/23/09		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand

TABLE 1	WELL CONSTRUCTION DETAILS,	FORMER EXXON RS 74121.	. 10605 FOOTHILL BOULEVARD.	OAKLAND, CALIFORNIA

	Well	Elevation		Total	Well	Borehole	Casing	Screened		Filter Pack	
Well	Installation	TOC	Casing	Depth	Depth	Diameter	Diameter	Interval	Slot Size	Interval	Filter Pack
Number	Date	(feet)	Material	(feet)	(feet)	(inches)	(inches)	(feet)	(inches)	(feet)	Material
				, ,					····		

N	otes	

a	Well surveyed on 12 March 2007 by Morrow Surveying.
b	Well surveyed on 4 May 2009 by Morrow Surveying.
c	Well destroyed during remedial excavation.

PVC Polyvinyl chloride.
SS Stainless steel.
TOC Top of casing.

TABLE 2 SOIL VAPOR SAMPLE ANALYTICAL RESULTS, FORMER EXXON RETAIL SITE 74121, 10605 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

			Concent	ration (% b	y Volume)							Concentration	n (μg/m³)									
	Depth		Oxygen and		Carbon			Ethyl-	m,p-	0-	Total									_		
Boring ID	(feet bgs)	Date	Argon	Methane	Dioxide	Benzene	Toluene	benzene		Xylene		ТРН-g	MTBE	TBA	DIPE	ЕТВЕ	1,2-DCA	TAME	EDB	1,1-DFA		
	 •		-						-	•												
V1	5.5	05/01/06	9.4			200	<100	<100	<100	<100		790,000	<100							<10,000		
V2ª		05/01/06																				
V3	5.5	05/01/06	19			120	160	140	<100	<100		110,000	<100							<10,000		
V3 ^a	10	05/01/06										-										
V4ª		05/01/06						****					77.77									
V5ª		05/01/06												***						***		
V6	7.0	05/01/06	9.1			170	<100	540	410	<100		880,000	<100							<10,000		
V 7	7.5	05/01/06	21		~~	84	140	<100	110	<100		2,200	<100							<10,000		
V7 dup	7.5	05/01/06	20			<80	110	<100	<100	<100	-	2,400	<100							<10,000		
V8ª		05/01/06													_		. 					
V9	7.5	05/01/06	19			<80	<100	<100	<100	<100		360,000	<100							<10,000		
V10	8.0	05/01/06	11			1,100	130	340	180	<100		6,600,000	<100							<10,000		
V10	10.0	05/01/06	9.0			1,900	<100	<100	<100	<100	-	17,000,000	<100							<10,000		
VWI ^b	5 - 6	4/27/07	11.1			-D 4	10	~ ~ ~	10	4.0		-20.000	-111	-0.0	-10	-110	-2.0	-10	5.5	-0.1		
VW1 ^c	3-0	4/23/09	11.1			<2.4	12	<3.2	10	4.8		<20,000	<11	<9.0	<12	<12	<3.0	<19 	<5.7	<8.1		
VWI	5 - 6	10/12/10	17.5	< 0.785	5.24	<2.5	3.6	<3.4			<14	<11,000	<11	<9.5	<13	<13	<3.2	<13	<6.0			
VW2°		4/07/07																				
VW2 VW2	5 - 6	4/27/07 4/23/09	8.05	<0.770	6.55	<6.1	 <7.3	 <8.4			 <33	210,000	<28	 <23	 <32	 <32	 <7.8	 <32	 <15	<21		
VW2 dup	5 - 6	4/23/09	7.88	<0.770	6.05	<6.2	<7.3	<8,5			<34	220,000	<28	<24	<33	<33	<7.9	<33	<15	29		
VW2	5 - 6	10/12/10	8.13	< 0.820	6.90	<5.2	<6.2	<7.1			<28	190,000	<24	<20	<27	<27	<6.6	<27	<13			
VW2	5 - 6	1/19/11	2.59	< 0.710	7.80	<2.3	<2.7	<3.1			<12	<9,900	<10	<8.6	<12	<12	<2.9	<12	<5.5			
VW3 ^c		4/27/07																				
VW3°		4/23/09																				
VW3°		10/12/10	***					***														
VW3 ^c		1/19/11		***						ev to												
VW4°		4/27/07																				
VW4°		4/23/09														-						
VW4°		10/12/10			***																	
VW4 ^c		1/19/11																77				
									~~								MAN .					
VW5 ^b	5 - 6	4/27/07	3.49			4.4	11	4.4	12	4.8		<23,000	<12	<9.9	<14	<14	<3.3	<21	<6.3	<8.9		

TABLE 2 SOIL VAPOR SAMPLE ANALYTICAL RESULTS, FORMER EXXON RETAIL SITE 74121, 10605 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

Concentration (% by Volume)							Concentration (µg/m³)													
Boring ID	Depth (feet bgs)	Date	Oxygen and Argon	Methane	Carbon Dioxide	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total Xylenes	TPH-g	MTBE	TBA	DIPE	ЕТВЕ	1,2-DCA	TAME	EDB	1,1-DFA
VW5	5 - 6	4/23/09	2.57	< 0.710	9.84	<2.3	<2.7	<3.1			<12	9,800	<10	<8.6	<12	<12	<2.9	<12	<5.5	<7.7
VW5	5 - 6	10/12/10	2.05	< 0.790	13.2	5.1	6.8	<3.4			<14	22,000	<11	<9.6	<13	<13	<3.2	<13	<6.1	
VW5 dup	5 - 6	10/12/10	2,16	<0.840	12.5	<2.7	7.9	4.1			<15	36,000	<12	76	<14	<14	<3.4	<14	<6.5	
VW6 ^c		3/27/09																		
VW6	5 - 6	10/12/10	16.1	< 0.835	5.25	7.3	11	12			24	<12,000	<12	12	<14	<14	<3.4	<14	<6.4	
VW7	5 - 6	3/27/09	6.94	< 0.810	5.52	54	910	180			860	11,000	<12	<9.8	<14	<14	<3.3	<14	<6.2	<8.8
VW8	5 - 6	3/27/09	2.91	2.61	5.98	<99	<120	<130			<540	4,400,000	<450	<380	<520	<520	<130	<520	<240	<330
VW9	5 - 6	3/27/09	11.2	< 0.820	4.36	25	250	51			260	65,000	<30	<25	<34	<34	<8.3	<34	<34	<22
VW9 dup	5 - 6	3/27/09	<9.05	<9.05	<9.05	150	1,600	310			1,600	130,000	<130	<110	<150	<150	<37	<150	< 70	<98
VW9	5 - 6	10/12/10	7.01	< 0.775	15.4	<2.5	3.7	<3.4			<13	<11,000	<11	<9.4	<13	<13	<3.1	<13	<6.0	
VW10	5 - 6	3/27/09	4.21	< 0.780	2.69	38	520	120			550	880,000	<110	<95	<130	<130	<32	<130	<60	<84
VW10	5 - 6	10/12/10	4.83	< 0.815	6.32	<2.6	4.0	<3,5		~~	<14	<11,000	<12	<9.9	<14	<14	<3.3	<14	<6.3	
VW11	5 - 6	3/27/09	6.18	< 0.770	6.69	110	860	230			1,000	210,000	<110	<93	<130	<130	<31	<130	<59	5,300
VW11 ^c		10/12/10												~~						
VW11	5 - 6	1/19/11	2,35	<0.725	12.4	45	<44	< 50			<200	420,000	<170	<140	<190	<190	<47	<190	<89	
VW12	5 - 6	3/27/09	12.9	<1.26	4.78	90	1,700	340		4.40	1,500	17,000	<18	<15	<21	<21	<5.1	<21	<9.7	<14
Lowest Resi	idential ESL ^d					84	63,000	980	21,000	21,000	21,000	10,000	9,400				94		4.1	
Lowest Con	nmercial/Indu	strial ESL ^d				280	180,000	3,300	58,000	58,000	58,000	29,000	31,000				310		14	

Notes:

feet bgs Feet below ground surface.

1,1-DFA 1,1-Difluoroethane.

1,2-DCA 1,2-Dichloroethane.

DIPE Diisopropyl ether.

EDB Ethylene dibromide (1,2-dibromoethane).

ETBE Ethyl tertiary butyl ether.

MTBE Methyl tertiary butyl ether.

a Soil vapor could not be extracted at depths between 4 and 10 feet bgs from this boring.

b Soil vapor samples were collected without purging (grab samples).

c Soil vapor samples were not collected due to the presence of water.

d From Table E-1a: Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater - Interim Final, Regional Water Quality Control Board - San Francisco Bay Region, May 2008.

TABLE 2 SOIL VAPOR SAMPLE ANALYTICAL RESULTS, FORMER EXXON RETAIL SITE 74121, 10605 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

				ration (% b	y Volume)		Concentration (µg/m³)													
Boring ID	Depth (feet bgs)	Date	Oxygen and Argon	Methane	Carbon Dioxide	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total Xylenes	ТРН-д	МТВЕ	TBA	DIPE	ЕТВЕ	1,2-DCA	TAME	EDB	1,1-DFA
TAME TBA TPH-g	Tertiary amyl Tertiary buty Total Petrolei	l alcohol.		soline.																
dup ESL	Duplicate. Environmenta	al screening	level.																	
 μg/m³	Not analyzed Micrograms p	• •																		

Attachment A Regulatory Correspondence

RECENTED

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

December 29, 2010

Ms. Jennifer Sedlachek (Sent via E-mail to: jennifer.c.sedlachek@exxonmobil.com)
Exxon Mobil
4096 Piedmont, #194
Oakland, CA 94611

MacArthur Boulevard Associates c/o Mr. John Jay, Management Agent (Sent via E-mail to: johnjay@jayphares.com) 10700 MacArthur Boulevard, Suite 200 Oakland, CA 94605

Subject: Review of Soil Vapor Sampling Report for Fuel Leak Case No. RO0002635 and Geotracker Global ID T0600120383, Exxon #7-4121, 10605 Foothill Boulevard, Oakland, CA 94605

Dear Ms. Sedlachek and Mr. Jay:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site, including the most recently submitted document entitled, "Vapor Sampling Report," dated December 10, 2010 (Report). The Report, which was prepared by ETIC Engineering, Inc., presents the results from sampling of six of ten existing soil vapor probes. The sampling was expected to provide data to evaluate the potential for vapor intrusion to existing adjacent residential properties and future onsite commercial buildings. However, soil vapor samples could not be collected from vapor probes VW3, VW4, VW11 due to water in the probes and due to low-flow conditions in VW12.

The Report recommends additional sampling of probe VW2 and VW11. We concur with additional sampling of VW2 and VW11 and request that sampling also be attempted at probes VW3 and VW4. Please use the sampling and analytical methods described in the, "Vapor Sampling Work Plan," dated September 3, 2010 and present the results of the sampling in the Soil Vapor Sampling Report requested below.

Please note that public participation will be required as part of the case closure process. Upon ACEH review of your summary report, ACEH will prepare and distribute a fact sheet to notify potentially affected members of the public who live or own property in the surrounding area of the potential for case closure. Public comments on the potential case closure will be accepted for a 30-day period.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

February 28, 2011 – Soil Vapor Sampling Report

Jennifer Sedlachek John Jay RO0002635 December 29, 2010 Page 2

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Digitally signed by Jerry Wickham DN: cn=Jerry Wickham, o=Alameda County Environmental Health, ou,

email=jerry.wickham@acgov.org, c=US Date: 2010.12.29 15:57:18 -08'00'

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Attachments: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 (Sent via E-mail to: lgriffin@oaklandnet.com)

Bryan Campbell, ETIC Engineering, Inc., 2285 Morello Avenue, Pleasant Hill, CA 94523 (Sent via E-mail to: <u>bcampbell@eticeng.com</u>)

Peter McIntyre, AEI Consultants, 2500 Camino Diablo, Suite 200, Walnut Creek, CA 94597 (Sent via E-mail to: pmcintyre@aeiconsultants.com)

Donna Drogos, ACEH (Sent via E-mail to: donna.drogos@acgov.org)
Jerry Wickham, ACEH (Sent via E-mail to: jerry.wickham@acgov.org)

File

Attachment 1 Responsible Party(ies) Legal Requirements/Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic submittal/report rqmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

REVISION DATE: July 20, 2010

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005;

December 16, 2005; March 27, 2009; July 8, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i. Send an e-mail to dehloptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - i. Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

Attachment B

Field Protocols

PROTOCOLS FOR SAMPLING SOIL VAPOR WELLS

SOIL VAPOR SAMPLING PROCEDURES

To ensure air-tight connections between the tubing, sampling port, valves, and other connections, a vacuum tightness test is performed on each well. The test consists of the application of a vacuum and monitoring of vacuum tightness using vacuum gauges and/or flow meter for 5 to 10 minutes. A leak would be evident if the vacuum gauges registered a decrease in the vacuum.

A purge test is conducted for one well. The selected well is generally the one with the highest expected concentrations. The test consists of the collection of vapor samples using Tedlar bags after purging the well of one (1), three (3), and seven (7) purge volumes by drawing vapor into the Tedlar bag using a vacuum chamber and vacuum pump. The purge volume is estimated based on the internal volume of the tubing used, the volume of the screen, and the voids in the sand pack within the annular space around the screen. The samples are collected through a particulate filter and flow controller which regulates the flow of soil vapor to no more than 200 milliliters per minute. The purge test samples are analyzed in the field using a photoionization detector. The results of the purge test are used to dictate the purge volume to be used during the sampling of subsequent wells.

The vapor samples are collected in 1-liter stainless steel Summa canisters. The samples are collected through a particulate filter and flow controller which regulates the flow of soil vapor to no more than 200 milliliters per minute. To ensure an air-tight connection at the well head and that ambient air does not enter the well at the well head, a tracer is applied. The tracer used is helium gas. To apply the tracer, a small shroud is placed over the well head and the tracer gas is allowed to fill the shroud at a constant rate. A hand-held helium detector is used in the field to measure the tracer within the shroud. Vapor is drawn into a Tedlar bag from the well using a vacuum chamber and vacuum pump. A leak will be evident if the concentration of the tracer in the well sample exceeds 10% of the concentration of the tracer in the shroud.

The 1-liter Summa canisters are labeled and packaged for delivery to a state-certified laboratory for chemical analysis. The initial pressure and the final pressure readings taken from the gauges on the Summa canisters are recorded. A small vacuum of about 5 inches of mercury is left inside the sample canister and is recorded on the chain-of-custody. Upon receipt, the laboratory checks the pressure in the sample canister and compares it to the pressure recorded on the chain-of-custody for quality control purposes.

Attachment C Field Documents

Purge Volume Calculations for Vapor Wells

TUBING	12 INCHES	0.25 INCHES O.D. 0.17 INCHES I.D.
RADIUS	0.085 INCHES	0.17 INCHES I.D.
VOLUME	0.272 INCHES ³	
CONVERT INCHES ³ to ML	1 INCHES ³ =	16.387 ML
VOLUME	4.461 M L	
TOTAL TUBING VOLUME (5.25 FT	23.421 ML	

SCREEN	6 INCHES	0.4 INCHES
RADIUS	0.2 INCHES	
VOLUME	0.754 INCHES ³	
CONVERT INCHES ³ to ML	1 INCHES ³ =	16.387 ML
VOLUME	. 12.349 ML	

SAND PACK	12 INCHES	4 INCHES
RADIUS	2 INCHES	e e
VOLUME	150.72 INCHES ³	
CONVERT INCHES ³ to ML	1 INCHES ³ =	16.387 ML
VOLUME	2469.858 ML	
VOLUME - SCREEN VOLUME	2457.508 ML	
POROSITY	0.33	·
VOLUME OF PORE SPACE	810.978 ML	

TOTAL VOLUME = TOTAL TUBING + SCREEN + SAND PACK = 846.75 ML

		TIME TO PURGE	
PURGE	TOTAL VOLUME	(MINUTES) AT	GAUGE
VOLUMES	(ML)	200ML/MIN	"Hg
	0		-30
1	800	4	-26
3	2,500	13	-17.5
7	5,900	30	-0.5

G:\Projects\ExxonMobil\Sites\74121\Public\2011 SV Sampling\Field forms\74121 SV Summa Sampling Form

SUMMA Canister Soil Vapor Sampling Form

	Site:		Former Exxon RS 74121		•	Personnel	•	Yuko Mamiy	a .		Temperatur	re:	<u>~ 60</u>	°F		
	Address:		10605 Footl	nill Blvd, Oaklan	d, CA	-	Page:	1	of			Barometric	Pressure:	-		
	Project #:		U	P4121 6.12	*		Purge Car	ister Volum	e (liters):	6		Precipitatio	n:			
	Date:		1/	P4121 6.12			Sample Canister Volume (liters):1				Relative Hu	ımidity:	0 ~ 65 3	%		
												Purge Volu	me :	3_		
												Flow Rate :		200	liters/minut	e
				Leak C	heck 1		Leak Check 2			Vapor Purge			Initial	Vapor	Sample	Final
Sampling Location	Purge Canister Serial Number	Sample Canister Serial Number	Flow Regulator Serial Number	Ambient He Concentration (ppm)	Tubing He Concentration (ppm)	Initial Purge Canister Vacuum (Inches Hg)	Start Time	Stop Time	Purge Canister Vacuum (Inches Hg)	Start Time	Stop Time	Final Purge Canister Vacuum (Inches Hg)	Sample Canister Vacuum (Inches Hg)	Start Time	Stop Time	Sample Canister Vacuum (Inches Hg)
VW2	0076	138	A146	20,000	0	-30	1229	1234	-30	1234	1253	-17	-30	1253	1308	-3
VW3	Į.	Nat	12	in th	e tuk	iry					,					
VW4	U	Nov	ter-	int	he to	Nein	g									
vwll	7766	258	A197	120,000	0	-30	1404	1409	-30	1409	H22	-17	-30	1430	1438	-5
		-														
									_							
	General W	Veather Co	nditions:	Surry	, clear											
	Other:	Other:														

Attachment D

Laboratory Analytical Reports and Chain-of-Custody Documentation

February 01, 2011

The original report has been revised/corrected.

Erik Appel ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, CA 94523-1850

Subject: Calscience Work Order No.: 11-01-1405

Client Reference:

ExxonMobil 74121

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 1/22/2011 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Cecile deGuia Project Manager

REPORT NARRATIVE

Calscience Work Order No.: 11-01-1405 Client Reference: ExxonMobil 74121

Note that the report has been amended to reflect the units change to ug/m3 for the TO-3M and TO-15. The revised report is attached.

Case Narrative

Work Order # 11-01-1405 Modified EPA TO-14A or EPA TO-15

EPA Methods TO-14A and TO-15 describe gas chromatographic procedures that will allow for that separation of volatile organic compounds and their qualitative and quantitative analysis by mass spectrometry (GC/MS). A known volume of sample is directed from the container (Summa® canister or Tedlar™ bag) through a solid multi-module (glass beads, tenex, cryofocuser) concentrator. Following concentration, the VOCs are thermally desorbed onto a gas chromatographic column for separation and then detected on a mass selective detector.

Comparison of EPA TO-14A/TO-15 versus Calscience EPA TO-14A/TO-15 (Modified)

Requirement	EPA Method	Calscience Modifications
BFB Acceptance Criteria	CLP Protocol	SW846 Protocol
Initial Calibration	Allowable % RSD for each Target Analyte <= 30%, two analytes allowed <= 40%	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <= 40%
Initial Calibration Verification (ICV) - Second Source Standard (LCS)	Not Mentioned	Analytes contained in the LCS standard evaluated against historical control limits for the LCS
Daily Calibration Verification (CCV)	Allowable % Difference for each Target Analyte is <= 30%	Full List Analysis: Allowable % Difference for each CCC analyte is <= 30%
		Target List Analysis: Allowable % Difference for each target analytes is <= 30%
Daily Calibration Verification (CCV) - Internal Standard Area Response	Allowable +/- 40% (Range: 60% to 140%)	Allowable +/- 50% (Range: 50% to 150%)
Method Blank, Laboratory Control Sample and Sample - Internal Standard Area Response	Allowable +/- 40% of the mean area response of most recent Initial Calibration (Range: 60% to 140%)	Allowable +/- 50% of the mean area response of the most recent Calibration Verification (Range: 50% to 150%)
Surrogates	Not Mentioned	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S

Analytical Report

ETIC Engineering, Inc.

2285 Morello Avenue

Pleasant Hill, CA 94523-1850

Date Received:

Work Order No:

Preparation:

Method: Units:

11-01-1405

ASTM D-1946

%v

N/A

01/22/11

Project: ExxonMobil 74121

Page 1 of 1

Client Sample Number	1 ha ha 1 w 1 w 1 w 1 h 1 h 1 h 1 h 1 h 1 h 1 h	1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
VW2		1	11-01-	1405-1-A	01/19/11 13:08	Air	GC 36	N/A	01/22 14:0		110122L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Methane	ND	0.710	1.42	U	Oxygen + Argor	n		2.59	0.710	1.42	
Carbon Dioxide	7.80	0.710	1.42		, -						
VW11	1	1 1 1 1 1 1 1 1 1 1	11-01-	1405-2-A	01/19/11 14:38	ATP CONTRACTOR OF THE PROPERTY	G C 36	NA	01/22 14.2		110122L01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Methane Carbon Dioxide	ND 12.4	0.725 0.725	1.45 1.45	U	Oxygen + Argor	n		2.35	0.725	1.45	
Method Blank		The second secon	099-03	-002-1,217	N/A	Air	GC 36	NA	01/22 08:		110122L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter		1 11 2 11 11 11 11 11 11 11 11 11 11 11	Result	<u>RL</u>	<u>DF</u>	Qual
Methane Carbon Dioxide	ND ND	0.500 0.500	1 1	U U	Oxygen + Argor	า		ND	0.500	1	U

DF - Dilution Factor ,

Qual - Qualifiers

Analytical Report

ETIC Engineering, Inc. 2285 Morello Avenue

Pleasant Hill, CA 94523-1850

Date Received:

Work Order No:

Preparation:

Method:

01/22/11

11-01-1405

N/A EPA TO-3M

Project: ExxonMobil 74121

Page 1 of 1

								<u> </u>
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
The continue of the continue		11-01-1405-1-A	01/19/11 13:08	Air	**************************************	N/A	01/22/11 14:17	110122L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	9900	1.42	U	ug/m3			
The second secon		11-01-1405-2-A	01/19/11 14:38	The state of the s	GC 13	A second of the	01/22/11 14:31	110122E01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	420000	10000	1.45		ug/m3			
Method Blank		098-01-005-2,877	N/A	Air	GC 13	N/A	01/22/11 08:52	110122L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	7000	1	U	ug/m3			

l I . . .

Analytical Report

ETIC Engineering, Inc.

2285 Morello Avenue

Pleasant Hill, CA 94523-1850

Date Received:

Work Order No:

Preparation:

Method:

Units:

01/22/11

11-01-1405

N/A

EPA TO-15 ug/m3

Page 1 of 1

Pro	ect:	ExxonMobil	74121
1 10	CUL.	LAXUUIIVIUUII	<i>!</i> + 4

											,0 1 01 1
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy		QC Batch ID
VW2		The second secon	11-01-1	405-1-A	0.1/19/41 	Air	GC/MS V	NA	01/22 15:		110122L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	2.3	1.42	U	Methyl-t-Butyl	Ether (MTF	3F)	ND	10	1,42	
Diisopropyl Ether (DIPE)	ND	12	1.42	Ü	Xylenes (total)	•	<i></i> ,	ND	12	1.42	_
1.2-Dibromoethane	ND	5.5	1.42	Ü	Tert-Amyl-Met		(AME)	ND	12	1.42	
1,2-Dichloroethane	ND	2.9	1.42	Ü	Tert-Butyl Alco	- '	(Alvie)	ND	8.6		-
Ethyl-t-Butyl Ether (ETBE)	ND	12	1.42	Ü	Toluene			ND	2.7	1.42	
Ethylbenzene	ND	3.1	1.42	Ü	roluene			ND	2.1	1.42	U
•				-				DEO (04)		_	
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>l</u>	Surrogates:			REC (%)	Control Limits	Q	<u>ual</u>
1,4-Bromofluorobenzene	99	57-129			1,2-Dichloroet	hane-d4		103	<u>47-137</u>		
Toluene-d8	100	78-156			.,						
	The second secon	A SAN AND AND AND AND AND AND AND AND AND A	11:01:1	405-2-A	0.1/19/11	Alr	GC/MS V	N/A	01/22 15:0		110122L01
Parameter	Dogulf	Di	DE	Ovel	D			D It	B.	DE	0 1
	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	45	37	23.2		Methyl-t-Butyl		3E)	ND	170	23.2	
Diisopropyl Ether (DIPE)	ND	190	23.2	U	Xylenes (total)			ND	200	23.2	U
1,2-Dibromoethane	ND	89	23.2	U	Tert-Amyl-Met		"AME)	ND	190	23.2	U
1,2-Dichloroethane	ND	47	23.2	U	Tert-Butyl Alco	ohol (TBA)		ND	140	23.2	U
Ethyl-t-Butyl Ether (ETBE)	ND	190	23.2	U	Toluene			ND	44	23.2	U
Ethylbenzene	ND	50	23.2	U							
Surrogates:	REC (%)	Control Limits	Qua	<u>l</u>	Surrogates:			REC (%)	Control Limits	Q	<u>ual</u>
1.4-Bromofluorobenzene	100	57-129			4.0 Diableses			103			
T,4-Bromondoroberzene Toluene-d8	90	78-156			1,2-Dichloroet	nane-d4		103	47-137		
Method Blank			095-01-	021-8,929	NVA	Air	GC/MS V	N/A	01/22 13:0		110122E01
Parameter	Result	RL	DF	Qual	Darameter		274 (4 pt 1 - 1 to	Popult	DI	DE	Ougl
					<u>Parameter</u>			Result	RL	<u>DF</u>	<u>Qual</u>
Benzene	ND	1.6	1	U	Methyl-t-Butyl	•	5 上)	ND	7.2	1	U
Diisopropyl Ether (DIPE)	ND	8.4	1	U	Xylenes (total)			ND	8.7	1	U
1,2-Dibromoethane	ND	3.8	1	U	Tert-Amyl-Met	,	AME)	ND	8.4	1	U
1,2-Dichloroethane	ND	2.0	1	U	Tert-Butyl Alco	ohol (TBA)		ND	6.1	1	U
Ethyl-t-Butyl Ether (ETBE)	ND	8.4	1	U	Toluene			ND	1.9	1	U
Ethylbenzene	ND	2.2	1	U							
Surrogates:	REC (%)	Control Limits	Qua	<u> </u>	Surrogates:			REC (%)	Control Limits	<u>Q</u>	<u>ual</u>
1.4-Bromofluorobenzene	98	57-129			1.2-Dichloroetl	hano da		96	47-137		
Toluene-d8	96	78-156			1,2~0101101061	Hall C-U-1			71-101		
i oluene-dō	90	70-100									

DF - Dilution Factor

Qual - Qualifiers

Quality Control - Duplicate

ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, CA 94523-1850

Date Received: Work Order No: Preparation: Method: 01/22/11 11-01-1405 N/A EPA TO-3M

Project: ExxonMobil 74121

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
11-01-1402-2		GG-13 - 11 - 21 has been been been been been been been bee	10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	01/22/11	110122001
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	4308000	4125000	4	0-20	

Quality Control - LCS/LCS Duplicate

ETIC Engineering, Inc. 2285 Morello Avenue

Date Received: Work Order No: Preparation:

Method:

N/A 11-01-1405

Pleasant Hill, CA 94523-1850

N/A ASTM D-1946

Project: ExxonMobil 74121

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-03-002-1,217	and the second s	GC:36	N/A	01/22/11	110122L01	The second secon
<u>Parameter</u>	LCS %RE	EC LCSD	%R <u>EC</u> %R	EC CL RPD	RPD CL	Qualifiers
Carbon Dioxide	107	107	81	0-120 1	0-30	
Oxygen + Argon	92	92	81	0-120 0	0-30	
Nitrogen	95	95	86	0-120 0	0-30	

Quality Control - LCS/LCS Duplicate

ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, CA 94523-1850

Date Received: Work Order No: Preparation:

N/A 11-01-1405 N/A

Method:

EPA TO-15

Project: ExxonMobil 74121

Quality Control Sample ID	Matrix Instrument		Date Prepared	Date Analyzed		LCS/LCSD I Numbe	
095-01-021-8,929	A The state of the	GC/MS V	NEA	01/22		110122L	21
Parameter	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	101	102	60-156	44-172	1	0-40	
Carbon Tetrachloride	101	102	64-154	49-169	1	0-32	
1,2-Dibromoethane	115	116	54-144	39-159	1	0-36	
1,2-Dichlorobenzene	112	109	34-160	13-181	2	0-47	
1,2-Dichloroethane	95	96	69-153	55-167	2	0-30	
1,2-Dichloropropane	100	101	67-157	52-172	1	0-35	
1,4-Dichlorobenzene	112	108	36-156	16-176	4	0-47	
c-1,3-Dichloropropene	117	118	61-157	45-173	1	0-35	
Ethylbenzene	107	108	52-154	35-171	1	0-38	
Xylenes (total)	108	108	52-148	36-164	0	0-38	
Tetrachloroethene	106	107	56-152	40-168	1	0-40	
Toluene	103	104	56-146	41-161	2	0-43	
Trichloroethene	101	102	63-159	47-175	1	0-34	
1,1,2-Trichloroethane	103	103	65-149	51-163	0	0-37	
Vinyl Chloride	98	102	45-177	23-199	4	0-36	

Total number of LCS compounds: 15

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 11-01-1405

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max, holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS recovery percentage is within LCS ME control limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
QO	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
U	Undetected at detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Sandy Tat

From: Sent: Bryan Campbell [bcampbell@eticeng.com] Tuesday, February 01, 2011 3:28 PM

To:

Sandy Tat

Cc:

Deborah Hensley; Aileen Galve; Jason Leary; Yuko Mamiya

Subject:

RE: LAB AIR RESULTS: 74121 (11-01-1405)

Attachments:

11-01-1405.pdf

Sandy,

Can you please resubmit this report to me with the results for the TO-3M and TO-15 in units of ug/m3 instead of ppm (v/v)? Thank you.

Bryan Campbell, PG

ETIC Engineering, Inc. 2285 Morello Ave. Pleasant Hill CA 94523 Tel. 925-602-4710 x 24 Fax. 925-602-4720 Mobile.925-250-5256 bcampbell@eticeng.com

www.eticeng.com

From: Jason Leary

Sent: Tuesday, February 01, 2011 3:08 PM

To: Bryan Campbell

Cc: Deborah Hensley; Aileen Galve

Subject: LAB AIR RESULTS: 74121 (11-01-1405)

Bryan,

Who will be preparing the report associated with these results?

Thanks,

Jason

Jason Leary

ETIC Engineering, Inc. 2285 Morello Ave. Pleasant Hill CA 94523 Tel. 925-602-4710 x 20 Fax. 925-602-4720

jleary@eticeng.com

www.eticeng.com

From: Sandy Tat [mailto:STat@calscience.com]
Sent: Monday, January 31, 2011 3:01 PM
To: ETICLabReports; EAppel@eticeng.com
Subject: ExxonMobil 74121 / CEL 11-01-1405

Best Regards,

Sandy Tat
Project Manager Assistant
Calscience Environmental Laboratories, Inc.
7440 Lincoln Way
Garden Grove, CA 92841-1427
Phone: 714-895-5494 x220

Fax: 714-894-7501 STat@calscience.com

PRIVACY NOTICE:

This email (and/or the documents attached to it) is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential, or exempt from disclosure under applicable Federal or State law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone or else to arrange for the return of the documents.

REPORT SECURITY NOTICE:

The client or recipient of any attached analytical report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience Environmental Laboratories, Inc. is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience Environmental Laboratories, Inc. for any defense to any litigation which arises.

Caiscience
Environmental
Laboratories, inc.

ExxonMobil Engr:

7440 LINCOLN WAY

Jennifer Sedlachek

GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 . FAX: (714) 894-7501

Site Name	74121
Provide Mandoraela	lior/AF=ใกรณ์เกิดเกิดเกิดเกิดเลือดรัฐ
Retail Project (MRN)	
Major Project (AFE) E1.	2005.50937
Project Name Fo	rmer Exxon RS 74121

CHA	CHAIN OF CUSTODY RECORD										
DATE:	1	/	9/11								
PAGE:	1	OF	1								

	ATORY CLIENT:	Engineering				_	GLO	BAL (C	D#/ CO	ELT LOG COD	E:						<u> </u>	P.O.
ExxonMobil c/o ETIC Engineering ADDRESS: 2385 Morelle Avenue										0383		4513421593						
2285 Morello Avenue									T CONT			EAB USE ONLY						
Pleasant Hill, CA 94523									App	el, ETIC I	ngin	LAB USE ONLY						
TEL: FAX:									r(0). (0	C								
	5-602-4710 x21	925-602-4720	:	: Karis					•		^							Temp⊨°C
SAME DAY 24 HR 48 HR 72 HR 5 DAYS 10 DAYS SPECIAL REQUIREMENTS (ABBREGUA) COSTS MAY APPLY)								REQUESTED ANALYSIS										
						-	t	Τ	Τ.		Т		Т		Τ-			
	VQCB REPORTING	ARCHIVE SAMPLES	JNTIL						0-15*	ar 占								
SPECIAL INSTRUCTIONS:							1		, I	Methane, ny ASTM D-								
* 7 Ox	manatas includo MT	DE TOA TAME CTOE	DIDE				ĕ	5	EPA	Weth				İ				
* 7 Oxygenates include MTBE, TBA, TAME, ETBE, DIPE, EDB, AND 1,2-DCA. Email report to eticlabreports@eticeng.com							by EPA TO-3M	EPA TO-15	À	on, Ma		- 1			- 1		1	
Email report to eliciabreports@eticeng.com							Ĭ.	M	Se Se	& argon, dioxide b							İ	
283333						_	<u>~</u>	Z.	E.	% :⊖								
LAB USE	SAMPLE ID	LOCATION/	SAMP	LING	MAT-	NO. OF CONT.	<u>p</u>	N N	Š	gen		ĺ					İ	
ONLY		DESCRIPTION	DATE	TIME	RIX		TPHg	BTEX by	7 Oxygenates	Oxygen Carbon (}			
/	VW2	VW2	01/19/11	1308	Vapor	1	х	х	+-	X	†	-		-	+-		-	1-liter summa canister, -3"Hg left
<u>~</u>	VW11	VW11	01/19/11	1438	Vapor	1_	×	x	+	×	1 1	+	+-+	+-	+-			1-liter summa canister, -5 'Hg left
								<u> </u>			+	\dashv		_	+-	+ +		Tritter stimma camster, -5 rig lent
						<u> </u>			ļ		1		+	+		 	-+	
					 			_	+				+ -		 	-		
			1		1					· 	-	─- 	-		-	\vdash		
		1///	+					_			 	-	+	-	+			
					 				 		 	+	 	+-	┿-	\vdash		
			 		1		 					-	-	+				
					 -				!					_	+			
			 		\vdash									_ _		1		
			 								_	-	-			\sqcup		
Relinquis	hed by: (Signature)				Receive	rd_bur_/9	inpatu	ite)	┰									
			•	-	10			1/2/	////	14 C	157	_						Date, Times
Received by: (Signature)							Signature)										1/21/11 1415 Saje 1/29/11 0900	
10 68D Maily 1730								056										129 11 0900
Received by: (Signature) Received by: (Signature)						Signature) Signature) CCC Signature)										Date & Time:		
		·····			<u> </u>													
00	C)74121 COC													_				

<WebShip>>>>> 800-322-5555 www.gso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CFL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: FTIC

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED Tracking #: 515799064 GARDEN GROVE

D92843A

Print Date: 01/21/11 14:58 PM Package 1 of 2

Send Label To Printer

☑ Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

eries in

WORK ORDER #: 11-01- 4 0 5

SAMPLE RECEIPT FORM

Box __/ of _/_

CLIENT: ETIC	DATE:	01/2411									
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not from	zen)	-									
Temperature °C + 0.5 °C (CF) = °C	[′] □ Blank	☐ Sample									
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).		1									
☐ Sample(s) outside temperature criteria but received on ice/chilled on same		ina.									
☐ Received at ambient temperature, placed on ice for transport by Courier.											
Ambient Temperature: □ ∕Air □ Filter	50	Initial: Y									
V		HIIIIIIII									
CUSTODY SEALS INTACT:		\. (
☑ Box □ □ No (Not Intact) □ Not Preser	nt □ N/A	Initial: YC									
□ Sample □ □ No (Not Intact) ⊅ Not Preser	nt	Initial:									
SAMPLE CONDITION:	Yes	No N/A									
Chain-Of-Custody (COC) document(s) received with samples											
COC document(s) received complete	···· /										
\square Collection date/time, matrix, and/or # of containers logged in based on sample labe	els.										
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.											
Sampler's name indicated on COC	🗷										
Sample container label(s) consistent with COC											
Sample container(s) intact and good condition	[′] 🗹										
Proper containers and sufficient volume for analyses requested											
Analyses received within holding time											
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours	🗆										
Proper preservation noted on COC or sample container	🗆										
☐ Unpreserved vials received for Volatiles analysis		/									
Volatile analysis container(s) free of headspace	.,,. 🗆										
Tedlar bag(s) free of condensation CONTAINER TYPE:											
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCor	res [®] ⊟Terra(Cores [®] □									
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGB											
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGE											
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □											
Air: □Tedlar [®]		·· ·									
Container: C: Clear Á: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag	E: Envelope R	leviewed by: 10 と									
Preservative: h: HCL n: HNO3 nas:Nas>S>O3 na: NaOH p: HaPO4 s: HaSO4 znna: ZnAca+NaOH	4 f. Field-filtered	Scanned by MyC									