Groundwater Monitoring Report Hujonne To County January to June 2003

Prepared for:

SIMEON Commercial Properties San Francisco, California

Prepared by:

Erler & Kalinowski, Inc. (EKI 990016.05)

6 March 2003

Erler & Kalinowski, Inc.

Consulting Engineers and Scientists 1870 Ogden Drive Burlingame, California 94010 (650) 292-9100 Fax: (650) 552-9012

Consulting Engineers and Scientists

1870 Ogden Drive Burlingame, CA 94010 (650) 292-9100 Fax: (650) 552-9012

6 March 2003

Betty Graham California Regional Water Quality Control Board San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

Susan Hugo Alameda County Health Agency Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Subject:

Groundwater Monitoring Report

January to June 2003

64th Street Properties, Emeryville, California

(EKI 990016.05)

Dear Ms. Graham and Ms. Hugo:

On behalf of SIMEON Commercial Properties, Erler & Kalinowski, Inc. is pleased to present this report summarizing results of groundwater monitoring activities conducted at the 64th Street Properties located at 1480 64th Street, Emeryville, California on 6 February 2003. Please call with any questions or comments (650) 292-9100.

Very truly yours,

ERLER & KALINOWSKI, INC.

Hae Won Lee

Staff Engineer

Derby Davidson, P.E.

Project Engineer

cc: Pierson Forbes, SIMEON Commercial Properties

Maurice Kaufman, City of Emeryville

Groundwater Monitoring Report January to June 2003 64th Street Properties Emeryville, California

2.0 3.0	GROUN 2.1 Wate 2.2 Grov EVALUA SAMPLI 3.1 Hyd 3.2 Grov	DWATER MONITORING
TABI Table Table	1	Summary of Groundwater Elevation Data Summary of Groundwater Chemical Analytical Data – TEPH
Figure Figure Figure	e 1 e 2	Site Location Estimated Groundwater Potentiometric Surface Contour Map Concentrations of Total Extractable Petroleum Hydrocarbons in Groundwater
Apper	E NDICES ndix A ndix B	Groundwater Purge Sample Forms for 6 February 2003 Laboratory Analytical Reports and Chain of Custody Documents for 6 February 2003

1.0 INTRODUCTION

On behalf of SIMEON Commercial Properties ("SIMEON"), Erler & Kalinowski, Inc. ("EKI") is pleased to present this report summarizing the results of groundwater monitoring activities conducted at the 64th Street Properties located at 1480 64th Street in Emeryville, California ("Site") on 6 February 2003. The location of the Site is shown on Figure 1.

Groundwater monitoring at the Site was conducted in accordance with the *Final Risk Management Plan for the 64th Street Properties*, dated 30 August 1999 ("RMP"). The RMP was approved by the California Regional Water Quality Control Board, San Francisco Bay Region ("RWQCB"), and the Alameda County Department of Environmental Health ("ACDEH") in a letter dated 15 October 1999. The RMP requires the measurement of water levels and the collection of groundwater samples from four monitoring wells (i.e., SMW-1, SMW-2, SMW-3, and SMW-4) installed at the Site. The approximate locations of these wells are shown on Figure 2.

The groundwater monitoring specified in the RMP is required to be performed quarterly for the first year, semi-annually for the second year, and annually thereafter. As recommended in the July to December 2002 Groundwater Monitoring Report, monitoring is being performed on a semi-annual basis to verify that downgradient TEPH concentrations remain stable. All groundwater samples are required to be analyzed for total extractable petroleum hydrocarbons as diesel ("TEPH"). The groundwater samples are also required to be analyzed for volatile organic compounds ("VOCs") on an annual basis. Data from the monitoring events are reported to the RWQCB and the ACDEH.

The objectives of the groundwater monitoring program established in the RMP are to monitor TEPH and VOC concentrations in groundwater at the perimeter and downgradient of the Site and to verify the stability or decline of TEPH concentrations over time. Groundwater samples collected from the four monitoring wells on 6 February 2003 were analyzed for TEPH. Groundwater samples for VOC analysis were inadvertently not collected for this report. Consequently samples will be collected for VOC analysis in the next sampling event, which is scheduled for August 2003. The most recent VOC analyses were conducted on 5 February 2002. For VOC data for the 2002 year, please refer to the January to June 2002 Groundwater Monitoring Report dated 11 October 2002 and prepared by EKI on behalf of SIMEON.

2.0 GROUNDWATER MONITORING

Per the RMP, monitoring at the Site includes measuring groundwater levels and collecting groundwater samples from Site monitoring wells SMW-1 through SMW-4 (Figure 2). EKI conducted monitoring activities at the Site on 6 February 2003 as described below.

2.1 Water Level Monitoring

Prior to sampling, EKI measured water levels in each well using a pre-cleaned electronic sounding tape. Water level data obtained by EKI were used to assess the magnitude and direction of the hydraulic gradient in the shallow water-bearing zone at the Site (see Section 3.1 below). Historic measured water level data and water level data collected on 6 February 2003 are summarized in Table 1.

2.2 Groundwater Sampling and Laboratory Analyses

Prior to sampling, groundwater was purged until at least three of four parameters (temperature, specific conductance, pH, and turbidity) stabilized. Approximately three well-casing volumes of groundwater were removed from each well. Groundwater samples were collected from wells SMW-1, SMW-2, SMW-3, and SMW-4. Copies of groundwater purge sample forms are included in Appendix A.

Groundwater samples from the wells were collected using PVC bailers suspended by nylon string. Separate disposable PVC bailers were used at each well. Well SMW-4, which contains a thin layer of floating product (i.e., a sheen less than 0.03 feet), was sampled through a stilling tube.

Rinsate from equipment cleaning and purged groundwater from the wells was contained and stored on-Site in 55-gallon drums. SIMEON will dispose of the rinse water and purged groundwater in accordance with applicable laws and regulations.

Groundwater samples were labeled, logged on a chain-of-custody document, and packed on ice in a chilled ice chest for transport to the laboratory. Samples were analyzed by Curtis & Tompkins, Ltd., of Emeryville, California, for TEPH with silica gel cleanup using EPA Method 8015M. Analytical results for the 6 February 2003 monitoring event are summarized in Table 2 and are shown on Figure 3. Copies of laboratory reports from these groundwater analyses are included in Appendix B. Groundwater analytical results are discussed in Section 3.2 below.

3.0 EVALUATION OF HYDRAULIC GRADIENT AND GROUNDWATER SAMPLING RESULTS

This section summarizes (a) hydraulic groundwater gradient information obtained at the Site on 6 February 2003, (b) groundwater analytical results from on-site groundwater monitoring conducted on 6 February 2003, and (c) quality control results.

3.1 Hydraulic Gradient

The groundwater potentiometric surface contour map for the Site shallow water-bearing zone shown on Figure 2 is based on water levels measured in wells SMW-1, SMW-2, SMW-3, and SMW-4 on 6 February 2003. As shown on Figure 2, the direction of the hydraulic gradient in the shallow water-bearing zone is westerly across the southwestern portion of the Site. The estimated magnitude of the hydraulic gradient across the Site is 0.009 ft/ft. This groundwater gradient is consistent with prior monitoring events.

3.2 Groundwater Analytical Results

Current and historic TEPH data detected in groundwater samples collected from wells SMW-1, SMW-2, SMW-3, and SMW-4 are summarized in Table 2 and on Figure 3.

TEPH was not detected at a concentration above 50 micrograms per liter ("ug/L") in the groundwater samples collected on 6 February 2003 from downgradient monitoring wells SMW-1, SMW-2, and SMW-3. TEPH was detected at a concentration of 2,100 ug/L in the groundwater sample collected from monitoring well SMW-4. As indicated above, the groundwater sample from monitoring well SMW-4 was collected through a stilling tube because of the presence of a thin layer of floating product. Although the measured TEPH concentration from well SMW-4 should represent levels dissolved in groundwater on the southern property boundary, it is possible that free-phase hydrocarbons became entrained in the sample collected from well SMW-4.

As shown in Table 2 and on Figure 3, the TEPH data from the 6 February 2003 monitoring event for monitoring wells SMW-1, SMW-2, and SMW-3 are generally consistent with historic Site data. The TEPH concentration that was detected in groundwater from well SMW-4 was similar to the concentrations detected in February and August 2002, but an order of magnitude greater than concentrations found in the preceeding four groundwater sampling events. Although the concentrations detected in samples collected from well SMW-4 in 2002 and 2003 are significantly elevated compared to 2001 data, they are consistent with concentrations detected in site groundwater samples collected prior to redevelopment (see Figure 3). Thus, 2001 data may reflect transient conditions, while 2002 and 2003 data may reflect long-term norms. As noted above, the apparent increase in TEPH concentrations at well SMW-4 have not resulted in an increase in TEPH concentrations downgradient of the site (i.e. in wells SMW-1 through SMW-3). Monitoring will continue on a semi-annual basis to verify that downgradient groundwater concentrations remain stable.

3.3 Quality Control Results

All QA/QC analytical results, including laboratory blanks, blank spikes, and surrogates were within (a) generally accepted laboratory QA/QC protocols and (b) requirements of the laboratory's internal quality control procedures. The data collected during the 6 February 2003 monitoring event are considered acceptable and useable for their intended purpose.

TABLE 1
SUMMARY OF GROUNDWATER ELEVATION DATA

64th Street Properties, Emeryville, California

Well Number	Date	Well Elevation (1) (Feet Above MSL)	Depth to Water (Feet)	Groundwater Elevation (Feet Above MSL)
SMW-1	1-Feb-01 24-May-01 7-Aug-01 2-Nov-01 5-Feb-02 21-Aug-02 6-Feb-03	12.21 12.21 12.21 12.21 12.21 12.21	5.68 5.67 5.92 5.78 6.12 5.95 6.09	6.53 6.54 6.29 6.43 6.09 6.26 6.12
SMW-2	1-Feb-01 24-May-01 7-Aug-01 2-Nov-01 5-Feb-02 21-Aug-02 6-Feb-03	11.54 11.54 11.54 11.54 11.54 11.54	4.67 4.92 5.35 5.08 5.25 5.23 5.36	6.87 6.62 6.19 6.46 6.29 6.31 6.18
SMW-3	1-Feb-01 24-May-01 7-Aug-01 2-Nov-01 5-Feb-02 21-Aug-02 6-Feb-03	12.31 12.31 12.31 12.31 12.31 12.31 12.31	5.60 5.63 6.10 5.95 6.11 6.05 6.20	6.71 6.68 6.21 6.36 6.20 6.26 6.11
SMW-4	1-Feb-01 24-May-01 7-Aug-01 2-Nov-01 5-Feb-02 21-Aug-02 6-Feb-03	12.25 12.25 12.25 12.25 12.25 12.25 12.25	2.41 (2) 2.43 (2) 2.20 (2) 2.10 (2) 2.43 (2) 2.23 (2) 2.43 (2)	9.84 (2) 9.82 (2) 10.05 (2) 10.15 (2) 9.82 (2) 10.02 (2) 9.82 (2)

Notes:

- (1) Surveyed elevation from mark on the top of the PVC casing; feet above mean sea level.
- (2) A thin layer of floating product was observed in this well. The floating product thickness was less than 0.03 feet.

TABLE 2 SUMMARY OF GROUNDWATER CHEMICAL ANALYTICAL DATA - TEPH

64th Street Properties, Emeryville, California

Date	TEPH (ug/L) (1)									
Date	SMW-1	SMW-2	SMW-3	SMW-4						
1-Feb-01	<50	<50	140	360						
24-May-01	<50	<50	74	300						
7-Aug-01	< 50	<50	140	280						
2-Nov-01	< 50	<50	<50	260						
5-Feb-02	<50	84	100	3,600						
21-Aug-02	<50	69	<50	8,000						
6-Feb-03	< 50	<50	<50	2,100						

Notes and abbreviations:

(1) TEPH is quantified as diesel. Samples were analyzed by EPA Method 8015M after performance of a silica gel cleanup in the laboratory.

TEPH = total extractable petroleum hydrocarbons

ug/L = micrograms per liter (ppb)

<50 = not detected at laboratory detection limit of 50 ug/L

Basemap Source: Thomas Guide Maps.

Notes:

1. All locations are approximate.

Erler & Kalinowski, Inc.

Site Location

64th Street Properties Emeryville, CA March 2003 EKI 990016.05 Figure 1

240 (Approximate Scale in Feet)

Roilroad Tracks

----- Approximate Property Boundary

--- Boundary of 64th Street Properties

----- Historical Site Features (1911 Sanborn Map)

- Grab Groundwater Sampling Location Collected by EKI, 1995
- Grab Groundwater Sampling Location Collected by EKI, 1999
- Monitoring Well Destroyed Prior to Redevelopment
- Monitoring Well Constructed After Redevelopment
- 1. All locations are approximate.
- 2. Bosemap taken from Sanborn maps dated 1911
- 3. Concentrations are in ug/L.
- 4. "*" Indicates that a sheen was observed in this well. Groundwater sample was collected through a stilling tube.

Erler & Kalinowski, Inc.

Concentrations of Total Extractable Petroleum Hydrocarbons in Groundwater

64th Street Properties Emeryville, CA March 2003 EKI 990016.05 Figure 3

APPENDIX A

Groundwater Purge Sample Forms for 6 February 2003

Daily Inspection Report No	Unc.
Contractor:	Sheet: of
EKI Staff On-Site: Rower Lion	Date: 6 FEB 2003
Weather: "CUAR_	Project: Simeon
Temperature:°F Min to°I	FMax EKI Job.No: <u>9900 16 ⋅0</u> \$
Work Hours: <u>07.55</u> to Memos Issued:	
Photos:	
Special Conditions, Delays, Changes:	
Accidents, Damage:	· · · · · · · · · · · · · · · · · · ·
Sampling, Testing: FURGER SAMPLE WELL	3 Smw-1-> Slnw-4
Visitors to Site:	•
West-Depart AW st. Leav. D. 195	08110
Work Report (Work done, Personnel/Equipment working	
WELL TIME OFFICED TIME WEATSARED DEPTHT	o water
Smw-1 08:05 08:32 6 Smw-2 08:14 08:20 5.	<u>.09 #+</u>
5/10-2 0 5:17 08:20 5.	
	20 fr.
Smw-4 12:03 12:15 2.43 to-	07 tr.
AFTER CALLERATINE COLD INCREMENT	T C-ARMS P. Prior Charles
A PEDICATED BAILER, THEN COLLECTED A SA	1 STOTATED TURNING SINW-1 WITH
69.45 T PHROED & SAMPLED SMW-Z in THE	Come warned AT 11:25
10:48 I STARTED PURGING SMW-3 IN THE	CAME HARAINER TILL ON GETTARSA NO
11:40 I TRANSFERED PURCE WATER TO A	
GARAGE.	DENIM IT! INE SIVENCE FORM ON THE MEAN
12:21 T PURGED SMW-4 WITH DEDICATES BY	FILEPE THERE LIPS A STROWN MAD A
DECAMING OFGANIC MATTER AND A SUHHT SHE	THE PARENCE TO THE THE THE TENTE OF
I MARCA "STILLING TUBE BY TAPING	+ PIENE D ALLIM NUM FOR 2115 P THE
END of A PIECE of ZiNCH PUC PIPE . :	THE FOUR CONFRED FIRE WAS PLATED
BELOWTHE SURFACE of THE WATER AND	They & NEW BRILER , THE 1,550 TO
PIÈRCE THE FOIL AND COLLECT A WATER	2 SAMPLE.
	ATER WAS PLACED in A DRIM AS ABOVE.
THEN SAMPLES WERE TAKEN TO CHRITS	& TOMAKINIS I AR in BERT FIFE
- made sharples were finder to country	group rous chis in a servey.
	C. M
	1/2/11/11/11/10

PROJECT NAME: SIMEON					DATE: DE	FEB O	3
PROJECT NUMBER: 99001	6.04	WELL NUI	MBER: SI	nw-1	PERSONNE	L: RDL	in
WELL VOLUME CALCULATION	:						
Depth of Depth to				Water	Multiplier		Casing Vol.
Well (ft.) Water (ft.	}			Column (ft.)	(below)		(gallons)
/5.23 - 6. C Mult. for basing diam. = 1-inch=0.04	9 1; 2-inch=0.	16; 4-inch=(0.64	9.14	* 064	= 5	.85
PURGE METHOD:					INSTRUMENT CA	ALIBRATION	
Submersible pump Dedicated	Bailer X				la atrium ant	Field	Standard
Peristaltic pump Other					Instrument Conductivity,	measure 10 35	measure 160-0
			2		(millimhos/cm @ 250	C)	•
PURGE DEPTH: BOTTOM					рН	6.98	01 4.01
START TIME: 08:42	ENID TIME	19-19	r P		pH ·		No.
START TIME: 08:92	END TIME	: 0 (-(.1			Turbidity, NTU	0.02	0.02
		1.6			Temperature		
TOTAL GALLONS PURGED:		18			Depth Probe#		
SAMPLES: Field I.D.		Time	Collected	2	Containers & Pre	<u>eservation</u>	
Smw-1		0	9:19	-4	3 - 40-ml VOAs w/ HC	T	
*				1	l - 1-liter amber glass		
	0						
	10						
SAMPLE METHOD: Dedicated Ba	iler <u>X</u> Per	istaltic Pump	other _				
COMMENTS:				10			
Time							
	08.53	09.04	09:15	09:18			
Volume Purged	,	100	11 0	10 0			
(gallons)	5.0	10.0	16.0	18.0			
Temperature	140	17.0	177.0	110			
(degrees C)	16.8	17.0	17.0	16.9			
рН		=-^		7		1	
	6.95	7.20	7.05	7.15			
Specific Conductivity				1207			
@ 25 C (millimhos/cm)	1-222	1.269	1.274	1287			
Turbidity (NTU)	100		11.	_			
/Appearance	138,		401-				
Depth to Water	7 00		710				
during purge (feet)	7.82	7.03	7.18				
Number of Casing	100-	171	077	300			
Volumes removed	0.85	171	2.73	3.08			
Purge Rate	AVE	MILL	1000	017			
(gallons/minute)	10.72	0.45	0.55	0.67			

PROJECT NAME: SIMEON		· ·	_			DATE:		9	
PROJECT NUMBER: 990016	.04	WELL NUN	1BER: 5/	MW-	2	PERSON	INEL: P	DLL	on
WELL VOLUME CALCULATION			3)						
Depth of Depth to				Water	is	Multiplier			Casing Vol.
Well (ft.) Water (ft.))	÷		Column (ft.)		(below)		ä	(gallons)
15.13 - 5.25 Mult. for casing diam. = 1-inch=0.041	; 2-inch=0.1	6; 4-inch = 0	0.64	9.88		* 0,64	=	63	32
PURGE METHOD:						INSTRUMENT	CALIBR	ATION	I
Submersible pump Dedicated	Bailer 🗶	*					7	Field	Standard
Peristaltic pump Other		2				Instrument	. me	easure	measure
						Conductivity, (millimhos/cm @	25C) _		
PURGE DEPTH: BOTTOM	v.					рH	SE	E Sh	w-/
START TIME: 09.45	END TIME	10:23	2	4		pH Turbidity, NTU			' 기
es.						Temperature			
TOTAL GALLONS PURGED:	19			ži.		Depth Probe#			
SAMPLES: Field 1.D.		Time	Collected		es.	Containers &	Preserv	ation	
Smw-2		1	0:25		3-4	0-ml VOAs W	THEL		
SIVIW 2		/ (1:00		1 - 1	-liter amber gl	ass		
	8			-					
	y 2 2							-	
SAMPLE METHOD: Dedicated Ba	iler 🔀 Per	istaltic Pump	other_						
COMMENTS:		Т							
Time	00 -11	10.5							
	09:54	10:07	10:22	-					
Volume Purged	フベ	140	10 -						*
	7.0	17.0	17-0		-				
Temperature (degrees C)	16.9	16.5	16.7				O		2
рН		*:							
	693	6.86	6.78						
Specific Conductivity	1 (110	1.0					-		
@ 25 C (millimhos/cm)	0,649	0,648	0.650						
Turbidity (NTU)	07/	000	1001						
/Appearance	376,	875.	486.				-		
Depth to Water	1 10	/ 111	- n.						
during purge (feet)	6.18	6.41	5.80		-				Annual Control of the
Number of Casing	LIA	221	2 - 6						
Volumes removed	1.10	2.2	3.00		-				
Purge Rate (gallons/minute)	0.78	0,54	0,33			8			

PROJECT NAME: SIMEON	1						0/02/0	
PROJECT NUMBER: 99 0010	6.04	WELL NU	MBER:	SMW-	3	PERSONN	IEL: RDL	.cón
WELL VOLUME CALCULATION			0					
Depth of Depth to				Water		Multiplier		Casing Vol
Well (ft.) Water (ft.	}			Column (ft.)		(below)		(gallons
1521 - 621 Mult. for casing diam. = 1-inch=0.04		16; 4-inch =	0.64	9.00		* 064	= 5	.76
PURGE METHOD:	V					INSTRUMENT	CALIBRATIO	V
Submersible pump Dedicated	Bailes 👗						Field	Standard
Peristaltic pump Other						Conductivity,	<u>measure</u>	measure
						(millimhos/cm @ 2	.5C)	
PURGE DEPTH: BOTTOM	*					pH .	1	, \
START TIME: 10:48	END TIME	: 11:26	2,			pH Turbidity, NTU	SEE SMU	9-()
		10 -				Temperature		
TOTAL GALLONS PURGED:		19-0)			Depth Probe#		
SAMPLES: Field I.D.		<u>Time</u>	Collected			Containers & F	reservation	
SMW-3	**	11	:20			0-ml-VOAs w/ l		
6 P P			_		1 - 1	-liter amber glas	S	
w.								
SAMPLE METHOD: Dedicated Ba	iller 🗶 Per	istaltic Pump	other					
COMMENTS:							T - T	
Time	10:58	11:08	11:20					
Volume Purged (galions)	8.0	14.0	19.0					55
Temperature	_							
(degrees C)	19.0	19.6	19.5					-
рН	691.	6.96	6.89					
Specific Conductivity								
@ 25 C (millimhos/cm)	0.980	0950	1046					
Turbidity (NTU)	1~6	- ~1	11.1					
/Appearance	150	354	461					
Depth to Water	1000	11.06						
during purge (feet)	10,06	11.90						
Number of Casing	100	01/2	3 2M					
Volumes removed	1.39	2.43	3.30					
Purge Rate (gallons/minute)	085	060	042					

PROJECT NAME: SIMEON			15	_		DATE: 06	FEBRU	AFY 03
PROJECT NUMBER: 99001	6.04	WELL NUN	∕IBER: ∑	SMW-		PERSONNE	: P	Dlion
WELL VOLUME CALCULATION		¥						
Depth of Depth to				"Water		Multiplier		Casing Vol.
Well (ft.) Water (ft.)			Column (ft.)	8	(below)		(gallons)
15 2.4.	3		=	12.59	2 *	064	= \$	2 04
Mult. for casing diam. = 1-inch = 0.04	1; 2-inch=0.	16/4-inch=0	.64	12.				
PURGE METHOD:					INS	TRUMENT CA		
Submersible pump Dedicated						227	Fie	
Peristaltic pump Other					15	<u>ument</u> ductivity,	measu	<u>rre</u> <u>measure</u>
					1	limhos/cm @ 250	2)	
PURGE DEPTH: BOTTON					рН	. /		-may . /
	*	1201			pH	(see i	smw-1)
START TIME: 1221	END TIME	: 1301	_		Turb	oidity, NTU	•	
	0	<u>-</u>			Tem	perature		禁
TOTAL GALLONS PURGED:	2	5.0				th Probe#		1
SAMPLES: Field I.D.		Time	Collected	L	<u>Co</u>	ntainers & Pre	servatio	<u>on</u>
Smw-4		1	3.11		3 40 m	I- VOAs w/ HC	L	
7		() .II		1 - 1-lite	r amber glass		
							ë	
NEW	~/						i i	
SAMPLE METHOD: Bedicated Ba	iler 🗶 Per	istaltic Pump	other					
COMMENTS: THE	not 577	LING	TUBE					
Time	() 115	10 00	12-1				102	
	12:10	12:50	1201					
Volume Purged	0.	110	25					
(gallons)	0.0	16.0	20					
Temperature	A1 0	176	11 9					
(degrees C)	16.7	17.0	16.9					
рН	(10	1 = 2	1 .114	2				·
	6,60	6.53	6-44					
Specific Conductivity	[[_ (1186	1.191					
@ 25 C (millimhos/cm)	1.106	1.100	1,191					
Turbidity (NTU)		047		1				
/Appearance		207.		1				
Depth to Water		3,20						4
during purge (feet)		1.20			1			
Number of Casing	0.99	1.99	3,11					7.
Volumes removed	0.11	1.1.1	0,11		-			
Purge Rate	0 42	0.80	800					
(gallons/minute)	0-10	0,00	6.82					

Erler & Kalinowski, Inc.

CHAIN OF CUSTODY RECORD

CONSULTING ENGINEERS AND SCIENTISTS

1730 South Amphlett Blvd. Suite 320 San Mateo CA 94402

PHONE: 650-578-1172

FAX: 650-578-9131

Project Name			Project No.			T										
- Tojost Hallio	Simeon		r roject no.	,	9900016.04			ANALYSES REQUESTED						EKI CO	DC No.	
Project Location	Emeryville,	CA	Laboratory	Laboratory Curtis & Tompkins			l Cleanup	esel							ROUND	Standard TA
Report Results to:	TIDSON	Sampled By	: Rover	Lion		1 - VOCs	EPA 3630-Silica Gel Cleanup	8015M TPH diesel		ε					EXPECTED TURNAROUND	NUNDANA IT
Field Sample Identification	Lab Sample No.	Date	Time	Type of Sample	No. of Containers / Preservative	EPA 8021 - VOCs	EPA 363	EPA 801							EXPECTE	Remarks
SMW-1		6FEB 03	09:19	WATER	1 - 1-L amber	-	х	Х							10 day	
SMW-2		6FEB 03	10:25	WATER	1 - 1-L amber	-	х	Х							10 day	
SMW-3		6 FEB 03	11:20	WATE	1 - 1-L amber	-	х	Х			-				10 day	
SMW-4		6FEB 03	13.11	WATER	1 - 1-L amber	-	Х	Х							10 day	
			-	190												
								D.			0=1=				-5	
e e			Presi	rvation Cor	ect? 1 N/A		- t	Cold	ceived	mbie:		e \Intac				
										-	-					
Special Instructions:	13)				ъ.											
Relinquished by: (Signatu	ofer	Slin	e~i		Date / 2/6/3	Time (3.4	15	Receive	ed by:		ure)		26	102	, 0	T 13:45
Relinquished by: (Signatur	re)		1		Date	Time		Receive	ed by: (1	2/6	102		7 15.47
Relinquished by: (Signatu	re)				Date	Time	×.	Receive	ed by: (Signati	ure)	***************************************				

APPENDIX B

Laboratory Analytical Reports and Chain of Custody Documents for 6 February 2003

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Erler & Kalinowski, Inc. 1870 Ogden Drive Burlingame, CA 94010-5306

Date: 18-FEB-03 Lab Job Number: 163529 Project ID: 9900016.04

Location: Simeon

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of ______

163527

Erler & Kalinowski, Inc.

CHAIN OF CUSTODY RECORD

CONSULTING ENGINEERS AND SCIENTISTS

1730 South Amphlett Blvd. Suite 320 San Mateo CA 94402

PHONE: 650-578-1172

FAX: 650-578-9131

Project Name	Simeon		Project No.		9900016.04			ANA	LYS	ES F	REQU	JES1	ΓED	4	EKI CC	C No.
Project Location	Emeryville,	CA Sampled By		Curtis & T	ompkins	- VOCs	EPA 3630-Silica Gel Cleanup	8015M TPH diesel	8 8		e e e e e e e e e e e e e e e e e e e	9			EXPECTED TURNAROUND	Standard PA
Field Sample	Lab Sample No.	Date	Time	Type of Sample	No. of Containers	EPA 8021	EPA 363(EPA 801		1 N					EXPECT	Remarks
SMW-1	11	6FEB 03	09:19	WATER	1 - 1-L amber		х	х							10 day	
SMW-2		6FEB 03		WATER	1 - 1-L amber	-	Х	х							10 day	
SMW-3		6 FEB 03	11:20	WATE	1 - 1-L amber	-	X	X :							10 day:	
SMW-4		6FEB 03		WATER	1 - 1-L amber	-	X	X							10 day	
					*											p*)
				ervation Cor			- tì	Re Cold	ceive	mbie	on lo	e Intac				
					. 10											
	ē 4 .	· s														. 1
Special Instructions:		400			*											
Relinquished by: (Signation Re	afen	Sln	on:		Date / 6 / 3 Date	Time /3.4 Time		Receiv	<u> </u>	LU	2000	1	2	do	30	打 13:45
Relinquished by: (Signate	ure)	:			Date	Time		Receiv	ed by:	(Signa	ture)		·			

Total Extractable Hydrocarbons Lab #: 163529 Location: Simeon Client: Erler & Kalinowski, Inc. Prep: EPA 3520C Project#: 9900016.04 Analysis: · EPA 8015B Matrix: Water Sampled: 02/06/03 Units: ug/L Received: 02/06/03 Diln Fac: 1.000 Prepared: 02/07/03 Batch#: 79041

Field ID:

SMW-1

Type:

SAMPLE

Lab ID:

163529-001

Analyzed:

02/12/03

Cleanup Method: EPA 3630C

Analyte	Result	RLi	
Diesel C10-C24	ND	50	

Surrogate %REC Limits Hexacosane 39-137

Field ID:

SMW-2

SAMPLE

Analyzed:

02/11/03

Cleanup Method: EPA 3630C

Lab ID:

Type:

163529-002

Result

Analyte Diesel C10-C24

RL

Surrogate %REC Limits

Hexacosane

39-137

Field ID:

SMW-3

SAMPLE

Analyzed:

02/11/03

Type: Lab ID:

163529-003

Cleanup Method: EPA 3630C

Analyte

Diesel C10-C24

Result ND

50

Surrogate %REC Limits

Hexacosane 39-137

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

1.0

	Total Extract	able Hydrocar	bons
Lab #:	163529	Location:	Simeon
Client:	Erler & Kalinowski, Inc.	Prep:	EPA 3520C
Project#:	9900016.04	Analysis:	EPA 8015B
Matrix:	Water	Sampled:	02/06/03
Units:	ug/L	Received:	02/06/03
Diln Fac:	1.000	Prepared:	02/07/03
Batch#:	79041	U.B.	

Field ID:

Lab ID:

SMW-4

Type:

SAMPLE

163529-004

Analyzed:

02/11/03

Cleanup Method: EPA 3630C

	Analy	te Resul	t		RL
Diesel	C10-C24	2,100		Y	50

Surrogate	%REC	Limits	
Hexacosane	87	39-137	

Type:

BLANK

Lab ID: QC204140 Analyzed:

02/12/03

Cleanup Method: EPA 3630C

	Analy	te Result	RL	
Diesel	C10-C24	ND	50	

Surrogate	%REC	Limits	
Hexacosane	90	39-137	-

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Chromatogram

Sample Name: 163529-004sg,79041

FileName : G:\GC17\CHA\042A006.RAW

Method : ATEH042.MTH

Start Time : 0.01 min

End Time : 31.91 min

Scale Factor: 0.0 Plot Offset: 23 mV

Sample #: 79041

Page 1 of 1

Date: 2/12/03 09:01 AM

Time of Injection: 2/11/03 09:37 PM

Low Point: 23.18 mV High Point: 221.71 mV

Plot Scale: 198.5 mV

Chromatogram

Total Extractable Hydrocarbons Lab #: 163529 Location: Client: Erler & Kalinowski, Inc. Simeon Prep: Project#: EPA 3520C 9900016.04 Analysis: Matrix: EPA 8015B Water Batch#: Units: 79041 ug/L Prepared: Diln Fac: 02/07/03 1.000 Analyzed: 02/12/03

Type:

BS

Lab ID:

QC204141

Cleanup Method: EPA 3630C

Analyte	Cartes			
Diesel C10-C24	Spiked	Result	%REC	Limits
	2,500	1,675	67	37-120

%REC Limits Hexacosane 39-137

Type:

BSD

Lab ID:

QC204142

Cleanup Method: EPA 3630C

Analyte	Spiked					
Diesel C10-C24	2,500	Result	%RE(Limits	RPD	Lim
	-,500	1,908	76	37-120		26
Surrogate	SPRC Timin					

Hexacosane 39-137