BASELINE

ENVIRONMENTAL CONSULTING TRANSMITTAL

TO:	Mr. LeRoy Griffin		DATE:	29 April 2003
	City of Oakland, Fire Prevent	tion Bureau	PROJECT	NO.: <u>Y0323-01</u>
	250 Frank H. Ogawa Plaza, S	uite 3341	<u>Via</u> :	
	Oakland, CA 94612-2032			Mail:
				Fed Ex:
				UPS: X
SUB.	JECT: Soil and Groundwater Brush Street, Oakland	r Investigation Report, 751-785 l, California		Hand Delivery:
ENC	LOSED PLEASE FIND:			
	Copies	Des	cription	·
	1	Report		
	As requested For your use For your signature		Returned after	ew and comment er loan to us
COM	IMENTS:			
	Mr. Tom McCoy, Brush Street of Mr. Mark Gomez, City of Oakl			•
		<u> </u>	MITTED E	France

BASELINE

ENVIRONMENTAL CONSULTING

29 April 2003 Y0323-01

Mr. LeRoy Griffin City of Oakland Fire Prevention Bureau 250 Frank H. Ogawa Plaza, Suite 3341 Oakland, CA 94612-2032

Subject: Soil and Groundwater Investigation Report, 751-785 Brush Street, Oakland, California 94607

Dear Tom:

On behalf of Brush Street Group, LLC, BASELINE is submitting this soil and groundwater investigation report for the Site located at 751-785 Brush Street in Oakland. Brush Street Group is requesting that the City provide regulatory oversight related to chemical constituents present in the subsurface. We understand that the City may choose to transfer the case to Alameda County Health Care Agency in accordance with an existing relationship between the City and County.

Brush Street Group will be taking title of the Site in the near future. The previous owner(s) was in bankruptcy and left the Site unused since about 1998. Major Chabot Partners, predecessor of Brush Street Group, applied for and received a loan from the California Pollution Control Financing Authority for investigation and possible remediation of the Site, via the City of Oakland Community and Economic Development Agency One Stop Capital Shop. The loan is to be used for environmental assessment and characterization, technical assistance, and to assist in the remediation planning and regulatory process.

The Site was used as a plating facility since the 1950s. The U.S. Environmental Protection Agency directed a removal action in 1998/1999 at the Site, at the request of the Oakland Fire Department, to inventory and remove a variety of chemicals and wastes that were abandoned. Since the completion of the removal actions, "squatters" have stored old cars and other materials at the Site. The squatters have since vacated the site.

The Site is currently completely paved with six inches of concrete, except for several small areas of bare soil along 7th and Brush streets. The attached report on the soil and groundwater investigation summarizes the results of data collection from seven borings and two groundwater monitoring wells. Data from the investigation were used to conduct a risk based screening assessment using guidance

RASELIN F

Mr. LeRoy Griffin 29 April 2003 Page 2

developed by the City of Oakland Urban Land Redevelopment Program assuming a residential land use scenario. Except for two apparent isolated "hot spots", the concentrations of chemicals in the soil and groundwater at the Site are below the Tier 1 risk-based screening levels for residential use. The report recommends that the extent of the affected soils at these two locations be defined and all soil exceeding the Tier 1 RBSLs be removed from the Site upon redevelopment.

Should you need any additional information or have any questions regarding this report, please do not hesitate to contact us at your convenience. We look forward to working with you on the project.

Sincerely,

Senior Engineer

P.E. No. 43395

Rhodora Del Rosanio Rhodora Del Rosario, P.E. &

Engineer

LH:km Enclosure

Mr. Tom McCoy, Brush Street Group cc:

Mr. Mark Gomez, City of Oakland, Pubic Works Agency

SOIL AND GROUNDWATER INVESTIGATION

751-785 Brush Street Oakland, California

APRIL 2003

For: Street G

Brush Street Group Oakland, California

Y0323-01

BASELINE Environmental Consulting 5900 Hollis Street, Suite D • Emeryville, CA 94608 (510) 420-8686 voice • (510) 420-1707 fax

TABLE OF CONTENTS

	page
INTRODUCTION	1
BACKGROUND	1
SUBSURFACE INVESTIGATION Soil Sample Collection and Analysis Grab Groundwater Sample Collection and Analyses Monitoring Well Installation and Groundwater Sample Collection Analyses	2 2 3 4
SITE HYDROGEOLOGY	5
SUBSURFACE QUALITY Soil Quality Groundwater Quality	5 5 7
HUMAN HEALTH RISK SCREENING Receptors and Exposure Pathways Chemicals of Potential Concern Comparison of Site Data to RBSLs	8 9 10 10
HAZARDOUS WASTE SCREENING Nickel Lead	12 13 13
CONCLUSIONS AND RECOMMENDATIONS	14
LIMITATIONS	15
REFERENCES	15
APPENDICES	
A: Health and Safety Plan B: Permits C: Boring Logs D: Well Construction Details E: Groundwater Sampling Forms F: Laboratory Reports G: Oakland RBCA Eligibility Checklist	

Table of Contents - continued

FIGURES

- 1: Regional Location
- 2: Sample Location
- 3: Oakland RBCA Exposure Assessment Worksheet

TABLES

- 1: List of Analyses Performed, Soil and Water
- 2: Summary of Analytical Results, Soil
- 3: Summary of Analytical Results, Groundwater

SOIL AND GROUNDWATER INVESTIGATION

751-785 Brush Street Oakland, California

INTRODUCTION

This report documents the findings of a subsurface soil and groundwater investigation performed in February 2003 at 751-785 Brush Street in Oakland, California ("Site") (Figure 1). The investigation was conducted by BASELINE on behalf of Major Chabot Partners. The purpose of the investigation was to evaluate whether former land uses at the Site may have impacted the underlying shallow soil and groundwater.

The investigation was performed in accordance with a work plan dated 4 September 2002. The scope-of-work consisted of installing seven soil borings and three groundwater monitoring wells, collecting soil and water samples for laboratory chemical analysis, conducting a preliminary risk screening based on Oakland Risk-Based Corrective Action guidance, and conducting a preliminary waste disposal evaluation of subsurface soils that may require off-site disposal if the Site were to be improved or redeveloped. The only substantial deviation from the proposed scope-of-work was that one of the three wells was not installed, and the other two wells were installed within the Site boundary instead of on the adjacent street right-of-way. This change was necessitated by the short time frame available to complete the investigation, which prevented procurement of the City of Oakland Street Encroachment and Excavation permits.

BACKGROUND

The Site has been used as a plating facility since about 1957 and was most recently operated as Francis Plating, which appeared to have ceased operations around 1998. Francis Plating performed nickel and cadmium electroplating, aluminum anodizing, and chromic acid passivation for stainless steel parts. Chemicals known to have been used at Francis Plating include acids, ketones, cyanide, and metals. In addition, the Site appeared to have also been used to store wastes brought to the Site from other facilities in the 1990s.

An inspection by the Oakland Fire Department in 1998 revealed improper storage of large volumes of hazardous wastes and materials. The Oakland Fire Department requested assistance from the U.S. EPA Office of Emergency Response to assess the situation and to perform emergency removal actions. Ecology and Environment, Inc., acting under a U.S. EPA On-Scene Coordinator, performed the removal actions. As a result, all the liquids, sludges, and solids contained in drums, tanks, vats, and vaults were inventoried, characterized, and removed from the Site. The depressed vault inside the plating building, where the majority of plating activities occurred, and an outdoor waste pond

("Frog Pond") were also scrubbed and rinsed to removed residues left by removed liquids and sludges.

Versar, Inc., performed Phase I and II Site assessments at the Site in 1993, as referenced in a Phase I Environmental Site Assessment conducted in 1997 (Hillman, 1997). However, documentation of the assessments is incomplete. Based on the limited documentation available, it appeared that up to 19 borings were drilled across the Site. Some or all of the samples were analyzed for metals, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and cyanide. It did not appear that groundwater sampling was conducted during the investigation.

SUBSURFACE INVESTIGATION

A total of seven soil borings (B-FP1 through B-FP7) were installed on 4 and 5 February 2003 at the Site. Two monitoring wells (MW-FP1 and MW-FP2) were installed on 10 February 2003 at the Site. Three grab groundwater samples were collected from soil borings B-FP3, B-FP4, and B-FP5 and two groundwater samples were collected from monitoring wells MW-FP1 and MW-FP2.

All field activities were conducted in accordance with a Site-specific health and safety plan prepared in accordance with the requirements of Title 8 of the California Code of Regulations, Section 5192 (Appendix A). Prior to field activities, BASELINE submitted boring and well installation permit applications to the Alameda County Public Works Agency and City of Oakland Traffic Permit (Appendix B). Underground utility clearance was also obtained from Underground Service Alert.

SOIL SAMPLE COLLECTION AND ANALYSIS

Seven soil borings were completed by Precision Sampling, Inc., of Richmond under the supervision of a BASELINE registered geologist (Figure 2). Subsurface soils were classified by the BASELINE geologist in accordance with the Unified Soil Classification System as recorded in the boring logs (Appendix C).

Soil borings were drilled to depths ranging from 16 to 25 feet below the ground surface (bgs). Hydraulically-driven direct-push technology using a double-barrel corer was used to drill the soil borings. Soil samples were collected at depths ranging from about two to seven feet bgs for chemical analysis.

Soil samples were collected from each boring beginning at about two feet bgs within the fill layer. A second set of samples was collected just below the fill/native interface at around five feet bgs. A third set of samples were collected from seven feet bgs within the native material. Deeper samples were collected but were not subsequently analyzed.

¹ The workplan called for the installation of three off-site monitoring wells on the streets. However, due to the very short-time frame available for procurement of an encroachment permit from the City of Oakland, BASELINE was directed by Major Chabot Partners to install two monitoring wells on-site, and omit the third well.

Soil samples were collected using a double-barrel direct-push sampler, fitted with three 6-inch precleaned stainless steel sleeves. Each sample sleeve retrieved and submitted to the laboratory was closed with teflon film and plastic caps, sealed with silicon tape, labeled, placed in a ziplock bag, and stored in a cooled container. EnCoreTM samplers were generally used to collect samples for VOC and total petroleum hydrocarbons (TPH) as gasoline analyses. The EnCoreTM samplers were pushed into the soil retained in the end of the stainless steel liners immediately upon retrieval from the borehole. The entire liner adjacent to the end used for the EnCoreTM sample was submitted to the laboratory for the nonvolatile analyses. The EnCoreTM samplers were not used for one set of samples (B-FP4 from 5-foot bgs) because sample recovery was poor for that particular interval, and for all of the 7-foot bgs samples since those samples were to be composited for analysis.

All soil samples were submitted under proper chain of custody to Curtis and Tompkins, Ltd, in Berkeley, a State-certified laboratory and the list of analyses performed are summarized in Table 1 The two- and five-foot soil samples were analyzed for the following:

- TPH as gasoline by EPA Method 8015M
- TPH as diesel by EPA Method 8015M (with a silica gel cleanup)
- Title 22 metals by EPA Methods 6000/7000 Series
- VOCs by EPA Method 8260B
- PAHs by EPA Method 8310;
- PCBs by EPA Method 8082
- pH by EPA Method 9045C
- Cyanide by EPA Method 335.2
- Hexavalent chromium by EPA Method 7196A

The seven-foot samples collected from the Merritt Sands were composited into two samples by the laboratory for the same analyses described above. The composite sample COMP FY was made up of the 7-foot samples collected from B-FP1, B-FP2, B-FP3, and B-FP4 located in the "front yard", and the second composite sample, COMP RY, was made up of the 7-foot samples collected from B-FP5, B-FP6, and B-FP7 from the "rear yard" (Figure 2). Samples collected from deeper than seven feet bgs were placed on hold at the laboratory, and were not subsequently analyzed.

All the soil borings were backfilled with neat cement to the surface at the completion of sampling. Soil cuttings and decontamination water generated from field activities were placed in three 55-gallon drums and two 5-gallon covered plastic buckets, sealed, labeled, and stored at the Site.

GRAB GROUNDWATER SAMPLE COLLECTION AND ANALYSES

Grab groundwater samples were collected from soil borings B-FP3, B-FP4, and B-FP5 (Figure 2). New temporary one-inch polyvinyl chloride (PVC) casings with slotted screen sections were inserted into the boreholes following soil sample collection; the screens were left in-place to allow groundwater accumulate and stabilize in the temporary casing. Grab water samples were collected using a peristaltic pump and new disposable polyethylene tubing into laboratory-provided bottles. The groundwater samples were submitted, using proper chain-of-custody procedures, to Curtis and Tompkins Laboratory, Ltd., for laboratory analyses.

The sample collected from boring B-FP3 was analyzed for TPH as gasoline and TPH as diesel (with silica gel cleanup) (Table 1). The samples collected from borings B-FP4 and B-FP5 were analyzed for TPH as gasoline, TPH as diesel, Title 22 metals (filtered), VOCs, PAHs, PCBs, cyanide, and hexavalent chromium.

MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLE COLLECTION AND ANALYSES

Two groundwater monitoring wells, MW-FP1 and MW-FP2, were installed by Clearheart Drilling of Guerneville under the supervision of a BASELINE registered geologist on 10 February 2003 (Figure 2). Subsurface soils were logged by a BASELINE geologist in accordance with the Unified Soil Classification System (Appendix C).

The monitoring wells were installed using hollow-stem augers and completed to 25 feet bgs. The wells were constructed with 2-inch diameter PVC casings and with 13-foot, 0.01-inch machine-slotted screen sections. The screened interval extended from 12 to 25 feet bgs. The monitoring wells were sealed with locking caps and protected in a Christy box set flush with the existing ground/concrete surface. Well construction details are provided in Appendix D.

The wells were developed by surging and pumping one day after well installation. A peristaltic pump and new disposable tubing was used to extract the water. Development was considered complete once the wells produced clear water (Appendix D).

BASELINE collected one groundwater sample from each monitoring well on 12 February 2003. Prior to sample collection, the water levels were measured to the nearest one-hundredth of a foot using a dual-phase probe. Groundwater was purged from the wells using a peristaltic pump and new disposable tubing until the electrical conductivity, pH, and temperature of the water stabilized. The instruments were decontaminated between the wells by washing in a Alconox solution and rinsing with potable water. Groundwater sampling forms are provided in Appendix E.

Groundwater samples were collected directly into laboratory-provided bottles. Sample bottles were labeled and stored in a cooler containing ice. The samples were submitted under chain-of-custody procedures to Curtis and Tompkins Laboratory, Ltd., and analyzed for (Table 1):

- TPH as gasoline by EPA Method 8015M
- TPH as diesel by EPA Method 8015M (with a silica gel cleanup)
- Title 22 metals by EPA Methods 6000/7000 Series
- VOCs by EPA Method 8260B
- PAHs by EPA Method 8310;
- PCBs by EPA Method 8082
- Cyanide by EPA Method 335.2; and
- Hexavalent chromium by EPA Method 7196A

Groundwater from well development and purging, and decontamination water from sampling activities was stored in three 55-gallon drums and stored at the Site.

SITE HYDROGEOLOGY

The Site is level. The entire Site is paved with about six inches of concrete except for a small area outside of the fence along Brush Street, which appears to be part of the assessor's parcel. In addition, two small planter areas along 7th Street, which appear to be outside of the parcel but within the current fence around the Site, is unpaved. About 3.5 to 4.5 feet of fairly homogeneous sand fill underlie the concrete at all locations explored. Native Merritt Sands, generally described as a yellowish brown silty sand-sand with interbedding, was present under the sand fill and extended beyond the maximum depth explored at all locations (16 to 26.5 feet bgs).

Groundwater level was about 12.5 to 14 feet bgs in the two groundwater monitoring wells. Because the third proposed well was not installed, groundwater flow direction at the Site could not be determined. However, groundwater monitoring conducted at the Shell service station, located immediately adjacent to the Site on Market Street, indicates groundwater flow direction to be consistently toward the southwest, toward 6th Street, based on water level data collected in between December 1999 and 2002 (Cambria, 2003).

SUBSURFACE QUALITY

A discussion of the analytical results is provided below. A summary of the soil and groundwater analytical results are provided in Tables 2 and 3, respectively. The laboratory reports are included in Appendix F.

SOIL QUALITY

One sample of the fill was collected from each of the seven borings at depths between 1.5 to 3 feet bgs. One sample of the Merritt Sands was also collected from each boring within six-inches to one-foot below the fill/Merritt Sands interface, generally between five to six feet bgs. All of these samples were analyzed discretely. A second set of Merritt Sands samples, collected from seven feet bgs, were also collected; these samples were composited into two samples by the laboratory for analysis (Table 1).

TPH as Gasoline and as Diesel

None of the fill or Merritt Sands soil samples contained TPH as gasoline above the laboratory reporting limit. Only two of the samples collected from the fill (B-FP5 from 2-2.5 feet bgs and B-FP7 from 2.5-3 feet bgs) contained TPH as diesel at 3.4 and 3.6 mg/kg, near the laboratory reporting limit of 1 mg/kg (Table 2). Both results were qualified by the laboratory to indicate that hydrocarbons heavier the diesel standard contributed to the value and that the samples exhibited a chromatogram pattern which did not resemble the diesel standard. None of the other fill samples or any of the Merritt Sands samples contained TPH as diesel above the laboratory reporting limit.

Metals

None of the fill or Merritt Sands soil samples contained antimony, selenium, silver, or thallium above laboratory reporting limits. With a few exceptions, discussed below, metal concentrations were very low in both fill and Merritt Sands samples. The notable exceptions were for the samples collected from B-FP3 from 5-5.5 feet bgs, B-FP6 from 2-2.5 feet bgs, and B-FP6 from 5-5.5 feet bgs, and B-FP7 from 2.5-3 feet bgs, as follows:

- The B-FP3 sample from 5-5.5 feet bgs (Merritt Sands sample) contained total nickel at 995 mg/kg and soluble nickel concentration as determined by the Waste Extraction Test (WET) of 31 mg/L (Table 2).
- The B-FP6 sample from 2-2.5 feet bgs (fill sample) contained total lead at 1,260 mg/kg and total nickel at 368 mg/kg. This sample also contained soluble metal concentrations as determined by WET of 1.5 mg/L for lead and 17 mg/L for nickel; the Toxicity Characteristic Leaching Procedure (TCLP) lead concentration for this sample was below the laboratory reporting limit of 0.3 mg/L.
- The B-FP6 sample from 5-5.5 feet bgs (Merritt Sands sample) contained total nickel at 320 mg/kg and soluble WET nickel at 26 mg/L.
- B-FP7 sample from 2.5-3 feet bgs (fill sample) contained total lead at 141 mg/kg; there was insufficient sample to perform soluble lead analysis on this sample.

Hexavalent Chromium

None of the fill samples contained hexavalent chromium above the laboratory reporting limit of 0.05 mg/kg (Table 2). Two of the samples collected in the Merritt Sands near the fill interface contained hexavalent chromium concentrations of 0.09 to 0.59 mg/kg.

VOCs

Only three soil samples contained any VOCs above laboratory reporting limits. Sample B-FP3 from 1.5 feet bgs (fill sample) contained trichloroethene at 24 μ g/kg (Table 2). Sample B-FP5 from 2.5 feet bgs (fill sample) contained 33 μ g/kg of trichloroethene and 5.4 μ g/kg of 1,1,1-trichloroethane. The Merritt Sands sample from B-FP6, collected about six inches below the fill interface at approximately five feet bgs, contained 1,1,1-trichloroethane at 5.0 μ g/kg. None of the other VOCs were identified above the laboratory reporting limits in any of the samples.

PAHs

Only one of the 16 samples contained PAHs above laboratory reporting limit. The fill sample collected from B-FP7 at 2.0-2.5 feet bgs contained PAHs at a total concentration of 30.5 mg/kg (Table 2). The PAHs appears to be limited to this area since the samples collected from all the other boring locations did not contain PAHs; in addition, deeper samples collected from B-FP7 also did not contain PAHs above the laboratory reporting limits.

PCBs

None of the fill or Merritt Sands samples contained any PCBs above the laboratory reporting limit of 1 mg/kg (Table 2).

Cyanide

Only one sample contained cyanide above the laboratory reporting limit of 1 mg/kg. Sample B-FP7 from 5 feet bgs (Merritt Sands about six inches below the fill interface) contained 11 mg/kg of sample (Table 2).

pН

The pH of the samples collected from the fill were between 5.9 and 9.2 and from the Merritt Sands were between 5.2 to 8.0, respectively (Table 2).

GROUNDWATER QUALITY

Grab groundwater samples were collected from borings B-FP3, B-FP4, and B-FP5. In addition, groundwater samples were collected from monitoring wells MW-FP1 and MW-FP2.

TPH Gasoline and Diesel

The only sample containing TPH as gasoline above laboratory reporting limit was the grab groundwater sample from boring B-FP3 (Figure 2). The laboratory reported that TPH gasoline was present at 150 μ g/L but qualified the result by noting that the chromatogram did not resemble the gasoline standard, and that unknown individual peak(s) were present (Table 3).

The groundwater samples from both MW-FP1 and MW-FP2 contained TPH as diesel at 260 and 110 µg/L, respectively. These results were qualified by laboratory notes that indicated the chromatograms did not resemble the diesel standard, and hydrocarbons heavier than diesel were included in the reported value (Table 3).

Metals and Hexavalent Chromium

The groundwater samples collected from B-FP4, B-FP5, MW-FP1, and MW-FP2 were analyzed for metals. The only metals identified above laboratory reporting limits in any of the samples were barium (concentrations ranged between 62 and 110 μ g/L), total chromium (between 17-61 μ g/L), hexavalent chromium (between 10-70 μ g/L), nickel (between 24-96 μ g/L), and selenium (11 μ g/L) (Table 3).

VOCs

The groundwater samples from B-FP4, B-FP5, MW-FP1, and MW-FP2 were analyzed for VOCs. The only VOC identified in any of the samples above laboratory reporting limits was trichloroethene, which was found in the grab groundwater samples from B-FP4 and B-FP5 at 21 and 42 µg/L, respectively (Table 3).

PAHs, PCBs and Cyanide

Groundwater samples from B-FP4, B-FP5, MW-FP1, and MW-FP2 were analyzed for PAHs, PCBs, and cyanide. None of the samples contained any of these compounds above the laboratory reporting limits (Tables 3).

HUMAN HEALTH RISK SCREENING

A preliminary human health risk screening evaluation was conducted using the American Society for Testing Materials Risk-Based Corrective Action (RBCA) assessment, as modified by the City of Oakland (City of Oakland, 2000), for hypothetical residential users. The Oakland-modified RBCA (Oakland RBCA) assessment provides risk-based screening levels (RBSLs) for soil and groundwater that is considered by regulatory agencies to be protective of human health. The purpose of the evaluation was to determine the potential health risk to future on-site users who may be exposed to chemicals present at the Site. The RBCA assessment does not address health risks associated with construction workers at the Site.

The Oakland RBCA provides Tier 1 RBSLs which are back calculated from target risk levels of 1 \times 10⁻⁶ for carcinogens and a hazard quotient of 1.0 for noncarcinogens, and default parameters related to soil and groundwater properties, site conditions, toxicological properties, and exposure scenarios. Default parameters for outdoor and indoor volatilization/building parameters include foundation thickness, ceiling height, width of source area, areal fraction of cracks in building foundation, foundation cracks air and water content, particulate emission rate, wind speed, outdoor air mixing zone height, and averaging time for vapor flux.

The Oakland RBCA Eligibility Checklist and Cover Sheet were completed and are provided in Appendix E. The data from the site investigation did not meet one of the criterion in the eligibility checklist. Criterion 3 asks whether the number of compounds that exceeds RBSLs is greater than five. A total of six compounds exceeded the Tier 1 RBSL. Six PAH compounds, all present in only one soil sample collected from the site, exceeded the Tier 1 surficial soil RBSL for residential use; these compounds were not identified above laboratory reporting limits in the other 15 soil samples collected at the site, indicating that the PAH-contaminated soil is an isolated "hot spot". This report recommends that the extent of PAH-contaminated soils at the one location be defined when the concrete near this location is removed for site improvements and/or redevelopment, and all soil with PAH concentrations above the Tier 1 RBSLs be removed. Therefore, the use of Tier 1 RBSLs

The combined cancer risk associated with the six PAHs is 2.2 x 10⁻⁴, using default parameters assumed for Tier 1.

appears reasonable even though one of the eligibility criterion was not strictly met. For chemicals for which Oakland RCBA Tier 1 RBSLs have not been developed, RBSLs compiled by the Regional Water Quality Control Board (RWQCB) were used in the screening.

RECEPTORS AND EXPOSURE PATHWAYS

An exposure pathway generally consists of four elements: 1) a course and mechanism of chemical release, 2) retention or transport mechanism, 3) a point of potential contact with the contaminated medium, and 4) exposure route to the receptor at the contact point. An exposure pathway is incomplete if any of the above-mentioned elements is missing. Possible exposure routes considered in the Oakland RBCA are as follows:

- 1: ingestion, dermal contact, and inhalation of chemicals from surficial soils;
- 2: inhalation of chemicals in indoor and/or outdoor air that may volatilize from subsurface soils and groundwater;
- 3: ingestion of groundwater
- 4: ingestion and dermal contact with water used for recreation.

The screening evaluation conducted for the Site was based on a **residential** land use scenario, even though the near-term land use at the Site would be commercial/industrial. It is possible that the Site may be rezoned in the future to allow for mixed uses which may include live-work spaces, schools, churches, and retail (McCoy, 2003). The assumption of a residential land use scenario provides protection for future site users that may have direct and continual contact with the soils, such as children playing in the soil and occupants eating produce directly grown in on-site soils. This assumption is extremely conservative for near-term site users since the Site would probably continue to be used for commercial/industrial purposes and the soil is currently capped by six inches of concrete. The residential land use assumption may also be overly protective of potential long-term future residential users if future development plans provide for isolation of the soil from occupants by such means as pavement or imported soil for limited landscaping.

An exposure assessment flow chart is illustrated on Figure 3. Among the four possible exposure routes, listed above, only the first and second routes were considered applicable to this Site. Ingestion of groundwater is not a possible exposure route for this Site or other sites located downgradient (between the Site and the Oakland Inner Harbor) since drinking water is provided by the East Bay Municipal Utility District (EBMUD). While the Merritt Sands in general is considered a potential drinking water aquifer, the RWQCB does not consider the portion of the Merritt Sands located along the Inner Harbor a potential drinking water source (RWQCB, 2000). However, comparison of the groundwater quality data against Tier 1 groundwater ingestion RBSLs was conducted for completeness. Ingestion of and dermal contact with water used for recreation were not considered because there are no surface waters on the Site that may be used for recreation and the groundwater also cannot be used for recreational purposes.

to 4.44 mg/kg, while the Tier 1Surficial Soil RBSLs is 0.32 mg/kg.⁵ The arsenic RBSL was developed based on cancer risk concerns and did not consider the presence of naturally occurring arsenic in soils. Background arsenic concentrations identified by the Oakland Urban Redevelopment Program that are relevant to sites within the City of Oakland ranged from 1.8 to 31 mg/kg; the Program recognizes that remediation to RBSLs will not result in reduced health risk for those chemicals with background concentrations greater than RBSLs (City of Oakland, 2003). The concentrations found on the Site are among the low range of these background concentrations. Therefore, Site arsenic concentrations should be considered background and does not indicate a historic release of arsenic-containing material to the subsurface.

The only other compounds found in the soil that exceeded Tier 1 RBSLs were benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, and indeno (1,2,3-c,d)pyrene which were only identified above laboratory reporting limits in one sample (B-FP7 from 2.5-3 feet bgs) (Table 2). These compounds exceeded the Tier 1 RBSLs for Surficial Soils. Boring B-FP7 is the only sample for which any of these compounds were identified above laboratory reporting limit of 50 µg/kg, which indicates that PAHs are most likely limited to this one location. This boring was drilled immediately adjacent to a sump, which in turn is adjacent to the depressed vault (dimensions of about 25 feet wide, 75 feet long, and 6 feet deep) once used to contain the majority of plating tanks inside the existing building. The plumbing associated with the sump is unknown. It is possible that the PAHs identified at this location were associated with materials once present in the sump or vault. However, since the B-FP7 area, like the rest of the Site, is currently capped with six inches of concrete, there is no current exposure to potential site users.

Among chemicals that do not have Oakland RBCA Tier 1 RBSLs and for which RWQCB RBSLs were used for comparison, the only chemical that exceeded the RWQCB RBSLs for residential land use in any of the soils samples was lead. The fill sample from B-FP6 collected from two feet bgs contained lead at 1,260 mg/kg, exceeding the RWQCB RBSL of 200 mg/kg (Table 2). The lead concentration in the other 15 samples collected from across the Site ranged from 2.08 to 141 mg/kg, with 14 of these samples containing lead at 5 mg/kg or less. It is uncertain whether the elevated lead concentration in B-FP6 may be associated with fire debris (pieces of charcoal and burnt material) to observed in the fill at this location, as indicated in the boring log (Appendix C).

Screening of Groundwater Quality Data

Oakland RBCA Tier 1 RBSLs for groundwater for a residential land use scenario are listed in Table 3. Groundwater quality data from three grab groundwater samples and two samples collected from the newly installed wells were compared against the RBSLs. None of the groundwater data exceed Tier 1 Groundwater RBSLs for inhalation of indoor or outdoor air (note that only mercury, trichlorethene, PAHs have RBSLs for this exposure route).

⁵ The Merritt Sands samples, collected from about 5 to 7.5 feet bgs, were also compared against Tier 1 Surficial Soil RBSLs for arsenic even though the Surficial Soil RBSLs are intended only for soil within about the top three feet (one meter). This was done because there are no Tier 1 RBSLs for subsurface soils (deeper than one meter) and comparison against Surficial Soil RBSLs is more conservative.

Even though direct ingestion of groundwater is not considered a potential exposure route for this Site since drinking water is provided by EBMUD, and the RWQCB does not consider the groundwater in the Merritt Sands downgradient of the Site along the Inner Harbor to be a potential drinking water source, comparison of groundwater data against Tier 1 RBSLs for groundwater ingestion was conducted for completeness and to be conservative. The sample from MW-FP2 contained hexavalent chromium at 70 μ g/L, slightly exceeding the Tier 1 RBSLs of 50 μ g/L. The grab groundwater samples from B-FP4 and B-FP5 contained 21 and 42 μ g/L trichloroethene, greater than the Tier 1 RBSLs of 5 μ g/L.

HAZARDOUS WASTE SCREENING

If soil were to be excavated from the Site and required offsite disposal, the particular volume of soil requiring disposal would need to be classified in accordance with Federal and State regulations to determine whether the soil would be considered a nonhazardous waste, a California hazardous waste, or a Federal (RCRA) hazardous waste. The waste classification dictates the disposal options available for the soil. Data from the investigation were used to perform a preliminary waste classification assessment to provide an indication of which constituents may possibly cause soil from the site to be considered a hazardous waste. If and when soil actually were to be excavated and disposed of off-site, then the particular volume of soil requiring disposal would need to be characterized for waste classification.

Title 40 of the Code of Federal Regulations (CFR) and Title 22 of the California Code of Regulations (CCR) contain definitions for Federal and California hazardous waste, respectively. Both sets of regulations define hazardous waste in terms of the waste's potential to exhibit toxicity, reactivity, corrosivity, and ignitability characteristics.

The soil from the Site does not exhibit reactivity (reacts with air or water violently) or ignitability (easily combusts) characteristics. The soil also does not exhibit the corrosivity characteristic because the range of pH of the soil samples ranged between 5.2 and 9.2, well within the range considered to be noncorrosive (less than 2 or greater than 12.5) (Table 2). The toxicity characteristic is therefore the only one of the four characteristics that may cause the soil that may be excavated to be classified as a hazardous waste. Specifically, the metals concentration in the soil are the constituents of concern.

Title 22 of the CCR specifies thresholds for 22 metals and certain organic compounds for defining California hazardous wastes. A waste that contains total concentrations of metals or compounds above the corresponding Total Threshold Limit Concentration (TTLC) is considered a California hazardous waste. Alternatively, if a waste contains soluble concentrations, as determined using the Waste Extraction Test (WET), above the Soluble Threshold Limit Concentrations (STLC) is also

⁶ Even in the extremely unlikely event that groundwater in the Merritt Sands downgradient from the Site were to be used as a drinking water source and a minimum of a ten-fold attenuation occurred between the Site and the hypothetical extraction well, the concentrations found during this investigation suggest that there would be no excess health risk from drinking the groundwater from the hypothetical extraction well.

considered a California hazardous waste. If the total concentration of a chemical representative of the waste were greater than the TTLC and/or the soluble concentration were greater than the STLC, then the waste is a California hazardous waste. In practice, only if the total concentration of a chemical were equal to or greater than 10 times the STLC value is the actual soluble concentration determined using the WET, because of the ten-fold dilution required by the WET procedures.

Title 40 of the CFR similarly specifies thresholds for certain metals and organic compounds for defining a Federal (RCRA) hazardous waste. Unlike the California regulations, the Federal regulations contain thresholds for only soluble concentrations, as determined using the Toxicity Characteristic Leaching Procedure (TCLP). If the soluble concentrations of a waste were greater than the TCLP threshold, then the waste is a Federal (RCRA) hazardous waste.

Among the constituents of concern at the Site, only Title 22 metals and trichlorethene have hazardous waste thresholds. Soluble nickel concentrations in two samples and total lead concentration in one sample exceeded California hazardous waste thresholds.

NICKEL

The STLC for nickel is 20 mg/L. Because the total nickel concentrations in the B-FP3 sample from 5 feet bgs and B-FP6 samples from 2 and 5 feet bgs were greater than ten times the STLC, 200 mg/kg, these samples were analyzed for soluble nickel by the WET. The WET nickel concentration for these samples, in the order listed above, were 31, 17, and 26 mg/L, respectively (Table 2). Two of the three soluble nickel concentrations exceed the STLC.

A hypothetical statistical calculation for soluble nickel was conducted by assuming the theoretical maximum soluble WET nickel based on total nickel concentrations (i.e., WET soluble concentration equal to ten percent of total concentration) for those samples that were not actually analyzed for WET nickel. This assumption is expected to over estimate the WET nickel concentrations. In accordance with procedures specified in *Test Methods for Evaluating Solid Waste, Physical and Chemical Methods, SW-846* (U.S. EPA, 1996), the 80 percent upper confidence limit (UCL) (two-tailed), was calculated using the hypothetical and actual soluble nickel data and compared against the STLC. The 80 percent UCL was 11.7 mg/L, less than the STLC of 20 mg/L. The implication of this hypothetical calculation is that if all the soil represented by the soil samples collected during the investigation (e.g., all the soil down to a depth of about eight feet from across the Site) were to be classified for offsite disposal, the soil would not be considered a California hazardous waste because of soluble nickel.

LEAD

The B-FP6 sample from 2 feet bgs contained total lead at 1,260 mg/kg, greater than the TTLC of 1,000 mg/kg. The soluble WET lead concentration of this sample was 1.5 mg/L and the soluble TCLP concentration was below the laboratory reporting limit of 0.3 mg/L (Table 2). As discussed in the Human Health Risk Screening section above, 14 of the 15 other samples collected at the Site had total lead concentrations of about 5 mg/kg or less (Table 2). The elevated lead concentration at B-FP6 appear to be an anomalous and isolated occurrence.

- 13 -

One other soil sample, B-FP7 from 2.5 feet bgs, contained total lead concentration (141 mg/kg) greater than ten times the STLC; but below the TTLC. The laboratory was unable to perform the soluble WET lead analysis because the entire sample had been consumed for all the other analyses performed. It is possible that the soluble WET lead concentration would have exceeded the STLC.

CONCLUSIONS AND RECOMMENDATIONS

The chemicals present in the soil and groundwater at the Site do not currently pose any risk to site users because the Site is capped with about six inches of concrete and there are no complete exposure routes. With the exception of PAHs and lead identified at isolated locations, the human health risk screening indicates that chemicals present in the subsurface at the Site would not pose unacceptable increased health risks to potential site users under a residential land use scenario, even if the concrete cap were not present. BASELINE's recommendation regarding the PAH and lead contamination identified are:

- If the concrete in the area of B-FP7 (Figure 2) were to be removed in preparation for occupancy by any users, or if the Site were to be redeveloped for possible commercial/industrial or residential uses, the extent of PAH contamination in this area should be defined. If it is possible for future site users to come into contact with the soil with elevated PAH concentrations, the soil with PAH concentrations above Oakland RBCA Tier 1 RBSLs, either the commercial/industrial or residential RBSLs, as appropriate for the intended use of the Site, should be excavated and disposed of off-site. If development plans were to ensure the complete isolation of the soil with elevated lead concentrations from future site users (e.g., isolation by pavement or several feet of clean soils), then the PAH-affected soils may be left in place with the approval of the oversight regulatory agency.
- If the concrete in the area of B-FP6 were to be removed in preparation for occupancy by any users, or if the Site were to be redeveloped for possible commercial/industrial or residential uses, the extent of soil with elevated lead concentrations in the area should be defined. If future site users may come into contact with the soil with elevated lead concentrations, the soil with lead concentrations above the RWQCB RBSLs appropriate for the intended land use should be excavated and disposed of off-site. If development plans were to ensure the complete isolation of the soil with elevated lead concentrations from future site users, then the lead-affected soils may be left in place with the approval of the oversight regulatory agency.

Soil that may be excavated for site improvements, with the exception of PAH- and lead-affected soils, described above, may be reused at the Site with the approval of the oversight regulatory agency. Excess soils requiring offsite disposal will need to characterized and classified in accordance with State and Federal regulations. Data from the Site suggests that excess soil may possibly be considered a California hazardous waste because of lead and/or nickel content. In particular, any fill that may be excavated from the "rear yard" that contain evidence of charcoal and/or burnt materials should be segregated and managed separately from clean fill, since elevated lead concentrations may be associated with the debris.

Groundwater at the Site does not represent a threat to future residential or commercial/industrial users.

LIMITATIONS

The conclusions presented in this report are professional opinions based on the soil and groundwater data documented in this report. The condition of existing features/structures above the soil layer, including the concrete pavement, has not been assessed. The conclusions are intended to apply only for this Site and project indicated. Opinions and recommendations presented herein apply to Site conditions existing at the time of this investigation. Changes in the conditions of the subject property or adjacent property can occur with time, because of the natural processes and/or work of man. Changes in applicable standards can also occur as a result of legislation or from the broadening of knowledge. Accordingly, the findings of this report may be invalidated, wholly or in part, by changes beyond our control. This report has been prepared for Brush Street Group and reliance on this report by third parties shall be at their own risk.

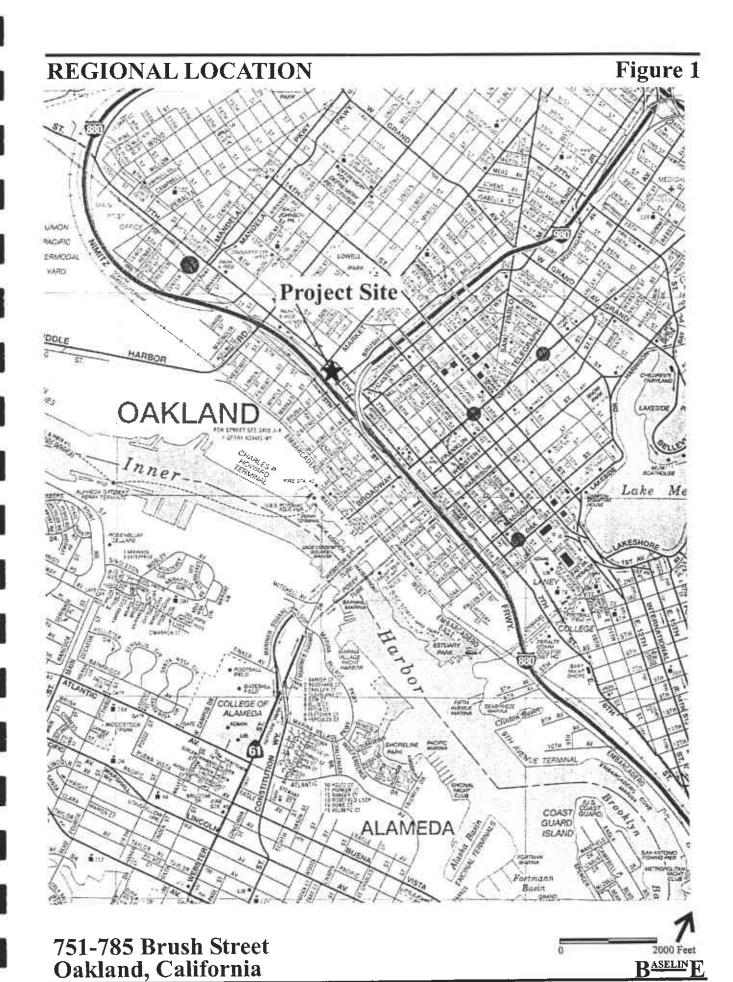
REFERENCES

BASELINE, 2001, Proposal to Perform Soil and Groundwater Investigation at 751-785 Brush Street, Oakland, California, letter to Mr. Tom McCoy, 4 September.

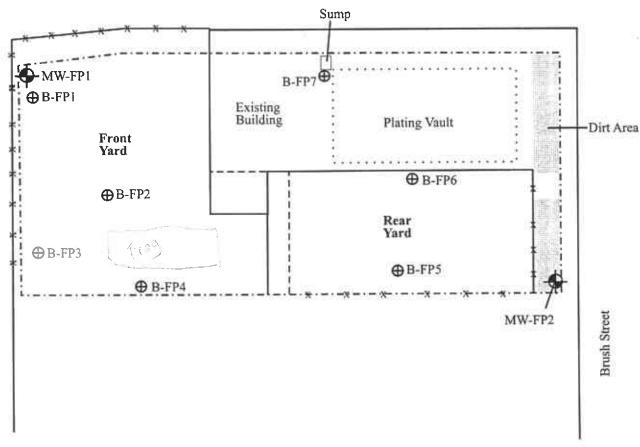
Cambria Environmental, 2003, Fourth Quarter 2002 Groundwater Monitoring Report, Shell-branded Services Station, 610 Market Street, Oakland, California, 4 March.

City of Oakland, Public Works Agency, 2000, Oakland Urban Land Redevelopment Program: Guidance Document, 1 January.

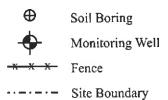
_____, Public Works Agency, 2003, Oakland Urban Land Redevelopment Program: Survey of Background Metal Concentration Studies (web page: http://www.oaklandpw.com/ulrprogram/metals.pdf), downloaded by BASELINE on 3 March.


Hillman Environmental Company, 1997, Phase I Environmental Site Assessment, Francis Plating, 751-785 7th Street, Oakland, CA 94607, prepared for Wells Fargo Bank, 8 July.

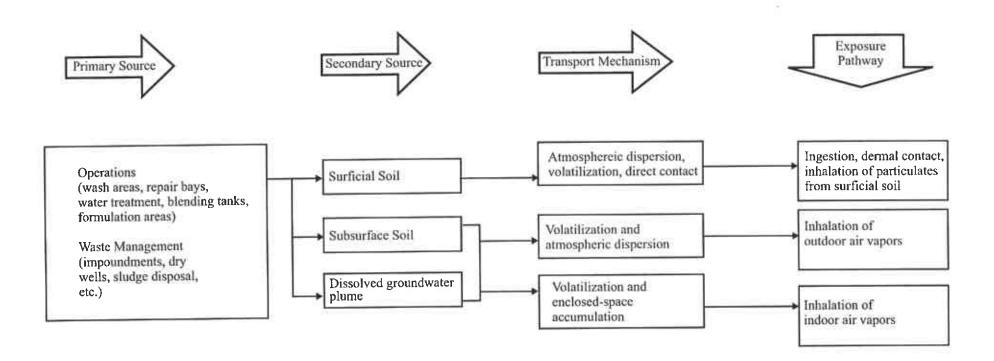
McCoy, Tom, 2003, Chabot Partners, email to Lydia Huang at BASELINE, 28 February.


Regional Water Quality Control Board, San Francisco Bay Region, 2001, Application of Risk Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater (Interim Final December 2001), 26 December.

_____, 2000, Groundwater Basin Plan Amendments to the Water Quality Control Plan (Basin Plan), 19 April.


U.S. Environmental Protection Agency, 1986, Test Methods for Evaluating Solid Waste, Physical and Chemical Methods, SW-846, November.

7th Street



Legend

751-785 Brush Street Oakland, California

751-785 Brush Streets Oakland, California

TABLE 1: List of Analyses Performed, Soil and Water, 751-785 Brush Street, Oakland

Boring	Depth (ft bgs)	Sample Date	Title 22 Metals	Hexavalent Chromium	ТРНg	TPHd	VOCs	PAHs	PCBs	pH	Cyanide	WET Lead	WET Nickel	TCLP Lead
SOIL														
B-FPI	2.5-3.0	2/5/03	X	X		X	-	X	X	X	X			
	2.5 1	2/5/03			X		X							
	5.5-6.0	2/5/03	X	X		X		X	X	Х	X			
	5.5 1	2/5/03			X		X							
	7-7.5	2/5/03						See Com	p FY					
B-FP2	2.5-3.0	2/5/03	X	X		X		X	X	X	X			
	2.5 1	2/5/03			X		X							
	5.5-6.0	2/5/03	X	X		X		X	X	X	X			
	5.5 1	2/5/03			X		X							
	7-7.5	2/5/03						See Com	pFY					
B-FP3	1.5-2	2/4/03	X	X		Х		X	Х	X	X			
3-FP3	1.5-2	2/4/03			X		X							
	5-5.5	2/4/03	X	X	- //	X		X	X	X	X		X	
	5	2/4/03	- 1		X		X		7.7					
	7-7.5	2/4/03						See Com	p FY					
								T 000	V 22 1		1 1		·	
B-FP4	2-2.5	2/4/03	X	X		X		X	X	X	X			
	2.5 1	2/4/03			X		X							
	5-5.5	2/4/03	X	X	X	X	X	X	X	X	X			
	7-7.5	2/4/03						See Com	p FY					-
B-FP5	2-2.5	2/4/03	X	X		X		X	X	X	X			
12.1.2.3	2.5 1	2/4/03			X		X							
	5-5.5	2/4/03	X	X		X		X	X	X	X			
	5.5 1	2/4/03			X		X							
	7-7.5	2/4/03						See Com	p RY					
		Tayona	1 0	X		X		X	Х	Х	X	X	X	х
B-FP6	2-2.5	2/5/03	X	Α	Х	- ^	x	_ A						
	2.5	2/5/03	44		X	X	A	X	X	Х	x		X	
	5-5.5	2/5/03	X	X		Α.	x	25:	-A		- ^			
	5.5 ¹ 7-7.5	2/5/03 2/5/03			X		X	See Com	. DV					

y0323 ibls.x/s-4/25/2003 1 of 2

TABLE 1: List of Analyses Performed, Soil and Water, 751-785 Brush Street, Oakland

Boring	Sample Depth (ft bgs)	Sample Date	Title 22 Metals	Hexavalent Chromium	ТРН	TPHd	VOCs	PAHs	PCBs	рН	Cyanide	WET Lead	WET Nickel	TCLP Lead
B-FP7	2.5-3	2/5/03	X	X		X		X	X	X	X			
	2.5 1	2/5/03			Х		X							
	5-5.5	2/5/03	X	X		X		X	X	Х	X			
	5.5 1	2/5/03			X		X							
	7-7.5	2/5/03		-				See Comp	RY		73.1			
											-01			
COMP FY 2	7-7.5	2/4-5/03	Х	X	X	X	X	X	X	X	X			
COMP RY 3	7-7.5	2/4-5/03	Х	x	Х	X	х	Х	Х	х	X			
GROUNDWAT	ER													
B-FP3 4	44	2/4/03		0.0	X	X	***	25	27.7	201	22.1	22	22.7	22
B-FP4 4		2/5/03	Х	Х	X	X	Х	Х	X	**	X	++	**	99
B-FP5 ⁴		2/5/03	Х	Х	Х	X	Х	X	Х	**	X	- 44	¥4.5	- 22
MW-FP1		2/12/03	Х	X	X	X	X	Х	X	***	X	5.5	240	94
MW-FP2		2/12/03	X	X	X	X	X	X	X	***	X	**	**	**

Notes:

ft. bgs = Feet below ground surface

-- = Not analyzed

X = Analyzed

Metals analysis conducted using EPA Method 6000/7000 series.

Hexavalent chromium analyzed using EPA Method 7196A.

TPHg = Total Petroleum Hydrocarbons as gasoline.

TPHd = Total Petroleum Hydrocarbons as diesel,

VOCs = Volatile organic compounds; analysis conducted using EPA Method 8260B.

PAH = Polyclic aromatic hydrocarbons; PAHs analyzed using EPA 8310

PCBs = Polychlorinated biphenyls; PCBs analyzed using EPA 8082.

pH analyzed using EPA Method 9045.

Cyanide analyzed using EPA Method 335.2.

WET = Waste Extraction Test.

TCLP = Toxicity Characteristic Leaching Procedure.

Summaries of analytical results are presented in Tables 2 and 3.

Soil sample locations are shown on Figure 2.

v0323 tbls.xls-4/25/2003 2 of 2

¹ Encore sampler used.

Composite sample COMP FY was generated using samples B-FP1;7-7.5, B-FP2;7-7.5, B-FP3;7-7.5, and B-FP4,7-7.5.

Composite sample COMP RY was generated using samples B-FP5;7-7.5, B-FP6;7-7.5, and B-FP7;7-7.5

⁴ Grab groundwater sample.

TABLE 2: Summary of Analytical Results, Soil, 751-785 Brush Street, Oakland

Well/Boring ID	Oakli	ind RBCA RB	SLs	RWQCB RBSLs	Hazard	lous Waste Thre	sholds	San B	-FP1	В	FP1		B-FP1		B-FI	PI	B-FP	22	В-1	P2	B-FF	2	B-FI	P2
Sample Depth (ft. bgs)		in the		nika kan			Toxicity		1.5 ¹	2.5	5-3.0	- 1000	5.51		5.5-6	5.0	2.5	1	2.5	3.0	5.5		5.5-6	6.0
Date Collected	Tier 1 RBSLs for	Tier 1 RBSLs for Subsurface	Tier 1 RBSLs for Subsurface	Final RBSL for Surface Soils		Soluble	Characteristic Leaching	55253-07	/2003		/2003		2/5/2003	3	2/5/20	CHICLES DE	2/5/20	507 ELS B	2/5/	5 6 6 7 10	2/5/20	Shirt South	2/5/2	87 - 6°c-
	Surficial Soil - Residential (<1 meter)	Soil - Indoor Air Residential (>1 meter)	Soil - Outdoor Air Residential (>1 meter)	with Potential Drinking Water (<3 meters)	Total Threshold Limit Concentration	Threshold Limit Concentration (mg/L)	Procedure Threshold (mg/L)	Conc.	Rpt. Lim	Cone.	Rpt. Lis	m Conc	Rpt	. Lim Con	ic. F	Rpt. Lim Co	nc. I	lpt. Lim (Conc.	Rpt. Lim C	one, F	pt. Lim C	one. I	Rpt. Lim.
Metals (mg/kg)																								
Antimony		-	94	6.3	500	15				NI			+4	***	ND	0.750			ND		200	**	ND	0.750
Arsenic	0.32		944	: :	500								**	**	1.04	0.750	**	**	ND				ND	0.750
Barium	5,200			**	10,000				9	52.1			**		60.2	0.5	34	**	56.1	0.5		**	70.6	0.5
Beryllium	370				75	0.75				NI			300	**	0.382	0.250	**	**	ND		**	**	0.321	0.250
Cadmium	37				100					NI			***	±3.	ND	0.500		2.5	ND				ND	0.500
Chromium (Total)	74,000			**	2,500	560	5.0			28.			71		49.2	0.2			29,1	0.2			83.4	0,2
Hexavalent Chromium	1.3				500	5				NI			**	**	0.59	0.05		**	ND		-		ND	0.05
Cobalt	***			40	8,000	80	E			3.89					16.8	0.2			4.21	0.25	**	**	6.88	0.25
Copper	2,800				2,500	25				5.3	0.5	50	**	**	9.01	0.50	**		5.74	0.50	122	- 22	10.2	0.5
Lead				200	1,000	5.0	5.0			2.2:		50			3.75	0.50			2.44	0,50		77.	3.33	0.50
Molybdenum					3,500					NI					ND	0.250			ND		**	**	ND	0.250
Nickel	1,500				2,000			1 0	1	16.).2	***		53.6	0.2	2.		17.4	0.2	- 22	- 22	99.2	0.2
Selenium	370		921	121	100					NI			22		ND	0.750		- 22	ND	0.750		42	ND	0.750
Silver	370		-	16-	500				4 4	NI					ND	0.250			ND				ND	0.250
Thallium	- 44			1.0						- NI			2.	**	ND	0.750	144		ND		-	**	ND	0.750
Vanadium	520			264	2,400			4 7	+ 4	19.		0.2	**	++	34.8	0.2	44	+4	20			***	34.9	0.2
Zinc	22,000	E-++			5,000	250				14.		0	**		23.7	1.0	744		16.3		***		24.4	1.0
Mercury	4.7	12			20					- NI					ND	0.0835			ND			***	ND	
vicioury		1									_													
CYANIDE (mg/kg)	3,000									- NI) 1	0			ND	1.0			ND	1.0	244	7+4	ND	1.0
VOCs (µg/kg)																								
1.1.1-Trichloroethane	1,800,000	260,000	870,000		-			- N			-		ND	4.4			ND	4.7		9+	ND	4.3	**	
Trichloroethene	19,000	1,100	3,000		2,040,000	204	0.5	N:	D 4.9		+	**	ND	4.4	**		ND	4.7		1722	ND	4.3		
PAHs (μg/kg)																							1	
Naphthalene	2,000,000	SAT	SAT							- Ni) :	50		***	ND	50	**	**	ND	50			ND	50
Acenaphthylene	3,100,000	SAT								3.77		50	++		ND	50	-14		ND				ND	50
Acenaphthene	3,100,000	SAT								- N		50			ND	50			ND		**		ND	50
Fluorene	2,100,000	SAT		- 4			4		4	- NI		50	**	**	ND	50		**	ND		- 22	- 1	ND	50 50 50
Phenanthrene	16,000,000								2 72	3.53		50			ND	50	- 12	44	ND			142	ND	
Anthracene	16,000,000									- N		50	-		ND	50			ND				ND	
Fluoranthene	2,100,000							-		- N		50	344		ND	50		44	ND				ND	50
Pyrene	1,600,000									- N		50		**	ND	50	7.46		ND				ND	50
Benzo (a) Anthracene	250									- N		50	***		ND	50		:46	ND				ND	50
Chrysene	2,500									- N		50	1		ND	50	***		ND				ND	50
Benzo (b) Fluoranthene	250								++ .	- N		50		**	ND	50			NE				ND	50
Benzo (k) Fluoranthene	250							-		- N		50			ND				NE			-	ND	50
Benzo (a) Pyrene	25									N		50	-+		ND				NE				ND	50
Dibenz (a,h) Anthracene	74									- N		50			ND				NE			**	ND	50
Benzo (g,h,i) Perylene	210,000					1				- N		50			ND		44		NE				ND	50
Indeno (1,2,3-c,d) Pyrene	250									- N		50	**	2.	ND		- 2		NU		122	**	ND	
PCBs (μg/kg)	50	69,000	190,000		50,000	5.0) 9			N	D	50	3.00	: ++	ND	50			NE	50	**	(22	ND	50
TPH (mg/kg)																								
as Gasoline	-				100	0		N	D 0.1	9			ND	0.16			ND	0.19	7		ND	0.19	24	
as Diesel	52				100					N		1.0	***		ND				NI		2.2	**	ND	1.0
pH (pH units)				-	<2 or >12.5			_			.9	1.0			6.3		-		5.	1.0		**	5.2	2.0

1 of 5

TABLE 2: Summary of Analytical Results, Soil, 751-785 Brush Street, Oakland

Well/Boring ID	Oakla	nd RBCA RB	SLs	RWQCB RBSLs	Hazard	ous Waste Thre	sholds	B-	FP3	B-F	Р3	B-1	FP3	B-l	FP3	B-FP4		B-F	P4	B-FI	ч	B-FPS	5
Sample Depth (ft. bgs)							Toxicity Characteristic	1	51	1.5	2.0		ş i	5.0	-5.5	2.5 1	9.0	2.0-2	2.5	5-5.	5	2.5 1	
Date Collected	Tier 1 RBSLs for		for Subsurface	Fmal RBSL for Surface Soils		Soluble Threshold Limit	Leaching Procedure	2/4/	/2003	2/4/2	003	2/4/	2003	2/4/	2003	2/4/200	13	2/4/2	003	2/4/20	003	2/4/200	03
	Surficial Soil - Residential (<1 meter)	THE PARTY SHOWS A STREET, AS A	Soil - Outdoor Air Residential (>1 meter)	with Potential Drinking Water (<3 meters)	Total Threshold Limit Concentration	Concentration (mg/L)	Threshold (mg/L)	Conc.	Rpt. Lim.	Cone.	Rpt. Lim.	Conc.	Rpt. Lin	n Conc.	Rpt. Lim Co	onc. R	ot. Lim C	onc.	Rpt. Lim	Conc. I	tpt. Lim C	one. R	tpt. Lim
Metals (mg/kg)				222						NIN	0.750			- ND	0.750		-	ND	0.750	ND	0.750		
Antimony	**	**		6.3		15					0.750			1.42			-	ND	0.750	1.07	0.75		
Arsenic	0.32				500	5.0			-		0.750			53.3		**		75.6	0.5	43	0.5		
Barium	5,200				10,000	100		-		71.1	0.250			- 0.349		-		ND	0.250	0.326	0.250	**	
Beryllium	370			**	75					2 140	0.230			- ND				ND	0.500	ND	0.500	- 42	-
Cadmium	37		**		100						0.300			- 66.8			-	27.3	0.2	47.9	0.2	- 22	120
Chromium (Total)	74,000				2,500	560	+	-						- ND				ND	0.05	ND	0.05	124	-
Hexavalent Chromium	1.3	(24			500	5				ND	0.05	**	-	9.7	A CONTRACTOR OF THE PARTY OF TH			4.05	0.25	10.8	0.2		
Cobalt			2.	40	8,000	80		-		11 23 25 31	0.25	-	-	10.1				5.77	0.50	6.61	0.50		
Copper	2,800				2,500								+					2.43	0.50	3.22	0.50	2576	
Lead		72		200						F. C.	0.50	- 35	4	3.54				ND	0.250	0.872	0.250		
Molybdenum	- 4+		-	7,4	3,500			+ +	*	0.367	0.250		-	NE						37	0.2		
Nickel	1,500	-		(4)	2,000					17.2	0.2			- 995 (31)		**	**	16.5	0.2	ND	0.750		
Selenium	370				100					1,140,100				NE				ND			0.750		
Silver	370				500	5.0	5.0	-					-	NE				ND	0.250		0.750		
Thallium	**			1.0	700	7.0			4 ++	All Assessment of				NE		**		ND	0.750				
Vanadium	520				2,400	24		2					+	42.5			. * . *	19.1	0.2		0.2		
Zinc	22,000	-			5,000	250			4 4				-	24		24	**	16.5	1.0		1.0		
Mercury	4.7	12	40		20	0.2	0.2			ND	0.0835	(4		- NE	0.0835			ND	0.0835	ND	0.0835		-
CYANIDE (mg/kg)	3,000									ND	1.0	2		NI	1.0	÷.		ND	1.0	ND	1.0	; -+:	-
VOCs (µg/kg)	5,000																						
	1,800,000	260,000	870,000	2.				- NI	D 4.7			NI	0 4.	.7 -		ND	- 5	+4			4.9	5.4	4.4
1,1,1-Trichloroethane	19,000	1,100			2,040,000	204	0.5					NI	0 4	.7 -	. 2	ND	5	**		ND	4.9	33	4.4
Trichloroethene	19,000	1,100	5,000																				
PAHs (μg/kg)								1										- NO	***	NID	50	923	
Naphthalene	2,000,000	SAT	r sat							1				NI				ND			50 50		
Acenaphthylene	3,100,000	SAT					-	-+		NE				NI				ND				**	
Acenaphthene	3,100,000							**		NE				NI		**		ND			50		
Fluorene	2,100,000					-		**		NE				NI				ND			50	***	
Phenanthrene	16,000,000					4								NI			100	ND			50) HE	
Anthracene	16,000,000						-				50			NI			***	ND					
Fluoranthene	2,100,000										50			N		-	::	ND			50	- 57	
Pyrene	1,600,000									- NI				N	D 50	194	**	ND			50		
Benzo (a) Anthracene	250					- 7				- NI	50	2.		N		100	- 44	ND			50	77	
	2,500									- NI	50	10	9-9	N		**	555	ND				**	- 10
Chrysene Benzo (b) Fluoranthene	250							22	** -	- NI	50		**	N	D 50	55	***	ND		ND	50		
Benzo (k) Fluoranthene	250						×+		24	- NI			**	N		- **	**	ND			50 50	==	
	250			r						- NI				N				ND					
Benzo (a) Pyrene	74							**		3.77			5	N				ND				4-4	
Dibenz (a,h) Anthracene	210,000						**	-		- NI				N	D 50	- 50	-	ND	50				
Benzo (g,h,i) Perylene	210,000						++			3.77				N	D 50	***		NE	50) ND	50	**	
Indeno (1,2,3-c,d) Pyrene					50,000					- NI				- N			-	NE	5) ND	50		
PCBs (µg/kg)	-5	09,000	190,000		20,000	- 3.																	
TPH (mg/kg)					1	100		-	(D) 0.1	0		NY NY	(D) 0.	.17		ND	0.2			- ND	1.1	ND	0.1
as Gasoline		H 5			10		55	- N	(D 0.1			-	0.					4.00					
as Diesel	,			- 3	10		**	**		- N			**		D 1.0	-		5.9	1.	- 7.5			
pH (pH units)					<2 or >12	.5	**	***			7 -	+		6	.4	**		1347	E 4.5	21 (45)	1251	-771	

y0323.tbls.xls-4/25/2003

TABLE 2: Summary of Analytical Results, Soil, 751-785 Brush Street, Oakland

Well/Boring ID	Oakl	and RBCA RB	SLs	RWQCB RBSLs	Hazard	lous Waste Thre	sholds	B-1	FP5	В	FP5	В-	FPS	R-F	P6	B-	-FP6		B-FP	6	B-FPc	6
Sample Depth (ft. bgs)		Tier 1 RBSLs	Tier 1 RBSLs	Final RBSL for			Toxicity Characteristic	2-	2.5	5	.5 ¹	5	5.5	2.5		2	-2.5	Hoya Mile	5.5		5-5.5	
Date Collected	Tier 1 RBSLs for Surficial Soil -	# CVSC 7 February 2017	MATERIAL STREET, STREE	Surface Soils with Potential	Total Threshold	Soluble Threshold Limit	Leaching Procedure	2/4/	2003	2/4	/2003	2/4/	/2003	2/5/2	003	2/5	/2003		2/5/20	03	2/5/200)3
	Residential (<1 meter)	Air Residential (>1 meter)	Air Residential (>1 meter)	Drinking Water (<3 meters)	Limit Concentration	Concentration (mg/L)	Threshold (mg/L)	Conc.	Rpt. Lim.	Conc.	Rpt. Lim	Conc.	Rpt. Lim.	Cone.	Rpt. Lim	Conc.	R	tpt. Lim. Co	ne. R	pt. Lim C	Cone.	Rpt. Lim
Metals (mg/kg)			B695%																			
Antimony	34			6.3		15		ND							- 66		ND	0.750		**	ND	0.750
Arsenic	0.32		17		500	5.0			0.750						- 55		3.44	0.75	199	46	1.78	0.75
Barium	5,200		++		10,000	100	100										134	0.500	**		49.2	0.5
Beryllium	370			***	75	0.75	1.0	ND			* **				***		ND	0.250 0.500	100		0,339	0.250 0.500
Cadmium	37			17 -	100	1.0									***		689 220	0.250	**		ND 49.1	0.300
Chromium (Total)	74,000		/00	58	2,500	560		36,6 ND							***		ND	0.230		-	ND	0.2
Hexavalent Chromium	1.3			40	500	5											5.17	0.03	- 3		11.3	0.05 0.2
Cobalt	0.000		53	10	8,000 2,500	80 25		3.86 4.79				-			- 3		19.7	0.23		- **	7.76	0.50
Copper	2,800		53 -	マイラ				_			-	+						5			3.95	0.50
Lead				200		5.0		2.83 - ND				3.75				1260 (1.5){<	1.95	0.25	**	**	3,95 ND	0.30
Molybdenum	1 500	-	170	150	3,500	350		17.3								368		0.250		3.2	320 (26)	0.250
Nickel	1,500 370			120	2,000 100	20 1.0											ND	0.750			320 (26) ND	0.230
Selenium	370				500	5.0											ND	0.150			ND	0.250
Silver			-	1.0		7.0		- ND			4 66						ND	0.750			ND	0.750
Thallium	520			1.0	2,400	24		20.3									19.3	0.730		7.00	35.8	0.2
Vanadium	22,000			-	5,000	250		13.9				4.4					1260	10			22.3	1.0
Zinc	4.7	12			20						4 99	2.77					415	0.083			ND	
Mercury	4.7	12	40		20	0.2	0,2	1,0	0.0600		1	INL	0.0033			U,	7415	0.00.5			TAD .	0.0055
CYANIDE (mg/kg)	3,000		-	-			-	- ND	1.0			NE	1.0				ND	1 0		32	ND	1.0
VOCs (μg/kg)								1													1000	
1,1,1-Trichloroethane	1,800,000	260,000	870,000			40.4		-									**		5	4.4		
Trichloroethene	19,000	1,100	3,000		2,040,000	204	0.5			NI	D 4.7	-	-	ND	4.8				ND	4.4	144	
PAHs (μg/kg)																						
Naphthalene	2,000,000	SAT	SAT					- ND	50			NI	50)			ND	50			ND	50
Acenaphthylene	3,100,000	SAT					1	NE				2.00					ND	50			ND	50
Acenaphthene	3,100,000	SAT						NE				NI					ND	50		-722	ND	50
Fluorene	2,100,000							NE				NI					ND	50		-	ND	50 50
Phenanthrene	16,000,000					7.2	72	- NE				3.75					ND	50		jan.	ND	
Anthracene	16,000,000						1 3	- NE				NI					ND	50		**	ND	50
Fluoranthene	2,100,000				- 2	2.2		- NE	50			- NI	50)	44		ND	50	***	**	ND	50
Pyrene	1,600,000						0.	- NE	50		**				**		ND	50	++	**	ND	50
Benzo (a) Anthracene	250		SAT					- NI	50	3		- NI			1		ND	50		**	ND	
Chrysene	2,500						4	- NE	50				50)	:44		ND	50	**	**	ND	50
Benzo (b) Fluoranthene	250		SAT	7				- NE	50						-		ND	50	**		ND	50
Benzo (k) Fluoranthene	250							- NI				- NI					ND	50		**	ND	50
Benzo (a) Pyrene	25							- NI									ND	50			ND	50
Dibenz (a,h) Anthracene	74							- NI									ND	50	**		ND	5(
Benzo (g,h,i) Perylene	210,000							- NI									ND	50			ND	
Indeno (1,2,3-c,d) Pyrene	250	SAT	SAT			-	-	- NI	50)		- NI	D 50)	- 2	-	ND	50	**	- 24	ND	50
PCBs (μg/kg)	50	69,000	190,000	-	50,000	5.0		NI	50			- NI	D 50)		-	ND	50		==	ND	50
TPH (mg/kg)																			3.7V-	0.15		
as Gasoline			-		- 10				v		D 0.11			- ND				++	ND	0.18		
as Diesel		-			- 10		-	- 3.4 H				N N		0		•	ND	1.0	. ++	44	ND	
pH (pH units)		2 2	2		<2 or >12.:	5		7.:	8			- 7.	.5 -	- 34-	1.2	+	5.9	***	***	300	6.1	- 2

y0323.tbls.xls-4/25/2003 3 of 5

TABLE 2: Summary of Analytical Results, Soil, 751-785 Brush Street, Oakland

Well/Boring ID	nable.	nd RBCA RB	N/a	RWQCB RBSLs	Hazard	ous Waste Thre	holds	B-FP	7	B-FI	P7	B-FP7		B-F	P7	сом	P FY ²	сом	P RY
Sample Depth (ft. bgs)			Sel 14-01-02	of the Spirit of the Spirit		to Indust	Toxicity	2.5	(- FOT 1/	2.5-3	(=1110 pt 2)	5.5 1	100	5-5	E IIIIK	7.5	15	7-	7.5
Date Collected		Tier 1 RBSLs for Subsurface	Tier 1 RBSLs for Subsurface Soil - Outdoor	Final RBSL for Surface Soils with Potential	Total Threshold	Soluble Threshold Limit	Characteristic Leaching Procedure	2/5/20	03	2/5/20	003	2/5/2003		2/5/2	2003	2/4-5	2003	2/4-5	/2003
	Surficial Soil - Residential (<1 meter)	Soil - Indoor Air Residential (>1 meter)	BUDGEST HER PROFESSION OF THE	Drinking Water (<3 meters)	Limit Concentration	Concentration (mg/L)	Threshold	Conc.	ipt, Lim	Conc. I	Rpt. Lim C	one. Rpt	Lim	Conc.	Rpt. Lim	Conc.	Rpt. Lim	Cone. R	pt. Lim.
Metals (mg/kg)										ND	0.750			ND	0.750	ND	0.750	ND	0.750
Antimony				6.3	500	15	5.0			4 44	0.750 0.75		***	ND	0.750	1.19	0.75	ND	0.750
Arsenic	0.32				500	5.0	100			108	0.500	100		81	0.750	64.2			0.75
Barium	5,200				10,000	100	100		4+	ND	0.250	100		0.418	0.250	0.278			0.250
Beryllium	370				75	0.75	1.0			ND	0.500	144	2.51	ND	0.500	ND			0.500
Cadmium	37		**		100	1.0		**	**		0.300	P2	**	84.6	0.500	54.2			0.500
Chromium (Total)	74,000		**	***	2,500	560		- 40		38.8	0.2		**	0.09	0.05	ND			0.05
Hexavalent Chromium	1.3			40	500	5	**		***	ND 4.55	0.05								0.05
Cobalt	46	**	**	40	8,000	80	- 5	. **	- 275	24.6	0.23	**		9,69		7.49			0.50
Соррет	2,800				2,500	25			**	141 4	0.500		-	4.11	0.50	2.98			0.50
Lead	FF.	244		200	1,000	5.0	5.0	520	(48				**		0.30	ND			0.250
Molybdenum	++		++		3,500	350	77	- "		0.65	0.250		- 55	ND 164	0.250	75.4	0.230		0.230
Nickel	1,500	-	**		2,000	20	1.0	- 25		39	0.750			ND	0.230	ND			0.750
Selenium	370	240			100	1.0		**		ND			100	ND	0.730	ND			0.750
Silver	370		**		500	5.0				ND	0.250		164	3.175		ND			0.230
Thallium				1,0	700	7.0	-			ND 21.5	0.750	**	- **			31.8			0.730
Vanadium	520			122	2,400	24		-		21.5	0.2	**	**		0.2				1.0
Zinc	22,000				5,000	250				94	1.0		**	27.7	1.0 0.0835	ND			0.0835
Mercury	4.7	12	40		20	0.2	0.2		:3+	0.139	0.083	**	***	ND	0.0833	ND	0.0833	ND	0.0833
CYANIDE (mg/kg)	3,000		••						- 4	ND	1.0			11	1.0	ND	1.0	ND	1.0
VOCs (μg/kg)																			
1,1,1-Trichloroethane	1,800,000	260,000	870,000		-			ND	4.7			ND	4.5		44				5.2
Trichloroethene	19,000	1,100	3,000	**	2,040,000	204	0.5	ND	4.7			ND	4.5		-2.	ND	5.1	ND	5.2
PAHs (µg/kg)																			
Naphthalene	2,000,000	SAT	SAT						100	1,800	50		- 11						50
Acenaphthylene	3,100,000	SAT			-				, ee	550	50	+-							50
Acenaphthene	3,100,000	SAT	SAT	===					(100)	140	50	**							50
Fluorene	2,100,000	SAT	SAT		7.7	-			**	91	50			ND					50
Phenanthrene	16,000,000	SAT	SAT	-			-			1,300	500	**							5(
Anthracene	16,000,000		SAT	-				-		200	50		**						50
Fluoranthene	2,100,000	SAT								3,000	500								50
Pyrene	1,600,000				-	- /2				4,600	500		-	ND	50				5(
Benzo (a) Anthracene	250	SAT			-		- 3		-	1,500	500	- 69		ND					50
Chrysene	2,500	SAT	SAT				-	- 4	**	2,200	500	***	++	NE		NE			5(
Benzo (b) Fluoranthene	250	SAT					- 3-	• ••	++	2,000	500	100	**	4 144	50				50
Benzo (k) Fluoranthene	250					E-	-		**	850	500	**		NE					50
Benzo (a) Pyrene	25							++	364	3,900	500	385	100				5(5(
Dibenz (a,h) Anthracene	74	SAT							- 75	2,600	500			ND					51
Benzo (g,h,i) Perylene	210,000		SAT		(e		-			3,400	500			NE					51
Indeno (1,2,3-c,d) Pyrene	250									2,400	500	**	***	NE	50) NI	50) ND	5
PCBs (μg/kg)	50				50,000	5.0			**	ND	50		-	NI	50) NI	50) ND	5
TPH (mg/kg)												2175				XII		l ND	0.9
as Gasoline		-			- 10	+	-	- ND	0,21	80		ND	0.2		+	NI			
as Diesel	2+				- 10				**			722	- 4						1.
pH (pH units)					- <2 or >12.	5		- 22	<u></u>	9.2			-		8 -	- 6.1	2	7.4	

y0323.tbls.xls-4/25/2003 4 of 5

TABLE 2: Summary of Analytical Results, Soil, 751-785 Brush Street, Oakland

Notes:

RBCA = Risk Based Corrective Action

RBSLs = Risk Based Screening Levels (Oakland, 2000 and RWQCB, 2001)

RWQCB = Regional Water Quality Control Board

Conc. = Concentration

Rpt. Lim. = Laboratory reporting limit

-- = Not analyzed or not available

ft. bgs = Feet below ground surface

mg/kg = Milligrams per kilogram

μg/kg = Micrograms per kilogram

 $\mathbf{x}.\mathbf{x}$ = Concentrations shown in **bold** exceed California hazardous waste criteria.

x.x = Concentrations shown in italics exceed Tier 1 Oakland RBCA RBSLs for surfacial soil.

(y,y) = Soluble metal concentration as determined using the Waste Extraction Test in mg/L.

 $\{z,z\}$ = Soluble metal concentration as determined using the Toxicity Characterization Leaching Procedure in mg/L.

ND = Not identified above the laboratory reporting limit.

Total metals analyzed using EPA Method 6000/7000 series; hexavalent chromium analyzed using EPA Method 7196A. Cyanide analyzed using EPA Method 335.2.

VOC = Volatile organic compounds; VOCs analyzed using EPA Method 8260B. VOCs not shown in this table were not identified above the corresponding laboratory reporting limits; see laboratory report.

PAHs = Polynuclear aromatic hydrocarbons; PAHs analyzed by EPA Method 8310.

PCBs = Polychlorinated biphenyls; PCBs analyzed by EPA Method 8082.

TPH = Total petroleum hydrocarbons; TPH analyzed using modified EPA Method 8015M; samples were subjected to silica gel cleanup before TPH diesel analysis.

SAT = RBSL exceeds saturated soil concentration of chemical.

Sample locations are shown on Figure 2.

Laboratory reports are provided in Appendix F.

¹ Sample collected in EnCore™ samplers for VOC and TPH as gasoline analyses.

² Composite sample COMP FY was generated using samples B-FP1;7-7.5, B-FP2;7-7.5, B-FP3;7-7.5, and B-FP4:7-7.5.

³ Composite sample COMP RY was generated using samples B-FP5;7-7.5, B-FP6;7-7.5, and B-FP7;7-7.5

⁴ Laboratory did not have sufficient sample to perform soluble lead analysis.

H Heavier hydrocarbons contributed to the quantification.

Y Sample exhibits fuel pattern which does not resemble standard.

TABLE 3: Summary of Analytical Results, Groundwater, 751-785 Brush Street, Oakland

Well/Boring ID	Oukl	und RBCA RB	SLs	B-F	P3-grab	B-F	P4-grab	B-F	P5-grab	M	W-FP1	M	V-FP2
Date Collected	Tice 1 RBSLs for Groundwater -	Tier 1 RBSLs for Groundwater ~	Tier 1 RBSLs	2/4	1/2003	2/	5/2003	2/	5/2003	2/1	2/2003	2/1	2/2003
	Inhalation of Indoor Air - Residential	Inhalation of Outdoor Air- Residential	Groundwater - Ingestion - Residential	Conc.	Rpt. Lim.	Conc.	Rpt. Lim,	Cone:	Rpt. Lim.	Cone.	Rpt. Lim.	Cone,	Rpt, Lim.
Metals (µg/L)													
Antimony								+	60				60
Arsenic			50			NID	 		5.0	<u> </u>	·	d	_5.0
Bariun			1,000						10		·	+	10
Beryllium			4.0					+	2.0		·		2.0
Cadmium			5.0				 	h - · · · · · · · · · · · · · · · · · ·	5.0		 	+	5.0
Cobalt									20				20
Chromiun (total)			16,000					+	10			+	10
Hexavalent Chromium			50										10
Copper			1,300				 	+	10				10
Molybdenum									20				20
Nickel			100				·			}			20
Lead						· · · · · · · · · · · · · · · · · · ·			3.0	 -		+	3.0
Selenium			50			- ND		+	5.0				5.0
Silver			100			- ND		+	5.0	+- 			5.0
Thallium								· 					
Vanadium			110		-				10	·	·		
Zinc			4,700		_	- NE	20	ND ND		 		+	20
Mercury	260	16,000	2			- ND	0.2	. ND	0.2	ND	0.2	ND	0.2
CYANIDE (mg/L)			200		_	- NI	0.01	ND	0.01	ND	0.01	ND	0.01
VOCs (μg/L)	1									-			
Trichloroethene	690	41,000	5.0		-	- 21	5.0	42	5.0	ND	5.0	ND ND	5.0
PAHs (μg/L)	various	various	various		_	- NE	1.0	ND ND	1.0	ND	0.09-1.9	UND	0.09-1.9
PCBs (µg/L)	23	320	0.5		-	- NE	1.0	ND ND	1.0	ND	0.49-0.97	ND	0.49-0.97
ТРН (µg/L)								ļ					
Gasoline				₹150 ^{Y,2}	+					ND aco H.Y	50		50
Diesel			-	ND	50	D NE	50) ND	50	260 H,Y	50	110	50

TABLE 3: Summary of Analytical Results, Groundwater, 751-785 Brush Street, Oakland

Notes:

RBCA = Risk Based Corrective Action

RBSLs = Risk based Screening Levels (Oakland, 2000)

Conc. = Concentration

Rpt. Lim. - Laboratory reporting limit

-- = Not analyzed or not available

ND = Not identified above the laboratory reporting limit.

μg/L= micrograms per liter

mg/L= milligrams per liter

x.x = Concentration shown in italics exceed Tier 1 RBSL for ingestion of groundwater.

Total metals analysis performed using EPA Method 6000/7000 series; hexavalent chromium analyzed by EPA Method 7196A.

Cyanide analyzed using EPA Method 335.2.

PAHs = Polynuclear aromatic hydrocarbons; PAHs analyzed by EPA Method 8310.

PCBs = Polychlorinated biphenyls; PCBs analyzed by EPA Method 8082.

VOCs = Volatile organic compounds; VOCs analyzed using EPA Method 8260B. VOCs not shown in this table were not identified above the corresponding laboratory reporting limits; see laboratory report.

TPH = total petroleum hydrocarbons; TPH analyzed using modified EPA Method 8015M; samples were subjected to silica gel cleanup before TPH diesel analysis.

Sample locations are shown on Figure 2.

Laboratory reports are provided in Appendix F.

H Heavier hydrocarbons contributed to the quantification.

Y Sample exhibits fuel pattern which does not resemble standard.

² Sample exhibits unknown single peak or peaks.

APPENDIX A

HEALTH AND SAFETY PLAN

SITE HEALTH AND SAFETY PLAN

Project No:	Project Manager:	Site Health and Sa	afety Manager:	Field Activities Date:
Y0323-01	Lydia Huang	Bill Scott		4, 5, 10, 11 February 2003
Client: BBI Construction 1155 3rd Street, No		Contact Person: Tom McCoy	Phone: NA	Site Address: 751-785 Brush Street, Oakland
Oakland, CA 9460				Subcontractor: Precision Sampling, Clearheart Drilling

PROJECT DESCRIPTION:

Major Chabot Partners may be interested in acquiring the property identified above. The purpose of the soil and groundwater investigation is to evaluate whether former chemical releases from the site have impacted soil and groundwater quality.

The site has been used as a plating facility from about 1957 to 1998. Hazardous materials that may have been associated with this past land uses include nickel, cadmium, aluminum, other metals, acids, ketones, and cyanide. An inspection conducted by the Oakland Fire Department reported improper containment of numerous chemicals and waste. A removal action occurred at the site in 1998 to remove these materials. A Phase I and II site assessment was conducted in 1993; documentation of these assessments is incomplete. Based on limited data, up to 19 borings were drilled and analyzed for metals, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and cyanide. Soils underlying the site contained elevated levels of cadmium, chromium, lead, nickel (and possibly other metals), and that PCBs, SVOCs (polycyclic aromatic hydrocarbons, PAHs, in particular), VOCs, and cyanide were detected in one or more samples.

Three groundwater monitoring wells would be installed in the public rights-of-way adjacent to the site. Seven borings would be completed on-site to assess soil quality; grab groundwater samples would also be collected at selected locations (groundwater is expected at 15 to 20 feet below ground surface). The soil samples would be collected using direct push technology. Groundwater well installation (three wells) would be completed using an auger drill rig. See Figure 1 for proposed soil and groundwater sampling locations. Soil samples would be selectively analyzed for Title 22 metals, TPH, VOCs, PAHs, PCBs, pH, and cyanide. Groundwater samples would be selectively analyzed for TPH, metals, VOCs, PAHs, PCBs, and cyanide.

All soil borings would be grouted to surface upon completion. All soil cuttings, decontamination water, and groundwater from developing and sampling the wells would be stored in labeled and sealed 55-gallon drums. No confined space entry or site excavation activities requiring a permit are included in the scope of work. The project area is accessible via 7th and Brush Streets (see Proposed Well and Boring Locations Map, Figure 1, for project area). The topography of the project area is relatively flat. Field activities will require approximately four days to complete. Permits will be obtained prior to drilling from the City of Oakland, and a utility clearance will be performed. Traffic control will be provided for sampling conducted in the public right- of- way.

SITE HISTORY:

Contaminants potentially present in the subsurface soil and groundwater are identified above.

TRAINING REQUIREMENTS:

Yane Nordhav, R.G., is the Principal-in-charge. Lydia Huang is the Project Manager. Other BASELINE personnel include: William Scott, R.G., C.E.G., Field Geologist. Precision Sampling and Clearhart Drilling are subcontractors to BASELINE Environmental, and will work under the direction of BASELINE personnel during soil sampling activities. Samples will be submitted to a California-certified laboratory for analysis.

Responsibilities of BASELINE personnel include the following: Lydia Huang is the Project Manager and Yane Nordhav is the Principal-in-Charge. The project manager or principal-in-charge shall be: 1) present by telephone at all times during on-site work; 2) have overall responsibility for preparation, implementation, and modifications to this Plan; and 3) designate a BASELINE Site Health and Safety Officer to carry out the requirements of this Plan during all sampling activities. The responsibilities of William Scott, the designated BASELINE Site Health and Safety Officer/Project Supervisor, include: 1) being present at all times during on-site work; 2) enforcing this Site Health and Safety Plan (including the Emergency Response Plan, below); 3) stopping field operations if personnel safety and health may be jeopardized; 4) requesting Site evacuation, if necessary; 5) conducting and evaluating or supervising the collection/evaluation of air monitoring data for the purpose of making decisions regarding the safety of on-site personnel; 6) designating other qualified personnel to work under the direction of Site Health and Safety Officer, as necessary, for purposes of implementing this Plan; and 6) overseeing completion of the sampling activities as described above, and supervising the work of subconsultants. Precision Sampling and Clearhart Drilling will perform drilling activities under the direction of BASELINE personnel.

All on-site workers, including subcontractors and regulatory agency personnel, entering into the contamination reduction (warm), exclusion (hot), or any other areas of the Site with potential or suspected contamination must be 40-hour trained in accordance with the Federal and State OSHA HAZWOPER standard (including 3 days of supervised field experience and annual refresher training), and must be medically surveilled and have received annual respirator training and fit testing in accordance with this Standard and the requirements of their company's health and safety plan. On-site management personnel must also have received 8 hours of HAZWOPER Supervisor training. Proof of subcontractor training shall be provided, if requested. All visitors entering the contamination reduction or exclusion area or other areas of the Site with potential or suspected contamination must also be 40-hour trained. The Site Health and Safety Manager will inquire whether each visitor is trained.

A copy of this site-specific Health and Safety Plan will be provided at the Site and will be reviewed by the Site Health and Safety Manager prior to the start of work at the Site, as part of a tail-gate safety meeting. This site-specific Plan applies to all BASELINE employees engaged in hazardous materials activities on-site. This Plan, or an equally protective Plan, shall be adopted by the subcontractors as a supplement to their existing health and safety programs. All on-site personnel will be asked to sign a consent form included in this Plan, prior to each day of field activities, indicating that they have read the Plan, have participated in the tail-gate safety meeting, meet the training requirements, and agree to all Plan conditions. Should other employers elect to adopt this Plan, BASELINE shall be held harmless and indemnified against any claims associated with this Plan. If a separate Plan is developed, it must be submitted for review by BASELINE prior to the commencement of field activities, and the Subcontractor must designate a Site Safety Officer to monitor Plan implementation. The Subcontractors' Site Safety Officer will be subordinate to the designated BASELINE Site Health and Safety Manager.

This Site Health and Safety Plan is intended to act as an extension of BASELINE's in-house Health and Safety Program including a Medical Surveillance Program, Hazard Communication Program, Hearing Conservation Program, Respiratory Protection Program, Personal Protective Equipment Program, Injury and Illness Program, Emergency Action Plan, and Fire Prevention Plan. BASELINE employees receive initial and refresher training in these programs.

CHEMICAL HAZARDS

The following known/suspected chemical hazards identified below may potentially be encountered by site personnel during sampling or other on-site activities.

Chemical	Description	Health and Safety Standards/Odor Threshold (OT)	Persons Exposed** and Potential Exposure Routes	Target Organs	Symptoms of Acute Exposure
Petroleum hydrocarbons (diesel, motor oil, waste oil, oil & grease)	Combustible liquid, may contain carcinogenic middle distillates LEL=0.7% UEL=5.0% (diesel)	No PEL	Dermal, eyes, ingestion	Eyes, skin, respiratory system	Minor eye/skin irritation
Gasoline	Hydrocarbon, carcinogen (engine exhaust), flammable LEL=1.4% UEL=7.6%	PEL=300 ppm (900 mg/m³) REL¹ STEL=500 ppm (1500 mg/m³) IDLH= OT= 0.3 ppm	Inhalation, dermal, eyes, ingestion	Eyes, skin, respiratory system, central nervous system (CNS), liver, kidneys	Eye and skin irritation, headache, fatigue, dermatitis, blurred vision, dizziness, slurred speech, confusion, convulsions
Benzene*	Volatile aromatic hydrocarbon, aromatic odor, carcinogen, flammable LEL=1.2% UEL=7.8%	PEL= 1 ppm REL/TLV=0.1 ppm ¹ STEL=5 ppm IDLH=500 ppm OT = 8.65 ppm	Inhalation, dermal, eyes, ingestion	Eyes, skin, respiratory system, blood, CNS, bone marrow	Headache, dizziness, eye, respiratory and skin irrigation, giddiness, nausea, fatigue, dermatitis
Toluene*	Volatile aromatic hydrocarbon, benzene-like odor, reproductive toxin, flammable LEL =1.1% UEL=7.1%	PEL=50 ppm (188 mg/m³) REL/TLV=100 ppm (375 mg/m³) STEL=150 ppm (560 mg/m³) C=500 ppm IDLH=500 ppm OT=0.16 ppm	Inhalation, dermal, eyes, ingestion	Eyes, skin, respiratory system, CNS, liver, kidney	Headache, dizziness, eye, respiratory and skin irritation, fatigue, weakness, confusion, euphoria, dilated pupils, lacrimation, nervousness
Xylenes	Volatile aromatic hydrocarbon, aromatic odor, flammable, LEL=1.1% UEL=7.0%	PEL=100 ppm (435 mg/m³) REL/TLV=100 ppm (435 mg/m³) STEL=150 ppm (655 mg/m³) C=300 ppm IDLH=900 ppm OT=0.324 ppm	Inhalation, dermal, eyes, ingestion	Eyes, skin, respiratory system, gastrointestinal (GI) tract, blood, liver, kidneys	Headache, dizziness, eye, respiratory and skin irritation, excitement, drowsiness, staggering gate, nausea, vomiting, dermatitis, incoordination

Chemical	Description	Health and Safety Standards/Odor Threshold (OT)	Persons Exposed** and Potential Exposure Routes	Target Organs	Symptoms of Acute Exposure
Ethylbenzene	Volatile aromatic hydrocarbon, aromatic odor, flammable LEL=0.8% UEL=6.7%	PEL=100 ppm (435 mg/m³) REL/TLV=100 ppm (435 mg/m³) STEL=125 ppm (545 mg/m³) IDLH=800 ppm OT= 2.3 ppm	Inhalation, dermal, eyes, ingestion	Eyes, skin, respiratory system, CNS	Eye, respiratory and skin irritation, skin burns, dermatitis
Metals (see lead, chromium and nickel below as example)	Varies depending on chemical	Varies depending on chemical	Varies depending on chemical	Varies depending on chemical	Varies depending on chemical
Lead	Carcinogen, reproductive toxin LEL=NA UEL=NA	PEL=0.05 mg/m ³ REL/TLV=0.1 mg/m ³ STEL= IDLH=100 mg/m ³ OT=	Inhalation, eyes, ingestion	Eyes, GI tract, CNS, kidneys, blood, gingival tissue	Weakness, lassitude, insomnia, abdominal pain, constipation, anemia, tremor, eye irritation
Chromium	Metal, odorless solid LEL= UEL=	PEL=0.5 mg/m³ REL/TLV=0.5 mg/m³ STEL= IDLH=250 mg/m³ OT=	Inhalation, eyes, ingestion	Eyes, skin, respiratory system	Eye and skin irritation, lung changes
Nickel	Metal, odorless solid, carcinogen LEL= UEL=	PEL=1mg/m³ REL/=0.015 mg/m³¹ TLV=1.5 mg/m³ STEL= IDLH=10 mg/m³ OT=	Inhalation, eyes ingestion, dermal	Nose, lung, skin	Skin allergy, lung irritation, coughing respiratory problems
Polynuclear aromatic hydrocarbons may be present as part of heavy fuel hydrocarbons (benzo(a)pyrene and naphthalene are provided as examples)					
Benzo(a)pyrene (polynuclear aromatic hydrocarbon)	Carcinogen, reproductive toxin, combustible (aka coal tar pitch volatiles) LEL=NA UEL=NA	PEL=0.2 mg/m³ REL/TLV=0.1 mg/m³ STEL= IDLH=80 mg/m³ OT=NA	Inhalation, eyes	Respiratory system, skin, bladder, kidneys	Dermatitis, bronchitis
Naphthalene (polynuclear aromatic hydrocarbon)	Colorless to brown solid with	PEL=10 ppm (50 mg/m³) REL/TLV=10 ppm (50 mg/m³) STEL=15 ppm (75 mg/m³) IDLH=250 ppm OT=0.015 ppm	Inhalation, dermal, eyes, ingestion	Eyes, skin, blood, liver, kidneys, CNS	Eye irritation, headache, confusion, excitement, malaise, profuse sweating, dermatitis, blood in the urine, jaundice, bladder irritation, optical problems
Volatile organic compounds (PCE, TCE, cis 1,2-DCE, and 1,1,1- TCA are provided as examples)					
Tetrachloroethylene (PCE) (a.k.a., perchloroethylene)	Colorless liquid with a mild, chloroform-like odor, solvent, carcinogen	PEL=25 (170 mg/m³) REL/TŁV=¹ C=300 ppm STEL= 100 ppm (685 mg/m³) IDLH=150 ppm OT=6.17 ppm	Dermal, eyes, ingestion, inhalation	Eyes, skin, respiratory system, liver, kidneys, CNS	Eye and respiratory irritation, nausea, dizziness, headache, skin redness, vertigo

Chemical	Description	Health and Safety Standards/Odor Threshold (OT)	Persons Exposed** and Potential Exposure Routes	Target Organs	Symptoms of Acute Exposure
Trichloroethylene (TCE)	Colorless liquid with a chloroform-like odor, solvent, carcinogen	PEL=25 ppm (135 mg/m³) REL/TLV=¹ C=300 ppm STEL=100 ppm (537 mg/m³) IDLH=1000 ppm OT=1.36 ppm	Eyes, dermal, skin, inhalation	Eyes, skin, respiratory system, heart, liver, CNS	Eye and skin irritation, headache, vertigo, visual problems, fatigue, giddiness, tremor, nausea, vomiting, dermatitis, heart problems
cis 1,2-dichloroethylene	Colorless liquid with a slightly acrid, chloroform-like odor, solvent	PEL=200 ppm (790 mg/m³) REL/TLV=200 ppm (790 mg/m³) STEL= IDLH=1000 ppm OT=19.1 ppm	Ingestion, inhalation, e yes	Eyes, respiratory system, CNS	Eye and respiratory system irritation, CNS depression
1,1,1-trichloroethane	Solvent .	PEL=350 ppm (1900 mg/m³) REL/TLV= 350 ppm C= 800 ppm STEL=450 ppm (2450 mg/m³) IDLH= 700 ppm OT=22.4 ppm	Similar effects as above	Similar effects as above; skin irritation also possible	Similar effects as above; skin irritation also possible
Polychlorinated biphenyls* (aka chlorodiphenyl)	Colorless to light colored, viscous liquid with hydrocarbon odor, carcinogen LEL = NA UEL = NA	PEL = 1 mg/m ³ REL = 0.001 mg/m ³ TLV = 1 mg/m ³ C = - STEL = IDLH = 10 mg/m ³ OT =	Inhalation, dermal, eyes, ingestion	Eyes, skin, liver, reproductive system	Eye irritation, chloracne, liver damage, reproductive effects
Cyanide* (as Hydrogen Cyanide)	Colorless to blue liquid or gas with bitter almond-like odor LEL = 5.6% UEL = 40%	PEL = 5 mg/m³ (Ceiling) STEL = 4.7 ppm (5 mg/m³) IDLH = 50 mg/m³ At Action Limit equivalent to 2 mg/m³) in the worker breathing zone, workers will be required to vacate the area (since workers will not don supplied air respirators).	Inhalation, dermal, ingestion, eyes	CVS, CNS, thyroid, blood	Asphyxiation, weakness, headache, confusion, vomiting, respiratory problems, blood changes, thyroid problems

Notes: IDLH = Immediately dangerous to life and health; a condition from which one cannot escape within 30 minutes without permanent damage or death.

LEL = Lower explosive limit

NA = Not available or not applicable.

ND = Not yet determined by the National Institute of Occupational Safety and Health (NJOSH).

OSHA = California Department of Industrial Relations, which enforces the Occupational and Safety Health Act.

PEL = Permissible exposure limit. Time-weighted average concentrations for a normal 8-hour work period for a 40-hour work week; PELs are enforced by OSHA.

REL = Recommended exposure limit. Time-weighted average concentrations for up to a 10-hour day during a 40-hour work week. RELS are recommended by NIOSH, but are not regulatorily enforceable.

C = Ceiling limit. A limit that must not be exceeded during any part of work day.

STEL = Short term exposure limit. A 15-minute time weighted average exposure that is not to be exceeded at any time during a workday even if the 8-hr time-weighted average is below the PEL; regulated by OSHA. Up to 4 exposures at the STEL with one hour of no exposure between each exposure event may be experienced in an 8-hour working day.

TLV = Threshold limit value, American Conference of Government Industrial Hygienists. See also PEL.

UEL = Upper explosive limit

-- = None.

CVS = Cardiovascular system.

CNS = Central nervous system.

H = A number of gases and vapors when present in high concentration, act primarily as asphyxiants without other adverse effects. A limit is not included by OSHA because the limiting factor is available oxygen. Several of these materials present fire and explosion hazards.

Hazardous materials identified above as "carcinogens" or "reproductive toxins" are recognized as such under California's Proposition 65.

- Chemical may be absorbed into the blood stream through the skin, mucous membranes, and/or the eye, and contribute to overall exposure.
- ** BASELINE, drillers, and regulatory agency personnel.
- NIOSH recommends that occupational exposure to carcinogens should be limited to the lowest feasible concentration,
- Lowest feasible recommended.

BASELINE Environmental Consulting • 5900 Hollis Street, Suite D • Emeryville, CA 94608 • (510) 420-8686 • FAX (510) 420-1707

PHYSICAL HAZARDS

Fire and explosion, heavy equipment, traffic, heat or cold stress, noise, over and underground utilities, and tripping and falling hazards. Traffic control will be provided by BASELINE personnel. BASELINE employees will follow standard operating procedures (SOPs) for sampling and quality assurance/control, as found in BASELINE's Quality Assurance Program Plan.

Drill rig safety requirements are the responsibility of the operator. The drilling contractor shall be responsible for complying with all OSHA requirements and accepted industry practices for protection of employee health and safety. The drilling contractors shall ensure that all equipment is in good working order prior to starting work and shall ensure that proper housekeeping is maintained around the work area at all times. Drillers shall inform sampling personnel of safety features of the rig.

BASELINE employees, subcontractors, and other personnel shall observe the following precautions:

- 1) Watch for slippery ground;
- All unattended boreholes must be adequately covered;
- 3) Maximize distance from the rig and do not take readings at the rig during drive sampling;
- Wear required personal protective equipment (PPE) at all times (see below);
- Prevent strain injuries by using small sampling shipping containers and/or material handling aids. Use a portable table or platform for opening split spoon samplers;
- 6) Avoid heat/cold stress by taking regular work breaks, liquids intake, and appropriate attire, as needed; and
- 7) Watch for heavy equipment while sampling.
 - Wear traffic safety vests at all times and implement a traffic control plan.

PERSONAL PROTECTIVE EQUIPMENT REQUIRED:

SOPs shall be implemented to minimize exposure to hazardous materials potentially occurring at the Site. However, it is anticipated that SOPs cannot completely prevent exposure to all hazardous materials at the Site. Potential hazards include inhalation and dermal contact with contaminated materials during sampling events. Ingestion of hazardous materials is assumed to be negligible if personal hygiene measures discussed below are implemented. Hard hats, respirators equipped with high efficiency particulate filters (HEPA) and NEW organic vapors cartridges (use to be designated by Site Health and Safety Manager), nitrile gloves, safety goggles (use to be designated by Site Health and Safety Manager), steel toed footwear, water supply for washing, decontamination, and for drinking, disposable Tyvek overalls, first aid-kit, noise protection (ear plugs), traffic safety vests, and fire extinguisher (to be provided by drilling contractors). Note that Tyveks do not provide protection against solvents or fuels. They are only for protection against dust and dirt (including lead). Avoid contact with on-site soils on disposable Tyveks to the extent possible. If you (or one of the driller's) Tyvek suits becomes heavily soils, the Tyvek should be removed and exchanged for a new one. The nitrile gloves provide protection against volatile organics, chlorinated organics, and polynuclear aromatic hydrocarbons (PNAs) (unless saturated in soil; if saturated, double up with clean gloves and exchange gloves frequently). Decontaminate gloves between each sample collected and sample location.

The rationale for selection of the PPE is based on the known and/or suspected hazardous materials at the Site, the anticipated amount of contact with potentially contaminated materials as part of site-specific tasks, and PPE performance characteristics. The need for respiratory protection shall be selected based on the results of the air monitoring (see Air Monitoring Strategy below). On-site personnel shall be required to don respiratory protection (Level C) if deemed necessary by the designated Site Health and Safety Manager. All respiratory protection must be NIOSH approved. On-site workers must be trained, as provided by their employer, in PPE use, care, proper fitting (including respirator fit-testing), donning and doffing, and limitations, on at least an annual basis. All PPE must be properly maintained and stored to ensure it is good working condition at the time of use. All PPE must be inspected prior to, and following use. (BASELINE's PPE Program is included in BASELINE's Health and Safety Program Plan).

The need for Level B PPE (respiratory protection) is not anticipated at the Site. In the event Level B respiratory protection is warranted, on-site personnel will be asked to leave the area immediately by the Site Health and Safety Manager and the manager will notify the BASELINE Project Manager(s) immediately to determine future site actions. If PPE is deemed to be ineffective by the designated Site Health and Safety Manager, the Manager or his designee shall take immediate action to mitigate the problem(s).

AIR MONITORING STRATEGY (INCLUDING ACTION LEVELS):

Air monitoring shall be conducted and evaluated by the Site Health and Safety Manager or his designee prior to and during sampling activities, as described below. Before field work begins, collect background readings using the photo ionization detector (PID) and 4-gas meter. Monitor borings and worker breathing zone using the combustible gas indicator and 4-gas meter to ensure that Permissible Exposure Limits (PELs), Action Levels, and other appropriate limits are not exceeded during field work. If PELs or other exposure levels are exceeded, or have the potential to be exceeded, personnel will be instructed by the designated Site Health and Safety Manager to wear appropriate respiratory protection (½ face respirator with OV/HEPA cartridges, as applicable) to reduce potential exposure below the applicable exposure limits. In addition, personnel will be asked to don respirators with HEPA filters and goggles if dusty conditions. The Site Health and Safety Manager will request that respiratory protection (OV/HEPA cartridges) also be donned if PNA materials are encountered visually and/or can be smelled. Most PNAs stick to dust, but some are moderately volatile. In addition, conduct colorimetric sampling for evanide.

For purposes of this Air Monitoring Strategy, respiratory protection (Level C) shall be used for exposures up to 10 times the applicable PELs. Level C shall be deemed to be warranted if organic compounds measured using the PID are 1 to 10 ppm above background levels for more than 1 minute. This is based on the assumption that all of the reading from the PID is benzene, which has the lowest PEL (and an exposure to this for eight hours wearing a half-face respirator). The drager pump and direct reading tubes (e.g., benzene) may be used to characterize vaporswhen the PID is 1-10 ppm over background for greater than one minute (wear your respirator while using the Drager pump, for the benzene test takes 15 minutes). Level B respiratory protection shall be deemed to be warranted in excess of 10 ppm above background concentrations (for benzene) or ten times the exposure limit for other contaminants (for half face air purifying respirators).

If Level B respiratory protection is warranted, on-site field personnel will be asked to evacuate by the Site Health and Safety Manager. If greater than 20% LEL in boring, stop work to air out boring until less than 20% LEL. In addition, if methane is detected or suspected at any concentration, stop drilling, remove any other ignition sources, vacate the area, and ventilate to prevent flammable mixtures from forming. Only resume drilling after air monitoring indicates methane is not detected.¹

If colorimetric sampling for cyanide indicates that exposures in the worker breathing zone approaches up to 2 mg/m³, on-site workers will be instructed by the Site Health and Safety Manager to vacate the area. Exposure to cyanide at or above the PEL (which is equivalent to a ceiling limit, not to be exceeded at any time) requires the use of supplied air. Air purifying respirators do not provide sufficient protection for exposure to cyanide at or above the PEL. Use of 2 mg/m³ as an Action Limit at which workers would be required to vacate the area provides a safety margin since the PEL is equivalent to the Ceiling Limit, the concentration not to be exceeded at any time.

The results of air monitoring shall be relayed to on-site workers and documented. No IDLH or oxygen deficient conditions are expected at the site. Air monitoring equipment shall be maintained and calibrated in accordance with the manufacturer's specifications and BASELINE's Quality Assurance Program Plan and Health and Safety Program Plan.

SITE CONTROL MEASURES:

Sampling personnel will define and demarcate exclusion, decontamination, and clean zones for each boring location; the need for multiple exclusion/decontamination zones will be determined in the field. Maintain the use of the buddy system during sampling events; site communications will take place verbally. No eating or drinking shall be permitted in the exclusion zone; workers may go through partial decontamination (wash gloves, hands, and arms) to consume fluids in the warm zone. Avoid skin and eye contact with soil to the maximum extent possible. Personal hygiene is imperative to prevent prolonged contact with site soils and dusts. USA and/or another utility service will provide utility clearance. Hand-digging may be performed if utilities have been cleared but are suspected.

In the event of a minor (incidental) release of a hazardous material, the spill will be immediately cleaned up by on-site BASELINE personnel, and spill cleanup materials placed in labeled drums. Salvage drums and absorbent materials (i.e., bentonite) shall be provided by drilling contractors. In the event of a larger than incidental (major) spill of hazardous materials, follow emergency procedures below.

Place all cuttings and rinsate/purge water and used PPE in drums, secure, and label. The location for temporary storage of drummed material generated during field activities is to be determined; the Site Health and Safety Manager will consult with the Project Manager and the client about where to securely store these drums.

DECONTAMINATION PROCEDURES (PERSONAL AND EQUIPMENT):

All personal and equipment decontamination procedures shall be implemented prior to leavingthe site. A decontamination area will be established from the work area (hot zone) to the control (cold) zone for soil sampling activities. The location of the decontamination area, and the need for multiple decontamination areas shall be determined by the Field Geologist/Project Supervisor and documented in the field after selection. Decontaminate sampling equipment, boots, and PPE according to the decontamination procedures below, and remove. Decontaminate boots, non-disposable PPE and sampling equipment on-site using trisodium phosphate (or Alcanox) and water, then rinse with water followed by a deionized water rinse. The equipment to be used for decontamination of sampling equipment, boots, and PPE will include three five gallon buckets (TSP or alconox/tap water, tap water rinse, and deionized water rinse, to be completed in that order) and brushes (for TSP or alconox bucket). Dispose of disposable PPE and sampling equipment in labeled containers. Antiseptic towelettes will be used for cleaning respirators and washing hands and arms. Larger sampling/drilling equipment shall be decontaminated by the drilling contractor using a self-contained steam-cleaning system and wearing proper PPE. Decontamination of sampling and drilling equipment will also be required prior to sampling and between sampling locations to avoid cross-contamination, as will decontamination or replacement of gloves at a new sampling location. All personnel should shower as soon as possible after leaving the Site. Contain all decontamination rinsate in labeled containers.

¹ Methane vapors can be detected using a combustible gas meter, not a PID.

Decontamination procedures shall be monitored by the Site Health and Safety Manager to determine their effectiveness. If decontamination measures are found to be ineffective, the Site Health and Safety Manager or his designee shall take appropriate action to immediately correct any deficiencies.

OTHER:

Illumination is not expected to be required, as all work will be performed during daylight hours. The location of the nearest restroom will be identified by the Site Health and Safety Manager prior to sampling during the daily tailgate safety meeting. Drinking water and antiseptic towelettes will be provided by BASELINE for personal hygiene.

Post exposure medical screening is not deemed to be required for on-site personnel based on the hazardous materials known and/or suspected to be encountered during field operations. An employee heat and cold stress monitoring program is also not deemed to be required for Site operations based on the limited number of days of Site work and California's mild climate. However, on-site personnel shall avoid heat/cold stress by taking regular work breaks, monitoring sufficient liquids intake, and wearing appropriate attire, if needed.

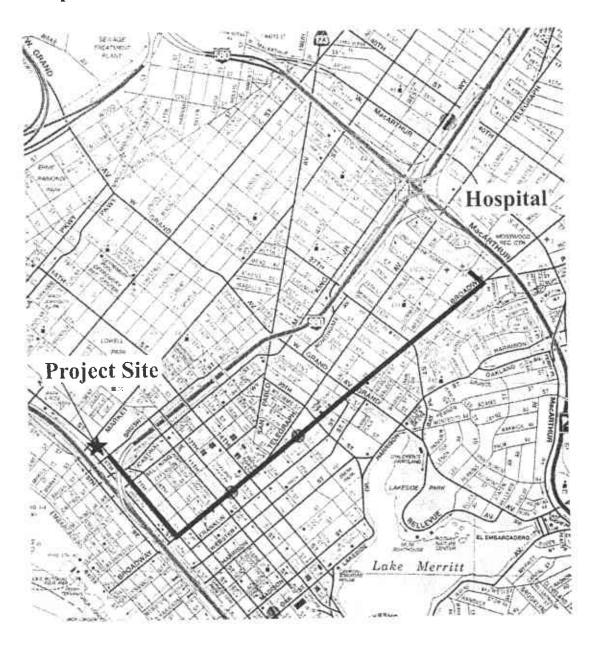
All drums used at the site for the sampling activities described above must meet DOT, OSHA, and U.S. EPA regulations for the wastes they contain. Site operations shall be organized to minimize the amount of drum movement. Before moving drums, inform all immediate workers of the potential hazards associated with the contents of the drums and containers being moved or handled. Inspect the integrity of drums and containers prior to moving them. Immediately label all drums used to contain waste materials. Unlabeled drums shall be considered to contain hazardous substances and handled accordingly until the contents are positively identified and labeled. Drums that cannot be moved without rupture, leaking, or spillage shall be emptied into a sound container (supplied by the drilling contractors). Workers not involved in opening drums or containers shall remain at a safe distance from drums and containers being opened. If flammable atmospheres are possible, non-sparking tools shall be used to open drums and containers. In addition, handling equipment used to transfer drums and containers shall be selected, positioned, and operated to minimize sources of ignition related to the equipment from igniting vapors released from ruptured drums or containers. Standing on drums or containers shall not be permitted at any time.

Any deficiencies in this Site Health and Safety Plan, identified by the Site Health and Safety Manager, shall be immediately corrected. On-site workers, identifying any deficiencies in this Plan, shall immediately notify the Site Health and Safety Manager of such deficiencies.

EMERGENCY PROCEDURES:

A cellular phone is carried by BASELINE personnel. In the event of a major emergency (e.g., fire, major spill, medical, explosion), the Site Health and Safety Manager or his designee shall use the cellular phone to contact "911," Lydia Huang/Yane Nordhav (510-420-8686), the client (phone number listed above), and other emergency numbers listed below, as applicable. The designated BASELINE Site Health and Safety Manager shall verbally request evacuation of Site personnel (personnel must first go through decontamination prior to evacuation).

Evacuation shall be requested by repeatedly honking the horn of a vehicle for personnel who are not within voice range. The honking will continue until personnel can be verbally notified of the emergency and the need for evacuation. Personnel shall evacuate the Site to the reassembly area. The Site Health and Safety officer will be responsible for notifying personnel and any visitors of an appropriate evacuation route and reassembly area prior to the field work during the tailgate safety meeting. The notification of the evacuation route and reassembly area may be made during the daily tailgate safety meeting and should be documented in the field log. An evacuation route and reassembly area are therefore not included herein. Any injured personnel shall be brought to the decontamination area prior to evacuation, and shall be assisted in decontamination, according to the procedures above, unless the transport or decontamination may potentially cause further injury, where transport and decontamination shall be requested by the paramedics. The designated Site Health and Safety Manager shall account for all on-site personnel following evacuation.


Rescue and medical duties (other than first aid/CPR by trained personnel), as required, shall be provided by off-site emergency responders (e.g., paramedics, fire fighters). Injured personnel may only be transported to the Hospital Emergency Room if the injury is non-threatening and does not require immediate attention (e.g., scrapes, minor cuts) (The hospital emergency route is included).

Following evacuation, the designated BASELINE Health and Safety Manager, shall request on-site personnel to maintain security of the Site (by preventing unauthorized entry) until the Site has been released to off-Site emergency responders (fire fighters, police, etc.). Evacuated personnel will direct emergency responders to the emergency and inform them of Site hazards and the emergency. Other emergency notifications may be required, for example, the Emergency Management System (911), the Office of Emergency Services (800-852-7550), Oakland Fire Department, Hazardous Materials Management Program (510-238-3938), State Department of Fish and Game (707-944-5512), and U.S. Environmental Protection Agency, Region IX (415 744-2000). The need for emergency notifications will be determined by the designated BASELINE Health and Safety Manager and Project Manager(s), based on the emergency at hand. All notifications will be documented.

Following the emergency, the designated Site Health and Safety Officer shall be responsible for preparing a post-incident critique, for the purpose of identifying the cause of the emergency, response initiated, and need for additional training, procedures, or equipment. The designated Site Health and Safety Manager and Project Manager(s) shall take corrective action to prevent reoccurrence of the emergency. At any time if any deficiencies in these Emergency Procedures are identified, they shall be immediately corrected by the Site Health and Safety Manager. On-site workers identifying any deficiencies in the emergency procedures shall immediately notify the Site Health and Safety Manager of such deficiencies.

Prepared by:	Date:	Reviewed/Approved by:		Date:
Julie C. Pettijohn, MPH, IHIT	22 January 2003			1/29/63
Read by/Date: Meller & Surt		J	12-4	-03
SSE.M. CARROLLA			12-6	1.03
F12500 5 16.			17.4	1-03
GERARDO GULIERREZ			12-4	1-03
Kick Schneder			12-10	2-03
Start M Budes			12-10	-03
, , , , , , , , , , , , , , , , , , ,				

Hospital Route

Paramedic: Telephone: (510) 655-4000 911 Summit Medical Center, Emergency Room 350 Hawthorne Avenue, Oakland, CA

Directions to hospital:

Go north on Brush Street towards 7th Street, Turn right on 7th Street, Turn left onto Broadway. Turn left onto Hawthorne Avenue. The emergency room is located at 350 Hawthorne Avenue.

Jan-21-03 14:12;

Page 3

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION

399 ELMHURST ST. HAYWARD CA. 94544-1395

PHONE (\$18) 478-6633 James Yoo

FAX (\$18) 782-1939

APAL SCANTS: PLEASE ATTACH A SITE MAP FOR ALL DRILLING PERMIT

510 420 1707;

FAX (518) 782-1939 APPLICANTS: PLEASE ATTACH A SITE MAP FOR ALL DRILLING PERMIT APPLICATION DESTRUCTION OF WELLS OVER 45 FEET REQUIRES A SEPARATE PERMIT APPLICATION

DRILLING PERMIT AP	PLICATION
FOR APPLICANT TO COMPLETE CATION OF PROJECT 751-785 BRUSH ST. OAKLAND CA	PERMIT NUMBER WELL NUMBER
	PERAILT CONDITIONS Circled Permit Requirements Apply
PENT BRI CONSTRUCTION INTERS 153 20 Phone ALL PELICANT INTERS SECRET FOR SECRET FROM SECRET FOR	A. GENERAL 1. A permit application should be submitted so as to enries at the ACPWA inflice five days prior to proposed starting date. 2. Submit to ACPWA within 60 days after completion of permitted original Department of Water Resources. Well Completion Report. 3. Permit is vold if project not begun within 90 days of approval date. 1. WATER SUPPLY WELLS 1. Minimum surface seal thickness is two inches of cernent grout placed by tremite. 2. Minimum seal dopth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation.
Cathodic Protection C General Water Supply C Concentration Well Destruction C	wells unless a lesser doubt is specially approved. C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal thickness is two inches of
PRUPOSED WATER SUPPLY WELL USE New Domestic C Replacement Domestic C Municipal D infiguion U Industrial D Other	cement grout placed by tremic. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. D. GEOTECHNICAL Rectall bore hole by tremic with cament grout or cament
DRILLING METHOD: Mud Rolary D Air Rolary D Abger Cable D Other D DRILLER'S NAME Clear Heat Drilling DRILLER'S LICENSE NO. 467904 - Fractive 1780 357 - Active	grout/sand mixture. Upper two-three feat replaced in kind or with compacted cuttings E. CATHODIC Fill hole anode zone with concrete placed by tremic. F. WELL DESTRUCTION Send a map of work situs A separate permit is required for wells deeper than 45 feat. G. SPECIAL CONDITIONS _ SCAT Affacted.
W.K.L. PHOJECTS Drill Hote Diameter & 1/4 in. Casing Diameter I in. Surface Seal Depth 10 h. Owner's Well Number MW- FP)	NOTE: One application must be submitted for each well or well destruction. Multiple borings on one application are acceptable for geotechnical and contamination investigations.
GEOTECHNICAL PROJECTS Nymbor of Boringsin. Depthft.	
COMPLETION DATE 2-11-03	APPROVED DATE 1-22-0
APPLICANT'S SIGNATURE AND DATE OF THIS PERMIT AND Alameda County Ordinal Applicant's SIGNATURE AND APPLICANT'S SIGNATURE AND AREA OF SCOTT ROSS.	27-03

Sent By: BASELINE;

510 420 1707;

Jan-21-03 14:13; Page 4/6

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION 399 ELMHURST ST. HAYWARD CA. 94544-1395 PHONE (314) 670-6613 James You FAX (518) 781-1939 A DULL LING PERMIT APPLICATIONS

DRILLING PERMIT AP	FLICKTION
·	FOR OFFICE USE
FOR APPLICANT TO COMPLETE	DEDMIT NUMBER W03-0063
THE TAC RAUSH ST	
ATION OF PROJECT 751-785 BRUSH ST.	WELL NUMBER
	APN
	PERMIT CONDITIONS
	Circled Permit Requirements Apply
CNT name of the state of the st	A. GENERAL
ne RBI (metruetion	1. A permit application should be submitted so as to
7 AUKO?	arrive at the ACPWA office five days prior to
Milland CA	proposed starting date. 2. Submit to ACPWA within 60 days after completion of
PLICANT	committed original Department of Water Resources.
" [A][[][A][]	Well Completion Report
	3. Permit is void if project not begun within 90 days of
Test Capas Holles St. More 3KS XXD BB 4 5	auproval date
EMERYVILLE CA ZIP 44608	B WATER SUPPLY WELLS
	I. Minimum surface seal thickness is two inches of
	coment grout placed by fremid.
PE OF PROJECT Lett Conclusion Geotechnical Investigation	2. Minimum seal depth is 50 feet for municipal and
	Industrial wells or 20 feet for domestic and irrigation
Emodic Platector	wells unless a losser depth is specially approved.
Water Supply Contamination Gonitoring the Well Destruction C	C. GROUNDWATER MONITORING WELLS
oldings life	INCLUDING PIEZOMETERS I. Minimum surface seal thickness is two inches of
Roposed Water Supply Well. USE	coment grout placed by tramia.
Many Dispression C Replacement Domestic U	2. Minimum scal depth for monitoring wells is the
Municipal C Infgation C	maximum depth practicable or 20 feet,
Industrial G Other	D CFOTECHNICAL
	Backfill have hale by tremic with cement group of coment
RILLING METHOD:	grout/sand mixture. Upper two-three fact replaced in kind
Mild Rotary Cl Air Rotary C Auger &	or with compacted cuttings
Cable D Other D	F. CATHODIC
RULER'S NAME CLOUR HEAT Pulling	Fill hole anode zone with concrete placed by tremie.
Michelle of Livering The State of the State	F. WELL DESTRUCTION
RILLER'S LICENSE NO. 467904 - Th Active	Send a map of work alta. A separate permit is required
RILLER'S LICENSE NO.	for wells deeper than 43 feet.
180357 - Reme	(G.) SPECIAL CONDITIONS - SCHI Attached
WELL PROJECTS	NOTE: One application must be submitted for each well or well
nutl state Diameter 49 14 in Maximum	Acatematica, Multiple borings on one application are acceptable
Casing Diameter	for geotechnical and contamination investigations.
Suithed Seal Depth 10 R. Owner's Well Number 1-17	· · · · ·
Geotechnical projects	•
Number of Borings Maximum	
Hole Diameterin. DepthA.	•
_	
STARTING DATE 2-10-03	Λ [®] .hm /_つつ・
COMPLETION DATE 2-11-03	APPROVED AND DATE 1-22
COMPLETION DATE _ C TT _ C	APPROVED DATE
	/ (Y Y
	43 C9
Thereby sures to comply with all requirements of this permit and Alameda County Ordinar	ace Na. 73-68.
I hereby suree to comply with all requirements of this permit and Alameda County Ordina	ace Na. 73-68. 2/~03
APPLICANT'S SIGNATURE SIGNATURE DATE PLEASE PRINT NAME WILLIAM F SCOTT Rev.9.	ace Na. 73-68. 21~03

Sent By: BASELINE;

510 420 1707;

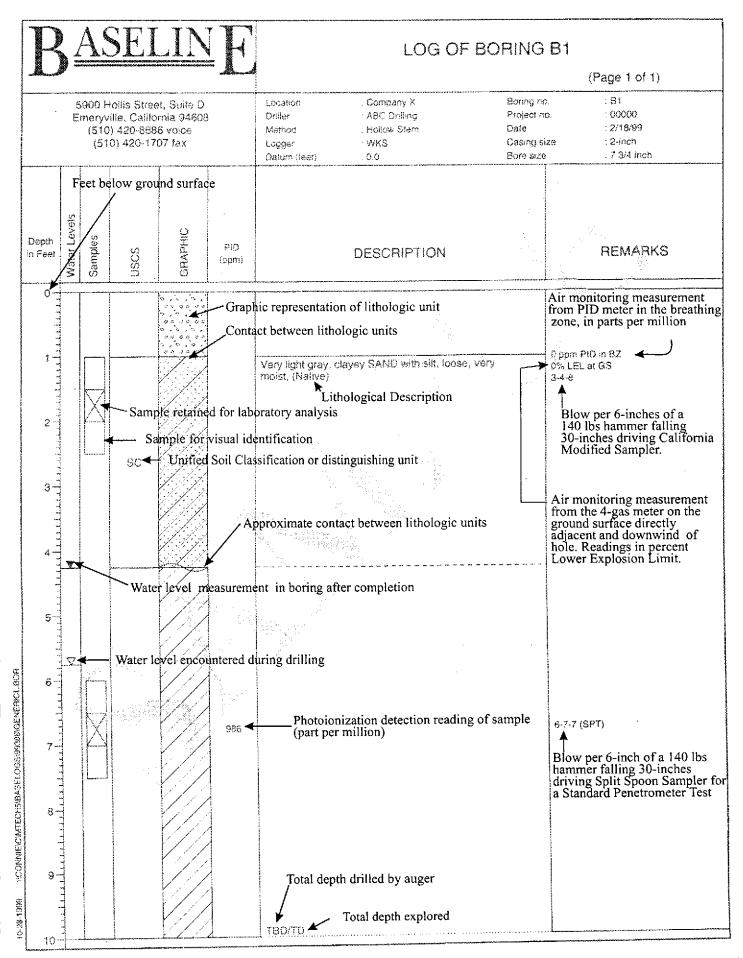
Jan-21-03 14:12;

Page 2

STARTING DATE 1-4-03 COMPLETION DATE 2-5-03

ALAMEDA COUNTY PUBLIC WORKS AGENCY

DESTRUCTION OF WELLS OF BRIDE	e map for all orilling permit applications bey requires a separate permit application
DRILLING PERMI	IT APPLICATION
FOR APPLICANT TO COMPLETE LOCATION OF PROJECT 751-785 BRUSH 57. CAPLAND CA	FOR OFFICE USE PERMIT NUMBER
Nume BBT CONSTRUCTION Nume NA Address 1153 2nd st 270 Phone City Cocload CA Zip AYBO APPLICANT Nume National CA Fax S10 420 1707 Address S800 HOLLIS ST Phone SA 420 - 8567 City EMERY VILLES CA Zip 44603	A. GENERAL 1. A permit application should be submitted so as to arrive at the ACPWA office five days prior to proposed starting date. 2. Submit to ACPWA within 50 days after completion of permitted original Department of Water Resources—Well Completion Report. 3. Permit is void if project not begun within 90 days of approval date. B. WATER SUPPLY WELLS 1. Minimum surface scal thickness is two inches of cement grout placed by tremis.
TYPE OF PROJECT Well Construction Cathodic Protection Water Supply Monitoring Georethyleal Investigation Contamination Wall Destruction	2. Minimum seal depth is 50 feet for municipal and Industrial wells or 20 feet for domestic and irrigation wells unless a leaser depth is specially approved. C. GROUNDWATER MONITORING WELLS DOCUMENT OF THE PROMETERS
PROPOSED WATER SUPPLY WELL USE New Domestic C Replacement Domestic C Municipal C Irrigation C Cher C C C C C C C C C C C C C C C C C C C	1. Minimum surface seal thickness is two inches of europit grout placed by tremie. 2. Minimum soul depth for monitoring wells is the maximum depth practicable or 20 feet. D. CEOTECHNICAL Backful bore hole by tremic with coment grout or coment grout/sand mixture. Upper two-three feet replaced in kind or with compacted currings.
ORILLER'S NAME Decision Samely DRILLER'S LICENSE NO. 631387	E. CATHODIC Fill hole anode zone with concrete placed by tremic. F. WELL DESTRUCTION Send a map of work site. A separate parmit is required for wells deeper than 45 feet. G. SPECIAL CONDITIONS
WELL PROJECTS Drill Hole Diameter in Maximum Cusing Diameter in. Depth fl. Surface Seal Depth fl. Owner's Well Number	NOTE: One application must be submitted for each well or well destruction. Multiple barings on one application are acceptable for geotechnical and contamination investigations.
GEOTECHNICAL PROJECTS Number of Borings Hole Diameterin. DepthR.	


I hereby sauce to comply with all requirements of this permit and Alameda County Ordinance No. 73-68. APPLICANT'S SIGNATURE PLEASE PRINT NAME WILLIAM F SCOTT Rev.9-18-02

ATPROYED

1-22-03 DATE

APPENDIX C

BORING LOGS

B	<u></u>	15	EI	IN	E		LOG OF BO	RING: M	W-FP1
	5900 Hollis Street, Suite D Emeryville, California 94608 (510) 420-8686 voice (510) 420-1707 fax					Location Driller Method Logger	: 781-785 Brush Street : Oakland : Clear Heart : Hollow Stem : WKS	(Page 2 of 2) : MW-FP1 : Y0323-01 : 2/10/03 ze : 2 inch : 8 3/4 inch	
Depth in	Water Level	Sample	nscs	GRAPHIC	PID (ppm)	▼ Water lev			
15-			SW/SM						
16-			sw			(Merritt Sands	vn mottled with gray SAND, tra ium-grained, iron oxide stained) adding of silty SAND-SAND	ace of silt, d, wet	
21-					0	Yellowish brow (Merritt Sands	wn SAND, trace of silt, fine gra	ined, wet	STP 9-15-22
23-			sw						
25-26-27-28-20-20-20-20-20-20-20-20-20-20-20-20-20-					0	Table	Idilland OF O forth		STP 19-22-33
27			-		_,_,	Total depth o	rilled = 25.0 feet : 26.5 feet		·

\mathbf{B}	<i></i>	15	EI	IN	E	LOG OF BORING: MW-FP2					
									(Page 1 of 2)		
		neryvil (510)		t, Suite D nia 94608 6 voice 07 fax		Location Driller Method Logger	: 781-785 Brush Street : Oakland : Clear Heart : Hollow Stern : WKS	Boring no. Project no. Date Casing size Bore size	: 2/10/03		
Depth in						_ ▼ Water leve					
-	≩	တ္တ	<u>~~</u> _	ਰ		<u> </u>	DESCRIPTION				
0-10-10-10-10-10-10-10-10-10-10-10-10-10			SP/SM		0		n silty SAND-SAND, trace of ned, red iron oxide stained, v		STP 3-4-5 Cyanide draegger tube = ND		
형 14.	1	<u> </u>	<u> </u>		<u> </u>	J					

B	<i></i>	15	EL	IN	E	LOG OF BORING: MW-FP2					
	5900 Hollis Street, Suite D Emeryville, California 94608 (510) 420-8686 voice (510) 420-1707 fax					Location Driller Method Logger	: 781-785 Brush Street : Oakland : Clear Heart : Hollow Stem : WKS	(Page 2 of 2) : MW-FP2 : Y0323-01 : 2/10/03 ze : 2 inch : 8 3/4 inch			
Depth in	Water Level	Sample	nscs	GRAPHIC	PID (ppm)	₩ Water leve			·		
14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- 25-			SW/SM		0	(Merritt Sands	wn mottled with gray SAND, to ium-grained, iron oxide stained) edding of silty SAND-SAND	race of sitt, ed, wet	STP 9-19-22 STP 7-22-32		
25. 26. 2003 E.NBaselogs/Y0323-01/MW-F-P.2.007						Total depth d Total depth =	drilled = 25.0 feet = 26.5 feet				

ı

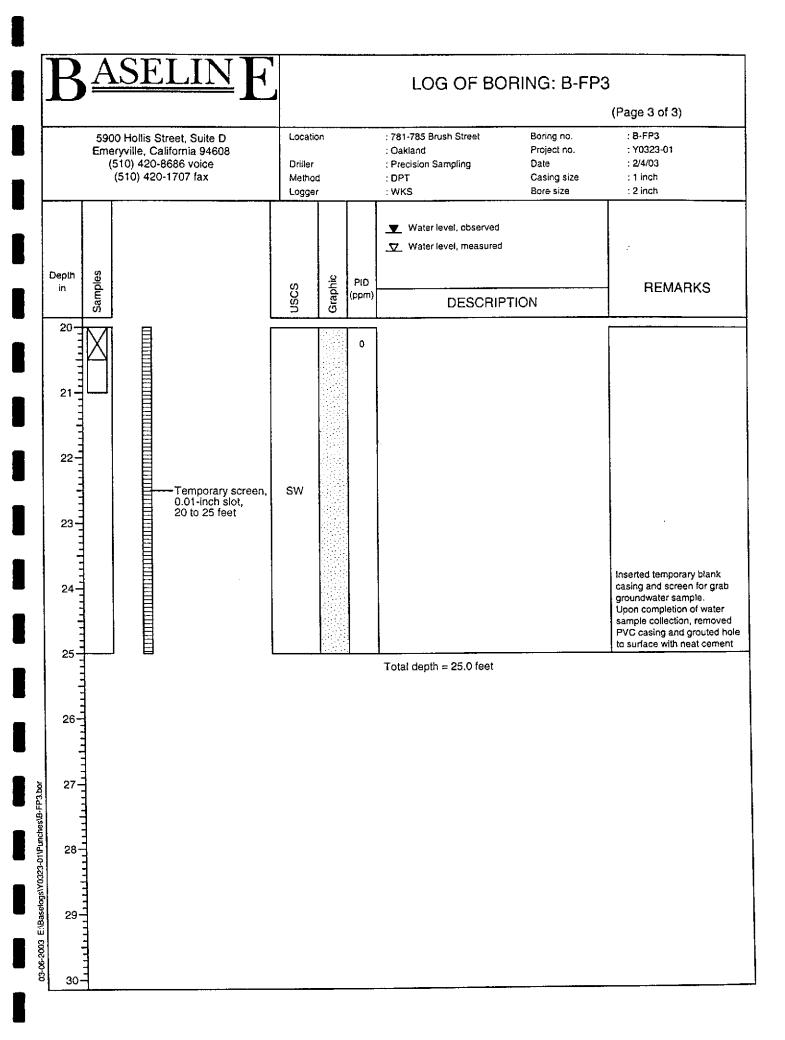
B	\underline{A}	SE	LI		\mathbf{E}	LOG OF BC	RING: B-F	P1
				_				(Page 1 of 2)
	Eme (eryville, Ca	treet, Suite alifornia 94 8686 voice 3-1707 fax	608	Location Oriller Method Lagger	: 781-785 Brush Street : Oakland : Precision Sampling : DPT : WKS	Boring no. Project no. Date Casing size Bore size	: B-FP1 : Y0323-01 : 2/5/03 : None : 2 inch
Depth in	Samples	nscs	Graphic	PID (ppm)		DESCRIPTION		REMARKS
0-		Concrete			Concrete slab			
111			202020		Dark brown SAND,	fine grained, moist (Fill)		
1 7 7 1 1 1								Cleared hole to 2.0 feet
2 3	X	SP		0				
4-					Yellowish-brown mo	ottled with gray silty SAND-SANI	D, trace of clay,	
5-	X			0	very fine- to fine-gra	ained, red ĭroń oxide stains, very	moist (Merritt	
7-	X	SW/SM		0				
8-	1							
9-								

B	A	SE	LI	<u> </u>	7	L	OG OF BO	ORING: B-F	P1
									(Page 2 of 2)
	Eme (.	ryville, Ca 510) 420-	itreet, Suite alifornia 94 8686 voice 0-1707 fax	608	Location Driller Method Logger	: Oakland	Brush Street I n Sampling	Boring no. Project no. Date Casing size Bore size	: 8-FP1 : Y0323-01 : 2/5/03 : None : 2 inch
								ŕ	
Depth in	Samples	nscs	Graphic	PID (ppm)		DESCRI	PTION		REMARKS
14-		SW/SM		0					Grouted hole to surface upon completion
16-				11	Total depth = 1	16.0 feet			
177-02-5003 E:\text{Basselogs}\text{V0323-01\text{In-FP1 bor}} \text{P0-1001} \te	كييلانديما يربيانيديكم يبايرين								

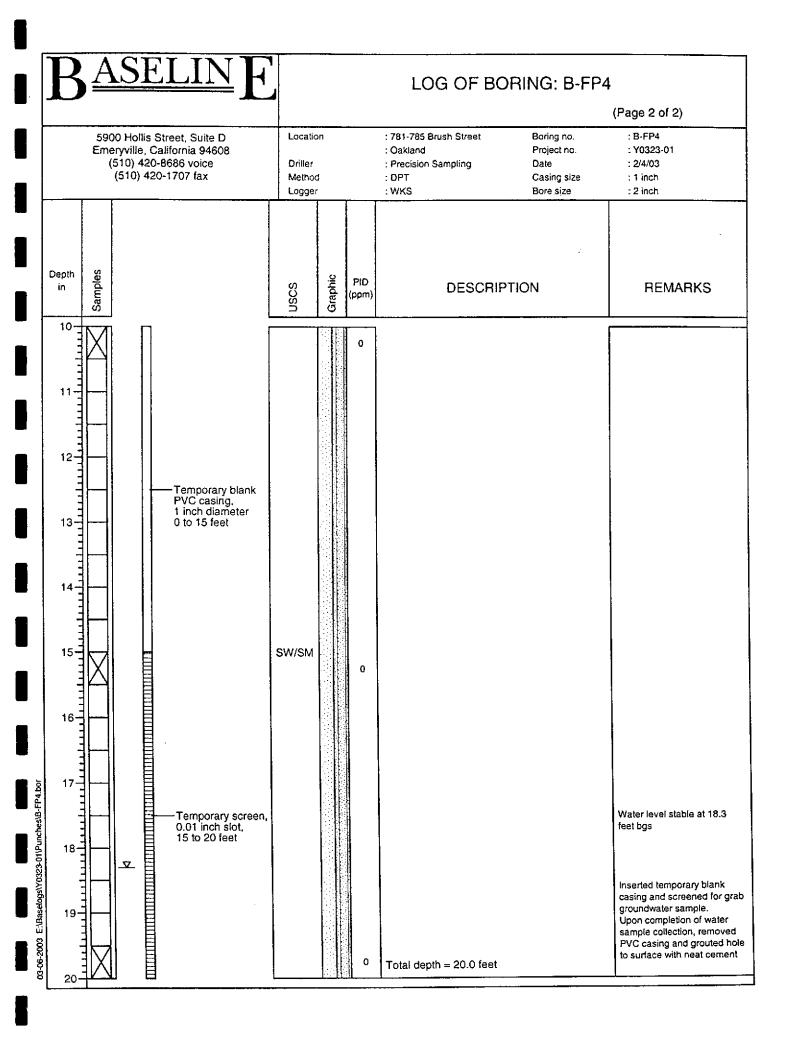
I

1

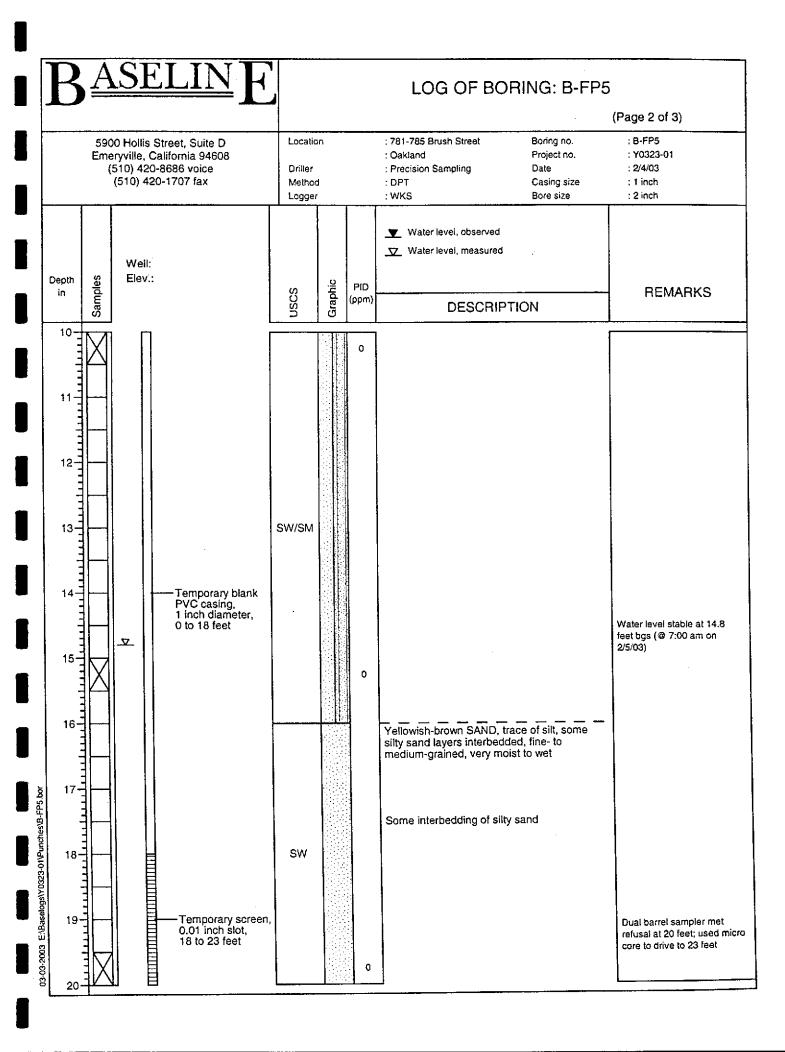
I

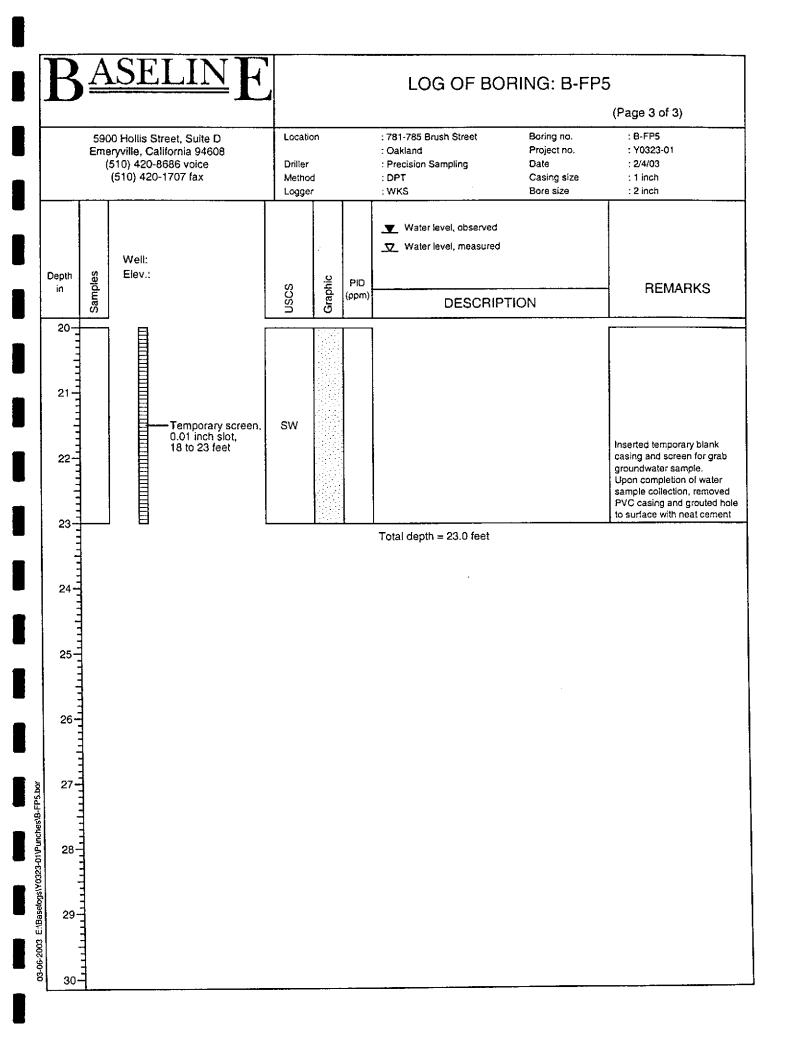

В	<u>A</u>	SE		LOG OF BORING: B-FP2 (Page 1 of 2)								
	Eme (eryvilte, Ca (510) 420-	itreet, Suite alifornia 94 8686 voice 0-1707 fax	.608 ∋	Dr Me	ocation riller ethod ogger	; C ; F ; C	781-785 Brush S Dakland Precision Sampli DPT WKS		Boring no. Project no. Date Casing size Bore size	(P	: B-FP2 : Y0323-01 : 2/5/03 : None : 2 inch
Depth in	Samples	nscs	Graphic	PID (ppm)			DE	SCRIPTION	I			REMARKS
0- 1- 2- 3- 5-		SP SW/SM		0		wn SAND, 1		ed, moist (Fill)		ace of clay, st (Merritt	Cleare	d hole to 2.0 feet
8- 9-							·					

	3	A	SF	LI	N	4	LOG OF BC	RING: B-F	P2
-									(Page 2 of 2)
		Eme (eryville, C 510) 420-	Street, Suit alifornia 94 8686 voice 0-1707 fax	808 9	Location Driller Method Logger	: 781-785 Brush Street : Oakland : Precision Sampling : DPT : WKS	Boring no. Project no. Date Casing size Bore size	: B-FP2 : Y0323-01 : 2/5/03 : None : 2 inch
	pth	es		ij	PID			÷	
	n	Samples	nscs	Graphic	(ppm)		DESCRIPTION		REMARKS
	11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15		SW/SM		0				
	16								Grouted hole to surface upon completion
	17					Total depth = 16.0	feet		
P2.bor	-								
03-03-2003 E./Baselogs/Y0323-01/B-FP2.bor	18								:
3 EABaselogs	19								
03-03-200	20-		· · ·						


		LOG OF BOF	RING: B-FP	3
Location Driller Method Logger		: 781-785 Brush Street : Oakland : Precision Sampling : DPT : WKS	Boring no. Project no. Date Casing size Bore size	(Page 1 of 3) : B-FP3 : Y0323-01 : 2/4/03 : 1 inch : 2 inch
USCS	PID (ppm)	■ Water level, observed ■ Water level, measured DESCRIPTS	ION	REMARKS
SP SW/SM	0 0	Concrete slab Very dark brown SAND, fine moist (Fill) Becoming brown at 4.0 feet Yellowish brown mottled wit SAND-SAND, trace of clay, fine-grained, red iron oxide	grained, very h gray silty very fine- to stains, very	1.5 foot recovery between 0.5 to 4.0 feet Overdrove sampler 0.5 foot
	Driller Method Logger SOncrete SP	Driller Method Logger SON PID (ppm) Concrete O	Location : 781-785 Brush Street : Oakland Driller : Precision Sampling Method : DPT Logger : WKS Water level, observed Water level, measured PID (ppm) Concrete Concrete slab Very dark brown SAND, fine moist (Fill) 0 Becoming brown at 4.0 feet 7 Yellowish brown mottled wit SAND-SAND, trace of clay, fine-grained, red iron oxide moist to wet (Merritt Sands)	SP Concrete Conc

I


BASELINE	4		LOG OF BORING: B-FP:	3 (Page 2 of 3)
5900 Hollis Street, Suite D Emeryville, California 94608 (510) 420-8686 voice (510) 420-1707 fax	Location Driller Method Logger	ı	: 781-785 Brush Street Boring no. : Oakland Project no. : Precision Sampling Date : DPT Casing size : WKS Bore size	: 8-FP3 : Y0323-01 : 2/4/03 : 1 inch : 2 inch
Samples utged	USCS	Graphic	■ Water level, observed □ Water level, measured DESCRIPTION	REMARKS
10	SW/SM	O O	Yellowish brown SAND, trace of silt, some silty sand layers interbedded, fine- to medium-grained, very moist to wet	Water level stable at 14.3 feet bgs @ 11:20 Dual barrel sampler met refusal at 20 feet; used microre to drive to 25 feet

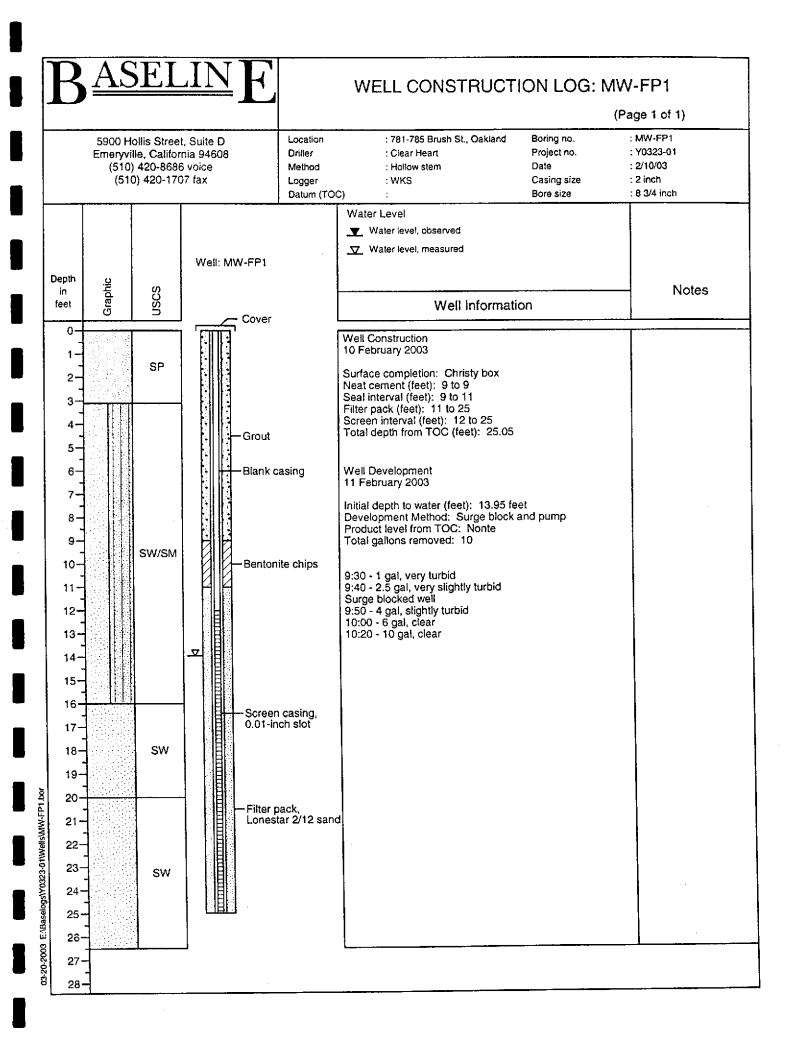


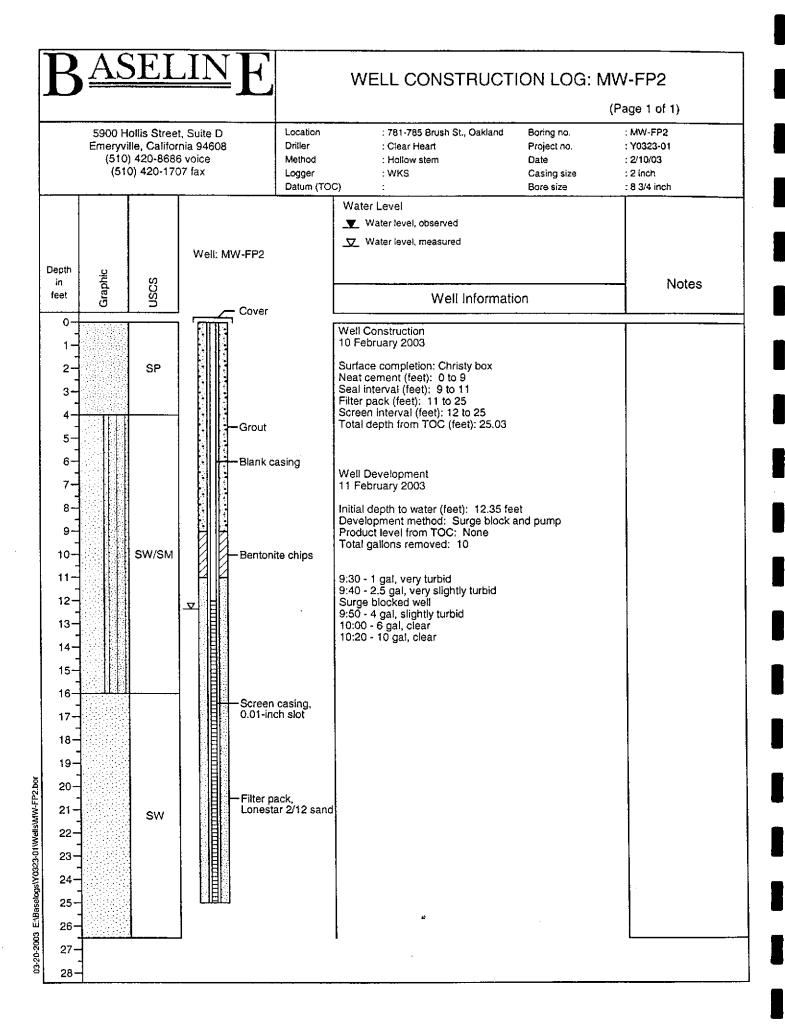
$\mathbf{B}^{\underline{\mathbf{A}}\underline{\mathbf{S}}}$	SELIN F	J	LOG OF BORING: B-FP4 (Page 1 of 2)						
Emeryv (510	Hollis Street, Suite D ville, California 94608 D) 420-8686 voice 10) 420-1707 fax	Location Driller Method Logger	i	<u> </u>	: 781-785 Brush Street : Oakland : Precision Sampling : DPT : WKS	Boring no. Project no. Date Casing size Bore size	: B-FP4 : Y0323-01 : 2/4/03 : 1 inch : 2 inch		
Samples		nscs	Graphic	PID (ppm)	DESCRIP	TION	REMARKS		
03-06-2003 E:\Baselogs\Y0323-01\Punches\B-F94.bor	Temporary blank PVC casing, 1 inch diameter 0 to 15 feet	SP SW/SM	* * * * * * * * * *	0 0	Very dark brown SAND, fir (Fill) Yellowish brown mottled w SAND-SAND, trace of clar grained, red iron oxide stawet (Merritt Sands)	vith gray silty	Cleared hole to 2.0 feet		

B	A	SF	LINE	4	LOG OF BORING: B-FP5						
	Eme	eryville, Ca 510) 420-	Street, Suite D alifornia 94608 8686 voice 0-1707 fax	Driller	Method : OPT			Boring no. Project no. Date Casing size Bore size	(Page 1 of 3) : B-FP5 : Y0323-01 : 2/4/03 : 1 inch : 2 inch		
Depth in	Samples	Well: Elev.:		nscs	Graphic	PID (ppm)	₩ Water level, observed Water level, measured DESCRIPT	ION	REMARKS		
2.				Concrete		0	Very dark brown SAND, fine pieces of black charcoal, m	e grained, small oist (Fill)	Cleared hole to 2.0 feet		
03-03-2003 E:\Baselogs\Y0323-01\Punches\B.FP5.bor			Temporary blank PVC casing, 1 inch diameter, 0 to 18 feet	SW/SM		0	Yellowish brown mottled wi SAND-SAND, trace of clay grained, very moist to wet (, very fine			

B	A	SE	LI	$\underline{\underline{N}}$	E	LOG OF BORING: B-FP6					
									(Pag	e 1 of 2)	
	Eme	eryville, Ca (510) 420-	itreet, Suite alifornia 94 8686 voice 3-1707 fax	608 ÷	Dritte Mett Logg	od:	: 781-785 Brush Street : Oakland : Precision Sampling : DPT : WKS	Boring no Project n Date Casing s Bore size	o. : Y : 2. ze : N	-FP6 0323-01 /5/03 one inch	
Depth in	Samples	nscs	Graphic	PID (ppm)			DESCRIPTION		F	REMARKS	
3-		SP		0		n SAND, firerial), mois	ne grained, pieces of charest (Fill) ttled with gray silty SAND-Sined, red iron oxide stains,			ole to 2.0 feet	
7/8-FP6 bor 8-	***************************************	SW/SM		0							

I


B	A	SE	LI		7		LOG	OF BOF	RING: B-F	P6
				-						(Page 2 of 2)
	Em	eryville, Ca (510) 420-	itreet, Suiti alifornia 94 8686 voice 0-1707 fax	608		Location Driller Method Logger	: 781-785 Brush : Oakland : Precision Sam : DPT : WKS		Boring no. Project no. Date Casing size Bore size	: B-FP6 : Y0323-01 : 2/5/03 : None : 2 inch
Depth	səlc	10	Jic	PID	÷		DECODIST	DN .		DEMARKO
in	Samples	nscs	Graphic	(ppm)			DESCRIPTION	JN N		REMARKS
11-		SW/SM		0						
16				0						Grouted hole to surface upon completion
					Tota	1 depth = 16.0	feet			
17	o de la composición dela composición de la composición dela composición de la compos									
9-FP6.bor	والمداوا									
61/10-223-01/18 18	44417									
03-03-2003 E:\Baselogs\Y0323-01\B-FP6.bot	1									
20	1									


B	A	SE	LI	<u> </u>	H	LOG OF BORING: B-FP7					
	Eme	eryville, Ca (510) 420-	street, Suite alifornia 94 8686 voice 1-1707 fax	806		Location Oriller Method Logger	: Oal		Boring no. Project no. Date Casing size Bore size	(Page 1 of 2) : B-FP7 : Y0323-01 : 2/5/03 : None : 2 inch	
Depth in	Samples	sosn	Graphic	PID (ppm)			DES	REMARKS			
0-		Concrete				rete slab SAND, fine gra	ained, mois	t (Fill)			
1-	∇	SP		_						Cleared hole to 2.0 feet	
3-	X	SP		0	Dark	brown SAND, 1	fine grained	i, glass pieces, mo	oist (Fill)		
03-03-2003 E:\Baselogs\Y0323-01\B-FP7.bor		SW/SM		0	Yelk very (Mer	owish brown mo fine- to fine-gra rritt Sands)	ottled with g	ray silty SAND-SA on oxide stains, ve	ND, trace of clay, ery moist to wet		

	\overline{B}	A	SE	LI	<u>u</u>]	3	LOG OF BC	RING: B-F	P7
-									(Page 2 of 2)
	5900 Hollis Street, Suite D Emeryville, California 94608 (510) 420-8686 voice (510) 420-1707 fax					Location Oriller Method Logger	: 781-785 Brush Street : Oakland : Precision Sampling : DPT : WKS	Boring no. Project no. Date Casing size Bore size	: B-FP7 : Y0323-01 : 2/5/03 : Nane : 2 inch
	Depth in	Samples	nscs	Graphic	PID (ppm)		DESCRIPTION		REMARKS
	12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15		SW/SM		О				Grouted hole to surface upon completion
	16				i	Total depth = 16.0 f	reet		
_	17								
823-01/B-FP7.bc	18-							•	
03-03-2003 E:\Baselogs\Y0323-01\B-FP7.bor	19-								
03-03-2003	20-				<u>.</u>			· · · · · ·	

APPENDIX D

WELL CONSTRUCTION DETAILS

APPENDIX E

GROUNDWATER SAMPLING FORMS

GROUNDWATER SAMPLING

Project no.:	Y0323-01			Well no.:	MW-FPI		Date	: 2/12/03		
Project name:	Brush Street			Depth of well from To	OC (feet):	25.05 (measure	d)			
Location:	781-785 Brush Str	eet		Well diameter (inch):		2				
	Oakland, CA			Screened interval fror	12-25					
Recorded by:	WKS			TOC elevation (feet):		NA				
Weather:	Cloudy			Water level from TO	C (feet):	13.91	Time	9:00		
Precip in past 5 d	lays (inch): Ra	in		Product level from TO	OC (feet):	None	Time	: 9:00		
				Water level measuren	nent device:	Dual interface p	probe (Solin	nst)		
CALCULATION	N OF WELL VOL	UME:								
[(25.05 ft)	- (13.91 ft)]	x (0	.083 ft) ² x	$3.14 \times 7.48 =$	1.8	gallons in o	ne well vol	lume		
well depth	water leve	el w	ell radius		8.5	total gallon	s removed			
CALIBRATION			<u>Time</u>	<u>Temp (° C)</u>	<u>pH</u>	<u>EC (μπh</u>	o/cm) 7	Turbidity (NTU		
	Calibration Standar	rd:			7.00/4.01		000	0/100		
	Before Purgir	ng:	7:35	18.5	7.00/4.01	1,0	000	0/100		
	After Purgir	ıg:	10:35	13.1	7.14/4.12	1,1	100	0/96		
FIELD MEASU	REMENTS:									
	Temp		EC	Cumulative Gallor	<u>18</u>					
<u>Time</u>	(°C)	<u>pH</u>	(umho/cm)		• •	Appearance	•	NTU 26		
9:40	17.8	7.15	1,265	2.5	Ve	ery slightly turbid	L	26		
9:55 10:10	18.5 18.5	6.88 6.75	1,164 1,098	4.5 6.5		Clear Clear		13 9.2		
10:25	18.9	6.71	1,035	8.5		Clear		3.0		
			ŕ							
Appearance of sar	mple: Clear						Time:	10:30		
Duplicate/blank n	umber: None						Time:	NA		
Purge method:	urge method: Peristaltic pump with disposa				ole silicon and poly tubing					
Sampling equipm	ampling equipment: Same as purging				v	OC attachment:	Not requir	ed		
Sample containers	s: 3-liter	amber glas	s, 6 40-ml VC	As, 1-liter poly, 1-50	Oml poly					
Sample analyses:	VOCs	, PAHs, TP	Hg, TPHd, me	d, metals, cyanide, Cr+6 Laboratory: Curtis & Ton			ompkins			
-		•		ater rinse Rinsate disposal: Drum on-site			•			

BASELINE • 5900 Hollis Street, Suite D • Emeryville, CA 94608 • (510) 420-8686 • (510) 420-1707

GROUNDWATER SAMPLING

Project no.:	Y0323-01			Well no.:	MW-FP2		Date: 2/12/03
Project name:	Brush Stree	t		Depth of well from TC	OC (feet):	25.03 (measured)	
Location:	781-785 Br	ush Street		Well diameter (inch):		2	
Oakland, CA			Screened interval from	TOC (feet):	12-25		
Recorded by:	WKS			TOC elevation (feet):		NA	
Weather:	Weather: Cloudy			Water level from TOC	(feet):	12.30	Time: 7:30
Precip in past 5 d	days (inch):	Rain	_	Product level from TO	C (feet):	None	Time: 7:30
		-		Water level measurem	ent device:	Dual interface prol	be (Solinst)
CALCULATIO	N OF WELL	VOLUME	*				
[(25.03 ft))- (12.	30 ft)] x	$(0.083 \text{ ft})^2 \text{ x}$	$3.14 \times 7.48 =$	2.1	gallons in one	well volume
well depti	h wat	er level	well radius		9.0	total gallons re	emoved
CALIBRATION	N						
			<u>Time</u>	Temp (° C)	<u>pH</u>	EC (μmho/cr	m) Turbidity (NTU
	Calibration	Standard:			7.00/4.01	1,000	0/100
	Before	Purging:	7:35	18.5	7.00/4.01	1,000	0/100
	After	Purging:	10:35	13.1	7.14/4.12	1,100	0/96
FIELD MEASU	JREMENTS	:					
Time	<u>Tem</u>	_	<u>EC</u> ь <u>H (µmho/c</u>	Cumulative Gallon m) Removed	<u>ıs</u>	Appearance	<u>NTU</u>
7:45	19,2	: (5.83 1,376	1.0	V	ery slightly turbid	69
7:56	19.4	+ 6	5.75 1,340	3.0	Very	slightly turbid - clea	r 20
8:04	19.4		5.71 1,301	5.0		Clear	9.1
8:13	19.3	; (5.67 1,258	7.0		Clear	4.7
8:22	19.3		5.59 1,241	9.0		Clear	4.2
Appearance of sa	ample:	Clear					Time: 8:30
Duplicate/blank	number:	None					Time: NA
Purge method:		Peristaltic p	oump with dispos	able silicon and poly tubi	ng		
Sampling equipn	ment:	Same as pu	rging			OC attachment: No	ot required
Sample containe	rs;	3-liter amb	er glass, 6 40-ml	VOAs, 1-liter poly, 1-500	Oml poly	·	
Sample analyses	: ::	VOCs, PA	Hs, TPHg, TPHd,	metals, cyanide, Cr+6		Laboratory: Cu	urtis & Tompkins
Decontamination	n method:	Alconox ar	ıd water, DI water	r rinse		Rinsate disposal: Di	rum on-site

BASELINE • 5900 Hollis Street, Suite D • Emeryville, CA 94608 • (510) 420-8686 • (510) 420-1707

APPENDIX F

LABORATORY REPORTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Baseline Environmental 5900 Hollis Street Suite D Emeryville, CA 94608

Date: 20-FEB-03 Lab Job Number: 163466 Project ID: Y0323-01

Location: 751-785 Brush St.

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by: Project Manager

Reviewed by: Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of <u>58</u>

Laboratory Number: 163466

Order Date: 02/04/03

Client: Baseline

Project Name: 751-785 Brush St.

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for nineteen soil samples received from the above referenced project. The samples were received cold and intact.

Total Volatile Hydrocarbons: No analytical problems were encountered.

Total Extractable Hydrocarbons: No analytical problems were encountered.

Volatile Organic Compounds: No analytical problems were encountered.

General Chemistry: No analytical problems were encountered.

Metals, PCBs, PAHs: Calscience Environmental Laboratories, Inc. in Garden Grove, California performed the analysis. Please see the CS case narrative.

CHAIN OF CUSTODY RECORD **BASELINE Contact Person** 5900 Hollis Street, Suite D Emeryville, CA 94608 Tel: (510) 420-8686 Fax: (510) 420-1707 Project Name and Location: Project Number 751-785 Brush ST. Y0323-01 Containers Samplers: (Signature) Preservative Type Remarks/ Sample ID Media Date: Time: Composite No. Station None S S E X 2/4/03 8:10 B-FP3; 1.5 X X X X 8:10 1.5-2.0 X 5 4 8:30 Latolot WES 5.0 K χ 8:30 50-55 Hold 5 8:40 10-10.5 8.50 15-15.5 Hold X 5 (Agged in en HOLD Jan 9:40 20-20.5 S 2.6-2.5 10:35 10:25 Hotel WKS X X 10:40 Hold 10:55 B-FP4, 10-10.5 Huld X 11:10 X 11:40 Conditions of Samples Upon Date/Time Received by: (Signature) Custody Scal Date/Time Arrival at Laboratory: **Custody Scal** Relinquished by: (Signature) intact 2-4/03/ (Ye) Yes No NA Remarks: Date/Time **Custody Seal** Received by: (Signature) Date/Time Relinquished by: (Signature) Please FAX chain of custody To **Custody Seal** intact Yes No NA No **Custody Seal** Date/Time Received by: (Signature) IF TONI MED 1710 X STLC Date/Time Relinquished by: (Signature) **Custody Seal** intact Yes No NA No Yes run Solvath Metal Date/Time Comments: Received at laboratory with intact custody seal: (Signature) 124-03/1645

CHAIN OF CUSTODY RECORD

Turn-around Time

Baselin E 5900 Hollis Street, Suite D Emeryville, CA 94608 Tel: (510) 420-8686 Fax: (510) 420-1707 Lab **BASELINE Contact Person**

- 11	10,000	-	Name and																		+ /			
`	40 323-01	751-	- 785	Brust	<u> 5</u> F				ont	ainer		_		┥						13	2			∦
	Samplers: (Signature)	1						`	Join	MIIXOI	•			- }	Toffee far	. [4]	2	87.8			57 Je/e/7	-	1	
	Millals	M					T	ype				Pres	ervati	ve	0	ÿ ;		1 W	.I	, ,	\ 1	d		- ∦
	Sample ID No. Station		Date:	Time:	Media		VOA	l Poly		4	3			ļ	ره الاي		ij.,	1 🗴	RB	7.46.23	Charles (1 3	Remarks/ Composite	∥
	No. Station	1				No.	지함	L-AG 250 ml		SMC .	None	ဍ၂ဠိ	ဖြ	·	10	a	100 M	PAK	8	K	ひ	0		┩
ــان			Britani.		-	10.		□ K			X		-	П		Х		$ \lambda $	X	X	入	×		_
	3-FP5; Z-2.5	5	9/04/03	13:00	5	5	4	\vdash	╀	×	X	╅	\vdash	+	×		×							
	B-FPS; 2.5		2/4/63	13:00	5	-	4	╁┼	+-	\vdash	Ϋ́	十	\sqcap	\Box		X		X	×	x	人	Χ_		\dashv
	3-FP5 , 5-5,5	,		13:10	5	5	7		+	X	X				X		لح			<u> </u>	<u> </u>	 	11.1	
	3-FP5', 55 3-FP5', 10-10	2.5		13:30			X				Х		\Box				· .	 -		 		 	Hold	
	3-FP51 10-10 3-FP57 15-1	,,,	1	13:40	5		¥		Ţ		Y	\perp	$\downarrow \downarrow$	—			}			╁─╌	 	┼	6744	
1	3-P(-S-)					_	- -	++	╀	┼-	╁┩	+	╅╅	╁╴			 -							
			ļ		┼	╁┈	╀	╁┼	+	┼┼	+	+	+†	十	1						ļ			
				 		╁╌	╁┼	╅┪	+	$\dagger \dagger$	+			丄						 	┼—	┼		
-			 		┼─	†							\Box	\bot			 	ļ			╂	+		
╟			 				\coprod			\prod	1		$\downarrow \downarrow$	_ _	├		-	 	-	┪──	+			
╟									\perp	$\downarrow\downarrow$	4	14		_	<u> </u>		╂	┼─-	-	╁╌	+	+-		
_						_	\sqcup	44	1	44	- -	\sqcup	+1	_	 		╂-	╁	+-	+	+-	1		
5/02										$\perp \downarrow$			44	_	 -			 	┼─	+		+		
ster.cd								$oldsymbol{\perp}$								<u> </u>		<u> </u>	Co	ndition	s of Sa	amples	Upon	
al Albi	Relinquished by: (Si	gnature)		ody Seal	Date/			Re	ceiv	ed by	: (Sig	gnatu	re)	Cu	stody Seal intact	' '	Date/T	me	Ār	rival at	Labor	ratory:	Upon	
Reco	Milled Sur	-	(You	No	2-4/03	115.	30	<u> </u>							No N					temark		3 0.		
istody	Relinquished by: (Signature)	gnature)	Cus	tody Seal	Date/			Re	ceiv	ed by	: (Sig	natu	re)	C	ustody Sea intact	1 L	Date/T	ıme				ain of	custody To	
J.	1	•	Yes												No N	\neg			₹	hadan				
ig C	Relinquished by: (Si	gnature)	· · ·	tody Seal	Date/	Time	1	R	ecei	ved by	y: (S i	gnat	ure)		istody Sea intact	ì	Date/	Time	X	د عمه. د	: Ma72	113	> 10 x STLL	
December Chain of	Tomique o) - (_ ′	Yes											Yes	No N	A							melul	
8	Received at laborate	with			l: (Ş /g	natur	e)	1		Date/			1	Com	ments:				100	- T	·~ >0	i marii	/~ CIY(

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Effective Date: 10-May-99 Revision:

Filename: F:\qc\forms\cooler.wpd

Filename:

1 Number 3 of 3 F:\QC\Forms\QC\Cooler.wpd

COOLER RECEIPT CHECKLIST

Curtis & Tompkins, Ltd.

	: 163460 Date Received: 2.4-03 Number of Coolers:	
Login#	Project: V0323-0	
A.	Preliminary Examination Phase Date Opened: 2-4-03 By (print): \(\lambda \)	
1.	Did cooler come with a snipping snip (and snipping snip) with a snipping snip (and snipping snip	M
2.	Were custody seals on outside of cooler with Seal date: 2-4-03 Seal name: See Back	
3.	YES NO	
	West gustody papers dry and intact when 19	
4.	Were custody papers filled out properly (125)	
5.	Did you sign the custody papers in the appropriate place?	
6.	dentitiable IT()III custod) papasa	
7.	TEXTES enter project name at the top of the 2.6 degrees C	
•	Was project identified with the was project name at the top of this form. If YES, enter project name at the top of this form. If required, was sufficient ice used? Samples should be 2-6 degrees C	
8.	Type of ice: Wen	
	Type of res	
_	Login Phase Date Logged In: Describe type of packing in cooler: In ziplac bags VES NO	
В.	Deta Logged In: By (print): (19) Vinty (sign)	
	Describe type of packing in cooler: M Ziplac Bags	
1.	Did all bottles arrive unbroken?	
2.	Did all bottles arrive unbroken?	
3.	Were labels in good condition and complete (ID, date, time, signature, very NO Did bottle labels agree with custody papers?	
4.	Did bottle labels agree with custody papers? Were appropriate containers used for the tests indicated? YES NO YES NO)
5.	Were appropriate containers used for the tests indicated? Were correct preservatives added to samples? YES NO YES NO YES NO	J
6.	Were appropriate contained and to samples?	Λ
7.	Was sufficient amount of sample sent for tests indicated?	†
8.	Were bubbles absent in VOA sample this sample delivery? YES NO	
9.	Were bubbles absent in VOA samples? If NO, list sample its below	
•	If YES, give details below. By whom? Date:	
	Who was called?By whom?Butte	
A:	dditional Comments:	
_	Rev. 1, (4/95)	15
		: J

Quality Control Checklist for Review of Laboratory Report

Job No.: YO 323-01

Laboratory: Curtis & Tomptins

Report Date: 2/20/03 751.785 Brush St. Site: 163466 Laboratory Report No: ___ Chuye BASELINE Review By: ____ ÑΑ Yes No **GENERAL QUESTIONS** (Describe "no" responses below in "comments" section. Contact the laboratory, as required, for further explanation or action on "no" responses; document discussion in comments section.) 1a. Does the report include a case narrative? (A case narrative MUST be prepared by the lab for all analytical work requested by BASELINE) 1b. Is the number of pages for the lab report as indicated on the case narrative/lab transmittal consistent with the number of pages that are included in report? 1c. Does the case narrative indicate which samples were analyzed by a subcontractor and the subcontractor's name? 1d. Does the case narrative summarize subsequent requests not shown on the chain-ofcustody (e.g., additional analyses requested, release of "hold" samples)? 1e. Does the case narrative explain why requested analyses could not be performed by laboratory (e.g., insufficient sample)? 1f. Does the case narrative explain all problems with the QA/QC data as identified in the checklist (as applicable)? 2a. Is the laboratory report format consistent and legible throughout the report? 2b. Are the sample and reported dates shown in the laboratory report correct? 3a. Does the lab report include the original chain-of-custody form? 3b. Were all samples appropriately analyzed as requested on the chain-of-custody form? Was the lab report signed and dated as being reviewed by the laboratory director, 4. QA manager, or other appropriate personnel? (Some lab reports have signature spaces for each page). (This requirement also applies to any analyses subcontracted out by the laboratory) 5a. Are preparation methods, cleanup methods (if applicable), and laboratory methods indicated for all analyses? 5b. If additional analytes were requested as part of the reporting of the data for an analytical method, were these included in the lab report? Are the units in the lab report provided for each analysis consistent throughout the 6. report? Are the detection limits (DL) appropriate based on the intended use of the data? (e.g., DL below applicable MCLs for water quality issues?) 8a. Are detection limits appropriate based on the analysis performed? (i.e., not elevated due to dilution effects)

8b. If no, is an explanation provided by the laboratory?

Laboratory Quality Control Checklist

Page 2

		Yes	No	NA
9a.	Were the samples analyzed within the appropriate holding time? (generally 2 weeks for volatiles, and up to 6 months for total metals)			\bigotimes
9b.	If no, was it flagged in the report?			
10.	If samples were composited prior to analysis, does the lab report indicate which samples were composited for each analysis?			
lla.	Do the chromatograms confirm quantitative laboratory results? (petroleum hydrocarbons)			
11b.	Is a standard chromatogram(s) included in the laboratory report?			
11c.	Do the chromatograms confirm laboratory notes, if present (e.g., sample exhibits lighter hydrocarbon than standard)			
12.	Are the results consistent with previous analytical results from the site? (If no, contact the lab and request review/reanalysis of data, as appropriate)			
13a.	REVISED LAB REPORTS ONLY. Is the revised lab report or revised pages to a lab report signed and dated as being reviewed by the laboratory director, QA manager, or other appropriate personnel?			
13b.	REVISED LAB REPORTS ONLY. Does the case narrative indicate the date of revision and provide an explanation for the revision?			
13c.	REVISED LAB REPORTS ONLY. Does the revised lab report adequately address the problem(s) which triggered the need for a revision?			
13d.	REVISED LAB REPORTS ONLY. Are the data included in the revised report the same as data reported in the original report, except where the report was revised to correct incorrectly reported data?			
<i>QA/</i> Field	QC Questions 1/Laboratory Quality Control - Groundwater Analyses			
14.	Are field blanks reported as "ND"? (groundwater samples) A field blank is a sample of DI water which is prepared in the field using the same collection and handling procedures as the other samples collected, and used to demonstrate that the sampling procedure has not contaminated the sample.			
15.	Are trip blanks reported as "ND"? (groundwater samples/volatile analyses) A trip blank is a sample of contaminant-free matrix placed in an appropriate container by the lab and transported with the field samples collected. Provides information regarding positive interference introduced during sample transport, storage, preservation, and analysis. The sample is NOT opened in the field.			
16.	Are duplicate sample results consistent with the original sample? (groundwater samples) Field duplicates consist of two independent samples collected at the same sampling location during a single sampling event. Used to evaluate precision of the analytical data and sampling technique. (Differences between the duplicate and sample results may also be attributed to environmental variability).			

Laboratory Quality Control Checklist

Page 3

۲.

	Yes	No	NA
Batch Quality Control (Samples are batched together by matrix [soil, water] and analyses requested. A batch gen fewer samples of the same matrix type, and is prepared using the same reagents, standards, frame as the samples. QC samples are run with each batch to assess performance of the en process.)	procedu	res, and	time
17. Do the sample batch numbers and corresponding laboratory QA/QC batch numbers match?	/		\bigotimes
18a. Are method blanks (MB) for the analytical method(s) below the laboratory reporting limits? Used to assess lab contamination and prevent false positive results. MBs should be "ND."	~		\bigotimes
18b. If no, is an explanation provided in the case narrative to validate the data?			
18c. Are analytes which may be considered laboratory contaminants reported below the laboratory reporting limit? Common lab contaminants include acetone, methylene chloride, diethylhexyl phthalate, and di-n-octyl phthalate.			
18d. If no, was the laboratory contacted to determine whether reported analyte could be a potential laboratory contaminant and was an explanation included in the case narrative?			
19. Are laboratory control samples (LCS) and LCS duplicate (LCSD) [a.k.a., Blank Spike (BS) and BS duplicates (BSD)] within laboratory reporting limits? Limits should be provided on the report. LCS is a reagent blank spike with a representative selection of target analyte(s) and prepared in the same manner as the samples analyzed. The LCS should be spiked with the same analytes as the matrix spike (below). The LCS is free from interferences from the sample matrix and demonstrates the ability of the lab instruments to recover the target analytes. Accuracy (recovery information) is generally reported as % spike recovery; precision (reproducibility of results) between the LCS and LCSD is generally reported as the relative percent difference (RPD). LCS/LCSD can be run in addition to or in lieu of, matrix QC data.	/		$\overset{\times\!\!\!\times}{\times\!\!\!\!\times}$
20a. Are the Matrix QC data (i.e., MS/MSD) within laboratory limits? Limits should be provided on the lab report. The lab selects a sample from the batch and analyzes a spike and a spike duplicate of that sample. Matrix QC data is used to obtain precision and accuracy information and is reported in the same manner as LCS/LCSD. If the MS/MSD fails, the results may still be considered valid if the MB and either the LCS/LCSD or BS/BSD is within the lab's limits (failure is probably due to matrix interference).			
20b. If no, is the MB and either LCS/LCSD or BS/BSD within lab limits to validate the data?	/		

	Yes	No	NA
Sample Quality Control			
21a. Are the surrogate spikes reported within the lab's acceptable recovery limits? A surrogate is a non-target analyte, which is similar in chemical structure to the analyte(s) being analyzed for, and which is not commonly found in environmental samples. A known concentration of the surrogate is spike into the sample or QA "sample" prior to extraction or sample preparation. Results are usually reported as % recovery of the spike. Failure to meet lab's limits for primary and secondary surrogates results in rebatching and reanalysis of the sample; failure of only the primary or the secondary surrogate may be acceptable under certain circumstances. Failure generally is due to coelution with the sample matrix.	V		

Comments:	37 -	Sample,	8-FP41-	-2.5 analyses	performed	not requeste	d on cox
	, okd	~ 1	Lmanager				

	Total Vola	tile Hydrocarbo	ons
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	8015B
Field ID:	B-FP4;5-5.5	Batch#:	78963
Matrix:	Soil	Sampled:	02/04/03
Units:	mg/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03
Diln Fac:	1.000	-	

Type:

SAMPLE

Lab ID:

163466-010

Analyte	Daenle	RL	
Gasoline C7-C12	ND	1.1	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	101	58-144	
Bromofluorobenzene (FID)	111	60-146	

Type:

BLANK

Lab ID:

QC203851

Gasoline C7-C12	N	D	1.0	
Surrogate	%REC	Limits		
Trifluorotoluene (FID)	102	58-144		
Promofluorobenzene (FID)	0.0	60 146		

Result

	Total Volai	ile Hydrocarbo	ons
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	8015B
Type:	LCS	Basis:	as received
Lab ID:	QC203852	Diln Fac:	1.000
Matrix:	Soil	Batch#:	78963
Units:	mg/Kg	Analyzed:	02/05/03

Analyte	Spiked	Result	*REC	Limits
Gasoline C7-C12	5.000	5.520	110	78-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	115	58-144
Bromofluorobenzene (FID)	108	60-146

	Total Vola	tile Hydrocarbo	ons.
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	8015B
Field ID:	B-FP4;5-5.5	Diln Fac:	1.000
MSS Lab ID:	163466-010	Batch#:	78963
Matrix:	Soil	Sampled:	02/04/03
Units:	mg/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Type:

MS

Lab ID:

QC203886

Analyte	MSS Result	Spiked	Result	%RI	3C Limits
Gasoline C7-C12	0.1089	10.64	10.93	102	44-133

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	122	58-144	
Bromofluorobenzene (FID)	110	60-146	

Type:

MSD

Bromofluorobenzene (FID)

Lab ID:

QC203887

Analyt	e		Spiked	Res	ult	%RBC	Limits	RPD	Lim
Gasoline C7-C12			10.42		10.78	102	44-133	1	31
Surroga	te	%REC	Limits						
Trifluorotoluene	(FID)	123	58-144						

60-146

112

Gasoline by GC/FID (5035 Prep) Lab #: Location: 751-785 Brush St. 163466 EPA 5035 Client: Baseline Environmental Prep: 8015B Y0323-01 Analysis: Project#: 78963 Matrix: Soil Batch#: 02/04/03 Sampled: Units: mg/Kg Received: 02/04/03 Basis: as received 02/05/03 1.000 Analyzed: Diln Fac:

Field ID:

B-FP3;1.5

Lab ID:

163466-001

Type:

SAMPLE

Analyte		Result	RL .
Gasoline C7-C12	NI)	0.19
Surrogate	%REC	Limits	
Trifluorotoluene (FID)	102	58-144	
Bromofluorobenzene (FID)	95	60-146	

Field ID:

B-FP3;5.0

Lab ID:

163466-003

Type:

SAMPLE

Analyte	KGBULT	RL
Gasoline C7-C12	ND	0.17

Surrogate	%REC	Limits
Trifluorotoluene (FID)	103	58-144
Bromofluorobenzene (FID)	106	60-146

Field ID:

B-FP4;2.5

Lab ID:

163466-009

Type:

SAMPLE

Analyte	Result	RL
Gasoline C7-C12	ND	0.20
	1 1 1	

Surrogate	%REG	C Limits	
Trifluorotoluene (FID)	103	58-144	
Bromofluorobenzene (FID)	108	60-146	

Gasoline by GC/FID (5035 Prep) 751-785 Brush St. 163466 Location: Lab #: EPA 5035 Baseline Environmental Prep: Client: 8015B Analysis: Project#: Y0323-01 78963 Batch#: Matrix: Soil Sampled: 02/04/03 Units: mg/Kg 02/04/03 Basis: as received Received: 02/05/03 Analyzed: Diln Fac: 1.000

Field ID:

B-FP5;2.5

SAMPLE

Type:

5	, 4	٠.	5	 ab	Τ

ab ID: 163

163466-015

Analyte	Result	RL	
Gasoline C7-C12	ND	0.17	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	99	58-144
Bromofluorobenzene (FID)	74	60-146

Field ID:

B-FP5;5.5

Lab ID:

163466-017

Type:

SAMPLE

Analyte	Result	RL
Gasoline C7-C12	ND	0.18

Surrogate	%RBC	Limits
Trifluorotoluene (FID)	103	58-144
Bromofluorobenzene (FID)	105	60-146

Type:

BLANK

Lab ID:

QC203851

ſ	Analyte	Result	RL
Ì	Gasoline C7-C12	ND	1.0

Surrogate	%R E C	Limits
Trifluorotoluene (FID)	102	58-144
Bromofluorobenzene (FID)	98	60-146

	Gasoline by	GC/FID (5035 F	rep)
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	8015B
Type:	LCS	Basis:	as received
Lab ID:	QC203852	Diln Fac:	1.000
Matrix:	Soil	Batch#:	78963
Units:	mg/Kg	Analyzed:	02/05/03

Analyte	Spiked	Result	%REC	Limits	
Gasoline C7-C12	5.000	5,520	110	78-120	

Surrogate		%REC	Limits
	ID)	115	58-144
Bromofluorobenzene	(FID)	108	60-146

	Gasoline by	GC/FID (5035 P	rep)
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	8015B
Field ID:	B-FP4;5-5.5	Diln Fac:	1.000
MSS Lab ID:	163466-010	Batch#:	78963
Matrix:	Soil	Sampled:	02/04/03
Units:	mg/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Type:

MS

Lab ID:

QC203886

Analyte	MSS Result	Spiked	Result	%RE	2 Limits
Gasoline C7-C12	0.1089	10.64	10.93	102	44-133

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	122	58-144	_
Bromofluorobenzene (FID)	110	60-146	

Type:

MSD

Lab ID:

QC203887

Analyte	Spiked	Result	%REC	Limits	RPI) Lim
Gasoline C7-C12	10.42	10.78	102	44-133	1_	31
	· · · · · · · · · · · · · · · · · · ·					

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	123	58-144	
Bromofluorobenzene (FID)	112	60-146	

Total Extractable Hydrocarbons 751-785 Brush St. Location: jab #: 163466 SHAKER TABLE Client: Baseline Environmental Prep: EPA 8015B 79026 Analysis: Y0323-01 Project#: Soil Batch#: Matrix: Sampled: 02/04/03 Jnits: mg/Kg 02/04/03 Basis: as received Received: Prepared: 02/07/03 1.000 Diln Fac:

Field ID:

B-FP3;1.5-2.0

Type: ab ID: SAMPLE 163466-002 Analyzed:

02/10/03

Cleanup Method: EPA 3630C

Analyte

Result

Diesel C10-C24

1.0

Surrogate *REC Limits 83 48-137 Hexacosane

eld ID: Type: Lab ID:

B-FP3;5.0-5.5

SAMPLÉ

163466-004

Analyzed:

02/10/03

Cleanup Method: EPA 3630C

Analyte ND Diesel C10-C24

Surrogate %REC Limits 57 Hexacosane 48-137

ield ID:

B-FP4;2.0-2.5

ъe: SAMPLE 163466-008 Analyzed:

02/10/03

Cleanup Method: EPA 3630C

Analyte

Result

Diesel ClO-C24 ND

1.0

%REC Limits Surrogate 63 48-137 Hexacosane

Field ID:

B-FP4;5-5.5

SAMPLE Type:

ab ID:

163466-010

Analyzed:

02/10/03

Cleanup Method: EPA 3630C

Analyte

Result

Diesel C10-C24

ND

1.0

%REC_Limits Surrogate 48-137 Texacosane

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

D= Not Detected

L= Reporting Limit age 1 of 2

000017 23.1

Total Extractable Hydrocarbons 751-785 Brush St. SHAKER TABLE EPA 8015B Location: 163466 Lab #: Baseline Environmental Client: Prep: Analysis: Batch#: Y0323-01 Soil Project#: 79026 Matrix: 02/04/03 mg/Kg Sampled: Units: Received: 02/04/03 as received Basis: 02/07/03 1.000 Prepared: Diln Fac:

Field ID:

B-FP5;2-2.5

Type: SAMPLE

Lab ID: 163466-014

Analyzed:

02/11/03

Cleanup Method: EPA 3630C

 Analyte
 Result
 RL

 Diesel C10-C24
 3.4 H Y
 1.0

Surrogate %REC Limits
Hexacosane 67 48-137

Field ID: Type: B-FP5;5-5.5

SAMPLE

Lab ID:

163466-016

Analyzed:

02/11/03

Analyte Result
Diesel C10-C24 ND

Dieber dr. dr.

Surrogate &REC Limits
Hexacosane 71 48-137

Type: Lab ID: BLANK

QC204088

Analyzed:

02/09/03

Cleanup Method: EPA 3630C

1.0

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 1.0

Surrogate REC Limits
Hexacosane 81 48-137

H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits fuel pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 2 of 2

Chromatogram

Sample Name : 163466-014sg,79026

: G:\GC17\CHA\042A009.RAW FileName

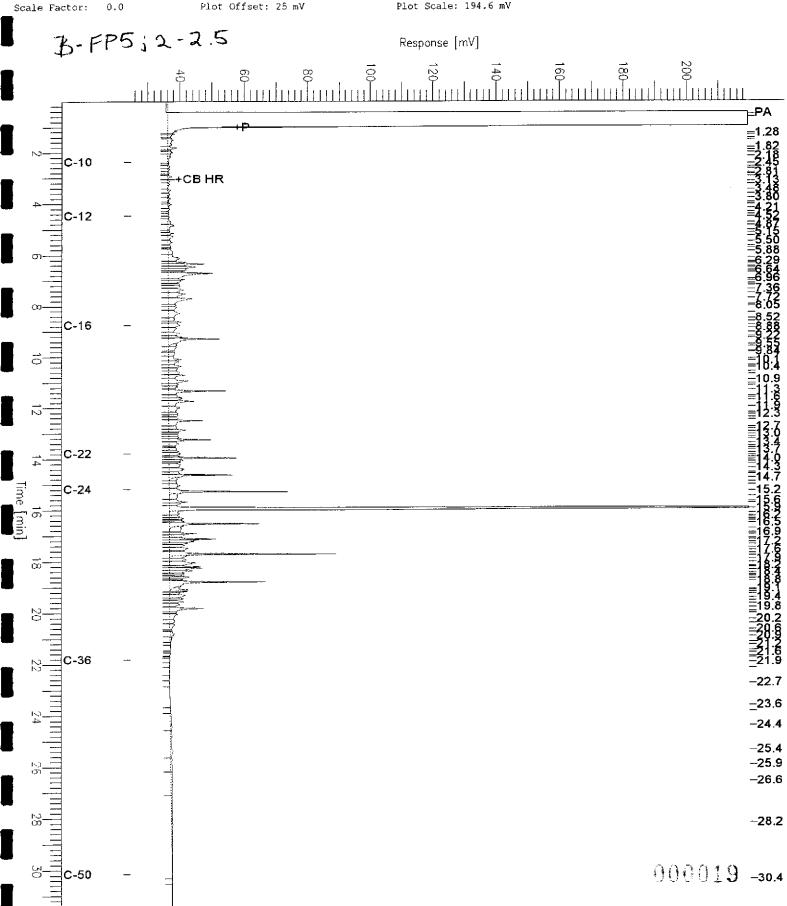
Method : ATEH042.MTH

Start Time ; 0.01 min

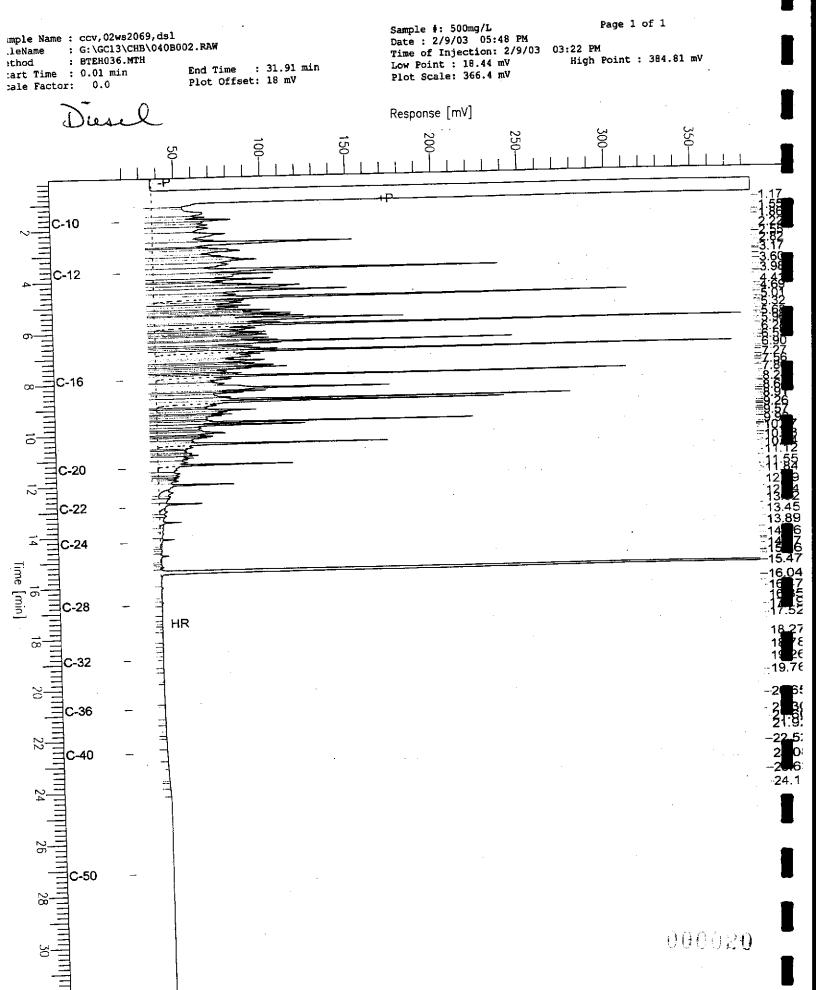
End Time : 31.91 min

Plot Offset: 25 mV

Sample #: 79026


Date: 2/12/03 09:03 AM

Time of Injection: 2/11/03 11:36 PM


High Point : 219.35 mV

Page 1 of 1

Low Point : 24.76 mV Plot Scale: 194.6 mV

Chromatogram

	Total Extrac	table Hydroca:	chons
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	SHAKER TABLE
Project#:	Y0323-01	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC204089	Batch#:	79026
Matrix:	Soil	Prepared:	02/07/03
Units:	mg/Kg	Analyzed:	02/10/03
Basis:	as received	4	,

leanup Method: EPA 3630C

Analyte	Spiked	······································	%RE	2 Limits
Diesel C10-C24	50.00	36.42	73	56-121

Surrogate	%REC	ASSESSMENT AND THE STATE OF THE	
Hexacosane	71	48-137	

	Purgeable (Organics by GC/	/MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP3;1.5	Diln Fac:	0.9434
Lab ID:	163466-001	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL	
Freon 12	ND	9.4	
Chloromethane	ND	9.4	1
Vinyl Chloride	ND	9.4	
Bromomethane	ND	9.4	
Chloroethane	ND	9.4	1
Trichlorofluoromethane	ND	4.7	
Acetone	ND	19	•
Freon 113	ND	4.7	-
1,1-Dichloroethene	ND	4.7	
Methylene Chloride	ND	19	<u>,</u>
Carbon Disulfide	ND	4.7	
MTBE	ND	4.7	
trans-1,2-Dichloroethene	ND	4.7	
Vinyl Acetate	ND	47	
1,1-Dichloroethane	ND	4.7	
2-Butanone	ND	9.4	
cis-1,2-Dichloroethene	ND	4.7	
2,2-Dichloropropane	ND	4.7	
Chloroform	ND	4.7	
Bromochloromethane	ND	4.7	i
1,1,1-Trichloroethane	ND	4.7	
1,1-Dichloropropene	ND	4.7	(
Carbon Tetrachloride	ND	4.7	
1,2-Dichloroethane	ND	4.7	•
Benzene	ND	4.7	
Trichloroethene	24	4.7	
1,2-Dichloropropane	ND	4.7	į
Bromodichloromethane	ND	4.7	
Dibromomethane	ND	4.7	1
4-Methyl-2-Pentanone	ND	9.4	į
cis-1,3-Dichloropropene	ND	4.7	
Toluene	ND	4.7	1
trans-1,3-Dichloropropene	ND	4.7	
1,1,2-Trichloroethane	ND	4.7	•
2-Hexanone	ND	9.4	_
1,3-Dichloropropane	ND	4.7	
Tetrachloroethene	ND	4.7	

	Purgeable 0	organics by GC/	/MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP3;1.5	Diln Fac:	0.9434
Lab ID:	163466-001	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL .
Dibromochloromethane	ND	4.7
1,2-Dibromoethane	ND	4.7
Chlorobenzene	ND	4.7
1,1,1,2-Tetrachloroethane	ND	4.7
Ethylbenzene	ND	4.7
m,p-Xylenes	ND	4.7
o-Xylene	ND	4.7
Styrene	ND	4.7
Bromoform	ND	4.7
Isopropylbenzene	ND	4.7
1,1,2,2-Tetrachloroethane	ND	. 4.7
1,2,3-Trichloropropane	ND	4.7
Propylbenzene	ND	4.7
Bromobenzene	ND	4.7
1,3,5-Trimethylbenzene	ND	4.7
2-Chlorotoluene	ND	4.7
4-Chlorotoluene	ND	4.7
tert-Butylbenzene	ND	4.7
1,2,4-Trimethylbenzene	ND	4.7
sec-Butylbenzene	ND	4.7
para-Isopropyl Toluene	ND	4.7
1,3-Dichlorobenzene	ND	4.7
1,4-Dichlorobenzene	ND	4.7
л-Butylbenzene	ND	4.7
1,2-Dichlorobenzene	ND	4.7
1,2-Dibromo-3-Chloropropane	ND	4.7
1,2,4-Trichlorobenzene	ND	4.7
Hexachlorobutadiene	ND	4.7
Naphthalene	ND	4.7
1,2,3-Trichlorobenzene	ND	4.7

Surrogate	%REC	Limits
Dibromofluoromethane	102	74-124
1,2-Dichloroethane-d4	109	75-128
Toluene-d8	99	80-111
Bromofluorobenzene	109	75-127

	Purgeable (Organics by GC/	'MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP3;5.0	Diln Fac:	0.9434
Lab ID:	163466-003	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL	
Freon 12	ND	9.4	
Chloromethane	ND	9.4	
Vinyl Chloride	ND	9.4	
Bromomethane	ND	9.4	
Chloroethane	ND	9.4	
Trichlorofluoromethane	ND	4.7	
Acetone	ND	19	
Freon 113	ND	4.7	
1,1-Dichloroethene	ND	4.7	
Methylene Chloride	ND	19	
Carbon Disulfide	ND	4.7	
MTBE	ND	4.7	
trans-1,2-Dichloroethene	ND	4.7	
Vinyl Acetate	ND	47	
1,1-Dichloroethane	ND	4.7	
2-Butanone	ND	9.4	
cis-1,2-Dichloroethene	ND	4.7	
2,2-Dichloropropane	ИD	4.7	
Chloroform	ND	4.7	
Bromochloromethane	ND	4.7	
1,1,1-Trichloroethane	ND	4.7	
1,1-Dichloropropene	ND	4.7	
Carbon Tetrachloride	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	ND	4.7	
Trichloroethene	ND	4.7	
1,2-Dichloropropane	ND	4.7	
Bromodichloromethane	ND	4.7	
Dibromomethane	ND	4.7	
4-Methyl-2-Pentanone	ND	9.4	
cis-1,3-Dichloropropene	ND	4.7	
Toluene	ND	4.7	
trans-1,3-Dichloropropene	ND	4.7	
1,1,2-Trichloroethane	ND	4.7	
2-Hexanone	ND	9.4	
1,3-Dichloropropane	ND	4.7	
Tetrachloroethene	ND	4.7	

	Purgeable (Organics by GC/	'MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP3;5.0	Diln Fac:	0.9434
Lab ID:	163466-003	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL
Dibromochloromethane	ND	4.7
1,2-Dibromoethane	ND	4.7
Chlorobenzene	ND	4.7
1,1,1,2-Tetrachloroethane	ND	4.7
Ethylbenzene	ND	4.7
m,p-Xylenes	ND	4.7
o-Xylene	ND	4.7
Styrene	ND	4.7
Bromoform	ND	4.7
Isopropylbenzene	ND	4.7
1,1,2,2-Tetrachloroethane	ND	4.7
1,2,3-Trichloropropane	ND	4.7
Propylbenzene	ND	4.7
Bromobenzene	ND	4.7
1,3,5-Trimethylbenzene	ND	4.7
2-Chlorotoluene	ND	4.7
4-Chlorotoluene	ND	4.7
tert-Butylbenzene	ND	4.7
1,2,4-Trimethylbenzene	ND	4.7
sec-Butylbenzene	ND	4.7
para-Isopropyl Toluene	ND	4.7
1,3-Dichlorobenzene	ND	4.7
1,4-Dichlorobenzene	ND	4.7
n-Butylbenzene	ND	4.7
1,2-Dichlorobenzene	ND	4.7
1,2-Dibromo-3-Chloropropane	ND	4.7
1,2,4-Trichlorobenzene	ND	4.7
Hexachlorobutadiene	ND	4.7
Naphthalene	ND	4.7
1,2,3-Trichlorobenzene	ND	4.7

1	Surrogate	%REC	Limits
	Dibromofluoromethane	100	74-124
	1,2-Dichloroethane-d4	107	75-128
_	Toluene-d8	99	80-111
	Bromofluorobenzene	107	75-127

	Purgeable (Organics by GC/	/MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP4;2.5	Diln Fac:	1.000
Lab ID:	163466-009	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ЙD	10
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0

	Purgeable (Organics by GC/	'MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP4;2.5	Diln Fac:	1.000
Lab ID:	163466-009	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	uq/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

	Result	RL
Analyte	ND Result	5.0
Dibromochloromethane		5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

	Surrogate	%REC	Limits
	Dibromofluoromethane	105	74-124
	1,2-Dichloroethane-d4	111	75-128
_	Toluene-d8	100	80-111
	Bromofluorobenzene	106	75-127

	Purgeable (Organics by GC/	'MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP5;2.5	Diln Fac:	0.8772
Lab ID:	163466-015	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL
Freon 12	ND	8.8
Chloromethane	ND	8.8
Vinyl Chloride	ND	8.8
Bromomethane	ND	8.8
Chloroethane	ND	8.8
Trichlorofluoromethane	ND	4.4
Acetone	ND	18
Freon 113	ND	4.4
1,1-Dichloroethene	ND	4.4
Methylene Chloride	ND	18
Carbon Disulfide	ND	4.4
мтве	ND	4.4
trans-1,2-Dichloroethene	ND	4.4
Vinyl Acetate	ND	4.4
1,1-Dichloroethane	ND	4.4
2-Butanone	ND	8.8
cis-1,2-Dichloroethene	ND	4.4
2,2-Dichloropropane	ND	4.4
Chloroform	ND	4.4
Bromochloromethane	ND	4.4
1,1,1-Trichloroethane	5.4	4.4
1,1-Dichloropropene	ND	4.4
Carbon Tetrachloride	ND	4.4
1,2-Dichloroethane	ND	4.4
Benzene	ND	4.4
Trichloroethene	33	4.4
1,2-Dichloropropane	ND	4.4
Bromodichloromethane	ND	4.4
Dibromomethane	ND	4.4
4-Methyl-2-Pentanone	ND	8.8
cis-1,3-Dichloropropene	ND	4.4
Toluene	ND	4.4
trans-1,3-Dichloropropene	ND	4.4
1,1,2-Trichloroethane	ND	4.4
2-Hexanone	ND	8.8
1,3-Dichloropropane	ND	4.4
Tetrachloroethene	ND	4.4

	Purgeable (organics by GC/	'MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP5;2.5	Diln Fac:	0.8772
Lab ID:	163466-015	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

	Result	RL
Analyte	ND	4.4
Dibromochloromethane	ND	4.4
1,2-Dibromoethane	ND	4.4
Chlorobenzene	ND	4.4
1,1,1,2-Tetrachloroethane		4.4
Ethylbenzene	ND	4.4
m,p-Xylenes	ND	4.4
o-Xylene	ND	4.4
Styrene	ИD	4.4
Bromoform	ND	
Isopropylbenzene	ND	4.4
1,1,2,2-Tetrachloroethane	ND 	4.4
1,2,3-Trichloropropane	ND	4.4
Propylbenzene	ND	4.4
Bromobenzene	ND	4.4
1,3,5-Trimethylbenzene	ND	4.4
2-Chlorotoluene	ND	4.4
4-Chlorotoluene	ND	4.4
tert-Butylbenzene	ND	4.4
1,2,4-Trimethylbenzene	ND	4.4
sec-Butylbenzene	ND	4.4
para-Isopropyl Toluene	ND	4.4
1,3-Dichlorobenzene	ND	4.4
1,4-Dichlorobenzene	ND	4.4
n-Butylbenzene	ND	4.4
1,2-Dichlorobenzene	ND	4.4
1,2-Dibromo-3-Chloropropane	ND	4.4
1,2,4-Trichlorobenzene	ND	4.4
Hexachlorobutadiene	ND	4.4
Naphthalene	ND	4.4
1,2,3-Trichlorobenzene	ND	4.4

Surrogate	%REC	Limits	
Dibromofluoromethane	104	74-124	
1,2-Dichloroethane-d4	111	75-128	
Toluene-d8	100	80-111	
Bromofluorobenzene	114	75-127	

	Purgeable (Organics by GC/	'ms
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP5;5.5	Diln Fac:	0.9434
Lab ID:	163466-017	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL	
Freon 12	ND	9.4	
Chloromethane	ND	9.4	
Vinyl Chloride	ND	9.4	
Bromomethane	ND	9.4	
Chloroethane	ND .	9.4	
Trichlorofluoromethane	ND	4.7	
Acetone	ND	19	
Freon 113	ND	4.7	
1,1-Dichloroethene	ND	4.7	
Methylene Chloride	ND	19	
Carbon Disulfide	ND	4.7	
MTBE	ND	4.7	
trans-1,2-Dichloroethene	ND	4.7	
Vinyl Acetate	ND	47	
1,1-Dichloroethane	ND	4.7	
2-Butanone	ND	9.4	
cis-1,2-Dichloroethene	ND	4.7	
2,2-Dichloropropane	ND	4.7	
Chloroform	ND	4.7	
Bromochloromethane	ND	4.7	
1,1,1-Trichloroethane	ND	4.7	
1,1-Dichloropropene	ND	4.7	
Carbon Tetrachloride	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	ND	4.7	
Trichloroethene	ND	4.7	
1,2-Dichloropropane	ND	4.7	
Bromodichloromethane	ND	4.7	
Dibromomethane	ND	4.7	
4-Methyl-2-Pentanone	ND	9.4	
cis-1,3-Dichloropropene	ND	4.7	1
Toluene	ND	4.7	
trans-1,3-Dichloropropene	ND	4.7	
1,1,2-Trichloroethane	ND	4.7	İ
2-Hexanone	ND	9.4	
1,3-Dichloropropane	ND	4.7	
Tetrachloroethene	ND	4.7	

	Purgeable 0	organics by GC/	'Ma
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP5;5.5	Diln Fac:	0.9434
Lab ID:	163466-017	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL
Dibromochloromethane	ND	4.7
1,2-Dibromoethane	ND	4.7
Chlorobenzene	ИD	4.7
1,1,1,2-Tetrachloroethane	ND	4.7
Ethylbenzene	ND	4.7
m,p-Xylenes	ND	4.7
o-Xylene	ND	4.7
Styrene	ND	4.7
Bromoform	ND	4.7
Isopropylbenzene	ND	4.7
1,1,2,2-Tetrachloroethane	ND	4.7
1,2,3-Trichloropropane	ND	4.7
Propylbenzene	ND	4.7
Bromobenzene	ND	4.7
1,3,5-Trimethylbenzene	ND	4.7
2-Chlorotoluene	ND	4.7
4-Chlorotoluene	ND	4.7
tert-Butylbenzene	ND	4.7
1,2,4-Trimethylbenzene	ND	4.7
sec-Butylbenzene	ND	4.7
para-Isopropyl Toluene	ND	4.7
1,3-Dichlorobenzene	ND	4.7
1,4-Dichlorobenzene	ND	4.7
n-Butylbenzene	ND	4.7
1,2-Dichlorobenzene	ND	4.7
1,2-Dibromo-3-Chloropropane	ND	4.7
1,2,4-Trichlorobenzene	ND	4.7
Hexachlorobutadiene	ND	4.7
Naphthalene	ND	4.7
1,2,3-Trichlorobenzene	ND	4.7

	Surrogate	%REC	Limits
	Dibromofluoromethane	103	74-124
_	1,2-Dichloroethane-d4	110	75-128
_	Toluene-d8	99	80-111
	Bromofluorobenzene	105	75-127

	Purgeable (Organics by GC/	/MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP4;5-5.5	Diln Fac:	0.9804
Lab ID:	163466-010	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL
Freon 12	ND	9.8
Chloromethane	ND	9.8
Vinyl Chloride	ND	9.8
Bromomethane	ND	9.8
Chloroethane	ND	9.8
Trichlorofluoromethane	ND	4.9
Acetone	ND	20
Freon 113	ND	4.9
1,1-Dichloroethene	ND	4.9
Methylene Chloride	ND	20
Carbon Disulfide	ND ·	4.9
MTBE	ND	4.9
trans-1,2-Dichloroethene	ND	4.9
Vinyl Acetate	ND	49
1,1-Dichloroethane	ND	4.9
2-Butanone	ND	9.8
cis-1,2-Dichloroethene	ND	4.9
2,2-Dichloropropane	ND	4.9
Chloroform	ND	4.9
Bromochloromethane	ND	4.9
1,1,1-Trichloroethane	ND	4.9
1,1-Dichloropropene	ND	4.9
Carbon Tetrachloride	ND	4.9
1,2-Dichloroethane	ND	4.9
Benzene	ND	4.9
Trichloroethene	ND	4.9
1,2-Dichloropropane	ND	4.9
Bromodichloromethane	ND	4.9
Dibromomethane	ND	4.9
4-Methyl-2-Pentanone	ND	9.8
cis-1,3-Dichloropropene	ND	4.9
Toluene	ND	4.9
trans-1,3-Dichloropropene	ND	4.9
1,1,2-Trichloroethane	ND	4.9
2-Hexanone	ND	9.8
1,3-Dichloropropane	ND	4.9
Tetrachloroethene	ND	4.9

	Purgeable (organics by GC/	/MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP4;5-5.5	Diln Fac:	0.9804
Lab ID:	163466-010	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL
Dibromochloromethane	ND	4.9
1,2-Dibromoethane	ND	4.9
Chlorobenzene	ND	4.9
1,1,1,2-Tetrachloroethane	ND	4.9
Ethylbenzene	ND	4.9
m,p-Xylenes	ND	4.9
o-Xylene	ND	4.9
Styrene	ND	4.9
Bromoform	ND	4.9
Isopropylbenzene	ND	4.9
1,1,2,2-Tetrachloroethane	ND	4.9
1,2,3-Trichloropropane	ND	4.9
Propylbenzene	ND	4.9
Bromobenzene	ND	4.9
1,3,5-Trimethylbenzene	ND	4.9
2-Chlorotoluene	ND	4.9
4-Chlorotoluene	ND	4.9
tert-Butylbenzene	ND	4.9
1,2,4-Trimethylbenzene	ND	4.9
sec-Butylbenzene	ND	4.9
para-Isopropyl Toluene	ND	4.9
1,3-Dichlorobenzene	ND	4.9
1,4-Dichlorobenzene	ND	4.9
n-Butylbenzene	ND	4.9
1,2-Dichlorobenzene	ND	4.9
1,2-Dibromo-3-Chloropropane	ND	4.9
1,2,4-Trichlorobenzene	ND	4.9
Hexachlorobutadiene	ND	4.9
Naphthalene	ND	4.9
1,2,3-Trichlorobenzene	ND	4.9

Surrogate	%REC	Limits
Dibromofluoromethane	103	74-124
1,2-Dichloroethane-d4	111	75-128
Toluene-d8	100	80-120
Bromofluorobenzene	108	75-127

	Purgeable (organics by GC/	MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	QC203843	Diln Fac:	1.000
Matrix:	Soil	Batch#:	78961
Units:	ug/Kg	Analyzed:	02/05/03

Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ИD	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Велzene	ИD	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ИD	5.0
Dibromochloromethane	ND	5.0

	Purgeable (Organics by GC/	MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	QC203843	Diln Fac:	1.000
Matrix:	Soil	Batch#:	78961
Units:	ug/Kg	Analyzed:	02/05/03

Analyte	Result	RL
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene .	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	MD	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	%REC	Limits
Dibromofluoromethane	103	74-124
1,2-Dichloroethane-d4	109	75-128
Toluene-d8	99	80-111
Bromofluorobenzene	104	75-127

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable (Organics by GC/	/MS
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Type:	LCS	Basis:	as received
Lab ID:	OC203842	Diln Fac:	1.000
Matrix:	Soil	Batch#:	78961
Units:	ug/Kg	Analyzed:	02/05/03

Analyte	Spiked	Result	%REC	Limita	
1,1-Dichloroethene	50.00	46.94	94	70-131	
Benzene	50.00	48.80	98	77-120	
Trichloroethene	50.00	51.06	102	79-120	
Toluene	50.00	49.71	99	80-120	
Chlorobenzene	50.00	53.27	107	80-120	

Surrogate	%REC	Limits
Dibromofluoromethane	100	74-124
1,2-Dichloroethane-d4	108	75-128
Toluene-d8	99	80-111
Bromofluorobenzene	101	75-127

Purgeable Organics by GC/MS							
Lab #:	163466	Location:	751-785 Brush St.				
Client:	Baseline Environmental	Prep:	EPA 5035				
Project#:	Y0323-01	Analysis:	EPA 8260B				
Field ID:	B-FP4;5-5.5	Diln Fac:	0.9804				
MSS Lab ID:	163466-010	Batch#:	78961				
Matrix:	Soil	Sampled:	02/04/03				
Units:	ug/Kg	Received:	02/04/03				
Basis:	as received	Analyzed:	02/05/03				

Type:

MS

Lab ID:

QC203845

Analyte	MSS Result	Spiked	Result	%RE(2 Limits
1,1-Dichloroethene	<0.4300	49.02	39.00	80	57-134
Benzene	<0.2900	49.02	41.24	84	55-125
Trichloroethene	<0.5400	49.02	42.72	87	37-133
Toluene	<0.3500	49.02	41.88	85	48-131
Chlorobenzene	<0.4400	49.02	43.66	89	42-128

			_
Surrogate	%REC	Limits	
Dibromofluoromethane	103	74-124	l.
1,2-Dichloroethane-d4	110	75-128	
Toluene-d8	99	80-111	ı
Bromofluorobenzene	101	75-127	

Type:

MSD

Lab ID:

QC203846

Spiked	Result	%REC	Limits	RPL	Lim
49.02	40.17	82	57-134	3	20
49.02	42.58	87	55-125	3	20
49.02	45.14	92	37-133	6	21
49.02	43.91	90	48-131	5	20
49.02	43.40	89	42-128	1	23
	49.02 49.02 49.02 49.02	49.02 40.17 49.02 42.58 49.02 45.14 49.02 43.91	49.02 40.17 82 49.02 42.58 87 49.02 45.14 92 49.02 43.91 90	49.02 40.17 82 57-134 49.02 42.58 87 55-125 49.02 45.14 92 37-133 49.02 43.91 90 48-131	49.02 40.17 82 57-134 3 49.02 42.58 87 55-125 3 49.02 45.14 92 37-133 6 49.02 43.91 90 48-131 5

_	Surrogate	%REC	Limits
	Dibromofluoromethane	105	74-124
	1,2-Dichloroethane-d4	110	75-128
	Toluene-d8	100	80-111
	Bromofluorobenzene	104	75-127

	Hexava:	Lent Chromium	
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 7196A
Analyte:	Hexavalent Chromium	Batch#:	79043
Matrix:	Soil	Sampled:	02/04/03
Units:	mg/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/07/03
Diln Fac:	1.000		

Field ID	Туре	Lab ID	Re	sult	RL
B-FP3;1.5-2.0	SAMPLE 16	3466-002	ND		0.05
B-FP3;5.0-5.5	SAMPLE 16	3466-004	ND		0.05
B-FP4;2.0-2.5	SAMPLE 16	3466-008	ND		0.05
B-FP4;5-5.5	SAMPLE 16	3466-010	ND		0.05
B-FP5;2-2.5	SAMPLE 16	3466-014		0.09	0.05
B-FP5;5-5.5	SAMPLE 16	3466-016		1.9	0.05
D 110/0 2.3		204147	ND		0.05

	Hexava	lent Chromium	
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 7196A
Analyte:	Hexavalent Chromium	Diln Fac:	1.000
Field ID:	ZZZZZZZZZ	Batch#:	79043
MSS Lab ID:	163373-001	Sampled:	01/29/03
Matrix:	Soil	Received:	01/29/03
Units:	mg/Kg	Analyzed:	02/07/03
Basis:	as received		

Tyne	Lab ID	MSS Result	Spiked	Result	%RE	C Limits	RPD	Lim
LCS MS	OC204148		4.000	3.475	87	80-116		-
MS	OC204149	<0.05000	4.000	3.312	83	62-132		
MSD	OC204150		4.000	3.196	80	62-132	4	24

	Tota	ıl Cyanide	
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 335.2
Analyte:	Cyanide	Batch#:	78987
Matrix:	Soil	Sampled:	02/04/03
Units:	mg/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/06/03
Diln Fac:	1.000		

Field ID	Type Lab ID	Result	RL
B-FP3;1.5-2.0	SAMPLE 163466-002	ND	1.0
B-FP3;5.0-5.5	SAMPLE 163466-004	ND	1.0
B-FP4;2.0-2.5	SAMPLE 163466-008	ND	1.0
B-FP4;5-5.5	SAMPLE 163466-010	ND	1.0
B-FP5;2-2.5	SAMPLE 163466-014	ND	1.0
B-FP5;5-5.5	SAMPLE 163466-016	ND	1.0
<u> </u>	BLANK QC203946	ND	1.0

	Tota	al Cyanide	
Lab #:	163466	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 335.2
Analyte:	Cyanide	Diln Fac:	1.000
Field ID:	B-FP5;5-5.5	Batch#:	78987
MSS Lab ID:	163466-016	Sampled:	02/04/03
Matrix:	Soil	Received:	02/04/03
Units:	mg/Kg	Analyzed:	02/06/03
Basis:	as received		

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC203947	<1.000	9.360	8.470	91	70-130		
MSD	OC203948		9.540	9.480	99	70-130	11	30
LCS	QC203949		9.640	9.880	103	80-120		

February 10, 2003

James Brownfield Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407

Subject:

Calscience Work Order No.:

03-02-0213

Client Reference:

163466

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 2/6/2003 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Don Burley

Project Manager

Michael J. Grisostomo

Quality Assurance Manager

000042

alscience nvironmental , aboratories, Inc.

ANALYTICAL REPORT

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

02/06/03 03-02-0213

Work Order No: Preparation:

Total Digestion

Method:

EPA 6010B / EPA 7471A

Project: 163466

Page 1 of 3

Client Sample Nur	mber			Sample umber	· · · · · · · · · · · · · · · · · · ·	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bat	ch ID
B-FP3; 1.5-2.0		1 2 1 11 -	03-	-02-021	3-1	02/04/03	Solid	02/06/03	02/07/03	03020	5L04
Comment(s):	Mercury was analy	zed on 2/6/200	3 2:45:	48 PM v	with batc	h 030206L01					
<u>Parameter</u>	Res		<u>D</u> F	<u>Qual</u>	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
Antimony	ND	0.750	1		ma/ka	Mercury		ND	0.0835	1	mg/kg
Arsenic		28 0.750	1		mg/kg	Molybdenum		0.367	0.250	1	mg/kg
Barium	71.1		1		mg/kg	Nickel		17.2	0.2	1	mg/kg
Beryllium	ND	0.250	1		mg/kg	Selenium		ND	0.750	1	mg/kg
Cadmium	ND	0.500			mg/kg	Silver		ND	0.250	1	mg/kg
Chromium (Total)	37.5		1		mg/kg	Thallium		ND	0.750	1	mg/kg
Cobalt	4.4		1		mg/kg	Vanadium		18.2	0.2	1	mg/kg
Copper	5.€		1		mg/kg	Zinc		15.8	1.0	1	mg/kg
_ead	5.0	-	1		mg/kg						
B-FP3 ; 5.0-5.5			03	-02-021	3-2	02/04/03	Solid	02/06/03	02/07/03	03020	6L04
Comment(s):	Mercury was analy	zed on 2/6/200	3 2:48:	51 PM v	with batc	h 030206L01					
Parameter Parameter	Res	<u>ult</u> RL	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qua	<u>Units</u>
Antimony	ND	0.750	1	l i	mg/kg	Mercury		ND	0.0835	1	mg/kg
Arsenic		.42 0.75	1		mg/kg	Molybdenum		ND	0.250	1	mg/kg
arium	53		1		ma/ka	Nickel		995	0.250	1	mg/kg
Beryllium	= =	.349 0.250	1		mg/kg	Selenium		ND	0.750	1	mg/kg
Cadmium	ND	0.500			mg/kg	Silver		ND	0.250	1	mg/kg
Chromium (Total)	66		1		mg/kg	Thallium		ND	0.750	1	mg/kg
Cobalt		.70 0.25	1		mg/kg	Vanadium		42.5	0.2	1	mg/kg
Copper	10		1		mg/kg	Zinc		24.0	1.0	1	mg/kg
Lead		.54 0.50	1		mg/kg	2.7.0					
B-FP4 ; 2.0-2.5			03	-02-021	3-3	02/04/03	Solid	02/06/03	02/07/03	03020	6L04
Comment(s):	Mercury was analy	zed on 2/6/200	3 2:51:	:53 PM :	with batc	h 030206L01					
<u>Parameter</u>	Res		<u>DF</u>		<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u> Qua	<u>I Units</u>
Antimony	ND	0.750	1	l	mg/kg	Mercury		ND	0.0835	1	mg/kg
Arsenic	ND	0.750	1	ł	mg/kg	Molybdenum		ND	0.250	1	mg/kg
Barium	75.6	0.5	1	i	mg/kg	Nickel		16.5	0.2	1	mg/kg
Beryllium	ND	0.250	1	i	mg/kg	Selenium		ND	0.750	1	mg/kg
Cadmium	ND	0.500	1	I	mg/kg	Silver		ND	0.250	1	mg/kg
			1		mg/kg	Thallium		ND	0.750	1	mg/kg
Chromium (Lotai)		•			~ ~	S. F		19.1	0.2	1	mg/kg
	4.0	0.25	1	1	mg/kg	Vanadium		19.1		•	
Chromium (Total) Cobalt Copper	4.0 5.1		1		mg/k g mg/kg	Vanadium Zinc		16.5	1.0	1	mg/kg

000043

DF - Dilution Factor ,

Qual - Qualifiers

alscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. 2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Method:

Preparation:

02/06/03 03-02-0213

Total Digestion

EPA 6010B / EPA 7471A

Project: 163466

Page 2 of 3

Client Sample Num	nber	***************************************		Sample umber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	itch ID
B-FP4 ; 5-5.5			03-	02-0213-4	02/04/03	Solid	02/06/03	02/07/03	03020	06L04
Comment(s):	Mercury was anal	lyzed on 2/6/20	03 2:54:	57 PM with batc	h 030206L01					
<u>Parameter</u>	Re	esult RL	<u>DF</u>	Qual Units	<u>Parameter</u>		Result	<u>RL</u>	DF Que	al <u>Units</u>
Antimony	NE			mg/kg	Mercury		ND	0.0835	1	mg/kg
Arsenic	•	.07 0.75	1	mg/kg	Molybdenum		0.872	0.250	1	mg/kg
Barium	43		1	mg/kg	Nickel		37.0	0.2	1	mg/kg
Beryllium		.326 0.250		mg/kg	Selenium		ND	0.750	1	mg/kg
Cadmium	NC			mg/kg	Silver		ND	0.250	1	mg/kg
Chromium (Total)	47		1	mg/kg	Thallium		ND	0.750	1	mg/kg
Cobalt	10	.8 0.2	1	mg/kg	Vanadium		32.5	0.2	1	mg/kg
Copper	_	.61 0.50	1	mg/kg	Zinc		45.1	1.0	1	mg/kg
Lead	3	.22 0.50	1	mg/kg				·		
B-FP5 ; 2-2.5			03-	02-0213-5	02/04/03	Solid	02/06/03	02/07/03	03020	06L04
Comment(s):	Mercury was ana	lyzed on 2/6/20			h 030206L01		_	_		
<u>Parameter</u>	Re	esult RL	<u>DF</u>	Qual Units	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	DF Qua	al <u>Units</u>
Antimony	NE	0.750) 1	mg/kg	Mercury		ND	0.0835	1	mg/kg
Arsenic	. 0	.794 0.750) 1	mg/kg	Molybdenum		ND	0.250	1	mg/kg
Barium	55	.9 0.5	1	mg/kg	Nickel		17.3	0.2	1	mg/kg
Beryllium	NC	0.250) 1	mg/kg	Selenium		ND	0.750	1	mg/kg
Cadmium	NE	0.500) 1	mg/kg	Silver		ND	0.250	1	mg/kg
Chromium (Total)	36	.6 0.2	1	mg/kg	Thallium		ND	0.750	1	mg/kg
Cobalt	3	.86 0.25	1	mg/kg	Vanadium		20.3	0.2	1	mg/kg
Copper	4	.79 0.50	1	mg/kg	Zinc		13.9	1.0	1	mg/kg
Lead	2	.83 0.50	1	mg/kg				<u> </u>	.	
B-FP5 ; 5-5.5			03-	02-0213-6	02/04/03	Solid	02/06/03	02/07/03	0302	06L04
Comment(s):	Mercury was ana	lyzed on 2/6/20			h 030206L01					
<u>Parameter</u>	Re	esult RL	<u>DF</u>	Qual Units	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	DF Qua	al <u>Units</u>
Antimony	NE	0.750) 1	mg/kg	Mercury		ND	0.0835	1	mg/kg
Arsenic	0	.764 0.750) 1	mg/kg	Molybdenum		ND	0.250	1	mg/kg
Barium	28		1	mg/kg	Nickel		19.3	0.2	1	mg/kg
Beryllium	NE) 1	mg/kg	Selenium		ND	0.750	1	mg/kg
Cadmium	NE			rng/kg	Silver		ND	0.250	1	mg/kg
Chromium (Total)	34		1	mg/kg	Thallium		ND	0.750	1	mg/kg
Cobalt		.55 0.25	1	mg/kg	Vanadium		21.6	0.2	1	mg/kg
Copper		.60 0.50	1	mg/kg	Zinc		11.4	1.0	1	mg/kg
_ead		.08 0.50	i	mg/kg						
Method Blank	y - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)-04-007-1,867	N/A	Solid	02/06/03	02/06/03	2000	06L01

<u>Parameter</u>

Result

<u>RL</u>

DF Qual Units

Mercury

ND

0.0835

mg/kg

000044

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

ANALYTICAL REPORT

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Preparation:

Method:

02/06/03

03-02-0213

Total Digestion

EPA 6010B / EPA 7471A

Project: 163466

Page 3 of 3

Date Date pared Analyz 06/03 02/06	zed QC Batch I		
06/03 02/06	6/03 030206L0		
		030206L04	
tesult RL	<u>DF_Qual_U</u>	<u>Jпits</u>	
ND 0.25	50 1 m	ng/kg	
ND 0.25	.50 1 m ²	ng/kg	
ND 0.75	50 1 m/	ng/kg	
ND 0.25	.50 1 m	ng/kg	
ND 0.75	50 1 m	ng/kg	
ND 0.25	.50 1 m	ng/kg	
ND 1.00	0 1 m	ng/kg	
VD 0.50	00 1 m	ng/kg	
777777	ID 0.2 ID 0.2 ID 0.7 ID 0.2 ID 0.7 ID 0.7 ID 0.2	ID 0.250 1 m ID 0.250 1 m ID 0.750 1 m ID 0.250 1 m ID 0.250 1 m ID 0.250 1 m ID 0.750 1 m ID 0.750 1 m ID 0.750 1 m ID 0.750 1 m	

Lalscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

 Curtis & Tompkins, Ltd.
 Date Received:
 02/06/03

 2323 Fifth Street
 Work Order No:
 03-02-0213

 Berkeley, CA 94710-2407
 Preparation:
 EPA 3545

 Method:
 EPA 8082

Project: 163466

Page 1 of 2

F10ject. 103400											
Client Sample Number				Sampli umber	e	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bate	ch ID
B-FP3 ; 1.5-2.0			03-	-02-021	3-1	02/04/03	Solid	02/06/03	02/06/03	030206	L05
<u> </u>											
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	1	ug/kg
Aroclor-1242	ND	50	1		ug/kg	Aroclor-1262		ND	50	1	ug/kg
Surrogates:	<u>REC (%)</u>	Control Limits	-	Qual	1	Surrogates:		<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	Qual	
Decachlorobiphenyl	81	50-130	1			2,4,5,6-Tetrach	loro-m-Xylene	96	50-130		
B-FP3 ; 5.0-5.5	<u> </u>		03-	-02-021	3-2	02/04/03	Solid	02/06/03	02/06/03	030200	L05
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		Result	RL	DF Qual	<u>Units</u>
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	i		ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	1	ug/kg
Aroclor-1242	ND	50	1		ug/kg	Aroclor-1262		ND	50	1	ug/kg
Surrogates:	REC (%)	Control		Qua!		Surrogates:		REC (%)	Control	Qual	
		Limits	_						Limits	,	
Decachlorobiphenyl	81	50-130	·			2,4,5,6-Tetrach	loro-m-Xylene	91	50-130		
B-FP4 ; 2.0-2.5			03-	-02-021	3-3	02/04/03	Solid	02/06/03	02/06/03	030206	JLQ5
			_								
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>	<u>Parameter</u>		Result	RL	DF Qual	<u>Units</u>
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	i	ug/kg
Aroclor-1242	ND	50	1		ug/kg	Aroclor-1262		ND	50	1	ug/kg
Surrogates:	REC (%)	Control		Qual		Surrogates:		REC (%)	Control		
Sullogates.	11557701	Limits	•	14(1414.		Controgues.			Limits		
Decachlorobiphenyl	82	50-130	!			2,4,5,6-Tetrach	iloro-m-Xylene	92	50-130		
B-FP4 ; 5-5.5			03-	-02-021	3-4	02/04/03	Solid	02/06/03	02/06/03	030200	3L05
D	Desult	C)	DE	0	Unito	Daromotor		Dacult	DI	DF Qual	linite
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>Units</u>
Aroclor-1016	МD	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	1	ug/kg
Aroclor-1242					ومالحم	Aroclor-1262		ND	50	1	ug/kg
/100001-1242	ND	50	1		ug/kg	A100101-1202					
Surrogates:	ND <u>REC (%)</u>	50 Control		Qual		Surrogates:		REC (%)	Control	Qual	
			L				iloro-m-Xylene	REC (%)	Control Limits 50-130	Qual	

000046

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

alscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received:
Work Order No:
Preparation:
Method:

02/06/03 03-02-0213 EPA 3545

EPA 8082

Project: 163466

Page 2 of 2

Client Sample Number			Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bato	h ID
B-FP5 ; 2-2.5			03-02-0213-5	02/04/03	Solid	02/06/03	02/06/03	030206	L05
<u>Parameter</u>	Result	<u>RL</u>	DF Qual Units	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
Aroclor-1016	ND	50	1 ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1 ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1 ug/kg	Aroclor-1260		ND	50	1	ug/kg
Aroclor-1242	ND	50	1 ug/kg	Aroclor-1262		ND	50	1	ug/kg
Surrogates:	REC (%)	Control	Qual	Surrogates:		<u>REC (%)</u>	<u>Control</u>	<u>Qual</u>	
Decachlorobiphenyl	87	<u>Limits</u> 50-130		2,4,5,6-Tetrach	loro-m-Xylene	96	<u>Limits</u> 50-130		
B-FP5 ; 5-5.5			03-02-0213-6	02/04/03	Solid	02/06/03	02/06/03	030206	L05
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	DF Qual Units	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
Arocior-1016	ND	50	1 ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1 ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1 ug/kg	Aroclor-1260		ND	50	1	ug/kg
Aroclor-1242	ND	50	1 ug/kg	Aroclor-1262		ND	50	1	ug/kg
Surrogates:	REC (%)	Control	<u>Qual</u>	<u>Surrogates:</u>		REC (%)	Control	<u>Qual</u>	
Decachlorobiphenyl	102	<u>Limits</u> 50-130		2,4,5,6-Tetrach	loro-m-Xylene	92	<u>Limits</u> 50-130		
Method Blank			099-07-009-215	N/A	Solid	02/06/03	02/06/03	030206	L05
Parameter	Result	<u>RL</u>	DF Qual Units	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u> Qual	<u>Units</u>
Aroclor-1016	ND	50	1 ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1 ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1 ug/kg	Aroclor-1260		ND	50	1	ug/kg
Aroclor-1242	ND	50	1 ug/kg	Aroclor-1262		ND	50	1	ug/kg
Surrogates:	REC (%)	Control		<u>Surrogates:</u>		<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>	
Decachlorobiphenyl	96	<u>Limits</u> 50-130		2,4,5,6-Tetrach	iloro-m-Xylene	102	50-130		

000047

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifiers

Lalscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

 Curtis & Tompkins, Ltd.
 Date Received:
 02/06/03

 2323 Fifth Street
 Work Order No:
 03-02-0213

 Berkeley, CA 94710-2407
 Preparation:
 EPA 3545

 Method:
 EPA 8310

Project: 163466

Page 1 of 3

Client Sample Number				Sampl Imber	e	Date Collected	Matrix	Date Prepared	Date Aпalyzed	QC Bat	ch ID
B-FP3 ; 1.5-2.0			03-0	02-021	3-1	02/04/03	Solid	02/06/03	02/06/03	3 03020	6L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
Naphthalene	ND	50	1		ug/kg	Benzo (a) Anthr	acene	ND	50	1	ug/kg
Acenaphthylene	ND	50	1		ug/kg	Chrysene		ND	50	1	ug/kg
· -	ND ND	50	1		ug/kg ug/kg	Benzo (b) Fluor	anthone	ND	50	1	ug/kg ug/kg
Acenaphthene Fluorene	ND ND	50 50	1		ug/kg ug/kg	Benzo (k) Fluor		ND	50	1	ug/kg ug/kg
Phenanthrene	ND	50	1		ug/kg ug/kg	Benzo (a) Pyrer		ND	50	1	ug/kg ug/kg
Anthracene	ND ND	50 50	1		ug/kg ug/kg	Dibenz (a,h) An		ND	50	1	ug/kg ug/kg
	ND ND	50 50	1					ND	50	1	ug/kg ug/kg
Fluoranthene	ND ND	50 50			ug/kg	Benzo (g,h,i) Pe		ND ND	50 50	1	ug/kg ug/kg
Pyrene			1	Δ	ug/kg	Indeno (1,2,3-c,	,a) Pyrene	ND	50	ı	ug/kg
Surrogates:	REC (%)	Control		Qual							
Decafluorobiphenyl	87	<u>Limits</u> 40-160									
B-FP3 ; 5.0-5.5			03-0)2-021	3-2	02/04/03	Solid	02/06/03	02/06/03	3 03020	6L.01
											, -
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	DF Qual	<u>Units</u>
Naphthalene	ND	50	1		ug/kg	Benzo (a) Anthr	acene	ND	50	1	ug/kg
Acenaphthylene	ND	50	1		ug/kg	Chrysene		ND	50	1	ug/kg
Acenaphthene	ND	50	1		ug/kg	Benzo (b) Fluor	anthene	ND	50	1	ug/kg
Fluorene	ND	50	1		ug/kg	Benzo (k) Fluor	anthene	ND	50	1	ug/kg
Phenanthrene	ND	50	1		ug/kg	Benzo (a) Pyrer		ND	50	1	ug/kg
Anthracene	ND	50	1		ug/kg	Dibenz (a,h) An		ND	50	1	ug/kg
Fluoranthene	ND	50	1		ug/kg	Benzo (g,h,i) Pe		ND	50	1	ug/kg
Pyrene	ND	50	1		ug/kg	Indeno (1,2,3-c	•	ND	50	1	ug/kg
-	REC (%)	Control	•	Qual	S3	(-1-11	, , ,				- -
<u> </u>	(///	Limits									
Decafluorobiphenyl	77	40-160									
B-FP4 ; 2.0-2.5			03-0)2-021	3-3	02/04/03	Solid	02/06/03	02/06/0	3 03020	6L01
Parameter	Result	RL	DF	Qual	Units	Parameter		Result	RL	DF Qua	Units
									-		·
Naphthalene	ND	50	1		ug/kg	Benzo (a) Anthr	racene	ND	50	1	ug/kg
Acenaphthylene	ND	50	1		ug/kg	Chrysene		ND	50	1	ug/kg
Acenaphthene	ND	50	1		ug/kg	Benzo (b) Fluor	anthene	ND	50	1	ug/kg
Fluorene	ND	50	1		ug/kg	Benzo (k) Fluor	anthene	ND	50	1	ug/kg
Phenanthrene	ND	50	1		ug/kg	Benzo (a) Pyrer	ne	ND	50	1	ug/kg
Anthracene	ND	50	1		ug/kg	Dibenz (a,h) An	ithracene	ND	50	1	ug/kg
Fluoranthene	ND	50	1		ug/kg	Benzo (g,h,i) Pe		ND	50	1	ug/kg
Pyrene	ND	50	1		ug/kg	Indeno (1,2,3-c,		ND	50	1	ug/kg
	REC (%)	Control		<u>Qual</u>	J- 13						
Decafluorobiphenyl	79	<u>Limits</u> 40-160									

000043

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

alscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation: 02/06/03 03-02-0213 EPA 3545

Method:

EPA 8310

Project: 163466

Page 2 of 3

Project: 163466									ray	E Z () 3
Client Sample Number			Lab Sa Num		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bato	h ID
B-FP4 ; 5-5.5	· · · .		03-02	-0213-4	02/04/03	Solid	02/06/03	02/06/03	030206	L01
Paramete <u>r</u>	Result	<u>RL</u>	DF Q	ual Units	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
Naphthalene	ND	50	1	ug/kg	Benzo (a) Anth	ıracene	ND	50	1	ug/kg
Acenaphthylene	ND	50	1	ug/kg	Chrysene		ND	50	1	ug/kg
Acenaphthene	ND	50	1	ug/kg	Benzo (b) Fluo	ranthene	ND	50	1	ug/kg
luorene	ND	50	1	ug/kg	Benzo (k) Fluo	ranthene	ND	50	1	ug/kg
Phenanthrene	ND	50	1	ug/kg	Benzo (a) Pyre	ene	ND	50	1	ug/kg
Anthracene	ND	50	1	ug/kg	Dibenz (a,h) A	nthracene	ND	50	1	ug/kg
luoranthene	ND	50	1	ug/kg	Benzo (g,h,i) P	'erylene	NÐ	50	1	ug/kg
Pyrene	ND	50	1	ug/kg	Indeno (1.2,3-0	-	ND	50	1	ug/kg
Surrogates:	REC (%)	Control Limits		Qual	, , , , -					- -
Decafluorobiphenyl	87	40-160								
B-FP5 ; 2-2.5			03-02	-0213-5	02/04/03	Solid	02/06/03	02/06/03	030206	L01
Paramet <u>er</u>	Result	<u>RL</u>	DF Q	ual Units	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
Naphthalene	ND	50	1	ug/kg	Benzo (a) Anth	racene	ND	50	1	ug/kg
Acenaphthylene	ND	50	1	ug/kg	Chrysene		ND	50	1	ug/kg
Acenaphthene	ND	50	1	ug/kg	Benzo (b) Fluo	ranthene	ND	50	1	ug/kg
Fluorene	ND	50	i	ug/kg	Benzo (k) Fluo		ND	50	1	ug/kg
Phenanthrene	ND	50	1	ug/kg	Benzo (a) Pyre		ND	50	1	ug/kg
Anthracene	ND	50	i	ug/kg	Dibenz (a,h) A		ND	50	1	ug/kg
	ND ND	50	1	ug/kg	Benzo (g,h,i) F		ND	50	1	ug/kg
Fluoranthene	ND	50	1	ug/kg	indeno (1,2,3-4		ND	50	i	ug/kg
Pyrene Surrogates:	REC (%)	Control		<u>Sual</u>	IIIdello (1,2,0-	o,u) i grana	NO	•	•	49/119
Decafluorobiphenyl	75	<u>Limits</u> 40-160				- 		-		
B-FP5 ; 5-5.5		1	03-02	-0213-6	02/04/03	Solid	02/06/03	02/06/03	030206	L01
Para <u>meter</u>	Result	<u>RL</u>	DF C	tual Units	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	DF Qual	<u>Units</u>
Naphthalene	ND	50	1	ug/kg	Benzo (a) Anth	racene	ND	50	1	ug/kg
Acenaphthylene	ND	50	1	ug/kg	Chrysene		ND	50	1	ug/kg
Аселарhthene	ND	50	1	ug/kg	Benzo (b) Fluo	ranthene	ND	50	1	ug/kg
Fluorene	ND	50	1	ug/kg	Benzo (k) Fluo		ND	50	1	ug/kg
Phenanthrene	ND	50	1	ug/kg	Benzo (a) Pyre		ND	50	1	ug/kg
Anthracene	ND	50	1	ug/kg	Dibenz (a,h) A		ND	50	1	цg/kg
Fluoranthene	ND	50	1	ug/kg	Benzo (g,h,i) F		ND	50	1	ug/kg
Pyrene	ND	50	í	ug/kg	Indeno (1,2,3-		ND	50	1	ug/kg
Surrogates:	REC (%)	Control Limits	•	<u>Jual</u>		-,-, - , - ,		- 		-9-19
Decafluorobiphenyl	79	40-160								

000049

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifiers

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation: Method: 02/06/03 03-02-0213 EPA 3545

EPA 8310

Project: 163466

Page 3 of 3

Client Sample Number			Lab Samp Number		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID	
Method Blank			099-07-0	02-268	N/A	Solid	02/06/03	02/06/03	03020	6L01	0
<u>Parameter</u>	Result	<u>RL</u>	DF Qua	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qua	ıl <u>Units</u>	
Naphthalene	ND	50	1	ug/kg	Benzo (a) Anthra	acene	ND	50	1	ug/kg	
Acenaphthylene	ND	50	1	ug/kg	Chrysene		ND	50	1	ug/kg	
Acenaphthene	ND	50	1	ug/kg	Benzo (b) Fluora	anthene	ND	50	1	ug/kg	
Fluorene	ND	50	1	ug/kg	Benzo (k) Fluora	anthene	ND	50	1	ug/kg	
Phenanthrene	ND	50	1	ug/kg	Benzo (a) Pyren	ie	ND	50	1	ug/kg	
Anthracene	ND	50	1	ug/kg	Dibenz (a,h) Ant	thracene	ND	50	1	ug/kg	
Fluoranthene	ND	50	1	ug/kg	Benzo (g,h,i) Pe	rylene	ND	50	1	ug/kg	
Pyrene	ND	50	1	ug/kg	Indeno (1,2,3-c,		ND	50	1	ug/kg	
Surrogates:	REC (%)	Control Limits	Qua		• • • • •	. •					
Decafluorobiphenyl	96	40-160									

000050

RL - Reporting Limit 7440

Quality Control - Spike/Spike Duplicate

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Preparation:

Method:

02/06/03

03-02-0213

Total Digestion

EPA 6010B

Project: 163466

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
B-FP3 ; 5.0-5.5	Solid	ICP 3300	02/06/03	. <u></u>	02/07/03	030206S04
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Antimony	47	42	50-115	10	0-20	3
Arsenic	100	101	75 -125	1	0-20	
Barium	117	114	75-125	1	0-20	
Beryllium	99	100	75-125	1	0-20	
Cadmium	84	85	75-125	1	0-20	
Chromium (Total)	262	146	75-125	34	0-20	3,4
Cobalt	104	105	75-125	1	0-20	
Copper	103	104	75-125	1	0-20	
Lead	99	99	75-125	0	0-20	
Molybdenum	93	91	75-125	3	0-20	
Nickel	4X	4X	75-125	4X	0-20	Q
Selenium	93	92	75-125	1	0-20	
Silver	102	103	75-125	1	0-20	
Thallium	96	93	75-125	4	0-20	
Vanadium	86	91	75-125	3	0-20	
Zinc	107	102	75-125	3	0-20	

Quality Control - LCS/LCS Duplicate

Curtis & Tompkins, Ltd. 2323 Fifth Street

Berkeley, CA 94710-2407

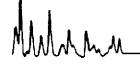
Date Received: Work Order No: Preparation:

Method:

02/06/03 03-02-0213 Total Digestion EPA 6010B

Project:

Zinc


163466

Quality Control Sample ID	Matrix I	nstrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	h
097-01-002-4,036	Solid	ICP 3300	02/06/03	02/06/03	030206L04	
<u>Parameter</u>	LCS %REC	C LCSD %F	REC %RI	EC CL RPD	RPD CL	<u>Qualifiers</u>
Antimony	90	85	80)-120 5	0-20	
Arsenic	97	92	80	-120 6	0-20	
Barium	110	106	80)-120 3	0-20	
Beryllium	90	86	80)-120 5	0-20	
Cadmium	95	89	80)-120 7	0-20	
Chromium (Total)	93	88	80)-120 5	0-20	
Cobalt	101	95	80)-120 6	0-20	
Copper	92	85	80)-120 7	0-20	
Lead	94	89	80)-120 5	0-20	
Molybdenum	92	87	80)-120 5	0-20	
Nickel	98	93	80)-120 6	0-20	
Selenium	88	83	80)-120 5	0-20	
Silver	98	94	80)-120 4	0-20	
Thallium	94	91	80)-120 3	0-20	
Vanadium	91	87	80	J-120 5	0-20	

90

98

000052

9

80-120

0-20

Quality Control - Spike/Spike Duplicate

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Preparation:

Method:

02/06/03

03-02-0213

Total Digestion

EPA 7471A

Project: 163466

Quality Control Sample ID		Matrix	instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number
03-02-0188-5		Solid	Mercury	02/06/03	02	2/06/03	030206S01
<u>Parameter</u>		MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Мегситу		119	115	76-136	3	0-16	

000053

Lalscience nvironmental aboratories, Inc.

Quality Control - Laboratory Control Sample

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation: Method: 02/06/03 03-02-0213 Total Digestion EPA 7471A

Project:

163466

Quality Control Sample 1D	Matrix	Instrument	Date Analyzed	Lab File ID	LCS	Batch Number
099-04-007-1,867	Solid	Mercury	02/06/03	030206-L01		030206L01
Parameter		Conc Added	Conc Recovered	%Rec	%Rec CL	Qualifiers
Mercury		0.835	0.799	96	82-124	

Quality Control - Spike/Spike Duplicate

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Preparation:

Method:

02/06/03

03-02-0213

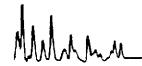
EPA 3545

EPA 8082

Project: <u>163466</u>

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
B-FP5; 5-5.5	Solid	GC 10	02/06/03	02/07/03	030206S05
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD C	L Qualifiers
Aroclor-1260	97	. 91	50-135	6 0-25	

000055


Quality Control - LCS/LCS Duplicate

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation: Method: 02/06/03 03-02-0213 EPA 3545 EPA 8082

Project:

163466

Quality Control Sample ID	Matrix	Instru	ment P	Date epared	Da Analy		LCS/LCSD Batc Number	h
099-07-009-215	Solid	GC	10 0	2/06/03	02/07	/03	030206L05	
<u>Parameter</u>	LCS %	6REC	LCSD %REC	<u>%RI</u>	EC CL	RPD	RPD CL	<u>Qualifiers</u>
Aroclor-1260	134	ļ	130	50)-135	3	0-25	

Quality Control - Spike/Spike Duplicate

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

02/06/03

Work Order No:

Preparation:

03-02-0213 EPA 3545

Method:

EPA 8310

Project: 163466

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
03-02-0210-6	Solid	HPLC 6	02/06/03		02/06/03	030206801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzo (b) Fluoranthene	90	90	40-160	0	0-20	
Benzo (k) Fluoranthene	95	96	40-160	0	0-20	
Benzo (a) Pyrene	72	72	40-160	0	0-20	
Dibenz (a,h) Anthracene	90	91	40-160	0	0-20	
Benzo (g,h,i) Perylene	75	74	40-160	1	0-20	
Indeno (1,2,3-c,d) Pyrene	83	83	40-160	0	0-20	

Quality Control - LCS/LCS Duplicate

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

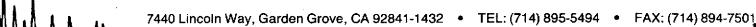
Date Received:

Work Order No:

Preparation:

Method:

02/06/03

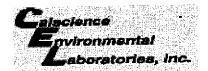

03-02-0213 EPA 3545

EPA 8310

Project: 16

163466

Quality Control Sample ID	Matrix	Instr	ument	Date Prepare	_	ate lyzed	LCS/LCSD Bate Number	ch
099-07-002-268	Solid	НР	HPLC 6 0		3 02/0	6/03	030206L01	
<u>Parameter</u>	LCS %	<u>6REC</u>	LCSD %	REC	%REC CL	RPD	RPD CL	Qualifiers
Benzo (b) Fluoranthene	117	•	117		40-160	0	0-20	
Benzo (k) Fluoranthene	119	1	119		40-160	0	0-20	
Benzo (a) Pyrene	111		110		40-160	1	0-20	
Dibenz (a,h) Anthracene	120)	121		40-160	0	0-20	
Benzo (g,h,i) Perylene	116		115		40-160	1	0-20	
Indeno (1,2,3-c,d) Pyrene	113	,	113		40-160	0	0-20	



Calscience GLOSSARY OF TERMS AND QUALIFIERS

nvironmental aboratories, Inc.

Work Order Number: 03-02-0213

Qualifier	<u>Definition</u>
3	Spike or Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and,
4	therefore, the sample data was reported without further clarification. The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
ND	Not detected at indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the sample concentration exceeding the spike concentration by a factor of four or greater.

WORK ORDER #:	03 -€	2	_0	2		3
---------------	--------------	---	----	---	--	---

Cooler ___ of ___

SAMPLE RECEIPT FORM

CLIENT: EURTIS And TOTALKINIS	DATE: 82/06/03
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): °C Temperature blank. °C IR thermometer. Ambient temperature.
O TOMPORATE STATE	
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not Intact)): Not Applicable (N/A): Initial:
Chain-Of-Custody document(s) received with samples Sample container label(s) consistent with custody papers Sample container(s) intact and good condition Correct containers for analyses requested Proper preservation noted on sample label(s) VOA vial(s) free of headspace Tedlar bag(s) free of condensation	
COMMENTS:	

Curtis & Tompkins, Ltd.
Analytical Laboratories, Since 1878
2323 Fifth Street
Berkeley, CA 94710
(510) 486-0900
(510) 486-0532

Project Number: 163466

Subcontract Laboratory:

Cal Science

7440 Lincoln Way

Garden Grove, CA 92641-1432

(714) 895-5494

ATTN: Jody McInerney x132

Results due: 02/11/03 /Hp 2/5/0 Report Level: II

Please send report to dames Brownfield

* Please report using Sample ID rather than C&T Lab #.

	Sampled	Matrix	Analysis C&T Lab # Comments
mple ID	02/04	Soil	8310 163466-002
FP3;1.5-2.0	02/04	Soil	PCB 163466-002
FP3;1.5-2.0	02/04	Soil	T26 MET 163466-002
FP3;1.5-2.0	02/04	Soil	T26/HG 163466-002
FP3;1.5-2.0	02/04	Soil	T26/ICP 163466-002
FP3;1.5-2.0	02/04	Soil	8310 163466-004
FP3;5.0-5.5	02/04	Soil	PCB 163466-004
FP3;5.0-5.5	•	Soil	T26 MET 163466-004
FP3;5.0-5.5	02/04	Soil	T26/HG 163466-004
FP3;5.0-5.5	02/04	Soil	T26/ICP 163466-004
FP3;5.0-5.5	02/04	Soil	8310 163466-008
FP4;2.0-2.5	02/04	Soil	PCB 163466-008
FP4;2.0-2.5	02/04	Soil	T26 MET 163466-008
FP4;2.0-2.5	02/04	Soil	T26/HG 163466-008
FP4;2.0-2.5	02/04		T26/ICP 163466-008
FP4;2.0-2.5	02/04	Soil Soil	8310 163466-010
FP4;5-5.5	02/04		PCB 163466-010
FP4;5-5.5	02/04	Soil	T26 MET 163466-010
FP4;5-5.5	02/04	Soil	T26/HG 163466-010
-F P4 ;5-5.5	02/04	Soil	T26/ICP 163466-010
-FP4;5-5.5	02/04	Soil	8310 163466-014
FP5;2-2.5	02/04	Soil	PCB 163466-014
-FP5;2-2.5	02/04	Soil	T26 MET 163466-014
-FP5;2-2.5	02/04	Soil	T26/HG 163466-014
-FP5;2-2.5	02/04	Soil	T26/ICP 163466-014
-FP5:2-2.5	02/04	Soil	8310 163466-016
-FP5;5-5.5	02/04	Soil	7.524.55 01.6
-FP5;5-5.5	02/04	Soil	160465 036
-FP5;5-5.5	02/04	Soil	120 1111
-FP5;5-5.5	02/04	Soil	120/110
J-FP5;5-5.5	02/04	Soil_	T26/ICP 163466-016

Curtis & Tompkins, Ltd.
Analytical Laboratories, Since 1878
2323 Fifth Street
Berkeley, CA 94710
(510) 486-0900
(510) 486-0532

Relificuishe	ed By: Receiv
Notes: Date/Time:	2-5-03 Date/Time: 730

Signature on this form constitutes a firm Purchase Order for the services requerage 2 of 2

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Baseline Environmental 5900 Hollis Street Suite D Emeryville, CA 94608

Date: 24-FEB-03
Lab Job Number: 163482
Project ID: Y0323-01

Project ID: Y0323-01 Location: 751-785 Brush St.

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

perations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of <u>167</u>

163482 Cutis + Tomotion BASELIN E **CHAIN OF CUSTODY RECORD** Lab Physon Polisero **BASELINE Contact Person** 5900 Hollis Street, Suite D Emeryville, CA 94608 Tel: (510) 420-8686 Fax: (510) 420-1707 Project Name and Location: Project Number 751-785 Brush ST. 40323-01 Containers Samplers: (Signature) Weller K Suy Type Preservative SS SS L-AG L-Poly PAH Sample ID No. Station Date: Time: Media Remarks/ Composite None No No X 2/4/03 12:20 W X 12:20 ω 2/5/03 8:00 W 6 X Х 45/03 3 8:00 w X 8:00 B-FP5 X W 8:00 B.FPS one von w/ no s. X 219/03 6 8:30 W B-F24 X X X 3 8>30 W B-FP4 γ X 2 V 8:30 8170 W 41 (In life reservation Correct Ambient 1 Intad Conditions of Samples Upon Date/Time Received by: (Signature) **Custody Seal** Date/Time Arrival at Laboratory: Relinquished by: (Signature) Custody Seal 15/03/12:20 15/03 1270 YES NO NA Remarks: Date/Time Received by: (Signature) **Custody Seal** Date/Time Relinquished by: (Signature) **Custody Seal** Please Fax Chair of Custon To Yes NA NA Yes Phodora @ 420-1707 **Custody Seal** Date/Time Received by: (Signature) Relinquished by: (Signature) Yes No NA Y Fifter at Lob Metals Sample

Comments: receive extra container my HNUs for B-FP4 Date/Time Custody Seal Yes Date/Time Received at laboratory with intact custody seal: (Signature)

Zgw

2-5-0

	Name and -78			sT	ST										muth Strain				- 1	*	
Samplers: (Signature)	· -				7	ype	Con	taine	rs	Pre	serva	ntive	.	Wille .	किल		070			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Sample ID No. Station	Date:	Time:	Media	No.	= ml VOA		250 mi Poly L-Poly	£160-	None (Ice)	H.C.			Tp4	101.	Voc.	Ι.	ı	7,47		79	Remarks/ Composite
8-FP-6; 2-2.5	2/5/03	7:50	5	⊈ i	У				۲					χ		Х	〉	×	×		
3-FPG; 2.5		7,50	5	\$ 3				M	4		\bot	_	×	١٥.	×	×		Y	· ·		
3-FP6; 5-5.5		9:00	5	5	+	\vdash		V	+	+	+	╁	×	Х	Y		X	X			
3-496; 5.5 5FPB: 10-10.5		8:00	5	ا ــــــــــــــــــــــــــــــــــــ	1	\dagger	\top	$\dagger \dagger$	\forall	\sqcap											Hold
SFP6: 15-15-5	V	8:30	5	_	1					П						<u> </u>					Hold
			-		+	╀-┤	-	 x	+	₩	╁		X		X			-		:	
3FP7, 2.5	45/03		5	5	y	H	╫	f	+1	++	+	+	 ^	X		X	×	X	Х		
3 FP7' 2.5-3.0	 	9:20	15	-	1									Х		X	x	<u> </u>	Y	 	
8FP7; 5-5.5 BFP7; 5.5		9:20	Ş	5				시	_			\vdash	¥		×	<u> </u>		├	_	╁	Had
3FP7; 10-10,5		9:40		╁╙	X V	_	4	╁┼	+		+	-	+	-	<u> </u>						Hold
3 FP7; 15-15.5		9:40	5	11	7	-		++	- `		+	,			R	ceived	G	On Ice			
	 -		+	╂─	\mathbb{H}	╁		Plese	rvot	idn () I Noj	orlec	N/A	1	1	Cold	_	mbier	1	ntaci		
			╂──	+-	╫	+	1/6	7 Yes	\	1110	#		-								
Relinquished by: (Signature)	Custos Yes	iy Seal	Date/1	ime /2:2	· · ·	Re	ceiv	ed by	/: (Si	gnati		Cu Y <u>es</u>	stody Sea intact No N ustody Se	1 D	atc/Ti	me 3 12	Cor Arri	ditions ival at	of Sa Labora	mples atory:	Upon
Relinquished by: (Signature)	Custo	_	Date/T					ed by	: (Si	gnard	re)	_ c	ustody Se intact	al D	ate/Ti	me	Re	emarks	::		
	Yes	No										Yes	No N	Α			_		•	اماء	۲c
Relinquished by: (Signature)	Custo Yes	ody Seal No	Date/	Time		R	eceiv	ed by	y: (S	ignat	ure)		istody Sea intact No N	1 -	Date/T	ime	Ru	uFirth L Soli	who	الميلية الحرالية	Cabut OXSTLC

,,,,,,

_

----_

BASELIN E 5900 Hollis Street, Suite D Emeryville, CA 94608 Tel: (510) 420-8686 Fax: (510) 420-1707

163482

CHAIN OF CUSTODY RECORD

Turn-around Time

Lab

BASELINE Contact Person

S-Nax Cutis + Towaki-s

	Project Number Project	Name an	d Locatio	n:																- 1	- 1		1
	y6323-01 751-	785	Brus	4 5]	Γ									_							- /:	*/	/
ľ	Samplers: (Signature)							Con	taine	rs] 、	J	1,	\neg	-		Z\	/
	Miller & South			· ·			Тур	e	>-			ervat			Tollas goll	Tother I		PUK (ST.)			₹/ ≳	The state of the s	
	Sample ID No. Station	Date:	Time:	Media	١.	2		ਨੂੰ ਨੂੰ ਰਾਣ੍ਹਾਂ	ml Poly	، الأ		lael s	a I		11/1/20	Z Z		1 3	RB	Charle	12		Remarks/ Composite
					No.	SS	\ <u>`</u>	L-Poly	ا ا	2	HC	Š Š	Ц	_	_	(-		9	-				
3	B-FP-2; 2.5	2/5/63	10:10	\$	5				<u> </u>	灯		Щ		_	×		X						
14	B-FP2: 2.5-3.0	1	10710	٤_	1	XI_	4-4	+		- -	4	- -	╀	+	. 	Х	$\overline{}$	X	X	X	Х.		
15	B-FP2; 5.5		19750	5	5		+		\vdash	AY.			╁┼	-	×	_	<u> </u>	X	×	~	×		
10	<u> </u>	 -	10:20	5	1	X	1-1		┝╌┼╸	4)	_	╁┼╴	╂╌┼	\dashv	_	X		-^ -	-~ -	- X		 	1+010
17	B-FP2; 10-10.5	1	10:40	5		χ	+	+	┝╌├╴	$\frac{1}{\lambda}$		╁┼╌	H	-									HULD
14	B-FP2) 15-15.5	ļ <u>"</u>	10:50	 	'	4-	+	╫	╁┼	-	(╁	╂╅	+									
a	001:26	2/5/03	1134-	5	5	\dashv	╅┪	╅	- -	χľχ		H	††	ヿ	X		×						
19	B-FP1; 2.5 R-FP1; 2.5-3,0	1 9/6/	11:70	3	Ť	X	⇈	┪		-+-						Χ		X	X	\textcolor{	人	<u> </u>	
21	B-FP1: 5-5	 	11:20	Ś	5						(\square		X		Х					_	
22	B-FP1, 55-60	 	11:20	Ś	1	X			Ц		(\sqcup	\perp			Х		<u> </u>	x	と	X	 	11.10
23	<u> </u>	1-1-	11:40	5	/	X		\perp		1		\sqcup	1-1									 	HOLD
24	B-FP1; 15-15.5	1	11:50	5	7	X			Ш		1	Ц	14	Ц	-								HOZD
	D 1. 1. 2 7. 1. 2 7. 1. 2									1			\Box					ceived		On Ice	. 1 . 3	\vdash	
5/07									ese	V	- 1.	brie	al /al	Ц	1	(S	£old∶	□ A	nbient	45	ntact	\sqcup	
PE. C.						Ш		7		T	10											二	
cord\N fas	Relinquished by (Signature)			Date/I			Re	ceive	d by	: (S	ignat	ture)	C	Custo int	dy Scal act		ate/Tin		Cone Arriv	ditions val at L	of Sar abora	mples.i tory:	Uроп
dy Re	Mille & Sur	Yes	(No) 2/	5/03/	12:2	20	4			_($\overline{}$	6	_	_	No NA		12-	20 pr	<u> </u>				
Custo	Relinquished by: (Signature)	Custo	dy Seal	Date/T	ime		Re	ceive	d by	(Si	gnat	ure)	~) in	ody Seal tact	Da	te/Tin	ne	Re	marks:	If a any	nalyzii hits v	ng for MTBE, confirm vith EPA - method 8260
e e		Yes	No									_	Ye	es	No NA				- K 6	Sirk C	احــَ	ı f	1 10 4 6 41 4
(D) (Graphic) Chain	Relinquished by: (Signature)			Date/1	Time .		Re	ceive	ed by	r: (S	igna	ture)		in	dy Seal	1	ate/Tii	me	' '	'V''\ >	CIUd	aft v	f 10 x stlc.
Dig		Yes	No				 								No NA	<u> </u>]				
.	Received at laboratory with i	ntact cust	ody seal:	(Sign	ature)			D	ate/1	ıme	;		Con	nme	nts:			્ય હ	ng Massag				4

CHAIN OF CUSTUDY RECORD Photora Delisado 5900 Hollis Street, Suite D Emeryville, CA 94608 Tel: (510) 420-8686 Fax: (510) 420-1707 **BASELINE Contact Person** Project Name and Location: Project Number 4032 3-01 751-785 Brush ST. W/5.1/2 Containers Samplers: (Signature) Miller & Sus Preservative Type Sample ID Media Remarks/ Time. Date: Composite No. Station Nome NO3 2/4/03 8:35 - 25 -29 BF 5-FP3,7-7.5 YEOMP FY! 5 24/03 10:45 .26 2/5/03 10:30 -27 B-EP2: 7-7.5 2/5/03 11:30 -28 2/4/03 13:20 -33 ¿ COMP RY" 8:10 2/5/02 2/5/03 9:30 Preservation Correct? De Ide Received Tes I No Ambient Ambient **H**hla(Conditions of Samples Upon Date/Time Received by: (Signature) Custody Scal Arrival at Laboratory: Date/Time Relinquished by, (Signature) **Custody Seal** intact 12-20 2-5/03/12:20((QO) Yes Yes No NA 7-5-03 Remarks: Received by: (Signature) Date/Time Custody Seal Relinquished by: (Signature) Date/Time **Custody Seal** intact Yes No NA No Custody Seal Date/Time Received by: (Signature) Relinquished by: (Signature) Date/Time **Custody Seal** intact Yes No NA No Yes Comments: Date/Time Received at laboratory with intact custody seal: (Signature)

Laboratory Number: 163482

Client: Baseline

Project Name: 751-785 Brush St.

Order Date: 02/05/03

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for three water and thirty-one soil samples received from the above referenced project. The samples were received cold and intact.

Total Volatile Hydrocarbons: No analytical problems were encountered.

Total Extractable Hydrocarbons: No analytical problems were encountered.

Volatile Organic Compounds: No analytical problems were encountered.

Metals (Filtrate): The matrix spike recoveries for thallium were outside acceptance limits. The associated blank spike recoveries were acceptable for all target elements, therefore, there is no affect on the quality of the sample results. No other analytical problems were encountered.

General Chemistry: The soil matrix spike recoveries for hexavalent chromium were outside acceptance limits. The associated laboratory control sample (LCS) recovery was acceptable, therefore, there is no affect on the quality of the sample results. No other analytical problems were encountered.

Metals (Soil), PCBs, Polyaromatic Hydrocarbons: Calscience Environmental Laboratories, Inc. in Garden Grove, California performed the analyses. Please see the Calscience case narrative.

	Total Volat	ile Hydrocarbo	ns
Lab #: Client: Project#: Tatrix:	163482 Baseline Environmental Y0323-01 Water	Location: Prep: Analysis: Batch#: Received:	751-785 Brush St. EPA 5030B 8015B 79023 02/05/03
Units: Diln Fac:	ug/L 1.000	Analyzed:	02/07/03

Field ID: Lype:

B-FP3

SAMPLE

Lab ID: Sampled:

163482-034 02/04/03

Analyte Gasoline C7-C12 Result 50 150 Y

	_		
Corrogate	%REC	Limits	
Surrogate Frifluorotoluene (FID)	106	68-145	
	107	66-143	
Bromofluorobenzene (FID)	<u> 10/</u>		

eld ID: ype:

B-FP5 SAMPLE Lab ID:

163482-035 02/05/03

Sampled:

-1F-		Pi
<u> Analyte</u>	<u> Kesu</u> ⊥t	50
Gasoline C7-C12	ND	
	Property of the state of the st	
Surrogate Trifluorotoluene (FID)	104 68-145	
Trifluorotoluene (FID) Bromofluorobenzene (FID)	111 66-143	
Bromofiuorobenzene (Fib)		

ield ID:

B-FP4 SAMPLE Lab ID: Sampled: 163482-036 02/05/03

RL Analyte Result 50 ND <u> Gasoline C7-C12</u> %REC Limits

Surrogate Trifluorotoluene (FID) Bromofluorobenzene (FID) 104 68-145 66-143 106

Type:

BLANK

Lab ID:

QC204075

Type.		P.L.
Analyte Gasoline C7-C12	ND	50
Gasoline C7-C12		
Surrogate Trifluorotoluene (FID)	*REC LIMICS 102 68-145	
Trifluorotoluene (FID) Bromofluorobenzene (FID)	99 66-143	

Y= Sample exhibits fuel pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 1 of 1

Chromatogram

Sample Name : 163482-034,79023

: G:\GC05\DATA\037G030.raw

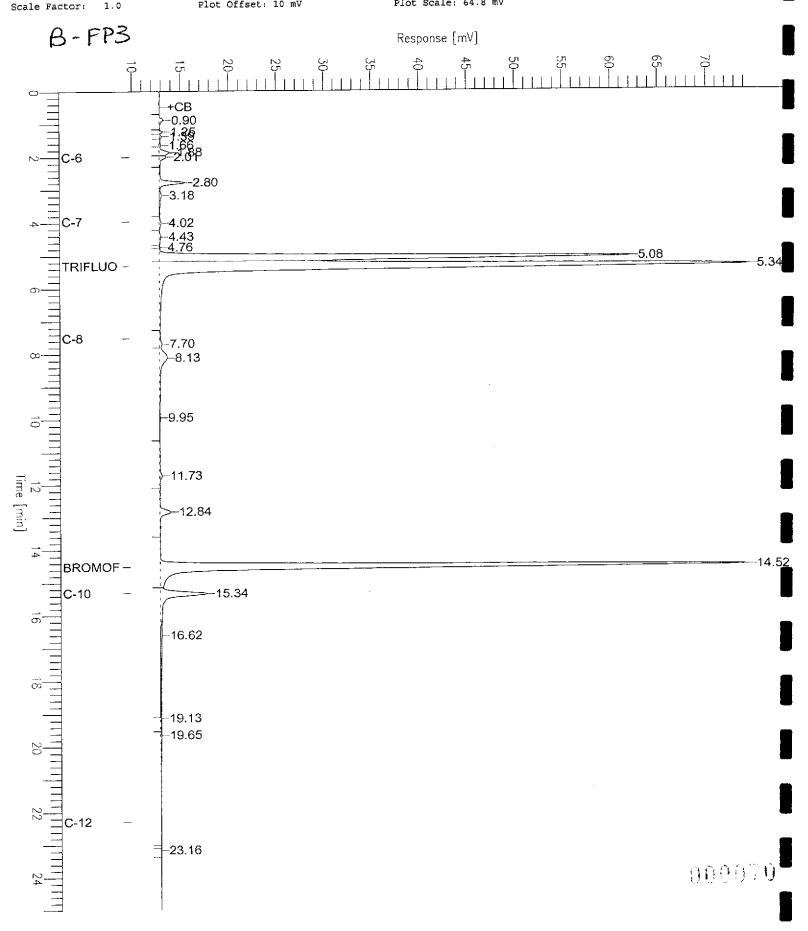
FileName : TVHBTXE Method

Start Time : 0.00 min

End Time : 25.00 min

Plot Offset: 10 mV

Sample #: c7


Date: 2/7/03 05:21 AM

Time of Injection: 2/7/03 04:56 AM

High Point : 74.52 mV Low Point : 9.73 mV

Page 1 of 1

Plot Scale: 64.8 mV

Chromatogram

Page 1 of 1 le Name : ccv/lcs,qc204076,79023,03ws0130,5/5000 Date : 2/7/03 01:27 AM : G:\GC05\DATA\037G023.raw Time of Injection: 2/7/03 01:02 AM : TVHETXE High Point : 135.42 mV 1ethod Low Point : 7.28 mV End Time : 25.00 min Start Time : 0.00 min Plot Scale: 128.1 mV Plot Offset: 7 mV e Factor: 1.0 Gasoli Response [mV] ≥_P.92 <u>1.42</u> -1.26 2.04 -3.29 =--3.57 -4.034.43 -4.92 TRIFLUO -\$.52 \$.58 --6.50 -7.05 C-8 -8.17 -8.48 -8.86 -9.33 >--10.02 >--10.35 <u>11.5</u>2 ---11.74 12.33 -12.85 BROMOF-15.08 -15.41 C-10 15.95 -16.22 16.62 17.99 -17.58 -17.91_____18.91^{18.68} -19.32 -20.38 -22.22 C-12 >-22.70 000071

	Total Vola	tile Hydrocarbo	ons
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	8015B
Type:	LCS	Diln Fac:	1.000
	OC204076	Batch#:	79023
Lab ID: Matrix:	Water	Analyzed:	02/07/03
Units:	ug/L		

A1bo	Sniked	Result	%REC	Limits
Analyce	2,000	2,051	103	79-120
Gasoline C7-C12	2,000			

Surrogate	%REC	! Limits
Trifluorotoluene (FID)	121	68-145
Bromofluorobenzene (FID)	106	66-143

	Total Volat	ile Hydrocarbo	ns
ab #: !lient:	163482 Baseline Environmental	Location: Prep: Analysis:	751-785 Brush St. EPA 5030B 8015B
Project#: Field ID: ISS Lab ID: Matrix:	Y0323-01 ZZZZZZZZZZ 163430-005 Water ug/L	Batch#: Sampled: Received: Analyzed:	79023 02/03/03 02/03/03 02/07/03
Units: Diln Fac:	1.000		

MS

Lab ID: QC204077

		Sniked	Result	%REC	Limits
Analyte	MSS Result	2 000	2.031	101	67-120
Rasoline C7-C12	17.02	2,000			

Surrogate	%REC	Limits	
Frifluorotoluene (FID)	121	68-145	
Bromofluorobenzene (FID)	113	66-143	

Type:

MSD

Lab ID: QC204078

	Spiked	Result	%REC	Limits	RPD L	im
Analyte	2,000	2,022	100	67-120	0 2	20
Gasoline C7-C12	2,000				·	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	122	68-145	
Bromofluorobenzene (FID)	112	66-143_	

Curtis & Tompkins Laboratories Analytical Report 751-785 Brush St. Location: Lab #: 8015B Analysis: Baseline Environmental Client: Y0323-01 Project#: 1.000 Diln Fac: Soil Matrix: 02/05/03 Sampled: mg/Kg Units: 02/05/03 Received: as received Basis:

Field ID:

B-FP6;2.5 SAMPLE 163482-002

Batch#: Analyzed:

Prep:

78963 02/05/03 EPA 5035

Type: Lab ID:

Result Analyte 0.20 Gasoline C7-C12

%REC Limits Surrogate 58-144 102 Trifluorotoluene (FID) <u> 102</u> 60-146 Bromofluorobenzene (FID)

Field ID:

B-FP6;5.5 SAMPLÉ Type: 163482-004 Batch#:

Analyzed: Prep:

02/05/03 EPA 5035

Lab ID.		
	VE 300 P	RI
Analyte	nesu.	0.18
Gasoline C7-C12	ND	
232770424	%REC Limits	
Trifluorotoluene (FID)	102 58-144	
	108 60-146	
Bromofluorobenzene (FID)	100 00-140	

Field ID: Type: Lab ID:

B-FP7;2.5 SAMPLE 163482-007 Batch#:

Analyzed: Prep:

78963

02/05/03 EPA 5035

nab ib.			DF
Analyte	ND	Result	0,21
Gasoline C7-C12	110		
Surrogate	%REC	Limits	
Trifluorotoluene (FID) Bromofluorobenzene (FID)	102 106	58-144 60-146	
Bromolidoropenzenc (115)			

Field ID: Type: Lab ID:

B-FP7;5.5 SAMPLE 163482-010 Batch#: Analyzed: Prep:

78963 02/05/03 EPA 5035

Analyte		Result	RL
Gasoline C7-C12	N	D	0.20
	O TATE		
Surrogate	SKEC	FOILE	
Trifluorotoluene (FID)	100	58-144	
Trifluorotoluene (FID) Bromofluorobenzene (FID)	103	60-146	
DIOMOLIGOIOSSIL			

Curtis & Tompkins Laboratories Analytical Report 751-785 Brush St. Location: 163482 Lab #: 8015B Analysis: Baseline Environmental Client: Y0323-01 Project#: 1.000 Diln Fac: Soil Matrix: 02/05/03 Sampled: mg/Kg Units: Received: 02/05/<u>03</u> as received Basis:

Field ID: pe:

B-FP-2;2.5

SAMPLE 163482-013 Batch#:

Analyzed: Prep:

78963

02/05/03 EPA 5035

ab ID: Result Analyte Gasoline C7-C12 0.19 $\overline{\mathrm{ND}}$ %REC Limits Surrogate 58-144 Trifluorotoluene (FID) 103 60-146 Bromofluorobenzene (FID)

Field ID:

B-FP2;5.5 SAMPLE

Type: ab ID:

163482-015

Batch#: Analyzed:

Prep:

78963 02/05/03 EPA 5035

RL Analyte Result 19 ND Gasoline C7-C12

Limits %REC Surrogate 58-144 102 Trifluorotoluene (FID) 60-146 103 Bromofluorobenzene (FID)

rield ID:

Type:

B-FP1;2.5 SAMPLÉ

Batch#:

Analyzed:

78963

02/05/03 EPA 5035

Prep: 163482-019 ab ID: Result Analyte 0.19 ND Gasoline C7-C12

%REC Limits Surrogate 101 58-144 Trifluorotoluene (FID) 105 60-146 Bromofluorobenzene (FID)

ield ID: Type:

Lāb ID:

B-FP1;5.5

SAMPLE 163482-021 Batch#:

78963 02/05/03

Analyzed: EPA 5035 Prep:

Result Analyte 0.16 ND Gasoline C7-C12

%REC Limits Surrogate 58-144 60-1<u>46</u> Trifluorotoluene (FID) 101 107 Bromofluorobenzene (FID)

Curtis & Tompkins Laboratories Analytical Report 751-785 Brush St. Location: 163482 Lab #: 8015B Analysis: Baseline Environmental Client: Y0323-01 Project#: 1.000 Diln Fac: Soil Matrix: 02/05/03 Sampled: mg/Kg Units: 02/05/03 Received: as received Basis:

Field ID: Type: Lab ID:

COMP FY SAMPLE

163482-029

Batch#:

Analyzed:

79000 02/06/03

Prep:

EPA 5030B

Analyte Gasoline C7-C12	N	Result	1.0
Surrogate Trifluorotoluene (FID) Bromofluorobenzene (FID)	% ?EC 102 99	Limits 58-144 60-146	

Field ID:

Type: Lab ID:

COMP RY SAMPLE 163482-033 Batch#: Analyzed: 79000

Prep:

02/06/03 EPA 5030B

	P - C113	RL
Gasoline C7-C12	ND	0.98
Surrogate	**************************************	5
	101 58-14	
Trifluorotoluene (FID) Bromofluorobenzene (FID)	<u> 100 60-14</u>	.6

Type: Lab ID:

BLANK

OC203851 78963

Analyzed:

Prep:

02/05/03 EPA 5035

1.0
1.V
-

Type: Lab ID: Batch#: BLANK

OC203999 79000

Analyzed: Prep:

02/06/03 EPA 5035

		Pesult	RL
Analyte Gasoline C7-C12	N.	D	1.0
Gasorine Gi_ti_			
Surrogate	<u>%REC</u>	<u>Limits</u> 58-144	
Trifluorotoluene (FID) Bromofluorobenzene (FID)	102 103	60-146	
Browollnolopeuseue (LTD)		00_110	

78-120

	Curtis & Tompkins Lab	Offecties was	·, ·
1 H	163482	Location:	751-785 Brush St.
ab #:	Baseline Environmental	Prep:	EPA 5035
llient:	Y0323-01	Analysis:	8015B
roject#:	LCS	Basis:	as received
уре: ab ID:	OC203852	Diln Fac:	1.000
	~	Batch#:	78963
atrix: nits:	Soil mg/Kg	Analyzed:	02/05/03

Gasoline C7-C12		5.000	5.520	110	78-120
Gasorine e, era					
Surrogate	%REC	Limits			
Trifluorotoluene (FID)	115	58-144			
Bromofluorobenzene (FID)	108	60-146			

Analyte Spiked

Result

	Curtis & Tompkins Lal	poratories Anal	ytical Report
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	· 8015B
Type: Lab ID: Matrix: Units:	LCS	Basis:	as received
	QC204000	Diln Fac:	1.000
	Soil	Batch#:	79000
	mg/Kg	Analyzed:	02/06/03

Analyte	Spiked	Result	%REC	Limits	
- 11 05 010	5.000	5.277	106	78-120	
Gasoline C7-C12					

Surrogate	%REC	C Limits	
Trifluorotoluene (FID)	113	58-144	
Bromofluorobenzene (FID)	106	60-146	

	Curtis & Tompkins Lal	poratories Anal	ytical Report
Lab #: Client:	163482 Baseline Environmental	Location: Prep:	751-785 Brush St. EPA 5035
Project#:	Y0323-01	Analysis:	8015B
Field ID: MSS Lab ID: Matrix: Units:	B-FP4;5-5.5 163466-010 Soil mg/Kg as received	Diln Fac: Batch#: Sampled: Received: Analyzed:	1.000 78963 02/04/03 02/04/03 02/05/03

vpe:

MS

Lab ID:

QC203886

	MSS Result	Spiked	Result	%REC	! Limits
Analyte	0.1089	10.64	10.93	102	44-133
Gasoline C7-C12	0.1089	10.01			

Surrogate	%RE(C Limits	
Trifluorotoluene (FID)	122	58-144	
Bromofluorobenzene (FID)	110	60-146	

Type:

MSD

Lab ID:

QC203887

Analyte	Spiked	Result	%REC	Limits K	5D raw
	10.42	10.78	102	44-133 1	31
Gasoline C7-C12	10.42				
· · · · · · · · · · · · · · · · · · ·					******************************

Surrogate	%REC	C Limits	
Trifluorotoluene (FID)	123	58-144	l
Bromofluorobenzene (FID)	112	60-146	ļ

	Curtis & Tompkins Lab	ooratories Ana]	ytical Report
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	8015B
Field ID:	COMP FY	Diln Fac:	1.000
MSS Lab ID:	163482-029	Batch#:	79000
	Soil	Sampled:	02/05/03
Matrix:	mg/Kg	Received:	02/05/03
Units: Basis:	as received	Analyzed:	02/06/03

Type:

MS

Lab ID:

QC204031

analiste.	MSS Result	Spiked	Result	%RE	C Limits
Gasoline C7-C12	0.1261	10.42	11.03	105	44-133
Gasoline C7-C12	0.1201				

Surrogate	%REC	Limits
Trifluorotoluene (FID)	123	58-144
Bromofluorobenzene (FID)	110	60-146

Type:

MSD

Lab ID:

QC204032

Analyte Spiked	Result	%REC	Limits	RPD	Lim
A11011_US	10.54	104	44-133	1	31
Gasoline C7-C12 10.00					

Surrogate	%REC	Limits
Trifluorotoluene (FID)	124	58-144
Bromofluorobenzene (FID)	108	60-146

Total Extractable Hydrocarbons 751-785 Brush St. EPA 3520C 163482 Location: ab #: Baseline Environmental Prep: Client: EPA 8015B <u> Analysis:</u> Y0323-01 Project#: 79041 Batch#: Water latrix: Inits: 02/05/03 ug/L Received: 02/07/03 Prepared: 1.000 Diln Fac

eld ID:

B-FP3 SAMPLE

Type: ab ID:

163482-034

Sampled:

Analyzed:

02/04/03 02/11/03

Cleanup Method: EPA 3630C

Analyte Diesel C10-C24

Result ND

\$300 MAGNET BER Surrogate 39-137

eld ID:

Iexacosane

me:

B-FP5

SAMPLE 163482-035 Sampled:

02/05/03

Analyzed:

02/11/03 Cleanup Method: EPA 3630C

Analyte

RL 50

50

Result

Diesel C10-C24

Surrogate

%REC Limits 87 39-137

Field ID:

B-FP4 SAMPLE

163482-036

02/05/03

Sampled: Analyzed:

02/11/03

Cleanup Method: EPA 3630C

Hexacosane

Result

RL

Diesel C10-C24

Surrogate Hexacosane

Reconstitutes

39-137

ype: Lāb ID: BLANK QC204140 Analyzed:

02/12/03

Cleanup Method: EPA 3630C

Analyte

50

Diesel C10-C24

Surrogate Hexacosane

%REC Limits 90 39-137

D= Not Detected L= Reporting Limit Page 1 of 1

50.0 000081

Total Extractable Hydrocarbons 751-785 Brush St. Location: Lab #: 163482 EPA 3520C Baseline Environmental Prep: Client: Analysis: EPA 8015B Y0323-01 Project#: 79041 Batch#: Water Matrix: 02/07/03 Units: ug/L Prepared: 1.000 Analyzed: 02/12/03 Diln Fac:

Type:

BS

Lab ID:

QC204141

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits	
Diesel C10-C24	2,500	1,675	67	37-120	

Surrogate	*REC	Limits		
Hexacosane	75	39-137	 	

Type:

BSD

Lab ID:

QC204142

Cleanup Method: EPA 3630C

Apalyte	Spiked	Result	%RE(' Limits	RPD	II sim
Diesel Cl0-C24	2,500	1,908	76	37-120	13	26

Surrogate	*REC	Limits
Hexacosane		39-137

Total Extractable Hydrocarbons 751-785 Brush St. 163482 Location: ab #: SHAKER TABLE Prep: Baseline Environmental Client: EPA 8015B <u> Analysis:</u> Y0323-01 roject#: 1.000 Diln Fac: Soil latrix: 02/05/03 Sampled: mg/Kg nits: 02/05/03 Received: as received Basis:

reld ID:

B-FP-6;2-2.5

Type: b ID:

SAMPLE 163482-001

tch#:

79146

Analyzed:

02/12/03 02/13/03

Prepared:

Cleanup Method: EPA 3630C

Analyte Diesel Cl0-C24

Result ND

1.0

Surrogate

%REC Limits

Texacosane

48-137

eld ID:

B-FP6;5-5.5

Type:

SAMPLE 163482-003

<u>L</u>āb ID: itch#:

79146

Prepared:

02/12/03

Analyzed:

02/13/03

Cleanup Method:

EPA 3630C

Diesel C10-C24

Analyte

Result ND

Surrogate lexacosane

*REC Limits 48-137

118

ield ID:

B-FP7;2.5-3.0

Type: Lab ID: atch#:

SAMPLE 163482-008

79146

Prepared: Analyzed: 02/12/03 02/13/03

Cleanup Method: EPA 3630C

Analyte Diesel C10-C24

Result 3.6 H Y

Surrogate

%REC Limits

Hexacosane

48-137

ield ID:

B-FP7;5-5.5

ype:

SAMPLE

163482-009

Prepared: Analyzed: 02/08/03 02/10/03

Cleanup Method:

EPA 3630C

Lab ID: 79054 Batch#:

Analyte

1.0

Diesel C10-C24

1.0

Surrogate

Hexacosane

96

*REC Limits 48-137

results.

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

D= Not Detected

L= Reporting Limit Page 1 of 3

000083 62.0

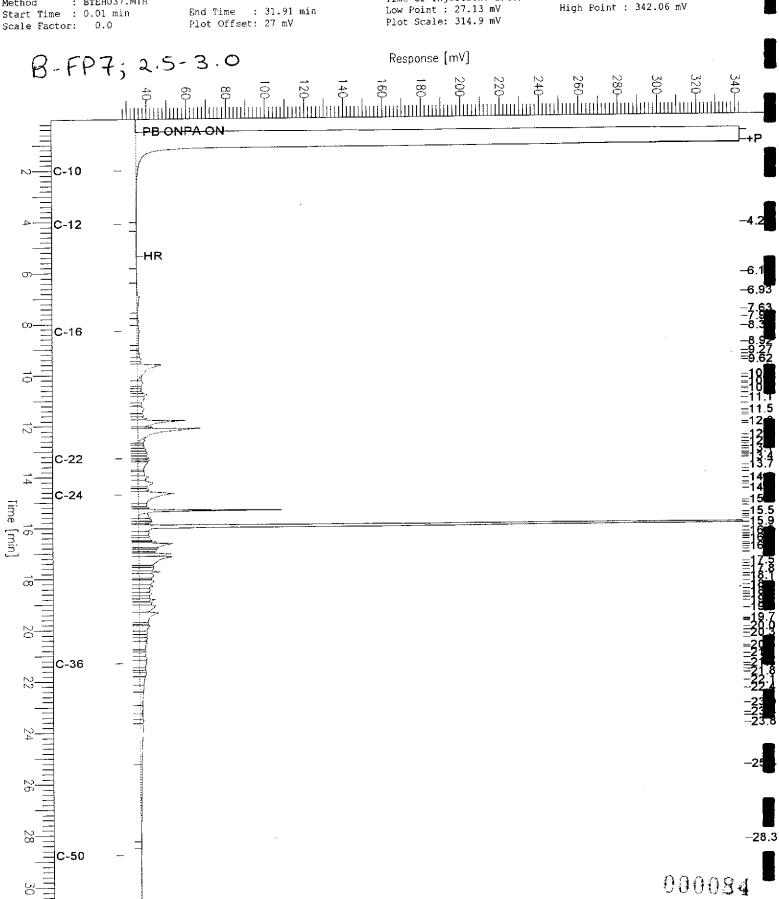
Chromatogram

Sample Name: 163482-008sg,79146

: G:\GC15\CHB\043B011.RAW FileName

Method : BTEH037.MTH

Start Time : 0.01 min


End Time : 31.91 min

Sample #: 79146 Date: 2/13/03 09:43 AM

Time of Injection: 2/13/03 02:40 AM

Page 1 of 1

High Point : 342.06 mV

Total Extractable Hydrocarbons 751-785 Brush St. Location: ab #: 163482 SHAKER TABLE Baseline Environmental Prep: Client: EPA 8015B <u>Analysis:</u> Y0323-01 Project#: 1.000 Diln Fac: Soil latrix: 02/05/03 Sampled: mg/Kg Inits: 02/05/03 as received Received Basis:

leld ID:

B-FP2;2.5-3.0

Type: ίb ID: SAMPLE 163482-014

atch#:

79054

Prepared:

02/08/03 02/10/03 Analyzed: Cleanup Method: EPA 3630C

Result

Analyte____ Diesel C10-C24

MD

1.0

RL

*REC Limits Surrogate 48-137 75 <u>lexacos</u>ane

ield ID:

B-FP2;5.5-6.0

Type: Lab ID:

SAMPLE 163482-016

79054 atch#:

Prepared:

02/08/03 02/10/03

Analyzed: EPA 3630C Cleanup Method:

Analyte

Result ND Diesel C10-C24

Surrogate

SRIE(8) Britishs 48-137 66

lexacosane

ield ID:

B-FP1;2.5-3.0

ype: Lab ID: SAMPLE 163482-020

Prepared: Analyzed: 02/08/03 02/12/03

Cleanup Method: EPA 3630C

atch#:

79054

Analyte

1.0

Diesel C10-C24

ND

%REC Limits

ekesite e

48-137

48-137

Surrogate

Hexacosane

B-FP1;5.5-6.0

ield ID: ype: Lab ID:

SAMPLE 163482-022 Prepared: Analyzed: 02/08/03 02/10/03

Cleanup Method: EPA 3630C

Batch#:

79054

Analyte

Result

Diesel C10-C24

1.0

*REC Dimites Surrogate Hexacosane 109

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

D= Not Detected

L= Reporting Limit Page 2 of 3

000085

62.0

Total Extractable Hydrocarbons 751-785 Brush St. SHAKER TABLE Location: 163482 Lab #: Prep: Analysis: Baseline Environmental Client: EPA 8015B Y0323-01 Project#: 1.000 Diln Fac: Soil Matrix: 02/05/03 mg/Kg Sampled: Units: 02/05/03 as received Received Basis:

Field ID:

COMP FY SAMPLE

Type: Lab ID: 163482-029

Batch#:

79054

Prepared:

02/08/03 02/10/03

Analyzed: Cleanup Method:

EPA 3630C

Analyte Diesel C10-C24

Result

Diesel C10-C24

1.0

(27,000 Million 198 Surrogate 100 Hexacosane 48-137

Field ID:

COMP RY

Type: Lāb ID: SAMPLE 163482-033

Prepared:

02/08/03

Analyzed:

02/10/03

Cleanup Method: EPA 3630C

Batch#:

79054

Result ND

Result

Result

<u>1.0</u>

%REC Limits Surrogate 48-137 Hexacosane 116

Type:

Lāb ID: Batch#: BLANK QC204206

79054

Analyte

Prepared: Analyzed:

02/08/03 02/11/03

Cleanup Method:

EPA 3630C

Diesel C10-C24 ND

REC Limits Surrogate Hexacosane 48-137

Type: Lab ID: Batch#: BLANK

Prepared:

02/12/03

OC204539

Analyzed:

02/13/03

79146

Cleanup Method: EPA 3630C

Analyte

Diesel C10-C24

ND

Surrogate %REC Limits 102 48-137 Hexacosane

 $\mbox{\sc H=}$ Heavier hydrocarbons contributed to the quantitation $\mbox{\sc Y=}$ Sample exhibits fuel pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit Page 3 of 3

000081

Chromatogram

Sample #: 500mg/L Date : 2/9/03 05:07 PM Page 1 of 1 mple Name : ccv,02ws2069,dsl : G:\GC11\CHA\040A002.RAW Time of Injection: 2/9/03 03:18 PM : ATEH036.MTH High Point : 283.63 mV Low Point : 22.13 mV thod End Time : 31.91 min Start Time : 0.01 min Plot Scale: 261.5 mV Plot Offset: 22 mV 0.0 Scale Factor: Dieul Response [mV] 80147 75046 920000000000687604770570 92609 47148 2600000000068760470001 ⊒c-10 C-12 C-16 =11.9; -12.3; -12.8; 13.3; C-22 13.8 14.2 14.6 C-24 15.1 15.5 16.1 16.6 --17.3 -17.8 -18.2 18.9 HR C-36 --25.0 C-50

000087

	Total Extrac	table Hydrocar	Pons
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	SHAKER TABLE
Project#:	Y0323-01	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC204207	Batch#:	79054
Matrix:	Soil	Prepared:	02/08/03
Units:	mg/Kg	Analyzed:	02/11/03
Basis:	as received		

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%RE(C Limits	
Diesel C10-C24	50.12	37.85	76	56-121	

Surrogate		Limits	
Hexacosane	77	48-137	

	Total Extra	table Hydrocar	rbons
Lab #: Client:	163482 Baseline Environmental	Location: Prep: Analysis:	751-785 Brush St. SHAKER TABLE EPA 8015B
Project#: Type: Lab ID: Matrix: Units:	Y0323-01 LCS QC204540 Soil mg/Kg	Diln Fac: Batch#: Prepared: Analyzed:	1.000 79146 02/12/03 02/13/03
Basis:	as received		

Cleanup Method: EPA 3630C

analyte	Spiked	Result	%RE(? Limits	
Diesel C10-C24	49.81	45.50	91	56-121	

Surrogate	%REC	Limits	
Hexacosane	97	48-137	

	Total Extra	table Hydrocar	bons
- 1		Location:	751-785 Brush St.
Lab #: Client:	163482 Baseline Environmental	Prep:	SHAKER TABLE
Project#:	Y0323-01	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZ	Batch#:	79146
MSS Lab ID:	163538-005	Sampled:	02/07/03
Matrix:	Soil	Received:	02/07/03
Units:	mg/Kg	Prepared:	02/12/03
Basis:	as received	Analyzed:	02/13/03
Diln Fac:	1.000		

Type:

МŞ

Lab ID:

QC204541

Analyte	MSS Result	Spiked	Result	%RF	tC Limits
Diesel C10-C24	2.913	50.02	45.24	85	37-128

Surrogate %REC Limits
Hexacosane 100 48-137

Type:

MSD

Lab ID:

QC204542

				*******************		AND CONTRACTOR OF THE PARTY.
		A THE RESERVE AND A SHARE A SH		TOO GOOD SOURCE SOURCE SALES AND A STATE OF THE SALES AND A STATE OF TH		- 0000 CONTROL - 0000
	CONTROL OF THE CONTR				According to the second	Salar Salar Barrer
- NO 000 0000 000 000 000 000 000 000 000		20 CONTROL ED 20 CONTROL AND CONTROL C	The second secon			200000000000000000000000000000000000000
	. LEGISTA COM LA GOLDA GOLDA COM COM COM LEGIS (11) 	A CONTRACTOR OF THE PROPERTY O	60000000000000000000000000000000000	20000000000000000000000000000000000000		
		The state of the s				-
	- International Control of Contro			20 100	~	27
····	40.05	4 C A A	u·,	4/-1/8	,	5 / /
P:1 010 001	// U N N N	40.07	0.7	J/ 120		-,
111 AGA 1:11/-1:24	42.03					

Surrogate %REC Limits

Hexacosane

101 48-137

	Purgeable (organics by GC/	MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP5	Batch#:	78985
Lab ID:	163482-035	Sampled:	02/05/03
Matrix:	Water	Received:	02/05/03
Units:	ug/L	Analyzed:	02/06/03
Diln Fac:	1.000		

Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND ·	10
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	10
1,1,1-Trichloroethane	NĎ	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	42	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ИD	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0

	Purgeable (Organics by GC/	/MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP5	Batch#:	78985
Lab ID:	163482-035	Sampled:	02/05/03
Matrix:	Water	Received:	02/05/03
Units:	ug/L	Analyzed:	02/06/03
Diln Fac:	1.000	_	

Analyte	Result	RL
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	И D	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	%RBC	Limits
Dibromofluoromethane	116	80-121
1,2-Dichloroethane-d4	107	77-130
Toluene-d8	96	80-120
Bromofluorobenzene	94	80-120

	Purgeable (Organics by GC/	MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP4	Batch#:	78985
Lab ID:	163482-036	Sampled:	02/05/03
Matrix:	Water	Received:	02/05/03
Units:	ug/L	Analyzed:	02/06/03
Diln Fac:	1.000		

Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	10
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	21	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0

	Purgeable (Organics by GC/	/MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP4	Batch#:	78985
Lab ID:	163482-036	Sampled:	02/05/03
Matrix:	Water	Received:	02/05/03
Units:	ug/L	Analyzed:	02/06/03
Diln Fac:	1.000	<u></u>	

Analyte	Result	RI.	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	1
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	i
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	ĺ
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	·
1,3,5-Trimethylbenzene	ND	5.0	•
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	l
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	1
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	1
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	•
1,2-Dichlorobenzene	ND	5.0	•
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	ì
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	114	80-121
1,2-Dichloroethane-d4	107	77-130
Toluene-d8	95	80-120
Bromofluorobenzene	93	80-120

	Purgeable 0	organics by GC/	MS
Lab #: Client: Project#:	163482 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC203942 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 78985 02/06/03

-3/ -	-	
Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5.0
	ND	20
Acetone Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	. 20
Carbon Disulfide	ND ND	5.0
1	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	50
Vinyl Acetate 1,1-Dichloroethane	ND	5.0
1	ND	10
2-Butanone	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND ND	5.0
Chloroform	ND	10
Bromochloromethane	ND ND	5.0
1,1,1-Trichloroethane		5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ИD	5.0
Dibromomethane	ND	10
4-Methyl-2-Pentanone	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	
trans-1,3-Dichloropropene	ND	5.0 5.0
1,1,2-Trichloroethane	ND	
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0

	Purgeable (Organics by GC/	'MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC203942	Batch#:	78985
Matrix:	Water	Analyzed:	02/06/03
Units:	ug/L		

Analyte	Result	RL	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	1
Ethylbenzene	ND	5.0	
m,p-Xylenes	ИD	5.0	•
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	1
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	-
4-Chlorotoluene	ND	5.0	_
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	1
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	_
n-Butylbenzene	ND	5.0	_
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND:	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	109	80-121
1,2-Dichloroethane-d4	105	77-130
Toluene-d8	97	80-120
Bromofluorobenzene	93	80-120

	Purgeable (Organics by GC/	MS
Lab #: Client: Project#:	163482 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	78985 02/06/03

Type:

BS

Lab ID:

QC203939

Analyte	Spiked	Result	%RE(] Limits	
1,1-Dichloroethene	50.00	49.05	98	71-131	
Benzene	50.00	47.78	96	76-120	
Trichloroethene	50.00	47.55	95	78-120	
Toluene	50.00	47.32	95	79-120	
Chlorobenzene	50.00	48.91	98	80-120	

Surrøgate	*REC	Limits
Dibromofluoromethane	106	80-121
1,2-Dichloroethane-d4	101	77-130
Toluene-d8	96	B0-120
Bromofluorobenzene	86	80-120

Type:

BSD

Lab ID:

QC203940

Analyte	Spiked	Result	%RBC	' Limits	RPD	Lim
1.1-Dichloroethene	50.00	47.76	96	71-131	3	20
Benzene	50.00	45.56	91	76-120	5	20
Trichloroethene	50.00	45.91	92	78-120	4	20
Toluene	50.00	45.99	92	79-120	3	20
Chlorobenzene	50.00	48.06	96	80-120	2	20

Surrogate	%REC	Limits
Dibromofluoromethane	109	80-121
1,2-Dichloroethane-d4	100	77-130
Toluene-d8	93	80-120
Bromofluorobenzene	88	80-120

	Purgeable (Organics by GC/	/MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP6;2.5	Diln Fac:	0.9615
Lab ID:	163482-002	Batch#:	78961
Matrix:	Soil	Sampled:	02/05/03
Units:	ug/Kg	Received:	02/05/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL
Freon 12	ND	9.6
Chloromethane	ND	9.6
Vinyl Chloride	ND	9.6
Bromomethane	ND	9.6
Chloroethane	ND	9.6
Trichlorofluoromethane	ND	4.8
Acetone	ND	19
Freon 113	ND	4.8
1,1-Dichloroethene	ND	4.8
Methylene Chloride	ND	19
Carbon Disulfide	ND	4.8
MTBE	ND	4.8
trans-1,2-Dichloroethene	ND	4.8
Vinyl Acetate	ND	48
1,1-Dichloroethane	ND	4.8
2-Butanone	ND	9.6
cis-1,2-Dichloroethene	NĐ	4.8
2,2-Dichloropropane	ND	4.8
Chloroform	ND	4.8
Bromochloromethane	ND	4.8
1,1,1-Trichloroethane	ND	4.8
1,1-Dichloropropene	ND	4.8
Carbon Tetrachloride	ND	4.8
1,2-Dichloroethane	ND	4.8
Benzene	ND	4.8
Trichloroethene	ND	4.8
1,2-Dichloropropane	ND	4.8
Bromodichloromethane	ND	4.8
Dibromomethane	ND	4.8
4-Methyl-2-Pentanone	NĐ	9.6
cis-1,3-Dichloropropene	ND	4.8
Toluene	ND	4.8
trans-1,3-Dichloropropene	ND	4.8
1,1,2-Trichloroethane	ND	4.8
2-Hexanone	ND	9.6
1,3-Dichloropropane	ND	4.8
Tetrachloroethene	ND	4.8

		Purgeable (rganics by GC/	MS
]	Lab #:	163482	Location:	751-785 Brush St.
	Client:	Baseline Environmental	Prep:	EPA 5035
	Project#:	Y0323-01	Analysis <u>:</u>	EPA 8260B
	Field ID:	B-FP6;2.5	Diln Fac:	0.9615
	Lab ID:	163482-002	Batch#:	78961
	Matrix:	Soil	Sampled:	02/05/03
٦	Units:	ug/Kg	Received:	02/05/03
	Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL 4.8
Dibromochloromethane	ND	_ ·
1,2-Dibromoethane	ND	4.8
Chlorobenzene	ND	4.8
1,1,1,2-Tetrachloroethane	ND	4.8
Ethylbenzene	ND	4.8
m,p-Xylenes	ND	4.8
o-Xylene	ND	4.8
Styrene	ND	4.8
Bromoform	ND	4.8
Isopropylbenzene	ND	4.8
1,1,2,2-Tetrachloroethane	ND	4.8
1,2,3-Trichloropropane	ND	4.8
Propylbenzene	ND	4.8
Bromobenzene	ND	4.8
1,3,5-Trimethylbenzene	ND	4.8
2-Chlorotoluene	ND	4.8
4-Chlorotoluene	ND	4.8
tert-Butylbenzene	ND	4.8
1,2,4-Trimethylbenzene	ND	4.8
sec-Butylbenzene	ND	4.8
para-Isopropyl Toluene	ND	4.8
1,3-Dichlorobenzene	ND	4.8
1,4-Dichlorobenzene	ND	4.8
n-Butylbenzene	ND	4.8
1,2-Dichlorobenzene	ND	4.8
1,2-Dibromo-3-Chloropropane	ND	4.8
1,2,4-Trichlorobenzene	ND	4.8
Hexachlorobutadiene	ND	4.8
Naphthalene	ND	4.8
1,2,3-Trichlorobenzene	ND	4.8

Surrogate	%REC	Limits
Dibromofluoromethane	103	74-124
1,2-Dichloroethane-d4	114	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	106	75-127

	Purgeable (Organics by GC/	/MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP6;5.5	Diln Fac:	0.8772
Lab ID:	163482-004	Batch#:	78961
Matrix:	Soil	Sampled:	02/05/03
Units:	ug/Kg	Received:	02/05/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL	
Freon 12	ND	8.8	
Chloromethane	ND	8.8	
Vinyl Chloride	ND	8.8	
Bromomethane	ND	8.8	
Chloroethane	ND	8.8	
Trichlorofluoromethane	ND	4.4	
Acetone	ND	18	
Freon 113	ND	4.4	
1,1-Dichloroethene	ND	4.4	
Methylene Chloride	ND	18	
Carbon Disulfide	ND	4.4	
MTBE	ND	4.4	
trans-1,2-Dichloroethene	ND	4.4	
Vinyl Acetate	ND	44	
1,1-Dichloroethane	ND	4.4	
2-Butanone	ND	8.8	
cis-1,2-Dichloroethene	ND	4.4	
2,2-Dichloropropane	ND	4.4	
Chloroform	ND	4.4	
Bromochloromethane	ND	4.4	
1,1,1-Trichloroethane	5.0	4.4	
1,1-Dichloropropene	ND	4.4	
Carbon Tetrachloride	ND	4.4	
1,2-Dichloroethane	ND	4.4	
Benzene	ND	4.4	
Trichloroethene	ND	4.4	
1,2-Dichloropropane	ND	4.4	
Bromodichloromethane	ND	4.4	
Dibromomethane	ND	4.4	
4-Methyl-2-Pentanone	ND	8.8	
cis-1,3-Dichloropropene	ND	4.4	
Toluene	ND	4.4	
trans-1,3-Dichloropropene	ND	4.4	
1,1,2-Trichloroethane	ND	4.4	•
2-Hexanone	ND	8.8	
1,3-Dichloropropane	ND	4.4	Ţ
Tetrachloroethene	ND	4.4	;

	Purgeable (Organics by GC/	MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP6;5.5	Diln Fac:	0.8772
Lab ID:	163482-004	Batch#:	78961
Matrix:	Soil	Sampled:	02/05/03
Units:	ug/Kg	Received:	02/05/03
Basis:	as received	Analyzed:	02/05/03

		RL
Analyte	Result	4.4
Dibromochloromethane	ND	4.4
1,2-Dibromoethane	ND	4.4
Chlorobenzene	ND	4.4
1,1,1,2-Tetrachloroethane	ND	
Ethylbenzene	ND	4.4
m,p-Xylenes	ND	4.4
o-Xylene	ND	4.4
Styrene	ND	4.4
Bromoform	ND	4.4
Isopropylbenzene	ND	4.4
1,1,2,2-Tetrachloroethane	ND	4.4
1,2,3-Trichloropropane	ND	4.4
Propylbenzene	ND	4.4
Bromobenzene	ND	4.4
1,3,5-Trimethylbenzene	ND	4.4
2-Chlorotoluene	ND	4.4
4-Chlorotoluene	ND	4.4
tert-Butylbenzene	ND	4.4
1,2,4-Trimethylbenzene	ND	4.4
sec-Butylbenzene	ND	4.4
para-Isopropyl Toluene	ND	4.4
1,3-Dichlorobenzene	NĎ	4.4
1,4-Dichlorobenzene	ND	4.4
n-Butylbenzene	ND	4.4
1,2-Dichlorobenzene	ND	4.4
1,2-Dibromo-3-Chloropropane	ND	4.4
1,2,4-Trichlorobenzene	ND	4.4
_ Hexachlorobutadiene	ND	4.4
Naphthalene	ND	4.4
1,2,3-Trichlorobenzene	ND	4.4

Ħ	Surrogate	%REC	Limits
	Dibromofluoromethane	106	74-124
_	1,2-Dichloroethane-d4	114	75-128
_	Toluene-d8	102	80-111
	Bromofluorobenzene	106	75-127

	Purgeable (Organics by GC/	'MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP7;2.5	Diln Fac:	0.9434
Lab ID:	163482-007	Batch#:	78961
Matrix:	Soil	Sampled:	02/05/03
Units:	ug/Kg	Received:	02/05/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL
Freon 12	ND	9.4
Chloromethane	ND	9.4
Vinyl Chloride	ND	9.4
Bromomethane	ND	9.4
Chloroethane	ND	9.4
Trichlorofluoromethane	ND	4.7
Acetone	ИD	19
Freon 113	ИD	4.7
1,1-Dichloroethene	ND	4.7
Methylene Chloride	ND	19
Carbon Disulfide	ND	4.7
MTBE	ND	4.7
trans-1,2-Dichloroethene	ND	4.7
Vinyl Acetate	ND	47
1,1-Dichloroethane	ND	4.7
2-Butanone	ND	9.4
cis-1,2-Dichloroethene	ND	4.7
2,2-Dichloropropane	ND	4.7
Chloroform	ИD	4.7
Bromochloromethane	ND	4.7
1,1,1-Trichloroethane	ND	4.7
1,1-Dichloropropene	ND	4.7
Carbon Tetrachloride	ND	4.7
1,2-Dichloroethane	ND	4.7
Benzene	ND	4.7
Trichloroethene	ND	4.7
1,2-Dichloropropane	ND	4.7
Bromodichloromethane	ND	4.7
Dibromomethane	ND	4.7
4-Methyl-2-Pentanone	ND	9.4
cis-1,3-Dichloropropene	ND	4.7
Toluene	ND	4.7
trans-1,3-Dichloropropene	ND	4.7
1,1,2-Trichloroethane	ND	4.7
2-Hexanone	ND	9.4
1,3-Dichloropropane	ND	4.7
Tetrachloroethene	ИD	4.7

	Purgeable (organics by GC/	
Lab #: Client:	163482 Baseline Environmental	Location: Prep:	751-785 Brush St. EPA 5035 EPA 8260B
Project#: Field ID: Lab ID:	Y0323-01 B-FP7;2.5 163482-007	Analysis: Diln Fac: Batch#:	0.9434 78961 02/05/03
Matrix: Units: Basis:	Soil ug/Kg as received	Sampled: Received: Analyzed:	02/05/03 02/05/03

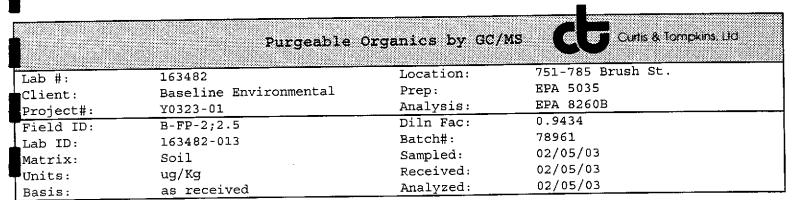
Basis: as recerring		
	Result	RL
Analyte	ND ND	4.7
Dibromochloromethane		4.7
1,2-Dibromoethane	ND	4.7
Chlorobenzene	ND	4.7
1,1,1,2-Tetrachloroethane	ND	4.7
Ethylbenzene	ND	4.7
m,p-Xylenes	ND	4.7
o-Xylene	ИD	4.7
Styrene	ND	4.7
Bromoform	ND	4.7
Isopropylbenzene	ND	4.7
1,1,2,2-Tetrachloroethane	ND	4.7
1,2,3-Trichloropropane	ND	4.7
Propylbenzene	ND	4.7
Bromobenzene	ND ND	4.7
1,3,5-Trimethylbenzene	ND ND	4.7
2-Chlorotoluene	ND ND	4.7
4-Chlorotoluene		4.7
tert-Butylbenzene	ND	4.7
1,2,4-Trimethylbenzene	ND	4.7
sec-Butylbenzene	ND ND	4.7
para-Isopropyl Toluene	ND ND	4.7
1,3-Dichlorobenzene	ND	4.7
1,4-Dichlorobenzene	ND UN	4.7
n-Butylbenzene		4.7
1,2-Dichlorobenzene	ND	4.7
1,2-Dibromo-3-Chloropropane	ND	4.7
1,2,4-Trichlorobenzene	ND	4.7
Hexachlorobutadiene	ND	4.7
Naphthalene	ND	4.7
1,2,3-Trichlorobenzene	ND	

Surrogate	%REC	Limits
Dibromofluoromethane	108	74-124
1,2-Dichloroethane-d4	111	75-128
⇒ m-1ono dΩ	100	80-111
Bromofluorobenzene	109	75-127
Bromoria		

	Purgeable (Organics by GC/	MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP7;5.5	Diln Fac:	0.8929
Lab ID:	163482-010	Batch#:	78961
Matrix:	Soil	Sampled:	02/05/03
Units:	ug/Kg	Received:	02/05/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL	
Freon 12	ND	8.9	
Chloromethane	ND	8.9	
Vinyl Chloride	ND	8.9	
Bromomethane	ND	8.9	
Chloroethane	ND	8.9	
Trichlorofluoromethane	ND	4.5	
Acetone	ND	18	
Freon 113	ND	4.5	
1,1-Dichloroethene	N D	4.5	
Methylene Chloride	ND	18	
Carbon Disulfide	ND	4.5	
MTBE	ND	4.5	
trans-1,2-Dichloroethene	ND	4.5	
Vinyl Acetate	ND	45	
1,1-Dichloroethane	ND	4.5	
2-Butanone	ND	8.9	
cis-1,2-Dichloroethene	ND	4.5	
2,2-Dichloropropane	ND	4.5	
Chloroform	ND	4.5	
Bromochloromethane	ND	4.5	
1,1,1-Trichloroethane	ND	4.5	
1,1-Dichloropropene	ND	4.5	
Carbon Tetrachloride	ND	4.5	
1,2-Dichloroethane	ND	4.5	
Benzene	ND	4.5	
Trichloroethene	ND	4.5	
1,2-Dichloropropane	ND	4.5	
Bromodichloromethane	ND	4.5	
Dibromomethane	ND	4.5	
4-Methyl-2-Pentanone	ND	8.9	
cis-1,3-Dichloropropene	ND	4.5	
Toluene	ND	4.5	
trans-1,3-Dichloropropene	ND	4.5	
1,1,2-Trichloroethane	ND	4.5	
2-Hexanone	ND	8.9	
1,3-Dichloropropane	ND	4.5	
Tetrachloroethene	ND	4.5	

	Purgeable (organics by GC/	MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP7;5.5	Diln Fac:	0.8929
Lab ID:	163482-010	Batch#:	78961
Matrix:	Soil	Sampled:	02/05/03
Units:	ug/Kg	Received:	02/05/03
Basis:	as received	Analyzed:	02/05/03


		RL
Analyte	Result	4.5
Dibromochloromethane	ND	4.5
1,2-Dibromoethane	ND	4.5
Chlorobenzene	ND	4.5
1,1,1,2-Tetrachloroethane	ND	4.5
Ethylbenzene	ND	4.5
m,p-Xylenes	ND	4.5
o-Xylene	ND	4.5
Styrene	ND	4.5
Bromoform	ND	
Isopropylbenzene	ND	4.5
1,1,2,2-Tetrachloroethane	ND	4.5
1,2,3-Trichloropropane	ND	4.5
Propylbenzene	ND	4.5
Bromobenzene	ND	4.5
1,3,5-Trimethylbenzene	ND	4.5
2-Chlorotoluene	ND	4.5
4-Chlorotoluene	ND	4.5
tert-Butylbenzene	ND	4.5
1,2,4-Trimethylbenzene	ND	4.5
sec-Butylbenzene	ND	4.5
para-Isopropyl Toluene	ND	4.5
1,3-Dichlorobenzene	ND	4.5
1,4-Dichlorobenzene	ND	4.5
n-Butylbenzene	ND	4.5
1,2-Dichlorobenzene	ND	4.5
1,2-Dibromo-3-Chloropropane	ND	4.5
1,2,4-Trichlorobenzene	ND	4.5
Hexachlorobutadiene	ND	4.5
Naphthalene	ND	4.5
1,2,3-Trichlorobenzene	ND	4.5

Surrogat	e %RE	C Limits	
Dibromofluorometha		74-124	
1,2-Dichloroethane		75-128	
Toluene-d8	99	80-111	
Bromofluorobenzene	106	75-127	

	Purgeable (Organics by GC/	'MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP-2;2.5	Diln Fac:	0.9434
Lab ID:	163482-013	Batch#:	78961
Matrix:	Soil	Sampled:	02/05/03
Units:	ug/Kg	Received:	02/05/03
Basis:	as received	Analyzed:	02/05/03

Analyte	Result	RL	
Freon 12	ND	9.4	
Chloromethane	ND	9.4	
Vinyl Chloride	ND	9.4	
Bromomethane	ND	9.4	
Chloroethane	ND	9.4	
Trichlorofluoromethane	ND	4.7	
Acetone	ND	19	
Freon 113	ND	4.7	
1,1-Dichloroethene	ND	4.7	
Methylene Chloride	ND	19	
Carbon Disulfide	ND	4.7	
MTBE	ND	4.7	
trans-1,2-Dichloroethene	ND	4.7	
Vinyl Acetate	ND	47	
1,1-Dichloroethane	ND	4.7	
2-Butanone	ND	9.4	
cis-1,2-Dichloroethene	ND	4.7	
2,2-Dichloropropane	ND	4.7	
Chloroform	ND	4.7	
Bromochloromethane	ND	4.7	
1,1,1-Trichloroethane	ND	4.7	
1,1-Dichloropropene	ND	4.7	
Carbon Tetrachloride	ND	4.7	
1,2-Dichloroethane	ND	4.7	
Benzene	ND	4.7	
Trichloroethene	ND	4.7	
1,2-Dichloropropane	ND	4.7	
Bromodichloromethane	ND	4.7	
Dibromomethane	ND	4.7	
4-Methyl-2-Pentanone	ND	9.4	
cis-1,3-Dichloropropene	ND	4.7	
Toluene	ND	4.7	1
trans-1,3-Dichloropropene	ND	4.7	
1,1,2-Trichloroethane	ND	4.7	
2-Hexanone	ND	9.4	
1,3-Dichloropropane	ND	4.7	
Tetrachloroethene	ND	4.7	<u></u>

Analyte	Result	RL
Dibromochloromethane	ND	4.7
1,2-Dibromoethane	ND	4.7
Chlorobenzene	ND	4.7
1,1,1,2-Tetrachloroethane	ND	4.7
Ethylbenzene	ND	4.7
m,p-Xylenes	ND	4.7
o-Xylene	ND	4.7
Styrene	ND	4.7
Bromoform	ND	4.7
Isopropylbenzene	ND	4.7
1,1,2,2-Tetrachloroethane	ND	4.7
1,2,3-Trichloropropane	ND	4.7
Propylbenzene	ND	4.7
Bromobenzene	ND	4.7
1,3,5-Trimethylbenzene	ND	4.7
2-Chlorotoluene	ND	4.7
4-Chlorotoluene	ND	4.7
tert-Butylbenzene	ND	4.7
1,2,4-Trimethylbenzene	ND	4.7
sec-Butylbenzene	ND	4.7
para-Isopropyl Toluene	ND	4.7
1,3-Dichlorobenzene	ND	4.7
1,4-Dichlorobenzene	ND	4.7
n-Butylbenzene	ИĎ	4.7
1,2-Dichlorobenzene	ND	4.7
1,2-Dibromo-3-Chloropropane	ND	4.7
1,2,4-Trichlorobenzene	ND	4.7
Hexachlorobutadiene	ND	4.7
Naphthalene	ND	4.7
1,2,3-Trichlorobenzene	ND	4.7

1	Surrogate	%REC	Limits	
	Dibromofluoromethane	101	74-124	
	1,2-Dichloroethane-d4	109	75-128	
	Toluene-d8	100	80-111	
	Bromofluorobenzene	100	75-127	

20.0

	Purgeable C	organics by GC/	MS
ab #: lient: Project#: lield ID: Lab ID: Matrix: Units: Basis:	163482 Baseline Environmental Y0323-01 B-FP1;2.5 163482-019 Soil ug/Kg as received	Location: Prep: Analysis: Diln Fac: Batch#: Sampled: Received: Analyzed:	751-785 Brush St. EPA 5035 EPA 8260B 0.9804 78998 02/05/03 02/05/03 02/06/03

Jnits:		Analyzed:
Basis: as received		
	Result	RL
Analyte	ND	9.8 9.8
Freon 12	ND	
Chloromethane	ND	9.8
Vinyl Chloride	ND	9.8
Bromomethane	ND	9.8
Chloroethane	ND	4.9
Trichlorofluoromethane	ND	20
Acetone	ND	4.9
Freon 113	ND	4.9
1 1-Dichloroethene	ND	20
Methylene Chloride	ND	4.9
Carbon Disulfide	ND	4.9
MTRR	ND	4.9
trans-1,2-Dichloroethene	-	49
Vinvl Acetate	ND	4.9
1,1-Dichloroethane	ND	9.8
2_Rutanone	ND	4.9
cis-1,2-Dichloroethene	ИD	4.9
2,2-Dichloropropane	ИD	4.9
Chloroform	ND	4.9
Bromochloromethane	ND	4,9
1,1,1-Trichloroethane	ND	4.9
1,1-Dichloropropene	\mathbf{N} D	4.9
Carbon Tetrachloride	NĎ	4.9
1,2-Dichloroethane	ND	4.9
Benzene	ND	4.9
Trichloroethene	ND	4.9
1,2-Dichloropropane	ND	4.9
Bromodichloromethane	ND	4.9
Bromodichiofonechano	ND	9.8
Dibromomethane	ND	4.9
4-Methyl-2-Pentanone	ND	4.9
cis-1,3-Dichloropropene	ND	4.9
Toluene	ND	4.9
trans-1,3-Dichloropropene	ND	4.9 9.8
1,1,2-Trichloroethane	ND	
2-Hexanone	ND	4.9
1,3-Dichloropropane	ND	4.9
Tetrachloroethene		

	Purgeable (organics by GC/	
ab #: Client:	163482 Baseline Environmental	Location: Prep: Analysis:	751-785 Brush St. EPA 5035 EPA 8260B
Project#: Field ID: Lab ID: Matrix: Units:	Y0323-01 B-FP1;2.5 163482-019 Soil ug/Kg	Diln Fac: Batch#: Sampled: Received:	0.9804 78998 02/05/03 02/05/03
Basis: as received	Analyzed:	02/06/03	

	Result	RL
Analyte	ND ND	4.9
Dibromochloromethane	ND	4.9
1,2-Dibromoethane	ND	4.9
Chlorobenzene	ND	4.9
1,1,1,2-Tetrachloroethane	ND ND	4.9
Ethylbenzene	ND	4.9
m,p-Xylenes	ND	4.9
o-Xylene	ND ND	4.9
Styrene	ND	4.9
Bromoform	ND	4.9
Isopropylbenzene	ND	4.9
1,1,2,2-Tetrachloroethane	ND	4.9
1,2,3-Trichloropropane	ND ND	4.9
Propylbenzene	ND	4.9
Bromobenzene	ND	4.9
1,3,5-Trimethylbenzene	ND	4.9
2-Chlorotoluene	ND	4.9
4-Chlorotoluene	ND	4.9
tert-Butylbenzene	ND	4.9
1,2,4-Trimethylbenzene	ND	4.9
sec-Butylbenzene	ND	4.9
para-Isopropyl Toluene	ND	4.9
1,3-Dichlorobenzene	ND	4.9
1,4-Dichlorobenzene	ND	4.9
n-Butylbenzene	ND	4.9
1,2-Dichlorobenzene	ND ND	4.9
1,2-Dibromo-3-Chloropropane	ND	4.9
1,2,4-Trichlorobenzene	ND	4.9
Hexachlorobutadiene	ND	4.9
Naphthalene	ND	4.9
1,2,3-Trichlorobenzene	MD	

Surrogate	%REC	Limits
Dibromofluoromethane	102	74-124
1,2-Dichloroethane-d4	110	75-128
Toluene-d8	101	80-111
Bromofluorobenzene	109	75-127

	Dyranahla (organics by GC/	MS
	ruigeable (ordenics of co.	
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP1;5.5	Diln Fac:	0.8772
Lab ID:	163482-021	Batch#:	78998
	Soil	Sampled:	02/05/03
Matrix:	ug/Kg	Received:	02/05/03
Units: Basis:	as received	Analyzed:	02/06/03

Analyte	Result	RI
Freon 12	ND	8.8
Chloromethane	ND	8.8
Vinyl Chloride	ND	8.8
Bromomethane	ND	8.8
Chloroethane	ND	8.8
Trichlorofluoromethane	ND	4.4
Acetone	ND	18
Freon 113	ND	4.4
1,1-Dichloroethene	ND	4.4
Methylene Chloride	ND	18
Carbon Disulfide	ND	4.4
MTBE	ND	4.4
trans-1,2-Dichloroethene	ND	4.4
Vinyl Acetate	ND	44
1,1-Dichloroethane	ND	4.4
2-Butanone	ND	8.8
cis-1,2-Dichloroethene	ND	4.4
2,2-Dichloropropane	ND	4.4
Chloroform	ND	4.4
Bromochloromethane	ND	4.4
1,1,1-Trichloroethane	ND	4.4
1,1-Dichloropropene	ND	4.4
Carbon Tetrachloride	ND	4.4
1,2-Dichloroethane	ND	4.4
Benzene	ND	4.4
Trichloroethene	ND	4.4
1,2-Dichloropropane	ND	4.4
Bromodichloromethane	ND	4.4
Dibromomethane	ND	4.4
4-Methyl-2-Pentanone	ND	8.8
cis-1,3-Dichloropropene	ND	4.4
Toluene	ND	4.4
trans-1,3-Dichloropropene	ND	4.4
1,1,2-Trichloroethane	ND	4.4
2-Hexanone	ND	8.8
1,3-Dichloropropane	ND	4.4
Tetrachloroethene	ND	4.4

	Purgeable (Organics by GC/	/MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP1;5.5	Diln Fac:	0.8772
Lab ID:	163482-021	Batch#:	78998
Matrix:	Soil	Sampled:	02/05/03
Units:	ug/Kg	Received:	02/05/03
Basis:	as received	Analyzed:	02/06/03

Dibromochloromethane ND 4.4 1,2-Dibromoethane ND 4.4 Chlorobenzene ND 4.4 1,1,1,2-Tetrachloroethane ND 4.4 Ethylbenzene ND 4.4 m,p-Xylenes ND 4.4 o-Xylene ND 4.4 Styrene ND 4.4 Bromoform ND 4.4 Isopropylbenzene ND 4.4 Isopropylbenzene ND 4.4 I,2,2-Tetrachloroethane ND 4.4 I,2,3-Trichloropropane ND 4.4 Propylbenzene ND 4.4 Propylbenzene ND 4.4 1,3,5-Trimethylbenzene ND 4.4 1,3,5-Trimethylbenzene ND 4.4 1,2-Chlorotoluene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4 para-Isopropyl Toluene ND 4.4			
1,2-Dibromoethane	Analyte	Result	RL
Chlorobenzene ND 4.4 1,1,1,2-Tetrachloroethane ND 4.4 Ethylbenzene ND 4.4 m,p-Xylenes ND 4.4 Styrene ND 4.4 Bromoform ND 4.4 Isopropylbenzene ND 4.4 Isopropylbenzene ND 4.4 I,2,2-Tetrachloroethane ND 4.4 I,2,2-Tetrachloropropane ND 4.4 Propylbenzene ND 4.4 I,3,5-Trimethylbenzene ND 4.4 Chlorotoluene ND 4.4			_
Chlorobelizette			
Ethylbenzene ND 4.4 m,p-Xylenes ND 4.4 Styrene ND 4.4 Bromoform ND 4.4 Isopropylbenzene ND 4.4 1,1,2,2-Tetrachloroethane ND 4.4 Propylbenzene ND 4.4 Bromobenzene ND 4.4 Propylbenzene ND 4.4 Bromobenzene ND 4.4 I,3,5-Trimethylbenzene ND 4.4 1,3,5-Trimethylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 Etert-Butylbenzene ND 4.4 sec-Butylbenzene ND 4.4 sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4 para-Isopropyl Toluene ND 4.4			
m, p-Xylenes	1,1,1,2-Tetrachloroethane		•
N		-	
Styrene ND 4.4 Bromoform ND 4.4 Isopropylbenzene ND 4.4 1,1,2,2-Tetrachloroethane ND 4.4 1,2,3-Trichloropropane ND 4.4 Propylbenzene ND 4.4 Bromobenzene ND 4.4 1,3,5-Trimethylbenzene ND 4.4 2-Chlorotoluene ND 4.4 4-Chlorotoluene ND 4.4 4-Chlorotoluene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4	m,p-Xylenes		
Bromoform	o-Xylene	ND	
Isopropylbenzene ND 4.4 1,1,2,2-Tetrachloroethane ND 4.4 1,2,3-Trichloropropane ND 4.4 Propylbenzene ND 4.4 Bromobenzene ND 4.4 1,3,5-Trimethylbenzene ND 4.4 2-Chlorotoluene ND 4.4 4-Chlorotoluene ND 4.4 tert-Butylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 sec-Butylbenzene ND 4.4 sec-Butylbenzene ND 4.4 sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4	Styrene	ND	
1,1,2,2-Tetrachloroethane ND 4.4 1,2,3-Trichloropropane ND 4.4 Propylbenzene ND 4.4 Bromobenzene ND 4.4 1,3,5-Trimethylbenzene ND 4.4 2-Chlorotoluene ND 4.4 4-Chlorotoluene ND 4.4 tert-Butylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 sec-Butylbenzene ND 4.4 sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4	Bromoform	ND	
1,2,2-lettachloroethane 1,2,3-Trichloropropane ND 4.4 Propylbenzene ND 4.4 Bromobenzene ND 4.4 1,3,5-Trimethylbenzene ND 4.4 2-Chlorotoluene ND 4.4 4-Chlorotoluene ND 4.4 tert-Butylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4		ИD	
Propylbenzene	1,1,2,2-Tetrachloroethane	ND	
Bromobenzene ND 4.4 1,3,5-Trimethylbenzene ND 4.4 2-Chlorotoluene ND 4.4 4-Chlorotoluene ND 4.4 tert-Butylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4	1,2,3-Trichloropropane	ND	
1,3,5-Trimethylbenzene ND 4.4 2-Chlorotoluene ND 4.4 4-Chlorotoluene ND 4.4 tert-Butylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4	Propylbenzene	ND	- '
2-Chlorotoluene ND 4.4 4-Chlorotoluene ND 4.4 tert-Butylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4	Bromobenzene	ИD	- '
4-Chlorotoluene ND 4.4 tert-Butylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4	1,3,5-Trimethylbenzene	ND	
tert-Butylbenzene ND 4.4 1,2,4-Trimethylbenzene ND 4.4 sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4	2-Chlorotoluene	ND	
1,2,4-Trimethylbenzene ND 4.4 sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4	4-Chlorotoluene	ND	-
sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4	tert-Butylbenzene	ND	
sec-Butylbenzene ND 4.4 para-Isopropyl Toluene ND 4.4	1,2,4-Trimethylbenzene	ND	
T bara-isobtoble introduce		ND	
	para-Isopropyl Toluene	ND	4.4
■ 1,3-Dichioropenzene ND ···	1,3-Dichlorobenzene	ND	4.4
1,4-Dichlorobenzene ND 4.4	1,4-Dichlorobenzene	ND	
n-Butylbenzene ND 4.4	n-Butylbenzene	ND	4.4
1,2-Dichlorobenzene ND 4.4	1,2-Dichlorobenzene	ND	
1,2-Dibromo-3-Chloropropane ND 4.4		ND	
1,2,4-Trichlorobenzene ND 4.4		ND	4.4
Hexachlorobutadiene ND 4.4		NĎ	4.4
Naphthalene ND 4.4		ND	4.4
1,2,3-Trichlorobenzene ND 4.4		ND	4.4

Surrogate	%REC	Limits
Dibromofluoromethane	95	74-124
1,2-Dichloroethane-d4	110	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	107	75-127

	Purgeable (organics by GC/	ms
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK	Basis:	as received
	QC203834	Diln Fac:	1.000
	Soil	Batch#:	78958
	ug/Kg	Analyzed:	02/05/03

Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0
DIDIOMOCITOTOMCCItatio		

	Purgeable (organics by GC/	'MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	OC203834	Diln Fac:	1.000
Matrix:	Soil	Batch#:	78958
Units:	ug/Kg	Analyzed:	02/05/03

	Result	RL
Analyte		5.0
1,2-Dibromoethane	ND ND	5.0
Chlorobenzene		5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	%REC	Limits
Dibromofluoromethane	89	74-124
1,2-Dichloroethane-d4	91	75-128
Toluene-d8	97	80-111
Bromofluorobenzene	102	75-127

	Purgeable (organics by GC/	MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	QC203843	Diln Fac:	1.000
Matrix:	Soil	Batch#:	78961
Units:	ug/Kg	Analyzed:	02/05/03

Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0

	Purgeable (Organics by GC/	'MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	OC203843	Diln Fac:	1.000
Matrix:	Soil	Batch#:	78961
Units:	ug/Kg	Analyzed:	02/05/03

Analyte	Result	RL
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	%REC	Limits
Dibromofluoromethane	103	74-124
1,2-Dichloroethane-d4	109	75-128
Toluene-d8	99	80-111
Bromofluorobenzene	104	75-127

Purgeable Organics by GC/MS				
Lab #:	163482	Location:	751-785 Brush St.	
Client:	Baseline Environmental	Prep:	EPA 5035	
Project#:	Y0323-01	Analysis:	EPA 8260B	
Type: Lab ID: Matrix: Units:	BLANK	Basis:	as received	
	QC203991	Diln Fac:	1.000	
	Soil	Batch#:	78998	
	ug/Kg	Analyzed:	02/06/03	

Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0

	Purgeable (Organics by GC/	'MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Type:	BLANK	Basis:	as received
Lab ID:	OC203991	Diln Fac:	1.000
Matrix:	Soil	Batch#:	78998
Units:	ug/Kg	Analyzed:	02/06/03

Analyte	Result	RL
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ИD	5.0
4-Chlorotoluene	ИD	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	%REC	Limite
Dibromofluoromethane	97	74-124
1,2-Dichloroethane-d4	108	75-128
Toluene-d8	100	80-111
Bromofluorobenzene	103	75-127

	Purgeable C	organics by GC/	'MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Type: Lab ID: Matrix: Units:	LCS	Basis:	as received
	QC203833	Diln Fac:	1.000
	Soil	Batch#:	78958
	ug/Kg	Analyzed:	02/05/03

Analyte	Spiked	Result	%RE(2 Limits	
1,1-Dichloroethene	50.00	42.92	86	70-131	
Benzene	50.00	43.32	87	77-120	
Benzene Trichloroethene	50.00	46.97	94	79-120	
Toluene	50.00	43.75	88	80-120	
Chlorobenzene	50.00	44.14	88	80-120	

Surrogate	%RE(C Limits
Dibromofluoromethane	89	74-124
1,2-Dichloroethane-d4	90	75-128
Toluene-d8	97	80-111
Bromofluorobenzene	96	75-127

	Purgeable (Organics by GC/	'MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Type: Lab ID: Matrix: Units:	LCS	Basis:	as received
	QC203842	Diln Fac:	1.000
	Soil	Batch#:	78961
	ug/Kg	Analyzed:	02/05/03

	Decu1+	% P E C	Limits
			70-131
		=	77-120
	51.06	102	79-120
= · ·	49.71	99	80-120
50.00	53.27	107	80-120
	Spiked 50.00 50.00 50.00 50.00 50.00	50.00 46.94 50.00 48.80 50.00 51.06 50.00 49.71	50.00 46.94 94 50.00 48.80 98 50.00 51.06 102 50.00 49.71 99

Surrogate	*REC	Limits
Dibromofluoromethane	100	74-124
1,2-Dichloroethane-d4	108	75-128
Toluene-d8	99	80-111
Bromofluorobenzene	101	75-127

	Purgeable (Organics by GC/	MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Type:	LCS	Basis:	as received
Lab ID:	QC203990	Diln Fac:	1.000
Matrix:	Soil	Batch#:	78998
Units:	ug/Kg	Analyzed:	02/06/03

Analyte	Spiked	Result	%RB(: Limits	
1,1-Dichloroethene	50.00	42.95	86	70-131	
Benzene	50.00	45.80	92	77-120	
Trichloroethene	50.00	47.38	95	79-120	_
Toluene	50.00	46.82	94	80-120	
Chlorobenzene	50.00	46.81	94	80-120	

			9999999
Surrogate	%REC	: Limite	
Dibromofluoromethane	99	74-124	- 1
1,2-Dichloroethane-d4	110	75-128	
Toluene-d8	101	80-111	ſ
Bromofluorobenzene	99	75-127	_

	Purgeable (rganics by GC/	/MS
Lab #:	163482	Location:	751-785 Brush St.
	Baseline Environmental	Prep:	EPA 5035
Client: Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZZ	Diln Fac:	1.042
MSS Lab ID:	163459-012	Batch#:	78958
Matrix:	Soil	Sampled:	02/04/03
Units:	ug/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Type:

MS

Lab ID:

QC203893

				000000000000000000000000000000000000000	***************************************
Analyte	MSS Result	Spiked	Result	*RE(' Limits
1,1-Dichloroethene	<0.3400	52.08	42.76	82	57-134
Benzene	<0.08400	52.08	44.70	86	55-125
Trichloroethene	<0.3300	52.08	48.48	93	37-133
Toluene	<0.2000	52.08	44.78	86	48-131
Chlorobenzene	<0.1600	52.08	44.19	85	42-128
CHIOLODelizens	40.1000				

Surrogate	%REC	Limits	
Dibromofluoromethane	89	74-124	ĺ
1,2-Dichloroethane-d4	91	75-128	ļ
Toluene-d8	97	80-111	
Bromofluorobenzene	96	75-127]

Гуре

MSD

Lab ID:

QC203894

Spiked	Result	%REC	Limits	RPD	Lim
52.08	43.04	83	57-134	1	20
52.08	43.74	84	55-125	2	20
52.08	47.31	91	37-133	2	21
52.08	45.11	87	48-131	1	20
52.08	44.86	86	42-128	1	23
	52.08 52.08 52.08	52.08 43.74 52.08 47.31 52.08 45.11	52.08 43.74 84 52.08 47.31 91 52.08 45.11 87	52.08 43.04 83 57-134 52.08 43.74 84 55-125 52.08 47.31 91 37-133 52.08 45.11 87 48-131	52.08 43.04 83 57-134 1 52.08 43.74 84 55-125 2 52.08 47.31 91 37-133 2 52.08 45.11 87 48-131 1

Surrogate	%REC	Limits
Dibromofluoromethane	90	74-124
1,2-Dichloroethane-d4	93	75-128
Toluene-d8	97	80-111
Bromofluorobenzene	95	75-127

	Purgeable (Organics by GC/	'MS
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5035
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	B-FP4;5-5.5	Diln Fac:	0.9804
MSS Lab ID:	163466-010	Batch#:	78961
Matrix:	Soil	Sampled:	02/04/03
Units:	uq/Kg	Received:	02/04/03
Basis:	as received	Analyzed:	02/05/03

Type:

MS

Lab ID:

QC203845

Analyte	MSS Result	Spiked	Result	%RE	C Limits
1,1-Dichloroethene	<0.4300	49.02	39.00	80	57-134
Benzene	<0.2900	49.02	41.24	84	55-125
Trichloroethene	<0.5400	49.02	42.72	87	37-133
Toluene	<0.3500	49.02	41.88	85	48-131
Chlorobenzene	<0.4400	49.02	43.66	89	42-128

Surrogate	%REC	Limits	
Dibromofluoromethane	103	74-124	
1,2-Dichloroethane-d4	110	75-128	
Toluene-d8	99	80-111	3
Bromofluorobenzene	101	75-127	

Type:

MSD

Lab ID:

QC203846

Analyte	Spiked	Result	%RE(2 Limits	RPI) Irin
1,1-Dichloroethene	49.02	40.17	82	57-134	3	20
Benzene	49.02	42.58	87	55-125	3	20
Trichloroethene	49.02	45.14	92	37-133	6	21
Toluene	49.02	43.91	90	48-131	5	20
Chlorobenzene	49.02	43.40	89	42-128	1	23

Surrogate	%REC	Limits	
Dibromofluoromethane	105	74-124	
1,2-Dichloroethane-d4	110	75-128	
Toluene-d8	100	80-111	
Bromofluorobenzene	104	75-127	

_	California	a Title 26 Meta	.ls
Lab #: Client: Project#:	163482 Baseline Environmental Y0323-01	Location: Prep:	751-785 Brush St. METHOD
Field ID: Lab ID: Matrix: Units:	B-FP5 163482-035 Filtrate ug/L	Diln Fac: Sampled: Received:	1.000 02/05/03 02/05/03

Analyte	Result	RL	Batch#	Prepared	Analyzed	Analysis
Antimony	ND	60	79039	02/07/03	02/11/03	EPA 6010B
Arsenic	ND	5.0	79039	02/07/03	02/11/03	EPA 6010B
Barium	62	10	79039	02/07/03	02/11/03	EPA 6010B
Beryllium	ND	2.0	79039	02/07/03	02/11/03	EPA 6010B
Cadmium	ND	5.0	79039	02/07/03	02/11/03	EPA 6010B
Chromium	17	10	79039	02/07/03	02/11/03	EPA 6010B
Cobalt	ND	20	79039	02/07/03	02/11/03	EPA 6010B
Copper	ND	10	79039	02/07/03	02/11/03	EPA 6010B
Lead	ND	3.0	79039	02/07/03	02/11/03	EPA 6010B
Mercury	ND	0.20	79060	02/10/03	02/10/03	EPA 7470A
Molybdenum	ND	20	79039	02/07/03	02/11/03	EPA 6010B
Nickel	96	20	79039	02/07/03	02/11/03	EPA 6010B
Selenium	11	5.0	79039	02/07/03	02/11/03	EPA 6010B
Silver	ND	5.0	79039	02/07/03	02/11/03	EPA 6010B
Thallium	ND	5,0	79039	02/07/03	02/11/03	EPA 6010B
Vanadium	ND	10	79039	02/07/03	02/11/03	EPA 6010B
Zinc	ND	20	79039	02/07/03	02/11/03	EPA 6010B

	California	Title 26 Meta	als
Lab #: Client: Project#:	163482 Baseline Environmental Y0323-01	Location: Prep:	751-785 Brush St. METHOD
Field ID: Lab ID: Matrix: Units:	B-FP4 163482-036 Filtrate ug/L	Diln Fac: Sampled: Received:	1.000 02/05/03 02/05/03

Analyte	Result	RL	Batch#	Prepared	Analyzed	Analysis
Antimony	ND	60	79039	02/07/03	02/11/03	EPA 6010B
Arsenic	ND	5.0	79039	02/07/03	02/11/03	EPA 6010B
Barium	110	10	79039	02/07/03	02/11/03	EPA 6010B
Beryllium	ND	2.0	79039	02/07/03	02/11/03	EPA 6010B
Cadmium	ND	5.0	79039	02/07/03	02/11/03	EPA 6010B
Chromium	ND	10	79039	02/07/03	02/11/03	EPA 6010B
Cobalt	ND	20	79039	02/07/03	02/11/03	EPA 6010B
Copper	ND	10	79039	02/07/03	02/11/03	EPA 6010B
Lead	ND	3.0	79039	02/07/03	02/11/03	EPA 6010B
Mercury	ND	0.20	79060	02/10/03	02/10/03	EPA 7470A
Molybdenum	ND	20	79039	02/07/03	02/11/03	EPA 6010B
Nickel	32	20	79039	02/07/03	02/11/03	EPA 6010B
Selenium	ND	5.0	79039	02/07/03	02/11/03	EPA 6010B
Silver	ND	5.0	79039	02/07/03	02/11/03	EPA 6010B
Thallium	ND	5.0	79039	02/07/03	02/11/03	EPA 6010B
Vanadium	ND	10	79039	02/07/03	02/11/03	EPA 6010B
Zinc	ND	20	79039	02/07/03	02/11/03	EPA 6010B

	California	a Title 26 Mets	ils
Lab #: Client: Project#:	163482 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. METHOD EPA 6010B
Type: Lab ID: Matrix: Units:	BLANK QC204131 Filtrate ug/L	Diln Fac: Batch#: Prepared: Analyzed:	1.000 79039 02/07/03 02/11/03

Analyte	Result	RL	
Antimony	ND	60	
Arsenic	ND	5.0	
Barium	ND	10	
Beryllium	ND	2.0	
Cadmium	ND	5.0	
Chromium	ND	10	
Cobalt	ND	20	
Copper	ND	10	
Lead	ND	3.0	
Molybdenum	ND	20	
Nickel	ND	20	
Selenium	ND .	5.0	
Silver	ND	5.0	
Thallium	ND	5.0	
-inallium Vanadium	ND	10	
Vanadium Zinc	ND	20	

	California	Title 26 Meta	ls
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 7470A
Analyte: Type: Lab ID: Matrix:	Mercury	Diln Fac:	1.000
	BLANK	Batch#:	79060
	QC204229	Prepared:	02/10/03
	Water	Analyzed:	02/10/03
Units:	ug/L		

RL

0.20

Result

ИD

	California	ı Title 26 Meta	
Lab #: Client: Project#: Matrix: Units: Diln Fac:	163482 Baseline Environmental Y0323-01 Filtrate ug/L 1.000	Location: Prep: Analysis: Batch#: Prepared: Analyzed:	751-785 Brush St. METHOD EPA 6010B 79039 02/07/03 02/11/03

BS

Lab ID:

QC204132

Type:				
	Spiked	Result	%REC	Limits
Analyte	501.0	459.0	92	75-126
Antimony	100,0	104.0	104	79-123
Arsenic	2,000	2,010	101	80-120
Barium	50.00	50.90	102	80-120
Beryllium	50.00	49.10	98	80-120
Cadmium	200.0	199.0	100	79-120
Chromium	500.0	488.0	98	80-120
TCobalt	250.0	253.0	101	80-120
Copper	100.0	104.0	104	78-120
Lead	400.0	417.0	104	80-120
Molybdenum	500.0	499.0	100	78-120
P Nickel	100.0	101.0	101	72-121
Selenium	50.00	52.80	106	80-120
silver	100.0	97.90	98	70-121
Thallium	500.0	505.0	101.	80-120
Vanadium	500.0	492.0	98	78-120
Tzinc				

BSD

Lab ID:

QC204133

		Result	%REC	Limits	RPD	
Analyte	Spiked	467.0	93	75-126	2	20
Antimony	500.0 100.0	98.10	98	79-123	6	20
Arsenic		1,970	99	80-120	2	20
Barium	2,000 50.00	48.10	96	80-120	6	20
Beryllium	50.00	45.90	92	80-120	7	20
Cadmium	200.0	188.0	94	79-120	6	20
Chromium	500.0	463.0	93	80-120	5	20
Cobalt	250.0	248.0	99	80-120	2	20
Copper	100.0	95.00	95	78-120	9	20
Lead	400.0	390.0	98	80-120	7	20
Molybdenum	500.0	472.0	94	78-120	6	20
Nickel	100.0	95.70	96	72-121	5	20
Selenium	50.00	50.90	102	80-120	4	20
Silver	100.0	94.20	94	70-121	4	20
Thallium	500.0	483.0	97	80-120	4	20
Vanadium	500.0	468.0	94	<u> 78-120</u>	5	20
Zinc						

	California	ı Title 26 Meta	als
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 7470A
Analyte:	Mercury	Batch#:	79060
Matrix:	Water	Prepared:	02/10/03
Units:	ug/L	Analyzed:	02/10/03
Diln Fac:	1.000		

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim	
BS	QC204230	5.000	5.060	101	78-120			
BSD	QC204231	5.000	5.060	101	78-120	0	22	

	Californi	a Title 26 Meta	
Lab #: Client: Project#: Field ID: MSS Lab ID: Matrix: Units: Diln Fac:	163482 Baseline Environmental Y0323-01 ZZZZZZZZZZ 163334-002 Filtrate ug/L 1.000	Location: Prep: Analysis: Batch#: Sampled: Received: Prepared: Analyzed:	751-785 Brush St. METHOD EPA 6010B 79039 01/28/03 01/28/03 02/07/03 02/11/03

туре :	MS		Lab ID:	QC204134		
Anal Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium	yte	MSS Result 40.80 8.060 1,120 <0.1600 <0.3100 <1.400 <0.9900 <2.500 2.420 18.20 2.110 11.90 <0.8200 <4.900 12.20 7.620	Spiked 500.0 100.0 2,000 50.00 50.00 200.0 500.0 250.0 100.0 400.0 500.0 100.0 500.0 500.0	Result 584.0 107.0 3,050 47.10 43.50 181.0 440.0 252.0 91.10 375.0 453.0 113.0 32.70 38.00 482.0 469.0	*REC 109 99 97 94 87 91 88 101 89 89 101 65 38 * 94	Eimits 62-135 66-134 66-123 65-128 61-124 64-123 65-120 62-130 58-129 68-122 60-126 62-131 47-138 57-126 59-132 49-139

Type:	MSD	Lab	ID:	QC204	135			
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium	yte S	501ked 500.0 100.0 2,000 50.00 200.0 500.0 250.0 100.0 400.0 500.0 100.0 50.00		591.0 109.0 ,060 47.40 44.00 183.0 445.0 253.0 93.70 393.0 451.0 115.0 33.10 486.0 465.0	*REC 110 101 97 95 88 92 89 101 91 94 90 103 66 42 * 95	62-135 66-123 66-128 61-124 64-123 65-120 62-130 58-129 68-122 60-126 62-131 47-138 57-126 59-132 49-139	RPD 1 2 0 1 1 1 0 3 5 0 2 1 9 1	29 20 20 20 20 20 20 20 20 20 20 20 20 20

^{*=} Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

	Californi;	a Title 26 Meta	ls
Lab #: Client: Project#:	163482 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. METHOD EPA 7470A
Analyte: Field ID: MSS Lab ID:	Mercury ZZZZZZZZZZ 163321-015 Water	Batch#: Sampled: Received: Prepared:	79060 01/27/03 01/27/03 02/10/03
Matrix: Units: Diln Fac:	water ug/L 1.000	Analyzed:	02/10/03

	teh TD	MSS Result	Spiked	Result	%REC	! Limits	RP	D Lim
1,400		0.04200	5.000	5.030	100	47-143		
MS	QC204232	0.04200	5.000	5.140	102	47-143	2	35
MSD	QC204233		3.000					

	Hexaval	ent Chromium	
Nab #: !lient:	163482 Baseline Environmental	Location: Prep: Analysis:	751-785 Brush St. METHOD EPA 7196A
Project#: Analyte: Matrix: Units: Diln Fac:	Y0323-01 Hexavalent Chromium Water mg/L 1.000	Batch#: Sampled: Received: Analyzed:	78991 02/05/03 02/05/03 02/05/03

	T-12	Decu1t	RL
Field ID	ype Lab ID MPLE 163482-035	0.01	0.01
	MPLE 163482-036	ND	0.01
) L L L	ANK QC203959	ND	0.01

	Hexava	lent Chromium	
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 7196A
Analyte:	Hexavalent Chromium	Diln Fac:	1.000
Field ID:	B-FP4	Batch#:	78991
MSS Lab ID:	163482-036	Sampled:	02/05/03
	Water	Received:	02/05/03
Matrix: Units:	mg/L	Analyzed:	02/05/03

	Lab ID	MSS Result	Spiked	Result	%RE	C Limits	RP.	D Lim
Type LCS	OC203960		0.8420	0.7790	92	80-120		
MS	OC203961	<0.01000	0.8420	0.6860	81	55-145		
	OC203962	20.0200	0.8420	0.7210	86	55-145	5	20
MSD	QC203962							

Lab #: Client: Baseline Environmental Prep: Project#: Y0323-01 Analys Analyte: Hexavalent Chromium Batch# Sample Matrix: Soil Sample Units: mg/Kg		Hexaval	ent Chromium	
Project#: Y0323-01 Analyte: Hexavalent Chromium Batch# Matrix: Soil Sample Units: mg/Kg Receiv	ab #: lient:	Baseline Environmental	Location: Prep: Analysis:	751-785 Brush St. METHOD EPA 7196A
Basis: as leceived		Hexavalent Chromium Soil	Batch#: Sampled: Received: Analyzed:	79115 02/05/03 02/05/03 02/11/03

		vit RL
Field ID Type Lab ID	NES	0.05
COMP FY SAMPLE 163482-029		0.05
COMP RY SAMPLE 163482-033	ИD	
BLANK QC204422	ND	0.05

	Hexava]	Lent Chromium	
Lab #: Client: Project#:	163482 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. METHOD EPA 7196A
Analyte: Field ID: MSS Lab ID: Matrix: Units: Basis:	Hexavalent Chromium ZZZZZZZZZZ 163380-001 Soil mg/Kg as received	Diln Fac: Batch#: Sampled: Received: Analyzed:	1.000 79115 01/22/03 01/22/03 02/11/03

Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
LCS	OC204423		4.000	3.719	93	80-116		
MS	OC204424	<0.05000	4.000	1.743	44 *	62-132		
MSD	OC204425		4.000	1.738	43 *	62-132	0	24

 $[\]star_{\pm}$ Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

	Tota	il Cyanide	
ab #: lient:	163482 Baseline Environmental	Location: Prep: Analysis:	751-785 Brush St. METHOD EPA 335.2
roject#: nalyte: atrix: nits: iln Fac:	Y0323-01 Cyanide Water mg/L 1.000	Batch#: Sampled: Received: Analyzed:	79029 02/05/03 02/05/03 02/07/03

	Type Tab TD	Res	ult RL
B-FP5	SAMPLE 163482-035	ND	0.01
B-FF3	SAMPLE 163482-036	ND	0.01
	BLANK QC204101	ИD	0.01

	Tota	al Cyanide	
Lab #:	163482	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 335.2
Analyte:	Cyanide	Diln Fac:	1.000
Field ID:	B-FP4	Batch#:	79029
MSS Lab ID:	163482-036	Sampled:	02/05/03
Matrix:	Water	Received:	02/05/03
Units:	mg/L	Analyzed:	02/07/03

Type Lab ID MSS Result Spiked Result %REG B MS QC204102 <0.01000 0.1930 0.1830 95 5	5-134		•
MSD QC204103 0.1930 0.1890 98 5	5-134	3	30
LCS QC204104 0.1930 0.1900 98 7	0-124		

	Tota	al Cyanide	
Lab #: Client:	163482 Baseline Environmental	Location: Prep: Analysis:	751-785 Brush St. METHOD EPA 335.2
Project#: Analyte: Matrix: Units: Basis:	Y0323-01 Cyanide Soil mg/Kg as received	Batch#: Sampled: Received: Analyzed:	79064 02/05/03 02/05/03 02/10/03
Diln Fac:	1.000		

	Type Lab ID	Re	esult RL
Field ID	Type Lab ID SAMPLE 163482-001	ND	1.0
B-FP-6;2-2.5	SAMPLE 163482-003	ND	1.0
B-FP6;5-5.5	SAMPLE 163482-008	ND	1.0
B-FP7;2.5-3.0		IND	11 1.0
B-FP7;5-5.5	SAMPLE 163482-009	ND	1.0
B-FP2;2.5-3.0	SAMPLE 163482-014	ND	1.0
B-FP2;5.5-6.0	SAMPLE 163482-016		1.0
B-FP1;2.5-3.0	SAMPLE 163482-020	ND	1.0
B-FP1;5.5-6.0	SAMPLE 163482-022	ND	1.0
COMP FY	SAMPLE 163482-029	ND	1.0
COMP RY	SAMPLE 163482-033	ND	1.0
	BLANK QC204243	ND	1.0

	Tota	al Cyanide	
Lab #: Client: Project#:	163482 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. METHOD EPA 335.2
Analyte: Field ID: MSS Lab ID: Matrix: Units: Basis:	Cyanide COMP RY 163482-033 Soil mg/Kg as received	Diln Fac: Batch#: Sampled: Received: Analyzed:	1.000 79064 02/05/03 02/05/03 02/10/03

	7-B 77	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MC TABE	QC204244	<1.000	9,840	9.830	100	70-130		
MS	-	11.000	9,360	9.320	100	70-130	5	30
MSD	QC204245		9.540	9.590	101	80-120		
LCS	QC204246							

February 12, 2003

James Brownfield Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407

Subject:

Calscience Work Order No.:

03-02-0305

Client Reference:

163482

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 2/7/2003 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Don Burley Project Manager Michael J. Crisostomo

Quality Assurance Manager

000141

alscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. 2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

02/07/03

Work Order No:

03-02-0305

Preparation:

Total Digestion

Method:

EPA 6010B / EPA 7471A

Project: 163482

Page 1 of 4

Client Sample Number			Lab Sample Number		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID		
B-FP-6 ; 2-2.5			03-02-03	05-1	02/05/03	Solid	02/07/03	02/10/03	030207	'L06	
Comment(s): Mercury	was analyzed on		5:51:45 PN	with bate	ch 030207L01			Б.	DF 0 :		
Parameter	Result	<u>RL</u>	DF Qua	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>	
Antimony	ND	0.750	1	mg/kg	Mercury		0.415	0.083	1	mg/kg	
Arsenic	3.44	0.75	1	mg/kg	Molybdenum		1.95	0.25	1	mg/kg	
Barium	134	0.500	1	mg/kg	Nickel		368	0.250	1	mg/kg	
Beryllium	ND	0.250	1	mg/kg	Selenium		ND	0.750	1	mg/kg	
Cadmium	0.689	0.500	1	mg/kg	Silver		ND	0.250	1	mg/kg	
Chromium (Total)	220	0.250	1	mg/kg	Thallium		ND	0.750	1	mg/kg	
Cobalt	5.17	0.25	1	mg/kg	Vanadium		19.3	0.2	1	mg/kg	
Copper	19.7	0.5	1	mg/kg	Zinc		1260	10	10 D	mg/kg	
_ead	1260	5	10 D	mg/kg							
B-FP6 ; 5-5.5			03-02-03	05-2	02/05/03	Solid	02/07/03	02/10/03	030207	7L06	
	was analyzed on	2/7/2002	* *************************************	· · · · · · · · · · · · · · · · · · ·	- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	en serre	The second second		_em		
•		2///2003 RL	0:54:46 PM <u>DF</u> <u>Qua</u>		Paramet <u>er</u>		Result	RL	DF Qual	<u>Units</u>	
<u>Parameter</u>	Result	KL	<u>ur uua</u>	Units	<u> </u>		/ toodit	135			
Antimony	ND	0.750	1	ma/ka	Mercury		ND	0.0835	1	mg/kg	
Arsenic	1.78	0.75	1	mg/kg	Molybdenum	•	ND	0.250	1	mg/kg	
nisemo Barium	49.2	0.5	1	mg/kg	Nickel		320	0.250	1	mg/kg	
Beryllium	0.339	0.250	1	mg/kg	Selenium		ND	0.750	1	mg/kg	
Cadmium	ND 0.000	0.500	1	mg/kg	Silver		ND	0.250	1	mg/kg	
Chromium (Total)	49.1	0.2	i	mg/kg	Thallium		ND	0.750	1	mg/kg	
Cobalt	11.3	0.2	1	mg/kg	Vanadium		35.8	0.2	1	mg/kg	
	7.76	0.50	1	mg/kg	Zinc		22.3	1.0	1	mg/kg	
Copper Lead	3.95	0.50	1	mg/kg							
B-FP7 ; 2.5-3.0		5.55	03-02-03	and Lands	02/05/03	Solid	02/07/03	02/10/03	03020	7L06	
the state of the s	was analyzed on	2/7/2003	a in the second		ch 030207L01						
Parameter	was analyzed on Result	RL	DF Qua		Parameter		Result	<u>RL</u>	DF Qual	<u>Units</u>	
<u> arameter</u>	1100011	<u></u>									
Antimony	ND	0.750	1	mg/kg	Mercury		0.139	0.083	1	mg/kg	
Arsenic	4.44	0.75	1	mg/kg	Molybdenum		0.650	0.250	1	mg/kg	
Barium	108	0.500	1	mg/kg	Nickel		39.0	0.2	1	mg/kg	
Beryllium	ND	0.250	1	mg/kg	Selenium		ND	0.750	1	mg/kg	
Cadmium	ND	0.500	1	mg/kg	Silver		ND	0.250	1	mg/kg	
Chromium (Total)	38.8	0.2	1	mg/kg	Thallium		ND	0.750	1	mg/kg	
Cobalt	4.55	0.25	1	mg/kg	Vanadium		21.5	0.2	1	mg/kg	
	24.6	0.5	1	mg/kg	Zinc		94.0	1.0	1	mg/kg	
Copper	24.0	U.S	I .	IIIU/KU	ZIIIC		J-1.0		•		

000142

RL - Repor

DF - Dilution Factor ,

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1432 • TEL: (714) 895-5494 • FAX: (714) 894-7501

alscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. 2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

03-02-0305

Work Order No: Preparation:

Total Digestion

Method:

EPA 6010B / EPA 7471A

Project: 163482

Page 2 of 4

02/07/03

Wart Causela Number		Lab Sample Number			Date Collected Matrix		Date Prepared	Date Analyzed	QC Batch ID	
zerin "조하" 및 "리고 " 다니 " A.		2 No.	03-02-03	35.4	02/05/03	Solid	02/07/03	02/10/03	030207	L06 - 7
B-FP7 ; 5-5.5					A CONTRACTOR OF THE PROPERTY OF					_
	was analyzed on	2/7/2003 (5:00:50 PM	With Date	Parameter		Result	<u>RL</u>	DF Qual	<u>Units</u>
<u>Parameter</u>	Decomposition Decompositio									
45	ND	0.750	1	ma/ka	Mercury		ND			mg/kg
Intimony			· -						•	mg/kg
rsenic					•		164			mg/kg
Barium			-				ND	0.750	1	mg/kg
Beryllium	•						ND	0.250	1	mg/kg
Cadmium			-		•		ND	0.750	1	mg/kg
Chromium (Total)							46.5	0.2	1	mg/kg
Cobalt							27.7	1.0	1	mg/kg
Copper					Zinc					
	4.11	0.50	1	mg/kg		an again an a s	an digneral	7. S. L. L.		3.5
B-FP2; 2.5-3.0		Mil.a.	03-02-03	05-5	02/05/03	Solid	02/07/03	02/10/03	030207	L06
	v was analyzed or	2/7/2003	6:03:51 PN	with bate	ch 030207L01			51	DE Oual	Linita
	Result	RL	DF Qua	l U <u>nits</u>	<u>Parameter</u>		<u>Result</u>	<u>KL</u>	DF Quai	<u>Units</u>
Parameter	<u> </u>									
A	ND	0.750	1	mg/kg	Mercury		-		•	mg/kg
Antimony					Molybdenum				· · · · · · · · · · · · · · · · · · ·	mg/kg
Arsenic					Nickel					mg/kg
Barium 			-		Selenium				-	mg/kg
Beryllium			-		Silver		ND		•	mg/kg
Cadmium			-				ND	0.750	1	mg/kg
Chromium (Total)							20.0	0.2	1	mg/kg
Cobalt			-					1.0	1	mg/kg
Соррег			•		Zillo					
Lead	2.44	0.50		18.42		6-ita	02/07/02	02/10/03	03020	71.06
B-FP2 ; 5.5-6.0					<u> </u>	Solid	02/07/03	UZI IOIO	00020	
Comment(s): Mercui	ry was analyzed o	n 2/7/2003	6:06:55 PI	/I with bat	ch 030207L01		Desult	Di	DE Qual	Units
Parameter	Result	RL	DF Qua	al Units	<u>Parameter</u>		Result	<u>L7</u> F	DI Qua	Onics
r arameter		_					N.	0.0005	1	mg/kg
Antimony	ND	0.750	1							mg/kg
Arsenic		0.750	1						-	mg/kg
		0.5	1	mg/kg						
Barium Banilium			1		Selenium				1	mg/kg
Beryllium			=	~ -	Silver				1	mg/kg
Cadmium			-	~ ~	Thallium				•	mg/kg
Chromium (Total)		-	•				34.9	0.2	1	mg/kg
Cobalt								1.0	1	mg/kg
Copper	10.2 3.33	0.5 0.50	1 1	mg/kg mg/kg	ZIIIC					
Lead										

000143

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

, alscience nvironmental , aboratories, Inc.

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. 2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Preparation:

Method:

02/07/03

03-02-0305

Total Digestion

EPA 6010B / EPA 7471A

Page 3 of 4

Project: 163482

client Sample Number				•	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bato	h ID
B-FP1 ; 2.5-3.0			03-02-0	305-7	02/05/03	Solid	02/07/03	02/10/03	030207	L06
Comment(s): Mercury w	Sample Number	Units								
<u>arameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u> Qu	al <u>Units</u>	<u>Parameter</u>		Result	Σ̈́Γ	DE Quai	Oints
Antimony	ND	0.750	1	mg/kg	Mercury					mg/kg
Arsenic		0.75	1	mg/kg	Molybdenum				-	mg/kg
Rarium		0.5	1	mg/kg	Nickel				-	mg/kg
Beryllium	•	0.250	1	mg/kg	Selenium		ND			mg/kg
Cadmium			1	ma/ka	Silver		ND		·=	mg/kg
			1		Thallium		ND	0.750	1	mg/kg
Cobalt			•		Vanadium		19.6		1	mg/kg
Copper			-		Zinc		14.9	1.0	1	mg/kg
_ead			-							
B-FP1 ; 5.5-6.0			03-02-0		02/05/03	Solid	02/07/03	02/10/03	030207	L06
	vas analyzed o	n 2/7/2003	6:13:00 P	M with bate	h 030207L01					
Parameter		<u>RL</u>	DF Qu	ial <u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
	ND	0.750	4	malka	Mercury		ND	0.0835	1	mg/kg
Antimony			-	~ -	•				1	mg/kg
Arsenic			-		•				1	mg/kg
Barium								-	1	mg/kg
Beryllium					-				1	mg/kg
Cadmium										mg/kg
Chromium (Total)			-						-	mg/kg
Cobalt									•	mg/kg
Copper					Zinc		23.7	1.0	•	mana
Lead	3.75	0.50	1	mg/kg		77.4				
COMP FY			03-02-0	0305-9	02/05/03	Solid	02/07/03	02/10/03	030207	7L06
Comment(s): Mercury v	was analyzed o	n 2/7/2003	6:22:10 F	M with bate	ch 030207L01		—	D.	DE 0	Links
<u>Parameter</u>	Result	<u>RL</u>	DF Qu	<u>ual Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Quai	Units
Antimony	ND	0.750	1				—		=	mg/kg
Arsenic	1.19	0.75	1	~ ~					=	mg/kg
Barium	64.2	0.5	1	mg/kg					•	mg/kg
Beryllium	0.278	0.250	1	mg/kg					•	mg/kg
Cadmium		0.500	1	mg/kg					•	mg/kg
Chromium (Total)	54.2	0.2	1		Thallium				•	mg/kg
• •			1		Vanadium		31.8	0.2	1	mg/kg
Cohalt										
Cobalt Copper	7.49	0.50	1	mg/kg	Zinc		22.9	1.0	1	mg/kg

000144

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1432 • TEL: (714) 895-5494 • FAX: (714) 894-7501

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. 2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

02/07/03

Work Order No:

03-02-0305

Preparation:

Total Digestion

Method:

EPA 6010B / EPA 7471A

Project: 163	482									P	age 4 of 4
Client Sample Nu	<u></u>			ab Samp Number	le	Date Collected	Matrix	Date Prepared	Date Analyzed	QC E	satch ID
COMP RY			0	3-02-030	05-10	02/05/03	Solid	02/07/03	02/10/03	030	207L06
Comment(s):	Mercury was analy	zed on 2/7/20	003 6:2	5:14 PM	with batch	1 030207L01				^	
Parameter	Res		D	F Qual	<u>Units</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	DF Q	<u>ual Units</u>
	ND	0.75	50	1	mg/kg	Mercury		ND	0.0835	1	mg/kg
ntimony	ND ND	0.75		1	mg/kg	Molybdenum		ND	0.250	1	mg/kg
rsenic	66.3		,0	1	mg/kg	Nickel		55.4	0.2	1	mg/kg
larium		0.5 266 0.28	50	1	mg/kg	Selenium		ND	0.750	1	mg/kg
Beryllium	V.2 ND	0.50		1	mg/kg	Silver		ND	0.250	1	mg/kg
Cadmium			30	1	mg/kg	Thallium		ND	0.750	1	mg/kg
Chromium (Total)			-	1	mg/kg	Vanadium		30.6	0.2	1	mg/kg
Cobalt	6.8			•	mg/kg	Zinc		22.4	1.0	1	mg/kg
Соррег	7.7		_	1		ZIIIC					
_ead	2.7	76 0.50		'	mg/kg				02/07/03	020	207L01
Method Blank				099-04-0	07-1,871	N/A	Solid	02/07/03	020703	030	201 LUI
Parameter Parameter	Res	sult RL	<u>D</u>	F Qua	<u>Units</u>						
Mercury	ND_ND	0.0	835	1	mg/kg					v 1915.au	
Method Blank			(097-01-0	02-4,043	N/A	Solid	02/07/03	02/10/03	030	207L06
Parameter	Re	sult RL	<u> </u>) <u>F</u> Qua	<u>Units</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	DF C	ual Units
Antimony	ND	0.7	50	1	mg/kg	Molybdenum		ND	0.250	1	mg/kg
Arsenic	ND	0.7	50	1	mg/kg	Nickel		ND	0.250	1	mg/kg
arium	ND		00	1	mg/kg	Selenium		ND	0.750	1	mg/kg
Beryllium	ND	0.2	50	1	mg/kg	Silver		ND	0.250	1	mg/kg
Cadmium	ND		00	1	mg/kg	Thallium		ND	0.750	1	mg/kg
Chromium (Total		0.2	50	1	mg/kg	Vanadium		ND	0.250	1	mg/kg
Cobalt	, ND			1	mg/kg	Zinc		ND	1.00	7	mg/kg
Copper	ND		00	1	mg/kg	Lead		ND	0.500	1	mg/kg

000145

DF - Dilution Factor

Qual - Qualifiers

alscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

Date Received: Curtis & Tompkins, Ltd. Work Order No: 2323 Fifth Street Preparation: Berkeley, CA 94710-2407 Method:

02/07/03 03-02-0305 **EPA 3545 EPA 8082**

		_		Sample	e	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
Client Sample Number				ımber				02/07/03	02/07/03	020	207L06
B-FP-6 ; 2-2.5	<u> </u>	<u> </u>	03-	02-030	5-1	02/05/03	Solid	02/07/03	02/07/05	030	201 L00
Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u> Q	ual <u>Units</u>
Arocior-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	1	ug/kg
Aroclor-1242	ND	50	1		ug/kg	Aroclor-1262		ND	50	1	ug/kg
Surrogates:	REC (%)	Control Limits		Qual		Surrogates:		<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	Q	<u>ual</u>
Decachiorobiphenyl	120	50-130				2,4,5,6-Tetrach	loro-m-Xylene	87	50-130		Tari kasalis sis
B-FP6 ; 5-5.5			03-	02-030	5-2	02/05/03	Solid	02/07/03	02/07/03	030	207L06
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Q	ual Units
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	1	ug/kg
Aroclor-1242	ND	50	1		ug/kg	Aroclor-1262		ND	50	1	ug/kg
Surrogates:	REC (%)	Control Limits	•	Qual		Surrogates:		REC (%)	Control Limits	<u>Q</u>	ual
Decachlorobiphenyl	71	50-130				2,4,5,6-Tetrach	loro-m-Xylene	86	50-130		
B-FP7 ; 2.5-3.0			03-	02-030	5-3	02/05/03	Solid	02/07/03	02/07/03	030	207L06
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u> Q	ual <u>Units</u>
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclar-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	1	ug/kg
Aroclor-1242	ND	50	1		ug/kg	Aroclor-1262		ND	50	1	ug/kg
Surrogates:	REC (%)	Control Limits		Qua		Surrogates:		<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u> </u>	<u>lual</u>
Decachlorobiphenyl	90	50-130				2,4,5,6-Tetrach	nloro-m-Xylen	e 99	50-130		
B-FP7 ; 5-5.5			03-	02-030)5-4	02/05/03	Solid	02/07/03	02/07/03	030	207L06
					11.71.	D		Result	RL	DF C	ual Units
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	<u>Parameter</u>					
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	1	ug/kg
Aroclor-1242	ND	50	1		ug/kg	Aroclor-1262		ND	50	1	ug/kg
Surrogates:	REC (%)	Control Limits		<u>Qua</u>		Surrogates:		REC (%)	<u>Control</u> <u>Limits</u>		<u>Qual</u>
									50-130		

DF - Dilution Factor ,

Qual - Qualifiers

alscience nvironmental , aboratories, Inc.

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. Date Received: Work Order No: 2323 Fifth Street Preparation: Berkeley, CA 94710-2407 Method:

03-02-0305 EPA 3545 EPA 8082

02/07/03

Project: 163482										Pag	e 2 of 3
Client Sample Number		-		Sampl Imber	e	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bato	h ID
B-FP2 ; 2.5-3.0		and the second	03-	02-030	5-5	02/05/03	Solid	02/07/03	02/07/03	030207	L06
D-1,12,200	<u> </u>	<u> </u>									
Parameter	Result	<u>RL</u>	<u>D</u> F	Qual	<u>Units</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	DF Qual	<u>Units</u>
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1	ug/kg
troclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	1	ug/kg
Aroclor-1242	ND	50	1		ug/kg	Aroclor-1262		ND	50	1	ug/kg
Surrogates:	REC (%)	Control		<u>Qual</u>		Surrogates:		<u>REC (%)</u>	<u>Control</u> L <u>imits</u>	<u>Qual</u>	
Decachlorobiphenyl	90	<u>Limits</u> 50-130				2,4,5,6-Tetrach	loro-m-Xyler	ne 99	50-130		
		19 8 10	03-	02-030	5-6	02/05/03	Solid	02/07/03	02/07/03	030207	L06
B-FP2 ; 5.5-6.0	<u> </u>	<u> </u>		<u> </u>				#.2 <u> </u>			
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Parameter		Result	<u>RL</u>	DF Qual	<u>Units</u>
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
	ND	50	1		ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1260		ND	50	1	ug/kg
\roclor-1232	ND	50	1		ug/kg	Aroclor-1262		ND	50	1	ug/kg
Aroclor-1242		Control	•	Qual	~ ~	Surrogates:		REC (%)	Control	Qual	
Surrogates:	<u>REC (%)</u>	Limits		<u> wuaj</u>	!	<u>ourrogation.</u>			Limits		
Decachlorobiphenyl	74	50-130				2,4,5,6-Tetrach	loro-m-Xyle	ne 68	50-130		
B-FP1 ; 2.5-3.0	Tanan Tanan		03-	02-030)5-7	02/05/03	Solid	02/07/03	02/07/03	03020	7L06
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u> Qual	<u>Units</u>
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1	ug/kg
· · ·	ND	50	i		ug/kg	Aroclor-1260		ND	50	1	цg/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1262		ND	50	1	ug/kg
Aroclor-1242	REC (%)	Control	-	Qua		Surrogates:		REC (%)	Control	Qua	<u>l</u>
Surrogates:	KEC (70)	Limits	-	<u> </u>	-			•	<u>Limits</u>		
Decachlorobiphenyl	87	50-130				2,4,5,6-Tetrach	iloro-m-Xyle	ne 97	50-130		
B-FP1 ; 5.5-6.0			03	02-03	05-8	02/05/03	Solid	02/07/03	02/07/03	03020	7L06
<u> </u>	<u> </u>										
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u> Qua	<u>Units</u>
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1	ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1	ug/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	1	ug/kg
	ND	50	1		ug/kg	Aroclor-1262		ND	50	1	ug/kg
Aroclor-1242	REC (%)	<u>Control</u>	-	Qua		Surrogates:		REC (%)	Control	Qua	<u>l</u>
Surrogates:	REC (70)	Limits	-	<u> waa</u>	<u></u>	<u> </u>			Limits		
Decachlorobiphenyl	87	50-130	1			2,4,5,6-Tetracl	hloro-m-Xyle	ene 92	50-130		

000147

DF - Dilution Factor ,

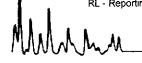
Qual - Qualifiers

ANALYTICAL REPORT

 Curtis & Tompkins, Ltd.
 Date Received:
 02/07/03

 2323 Fifth Street
 Work Order No:
 03-02-0305

 Berkeley, CA 94710-2407
 Preparation:
 EPA 3545


 Method:
 EPA 8082

Project: 163482

Page 3 of 3

110/001. 100402												
Client Sample Number				Sampl umber	ie	Date Collected	Matrix	Date Prepared	Date Analyzed	QC	C Batc	h ID
COMP FY			03-	02-030)5-9	02/05/03	Solid	02/07/03	02/07/03	0;	30207	L06
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1		ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1		ug/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	1		ug/kg
Aroclor-1242	ND	50	1		ug/kg	Aroclor-1262		ND	50	1		ug/kg
Surrogates:	REC (%)	Control	_	Qual	<u> </u>	Surrogates:		REC (%)	Control		<u>Qual</u>	
	-	Limits						**	<u>Limits</u>			
Decachlorobiphenyl	89	50-130				2,4,5,6-Tetrachlo	ro-m-Xylene	e 90	50-130			
COMP RY			03-	02-030)5-10	02/05/03	Solid	02/07/03	02/07/03	0	30207	L06
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1		ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1		ug/kg
Aroclor-1232	ND	50	1		ug/kg	Aroclor-1260		ND	50	1		ug/kg
Aroclor-1242	ND	50	1		ug/kg	Aroclor-1262		ND	50	1		ug/kg
Surrogates:	REC (%)	Control		Qual		Surrogates:		REC (%)	Control		<u>Qual</u>	
		Limits							Limits			
Decachlorobiphenyl	87	50-130				2,4,5,6-Tetrachlo	ro-m-Xylene	e 93	50-130			
Method Blank			098	-07-00	09-216	N/A	Solid	02/07/03	02/07/03	0:	30207	L06
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>
Aroclor-1016	ND	50	1		ug/kg	Aroclor-1248		ND	50	1		ug/kg
Aroclor-1221	ND	50	1		ug/kg	Aroclor-1254		ND	50	1		ug/kg
Aroclor-1232	ND	50	1		ug/kg	Arocior-1260		ND	50	1		ug/kg
Aroclor-1242	ND	50	1		ug/kg	Aroclor-1262		ND	50	1		ug/kg
Surrogates:	<u>REC (%)</u>	Control		Qual		Surrogates:		REC (%)	Control		<u>Qual</u>	
Decachlorobiphenyl	76	<u>Limits</u> 50-130				2,4,5,6-Tetrachlo	ro-m-Xylene	e 91	<u>Limits</u> 50-130			

000148

DF - Dilution Factor ,

Qual - Qualifiers

alscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation: Method:

02/07/03 03-02-0305 **EPA 3510B**

EPA 8082

Project: 163482

Page 1 of 1

lient Sample Number				Sample mber	÷	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bato	h ID
B-FP5			03-0	2-030	5-11	02/05/03	Aqueous	02/07/03	02/08/03	030207	L04
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Parameter		Result	<u>RL</u>	<u>DF</u> Qual	<u>Units</u>
	ND	1.0	1		ug/L	Aroclor-1248		ND	1.0	1	ug/L
Araclar-1016	ND	1.0	1		ug/L	Aroclor-1254		ND	1.0	1	ug/L
Aroclor-1221	ND ND	1.0	1		ug/L	Aroclor-1260		ND	1.0	1	ug/L
Aroclor-1232	ND ND	1.0	1		ug/L	Aroclor-1262		ND	1.0	1	ug/L
Aroclor-1242			•	Qual	ug/ L	Surrogates:		REC (%)	<u>Control</u>	<u>Qual</u>	
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits		Quai		<u>Ourrogatori</u>			<u>Limits</u>		
Decachlorobiphenyl	50	50-135				2,4,5,6-Tetrach	nloro-m-Xylene	90	50-135		
B-FP4			03-	02-030	5-12	02/05/03	Aqueous	02/07/03	02/08/03	030207	/L04
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u> Qual	
Aroclor-1016	ND	1.0	1		ug/L	Aroclor-1248		ND	1.0	1	ug/L
	ND	1.0	1		ug/L	Aroclor-1254		ND	1.0	1	ug/L
Aroclor-1221 Aroclor-1232	ND	1.0	1		ug/L	Aroclor-1260		ND	1.0	1	ug/L
	ND	1.0	1		ug/L	Aroclor-1262		ND	1.0	1	ug/L
Aroclor-1242	REC (%)	Control		Qua	-	Surrogates:		<u>REC (%)</u>	<u>Control</u>	Qua	Į.
Surrogates:	KEC 1701	Limits	-	<u>u(yu</u>					<u>Limits</u>		
Decachlorobiphenyl	55	50-135				2,4,5,6-Tetrac	hloro-m-Xylene	92	50-135		
Method Blank			09	9-07-0	10-102	N/A	Aqueous	02/07/03	02/07/03	03020	7L04
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	DF Qua	<u>Units</u>
		4.0			ug/L	Aroclor-1248		ND	1.0	1	ug/L
Aroclor-1016	ND	1.0	- 1		ug/L	Aroclor-1254		ND	1.0	1	ug/L
Aroclor-1221	ND	1.0	1		ug/L ug/L	Aroclor-1260		ND	1.0	1	ug/L
Aroclor-1232	ND	1.0	1	i I		Aroclor-1262		ND	1.0	1	ug/L
Aroclor-1242	ND	1.0	. 1	· 🔼 -	ug/L	Surrogates:		REC (%)	<u>Control</u>	Qua	<u>ıl</u>
Surrogates:	<u>REC (%)</u>	Contro Limits		Qua	Π	<u>oungales.</u>		· · · · · · · · · · · · · · · · · · ·	Limits		
Decachlorobiphenyl	97	50-135				2,4,5,6-Tetrac	chloro-m-Xylene	92	50-135		

000149

DF - Dilution Factor

ANALYTICAL REPORT

 Curtis & Tompkins, Ltd.
 Date Received:
 02/07/03

 2323 Fifth Street
 Work Order No:
 03-02-0305

 Berkeley, CA 94710-2407
 Preparation:
 EPA 3545

 Method:
 EPA 8310

Project: 163482

Client Sample Number B-FP-6: 2-2.5				Date Collected	Matrix	Date Prepared	Date Analyzed	ed QC Batch ID	
		03-02-03	05-1	02/05/03	Solid	02/07/03	02/10/03	03020	7L01
									
Result	<u>RL</u>	DF Qua	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
ND	50	1	ug/kg	Benzo (a) Anthra	cene	ND	50	1	ug/kg
ND	50	1	ug/kg	Chrysene		ND	50	1	ug/kg
ND	50	1	ug/kg	Benzo (b) Fluorai	nthene	ND	50	1	ug/kg
ND	50	1	ug/kg	Benzo (k) Fluorai	nthene	ND	50	1	ug/kg
ND	50	1	ug/kg	Benzo (a) Pyrene	ł	ND	50	1	ug/kg
ND	50	1				ND	50	1	ug/kg
ND	50	1		, , ,		ND	50	1	ug/kg
ND		1		,	•			1	ug/kg
REC (%)	Control	•			, . ,			,	~gg
76	40-160								
		03-02-03	05-2	02/05/03	Solid	02/07/03	02/10/03	03020	7L01
			,					,	
Result	<u>RL</u>	DF Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
ND	50	1	ug/kg	Benzo (a) Anthra	сепе	ND	50	1	ug/kg
ND	50	1	ug/kg	Chrysene		ND	50	1	ug/kg
ND	50	1	ug/kg	Benzo (b) Fluorar	nthene	ND	50	1	ug/kg
ND	50	1	ug/kg	Benzo (k) Fluorar	thene	ND	50	1	ug/kg
ND	50	1	ug/kg	Benzo (a) Pyrene		ND	50	1	ug/kg
ND	50	1	ug/kg	Dibenz (a,h) Anth	racene	ND	50	1	ug/kg
ND	50	1	ug/kg	Benzo (g,h,i) Pen	/lene	ND	50	1	ug/kg
ND	50	1				ND	50	1	ug/kg
REC (%)	Control	Qua		(, , , , , , , , , , , , , , , , , , ,	•				-33
			=						
84	40-160								
		03-02-03)5-3	02/05/03	Solid	02/07/03	02/10/03	03020	7L01
Posult	DI	DE Oual	Linite	Darameter		Popult	D1	DE Qual	Unito
result	IZE	טו עניפו	Onto	<u> Fatameter</u>		resuit	17F	UI Quai	Ones
1800	50	1	ug/kg	' '	cene	1500	500	10 D	ug/kg
				Chrysene					ug/kg
			ug/kg				500		ug/kg
		1	ug/kg	, ,		850	500	10 D	ug/kg
1300	500	10 D	ug/kg	Benzo (a) Pyrene		3900	500	10 D	ug/kg
200	50	1	ug/kg	Dibenz (a,h) Anth	racene	2600	500	10 D	ug/kg
3000	500	10 D	ug/kg	Benzo (g,h,i) Pen	lene	3400	500	10 D	⊔g/kg
4600	500	10 D				2400	500	10 D	ug/kg
REC (%)	Control			() :/: -1/	•		-	_	3 3
105	<u>Limits</u> 40-160								
	ND N	ND 50	Number	ND 50 1 ug/kg 1300 500 10 D ug/kg 200 50 1 ug/kg 200 50 1 ug/kg 3000 500 10 D ug/kg 4600 500 10 D ug/kg REC (%) Control Limits	Number Collected	Number Collected Matrix	Number Collected Matrix Prepared	Number Collected Matrix Prepared Analyzed	Number Collected Matrix Prepared Analyzed QC Bat

000150

Page 1 of 4

Muhan

DF - Dilution Factor ,

Qual - Qualifiers

alscience nvironmental aboratories, Inc.

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation: Method: 02/07/03 03-02-0305 EPA 3545 EPA 8310

Page 2 of 4

u de Number		I		ample nber		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batcl	h ID
lient Sample Number		24. 25.4 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2-0305	-4	02/05/03	Solid	02/07/03	02/11/03	0302071	LO1
B-FP7 ; 5-5.5	<u> 15 Septembrie 1915</u>		00-0		() () () () () () () () () ()	(47) <u>- 175, 151 1</u>			<u>-</u>		
arameter	Result	<u>RL</u>	DF .	Qual	<u>Units</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	DF Qual	<u>Units</u>
an <u>ania an</u>					unika	Benzo (a) Anth	racene	ND	50	1	ug/kg
aphthalene	ND	50	1		ug/kg ug/ka	Chrysene		ND	50	1	ug/kg
cenaphthylene	ND	50	1		ug/kg	Benzo (b) Fluo	ranthene	ND	50	1	ug/kg
cenaphthene	ND	50	1		ug/kg ug/kg	Benzo (k) Fluo	ranthene	ND	50	1	ug/kg
luorene	ND	50	1			Benzo (a) Pyre	ene	ND	50	1	ug/kg
henanthrene	ND	50	.]		ug/kg	Dibenz (a,h) A	nthracene	ND	50	1	ug/kg
nthracene	ND	50	1		ug/kg	Benzo (g,h,i) F		ND	50	1	ug/kg
luoranthene	ND	50	1		ug/kg	Indeno (1,2,3-	r d) Pyrene	ND	50	1	ug/kg
Pyrene	ND	50	1		ug/kg	moeno (1,2,0-	o,a) i y iono				
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>							
		<u>Limits</u>									
Decafluorobiphenyl	68	40-160			·	7.00 10.00	7 . 7 . T	140 F 145s		3 030207	71.04
Table 1 at 15 at 15	HARRIST CO.		03-0	02-030	5-5	02/05/03	Solid	02/07/03	02/10/0	3 030207	LUI
B-FP2 ; 2.5-3.0		<u> Karangari</u>			17,574.						
								Re <u>sult</u>	<u>RL</u>	DF Qual	<u>Units</u>
Para <u>meter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	<u>Parameter</u>		Keanir	<u>13=</u>		
-arameter	<u> </u>						1	ND	50	1	ug/kg
Naphthalene	ND	50	1		ug/kg	Benzo (a) Ant	nracene	ND	50	1	ug/kg
Naphthalene Acenaphthylene	ND	50	1		ug/kg	Сhrysene		ND	50	1	ug/kg
	ND	50	1		ug/kg	Benzo (b) Flu	oranthene	-	50	1	ug/kg
Acenaphthene	ND	50	1		ug/kg	Benzo (k) Flu		ND	50	1	ug/kg
Fluorene	ND	50	1		ug/kg	Benzo (a) Pyi		ND	50	i	ug/kg
Phenanthrene	ND	50	1		ug/kg	Dibenz (a,h) /	Anthracene	ND		1	ug/kg
Anthracene	ND	50	1		ug/kg	Benzo (g.h,i)	Perylene	ND	50	1	ug/kg
Fluoranthene	ND	50	1		ug/kg	Indeno (1,2,3	-c,d) Pyrene	ND	50		ugrkg
Pyrene	REC (%)	Control	•	Qua							
<u>Surrogates:</u>	REC (70)	Limits	•	<u>u</u>	-						
	88	40-160									
Decafluorobiphenyl	00	40-100			1 a		Solid	02/07/0	02/10/0	03020)7L01
B-FP2 ; 5.5-6.0		Mary No.	03	-02-03	05-6	02/05/03	Sond	02,01,0		The State Square	· · · · · · · · · · · · · · · · · · ·
B-112, 0.0 0.0	1, 3 (25)										
			O.F.	0	U <u>nits</u>	Parameter Parameter		Result	<u>RL</u>	<u>DF</u> Qua	<u>Units</u>
Parameter Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qua	Office	1 010111040					
		50	4		ug/kg	Benzo (a) Ar	thracene	ND	50	1	ug/kg
Naphthalene	ND	50	1		ug/kg	Chrysene		ND	50	1	ug/kg
Acenaphthylene	ND	50	1		ug/kg ug/kg	Benzo (b) Fl	uoranthene	ND	50	1	ug/kg
Acenaphthene	ND	50		•		Benzo (k) Fl	uoranthene	ND	50	1	ug/kg
Fluorene	ND	50	1		ug/kg	Benzo (a) Py		ND	50	1	ug/kg
Phenanthrene	ND	50		1	ug/kg	Dibenz (a,h)	Anthracene	ND	50	1	ug/kg
Anthracene	ND	50	•	1	ug/kg	Benzo (g,h,i	Perviene	ND	50	1	ug/kg
Fluoranthene	ND	50	•	1	ug/kg	Denzo (9,11,1	3-c,d) Pyrene	ND	50	1	ug/kg
Pyrene	ND	50		1	ug/kg	inaeno (1,∠,	J-U,u) i yicile				
Surrogates:	<u>REC (%)</u>	<u>Contro</u>		<u>Qu</u>	<u>al</u>						
<u>Dailodaron.</u>		Limits									
		40 400	`								
Decafluorobiphenyl	70	40-160	J							000	عاستو و

RL - Reporting Limit .

DF - Dilution Factor ,

Qual - Qualifiers

ANALYTICAL REPORT

Curtis & Tompkins, Ltd.	Date Received:	02/07/03
2323 Fifth Street	Work Order No:	03-02-0305
Berkeley, CA 94710-2407	Preparation:	EPA 3545
	Method:	EPA 8310

Project: 163482

Page 3 of 4

Client Sample Number			Lab Samp Number		Date Collected	Matrix	Date Prepared	Date Analyzed	d QC Ba	atch ID
B-FP1 ; 2.5-3.0			03-02-03	05-7	02/05/03	Solid	02/07/03	02/10/03	3 03020	07L01
Parameter	Result	RL	DF Qual	ıl Units	Parameter		Result	RL	DF Qua	al Units
Falamotor		_		<u> </u>	I didine					<u> </u>
Naphthalene	ND	50	1	ug/kg	Benzo (a) Anth	таселе	ND	50	1	ug/kg
Acenaphthylene	ND	50	1	ug/kg	Chrysene		ND	50	1	ug/kg
Acenaphthene	ND	50	1	ug/kg	Benzo (b) Fluor		ND	50	1	ug/kg
Fluorene	ND	50	1	ug/kg	Benzo (k) Fluor	ranthene	ND	50	1	ug/kg
Phenanthrene	ND	50	1	ug/kg	Benzo (a) Pyre		ND	50	1	ug/kg
Anthracene	ND	50	1	ug/kg	Dibenz (a,h) Ar	nthracene	ND	50	i	ug/kg
Fluoranthene	ND	50	1	ug/kg	Benzo (g,h,i) P		ND	50	1	ug/kg
Pyrene	ND	50	1	ug/kg	Indeno (1,2,3-c		ND	50	1	ug/kg
Surrogates:	REC (%)	Control	· ·			, ,			•	*a
Outroducer.	· 2=/	Limits	, <u></u>	7						
Decafluorobiphenyl	64	<u>40-160</u>								
B-FP1 ; 5.5-6.0			03-02-03	05-8	02/05/03	Solid	02/07/03	02/10/03	3 03020	07L01
		-								
<u>Parameter</u>	Result	<u>RL</u>	DF Qual	<u>Units</u>	<u>Parameter</u>		Result	RL	<u>DF</u> Qua	al <u>Units</u>
Naphthalene	ND	50	1	ug/kg	Benzo (a) Anth	ıracene	ND	50	1	ug/kg
Acenaphthylene	ND	50	1	ug/kg	Chrysene		ND	50	1	ug/kg
Acenaphthene	ND	50	1	ug/kg	Benzo (b) Fluor	ranthene	ND	50	1	ug/kg
Fluorene	ND	50	1	ug/kg	Benzo (k) Fluor		ND	50	1	ug/kg
Phenanthrene	ND	50	i	ug/kg	Benzo (a) Pyrei		ND	50	1	ug/kg
Anthracene	ND	50	1	ug/kg	Dibenz (a,h) Ar		ND	50	1	ug/kg ug/kg
Fluoranthene	ND	50	1	ug/kg ug/kg	Benzo (g,h,i) P		ND	50	1	ug/kg ug/kg
Pyrene	ND	50	1	ug/kg ug/kg	Indeno (1,2,3-c	•	ND	50 50	1	ug/kg ug/kg
Surrogates:	REC (%)	Control	=	~ ~	IIIUGOV (cymr -	,C) Fyiche	NE	56	•	ug/ng
Surrogates.	KEC [/o]		. <u>Qua</u>	<u>d</u>						
ndu.avahishanul	66	<u>Limits</u> 40-160								
Decafluorobiphenyl	00	40-100						1 - 12		
COMP FY	<u> </u>		03-02-03	05-9	02/05/03	Solid	02/07/03	02/10/03	3 03020	07L01
Parameter	Result	<u>RL</u>	DF Qual	<u> Units</u>	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u> Qua	al <u>Units</u>
Naphthalene	ND ND	50 50	1	ug/kg	Benzo (a) Anthi	racene	ND ND	50 50	1	ug/kg
Acenaphthylene	ND	50 50	1	ug/kg	Chrysene	.=	ND ND	50	1	ug/kg
Acenaphthene	ND	50	1	⊔g/kg	Benzo (b) Fluor		ND	50	1	ug/kg
Fluorene	ND	50	1	ug/kg	Benzo (k) Fluor		ND	50	1	ug/kg
Phenanthrene	ND	50	1	ug/kg	Benzo (a) Pyrei		ND	50	1	ug/kg
Anthracene	ND	50	1	ug/kg	Dibenz (a,h) An		ND	50	1	ug/kg
Fluoranthene	, ND	50	1	ug/kg	Benzo (g,h,i) Po	-	ND	50	1	ug/kg
Ругеле	ND	50	1	ug/kg	Indeno (1,2,3-c	-	ND	50	1	ug/kg
Surrogates:	REC (%)	Control				10,				
Decafluorobiphenyl	79	<u>Limits</u> 40-160								

000152

RL - Reporting Lir

DF - Dilution Factor ,

Qual - Qualifiers

alscience nvironmental , aboratories, Inc.

ANALYTICAL REPORT

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation:

02/07/03 03-02-0305 EPA 3545

Method:

EPA 8310

Project: 163482

Page 4 of 4

Client Sample Number			Lab Sa Num		Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
COMP RY			03-02	0305-10	02/05/03	Selid	02/07/03	02/10/03	03020	7L01
Paramete <u>r</u>	Result	<u>RL</u>	DF Q	ual <u>Units</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>DF</u> Qua	<u>Units</u>
Naphthalene	ND	50	1	ug/kg	Benzo (a) Anth	racene	ND	50	1	ug/kg
Acenaphthylene	ND	50	1	ug/kg	Chrysene		ND	50	1	ug/kg
Acenaphthene	ND	50	1	ug/kg	Benzo (b) Fluo	ranthene	ND	50	1	ug/kg
Fluorene	ND	50	1	ug/kg	Benzo (k) Fluo		ND	50	1	ug/kg
Phenanthrene	ND	50	1	ug/kg	Benzo (a) Pyre		ND	50	1	ug/kg
Anthracene	ND	50	1	ug/kg	Dibenz (a,h) A		ND	50	1	ug/kg
Fluoranthene	ND	50	1	ug/kg	Benzo (g,h,i) P		ND	50	1	ug/kg
Pyrene	ND	50	1	ug/kg	Indeno (1,2,3-c	c,d) Pyrene	ND	50	1	ug/kg
Surrogates:	<u>REC (%)</u>	Control Limits	<u>(</u>	Qual						
Decafluorobiphenyl	65	40-160					_			
Method Blank			099-0	7-002-270	N/A	Solid	02/07/03	02/07/03	0302	07L01
Parameter	Result	<u>RL</u>	DF C	Qual <u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qua	al <u>Units</u>
t i a a lath a la ma	ND	50	1	ug/kg	Benzo (a) Anti	nracene	ND	50	1	ug/kg
Naphthalene Acenaphthylene	ND	50	1	ug/kg	Chrysene		ND	50	1	ug/kg
Acenaphthene	ND	50	1	ug/kg	Benzo (b) Fluo	ranthene	ND	50	1	ug/kg
Fluorene	ND	50	1	ug/kg	Benzo (k) Fluo	ranthene	ND	50	1	ug/kg
Phenarithrene	ND	50	1	ug/kg	Benzo (a) Pyre		ND	50	1	ug/kg
Anthracene	ND	50	1	ug/kg	Dibenz (a,h) A		ND	50	1	ug/kg
Fluoranthene	ND	50	1	ug/kg	Benzo (g,h,i) I		ND	50	1	ug/kg
Pyrene	ND	50	1	ug/kg	Indeno (1,2,3-	c,d) Pyrene	ND	50	1	ug/kg
Surrogates:	REC (%)	Control Limits		Qual						
Decafluorobiphenyl	97	40-160								

ANALYTICAL REPORT

 Curtis & Tompkins, Ltd.
 Date Received:
 02/07/03

 2323 Fifth Street
 Work Order No:
 03-02-0305

 Berkeley, CA 94710-2407
 Preparation:
 EPA 3510B

 Method:
 EPA 8310

Project: 163482

Page 1 of 1

Client Sample Number				Sampl	е	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Bate	ch ID
B-FP5				02-030	15-11	02/05/03	Aqueous	02/07/03	02/10/03	030207	'L02
<u> </u>						<u> </u>				· · · · · · · · · · · · · · · · · · ·	
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
Naphthalene	ND	1.0	1		ug/L	Benzo (a) Anti	racene	ND	1.0	1	ug/L
Acenaphthylene	ND	1.0	1		ug/L	Chrysene		ND	1.0	1	ug/L
Acenaphthene	ND	1.0	1		ug/L	Benzo (b) Fluo	ranthene	ND	1.0	1	ug/L
Fluorene	ND	1.0	1		ug/L	Benzo (k) Fluo	ranthene	ND	1.0	1	ug/L
Phenanthrene	ND	1.0	1		ug/L	Benzo (a) Pyre	ene	ND	0.20	1	ug/L
Anthracene	ND	1.0	1		ug/L	Dibenz (a,h) A		ND	1.0	1	ug/L
Fluoranthene	ND	1.0	1		ug/L	Benzo (g,h,i) F		ND	1.0	1	ug/L
Pyrene	ND	1.0	1		ug/L	Indeno (1,2,3-	•	ND	1.0	1	ug/L
Surrogates:	REC (%)	Control		Qual	-		-,-,-,				~
Decafluorobiphenyl	69	<u>Limits</u> 40-160									į
B-FP4			03-	02-030	5-12	02/05/03	Aqueous	02/07/03	02/10/03	030207	'L02
				· · · ·		1 10 10 10 10 10 10 10 10 10 10 10 10 10					
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Quai	<u>Units</u>
Naphthalene	ND	1.0	1		ug/L	Benzo (a) Anti	rracene	ND	1.0	1	ug/L
Acenaphthylene	ND	1.0	1		ug/L	Chrysene		ND	1.0	1	ug/L
Acenaphthene	ND	1.0	1		ug/L	Велzo (b) Fluo	ranthene	ND	1.0	1	ug/L
Fluorene	ND	1.0	1		ug/L	Benzo (k) Fluo	ranthene	ND	1.0	1	ug/L
Phenanthrene	ND	1.0	1		ug/L	Benzo (a) Pyre	ene	ND	0.20	1	ug/L
Anthracene	ND	1.0	1		ug/L	Dibenz (a,h) A	nthracene	ND	1.0	1	ug/L
Fluoranthene	ND	1.0	1		ug/L	Benzo (g.h.i) F	Perylene	ND	1.0	1	ug/L
Pyrene	ND	1.0	1		ug/L	Indeno (1,2,3-	•	ND	1,0	1	ug/L
Surrogates:	REC (%)	<u>Control</u> Limits	•	Qual			-,-, .]				,
Decafluorobiphenyl	93	40-160									
Method Blank			099	-07-00	3-234	N/A	Aqueous	02/07/03	02/07/03	030207	/L02
D	D#	- DI	BE	O I	11-9-	D		Dooule	DI	DE Ouel	Linita 1
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>Parameter</u>		Result	<u>RL</u>	DF Qual	<u>Units</u>
Naphthalene	ND	1.0	1		ug/L	Benzo (a) Anth	racene	ND	1.0	1	ug/L
Aceпaphthylene	ND	1.0	1		ug/L	Chrysene		ND	1.0	1	ug/L
Acenaphthene	ND	1.0	1		ug/L	Benzo (b) Fluo	ranthene	ND	1.0	1	ug/L
Fluorene	ND	1.0	1		ug/L	Benzo (k) Fluo	ranthene	ND	1.0	1	ug/L
Phenanthrene	ND	1.0	1		ug/L	Benzo (a) Pyre	ene	ND	0.20	1	ug/L
Anthracene	ND	1.0	1		ug/L	Dibenz (a,h) A		ND	1.0	1	ug/L
Fluoranthene	ND	1.0	1		ug/L	Benzo (g,h,i) F		ND	1.0	1	ug/L
Pyrene	ND	1.0	1		ug/L	Indeno (1,2,3-		ND	1.0	1	ug/L
Surrogates:	REC (%)	Control	•	Qual	-g, =		_,_, . ,			-	
Decafluorobiphenyl	76	<u>Limits</u> 40-160									1

000154

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Quality Control - Spike/Spike Duplicate

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Preparation:

Method:

02/07/03

03-02-0305

Total Digestion

EPA 6010B

Project: 163482

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
B-FP1 ; 2.5-3.0	Solid	ICP 3300	02/07/03		02/10/03	030207S06
P <u>arameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Antimony	71	69	50-115	2	0-20	
Arsenic	99	97	75-125	2	0-20	
Barium	114	113	75-125	1	0-20	
Beryllium	98	96	75-125	2	0-20	
Cadmium	96	95	75-125	2	0-20	
Chromium (Total)	102	96	75-125	4	0-20	
Cobalt	103	101	75-125	1	0-20	
Copper	102	101	75-125	1	0-20	
Lead	96	95	75-125	2	0-20	
Molybdenum	96	96	75-125	1	0-20	
Nickel	104	102	75-125	2	0-20	
Selenium	96	93	75-125	4	0-20	
Silver	97	95	75-125	2	0-20	
Thallium	91	93	75-125	2	0-20	
Vanadium	103	100	7 5 -125	2	0-20	
Zinc	99	97	75-125	2	0-20	

Quality Control - Laboratory Control Sample

Curtis & Tompkins, Ltd. 2323 Fifth Street

Berkeley, CA 94710-2407

Date Received: Work Order No: Preparation:

Method:

02/07/03 03-02-0305 **Total Digestion EPA 6010B**

Project:

163482

Quality Control Sample ID	ality Control Sample ID Matrix		Date Analyze	d Lab File ID	LCS Batch Number		
097-01-002-4,043	Solid	ICP 3300	02/10/03	030207-1-06		030207L06	
<u>Parameter</u>		Conc Added	Conc Recovered	%Rec	%Rec CL	Qualifiers	
Antimony		50.0	42.2	84	80-120		
Arsenic		50.0	44.2	88	80-120		
Barium		50.0	52.0	104	80-120		
Beryllium		50.0	46.7	93	80-120		
Cadmium		50.0	46.9	94	80-120		
Chromium (Total)		50.0	46.2	92	80-120		
Cobalt		50.0	49.9	100	80-120		
Copper		50.0	46.2	92	80-120		
Lead		50.0	46.6	93	80-120		
Molybdenum		50.0	47.5	95	80-120		
Nickel		50.0	47.9	96	80-120		
Selenium		50.0	44.4	89	80-120		
Silver		25.0	22.8	91	80-120		
Thallium		50.0	46. 9	94	80-120		
Vanadium		50.0	45.7	91	80-120		
Zinc		50.0	47.7	95	80-120		

Quality Control - Spike/Spike Duplicate

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Preparation:

Method:

02/07/03

03-02-0305

Total Digestion

EPA 7471A

Project: 163482

Quality Control Sample ID	Matrix	Instrument	Date Prepare	d	Date Analyzed	MS/MSD Batch Number
03-02-0302-2	Solid	Mercury	02/07/03	r vv f . P ¹ j	02/07/03	030207S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Mercury	116	117	76-136	1	0-16	

Quality Control - Laboratory Control Sample

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation: Method: 02/07/03 03-02-0305 Total Digestion EPA 7471A

Project:

163482

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID	LC	CS Batch Number
099-04-007-1,871	Solid	Mercury	02/07/03	030207L01		030207L01
<u>Parameter</u>		Conc Added	Conc Recovered	%Rec	%Rec CL	Qualifiers
Mercury		0.835	0.843	101	82-124	

Quality Control - Spike/Spike Duplicate

Curtis & Tompkins, Ltd. 2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Preparation:

Method:

02/07/03

03-02-0305

EPA 3545

EPA 8082

Project: 163482

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dai Analy		MS/MSD Batch Number
03-02-0303-3	Solid	GC 10	02/07/03	02/0	7/03	030207806
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Aroclor-1260	253	307	50-135	19	0-25	3

Quality Control - LCS/LCS Duplicate

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Preparation:

Method:

02/07/03

03-02-0305

EPA 3545

EPA 8082

Project:

163482

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number
099-07-009-216	Solid	GC 10	02/07/03	02/07/03	030207L06

 Parameter
 LCS %REC
 LCSD %REC
 %REC CL
 RPD
 RPD CL
 Qualifiers

 Aroclor-1260
 114
 116
 50-135
 1
 0-25

Quality Control - LCS/LCS Duplicate

Curtis & Tompkins, Ltd. 2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

02/07/03

Work Order No:

03-02-0305

Preparation: Method:

EPA 3510B EPA 8082

Project: 163482

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number	
099-07-010-102	Aqueous	GC 10	02/07/03	02/07/03	030207L04	

 Parameter
 LCS %REC
 LCSD %REC
 %REC CL
 RPD
 RPD CL
 Qualifiers

 Aroclor-1260
 114
 112
 50-135
 2
 0-25

000161

Quality Control - Spike/Spike Duplicate

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Preparation:

Method:

02/07/03

03-02-0305

EPA 3545

EPA 8310

Project: 163482

Quality Control Sample ID	Matrix	Matrix Instrument		· I	Date Analyzed	MS/MSD Batch Number	
03-02-0304-4	Solid	HPLC 5	02/07/03		02/07/03	030207501	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzo (b) Fluoranthene	109	109	40-160	0	0-20		
Benzo (k) Fluoranthene	110	110	40-160	0	0-20		
Benzo (a) Pyrene	102	102	40-160	0	0-20		
Dibenz (a,h) Anthracene	112	112	40-160	0	0-20		
Benzo (g,h,i) Perylene	108	107	40-160	0	0-20		
Indeno (1,2,3-c,d) Pyrene	105	105	40-160	0	0-20	•	

Quality Control - LCS/LCS Duplicate

Curtis & Tompkins, Ltd. 2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No: 0

Preparation: Method: 03-02-0305 EPA 3545 EPA 8310

02/07/03

Project: 163482

Quality Control Sample ID	Matrix Ins	strument	Date Prepared	_	ate lyzed	LCS/LCSD Bat Number	ch
099-07-002-270	Solid H	IPLC 5	02/07/03	02/0	7/03	030207L01	
Parameter Parameter	LCS %REC	LCSD %I	REC %	REC CL	RPD	RPD CL	Qualifiers
Benzo (b) Fluoranthene	108	107		40-160	1	0-20	
Benzo (k) Fluoranthene	110	110		40-160	0	0-20	
Benzo (a) Pyrene	99	97		40-160	2	0-20	
Dibenz (a,h) Anthracene	112	111		40-160	0	0-20	
Benzo (g,h,i) Perylene	105	104		40-160	1	0-20	
Indeno (1,2,3-c,d) Pyrene	105	105		40-160	0	0-20	

Quality Control - Spike/Spike Duplicate

Curtis & Tompkins, Ltd.

2323 Fifth Street

Berkeley, CA 94710-2407

Date Received:

Work Order No:

Preparation:

Method:

02/07/03

03-02-0305

EPA 3510B

EPA 8310

Project: 163482

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
03-02-0292-5	Aqueous	HPLC 5	02/07/03		02/07/03	030207S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzo (b) Fluoranthene	106	106	40-160	0	0-20	
Benzo (k) Fluoranthene	108	107	40-160	0	0-20	
Benzo (a) Pyrene	100	99	40-160	1	0-20	
Dibenz (a,h) Anthracene	109	109	40-160	0	0-20	
Benzo (g,h,i) Perylene	103	102	40-160	1	0-20	
Indeno (1,2,3-c,d) Pyrene	102	102	40-160	0	0-20	

Quality Control - LCS/LCS Duplicate

Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710-2407 Date Received: Work Order No: Preparation:

Method:

02/07/03 03-02-0305 EPA 3510B EPA 8310

Project:

163482

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batc Number	h
099-07-003-234	Aqueous	HPLC 5	02/07/03	02/07/03	030207L02	
Parameter	LCS %REG	C LCSD %F	REC %REC	CL RPD	RPD CL	Qualifiers
Benzo (b) Fluoranthene	98	99	40-1	60 1	0-20	
Benzo (k) Fluoranthene	100	101	40-1	60 1	0-20	
Benzo (a) Pyrene	89	90	40-1	60 1	0-20	
Dibenz (a,h) Anthracene	100	102	40-1	60 2	0-20	
Benzo (g,h,i) Perylene	94	95	40-1	60 0	0-20	
Indeno (1,2,3-c,d) Pyrene	94	95	40-1	60 1	0-20	

alscience GLOSSARY OF TERMS AND QUALIFIERS nvironmental aboratories, Inc.

Work Order Number: 03-02-0305

Qualifier	<u>Definition</u>
3	Spike or Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
D	The sample data was reported from a diluted analysis.
ND	Not detected at indicated reporting limit.

WORK ORDER #: 03	3- 0	2	- 0	3	0	5
------------------	-------------	---	------------	---	---	---

Cooler ____ of ___

SAMPLE RECEIPT FORM

OAM LE NEO	
CLIENT: C+T	DATE: 2/7/03
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): °C Temperature blank °C IR thermometer Ambient temperature. Initial:
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not Intact)	: Not Applicable (N/A):
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

Curtis & Tompkins, Ltd. Analytical Laboratories, Since 1878 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 (510) 486-0532

Project Number: 163482

Subcontract Laboratory:

Cal Science

7440 Lincoln Way

Garden Grove, CA 92641-1432

(714) 895-5494

ATTN: Jody McInerney x132

Results due: 02/12/03 /W

Report Level: II

Please send report to: James Brownfield

*** Please report using Sample ID rather than C&T Lab #.

Sample ID	Sampled				ments
3-FP-6;2-2.5	02/05	Soil	8310	163482-001	
B-FP-6;2-2.5	02/05	Soil	PCB	163482-001	1
B-FP-6;2-2.5	02/05	Soil	T26 MET	163482-001	l.
B-FP-6;2-2.5	02/05	Soil	T26/HG	163482-001	¥
B-FP-6;2-2.5	02/05	Soil	T26/ICP	163482-001	
B-FP6;5-5.5	02/05	Soil	8310	163482-003	
B-FP6;5-5.5	02/05	Soil	PCB	163482-003	_
B-FP6;5-5.5	02/05	Soil	T26 MET	163482-003	2
B-FP6;5-5.5	02/05	Soil	T26/HG	163482-003	
B-FP6;5-5.5	02/05_	Soil	T26/ICP	163482-003	
B-FP7;2.5-3.0	02/05	Soil	8310	163482-008	
B-FP7;2.5-3.0	02/05	Soil	PCB	163482-008	7
B-FP7;2.5-3.0	02/05	Soil	T26 MET	163482-008	_5
B-FP7;2.5-3.0	02/05	Soil	T26/HG	163482-008	
B-FP7;2.5-3.0	02/05_	Soil	T26/ICP	163482-008	
B-FP7;5-5.5	02/05	Soil	8310	163482-009	
B-FP7;5-5.5	02/05	Soil	PCB	163482-009	Æ
B-FP7;5-5.5	02/05	Soil	T26 MET	163482-009	4
B-FP7;5-5.5	02/05	Soil	T26/HG	163482-009	_ i
<u>B</u> -FP7;5-5.5	02/05	Soil	T26/ICP	163482-009	
B-FP2;2:5-3.U	02/05	Soil	8310	163482-014	
B-FP2;2.5-3.0	02/05	Soil	PCB	163482-014	1000
B-FP2;2.5-3.0	02/05	Soil	T26 MET	163482-014	ζ
B-FP2;2.5-3.0	02/05	Soil	T26/HG	163482-014	
B-FP2;2.5-3.0	02/05	_Soil	T26/ICP	163482-014	
B-FP2;5.5-6.0	02/05	Soil	8310	163482-016	
B-FP2;5.5-6.0	02/05	Soil	PCB	163482~016	<i>(</i>
3-FP2;5.5-6.0	02/05	Soil	T26 MET	163482-016	()
3-FP2;5.5-6.0	02/05	Soil	T26/HG	163482-016	7
B-FP2;5.5-6.0	02/05	Soil	T26/ICP_	163482-016	
B-FP1;2.5-3.0	02/05	Soil	8310	163482-020	
B-FP1;2.5-3.0	02/05	Soil	PCB	163482-020	7
B-FP1;2.5-3.0	02/05	Soil	T26 MET	163482-020	/
age 1 of 2	,				

Page 1 of 2

0305

Curtis & Tompkins, Ltd.
Analytical Laboratories, Since 1878
2323 Fifth Street
Berkeley, CA 94710
(510) 486-0900
(510) 486-0532

Sample ID	Sampled Matrix	Analysis	C&T Lab # Comments
TB-FP1;2.5-3.0	02/05 Soil	T26/HG	163482-020
B-FP1;2.5-3.0	02/05 Soil	T26/ICP	163482-020
B-FP1;5.5-6.0	02/05 Soil	8310	163482-022
B-FP1;5.5-6.0	02/05 Soil	PCB	163482-022
B-FP1;5.5-6.0	02/05 Soil	T26 MET	163482-022
B-FP1;5.5-6.0	02/05 Soil	T26/HG	163482-022
B-FP1;5.5-6.0	02/05 Soil	T26/ICP	163482-022
COMP FY	02/05 Soil	8310	163482-029 comp
COMP II	-025, -026, -027, -028		Already
COMP FY	02/05 Soil	PCB	163482-029 comp Compad
	-025,-026,-027,-028		الملا
COMP FY	02/05 Soil	T26 MET	±03102 022 -022
	-025,-026,-027,-028		2/6
COMP FY	02/05 Soil	T26/HG	163482-029 comp
T	-025,-026,-027,-028		
COMP FY	02/05 Soil	T26/ICP	163482-029 comp
	-025,-026,-027,-028		
T COMP RY	02/05 Soil	8310	163482-033 comp
1	-030,-031,-032		163482-033 comp Compled
COMP RY	02/05 Soil	PCB	163482-033 comp Compled
	-030,-031,-032		163482-033 COMP JHB
COMP RY	02/05 Soil	T26 MET	103101 033 00
±	-030,-031,-032		7/2
COMP RY	02/05 Soil	T26/HG	163482-033 comp 2/6
Т	-030,-031,-032		′
COMP RY	02/05 Soil	T26/ICP	163482-033 comp
	-030,-031,-032		160400 035
B-FP5	02/05 Water	8310	163482-035
B-FP5	02/05 Water	PCB	163482-035
B-FP4	02/05 Water	8310	163482-036
B-FP4	02/05 Water	PCB	163482-036

Notes:	Relinguished By: Received By:
	2-6-03
7	Date/Time Vizopy Date/Time 2/7/03 9:30

Signature on this form constitutes a firm Purchase Order for the services requested above. Page 2 of 2

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT	RECEIVED
Prepared for: Baseline Environmental	FEB 2 0 2003 BASELINE
5900 Hollis Street Suite D Emeryville, CA 94608	
	7
Date: 13-FEB-03 Lab Job Number: 163562 Project ID: Y0323-01 Location: 751-785 Brush St.	

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

8-3, 8-4

510

420 1707;

rage

Turn-around Time

t By: BASELINE;

100 Hollin Siron, Suite merrille CA 94608 c) (510) 420 8686 Fa Project Number Vo 323-01	Project N	lame and																125/m	1			+		1	Folor
Samplers: (Signatu		· -					Typ		onte	iner		Pro	cser	71 8 17	,c		T T	到		A. C. 620)	- [STANT .	. اپ		addd 2110/03
Sample ID No Station		Date:	Time.	Media	No.	SS 14	- P	250 ml Pot	ر الاعار	2000	None (fre)	皇	၌ ဋ	2		TOR	Zo.	3	177	P.S.			<u> </u>	1	Remarks/ Composite
8-FP5; Z-2	.5	3/4/63	13:00	5	Ī	X					X	П	$oldsymbol{1}$				χ		<u>\</u>	X	X	ᅶ	<u> </u>	P	9
B-FPS 2.	5	21463	13:00	5	5	┨	+	╁┤	H	╀	X	H	+	╂┑	Н	<u> </u>	X	Y	×	X	k	1	X	広	8
B-FPS 5-5	-,,		13:10	3	5		\dagger		-	才	Ţ,		士			X		1			<u> </u>]_	4	11 - 4
	-10.5		13:30	3		М	1		П	\bot	X		\perp	1_	Ц			-		<u> </u>	├	╀	╀╌	_	fuld Hidel
	-15.5		13:40	٤_	╀	1	+	╀	╂╂	+	Y	Н	+	╁	╁	-						上		1	/, /
			-	 	士	$\dagger \dagger$	1	土	廿		1			1							Ţ	1	-		
					Γ	П	1	1	П	\perp	-	\vdash	H	╁	╀	├	├	+-		┼	-	+	十	十	
			 	+	╁	╫	+	+	Н	H	╁	╀	H	+	十						工	1		<u> </u>	
				†	1	\prod	1	Ī			1		П	I	$oxed{\Box}$			1	╁	<u> </u>	4-	4-	╂╌	\dashv	
						Ц	\perp		$oxed{oxed}$	\sqcup	+	╀-	igwdap	4	Ļ	↓	-	+	╁╌	+	╂	╁	+	十	<u> </u>
			<u> </u>		1	\dashv	4	+	 	Н	+	╀	Н	\dashv	╁	╂─	+-	+	╫	+	+-		_	-	
	:		 	 	╀	+	-	+	╁╴	╀┼	╁	┿	H	+	╁	+-	 	+	1	1_	上				
Relinquished by.		Chista	ndy Scal	Date/ Z-4/03	Time	-11		Rec	ešve	d by	. (S	E23	(Brc)		i	undy Sci interd No N		Date/T	ime	Co Aı	oilchn Revn A/	ns of the Laborary	Sarupli statory	ده ال الايا	pon Q
Relinguished by:	(Signature)	Cust	ody Scal	Date/			+;	Reco	ivo	d by	(Si	gnai	URE))	Cı	estody & wharf	<u>ا</u> اود	Onte/Ti	TIP/TE	Ŕ	ereal rese	FAX U	1914 0 1420	of (lusively Te
Relinquished by.	(Signature)	Cur	No ody Scal	Date	T)rai	;	-	Rec	ZIVI	ed b	y; (S	ıgna	terc		O	etody: St inted No 1	al	Date/	Tyme		e.				10 x STLC

Tracy Babjar

From:

Rhodora Del Rosario <rhodora@baseline-env.com>

To:

<tracy@ctberk.com>

Sent:

Monday, February 10, 2003 4:17 PM

Fwd: Re: Fw: EDD Subject:

One clarification. Discrete encore samples need not be analyzed for pH. Thanks, Rhodora

Date: Mon, 10 Feb 2003 15:56:07 -0800 To: "Tracy Babjar" <tracy@ctberk.com>

From: Rhodora Del Rosario <rhodora@baseline-env.com>

Subject: Re: Fw: EDD

Hey Tracy,

Got your voicemail. It looks like I actually need some of the samples analyzed for pH as well as 07+ 163466

chromium 6.

Please analyze ALL DISCRETE samples that are NOT on hold for pH!! Please analyze composite samples Company and Company for pH also.

Please analyze the following for chromium 6:

- 1) B-FP1; 2.5-3.0,
- 2) B-FP1; 5.5-6,0
- 3) B-FP2; 2.5-3.0 4) B-FP2; 5,3-6.0
- 5) B-FP6; 2-2.5
- 6) B-FP6; 5-5.5 7) B-FP7; 2.5-3.9
- 8) XS-FP7; 5-5.5

Let me know if you have any questions. Thanks, Rhodora

At 03:38 PM 2/10/03 -0800, you wrote:

EDD from Cal Science.

---- Original Message ----

From: Don Burley <aburley@calscience.com>

To: <tracy@ctberk.com>

Sent: Monday, February 10, 2003 3:25 PM

Subject: EDD

- > Tracy,
- > Attached is project 163466 in an Excel spreadsheet.

> Don

CURTIS & TOMPKINS, LTD. BERKELEY

LOGIN CHANGE FORM

Reason for change:	* X	Client Request:	By: Rhodra Dol	Rossic Date/Time:_	2-10	-O3	Initials: 70
	1	Login Review _	Data Review				

Curre Lab II		Previous Lab ID	Client ID	Matrix	Add/Cancel	Analysis	Duedate
163562	-001	163466-003	B-FB;15-20	Soil	Adá.	λ η	2 /
C	-∞2	163466-004	B-FP3; 5.0-5.5	Soil	nda	ρIJ	*
	<u>-003</u>	163466-008	1	Soil	Add:	p+1	
	~ ~	163466-010	B-FP4;5-55	Soil	Add	DH	
	- '	163466-014	B-FP5 2-25	Soil	Add	D/J	
163563		163466-016	B- FP5: -5.5	Scil	Add'	DN	/17
			J	<u>'</u>			
As has to the management of the desired and the second of							
							
P 32 - 1 - 2 1 m Ade 1 colleges 211 Marin pay project (** 4 mile)							
				 			
							`\
3							
		1		 	l	······································	<u> </u>

Curtis & Tompkins, Ltd.

		рН	
Lab #: Client: Project#:	163562 Baseline Environmental Y0323-01	Location: Analysis:	751-785 Brush St. EPA 9045C
Analyte: Matrix: Units: Diln Fac:	pH Soil SU 1.000	Batch#: Sampled: Received: Analyzed:	79135 02/04/03 02/04/03 02/12/03

Lab ID	Result	RL	
163562-001	7.0	1.0	
163562-002	6.4	1.0	
163562-003	5.9	1.0	
163562-004	7.5	1.0	
	7.8	1.0	
163562-006	7.5	1.0	
52234	163562-001 163562-002 163562-003 163562-004 163562-005	163562-001 7.0 163562-002 6.4 163562-003 5.9 163562-004 7.5 163562-005 7.8	163562-001 7.0 1.0 163562-002 6.4 1.0 163562-003 5.9 1.0 163562-004 7.5 1.0 163562-005 7.8 1.0

		рН	
Lab #:	163562	Location:	751-785 Brush St.
Client:	Baseline Environmental	Analysis:	EPA 9045C
Project#:	Y0323-01		
Analyte:	рн	Units:	SU
Field ID:	B-FP5;5-5.5	Diln Fac:	1.000
Type:	SDUP	Batch#:	79135
MSS Lab ID:	163562-006	Sampled:	02/04/03
Lab ID:	QC204491	Received:	02/04/03
Matrix:	Soil	Analyzed:	02/12/03

MSS Result	Result	RL	RPD	Lim	
7.500	7.560	1.0	1	20	

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O. Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Baseline Environmental 5900 Hollis Street Suite D Emeryville, CA 94608

Date: 24-FEB-03 Lab Job Number: 163565 Project ID: Y0323-01

Location: 751-785 Brush St.

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

_

e¢t Manager

Reviewed by:

ions Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of _______

Y

Date/Time Custody Soul 2/5/03 intect Yes No NA Company Stal

Turn-around Time

BASELINE Contact Person

RB

×

k

Lab

The state of the s

X

X

X

X

X

If analyzing for MTHE, confirm any hits with EPA method \$260

witt Dunaki-

Photon Daisers

+ Remarks Composite

7+011

HULD

イズ

MA

* Run Solvable of 10 × Stic.

Comments: Date/Time

ISIBEL

Curlody Seal

intact:

Yes No NA

No NA

CHAIN OF CUSTODY RECORD

Preservative

(see and :

estry trop comec

Received by: (Signature)

Beceived by: (Signature)

Received by: (Signature)

Containers

Type

Media

5

5

Date/Time

Date/Time

Date/Time

45/03/12:20

Τï

5

Time:

10:40

10:50

111:70

1:20

11:40 11:50

Custody Scal

Curiody Seal

Castedy Seal

Yes

Yα

ed at the story with intact custody scal: (Signature)

No

No

2/5/03 11:10

BASELIN E 5900 Hollin Street, Suite D Emeryville, CA 94608 Tel: (510) 420-8686 Fex. (510) 420-1707 Project Name and Location: Project Number 751-785 Brush ST Y6323-01 Samplers: (Signature) Sample ID No. Station Date:

45/63 10:6 10:10 19:50 620

5560 10-10.5 15-155

Relinquished by /(Signature)

Relinquished by: (Signature)

Relinquished by: (Signature)

<u>ာရီ</u>

Ilis Street, Suite D Ide, CA 94608 b) 420-8686 Fax: (510) 4 cct Number Proje	1 Name and	Location: 5 Bru	jh s	5T			nnla	iners						1			3		- 1	4 100 M	parte parte	15 J
ppiers: (Signature)					Type				Preservative				THE SOLL	Polter, 1	Voc.	PH (420)	1	Chair.	1	શું ે		eriks/
Station				No.	S 축	ই হি	3	2	列入	일본	잃	+		χ		X	×	×	×	7	4	
FP-6, 2-2.5	2/5/03		5 5				╁┽	X		-	++	+	X	×	X	አ	Y	×	X	1	7	
FP6, 5-5.5		8:00	5	5	7	士		<u>v</u>	\prod		 	+	K		У						Huld	
P6: 5.5 P6: 10-10.5		8:30	5		K K		+-	+	\coprod		+	+		<u></u>	-						Hold	
76: 15-15.5	10 ()		5	3	H	\prod		X	\coprod	\coprod			Y		K		×	X	X	4	*	
FP7. 2.5 F7 25.3.0	45/63	9:00	5	I	X	\prod						+		K	×	. X	x	K	Y	1	14	
FP) 5-5-5		9:20	Ş	5		\prod	7	X	+				T.		1		+			T	Hold	
FP7' 10-10,5 FP7' 15-15.5		9:40	5	1	耳				1		arion		-			eceive	9 5	Ca k	e Lintac			
			-	\dagger	1			P 63	ef vi S	1 No	ľL	ųi.			Co.		+=	+-				
Oustody Seal Date				Time	 :		eceiv	red b	y: (Signature)				Custody Seal		Date/Time		2.20	Conditions of Samples Upon Arrival at Laboratory: Remarks:				
Relinquished by: (Signa	. Ye	You Gift		5/07 /2:20 (Pate/Time			Received by: (Signature)						Custody S intact	cal	Date/Time			Remad	cs:	-		
clinquished by: (Signature) Custody Scal Date			12800/										es No I	NA .	, 			*hitistichistilabret				
Relinquished by: (Signature) Custody Seal Da				Tin	W.	B						_ `	Yes No NA				Run Soluble it 10 x STLC					
Received at laboratory		Yes No	. /Sì		ure)	+		Date	/Tir	nc		Co	mmenis:									

ву: BASELINE;

CURTIS & TOMPKINS, LTD. BERKELEY

LOGIN CHANGE FORM

Reason for change	Client Request:	By: Rhodera	Date/Time: <u>2-/6 でき 5: 3</u> toitials:	70
(Cason to Change	Login Review	Data Review	•	

Currer Lab II		Previous Lab ID	Client ID	Matrix	Add/Cancel	Analysis	Duedate
		163482-020	B-FP1; 2.5-30	Soil	Add	pH, HoxCr	
/	-000		B-FP1'S.S-6.0		Add		
	-003	<u> -014</u>	B-FP2 25-30		Add		
	-00	-016	B-FP2; 5.5-60	Soil	Add		
	-005	-001	B-FP6-2-2-S	Sail	Add		
	- 006	-003	B-FP6-5-5.5	501	Add		
-	-007	-008	B-FP7/ 2.5-3.0	501	pold	<u> </u>	· .
	-009	V -009	B.FP7,5-55	Scil	Add	DH, HOXCI	
	-069	Γ''. '	B-FP3: 7-7-5		Add)	Hold	· · · · ·
	-010	1 -026	B-F-P4,7-7.5	ļ	Add	HOW	
	-011	1 /	B-FP2 ,7-7.5	<u> </u>	Adl (4010	
	~012	-629	B-FP1,7-7.5		Adm	Hold	
		-021	COMP FY		Alcl	amy4, Hox Cr	e PX
	-013 -014		B-FPS; 7-7-5		Hold	Hold	
	-015	1-7-	1 B-FP6 17-7.5		Add	Hold	<u> </u>
	- O15		2 B-FP7,7-7.5	-	Add	Hold	
16356					Add	COMP3 HexCr	PH

000181

Tracy Babjar

From:

Rhodora Del Rosario <rhodora@baseline-env.com>

To:

<tracy@ctberk.com>

Sent:

Monday, February 10, 2003 4:17 PM

Subject:

Fwd: Re: Fw: EDD

One clarification. Discrete encore samples need not be analyzed for pH. Thanks, Rhodora

Date: Mon, 10 Feb 2003 15:56:07 -0800 To: "Tracy Babjar" <tracy@ctberk.com>

From: Rhodora Del Rosario <rhodora@baseline-env.com>

Subject: Re: Fw: EDD

Hey Tracy,

Got your voicemail. It looks like I actually need some of the samples analyzed for pH as well as chromium 6.

Please analyze ALL DISCRETE samples that are NOT on hold for pH!!! Please analyze composite samples Comp FY and Comp RY for pH also.

5000 5 th 163482

Please analyze the following for chromium 6:

- 1) B-FP1; 2.5-3.0
- 2) B-FP1, 5.5-6.0
- 3) B-FP2; 2.5-3.0
- 4) B-FP2; 5.5-6.0
- 5) B-FP6; 2-2.5
- 6) B-FP6; 5-5.5
- 7) B-FP7; 2.5-3.0
- 8) B-FP7; 5-5.5

Let me know if you have any questions. Thanks, Rhodora

At 03:38 PM 2/10/03 -0800, you wrote:

EDD from Cal Science.

---- Original Message -----

From: Don Burley <aburley@calscience.com>

To: <tracy@ctberk.com>

Sent: Monday, February 10, 2003 3:25 PM

Subject: EDD

> Tracy,

> Attached is project 163466 in an Excel spreadsheet.

> Don

	Hexava.	Lent Chromium	
Lab #: Client: Project#:	163565 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. METHOD EPA 7196A
Analyte: Matrix: Units: Basis:	Hexavalent Chromium Soil mg/Kg as received	Batch#: Sampled: Received: Analyzed:	79170 02/05/03 02/05/03 02/12/03
Diln Fac:	1.000	<u> </u>	

Field ID	Type Lab ID	Result	RL
B-FP1;2.5-3.0	SAMPLE 163565-001	ND	0.05
B-FP1;5.5-6.0	SAMPLE 163565-002	0.59	0.05
B-FP2;2.5-3.0	SAMPLE 163565-003	ND .	0.05
B-FP2;5.5-6.0	SAMPLE 163565-004	ND	0.05
B-FP-6;2-2.5	SAMPLE 163565-005	ND	0.05
B-FP6;5-5.5	SAMPLE 163565-006	ND	0.05
B-FP7;2.5-3.0	SAMPLE 163565-007	ND	0.05
B-FP7;5-5.5	SAMPLE 163565-008	0.09	0.05
, 5 11 1, 5 5 5 5	BLANK QC204630	ND	0.05

	Hexava.	lent Chromium	
Lab #:	163565	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 7196A
Analyte:	Hexavalent Chromium	Diln Fac:	1.000
Field ID:	B-FP7;5-5.5	Batch#:	79170
MSS Lab ID:	163565-008	Sampled:	02/05/03
Matrix:	Soil	Received:	02/05/03
Units:	mg/Kg	Analyzed:	02/12/03
Basis:	as received		

Туре	Lab ID	MSS Result	Spiked	Result	%RE	C Limits	RP	O Lir
LCS	QC204631		4.000	3.493	87	80-116		
MS	QC204632	0.08700	4.000	3.214	78	62-132		
MSD	QC204633		4.000	3.254	79	62-132	1	24

		рĦ	
Lab #: Client: Project#:	163565 Baseline Environmental Y0323-01	Location: Analysis:	751-785 Brush St. EPA 9045C
Analyte: Matrix: Units: Diln Fac:	pH Soil SU 1.000	Batch#: Sampled: Received: Analyzed:	79116 02/05/03 02/05/03 02/11/03

rield ID	Lab ID	Result	RL
B-FP1;2.5-3.0	163565-001	5.9	1.0
B-FP1;5.5-6.0	163565-002	6.3	1.0
B-FP2;2.5-3.0	163565-003	5.7	1.0
B-FP2;5.5-6.0	163565-004	5.2	1.0
B-FP-6;2-2.5	163565-005	5.9	1.0
B-FP6;5-5.5	163565-006	6.1	1.0
B-FP7;2.5-3.0	163565-007	9.2	1.0
B-FP7;5-5.5	163565-008	8.0	1.0
COMP FY	163565-013	6.2	1.0
COMP RY	163565-017	7.4	1.0

		рH	
Lab #:	163565	Location:	751-785 Brush St.
Client:	Baseline Environmental	Analysis:	EPA 9045C
Project#:	Y0323-01		
Analyte:	рН	Units:	SU
Field ID:	ZZZZZZZZZZZ	Diln Fac:	1.000
Type:	SDUP	Batch#:	79116
MSS Lab ID:	163568-004	Sampled:	02/06/03
Lab ID:	QC204426	Received:	02/11/03
Matrix:	Soil	Analyzed:	02/11/03

MSS Result	Result	RL	RPE) Lim	
10.61	10.52	1.0	1	20	

RL= Reporting Limit
RPD= Relative Percent Difference
Page 1 of 1

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Baseline Environmental 5900 Hollis Street Suite D Emeryville, CA 94608

Date: 04-MAR-03 Lab Job Number: 163599 Project ID: Y0323-01

Location: 751-785 Brush St.

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of <u>40</u>

Laboratory Number: 163599

Order Date: 02/12/03

Client: Baseline

Project Name: 751-785 Brush St., Oakland

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for three water samples received from the above referenced project. The samples were received cold and intact.

Total Volatile Hydrocarbons: No analytical problems were encountered.

Total Extractable Hydrocarbons: No analytical problems were encountered.

Volatile Organic Compounds: No analytical problems were encountered.

PCBs: No analytical problems were encountered.

Polyaromatic Hydrocarbons: No analytical problems were encountered.

Metals: The matrix spike recoveries for all elements except antimony, arsenic, copper, selenium, silver, and zinc were outside acceptance limits. The associated blank spike recoveries were acceptable for all target elements, therefore, there is no affect on the quality of the sample results. No other analytical problems were encountered.

General Chemistry: No analytical problems were encountered.

BASELIN E

5900 Hollis Street, Suite D
Emeryville, CA 94608
Tel: (510) 420-8686 Fax: (510) 420-1707

(635 Ag

CHAIN OF CUSTODY RECORD

Turn-around Time

Lab

BASELINE Contact Person

Cuitis + Tometing Phodom Delson

Project Number Project Name and Location 751-385 B	n: rush st, C	atland		/ */
Samplers: (Signature)	Туре	Preservative	ToH as Gooding	22 may 65 16 16 16 16 16 16 16 16 16 16 16 16 16
Sample ID No. Station Date: Time:	Media SS SS L-Poly (L-AG	None HCI NO. SO.	704 as Gard. 1704 as diend 1/00 1044 s	Remarks/ Composite
MW-FP2 2/12/03/8130.	W 6 X	X X X	×	
MW-F102 2/12/03 8:50	W 3 X	X	XXX	
MW - 2 2/12/03 8:30	WI	XX		XX
MW-F12 2/12/03 8:30	WI	<u> </u>	_ _	<u> </u>
MW-FPI 2/12/63 1436	W 6 X			
MW-FP1 2/12/03 10:71	₩ 3 X	XX		XX
MW-FP1 2/12/03 10:30 MW-FP1 2/12/03 10:30	WII	$x^{(1)}x^{(1)}$		X
MW-FP1 2/12/63 10:30				
Trip Blank	Wa			
1717 574 53	7877 3- D - b3	Received BD0 1		
			inact	
				Preservation Correct?
				Yes D No D N/A
	Date/Time Receive	d by: (Signature) Custody intac	1 1/1/11/25 A	onditions of Samples Upon rrival at Laboratory:
Relinquished by: (Signature) Custody Seal	Date/Time Receive	d by: (Signature) Sustod	y Seal Date/11mc 1	Remarks: If analyzing for MTBE, confirm any hits with EPA method 8260
Yes No	+	Yes N	. 1	
	Date/Time Receive	ed by: (Signature) Custody	Seal Date/Time	Filter Sample @ Lab.
Relinquished by: (Signature) Custody Sear	Date Him	Yes No	1 1	
Received at laboratory with intact custody seal:	(Signature) D	ate/Time Commen	is:	

Contraction of Contract Responsible London or

Total Volatile Hydrocarbons 751-785 Brush St. 163599 Location: Lab #: EPA 5030B Baseline Environmental Prep: Client: 8015B Analysis: Y0323-01 Project#: 02/12/03 Sampled: Matrix: Water Received: 02/12/03 Units: ug/L 02/12/03 1.000 Analyzed: Diln Fac: Batch#: 79138

Field ID:

MW-FP2

163599-001

SAMPLE Type:

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	117	68-145
Bromofluorobenzene (FID)	113	66-143

Field ID:

MW-FP1

Lab ID:

Lab ID:

163599-002

Type:

SAMPLE

Analyte			
Gasoline C7-C12	ND	50	<u> </u>

Surrogate	%RBC	Limits	
Trifluorotoluene (FID)	122	68-145	
Bromofluorobenzene (FID)	123	66-143	

Type:

BLANK

Lab ID:

QC204501

F	Analyte	Pegult	RL	
ı		1,030.10		
	Gasoline C7-C12	ND	50	

Surrogate	%RI	C Limits	
Trifluorotoluene (FID)) 120	68-145	
Bromofluorobenzene (F	ID) 120	66-143	

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Total Volat	ile Hydrocarbo	ns
Lab #: Client: Project#:	163599 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. EPA 5030B 8015B
Type: Lab ID: Matrix: Units:	LCS QC204502 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 79138 02/12/03

Analyte	Spiked	Result	%REC	Limits
Casaline C7-C12	2,000	2,195	110	79-120
Gasoline Cr C12				

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	137	68-145	
Bromofluorobenzene (FID)	121	66-143	

	Total Volat	ile Hydrocarbo	DIIS
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	8015B
Field ID:	ZZZZZZZZZZ	Diln Fac:	1.000
MSS Lab ID:	163554-001	Batch#:	79138
Matrix:	Water	Sampled:	02/08/03
Units:	ug/L	Received:	02/10/03

Type: Lab ID:

MS

Analyzed: 02/12/03

QC204534

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	39.54	2,000	2,051	101	67-120
Gasorine or err					

Surrogate	%REC	imits	
Trifluorotoluene (FID)	141	8-145	
Bromofluorobenzene (FID)	131	56-143	

Type:

MSD

Analyzed: 02/13/03

Lab ID: QC204535

Analyte	Spiked	Result	*REC	Limits		Lin
Gasoline C7-C12	2,000	2,040	100	67-120	1	20

	%RE	C Limits	
Trifluorotoluene (FID)	136	68-145	
Bromofluorobenzene (FID)	122	66-143	

Total Extractable Hydrocarbons 751-785 Brush St. 163599 Location: Lab #: Prep: EPA 3520C Client: Baseline Environmental EPA 8015B Project#: Analysis: Y0323-01 Sampled: 02/12/03 Water Matrix: 02/12/03 Received: Units: ug/L 02/13/03 Prepared: Batch#: 79181

eld ID:

MW-FP2

Lab ID:

163599-001

Type:

SAMPLE

Cleanup Method: EPA 3630C

Analyte	Result	RL	Diln Pa	c Analyzed
Diesel C10-C24	110 H Y	50 .	1.000	02/20/03

%REC Limits Dilm Fac Analyzed 02/24/03 39-137 2.000 exacosane

Field ID:

MW-FP1

Diln Fac:

1.000

SAMPLE

Analyzed:

02/20/03

163599-002

Cleanup Method:

EPA 3630C

RL Result Analyte 260 H Y Diesel C10-C24

Limits Surrogate %REC 84 39-137 Hexacosane

BLANK

Analyzed:

02/20/03

Lab ID:

QC204676

Cleanup Method: EPA 3630C

<u>D</u>iln Fac:

1.000

Analyte

Result

RL

Diesel C10-C24

50

*REC Limits Surrogate

Hexacosane

134

39-137

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

D= Not Detected

L= Reporting Limit

Page 1 of 1

28.0

Chromatogram

Sample Name : 163599-001sg,79181

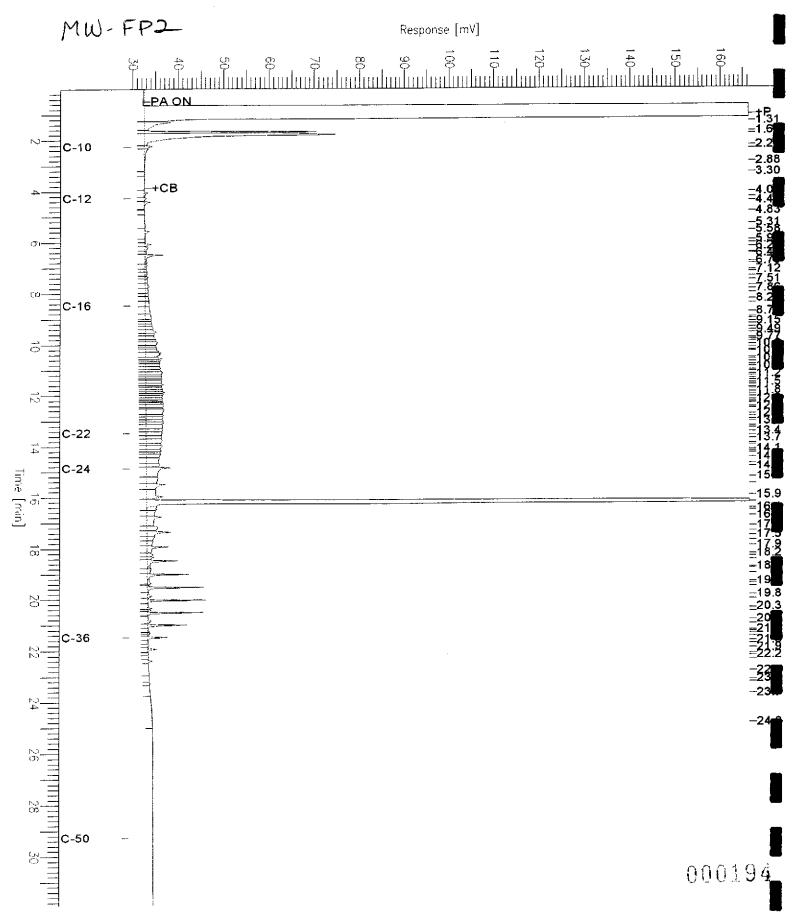
FileName ; ATEHO50.MTH Method

Start Time : 0.01 min

: G:\GC17\CHA\049A065.RAW

End Time : 31.91 min

Plot Offset: 30 mV Scale Factor: 0.0


Page 1 of 1

Sample #: 79181 Date : 2/21/03 08:47 AM

Time of Injection: 2/20/03 07:36 PM

High Point : 166.28 mV Low Point: 29.59 mV

Plot Scale: 136.7 mV

Chromatogram

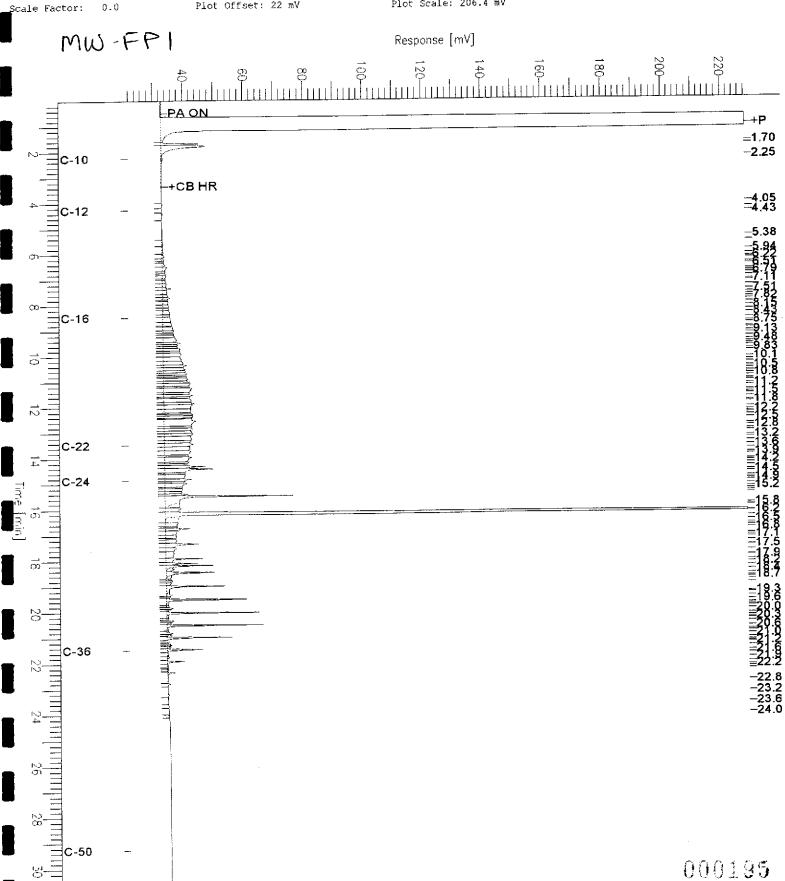
ample Name : 163599-002sg,79181

; G:\GC17\CHA\049A066.RAW FileName

: ATEH050.MTH Start Time : 0.01 min

End Time : 31.91 min Plot Offset: 22 mV

Sample #: 79181


Page 1 of 1

Date: 2/21/03 08:48 AM

Time of Injection: 2/20/03 08:15 PM

High Point : 228.30 mV Low Point : 21.95 mV

Plot Scale: 206.4 mV

Chromatogram

ample Name : ccv,03ws0276,dsl

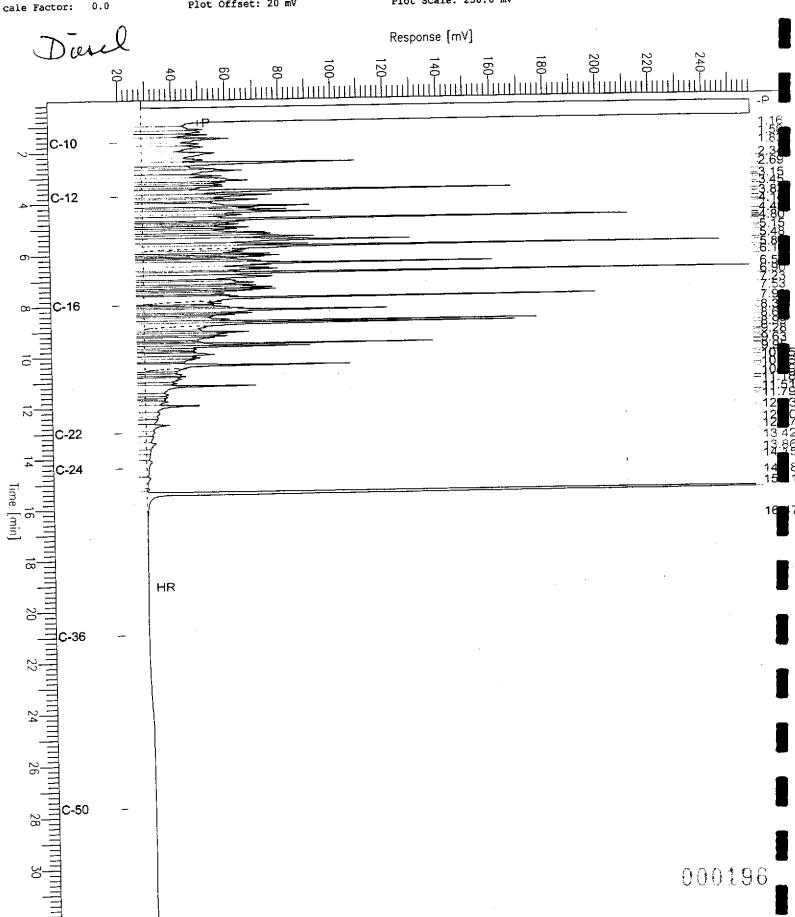
: G:\GC11\CHA\051A002.RAW

ethod tart Time : 0.01 min 0.0

ileName

: ATEH036.MTH End Time : 31.91 min

Plot Offset: 20 mV


Sample #: 500mg/L Date : 2/20/03 10:40 AM

Time of Injection: 2/20/03 09:09 AM Low Point : 19.84 mV

High Point : 258.44 mV

Page 1 of 1

Plot Scale: 238.6 mV

	Total Extrac	table Hydrocar	rbons
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 3520C
Project#:	Y0323-01	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	OC204677	Batch#:	79181
Matrix:	Water	Prepared:	02/13/03
Units:	ug/L	Analyzed:	02/20/03

leanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,808	112	37-120

Surrogate %REC Limits
Hexacosane 132 39-137

Total Extractable Hydrocarbons Lab #: 163599 Location: 751-785 Brush St. Baseline Environmental EPA 3520C Client: Prep: EPA 8015B Project#: Y0323-01 Analysis: Field ID: ZZZZZZZZZZZ Batch#: 79181 02/12/03 MSS Lab ID: 163636-011 Sampled: Matrix: Water Received: 02/12/03 02/13/03 Units: Prepared: ug/L 02/20/03 Diln Fac: 1.000 Analyzed:

Type:

MS

Lab ID:

QC204678

Analyte	MSS Result	Spiked	Result	%RE	C Limits
Diesel C10-C24	<33.00	2,500	2,386	95	44-131

Surrogate	OADL		
Hevacogane	1/10	39-137	

Type:

MSD

Lab ID:

QC204679

Analyte	Spiked	Result	%RE(Limits	RP)	Lim
Diesel C10-C24	2,500	2,360	94	44-131	1	26

Surrogate	%REC	Limits	
Hexacosane	107	39-137	

	Purgeable (Organics by GC/	MS
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	MW-FP2	Batch#:	79132
Lab ID:	163599-001	Sampled:	02/12/03
Matrix:	Water	Received:	02/12/03
Units:	ug/L	Analyzed:	02/12/03
Diln Fac:	1.000		

Din Fac: 1.000		
•	Result	RL
Analyte	ND ND	10
Freon 12		10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	5.0
Trichlorofluoromethane	ND	
Acetone	ND 	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	10
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
_ Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ИD	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
1001401101000110110		

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable (Organics by GC/	MS
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	MW-FP2	Batch#:	79132
Lab ID:	163599-001	Sampled:	02/12/03
Matrix:	Water	Received:	02/12/03
Units:	ug/L	Analyzed:	02/12/03
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	1
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	•
Ethylbenzene	ND	5.0	4
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	į
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	-
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	. 1
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	•
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	e ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	•
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	112	80-121
1,2-Dichloroethane-d4	106	77-130
Toluene-d8	94	80-120
Bromofluorobenzene	92	80-120

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable (organics by GC/	'MS
Lab #: Client: Project#:	163599 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. EPA 5030B EPA 8260B
Field ID: Lab ID: Matrix: Units: Diln Fac:	MW-FP1 163599-002 Water ug/L 1.000	Batch#: Sampled: Received: Analyzed:	79132 02/12/03 02/12/03 02/12/03

		RL
Analyte	Result	10
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	5.0
Trichlorofluoromethane	ND	20
Acetone	NĎ	
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	10
1,1,1-Trichloroethane	ИD	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ИD	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
	ND	10
2-Hexanone 1,3-Dichloropropane	ND	5.0
1,3-Dichioropropane Tetrachloroethene	ND	5.0

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Durgeable (Organics by GC/	/MS
	rurycanic .	,	
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	MW-FP1	Batch#:	79132
Lab ID:	163599-002	Sampled:	02/12/03
Matrix:	Water	Received:	02/12/03
Units:	ug/L	Analyzed:	02/12/03
Diln Fac:	1.000		

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%rec	Limits
Dibromofluoromethane	110	80-121
1,2-Dichloroethane-d4	106	77-130
Toluene-d8	92	80-120
Bromofluorobenzene	91	80-120

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable (organics by GC/	'MS
Lab #: Client: Project#:	163599 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC204481 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 79132 02/12/03

011108:		
Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
TBromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	10
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0
DIDIOMOCIIIOIOMCCIIAMO		

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable (Organics by GC/	'MS
Lab #: Client: Project#:	163599 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC204481 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 79132 02/12/03

Analyte	Result	ŘĹ
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	%REC	Limits	
Dibromofluoromethane	111	80-121	
1,2-Dichloroethane-d4	108	77-130	
Toluene-d8	94	80-120	
Bromofluorobenzene	93	80-120	

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable (organics by GC/	MS
Lab #: Client: Project#:	163599 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC204522 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 79132 02/12/03

Units: ug/L		
		PL
Analyte	Result	10
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	5.0
Trichlorofluoromethane	ND 	20
Acetone	ND	5.0
Freon 113	ND	5.0
1,1-Dichloroethene	ND	20
Methylene Chloride	ND	5.0
Carbon Disulfide	ND	5.0
MTBE	ND	
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	10
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	NĎ	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0
DIDIOMOCHIOIOMECHANIC		

ND= Not Detected RL= Reporting Limit Page 1 of 2

	Purgeable (rganics by GC/	'MS
Lab #: Client: Project#:	163599 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC204522 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 79132 02/12/03

Analyte	Result	RL
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	%REC	Limits
Dibromofluoromethane	110	80-121
1,2-Dichloroethane-d4	106	77-130
Toluene-d8	94	80-120
Bromofluorobenzene	92	80-120

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Purgeable (rganics by GC/	'MS
Lab #: Client: Project#:	163599 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	LCS QC204480 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 79132 02/12/03

50.53 43.84	101 88	71-131 76-120
43.84	88	76-120
43.78	88	78-120
44.59	89	79-120
47.95	96	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-121
1,2-Dichloroethane-d4	104	77-130
1,2-Dichloroethane-d4 Toluene-d8	92	80-120
Bromofluorobenzene	89	80-120

	Purgeable (Organics by GC/	(MS
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	Y0323-01	Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZZZ	Batch#:	79132
MSS Lab ID:	163586-003	Sampled:	02/11/03
Matrix:	Water	Received:	02/11/03
Units:	ug/L	Analyzed:	02/12/03
Diln Fac:	1.000	<u> </u>	

туре:

MS

Lab ID:

QC204482

Analyte	MSS Result	Spiked	Result	%RE	C Limits
1,1-Dichloroethene	<0.3900	50.00	47.07	94	71-134
Benzene	<0.1700	50.00	46.72	93	79-120
Trichloroethene	<0.2000	50.00	45.92	92	47-141
Toluene	<0.1500	50.00	46.69	93	75-120
Chlorobenzene	<0.1200	50.00	47.06	94	80-120

Surrogate	%RBC	Limits		
Dibromofluoromethane	113	80-121		
1,2-Dichloroethane-d4	111	77-130		
Toluene-d8	98	80-120		
Bromofluorobenzene	89	80-120	 	

Type:

MSD

Lab ID:

QC204483

Analyte	Spiked	Result	%RE	C Limits	ŔР	D Isi
1,1-Dichloroethene	50.00	48.10	96	71-134	***********	20
Benzene	50.00	44.35	89	79-120	5	20
Trichloroethene	50.00	42.58	85	47-141	8	20
Toluene	50.00	44.76	90	75-120	4	20
Chlorobenzene	50.00	46.09	92	80-120	2	20

Surrogate	%REC	Limits	
Dibromofluoromethane	112	80-121	
1,2-Dichloroethane-d4	108	77-130	
Toluene-d8	95	80-120	
Bromofluorobenzene	89	80-120	

Polychlorinated Biphenyls (PCBs) 751-785 Brush St. Location: 163599 ab #: EPA 3520C Baseline Environmental Prep: Client: EPA 8082 02/12/03 02/12/03 02/13/03 <u>Analysis:</u> Y0323-01 Project#: Sampled: Water latrix: Received: nits: ug/L Prepared: 1.000 Diln Fac: 02/15/03 Analyzed: 79<u>176</u> Batch#:

Field ID: <u>Ty</u>pe: MW-FP2

SAMPLE

Lab ID:

163599-001

roclor-1016	ND	0.49
roclor-1221	ND	0.97
roclor-1232	ND	0.49
roclor-1242	ND	0.49
roclor-1248	ND	0.49
roclor-1254	ND	0.49
roclor-1260	ND	0.49

 Surrogate
 %REC Limits

 TCMX
 90 37-140

 Decachlorobiphenyl
 73 17-150

Field ID: Type: MW-FP1 SAMPLE Lab ID:

163599-002

Analyte Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248	Result ND	RE 0.47 0.94 0.47 0.47 0.47 0.47	
Aroclor-1248 Aroclor-1254 Aroclor-1260	ND ND		

Surrogate %REC Limits
TCMX 87 37-140
Decachlorobiphenyl 55 17-150

Type:

BLANK

Lab ID:

QC204659

Analyte	Result	RI
Aroclor-1016	ND	0.50
Aroclor-1221	ND	1.0
Aroclor-1232	ND	0.50 0.50
Aroclor-1242	ND	0.50
Aroclor-1248	ND	0.50
Aroclor-1254	ND	0.50
Aroclor-1260	ND	

Surrogate	%REC	Limits	
TCMX	76	37-140	
Decachlorobiphenyl	66	17-150	

D= Not Detected L= Reporting Limit Page 1 of 1

	Polychlorina	ted Biphenyls ((PCBs)
Lab #:	163599 Baseline Environmental Y0323-01	Location:	751-785 Brush St.
Client:		Prep:	EPA 3520C
Project#:		Analysis:	EPA 8082
Matrix:	Water	Batch#:	79176
Units:	ug/L	Prepared:	02/13/03
Diln Fac:	1.000	Analyzed:	02/15/03

Type:

BS

Lab ID: QC204660

Analyte	Spiked F	Result	%REC	Limits	
Aroclor-1242	5.000	5.349	107	60-123	
11200#0= ====					

Surrogate	%REC	Limits	
TCMX	87	37-140	1
Decachlorobiphenyl	74	17-150	

Type:

BSD

Lab ID:

QC204661

Analyte	Spiked	Result	%REC	Limits	RPD	100000000000000000000000000000000000000
Aroclor-1242	5.000	5.427	109	60-123	1	25

	Surrogate	%REC	Limits			
TCM	IX	88	37-140			
Dec	achlorobiphenyl	68	17-150	 		

	Polynuclear	Aromatics by H	IPLC .
Lab #:	163599	Location:	751-785 Brush St.
lient:	Baseline Environmental	Prep:	EPA 3520C
Project#:	Y0323-01	Analysis:	EPA 8310
Field ID:	MW-FP2	Batch#:	79222
∎ab ID:	163599-001	Sampled:	02/12/03
Jatrix:	Water	Received:	02/12/03
Units:	ug/L	Prepared:	02/14/03
Diln Fac:	1.000	Analyzed:	02/18/03

		4.
Analyte	Result	RL
Naphthalene	ND	0.94
cenaphthylene	ND	1.9
cenaphthene	ND	0.94
Fluorene	MD	0.19
Phenanthrene	ND	0.09
Anthracene	ND	0.09
Fluoranthene	ND	0.19
Pyrene	ND	0.09
Benzo(a) anthracene	ND	0.09
Ehrysene	ND	0.09
Benzo(b) fluoranthene	ND	0.19
Benzo(k) fluoranthene	ND	0.09
Benzo(a)pyrene	ND	0.09
Dibenz (a, h) anthracene	ND	0.19
Benzo(g,h,i)perylene	ND	0.19
Indeno(1,2,3-cd)pyrene	ND	0.09

Surrogate	%RE(Limits	
l-Methylnaphthalene (UV)	78	37-134	
-Methylnaphthalene (F)	83	36-141	

	Polynuclear	Aromatics by F	IPLC
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 3520C
Project#:	Y0323-01	Analysis:	EPA 8310
Field ID:	MW-FP1	Batch#:	79222
Lab ID:	163599-002	Sampled:	02/12/03
Matrix:	Water	Received:	02/12/03
Units:	ug/L	Prepared:	02/14/03
Diln Fac:	1.000	Analyzed:	02/18/03

Analyte	Result	RL
Naphthalene	ND	0.94
Acenaphthylene	ND	1.9
Acenaphthene	ND	0.94
Fluorene	ND	0.19
Phenanthrene	ND	0.09
Anthracene	ND	0.09
Fluoranthene	ND	0.19
Pyrene	ND	0.09
Benzo(a) anthracene	ND	0.09
Chrysene	ND	0.09
Benzo(b) fluoranthene	ND	0.19
Benzo(k) fluoranthene	ND	0.09
Benzo(a)pyrene	ND	0.09
Dibenz(a,h)anthracene	ND	0.19
Benzo(g,h,i)perylene	ND	0.19
Indeno(1,2,3-cd)pyrene	ND	0.09

Surrogate		%REC	Limits		
1-Methylnaphthalene	(VU)	82	37-134		
1-Methylnaphthalene	(F)	88	36-141	 	

	Polynuclear	Aromatics by F	IPLC
Lab #:	163599	Location:	751-785 Brush St.
Lient:	Baseline Environmental	Prep:	EPA 3520C
Troject#:	Y0323-01	Analysis:	EPA 8310
Type: Tab ID: Tatrix: Units:	BLANK	Diln Fac:	1.000
	QC204824	Batch#:	79222
	Water	Prepared:	02/14/03
	ug/L	Analyzed:	02/18/03

Analyte	Result	RL
Naphthalene	ND	1.0
Acenaphthylene	ND	2.0
cenaphthene	ND	1.0
luorene	ND	0.20
Phenanthrene	ND	0.10
mthracene	ND	0.10
luoranthene	ND	0.20
Pyrene	ND	0.10
Penzo(a) anthracene	ND	0.10
hrysene	ND	0.10
Benzo(b) fluoranthene	ND	0.20
Benzo(k) fluoranthene	ND	0.10
enzo(a) pyrene	ND	0.10
libenz(a, h) anthracene	ND	0.20
Benzo(g,h,i)perylene	ND	0.20
mdeno(1,2,3-cd)pyrene	ND	0.10

Surrogate		%REC	? Limits
1-Methylnaphthalene ((VV)	91	37-134
	(F)	96	36-141

	Polynuclear	Aromatics by H	IPLC
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 3520C
Project#:	Y0323-01	Analysis:	EPA 8310
Matrix:	Water	Batch#:	79222
Units:	ug/L	Prepared:	02/14/03
Diln Fac:	1.000	Analyzed:	02/18/03

Type:

B5

Lab ID: QC204825

Analyte	Spiked	Result	%REC	Limits	
Naphthalene	10.00	9.509	95	51-127	
Acenaphthylene	20.00	19.94	100	49-128	
Acenaphthene	10.00	10.32	103	49-132	
Fluorene	2.000	1.883	94	49-128	
Phenanthrene	1.000	1.073	107	50-123	
Anthracene	1.000	0.9872	99	47-122	
Benzo(k) fluoranthene	1.000	1.110	111	50-128	
Indeno(1,2,3-cd)pyrene	1.000	1.108	111	50-130	1

Surrogate	%REC	Limits	
1-Methylnaphthalene (UV)	88	37-134	
1-Methylnaphthalene (F)	95	36-141	

Type:

BSD

Lab ID:

QC204826

Analyte	Spiked	Result	%REC	'Limits	RPD	Lim
Naphthalene	10.00	7.935	79	51-127	18	22
Acenaphthylene	20.00	17.02	85	49-128	16	20
Acenaphthene	10.00	8.672	87	49-132	17	30
Fluorene	2.000	1.602	80	49-128	16	21
Phenanthrene	1.000	0.8777	88	50-123	20	20
Anthracene	1.000	0.8335	83	47-122	17	20
Benzo(k) fluoranthene	1.000	0.9016	90	50-128	21	24
Indeno(1,2,3-cd)pyrene	1.000	0.8965	90	50-130	21	25

Surrogate		%REC	Limits
1-Methylnaphthalene	(VV)	70	37-134
1-Methylnaphthalene	(F)	75	36-141

California Title 26 Metals 751-785 Brush St. Location: 163599 Lab #: METHOD Baseline Environmental Prep: Client: Y0323-01 Project#: 1.000 Diln Fac: MW-FP2 Field ID: 02/12/03 Sampled: 163599-001 Lab ID: 02/12/03 Received: Filtrate Matrix: ug/L Units:

Result	RL	Batch#	Prepared	Analyzed	Analysis
	60	79228	02/14/03	02/19/03	EPA 6010B
	5.0	79228	02/14/03	02/19/03	EPA 6010B
	_	79228	02/14/03	02/19/03	EPA 6010B
· -		79228	02/14/03	02/19/03	EPA 6010B
		79228	02/14/03	02/19/03	EPA 6010B
		79228	02/14/03	02/19/03	EPA 6010B
		79228	02/14/03	02/19/03	EPA 6010B
		79228	02/14/03	02/19/03	EPA 6010B
		79228	02/14/03	02/19/03	EPA 6010B
		79155	02/13/03	02/13/03	EPA 7470A
		79228	02/14/03	02/19/03	EPA 6010B
		79228	02/14/03	02/19/03	EPA 6010B
		79228	02/14/03	02/19/03	EPA 6010B
	=	79228	02/14/03	02/19/03	EPA 6010B
		79228	02/14/03	02/19/03	EPA 6010B
		79228	02/14/03	02/19/03	EPA 6010B
		79228	02/14/03	02/19/03	EPA 6010B
	ND ND 74 ND ND 61 ND	ND 60 ND 5.0 74 10 ND 2.0 ND 5.0 61 10 ND 20 ND 10 ND 3.0 ND 0.20 ND 20 ND 20 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 10	ND 60 79228 ND 5.0 79228 74 10 79228 ND 2.0 79228 ND 5.0 79228 ND 20 79228 ND 10 79228 ND 10 79228 ND 3.0 79228 ND 0.20 79155 ND 20 79228 ND 20 79228 ND 5.0 79228 ND 79228 ND 79228	ND 60 79228 02/14/03 ND 5.0 79228 02/14/03 ND 74 10 79228 02/14/03 ND 2.0 79228 02/14/03 ND 5.0 79228 02/14/03 ND 5.0 79228 02/14/03 ND 61 10 79228 02/14/03 ND 20 79228 02/14/03 ND 10 79228 02/14/03 ND 3.0 79228 02/14/03 ND 3.0 79228 02/14/03 ND 0.20 79155 02/13/03 ND 20 79228 02/14/03 ND 20 79228 02/14/03 ND 20 79228 02/14/03 ND 5.0 79228 02/14/03 ND 79228 02/14/03	ND 60 79228 02/14/03 02/19/03 ND 5.0 79228 02/14/03 02/19/03 ND 74 10 79228 02/14/03 02/19/03 ND 2.0 79228 02/14/03 02/19/03 ND 5.0 79228 02/14/03 02/19/03 ND 5.0 79228 02/14/03 02/19/03 ND 61 10 79228 02/14/03 02/19/03 ND 20 79228 02/14/03 02/19/03 ND 10 79228 02/14/03 02/19/03 ND 3.0 79228 02/14/03 02/19/03 ND 3.0 79228 02/14/03 02/19/03 ND 0.20 79155 02/13/03 02/13/03 ND 20 79228 02/14/03 02/19/03 ND 20 79228 02/14/03 02/19/03 ND 20 79228 02/14/03 02/19/03 ND 5.0 79228 02/14/03 02/19/03 ND 79228 02/14/03 02/19/03

	California	. Title 26 Meta	als
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01		
Field ID:	MW-FP1	Diln Fac:	1.000
Lab ID:	163599~002	Sampled:	02/12/03
Matrix:	Filtrate	Received:	02/12/03
Units:	ug/L		

Analyte	Result	RL	Batch#	Prepared	Analyzed	Analysis
Antimony	ND	60	79228	02/14/03	02/19/03	EPA 6010B
Arsenic	ND	5.0	79228	02/14/03	02/19/03	EPA 6010B
Barium	67	10	79228	02/14/03	02/19/03	EPA 6010B
Beryllium	ND	2.0	79228	02/14/03	02/19/03	EPA 6010B
Cadmium	ND	5.0	79228	02/14/03	02/19/03	EPA 6010B
Chromium	ND	10	79228	02/14/03	02/19/03	EPA 6010B
Cobalt	ND	20	79228	02/14/03	02/19/03	EPA 6010B
Copper	ND	10	79228	02/14/03	02/19/03	EPA 6010B
Lead	ND	3.0	79228	02/14/03	02/19/03	EPA 6010B
Mercury	ND	0.20	79155	02/13/03	02/13/03	EPA 7470A
Molybdenum	ND	20	79228	02/14/03	02/19/03	EPA 6010B
Nickel	24	20	79228	02/14/03	02/19/03	EPA 6010B
Selenium	ND	5.0	79228	02/14/03	02/19/03	EPA 6010B
Silver	ND	5.0	79228	02/14/03	02/19/03	EPA 6010B
Thallium	ND	5.0	79228	02/14/03	02/19/03	EPA 6010B
Vanadium	ND	10	79228	02/14/03	02/19/03	EPA 6010B
Zinc	ND	20	79228	02/14/03	02/19/03	EPA 6010B

	California	i Title 26 Mets	lls
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 6010B
Type: Lab ID: Matrix: Units:	BLANK	Diln Fac:	1.000
	QC204857	Batch#:	79228
	Filtrate	Prepared:	02/14/03
	ug/L	Analyzed:	02/19/03

Analyte	Result	RL
Antimony	ND	60
Arsenic	ND	5.0
Barium	ND	10
Beryllium	ND	2.0
Cadmium	ND	5.0
Chromium	ND	10
Cobalt	ND	20
Copper	ND	10
Lead	ND	3.0
Molybdenum	ND	20
Nickel	ND	20
Selenium	ND	5.0
Silver	ND	5.0
Thallium	ND	5.0
Vanadium	ND	10
Zinc	ND	20

	Colliforni	a Title 26 Meta	51 <i>e</i>
	CGITIGINA	i lille 20 Mets	1410
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 7470A
Analyte:	Mercury	Diln Fac:	1.000
Type:	BLANK	Batch#:	79155
Lab ID:	QC204575	Prepared:	02/13/03
Matrix:	Filtrate	Analyzed:	02/13/03
Units:	ug/L		

Result	RL
ND	0.20

	California	a Title 26 Meta	
Lab #: Client: Project#:	163599 Baseline Environmental Y0323-01	Location: Prep: Analysis: Batch#:	751-785 Brush St. METHOD EPA 6010B 79228
Matrix: Units: Diln Fac:	Filtrate ug/L 1.000	Prepared: Analyzed:	02/14/03 02/19/03

Type:

BS

Lab ID:

QC204858

Type:			%REC	Limits
Analyte	Spiked	Result	116	75-126
Antimony	500.0	581.0	101	79-123
Arsenic	100.0	101.0	100	80-120
Barium	2,000	1,990 50.20	100	80-120
Beryllium	50.00	46,90	94	80-120
Cadmium	50.00	193.0	97	79-120
Chromium	200.0	473.0	95	80-120
Cobalt	500.0 250.0	247.0	99	80-120
Copper	100.0	97.00	97	78-120
Lead	400.0	424.0	106	80-120
Molybdenum	500.0	479.0	96	78-120
Nickel	100.0	95.10	95	72-121
Selenium	50.00	50.00	100	80-120
LSilver	100.0	93.70	94	70-121
Thallium	500.0	490.0	98	80-120
Vanadium	500.0	467.0	93	78-120
TZinc				

Type:

BSD

Lab ID:

QC204859

		Residen	%REC	Limits	RPD	
Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium	Spiked 500.0 100.0 2,000 50.00 50.00 200.0 500.0 100.0 400.0 500.0 100.0 50.00	Result 556.0 99.40 2,000 50.40 46.80 194.0 474.0 247.0 96.60 425.0 481.0 97.10 50.00 96.10 491.0	%REC 111 99 100 101 94 97 95 99 97 106 96 97 100 96	Dimits 75-126 79-123 80-120 80-120 80-120 79-120 80-120 78-120 78-120 78-120 78-120 78-120 78-120 78-120 78-120	RPD 4 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Vanadium Zinc	500.0 500.0	468.0	94	7 <u>8-120</u>	0	20

	California	a Title 26 Meta	ıls
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 7470A
Analyte:	Mercury	Batch#:	79155
Matrix:	Filtrate	Prepared:	02/13/03
Units:	ug/L	Analyzed:	02/13/03
Diln Fac:	1.000		

Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC204576	5.000	4.810	96	78-120		
BSD	QC204577	5.000	4.920	98	78-120	2	22

	California	Title 26 Meta	
Lab #: Client: Project#: Field ID: MSS Lab ID: Matrix: Units: Diln Fac:	163599 Baseline Environmental Y0323-01 ZZZZZZZZZZZ 163586-001 Filtrate ug/L 1.000	Location: Prep: Analysis: Batch#: Sampled: Received: Prepared: Analyzed:	751-785 Brush St. METHOD EPA 6010B 79228 02/11/03 02/11/03 02/14/03 02/19/03

Type:	MS		Lab ID:	QC204860		
Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc	.e	MSS Result <1200 3.800 96.60 1.690 4.440 <1.400 16.80 15.90 <1.700 4.250 21.50 8.320 1.130 15.30 <0.8200 12.20	Spiked 500.0 100.0 2,000 50.00 200.0 500.0 250.0 100.0 400.0 500.0 100.0 500.0 500.0	Result 407.0 75.30 1,340 27.60 28.10 107.0 272.0 224.0 54.60 248.0 275.0 77.20 44.80 63.80 290.0 345.0	%REC 81 72 62 * * * 52 47 4 * * 51 51 51 51 69 87 49 87 67	Eimits 62-135 66-134 66-128 61-124 64-123 65-120 62-130 58-129 68-122 60-126 62-131 47-138 57-126 59-132 49-139

Type:	MSD	La	b ID:	QC204				
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc	nalyte	Spiked 500.0 100.0 2,000 50.00 50.00 200.0 500.0 250.0 100.0 400.0 500.0 100.0 500.0 500.0 500.0		Result 409.0 77.40 1,330 27.70 28.30 109.0 274.0 225.0 55.50 260.0 278.0 78.20 45.70 68.00 292.0 347.0	82 74 62 * * * * 551 551 564 * * 70 89 53 * * 67	62-135 66-123 65-128 61-124 64-123 65-120 62-130 58-129 68-122 60-126 62-131 47-138 57-126 59-132 49-139	0 3 1 0 1 2 1 0 2 5 1 1 2 6 1 1	20 29 20 20 20 20 20 20 20 20 20 20 20 20 20

	Californi	a Title 26 Meta	alg	

Lab #:	163599	Location:	751-785 Brush St.	
Client:	Baseline Environmental	Prep:	METHOD	
Project#:	Y0323-01	Analysis:	EPA 7470A	
Analyte:	Mercury	Batch#:	79155	
Field ID:	ZZZZZZZZZ	Sampled:	02/10/03	
MSS Lab ID:	163591-001	Received:	02/12/03	
Matrix:	Filtrate	Prepared:	02/13/03	
Units:	ug/L	Analyzed:	02/13/03	
Diln Fac:	1.000	•		

MS QC204578 <0.04000 5.000 5.600 112 47-1	4 -		
l	Ł		
MSD QC204579 5.000 5.650 113 47-1	43	1	35

	Hexava	ent Chromium	
Lab #: Client: Project#:	163599 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. METHOD EPA 7196A
Analyte: Matrix: Units: Diln Fac:	Hexavalent Chromium Water mg/L 1.000	Batch#: Sampled: Received: Analyzed:	79204 02/12/03 02/12/03 02/12/03

Field ID	Type Lab ID	Result	RL
MW-FP2	SAMPLE 163599-001	0.07	0.01
MW-FP1	SAMPLE 163599-002	ND	0.01
	BLANK QC204748	ND	0.01

	Hexava.	lent Chromium	
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 7196A
Analyte:	Hexavalent Chromium	Diln Fac:	1.000
Field ID:	MW-FP2	Batch#:	79204
MSS Lab ID:	163599-001	Sampled:	02/12/03
Matrix:	Water	Received:	02/12/03
Units:	mg/L	Analyzed:	02/12/03

Tarne	e Lab ID	MSS Result	Spiked	Result	%RE(d Limits	RPI) Lim
LCS	OC204749		0.6730	0.6390	95	80-120		
MS	OC204750	0.07300	0.8420	0.8250	89	55-145		•
MSD	QC204751		0.8420	0.8600	93	55-145	4	20
MOD	QC201,31	·						

	Tota	al Cyanide	
Lab #: Client:	163599 Baseline Environmental	Location: Prep: Analysis:	751-785 Brush St. METHOD EPA 335.2
Project#: Analyte: Matrix:	Y0323-01 Cyanide Water	Batch#: Sampled:	79263 02/12/03
Jnits: Diln Fac:	mg/L 1.000	Received: Analyzed:	02/12/03 02/18/03

Field ID	Type	Lab ID	Result	RL
MW-FP2	SAMPLE	163599-001	ND	0.01
⊥ MW-FP1	SAMPLE	163599-002	ND	0.01
1377 111		QC205002	ND	0.01

	Tota	al Cyanide	
Lab #:	163599	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	METHOD
Project#:	Y0323-01	Analysis:	EPA 335.2
Analyte:	Cyanide	Diln Fac:	1.000
Field ID:	MW-FP1	Batch#:	79263
MSS Lab ID:	163599-002	Sampled:	02/12/03
Matrix:	Water	Received:	02/12/03
Units:	mg/L	Analyzed:	02/18/03

Type	Leb ID	MSS Result	Spiked	Result	%REC	Limits	⊗RP	D Li
MS	QC205003	<0.01000	0.1930	0.1950	101	56-134		
MSD	QC205004		0.1930	0.1880	97	56-134	4	30
LCS	QC205005		0.1930	0.1910	99	70-124		

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Baseline Environmental 5900 Hollis Street Suite D Emeryville, CA 94608

Date: 04-MAR-03 Lab Job Number: 163694 Project ID: Y0323-01

Location: 751-785 Brush St.

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

perations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 9

CURTIS & TOMPKINS, LTD. BERKELEY LOGIN CHANGE FORM

Reason for change:	Client Request: By: R. Rosario Login Review Data Review	_Date/Time: 2/18/03 1040 Initials: SES	Client/Acct: BASE LINE

Current Lab ID	Previous Lab ID	Client ID	Matrix	Add/Cancel	Analysis	Holddate	Dvedate
163694-001	163466-004	B-FP3; 5.0-5.5	Soil	Add	WET NI		2/24
-002	163482-001	B-FP6; 2-2.5			WET NI, PB TCLP Pb		
- 003	- 003	B-FP6; 5-5.5			WET NI		
-004	- 008	B-FP7; 2.5-3.0			WET PL TCLP PL		
				·			
8							
000228			- -				

Subject: Re: Results for C&T Job 163565

From: Rhodora Del Rosario <rhodora@baseline-env.com>

Date: Tue, 18 Feb 2003 10:07:22 -0800 To: "S. Stanley" <steve@ctberk.com>

I would like to have additional analyses conducted for a few of the samples from login 163466 and 163482. Please perform the following analyses:

- 1) WET Nickel for samples B-FP3;5.0-5.5 B-FP6;2-2.5 B-FP6;5-5.5
- 2) WET and TCLP Lead for samples B-FP6;2-2.5 B-FP7;2.5-3.0

I've received the pdf files for all pH and hex. chrom results. Thank you. Just awaiting the EDD versions for all data.

- Rhodora

At 10:02 PM 2/17/03 +0000, you wrote:

Content-Disposition: inline

Content-Length: 69

Content-Transfer-Encoding: binary

Content-Type: text/plain

Attached is a PDF version of the hardcopy reports for C&T job 163565.

		Lead	
Lab #:	163694	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	EPA 3010
Project#:	Y0323-01	Analysis:	EPA 6010B
Analyte:	Lead	Batch#:	79325
Field ID:	B-FP-6;2-2.5	Sampled:	02/05/03
Matrix:	TCLP Leachate	Received:	02/05/03
Units:	ug/L	Prepared:	02/19/03
Diln Fac:	1.000	Analyzed:	02/20/03

SAMPLE 163694-002 ND 300 BLANK OC205215 ND 300		Lab ID	Resul	RL
BLANK OC205215 ND 300	SAMPLE	163694-002	ND	300
	BLANK	QC205215	ND	300

		Lead	
Lab #: Client: Project#:	163694 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. EPA 3010 EPA 6010B
Analyte: Field ID: MSS Lab ID: Matrix: Units:	Lead ZZZZZZZZZZ 163671-001 TCLP Leachate ug/L	Batch#: Sampled: Received: Prepared: Analyzed:	79325 02/13/03 02/14/03 02/19/03 02/20/03
Diln Fac:	1.000		

	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim
TANDE	OC205216		2,000	2,029	···	101	78-120		
BS	~ -		2,000	2,092		105	78-120	3	20
BSD	QC205217	200 0	2,000	ND	300			NC	28
SDUP	QC205218	<300.0		1,934		97	58-129		
SSPIKE	QC205219	<66.00	2,000	1,734					

NC= Not Calculated ND= Not Detected

RL= Reporting Limit

RPD= Relative Percent Difference

Page 1 of 1

	163694	Nickel	
Lab #:	163694	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	WET
Project#:	Y0323-01	Analysis:	EPA 6010B
Analyte:	Nickel	Batch#:	79360
Matrix:	WET Leachate	Prepared:	02/20/03
Units:	ug/L	Analyzed:	02/20/03
Diln Fac:	1.000		

Field ID	Туре	Lab ID	Result	RL	Sampled	Received _
B-FP3;5.0-5.5	SAMPLE	163694-001	31,000	100	02/04/03	02/04/03
B-FP-6;2-2.5	SAMPLE	163694-002	17,000	100	02/05/03	02/05/03
B-FP6:5-5.5	SAMPLE	163694-003	26,000	100	02/05/03	02/05/03 _
	BLANK	QC205347	ND	100		

		Nickel	
Lab #:	163694	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	WET
Project#:	Y0323-01	Analysis:	EPA 6010B
Analyte:	Nickel	Batch#:	79360
Field ID:	ZZZZZZZZZZZ	Sampled:	02/07/03
MSS Lab ID:	163635-001	Received:	02/10/03
Matrix:	WET Leachate	Prepared:	02/20/03
Units:	ug/L	Analyzed:	02/20/03
Diln Fac:	1.000		

Time	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lin
Туре	OC205348		500.0	471.6		94	78-120		
BS	~		· ·	489.4		98	78-120	4	20
BSD	QC205349		500.0	407.4	405	,,,		иС	20
SDUP	OC205350	<100.0		ND	100			140	20
<u> </u>	OC205351	<64.00	2,500	2,565		103	60-126	_	
SSEIVE	QC203331		<u> </u>						

NC= Not Calculated
ND= Not Detected
RL= Reporting Limit
RPD= Relative Percent Difference
Page 1 of 1

		Lead	
Lab #:	163694	Location:	751-785 Brush St.
Client:	Baseline Environmental	Prep:	WET
Project#:	Y0323-01	Analysis:	EPA 6010B
Analyte:	Lead	Batch#:	79360
Field ID:	B-FP-6;2-2.5	Sampled:	02/05/03
Matrix:	WET Leachate	Received:	02/05/03
Units:	ug/L	Prepared:	02/20/03
Diln Fac:	1.000	Analyzed:	02/20/03

Тут	pe Lab ID	Result	RL
	IPLE 163694-00	02 1,500	1,500
BLAI	NK QC205347	ND	1,500

		Lead	
Lab #: Client:	163694 Baseline Environmental Y0323-01	Location: Prep: Analysis:	751-785 Brush St. WET EPA 6010B
Project#: Analyte: Field ID: MSS Lab ID: Matrix:	Lead ZZZZZZZZZZ 163635-001 WET Leachate	Batch#: Sampled: Received: Prepared:	79360 02/07/03 02/10/03 02/20/03 02/20/03
Units: Diln Fac:	ug/L 1.000	Analyzed:	02/20/03

	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim
Type	OC205348		2,000	1,809		90	78-120		
BS BSD	~		2,000	1,880		94	78-120	4	20
	QC205349		2,000	-	1,500		•	NC	28
SDUP	QC205350	<1,500		ND	1,500	100	58-129		
SSPIKE	QC205351	<330.0	10,000	9,955		100	30-127		

NC= Not Calculated
ND= Not Detected
RL= Reporting Limit
RPD= Relative Percent Difference
Page 1 of 1

APPENDIX G

OAKLAND RBCA ELIGIBILITY CHECKLIST

Oakland RBCA Cover Sheet

Project Proponent: The Brush Street Group Site Address: 751-785 Brush Street, Oakland

Alameda County Parcel Number(s): Block 97, Lots 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18 in Kellersberger's

Map of Oakland, filed September 2, 1853, Map Book 7, Page 3, Alameda County Records

	Chemicals of Con-	ern			
(1) Benzo(a)pyrene	(4) Benzo(a)anthracene	(7)			
(2) Benzo(b) fluoranthene	(5) Dibenz(a,h)anthrace	ne (8)			
(3) Benzo(k)fluoranthene	(6) Indeno(1,2,3-cd)pyr	ene (9)			
Exposure Pathways of Concern					
Surficial Soil		Groundwater			
X Ingestion/dermal contact/inhalation		☐Ingestion of groundwater			
Subsurface Soil		X Inhalation of indoor air vapors			
Ingestion of groundwater impacted by leachate		X Inhalation of outdoor air vapors			
X Inhalation of indoor air vapors		Water Used for Recreation			
X Inhalation of outdoor air vapors		☐Ingestion/dermal contact			
Land Use Scenario					
X Residential		X Commercial/Industrial			
	Method of Analy	sis			
X Tier 1 ☐ Tier 2 (specify soil type: ☐ Merritt sands ☐ sandy silts ☐ clayey silts) ☐ Tier 3 Model(s) employed: ☐ Oakland RBCA ☐ Other(s) (specify:)					
	Application of RBCA	Levels			
As evidence that no further action required X As target cleanup levels for removal or treatment of chemical(s) of concern X Other (specify: as indication of need for risk management measures)					
	Containment Mea	sures			
X Cap (specify material: existing concrete)					
Exposure pathways that will be affected: Ingestion, dermal contact, inhalation					
	Institutional Con				
Access control X Other(s) (specify: Risk management plan for site improvement/redevelopment)					
	Public Notificat	ion			
Specify all actions to be taken: None anticipated at this time.					
specify an actions to be taken. Motion anticipated at any taken.					

Submitted by: The Brush Street Group Date submitted: April 29, 2003

Oakland RBCA Eligibility Checklist

The Oakland Tier 1 RBSLs and Tier 2 SSTLs are intended to address human health concerns at the majority of sites in Oakland where commonly-found contaminants are present. Complicated sites—especially those with continuing releases, ecological concerns or unusual subsurface conditions—will likely require a Tier 3 analysis. The following checklist is designed to assist you in determining your site's eligibility for the Oakland RBCA levels.

	CRITERIA	YES	NO
1.	Is there a continuing, primary source of a chemical of concern, such as a		
	leaking container, tank or pipe? (This does not include residual sources.)	\Box	\bowtie
2.	Is there any mobile or potentially-mobile free product?		\bowtie
3.	Are there more than five chemicals of concern at the site at a concentration	<u> </u>	
	greater than the lowest applicable Oakland RBCA level?	\boxtimes	
4.	4. Are there any preferential vapor migration pathways—such as gravel channels or utility corridors—that are potential conduits for the migration, on-site or off-site, of a volatilized chemical of concern?		
			\bowtie
5.	Do both of the following conditions exist?		
	(a) Groundwater is at depths less than 300 cm (10 feet)		
	(b) Inhalation of volatilized chemicals of concern from groundwater in indoor		F3
	or outdoor air is a pathway of concern but groundwater ingestion is not*		\boxtimes
6.	Are there any existing on-site or off-site structures intended for future use		
	where exposure to indoor air vapors from either soil or groundwater is of		
	concern and one of the following three conditions is present?		
	(a) A slab-on-grade foundation that is less than 15 cm (6 inches) thick		
	(b) An enclosed, below-grade space (e.g., a basement) that has floors or walls		
	less than 15 cm (6 inches) thick		5-3
_	(c) A crawl space that is not ventilated		\bowtie
7.	Are there any immediate, acute health risks to humans associated with		
_	contamination at the site, including explosive levels of a chemical?		\bowtie
8.	Are there any complete exposure pathways to nearby ecological receptors,		
	such as endangered species, wildlife refuge areas, wetlands, surface water		
	bodies or other protected areas?		\boxtimes

If you answer "no" to all questions, your site is eligible for the Oakland RBCA levels. If you answer "yes" to any of the questions, your site is *not* eligible for the Oakland RBCA levels at this time.

^{*}If groundwater ingestion is a pathway of concern, the associated Oakland RBCA levels will be more stringent than those for any groundwater-related inhalation scenario, rendering depth to groundwater irrelevant in the risk analysis.