ALAMEDA COUNTY

HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

April 30, 2008

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Ms. Monique Durham 308 S. Arkard. St., Three SBC Plaza Environmental Mgmt. Room No.: 900 Dallas, TX 75202-5399

Subject: Fuel Leak Case No. RO0002610, SBC Communications Inc., 2610 Norbridge Ave., Castro Valley, CA

Dear Ms. Durham:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25299.37[h]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Health (ACEH) is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed.

SITE INVESTIGATION AND CLEANUP SUMMARY

Please be advised that the following conditions exist at the site:

- Residual concentrations of up to 31 milligrams per kilogram (mg/kg) of total petroleum hydrocarbons as gasoline remain in soil at the site.
- Residual concentrations of up to 74 micrograms per liter (μg/L) of total petroleum hydrocarbons as gasoline remain in groundwater at the site.

If you have any questions, please call Steven Plunkett at (510) 383-1767. Thank you.

Sincerely.

Donna L. Drogos, P.E.

LOP and Toxics Program Manager

Monique Durham August 17, 2008 Page 2

Enclosures:

- 1. Remedial Action Completion Certificate
- 2. Case Closure Summary

CC:

Ms. Cherie McCaulou (w/enc) SF- Regional Water Quality Control Board 1515 Clay Street, Suite 1400 Oakland, CA 94612

Mr. Chris d'Sa Hydrologue Inc. 2793 East Foothill Blvd. Pasadena, Ca 91107 Danville, CA 94506

Steven Plunkett (w/orig enc), D. Drogos (w/enc), R. Garcia (w/enc)

ALAMEDA COUNTY

HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250

Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

April 30, 2008

Ms. Monique Durham 308 S. Arkard. St., Three SBC Plaza Environmental Mgmt. Room No.: 900 Dallas, TX 75202-5399

REMEDIAL ACTION COMPLETION CERTIFICATE

Dear Ms. Durham:

Subject:

Fuel Leak Case No. RO0002610, SBC Communications Inc., 2610 Norbridge Ave., Castro

Valley, CA

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25299.37 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.77 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

This notice is issued pursuant to subdivision (h) of Section 25299.37 of the Health and Safety Code.

Please contact our office if you have any questions regarding this matter.

Sincerely,

Ariu Levi Director

Alameda County Environmental Health

CASE CLOSURE SUMMARY LEAKING UNDERGROUND FUEL STORAGE TANK - LOCAL OVERSIGHT PROGRAM

I. AGENCY INFORMATION

Agency Name: Alameda County Environmental Health	Address: 1131 Harbor Bay Parkway
City/State/Zip: Alameda, CA 94502-6577	Phone: (510) 383-1767
Responsible Staff Person: Steven Plunkett	Title: Hazardous Materials Specialist

II. CASE INFORMATION

Site Facility Name: SBC CTVYCA	60 (P5200) Facility	
Site Facility Address: 2610 Norbri	dge Avenue, Castro Valley, CA 94546	
RB Case No.:	Local Case No.:	LOP Case No.: RO0002610
URF Filing Date: 12/11/2003	SWEEPS No.:	APN: 084A-0007-005-00
Responsible Parties	Addresses	Phone Numbers
Responsible Parties Cheryl Allen SBC Communications Inc.	Addresses 308 S. Akard Street 3 SBC Plaza Dallas, TX 75202-5399	Phone Numbers 925-823-8866
Cheryl Allen	308 S. Akard Street 3 SBC Plaza	

Tank I.D. No	Size in Gallons	Contents	Closed In Place/Removed?	Date
NA	10,000	Gasoline	Removed	12/11/2003
	Piping		Removed	12/11/2003

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and Type of Release: Unknown. No luring removal.	holes, cra	cks, or other signs of t	failure were observed in the tanks
Site characterization complete? Yes Date Approved By Oversight Agency:			
Monitoring wells installed? Yes	- 111	Number: 4	Proper screened interval? Yes
Highest GW Depth Below Ground Surface: 6 ft. bgs		Lowest Depth: 8 ft. bgs	Flow Direction: West Northwest
Most Sensitive Current Use: Potential Drinkin	ng water s	source	

Date: September 12, 2007

Summary of Production Wells in Vicinity: Based on well survey information from California Department of Water Resources and Alameda County Department of Public Works no water supply wells are within ½ mile of the site.

Are drinking water wells affected? No

Aquifer Name: East Bay Plain

Nearest SW Name: Lake Chabot is approximate 1.5 miles north of the site

Off-Site Beneficial Use Impacts (Addresses/Locations): None

Reports on file? Yes

Where are reports filed? Alameda County Environmental Health

TREATMENT AND DISPOSAL OF AFFECTED MATERIAL			
Material	Amount (Include Units)	Action (Treatment or Disposal w/Destination)	Date
Tank	1-10,000 gallon	Transported to Ecology Controls Industry, 255 Parr Blvd., Pacheco, CA	2/2004
Piping	7 ft.	Transported to Ecology Controls Industry, 255 Parr Blvd., Pacheco, CA	2/2004
Free Product			
Soil	250 cubic yards	Transported to Browning Ferris Industries, Livermore, CA	May 1993
Groundwater			en ny

MAXIMUM DOCUMENTED CONTAMINANT CONCENTRATIONS BEFORE AND AFTER CLEANUP (Please see Attachments 1 through 7 for additional information on contaminant locations and concentrations)

Contaminant	Soil	Soil (ppm)		Water (ppb)	
Contaminant	Before	After	Before	After	
TPH (Gas)	430	31	74	ND	
TPH (Diesel)	ND	ND	NA	ND	
TPH (Motor Oil)	ND	ND	NA	ND	
Oil and Grease	ND	ND	NA	ND	
Benzene	ND	0.35	0.57	ND	
Toluene	ND	ND	0.57	ND	
Ethylbenzene	ND	ND	<0.5	<0.5	
Xylenes	ND	ND	1.0	ND	
Heavy Metals (Pb)	12 ⁽¹⁾	12 ⁽¹⁾	6.6 ⁽¹⁾	ND ⁽¹⁾	
МТВЕ	ND ⁽²⁾	ND ⁽²⁾	24 ⁽³⁾	0.65 ⁽³⁾	
Other (8240/8270)	ND	ND	ND	ND	

⁽¹⁾ Other Metals (Soil and Groundwater): As, Ba, Be, Cd, Cr, Co, Cu, Hg, Mo, Ni, Se, Ag, Tl, V and Zn Not Analyzed

⁽²⁾ Fuel Oxygenates (Soil): TAME <0.5 ppm, TBA <0.5 ppm, EDB <0.5 ppm, 1,2-DCA <0.5 ppm, ETBE <0.5 ppm

⁽³⁾ Fuel Oxygenates (groundwater): TAME <0.5 ppb, TBA 16 ppb, EDB <0.5 , 1,2-DCA <0.5 ppb, ETBE <0.5 ppb

Site History and Description of Corrective Actions:

The site is currently an active warehouse and material storage facility. In May 1993 one 10,000 gallon fiberglass UST was removed from the site and confirmation soil samples were collected from the tank pit case. TPHg was detected at concentrations of up to 7,900 ppm, while BTEX constituents were detected at concentrations of up to 0.022 ppm, 0.36 ppm, 110 ppm and 110 ppm, respectively. Over-excavation of the tank pit was completed and approximately 250 cubic yards of soil was removed and disposed of off site. Seven additional confirmation soil samples were collected. Low levels of TPHg 31 mg/L and 0.35 mg/L benzene remained in two of the seven samples collected. The UST was replaced with a 10,000 gallon glasteel UST.

In February 1994, three soil borings and one groundwater monitoring well were advanced at the site. Soil samples collected during the investigation tested below laboratory detection limits for all petroleum hydrocarbon constituents. Groundwater samples collected from the monitoring well detected 74 ppb TPHg, and below laboratory detection limits for all other petroleum hydrocarbon constituents. The UST fuel leak case ID #4092/R00001011 was closed by ACEH in February 1996.

In December 2003, Shaw Environmental removed one 10,000 gallon UST, which did not have any holes or leaks. Confirmation soil samples collected from the tank pit tested below laboratory detection limits for all petroleum hydrocarbon constituents. Groundwater was encountered in the tank pit at approximately 10 feet bgs. Grab groundwater samples collected from the tank pit tested $0.57 \mu g/L$ benzene, $24 \mu g/L$ MtBE, $0.57 \mu g/L$ Tolunene, $1 \mu g/L$ xylenes and $16 \mu g/L$ TBA. The UST excavation pit was backfilled with excavation fill material and clean imported backfill.

In August 2005, Hydrologue, Inc. conducted a phase II site investigation and installed three soil borings and two groundwater monitoring wells to further define soil and groundwater conditions on site. Analytical results from all soil and groundwater samples during this investigation tested below laboratory detection limits.

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? Yes

Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? Yes

Does corrective action protect public health for current land use? Alameda County Environmental Health staff does not make specific determinations concerning public health risk. However, based upon the information available in our files to date, it does not appear that the release would present a risk to human health based upon current land use and conditions.

Site Management Requirements: None

Should corrective action be reviewed if land use changes? No

Was a deed restriction or deed notification filed? No

Date Recorded: —

Monitoring Wells Decommissioned: No

Number Decommissioned: 0

Number Retained: 3

List Enforcement Actions Taken: None

List Enforcement Actions Rescinded: —

V. ADDITIONAL COMMENTS, DATA, ETC.

Considerations and/or Variances:

Low levels of MtBE are present in groundwater monitoring well MW-1 at concentrations of 0.84 ppb. Based on the general absence of TPHg, benzene and MtBE in soil samples collected near to the former UST tank pit, it appears that no residual source of contamination remains on site. In addition, the absence of TPH and other fuel

oxygenates in soil and groundwater indicates that site remediation activities have been effective. Since it does not appear that soil or groundwater are adversely impacted because of the past release of petroleum hydrocarbons associated with the former USTs, no further action is warranted at this site.

Conclusion:

Alameda County Environmental Health staff believe that the levels of residual contamination do not pose a significant threat to water resources, public health and safety, and the environment based upon the information available in our files to date. No further investigation or cleanup is necessary. ACEH staff recommend case closure for this site.

VI. LOCAL AGENCY REPRESENTATIVE DATA

Prepared by: Steven Plunkett	Title: Hazardous Materials Specialist
Signature: Sun 7	Date: 9/2/07
Approved by: Donna L. Drogos, P.E.	Title: Supervising Hazardous Materials Specialist
Signature.	Date: 09/12/07

This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions.

VII. REGIONAL BOARD NOTIFICATION

Regional Board Staff Name: Cherie McCaulou	Title: Engineering Geologist
RB Response: Concur, based solely upon information contained in this case closure summary.	Date Submitted to RB:
Signature:	Date:

VIII. MONITORING WELL DECOMMISSIONING

Date Requested by ACEH:	Date of Well Decommissioning Report: 11/21/07		
All Monitoring Wells Decommissioned: (45	Number Decommissioned: 3 Number Retained: O		
Reason Wells Retained:			
Additional requirements for submittal of groundwater data from retained wells:			
ACEH Concurrence - Signature:		Date: 4/30/08	

Attachments:

- 1. Site Location Map
- 2. Site Plan Map
- 3. Site Plan Showing Extent of Excavation
- 4. Soil Analytical Data (4 Pages)
- Groundwater Analytical Data (3 Pages)
- 6. Groundwater Elevation Map
- 7. Boring Logs (7 Pages)

This document and the related CASE CLOSURE LETTER & REMEDIAL ACTION COMPLETION CERTIFICATE shall be retained by the lead agency as part of the official site file.

oxygenates in soil and groundwater indicates that site remadiation activities have been effective. Since it does not appear that soil or groundwater are adversely impacted because of the past release of potroleum hydrocarbons associated with the former USTs, no further action is warranted at this site.

Conclusion:

Alameda County Environmental Health staff believe that the levels of residual contamination do not pose a significant threat to water resources, public health and safety, and the environment based upon the information available in our files to date. No further investigation or cleanup is necessary. ACEH staff recommend case closure for this site.

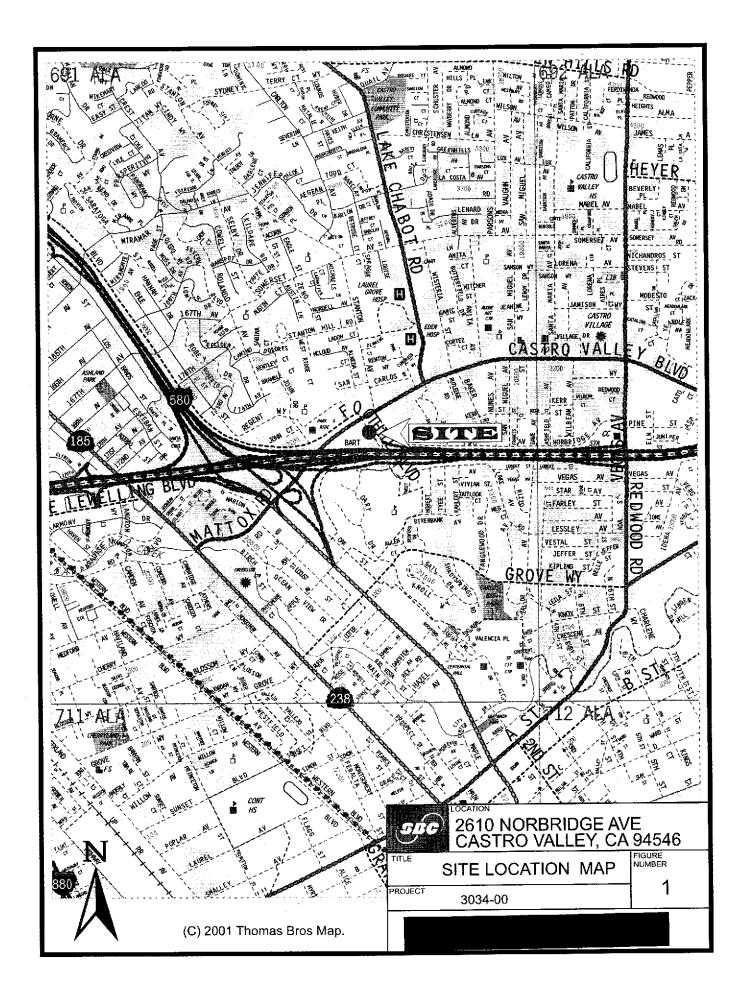
VI. LOCAL AGENCY REPRESENTATIVE DATA

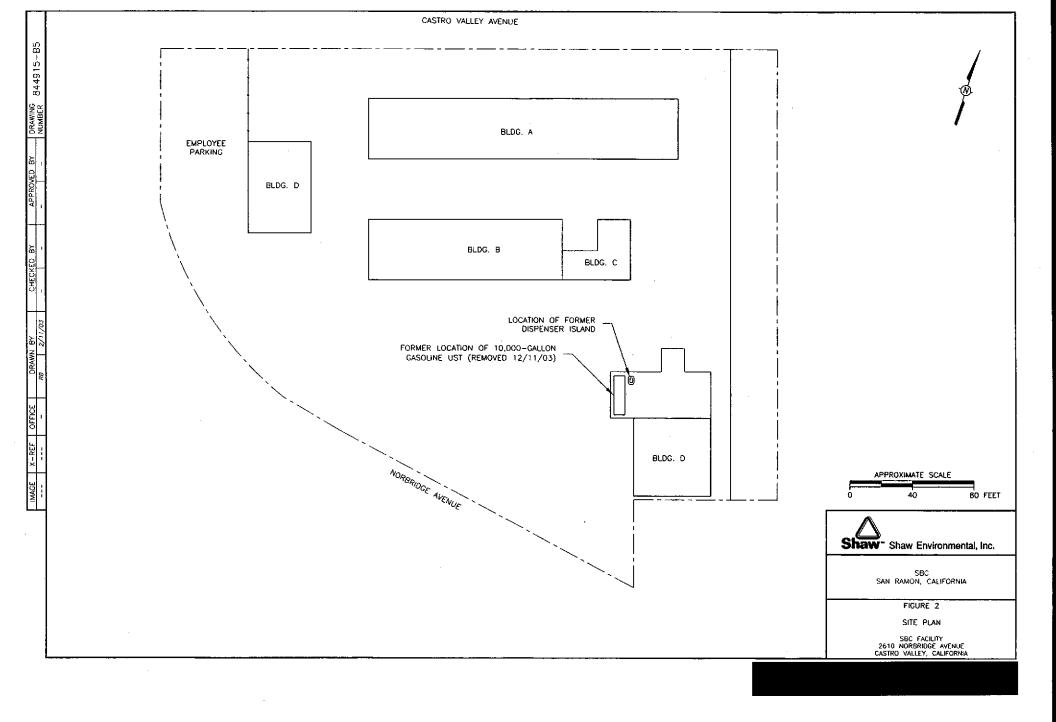
Prepared by: Staven Plunkett	Title: Hazardous Materials Specialist	
Signature: Sun 1	Date: 9/12/07	
Approved by: Donna L. Drogos, P.E.	Title: Supervising Hazardous Materials Specialist	
Signature.	Date: 09/12/01	

This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions.

VII. REGIONAL BOARD NOTIFICATION

Regional Board Staff Name: Cherio McCaulou	Tibe: Engineering Geologist	
RB Response: Concur, based solely upon information contained in this case closure summary.	Date Submitted to RB;	
Signature: Che McCaulo	Date: 9/8/07	


VIII. MONITORING WELL DECOMMISSIONING


Date Requested by ACEH:	Date of Well Decommissioning Report:		
Ail Monitoring Wells Decommissioned:	Number Decommissioned: Number Retained:		
Reason Wells Retained:			
Additional requirements for submittal of groundwater data from relained wells:			
ACEH Concurrance - Signature: Date:			

Attachments:

- 1. Site Location Map
- Sile Plan Map
- Site Plan Showing Extent of Excavation
- 4 Soil Analytical Dalar (4 Pages).
- Groundwaler Analytical Data (3 Pages)
- 6. Groundwater Elevation Map
- Boring Logs (7 Pages)

This document and the related CASE CLOSURE LETTER & REMEDIAL ACTION COMPLETION CERTIFICATE shall be retained by the lead agency as part of the official site like.

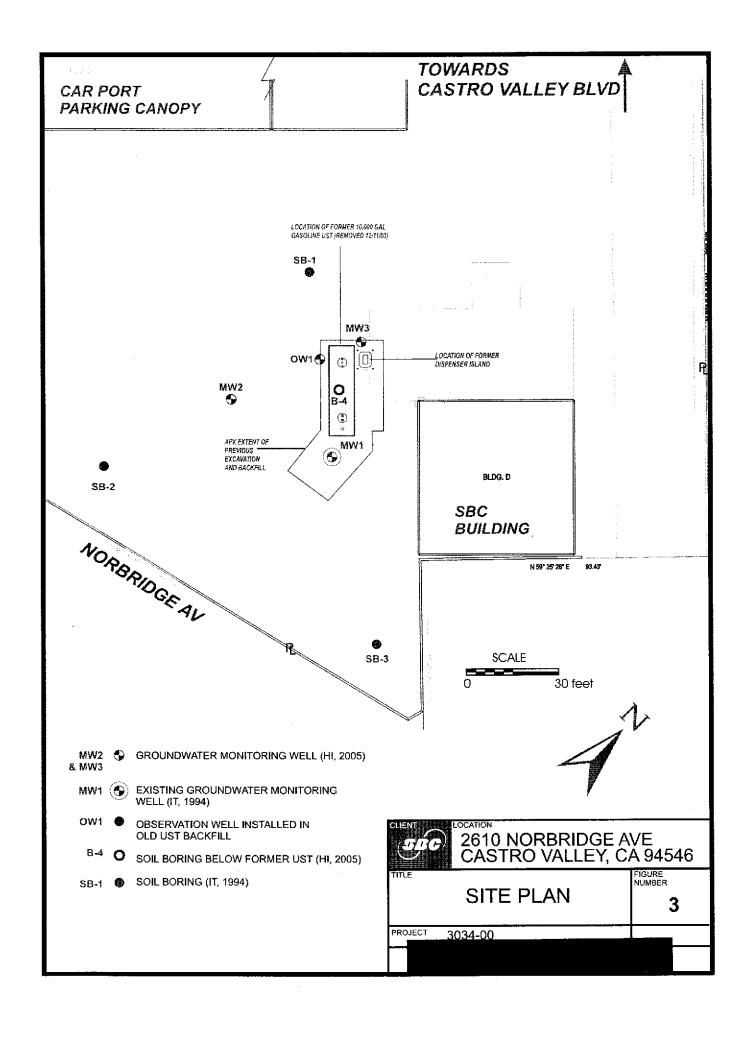


TABLE 3

RESULTS OF LABORATORY ANALYSIS

OF SOIL SAMPLES (1)

Sample No.	Depth (2)	Date (ppm)	TPH gasoline (ppb)	Benzene (ppb)	Ethylbenzene (996)	Toluene (ppb)	Xylenes (ppb)
SB-1(7.5)	7.5	2-2- 9 4	ND	ND	ND	ND	ND
SB-2(7.5)	7.5	2-2-94	ND	ND	ND	ND	ND
SB-3(7.5)	7.5	2-2-94	ND	ND	ND	ND	ND
SSC-1(2-94)	composite of drill cuttings	2-15-94	ND	ND	ND	ND	ND

Notes:

- Soil samples analyzed for TPH (Total Petroleum Hydrocarbons) as gasoline by LUFT methods utilizing modified EPA Method No. 8015, for benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method No. 8020.
- 2. Depth given in approximate feet below ground surface.
- 3. ND = Not Detected above reporting limit.

151939 PAC BELL - CASTRO VALLEY TABLE OF SAMPLES COLLECTED

PACIFIC BELL ENGINEER - DUANE WALLACE IT CORPORATION FROJECT MANAGER - MICHAEL MILLER

						LABORATO RESULTS	אל			
DATE	SAMPLE #	MATELX	LOCATION	ANALYTICAL	T/A	TPHg	8	τ	E	x
5/4/98 5/4/98 5/4/98	SO(L-1 SO(L-2 SO(L-3	SOIL SOIL SOIL	NORTH SIDEWALL 6' BGS NORTHEAST CORNER 6' BGS SOUTH SIDEWALL 6' BGS	TPHQ/STEX, TOT PB TPHQ/STEX, TOT PB TPHg/STEX, TOT PB	RUSH RUSH RUSH	ND ND 12 ppm	66 66 66	ND ND ND	ND ND ND	ND ND ND
5/5/93	GRAEWATER-1	WATER	TANKPIT GROUNDWATER	TPHq/BTEX	FILISH	7900 ppb	ND	ND:	110 ppb	11 0 ppb
5/10/98 5/10/98 5/10/98	30114 80115 80116	SOIL SOIL	ADD EXCAV SIDEWALL (RAST) 6' BGS ADD EXCAV SIDEWALL (RAST) 6' BGS	TPHG/STEX TPHG/STEX TPHg/STEX	AUSH AUSH AUSH	430 ppm 1 ppm 8 ppm	ND ND .022 ppm	NO NO NO	8 ppm QN Qq mqq 190,	4 ppm ND .047 ppm
5/10/93 5/10/93 5/10/93	SOILPILE-1 SOILPILE-2 SOILPILE-3 SOILPILE-4	SOIL-COMP SOIL-COMP	OLEAN OVERBURDEN FROM ADD EXCAV PEA GRAVEL FROM TANK REMOVAL DIRTY SOIL FROM ADD EXCAV DIRTY SOIL FROM ADD EXCAV	TPHg/BTEX, TCLP(8 RCRA), RCI TPHg/BTEX, TCLP(8 RCRA), RCI TPHg/BTEX, TCLP(8 RCRA), RCI TPHg/BTEX, TCLP(8 RCRA), RCI	STANDARD STANDARD STANDARD STANDARD	nat in yel				
5/14/93	90IL-7	SOIL	ADD EXCAV SIDEWALL (WEST) 6.5' BGS	TPHg/8TEX	AUSH	ND	ND	ND	ND	ND

TABLE 2 Soil Sample Analytical Results SBC Facility 2610 Norbridge Avenue Castro Valley, California

Sample I.D.	Sample	Location Deptn		трн-с	Benzene	Toluene	Ethyl Benzene	Xylenes	мтве	ТВА	3 Fuel Oxygenates	Lead Scavengers	Total Lead	Organic
	Location	(bsg)	Collected		(all results reported in parts per million)									
TP-1	tank excavation	8.1 feet	12/11/03	ND _{1.0}	ND _{0.005}	ND _{0.005}	ND _{0.005}	ND _{0.005}	ND _{0.005}	ND _{0.025}	ND _{0.005}	ND _{0.005}	12	ND _{0.5}
TP-2	tank excavation	9.2 feet	12/11/03	ND _{1.0}	ND _{0.005}	ND _{0.005}	ND _{0.005}	ND _{0.005}	ND _{0.005}	ND _{0.025}	ND _{0.005}	ND _{0.005}	12	ND _{0.5}
CS-1-4	Excavation stockpile		12/11/03	ND _{1.0}	ND _{0.005}	ND _{0.005}	ND _{0.005}	ND _{0.005}	ND _{0.005}	ND _{0.025}	ND _{0.005}	ND _{0.005}	ND _{5.0}	ND _{0.5}

Notes:

bsg - below surface grade

TPH-G - total petroleum hydrocarbons as gasoline

MTBE - methyl tertiary butyl ether

TBA- tert-butyl alcohol

3 Fuel oxygenates- tert-amyl methyl ether, di-isopropyl ether, and ethyl tert butyl ether

Lead Scavengers- 1,2-Dibromoethane and 1,2-Dichloroethane

ND_x - not detected above "x" laboratory detection limits

8.0 ANALYTICAL TESTING RESULTS

8.1 Soil Samples

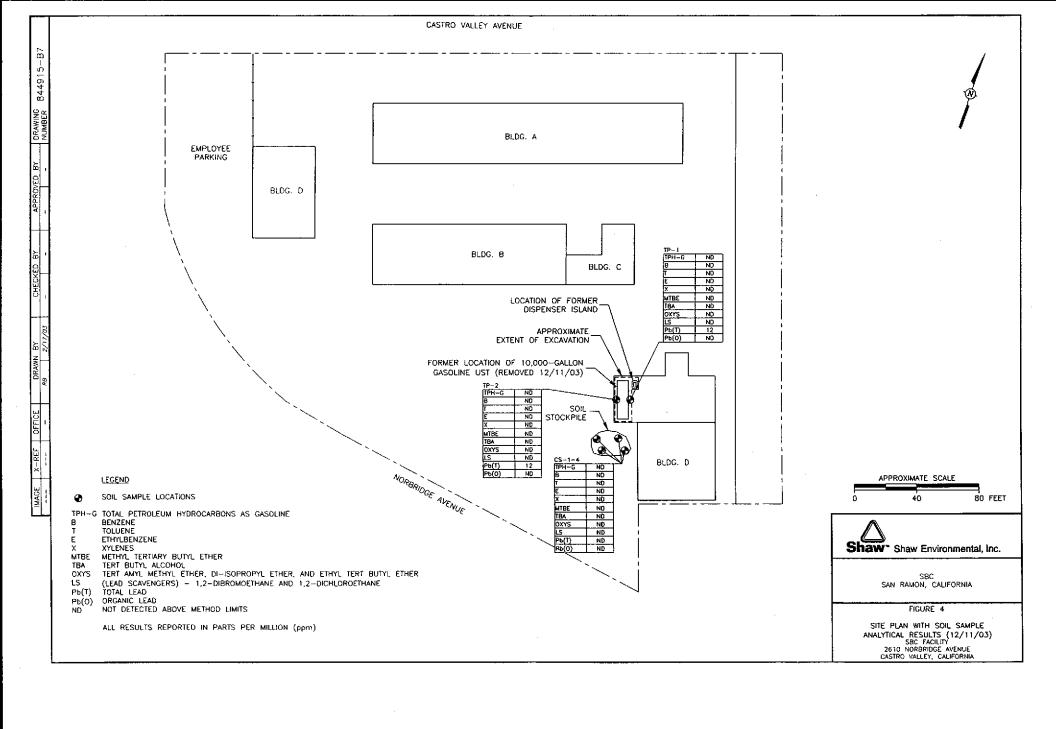
The analytical testing results for soil samples collected from B-4, MW-2 and MW-3 during performance of investigation activities are summarized below:

 No TPH-g, BTEX, MTBE DIPE, ETBE, TAME, TBA, EDB, and EDC were detected above detection limits in any of the soil samples collected.

TABLE 2
Analytical Testing Results for Soil Samples
August 22, 2005

Sample	Benzene	Toluene	Eth. Ben.	Xylenes	TPH-g	MTBE	OTHER VOCs *
1	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
							ļ
MW2d5	<0.005	<0.005	<0.005	<0.005	<1	<0.005	<0.005
MW2d10	<0.005	<0.005	<0.005	<0.005	<1	<0.005	<0.005
MW2d15	<0.005	<0.005	<0.005	<0.005	<1	<0.005	<0.005
MW3d5	<0.005	< 0.005	<0.005	<0.005	<1	<0.005	<0.005
MW3d10	<0.005	<0.005	<0.005	<0.005	<1	<0.005	<0.005
MW3d15	<0.005	<0.005	<0.005	<0.005	<1	<0.005	<0.005
MW3d20	<0.005	<0.005	<0.005	<0.005	<1	<0.005	<0.005
B4d18	<0.005	<0.005	<0.005	<0.005	<1	<0.005	<0.005
B4d23	<0.005	<0.005	<0.005	<0.005	<1	<0.005	<0.005
B4d28	<0.005	<0.005	<0.005	<0.005	<1	<0.005	<0.005

^{*} Other VOCs Include DIPE, ETBE, TAME, TBA, EDB, and EDC


No analytes were encountered in the QA/QC field equipment samples. A copy of the original laboratory report is provided in Appendix D. Analytical results of laboratory QA/QC samples, which include matrix spike/matrix spike duplicates, check blank, method blanks, continuing calibration verification, laboratory control sample/laboratory control sample duplicate, calibration standards, and reference standards, are also found in the laboratory reports and generally fall within acceptable ranges.

A copy of the original laboratory report is provided in Appendix D.

McCampbell Analytic	al Inc.		110 Ind Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.tocampbell.com/B-mail: main@mecampbell.com							
Shaw Environmental		D: #844915.3000	0000;	Date Sampled:	12/11/03					
4005 Port Chicago Hwy	SBC	•		Date Received:	12/11/03					
Concord, CA 94520	Client Contact:	Rob Delnagro		Date Extracted: 12/11/03						
	Client P.O.;			Date Analyzed:	12/11/03					
Oxygenated Extraction Method: SW5030B		nics + EDB and 1,2	-DCA by	P&T and GC/MS		er: 0312227				
Lab ID	0312227-001A	0312227-002A			TOTAL CASE	21.03,2227				
Client ID	TP-1	TP-2		<u> </u>	Reporting Limit for					
Matrix	s	s			DF					
DF		1			s	w				
Compound		Concen	tration		μg/Kg	ug/L				
Diisopropyl ether (DIPE)	ND	ND			5.0	NA				
lan-Amyl methyl ather (TAME)	ND	ND			5.0	NA NA				
t-Butyl alcohol (TBA)	ND	ND			25	NA				
1,2-Dibromoethane (EDB)	ND	מא		·	5,0	NA				
1,2-Dichloroethane (1,2-DCA)	ND	ND			5.0	NA				
Ethyl tert-butyl ether (ETBE)	ND	ИD			5.0	NA				
Methyl-t-butyl ether (MTBE)	ИD	ND		. ,	5.0	NA				
	Surro	egate Recoveries (%)							
%\$\$:	100	101	· · · · · · · · · · · · · · · · · · ·							
Comments										
water and vapor samples and all TCLP & Sproduct/oil/non-aqueous liquid samples in means not detected above the reporting is surrogate diluted out of range or surrogate by lighter than water immiscible sheen/productions content.	imit; N/A means anal coetules with another	lyte not applicable to th	is analysis.	÷						

DHS Certification No. 1644

Angela Rydelius, Lab Manager

TABLE 1 Groundwater Sample Analytical Results SBC Facility 2610 Norbridge Avenue Castro Valley, California

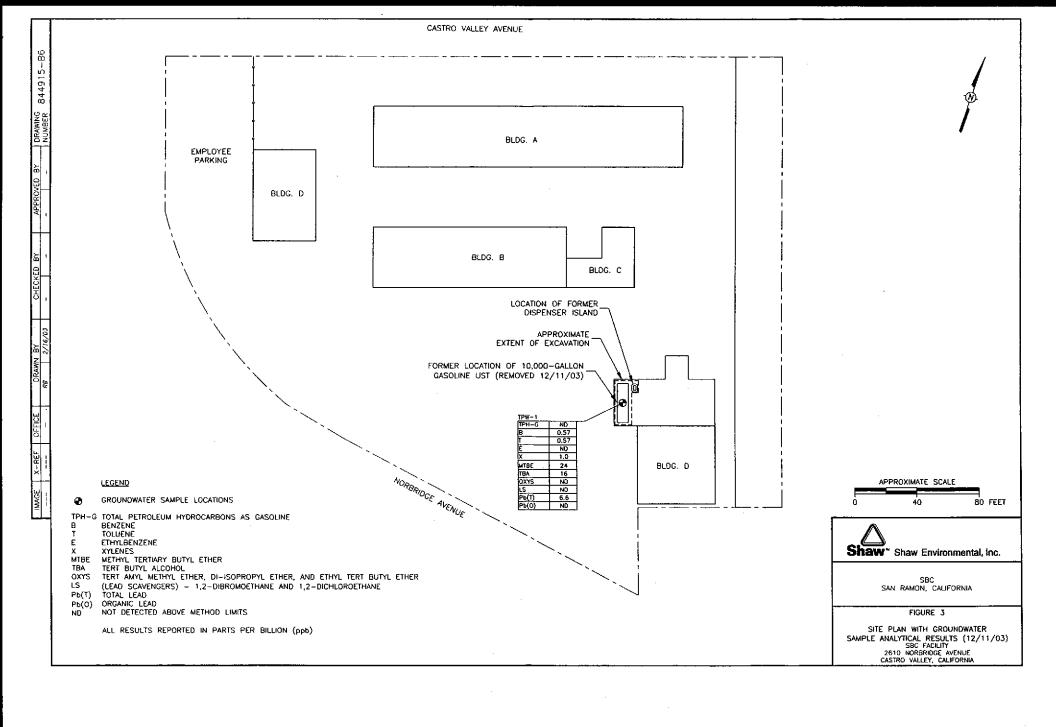
Sample	Sample Location	Sample Depth	Date Collected	TPH-G	Benzene	Toluene	Ethyl Benzene	Xylenes	мтве	ТВА	3 Fuel Oxygenates	Lead Scavengers	Total Lead	Organic Lead
I.D.		(bsg)	Conected				(ported in p	arts per billi	on)			
TPW-1	tank excavation	10 feet	12/11/03	ND ₅₀	0.57	0.57	ND _{0.5}	1.0	24	16	ND _{0.5}	ND _{0.5}	6.6	ND _{5.0}

Notes:

bsg - below surface grade

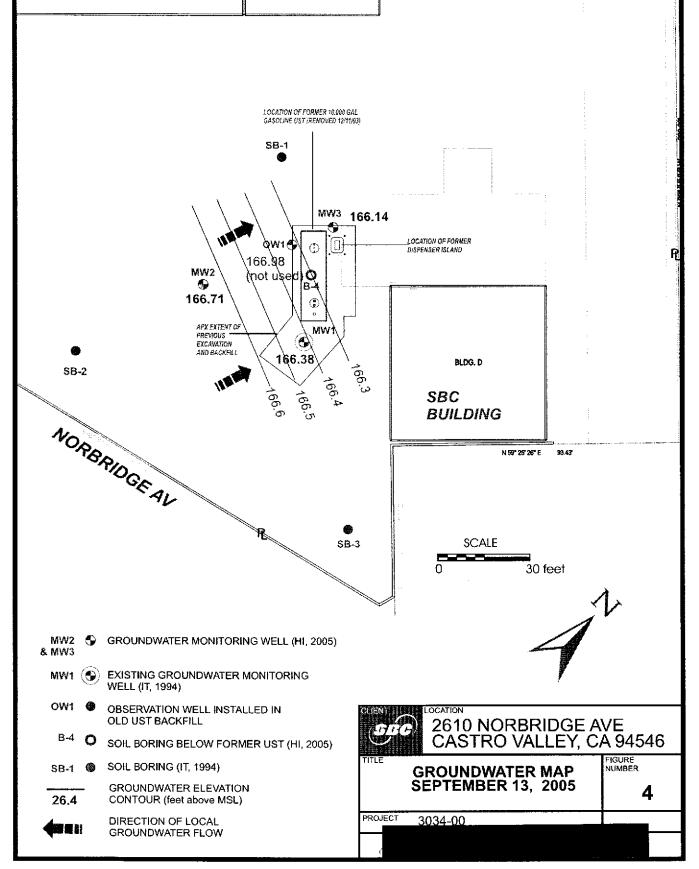
TPH-G - total petroleum hydrocarbons as gasoline

MTBE - methyl tertiary butyl ether


TBA- tert-butyl alcohol

3 Fuel oxygenates- tert-amyl methyl ether, di-isopropyl ether, and ethyl tert butyl ether

Lead Scavengers- 1,2-Dibromoethane and 1,2-Dichloroethane


ND_x - not detected above "x" laboratory detection limits

	Tan af						<u></u>			· 	1
Well No.	Top of Casing	Water	GW	Concentr	atione (r	nnh)					
Well INO.	Casing	vvalei	GVV	CONCENT	anons (F	DD)				ETBE,	
	Elevatio									DIPE,	
Date	n feet	Denth	Elevatio							TBA,	EDB,
Sampled	MSL	ft/bgs	n	В	Т	E	х	TPH-g	MTBE	TAME	EDC
Residentia				46	130	290	100	500	1800		
Commerci				46	130	290	100	500	1800		
GROUNDV	VATER D	ATA (uç	a/L)								
MW1			<u>, , </u>								
7/19/05	172.97	6.00	166.97	<0.5	<0.5	<0.5	<0.5	<50	0.84	<0.5-<50	<0.5
9/13/05	172.97	6.59	166.38	<0.5	<0.5	<0.5	<0.5	<50	0.65	<0.5-<50	<0.5
P47410											
MW2	474.50	7 70	400.74	.0.5	-0.5	-0.5	-0.5	450	-0 E	<0.5-<50	<0.5
9/13/05	174.50	7.79	166.71	<0.5	<0.5	<0.5	<0.5	<50	<0.5	<u> </u>	~0.5
MW3						-					
9/13/05	173.83	7.69	166.14	<0.5	<0.5	<0.5	<0.5	<50	<0.5	<0.5-<50	<0.5
OW1											
7/19/05	174.19	7.21	166.98	<0.5	<0.5	<0.5	<0.5	<50	0.67	<0.5-<50	<0.5
9/13/05	174.19	7.21	166.98	<0.5	<0.5	<0.5	<0.5	<50	<0.5	<0.5-<50	<u></u>
				WANG PRO							<u></u>
SOIL DATA	_ ∆ (ma/Ka))		mg/Kg	ma/Ka	ma/Ka	mg/Kg	ma/Ka	mg/Kg	mg/Kg	mg/Kg
Residentia	<u> </u>	·		0.18	9.3	32	11	100	2		<u> </u>
Commerci				0.38	9.3	32	11	400	5.6		
8/22/05			-		1						
MW2d5				<0.005	<0.005	<0.005	<0.005	<1	< 0.005	<0.005	<0.005
MW2d10				<0.005			<0.005		<0.005	<0.005	<0.005
MW2d15	-			<0.005			<0.005		<0.005	<0.005	<0.005
MW3d5		-		<0.005	<0.005	< 0.005	<0.005	<1	<0.005	<0.005	<0.005
MW3d10				<0.005	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005
MW3d15				<0.005			<0.005	_	<0.005	<0.005	<0.005
MW3d20				<0.005	<0.005	<0.005	<0.005	<1	<0.005	<0.005	<0.005
B4d18	-			<0.005	<0.005	<0.005	<0.005	<1	<0.005	<0.005	<0.005
B4d23				<0.005			< 0.005		<0.005	<0.005	< 0.005
B4d28		 		<0.005			<0.005	ļ	< 0.005	< 0.005	< 0.005

TOWARDS CASTRO VALLEY BLVD

O DEPTH IN FEET	SAMPLE NUMBER & ENTERVAL	BLOW COUNT	RECOVERY (%)	PID (ppb)	BORING Summary	SOSA	PROFILE	FIELD GEOLOGIST: M. MILLER CHECKED BY: M. WILLER GROUND SURFACE EL: N/A TOP OF CASING EL: N/A DEPTH TO WATER: 5.2 FT.
0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					Protective Box ** Die. Sch. 40 cosing Next Cernent Bentonite Poliete ** Dia. Sch. 40 Screen .020* Sict Threoded Cap	GP GP		Asphalt and concrete. Pea gravel — tank fill. Collecting first sample from first native material. encountered water at 6.5 feet (BGS)
20-								TOTAL DEPTH 16 FT. COMMENTS: Location is within excavoted area of tankpit. Lots of water and gravel inside auger. No sample collected because notive material was not encountered.

DRILLING CO.: Kvilhaug Drilling DRILL METHOD: Hollow Stem Auger SAMPLING METHOD: Modified California Split Spoon Sampler

PROJECT NO.: 151933 CLIENT: Pacific Bell

LOCATION: 2610 Norbridge Avenue, Castro Valley, California.

hydrologue, Inc. Consulting Engineers and Geologists	ACTUAL CONDITIONS ENCOUNTERED AND APPLI ACTUAL CONDITIONS ENCOUNTERED AND APPLI THE SPECIFIC LOCATION AND TIME INDICATED WARRANTED TO BE REPRESENTATIVE OF SI CONDITIONS AT OTHER LOCATIONS OR TIMES.). IT IS NOT
Project: SBC-Castro Valley Logged By: RO 1st Water Table (bgs): Last Water Table (bgs): Rig Type: CME	Location: 2610 Norbridge Avenue, Castro Valley, CA Start/Finish Date: 8-22-05 Sampling Method (bgs): CA Modified Split Spoon Wt. of Hammer (lb): #140 Drilling Contractor: WDC Project #: 3034 Boring I.D.: MW Elevation: Weather:	
Sample Interval Sample Interval Blow Count Time PID (ppm) Lithology USCS	Lithologic Description	Remarks
0	0-4" Asphalt Fill- sand, light brown, fine to medium, moist, dense, some silt and gravel	

NOTE: DATA PRESENTED IN THIS LOG IS A SIMPLIFICATION OF ACTUAL CONDITIONS ENCOUNTERED AND APPLIES ONLY AT THE SPECIFIC LOCATION AND TIME INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS OR TIMES. hydrologue, inc. Consulting Engineers and Geologists Project: SBC-Castro Valley Project #: 3034-00 Location: 2610 Norbridge Avenue, Castro Valley, CA Logged By: RO 8-22-05 Boring I.D.: MW-3 Start/Finish Date: Sampling Method (bgs): CA Modified Split Spoon PID: 1st Water Table (bgs): Wt. of Hammer (lb): #140 Last Water Table (bgs): Hole Diameter: 8" Elevation: WDC Weather: Rig Type: CME **Drilling Contractor:** Coun PID (ppm) Remarks Lithologic Description Depth (ft. Lithology uscs (Soil classification, Color, Grain Size, Moisture, Consistency, Other) 0 0-6" Asphalt SP Fill- sand, brown, moist, dense, some clay and gravel Sandy clay, grey-blue, moist, firm to hard, some gravel CL 5 12/21/31 12:45 0 2" grey fine sand seam at 5' @ 8' Sandy clay, brown, slightly moist, very hard, brittle, moderately weathered Bedrock - Joaquin Miller Formation Shale; highly weathered 0 13:00 21/50 10 21/36/43 13:15 0 15 Becomes grey with brown and yellow mottling, more weathered 61/100 13:30 0 Less weathered 20 25 No groundwater observed while drilling Set 15' screen at 5'-20' 5 bags sand x 100# to 4' 1 bag bentonite, 1 bag portland cement, 30 then well box in concrete Total Depth Drilled = 20 feet bgs. Total Depth Sampled = 20 No groundwater encountered during drilling

No caving.

35

Soil boring was converted into gwm MW-3.

VOW HISTORY		SAMPLE NUMBER	BLOW COUNT	RECOVERY (X)	P (D (ppb)	BORING SUMMARY		USCS	PROFILE	BORING NO. SB-1 FIELD GEOLOGIST: M. MILLER CHECKED BY: M. MILLER GROUND SURFACE EL: N/A TOP OF CASING EL: N/A DATE BEGAN: 02/02/94 DATE FINISHED: 02/02/94 TOTAL DEPTH: 30 Feet TOTAL DEPTH: MOT FOUND DEPTH TO WATER: MOT FOUND
1-0							5	FILL		2" Asphalt, 10" Roadbase fill.
incharia.		:			į			ML		Silt: moderate yellowish brown (10YR 5/4), dry.
	-							CL		CLAY; olive gray (5Y 3/2), damp, very silty.
	\exists						The second			becomes groyish olive (10YR 4/2) at 7.0 feet.
H_ 5	1_					Cement — grout	The second secon			
- "	- _{SB}	-1-5'	27	85	0 :					
<u> </u>	1						100			
E	1_									
-		-1-7.5	65	90	0					· ·
F	7-						4			
-10	,=									
 		-1-10	85	ļ	٥			i		
F	7)			A STATE OF THE STA			(100 54)
			65		0		3.43	CL		CLAYSTONE; moderate yellowish brown (10YR 5/4), dry hard, highly sheared.
-		1-12.5	 - -				W. (4)			lidid, liginy disease.
F	\exists									
- 1:	;‡		ļ		l _					
E	_ se	-1-15	72		0					
F	+		1	1	1	1				,
_	コ									
-	\exists									
F	7		ļ		1					
	o⊐						2.7			becoming bedrock, very hard drilling, very dry.
E	\exists					1				Decoming Degrock, very note craiming, very say.
F	\exists						. 100 mg			
E	コ						34.			·
-	\dashv									
F	\exists					1	39			
L 2	5-							1		
-	\exists						33%			COMMENTS:
F	\exists		1				10.00			No water found. Roring terminated at 30 feet.
E	\exists			{	}		7.77			Boring terminoted at 30 feet. Backfilled with grout.
F	-						2 7/2 2 2002 2 2002 2 2 2 2 2 2 2 2 2 2 2 2			
F	7									Hit bedrock- Refusal
E,	$^{\perp}$		<u> </u>		_	ļ	2.47	-	<i>1777</i>	TOTAL DEPTH 30 FEET

DRILLING CO.: Kvilhaug Drilling DRILL METHOD: Hollow Stern Auger SAMPLING METHOD: Modified California Split Spoon Sampler

PROJECT NO.: 151933 CLIENT: Pacific Bell LOCATION: 2610 Norbridge Avenue, Castro Valley, California.

O DEPTH IN FEET	SAMPLE HUMBER & INTERVAL	BLOW COUNT	RECOVERY (X)	P I D (ppb)	Boring Summary		USCS	PROFILE	BORING NO. SB-2 FIELD GEOLOGIST: M. MILLER CHECKED BY: M. MILLER CROUND SURFACE EL: N/A TOP OF CASING EL: N/A TOP OF CASING EL: N/A TOP OF CASING EL: N/A TOP OF CASING EL: N/A TOP OF CASING EL: N/A TOP OF CASING EL: N/A TOP OF CASING EL: N/A TOP OF CASING EL: N/A TOP OF CASING EL: N/A TOP OF CASING EL: N/A
0							FILL		Gravelly base-rock fill. CLAY; dark gray (N3), stiff.
5 -					Cement grout		ML,		SILT: moderate yellowish brown (10YR 5/4), damp. CLAY; alive gray (5Y 3/2), damp, stiff.
	\$8+2-7.5°	70	80	o			CL		CLAT; onve gray (31 3/2), dump, s
10- 10- 						NO.			becomes moderate yellowish brown at 11.0 feet.
									becoming bedrock
	SB-2-15'	85	50	0		ne e			hit claystone bedrock; drill rig refusal. TOTAL DEPTH 16 FEET
 20			3.						COMMENTS: No water found. Boring terminated at 16 feet. Backfilled with grout.
25- 25- 									
									PAGE 1 OF 1

DRILLING CO.: Kvilhaug Drilling

DRILL METHOD: Hollow Stem Auger

SAMPLING METHOD: Modified Colifornia Split Spoon Sampler

PROJECT NO.: 151933

CLIENT: Pocific Bell LOCATION: 2610 Norbridge Avenue, Castro Valley, California.

								
OFF I SHALL SPEED	SAMPLE NUMBER & INTERVAL	BLOW COUNT	RECOVERY (X)	P I O (996)	BORING SUUMARY	SSA	PROFILE	PIELD GEOLOGIST: M. MILLER CHECKED BY: M. MILLER CROUND SURFACE EL:: N/A TOP OF CASING EL:: N/A
2-0-					3	FILI		Asphalt and fill.
(m-17316) 1 1 1 1 1 1 1 1 1						CL		CLAY; dark gray (N3), damp, stiff.
5	SB-3-7.5'	71	80	a	Cement			CLAY; olive gray (5Y 3/2), damp, very stiff.
- 10-								becomes moderate brown at 12 ft. hard drilling, becomes bedrock.
 - 15- 	S8-3-15°	50	50	a				hit claystone bedrock; drill rig refusal.
							1	TOTAL DEPTH 17 FEET
20								COMMENTS: No water found. Boring terminated at 17 feet. Backfilled with grout.
- 25							:	, <i>,</i>
	- - - - - - - - - -				·			
30-								
	ļ	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ		<u> </u>			PAGE 1 OF 1

DRILLING CO.: Kvilhaug Drilling DRILL METHOD: Hollow Stem Auger SAMPLING METHOD: Modified California Split Spaan Sampler

PROJECT_NO.: 151933

CLIENT: Pacific Bell LOCATION: 2610 Norbridge Avenue, Castro Valley, California.

hydrologue, Inc. Consulting Engineers and Geologists

NOTE: DATA PRESENTED IN THIS LOG IS A SIMPLIFICATION OF ACTUAL CONORTIONS ENCOUNTERED AND APPLIES ONLY AT THE SPECIFIC LOCATION AND TIME INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS OR TIMES.

Project: SBC-Castro Valley							Location: 2610 Norbridge Avenue, Castro Valley, CA Project #: 3034-0		0
Lo	Logged By: RO						Start/Finish Date: 8-22-05 Boring I.D.: B-		
	1st Water Table (bgs):						Sampling Method (bgs): CME Continous Sampler PID:		
Last Water Table (bgs):								Elevation:	
Rig Type: CME							Drilling Contractor: WDC	Weather:	F
(#)	Sample Intervat	Count		(шф	ygy		Lithologic Description		Remarks
Depth (ft.)	ample	Blow (Time	PID (ppm)	Lithology	uscs	(Soil classification, Color, Grain Size, Moisture, Consistency, Other)		Ren
0	υ	ம	-	ıΓ		\vdash			
_						SP	Pea gravel		
							-		1
<u>-</u>									
5 									
			[
-		į						:	
						•			
10									
<u> </u>									
_									
_									
15			ļ i						
-		CME(2')	16.20	0			Bedrock - Joaquin Miller Formation Shale; excavates as Sand	tv clav	
-		UNI⊏(∠)	10.30	v		1	grey-blue, slightly moist, very hard, fresh	-yy,	1
_									
20									
-									1
-		0.45	47.00	_		1	Thin 1/" to 1/" heittle assess at 24 22' heit as indication of wat	or in horing	
-		CME(5')	17:00	0		1	Thin $\frac{1}{4}$ " to $\frac{1}{2}$ " brittle seams at 21-22', but no indication of water	or in boning	
			ļ ¦						
25 						1			1
-							•		
		CME(5')	17:20	0		1	Thin 1/8" calcified fracture at 27'-28' subvertical		[
-						1	•		1
30			l	ļ		1			
-		ļ				\			
_						l '	Total Depth Drilled = 28' feet.		1
_								.0.5	
35							Groundwater encountered in pea gravel backfill a Trimmed grout down augers - 120 gallons	at 8 feet bgs	
-				1			Auger Refusal at 28 feet		
-				1					
-									
<u></u> 4∩				ļ					