ExxonMobil Environmental Services Company

4096 Piedmont Avenue #194 Oakland, California 94611 510 547 8196 Telephone 510 547 8706 Facsimile Jennifer C. Sedlachek Project Manager

EXonMobil

December 10, 2010

RECEIVED

2:23 pm, Dec 14, 2010

Alameda County Environmental Health

Mr. Jerry T. Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, California 94502-6577

Subject:

Fuel Leak Investigation Site No. RO0002635

Former Exxon RAS #74121, 10605 Foothill Boulevard, Oakland, California

Dear Mr. Wickham:

Attached for your review and comment is a copy of the *Vapor Sampling Report* for the above-referenced site. The report, prepared by ETIC Engineering, Inc. of Pleasant Hill, California, details the results of the vapor sampling in October 2010.

Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Jennifer C. Sedlachek Project Manager

Attachment: ETIC Vapor Sampling Report

c: w/ attachment:

Mr. Ken Phares - MacArthur Boulevard Associates, Oakland, California

Mr. Peter McIntyre - AEI Consultants

c: w/o attachment:

Mr. Bryan Campbell - ETIC Engineering, Inc.

10 December 2010

Ms. Jennifer C. Sedlachek ExxonMobil Environmental Services Company 4096 Piedmont Avenue #194 Oakland, California 94611

Subject:

Vapor Sampling Report

Former Exxon Retail Site 74121, 10605 Foothill Boulevard, Oakland, California

Fuel Leak Investigation Site No. RO0002635

Dear Ms. Sedlachek:

ETIC Engineering, Inc. (ETIC) has prepared this Vapor Sampling Report for ExxonMobil Environmental Services Company on behalf of ExxonMobil Oil Corporation for former Exxon Retail Site 74121 located at 10605 Foothill Boulevard, Oakland in California. This report was prepared in accordance with the Vapor Sampling Work Plan dated 3 September 2010 (ETIC 2010a) and approved by the Alameda County Health Care Services Agency (ACHCSA) in a letter dated 10 September 2010 (Attachment A).

Introduction

The work plan outlined the collection of soil vapor samples from existing soil vapor wells (VW1 through VW6 and VW9 through VW12) at the site (ETIC 2010a). The sampling was expected to provide adequate information in order to evaluate the potential risk of vapor intrusion to existing adjacent residential properties and future commercial onsite properties following excavation activities. Well construction details are provided in Table 1.

In their letter, dated 10 September 2010, the ACHCSA requested that a report be submitted following the sampling which includes either a recommendation for further action or a request for case closure based on the evaluation of the soil vapor sampling results.

Soil Vapor Sample Collection

An advisory published by the Department of Toxic Substances Control and the California Regional Water Quality Control Board, Los Angeles Region was used as a guideline for the collection of the soil vapor samples (DTSC/LARWQCB 2003 and DTSC 2004).

On 12 October 2010, a purge test was conducted for well VW2 which involved purging the well of 1, 3, and 7 purge volumes and screening the samples with a photoionization detector to determine the relative hydrocarbon content. Based on the results of this purge test, a purge volume of 3 casing

volumes was determined to be the preferred purge volume for the remaining samples to be collected at the site.

On 12 October 2010, soil vapor samples were collected from wells VW1, VW2, VW5, VW6, VW9, and VW10 after purging 3 casing volumes from each well using Summa canisters. The initial pressure and the final pressure readings taken from the gauges on the Summa canisters were recorded. During sampling, helium was used to check for leaks. Vapor samples could not be collected from vapor wells VW3, VW4, and VW11 due to the presence of water in the wells. Per the work plan (ETIC 2010a), attempts were not made to remove water as this may preclude performing proper purging of soil vapor before sampling. Vapor samples could not be collected from vapor well VW12 due to low flow conditions. Per the work plan, (ETIC 2010a), it may not be possible to collect soil vapor samples due to "low-flow" or "no-flow" conditions.

Field protocols are provided in Attachment B. The field documents are included in Attachment C.

Soil Vapor Sample Analytical Methods and Results

Soil vapor samples collected from the wells were submitted to Calscience Environmental Laboratories, Inc., a state-certified laboratory in Garden Grove, California for analysis.

The samples were analyzed for Total Petroleum Hydrocarbons as gasoline (TPH-g) by EPA Method TO-3M and for benzene, toluene, ethylbenzene, and total xylenes, and for the oxygenates methyl tertiary butyl ether, tertiary butyl alcohol, diisopropyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, and the additives 1,2-dibromoethane and 1,2-dichloroethane by EPA Method TO-15. The samples were also analyzed for oxygen + argon, methane, and carbon dioxide by ASTM D-1946.

The analytical results for the soil vapor samples are presented in Table 2 and on Figure 1. The laboratory analytical report and chain-of-custody documentation are included in Attachment D.

Conclusions and Recommendations

The work plan outlined the collection of soil gas samples from existing soil vapor wells at the site to provide adequate information in order to evaluate the potential risk of vapor intrusion to existing adjacent residential properties and future commercial onsite properties following excavation activities (ETIC 2010a).

Soil vapor samples were collected from wells VW1, VW2, VW5, VW6, VW9, and VW10 and analyzed. Vapor samples could not be collected from wells VW3, VW4, VW11, and VW12. Results for different areas of the site are listed below as they relate to the Environmental Screening Levels (ESLs) (RWQCB-SF 2007):

- Former dispenser islands: Well VW11 is located near the former dispenser islands. A soil vapor sample could not be collected from well VW11. An additional attempt at vapor sampling of VW11 is recommended.
- Northern corner of the property: Well VW10 is located at the northern corner of the property. The soil vapor sample collected from VW10 is below the commercial ESLs and addresses the previous exceedances of commercial ESLs in samples from V1. No further vapor sampling in the northern corner of the property is recommended.
- Excavation boundary: Wells VW5, VW6, and VW9 are located near the boundary of the February 2010 excavation (ETIC 2010b). The soil vapor sample collected from VW5 slightly exceeds the commercial ESLs for TPH-g in the duplicate sample which is based on a hazard index of 0.2. The TPH-g concentration is well below the concentration that corresponds to a hazard index of 1. The vapor samples from VW6 and VW9 are below the commercial ESLs. No further vapor sampling along the boundary of the former excavation is recommended.
- **Between the excavation boundary and the residential property:** Wells VW1, VW2, and VW9 are located between the excavation boundary and the adjacent residential property to the southwest. The soil vapor sample collected from VW2 exceeds the commercial ESL for TPH-g. Additional vapor sampling of VW2 is recommended.

If you have any questions, please contact ETIC at (925) 602-4710 (ext. 24 for Bryan Campbell).

Sincerely,

Bryan Campbell, P.G. #7724

Senior Geologist

Attachments:

Figure 1:

Site map showing soil vapor sampling results

Table 1:

Well Construction Details

Table 2:

Soil Vapor Sample Analytical Results

Attachment A:

Regulatory Correspondence

Attachment B:

Field Protocols

Attachment C:

Field Documents

Attachment D:

Laboratory Analytical Reports and Chain-of-Custody Documentation

References

DTSC/LARWQCB (Department of Toxic Substances Control and California Regional Water Quality Control Board – Los Angeles Region). 2003. Advisory – Active Soil Gas Investigations. DTSC and LARWQCB, Glendale and Los Angeles, California. 28 January.

DTSC (Department of Toxic Substances Control). 2004. Guidance for the Evaluation and Mitigation of Substance Vapor Intrusion to Indoor Air – Interim Final. 15 December.

ETIC (ETIC Engineering, Inc.). 2010a. Vapor Sampling Report Work Plan, Former Exxon Retail Site 74121, 10605 Foothill Boulevard, Oakland, California. ETIC, Pleasant Hill, California. 3 September.

ETIC (ETIC Engineering, Inc.). 2010b. Post-Remedial Excavation Report, Former Exxon Retail Site 74121, 10605 Foothill Boulevard, Oakland, California. ETIC, Pleasant Hill, California. June.

RWQCB-SF (California Regional Water Quality Control Board, San Francisco Bay Region). 2007. Screening for Environmental Concerns At Sites With Contaminated Soil and Groundwater. RWQCB-SF, Oakland, California. November with May 2008 updates.

Figures



FIGURE:

Scale (feet)

TABLE 1 WELL CONSTRUCTION DETAILS, FORMER EXXON RS 74121, 10605 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

Well Number		Well Installation Date	Elevation TOC (feet)	Casing Material	Total Depth (feet)	Well Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (feet)	Filter Pack Material
MWI	a	01/23/07	82.47	PVC	26.5	25	8	2	10 - 25	0.010	8 - 25	#2/12 Sand
MW2	a	01/23/07	84.40	PVC	26.5	25	8	2	10 - 25	0.010	8 - 25	#2/12 Sand
MW3	a	01/24/07	83.25	PVC	26.5	25	8	2	10 - 25	0.010	8 - 25	#2/12 Sand
MW5	a	01/23/07	82.65	PVC	26.5	25	8	2	10 - 25	0.010	8 - 25	#2/12 Sand
VW1	a	01/22/07		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW2	a	01/22/07		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW3	a	01/22/07	₩ ++	SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW4	a	01/22/07		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW5	a	01/22/07		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW6	b	03/23/09		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW7	с	03/23/09	No. ser	SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW8	c	03/23/09	~-	SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW9	ь	03/23/09	~ -	SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW10	b	03/23/09		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VWII	b	03/23/09	≈ 144	SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand
VW12	b	03/23/09		SS	6	6	6	0.25	5.25 - 5.75	0.0057	5 - 6	#2/12 Sand

TARIFI	WELL CONSTRUCTION DETAILS, FORMER EXXON RS 74121,	
1 1 1 1 1 1 L L L L L	- WEDD CONSTRUCTION DETAILS, FORMER EXIXON RY 7/191	- 10605 FOOTHILL DOLL EVADD OAKLAND GALLBORNIA
		, 10003 LOOTHILL BOOLEVARD, UAKLAND CALIFORNIA

Well Number	Well Installation Date	Elevation TOC (feet)	Casing Material	Total Depth (feet)	Well Depth (feet)	Borehole Diameter (inches)	Casing Diameter (inches)	Screened Interval (feet)	Slot Size (inches)	Filter Pack Interval (feet)	Filter Pack Material
Notes:											

Well surveyed on 12 March 2007 by Morrow Surveying. Well surveyed on 4 May 2009 by Morrow Surveying. Well destroyed during remedial excavation. a b

PVC Polyvinyl chloride. SS Stainless steel.

TOC Top of casing.

c

TABLE 2 SOIL VAPOR SAMPLE ANALYTICAL RESULTS, FORMER EXXON RETAIL SITE 74121, 10605 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

			Concenti	ration (% b	v Volume)							Concentration	n (ua/m	3						
			Oxygen							-	· · · · · · · · · · · · · · · · · · ·	Concentratio	ni (μg/iii	<i>)</i>						
Boring ID	Depth	Data	and	Mad	Carbon	-		Ethyl-	m,p-	0-	Total									
Boring ID	(feet bgs)	Date	Argon	Methane	Dioxide	Benzene	Toluene	benzene	Xylene	Xylene	Xylenes	TPH-g	MTBE	TBA	DIPE	ETBE	1,2-DCA	TAME	1,2-EDB	1,1-DFA
VI	5.5	05/01/06	9.4			200	<100	<100	<100	<100		790,000	<100							<10,000
V2 ^a	* • • · · ·	05/01/06				:		. <u>.</u>			<u> </u>					. 				
V3	5.5	05/01/06	19			120	160	140	<100	<100		110,000	<100	; ·						<10.000
V3 ^a	10	05/01/06																		<10,000
V4 ^a		05/01/06	<u></u>	<u></u>			-						· ·							
V5 ^a		05/01/06		-	=		<u></u>	, 	-						1				, 	
V6	7.0	05/01/06	9.1			170	<100	540	410	<100		880,000	<100					,		<10,000
V7	7.5	05/01/06	21			84	140	<100	110	<100		2 200	-100							
V7 dup	7.5	05/01/06	20	- 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	,	<80	110	<100	<100	<100		2,200 2,400	<100 <100				. 	,		<10,000 <10,000
V8 ^a	×	05/01/06			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	== 1														
V9	7.5	05/01/06	19			<80	<100	-100	-100	100		1222								
1.5	7.3	03/01/00	12		. 	\0 0	<100	<100	<100	<100	27	360,000	<100							<10,000
V10	8.0	05/01/06	11	·		1,100	130	340	180	<100		6,600,000	<100							<10,000
V10	10.0	05/01/06	9.0			1,900	<100	<100	<100	<100		17,000,000	<100					'		<10,000
VW1 ^b	5 - 6	4/27/07	11.1			<2.4	12	<3.2	10	4.8		<20,000	<11	< 9.0	<12	<12	<3.0	<19	<5.7	~O 1
VW1 ^c	**	4/23/09	'											~9.0 	-12	-12 	~3.0 	~19 	<3.7 	<8.1
VW1	5 - 6	10/12/10	17.5	< 0.785	5.24	<2.5	3.6	<3.4			<14	<11,000	<11	<9.5	<13	<13	<3.2	<13	<6.0	
VW2 ^e		4/27/07																		
VW2	5 - 6	4/23/09	8.05	< 0.770	6.55	<6.1	<7.3	<8.4			<33	210.000								
VW2 dup	5 - 6	4/23/09	7.88	< 0.780	6.05	<6.2	<7.3	<8.5			<34	210,000 220,000	<28 <28	<23 <24	<32	<32	<7.8	<32	<15	<21
VW2	5 - 6	10/12/10	8.13	<0.820	6.90	<5.2	<6.2	<7.1			<28	1 90,000	<24	<20	<33 <27	<33 <27	<7.9 <6.6	<33 <27	<15	29
												170,000	-24	~20	-21	~27	~0.0	~27	<13	
VW3 ^c		4/27/07		177) <u>4-</u> 1,	· · · · · - · · · ·	,		· ·		"					'					
VW3 ^c	* * * * .	4/23/09		<u></u>		·		"												
VW4 ^c		4/27/07	<u></u>	1 <u>1</u> 1																
VW4 ^c		4/23/09	·																	
3.733.75b												·-·								
VW5 ^b	5 - 6	4/27/07	3.49		:	4.4	11	4.4	12	4.8		<23,000	<12	< 9.9	<14	<14	<3.3	<21	< 6.3	<8.9
VW5	5 - 6	4/23/09	2.57	< 0.710	9.84	<2.3	<2.7	<3.1			<12	9,800	<10	< 8.6	<12	<12	< 2.9	<12	<5.5	<7.7
VW5	5 - 6	10/12/10	2.05	<0.790	13.2	5.1	6.8	<3.4			<14	22,000	<11	<9.6	<13	<13	<3.2	<13	<6.1	
VW5 dup	5 - 6	10/12/10	2.16	<0.840	12.5	<2.7	7.9	4.1			<15	36,000	<12	76	<14	<14	<3.4	<14	<6.5	
VW6 ^c		3/27/09		4		<u>.</u>	-		-	 				·						

TABLE 2 SOIL VAPOR SAMPLE ANALYTICAL RESULTS, FORMER EXXON RETAIL SITE 74121, 10605 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

				ration (% b	y Volume)							Concentration	on (μg/m [°]	³)						
Boring ID	Depth (feet bgs)	Date	Oxygen and Argon	Methane	Carbon Dioxide	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o- Xylene	Total Xylenes	ТРН-g	MTBE	TBA	DIPE	ЕТВЕ	1,2-DCA	TAME	1.2-EDB	1.1-DFA
VW6	5 - 6	10/12/10	16.1	<0.835	5.25	7.3	11	12	-		24	<12,000	<12	12	<14	<14	<3.4	<14	<6.4	
VW7	5 - 6	3/27/09	6.94	< 0.810	5.52	54	910	180		, 	860	11,000	<12	<9.8	<14	<14	<3.3	<14	<6.2	<8.8
VW8	5 - 6	3/27/09	2.91	2.61	5.98	<99	<120	<130			<540	4,400,000	<450	<380	<520	<520	<130	<520	<240	<330
VW9 VW9 dup	5 - 6 5 - 6	3/27/09 3/27/09	11.2 <9.05	<0.820 <9.05	4.36 <9.05	25 150	250 1,600	51 310		 	260 1,600	65,000 130,000	<30 <130	<25 <110	<34	<34	<8.3	<34	<34	<22
VW9	5 - 6	10/12/10	7.01	<0.775	15.4	<2.5	3.7	<3.4		, 	<13	<11,000	<11	< 9.4	<150 <13	<150 <13	<37 <3.1	<150 <13	<70 <6.0	<98
VW10 VW10	5 - 6 5 - 6	3/27/09 10/12/10	4.21 4.83	<0.780 <0.815	2.69 6.32	38 <2.6	520 4.0	120 < 3.5			550 <14	880,000 <11,000	<110 <12	<95 <9.9	<130 <14	<130 <14	<32 < 3.3	<130 <14	<60 <6.3	<84
VWII	5 - 6	3/27/09	6.18	< 0.770	6.69	110	860	230		<u></u>	1,000	210,000	<110	<93	<130	<130	<31	<130	<59	5,300
VW12	5 - 6	3/27/09	12.9	<1.26	4.78	90	1,700	340			1,500	17,000	<18	<15	<21	<21	<5.1	<21	<9.7	<14
	idential ESL ^d nmercial/Indu	strial ESL ^d				84 280	63,000 180,000	980 3,300	21,000 58,000	21,000 58,000	21,000 58,000	10,000 29,000	9,400 31,000				94 310		4.1 14	

Notes: Soil vapor samples in soil borings V1 through V10 were collected after purging 7 casing volumes or approximately 70 cc of vapor from the tubing (10 cc per 12 feet of tubing). ESLs adopted by RWQCB correspond to a 1 X 10⁻⁶ target risk level and a target hazard quotient of 0.2.

From Table E-1a: Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater - Interim Final, Regional Water Quality Control Board - San Francisco Bay Region, May 2008.

feet bgs	Feet below ground surface.					
1,1-DFA	1,1-Difluoroethane.					
1,2-DCA	1,2-Dichloroethane.					
1,2-EDB	1,2-Dibromoethane.					
DIPE	Diisopropyl ether.					
ETBE	Ethyl tertiary butyl ether.					
MTBE	Methyl tertiary butyl ether.					
TAME	Tertiary amyl methyl ether.					
TBA	Tertiary butyl alcohol.					
TPH-g	Total Petroleum Hydrocarbor	ıs as gasol	ine re	ported	as C6-C12	
dun	Dunligata					

dup Duplicate.

ESL Environmental screening level.

a Soil vapor could not be extracted at depths between 4 and 10 feet bgs from this boring.

b Soil vapor samples were collected without purging (grab samples).

c Soil vapor samples were not collected due to the presence of water.

TABLE 2 SOIL VAPOR SAMPLE ANALYTICAL RESULTS, FORMER EXXON RETAIL SITE 74121, 10605 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

Concentration (% by Volume) Concentration (µg/m³) Oxygen Depth and Carbon Ethylm,p-Total Boring ID (feet bgs) Date Argon Methane Dioxide Benzene Toluene benzene Xylene Xylene Xylenes TPH-g MTBE TBA DIPE ETBE 1,2-DCA TAME 1,2-EDB 1,1-DFA **RWQCB** Regional Water Quality Control Board - San Francisco Bay Region Not analyzed or not applicable. $\mu g/m^3$ micrograms per cubic meter.

Attachment A Regulatory Correspondence

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

September 10, 2010

Ms. Jennifer Sedlachek (Sent via E-mail to: jennifer.c.sedlachek@exxonmobil.com)
Exxon Mobil
4096 Piedmont, #194
Oakland, CA 94611

MacArthur Boulevard Associates c/o Mr. John Jay, Management Agent (Sent via E-mail to: johnjay@jayphares.com) 10700 MacArthur Boulevard, Suite 200 Oakland, CA 94605

Subject: Work Plan Approval for Fuel Leak Case No. RO0002635 and Geotracker Global ID T0600120383, Exxon #7-4121, 10605 Foothill Boulevard, Oakland, CA 94605

Dear Ms. Sedlacheck and Mr. Jay:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site, including the most recently submitted document entitled, "Vapor Sampling Work Plan," dated September 3, 2010 (Work Plan). The Work Plan, which was prepared by ETIC Engineering, Inc., proposes collection of soil vapor samples from ten existing soil vapor probes.

The proposed scope of work is acceptable and may be implemented as proposed. Soil vapor sampling results are to be used to evaluate the potential for vapor intrusion to existing adjacent residential properties and future commercial on-site properties. We request that you present and evaluate the soil vapor sampling results in the technical report requested below. The report should include a recommendation for future action or a request for case closure based on an evaluation of the soil vapor sampling results.

Please note that public participation will be required as part of the case closure process. Upon ACEH review of a request for case closure, ACEH will prepare and distribute a fact sheet to notify potentially affected members of the public who live or own property in the surrounding area of the potential for case closure. Public comments on the potential case closure will be accepted for a 30-day period.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

 December 10, 2010 – Soil Vapor Sampling Report with Request for Case Closure or Recommendation for Future Action Jennifer Sedlachek John Jay RO0002635 September 10, 2010 Page 2

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Digitally signed by Jerry Wickham DN: cn-Jerry Wickham, owlin meds County Privioummental Health, ou, cmall-jerry wickham paccyow.org. c-US Date: 2010-09.10 11:29:35-07:07

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Attachments: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 (Sent via E-mail to: lgriffin@oaklandnet.com)

K. Erik Appel, ETIC Engineering, Inc., 2285 Morello Avenue, Pleasant Hill, CA 94523 (Sent via E-mail to: eappel@eticeng.com)

Peter McIntyre, AEI Consultants, 2500 Camino Diablo, Suite 200, Walnut Creek, CA 94597 (Sent via E-mail to: pmcintyre@aeiconsultants.com)

Donna Drogos, ACEH (Sent via E-mail to: <u>donna.drogos@acgov.org</u>) Jerry Wickham, ACEH

Jerry Wickham, ACEH File

Attachment 1 Responsible Party(ies) Legal Requirements/Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic submittal/report rights.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

ISSUE DATE: July 5, 2005

REVISION DATE: July 8, 2010

PREVIOUS REVISIONS: December 16, 2005,

October 31, 2005

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in **Excel** format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - Send an e-mail to <u>dehloptoxic@acgov.org</u>
 Or
 - ii) Send a fax on company letterhead to (510) 337-9335, to the attention of Teena Le Khan.
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on Page on upper right side of browser, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the fip site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

Attachment B

Field Protocols

PROTOCOLS FOR SAMPLING SOIL VAPOR WELLS

SOIL VAPOR SAMPLING PROCEDURES

To ensure air-tight connections between the tubing, sampling port, valves, and other connections, a vacuum tightness test is performed on each well. The test consists of the application of a vacuum and monitoring of vacuum tightness using vacuum gauges and/or flow meter for 5 to 10 minutes. A leak would be evident if the vacuum gauges registered a decrease in the vacuum.

A purge test will be conducted for one well. The selected well should be the one with the highest expected concentrations. The test consists of the collection of vapor samples using Tedlar bags after purging the well of one (1), three (3), and seven (7) purge volumes by drawing vapor into the Tedlar bag using a vacuum chamber and vacuum pump. The purge volume is estimated based on the internal volume of the tubing used, the volume of the screen, and the voids in the sand pack within the annular space around the screen. The samples are collected through a particulate filter and flow controller which regulates the flow of soil vapor to no more than 200 milliliters per minute. The purge test samples are analyzed in the field using a PID. The results of the purge test are used to dictate the purge volume to be used during the sampling of subsequent wells.

The vapor samples are collected in 1-liter stainless steel Summa canisters. The samples are collected through a particulate filter and flow controller which regulates the flow of soil vapor to no more than 200 milliliters per minute. To ensure an air-tight connection at the well head and that ambient air does not enter the well at the well head, a tracer is applied. The tracer used is helium gas. To apply the tracer, a small shroud is placed over the well head and the tracer gas is allowed to fill the shroud at a constant rate. A hand-held helium detector is used in the field to measure the tracer within the shroud. Vapor is drawn into a Tedlar bag from the well using a vacuum chamber and vacuum pump. A leak will be evident if the concentration of the tracer in the well exceeds 10% of the concentration of the tracer in the shroud.

The 1-liter Summa canisters are labeled and packaged for delivery to a state-certified laboratory for chemical analysis. The initial pressure and the final pressure readings taken from the gauges on the Summa canisters are recorded. A small vacuum of about 5 inches of mercury is left inside the sample canister and is recorded on the chain-of-custody. Upon receipt, the laboratory will check the pressure in the sample canister and compare it to the pressure recorded on the chain-of-custody for quality control purposes.

Attachment C

Field Documents

Purge Volume Test Form

Site:	74121	Project #: UP4121 3.12		Page: / o	f /
Date:	10/12/10	Personnel: Yuko Mamiya	Purge Test Well:	VW5	

Purge Volume Calculatio	n									
T WELL PURGE VOLUME	ubing Volui (ML)	ne	Screen Volum (ML)	е	Pore Space Volume (ML)	Volume (ML)	Purge Volumes	Total Purge Volume (ML)	Flow Rate (ML/minute)	Estimated Time to Purge (Minutes)
CALCULATION	23.42	1	12.35	(810.98	846.75	1 vol.	847 2,540	200 200	4 8
							7 vol.	5,927	200	21

Purge Data		apraganicis (Alleria)	Assubstantinas III (1990)	eccinististis delegates from the files of	Purge	6 L	
Purge Volumes		Flow Regulator Serial Number	Initial Purge Canister Vacuum (Inches Hg)	Start Time	. Stop Time	Final Purge Canister Vacuum (Inches Hg)	PID Reading
1	0126	A189	-30	1132	1137	-25	-03
3	0126	A189	- 25	1145	1155	-17.5	-0.5
7	D126	A189	-17.5	1203	1223	- 1	- 0.3

Notes:

SUMMA Canister Soil Vapor Sampling Form

Site:	Former Exxon RS 74121	Personnel: Yuko Mamiya	Temperature: 98-91 °F
Address:	10605 Foothill Blvd, Oakland, CA	Page:1 of2	Barometric Pressure: 30 inches Hg
Project #:	UP4121 6.12	Purge Canister Volume (liters): 6	Precipitation: 0-00 inches
Date: _	[0/12/10	Sample Canister Volume (liters):1	Relative Humidity: $20-28$ %
			Purge Volume : 3
			Flow Rate : 200 liters/minute

	Purge	Sample	Flow	Leak C	heck 1			heck 2		Vapor	Purge		Initial	Vapor	Sample	Final
Sampling Location	Canister Serial Number	Canister Serial Number	Regulator Serial Number	Ambient He Concentration (ppm)	Tubing He Concentration (ppm)	initial Purge Canister Vacuum (Inches Hg)		Stop Time	Purge Canister Vacuum (Inches Ha)	Start Time	Ston Time	Final Purge Canister Vacuum (Inches Hg)	Sample Canister Vacuum	Start Time	Ston Time	Sample Canister Vacuum
VWI	0700	LC469	A340		0	-30	14-03	1407		14-07			-30	1423	1429	
VW2	0805	LC326	A195	90,000 100,000	0	-30	1530	1534	-30	1534	1548		-30	1548	1595	-5
VW3	9230	•	A110	90,000 100,000	0	-30	1553	1558	-30	1558		U	Vate	<i>/</i> –		
VW4				0 - 100 4			W	atli	(****		
VW5	0126	LC170	A189	100,000	0-25	-30	1128	1132	-30	Purge	test Cond	ucted	-30	1224	1231	-5
VW5 (DUP)		LC177	AI89			-30	1659	1702	-30				-30	1702	1708	-5
VW6	0611	LC198	A249	150,000 150,000	0	-29	1312	<i>(317</i>	-29	1317	1333	-17.5	-30	1333	1342	-5
								-								

General Weather Cor	nditions: SUNNY	
Other:		
rojects\ExxonMobil\Sites\74121\Public\20	010 SV Sampling\Field forms\74121 SV Summa Sampling Form	

GAProjects\ExxonMobil\Sites\74121\Public\2010 SV Sampling\Field forms\74121 SV Summa Sampling Form

SUMMA Canister Soil Vapor Sampling Form

	Site:		Former	Exxon RS 7412	21	_	Personnel		Yuko Mamiy	а		Temperatur	e;		٥F	
	Address:	1	10605 Foot	hill Blvd, Oaklan	id, CA		Page:	2	of	2		Barometric	Pressure:		inches Hg	
	Project #:		U	P4121 6.12		_	Purge Car	ister Volun	ne (liters):	6		Precipitation	n:			
	Date:		101	112/10		_	Sample Ca	anister Volu	ıme (liters):	1		Relative Hu	midity:	@	%	
												Purge Volum	me :	3		
												Flow Rate :		200	liters/minut	te
				Leak C	Check 1		Leak C	heck 2		Vapor	Purge		Initial	Vapor	Sample	Final
Sampling Location	Purge Canister Serial Number	Sample Canister Serial Number	Flow Regulator Serial Number	Ambient He Concentration (ppm)	Tubing He Concentration (ppm)	Initial Purge Canister Vacuum (Inches Hg)	Start Time	Stop Time	Purge Canister Vacuum (Inches Hg)	Start Time	Stop Time	Final Purge Canister Vacuum (Inches Hg)	Sample Canister Vacuum (Inches Ho)		Stop Time	Sample Canister Vacuum
VW9	0732	LC045	A/00	11500	0	-30	1448	i452				-17	-30	1507	_	~J.
VW10	P615	LC408	A58	90,000 120,000	0	-30	1220	1223	-30	1			-30			-5
VWII	,,,,,,,,						ater									
VW12	0801		A136	120,000	800	-27		1697	-27	1694	1749	-25	LO	w Ale	XV Dle Co	/kateri
					**************************************			***************************************								
													- Comment of the Comm			
		Veather Co	nditions:													***************************************
	Other:			***************************************							***************************************			······		
					· · · · · · · · · · · · · · · · · · ·											

Attachment D

Laboratory Analytical Reports and Chain-of-Custody Documentation

October 21, 2010

Erik Appel ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, CA 94523-1850

Subject: Calscience Work Order No.: 10-10-1087

Client Reference:

ExxonMobil 74121

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/14/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & se Sais

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

Case Narrative

Work Order # 10-10-1087 Modified EPA TO-14A or EPA TO-15

EPA Methods TO-14A and TO-15 describe gas chromatographic procedures that will allow for that separation of volatile organic compounds and their qualitative and quantitative analysis by mass spectrometry (GC/MS). A known volume of sample is directed from the container (Summa® canister or Tedlar™ bag) through a solid multi-module (glass beads, tenex, cryofocuser) concentrator. Following concentration, the VOCs are thermally desorbed onto a gas chromatographic column for separation and then detected on a mass selective detector.

Comparison of EPA TO-14A/TO-15 versus Calscience EPA TO-14A/TO-15 (Modified)

Requirement	EPA Method	Calscience Modifications
BFB Acceptance Criteria	CLP Protocol	SW846 Protocol
Initial Calibration	Allowable % RSD for each Target Analyte <= 30%, two analytes allowed <= 40%	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <= 40%
Initial Calibration Verification (ICV) - Second Source Standard (LCS)	Not Mentioned	Analytes contained in the LCS standard evaluated against historical control limits for the LCS
Daily Calibration Verification (CCV)	Allowable % Difference for each Target Analyte is <= 30%	Full List Analysis: Allowable % Difference for each CCC analyte is <= 30%
		Target List Analysis: Allowable % Difference for each target analytes is <= 30%
Daily Calibration Verification (CCV) - Internal Standard Area Response	Allowable +/- 40% (Range: 60% to 140%)	Allowable +/- 50% (Range: 50% to 150%)
Method Blank, Laboratory Control Sample and Sample - Internal Standard Area Response	Allowable +/- 40% of the mean area response of most recent Initial Calibration (Range: 60% to 140%)	Allowable +/- 50% of the mean area response of the most recent Calibration Verification (Range: 50% to 150%)
Surrogates	Not Mentioned	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S

ETIC Engineering, Inc. 2285 Morello Avenue

Pleasant Hill, CA 94523-1850

Date Received:

10/14/10

Work Order No:

10-10-1087

Preparation:

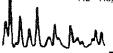
N/A

Method:

ASTM D-1946

Units:

Page 1 of 2


Drainate	ExxonMobil	74404
Project.	Exxonivionii	74121

Project: Exxoniviobil /4	121									Pa	ge 1 of 2
Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepare		/Time lyzed	QC Batch ID
VW1			10-10	-1087-1-A	10/12/10 14:29	Air	GC 36	N/A		4/10 :53	101014L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF ·	Qual
Methane Carbon Dioxide	ND 5.24	0.785 0.785	1,57 1.57	U	Oxygen + Argor)		17.5	0.785	1.5	7
VW2			10-10-	-1087-2-A	10/12/10 15:55	Air	GC 36	N/A	10/1 13:		101014L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Methane Carbon Dioxide	ND 6.90	0.820 0.820	1.64 1.64	U	Oxygen + Argon	ı		8.13	0.820	1.64	1
VW5			10-10-	-1087-3-A	10/12/10 12:31	Air	GC 36	N/A	10/1 13:		101014L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Methane Carbon Dioxide	ND 13.2	0.790 0.790	1.58 1.58	U	Oxygen + Argon			2.05	0.790	1.58	3
VW5 (DUP)			10-10-	1087-4-A	10/12/10 17:08	Air	GC 36	N/A	10/14 13:		101014L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Methane Carbon Dioxide	ND 12.5	0.840 0.840	1.68 1.68	U	Oxygen + Argon			2.16	0.840	1.68	
VW6 - 11 - 14		j tribit	10-10-	1087-5-A	10/12/10 13:42	Air	GC 36	N/A	10/14 14:		101014L01
^o arameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Methane Carbon Dioxìde	ND 5.25	0.835 0.835	1.67 1.67	U	Oxygen + Argon			16.1	0.835	1.67	
VW9			10-10-	1087-6-A	10/12/10 15:13	Air	GC 36	N/A	10/14 14:3		101014L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Methane Carbon Dioxide	ND 15.4	0.775 0.775	1.55 1.55	U	Oxygen + Argon			7.01	0.775	1.55	
VW10			10-10-1	1087-7-A	10/12/10 12:43	Air	GC 36	N/A	10/14 14:5		101014L01
Parameter_	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Methane Carbon Dioxide	ND 6.32	0.815 0.815	1.63 1.63	U	Oxygen + Argon			4.83	0.815	1.63	

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifiers

ETIC Engineering, Inc.

2285 Morello Avenue

Pleasant Hill, CA 94523-1850

Date Received:

Work Order No:

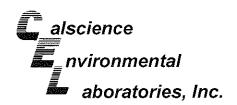
Preparation:

Method: Units:

10/14/10

10-10-1087

N/A


ASTM D-1946

%v

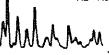
Project: ExxonMobil 74121

Page 2 of 2

Client Sample Number			Ĺ	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared		e/Time alyzed	QC Batch ID
Method Blank			099-0	3-002-1,160	N/A	Air	GC 36	N/A		14/10 3:48	101014L01
Parameter Methane Carbon Dioxide	<u>Result</u> ND ND	<u>RL</u> 0.500 0.500	<u>DF</u> 1 1	<u>Qual</u> U U	<u>Parameter</u> Oxygen + Argon			<u>Result</u> ND	<u>RL</u> 0.500	<u>DF</u> 1	<u>Qual</u> U

ETIC Engineering, Inc. Date Received: 2285 Morello Avenue

Pleasant Hill, CA 94523-1850


Work Order No: 10-10-1087 Preparation: N/A

Method: EPA TO-3M

Essyan Mahil 74101

10/14/10

Project: ExxonMobil 74	121						Pa	ige 1 of 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VW1		10-10-1087-1-A	10/12/10 14:29	Air	GC 53	N/A	10/14/10 12:52	101014L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	11000	1.57	U	ug/m3			
VW2		10-10-1087-2-A	10/12/10 15:55	Air	GC 53	N/A	10/14/10 13:03	101014L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	190000	11000	1.64		ug/m3			
VW5		10-10-1087-3-A	10/12/10 12:31	Air	GC 53	N/A	10/14/10 13:21	101014L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	DF	Quai	<u>Units</u>			
TPH as Gasoline	22000	11000	1.58		ug/m3			
VW5 (DUP)	**************************************	10-10-1087-4-A	10/12/10 17:08	Air	GC 53	N/A	10/14/10 13:32	101014L01
Paramete <u>r</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	36000	12000	1.68		ug/m3			
VW6		10-10-1087-5-A	10/12/10 13:42	Air	GC 53	N/A	10/14/10 13:41	101014L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
ГРН as Gasoline	ND	12000	1.67	U	ug/m3			
VW9		10-10-1087-6-A	10/12/10 15:13	Air	GC 53	N/A	10/14/10 13:52	101014L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
ГРН as Gasoline	ND	11000	1.55	U	ug/m3			

ETIC Engineering, Inc.

2285 Morello Avenue

Pleasant Hill, CA 94523-1850

Date Received:

Work Order No:

Preparation:

Method:

10/14/10

10-10-1087

N/A

EPA TO-3M

Project: ExxonMobil 74121

Page 2 of 2

•								
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VW10		10-10-1087-7-A	10/12/10 12:43	Air	GC 53	N/A	10/14/10 14:02	101014L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	11000	1.63	U	ug/m3			
Method Blank		098-01-005-2,681	N/A	Air	GC 53	N/A	10/14/10 09:50	101014L01
² aramete <u>r</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
ГРН as Gasoline	ND	7000	1	U	ug/m3			

ETIC Engineering, Inc. 2285 Morello Avenue

Pleasant Hill, CA 94523-1850

Date Received:

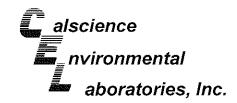
Work Order No:

Preparation: Method:

Units:

10/14/10

10-10-1087


N/A

EPA TO-15

ug/m3

Project: ExxonMobil 7412	21									Pag	ge 1 of 3
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ I Anal		QC Batch ID
.VW1			10-10-1	087-1-A	10/12/10 14:29	Air	GC/MS YY	N/A	10/1 03:		101014L01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Benzene	ND	2.5	1.57	U	Methyl-t-Butyl	Ether (MT	3E)	ND	11	1.57	· U
Diisopropyl Ether (DIPE)	ND	13	1.57	Ū	Xylenes (total)		,	ND	14	1.57	
1,2-Dibromoethane	ND	6.0	1.57	U	Tert-Amyl-Meti	hyl Ether (TAME)	ND	13	1.57	· U
1,2-Dichloroethane	ND	3.2	1.57	U	Tert-Butyl Alco		,	ND	9.5	1.57	
Ethyl-t-Butyl Ether (ETBE)	ND	13	1.57	U	Toluene	, ,		3.6	3.0	1.57	
Ethylbenzene	ND	3.4	1.57	U							
Surrogates:	REC (%)	Control Limits	Qua	!	Surrogates:			REC (%)	Control Limits	<u>Q</u>	<u>ual</u>
1,4-Bromofluorobenzene	101	57-129			1,2-Dichloroeth	nane-d4		101	47-137		
Toluene-d8	99	78-156			-,						
VW2			10-10-1	087-2-A	10/12/10 15:55	Air	GC/MS YY	N/A	10/13 19:		101015L01
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	<u>DF</u>	<u>Qual</u>
						TO / LATE	`-\				
Benzene	ND	5.2	3.28	U	Methyl-t-Butyl E	=ther (MTE	BE)	ND	24	3.28	
Diisopropyl Ether (DIPE)	ND	27	3.28	U	Xylenes (total)	. =	- • • • • •	ND	28	3.28	
1,2-Dibromoethane	ND	13	3.28	U	Tert-Amyl-Meth		AME)	ND	27	3.28	U
1,2-Dichloroethane	ND	6.6	3.28	U	Tert-Butyl Alco	nol (TBA)		ND	20	3.28	U
Ethyl-t-Butyl Ether (ETBE)	ND	27	3.28	U	Toluene			ND	6.2	3.28	U
Ethylbenzene	ND	7.1	3.28	U				DEO (0/)	041	0	
Surrogates:	REC (%)	<u>Control</u> Limits	<u>Qual</u>		Surrogates:			REC (%)	Control Limits	<u>Q</u> I	<u>ual</u>
1.4-Bromofluorobenzene	110	57-129			1,2-Dichloroeth	na dA		99	47-137		
Toluene-d8	46	78-156		2	1,2 Dichiorocti	idilo d			,, ,,,,		
VW5	+ 1		10-10-10	····	10/12/10 12:31	Air	GC/MS YY	N/A	10/15 04:3		101014L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	5.1	2.5	1.58		Methyl-t-Butyl E	ither (MTP	REY	ND	11	1.58	U
Diisopropyl Ether (DIPE)	ND	13	1.58	U	Xylenes (total)	THE (MED	·L)	ND	14	1.58	Ü
1,2-Dibromoethane	ND	6.1	1.58	U	Tert-Amyl-Meth	wl Ether (T	'AME'	ND	13	1.58	Ü
1.2-Dichloroethane	ND	3.2	1.58	U	Tert-Butyl Alcoh	•	CIVIL)	ND	9.6	1.58	U
Ethyl-t-Butyl Ether (ETBE)	ND	ა.∠ 13	1.58	U	Toluene	iivi (± DA)		6.8	3.0	1.58	J
Ethylbenzene	ND	3.4	1.56	U	FORUCTIC			0.0	5.0	1.30	
Surrogates:	REC (%)	Control	Qual	5	Surrogates:			REC (%)	Control	Qı	<u>ıal</u>
<u> </u>		Limits							Limits		
1,4-Bromofluorobenzene	104	57-129			1,2-Dichloroeth	ane-d4		100	47-137		
Toluene-d8	76	78-156		2	,						
, c.acrio do				_							

DF - Dilution Factor

ETIC Engineering, Inc. 2285 Morello Avenue

Pleasant Hill, CA 94523-1850

Date Received:

Work Order No: Preparation:

Method: Units: 10/14/10

10-10-1087

N/A

EPA TO-15 ug/m3

Page 2 of 3

Project: ExxonMobil 74121

r roject. Exxorniviodii 7-	7141	<u> </u>		·			: · · · · · · · · · · · · · · · · · · ·			, 45	,0 2 0, 0
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ I Analy		QC Batch II
VW5 (DUP)			10-10-	1087-4-A	10/12/10 17:08	Air	GC/MS YY	N/A	10/18 05:		101014L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	2.7	1.68	U	Methyl-t-Butyl	Ether (MT	BE)	ND	12	1.68	U
Diisopropyl Ether (DIPE)	ND	14	1.68	U	Xylenes (total))		ND	15	1.68	U
,2-Dibromoethane	ND	6.5	1.68	U	Tert-Amyl-Met	thyl Ether ((TAME)	ND	14	1.68	; U
,2-Dichloroethane	ND	3.4	1.68	U	Tert-Butyl Alco	ohol (TBA)	•	76	10	1.68	
thyl-t-Butyl Ether (ETBE)	ND	14	1.68	υ	Toluene			7.9	3.2	1.68	
thylbenzene	4.1	3.6	1.68								
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>al</u>	Surrogates:			REC (%)	Control Limits	Q	<u>ual</u>
.4-Bromofluorobenzene	103	57-129			1,2-Dichloroet	hane-d4		100	47-137		
oluene-d8	64	78-156		2	.,						
VW6		7	10-10-	1087-5-A	10/12/10 13:42	Air	GC/MS YY	N/A	10/15 06:	5/10 16	101014L01
Daramatas	Dogult	DI.		Qual	Davanastav			Result	RL	DF	<u>Qual</u>
Parameter Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		:				
enzene	7.3	2.7	1.67		Methyl-t-Butyl		BE)	ND	12	1.67	
iisopropyl Ether (DIPE)	ND	14	1.67	U	Xylenes (total)			24	15	1.67	
,2-Dibromoethane	ND	6.4	1.67	U	Tert-Amyl-Met			ND	14	1.67	
,2-Dichloroethane	ND	3.4	1.67	U	Tert-Butyl Alco	ohol (TBA)		12	10	1.67	
thyl-t-Butyl Ether (ETBE)	ND	14	1.67	U	Toluene			11	3.1	1.67	
thylbenzene	12	3.6	1.67							_	_
urrogates:	<u>REC (%)</u>	Control Limits	<u>Qua</u>	<u>1</u>	<u>Surrogates:</u>			REC (%)	Control Limits	<u>Q</u>	<u>ual</u>
,4-Bromofluorobenzene	101	57-129			1,2-Dichloroetl	hane-d4		100	47-137		
oluene-d8	100	78-156									
VW9 ·			10-10-1	1087-6-A	10/12/10 15:13	· ¡Air	GC/MS YY	N/A	10/15 07:0	/10)6	101014L01
'arameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
enzene	ND	2.5	1.55	U	Methyl-t-Butyl	Ether (MTI	BE)	ND	11	1.55	U
iisopropyl Ether (DIPE)	ND	13	1.55	ΰ	Xyienes (total)	•	,	ND	13	1.55	Ū
2-Dibromoethane	ND	6.0	1.55	Ü	Tert-Amyl-Met		TAME)	ND	13	1.55	Ū
2-Dichloroethane	ND	3.1	1.55	Ų	Tert-Butyl Alco		- · · · · · · · · · · · · · · · · · · ·	ND	9.4	1.55	Ū
thyl-t-Butyl Ether (ETBE)	ND	13	1.55	Ü	Toluene			3.7	2.9	1.55	_
thylbenzene	ND	3.4	1.55	Ü	. 0.40110					,,,,	
urrogates:	REC (%)	Control Limits	Qua	_	Surrogates:			<u>REC (%)</u>	Control Limits	<u>Qı</u>	<u>lal</u>
4 Promofluorobongono	102	57-129			1,2-Dichloroeth	nano d4		100	47-137		
,4-Bromofluorobenzene					r,z-Dichioroetr	iaii C -u4		750	71-101		
oluene-d8	100	78-156									

DF - Dilution Factor

Qual - Qualifiers

ETIC Engineering, Inc. 2285 Morello Avenue

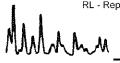
Pleasant Hill, CA 94523-1850

Date Received:

Work Order No: Preparation:

Method: Units: 10/14/10

10-10-1087


N/A

EPA TO-15 ug/m3

Page 3 of 3

Project: ExxonMobil 74121

Project: ExxonMobil 7412	7									Pag	ge 3 of 3
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ l Anal		QC Batch ID
VW10			10-10-1	1087-7-A	10/12/10 12:43	Air	GC/MS YY	N/A	10/1: 07:		101014L01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	2.6	1.63	U	Methyl-t-Butyl	Ether (MT	BE)	ND	12	1.63	3 U
Diisopropyl Ether (DIPE)	ND	14	1.63	U	Xylenes (total)			ND	14	1.63	U
1,2-Dibromoethane	ND	6.3	1.63	U	Tert-Amyl-Met	hyl Ether (TAME)	ND	14	1.63	U
1,2-Dichloroethane	ND	3.3	1.63	U	Tert-Butyl Alco	ohol (TBA)	ı	ND	9.9	1.63	, U
Ethyl-t-Butyl Ether (ETBE)	ND	14	1.63	U	Toluene			4.0	3.1	1.63	3
Ethylbenzene	ND	3.5	1.63	U							
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>l</u>	Surrogates:			REC (%)	Control Limits	<u>Q</u>	<u>ual</u>
1,4-Bromofluorobenzene	100	57-129			1,2-Dichloroet	hane-d4		99	47-137		
Toluene-d8	100	78-156									
Method Blank			095-01-	021-8,787	N/A	Air	GC/MS YY	N/A	10/14 13:		101014L01
Parameter_	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Benzene	ND	1.6	1	U	Methyl-t-Butyl	Ether (MT	BE)	ND	7.2	1	U
Diisopropyl Ether (DIPE)	ND	8.4	1	Ü	Xylenes (total)	•	,	ND	8.7	1	U
1.2-Dibromoethane	ND	3.8	1	Ū	Tert-Amvl-Met		TAME)	ND	8.4	1	U
1,2-Dichloroethane	ND	2.0	1	U	Tert-Butyl Alco	ohol (TBA)	•	ND	6.1	1	U
Ethyl-t-Butyl Ether (ETBE)	ND	8.4	1	U	Toluene			ND	1.9	1	U
Ethylbenzene	ND	2.2	1	U							
Surrogates:	REC (%)	Control Limits	Qual	!	Surrogates:			REC (%)	Control Limits	Q	<u>ual</u>
1.4-Bromofluorobenzene	101	57-129			1.2-Dichloroeth	nane-d4		99	47-137		
Foluene-d8	98	78-156			•						
Method Blank			095-01-	021-8,788	N/A	Air	GC/MS YY	N/A	10/15 12:8		101015L01
² arameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	ND	1.6	1	U	Methyl-t-Butyl I	Ether (MTI	BE)	ND	7.2	1	U
Diisopropyl Ether (DIPE)	ND	8.4	1	U	Xylenes (total)	•	•	ND	8.7	1	U
,2-Dibromoethane	ND	3.8	1	U	Tert-Amyl-Meti	hyl Ether (TAME)	ND	8.4	1	U
,2-Dichloroethane	ND	2.0	1	U	Tert-Butyl Alco	hol (TBA)		ND	6.1	1	U
thyl-t-Butyl Ether (ETBE)	ND	8.4	1	U	Toluene			ND	1.9	1	U
Ethylbenzene	ND	2.2	1	U							
Surrogates:	REC (%)	Control Limits	Qual		Surrogates:			REC (%)	Control Limits	<u>Q</u> ı	<u>ıal</u>
	101	57-129			1,2-Dichloroeth			101	47-137		

DF - Dilution Factor

Qual - Qualifiers

Quality Control - Duplicate

ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, CA 94523-1850 Date Received: Work Order No: Preparation:

10-10-1087 N/A

10/14/10

Method:

EPA TO-3M

Project: ExxonMobil 74121

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
VW2	Air	GC 53	N/A	10/14/10	101014D01
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	190000	180000	4	0-20	

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, CA 94523-1850

Date Received: Work Order No: Preparation: Method:

N/A 10-10-1087 N/A

ASTM D-1946

Project: ExxonMobil 74121

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD Bato Number	h
099-03-002-1,160	Air	Air GC 36		10/14	/10	101014L01	
Parameter	LCS °	6REC LCSD	%REC %	REC CL	<u>RPD</u>	RPD CL	Qualifiers
Carbon Dioxide	97	96		80-120	1	0-30	
Oxygen + Argon	91	91		80-120	0	0-30	
Nitrogen	91	91	i	80-120	0	0-30	

Quality Control - LCS/LCS Duplicate

Date Received: Work Order No:

N/A 10-10-1087

2285 Morello Avenue Pleasant Hill, CA 94523-1850

ETIC Engineering, Inc.

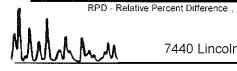
Preparation:

N/A

Method:

EPA TO-15

Project: ExxonMobil 74121


Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD Batch Number 101014L01		
095-01-021-8,787	Air	GC/MS YY	N/A	10/14	/10			
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers	
Benzene	104	105	60-156	44-172	1	0-40		
Carbon Tetrachloride	97	98	64-154	49-169	1	0-32		
1,2-Dibromoethane	108	110	54-144	39-159	2	0-36		
1,2-Dichlorobenzene	87	90	34-160	13-181	3	0-47		
1,2-Dichloroethane	98	99	69-153	55-167	1	0-30		
1,2-Dichloropropane	107	108	67-157	52-172	1	0-35		
1,4-Dichlorobenzene	93	96	36-156	16-176	3	0-47		
c-1,3-Dichloropropene	113	114	61-157	45-173	1	0-35		
Ethylbenzene	106	108	52-154	35-171	2	0-38		
Xylenes (total)	104	106	52-148	36-164	2	0-38		
Tetrachloroethene	102	104	56-152	40-168	2	0-40		
Toluene	107	108	56-146	41-161	1	0-43		
Trichloroethene	99	100	63-159	47-175	1	0-34		
1,1,2-Trichloroethane	103	104	65-149	51-163	1	0-37		
Vinyl Chloride	102	102	45-177	23-199	1	0-36		

Total number of LCS compounds: 15

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Quality Control - LCS/LCS Duplicate

ETIC Engineering, Inc. 2285 Morello Avenue

Pleasant Hill, CA 94523-1850

Date Received:

Work Order No:

Preparation:

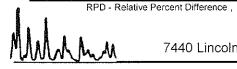
Method:

N/A

10-10-1087

N/A

EPA TO-15


Project: ExxonMobil 74121

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Batch Number 101015L01		
095-01-021-8,788	Air	GC/MS YY	N/A	10/15	/10			
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers	
Benzene	106	107	60-156	44-172	2	0-40		
Carbon Tetrachloride	100	102	64-154	49-169	2	0-32		
1,2-Dibromoethane	110	124	54-144	39-159	12	0-36		
1,2-Dichlorobenzene	89	103	34-160	13-181	14	0-47		
1,2-Dichloroethane	100	101	69-153	55-167	1	0-30		
1,2-Dichloropropane	109	110	67-157	52-172	2	0-35		
1,4-Dichlorobenzene	95	109	36-156	16-176	13	0-47		
c-1,3-Dichloropropene	115	117	61-157	45-173	2	0-35		
Ethylbenzene	109	123	52-154	35-171	12	0-38		
Xylenes (total)	107	121	52-148	36-164	12	0-38		
Tetrachloroethene	103	116	56-152	40-168	12	0-40		
Toluene	109	122	56-146	41-161	12	0-43		
Trichloroethene	101	102	63-159	47-175	2	0-34		
1,1,2-Trichloroethane	105	107	65-149	51-163	2	0-37		
Vinyl Chloride	104	104	45-177	23-199	0	0-36		

Total number of LCS compounds: 15
Total number of ME compounds: 0

Total number of ME compounds allowed :

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 10-10-1087

Qualifier *	<u>Definition</u> See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS recovery percentage is within LCS ME control limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

e aligcience	
pvironmental	
- aboratories	Inc

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 . FAX: (714) 894-7501

Site Name	74121
เ ได้ ได้เกิดเลียร์ เกิดใหญ่	r 798th or MTz for major materias
Retail Project (MR	the second secon
Major Project (AFL	=)
Project Name	Former Exxon RS 74121

CHAIN OF CUSTODY RECORD

DATE: 10/12/2010
PAGE: 1 OF 1

ExxonMobil Engr:	Jennifer Sedlachek]	Proje	ect N	lam	4		Forme	Ex	con l	RS 74	1121	er est Million (1919)				
LABORATORY CLIENT: EXXONMObil c/o ETIC	Enginearing					GLO	BAL ID	#/ COI	ELT LOG CODE:							<u>-</u>		P.O.
ADDRESS: 2285 Morello Avenue	Lingilicering	······································			———			1203										4512012296
CITY:						-4		CONT	=			-						LAB USE ONLY
Pleasant Hill, CA 9452						SAI	MPLER	(S): (S	EI, ETIC EI	ngin	eerin	<u>g</u>						LO-TO87
925-602-4710 x21	925-602-4720					1			Ć									Temp.≠°C
SAME DAY 24 HR	48 HR 72 HF	₹	ys 🗌	10 DAYS	;				6				REC	UES	TED /	NAL	YSIS	
SPECIAL REQUIREMENTS (ADDITION RWQCB REPORTING						 	1	Τ.		T				T 1	 -	T	1	
SPECIAL INSTRUCTIONS:	ARCHIVE SAMPLES U	MIL						TO-15*		ĺ								
* 7 Oxygenates include MT Email report to eticlabre	BE, TBA, TAME, ETBE, ports@eticeng.com	DIPE, EDB,	AND 1,2-	-DCA.		by EPA TO-3M	y EPA TO-15	Oxygenates by EPA	& argon, Methane, dioxide by ASTM D-									
LAG USE SAMPLE ID ONLY	LOCATION/ DESCRIPTION	SAMP		MAT-	NO. OF CONT.	тРН9 b	BTEX by) xyg	Oxygen Carbon (İ					Ì	Ì	
VW1		DATE 10/12/10	TIME	<u> </u>	 			<u> </u>										CONTAINER TYPE
2 VW2		10/12/10	1429 1555	Vapor	1	X	X	Х	Х									1-liter summa canister
3 VW5		10/12/10		Vapor	-	X	X	X	Х	_								1-liter summa canister
W5 (DUP)		10/12/10	1231 1708	Vapor	-	X	X	X	Х									1-liter summa canister
方 VW6		10/12/10	1342	Vapor		X	X	X	X									1-liter summa canister
6 VW9		10/12/10	1513	Vapor	-	X	X	X	Х					1				1-liter summa canister
7 VW10		10/12/10	1243	Vapor Vapor	-	X	X	X	X	_		_	-	-				1-liter summa canister
			72.10		 	<u> ^ </u>	-	_		\dashv		-}-	+-	╁	 -			1-liter summa canister
								i		_	_	-	+-	 	_		-	
																7	1	
			······································															
Relinquished by: (Signature)			· · · · · · · · · · · · · · · · · · ·	Receive	ed bye (\$	Signatu	ле)	1	/				1				<u> </u>	
Relinationed by: (Signature)		/- · · · 2 ·	i ll	10	-//	///	10)	M	M C	42								Date & 1973/10 1415
1000	TO (8)	6-13-	X	Reseive	30 by: 05	signilatu A	ire)	. d	<i>y</i>									Date, & Time:
Retinquiation by: (Signature)			<u> </u>	Receive	ed by: (S	signatu	ıre)	~								EL_		Date & Time!
					-													

an Alscience	
pvironmental	
aboratories,	tno.

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

Site Name	74121
Provide MRN for t	eellovaesomeleen
Retail Project (MRI	V)
Major Project (AFE	
Project Name	Former Exxon RS 74121

CHAIN OF CUSTODY RECORD

DATE:		10	112/10
PAGE:	1	OF	1

ExxonMobil Engr:	Jennifer Sedlachek		Project i	Vame	THE PARTY	Form	ıer E	xxon	RS 7	4121	Heritaliana	3 1		
LABORATORY CLIENT:	······································			GLOBA	L ID #/ CC			************				_ 		
ExxonMobil c/o ETIC E	Engineering						o CODE:	:						P.O.
2285 Morello Avenue					600120 ECT CON				·····					4512012296
CITY:				_1	ik App		IIC F	naine	orina					LAB USE ONLY
Pleasant Hill, CA 9452	3 T FAX:			SAMP	LER(S): (S	SIGNATUI	RE)	- ginc	cring				···	COOLER RECEIPT
925-602-4710 x21	925-602-4720								_					##\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
SAME DAY 24 HR												***************************************		Temp = °C
SPECIAL REQUIREMENTS (ADDITIONAL	48 HR 72 H	R 5 DAYS	☑ 10 DAYS			-				REQ	JES.	TED A	VALY:	SIS
RWQCB REPORTING	ARCHIVE SAMPLES U	INITTI (,				T	T						
SPECIAL INSTRUCTIONS:	L ANOTHYL SAPPLES U	DIA ETT												
				1						1				
* 7 Oxygenates include MTBE, T	BA, TAME, ETBE, DIPE, EDB,	AND 1,2-DCA.			İ					İ				
Email report to eticlabreports@e	eticeng.com				ŀ				1 1					
SPECTOR SPECTOR						1								
LAS USE SAMPLE ID	LOCATION/	SAMPLING	MAT- NO. C											
ONLY	DESCRIPTION	DATE	TIME RIX								ŀ		ļ	
BVWI		10/12/10	Vapor 1	\forall					-					CONTAINER TYPE
9 VW2 10 VW3		1 1	1 1	1		+			+					6-liter summa canister
		1		1 //		++		_ -			 			
11 125							1/		7-1	1 h A	1,	1/-		
12 VW6				1-7		Ψ	/\/ (-4+	++	$\mathcal{A}\mathcal{P}$	46	T	_#	
13 VW9			- 1 <i>1</i> 1 1	1-1-		1 -	+		+		 			
14 VW10				1 -		 	-		+-+	 -	-			
15 VW12		V	VV			1 1			+-+		 -			
				1				_	+-+		 			
								_	+		-		<u> </u>	
					_			_	┼┈┼		-	_		
Relinquished by: (Signature)								<u> </u>	1 1		 			
(Received by	Signature	20 6	17.	A	01-	<u>-</u>		<u></u>	<u></u>		Date, & Time:
Fellveatshed by: (Signature)			Received by: (Signature	Ü	w		Cti	\subseteq					19/13/10/4/5
1000	50 (380) 10	-13-10 1	30		suli	//				CE	₹			Date, & Time:
Relinquished by: (Signature)	V		Received by: (Signature)	/				<u> </u>		······································	···	14/10 1000
COC\74121 COC_vapor		 				_								Date, & Time!
GOOM 4121 GOC_vapor											**********		·····	

〈WebShip〉〉〉〉〉

800-322-5555 www.gso.com

< WebShip > > > > > 800-322-5555 www.gso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: ETIC

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED Tracking #: 515143234

NPS

ORC

D

GARDEN GROVE

D92843A

5455881

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference:

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED Tracking #; 515143235

NPS

ORC

D

GARDEN GROVE

D92843A

85455882

Print Date : 10/13/10 15:01 PM

Package 2 of 4

Print Dale: 10/13/10 15:01 PM Package 1 of 4

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: ETIC

Delivery Instructions:

Signature Type; SIGNATURE REQUIRED Tracking #: 515143236

NPS

GARDEN GROVE

D92843A

85455883

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference:

Delivery Instructions:

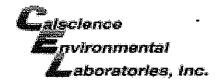
Signature Type: SIGNATURE REQUIRED Tracking #: 515143237

NPS

ORC

GARDEN GROVE

D92843A

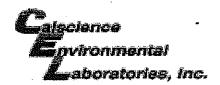

85455884

Print Date : 10/13/10 15:01 PM

Package 4 of 4

Print Date: 10/13/10 15:01 PM Package 3 of 4

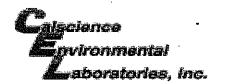
PAYCEADE IS GOOD TO OUT.



SAMPLE RECEIPT FORM

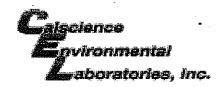
Box 1 of 4

10/14/10 DATE: CLIENT: TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen) $\cdot \quad ^{\circ}C + 0.5 ^{\circ}C (CF) = \quad \cdot \quad ^{\circ}C$ ☐ Blank □ Sample ☐ Sample(s) outside temperature criteria (PM/APM contacted by: _____). ☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. ☐ Received at ambient temperature, placed on ice for transport by Courier. Initial: NC Ambient Temperature: Air ☐ Filter **CUSTODY SEALS INTACT:** NC **Box** Box □ Not Present Initial: ☐ No (Not Intact) □ N/A Initial: □ Sample ☐ No (Not Intact) **SAMPLE CONDITION:** N/A Yes No Chain-Of-Custody (COC) document(s) received with samples..... COC document(s) received complete..... ☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels. ☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished. Sampler's name indicated on COC...... Sample container label(s) consistent with COC..... Sample container(s) intact and good condition...... Proper containers and sufficient volume for analyses requested...... Analyses received within holding time..... pH / Residual Chlorine / Dissolved Sulfide received within 24 hours...... Proper preservation noted on COC or sample container...... ☐ Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace..... Tedlar bag(s) free of condensation..... □ **CONTAINER TYPE:** Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® □TerraCores® □ Water: □VOA □VOAh □VOAna2 □125AGB □125AGBh □125AGBp □1AGB □1AGBna2 □1AGBs □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □500PB □500PBna □250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ Air: □Tedlar® ☑Summa® Other: □____ Trip Blank Lot#:____ Labeled/Checked by:


Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ znna: ZnAc₂+NaOH f: Field-filtered **Scanned by:**

SAMPLE RECEIPT FORM

Box 2 of 4


CLIENT: ETIC DATE:	10/14/10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen)	
	☐ Sample
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling	
☐ Received at ambient temperature, placed on ice for transport by Courier.	
Ambient Temperature: Air	Initial: NC
CUSTODY SEALS INTACT:	157
☑Box □ □ No (Not Intact) □ Not Present □ N/A	Initial: NZ
□ Sample □ □ No (Not Intact) ☑ Not Present	Initial: <u>NZ</u>
SAMPLE CONDITION: Yes	No N/A
Chain-Of-Custody (COC) document(s) received with samples	
COC document(s) received complete	
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.	
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.	
Sampler's name indicated on COC	
Sample container label(s) consistent with COC	
Sample container(s) intact and good condition	
Proper containers and sufficient volume for analyses requested	
Analyses received within holding time	
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours	
Proper preservation noted on COC or sample container □	
☐ Unpreserved vials received for Volatiles analysis	
Volatile analysis container(s) free of headspace □	
Tedlar bag(s) free of condensation	
CONTAINER TYPE:	
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve() □EnCores® □TerraCo	res® □
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1	AGB na₂ □1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □5	00PB □500PB na
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □ □ □	
Air: □Tedlar® ☑Summa® Other: □ Trip Blank Lot#: Labeled/Che	ecked by:
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Rev	

SAMPLE RECEIPT FORM

Box <u>3</u> of <u>4</u>

CLIENT: ETIC	DATE:	10/14/10	
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen)			
Temperature°C + 0.5 °C (CF) =°C	⊒ Blank	☐ Sample	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).			
☐ Sample(s) outside temperature criteria but received on ice/chilled on same da	av of sampli	ina.	
☐ Received at ambient temperature, placed on ice for transport by Co			
Ambient Temperature: ☑ Air □ Filter		Initial: NC	
CUSTODY SEALS INTACT:		·	
☑Box □ □ No (Not Intact) □ Not Present	□ N/A	Initial: NC	
□ Sample □ □ No (Not Intact) □ Not Present		Initial: NZ	
	Yes	No N/A	
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete			
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		•	
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition	•		
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time			
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours			
Proper preservation noted on COC or sample container			
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation CONTAINER TYPE:			
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCores®	[∍] □TerraC	Cores® □	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □	□1AGB □	I1AGB na₂ □1AGBs	
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB □	1500PB □500PB na	
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □			
Air: ☐Tedlar® ☐Summa® Other: ☐ Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: En	-	hecked by:	
Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znna: ZnAc ₂ +NaOH f: F		· 	

SAMPLE RECEIPT FORM

Box 4 of 4

CLIENT: ETIC	DATE:	10/14/10		
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen)				
Temperature°C + 0.5°C (CF) =°C	□ Blank	☐ Sample		
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).				
☐ Sample(s) outside temperature criteria but received on ice/chilled on same d	ay of sampl	ing.		
☐ Received at ambient temperature, placed on ice for transport by Courier.				
Ambient Temperature: ☑ Air ☐ Filter		Initial: <u>NC</u>		
CUSTODY SEALS INTACT:				
☐ Box ☐ ☐ No (Not Intact) ☐ Not Present	□ N/A	Initial: NC		
☐ Sample ☐ ☐ No (Not Intact) ☐ Not Present		Initial: <u>NZ</u>		
SAMPLE CONDITION:	Yes	No N/A		
Chain-Of-Custody (COC) document(s) received with samples				
COC document(s) received complete				
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		<u></u> .		
·		·		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished. Sampler's name indicated on COC				
Sample container label(s) consistent with COC				
Sample container label(s) consistent with COC				
Proper containers and sufficient volume for analyses requested				
Analyses received within holding time	-			
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours				
Proper preservation noted on COC or sample container				
☐ Unpreserved vials received for Volatiles analysis	-			
Volatile analysis container(s) free of headspace				
Tedlar bag(s) free of condensation				
CONTAINER TYPE:		****		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	[®] □Terra0	Cores [®] □		
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB E]1AGBna₂ □1AGBs		
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB □]500PB □500PB na		
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □	🗆			
Air: □Tedlar® ❷Summa® Other: □ Trip Blank Lot#:	_ Labeled/C	Checked by:		
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Zipioc/Resealable Bag E: E		eviewed by:		
Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 znna: ZnAc2+NaOH f: 1	Field-filtered a	5canned by: j		