RECEIVED

9:13 am, Jun 01, 2010

Alameda County Environmental Health

PHASE IV SOIL AND GROUNDWATER INVESTIGATION

MAY 2010

751 - 785 Seventh Street Oakland, California

Alameda County Case No. RO0002586

For: Brush Street Group, LLC Oakland, California

Y0323-03.01478.fnl.doc

Mr. Jerry Wickham Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Transmittal of Report on Phase IV Soil and Groundwater Investigation, 751 - 785 Seventh Street, Oakland, California

Dear Mr. Wickham:

Please find attached the above-referenced report for the 751 - 785 Seventh Street site in Oakland prepared by BASELINE Environmental Consulting. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

Tom McCoy

Brush Street Group, LLC

PROFESSIONAL CERTIFICATION

This report was prepared by myself or by other professionals directly under my supervision.

James McCarty P. E. No. C 62618

PHASE IV SOIL AND GROUNDWATER INVESTIGATION

May 2010

751 - 785 Seventh Street Oakland, California

Alameda County Case No. RO0002586

For:

Brush Street Group, LLC Oakland, California

Y0323-03.01478.fnl.doc

BASELINE Environmental Consulting 5900 Hollis Street, Suite D • Emeryville • California 94608 (510) 420-8686

TABLE OF CONTENTS

<u>page</u>
EXECUTIVE SUMMARY vii
1.0 INTRODUCTION
2.0 BACKGROUND1
2.1 Previous Investigations1
2.2 Phase IV Workplan 4
3.0 PHASE IV INVESTIGATION OBJECTIVES6
4.0 SITE DESCRIPTION6
4.1 Hydrogeology
5.0 PHASE IV SOIL AND GROUNDWATER INVESTIGATION7
5.1 Soil Sampling
5.2 Groundwater Well Installation
5.3 Groundwater Sampling
6.0 QUALITY ASSURANCE/QUALITY CONTROL10
7.0 ANALYTICAL RESULTS
7.1 Soil Sample Results from the Phase IV Investigation
7.2 Groundwater Sample Results from the Phase IV Investigation
7.3 Groundwater Flow Direction And Gradient
8.0 CONCLUSIONS12
9.0 REFERENCES
APPENDICES
 A: Alameda County Boring Permit B: Boring Logs C: Survey Data D: Well Development Forms E: Groundwater Sampling Forms F: Laboratory Analytical Reports (CD ROM)

FIGURES

- 1: Regional Location
- 2: Site Plan
- 3: Groundwater Contours 15 April 2010
- 4: Hexavalent Chromium in Soil
- 5: Hexavalent Chromium in Groundwater 15 April 2010

TABLES

- 1: List of Samples and Analyses
- 2: Groundwater Elevation Data
- 3: Volatile Organic Compounds in Soil
- 4: Metals in Soil
- 5: WET and TCLP Metal Concentrations in Soil
- 6: Polychlorinated Biphenyls in Soil
- 7: Polynuclear Aromatic Hydrocarbons in Soil
- 8: Cyanide and pH in Soil
- 9: Petroleum Hydrocarbons in Soil
- 10: Volatile Organic Compounds in Groundwater
- 11: Dissolved Metals in Groundwater
- 12: Polychlorinated Biphenyls in Groundwater
- 13: Polynuclear Aromatic Hydrocarbons in Groundwater
- 14: Cyanide and pH in Groundwater
- 15: Petroleum Hydrocarbons in Groundwater
- 16: Geotechnical Parameters

EXECUTIVE SUMMARY

PHASE IV SOIL AND GROUNDWATER INVESTIGATION

751 - 785 Seventh Street Oakland, California

This report describes the activities and results of an additional soil and groundwater investigation performed by BASELINE Environmental Consulting ("BASELINE") on the behalf of the Brush Street Group, LLC for the properties at 751 - 785 Seventh Street in Oakland, California ("site") (Figure 1). BASELINE installed two shallow groundwater monitoring wells and one deep groundwater monitoring well on the subject property, and one shallow and one deep groundwater monitoring well off-site in the downgradient direction. BASELINE collected soil samples during the installation of the wells, which were analyzed for Title 22 metals and hexavalent chromium. Once the wells were installed, BASELINE collected groundwater samples from the new wells, two existing wells on-site, and two off-site wells that are part of a groundwater monitoring network for the adjacent Shell Service Station. The groundwater samples were analyzed for volatile organic compounds, Title 22 metals, and hexavalent chromium.

FINDINGS

- The shallow aquifer is confined by a layer of clay (Old Bay Mud) that is present at the site at approximately 57 feet below ground surface.
- The soil samples collected on-site contained total chromium and hexavalent chromium at concentrations exceeding environmental screening levels for residential or commercial land use where groundwater is not a potential drinking water source.
- The groundwater samples collected both on-site and off-site contained dissolved total chromium, hexavalent chromium ("Cr-VI"), cobalt, copper, and nickel at concentrations exceeding environmental screening levels for sites where groundwater is not a potential drinking water source.
- The groundwater samples collected on-site also contained thallium and vanadium at concentrations exceeding environmental screening levels for sites where groundwater is not a potential drinking water source.
- None of the groundwater samples collected contained volatile organic compounds ("VOCs") at concentrations exceeding the environmental screening levels for sites where groundwater is not a potential drinking water source.
- VOC concentrations in off-site wells are all below environmental screening levels where groundwater is not a potential drinking water source.

• Nickel, copper, and cobalt are present in off-site wells at concentrations above environmental screening levels where groundwater is not a potential drinking water source.

CONCLUSIONS

Past use of the site as a plating facility has resulted in metals impact to the soil and groundwater at the site. The chemical of primary concern for the groundwater is Cr-VI, which was reported in shallow soil samples nearest to the former Frog Pond and all of the groundwater samples collected on-site. The analytical results of the soil and groundwater samples collected during this investigation indicated that the elevated concentrations of metals in the soil and groundwater, primarily Cr-VI, originated from the area of a subsurface concrete column associated with the former Frog Pond. The groundwater impact is confined to the Merritt Sand since the Old Bay Mud, present at approximately 60 feet below ground surface, acts as a barrier to further vertical migration.

While dissolved cobalt, copper, nickel, thallium, and vanadium were also reported in groundwater samples collected on-site at concentrations exceeding environmental screening levels, the impact is limited since detection of these metals has only been reported in a few soil samples collected on-site. While some VOCs have been detected in shallow soil samples collected at the site, no VOCs were reported at concentrations exceeding the environmental screening levels in the groundwater samples collected.

Dissolved hexavalent chromium in the groundwater has migrated as far as 120 feet from the Frog Pond in the southwesterly direction. The results also indicate that the Cr-VI has migrated off-site and the plume appears to be undergoing vertical dispersion as indicated by the increase in the Cr-VI concentration in the deeper off-site well, screened in the Merritt Sands, relative to the deeper on-site well, also screened in the Merritt Sands

PHASE IV SOIL AND GROUNDWATER INVESTIGATION

751 - 785 Seventh Street Oakland, California

1.0 INTRODUCTION

This report describes the activities and results of an additional soil and groundwater investigation performed by BASELINE Environmental Consulting ("BASELINE") on the behalf of the Brush Street Group, LLC for the properties at 751 - 785 Seventh Street in Oakland, California ("site") (Figure 1). This investigation is the fourth ("Phase IV") in a series of investigations that BASELINE has conducted at the site. The site is currently under the regulatory oversight of the Alameda County Environmental Health Services ("ACEH") (Alameda County SLIC Case No. RO0002586). The investigation was performed in accordance with BASELINE's Work Plan for Additional Soil and Groundwater Investigation, dated 19 June 2009 and Addendum I to Work Plan for Additional Soil and Groundwater Investigation, dated 6 October 2009. The investigation was also performed in accordance with ACEH's letter to Tom McCoy of the Brush Street Group, LLC, dated 10 December 2009.

2.0 BACKGROUND

A plating facility was operated at the site between 1957 and 1998, at which time the site was abandoned. The abandoned plating facility contained hazardous materials and wastes, which were removed during an emergency response action directed by U.S. Environmental Protection Agency ("EPA"), Office of Emergency Response in 1998/1999. Subsequent soil and groundwater investigations have found that the soil and groundwater at the site have been impacted by metals, in particular hexavalent chromium ("Cr-VI"), and volatile organic compounds ("VOCs"), in particular, trichloroethene ("TCE").

The primary source of metals and VOCs appears to have been a below-grade concrete structure referred to as the Frog Pond (Figure 2). The Frog Pond is described in further detail in Section 4. Between June and December 2007, the Frog Pond was removed and backfilled with gravel. The Frog Pond was subsequently covered with a concrete cap.

2.1 Previous Investigations

Environmental investigation of the site began in February 2003 and has occurred in several phases as summarized below. The list of samples collected and analyses performed during the Phase IV investigation is presented in Table 1. Tables 2 through 15 contain the groundwater level data and analytical results for soil and groundwater samples collected to date.

2.1.1 Phase I

BASELINE performed a preliminary soil and groundwater investigation in 2003 (BASELINE, 2003). A total of seven soil borings, B-FP01 through B-FP07, were installed to depths ranging

from 16 to 25 feet below ground surface ("bgs"), and two shallow monitoring wells, MW-FP1 and MW-FP2, were installed (Figure 2).

Soil samples were collected in the fill and just beneath the fill/native material interface at approximately two feet and five feet bgs. Soil samples were analyzed for Title 22 metals, total petroleum hydrocarbons ("TPH") as gasoline and diesel, VOCs, polynuclear aromatic hydrocarbons ("PAHs"), polychlorinated biphenyls ("PCBs"), pH, Cr-VI, and cyanide. Select soil samples were also analyzed for soluble lead and/or nickel using the waste extraction test using deionized water ("DI WET") or toxicity characteristic leaching procedure ("TCLP").

Groundwater samples were collected from the two groundwater monitoring wells. Grab groundwater samples were collected from two boreholes, B-FP04 and B-FP05, to assess groundwater quality directly beneath the property. These groundwater samples were analyzed for TPH, VOCs, PAHs, PCBs, and cyanide. A grab groundwater sample was also collected from boring B-FP03 and analyzed for TPH to assess the potential presence of petroleum hydrocarbons, which might have migrated from the adjacent Shell Service Station site.

Elevated levels of lead, nickel, and zinc were reported in shallow soils samples (Table 4). Several of the soil samples contained soluble nickel at levels that exceeded California hazardous waste criteria (Table 5). One sample, B-FP07 collected at 2.5 feet bgs was reported to contain elevated levels of PAHs and cyanide. However, the soil sample collected from 5.0 feet bgs at this location did not contain elevated levels of these contaminants. Elevated levels of nickel were also reported in two of the grab groundwater samples and one of the groundwater monitoring well samples. TPH as diesel was reported in the groundwater sample from MW-FP1 and TPH as gasoline was reported in the grab groundwater sample B-FP03 (Table 15).

2.1.2 Phase II

BASELINE performed a Phase II investigation in November 2005 (BASELINE, 2006). The investigation consisted of installation of soil borings in: 1) source areas (borings B-FP08 through B-FP17), 2) areas to define the extent of the PAH-impacted area (borings B-FP07A through B-FP07C), and 3) areas with exposed soil (samples SS-FP01 through SS-FP10). In addition, grab groundwater samples were collected from select soil borings and the two on-site groundwater monitoring wells (Figure 2).

Soil samples were analyzed for one or all of the following: Title 22 metals, VOCs, PAHs, and Cr-VI. Select soil samples were also analyzed for soluble cadmium, copper, lead, and/or nickel using DI WET or toxicity characteristic leaching procedure ("TCLP"). Groundwater samples from the two groundwater monitoring wells were analyzed for TPH as gasoline, TPH as diesel, VOCs, and PAHs. Grab groundwater samples from the soil borings were analyzed for at least one of the following: Title 22 metals, Cr-VI, TPH as gasoline, TPH as diesel, VOCs, PAHs, and pH.

Elevated levels of total chromium, Cr-VI, copper, lead, nickel, and zinc were reported in shallow soil samples (Table 4). Elevated levels of cis-1,2-dichloroethene and TCE were reported in one grab groundwater sample (B-FP14) (Table 10).

2.1.3 Phase III Investigation

The Focused Phase III investigation was proposed after sample results from the Phase II investigation identified chlorinated VOCs adjacent to the Frog Pond, located in the southwestern portion of the site (Figure 2) (BASELINE, 2006). The focused Phase III investigation was proposed to clarify the presence of chlorinated VOCs in the area. The investigation consisted of collecting soil and grab groundwater samples from six soil borings (B-FP18 through B-FP23) (Figure 2).

Two soil samples were collected from each boring, from five or six feet bgs and from 12 feet bgs. Soil samples were analyzed for VOCs. In addition, the soil sample from B-FP25 collected at 6.0 feet bgs was also analyzed for Cr-VI. About six inches of standing water was observed above the presumed bottom of the Frog Pond in boring B-FP23. This water had a greenish-yellow tint. The grab groundwater sample collected from B-FP23 also had a greenish-yellow tint, more strongly colored than the water in the Frog Pond. The grab groundwater sample from B-FP23 was analyzed for Title 22 metals, Cr-VI, VOCs, and pH.

Elevated levels of chromium and Cr-VI were reported in the soil sample collected from B-FP23, adjacent to and south of the Frog Pond (Figure 2, Table 4). Elevated levels of cis-1,2-dichloroethene and TCE were reported in several grab groundwater samples (Table 10). Elevated levels of antimony, total chromium, Cr-VI, cobalt, copper, lead, mercury, nickel, silver, thallium, and/or vanadium were also reported in the grab groundwater samples from B-FP23 and FP-GRAB GW (Table 11).

2.1.4 Frog Pond Removal

Data from the Phase III investigation suggested that the Frog Pond was the likely source of contamination. Therefore, the Frog Pond was removed in an attempt to identify the source (BASELINE, 2008). BASELINE collected soil samples from eight locations underneath the Frog Pond between 31 May and 5 June 2007 (sample locations B-FP24 through B-FP31 on Figure 2) and submitted the samples for Title 22 metals and Cr-VI analyses (BASELINE, 2008). Sample locations B-FP24 through B-FP28 were chosen to characterize the soil underneath the Frog Pond. Samples were collected from sampling locations B-FP24 through B-FP28 from 4.5 feet below the surrounding grade, which was immediately below the concrete bottom of the Frog Pond. A second soil sample was collected at 9.5 feet below grade, or five feet below the bottom of the Frog Pond from B-FP24 through B-FP27.

Additional soil samples were collected below suspect features found in the Frog Pond, as follows:

- One soil sample (B-FP29) was collected from seven feet bgs, which is below the bottom of the Eastern Sump;
- One soil sample (B-FP30) was collected below the bottom of the sump that was attached to the separate concrete pad found about one foot below the bottom of the Frog Pond from seven feet below grade; and
- Two soil samples were collected adjacent to the concrete column (B-FP31) from 11.5 and 18.5 feet below grade.

BASELINE also collected a sample of the fine-grained sand immediately below the cobbles imbedded at the bottom of the concrete column for metals analysis, after the cobbles and sand were excavated. Elevated levels of total chromium, Cr-VI, copper, and nickel were reported in some of the soil samples collected (Table 4).

2.1.5 Soil Gas Survey – 601 Brush Street

On 24 September 2009, P&D Environmental performed a subsurface investigation for the property adjacent to and southwest of the site, 601 Brush Street. Part of the scope of work included installation of two borings (B6 and B7) and two soil gas probes (SG5 and SG6) on the southwestern portion of the 751-785 Seventh Street property (P&D Environmental, 2009). Grab groundwater samples were collected from the borings, which were reported to contain MTBE at 0.64 and 8.6 micrograms per liter (" μ g/L"), 1,1-dichloroethene at 1.2 and 2.7 μ g/L, and TCE at 7.1 and 15 μ g/L. Grab groundwater samples collected on the 601 Brush Street property contained 1,1-dichloroethene and TCE at higher concentrations.

The soil gas samples collected on the 751-785 Seventh Street property contained TCE at 3,400 and 5,900 micrograms per cubic meter. Low concentrations of benzene, toluene, ethylbenzene, and xylenes were also reported in one of the samples. The soil gas concentrations reported in the samples collected at the 751-785 Seventh Street property were higher than those collected at 601 Brush Street. However, of the nine soil gas samples collected at 601 Brush Street, five contained the tracer compound 2-propanol used for leak detection in the sampling train, indicating that the five samples collected from the 601 Brush Street property were biased low and may not be reliable.

2.2 Phase IV Workplan

As discussed above, between June and December 2007, the Frog Pond was removed and the removal activities were documented in BASELINE's report, *Documentation of Frog Pond Removal Activities*, dated 29 February 2008. The report was submitted and reviewed by ACEH. In a letter to the Brush Street Group, LLC, dated 5 November 2008, ACEH requested that a workplan be prepared to address the following items:

- Evaluate whether the backfill effectively seals the sump and prevents vertical migration of water from the Frog Pond to groundwater;
- Assess contamination possibly associated with the "eastern sump" of the former Frog Pond;
- Assess vertical extent of groundwater contamination near the Frog Pond;
- Assess whether a plume of dissolved metals and VOCs extends a significant distance offsite;
- Define the extent of metals contamination in the area of the former drainage ditch that crossed the rear yard;
- Describe why the soils with elevated concentrations of metals are not considered a potential source of releases of metals to groundwater; and

• Evaluate the potential for vapor intrusion into indoor air by collecting soil gas samples at the site.

In addition, ACEH requested that the San Francisco Bay Regional Water Quality Control Board ("RWQCB") Environmental Screening Levels ("ESLs") be used to perform a Tier 1 screening level evaluation.

In response to ACEH's 5 November 2008 letter, BASELINE submitted a workplan, dated 19 June 2009, to the ACEH which addressed the question of the backfill of the sump, clarified earlier statements as to whether the metals in the soil were a source of metals in the groundwater, proposed to defer further investigation of the former drainage ditch, and proposed an additional soil and groundwater investigation for the remaining issues (BASELINE, 2009a).

In a letter to the Brush Street Group, LLC, dated 6 August 2009, the ACEH requested that a revised workplan be prepared to address the following:

- Present more detailed plans and a schedule for the interim impermeable cover to be placed over the Frog Pond;
- Provide further description of the soil sampling methods and proposed well screen intervals;
- Provide additional soil sampling to adequately define the vertical extent of the elevated concentrations of metals in soil;
- Provide information about the purpose, history and fate of liquids discharge to the former drainage ditch;
- Propose additional off-site groundwater sampling; and
- Propose additional investigation activities to evaluate the extent of PAHs and cyanide detected in soil samples collected from within the former Plating Building (Figure 2).

The 6 August 2009 letter agreed to defer an investigation to evaluate the potential for indoor air vapor intrusion until a later date.

In response to ACEH's 6 August letter, BASELINE submitted a revised workplan to ACEH, dated 6 October 2009, which provided additional information about the sealing of the former Frog Pond, the soil sampling methods, the well screen intervals, the known history of the drainage ditch, and past delineation of the hydrocarbons and cyanide detected in soil samples collected from within the former Plating Building (BASELINE, 2009b). The workplan also proposed collecting additional soil samples in the vicinity of the former drainage ditch and the installation of two new wells off-site, one shallow and one deep, to evaluate the horizontal and vertical extent of contamination.

On 9 December 2010, Jerry Wickham and Donna Drogos of ACEH, Tom McCoy of Brush Street Group, LLC, Lydia Huang of BASELINE, Margot Lederer of the City of Oakland, and Mark Jonson of the RWQCB attended a meeting to discuss the revised workplan. In a letter to the Brush Street Group, LLC, dated 10 December 2010, the ACEH requested the revised workplan with the following conditions:

- BASELINE would perform continuous sampling from a depth of 20 feet bgs to the base of the two deeper soil borings;
- The depths of the screen interval for the deeper wells should be based on the depths at which Bay Mud or significant fine-grained soils are encountered in the deeper well borings; and
- Groundwater samples collected from the groundwater monitoring wells would be analyzed for VOCs;

The 9 December 2010 ACEH letter agreed to defer the investigation of the former drainage ditch until a later date.

3.0 PHASE IV INVESTIGATION OBJECTIVES

Based on the communications with ACEH described in Section 2, this soil and groundwater investigation was preformed to achieve the following objectives:

- Assess vertical extent of groundwater contamination near the Frog Pond;
- Assess whether a plume of dissolved metals and VOCs extends a significant distance offsite;
- Define the vertical extent of the elevated concentrations of metals in soil; and
- Perform a Tier 1 screening level evaluation using the RWQCB's ESLs.

4.0 SITE DESCRIPTION

The site is bounded by Seventh Street to the north, Brush Street to the east, a vacant building and lot to the south, and a Shell service station to the west. The adjacent Shell station is also under ACEH oversight due to petroleum releases (Alameda County Case No. RO0000493).

The former Frog Pond was located on the southwestern portion of the site and was a below-grade, concrete structure that measured approximately 70 feet long by 15 feet wide, and four feet deep (Figure 2). It is unknown when the Frog Pond was initially constructed. The former plating operations apparently used the Frog Pond during some plating activities and to contain wastewater, liquids, and solids from on-site treatment of wastes. Sometime in 2003, before the Brush Street Group, LLC became the owner of the site, the Frog Pond was covered with an asphalt concrete cap.

A 2006 investigation by BASELINE to assess the presence of VOCs in the soil and groundwater at the site focused on the southwestern corner, adjacent to the Frog Pond (BASELINE, 2006). During that investigation, high chromium concentrations were identified in one grab groundwater sample. This finding suggested that a source of metals contamination could be present in or under the Frog Pond. As a result, the Brush Street Group, LLC removed the Frog Pond in 2007. The Frog Pond was subsequently covered with a concrete cap.

The eastern portion of the site (former plating building and rear yard) has been improved and the existing building upgraded.

4.1 Hydrogeology

The site is located within the East Bay Plain Subbasin (DWR, 2004). The East Bay Plain Subbasin is a northwest trending alluvial plain bounded on the north by San Pablo Bay, on the east by the contact with Franciscan Basement rock, and on the south by the Niles Cone Groundwater Basin. The East Bay Plain Basin extends beneath San Francisco Bay to the west. Average precipitation in the subbasin ranges from about 17 inches in the southeast to greater than 25 inches along the eastern boundary; most of the precipitation occurs between the months of November and March.

Past investigations indicate that the lithology is consistent across the site. The soil from the surface to three or four feet bgs consists of silty sand/sand fill with some brick and concrete debris. Very fine- to fine-grained sands (Merritt Sands) of the San Antonio Formation underlie the fill and are expected to extend to approximately 60 feet bgs. Regional groundwater flow direction in the San Antonio Formation is southwesterly toward the Oakland Inner Harbor. The hydraulic conductivity has been estimated to be 0.005 centimeter per second (Subsurface Consultants and Todd Engineers, 1997). The Merritt Sands is underlain by plastic clay (Old Bay Mud). The Old Bay Mud is the confining layer for the deeper water-bearing formation.

The depth to groundwater at the site, as measured in 2003 and 2005 ranges from 12.3 to 15.5 feet below the top of the well casing ("TOC") (Table 2). Groundwater monitoring reports from the adjacent Shell service station indicate that the local shallow groundwater flows in a south southwesterly direction (CRA, 2009).

The Merritt Sands, in general, is considered a potential drinking water aquifer; however, the RWQCB does not consider portions of the Merritt Sands located along the Oakland Inner Harbor to be potential drinking water sources. On 19 April 2000, the RWQCB adopted Groundwater Basin Plan Amendments², which "dedesignated" the municipal supply beneficial use designation for portions of the Oakland shoreline, including the shoreline along the Oakland Estuary, and therefore, the groundwater in these areas would not be considered an actual or potential drinking water source. The RWQCB adopted the dedesignation amendment because of the brackishness of the groundwater, which met the exemption criteria of the State Water Resources Control Board's Sources of Drinking Water Policy. The site is located upgradient of and about 1,700 feet northeast of the portion of the Oakland shoreline dedesignated by the RWQCB.

5.0 PHASE IV SOIL AND GROUNDWATER INVESTIGATION

5.1 Soil Sampling

Prior to initiating field activities at the site, BASELINE marked the proposed boring locations and notified Underground Service Alert. No conflicts with utilities were identified. BASELINE also obtained boring permits from the Alameda County Public Works Agency (Appendix A).

On 2 and 3 March 2010, BASELINE contracted with Gregg Drilling & Testing, Inc. ("Gregg"), a California-licensed drilling company, to install three shallow groundwater monitoring wells

-

² This dedesignation is implemented on the regional level, but has not been approved by the State Water Resources Control Board.

(MW-FP3, MW-FP4A, and MW-FP5) and one deep groundwater monitoring well (MW-FP4B) at the site. The work was overseen by a BASELINE Professional Geologist. The boreholes were logged in accordance with ASTM Unified Soil Classification System (Appendix B). Borings logs are provided in Appendix B. Soil cuttings were monitored for organic vapor with a photo-ionization detector ("PID").

The boreholes were advanced by Gregg using 8-1/4-inch hollow stem augurs. BASELINE collected soil samples in stainless steel tubes at approximately five-foot intervals, beginning at 5 feet bgs, which corresponds to just below the bottom of the former Frog Pond and other underground vaults previously uncovered. The shallow borings were completed to a total depth of approximately 25 feet bgs. Samples from the deep boring were collected from the same five-foot intervals to 25 feet bgs and then continuously cored from 25 feet to the final depth of 65 feet bgs. The soil samples were labeled with sample location, depth, date, and time and the ends sealed with Teflon sheets and plastic end caps. The soil samples were preserved by placing them in a cooler with ice. All sampling equipment was cleaned before use and after sample collection using an Alconox and water solution and rinsed with clean deionized water.

Soil samples were retained from 5 feet bgs at MW-FP3 and from 5, 10, 15, and 20 feet bgs at MW-FP4A and MW-FP5 for chemical analysis. The samples were transported and submitted to Curtis and Tompkins, Ltd ("C&T"), a California-certified analytical laboratory, under chain-of-custody protocol for the following analyses:

- Title 22 Metals in accordance with EPA Methods 6000/7000 Series:
- Cr-VI in accordance with EPA Method 7196A; and
- VOCs in accordance with EPA Method 8260B.

One soil sample was retained from a depth of 20 feet bgs from MW-FP4A and analyzed for total organic carbon in accordance with the Walkley-Black Method.

One soil sample was retained from a depth of 26 feet bgs from MW-FP4B for geotechnical parameter testing. The soil sample was submitted to Cooper Testing Laboratory under chain-of-custody protocol for the following analyses:

- Hydraulic conductivity in accordance with D5084;
- Effective porosity in accordance with API RP40 and ASTM D6836m; and
- Bulk density in accordance with ASTM D854m.

Drill cuttings and decontamination water were stored in properly labeled 55-gallon DOT compliant drums on-site pending receipt of the analytical data. The drums will be disposed of in accordance with all local, state, and federal regulations.

5.2 Groundwater Well Installation

The three on-site shallow groundwater monitoring wells, MW-FP4A, MW-FP3, and MW-FP5, were constructed of 2-inch PVC with 13 feet of 0.010-inch slotted screen sections. The wells were screened from 12 to 25 feet bgs within the Merritt Sands. A sand filter pack (#2/16 sand) was placed through the hollow-stem auger as the auger was being raised, filling the annular

space between the borehole walls and the well casings to approximately two feet above the screen interval. A two-foot thick bentonite seal was placed on top of the filter pack. The remaining annular space was grouted with neat cement to the surface and the wellheads finished with traffic-rated Christy boxes. The deep well (MW-FP4B) was similarly constructed but screened within the Merritt Sands from 45 to the top of the Old Bay Mud at 57 feet bgs. Well construction diagrams are included with the boring logs in Appendix B.

On 12 April 2010, BASELINE contracted with Gregg to install one shallow off-site well (MW-FP6) and one deep off-site well (MW-FP7B) (Figure 2). Prior to beginning this work, the Brush Street Group, LLC had to enter into an Indenture Agreement with the City of Oakland and obtain a minor encroachment permit for the two off-site wells to be installed in the public right-of-way along Sixth Street. BASELINE also obtained an excavation permit from the City of Oakland. Traffic control was provided by Hernandez Engineering in accordance with the site-specific traffic control plan prepared by BASELINE. These wells were installed similarly to the wells previously installed on-site as described, above.

The top of the well casings were notched or marked to serve as reference for surveying the horizontal and vertical position of the groundwater monitoring wells and the groundwater monitoring well locations were surveyed on 15 April 2010 by Aaron M. Stessman, P.E. of CSS Environmental Services, a California-licensed surveyor (Appendix C).

On 9 March 2010, BASELINE developed the two existing on-site monitoring wells (MW-FP1, and MW-FP2) and the new on-site monitoring wells (MW-FP3, MW-FP4A, and MW-FP5). On 14 March 2010, BASELINE developed the two new off-site monitoring wells (MW-FP6 and MW-FP7B). The monitoring wells were developed using a surge block and a peristaltic pump. The surge block was decontaminated by washing in an Alconox solution and rinsing with deionized water. The peristaltic pump was equipped with new disposable polyethylene tubing for each well. Prior to well development, the water level in the monitoring wells was measured from the TOC. The peristaltic pump was used to remove accumulated sediment, while the surge block was used to dislodge fine-grained sediments from the filter pack. Well development continued until the purged groundwater became clear of sediments. Purge water from well development was placed in 55-gallon drums stored on-site and properly labeled for subsequent disposal pending receipt of analytical results. Well development forms are included in Appendix D.

5.3 Groundwater Sampling

On 15 April 2010, the two existing groundwater monitoring wells (MW-FP1, and MW-FP2), the six new groundwater monitoring wells (MW-FP3, MW-FP4A, MW-FP4B MW-FP5, MW-FP6, and MW-FP7B), and two Shell Service Station groundwater monitoring wells (MW-3 and MW-9) (Figure 2) were sampled using a low flow method in accordance with EPA guidance (EPA, 1996). Prior to sampling, the depth to groundwater was measured in each well using a dual phase interface probe. The probe also was used to check for the presence of free-phase product; no free-phase product was detected. Groundwater sampling forms for the sampling conducted on 15 April 2010 are included in Appendix E. Depth to groundwater measurements are summarized on Table 2. After collecting the groundwater samples, BASELINE immediately sealed and labeled the sample containers and stored the samples in a cooler containing ice. The soil and groundwater samples were submitted to C&T under chain-of-custody procedures for the following analyses:

- Dissolved Title 22 Metals in accordance with EPA Methods 6000/7000 Series:
- Cr-VI in accordance with EPA Method 7196A; and
- VOCs in accordance with EPA Method 8260B.

Samples analyzed for dissolved Title 22 metals were filtered by the analytical laboratory.

Purge and decontamination water was stored in properly labeled 55-gallon DOT-compliant drums on-site pending receipt of the analytical data. The purge water will be disposed on in accordance with all local, state, and federal regulations.

6.0 QUALITY ASSURANCE/QUALITY CONTROL

BASELINE reviewed the data provided by the laboratory for completeness and accuracy. All of the laboratory quality assurance and quality control ("QA/QC") goals were met. However, the groundwater sample for volatile organic analysis from MW-FB4B reportedly contained more than one milliliter of headspace, and therefore, may be biased low. A trip blank sample was used to check for cross-contamination during groundwater sampling. The trip blank consisted of laboratory provided de-ionized water and accompanied the samples from time of collection until delivery to the analytical laboratory. The trip blank was analyzed for VOCs; the sample did not contain any reportable concentrations of VOCs (Appendix D).

7.0 ANALYTICAL RESULTS

The list of all the soil and groundwater samples collected during this soil and groundwater investigation are presented on Table 1. Analytical results for soil and groundwater samples collected to date are summarized in Tables 3 through 16. Sample locations are shown on Figure 2. Laboratory reports for the soil and groundwater samples analyzed for this investigation are provided on a compact disk in Appendix F of this report.

Below is an assessment of the analytical data. The analytical results from all four phases of investigations at the site (Phase I in February 2003, Phase II in November 2005, Phase III in March 2006, and Phase IV in 2010) have been screened against the RWQCB's ESLs (RWQCB, 2007, Revised 2008). In this report, ESLs developed for residential and commercial land uses, where groundwater is not a drinking water source were used for screening purposes.

7.1 Soil Sample Results from the Phase IV Investigation

The metals analytical results for soil samples collected are presented in Table 4. All soil samples collected were reported to contain arsenic, barium, beryllium, total chromium, cobalt, copper lead, nickel, vanadium, and zinc above the laboratory reporting limits. All the soil samples except for the soil sample collected from MW-FP3 at 5.0 feet bgs were reported to contain Cr-VI. The soil sample from MW-FP3 at 5.0 feet bgs was the only soil sample reported to contain selenium and the soil samples from MW-FP4A at 5.0 and 10.0 feet bgs were the only soil samples reported to contain cadmium. Antimony, mercury, molybdenum, silver, and thallium were not reported above the laboratory reporting limit in any of the soil samples collected.

Except for total chromium and Cr-VI, none of the metal concentrations reported in the soil samples collected on-site during this investigation exceeded the ESLs for residential or

commercial land use for sites where groundwater is not considered a potential drinking water source (RWQCB, 2007, Revised 2008) and published background values¹ (LBNL, 2002, as revised). Only one soil sample, collected at 5.0 feet bgs from MW-FP4A, contained total chromium above the chromium III ESL for residential or commercial land use for sites where groundwater is not considered a potential drinking water source (Table 4). Figure 3 presents the concentration of Cr-VI reported in soil samples. Cr-VI was reported in soil samples at concentrations exceeding the ESL value from MW-FP4A at 5.0, 10.0, 15.0, and 20.0 feet bgs,² the maximum depth for which analyses were performed. The concentration of Cr-VI in soil samples from MW-FP5 collected at 10.0, 15.0, and 20.0 feet bgs exceeded the ESL value; however, the Cr-VI concentrations were notably lower than those reported in soil samples from MW-FP4A.

The results of geotechnical parameter testing performed by Cooper Testing are provided in Table 16 and Appendix F. The average hydraulic conductivity of the soil sample submitted, collected at 26 feet bgs from MW-FP4B was reported to be 3 x 10⁻⁷ centimeters per second. Since this was determined using a falling head test, this is representative of the vertical hydraulic conductivity of the soil. While the porosity of the soil was determined to be 38.4 percent, the effective porosity of the soil sample tested was only 0.7 percent. The total organic carbon content for the soil sample collected from MW-FP4A at 20.0 feet bgs was less than 0.01 percent (Table 16). The dry density of the soil sample submitted for geotechnical parameters was 105.8 pounds per cubic foot. These data may be used to evaluate remedial options in the future.

7.2 Groundwater Sample Results from the Phase IV Investigation

The VOC analytical results for those analytes ever reported above the laboratory reporting limits in one or more groundwater samples are presented in Table 10. Groundwater samples were reported to contain acetone, carbon disulfide, chloroform, methyl tertiary-butyl ether ("MTBE"), 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, and TCE above laboratory reporting limits in one or more samples collected in April 2010. None of the VOC concentrations reported in the groundwater samples collected on-site or off-site during this investigation exceeded the ESLs for sites where groundwater is not considered a potential drinking water source (RWQCB, 2007, Revised 2008).

The dissolved metals analytical results for the groundwater samples collected are presented in Table 11. Groundwater samples were reported to contain barium, total chromium, Cr-VI, cobalt, copper, molybdenum, nickel, thallium, vanadium, and zinc. Total chromium, Cr-VI, cobalt, copper, nickel, thallium, and vanadium were reported in the groundwater samples collected onsite or off-site at concentrations exceeding the ESLs for sites where groundwater is not considered a potential drinking water source (RWQCB, 2007, Revised 2008). Figure 45 presents the concentration of Cr-VI reported in groundwater samples collected.

7.3 Groundwater Flow Direction And Gradient

The depths to groundwater measured on 15 April 2010 were used to calculate the groundwater elevation at the wells referenced to the North American Vertical Datum 1988 ("NAVD88").

Y0323-03.01478.fnl.doc-5/28/10

¹ Background values are 99th percentile values established by Lawrence Berkeley National Laboratory.

² The 10.0-, 15.0-, and 20.0-foot bgs samples were compared against ESLs for soils deeper than 3 meters.

Groundwater contours based on these elevations is presented on Figure 3. The groundwater flow direction on 15 April 2010 was toward the southwest with gradient of 0.005.

8.0 CONCLUSIONS

The analytical results of the soil and groundwater samples collected during this Phase IV investigation indicate that the elevated concentrations of metals in the soil and groundwater, primarily Cr-VI, originated from the former concrete column associated with the former Frog Pond. The highest concentrations of Cr-VI in both soil and groundwater were reported in the samples collected from MW-FP4A (Tables 4 and 11, Figures 4 and 5). The concentration of Cr-VI was highest at MW-FP4A in the soil sample collected from 20 feet bgs, although the concentration increased from 5.0 to 10.0 feet bgs, then decreased at 15.0 feet bgs and then increased again at 20.0 feet bgs.

The confining Old Bay Mud underlying the shallow groundwater bearing Merritt Sands was located at 57 feet bgs at MW-FP4B and at approximately 50 feet bgs at MW-FP7B (see boring logs Appendix B). Above the Old Bay Mud was the Merritt Sands with varying degrees of silt and clay. The low vertical hydraulic conductivity and effective porosity values reported from the soil sample collected from MW-FP4B at 26 feet bgs indicate that the contaminant vertical migration would likely be slow.

The concentrations of Cr-VI in groundwater decreased from 460,000 μ g/L in MW-FP4A, which was screen from 12 to 25 feet bgs, to 30 μ g/L in MW-FP4B, which was screen from 45 to 57 feet bgs (Figure 5). This is consistent with the low vertical hydraulic conductivity and effective porosity values reported. The difference between the shallow and deep concentrations of Cr-VI in groundwater were much less dramatic off-site where the Cr-VI concentrations decreased from 15,000 μ g/L in MW-FP6 and 5,700 μ g/L in MW-9, screened in the shallow groundwater, to 1,200 μ g/L in MW-FP7B, which was screened from 39 to 49 feet bgs. These results indicate that the Cr-VI is present at elevated levels in the shallow groundwater. These results also indicate that the Cr-VI has migrated off-site and the plume appears to be undergoing vertical dispersion as indicated by the increase in the Cr-VI concentration in the deeper off-site well, screened in the Merritt Sands, relative to the deeper on-site well, also screened in the Merritt Sands (Figure 5).

VOC concentrations in off-site wells are all below environmental screening levels where groundwater is not a potential drinking water source. Nickel, copper, and cobalt are present in off-site wells at concentrations above environmental screening levels where groundwater is not a potential drinking water source.

9.0 REFERENCES

BASELINE, 2009a, Work Plan for Additional Soil and Groundwater Investigation, 751-785 Seventh Street, Oakland, California, 19 June.

BASELINE Environmental Consulting ("BASELINE"), 2009b, Addendum I to Work Plan for Additional Soil and Groundwater Investigation, 751-785 Seventh Street, Oakland, California, 6 October

BASELINE, 2008, Documentation of Frog Pond Removal Activities, 785-7th Street, Oakland, California, 29 February.

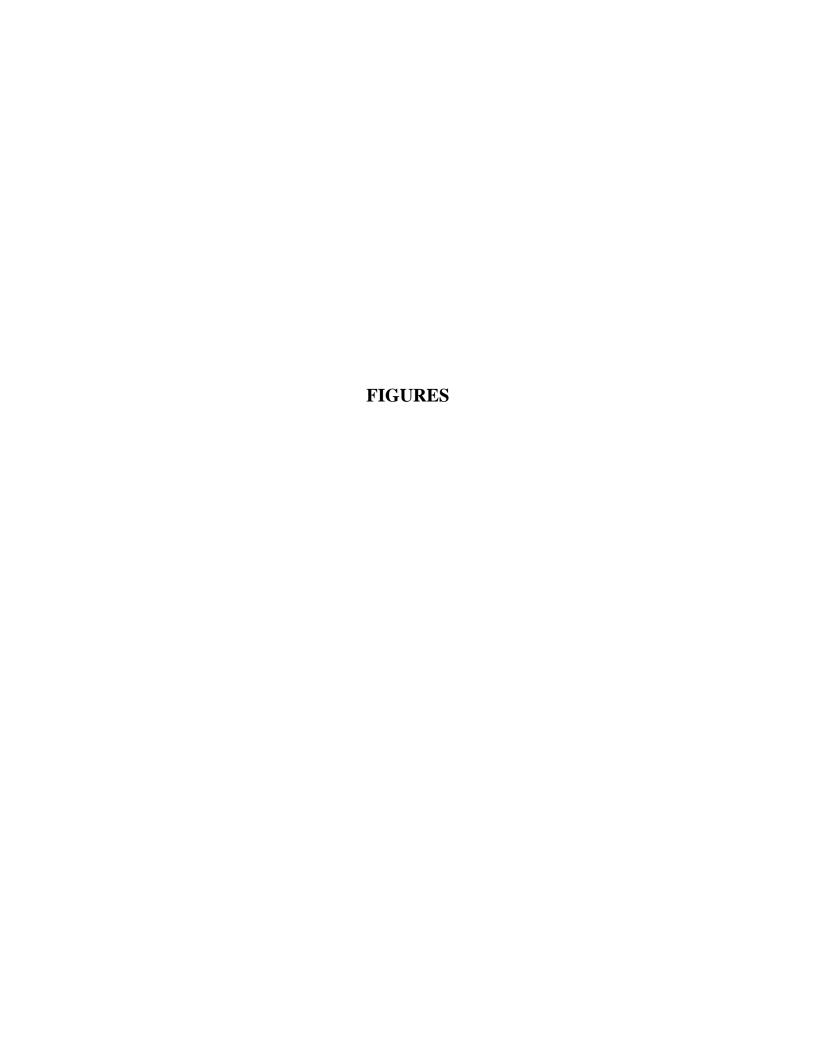
BASELINE, 2006, Report on Phase II and Focused Phase III Investigation and Frog Pond Removal Workplan, 785-7th Street, Oakland, California, June.

BASELINE, 2005, Site History and Data Summary Report, 785-7th Street, Oakland, California, 10 January.

BASELINE, 2003, Soil and Groundwater Investigation, 785-7th Street, Oakland, California, 29 April.

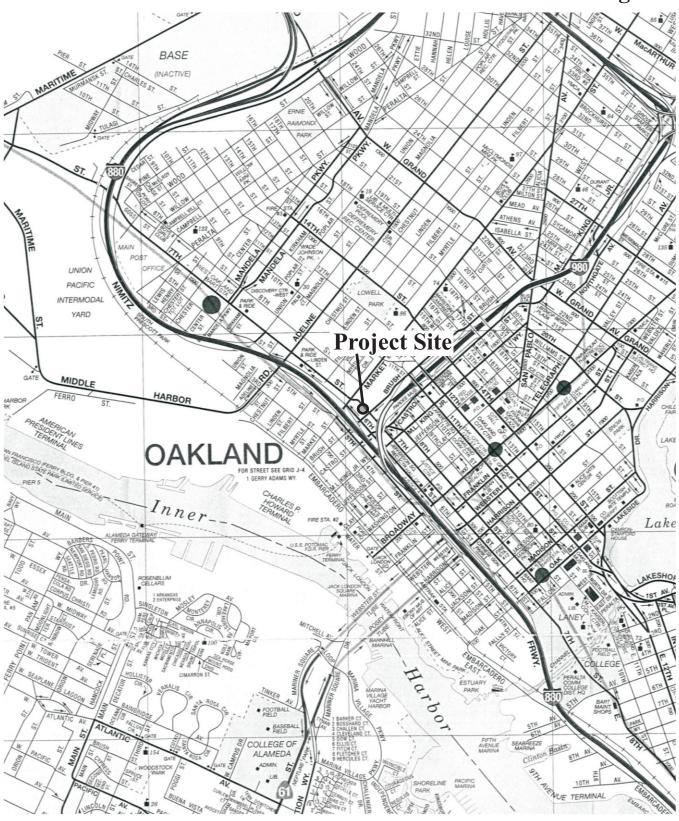
California Department of Water Resources ("DWR"), 2004, California's Groundwater Santa Clara Valley Groundwater Basin Bulletin 118, 27 February.

Conestoga-Rogers & Associates ("CRA"), 2009, Groundwater Monitoring Report – Third Quarter 2009, Shell-Branded Service Station, 601 Market Street, Oakland, California, 28 October.


Lawrence Berkeley National Laboratory ("LBNL"), 2002, Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory, June, revised April 2009.

P&D Environmental, 2009, Subsurface Investigation Report, (SG1 through SG6 and B6 through B8), 601 Brush Street, 12 November.

San Francisco Regional Water Quality Control Board ("RWQCB"), 2007, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater - Interim Final, November 2007 (Revised May 2008).


Subsurface Consultants and Todd Engineers, 1997, Draft Hydrogeologic Investigation, 50-Foot Navigation Improvement Project, Port of Oakland, December.

U.S. Environmental Protection Agency ("EPA"), 1996, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, April.

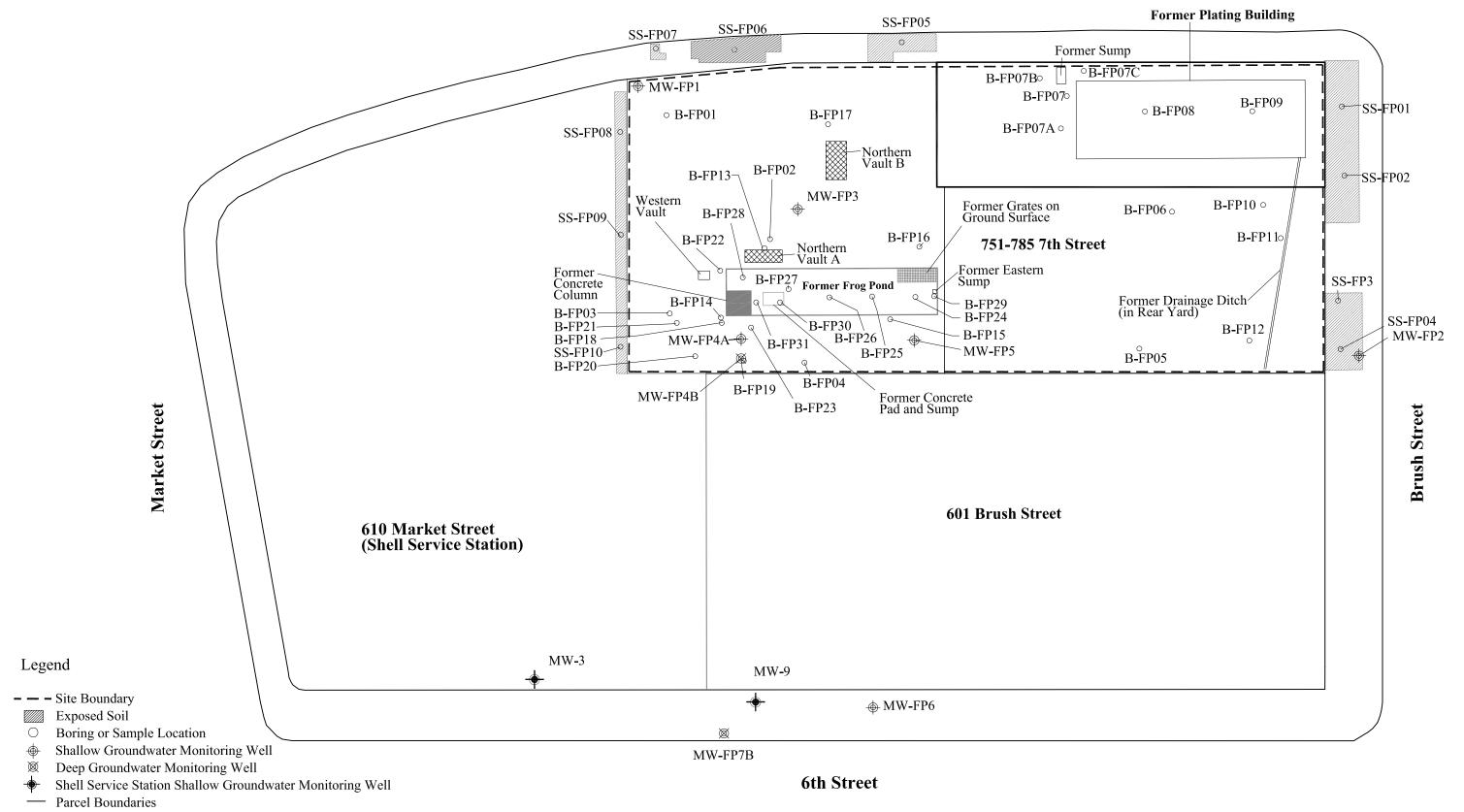
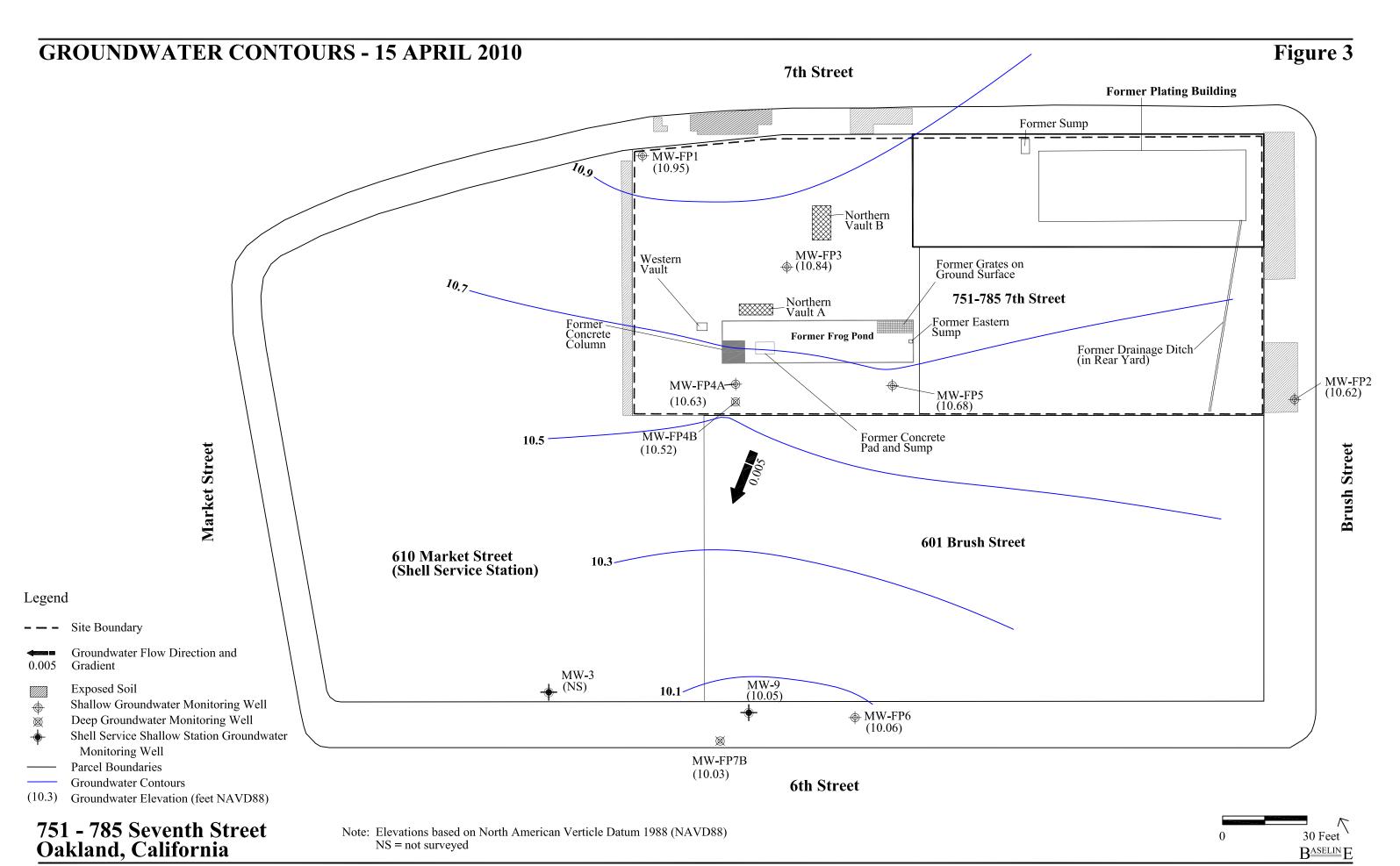
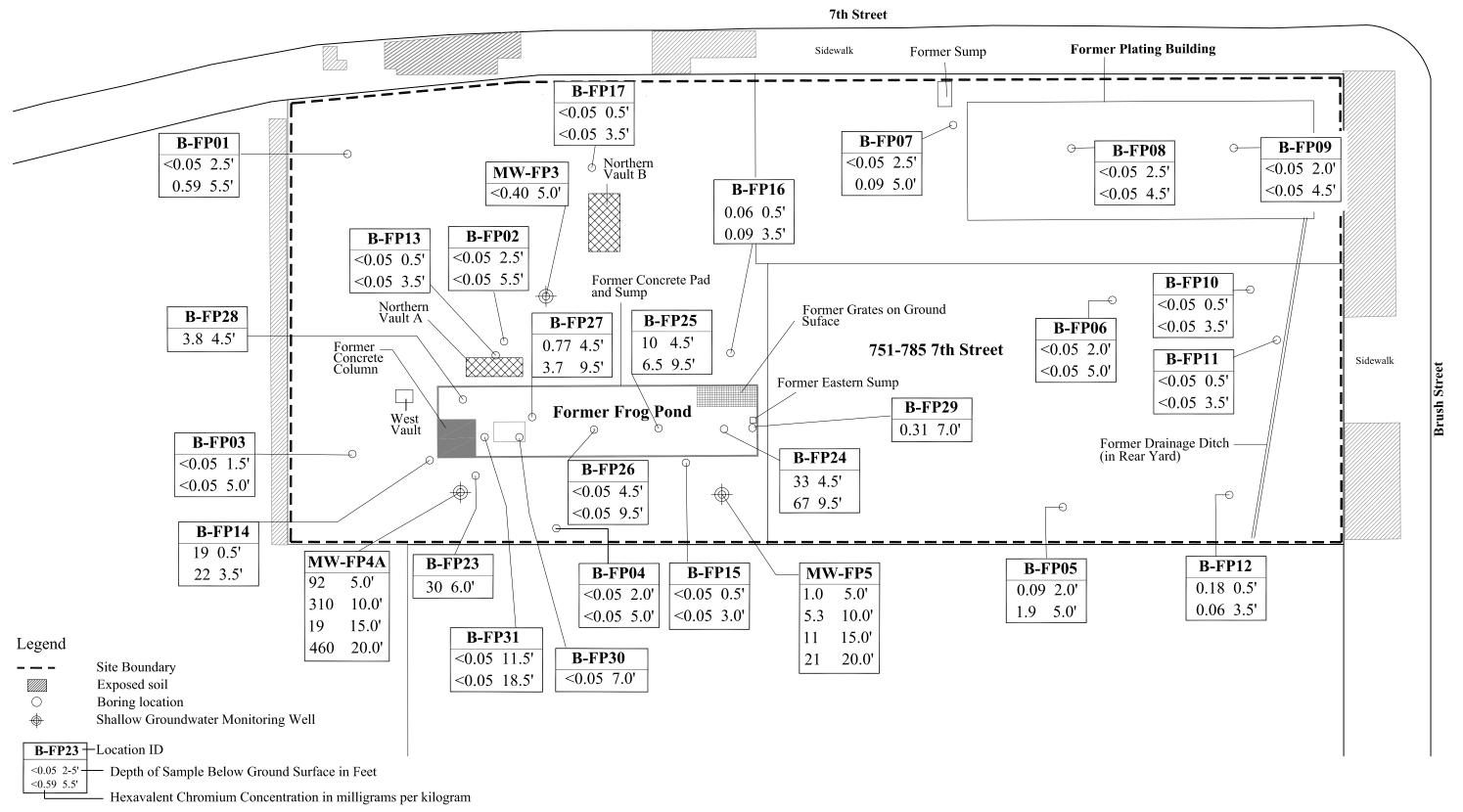
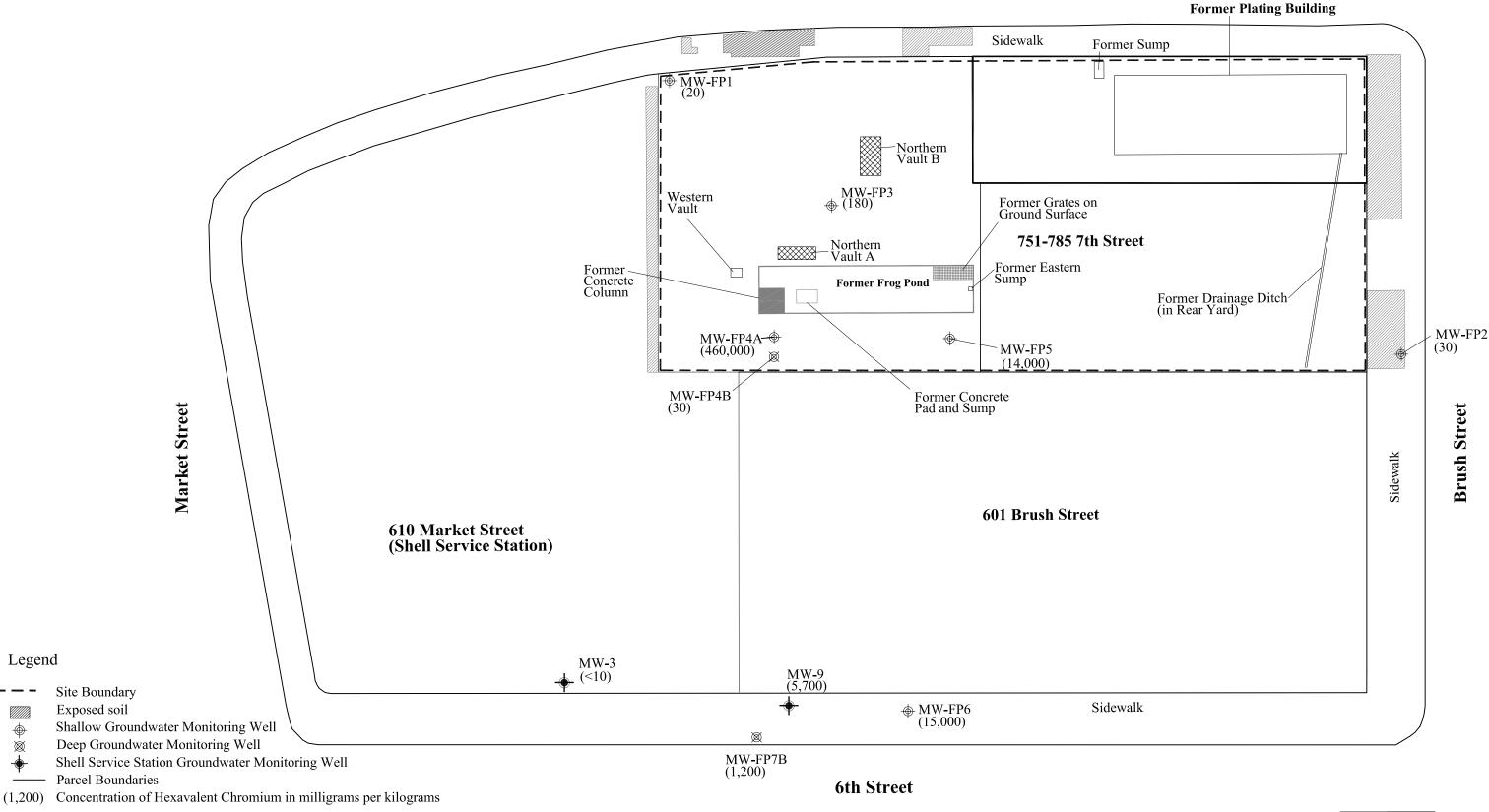

REGIONAL LOCATION

Figure 1




751-785 Seventh Street Oakland, California


751 - 785 Seventh Street Oakland, California

751 - 785 Seventh Street Oakland, California

7th Street

751 - 785 Seventh Street Oakland, California



Table 1: List of Samples and Analyses, 781-785 Seventh Street, Oakland, California Phase IV Investigation

			Title 22			Total Organic		Effective	Bulk
Boring	Sample ID	Sample Date	Metals	Chromium VI	VOCs	Carbon	Conductivity	Porosity	Density
Soil Samples									
MW-FP3	MW-FP3;5.0-5.5	3/3/2010	X	X					
MW-FP4A	MW-FP4A;5.0-5.5	3/3/2010	X	X					
MW-FP4A	MW-FP4A;10.0-10.5	3/3/2010	X	X					
MW-FP4A	MW-FP4A;15.0-15.5	3/3/2010	X	X					
MW-FP4A	MW-FP4A;20.0-20.5	3/3/2010	X	X		X			
MW-FP4B	MW-FP4B;26-26.5	3/2/2010					X	X	X
MW-FP5	MW-FP5;5.0-5.5	3/3/2010	X	X					
MW-FP5	MW-FP5;10.0-10.5	3/3/2010	X	X					
MW-FP5	MW-FP5;15.0-15.5	3/3/2010	X	X					
MW-FP5	MW-FP5;20.0-20.5	3/3/2010	X	X					
Groundwater S	amples								
MW-FP1	MW-FP1	4/15/2010	X	X	X				
MW-FP2	MW-FP2	4/15/2010	X	X	X				
MW-FP3	MW-FP3	4/15/2010	X	X	X				
MW-FP4A	MW-FP4A	4/15/2010	X	X	X				
MW-FP4B	MW-FP4B	4/15/2010	X	X	X				
MW-FP5	MW-FP5	4/15/2010	X	X	X				
MW-FP6	MW-FP6	4/15/2010	X	X	X				
MW-FP7B	MW-FP7B	4/15/2010	X	X	X				

VOCs = volatile organic compounds

X = sample analyzed for constituents as indicated

Boring locations are shown on Figure 2.

Results are summarized in Tables 4, 10, 11, and through 16.

Table 2: Groundwater Elevation Data, 781-785 Seventh Street, Oakland, California

Well ID	Date Measured	Top of Well Casing Elevation (ft)	Depth to Water (ft btc)	Groundwater Elevation (ft NAVD88)
Phase I				
MW-FP1	02/12/03	25.77	13.91	11.86
MW-FP2	02/12/03	23.81	12.30	11.51
Phase I				
MW-FP1	11/25/05	25.77	15.50	10.27
MW-FP2	11/25/05	23.81	13.84	9.97
Phase IV				
MW-FP1	04/15/10	25.77	14.82	10.95
MW-FP2	04/15/10	23.81	13.19	10.62
MW-FP3	04/15/10	25.66	14.82	10.84
MW-FP4A	04/15/10	25.64	15.01	10.63
MW-FP4B	04/15/10	25.44	14.92	10.52
MW-FP5	04/15/10	25.69	15.01	10.68
MW-FP6	04/15/10	21.04	10.98	10.06
MW-FP7B	04/15/10	20.51	10.48	10.03
MW-3 (Shell)	04/15/10	NS	11.00	NS
MW-9 (Shell)	04/15/10	21.03	10.98	10.05

btc = below top of casing

ft = feet

NS = not surveyed

Elevation datum is North American Vertical Datum of 1988 (NAVD88).

Well locations shown on Figure 2.

Well top of casings surveyed 04/15/10 (Appendix C).

Table 3: Volatile Organic Compounds in Soil, 781-785 Seventh Street, Oakland, California (mg/kg)

Sample Location	Top of Sample Interval (ft bgs)	Sample Date	Acetone	Carbon Disulfide	Methylene Chloride	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1,1-Trichloroethane	Trichloroethene
	Ls ≤ 3 meters (9.		0.50	NE	7.2	6.5	10	7.8	1.9
	Ls $>$ 3 meters (9.		0.50	NE	34	18	39	7.8	33
Commercial ES	SLs ≤3 meters (9	9.8 feet) ¹	0.50	NE	17	18	34	7.8	4.1
	SLs >3 meters (9		0.50	NE	34	18	39	7.8	33
Phase I									
B-FP01	2.5	02/05/03	< 0.02	< 0.0049	< 0.02	< 0.0049	< 0.0049	< 0.0049	< 0.0049
B-FP01	5.5	02/05/03	< 0.018	< 0.0044	< 0.018	< 0.0044	< 0.0044	< 0.0044	< 0.0044
B-FP02	2.5	02/05/03	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	< 0.0047
B-FP02	5.5	02/05/03	< 0.017	< 0.0043	< 0.017	< 0.0043	< 0.0043	< 0.0043	< 0.0043
B-FP03	1.5	02/04/03	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	0.024
B-FP03	5.0	02/04/03	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	< 0.0047
B-FP04	2.5	02/04/03	< 0.02	< 0.005	< 0.02	< 0.005	< 0.005	< 0.005	< 0.005
B-FP04	5.0	02/04/03	< 0.02	< 0.0049	< 0.02	< 0.0049	< 0.0049	< 0.0049	< 0.0049
B-FP05	2.5	02/04/03	< 0.018	< 0.0044	< 0.018	< 0.0044	< 0.0044	0.0054	0.033
B-FP05	5.5	02/04/03	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	< 0.0047
B-FP06	2.5	02/05/03	< 0.019	< 0.0048	< 0.019	< 0.0048	< 0.0048	< 0.0048	< 0.0048
B-FP06	5.5	02/05/03	< 0.018	< 0.0044	< 0.018	< 0.0044	< 0.0044	0.005	< 0.0044
B-FP07	2.5	02/05/03	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	< 0.0047
B-FP07	5.5	02/05/03	< 0.018	< 0.0045	< 0.018	< 0.0045	< 0.0045	< 0.0045	< 0.0045
COMP FY ³	7.0	02/05/03	< 0.02	< 0.0051	< 0.02	< 0.0051	< 0.0051	< 0.0051	< 0.0051
COMP RY ⁴	7.0	02/05/03	< 0.021	< 0.0052	< 0.021	< 0.0052	< 0.0052	< 0.0052	< 0.0052
Phase II									
B-FP08	2.5	11/22/05	< 0.019	< 0.0048	< 0.019	< 0.0048	< 0.0048	< 0.0048	< 0.0048
B-FP09	2.0	11/22/05	< 0.018	< 0.0045	0.028	< 0.0045	< 0.0045	< 0.0045	< 0.0045
B-FP10	0.5	11/28/05	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	< 0.0047
B-FP11	0.5	11/28/05	< 0.019	< 0.0048	< 0.019	< 0.0048	< 0.0048	< 0.0048	< 0.0048
B-FP12	0.5	11/29/05	< 0.019	< 0.0046	< 0.019	< 0.0046	< 0.0046	< 0.0046	< 0.0046
B-FP13	0.5	11/28/05	< 0.018	< 0.0045	< 0.018	< 0.0045	< 0.0045	< 0.0045	< 0.0045
B-FP14	0.5	11/29/05	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	0.0094
B-FP15	0.5	11/29/05	< 0.021	< 0.0053	< 0.021	< 0.0053	< 0.0053	< 0.0053	< 0.0053
B-FP15	3.0	11/29/05	< 0.019	< 0.0048	< 0.019	< 0.0048	< 0.0048	< 0.0048	< 0.0048
B-FP16	0.5	11/28/05	< 0.019	< 0.0046	< 0.019	< 0.0046	< 0.0046	< 0.0046	< 0.0046
B-FP17	0.5	11/28/05	< 0.019	< 0.0047	< 0.019	< 0.0047	< 0.0047	< 0.0047	< 0.0047
Phase III									
B-FP18	5.0	03/30/06	< 0.016	< 0.004	< 0.016	< 0.004	< 0.004	< 0.004	< 0.004
B-FP18	10.0	03/30/06	< 0.016	< 0.004	< 0.016	< 0.004	< 0.004	< 0.004	< 0.004
B-FP19	6.0	03/30/06	< 0.016	< 0.004	< 0.016	< 0.004	< 0.004	< 0.004	< 0.004

Table 3: Volatile Organic Compounds in Soil, 781-785 Seventh Street, Oakland, California (mg/kg)

Sample Location	Top of Sample Interval (ft bgs)	Sample Date	Acetone	Carbon Disulfide	Methylene Chloride	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1,1-Trichloroethane	Trichloroethene
Residential ES	Ls \leq 3 meters (9.	.8 feet) 1	0.50	NE	7.2	6.5	10	7.8	1.9
Residential ES	Ls $>$ 3 meters (9.	.8 feet) ²	0.50	NE	34	18	39	7.8	33
Commercial ES	SLs ≤3 meters (9	9.8 feet) ¹	0.50	NE	17	18	34	7.8	4.1
Commercial ES	SLs >3 meters (9	9.8 feet) ²	0.50	NE	34	18	39	7.8	33
B-FP19	12.0	03/30/06	< 0.015	< 0.0038	< 0.015	< 0.0038	< 0.0038	< 0.0038	< 0.0038
B-FP20	6.0	03/30/06	< 0.015	< 0.0038	< 0.015	< 0.0038	< 0.0038	< 0.0038	< 0.0038
B-FP20	12.0	03/30/06	< 0.016	< 0.004	< 0.016	< 0.004	< 0.004	< 0.004	< 0.004
B-FP21	6.0	03/30/06	< 0.015	< 0.0038	< 0.015	< 0.0038	< 0.0038	< 0.0038	0.0044
B-FP21	12.0	03/30/06	< 0.016	< 0.004	< 0.016	0.020	< 0.004	< 0.004	0.017
B-FP22	6.0	03/30/06	< 0.017	0.0092	< 0.017	0.066	0.0045	< 0.0042	0.040
B-FP22	12.0	03/30/06	< 0.016	< 0.004	< 0.016	0.027	< 0.004	< 0.004	0.0077
B-FP23	6.0	03/30/06	< 0.016	< 0.004	< 0.016	< 0.004	< 0.004	< 0.004	< 0.004
B-FP23	12.0	03/30/06	0.061	< 0.0037	< 0.015	< 0.0037	< 0.0037	< 0.0037	0.005

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

NE = not established

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Method 8260B.

Only those analytes reported above the laboratory reporting limit in at least one sample are shown.

Sample locations shown on Figure 2.

Values reported above the laboratory reporting limit are indicated in bold text.

¹ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² Table D, Environmental Screening Levels, Deep Soils, (> 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

³ Composite samples from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.

⁴ Composite samples from B-FP5, B-FP6, and B-FP7 collected at 7.0-7.5 feet below ground surface.

Table 4: Metals in Soil, 781-785 Seventh Street, Oakland, California (mg/kg)

	Top of																			
Sample	Sample Interval																			
Location	(feet bgs)	SampleDate	Antimony	Arsenic		Beryllium	Cadmium	Chromium VI	Chromium, Total	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	Ls ≤3 meters (9		6.3	0.39	750	4.0	1.7	8.0	750 3	40	230	200	1.3	40	150	10	20	1.3	16	600
Residential ES	Ls > 3 meters (9	9.8 feet) ²	310	15	2,500	98	39	0.53	2,500 3	94	2,500	750	58	2,500	260	2,500	2,500	62	770	2,500
Commercial E	SLs ≤3 meters ((9.8 feet) ¹	40	1.6	1,500	8.0	7.4	8.0	750 ³	80	230	750	10	40	150	10	40	16	200	600
Commercial E	SLs >3 meters	(9.8 feet) ²	310	15	2,600	98	39	0.53	5,000 ³	94	5,000	750	58	3,900	260	3,900	3,900	62	770	5,000
Background 4			<6	24	410	1.0	5.6	NE	120	25	63	24 5	0.42	4.8	272	4.9	2.9	10	90	140
Phase I																				
Н	2.5	02/05/03	< 0.75	1.15	52.7	< 0.25	< 0.5	< 0.05	28.1	3.89	5.31	2.25	< 0.0835	< 0.25	16.1	< 0.75	< 0.25	< 0.75	19.6	14.9
B-FP01	5.5	02/05/03	< 0.75	1.04	60.2	0.382	< 0.5	0.59	49.2	16.8	9.01	3.75	< 0.0835	< 0.25	53.6	< 0.75	< 0.25	< 0.75	34.8	23.7
B-FP02	2.5	02/05/03	< 0.75	< 0.75	56.1	< 0.25	< 0.5	< 0.05	29.1	4.21	5.74	2.44	< 0.0835	< 0.25	17.4	< 0.75	< 0.25	< 0.75	20	16.3
B-FP02	5.5	02/05/03	< 0.75	< 0.75	70.6	0.321	< 0.5	< 0.05	83.4	6.88	10.2	3.33	< 0.0835	< 0.25	99.2	< 0.75	< 0.25	< 0.75	34.9	24.4
B-FP03	1.5	02/04/03	< 0.75	0.928	71.1	< 0.25	<0.5	< 0.05	37.5	4.43	5.6	5.04	< 0.0835	0.367	17.2	< 0.75	< 0.25	< 0.75	18.2	15.8
B-FP03	5.0	02/04/03	<0.75	1.42	53.3	0.349	<0.5	<0.05	66.8	9.7	10.1	3.54	<0.0835	<0.25	<u>995</u>	<0.75	< 0.25	< 0.75	42.5	24
B-FP04	2.0	02/04/03	<0.75	<0.75	75.6	<0.25	<0.5	<0.05	27.3	4.05	5.77	2.43	<0.0835	<0.25	16.5	<0.75	<0.25	<0.75	19.1	16.5
B-FP04	5.0	02/04/03	<0.75	1.07	<u>43</u>	0.326	<0.5	<0.05	47.9	10.8	6.61	3.22	<0.0835	0.872	37	<0.75	<0.25	<0.75	32.5	45.1
B-FP05	2.0	02/04/03	<0.75	0.794	55.9	<0.25	<0.5	0.09	36.6	3.86	4.79	2.83	<0.0835	<0.25	17.3	<0.75	<0.25	<0.75	20.3	13.9
B-FP05 B-FP06	5.0	02/04/03 02/05/03	<0.75 <0.75	0.764 3.44	28.4 134	<0.25 <0.25	<0.5 0.689	1.9 <0.05	34.8 220	2.55 5.17	4.6 19.7	2.08	<0.0835 0.415	<0.25 1.95	19.3 368	<0.75 <0.75	<0.25 <0.25	<0.75 <0.75	21.6 19.3	11.4
B-FP06	5.0	02/05/03	<0.75	1.78	49.2	0.23	< 0.5	<0.05	49.1	11.3	7.76	1,260 3.95	<0.0835	<0.25	320	<0.75	<0.25	<0.75	35.8	1,260 22.3
B-FP07	2.5	02/05/03	<0.75	4.44	108	<0.25	<0.5	<0.05	38.8	4.55	24.6	141	0.139	0.65	39	<0.75	<0.25	<0.75	21.5	94
B-FP07	5.0	02/05/03	<0.75	< 0.75	81	0.418	<0.5	0.09	84.6	7.33	9.69	4.11	< 0.0835	<0.25	164	<0.75	<0.25	<0.75	46.5	27.7
COMP FY ⁶	7.0	02/05/03	<0.75	1.19	64.2	0.278	<0.5	<0.05	54.2	7.79	7.49	2.98	< 0.0835	<0.25	75.4	< 0.75	<0.25	<0.75	31.8	22.9
_																				
COMP RY 7 Phase II	7.0	02/05/03	< 0.75	< 0.75	66.3	0.266	< 0.5	< 0.05	48.2	6.87	7.79	2.76	< 0.0835	< 0.25	55.4	< 0.75	< 0.25	< 0.75	30.6	22.4
B-FP08	2.5	11/22/05	<2.7	2.6	40	0.23	< 0.23	< 0.05	42	5.3	7.0	2.5	< 0.02	<0.9	32	< 0.23	<0.23	<0.23	25	24
B-FP08	4.5	11/22/05	<3.1	2.6	50	0.24	< 0.25	<0.05	52	6.4	9.1	2.8	<0.02	<1	34	<0.25	<0.25	<0.25	32	27
B-FP09	2.0	11/22/05	<3.2	2.3	52	0.23	< 0.27	< 0.05	50	7.8	9.0	18	<0.019	<1.1	38	<0.27	<0.27	< 0.27	26	33
B-FP09	4.5	11/22/05	<3.0	3.3	63	0.28	<0.25	<0.05	51	6.7	10	3.1	< 0.019	<1	35	<0.25	< 0.25	<0.25	37	26
B-FP10	0.5	11/28/05	<3.1	2.5	66	0.14	0.67	< 0.05	30	1.9	26	60	0.029	<1	13	< 0.26	< 0.26	0.34	22	67
B-FP10	3.5	11/28/05	<2.9	2.3	23	0.16	0.35	< 0.05	41	12	12	3.8	0.024	< 0.95	77	< 0.24	< 0.24	< 0.24	24	69
B-FP11	0.5	11/28/05	<2.5	1.8	65	< 0.083	<u>9.0</u>	< 0.05	<u>1,800</u>	3.0	56	72	0.031	< 0.83	<u>660</u>	0.47	< 0.21	0.96	15	38
B-FP11	3.5	11/28/05	<2.1	1.8	37	0.22	<u>39</u>	< 0.05	680	2.3	<u>410</u>	2.7	0.033	< 0.7	170	< 0.17	< 0.17	0.52	22	100
B-FP12	0.5	11/29/05	<2.1	2.8	68	0.15	0.39	0.18	88	4.8	78	2.9	0.035	< 0.71	<u>1,100</u>	< 0.18	< 0.18	< 0.18	19	69
B-FP12	3.5	11/29/05	< 2.6	1.8	45	0.14	0.30	0.06	43	2.1	4.8	1.8	0.034	< 0.88	190	< 0.22	< 0.22	< 0.22	20	25
B-FP13	0.5	11/28/05	< 2.5	3.8	68	0.18	0.39	< 0.05	38	3.4	12	66	0.13	< 0.83	16	< 0.21	< 0.21	0.43	22	43
B-FP13	3.5	11/28/05	<3.1	2.3	49	0.14	0.35	< 0.05	26	2.6	7.2	38	0.079	<1	16	< 0.26	< 0.26	0.52	19	28
B-FP14	0.5	11/29/05	<3	5.3	180	0.19	0.69	<u>19</u>	<u>1,000</u>	4.0	30	290	0.44	< 0.99	19	< 0.25	< 0.25	0.79	24	170
B-FP14	3.5	11/29/05	17	2.8	24	0.1	4.2	22	<u>5,500</u>	5.2	170	3.2	0.088	1.9	<u>520</u>	<0.26	< 0.26	< 0.26	28	33
B-FP15	0.5	11/29/05	<2.9	2.1	71	0.17	0.36	<0.05	32	3.5	5.5	2.6	<0.02	<0.98	17	<0.25	<0.25	<0.25	23	18
B-FP15	3.0	11/29/05	<2.1	2.3	44	0.17	0.46	<0.05	140	3.2	16	2.3	0.020	<0.68	22	<0.17	<0.17	0.22	23	16
B-FP16	0.5	11/28/05	<2.9	2.1	52	0.15	0.43	0.06	150	3.2	4.9	2.3	0.045	<0.96	16	<0.24	<0.24	<0.24	21	16
B-FP16	3.5	11/28/05	<2.6	3.7	43	0.3	0.75	0.09	77	19	7.2	3.4	<0.021	1.6	36	<0.22	<0.22	<0.22	44	20
B-FP17 B-FP17	3.5	11/28/05 11/28/05	<2.8 <2.9	1.9 2.1	60 29	0.16	0.47	<0.05 <0.05	39 31	3.1 2.5	7.0 4.6	2.7	<0.02	<0.93 1.3	20 16	<0.23 <0.24	<0.23	<0.23 0.25	22 23	18 14
COMP 1 8	0.0	11/21/05	<3.0	4.9	97	0.25	2.3	< 0.05	79	5.7	48	180	0.24	1.1	71	< 0.25	< 0.25	< 0.25	33	140

Y0323-03.01478.fnl.xls - 5/28/2010 1 of 3

Table 4: Metals in Soil, 781-785 Seventh Street, Oakland, California (mg/kg)

Sample Minestant Minesta		Top of Sample																			
Resident Risk Structure OS Read	Sample	_																			
Resident BEAS = Struckers 0 8 feers 0.5 0.9 7.0 0.0 0.7 0.0 7.0 0.	Location	(feet bgs)	SampleDate	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium VI	Chromium, Total	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Residentify Start Mineral Policy Fine Fi	Residential ES	Ls ≤3 meters (9	9.8 feet) ¹	6.3	0.39	750	4.0	1.7	8.0	750 ³	40	230	200		40	150	10	20	1.3	16	600
Commercial Lists Success Osfite Osfite Success Osfite Osfi	Residential ES	Ls >3 meters (9	9.8 feet) ²	310	15			39	0.53	2,500 ³											
Commonweight Section										•											
Background																					
COMPS 10 11/21/05 < 26 2.4 66 0.25 1.5 0.05 42 5.7 19 47 0.072 0.05 14 0.05 71 0.02 0.02 0.02 0.02 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05		<u> </u>	(210 100)																		
COMP 4 " 10		1.0	11/21/05																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																					
COMP 5																					
Complete 1																					
Pines																					
B-FP23 6.0 03/30/16 7.0 7.		1.0	11/22/03	~2.3	7.0	130	0.5	3.0	<0.03	4 2	3.9	71	230	0.40	1,2	130	<u> </u>	0.57	<u> </u>	23	230
H-FP24	B-FP23	6.0	03/30/06						30												
FFP24	Frog Pond Re	moval							_												
B-FP2S	B-FP24	4.5	05/31/07	< 0.25	2.0	51	< 0.25	< 0.25	<u>33</u>	48	3.1	6.7	19	0.14	0.35	17	< 0.25	< 0.25	< 0.25	18	27
FFP25 9.5	B-FP24	9.5	05/31/07	< 0.25		52	< 0.25	< 0.25	<u>67</u>	140	6.2	7.6	2.6	< 0.02	< 0.25	34	< 0.25	< 0.25	< 0.25	27	23
	B-FP25	4.5	06/01/07							610		49	13	< 0.02		240	< 0.25		< 0.25		30
									6.5	180				< 0.02		76			< 0.25	24	25
B-FP27 4.5 06:01/07 0.81 2.0 40 <0.25 3.1 0.77 290 3.4 12 48 0.045 0.59 160 <0.25 <0.25 <0.25 <0.25 <0.25 19 28 B-FP27 9.5 06:01/07 <0.25 2.1 49 <0.25 <0.25 3.7 44 5.0 6.8 2.5 <0.02 <0.25 3.6 <0.25 36 <0.25 <0.25 <0.25 <0.25 <0.25 <2.2 32 66 B-FP28 4.5 06:01/07 <0.25 4.0 65 0.35 <0.25 3.8 110 7.2 9.2 3.2 0.00 B-FP29 7.0 06:01/07 0.25 4.0 65 0.35 <0.25 3.8 110 7.2 9.2 3.2 0.00 B-FP29 7.0 06:01/07 0.25 2.7 63 0.28 0.31 B-FP30 7.0 06:01/07 <0.25 2.7 63 0.28 0.31 B-FP31 1 11.5 06:01/07 <0.25 2.7 63 0.28 0.31 B-FP31 1 11.5 06:01/07 0.25 3.1 59 0.33 B-FP31 1 18.5 06:05:07 0.85 2.5 34 0.25 B-FP31 1 1 1.5 06:01/07 0.25 2.7 0.3 3.1 59 0.33 B-FP31 1 1 1.5 06:01/07 0.25 2.7 0.3 3.1 59 0.33 B-FP31 1 1 1.5 06:01/07 0.25 2.5 0.25 B-FP31 1 1 1.5 06:01/07 0.25 2.5 3.4 0.25 B-FP31 1 1 1.5 06:01/07 0.25 2.5 3.4 0.25 B-FP31 1 1 1.5 06:01/07 0.5 B-FP31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B-FP26																				14
FPP27 9.5 06/01/07 <0.25 2.1 49 <0.25 <0.25 3.7 44 5.0 6.8 2.5 <0.02 <0.25 3.6 <0.25 <0.25 <0.25 <2.3 26																					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																					
B-FP30 7.0 06/01/07 <0.25 2.7 63 0.28 0.31 <0.05 170 6.4 10 3.7 <0.02 0.37 1.100 <0.25 <0.25 <0.25 <0.25 <0.25 32 25 B-FP31 14 11.5 06/01/07 <0.25 3.1 59 0.33 <0.25 <0.05 65 10 9.4 3.9 <0.021 0.34 51 <0.25 <0.25 <0.25 <0.25 <0.25 32 25 B-FP31 14 18.5 06/05/07 0.85 2.5 34 <0.25 <0.25 <0.05 1.400 7.7 220 1.6 <0.020 0.30 1.800 <0.25 <0.25 <0.25 <0.25 <0.25 22 38.7 Bottom of Concrete Column 20.0 09/05/07 1.4 2.6 52 0.22 3.2 3.9 240 6.1 41 36 <0.02 0.74 230 <0.5 <0.5 <0.25 <0.25 <0.25 <0.25 22 38.7 MW-FP3 5.0 03/03/10 <0.5 3.2 47 0.43 <0.25 <0.4 72 5.5 20 3.5 <0.021 <0.25 5.5 20 3.5 <0.021 <0.25 51 0.69 <0.25 <0.5 38 33 MW-FP4A 5.0 03/03/10 <0.5 2.1 47 0.22 1.8 92 1.400 6.3 88 1.7 <0.02 <0.25 3.6 <0.25 3.6 <0.25 <0.25 <0.25 <0.5 29 22 MW-FP4A 15.0 03/03/10 <0.5 2.5 40 0.25 <0.25 19 130 5.6 7.1 2.1 <0.02 <0.25 56 <0.25 <0.25 <0.25 <0.5 29 22 MW-FP4A 20.0 03/03/10 <0.5 2.5 40 0.25 <0.25 19 130 5.6 7.1 2.1 <0.02 <0.25 56 <0.5 <0.25 <0.25 <0.5 33 21 MW-FP4A 20.0 03/03/10 <0.5 3.0 44 0.13 <0.25 19 130 5.6 7.1 2.1 <0.02 <0.25 56 <0.5 <0.25 <0.5 3.3 12 MW-FP4A 20.0 03/03/10 <0.5 3.0 44 0.13 <0.25 19 130 5.6 7.1 2.1 <0.02 <0.25 57 6 <0.5 <0.25 <0.5 33 21 MW-FP5 15.0 03/03/10 <0.5 2.1 46 0.25 5.3 40 0.25 5.0 51 0.25 50 0.83 <0.021 <0.25 51 0.05 <0.25 <0.5 3.3 12 MW-FP5 15.0 03/03/10 <0.5 2.1 46 0.21 <0.25 5.3 43 5.7 7.6 2 <0.021 <0.25 31 <0.5 <0.25 <0.5 <0.5 25 18 MW-FP5 15.0 03/03/10 <0.5 2.1 43 60 2.1 <0.25 5.3 43 5.7 7.6 2 <0.021 <0.25 35 <0.05 <0.25 <0.5 <0.5 <0.25 <0.5 43 23 MW-FP5 15.0 03/03/10 <0.5 4.4 66 0.33 <0.25 11 65 8.4 10 2.5 <0.02 <0.02 5 35 <0.02 50.5 35 <0.5 <0.25 <0.5 43 23 MW-FP5 15.0 03/03/10 <0.5 4.4 66 0.33 <0.25 11 65 8.4 10 2.5 <0.02 <0.02 5 35 50.5 <0.25 <0.5 50.5 43 23 MW-FP5 15.0 03/03/10 <0.5 4.4 66 0.33 <0.25 11 65 8.4 10 2.5 <0.02 5 <0.02 5 <0.0 5 50.5 <0.25 <0.5 43 23 MW-FP5 15.0 03/03/10 <0.5 4.4 66 0.33 <0.25 11 65 8.4 10 2.5 <0.02 5 <0.0 5 <0.0 5 50.5 <0.25 <0.5 40.5 <0.5 43 23																					
B-FP31 4																					
B-FP31 ¹⁴ 18.5 06/05/07 0.85 2.5 34 <0.25 <0.25 <0.05 1,400 7.7 220 1.6 <0.020 0.30 1,800 <0.25 <0.25 <0.25 <0.25 <0.25 22 38.7 Bottom of Concrete Column 20.0 09/05/07 1.4 2.6 52 0.22 3.2 3.9 240 6.1 41 36 <0.02 0.74 230 <0.5 <0.25 <0.25 <0.25 <0.25 <0.25 29 63 Phase IV WW-FP3 5.0 03/03/10 <0.5 3.2 47 0.43 <0.25																					
Bottom of Concrete Column 20.0 09/05/07 1.4 2.6 52 0.22 3.2 3.9 240 6.1 41 36 <0.02 0.74 230 <0.5 <0.25 <0.5 29 63 Phase IV WW-FP3 5.0 03/03/10 <0.5 3.2 47 0.43 <0.25 <0.4 72 5.5 20 3.5 <0.021 <0.25 51 0.69 <0.25 <0.5 38 33 MW-FP4A 5.0 03/03/10 <0.5 2.1 47 0.22 1.8 92 1.400 6.3 88 1.7 <0.02 <0.25 36 <0.5 <0.25 <0.5 29 22 MW-FP4A 10.0 03/03/10 <0.5 2.1 46 0.27 2.0 310 440 4.9 140 2.2 <0.021 <0.25 56		11.5								65			3.9								
Concrete Column 20.0 09/05/07 1.4 2.6 52 0.22 3.2 3.9 240 6.1 41 36 <0.02 0.74 230 <0.5 <0.5 <0.5 <0.5 29 63 Phase IV MW-FP3 5.0 03/03/10 <0.5 3.2 47 0.43 <0.25 <0.4 72 5.5 20 3.5 <0.021 <0.25 51 0.69 <0.25 <0.5 38 33 MW-FP4A 5.0 03/03/10 <0.5 2.1 47 0.22 1.8 92 1.400 6.3 88 1.7 <0.02 <0.25 36 <0.5 <0.25 <0.5 29 22 MW-FP4A 10.0 03/03/10 <0.5 2.1 46 0.27 2.0 310 440 4.9 140 2.2 <0.021 <0.25 56 62 <0.5 <0.25 <0.5 <0.5 <0.25 <0.5 27 27 MW-FP4A 15.0 03/03/10 <0.5 2.5 40 0.25 <0.25 19 130 5.6 7.1 2.1 <0.02 <0.25 76 <0.5 <0.25 <0.5 <0.5 <0.5 <0.5 <18 MW-FP4A 20.0 03/03/10 <0.5 3.0 44 0.13 <0.25 1.0 120 560 4.3 5.9 0.83 <0.021 <0.25 542 <0.5 <0.5 <0.25 <0.5 25 18 MW-FP5 5.0 03/03/10 <0.5 3.0 44 0.31 <0.25 1.0 120 2.4 23 3.3 <0.02 <0.25 3.3 3.3 <0.02 <0.25 31 <0.5 <0.25 <0.5 25 <0.5 29 MW-FP5 15.0 03/03/10 <0.5 2.1 43 0.21 <0.25 5.3 43 5.7 7.6 2 <0.021 <0.25 35 <0.25 30 <0.5 <0.25 <0.5 <0.5 28 21 MW-FP5 15.0 03/03/10 <0.5 4.4 66 0.33 <0.25 11 66 8.4 10 2.5 <0.02 <0.02 <0.25 35 <0.5 <0.25 <0.5 <0.5 43 23 MW-FP5 15.0 03/03/10 <0.5 4.4 66 0.33 <0.25 11 65 8.4 10 2.5 <0.02 <0.02 <0.25 35 <0.5 <0.5 <0.5 <0.5 <0.5 43 23	B-FP31 14	18.5	06/05/07	0.85	2.5	34	< 0.25	< 0.25	< 0.05	<u>1,400</u>	7.7	220	1.6	< 0.020	0.30	<u>1,800</u>	< 0.25	< 0.25	< 0.25	22	38.7
Column 20.0 09/05/07 1.4 2.6 52 0.22 3.2 3.9 240 6.1 41 36 <0.02 0.74 230 <0.5 <0.5 <0.25 <0.5 29 63																					
MW-FP3		20.0	00/05/05		• -		0.00	2.0	2.0	• 40		4.4	2.6	.0.00	0 = 4	•••	.0. 7	0.25	0.5	••	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		20.0	09/05/07	1.4	2.6	52	0.22	3.2	<u>3.9</u>	240	6.1	41	36	<0.02	0.74	230	<0.5	< 0.25	<0.5	29	63
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.0	02/02/10	<0.5	2.2	47	0.42	<0.25	<0.4	72		20	2.5	<0.021	<0.25	<i>E</i> 1	0.60	<0.25	<0.5	20	- 22
MW-FP4A 10.0 03/03/10 <0.5 2.1 46 0.27 2.0 310 440 4.9 140 2.2 <0.021 <0.25 62 <0.5 <0.25 <0.5 27 27 MW-FP4A 15.0 03/03/10 <0.5																					
MW-FP4A 15.0 03/03/10 <0.5 2.5 40 0.25 <0.25 19 130 5.6 7.1 2.1 <0.02 <0.25 76 <0.5 <0.25 <0.5 33 21 MW-FP4A 20.0 03/03/10 <0.5																					
MW-FP4A 20.0 03/03/10 <0.5 3.0 44 0.13 <0.25 460 560 4.3 5.9 0.83 <0.021 <0.25 42 <0.5 <0.25 <0.5 25 18 MW-FP5 5.0 03/03/10 <0.5																					
MW-FP5 5.0 03/03/10 <0.5 3.0 44 0.31 <0.25 1.0 120 2.4 23 3.3 <0.02 <0.25 31 <0.5 <0.25 <0.5 45 29 MW-FP5 10.0 03/03/10 <0.5																					
MW-FP5 10.0 03/03/10 <0.5 2.1 43 0.21 <0.25 <u>5.3</u> 43 5.7 7.6 2 <0.021 <0.25 30 <0.5 <0.25 <0.25 <0.5 28 21 MW-FP5 15.0 03/03/10 <0.5 4.4 66 0.33 <0.25 <u>11</u> 65 8.4 10 2.5 <0.02 <0.25 35 <0.5 <0.5 <0.5 <0.5 43 23																					
MW-FP5 15.0 03/03/10 <0.5 4.4 66 0.33 <0.25 <u>11</u> 65 8.4 10 2.5 <0.02 <0.25 35 <0.5 <0.25 <0.5 43 23																					
IMW-FP5 20.0 05/05/10 <0.5 1.9 28 0.11 <0.25 21 62 4.5 7.4 1.2 <0.02 <0.25 28 <0.5 <0.25 <0.5 <0.5 24 18	MW-FP5	20.0	03/03/10	<0.5	1.9	28	0.33	<0.25	21	62	4.5	7.4	1.2	<0.02	<0.25	28	<0.5	<0.25	<0.5	24	18

Y0323-03.01478.fnl.xls - 5/28/2010 2 of 3

Table 4: Metals in Soil, 781-785 Seventh Street, Oakland, California (mg/kg)

Notes:

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 6010B/7400/7196A.

Sample locations shown on Figure 2.

Underlined values exceed the Commercial ESL and background value.

Values reported above the laboratory reporting limit are indicated in bold text.

Yellow shaded values exceed the residential ESL and background value.

- ¹ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.
- ² Table D, Environmental Screening Levels, Deep Soils, (> 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.
- ³ ESL for Chromium II
- ⁴ Background metals Lawrence Berkeley National Laboratory ("LBNL"), 2002, Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory, June, revised April 2009 (99th percentile).
- ⁵ Greater than five feet below ground surface.
- ⁶ Composite sample from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.
- ⁷ Composite sample from B-FP5, B-FP6, and B-FP7 collected at 7.0-7.5 feet below ground surface.
- ⁸ Composite sample from SS-FP1 to SS-FP4 collected at 0.0-0.5 feet below ground surface.
- ⁹ Composite sample from SS-FP1 to SS-FP4 collected at 1.0-1.5 feet below ground surface.
- ¹⁰ Composite sample from SS-FP5 to SS-FP7 collected at 0.0-0.5 feet below ground surface.
- ¹¹ Composite sample from SS-FP5 to SS-FP7 collected at 1.0-1.5 feet below ground surface.
- ¹² Composite sample from SS-FP8 to SS-FP10 collected at 0.0-0.5 feet below ground surface.
- ¹³ Composite sample from SS-FP1 to SS-FP4 collected at 1.0-1.5 feet below ground surface.

¹⁴ Results were reported by the laboratory on a dry-weight basis. Values in the table have been converted to "as received"-weight basis to be consistent with other samples. Moisture content 14 to 15 percent.

Table 5: WET and TCLP Metal Concentrations in Soil, 751-785 Seventh Street, Oakland, California (μg/L)

Sample ID	Top of Sample Interval (ft bgs)	Sample Date	Cadmium, DI WET	Copper, DI WET	Lead, DI WET	Nickel, DI WET	Lead, WET	Nickel, WET	Lead, TCLP
Hazardous Waste	Criteria ¹		NA	NA	NA	NA	5,000	20,000	5,000
Phase I									
B-FP03	5.0	2/4/03						<u>31,000</u>	
B-FP06	2.0	2/5/03							< 300
B-FP06	2.0	2/5/03					1,500	17,000	
B-FP06	5.0	2/5/03						<u>26,000</u>	
Phase II									
B-FP10	0.5	11/28/05			520				
B-FP11	0.5	11/28/05			61	640			
B-FP11	3.5	11/28/05	31	61					
B-FP12	0.5	11/29/05				1,200			
B-FP13	0.5	11/28/05			31				
B-FP14	0.5	11/29/05			11				
B-FP14	3.5	11/29/05				250			
COMP 1	0.0	11/21/05			7				
COMP 5	0.0	11/22/05			14				
COMP 6	1.0	11/22/05			13				

COMP X = composite sample

DI WET = Waste Extraction Test using deionized water

NA = not applicable

TCLP = toxicity characteristic leaching procedure

 $\mu g/L = micrograms per liter$

 $\langle x.x =$ compound not identified above laboratory reporting limit of x.x

-- = not analyzed

Sample locations are shown on Figure 2.

Underlined values exceed hazardous waste criteria.

Values shown in bold are concentrations quantified above laboratory reporting limits.

¹ WET - California Hazardous Waste criteria; TCLP - RCRA Hazardous Waste criteria.

Table 6: Polychlorinated Biphenyls in Soil, 781-785 Seventh Street, Oakland, California (mg/kg)

Sample Location	Top of Sample Interval (feet bgs)	Sample Date	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Aroclor-1262
Residential ES	SLs ≤3 meter	s (9.8 feet) ¹	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22
Commercial E	ESLs ≤3 mete	ers (9.8 feet) 1	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
Phase I										
B-FP01	2.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP01	5.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP02	2.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP02	5.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP03	1.5	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP03	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP04	2.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP04	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP05	2.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP05	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP06	2.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP06	5.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP07	2.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP07	5.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
COMP FY ²	7.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
COMP RY ³	7.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

COMP X = composite sample

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 8082.

Sample locations are shown on Figure 2.

¹ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² Composite sample from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.

³ Composite sample from B-FP5, B-FP6, and B-FP7 collected at 7.0-7.5 feet below ground surface.

Table 7: Polynuclear Aromatic Hydrocarbons in Soil, 781-785 Seventh Street, Oakland, California (mg/kg)

Sample Location	Top of Sample Interval (feet bgs)	Sample Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
Residential ESLs ≤.	`	1	19	13	2.8	0.38	0.038	0.38	27	0.38	23	0.062	40	8.9	0.62	1.3	11	85
Commercial ESLs <	≤3 meters (9.8 feet)	1	19	13	2.8	1.3	0.13	1.3	27	1.3	23	0.21	40	8.9	2.1	2.8	11	85
Phase I	T T	0.5 10.5 10.5							0.0-	0.05		0.05	2.2.5	2.25	2.25	0.05	2.25	
B-FP01	2.5	02/05/03	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP01	5.5	02/05/03	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP02	2.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP02	5.5	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP03	1.5	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP03	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP04	2.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP04	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP05	2.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP05	5.0	02/04/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP06	2.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP06	5.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
B-FP07	2.5	02/05/03	0.14	0.55	0.20	<u>1.5</u>	<u>3.9</u>	<u>2.0</u>	3.4	0.85	2.2	<u>2.6</u>	3.0	0.091	<u>2.4</u>	1.8	1.3	4.6
B-FP07	5.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
COMP FY ²	7.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
COMP RY ³	7.0	02/05/03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phase II																		
B-FP07A	2.5	11/28/05	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051
B-FP07B	2.0	11/29/05	< 0.005	< 0.005	< 0.005	0.011	0.023	0.015	0.027	0.016	0.016	0.0065	0.017	< 0.005	0.019	< 0.005	0.0097	0.018
B-FP07B	3.5	11/29/05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0069	< 0.005	< 0.005
B-FP07C	2.5	11/22/05	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

COMP X = composite sample

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

 $\langle x.x =$ compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 8310.

Sample locations are shown on Figure 2.

<u>Underlined values exceed the Commercial ESL and background value.</u>

Values reported above the laboratory reporting limit are indicated in bold text.

Yellow shaded values exceed the residential ESL.

Y0323-03.01478.fnl.xls - 5/28/2010

¹ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² Composite sample from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.

³ Composite sample from B-FP5, B-FP6, and B-FP7 collected at 7.0-7.5 feet below ground surface.

Table 8: Cyanide and pH in Soil, 781-785 Seventh Street, Oakland, California

Sample Location	Top of Sample Interval (feet bgs)	Sample Date	Total Cyanide (mg/kg)	pН
Residential ESLs ≤3	3 meters (9.8 feet)	1	0.0036	NA
Commercial ESLs <	3 meters (9.8 feet)	1	0.0036	NA
Phase I				
B-FP01	2.5	02/05/03	<1	5.9
B-FP01	5.5	02/05/03	<1	6.3
B-FP02	2.5	02/05/03	<1	5.7
B-FP02	5.5	02/05/03	<1	5.2
B-FP03	1.5	02/04/03	<1	7.0
B-FP03	5.0	02/04/03	<1	6.4
B-FP04	2.0	02/04/03	<1	5.9
B-FP04	5.0	02/04/03	<1	7.5
B-FP05	2.0	02/04/03	<1	7.8
B-FP05	5.0	02/04/03	<1	7.5
B-FP06	2.0	02/05/03	<1	5.9
B-FP06	5.0	02/05/03	<1	6.1
B-FP07	2.5	02/05/03	<1	9.2
B-FP07	5.0	02/05/03	<u>11</u>	8.0
COMP FY ²	7.0	02/05/03	<1	6.2
COMP RY ³	7.0	02/05/03	<1	7.4

COMP X = composite sample

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

<x.x = compound not identified above laboratory reporting limit of x.x

Cyanide analyzed in accordance with EPA Methods 335.2.

pH analyzed in accordance with EPA Methods 9045C.

Sample locations are shown on Figure 2.

Underlined values exceed the Commercial ESL and background value.

Values reported above the laboratory reporting limit are indicated in bold text.

Yellow shaded values exceed the residential ESL.

¹ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² Composite sample from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.

³ Composite sample from B-FP5, B-FP6, and B-FP7 collected at 7.0-7.5 feet below ground surface.

Table 9: Petroleum Hydrocarbons in Soil, 781-785 Seventh Street, Oakland, California (mg/kg)

Commis I a sotion	Top of Sample	Sample	TODIC 11 1	TODA II
Sample Location	Interval	Date	TPH as diesel	TPH as gasoline
Residential ESLs ≤3 r			100	100
Commercial ESLs ≤3	meters (9.8 feet) ¹		180	180
Phase I			T.	
B-FP01	2.5	02/05/03		< 0.19
B-FP01	2.5	02/05/03	<1	
B-FP01	5.5	02/05/03		< 0.16
B-FP01	5.5	02/05/03	<1	
B-FP02	2.5	02/05/03		< 0.19
B-FP02	2.5	02/05/03	<1	
B-FP02	5.5	02/05/03		< 0.19
B-FP02	5.5	02/05/03	<1	
B-FP03	1.5	02/04/03		< 0.19
B-FP03	1.5	02/04/03	<1	
B-FP03	5.0	02/04/03		< 0.17
B-FP03	5.0	02/04/03	<1	
B-FP04	2.0	02/04/03	<1	
B-FP04	2.5	02/04/03		< 0.2
B-FP04	5.0	02/04/03	<1	<1.1
B-FP05	2.5	02/04/03		< 0.17
B-FP05	2.0	02/04/03	3.4	
B-FP05	5.5	02/04/03		< 0.18
B-FP05	5.0	02/04/03	<1	
B-FP06	2.5	02/05/03		< 0.2
B-FP06	2.0	02/05/03	<1	
B-FP06	5.5	02/05/03		< 0.18
B-FP06	5.0	02/05/03	<1	
B-FP07	2.5	02/05/03		< 0.21
B-FP07	2.5	02/05/03	3.6	
B-FP07	5.5	02/05/03		< 0.2
B-FP07	5.0	02/05/03	<1	
COMP FY ²	7.0	02/05/03	<1	<1
COMP RY ³	7.0	02/05/03	<1	< 0.98

COMP X = composite sample

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

TPH = total petroluem hydrocarbons

<x.x = compound not identified above laboratory reporting limit of x.x

Sample locations are shown on Figure 2.

TPH as diesel analyzed in accordance with EPA Methods 8015M with silica gel clean-up.

TPH as gasoline analyzed in accordance with EPA Methods 8015M.

Values reported above the laboratory reporting limit are indicated in bold text.

 $^{^1}$ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² Composite sample from B-FP1, B-FP2, and B-FP4 collected at 7.0-7.5 feet below ground surface.

³ Composite sample from B-FP5, B-FP6, and B-FP7 collected at 7.0-7.5 feet below ground surface.

Table 10: Volatile Organic Compounds in Groundwater, 781-785 Seventh Street, Oakland, California (µg/L)

Sample Location		Acetone	m,p-Xylenes	o-Xylene	MTBE	Carbon Disulfide	2-Chlorotoluene	Chloroform	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethen	1,1,1-Trichloroethane	Trichloroethene
Residential/Comm	nercial ESLs 1	1,500	100	100	1,800	NE	NE	330	25	590	590	62	360
Phase I	02/05/02	<20	-5	-7	-5	-75	-5		-7	-5	-7		21
B-FP04	02/05/03	<20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	21
B-FP05	02/05/03	<20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	42
MW-FP1	02/12/03	<20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
MW-FP2	02/12/03	<20	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Phase II B-FP07A	11/29/05	<10	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5
B-FP0/A B-FP09	11/29/03	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	<0.5
B-FP10	11/22/03	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.1	<0.5	<0.5	9.8	8.9
B-FP11	11/28/05	<10	<0.5	<0.5	7.7	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	1.2	1.2
B-FP13	11/28/05	13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	11	0.9	<0.5	13
B-FP14	11/29/05	<400	<20	<20	<20	<20	<20	<20	<20	2,200	58	<20	1,000
B-FP16	11/29/05	<10	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	8
B-FP17	11/28/05	<10	<0.5	<0.5	1.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SS-FP09	11/29/05	<10	<0.5	1.0	<0.5	<0.5	4.1	<0.5	<0.5	1.7	<0.5	<0.5	3.6
MW-FP1	11/28/05	<10	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-FP2	11/28/05	<10	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6
Phase III	22,20,00												
B-FP18	03/31/06	<170	<8.3	<8.3	<8.3	<8.3	<8.3	<8.3	<8.3	1,200	26	<8.3	600
B-FP19	03/30/06	<10	0.6	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1	<0.5	< 0.5	6.4
B-FP20	03/30/06	<400	<20	<20	<20	<20	<20	<20	<20	3,000	31	<20	390
B-FP21	03/31/06	<63	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1	540	6.3	<3.1	57
B-FP22	03/31/06	<630	<31	<31	<31	<31	<31	<31	<31	3,400	88	<31	1,500
B-FP23	03/30/06	<71	<3.6	<3.6	<3.6	<3.6	<3.6	<3.6	5.3	520	11	<3.6	310

Table 10: Volatile Organic Compounds in Groundwater, 781-785 Seventh Street, Oakland, California (µg/L)

Sample Location	Sample Date	Acetone	m,p-Xylenes	o-Xylene	MTBE	Carbon Disulfide	2-Chlorotoluene	Chloroform	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethen	1,1,1-Trichloroethane	Trichloroethene
Residential/Comm	ercial ESLs 1	1,500	100	100	1,800	NE	NE	330	25	590	590	62	360
Phase IV													
MW-FP1	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-FP2	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-FP3	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.9
MW-FP4A	04/15/10	34	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	31	1.9	< 0.5	51
MW-FP4B ²	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	19	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-FP5	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2
MW-FP6	04/15/10	<10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	9.4
MW-FP7B	04/15/10	<10	< 0.5	< 0.5	1.3	< 0.5	< 0.5	7.9	< 0.5	2.3	< 0.5	< 0.5	4.9
MW-3 (Shell)	04/15/10	<10	< 0.5	< 0.5	1.0	0.6	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-9 (Shell)	04/15/10	<10	< 0.5	< 0.5	1.3	< 0.5	< 0.5	< 0.5	< 0.5	48	0.9	< 0.5	27

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

MTBE = methyl tertiary-butyl ether

NE = not established

Shell =groundwater monitoring wells from Shell Service Station at 610 Market Street

 μ g/L = microgram per liter

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Method 8260B.

Laboratory reports for Phase II and III investigations are included in Appendix D.

Only those analytes reported above the laboratory reporting limit in at least one sample are shown.

Sample locations shown on Figure 2.

Values reported above the laboratory reporting limit are indicated in bold text.

Yellow shaded values exceed the ESL.

¹ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² The groundwater sample for volatile organic analysis from MW-FB4B reportedly contains more than one milliliter of headspace, and therefore, may be biased low.

Table 11: Dissolved Metals in Groundwater, 781-785 Seventh Street, Oakland, California (µg/L)

Sample Location	Sample Date	Antimony, Dissolved	Arsenic, Dissolved	Barium, Dissolved	Beryllium, Dissolved	Cadmium, Dissolved	Chromium VI, Dissolved	Chromium, Dissolved	Cobalt, Dissolved	Copper, Dissolved	Lead, Dissolved	Mercury, Dissolved	Molybdenum, Dissolved	Nickel, Dissolved	Selenium, Dissolved	Silver, Dissolved	Thallium, Dissolved	Vanadium, Dissolved	Zinc, Dissolved
Residential/Commer	rcial ESLs 1	30	36	1,000	0.53	0.25	11	180	3.0	3.1	2.5	0.025	240	8.2	5.0	0.19	4.0	19	81
Phase I																			
B-FP04	02/05/03	<60	<5	110	<2	<5	<10	<10	<20	<10	<3	< 0.2	<20	32	<5	<5	<5	<10	< 20
B-FP05	02/05/03	<60	<5	62	<2	<5	10	17	< 20	<10	<3	< 0.2	< 20	96	11	<5	<5	<10	< 20
MW-FP1	02/12/03	<60	<5	67	<2	<5	<10	<10	<20	<10	<3	< 0.2	<20	24	<5	<5	<5	<10	<20
MW-FP2	02/12/03	<60	<5	74	<2	<5	70	61	< 20	<10	<3	< 0.2	< 20	<20	<5	<5	<5	<10	< 20
Phase III																			
B-FP23	03/31/06	< 600	<5	<10	<2	<5	360,000	1,300,000	300	<10	120	0.25	160	1,000	< 50	18	250	160	< 200
FP-GRAB GW ²	06/04/07	180	13	15	<2	<5	100,000	93,000	37	15	<3	< 0.2	23	270	<10	<5	16	25	<20
Phase IV																			
MW-FP1	04/15/10	<10	< 5.0	41	< 2.0	< 5.0	20	13	< 5.0	< 5.0	< 5.0	< 0.20	< 5.0	16	<10	< 5.0	<10	< 5.0	< 2.0
MW-FP2	04/15/10	<10	< 5.0	61	< 2.0	< 5.0	30	22	< 5.0	< 5.0	< 5.0	< 0.20	< 5.0	< 5.0	<10	< 5.0	<10	< 5.0	< 2.0
MW-FP3	04/15/10	<10	< 5.0	49	< 2.0	< 5.0	180	150	< 5.0	< 5.0	< 5.0	< 0.20	< 5.0	25	<10	< 5.0	<10	< 5.0	71
MW-FP4A	04/15/10	<10	< 5.0	< 5.0	< 2.0	< 5.0	460,000	400,000	180	37	< 5.0	< 0.20	68	930	<10	< 5.0	110	< 5.0	61
MW-FP4B	04/15/10	<10	< 5.0	41	< 2.0	< 5.0	30	43	< 5.0	< 5.0	< 5.0	< 0.20	< 5.0	< 5.0	<10	< 5.0	<10	20	30
MW-FP5	04/15/10	<10	< 5.0	51	< 2.0	< 5.0	14,000	11,000	5.6	< 5.0	< 5.0	< 0.20	16	9.9	<10	< 5.0	<10	< 5.0	25
MW-FP6	04/15/10	<10	< 5.0	40	< 2.0	< 5.0	15,000	11,000	6.1	6.5	< 5.0	< 0.20	< 5.0	26	<10	< 5.0	<100	< 5.0	33
MW-FP7B	04/15/10	<10	< 5.0	34	< 2.0	< 5.0	1,200	1,200	< 5.0	< 5.0	< 5.0	< 0.20	< 5.0	< 5.0	<10	< 5.0	<10	< 5.0	< 2.0
MW-3 (Shell)	04/15/10	<10	< 5.0	190	< 2.0	< 5.0	<10	< 5.0	< 5.0	< 5.0	< 5.0	< 0.20	< 5.0	< 5.0	<10	< 5.0	<10	< 5.0	20
MW-9 (Shell)	04/15/10	<10	< 5.0	64	<2.0	< 5.0	5,700	4,900	< 5.0	5.8	< 5.0	< 0.20	< 5.0	19	<10	< 5.0	<10	< 5.0	26

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

Shell = groundwater monitoring wells from Shell Service Station at 610 Market Street.

 $\mu g/L = micrograms per liter$

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 6010B/7400/7196A.

Sample locations shown on Figure 2.

Values reported above the laboratory reporting limit are indicated in bold text.

Yellow shaded values exceed the ESL.

¹ Table B, Environmental Screening Levels, Shallow Soils, ξ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

² Grab goundwater sample collected underneath former Frog Pond, adjacent to concrete column.

Table 12: Polychlorinated Biphenyls in Groundwater , 781-785 Seventh Street, Oakland, California (µg/L)

Sample Location	Sample Date	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Aroclor-1262
Residential/Com	mercial ESLs 1	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
Phase I									
B-FP04	02/05/03	<1	<1	<1	<1	<1	<1	<1	<1
B-FP05	02/05/03	<1	<1	<1	<1	<1	<1	<1	<1
MW-FP1	02/12/03	< 0.47	< 0.94	< 0.47	< 0.47	< 0.47	< 0.47	< 0.47	
MW-FP2	02/12/03	< 0.49	< 0.97	< 0.49	< 0.49	< 0.49	< 0.49	< 0.49	

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

 μ g/L = micrograms per liter

<x.x = compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 8082.

Sample locations shown on Figure 2.

¹ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

Table 13: Polynuclear Aromatic Hydrocarbons in Groundwater, 781-785 Seventh Street, Oakland, California (µg/L)

Sample Location	Sample Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
Residential/Com	mercial ESLs 1	23	30	0.73	0.027	0.014	0.029	0.10	0.40	0.35	0.25	8.0	3.9	0.048	24	4.6	2.0
Phase I																	
B-FP04	02/05/03	<1	<1	<1	<1	< 0.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
B-FP05	02/05/03	<1	<1	<1	<1	< 0.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW-FP1	02/12/03	< 0.94	<1.9	< 0.09	< 0.09	< 0.09	< 0.19	< 0.19	< 0.09	< 0.09	< 0.19	< 0.19	< 0.19	< 0.09	< 0.94	< 0.09	< 0.09
MW-FP2	02/12/03	< 0.94	<1.9	< 0.09	< 0.09	< 0.09	< 0.19	< 0.19	< 0.09	< 0.09	< 0.19	< 0.19	< 0.19	< 0.09	< 0.94	< 0.09	< 0.09
Phase II																	
B-FP07A	11/29/05	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-FP1	11/28/05	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
MW-FP2	11/28/05	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

 $\mu g/L = micrograms \ per \ liter$

 $\langle x.x =$ compound not identified above laboratory reporting limit of x.x

Analyzed in accordance with EPA Methods 8310 or 8270C-SIM.

Sample locations shown on Figure 2.

¹ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

Table 14: Cyanide and pH in Groundwater, 781-785 Seventh Street, Oakland, California

Sample Location	Sample Date	Total Cyanide (µg/L)	pН
Residential/Commer	cial ESLs 1	1.0	
Phase I			
B-FP04	02/05/03	<10	
B-FP05	02/05/03	<10	
MW-FP1	02/12/03	<10	
MW-FP2	02/12/03	<10	
Phase III			
B-FP23	03/31/06		10.1

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

 μ g/L = micrograms per liter

<x.x = compound not identified above laboratory reporting limit of x.x

Cyanide analyzed in accordance with EPA Methods 335.2.

pH analyzed in accordance with EPA Methods 9045C.

Sample locations shown on Figure 2.

 $^{^1}$ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

Table 15: Petroleum Hydrocarbons in Groundwater, 781-785 Seventh Street, Oakland, California (µg/L)

Sample Location	Sample Date	TPH as diesel	TPH as gasoline
Residential/Com	mercial ESLs 1	210	210
Phase I			
B-FP03	02/04/03	< 50	150
B-FP04	02/05/03	< 50	< 50
B-FP05	02/05/03	< 50	<50
MW-FP1	02/12/03	260	< 50
MW-FP2	02/12/03	110	< 50
Phase II			
B-FP07A	11/29/05	< 50	< 50
MW-FP1	11/28/05	< 50	< 50
MW-FP2	11/28/05	< 50	< 50

ESLs = Environmental Screening Levels; Source: RWQCB, 2007, Revised May 2008.

TPH = total petroluem hydrocarbons

 $\mu g/L = micrograms per liter$

<x.x = compound not identified above laboratory reporting limit of x.x

Sample locations are shown on Figure 2.

TPH as diesel analyzed in accordance with EPA Methods 8015M with silica gel clean-up.

TPH as gasoline analyzed in accordance with EPA Methods 8015M.

 $\label{lem:Values reported above the laboratory reporting limit are indicated in bold text.$

Yellow shaded values exceed the ESL.

¹ Table B, Environmental Screening Levels, Shallow Soils, (≤ 3 m bgs), Groundwater is not a Current or Potential Source of Drinking Water.

Table 16: Geotechnical Parameters, 781-785 Seventh Street, Oakland, California

SampleID	Sample Depth (ft bgs)	Soil Type	Average permeabiliy (cm/sec)	Total porosity	Effective porosity	Density (pcf)	Total Organic Carbon (mg/kg)
		Grayish brown clayey					
MW-FP4B	26.0-26.5	sand	3E-07	38.4%	0.7%	105.8	NA
		Dark yellowish brown					
MW-FP4A	20.0-20.5	sand, some silt	NA	NA	NA	NA	< 0.01%

cm/sec = centimeters per second

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

NA = not analyzed

pcf = pounds per cubic foot

Hydraulic conductivity test performed in accordance with ASTM D5084.

Sample location shown on Figure 2.

Soil sample collected on 03/02/10.

Specific gravity test performed in accordance with ASTM D854m.

Total and effective porosity test performed in accordance with API RP40 and ASTM D6836m.

Total organic carbon analyzed in accordance with the Walkley-Black Method.

APPENDIX A ALAMEDA COUNTY BORING PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 02/23/2010 By jamesy Permit Numbers: W2010-0096 to W2010-0101 Permits Valid from 04/12/2010 to 04/16/2010

Application Id: 1266604422199 City of Project Site:Oakland

Site Location: 751-785 Seventh Street

Oakland CA

Project Start Date: 03/02/2010 Completion Date:03/06/2010

Assigned Inspector: Contact Vicky Hamlin at (510) 670-5443 or vickyh@acpwa.org

Extension Start Date: 04/12/2010 Extension Count: 1 Extension End Date: 04/16/2010 Extended By: vickyh1

Applicant: BASELINE - William Scott Phone: 510-420-8686 x190

5900 Hollis St. Suite D, Emeryville, CA 94608

Property Owner: Phone: 510-000-

Property Owner: Brush Street Group LLC Phone: 510-000-0000 1153 3rd Street Suite 230, Oakland, CA 94607

Client: BASELINE Environmental Phone: 510-420-8686 x190 5900 Hollis St. Suite D, Emeryville, CA 94608

Contact: William Scott Phone: 510-420-8686 x190

Cell: 510-612-7153

Total Due: \$2382.00

Receipt Number: WR2010-0046 Total Amount Paid: \$2382.00

Payer Name : william scott Paid By: MC PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 6 Wells

Driller: Gregg Drilling - Lic #: 485165 - Method: hstem Work Total: \$2382.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2010- 0096	02/23/2010	05/31/2010	MW-FP3	8.00 in.	2.00 in.	10.00 ft	25.00 ft
W2010- 0097	02/23/2010	05/31/2010	MW-FP4A	8.00 in.	2.00 in.	10.00 ft	25.00 ft
W2010- 0098	02/23/2010	05/31/2010	MW-FP4B	8.00 in.	2.00 in.	32.00 ft	50.00 ft
W2010- 0099	02/23/2010	05/31/2010	MW-FP5	8.00 in.	2.00 in.	10.00 ft	25.00 ft
W2010- 0100	02/23/2010	05/31/2010	MW-FP6	8.00 in.	2.00 in.	10.00 ft	25.00 ft
W2010- 0101	02/23/2010	05/31/2010	MW-FP7B	8.00 in.	2.00 in.	32.00 ft	50.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or

Alameda County Public Works Agency - Water Resources Well Permit

waterways or be allowed to move off the property where work is being completed.

- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.
- 5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

APPENDIX B BORING LOGS

SAMPLE BORING LOG (Page 1 of 1) : Company X :B1 Location Boring no. 5900 Hollis Street, Suite D Driller : ABC Drilling Project no. : 00000 Emeryville, California 94608 (510) 420-8686 voice : 2/18/99 Method : Hollow Stem Date (510) 420-1707 fax : WKS Casing size : 2-inch Logger Datum (feet) Bore size : 7 3/4 inch : 0.0 Feet below ground surface Levels SRAPHIC Depth PID in Feet **DESCRIPTION** REMARKS (ppm) Air monitoring measurement Graphic representation of lithologic unit from PID meter in the breathing zone, in parts per million Contact between lithologic units 0 ppm PID in BZ Very light gray, clayey SAND with silt, loose, very 0% LEL at GS moist, (Native) 3-4-8 Lithological Description Sample retained for laboratory analysis Blow per 6-inches of a 140 lbs hammer falling Sample for visual identification 30-inches driving California Modified Sampler. Unified Soil Classification or distinguishing unit Air monitoring measurement from the 4-gas meter on the ground surface directly adjacent and downwind of hole. Readings in percent Lower Explosion Limit. Approximate contact between lithologic units Water level measurement in boring after completion 5 Water level encountered during drilling ACONNIERCIMTECH5/BASELOGS/99388/GENERICL BOR 6 Photoionization detection reading of sample (part per million) 6-7-7 (SPT) 986 Blow per 6-inch of a 140 lbs hammer falling 30-inches driving Split Spoon Sampler for a Standard Penetrometer Test 8 9 Total depth drilled by auger 10-28-1999 Total depth explored TBD/TD 🚣

d:/admin/sample.cdr 9/9/09

UNIFIED SOILS CLASSIFICATION

F	PRIMARY DIVISIONS		GROUP SYMBOL	SECONDARY DIVISIONS
AL	GRAVELS	CLEAN GRAVELS	GW	Well graded gravels, gravel-sand mixtures, little or no fines.
COARSE GRAINED SOILS ORE THAN HALF OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	MORE THAN HALF OF COARSE FRACTION IS	(LESS THAN 5% FINES)	GP	Poorly graded gravels or gravel-sand mixtures, little or no fines.
INED FOF I	LARGER THAN NO. 4 SIEVE	GRAVEL	GM	Silty gravels, gravel-sand-silt mixtures, non-plastic fines.
COARSE GRAIN MORE THAN HALF IS LARGER THA SIEVE S		WITH FINES	GC	Clayey gravels, gravel-sand-clay mixtures, plastic fines.
RSE (THAN ARGE	SANDS	CLEAN SANDS	sw	Well graded sands, gravelly sands, little or no fines.
SOAF ORE 1 IS L	MORE THAN HALF OF COARSE	(LESS THAN 5% FINES)	SP	Poorly graded sands or gravelly sands, little or no fines.
MC	FRACTION IS SMALLER THAN	SANDS	SM	Silty sands, sand-silt mixtures, non-plastic fines.
	NO. 4 SIEVE	WITH FINES	sc	Clayey sands, sand-clay mixtures, plastic fines.
OF LER SIZE	SILTS AN LIQUID I		ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.
ED SOILS I HALF OF SMALLER SIEVE SIZE	LESS TH	IAN 50%	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.
AAIN THAN AL IS			OL	Organic silts and organic silty clays of low plasticity.
FINE GRAINED SOILS MORE THAN HALF OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZ	SILTS AN LIQUID L		МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
4 2 L	GREATER	THAN 50%	СН	Inorganic clays of high plasticity, fat clays.
			ОН	Organic clays of medium to high plasticity, organic silts.
HIG	HLY ORGANIC SOIL	S	Pt	Peat and other highly organic soils.

DEFINITION OF TERMS

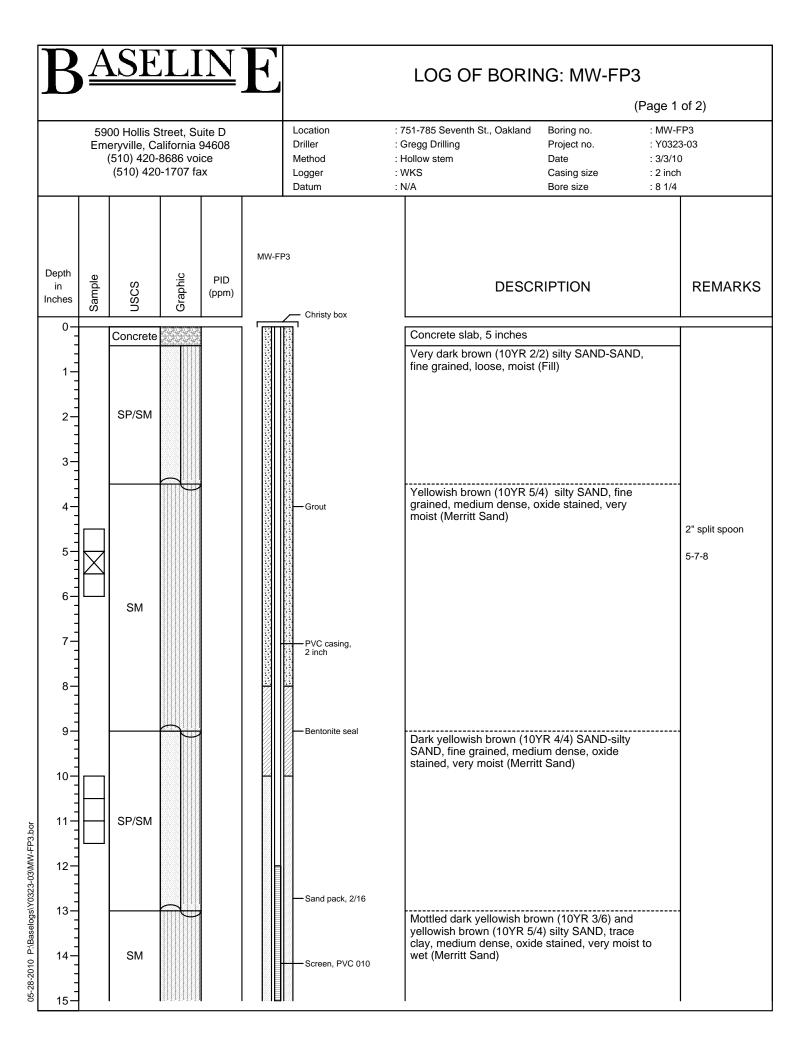
U.S. STANDARD SERIES SIEVE

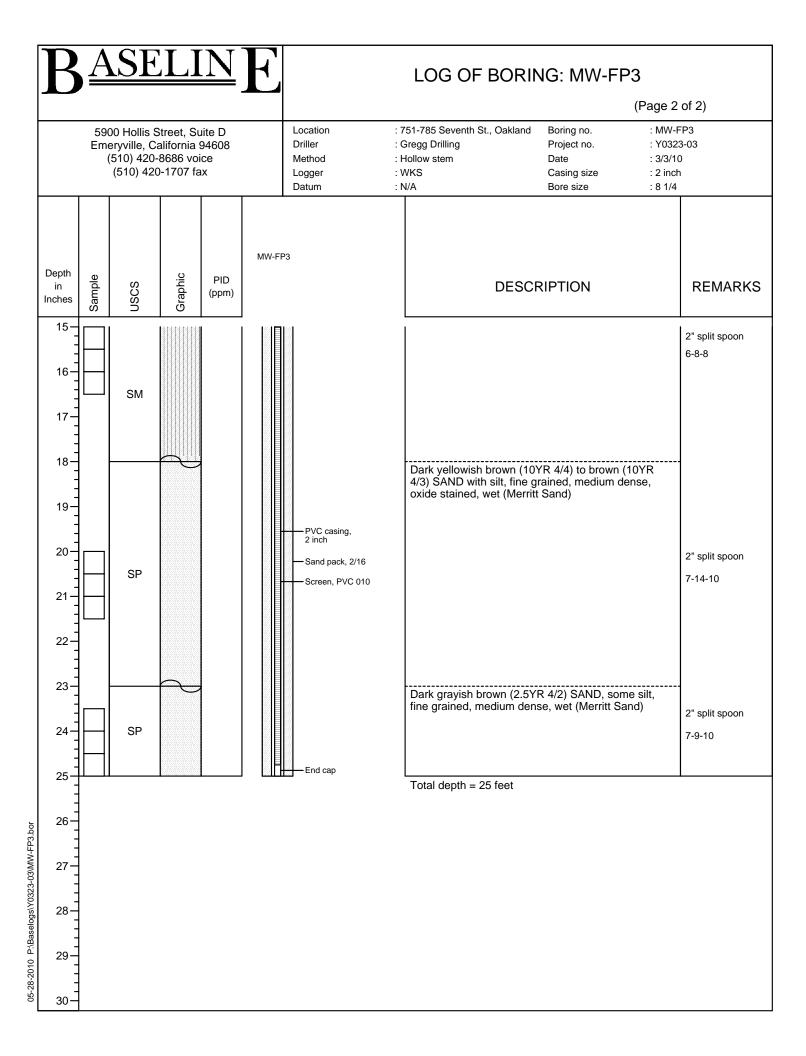
CLEAR SQUARE SIEVE OPENINGS

2	00 4	0 10) 4	3/	/4" 3	3" 1:	2"
		SAND		GRA	VEL		
SILTS AND CLAYS	FINE	MEDIUM	COARSE	FINE	COARSE	COBBLES	BOULDERS

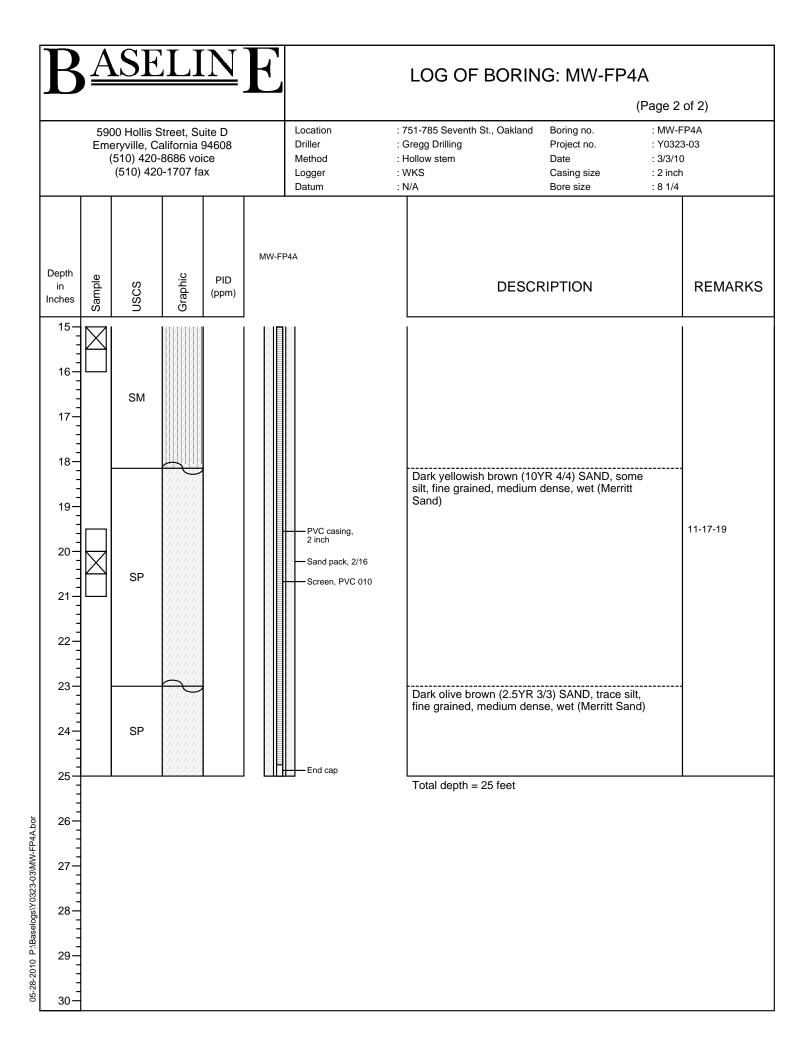
GRAIN SIZES

SANDS AND GRAVELS	BLOWS/FOOT†
VERY LOOSE	0 - 4
LOOSE	4 - 10
MEDIUM DENSE	10 - 30
DENSE	30 - 50
VERY DENSE	OVER 50


SILTS AND CLAYS	STRENGTH [‡]	BLOWS/FOOT [†]
VERY SOFT SOFT FIRM STIFF VERY STIFF HARD	0 - 1/4 1/4 - 1/2 1/2 - 1 1 - 2 2 - 4 OVER 4	0 - 2 2 - 4 4 - 8 8 - 16 16 - 32 OVER 32

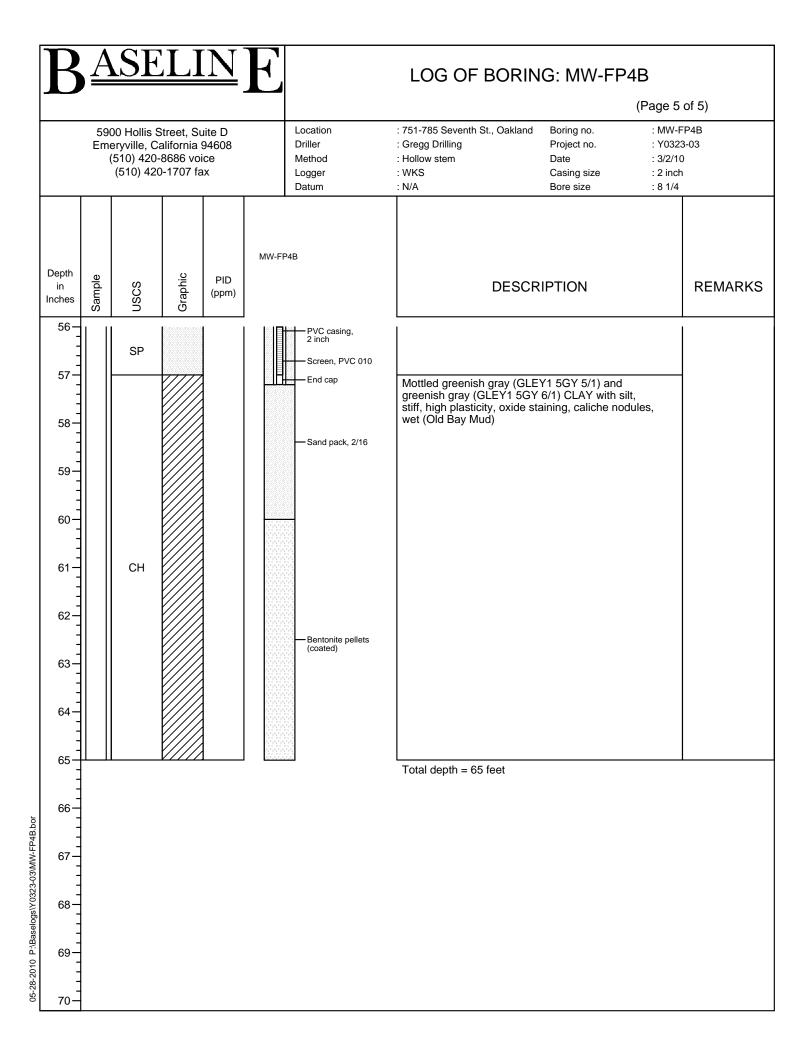

RELATIVE DENSITY

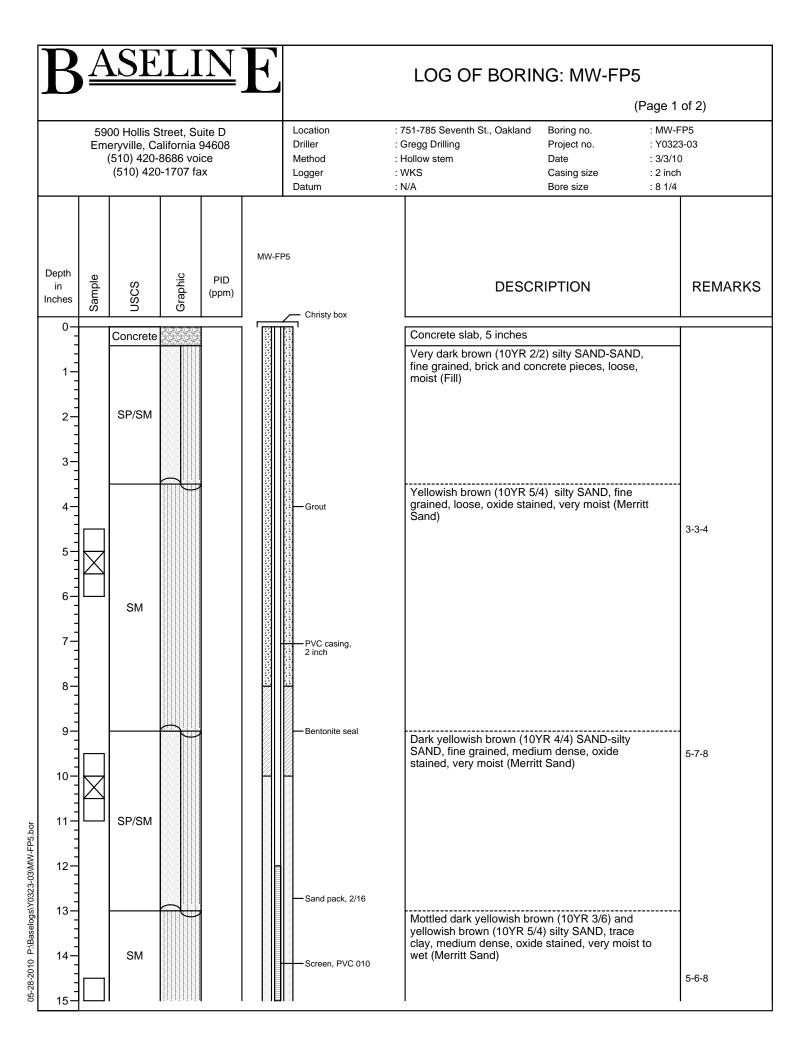
CONSISTENCY

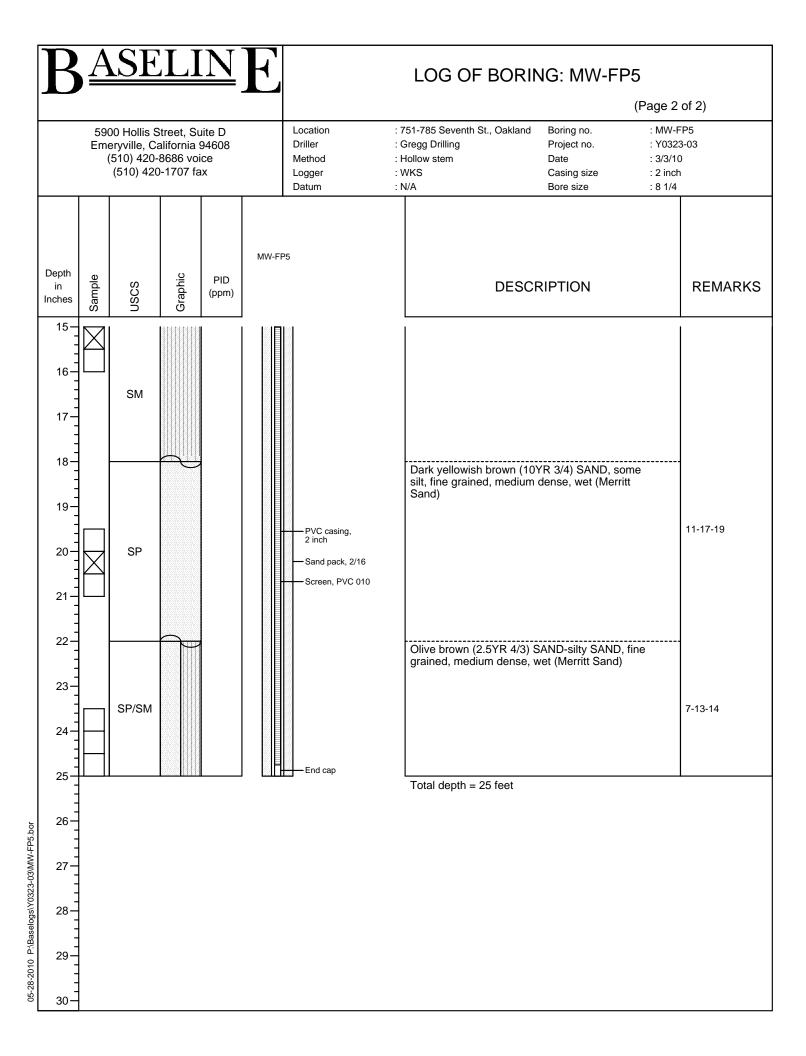

[†] Number of blows of 140-pound hammer falling 30 inches to drive a 2-inch O.D. (1-3/8 inch I.D.) split spoon (ASTM D-1586).

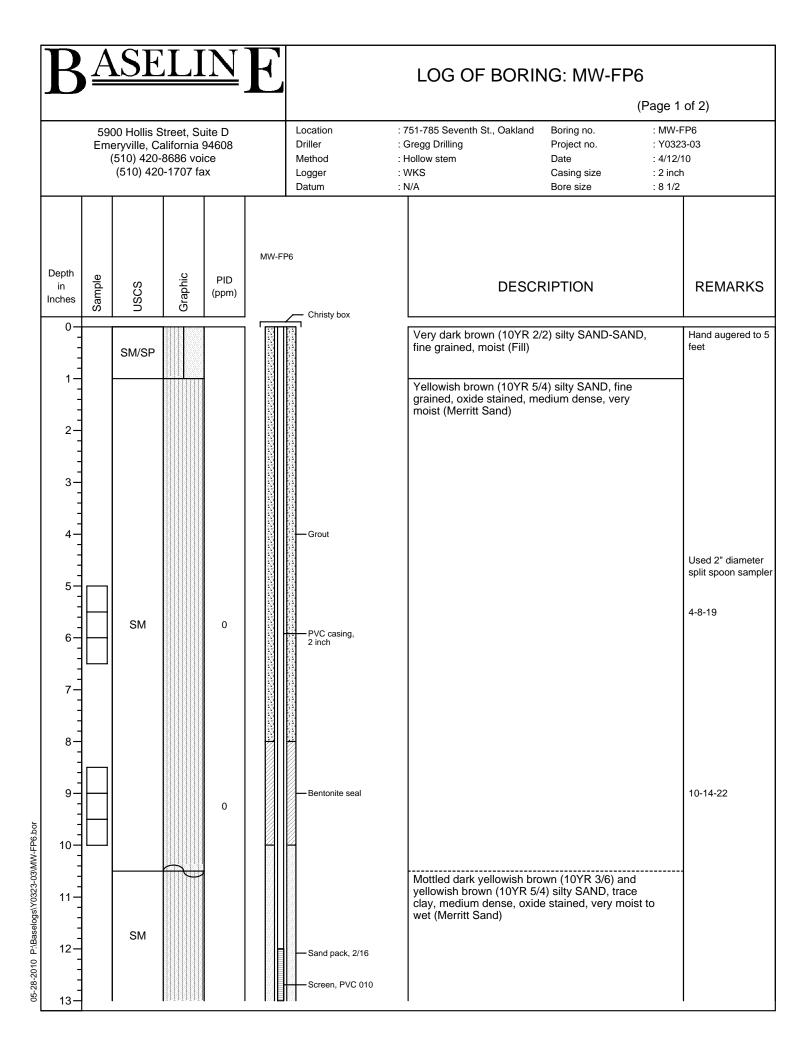
[‡] Unconfined compressive strength in tons/square foot as determined by laboratory testing or approximated by the standard penetration test (ASTM D-1586), pocket penetrometer, torvane, or visual observation.

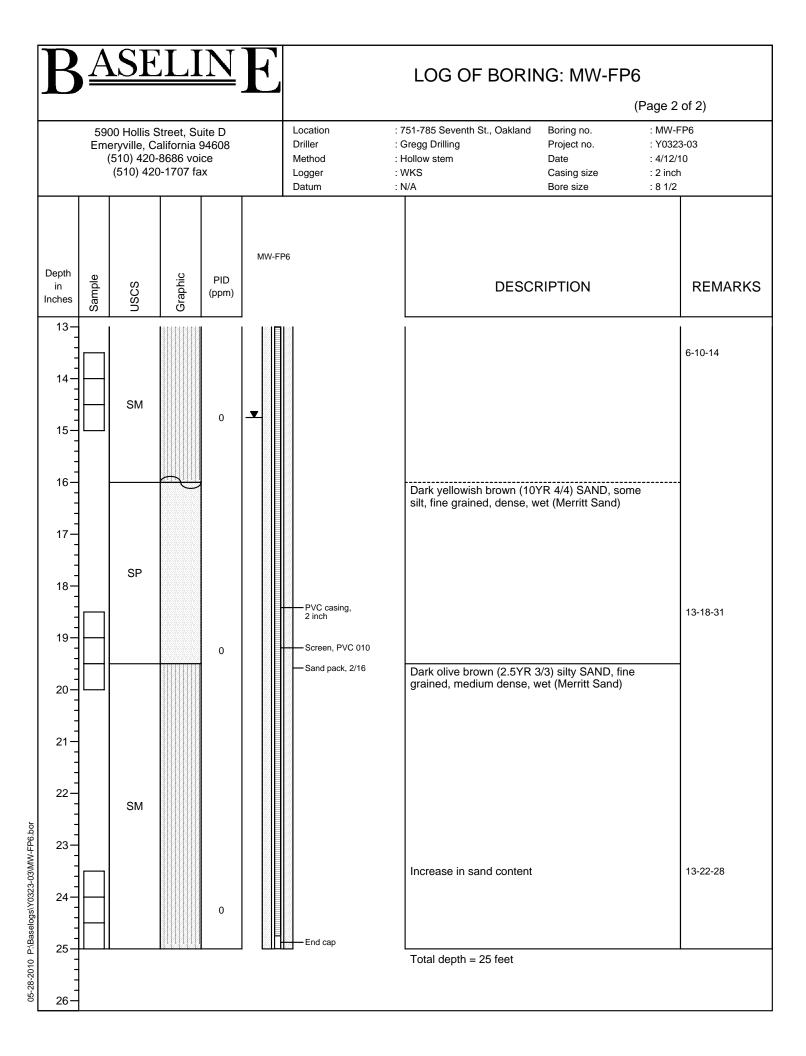
B	A	SE	LI	N.	E	LOG OF BORING: MW-FP4A					
								(Page	e 1 of 2)		
	Em	00 Hollis S eryville, Ca (510) 420- (510) 420	alifornia ·8686 vo	94608 ice		Location: 751-785 Seventh St., OaklandBoring no.: MW-FP4ADriller: Gregg DrillingProject no.: Y0323-03Method: Hollow stemDate: 3/3/10Logger: WKSCasing size: 2 inchDatum: N/ABore size: 8 1/4					
Depth in Inches	Sample	nscs	Graphic	PID (ppm)	MW-FI	P4A Christy box	DESCF	RIPTION	REMARKS		
2-		Concrete SM/SP					Concrete slab, 5 inches Very dark brown (10YR 2/ fine grained, brick pieces,	(2) silty SAND-SAND, loose, moist (Fill)			
5- 6- 7-		SM				PVC casing, 2 inch	Yellowish brown (10YR 5/ grained, loose, oxide stain Sand)	4) silty SAND, fine ned, very moist (Merritt	2" split spoon 7-11-17		
3-03/WW-FP4A.bor 11- 12-		SP/SM				— Bentonite seal	Dark yellowish brown (10\ SAND, fine grained, medion stained, very moist (Merrit	um dense, oxide	7-9-13		
05-28-2010 P.\Baselogs\Y0323-03\MW-FP4A.bor 12- 12- 13-		SM				Sand pack, 2/16	Mottled dark yellowish bro yellowish brown (10YR 5/- clay, medium dense, oxide wet (Merritt Sand)	4) silty SAND, trace	5-5-8		

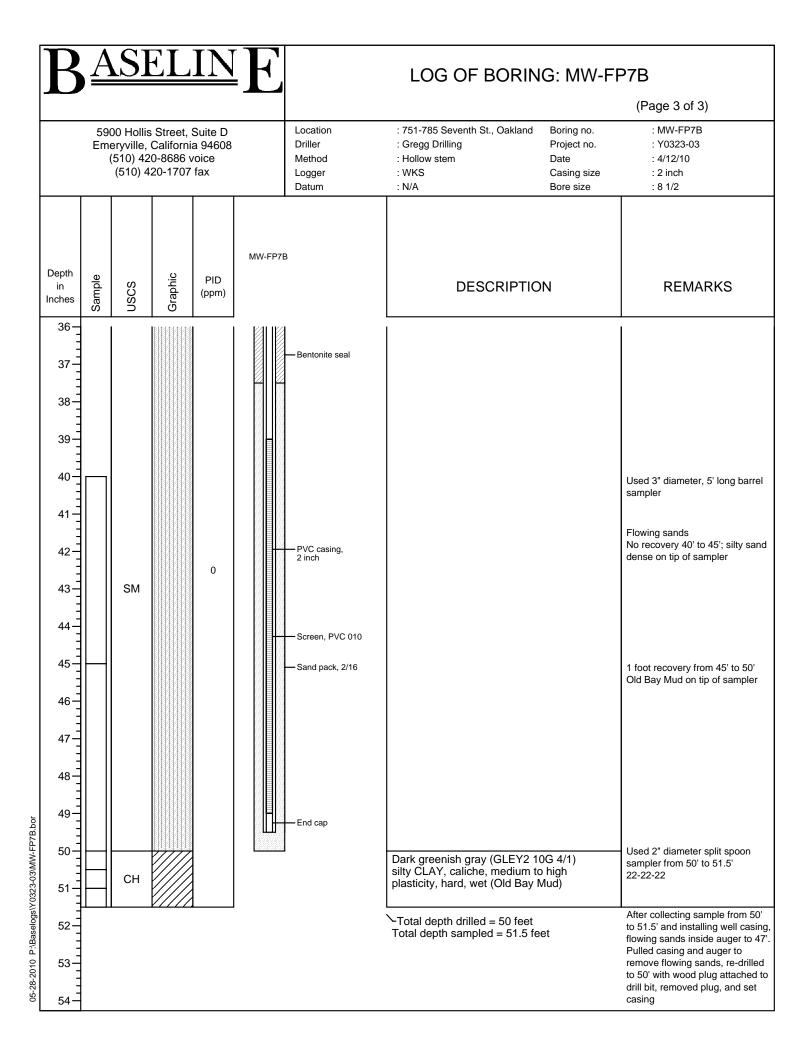



P		SF	LI	N	E		LOG OF BORIN	G: MW-FP4B		
								(Page	1 of 5)	
	Em	00 Hollis S eryville, Ca (510) 420- (510) 420	alifornia 9 8686 voi	94608 ce		Location Driller Method Logger Datum	: 751-785 Seventh St., Oakland Boring no. : MW-FP4B : Gregg Drilling Project no. : Y0323-03 : Hollow stem Date : 3/2/10 : WKS Casing size : 2 inch : N/A Bore size : 8 1/4			
Depth in Inches	l du	nscs	Graphic	PID (ppm)	MW-F	P4B Christy box	DESCR	IPTION	REMARKS	
1		Concrete					Concrete slab, 5 inches Very dark brown (10YR 2/2) grained, brick pieces at 2.0	silty SAND-SAND, fine feet, loose, moist (Fill)		
3		SM/SP								
5		SM		0		PVC casing,	Yellowish brown (10YR 5/4) grained, loose, oxide stained Sand)	silty SAND, fine d, very moist (Merritt	2" split spoon 2-2-3	
8	-	SIVI				2 inch Grout				
105-28-2010 P:\Baselogs\X0323-03\MW-FP4B.bor		SP/SM		0			Dark yellowish brown (10YF fine grained, medium dense moist (Merritt Sand)	(4/4) SAND-silty SAND, , oxide staining, very	2" split spoon 8-16-15	
05-28-2010 P:\Basi	1	SM					Mottled dark yellowish brow yellowish brown (10YR 5/4) loose, oxide staining, very m Sand)	silty SAND, trace clay,		


-	B	A	SF	LI	N	E		LOG OF BORIN	G: MW-FP4B		
	5900 Hollis Street, Suite D Emeryville, California 94608 (510) 420-8686 voice (510) 420-1707 fax						Location : 751-785 Seventh St., Oakland Boring no. : MW-FP4B Driller : Gregg Drilling Project no. : Y0323-03 Method : Hollow stem Date : 3/2/10 Logger : WKS Casing size : 2 inch Datum : N/A Bore size : 8 1/4				
	Depth in nches	Sample	nscs	Graphic	PID (ppm)	MW-F	P4B	DESCR	IPTION	REMARKS	
	14— 15— 16— 17— 18— 20— 21—		SM		0	 	PVC casing, 2 inch	Dark yellowish brown (10YR fine grained, dense, wet (Me	R 4/4) SAND, some silt, erritt Sand)	2" split spoon 3-4-6 2" split spoon 16-23-28	
05-28-2010 P:\Baselogs\V0323-03\MW-FP4B.bor	22— 23— 24— 25— 26— 27—		SP					Dark olive brown (2.5YR 3/3 grained, medium dense, trace (Merritt Sand) Some interbedding of clayer	ce oxide staining, wet	2.5" Cal modified split spoon 16-18-20 Switched to 5' core barrel at 26.5'	


P	BA	SF	ELI	N	E		LOG OF BORIN	G: MW-FP4E	3
				•				(F	Page 3 of 5)
	5900 Hollis Street, Suite D Emeryville, California 94608 (510) 420-8686 voice (510) 420-1707 fax					Location Driller Method Logger Datum	: 751-785 Seventh St., Oakland : Gregg Drilling : Hollow stem : WKS : N/A	Boring no. Project no. Date Casing size Bore size	: MW-FP4B : Y0323-03 : 3/2/10 : 2 inch : 8 1/4
Depth in Inches	ğ	nscs	Graphic	PID (ppm)	MW-FI	P4B	DESCR	IPTION	REMARKS
28- 29- 30- 31- 32- 33- 34- 35-		SP				— Grout — PVC casing, 2 inch	Some interbedding of clayers Same as above; layers of modense sand		Used 5' core barrel 4' recovery
38-3010 P\Baselogs\Y0323-03\WW-FP4B.bor 40-		SP				Bentonite seal	Very dark grayish brown to gaine 3/2 - 4/2) SAND, fine graine Sand)	grayish brown (2.5YR d, loose, wet (Merritt	3'3" recovery


$\overline{\mathbf{P}}$	A	SF	LI	N	F		LOG OF BORIN	G: MW-FP4B	
) —						LOC OF BORNIN	(Page 4	of 5)
	5900 Hollis Street, Suite D Emeryville, California 94608 (510) 420-8686 voice (510) 420-1707 fax					Driller Method Logger	: 751-785 Seventh St., Oakland : Gregg Drilling : Hollow stem : WKS : N/A	Boring no. : MW-Project no. : Y032 Date : 3/2/1 Casing size : 2 incl Bore size : 8 1/4	3-03 0 h
Depth in Inches	Sample	USCS	Graphic	PID (ppm)	MW-F	₽ 4B	DESCR	IPTION	REMARKS
42 - 43 - 43 - 44 - 44 - 44 - 44 - 44 -		SP				PVC casing, 2 inch Screen, PVC 010			3'4" recovery Slowing sand becoming problem inside auger Added potable water inside auger to reduce effect 1.5' recovery



\mathbf{B}	A	SI	EL	IN	E		LOG OF BORIN	G: MW-F	P7B
	Eme	eryville, (510) 42	S Street, S California 0-8686 v 20-1707	a 94608 voice		Location Driller Method Logger Datum	: 751-785 Seventh St., Oakland : Gregg Drilling : Hollow stem : WKS : N/A	Boring no. Project no. Date Casing size Bore size	(Page 2 of 3) : MW-FP7B : Y0323-03 : 4/12/10 : 2 inch : 8 1/2
Depth in Inches	Sample	nscs	Graphic	PID (ppm)	MW-FP7I	3	DESCRIPTIO	N	REMARKS
18—19—19—19—19—19—19—19—19—19—19—19—19—19—		SM				— PVC casing, 2 inch — Grout	Dark olive brown (2.5YR 3/3) s fine grained, medium dense, v Sand)	silty SAND, vet (Merritt	0 PID drill cutting 0 PID drill cutting

LOG OF BORING: MW-FP7B (Page 1 of 3) Location : 751-785 Seventh St., Oakland Boring no. : MW-FP7B 5900 Hollis Street, Suite D Emeryville, California 94608 Driller : Gregg Drilling Project no. : Y0323-03 (510) 420-8686 voice Method : Hollow stem Date : 4/12/10 (510) 420-1707 fax Logger : WKS Casing size : 2 inch Datum : N/A Bore size : 8 1/2 MW-FP7B Depth Graphic PID **DESCRIPTION REMARKS** in (ppm) Inches Christy box 0. Hand augered to 5 feet Very dark brown (10YR 2/2) silty SAND-SAND, fine grained, soft, very SM/SP moist (Fill) 1 Yellowish brown (10YR 5/4) silty SAND, 2 fine grained, oxide stained, medium dense, very moist (Merritt Sand) 3. 4 5 6 SM 7 8 PVC casing, 2 inch 9. Grout 10 Mottled dark yellowish brown (10YR 3/6) and yellowish brown (10YR 5/4) silty SAND, trace clay, medium dense, oxide 11 stained, very moist (Merritt Sand) 12-13 SM 14 15-16 Dark yellowish brown (10YR 4/4) SAND, some silt, fine grained, dense, wet (Merritt Sand) 17 SP 18

05-28-2010 P:\Baselogs\Y0323-03\MW-FP7B.bor

APPENDIX C SURVEY DATA

CSS ENVIRONMENTAL SERVICES, INC.

Managing Cost, Scope and Schedule 100 Galli Drive, Suite 1 Novato, CA 94949 Telephone: (415) 883-6203 Facsimile: (415) 883-6204

Site Positions

CSS Project 6633 - Baseline Environmental 751 Brush St, Oakland, CA

Horizontal Coordinate System:

North American 1983-CONUS

Survey Date: 04/15/10

Height System:

North American Vertical Datum 1988-Ortho, Ht. (GEOID03)

Project file:

6626 ERS Fremont.spr

Desired Horizontal Accuracy:

0.250Ft + 1ppm

Desired Vertical Accuracy:

0.100Ft + 2ppm

Confidence Level:

95% Err.

Linear Units of Measure:

Int. Feet

	Site ID	Site Descriptor	 	Position	95% Error	Fix <u>Status</u>
1	0875	MONUMENT HT0875		47.37890" 1 44.87725" ¥ 11.970		Fixed Fixed Fixed
2	3814	MONUMENT AA3814		59.76244" N 18.12186" W 11.600		Fixed Fixed Fixed
.3	MW-FP1	TEM-B ON N RIM	122°	09.02781" 1 55.94308" V 26.00 25.77		
4	MW-FP2	N RIM OF WELL BOX	122°	07.22694" h 53.85962" v 24.14 23.81		
5	MW-FP3	TBM-A ON N RIM	<u>1</u> 22°	08.44796" 1 55.59573" 1 25.95 25.66		
6	MW-FP4A	N RIM OF WELL BOX	122°	08.16163" 1 56.03348" V 25.94 25.64		Sept Of

CSS ENVIRONMENTAL SERVICES, INC.

Managing Cost, Scope and Schedule 100 Galli Drive, Suite 1 Novato, CA 94949 Telephone: (415) 883-6203

Telephone: (415) 883-6203 Facsimile: (415) 883-6204

7	MW-FP4B	N RI	M OF	WELL	BOX			08.10626" 56.06945" 25.94	0.034
				И	TOC	Elv.		25.44	
8	MW-FP5	N RI	M OF	WELL	BOX			07.90853" 55.41758" 25.92	0.033
				И	TOC	Elv.		25.69	
9	MW-FP6	N RI	M OF	WELL	BOX		_	06.92465" 56.23073" 21.56	0.045
				И	TOC	Elv.		21.04	
10	MW-FP7B	N RI	M OF	WELL	BOX			07.05197" 56.82023" 21.10	0.085 0.066
				N	TOC	Elv.		20.51	

NOTE: The elevation of the North Top of Casing of Shell Monitoring Well MW-9 (located near MW-FP7B) was surveyed and found to be 21.03' in the current survey's NAVD88 datum. Its elevation has been reported by others as 18.42' in the NGVD29 datum (from GeoTracker). When comparing groundwater elevations from your Site to the Shell Site wells, add 2.61' to the reported Shell elevations for consistency.

APPENDIX D WELL DEVELOPMENT FORMS

Project No. Y0323-03				_	Recorded by:	wks		Date: 03/09/10
Project Name: Brush Stree	et				De	pth of w	ell from TO	C (feet): 25.05
Location: 751 Sevent	h St., Oakl	and, CA		_		We	ell diameter	(inches): 2
					Screen	ed interv	val from TO	C (feet): 13-25
Weather: Sunny, cold					TOO	Celevation	on, NAVD 8	88 (feet): <u>25.77</u>
Precip in past 5 days (in):	0.2 Oaklan	d North (ONO)		Groundwate	r elevatio	on, NAVD 8	88 (feet): <u>10.96</u>
					level from TO			Time: <u>8:39</u>
Water level instrument:	Dual-phase	e interface prob	e (Solinst)	Product	level from TO	C (feet):	NA	Time: <u>8:39</u>
CALCULATION OF WE	ELL VOLU	JME:						
(25.05 ft	- 14.81 ft)) ######## 2	$x \pi x 7.48 \text{ gal/ft}^3 =$	= 1.7	gallons in on-	e casing	volume	
well depth	- water lev	e x (well radius	$(x)^2 \times \pi \times \text{gal/ft}^3 =$	4.5	total gallons	removed		
CALIBRATION:			7.0			0.00		
	m.	Temp	EC	DO	рН	ORP	Turbidity	
	<u>Time</u>	<u>(°C)</u>	(µmho/cm)	<u>(%)</u>	<u>S.U.</u>	(mV)	<u>NTU</u>	
Calibration Standard:			1,000	100%	4.0/7.0/10.0	244	0/1.0	
Before Purging:	7:30	18.4	1,000	100%	4.0/7.0/10.0	244	0/1.0	
After Purging:		17.4	1,010	100%	4.0/7.0/10.1	237	0/0.95	
FIELD MEASUREMEN	TS:							
		Temp	EC	DO	pН	ORP	Turbidity	Cumulative
	<u>Time</u>	<u>(°C)</u>	(µmho/cm)	(mg/L)	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	Gallons Removed
	8:47	_	ediment from bo			1500	1 7 70	0.5
	8:55	18.64	602	1.23	6.31	158.3	15.50	1.0
	9:10	18.85	617	0.83	6.31	169.1	31.20	2.0
	9:19	18.96	626	0.68	6.32	170.3	9.09	2.5
	9:28	18.85	621	0.7	6.31	166.2	2.44	3.0
	9:37 9:45	18.93 19.02	624 630	0.6 0.63	6.31 6.31	161.2 164.6	2.26 1.6	3.5
	9.43 9:53	19.02	631	0.65	6.31	168.8	0.72	4.0 4.5
	9.55	18.90	031	0.03	0.51	100.0	0.72	4.3
Purge method:		Peristaltic Pu	mp and new dispo	sable pol	y tubing			
Decontamination method:								
Comments:								_

Well No.: MW-FP1

WELL DEVELOPM	ENT FO	RM					Well No.:	MW-FP2
Project No. Y0323-03					Recorded by:	wks		Date: 03/09/10
Project Name: Brush Stree	t			_	De	epth of w	ell from TC	OC (feet): 25.03
Location: 751 Sevent		ınd, CA				We	ell diameter	(inches): 2
	•			_	Screen	ned inter	val from TO	C (feet): 13-25
Weather: Sunny, cold	l				TOO	C elevation	on, NAVD 8	38 (feet): 23.81
Precip in past 5 days (in):	0.2 Oakland	l North (ONO)		Groundwate	r elevati	on, NAVD 8	88 (feet): 10.61
•				Water	level from TO	C (feet):	13.20	Time: 7:20
Water level instrument:	Dual-phase	interface prob	e (Solinst)	Product	level from TO	C (feet):	None	Time: 7:20
CALCULATION OF WE	LL VOLU	ME:						
(25.03 ft	- 13 20 ft)	########	$x \pi x 7.48 \text{ gal/ft}^3 =$	= 1.9	gallons in on	e casing	volume	
			$(x)^2 \times \pi \times \text{gal/ft}^3 =$	5.0	total gallons	_		
won doptii	., 4101 10 10	(0.11 144141.	, an a guilt	2.0	_ total Surions	. 51110 7 00		
CALIBRATION:								
		Temp	EC	DO	pН	ORP	Turbidity	
	<u>Time</u>	<u>(°C)</u>	(µmho/cm)	<u>(%)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	
Calibration Standard:			1,000	100%	4.0/7.0/10.0	244	0/1.0	
Before Purging:	7:30	18.4	1,000	100%	4.0/7.0/10.0	244	0/1.0	
After Purging:		17.4	1,010	100%	4.0/7.0/10.1	237	0/0.95	
FIELD MEASUREMEN	ΓS:							
		Temp	EC	DO	pН	ORP	Turbidity	Cumulative
	<u>Time</u>	<u>(°C)</u>	(µmho/cm)	(mg/L)	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	Gallons Removed
	7:36	_	ediment from b					0.5
	7:40	18.48	526	1.86	6.57	92.0	16.70	1.0
	7:48	18.49	494	1.49	6.60	108.5	7.58	2.0
	7:56	18.53	496	1.38	6.60	120.8	2.58	3.0
	8:04	18.60	495	1.42	6.60	128.9	1.23	4.0
	8:12	18.55	494	1.44	6.60	132.5	0.70	5.0
D 4 1		B 14 12 5	,		. 1:			
Purge method:		Peristaltic Pu	mp and new disp	osable pol	y tubing			
Decontamination method:								
Comments: Replaced	padlock to	well cap.						

WELL DEVELOPIN		/1 / 1 / 1 / 1					Well NO	IVIVV-I F3
Project No. Y0323-03					Recorded by:			Date: 03/09/10
Project Name: Brush Stre	et			_	De	epth of w	ell from TC	OC (feet): 25.08
Location: 751 Seven	th St., Oakl	and, CA		_		-	ell diameter	
				_	Screen	ned inter	val from TO	C (feet): 12-25
Weather: Sunny					TOO	C elevati	on, NAVD 8	88 (feet): 25.66
Precip in past 5 days (in):	0.2 Oaklar	d North (ONC	0)		Groundwate	r elevati	on, NAVD 8	88 (feet): 10.78
• • • • • • • • • •		•	<u>, </u>	Water	level from TO	C (feet):	14.88	Time: 10:15
Water level instrument:	Dual-phase	e interface prol	be (Solinst)	Product	level from TO	C (feet):	None	Time: 10:15
CALCULATION OF WI	ELL VOLU	JME:						
(25.08 ft	- 14.88 ft) #########	$x \pi x 7.48 \text{ gal/ft}^3 =$	= 1.7	_gallons in on	e casing	volume	
well depth	- water lev	e x (well radiu	$s)^2 \times \pi \times gal/ft^3 =$	9.0	total gallons	removed	l	
CALIBRATION:								
CALIBRATION.		Temp	EC	DO	рН	ORP	Turbidity	
	<u>Time</u>	(°C)	EC (μmho/cm)	(%)	рн <u>S.U.</u>	(mV)	NTU	
Calibration Standard:	<u> </u>	<u>(C)</u> 	1,000	100%	4.0/7.0/10.0	244	0/1.0	
Before Purging:	7:30	18.4	1,000	100%	4.0/7.0/10.0	244	0/1.0	
			· ·					
After Purging:		17.4	1,010	100%	4.0/7.0/10.1	237	0/0.95	
FIELD MEASUREMEN	TS:							
		Temp	EC	DO	pН	ORP	Turbidity	Cumulative
	<u>Time</u>	<u>(°C)</u>	(µmho/cm)	(mg/L)		<u>(mV)</u>	<u>NTU</u>	Gallons Removed
	10:17	_	sediment from be	ottom of	well.		VT	0.5
	10:23	Surge block					ST	1.0
	10:39						VST	4.0
	10:40	Slow pump	ing rate					
	11:00	0.80	1700	2.69	6.91	197.5	65.8	5.0
	11:18	0.79	1570	0.47	6.57	200.1	43.7	6.0
*	11:35	18.78	1337	0.80	6.56	201.1	68.7	7.0
	11:52	19.13	1287	0.60	6.60	204.0	18.1	8.0
	12:12	19.04	1340	0.72	6.64	205.0	6.26	9.0
	VT - vom	o tubid						
	VT = very ST = very							
			hid					
	vsi = ve	ry slightly tu	viu					
Democratical		Desire to D	t	1.1	41-1			
Purge method:		Peristaltic Pu	ımp and new dispo	osable pol	y tubing			
Decontamination method:								
Comments: * Moved	l pump inta	ke from botton	n to mid screen.					

Well No.: MW-FP3

Project No. Y0323-03					Recorded by:	wks		Date: 03/09/10
Project Name: Brush Stree	et			_	De	pth of w	ell from TC	OC (feet): 25.07
Location: 751 Sevent	h St., Oakla	and, CA		- -		-	ell diameter	· · ·
					Screen	ed inter	val from TC	OC (feet): 12-25
Weather: Sunny					TOO	elevati	on, NAVD 8	88 (feet): <u>25.64</u>
Precip in past 5 days (in):	0.2 Oaklan	d North (ONO)						88 (feet): 10.66
					level from TO	Time: 12:01		
Water level instrument:	Dual-phase	interface probe	(Solinst)	Product	level from TO	C (feet):	None	Time: 12:01
CALCULATION OF WE	ELL VOLU	ME:						
(25.07 ft	- 14.98 ft)	####### x	$\pi \times 7.48 \text{ gal/ft}^3 =$	= 1.6	gallons in one	e casing	volume	
		ex (well radius)		7.5	total gallons	removed	[
CALIBRATION:								
		Temp	EC	DO	рН	ORP	Turbidity	
	<u>Time</u>	(°C)	(µmho/cm)	<u>(%)</u>	<u>S.U.</u>	(mV)	NTU	
Calibration Standard:			1,000	100%	4.0/7.0/10.0	244	0/1.0	
Before Purging:	7:30	18.4	1,000	100%	4.0/7.0/10.0	244	0/1.0	
After Purging:		17.4	1,010	100%	4.0/7.0/10.1	237	0/0.95	
FIELD MEASUREMEN	TS:							
TIELD MEAGOREMEN	10.	Temp	EC	DO	рН	ORP	Turbidity	Cumulative
	<u>Time</u>	(°C)	(µmho/cm)	(mg/L)	<u>S.U.</u>	(mV)	NTU	Gallons Removed
	13:45		diment from b					1.5
	13:55	Surge block						
*	14:05							5.0
**	14:13	17.77	3070	1.59	6.22	274	343	5.5
	14:18	17.73	3043	1.43	6.23	279	321	6.0
	14:23	17.72	3021	1.28	6.22	281	308	6.5
	14:28	17.73	3008	1.25	6.22	278	314	7.5
- -		-						
Domes weather I		Designate D		1.1	41-1			
Purge method:		reristaltic Pun	np and new dispo	osabie pol	y tubing			
Decontamination method:								
	pump rate							
** Purge w	ater deeper	yellow in color	·					

Well No.: MW-FP4A

Project No. Y0323-03					Recorded by:	wks		Date: 03/09/10
Project Name: Brush Stre				_	-		ell from TO	OC (feet): 56.85
-	th St., Oak	land CA		_	5.	•	ell diameter	` '
<u> </u>	50., 50			-	Screen			OC (feet): 45-57
Weather: Sunny								88 (feet): 25.64
Precip in past 5 days (in):	0.2 Oaklar	nd North (ONO)					88 (feet): 10.66
recip in past 3 days (iii).	0.2 Ouklui	id Horai (OHO	<u>) </u>	Water	level from TO			Time: 12:02
Water level instrument:	Dual-nhas	e interface prob	ne (Solinst)		level from TO			Time: 12:02
CALCULATION OF W			se (sei mst)	Troduct	101011110111110	(1001).	TYONG	
CALCOLATION OF W	LLL VOL	JIVIL.						
(56.85 ft	- 14.99 ft) ########	$x \pi x 7.48 \text{ gal/ft}^3 =$	6.8	gallons in on	e casing	volume	
well depth	- water lev	e x (well radius	$(x)^2 \times \pi \times \text{gal/ft}^3 =$	59.2	total gallons	removed	l	
CALIBRATION:		_				o		
		Temp	EC	DO	рН	ORP	Turbidity	
	<u>Time</u>	(°C)	(µmho/cm)	<u>(%)</u>	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	
Calibration Standard:			1,000	100%	4.0/7.0/10.0	244	0/1.0	
Before Purging:		18.4	1,000	100%	4.0/7.0/10.0	244	0/1.0	
After Purging:		17.4	1,010	100%	4.0/7.0/10.1	237	0/0.95	
FIELD MEASUREMEN	ITS:							
		Temp	EC	DO	pН	ORP	Turbidity	Cumulative
	<u>Time</u>	(°C)	(µmho/cm)	(mg/L)	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	Gallons Removed
	10:11	_	ediment from bo				VT	
	10:50		ediment from bo	ottom of	well.		VT	5.0
	11:30	Surge block					VT	10.0
*	12.07	18.38	601	1.37	7.94	71.2	166	14.0
**	14.43	18.24	594	0.97	7.98	44.9	78.4	15.0
	12:39	16.98	541	0.85	8.04	31.5	50	15.5
	14:28	16.17	549	0.90	8.04	29.2	53.7	16.0
	_		ke at top of water					21.0
	Purge wa	ter went from	yellow to clear.					39.2
	2/11/201/	1 11	.: 120 11	2/1 1		4	20.6	
			tional 20 gallons					
	below top	or casing, pu	irged at approxi	matery 1.	.25 gailons pe	er minui	.e.	
		_						
Purge method:		Peristaltic Pu	mp and new dispo	sable pol	y tubing			
Decontamination method	:							
	d pump rate	down.						
			to middle of well	screen				

Well No.: MW-FP4B

Project No. Y0323-03					Recorded by:	wks		Date: 03/09/10		
Project Name: Brush Stree	et			Depth of well from TOC (feet): 25.12						
Location: 751 Sevent		and CA		_	Вс	-	ell diameter	· ' -		
Location. 731 Seveni	iii 5t., Oaki	and, CA		Screened interval from TOC (feet): 12-25						
Weather: Sunny								` '		
Precip in past 5 days (in):	0.2 Oaklan	d North (ONO	<u> </u>	TOC elevation, NAVD 88 (feet): 25.69 Groundwater elevation, NAVD 88 (feet): 10.69						
riecip iii past 3 days (iii).	0.2 Oakian	id North (ONO	<u>) </u>	Water	level from TO			Time: 11:59		
Water level instrument:	Dual phas	a interfess prob	o (Colingt)		level from TO			Time: 11:59		
·		-	De (Solilist)	Troduct	ievei iioiii 10	C (1661).	None	1 IIIIe. 11.39		
CALCULATION OF WE	ELL VOLU	JME:								
(25.12 ft	- 15.00 ft)) ######## 2	$x \pi x 7.48 \text{ gal/ft}^3 =$	= 1.7	gallons in one	e casing	volume			
well depth	- water lev	e x (well radius	$(s)^2 \times \pi \times \text{gal/ft}^3 =$	30.5	total gallons	removed	l			
CALIDDATION										
CALIBRATION:		Temp	EC	DO	рН	ORP	Turbidity			
	<u>Time</u>	(°C)	EC (μmho/cm)	Ю <u>(%)</u>	рп <u>S.U.</u>	(mV)	NTU			
Calibration Standard:				100%		` ′	0/1.0			
Before Purging:	7.20	10.4	1,000	100%	4.0/7.0/10.0	244	0/1.0			
~ ~	7:30	18.4 17.4	1,000 1,010	100%	4.0/7.0/10.0	244 237				
After Purging:		1 / .4	1,010	100%	4.0/7.0/10.1	237	0/0.95			
FIELD MEASUREMEN	TS:									
		Temp	EC	DO	pН	ORP	Turbidity	Cumulative		
	<u>Time</u>	(°C)	(umho/cm)	(mg/L)	<u>S.U.</u>	<u>(mV)</u>	NTU	Gallons Removed		
	12:22	_	ediment from b	ottom of	well.		VT	0.5		
	12:34	Surge block					VT	3.0		
also also de	12:40	Surge block					VT	4.0		
*, **	12:51	1.6.01	1106	• 00	7.0 5	100	VST	7.0		
**	13:08	16.81	1136	2.98	7.25	192	291	8.0		
**	13:28	16.95	1165	3.26	7.24	199	265	9.0		
* *	13:38	16.88	1193	2.76	7.22	197	154	9.5		
	13:48	16.97	1210	2.80	7.22	194	78.6	10.0		
	13:58	16.98	1226	2.92	7.22	190	71.0	10.5		
	14:18	16.81	1241	2.84	7.21	188	71.4	11.5		
		_								
Purge method:		Peristaltic Pu	mp and new dispo	osable pol	y tubing					
Decontamination method:		_								
	l pump rate	down								
** Purge w	1 1									
	acci jenov	. 111 00101.								

Well No.: MW-FP5

Project No. Y0323-03 Street Y041410 Precip in past 5 days (in): 0.2 Oakland North (ONO) Precip in past 5 days (in): 0.2 Oakland North (ONO) Product level from TOC (feet): 10.98 Time: 7.00 Time: 7.0											
Location: 751 Seventh St., Oakland, CA Sumy Screened interval from TOC (feet) 12-25 10-06 Precipi in past 5 days (in): 0.2 Oakland North (ONO) Vater level from TOC (feet) 10-08 Time: 7:00 Water level listrument: Dual-phase interface probe (Solinst) Product level from TOC (feet) 10-98 Time: 7:00 Water level listrument: Dual-phase interface probe (Solinst) Product level from TOC (feet) 10-98 Time: 7:00 Water level listrument: Dual-phase interface probe (Solinst) Product level from TOC (feet) 10-98 Time: 7:00 Water level from TOC (feet)	Project No. <u>Y0323-03</u>				Recorded by: wks Date: 04/14/10						
Sereened interval from TOC (feet) 12-25 TOC elevation, NAVD 88 (feet) 12-04 (feet) 10-06 (feet) 10-06 (feet) 10-06 (feet) 10-06 (feet) 10-06 (feet) 10-08 (feet) 1					_	I	-		` ′		
Variable Variabl	Location: 751 Seventh	ı St., Oakl	and, CA		_				`		
Precipi in past 5 days (in): 0.2 Oaklant North (ONO)									` '		
Water level instrument: Dual-phase interface probe (Solinst) Product level from TOC (feet): 10.98 Time: 7:00 CALCULATION OF WELL VOLUME: (24.68 ft - 10.98 ft) ########### x π x 7.48 gal/ft³ = 2.2 gallons in one casing volume well depth - water leve x (well radius)² x π x gal/ft³ = 19 total gallons removed Turbidity NTU CALIBRATION: Temp						TC	OC elevation	on, NAVD 8	88 (feet): 21.04		
Water level instrument: Dual-phase interface probe (Solinst) Product level from TOC (Feet): None Time: 7:00 CALCULATION OF WELL VOLUME: (24.68 ft - 10.98 ft) ######## x x x 7.48 gal/ft³ = 2.2 gallons in one casing volume well depth - water leve x (well radius)² x π x gal/ft³ = 19 gallons in one casing volume total gallons removed volume t	Precip in past 5 days (in): 0	0.2 Oaklar	d North (ONO)							
CALCULATION OF WELL VOLUME: (24.68 ft - 10.98 ft) ######## x π x 7.48 gal/ft³ = 2.2 gallons in one casing volume well depth - water leve x (well radius)² x π x gal/ft³ = 19 total gallons removed CALIBRATION: Temp EC DO pH ORP Turbidity NTU Calibration Standard:					Water	level from T	OC (feet):	10.98	Time: <u>7:00</u>		
(24.68 ft - 10.98 ft) ######## x \pi x x 7.48 gal/ft³ = 2.2 gallons in one casing volume well depth - water leve x (well radius)² x \pi x gal/ft³ = 19 total gallons removed Temp EC DO pH ORP Turbidity	Water level instrument: <u>I</u>	Dual-phase	e interface prol	oe (Solinst)	Product	level from T	OC (feet):	None	Time: <u>7:00</u>		
CALIBRATION: Temp EC DO pH ORP Turbidity Calibration Standard:	CALCULATION OF WE	LL VOLU	JME:								
Temp EC DO pH ORP Turbidity NTU					= 2.2	gallons in o	ne casing	volume			
Temp EC DO pH ORP Turbidity	well depth -	water lev	e x (well radius	19	total gallon	s removed					
Temp EC DO pH ORP Turbidity	CALIBRATION:										
Time CC			Temp	EC	DO	На	ORP	Turbidity			
Calibration Standard:		<u>Time</u>	•					-			
Before Purging:	Calibration Standard:										
### FIELD MEASUREMENTS: Temp EC DO pH ORP Turbidity Cumulative Company Compan											
Temp (°C) (μμηλο/cm) (mg/L) S.U. (mV) NTU Gallons Removed 7:00 Removing sediment from bottom of well. 7:10 Surge block 2.0 7:30 18.17 2353 1.15 6.76 47.2 342 5.0 342 5.0 7:37 18.34 2197 0.95 6.73 44.4 250 8.0 8.0 7:58 18.44 2001 0.6 6.66 66.2 123 13 8:14 18.40 1916 0.56 6.63 80.9 38.2 16 8:30 18.41 1841 0.52 6.60 92.3 17.5 19 Purge method: Peristaltic Pump and new disposable poly tubing											
Temp (°C) (μμηλο/cm) (mg/L) S.U. (mV) NTU Gallons Removed 7:00 Removing sediment from bottom of well. 7:10 Surge block 2.0 7:30 18.17 2353 1.15 6.76 47.2 342 5.0 342 5.0 7:37 18.34 2197 0.95 6.73 44.4 250 8.0 8.0 7:58 18.44 2001 0.6 6.66 66.2 123 13 8:14 18.40 1916 0.56 6.63 80.9 38.2 16 8:30 18.41 1841 0.52 6.60 92.3 17.5 19 Purge method: Peristaltic Pump and new disposable poly tubing	FIELD MEASUREMENT										
Time (°C) (μμηλο/cm) (mg/L) S.U. (mV) NTU Gallons Removed 7:00 Removing sediment from bottom of well. 2.0 7:10 Surge block 2.0 7:30 18.17 2353 1.15 6.76 47.2 342 5.0 7:37 18.34 2197 0.95 6.73 44.4 250 8.0 7:58 18.44 2001 0.6 6.66 66.2 123 13 8:14 18.40 1916 0.56 6.63 80.9 38.2 16 8:30 18.41 1841 0.52 6.60 92.3 17.5 19 Purge method: Peristaltic Pump and new disposable poly tubing Decontamination method:		. . .	Temn	EC	DO	пН	ORP	Turbidity	Cumulative		
7:00 Removing sediment from bottom of well. 7:10 Surge block 2.0 7:30 18.17 2353 1.15 6.76 47.2 342 5.0 7:37 18.34 2197 0.95 6.73 44.4 250 8.0 7:58 18.44 2001 0.6 6.66 66.2 123 13 8:14 18.40 1916 0.56 6.63 80.9 38.2 16 8:30 18.41 1841 0.52 6.60 92.3 17.5 19 Purge method: Peristaltic Pump and new disposable poly tubing Decontamination method:		Time	•			•		-			
7:10 Surge block 7:30				~			*				
Purge method: Peristaltic Pump and new disposable poly tubing Percontamination method: 1.15		7:10							2.0		
7:58 18.44 2001 0.6 6.66 66.2 123 13 8:14 18.40 1916 0.56 6.63 80.9 38.2 16 8:30 18.41 1841 0.52 6.60 92.3 17.5 19 Purge method: Peristaltic Pump and new disposable poly tubing Decontamination method:		7:30			1.15	6.76	47.2	342	5.0		
8:14 18.40 1916 0.56 6.63 80.9 38.2 16 8:30 18.41 1841 0.52 6.60 92.3 17.5 19 Purge method: Peristaltic Pump and new disposable poly tubing Decontamination method:		7:37	18.34	2197	0.95	6.73	44.4	250	8.0		
8:30 18.41 1841 0.52 6.60 92.3 17.5 19 Purge method: Peristaltic Pump and new disposable poly tubing Decontamination method:		7:58	18.44	2001	0.6	6.66	66.2	123	13		
Purge method: Peristaltic Pump and new disposable poly tubing Decontamination method:		8:14	18.40	1916	0.56	6.63	80.9	38.2	16		
Decontamination method:		8:30	18.41	1841	0.52	6.60	92.3	17.5	19		
Decontamination method:											
Decontamination method:											
Decontamination method:	-		_								
Decontamination method:	_		_								
	Purge method:		Peristaltic Pu	mp and new disp	osable pol	y tubing					
			-								

Well No.: MW-FP6

Project No. Y0323-03					Recorded by	v: wks		Date: 03/09/10
Project Name: Brush Stree	et			_	-		ell from TC	OC (feet): 49.04
Location: 751 Sevent		and, CA		_		-	ell diameter	` ′
					Scre	ened interv	val from TO	OC (feet): 39-49
Weather: Sunny								88 (feet): 20.51
Precip in past 5 days (in):	0.2 Oaklan	d North (ONC))		Groundwa	ter elevation	on, NAVD 8	88 (feet): 10.02
			<u> </u>	Water	level from To	OC (feet):	10.49	Time: 9:13
Water level instrument:	Dual-phase	e interface prol	oe (Solinst)	Product	level from To	OC (feet):	None	Time: 9:13
CALCULATION OF WE	LL VOLU	JME:						
(49.04 ft	- 10.49 ft) ######### :	x π x 7.48 gal/ft ³ =	= 6.3	gallons in o	ne casing	volume	
*			$(s)^2 \times \pi \times \text{gal/ft}^3 =$	20.0	total gallon	_		
CALIBRATION:								
-		Temp	EC	DO	рН	ORP	Turbidity	
	<u>Time</u>	(°C)	(µmho/cm)	<u>(%)</u>	<u>S.U.</u>	(mV)	NTU	
Calibration Standard:								
Before Purging:								
After Purging:								
FIELD MEASUREMENT	TS:							
		Temp	EC	DO	pН	ORP	Turbidity	Cumulative
	<u>Time</u>	(°C)	(µmho/cm)	(mg/L)	<u>S.U.</u>	<u>(mV)</u>	<u>NTU</u>	Gallons Removed
	9:30		sediment from b	ottom of	well.			3.0
	9:54	Surge block						4.0
	10:15	19.82	910	1.58	7.54	-13.2	135	10
	10:30	19.72	628	1.07	7.35	-78.0	30.9	18
	10:37	19.52	572	1.11	7.33	-74	10.46	22
	10:45	19.57	540	0.98	7.31	-72	9.76	26
	10:53	19.54	512	0.94	7.31	-71.4	6.48	30
	11:04	19.52	505	1.08	2.29	-71.4	3.95	35
-		_						
_		_						
Purge method:		Peristaltic Pu	imp and new dispo	osable nol	v tuhing			
			P	- Santa Por	<i>,</i>			
Decontamination method:		1						
	pump rate							
** Purge w	ater yellov	v in color.						

Well No.:

MW-FP7B

APPENDIX E GROUNDWATER SAMPLING FORMS

Well No.: MW-FP1 **GROUNDWATER SAMPLING** Project No. Well screened interval (feet) BTOC: 4/15/2010 Y0323-03 25.0 Date: Project name: Brush St. Tube inlet placed at (feet) BTOC: 19.9 Depth of well (feet) BTOC: 25.1 751-758 Brush St. 5.1 Location: Tube inlet (feet) ABOW Well diameter (inches) 2 Sampled and Recorded by: RR & WKS Discharge Tubing Used (ID): 0.17 inches Weather: Water Level from (feet) BTOC: 14.82 Sunnv 7:06 1/4-inch OD tubing = 0.17 inch ID Precip. in past 5 days (inches): 1.36 Water Level Instrument: Solinst Model 122, s/n 001654-1 3/8-inch OD tubing = 0.25 inch ID CALCULATION OF THE WATER VOLUME CONTAINED WITHIN THE LOW-FLOW SYSTEM 19.9 ft. x $(0.00708 \text{ ft})^2$ x π x 28.32 liters/ft³ + 1.0 L = 1.09 liters of water in tubing 4 0 min. tubing length (ft.) tubing diameter (ft.) flow cell vol (L) total liters removed CALIBRATION **Before Purging After Purging** Standard Time: 7:30 14:40 - -13.45 Temp (°C): 20.21 100% 98% 100% 0² saturated DO NTU: 0.0 / 9.70.0 / 10.00.0 / 10.82 235 @ 20.2 248 ORP (mV): 248 @ 13.5 4.0/7.0/10.0 4.10/7.07/9.97 4.0/7.0/10.0 pH: E C (μmho/cm): 1,000 (umho/cm): 940 (umho/cm): 1,000 (umho/cm): FIELD MEASUREMENTS Cumulative Purge Rate EC Purge Vol. Water Level from ORP DO Time TOC (ft.) (L / min)рН (umho/cm): (mV): (mg/l): NTU Removed (L) Temp (°C) 0805 14.95 6.34 538 231 1.54 4.98 1.0 17.41 --0810 14.98 0.20 6.34 547 220 1.44 4.88 2.0 17.85 0815 14.98 0.20 6.34 545 211 1.34 4.05 3.0 18.17 14.98 550 207 1.31 4.0 18.42 0820 0.20 6.34 2.61 Laboratory: Curtis & Tompkins Ltd Appearance of sample: Clear Sample Time: 8:30

BASELINE QA/QC Peer Review Completed: (initial, date)

Peristaltic Pump with new disposable poly

None

tubing

3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly

ABOW= above bottom of well

VOCs, Title 22 metals, Cr VI

Rinsate disposal: 55-gallon drum temporarily stored on site

Decon method: ASTM 5088-02, (three bucket wash)

Time:

Sample analyses:

Sample containers:

bgs= below ground surface

Duplicate/blank number:

BTOC= below top of casing

Sampling equipment:

Well No.: MW-FP2 **GROUNDWATER SAMPLING** Project No. Y0323-03 Well screened interval (feet) BTOC: 4/15/2010 25.0 Date: Project name: Brush St. Tube inlet placed at (feet) BTOC: 19.0 Depth of well (feet) BTOC: 25.0 751-758 Brush St. 6.0 Location: Tube inlet (feet) ABOW Well diameter (inches): 2 Sampled and Recorded by: RR & WKS Discharge Tubing Used (ID): 0.17 inches Water Level from (feet) BTOC: 13.19 Weather: Sunny 6:59 Time: Precip. in past 5 days (inches): 1.36 1/4-inch OD tubing = 0.17 inch ID Water Level Instrument: Solinst Model 122, s/n 001654-1 3/8-inch OD tubing = 0.25 inch ID CALCULATION OF THE WATER VOLUME CONTAINED WITHIN THE LOW-FLOW SYSTEM 19.0 ft. x $(0.00708 \text{ ft})^2$ x π x 28.32 liters/ft³ + 1.0 L = 1.08 liters of water in tubing 8.0 min. tubing length (ft.) tubing radius (ft.) flow cell vol (L) total liters removed **After Purging** CALIBRATION **Before Purging** Standard Time: 7:30 14:40 - -13.45 Temp (°C): 20.21 DO (%) 100% 98% 100% 0² saturated 0.0 / 9.70.0 / 10.82 0.0 / 10.0Turbidity (NTU): ORP (mV): 235 @ 20.2 244 248 @ 13.5 4.0/7.0/10.0 4.10/7.07/9.97 4.0/7.0/10.0 pH: 1,000 E C (μmho/cm): 1,000 (µmho/cm): 940 (umho/cm): FIELD MEASUREMENTS Cumulative EC DO **Temperature** ORP Purge Vol. Water Level from Purge Rate **Turbidity** Time TOC (ft.) (L / min)рН (umho/cm): (mV): (mg/l): (NTU): Removed (L) (°C): 1249 13.25 6.82 542 98 2.26 2.96 1.0 20.69 1301 13.25 0.17 6.65 526 104 1.91 2.00 3.0 20.68 1310 13.26 0.11 6.63 522 101 1.88 1.65 4.0 21.06 521 5.0 1316 95 1.39 21.27 13.26 0.17 6.61 1.83 6.0 1322 13.26 0.17 6.62 520 93 1.73 1.53 21.45 0.17 523 89 1.10 7.0 21.53 1328 13.26 6.63 1.68 8.0 1334 13.26 0.17

					Laboratory:	Curtis & Tompkins Ltd		
ppearance of sample:	Clear	Sample Time:	8:34					
uplicate/blank number:	None	Time:	:		Rinsate disposal:	55-gallon drum temporarily	stored on site	
ampling equipment:	Peristaltic Pump with new disposable poly	Sample analyses:	VOCs, Title 22 metals, Cr	VI				
amping equipment.	tubing	Sample containers:	3-40 ml VOA's, 1-500 ml	poly, 1-250 ml poly	Decon method:	ASTM 5088-02, (three buck	et wash)	
TOC= below top of casing		bgs= below ground s	urface	ABOW= above bottom	n of well			

BASELINE QA/QC Peer Review Completed: (initial, date)

GROUNDWATER SAMPLING Well No.: MW-FP3

GROUNDWATE	K SAMPLING					wen No.:	MIW-FP3		
Project No.	Y0323-03		Well screened	d interval (feet) BTO	C: 12	25.0		Date:	4/15/2010
Project name:	Brush St.		_	Tube inl	et placed at (feet) BTOC :	19.9		Depth of well (feet) BTOC:	25.1
Location:	751-758 Brush St.		_		Tube inlet (feet) ABOW:	5.1		Well diameter (inches):	2
Sampled and Recorded by:	RR & WKS		-		charge Tubing Used (ID):		inches	_	
Weather:	Sunny		_	Water	Level from (feet) BTOC:	14.82		Time:	7:09
Precip. in past 5 days (inches	s): 1.36	_			1/4-inch OD tubing =	0.17 inch ID			
Water Level Instrument:	Solinst Model 122, s/n	001654-1	_		3/8-inch OD tubing =	0.25 inch ID			
CALCULATION OF T				LOW-FLOW SYS	TEM				
19.	.9 ft. x $(0.00708 \text{ ft})^2 \text{ x}$	π x 28.32 lite	$rs/ft^3 + 1.0 L =$	1.09	liters of water in tubing				
min. tubing length (ft.)	tubing radius (ft.)		flow cell vol (L)	8.0	total liters removed				
CALIBRATION	Before Purging		After Purging		Standard				
Time:	7:30	-	14:40						
Temp (°C):	13.45		20.21						
DO (%)	100%		98%		100% 0 ² saturated				
Turbidity (NTU):	0.0 / 9.7	•	0.0 / 10.82		0.0 / 10.0				
ORP (mV):	248 @ 13.5	•	235 @ 20.2		244				
рН:	4.0/7.0/10.0	•	4.10/7.07/9.97		4.0/7.0/10.0				
E C (μmho/cm):	1,000 (µmho/cm):	•	940 (μmho/cm):		1,000				
FIELD MEASUREMEN	NTS							Cumulative	
	Water Level from	Purge Rate		<u>EC</u>	ORP	DO	Turbidity	Purge Vol.	Temperature
Time	TOC (ft.)	(L/min)	<u>рН</u>	(µmho/cm):	<u>(mV):</u>	(mg/l):	(NTU):	Removed (L)	(⁰ C):
0807	15.04		6.45	1,170	239	1.97	7.22	1.0	16.86
0816	15.08	0.19	6.33	1,131	221	1.94	5.57	2.8	17.52
0828	15.10	0.10	6.40	1,132	206	2.68	4.66	4.0	17.57
0834	15.11	0.17	6.51	1,153	196	2.49	5.02	5.0	17.71
0840	15.12	0.17	6.47	1,152	161	1.79	4.69	6.0	17.84
0846	15.12	0.17	6.45	1,150	147	1.46	4.47	7.0	17.89
0852	15.13	0.17	6.44	1,145	145	2.41	3.60	8.0	17.97
0032	15.15	0.17	0.11	1,1 15	110	2.11	3.00	0.0	17.57
			1						
						Laboratory	Curtis & Tompkins Lto		
Appearance of sample:	Clear		Sample Time:	9:00		Zacoratory.	or rompanio Da	-	
Duplicate/blank number:	None		Time:		_	Rinsate disposal:	55-gallon drum tempor	rarily stored on site	
	Parietaltia Promo with	dianogable mal-	Sample analyses:	VOCs, Title 22 metals,	Cr VI	_	Î		
Sampling equipment:	Peristaltic Pump with new tubing	uisposable poly	· · · · -	3-40 ml VOA's, 1-500 n		Decon method:	ASTM 5088-02, (three	e bucket wash)	
BTOC= below top of casing	-		bgs= below ground sur		ABOW= above botton	-			
BASELINE QA/QC Peer	Review Completed:		(initial, date)						
21 12 DELITE VITO VC 1 CCI	TO TON Completed		_(,)						

GROUNDWATER SAMPLING Well No.: MW-FP4A

GROCHDWATE							141 44 -1.1 -471		
Project No.	Y0323-03		Well screene	d interval (feet) BTC		25.0	_	Date:	
Project name:	Brush St.		_	Tube in	nlet placed at (feet) BTOC :	20.0	•	Depth of well (feet) BTOC:	
Location:	751-758 Brush St.		_		Tube inlet (feet) ABOW:	5.0	_	Well diameter (inches):	2
Sampled and Recorded by:	RR & WKS				ischarge Tubing Used (ID):		inches		
Weather:	Sunny		_	Wate	er Level from (feet) BTOC:		<u>-</u>	Time:	7:14
Precip. in past 5 days (inches	s): 1.36				1/4-inch OD tubing =	0.17 inch ID			
Water Level Instrument:	Solinst Model 122, s/n	001654-1	_		3/8-inch OD tubing =	0.25 inch ID			
CALCULATION OF T	HE WATER VOLUM	IE CONTAIN	ED WITHIN THE	LOW-FLOW SY	STEM				
20.	$0 \text{ ft. } x (0.00708 \text{ ft})^2 x$	π x 28.32 lite	$rs/ft^3 + 1.0 L =$	1.09	liters of water in tubing				
min. tubing length (ft.)	tubing radius (ft.)		flow cell vol (L)	4.0	total liters removed				
CALIBRATION	Before Purging		After Purging		Standard				
Time:	7:30		14:40						
Temp (°C):	13.45	•	20.21						
DO (%)	100%	•	98%		100% 0 ² saturated				
Turbidity (NTU):	0.0 / 9.7	•	0.0 / 10.82		0.0 / 10.0				
ORP (mV):	248 @ 13.5	•	235 @ 20.2		244				
pH:	4.0/7.0/10.0	•	4.10/7.07/9.97		4.0/7.0/10.0				
E C (μmho/cm):	1,000 (µmho/cm):		940 (µmho/cm):		1,000				
``			y το (μππο/em).		1,000				
FIELD MEASUREMEN	· · · · ·							Cumulative	
	Water Level from	Purge Rate	_	<u>EC</u>	<u>ORP</u>	<u>DO</u>	<u>Turbidity</u>	<u>Purge Vol.</u>	Temperatur
<u>Time</u>	TOC (ft.)	<u>(L / min)</u>	<u>pH</u>	<u>(µmho/cm):</u>	<u>(mV):</u>	<u>(mg/l):</u>	<u>(NTU):</u>	Removed (L)	<u>(°C):</u>
14:11	15.05		6.00	2,754	240	1.25	12.50	1.0	19.66
1416	15.05	0.00	5.99	2,745	253	1.32	12.00	2.0	19.7
1421	15.05	0.20	5.99	2,744	258	1.38	10.67	3.0	19.72
1426	15.05	0.20	5.99	2,731	266	1.29	10.29	4.0	19.72
				•					
			+						
1									
	l		I			Laboratory:	Curtis & Tompkins Ltd	<u>I</u>	<u> </u>
Appearance of sample:	yellow		Sample Time:	14:35					
Duplicate/blank number:	None		Time: Rinsate disposal: 55-gallon drum temporarily stored on site					rarily stored on site	
Compling aguing	Peristaltic Pump with new	disposable poly	Sample analyses:	VOCs, Title 22 metals	, Cr VI				
Sampling equipment:	tubing	ansposable poly	Sample containers: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)						
BTOC= below top of casing			bgs= below ground surface ABOW= above bottom of well						
BASELINE QA/QC Peer			(initial, date)		112011 40010 001101	01 11011			

GROUNDWATER SAMPLING

Project name Brush St	GROUNDWATE	ER SAMPLING					Well No.:	MW-FP4B		
Standard Standard	Project name: Location: Sampled and Recorded by: Weather: Precip. in past 5 days (inche	Brush St. 751-758 Brush St. RR & WKS Sunny s) 1.36	001654-1	Well screene	Tube in	alet placed at (feet) BTOC: Tube inlet (feet) ABOW: scharge Tubing Used (ID): er Level from (feet) BTOC: 1/4-inch OD tubing =	51.0 6.0 0.25 14.92 0.17 inch ID	inches	Depth of well (feet) BTOC: Well diameter (inches):	4/15/2010 56.9 2 7:11
Time 7:30	51.	0 ft. $x (0.00708 \text{ ft})^2 x$		$s/ft^3 + 1.0 L =$	1.49	liters of water in tubing				
Mater Level from Time Purge Rate EC QRP DO NTU Removed (L) Tele	Time: Temp (°C): DO NTU: ORP (mV): pH:	7:30 13.45 100% 0.0 / 9.7 248 @ 13.5 4.0/7.0/10.0		14:40 20.21 98% 0.0 / 10.82 235 @ 20.2 4.10/7.07/9.97		100% 0 ² saturated 0.0 / 10.0 244 4.0/7.0/10.0				
1346	<u>Time</u>	Water Level from TOC (ft.)		<u>pH</u>	<u>(µmho/cm):</u>	<u>(mV):</u>	<u>(mg/l):</u>		Purge Vol. Removed (L)	Temp (°C)
1405	1346	15.12	0.17	9.01	319 319	-11	0.31	25.30	4.0 5.0	18.6 18.69 18.7
Appearance of sample: Clear Sample Time: 14:10 Duplicate/blank number: None Time: Rinsate disposal: 55-gallon drum temporarily stored on site										18.66 18.63
Appearance of sample: Clear Sample Time: 14:10 Duplicate/blank number: None Time: Rinsate disposal: 55-gallon drum temporarily stored on site										
Appearance of sample: Clear Sample Time: 14:10 Duplicate/blank number: None Time: Rinsate disposal: 55-gallon drum temporarily stored on site										
				Sample Time: 14:10						
Sampling equipment: Peristaltic Pump with new disposable poly tubing Peristaltic Pump with new disposable poly tubing Sample analyses: Sample containers: Sample containers: VOCs, Title 22 metals, Cr VI 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)		•	disposable poly	Sample containers:	3-40 ml VOA's, 1-500	0 ml poly, 1-250 ml poly		: ASTM 5088-02, (three	e bucket wash)	
BTOC= below top of casing bgs= below ground surface ABOW= above bottom of well BASELINE QA/QC Peer Review Completed: (initial, date)					ırface	ABOW= above botton	n of well			

GROUNDWATER SAMPLING Well No.: MW-FP5

GROUNDWATE	R SAMPLING					Well No.:	MW-FP5		
Project No.	Y0323-03		Well screened	interval (feet) BTO	OC: 12	25.0		Date:	
Project name:	Brush St.				let placed at (feet) BTOC :	20.0		Depth of well (feet) BTOC:	25.1
Location:	751-758 Brush St.		_		Tube inlet (feet) ABOW:	5.0		Well diameter (inches):	2
Sampled and Recorded by:	RR & WKS		•	Dis	scharge Tubing Used (ID):		inches		
Weather:	Sunny			Wate	er Level from (feet) BTOC:	15.01		Time:	7:13
Precip. in past 5 days (inches					1/4-inch OD tubing =				
Water Level Instrument:	Solinst Model 122, s/n	001654-1			3/8-inch OD tubing =	0.25 inch ID			
CALCULATION OF T	HE WATER VOLUM	E CONTAINI	ED WITHIN THE L	OW-FLOW SYS	STEM				
20.	$0 \text{ ft. } x (0.00708 \text{ ft})^2 x$	π x 28.32 liters	$/ft^3 + 1.0 L =$	1.09	liters of water in tubing				
min. tubing length (ft.)	tubing diameter (ft.)		flow cell vol (L)	5.5	total liters removed				
CALIBRATION	Before Purging		After Purging		Standard				
Time:	7:30		14:40						
Temp (°C):	13.45		20.21						
DO	100%		98%		100% 0 ² saturated				
NTU:	0.0 / 9.7		0.0 / 10.82		0.0 / 10.0				
ORP (mV):	248 @ 13.5		235 @ 20.2		244				
pH:	4.0/7.0/10.0		4.10/7.07/9.97		4.0/7.0/10.0				
E C (μmho/cm):	1,000 (μmho/cm):		940 (μmho/cm):		1,000 (μmho/cm):				
FIELD MEASUREMEN	ITS							Cumulative	
TIEED WERGOREWER	Water Level from	Purge Rate		<u>EC</u>	ORP	DO		Purge Vol.	
<u>Time</u>	TOC (ft.)	(L/min)	<u>рН</u>	<u>(μmho/cm):</u>	(mV):	(mg/l):	<u>NTU</u>	Removed (L)	Temp (°C)
1224	15.08		7.07	776	80	6.49	57.80	1.5	19.20
1232	15.08	0.13	7.07	794	89	5.99	58.40	2.5	19.21
1240	15.08	0.13	7.06	794	97	6.12	46.56	3.5	19.41
1248	15.09	0.13	7.06	794	100	6.11	45.23	4.5	19.46
1256	15.09	0.13	7.07	786	105	6.46	42.30	5.5	19.50
						Laboratory:	Curtis & Tompkins L	td	
Appearance of sample:	Clear		Sample Time:	13:00	_				
Duplicate/blank number:	None		Time:		_	Rinsate disposal:	55-gallon drum tempo	orarily stored on site	
Sampling equipment:	Peristaltic Pump with new	disposable poly	_	OCs, Title 22 metals,					
r 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	tubing		Sample containers: 3	-40 ml VOA's, 1-500	ml poly, 1-250 ml poly	Decon method:	ASTM 5088-02, (thre	ee bucket wash)	
BTOC= below top of casing			bgs= below ground sur	face	ABOW= above botton	n of well			
BASELINE QA/QC Peer	Review Completed:		(initial, date)						

GROUNDWATER SAMPLING Well No.: MW-FP6

GROUNDWATE	ER SAMPLING		Well No.: MW-FP6							
Project No.	Y0323-03		Well screened	l interval (feet) BTC	OC: 12	25.0		Date:	4/15/2010	
Project name:	Brush St.		_	Tube in	let placed at (feet) BTOC :	18.5		Depth of well (feet) BTOC:	25.1	
Location:	751-758 Brush St.		_		Tube inlet (feet) ABOW:	6.5		Well diameter (inches):	2	
Sampled and Recorded by:	RR & WKS		- -	Di	scharge Tubing Used (ID):		inches	-		
Weather:	Sunny		_	Wate	er Level from (feet) BTOC:	10.98		Time:	7:04	
Precip. in past 5 days (inche		i			1/4-inch OD tubing =	0.17 inch ID				
Water Level Instrument:	Solinst Model 122, s/n	001654-1	_		3/8-inch OD tubing =	0.25 inch ID				
CALCULATION OF T	HE WATER VOLUN	ME CONTAIN	NED WITHIN THE	LOW-FLOW SY	STEM					
18.	5 ft. x $(0.00708 \text{ ft})^2 \text{ x}$	π x 28.32 liter	$s/ft^3 + 1.0 L =$	1.08	liters of water in tubing					
min. tubing length (ft.)	tubing diameter (ft.)		flow cell vol (L)	8.0	total liters removed					
CALIBRATION	Before Purging		After Purging		Standard					
Time:	7:30		14:40							
Temp (°C):	13.45	•	20.21							
DO	100%	•	98%		100% 0 ² saturated					
NTU:	0.0 / 9.7	•	0.0 / 10.82		0.0 / 10.0					
ORP (mV):	248 @ 13.5	ı	235 @ 20.2		244					
pH:	4.0/7.0/10.0	•	4.10/7.07/9.97		4.0/7.0/10.0					
E C (μmho/cm):	1,000 (μmho/cm):	i	940 (μmho/cm):		1,000 (µmho/cm):					
FIELD MEASUREMEN	NTC		,,					Cumulativa		
FIELD MEASUREMEN	Water Level from	Purge Rate		<u>EC</u>	ORP	DO		Cumulative Purge Vol.		
Times	TOC (ft.)	(L/min)					<u>NTU</u>		Taman (9C)	
<u>Time</u> 1105	11.21	(L / IIIII) 	<u>pH</u> 6.84	(μmho/cm): 2,140	(mV): 62	(mg/l): 0.52	3.55	Removed (L) 2.5	Temp (°C) 19.78	
1115	11.21	0.25	6.67	1,990	65	0.32	2.89	5.0	19.78	
1113	11.23	0.23			69	0.43	2.69	6.0	20.02	
-			6.66	1,942	***					
1125	11.23	0.20	6.64	1,910	68	0.43	2.56	7.0	20.09	
1130	11.23	0.20	6.63	1,905	75	0.43	2.67	8.0	20.20	
								+		
			+		+					
					+					
			ı l		<u> </u>	Laboratory:	Curtis & Tompkins I	Ltd		
Appearance of sample:	Clear		Sample Time:	11:35						
Duplicate/blank number:	None		Time:			Rinsate disposal:	55-gallon drum temp	porarily stored on site		
*	Doristaltia D	dianogohla li	Time: Rinsate disposal: 55-gallon drum temporarily stored on site Sample analyses: VOCs, Title 22 metals, Cr VI							
Sampling equipment:	Peristaltic Pump with new tubing	disposable poly	_ ·		ml poly, 1-250 ml poly	Decon method:	ASTM 5088-02, (th	ree bucket wash)		
DTOC-halou to a Con '	2		_			-	, (,		
BTOC= below top of casing			bgs= below ground sur	тасе	ABOW= above botton	1 of well				
BASELINE QA/QC Peer	Review Completed:		(initial, date)							

GROUNDWATE	R SAMPLING		Well No.: MW-FP7B							
Project No. Project name: Location: Sampled and Recorded by: Weather: Precip. in past 5 days (inches) Water Level Instrument:	roject name: Brush St. ocation: 751-758 Brush St. ampled and Recorded by: RR & WKS Veather: Sunny recip. in past 5 days (inches) 1.36		Well screened	Dis	OC: 39 Illet placed at (feet) BTOC: Tube inlet (feet) ABOW: scharge Tubing Used (ID): or Level from (feet) BTOC: 1/4-inch OD tubing = 3/8-inch OD tubing =	10.48 0.17 inch ID	inches	Date: Depth of well (feet) BTOC: Well diameter (inches): Time:	4/15/2010 49.0 2 7:07	
CALCULATION OF TI 44.0 min. tubing length (ft.)	HE WATER VOLUM of the fix (0.00708 ft) ² x tubing radius (ft.)			1.42 20.0	STEM liters of water in tubing total liters removed					
CALIBRATION Time: Temp (°C): DO (%) Turbidity (NTU): ORP (mV): pH: E C (µmho/cm):	7:30 13.45 100% 0.0 / 9.7 248 @ 13.5 4.0/7.0/10.0 1,000 (μmho/cm):		After Purging 14:40 20.21 98% 0.0 / 10.82 235 @ 20.2 4.10/7.07/9.97 940 (μmho/cm):		Standard 100% 0 ² saturated 0.0 / 10.0 244 4.0/7.0/10.0 1,000					
FIELD MEASUREMEN	Water Level from	Purge Rate	- · · · · · · · · · · · · · · · · · · ·	<u>EC</u>	ORP	<u>DO</u>	<u>Turbidity</u>	Cumulative Purge Vol.	Temperatur	
<u>Time</u>	TOC (ft.)	(L / min)	<u>pH</u>	<u>(µmho/cm):</u>	<u>(mV):</u>	<u>(mg/l):</u>	<u>(NTU):</u>	Removed (L)	(⁰ C):	
1054	10.63		7.50	580	-83	1.12	9.91	1.0	20.85	
1108	10.63	0.29	7.39	606	-74	0.71	5.78	5.0	20.33	
1119	10.63	0.27	7.31	635	-91	0.63	3.57	8.0	20.18	
1127	10.63	0.25	7.38	585	-96	0.81	3.58	10.0	20.21	
1135	10.62	0.38	7.45	549	-98	0.99	3.13	13.0	20.72	
1140	10.61	0.20	7.42	561	-100	0.50	2.99	14.0	20.63	
1143	10.59	0.33	7.41	569	-104	0.36	2.48	15.0	20.68	
1147	10.59	0.25	7.39	570	-108	0.30	2.99	16.0	20.95	
1151	10.59	0.25	7.40	571	-114	0.28	2.32	17.0	20.99	
1155	10.59	0.25	7.39	572	-115	0.34	2.55	18.0	20.99	
1159	10.59	0.25	7.39	573	-126	0.35	2.32	19.0	21.00	
1203	10.59	0.25	7.38	578	-126	0.33	2.45	20.0	21.14	
						Laboratory	: Curtis & Tompkins Ltd	d		

bgs= below ground surface BTOC= below top of casing (initial, date) BASELINE QA/QC Peer Review Completed:

Peristaltic Pump with new disposable poly

light yellow

None

tubing

 $3\text{-}40~\text{ml}~\text{VOA's},\,1\text{-}500~\text{ml}~\text{poly},\,1\text{-}250~\text{ml}~\text{poly}$

ABOW= above bottom of well

Rinsate disposal: 55-gallon drum temporarily stored on site

Decon method: ASTM 5088-02, (three bucket wash)

12:13

VOCs, Title 22 metals, Cr VI

Sample Time:

Sample analyses:

Sample containers:

Time:

Appearance of sample:

Sampling equipment:

Duplicate/blank number:

GROUNDWATER SAMPLING

Well No.: MW-3 (Shell)

Project name:	GROUNDWATE	K SAMPLING					wen no.:	M W - 3 (Snei	1)	
Part	Project name: Location: Sampled and Recorded by: Weather: Precip. in past 5 days (inches)	Brush St. 751-758 Brush St. RR & WKS Sunny 1.36	001654-1	Well screened	Tube in	let placed at (feet) BTOC: Tube inlet (feet) ABOW: scharge Tubing Used (ID): r Level from (feet) BTOC: 1/4-inch OD tubing =	14.2 4.2 0.17 11.00 0.17 inch ID	inches	Depth of well (feet) BTOC: Well diameter (inches):	18.4
Main tubing length (H)	CALCULATION OF TH	HE WATER VOLUM	IE CONTAIN	ED WITHIN THE I	LOW-FLOW SYS	TEM				
Time 10-10 13-45 20-21 20-2		,	π x 28.32 liter	-		_				
Temp (°C):	CALIBRATION	Before Purging		After Purging		Standard				
DO (%) 100% 98% 100% 0.0/100 0.0/1	Time:	10:10								
Turbidity (NTU): 0.0 / 9.7 0.0 / 10.8 235 @ 20.2 244 1.07 / 0710.0 1.000 (µmho/cm): 940 (µmho/cm): 1.000 1.000 (µmho/cm): 940 (µmho/cm): 1.000 1.000 (µmho/cm): 1.000 (µmho/cm): 1.000 (µmho/cm): 1.000 (µmho/cm): 1.000 1.000 (µmho/cm): 1.000 (µmho/cm): 1.000 1.000 (µmho/cm): 1.000 1.000 (µmho/cm): 1.000 1.0										
ORP (mV): 248 (i) 13.5 235 (ii) 20.2 244 4.107.70710.0 4.107.0710.0 4.107.0710.0 1.1000 (umho/cm): 940 (umho/cm): 1.000 1.000 (umho/cm): 1.000 1.000 (umho/cm): 1.000 1.000 1.000 (umho/cm): 1.000	. ,									
PH: 4.07.0/10.0 4.107.0/79.97 4.07.0/10.0 FC (µmho/cm): 940 (µmho/cm): 1,000 1,000 (µmho/cm): 1,000 1,000 (µmho/cm): 1,000 1,000 (µmho/cm): 1,000 1,000 1,000 (µmho/cm): 1,000 1,000 1,000			•							
FTELD MEASUREMENTS	` ′									
FIELD MEASUREMENTS	μ.									
Mater Level from Purge Rate EC ORP DO Turbidity Purge Vol. Tempera Time TOC (ft.) (L / min) pH (µmho/em); (mV); (mV); (mg/l); (NTU); Removed (L) COC COC (L / min) Purge Vol. COC COC	E C (μmho/cm):	1,000 (μmho/cm):		940 (μmho/cm):		1,000				
Time TOC (ft.) (L / min) pH (μmho/cm): (mV): (mg/l): (NTU): Removed (L) c ⁰ C):	FIELD MEASUREMEN		Purge Rate		FC	ORP	DO	Turhidity		Temperature
10.90	Time		_					•		
0929										
0936			0.17							
11.24										
11.31										
11.40										
Appearance of sample: Clear										
Appearance of sample: Duplicate/blank number: Sampling equipment: None Time: Sample analyses: YOCS, Title 22 metals, Cr VI Sample containers: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)	0,00	11.10	0.17	0.55	220	110	0.00	1.0.	0.0	10.70
Appearance of sample: Duplicate/blank number: Sampling equipment: Peristaltic Pump with new disposable poly tubing Clear Sample Time: 10:10 Peristaltic Pump with new disposable poly tubing Sample analyses: Sample containers: Sample containers: 10:10 POOCS, Title 22 metals, Cr VI Sample vOOCS, Title 22 metals, Cr VI Sample ontainers: 3-40 ml VOA'S, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)										
Appearance of sample: Duplicate/blank number: Sampling equipment: Peristaltic Pump with new disposable poly tubing Clear Sample Time: 10:10 Peristaltic Pump with new disposable poly tubing Sample analyses: Sample containers: OCOS, Title 22 metals, Cr VI Sample vOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)										
Appearance of sample: Duplicate/blank number: Sampling equipment: Peristaltic Pump with new disposable poly tubing Clear Sample Time: 10:10 Peristaltic Pump with new disposable poly tubing Sample analyses: Sample containers: OCOS, Title 22 metals, Cr VI Sample vOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)										
Appearance of sample: Duplicate/blank number: Sampling equipment: Peristaltic Pump with new disposable poly tubing Clear Sample Time: 10:10 Peristaltic Pump with new disposable poly tubing Sample analyses: Sample containers: OCOS, Title 22 metals, Cr VI Sample vOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)										
Appearance of sample: Duplicate/blank number: Sampling equipment: None Time: Sample analyses: YOCS, Title 22 metals, Cr VI Sample containers: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)										
Appearance of sample: Duplicate/blank number: Sampling equipment: Peristaltic Pump with new disposable poly tubing Clear Sample Time: 10:10 Peristaltic Pump with new disposable poly tubing Sample analyses: Sample containers: OCOS, Title 22 metals, Cr VI Sample vOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)										
Duplicate/blank number: Sampling equipment: None Time: VOCs, Title 22 metals, Cr VI Sample containers: Sample ontainers: Sample containers: Sample containers: Sample ontainers: Sample ontainers: Sample ontainers: Sample ontainers: Sample analyses: VOCs, Title 22 metals, Cr VI Sample ontainers: Sa							Laboratory:	Curtis & Tompkins Ltd		
Sampling equipment: Peristaltic Pump with new disposable poly tubing Peristaltic Pump with new disposable poly tubing Sample analyses: Sample analyses: YOCs, Title 22 metals, Cr VI 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)	Appearance of sample:	Clear		Sample Time:	10:10		-			
Sampling equipment: refristance rump with new disposable poly tubing Sample containers: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)	Duplicate/blank number: None						Rinsate disposal:	55-gallon drum tempor	arily stored on site	
tubing Sample containers: 3-40 ml VOA's, 1-500 ml poly, 1-250 ml poly Decon method: ASTM 5088-02, (three bucket wash)	G 1' '	Peristaltic Pump with new	disposable poly							
	Samping equipment.			Sample containers:						
IK LL II = below ton at eaging have below ground curtage A D/ W/- above better at well	BTOC= below top of casing	Č		•	•		-	, ,	,	
BTOC= below top of casing bgs= below ground surface ABOW= above bottom of well BASELINE QA/QC Peer Review Completed: (initial, date)	1 6				111400	ADOW – above botton	I OI WEII			

GROUNDWATER SAMPLING

Well No.: MW-9 (Shell)

GROUNDWATE	R SAMPLING					Well No.:]	MW-9 (She	eII)	
Project No.	Y0323-03		Well screened	l interval (feet) BTO		18.4		Date:	4/15/2010
Project name:	Brush St.		_	Tube in	let placed at (feet) BTOC :	14.2		Depth of well (feet) BTOC:	19.7
Location:	751-758 Brush St.		-		Tube inlet (feet) ABOW:	4.2		Well diameter (inches):	2
Sampled and Recorded by:	RR & WKS		-		scharge Tubing Used (ID):	0.17 i	nches	•	
Weather:	Sunny		<u>-</u>	Wate	r Level from (feet) BTOC:	10.98		Time:	9:13
Precip. in past 5 days (inches					1/4-inch OD tubing =	0.17 inch ID			
Water Level Instrument:	Solinst Model 122, s/n	001654-1	-		3/8-inch OD tubing =	0.25 inch ID			
CALCULATION OF TI	HE WATER VOLUM	IE CONTAINI	ED WITHIN THE I	OW-FLOW SYS	STEM				
14.:	2 ft. x $(0.00708 \text{ ft})^2 \text{ x}$	π x 28.32 liters	$s/ft^3 + 1.0 L =$	1.06	liters of water in tubing				
min. tubing length (ft.)	tubing diameter (ft.)		flow cell vol (L)	13.5	total liters removed				
CALIBRATION	Before Purging		After Purging		Standard				
Time:	7:30		14:40						
Temp (°C):	13.45	•	20.21						
DO	100%	•	98%		100% 0 ² saturated				
NTU:	0.0 / 9.7	•	0.0 / 10.82		0.0 / 10.0				
ORP (mV):	248 @ 13.5	1	235 @ 20.2		244				
pH:	4.0/7.0/10.0	1	4.10/7.07/9.97		4.0/7.0/10.0				
E C (μmho/cm):	1,000 (µmho/cm):	•	940 (μmho/cm):		1,000 (µmho/cm):				
, ,			· · · · · · · · · · · · · · · · · · ·		, (,			G 1.6	
FIELD MEASUREMEN		D D :		EC	ODD	D.O.		Cumulative	
m.	Water Level from	Purge Rate	-	EC	<u>ORP</u>	<u>DO</u>		Purge Vol.	- (2.5)
<u>Time</u>	TOC (ft.)	(L / min)	<u>pH</u>	(μmho/cm):	<u>(mV):</u>	(mg/l):	NTU	Removed (L)	Temp (°C)
0930	11.04		6.55	857	34	0.97	3.22	1.5	17.45
0940	11.12	0.20	6.55	877	37	1.00	3.14	3.5	17.44
0950	11.19	0.20	6.54	890	44	1.22	2.15	5.5	17.82
1000	11.21	0.20	6.55	880	52	0.99	2.07	7.5	17.88
1010	11.22	0.20	6.54	984	87	0.34	3.36	9.5	17.88
1015	11.22	0.20	6.53	998	93	0.29	1.68	10.5	17.85
1020	11.22	0.20	6.52	1,038	96	0.31	1.59	11.5	17.96
1025	11.22	0.20	6.51	1,047	106	0.31	1.23	12.5	17.98
1030	11.22	0.20	6.51	1,052	110	0.31	1.20	13.5	18.01
					+				
	1		<u> </u>			Laboratory: 0	Curtis & Tompkins L	.td	
Appearance of sample:	Clear		Sample Time:	10:35					
Duplicate/blank number:	None		Time:			Rinsate disposal: 5	5-gallon drum temp	orarily stored on site	
Sampling equipment:	Peristaltic Pump with new	disposable polv	Sample analyses:	VOCs, Title 22 metals,	Cr VI				
oampung equipment.	tubing		Sample containers:	3-40 ml VOA's, 1-500	ml poly, 1-250 ml poly	Decon method: A	ASTM 5088-02, (thr	ee bucket wash)	
BTOC= below top of casing			bgs= below ground sur	rface	ABOW= above botton	n of well			
BASELINE QA/QC Peer	Review Completed:		(initial, date)						

BASELINE QA/QC Peer Review Completed: _____(initial, date)

APPENDIX F LABORATORY ANALYTICAL REPORTS

(ON CD-ROM IN PORTABLE DOCUMENT FORMAT)
C&T Laboratory Report No. 218575
C&T Laboratory Report No. 219511
Cooper Testing Report 360-062

QUALITY CONTROL CHECKLIST FOR REVIEW OF LABORATORY REPORT

Job No. Y0323-03 **Site:** 751-785 7thSt

Laboratory:Curtis and Tompkins, Ltd.Laboratory Report No.:218575Report Date:17 March 2010BASELINE Reviewer:JM

		Yes	No	NA
(De	NERAL QUESTIONS scribe "no" responses below in "comments" section. Contact the laboratory, as requ lanation or action on "no" responses; document discussion in comments section.)	iired, fo	r furthe	r
1a.	Does the report include a case narrative? (A case narrative MUST be prepared by the lab for all analytical work requested by BASELINE)	X		
1b.	Is the number of pages for the lab report as indicated on the case narrative/lab transmittal consistent with the number of pages that are included in report?	X		
1c.	Does the case narrative indicate which samples were analyzed by a subcontractor and the subcontractor's name?			X
1d.	Does the case narrative summarize subsequent requests not shown on the chain-of-custody (e.g., additional analyses requested, release of "hold" samples)?			X
1e.	Does the case narrative explain why requested analyses could not be performed by laboratory (e.g., insufficient sample)?			X
1f.	Does the case narrative explain all problems with the QA/QC data as identified in the checklist (as applicable)?			X
2a.	Is the laboratory report format consistent and legible throughout the report?	X		
2b.	Are the sample and reported dates shown in the laboratory report correct?	X		
3a.	Does the lab report include an original copy of the chain-of-custody form?	X		
3b.	Were all samples appropriately analyzed as requested on the chain-of-custody form?	X		
4.	Was the lab report signed and dated as being reviewed by the laboratory director, QA manager, or other appropriate personnel? (Some lab reports have signature spaces for each page). (This requirement also applies to any analyses subcontracted out by the laboratory)	X		
5a.	Are preparation methods, cleanup methods (if applicable), and laboratory methods indicated for all analyses?	X		
5b.	If additional analytes were requested as part of the reporting of the data for an analytical method, were these included in the lab report?			X
6.	Are the units in the lab report provided for each analysis consistent throughout the report?	X		
7.	Are the detection limits (DL) appropriate based on the intended use of the data (e.g., DL below applicable MCLs for water quality issues)?	X		

		Yes	No	NA
8a.	Are detection limits appropriate based on the analysis performed (i.e., not elevated due to dilution effects)?	X		
8b.	If no, is an explanation provided by the laboratory?			X
9a.	Were the samples analyzed within the appropriate holding time (generally 2 weeks for volatiles, and up to 6 months for total metals)?	X		
9b.	If no, was it flagged in the report?			X
10.	If samples were composited prior to analysis, does the lab report indicate which samples were composited for each analysis?			X
11a.	Do the chromatograms confirm quantitative laboratory results (petroleum hydrocarbons)?			X
11b.	Is a standard chromatogram(s) included in the laboratory report?			X
11c.	Do the chromatograms confirm laboratory notes, if present (e.g., sample exhibits lighter hydrocarbon than standard)?			X
12.	Are the results consistent with previous analytical results from the site? (If no, contact the lab and request review/reanalysis of data, as appropriate.)	X		
13a.	REVISED LAB REPORTS ONLY. Is the revised lab report or revised pages to a lab report signed and dated as being reviewed by the laboratory director, QA manager, or other appropriate personnel?			X
13b.	REVISED LAB REPORTS ONLY. Does the case narrative indicate the date of revision and provide an explanation for the revision?			X
13c.	REVISED LAB REPORTS ONLY. Does the revised lab report adequately address the problem(s) that triggered the need for a revision?			X
13d.	REVISED LAB REPORTS ONLY. Are the data included in the revised report the same as the data reported in the original report, except where the report was revised to correct incorrectly reported data?			X
	QC Questions d/Laboratory Quality Control - Groundwater Analyses			
14.	Are field blanks reported as "ND" (groundwater samples)? A field blank is a sample of DI water that is prepared in the field using the same collection and handling procedures as the other samples collected, and used to demonstrate that the sampling procedure has not contaminated the sample.			X
14a.	Are rinsate blanks reported as "ND" (soil samples)? A rinsate blank is a sample of DI water that is prepared in the field by collecting DI rinse water after it has been poured over decontaminated sampling equipment. The rinsate blank is collected to demonstrate that the decontamination procedure has removed all the contaminants from the sampling equipment and that the sampling equipment has not contaminated the sample.			X

		Yes	No	NA
15.	Are trip blanks reported as "ND" (groundwater samples/volatile analyses)? A trip blank is a sample of contaminant free matrix placed in an appropriate container by the lab and transported with the field samples collected. Provides information regarding positive interference introduced during sample transport, storage, preservation, and analysis. The sample is NOT opened in the field.			X
16.	Are duplicate sample results consistent with the original sample (groundwater samples)? Field duplicates consist of two independent samples collected at the same sampling location during a single sampling event. Used to evaluate precision of the analytical data and sampling technique. (Differences between the duplicate and sample results may also be attributed to environmental variability.)			X
(Sar few fran	ch Quality Control mples are batched together by matrix [soil, water] and analyses requested. A batch generater samples of the same matrix type, and is prepared using the same reagents, standards, proper as the samples. QC samples are run with each batch to assess performance of the entire tess.)	ocedure	s, and tir	
17.	Do the sample batch numbers and corresponding laboratory QA/QC batch numbers match?	X		
18a	Are method blanks (MB) for the analytical method(s) below the laboratory reporting limits? <i>Used to assess lab contamination and prevent false positive results</i> .	X		
18b	. If no, is an explanation provided in the case narrative to validate the data?			X
18c.	Are analytes that may be considered laboratory contaminants reported below the laboratory reporting limit? <i>Common lab contaminants include acetone, methylene chloride, diethylhexyl phthalate, and di-n-octyl phthalate.</i>	X		
18d	. If no, was the laboratory contacted to determine whether the reported analyte could be a potential laboratory contaminant and was an explanation included in the case narrative?			X
19.	Are laboratory control samples (LCS) and LCS duplicate (LCSD) [a.k.a., Blank Spike (BS) and BS duplicates (BSD)] within laboratory reporting limits? Limits should be provided on the report. LCS is a reagent blank spike with a representative selection of target analyte(s) and prepared in the same manner as the samples analyzed. The LCS should be spiked with the same analytes as the matrix spike (below). The LCS is free from interferences from the sample matrix and demonstrates the ability of the lab instruments to recover the target analytes. Accuracy (recovery information) is generally reported as % spike recovery; precision (reproducibility of results) between the LCS and LCSD is generally reported as the relative percent difference (RPD). LCS/LCSD can be run in addition to or in lieu of matrix QC data.	X		
20a.	Are the Matrix QC data (i.e., MS/MSD) within laboratory limits? Limits should be provided on the lab report. The lab selects a sample from the batch and analyzes a spike and a spike duplicate of that sample. Matrix QC data is used to obtain precision and accuracy information and is reported in the same manner as LCS/LCSD. If the MS/MSD fails, the results may still be considered valid if the MB and either the LCS/LCSD or BS/BSD is within the lab's limits (failure is probably due to matrix interference).	X		

Quality Control Checklist - continued

	Yes	No	NA
20b. If no, is the MB and either LCS/LCSD or BS/BSD within lab limits to validate the data?			X
Sample Quality Control			
21a. Are the surrogate spikes reported within the lab's acceptable recovery limits? A surrogate is a non-target analyte, which is similar in chemical structure to the analyte(s) being analyzed for, and which is not commonly found in environmental samples. A known concentration of the surrogate is spiked into the sample or QA "sample" prior to extraction or sample preparation. Results are usually reported as % recovery of the spike. Failure to meet lab's limits for primary and secondary surrogates results in rebatching and reanalysis of the sample; failure of only the primary or the secondary surrogate may be acceptable under certain circumstances. Failure generally is due to coelution with the sample matrix.	Х		
21b. If no, is an explanation given in the case narrative to validate the data?			X

Comments :			

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 218575 ANALYTICAL REPORT

Baseline Environmental Project : Y0232-03

5900 Hollis Street Location: 751-785 Seventh St. Oakland

Emeryville, CA 94608 Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-FP3;5.0-5.5	218575-001
MW-FP4A;5.0-5.5	218575-002
MW-FP4A;10.0-10.5	218575-003
MW-FP4A;15.0-15.5	218575-004
MW-FP4A;20.0-20.5	218575-005
MW-FP5;5.0-5.5	218575-006
MW-FP5;10.0-10.5	218575-007
MW-FP5;15.0-15.5	218575-008
MW-FP5;20.0-20.5	218575-009

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Deine 7. Tetrett

Project Manager

Date: <u>03/17/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 218575

Client: Baseline Environmental

Project: Y0232-03

Location: 751-785 Seventh St. Oakland

Request Date: 03/03/10 Samples Received: 03/03/10

This data package contains sample and QC results for nine soil samples, requested for the above referenced project on 03/03/10. The samples were received cold and intact.

Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.

Hexavalent Chromium (EPA 7196A):

No analytical problems were encountered.

Total Organic Carbon (TOC) (WALKLEY-BLACK):

No analytical problems were encountered.

CHAIN OF CUSTODY RECORD

219575

5900 Hollis Street, Suite D Emeryville, CA 94608

Tel: (510) 420-8686 Fax: (510) 420-1707

Turn-Around-Time Standard TAT Laboratory Curtis & Tompkins, Ltd.
BASELINE Contact Person Lydia Huang

Tel. (310) 420-0000 Fax. (310) 420-1707													321112		V I VIBOI	Lydia i			
Project Number Y0232-03																			
Project Name: 751 - 785 Seventh St. Oakland									4			1		Ì					
Samplers Signature					Containers										2				
Millain (Sutt					Т.,,,	••		Presv.		8260)	-				s 1400	/96			
man (State)				†	Typ	<u> </u>		+	1	A 8					etal 0B/7	Cr VI (EPA 7196A)		1	
					Stainless Steel	E	26	İ		(EPA					2 M	EP.	,		
Sample ID					nless	Brass liner	Macrocore	-		VOC's				၂ပွ	le 2				
No. Station	Date	Time	Media	No.	Stai	Bra	<u>Ψ</u>	<u>.</u> 8		<u> </u>				TOC	Title 22 Metals (EPA 6010B/7400)	<u>්</u>	11		
MW-FP3;5.0-5.5	3-3-10	220 9:05	5	١		1									X	X			
MW-FP4A;5.0-5.5		7:20	5	1		i									X	X			
MW-FP4A;10.0-10.5		7:35	5)		1									Х	Х			
MW-FP4A;15.0-15.5		7:38	5	1		`									х	х			
MW-FP4A;20.0-20.5		7146	5	ι		1				\neg				x	х	х			
MW-FP5;5.0-5.5		10:35	5	1		1									X	Х			
MW-FP5;10.0-10.5		10:39	5	,		(х	х			
MW-FP5;15.0-15.5		10:44	5	1		,									х	Х			
MW-FP5;20.0-20.5	V	10:50	•	,		,								1	Х	Х			

Relinquished by: (Signature)	Date/Time		Į	Recei	ved by:	(Signa	ture)			1	Date/Ti	me			<u> </u>	Remar	ks:		
Willy I Sus	3/3/10	12:15		1/5		1_	2/		sk	// 1	3/-	1/10	, 1	Z:1.	5				
Relinquished by: (Signature)	Date/Time			Recei	ved by:		ture))	7	Date/Ti	_							
																Email	contac	t:	
Relinquished by: (Signature)	Date/Time			Recei	ved by:	(Signa	ture)				Date/Ti	me				1		*	
											ŀ								
Received at laboratory with intact custody seal:	Samples conditions Upon Arrival:								•										
			_																
Yes No (Na	Intact	On Ice	Cold	•															
the state of the s																			

Login # 218575 Date Received 31/40 Client RASELINE Project 71-70	Number of coolers /
	0
Date Opened 43/10 By (print) MALL (sign) Date Logged in By (print) (sign)	flot here
Date Logged in By (print) (sign)	
Did cooler come with a shipping slip (airbill, etc) Shipping info	YES
2A. Were custody seals present? TYES (circle) on cooler How many Name	Date
2B. Were custody seals intact upon arrival?	YES NO (N/A)
3. Were custody papers dry and intact when received?4. Were custody papers filled out properly (ink, signed, etc)?	
5. Is the project identifiable from custody papers? (If so fill out to 6. Indicate the packing in cooler: (if other, describe)	
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ Cloth material ☐ Cardboard ☐ Styrofoam 7. Temperature documentation:	☐ None ☐ Paper towels
Type of ice used: Wet Blue/Gel None	Temp(°C)
Samples Received on ice & cold without a temperature	
Samples received on ice directly from the field. Cooling	
8. Were Method 5035 sampling containers present?	YES NO.
If YES, what time were they transferred to freezer?	
9. Did all bottles arrive unbroken/unopened?	NO
10. Are samples in the appropriate containers for indicated tests? 11. Are sample labels present, in good condition and complete?	YES NO
12. Do the sample labels agree with custody papers?	ZES NO
13. Was sufficient amount of sample sent for tests requested?	
14. Are the samples appropriately preserved?	YES NO WO
15. Are bubbles > 6mm absent in VOA samples?	YES NO WA
15. Are bubbles > 6mm absent in VOA samples?16. Was the client contacted concerning this sample delivery?	YES NO WA
15. Are bubbles > 6mm absent in VOA samples?	YES NO WA
15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By	YES NO WA
15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS	YES NO WA YES NO Date:
15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS	YES NO WA
15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS	YES NO WA YES NO Date:
15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS	YES NO WA YES NO Date:
15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS	YES NO WA YES NO Date:
15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? If YES, Who was called? By COMMENTS	YES NO WA YES NO Date:

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

California Title 22 Metals										
Lab #:	218575	Project#:	Y0232-03							
Client:	Baseline Environmental	Location:	751-785 Seventh St. Oakland							
Field ID:	MW-FP3;5.0-5.5	Basis:	as received							
Lab ID:	218575-001	Diln Fac:	1.000							
Matrix:	Soil	Sampled:	03/03/10							
Units:	mg/Kg	Received:	03/03/10							

Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	3.2	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	47	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.43	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	72	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	5.5	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	20	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	3.5	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.021	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	51	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	0.69	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	38	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	33	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

Page 1 of 1

	California T	itle 22 Metals	
Lab #:	218575	Project#:	Y0232-03
Client:	Baseline Environmental	Location:	751-785 Seventh St. Oakland
Field ID:	MW-FP4A;5.0-5.5	Basis:	as received
Lab ID:	218575-002	Sampled:	03/03/10
Matrix:	Soil	Received:	03/03/10
Units:	mg/Kg		

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	2.1	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	47	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.22	0.10	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	1.8	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	1,400	2.4	10.00	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	6.3	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	88	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	1.7	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.020	1.000	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	36	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	29	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	22	1.0	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

Page 1 of 1

3.1

	California	a Title 22 Meta	als
Lab #:	218575	Project#:	Y0232-03
Client:	Baseline Environmental	Location:	751-785 Seventh St. Oakland
Field ID:	MW-FP4A;10.0-10.5	Basis:	as received
Lab ID:	218575-003	Sampled:	03/03/10
Matrix:	Soil	Received:	03/03/10
Units:	mg/Kg		

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	2.1	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	46	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.27	0.10	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	2.0	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	440	2.3	10.00	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	4.9	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	140	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	2.2	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.021	1.000	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	62	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	27	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	27	1.0	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

Page 1 of 1

4.1

California Title 22 Metals										
Lab #:	218575	Project#:	Y0232-03							
Client:	Baseline Environmental	Location:	751-785 Seventh St. Oakland							
Field ID:	MW-FP4A;15.0-15.5	Basis:	as received							
Lab ID:	218575-004	Diln Fac:	1.000							
Matrix:	Soil	Sampled:	03/03/10							
Units:	mg/Kg	Received:	03/03/10							

Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	2.5	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	40	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.25	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	130	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	5.6	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	7.1	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	2.1	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.020	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	76	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	33	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	21	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

Page 1 of 1

	California	Title 22 Meta	als
Lab #:	218575	Project#:	Y0232-03
Client:	Baseline Environmental	Location:	751-785 Seventh St. Oakland
Field ID:	MW-FP4A;20.0-20.5	Basis:	as received
Lab ID:	218575-005	Sampled:	03/03/10
Matrix:	Soil	Received:	03/03/10
Units:	mg/Kg		

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	3.0	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	44	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.13	0.10	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	560	2.3	10.00	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	4.3	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	5.9	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	0.83	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.021	1.000	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	42	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	25	0.25	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	18	1.0	1.000	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

	California T	itle 22 Metals	
Lab #:	218575	Project#:	Y0232-03
Client:	Baseline Environmental	Location:	751-785 Seventh St. Oakland
Field ID:	MW-FP5;5.0-5.5	Basis:	as received
Lab ID:	218575-006	Diln Fac:	1.000
Matrix:	Soil	Sampled:	03/03/10
Units:	mg/Kg	Received:	03/03/10

Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	3.0	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	44	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.31	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	120	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	2.4	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	23	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	3.3	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.020	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	31	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	45	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	29	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

	California T	itle 22 Metals	
Lab #:	218575	Project#:	Y0232-03
Client:	Baseline Environmental	Location:	751-785 Seventh St. Oakland
Field ID:	MW-FP5;10.0-10.5	Basis:	as received
Lab ID:	218575-007	Diln Fac:	1.000
Matrix:	Soil	Sampled:	03/03/10
Units:	mg/Kg	Received:	03/03/10

Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	2.1	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	43	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.21	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	43	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	5.7	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	7.6	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	2.0	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.021	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	30	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	28	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	21	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

	California T	itle 22 Metals	
Lab #:	218575	Project#:	Y0232-03
Client:	Baseline Environmental	Location:	751-785 Seventh St. Oakland
Field ID:	MW-FP5;15.0-15.5	Basis:	as received
Lab ID:	218575-008	Diln Fac:	1.000
Matrix:	Soil	Sampled:	03/03/10
Units:	mg/Kg	Received:	03/03/10

Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	4.4	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	66	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.33	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	65	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	8.4	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	10	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	2.5	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.020	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	35	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	43	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	23	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

Page 1 of 1

	California T	itle 22 Metals	
Lab #:	218575	Project#:	Y0232-03
Client:	Baseline Environmental	Location:	751-785 Seventh St. Oakland
Field ID:	MW-FP5;20.0-20.5	Basis:	as received
Lab ID:	218575-009	Diln Fac:	1.000
Matrix:	Soil	Sampled:	03/03/10
Units:	mg/Kg	Received:	03/03/10

Analyte	Result	RL	Batch#	Prepared	Analyzed	Prep	Analysis
Antimony	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Arsenic	1.9	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Barium	28	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Beryllium	0.11	0.10	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cadmium	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Chromium	62	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Cobalt	4.5	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Copper	7.4	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Lead	1.2	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Mercury	ND	0.020	160652	03/05/10	03/05/10	METHOD	EPA 7471A
Molybdenum	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Nickel	28	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Selenium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Silver	ND	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Thallium	ND	0.50	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Vanadium	24	0.25	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B
Zinc	18	1.0	160726	03/08/10	03/09/10	EPA 3050B	EPA 6010B

	California	a Title 22 Meta	als
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0232-03	Analysis:	EPA 7471A
Analyte:	Mercury	Diln Fac:	1.000
Type:	BLANK	Batch#:	160652
Lab ID:	QC534979	Prepared:	03/05/10
Matrix:	Soil	Analyzed:	03/05/10
Units:	mg/Kg		

Result	RL	
ND	0.020	

ND= Not Detected RL= Reporting Limit

	California	Title 22 Metals	3
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0232-03	Analysis:	EPA 7471A
Analyte:	Mercury	Batch#:	160652
Matrix:	Soil	Prepared:	03/05/10
Units:	mg/Kg	Analyzed:	03/05/10
Diln Fac:	1.000		

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC534980	0.2500	0.2470	99	77-130		
BSD	QC534981	0.2500	0.2500	100	77-130	1	16

	California	a Title 22 Meta	ıls
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0232-03	Analysis:	EPA 7471A
Analyte:	Mercury	Diln Fac:	10.00
Field ID:	ZZZZZZZZZZ	Batch#:	160652
MSS Lab ID:	218616-001	Sampled:	03/04/10
Matrix:	Soil	Received:	03/04/10
Units:	mg/Kg	Prepared:	03/05/10
Basis:	as received	Analyzed:	03/05/10

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC534982	4.217	0.2358	4.274	24 NM	38-164		
MSD	QC534983		0.2551	4.541	127 NM	38-164	6	56

	California '	Title 22 Metals	3
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	EPA 3050B
Project#:	Y0232-03	Analysis:	EPA 6010B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC535252	Batch#:	160726
Matrix:	Soil	Prepared:	03/08/10
Units:	mg/Kg	Analyzed:	03/09/10

Analyte	Result	RL	
Antimony	ND	0.50	
Arsenic	ND	0.25	
Barium	ND	0.25	
Beryllium	ND	0.10	
Cadmium	ND	0.25	
Chromium	ND	0.25	
Cobalt	ND	0.25	
Copper	ND	0.25	
Lead	ND	0.25	
Molybdenum	ND	0.25	
Nickel	ND	0.25	
Selenium	ND	0.50	
Silver	ND	0.25	
Thallium	ND	0.50	
Vanadium	ND	0.25	
Zinc	ND	1.0	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	California	Title 22 Meta	ls
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	EPA 3050B
Project#:	Y0232-03	Analysis:	EPA 6010B
Matrix:	Soil	Batch#:	160726
Units:	mg/Kg	Prepared:	03/08/10
Diln Fac:	1.000	Analyzed:	03/09/10

Type: BS Lab ID: QC535253

Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	95.45	95	75-122
Arsenic	50.00	51.20	102	76-119
Barium	100.0	95.90	96	73-120
Beryllium	2.500	2.521	101	80-122
Cadmium	10.00	9.824	98	77-120
Chromium	100.0	94.00	94	74-118
Cobalt	25.00	23.12	92	72-114
Copper	12.50	12.08	97	72-117
Lead	100.0	94.57	95	73-117
Molybdenum	20.00	20.05	100	79-120
Nickel	25.00	23.09	92	73-115
Selenium	50.00	48.01	96	71-121
Silver	10.00	9.221	92	72-115
Thallium	50.00	46.98	94	73-116
Vanadium	25.00	24.09	96	72-121
Zinc	25.00	23.73	95	71-119

Type: BSD Lab ID: QC535254

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	100.0	95.58	96	75-122	0	19
Arsenic	50.00	50.90	102	76-119	1	20
Barium	100.0	95.80	96	73-120	0	18
Beryllium	2.500	2.519	101	80-122	0	19
Cadmium	10.00	9.925	99	77-120	1	18
Chromium	100.0	94.00	94	74-118	0	25
Cobalt	25.00	23.12	92	72-114	0	18
Copper	12.50	12.03	96	72-117	0	17
Lead	100.0	94.88	95	73-117	0	24
Molybdenum	20.00	20.09	100	79-120	0	20
Nickel	25.00	23.18	93	73-115	0	17
Selenium	50.00	46.95	94	71-121	2	19
Silver	10.00	9.219	92	72-115	0	17
Thallium	50.00	47.01	94	73-116	0	18
Vanadium	25.00	24.10	96	72-121	0	18
Zinc	25.00	23.64	95	71-119	0	18

	California '	Title 22 Metals	
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	EPA 3050B
Project#:	Y0232-03	Analysis:	EPA 6010B
Field ID:	ZZZZZZZZZZ	Batch#:	160726
MSS Lab ID:	218499-001	Sampled:	02/19/10
Matrix:	Oil	Received:	02/25/10
Units:	mq/Kq	Prepared:	03/08/10
Diln Fac:	1.000	Analyzed:	03/09/10

Type: MS Lab ID: QC535255

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	<0.1424	97.09	85.44	88	1-142
Arsenic	0.08336	48.54	50.76	104	45-136
Barium	0.3063	97.09	97.19	100	11-172
Beryllium	<0.01180	2.427	2.549	105	56-133
Cadmium	<0.02429	9.709	9.795	101	46-132
Chromium	<0.05998	97.09	95.69	99	27-153
Cobalt	<0.02852	24.27	23.64	97	34-139
Copper	1.169	12.14	14.25	108	12-174
Lead	0.09626	97.09	93.96	97	27-147
Molybdenum	<0.04652	19.42	19.84	102	43-130
Nickel	<0.06267	24.27	23.32	96	15-165
Selenium	<0.1521	48.54	47.95	99	44-132
Silver	<0.03797	9.709	9.180	95	47-130
Thallium	0.1582	48.54	46.00	94	40-124
Vanadium	<0.05431	24.27	24.35	100	18-167
Zinc	1.341	24.27	25.95	101	6-172

Type: MSD Lab ID: QC535256

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	99.01	85.08	86	1-142	2	47
Arsenic	49.50	50.36	102	45-136	3	39
Barium	99.01	94.49	95	11-172	5	49
Beryllium	2.475	2.486	100	56-133	4	32
Cadmium	9.901	9.711	98	46-132	3	29
Chromium	99.01	93.55	94	27-153	4	40
Cobalt	24.75	23.37	94	34-139	3	42
Copper	12.38	13.42	99	12-174	8	49
Lead	99.01	93.07	94	27-147	3	54
Molybdenum	19.80	19.47	98	43-130	4	33
Nickel	24.75	23.27	94	15-165	2	46
Selenium	49.50	47.13	95	44-132	4	30
Silver	9.901	9.019	91	47-130	4	29
Thallium	49.50	45.24	91	40-124	4	28
Vanadium	24.75	23.87	96	18-167	4	39
Zinc	24.75	24.53	94	6-172	7	53

	Hexaval	lent Chromium	
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	EPA 3060A
Project#:	Y0232-03	Analysis:	EPA 7196A
Analyte:	Hexavalent Chromium	Diln Fac:	1.000
Matrix:	Soil	Batch#:	160781
Units:	mg/Kg	Received:	03/03/10
Basis:	as received	Analyzed:	03/10/10 00:00

Field ID	Туре	Lab ID	Result	RL	Sampled
MW-FP3;5.0-5.5	SAMPLE	218575-001	ND	0.40	03/03/10 09:05
MW-FP4A;5.0-5.5	SAMPLE	218575-002	92	2.0	03/03/10 07:20
MW-FP4A;10.0-10.5	SAMPLE	218575-003	310	10	03/03/10 07:35
MW-FP4A;15.0-15.5	SAMPLE	218575-004	19	0.40	03/03/10 07:38
MW-FP4A;20.0-20.5	SAMPLE	218575-005	460	9.3	03/03/10 07:46
MW-FP5;5.0-5.5	SAMPLE	218575-006	1.0	0.40	03/03/10 10:35
MW-FP5;10.0-10.5	SAMPLE	218575-007	5.3	0.40	03/03/10 10:39
MW-FP5;15.0-15.5	SAMPLE	218575-008	11	0.40	03/03/10 10:44
MW-FP5;20.0-20.5	SAMPLE	218575-009	21	0.30	03/03/10 10:50
	BLANK	QC535490	ND	0.40	

Page 1 of 1

	Hexava	lent Chromium	
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	EPA 3060A
Project#:	Y0232-03	Analysis:	EPA 7196A
Analyte:	Hexavalent Chromium	Diln Fac:	1.000
Field ID:	MW-FP5;20.0-20.5	Batch#:	160781
MSS Lab ID:	218575-009	Sampled:	03/03/10 10:50
Matrix:	Soil	Received:	03/03/10
Units:	mg/Kg	Analyzed:	03/10/10 00:00
Basis:	as received		

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC535491		4.000	36.93	92	79-118		
MS	QC535492	21.04	39.06	52.92	82	1-163		
MSD	QC535493		40.00	57.57	91	1-163	7	39

Total Organic Carbon (TOC)						
Lab #:	218575	Location:	751-785 Seventh St. Oakland			
Client:	Baseline Environmental	Prep:	METHOD			
Project#:	Y0232-03	Analysis:	WALKLEY-BLACK			
Analyte:	Total Organic Carbon	Diln Fac:	1.000			
Field ID:	MW-FP4A;20.0-20.5	Batch#:	160672			
Matrix:	Soil	Sampled:	03/03/10			
Units:	%	Received:	03/03/10			
Basis:	as received	Analyzed:	03/05/10			

Type	Lab ID	Result	RL
SAMPLE	218575-005	ND	0.01
BLANK	QC535049	ND	0.01

	Total Orga	anic Carbon (TC	OC)
Lab #:	218575	Location:	751-785 Seventh St. Oakland
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0232-03	Analysis:	WALKLEY-BLACK
Analyte:	Total Organic Carbon	Diln Fac:	1.000
Field ID:	ZZZZZZZZZ	Batch#:	160672
MSS Lab ID:	218517-008	Sampled:	02/28/10
Matrix:	Soil	Received:	03/01/10
Units:	8	Analyzed:	03/05/10
Basis:	as received		

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC535050		0.1300	0.1190	91	90-110		
MS	QC535051	0.03300	0.2000	0.1960	81	21-148		
MSD	QC535052		0.1985	0.1810	75	21-148	7	28

QUALITY CONTROL CHECKLIST FOR REVIEW OF LABORATORY REPORT

Job No. Y0323-03 **Site:** 751-785 7thSt

Laboratory:Curtis and Tompkins, Ltd.Laboratory Report No.:219511Report Date:17 March 2010BASELINE Reviewer:JM

		Yes	No	NA
(De	NERAL QUESTIONS scribe "no" responses below in "comments" section. Contact the laboratory, as requ lanation or action on "no" responses; document discussion in comments section.)	iired, fo	r furthe	er
1a.	Does the report include a case narrative? (A case narrative MUST be prepared by the lab for all analytical work requested by BASELINE)	X		
1b.	Is the number of pages for the lab report as indicated on the case narrative/lab transmittal consistent with the number of pages that are included in report?	X		
1c.	Does the case narrative indicate which samples were analyzed by a subcontractor and the subcontractor's name?			X
1d.	Does the case narrative summarize subsequent requests not shown on the chain-of-custody (e.g., additional analyses requested, release of "hold" samples)?			X
1e.	Does the case narrative explain why requested analyses could not be performed by laboratory (e.g., insufficient sample)?			X
1f.	Does the case narrative explain all problems with the QA/QC data as identified in the checklist (as applicable)?			X
2a.	Is the laboratory report format consistent and legible throughout the report?	X		
2b.	Are the sample and reported dates shown in the laboratory report correct?	X		
3a.	Does the lab report include an original copy of the chain-of-custody form?	X		
3b.	Were all samples appropriately analyzed as requested on the chain-of-custody form?	X		
4.	Was the lab report signed and dated as being reviewed by the laboratory director, QA manager, or other appropriate personnel? (Some lab reports have signature spaces for each page). (This requirement also applies to any analyses subcontracted out by the laboratory)	X		
5a.	Are preparation methods, cleanup methods (if applicable), and laboratory methods indicated for all analyses?	X		
5b.	If additional analytes were requested as part of the reporting of the data for an analytical method, were these included in the lab report?			X
6.	Are the units in the lab report provided for each analysis consistent throughout the report?	X		
7.	Are the detection limits (DL) appropriate based on the intended use of the data (e.g., DL below applicable MCLs for water quality issues)?		X	

		Yes	No	NA
8a.	Are detection limits appropriate based on the analysis performed (i.e., not elevated due to dilution effects)?	X		
8b.	If no, is an explanation provided by the laboratory?			X
9a.	Were the samples analyzed within the appropriate holding time (generally 2 weeks for volatiles, and up to 6 months for total metals)?	X		
9b.	If no, was it flagged in the report?			X
10.	If samples were composited prior to analysis, does the lab report indicate which samples were composited for each analysis?			X
11a.	Do the chromatograms confirm quantitative laboratory results (petroleum hydrocarbons)?			X
11b.	Is a standard chromatogram(s) included in the laboratory report?			X
11c.	Do the chromatograms confirm laboratory notes, if present (e.g., sample exhibits lighter hydrocarbon than standard)?			X
12.	Are the results consistent with previous analytical results from the site? (If no, contact the lab and request review/reanalysis of data, as appropriate.)	X		
13a.	REVISED LAB REPORTS ONLY. Is the revised lab report or revised pages to a lab report signed and dated as being reviewed by the laboratory director, QA manager, or other appropriate personnel?			X
13b.	REVISED LAB REPORTS ONLY. Does the case narrative indicate the date of revision and provide an explanation for the revision?			X
13c.	REVISED LAB REPORTS ONLY. Does the revised lab report adequately address the problem(s) that triggered the need for a revision?			X
13d.	REVISED LAB REPORTS ONLY. Are the data included in the revised report the same as the data reported in the original report, except where the report was revised to correct incorrectly reported data?			X
	QC Questions d/Laboratory Quality Control - Groundwater Analyses			
14.	Are field blanks reported as "ND" (groundwater samples)? A field blank is a sample of DI water that is prepared in the field using the same collection and handling procedures as the other samples collected, and used to demonstrate that the sampling procedure has not contaminated the sample.			X
14a.	Are rinsate blanks reported as "ND" (soil samples)? A rinsate blank is a sample of DI water that is prepared in the field by collecting DI rinse water after it has been poured over decontaminated sampling equipment. The rinsate blank is collected to demonstrate that the decontamination procedure has removed all the contaminants from the sampling equipment and that the sampling equipment has not contaminated the sample.			X

		Yes	No	NA
15.	Are trip blanks reported as "ND" (groundwater samples/volatile analyses)? A trip blank is a sample of contaminant free matrix placed in an appropriate container by the lab and transported with the field samples collected. Provides information regarding positive interference introduced during sample transport, storage, preservation, and analysis. The sample is NOT opened in the field.	х		
16.	Are duplicate sample results consistent with the original sample (groundwater samples)? Field duplicates consist of two independent samples collected at the same sampling location during a single sampling event. Used to evaluate precision of the analytical data and sampling technique. (Differences between the duplicate and sample results may also be attributed to environmental variability.)			X
(San few fran	ch Quality Control mples are batched together by matrix [soil, water] and analyses requested. A batch generater samples of the same matrix type, and is prepared using the same reagents, standards, proper as the samples. QC samples are run with each batch to assess performance of the entire tess.)	ocedure	s, and tii	
17.	Do the sample batch numbers and corresponding laboratory QA/QC batch numbers match?	X		
18a	Are method blanks (MB) for the analytical method(s) below the laboratory reporting limits? <i>Used to assess lab contamination and prevent false positive results</i> .	X		
18b	. If no, is an explanation provided in the case narrative to validate the data?			X
18c	Are analytes that may be considered laboratory contaminants reported below the laboratory reporting limit? <i>Common lab contaminants include acetone, methylene chloride, diethylhexyl phthalate, and di-n-octyl phthalate.</i>		X	
18d	. If no, was the laboratory contacted to determine whether the reported analyte could be a potential laboratory contaminant and was an explanation included in the case narrative?		X	
19.	Are laboratory control samples (LCS) and LCS duplicate (LCSD) [a.k.a., Blank Spike (BS) and BS duplicates (BSD)] within laboratory reporting limits? Limits should be provided on the report. LCS is a reagent blank spike with a representative selection of target analyte(s) and prepared in the same manner as the samples analyzed. The LCS should be spiked with the same analytes as the matrix spike (below). The LCS is free from interferences from the sample matrix and demonstrates the ability of the lab instruments to recover the target analytes. Accuracy (recovery information) is generally reported as % spike recovery; precision (reproducibility of results) between the LCS and LCSD is generally reported as the relative percent difference (RPD). LCS/LCSD can be run in addition to or in lieu of matrix QC data.	X		
20a	Are the Matrix QC data (i.e., MS/MSD) within laboratory limits? Limits should be provided on the lab report. The lab selects a sample from the batch and analyzes a spike and a spike duplicate of that sample. Matrix QC data is used to obtain precision and accuracy information and is reported in the same manner as LCS/LCSD. If the MS/MSD fails, the results may still be considered valid if the MB and either the LCS/LCSD or BS/BSD is within the lab's limits (failure is probably due to matrix interference).	X		

Quality Control Checklist - continued

	Yes	No	NA
20b. If no, is the MB and either LCS/LCSD or BS/BSD within lab limits to validate the data?			X
Sample Quality Control			
21a. Are the surrogate spikes reported within the lab's acceptable recovery limits? A surrogate is a non-target analyte, which is similar in chemical structure to the analyte(s) being analyzed for, and which is not commonly found in environmental samples. A known concentration of the surrogate is spiked into the sample or QA "sample" prior to extraction or sample preparation. Results are usually reported as % recovery of the spike. Failure to meet lab's limits for primary and secondary surrogates results in rebatching and reanalysis of the sample; failure of only the primary or the secondary surrogate may be acceptable under certain circumstances. Failure generally is due to coelution with the sample matrix.	X		
21b. If no, is an explanation given in the case narrative to validate the data?			X

Comments:

The groundwater sample for volatile organic analysis from MW-FB4B reportedly contain more than one milliliter of
headspace, and therefore, may be biased low.
Acetone, a common laboratory contaminant, was detected above the reporting limit in one sample.

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 219511 ANALYTICAL REPORT

Baseline Environmental

5900 Hollis Street

Emeryville, CA 94608

Project : Y0323-03

Location: 751-758 Seventh St Oakland CA

Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-FP1	219511-001
MW-FP2	219511-002
MW-FP3	219511-003
MW-FP4A	219511-004
MW-FP4B	219511-005
MW-FP5	219511-006
MW-FP6	219511-007
MW-FP7B	219511-008
TRIP BLANK	219511-009
MW-3	219511-010
MW-9	219511-011

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Deine 7. Tetrett

Project Manager

Date: <u>04/22/2010</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 219511

Client: Baseline Environmental

Project: Y0323-03

Location: 751-758 Seventh St Oakland CA

Request Date: 04/15/10 Samples Received: 04/15/10

This data package contains sample and QC results for eleven water samples, requested for the above referenced project on 04/15/10. The samples were received cold and intact.

Volatile Organics by GC/MS (EPA 8260B):

MW-FP4A (lab # 219511-004) was analyzed with more than 1 mL of headspace in the VOA vial. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7470A):

No analytical problems were encountered.

Hexavalent Chromium (EPA 7196A):

No analytical problems were encountered.

CHAIN OF CUSTODY RECORD

5900 Hollis Street, Suite D

Emeryville, CA 94608

Tel: (510) 420-8686 Fax: (510) 420-1707

Turn-Around-Time Standard

Laboratory Curtis and Tompkins, Ltd.

BASELINE Contact Person Lydia Huang

Y0323-03 Project Number IPH-d and mo (EPA Method 8015M with silica gel cleanup) MTBE (EPA Method 8260B) Cr-VI (EPA Method 7196A)* Title 22 Metals (EPA Method 6010B/7471)* 751-758 7th St. Project Name: VOC (EPA Method 8260B) Containers PCB (EPA Method 8082) (Keginald Ramon) Total Suspended Solids EPA Method 8015M) SVOC (EPA Method Type Preservative Dissolved Sulfides **TDS (SM2540C)** Remarks 00 ml-Poly 10-ml VOA ,504 Sample ID Date Time Media Х X X 8:30 X MW-FP1 4/15/10 Water 8 wls 3 Х X X X 4/15/10 MW-FP2 Water X X \mathbf{X} Q:00 X MW-FP3 4/15/10 Water Date/Time Relinquished by: (Signature) Date/Time Received by: (Signature) Remarks: U 4/15/2010 \$ 21 Keginald Kameres 15:21 Relinquished by: (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Date/Time Received by: (Signature) Email contact: Received at laboratory with intact custody Samples conditions Upon | Comments: * Lab to Filter and Preserve seal Arrival: Yes No Colo a nach Intact On Ice Cold

CHAIN OF CUSTODY RECORD

5900 Hollis Street, Suite D

Emeryville, CA 94608

Tel: (510) 420-8686 Fax: (510) 420-1707

Turn-Around-Time Standard
Laboratory Curtis and Tompkins, Ltd.

BASELINE Contact Person Lydia Huang

Tel: (510) 4	20-8686 Fax	(510) 420	0-1707																				1 013011		
Project Nun Project Nan			Y0323-03 751-758 7t	h St.											thod anup)	B)	(B)	<u>(</u> 0					6A)*	thod	·
		<u> </u>	Kezinald		Y		Containers Type Preservative		15M)	PA Met a gel cle	od 8260	thod 826	thod 827	od 8082	8	Solids		hod 719	EPA Me	_					
	Sample		Date	Time	Media	Vo (total)	-AG	40-mi vOA 1000 ml-Poly	500 ml-Poly	ice (ce	HCL	HNO,	H ₂ SO ₄	TPH-g & BTEX (EPA Method 801	TPH-d and mo (EPA Method 8015M with silica gel cleanup)	VOC (EPA Method 8260B)	MTBE (EPA Method 8260B)	SVOC (EPA Method 8270)	PCB (EPA Method 8082)	Dissolved Sulfides	Total Suspended Solids	TDS (SM2540C)	Cr-VI (EPA Method 7196A)*	Title 22 Metals (EPA Method 6010B/7471)*	Remarks
4	MW-FP		4/15/10			ws 5	3	<u> </u>	1	X	X					X							Х	X	Elevated Cr + 6
5	MW-FP	4B	4/15/10	1430	Water	wb &	7	3	1	X	X					X							X	Х	
6	MW-FI	P5	4/15/10	13:00	Water	W 5 8	3	3	1	x	x					X							X	Х	
	shed by: (Signald) shed by: (Signald)					Date/	15/20	10 /	5;21	-	/		Signat Signat	13 L) <u>(</u>	· · · · · · · · · · · · · · · · · · ·		Date/I	Time	10	5:29	Remark	cs:		
Relinqui	shed by: (S	ignature))			Date/	Гime			Re	ceived	l by: (Signat	ure)								Email c	contact:		
Receiv		atory wit seal No	th intact custody		conditions Arrival: On Ice			nents:	* Lab	to Fi	lter a	nd P	reserv	e		<u> </u>		l							
L	103			1 mact	011 100											-			_						

CON Earl

CHAIN OF CUSTODY RECORD

5900 Hollis Street, Suite D

Emeryville, CA 94608

Tel: (510) 420-8686 Fax: (510) 420-1707

Turn-Around-Time Standard
Laboratory Curtis and Tompkins, Ltd.
BASELINE Contact Person Lydia Huang

1el: (310) 420-808	36 Fax: (510) 420-1707																							
Project Number Project Name:		Y0323-03 751-758 7th	St.							· ·				hod anup)	B)	90B)	<u>(</u>				ļ	6A)*	sthod	
Samplers: (Signatu	at lut			mvi,		Containers Type Preservat			vative	e	15M)	PA Met a gel cle	od 8260	thod 826	thod 827	od 8082)	န	Solids		thod 719	EPA Me	Dd		
7	nple ID	Date	Time	Media	Vo. (total)	-AG	40-mi vOA 1000 ml-Poly	500 ml-Poly 250 ml Poly	ice	нсг	HNO3 H.SO.	naOH	TPH-g & BTEX (EPA Method 8015M)	TPH-d and mo (EPA Method 8015M with silica gel cleanup)	VOC (EPA Method 8260B)	MTBE (EPA Method 8260B)	SVOC (EPA Method 8270)	PCB (EPA Method 8082)	Dissolved Sulfides	Total Suspended Solids	TDS (SM2540C)	Cr-VI (EPA Method 7196A)*	Title 22 Metals (EPA Method 6010B/7471)*	Remarks
1	W-FP6	4/15/10	1/:35	Water	5		3	1	X	X					X							X	X	
*8	V-FP7B	4/15/10	12:13	Water	5/8		3 3	1	X	X					X							X	Х	
Tric 6	Blenk	4/15/10	710)	water	2	2	2								¥									
Relinquished by Keymal, Relinquished by	by: (Signature) A Harry by: (Signature)				Date/T 4//9 Date/T	5/10	/5	12(Rec	eived l	oy: (S:	ignatu	re) 33 (re)	N			Date/I	ime 5//0	, <u>U 1</u>	5:21	Remark	cs:		
Relinquished by: (Signature) Date/Time Received by: (Signature)						by: (S	ignatu	ire)								Email	contact:							
	laboratory with inta seal Yes No Na	act custody		conditions Arrival: On Ice		Comn	nents:	* Lab	to Fi	lter an	d Pre	eserve					•							

Colo ana

CHAIN OF CUSTODY RECORD

5900 Hollis Street, Suite D

Emeryville, CA 94608

Tel: (510) 420-8686 Fax: (510) 420-1707

Turn-Around-Time Standard
Laboratory Curtis and Tompkins, Ltd.

BASELINE Contact Person Lydia Huang

		<u> </u>																					
Project Number	Y0323-03												ъ (dr		3)						*	- P	
Project Name:	751-758 7th						ontain	050				-	ean ean	0B)	(100E	(5)					(A)	ethic	
Samplers: (Signature)	Mari II	K 40	. .				ontain	ers				5M)	M J	826	d 82	182	3082		ş		715	M	
weener sur 8	regusaco	70000	γ			Type		_	Pres	ervat	ive		EP A	poq	tho	l k	po	S	Sol		pod!	EP.	D1
				No. (total)	AG	000 ml-Poly	500 ml-Poly 250 ml Polv			D ³	o"	TPH-g & BTEX (EPA Method 801	and mc with si	VOC (EPA Method 8260B)	MTBE (EPA Method 8260B)	SVOC (EPA Method 8270)	PCB (EPA Method 8082)	Dissolved Sulfides	Total Suspended Solids	TDS (SM2540C)	Cr-VI (EPA Method 7196A)*	Title 22 Metals (EPA Method 6010B/7471)*	Remarks
Sample ID	Date	Time	Media	ģ		Į	500	lce	ᆵ	HNO3	H2SO4		£ 8 8 1	_	×	SV	PC PC	Ä	To	E	ర	<u>£</u> 8	
V					B	13	_	ı	X		_			X									
X		٠.		5			1	-	\vdash		_	.	<u> </u>		<u> </u>						X		
MW-3	4/15/10	10:10	Water	8	_	+	1	Х	\vdash	\dashv	+	+	<u> </u>		-							X	
′″ \ O						+	-	┨	\vdash				 					-					
•					_	+	\dashv	1	H	+	-		 										
/					В	13	<u> </u>	T	Х					Х									
				ا ہے ا			1]													X		
18 MW-9	4/15/10	10076	Water	5/8			1	$\mathbf{I}_{\mathbf{x}}$														X	
,, III,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10. 2 7		~		$\perp \downarrow$		1	Ш		_												
~ /						++		-	\sqcup	_	_	_	ļ										
					+	++	+	├	$\vdash \vdash$	+			-										
					+	++	+	1		+		-						···					
			1		_	+	-	1		_		+			ļ								
						11		1					† · · · · ·										
		İ																					
								_		Щ			<u> </u>										
Relinquished by: (Signature)				Date/T		1	. /	Rec	eived	_by:-(Signat	ure)				Date/1	yme /	//	()	Remark	S:		
Kezinald Kanny				4/13		15:1	<u> </u>	L	/0	t Go	2/) R			1/	<u> </u>	_//					
Relinquished by: (Signature)				Date/T	ime			Rec	eived	by: (Signat	ure)					-		,				·
Relinquished by: (Signature)				Date/T	ime			Rec	eived	by: (Signat	ure)								Email c	ontact:		
Received at laboratory with in seal	ntact custody		conditions Arrival:	Upon	Comm	ents: *	Lab	to Fil	ter a	nd Pi	reserv	e				I							
Yes No Na	a	Intact	On Ice	Cold																			

cold of Mass

COOLER RECEIPT CHECKLIST

Login	# 219511	Dat	e Received <u>4</u>	1-15-10	<u> </u>	umber of coolers	1
	BASELINE		Proj	ject_75	1-758	3 7IH ST	
Date C	Opened <u>4-15-1</u>	By (print) By (print)	S. Evan	<u>></u>	(sign)	Parle +	
1. Did	cooler come wi		lip (airbill, etc			YES	1
	ere custody sea How many		_ Name			_ Date	NO
 Wer Wer Is t 	ere custody sea re custody paper re custody paper he project ident cate the packing	rs dry and intac rs filled out pro ifiable from cu	t when receiv perly (ink, sig stody papers?	red? gned, etc) (If so fil)?	YES YES of form)_YES	NO WAD NO NO NO
7. Ten		Foan Card			s ofoam	☐ None ☐ Paper tov	vels
	Type of ice us	ed: Wet	☐ Blue/Gel	□No	one	Temp(°C)	
	Samples Ro					ank	
	_					rocess had begun	
	ere Method 5035 If YES, what t all bottles arriv	ime were they	transferred to	t? freezer?			ES) NO
10. A	re samples in the sample labels	e appropriate c	ontainers for				ES NO ES NO
	the sample lab					6	ES NO
	as sufficient am e the samples a	-		requeste	d?	(YES)	ES) NO NO N/A
15. Ar	e bubbles > 6m	m absent in VC	A samples? _			(YES)	NO N/A
16. W	as the client cor If YES, Who	tacted concern was called?					YES NO
COM	MENTS						
							· · · · · · · · · · · · · · · · · · ·
							· · · · · · · · · · · · · · · · · ·

SOP Volume:

Client Services

Section: Page: 1.1.2

1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

F:\qc\forms\client services\Cooler Receipt Checklist_rv6.doc

	Purgeable Or	ganics by GC/MS	
Lab #:	219511	Location: 751-758	Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 50301	В
Project#:	Y0323-03	Analysis: EPA 8260	В
Field ID:	MW-FP1	Batch#: 1	62139
Lab ID:	219511-001	Sampled: 0	4/15/10
Matrix:	Water	Received: 0	4/15/10
Units:	ug/L	Analyzed: 0	4/19/10
Diln Fac:	1.000		

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

RL= Reporting Limit

	Purgeable O	ganics by GC/MS	
Lab #:	219511	Location: 751-758 Sevent	h St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B	
Project#:	Y0323-03	Analysis: EPA 8260B	
Field ID:	MW-FP1	Batch#: 162139	
Lab ID:	219511-001	Sampled: 04/15/1	0
Matrix:	Water	Received: 04/15/1	0
Units:	ug/L	Analyzed: 04/19/1	0
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	81-124	
1,2-Dichloroethane-d4	107	73-140	
Toluene-d8	101	88-113	
Bromofluorobenzene	98	80-127	

RL= Reporting Limit

Page 2 of 2

	Purgeable On	rganics by GC/M	1S
Lab #:	219511	Location: 751-	758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA	5030B
Project#:	Y0323-03	Analysis: EPA	8260B
Field ID:	MW-FP2	Batch#:	162139
Lab ID:	219511-002	Sampled:	04/15/10
Matrix:	Water	Received:	04/15/10
Units:	ug/L	Analyzed:	04/19/10
Diln Fac:	1.000		

Freon 12 ND 1.0 Chloromethane ND 1.0 Vinyl Chloride ND 0.5 Bromomethane ND 1.0 Chloroethane ND 1.0 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Acetone ND 1.0 Freon 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 0.5 2-Butanone ND 0.5 2-Butanone ND 0.5 2,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1-Trichloroethane ND 0.5 1,1-	
Chloromethane ND 1.0 Vinyl Chloride ND 0.5 Bromomethane ND 1.0 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Acetone ND 10 Freon 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 10 Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5	
Vinyl Chloride ND 0.5 Bromomethane ND 1.0 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Acetone ND 10 Freon 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 10 Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 2,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5	
Bromomethane	
Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Acetone ND 10 Freon 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 10 Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5	
Trichlorofluoromethane ND 1.0 Acetone ND 10 Freon 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 10 Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 2,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5	
Acetone ND 10 Freon 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 10 Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 2,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5	
Freon 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 10 Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 2,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5	
1,1-DichloroetheneND0.5Methylene ChlorideND10Carbon DisulfideND0.5MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.5	
Methylene Chloride ND 10 Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 2,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5	
Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 10 cis-1,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5	
MTBEND0.5trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.5	
trans-1,2-DichloroetheneND0.5Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.5	
Vinyl AcetateND101,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.5	
1,1-DichloroethaneND0.52-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.5	
2-ButanoneND10cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.5	
cis-1,2-DichloroetheneND0.52,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.5	
2,2-DichloropropaneND0.5ChloroformND0.5BromochloromethaneND0.51,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.5	
Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5	
Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5	
1,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.5	
1,1-DichloropropeneND0.5Carbon TetrachlorideND0.5	
1,1-DichloropropeneND0.5Carbon TetrachlorideND0.5	
Carbon Tetrachloride ND 0.5	
1,2-Dichloroethane ND 0.5	
Benzene ND 0.5	
Trichloroethene ND 0.5	
1,2-Dichloropropane ND 0.5	
Bromodichloromethane ND 0.5	
Dibromomethane ND 0.5	
4-Methyl-2-Pentanone ND 10	
cis-1,3-Dichloropropene ND 0.5	
Toluene ND 0.5	
trans-1,3-Dichloropropene ND 0.5	
1,1,2-Trichloroethane ND 0.5	
2-Hexanone ND 10	
1,3-Dichloropropane ND 0.5	
Tetrachloroethene ND 0.5	

RL= Reporting Limit

Page 1 of 2

	Purgeable O	ganics by GC/MS	
Lab #:	219511	Location: 751-758 Sev	renth St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B	
Project#:	Y0323-03	Analysis: EPA 8260B	
Field ID:	MW-FP2	Batch#: 1621	.39
Lab ID:	219511-002	Sampled: 04/1	5/10
Matrix:	Water	Received: 04/1	5/10
Units:	ug/L	Analyzed: 04/1	9/10
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	81-124	
1,2-Dichloroethane-d4	107	73-140	
Toluene-d8	100	88-113	
Bromofluorobenzene	99	80-127	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS					
Lab #:	219511	Location: 751-7	758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: EPA 5	5030B		
Project#:	Y0323-03	Analysis: EPA 8	3260B		
Field ID:	MW-FP3	Batch#:	162139		
Lab ID:	219511-003	Sampled:	04/15/10		
Matrix:	Water	Received:	04/15/10		
Units:	ug/L	Analyzed:	04/19/10		
Diln Fac:	1.000				

Pecul+	DT.	
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 1.0 ND 0.5 ND 1.0 ND 1.0 ND 1.0 ND 10 ND 0.5 ND 0.5

RL= Reporting Limit

	Purgeable O	ganics by GC/MS	
Lab #:	219511	Location: 751-758 Seventh	St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B	
Project#:	Y0323-03	Analysis: EPA 8260B	
Field ID:	MW-FP3	Batch#: 162139	
Lab ID:	219511-003	Sampled: 04/15/10	
Matrix:	Water	Received: 04/15/10	
Units:	ug/L	Analyzed: 04/19/10	
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	81-124	
1,2-Dichloroethane-d4	107	73-140	
Toluene-d8	101	88-113	
Bromofluorobenzene	99	80-127	

RL= Reporting Limit

Page 2 of 2

	Purgeable O	ganics by GC/MS	
Lab #:	219511	Location: 751-758 Seventh	St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B	
Project#:	Y0323-03	Analysis: EPA 8260B	
Field ID:	MW-FP4A	Batch#: 162188	
Lab ID:	219511-004	Sampled: 04/15/10	
Matrix:	Water	Received: 04/15/10	
Units:	ug/L	Analyzed: 04/20/10	
Diln Fac:	1.000		

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND ND	1.0	
Vinyl Chloride	ND ND	0.5	
Bromomethane	ND ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND ND	1.0	
Acetone	34	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	0.5	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	1.9	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	31	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	51	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

RL= Reporting Limit

	Purgeable O	ganics by GC/MS	
Lab #:	219511	Location: 751-758 Seventh	St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B	
Project#:	Y0323-03	Analysis: EPA 8260B	
Field ID:	MW-FP4A	Batch#: 162188	
Lab ID:	219511-004	Sampled: 04/15/10	
Matrix:	Water	Received: 04/15/10	
Units:	ug/L	Analyzed: 04/20/10	
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	98	81-124	
1,2-Dichloroethane-d4	115	73-140	
Toluene-d8	100	88-113	
Bromofluorobenzene	100	80-127	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS							
Lab #:	219511	Location: 751-758 Seventh St Oakland CA					
Client:	Baseline Environmental	Prep: EPA 5030B					
Project#:	Y0323-03	Analysis: EPA 8260B					
Field ID:	MW-FP4B	Batch#: 162139					
Lab ID:	219511-005	Sampled: 04/15/10					
Matrix:	Water	Received: 04/15/10					
Units:	ug/L	Analyzed: 04/19/10					
Diln Fac:	1.000						

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	19	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

RL= Reporting Limit

	Purgeable O	ganics by GC/MS	
Lab #:	219511	Location: 751-758 Sevent	h St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B	
Project#:	Y0323-03	Analysis: EPA 8260B	
Field ID:	MW-FP4B	Batch#: 162139	
Lab ID:	219511-005	Sampled: 04/15/1	0
Matrix:	Water	Received: 04/15/1	0
Units:	ug/L	Analyzed: 04/19/1	0
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	81-124	
1,2-Dichloroethane-d4	108	73-140	
Toluene-d8	101	88-113	
Bromofluorobenzene	97	80-127	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	219511	Location: 751-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: EPA 5030B		
Project#:	Y0323-03	Analysis: EPA 8260B		
Field ID:	MW-FP5	Batch#: 162139		
Lab ID:	219511-006	Sampled: 04/15/10		
Matrix:	Water	Received: 04/15/10		
Units:	ug/L	Analyzed: 04/19/10		
Diln Fac:	1.000			

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND ND	0.5	
trans-1,2-Dichloroethene	ND ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND ND	0.5	
Chloroform		0.5	
Bromochloromethane	ND ND	0.5	
1,1,1-Trichloroethane		0.5	
	ND	0.5	
1,1-Dichloropropene Carbon Tetrachloride	ND		
1,2-Dichloroethane	ND	0.5 0.5	
	ND		
Benzene	ND	0.5	
Trichloroethene	1.2	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

RL= Reporting Limit

	Purgeable O	rganics by GC/MS	
Lab #:	219511	Location: 751-758 Se	venth St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B	
Project#:	Y0323-03	Analysis: EPA 8260B	
Field ID:	MW-FP5	Batch#: 162	139
Lab ID:	219511-006	Sampled: 04/	15/10
Matrix:	Water	Received: 04/	15/10
Units:	ug/L	Analyzed: 04/	19/10
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	81-124	
1,2-Dichloroethane-d4	108	73-140	
Toluene-d8	101	88-113	
Bromofluorobenzene	99	80-127	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	219511	Location: 751-758 Seventh St Oakl	and CA	
Client:	Baseline Environmental	Prep: EPA 5030B		
Project#:	Y0323-03	Analysis: EPA 8260B		
Field ID:	MW-FP6	Batch#: 162139		
Lab ID:	219511-007	Sampled: 04/15/10		
Matrix:	Water	Received: 04/15/10		
Units:	ug/L	Analyzed: 04/19/10		
Diln Fac:	1.000			

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND ND	1.0	
Vinyl Chloride	ND ND	0.5	
Bromomethane	ND ND	1.0	
Chloroethane	ND ND	1.0	
Trichlorofluoromethane	ND ND	1.0	
Acetone		10	
	ND		
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	9.4	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	219511	Location: 751-758 S	eventh St Oakland CA		
Client:	Baseline Environmental	Prep: EPA 5030B			
Project#:	Y0323-03	Analysis: EPA 8260B			
Field ID:	MW-FP6	Batch#: 16	2139		
Lab ID:	219511-007	Sampled: 04	/15/10		
Matrix:	Water	Received: 04	/15/10		
Units:	ug/L	Analyzed: 04	/19/10		
Diln Fac:	1.000				

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	81-124	
1,2-Dichloroethane-d4	107	73-140	
Toluene-d8	101	88-113	
Bromofluorobenzene	98	80-127	

RL= Reporting Limit

Page 2 of 2

	Purgeable Or	ganics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Field ID:	MW-FP7B	Batch#: 162139
Lab ID:	219511-008	Sampled: 04/15/10
Matrix:	Water	Received: 04/15/10
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND ND	1.0	
Acetone		1.0	
	ND		
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	1.3	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	2.3	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	7.9	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	4.9	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

RL= Reporting Limit

	Purgeable O	ganics by GC/MS	
Lab #:	219511	Location: 751-758 Seventh St O	akland CA
Client:	Baseline Environmental	Prep: EPA 5030B	
Project#:	Y0323-03	Analysis: EPA 8260B	
Field ID:	MW-FP7B	Batch#: 162139	
Lab ID:	219511-008	Sampled: 04/15/10	
Matrix:	Water	Received: 04/15/10	
Units:	ug/L	Analyzed: 04/19/10	
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	81-124	
1,2-Dichloroethane-d4	109	73-140	
Toluene-d8	101	88-113	
Bromofluorobenzene	99	80-127	

RL= Reporting Limit

Page 2 of 2

	Purgeable O	rganics by GC/M	s
Lab #:	219511	Location: 751-	758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA !	5030B
Project#:	Y0323-03	Analysis: EPA 8	8260B
Field ID:	TRIP BLANK	Batch#:	162139
Lab ID:	219511-009	Sampled:	04/15/10
Matrix:	Water	Received:	04/15/10
Units:	ug/L	Analyzed:	04/19/10
Diln Fac:	1.000		

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

RL= Reporting Limit

	Purgeable O	rganics by GC/MS	
Lab #:	219511	Location: 751-758 Seventh St Oakland CA	
Client:	Baseline Environmental	Prep: EPA 5030B	
Project#:	Y0323-03	Analysis: EPA 8260B	
Field ID:	TRIP BLANK	Batch#: 162139	
Lab ID:	219511-009	Sampled: 04/15/10	
Matrix:	Water	Received: 04/15/10	
Units:	ug/L	Analyzed: 04/19/10	
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	99	81-124	
1,2-Dichloroethane-d4	104	73-140	
Toluene-d8	102	88-113	
Bromofluorobenzene	100	80-127	

RL= Reporting Limit

Page 2 of 2

	Purgeable Or	ganics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Field ID:	MW-3	Batch#: 162139
Lab ID:	219511-010	Sampled: 04/15/10
Matrix:	Water	Received: 04/15/10
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	0.	6 0.5
MTBE	1.	0 0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	0.	5 0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5

Page 1 of 2

	Purgeable O	ganics by GC/MS	
Lab #:	219511	Location: 751-758 Seventh	St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B	
Project#:	Y0323-03	Analysis: EPA 8260B	
Field ID:	MW-3	Batch#: 162139	
Lab ID:	219511-010	Sampled: 04/15/10	
Matrix:	Water	Received: 04/15/10	
Units:	ug/L	Analyzed: 04/19/10	
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	103	81-124	
1,2-Dichloroethane-d4	110	73-140	
Toluene-d8	102	88-113	
Bromofluorobenzene	100	80-127	

RL= Reporting Limit

Page 2 of 2

	Purgeable O	rganics by GC/	MS
Lab #:	219511	Location: 751	-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA	5030B
Project#:	Y0323-03	Analysis: EPA	8260B
Field ID:	MW-9	Batch#:	162139
Lab ID:	219511-011	Sampled:	04/15/10
Matrix:	Water	Received:	04/15/10
Units:	ug/L	Analyzed:	04/19/10
Diln Fac:	1.000		

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND ND	1.0	
Vinyl Chloride	ND ND	0.5	
Bromomethane		1.0	
	ND		
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	1.3	0.5	
trans-1,2-Dichloroethene	0.9	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	48	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	27	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

RL= Reporting Limit

	Purgeable O	rganics by GC/MS	
Lab #:	219511	Location: 751-758 S	eventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030E	}
Project#:	Y0323-03	Analysis: EPA 8260E	S .
Field ID:	MW-9	Batch#: 16	2139
Lab ID:	219511-011	Sampled: 04	:/15/10
Matrix:	Water	Received: 04	:/15/10
Units:	ug/L	Analyzed: 04	/19/10
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	81-124	
1,2-Dichloroethane-d4	108	73-140	
Toluene-d8	101	88-113	
Bromofluorobenzene	98	80-127	

RL= Reporting Limit

Page 2 of 2

	Purgeable O	rganics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Matrix:	Water	Batch#: 162139
Units:	ug/L	Analyzed: 04/19/10
Diln Fac:	1.000	

Type: BS Lab ID: QC540929

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	23.78	95	71-136
Benzene	25.00	24.51	98	81-122
Trichloroethene	25.00	23.09	92	80-124
Toluene	25.00	25.12	100	82-122
Chlorobenzene	25.00	26.00	104	84-118

Surrogate	%REC	Limits	
Dibromofluoromethane	100	81-124	
1,2-Dichloroethane-d4	103	73-140	
Toluene-d8	101	88-113	
Bromofluorobenzene	97	80-127	

Type: BSD Lab ID: QC540930

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	24.00	96	71-136	1	15
Benzene	25.00	24.32	97	81-122	1	12
Trichloroethene	25.00	22.85	91	80-124	1	13
Toluene	25.00	24.79	99	82-122	1	12
Chlorobenzene	25.00	25.76	103	84-118	1	11

Surrogate	%REC	Limits
Dibromofluoromethane	99	81-124
1,2-Dichloroethane-d4	103	73-140
Toluene-d8	102	88-113
Bromofluorobenzene	95	80-127

	Purgeable Organics by GC/MS						
Lab #:	219511	Location: 751-758 Seventh St Oakland CA					
Client:	Baseline Environmental	Prep: EPA 5030B					
Project#:	Y0323-03	Analysis: EPA 8260B					
Type:	BLANK	Diln Fac: 1.000					
Lab ID:	QC540931	Batch#: 162139					
Matrix:	Water	Analyzed: 04/19/10					
Units:	ug/L						

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Purgeable Organics by GC/MS						
Lab #:	219511	Location:	751-758 Seventh St Oakland CA			
Client:	Baseline Environmental	Prep:	EPA 5030B			
Project#:	Y0323-03	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC540931	Batch#:	162139			
Matrix:	Water	Analyzed:	04/19/10			
Units:	ug/L					

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	99	81-124	
1,2-Dichloroethane-d4	105	73-140	
Toluene-d8	101	88-113	
Bromofluorobenzene	98	80-127	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Purgeable O	rganics by GC/MS
Lab #:	219511	Location: 751-758 Seventh St Oakland CA
Client:	Baseline Environmental	Prep: EPA 5030B
Project#:	Y0323-03	Analysis: EPA 8260B
Matrix:	Water	Batch#: 162188
Units:	ug/L	Analyzed: 04/20/10
Diln Fac:	1.000	

Type: BS Lab ID: QC541154

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	20.00	16.81	84	71-136
Benzene	20.00	18.85	94	81-122
Trichloroethene	20.00	18.89	94	80-124
Toluene	20.00	18.65	93	82-122
Chlorobenzene	20.00	18.05	90	84-118

Surrogate	%REC	Limits	
Dibromofluoromethane	100	81-124	
1,2-Dichloroethane-d4	110	73-140	
Toluene-d8	103	88-113	
Bromofluorobenzene	101	80-127	

Type: BSD Lab ID: QC541155

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	20.00	16.26	81	71-136	3	15
Benzene	20.00	17.79	89	81-122	6	12
Trichloroethene	20.00	18.16	91	80-124	4	13
Toluene	20.00	17.92	90	82-122	4	12
Chlorobenzene	20.00	17.49	87	84-118	3	11

Surrogate	%REC	imits	
Dibromofluoromethane	98	31-124	
1,2-Dichloroethane-d4	110	73-140	
Toluene-d8	102	88-113	
Bromofluorobenzene	100	30-127	

Purgeable Organics by GC/MS						
Lab #:	219511	Location: 751-758 Seventh St Oakland CA				
Client:	Baseline Environmental	Prep: EPA 5030B				
Project#:	Y0323-03	Analysis: EPA 8260B				
Type:	BLANK	Diln Fac: 1.000				
Lab ID:	QC541156	Batch#: 162188				
Matrix:	Water	Analyzed: 04/20/10				
Units:	ug/L					

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS						
Lab #:	219511	Location: 751	-758 Seventh St Oakland CA			
Client:	Baseline Environmental	Prep: EPA	5030B			
Project#:	Y0323-03	Analysis: EPA	8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC541156	Batch#:	162188			
Matrix:	Water	Analyzed:	04/20/10			
Units:	ug/L					

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	99	81-124	
1,2-Dichloroethane-d4	113	73-140	
Toluene-d8	99	88-113	
Bromofluorobenzene	99	80-127	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

Dissolved California Title 22 Metals						
Lab #:	219511	Location: 751	-758 Seventh St Oakland CA			
Client:	Baseline Environmental	Prep: MET	HOD			
Project#:	Y0323-03					
Field ID:	MW-FP1	Diln Fac:	1.000			
Lab ID:	219511-001	Sampled:	04/15/10			
Matrix:	Filtrate	Received:	04/15/10			
Units:	ug/L					

Analyte	Result	RL	Batch# Prepared	Analyzed Analysis
Antimony	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Arsenic	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Barium	41	5.0	162181 04/19/10	04/20/10 EPA 6010B
Beryllium	ND	2.0	162181 04/19/10	04/20/10 EPA 6010B
Cadmium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Chromium	13	5.0	162181 04/19/10	04/20/10 EPA 6010B
Cobalt	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Copper	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Lead	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Mercury	ND	0.20	162085 04/16/10	04/16/10 EPA 7470A
Molybdenum	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Nickel	16	5.0	162181 04/19/10	04/20/10 EPA 6010B
Selenium	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Silver	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Thallium	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Vanadium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Zinc	ND	20	162181 04/19/10	04/20/10 EPA 6010B

Dissolved California Title 22 Metals						
Lab #:	219511	Location: 751-	-758 Seventh St Oakland CA			
Client:	Baseline Environmental	Prep: METH	IOD			
Project#:	Y0323-03					
Field ID:	MW-FP2	Diln Fac:	1.000			
Lab ID:	219511-002	Sampled:	04/15/10			
Matrix:	Filtrate	Received:	04/15/10			
Units:	ug/L					

Analyte	Result	RL	Batch# Prepared	Analyzed Analysis	
Antimony	ND	10	162181 04/19/10	04/20/10 EPA 6010B	
Arsenic	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B	
Barium	61	5.0	162181 04/19/10	04/20/10 EPA 6010B	
Beryllium	ND	2.0	162181 04/19/10	04/20/10 EPA 6010B	
Cadmium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B	
Chromium	22	5.0	162181 04/19/10	04/20/10 EPA 6010B	
Cobalt	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B	
Copper	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B	
Lead	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B	
Mercury	ND	0.20	162085 04/16/10	04/16/10 EPA 7470A	
Molybdenum	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B	
Nickel	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B	
Selenium	ND	10	162181 04/19/10	04/20/10 EPA 6010B	
Silver	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B	
Thallium	ND	10	162181 04/19/10	04/20/10 EPA 6010B	
Vanadium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B	
Zinc	ND	20	162181 04/19/10	04/20/10 EPA 6010B	

Dissolved California Title 22 Metals						
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA			
Client:	Baseline Environmental	Prep: METHOD				
Project#:	Y0323-03					
Field ID:	MW-FP3	Diln Fac:	1.000			
Lab ID:	219511-003	Sampled:	04/15/10			
Matrix:	Filtrate	Received:	04/15/10			
Units:	ug/L					

Analyte	Result	RL	Batch# Prepared	Analyzed Analysis
Antimony	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Arsenic	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Barium	49	5.0	162181 04/19/10	04/20/10 EPA 6010B
Beryllium	ND	2.0	162181 04/19/10	04/20/10 EPA 6010B
Cadmium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Chromium	150	5.0	162181 04/19/10	04/20/10 EPA 6010B
Cobalt	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Copper	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Lead	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Mercury	ND	0.20	162085 04/16/10	04/16/10 EPA 7470A
Molybdenum	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Nickel	25	5.0	162181 04/19/10	04/20/10 EPA 6010B
Selenium	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Silver	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Thallium	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Vanadium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Zinc	71	20	162181 04/19/10	04/20/10 EPA 6010B

Dissolved California Title 22 Metals						
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA			
Client:	Baseline Environmental Prep: METHOD					
Project#:	Y0323-03					
Field ID:	MW-FP4A	Units:	ug/L			
Lab ID:	219511-004	Sampled:	04/15/10			
Matrix:	Filtrate	Received:	04/15/10			

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Analysis
Antimony	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B
Arsenic	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Barium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Beryllium	ND	2.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Cadmium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Chromium	400,000	500	100.0	162181	04/19/10	04/20/10	EPA 6010B
Cobalt	180	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Copper	37	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Lead	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Mercury	ND	0.20	1.000	162085	04/16/10	04/16/10	EPA 7470A
Molybdenum	68	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Nickel	930	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Selenium	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B
Silver	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Thallium	110	10	1.000	162181	04/19/10	04/20/10	EPA 6010B
Vanadium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Zinc	61	20	1.000	162181	04/19/10	04/20/10	EPA 6010B

Dissolved California Title 22 Metals					
Lab #:	219511	Location: 751	-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: MET	HOD		
Project#:	Y0323-03				
Field ID:	MW-FP4B	Diln Fac:	1.000		
Lab ID:	219511-005	Sampled:	04/15/10		
Matrix:	Filtrate	Received:	04/15/10		
Units:	ug/L				

Analyte	Result	RL	Batch# Prepared	Analyzed Analysis
Antimony	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Arsenic	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Barium	41	5.0	162181 04/19/10	04/20/10 EPA 6010B
Beryllium	ND	2.0	162181 04/19/10	04/20/10 EPA 6010B
Cadmium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Chromium	43	5.0	162181 04/19/10	04/20/10 EPA 6010B
Cobalt	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Copper	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Lead	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Mercury	ND	0.20	162085 04/16/10	04/16/10 EPA 7470A
Molybdenum	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Nickel	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Selenium	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Silver	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Thallium	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Vanadium	20	5.0	162181 04/19/10	04/20/10 EPA 6010B
Zinc	30	20	162181 04/19/10	04/20/10 EPA 6010B

Dissolved California Title 22 Metals					
Lab #:	219511	Location: 751	-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: METI	HOD		
Project#:	Y0323-03				
Field ID:	MW-FP5	Units:	ug/L		
Lab ID:	219511-006	Sampled:	04/15/10		
Matrix:	Filtrate	Received:	04/15/10		

Analyte	Result	RL	Diln Fac	Batch#	Prepared	Analyzed	Analysis
Antimony	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B
Arsenic	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Barium	51	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Beryllium	ND	2.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Cadmium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Chromium	11,000	50	10.00	162181	04/19/10	04/20/10	EPA 6010B
Cobalt	5.6	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Copper	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Lead	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Mercury	ND	0.20	1.000	162085	04/16/10	04/16/10	EPA 7470A
Molybdenum	16	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Nickel	9.9	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Selenium	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B
Silver	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Thallium	ND	10	1.000	162181	04/19/10	04/20/10	EPA 6010B
Vanadium	ND	5.0	1.000	162181	04/19/10	04/20/10	EPA 6010B
Zinc	25	20	1.000	162181	04/19/10	04/20/10	EPA 6010B

Dissolved California Title 22 Metals					
Lab #:	219511	Location: 751-7	58 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: METHO	D		
Project#:	Y0323-03				
Field ID:	MW-FP6	Units:	ug/L		
Lab ID:	219511-007	Sampled:	04/15/10		
Matrix:	Filtrate	Received:	04/15/10		

Analyte	Result	RL	Diln Fac	Batch# Prepared Analyzed Analysis
Antimony	ND	10	1.000	162181 04/19/10 04/20/10 EPA 6010B
Arsenic	ND	5.0	1.000	162181 04/19/10 04/20/10 EPA 6010B
Barium	40	5.0	1.000	162181 04/19/10 04/20/10 EPA 6010B
Beryllium	ND	2.0	1.000	162181 04/19/10 04/20/10 EPA 6010B
Cadmium	ND	5.0	1.000	162181 04/19/10 04/20/10 EPA 6010B
Chromium	11,000	50	10.00	162181 04/19/10 04/20/10 EPA 6010B
Cobalt	6.1	5.0	1.000	162181 04/19/10 04/20/10 EPA 6010B
Copper	6.5	5.0	1.000	162181 04/19/10 04/20/10 EPA 6010B
Lead	ND	5.0	1.000	162181 04/19/10 04/20/10 EPA 6010B
Mercury	ND	0.20	1.000	162085 04/16/10 04/16/10 EPA 7470A
Molybdenum	ND	5.0	1.000	162181 04/19/10 04/20/10 EPA 6010B
Nickel	26	5.0	1.000	162181 04/19/10 04/20/10 EPA 6010B
Selenium	ND	10	1.000	162181 04/19/10 04/20/10 EPA 6010B
Silver	ND	5.0	1.000	162181 04/19/10 04/20/10 EPA 6010B
Thallium	ND	100	10.00	162181 04/19/10 04/20/10 EPA 6010B
Vanadium	ND	5.0	1.000	162181 04/19/10 04/20/10 EPA 6010B
Zinc	33	20	1.000	162181 04/19/10 04/20/10 EPA 6010B

Dissolved California Title 22 Metals					
Lab #:	219511	Location: 751-	-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: METH	HOD		
Project#:	Y0323-03				
Field ID:	MW-FP7B	Diln Fac:	1.000		
Lab ID:	219511-008	Sampled:	04/15/10		
Matrix:	Filtrate	Received:	04/15/10		
Units:	ug/L				

Analyte	Result	RL	Batch# Prepared	Analyzed Analysis
Antimony	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Arsenic	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Barium	34	5.0	162181 04/19/10	04/20/10 EPA 6010B
Beryllium	ND	2.0	162181 04/19/10	04/20/10 EPA 6010B
Cadmium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Chromium	1,200	5.0	162181 04/19/10	04/20/10 EPA 6010B
Cobalt	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Copper	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Lead	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Mercury	ND	0.20	162085 04/16/10	04/16/10 EPA 7470A
Molybdenum	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Nickel	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Selenium	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Silver	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Thallium	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Vanadium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Zinc	ND	20	162181 04/19/10	04/20/10 EPA 6010B

Dissolved California Title 22 Metals					
Lab #:	219511	Location: 751	-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: MET	HOD		
Project#:	Y0323-03				
Field ID:	MW-3	Diln Fac:	1.000		
Lab ID:	219511-010	Sampled:	04/15/10		
Matrix:	Filtrate	Received:	04/15/10		
Units:	ug/L				

Analyte	Result	RL	Batch# Prepared	Analyzed Analysis
Antimony	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Arsenic	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Barium	190	5.0	162181 04/19/10	04/20/10 EPA 6010B
Beryllium	ND	2.0	162181 04/19/10	04/20/10 EPA 6010B
Cadmium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Chromium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Cobalt	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Copper	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Lead	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Mercury	ND	0.20	162085 04/16/10	04/16/10 EPA 7470A
Molybdenum	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Nickel	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Selenium	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Silver	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Thallium	ND	10	162181 04/19/10	04/20/10 EPA 6010B
Vanadium	ND	5.0	162181 04/19/10	04/20/10 EPA 6010B
Zinc	20	20	162181 04/19/10	04/20/10 EPA 6010B

Dissolved California Title 22 Metals					
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: METHOD			
Project#:	Y0323-03				
Field ID:	MW-9	Diln Fac:	1.000		
Lab ID:	219511-011	Sampled:	04/15/10		
Matrix:	Filtrate	Received:	04/15/10		
Units:	ug/L				

Analyte	Result	RL	Batch# Prepared	Analyzed	Analysis
Antimony	ND	10	162181 04/19/10	04/20/10	EPA 6010B
Arsenic	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B
Barium	64	5.0	162181 04/19/10	04/20/10	EPA 6010B
Beryllium	ND	2.0	162181 04/19/10	04/20/10	EPA 6010B
Cadmium	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B
Chromium	4,900	5.0	162181 04/19/10	04/20/10	EPA 6010B
Cobalt	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B
Copper	5.8	5.0	162181 04/19/10	04/20/10	EPA 6010B
Lead	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B
Mercury	ND	0.20	162085 04/16/10	04/16/10	EPA 7470A
Molybdenum	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B
Nickel	19	5.0	162181 04/19/10	04/20/10	EPA 6010B
Selenium	ND	10	162181 04/19/10	04/20/10	EPA 6010B
Silver	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B
Thallium	ND	10	162181 04/19/10	04/20/10	EPA 6010B
Vanadium	ND	5.0	162181 04/19/10	04/20/10	EPA 6010B
Zinc	26	20	162181 04/19/10	04/20/10	EPA 6010B

Dissolved California Title 22 Metals				
Lab #:	219511	Location: 751-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: METHOD		
Project#:	Y0323-03	Analysis: EPA 7470A		
Analyte:	Mercury	Diln Fac: 1.000		
Type:	BLANK	Batch#: 162085		
Lab ID:	QC540745	Prepared: 04/16/10		
Matrix:	Water	Analyzed: 04/16/10		
Units:	ug/L			

Result	RL	
ND	0.20	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

Dissolved California Title 22 Metals				
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA	
Client:	Baseline Environmental	Prep: METHOI		
Project#:	Y0323-03	Analysis: EPA 74	170A	
Analyte:	Mercury	Batch#:	162085	
Matrix:	Water	Prepared:	04/16/10	
Units:	ug/L	Analyzed:	04/16/10	
Diln Fac:	1.000			

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC540746	2.500	2.490	100	77-124		
BSD	QC540747	2.500	2.480	99	77-124	0	12

Dissolved California Title 22 Metals				
Lab #:	219511	Location: 751-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: METHOD		
Project#:	Y0323-03	Analysis: EPA 7470A		
Analyte:	Mercury	Batch#: 162085		
Field ID:	ZZZZZZZZZ	Sampled: 04/14/10		
MSS Lab ID:	219495-001	Received: 04/15/10		
Matrix:	Water	Prepared: 04/16/10		
Units:	ug/L	Analyzed: 04/16/10		
Diln Fac:	1.000			

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC540748	<0.03335	2.500	2.620	105	53-149		
MSD	QC540749		2.500	2.590	104	53-149	1	19

Dissolved California Title 22 Metals				
Lab #:	219511	Location: 751-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: METHOD		
Project#:	Y0323-03	Analysis: EPA 6010B		
Type:	BLANK	Diln Fac: 1.000		
Lab ID:	QC541115	Batch#: 162181		
Matrix:	Filtrate	Prepared: 04/19/10		
Units:	ug/L	Analyzed: 04/20/10		

Analyte	Result	RL	
Antimony	ND	10	
Arsenic	ND	5.0	
Barium	ND	5.0	
Beryllium	ND	2.0	
Cadmium	ND	5.0	
Chromium	ND	5.0	
Cobalt	ND	5.0	
Copper	ND	5.0	
Lead	ND	5.0	
Molybdenum	ND	5.0	
Nickel	ND	5.0	
Selenium	ND	10	
Silver	ND	5.0	
Thallium	ND	10	
Vanadium	ND	5.0	
Zinc	ND	20	

ND= Not Detected RL= Reporting Limit

Dissolved California Title 22 Metals				
Lab #:	219511	Location: 751-758 Seventh St Oakland CA		
Client:	Baseline Environmental	Prep: METHOD		
Project#:	Y0323-03	Analysis: EPA 6010B		
Matrix:	Filtrate	Batch#: 162181		
Units:	ug/L	Prepared: 04/19/10		
Diln Fac:	1.000	Analyzed: 04/20/10		

Type: BS Lab ID: QC541116

Analyte	Spiked	Result	%REC	Limits
Antimony	500.0	454.1	91	66-129
Arsenic	100.0	96.19	96	78-122
Barium	2,000	1,796	90	80-119
Beryllium	50.00	47.58	95	84-124
Cadmium	50.00	46.29	93	83-121
Chromium	200.0	168.0	84	81-116
Cobalt	500.0	429.3	86	78-115
Copper	250.0	205.8	82	77-115
Lead	100.0	84.91	85	73-124
Molybdenum	400.0	366.3	92	81-120
Nickel	500.0	428.7	86	78-117
Selenium	100.0	93.47	93	74-128
Silver	50.00	45.56	91	71-120
Thallium	100.0	98.73	99	77-124
Vanadium	500.0	434.2	87	81-117
Zinc	500.0	453.4	91	79-120

Type: BSD Lab ID: QC541117

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	500.0	459.1	92	66-129	1	15
Arsenic	100.0	97.77	98	78-122	2	14
Barium	2,000	1,832	92	80-119	2	15
Beryllium	50.00	48.43	97	84-124	2	14
Cadmium	50.00	46.86	94	83-121	1	14
Chromium	200.0	173.5	87	81-116	3	14
Cobalt	500.0	433.0	87	78-115	1	14
Copper	250.0	208.9	84	77-115	1	15
Lead	100.0	85.98	86	73-124	1	17
Molybdenum	400.0	374.6	94	81-120	2	11
Nickel	500.0	436.9	87	78-117	2	14
Selenium	100.0	95.93	96	74-128	3	15
Silver	50.00	45.63	91	71-120	0	19
Thallium	100.0	101.0	101	77-124	2	13
Vanadium	500.0	445.0	89	81-117	2	14
Zinc	500.0	455.6	91	79-120	0	16

Dissolved California Title 22 Metals										
Lab #:	219511	Location: 751-758 Seventh St Oakland CA								
Client:	Baseline Environmental	Prep: METHOD								
Project#:	Y0323-03	Analysis: EPA 6010B								
Field ID:	MW-FP1	Batch#: 162181								
MSS Lab ID:	219511-001	Sampled: 04/15/10								
Matrix:	Filtrate	Received: 04/15/10								
Units:	ug/L	Prepared: 04/19/10								
Diln Fac:	1.000	Analyzed: 04/20/10								

Type: MS Lab ID: QC541118

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	<3.290	500.0	423.8	85	53-139
Arsenic	<1.600	100.0	92.79	93	60-140
Barium	41.18	2,000	1,664	81	63-128
Beryllium	< 0.4000	50.00	45.78	92	74-130
Cadmium	<1.411	50.00	39.41	79	69-128
Chromium	12.71	200.0	173.2	80	68-122
Cobalt	<1.000	500.0	408.3	82	68-119
Copper	2.182	250.0	202.4	80	61-130
Lead	<1.027	100.0	74.93	75	55-133
Molybdenum	2.385	400.0	331.0	82	70-128
Nickel	16.06	500.0	414.4	80	61-125
Selenium	<2.501	100.0	88.65	89	57-140
Silver	<1.000	50.00	44.16	88	53-132
Thallium	<2.616	100.0	89.11	89	54-133
Vanadium	1.083	500.0	421.8	84	71-124
Zinc	13.93	500.0	448.1	87	58-137

Type: MSD Lab ID: QC541119

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	500.0	448.3	90	53-139	6	18
Arsenic	100.0	87.94	88	60-140	5	23
Barium	2,000	1,755	86	63-128	5	21
Beryllium	50.00	44.06	88	74-130	4	15
Cadmium	50.00	37.83	76	69-128	4	14
Chromium	200.0	166.3	77	68-122	4	19
Cobalt	500.0	393.0	79	68-119	4	13
Copper	250.0	194.0	77	61-130	4	19
Lead	100.0	79.51	80	55-133	6	21
Molybdenum	400.0	352.3	87	70-128	6	14
Nickel	500.0	400.2	77	61-125	4	21
Selenium	100.0	89.33	89	57-140	1	24
Silver	50.00	42.50	85	53-132	4	17
Thallium	100.0	86.73	87	54-133	3	24
Vanadium	500.0	407.5	81	71-124	3	16
Zinc	500.0	435.9	84	58-137	3	25

Hexavalent Chromium										
Lab #:	219511	Location: 751-758 Seventh St Oakland CA								
Client:	Baseline Environmental	Prep: METHOD								
Project#:	Y0323-03	Analysis: EPA 7196A								
Analyte:	Hexavalent Chromium	Batch#: 162065								
Matrix:	Water	Received: 04/15/10								
Units:	mg/L									

Field ID	Type	Lab ID	Result	RL	Diln Fac	Sampled	Analyzed
MW-FP1	SAMPLE	219511-001	0.02	0.01	1.000	04/15/10 08:30	04/15/10 18:00
MW-FP2	SAMPLE	219511-002	0.03	0.01	1.000	04/15/10 13:34	04/15/10 18:00
MW-FP3	SAMPLE	219511-003	0.18	0.01	1.000	04/15/10 09:00	04/15/10 18:00
MW-FP4A	SAMPLE	219511-004	460	10	1,000	04/15/10 14:35	04/16/10 12:00
MW-FP4B	SAMPLE	219511-005	0.03	0.01	1.000	04/15/10 14:10	04/15/10 18:00
MW-FP5	SAMPLE	219511-006	14	0.40	40.00	04/15/10 13:00	04/15/10 18:00
MW-FP6	SAMPLE	219511-007	15	0.40	40.00	04/15/10 11:35	04/15/10 18:00
MW-FP7B	SAMPLE	219511-008	1.2	0.01	1.000	04/15/10 12:13	04/15/10 18:00
MW-3	SAMPLE	219511-010	ND	0.01	1.000	04/15/10 10:10	04/15/10 18:00
MW-9	SAMPLE	219511-011	5.7	0.10	10.00	04/15/10 10:35	04/15/10 18:00
	BLANK	QC540664	ND	0.01	1.000		04/15/10 18:00

Page 1 of 1

Hexavalent Chromium											
Lab #:	219511	Location: 751-75	8 Seventh St Oakland CA								
Client:	Baseline Environmental	Prep: METHOD)								
Project#:	Y0323-03	Analysis: EPA 71	.96A								
Analyte:	Hexavalent Chromium	Diln Fac:	1.000								
Field ID:	MW-FP1	Batch#:	162065								
MSS Lab ID:	219511-001	Sampled:	04/15/10 08:30								
Matrix:	Water	Received:	04/15/10								
Units:	mg/L	Analyzed:	04/15/10 18:00								

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	QC540665		1.000	1.049	105	90-110		
MS	QC540666	0.01730	1.000	1.014	100	85-115		
MSD	QC540667		1.000	1.034	102	85-115	2	59

Hydraulic Conductivity ASTM D 5084

Method C: Falling Head Rising Tailwater

Job No:

360-062

Boring:

MW-FP4B

Date:

By:

03/11/10

Client:

Baseline Environmental Consulting Sample:

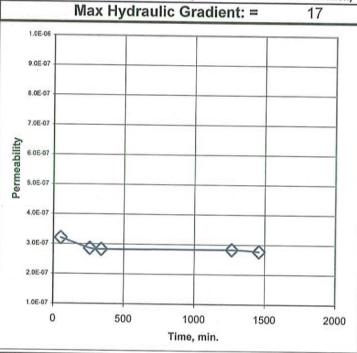
26-26.5

Remolded:

MD/PJ

("B" is an indication of saturation)

Project:


Y232-03

Depth, ft.:

B: = >0.95

Visual Classification: Grayish Brown Clayey SAND (slightly cemented)(slightly plastic)

ax Sample F	ressures, ps	31:
Bottom	Тор	Avg. Sigma3
63.5 59		5
Minutes	Head, (in)	K,cm/sec
0.00	42.69	Start of Test
53.00	42.09	3.2E-07
259.00	40.14	2.9E-07
341.00	39.39	2.8E-07
1266.00	31.89	2.8E-07
1459.00	30.49	2.8E-07
	59 Minutes 0.00 53.00 259.00 341.00 1266.00	59 58 Minutes Head, (in) 0.00 42.69 53.00 42.09 259.00 40.14 341.00 39.39 1266.00 31.89

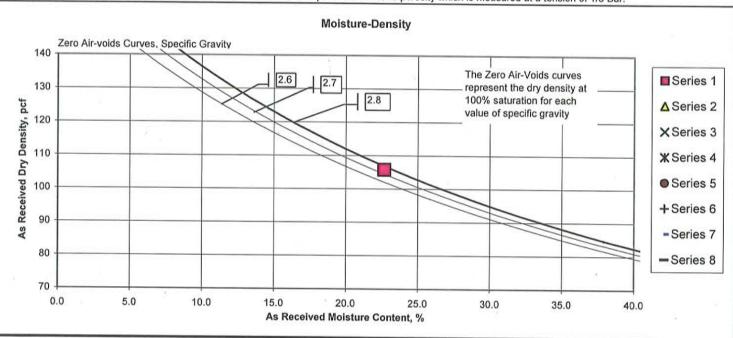
	Average Permeability:	3.E-07 cm/sec
Sample Data:	Initial	Final
Height, in	2.50	2.47
Diameter, in	2.41	2.41
Area, in2	4.57	4.56
Volume in3	11.41	11.25
Total Volume, cc	187.0	184.3
Volume Solids, cc	113.3	113.3
Volume Voids, cc	73.7	71.0
Void Ratio	0.7	0.6
Total Porosity, %	39.4	38.5
Air-Filled Porosity, %	1.2	0.0
Water-Filled Porosity,%	38.2	38.5
Saturation, %	96.9	100.0
Specific Gravity	2.75	2.75
Wet Weight, gm	383.1	382.7
Dry Weight, gm	311.7	311.7
Tare, gm	0.00	0.00
Moisture, %	22.9	22.8
Dry Density, pcf	104.0	105.5

Remarks:

Specific Gravity by Pycnometer

ASTM D 854m

CTL Job#:	360-062			Project Name:	751-785 Seve	nth St. Oakland	Date:	03/17/10
Client:	Bas	eline Environme	ental	Project No.:	Y0353-03		Run By:	MD
						-	Checked	DC
Boring:	MW-FP4B							
Sample:								
Depth, ft.:	26-26.5							
Pan No.:								
Soil Description (visual)	Grayish Brown Clayey SAND (slightly cemented) (slightly plastic)							
Dish No.								
Air-Dry Weight, gm	40.80							
Oven-Dry Weight., gm	40.47							
Dish Weight, gm	11.30							
Hydroscopic MC, %	1.1							
Pycnometer No.:								
Wt Pycn., Soil & H2O (Wb), g	734.0							
Test Temp. (T), °C	21.3							(
Wt Pycn. & H2O @ T (Wa), g	662.7							
Wt of Air-Dried Soil (Wm), g	113.32							
Wt of Oven-Dried Soil (Wo), g	112.05							
Temp. Corr. Factor (K)	0.99972							7.6
Specific Gravity (20°C) Gs = <u>K Wo</u> Wo+Wa-Wb	2.75							
				NAME OF TAXABLE PARTY.				



Total and Effective Porosity Report (API RP40 and ASTM D6836m)

Job No: 360-062 Project No.: Y0353-03 Client: Baseline Environmental Date: 3/18/10

Project Name:			akland	Ву	: PJ	_		
Boring:	MW-FP4B					T		
Sample:	AND AND ADDRESS OF THE PARTY.			1	1		1	
Depth, ft:	26-26.5							
Visual	Grayish							
Description:	Brown							
	Clayey							
*	SAND, slightly							
	cemented							
	comented							
Total	00.4							
Porosity, %	38.4							
Effective	0.7					8		
Porosity, %	0.7							0 0
Air-filled	0.0							
Porosity, %	0.0							
Water-filled	20.4							
Porosity, %	38.4							
Saturation, %	100.0							
Moisture, %	22.7							
Wet Unit wt, pcf	129.8							
Dry Unit wt, pcf	105.8							
Series	1	2	3	4	5	6	7	8

Note: All reported values above are for the "as received" condition except for the effective porosity which is measured at a tension of 1/3 Bar.

BASELINE Environmental Consulting

CHAIN OF CUSTODY RECORD

5900 Hollis Street, Suite D

Laboratory Cooper BASELINE Contact Person Lydia Huang

5900 Hollis Street, Suite D			T. 3/	0-062			Turn	Around-Time Standard TAT
Emeryville, CA 94608 Tel: (510) 420-8686 Fax: (510) 420-1707	to 232 ON Tub	ک (11 16	0 062				Laboratory Cooper
Vo363 02							BASELINE C	ontact Person Lydia Huang
Project Number Y033-03 Project Name: 751 - 785 Seventh St. O	akland							
Samplers Signature Mellon & Surty Bill	Scott	Co	ntainers	ctivity				
Malin & Suts	/0011	Ту	pe	Presv. onducti 084	rosit			
Sample ID No. Station Date	Time Medi	ia ov. Stainless Steel	Brass liner Macrocore	Hydraulic Conductivity ASTM) D5084	Effective Porosity	Bulk Density		
MW-FP4B 26- 26- 26.5 3-2	-10 9:30 50	M I X		R	X	X		
MW-FP4B;	a:20 4	1 X					Additio	onal sample if needed
- Per	M					0	-	
Do	escrip.				1-			
Green	Sh-Brn					4	aCY	
Silt	SAND.	+	+		1			
51.6	htly Cem	entel				1	RE	Cia
Relinquished by: (Signatur	0 '		(Signature)	2	Date/Time		100	Remarks:
Muller (Xut) Relinquished by: (Signature) Date/T	W	48	W W	El-	3-4	-10	9:47	1
DI) ANKIDO	1me 14~10 10:55	Received by:	4 /	tin	Date/Time	10	1055	Familian
Relinquished by: (Signature) Date/T		Received by:		0 00	Date/Time		1023	Email contact:
Received at laboratory with intact custody seal:	amples conditions Upon Arrival:	Comments		./				
V V 60 6	Arrival: On Ice Col	ld /vore	Cr +6	Protect a	conta gainst d	in ele ermal	and inge	levels of