RO2567

Report of February 2005 Groundwater Sampling

at 2942 San Pablo Avenue Oakland, CA

Performed For:

Mr. James Chung San Pablo Auto Body 2942 San Pablo Avenue Oakland, Ca

Prepared By:

PIERS Environmental Services, Inc. 1330 S. Bascom Avenue, Suite F San Jose, CA 95128

March 2005 Project No. 04256

1330 S. Bascom Ave., Suite F San Jose, CA 95128

Tel (408) 559-1248 Fax (408) 559-1224

March 1, 2005

Mr. Robert W. Schultz, R. G. Alameda County Environmental Health Services 1131 Harbor Bay Parkway Alameda, CA 94502

Re: Report of February 2005 Groundwater Sampling

2942 San Pablo Avenue, Oakland, CA

Dear Mr. Schultz:

On February 11, 2005, groundwater samples were obtained from monitoring wells MW-1 through MW-3 at the above-referenced site by North State Environmental of South San Francisco, CA. The wells were also monitored. A Vicinity Map showing the location of the site is included as Figure 1.

The groundwater samples were collected as follows: prior to sampling, the wells were checked for depth to water, and the presence of free product and sheen. No free product or sheen was noted in any of the wells. Monitoring data collected this quarter is summarized on Table 1 and Figure 2.

Each well was bailed until the volume of water withdrawn was equal to at least three casing volumes. To assure that a representative groundwater sample was collected, periodic measurements of the temperature, pH and specific conductance were made. The sample was collected only when the temperature, pH, and/or specific conductance reached relatively constant values.

Water samples were collected using new, disposable bailers. An effort was made to minimize exposure of the samples to air. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory. Sample containers were obtained directly from the analytical laboratory. Sampling equipment was cleaned after its use at each sampling location. Thermometers, pH electrodes, and conductivity probes were also cleaned after sampling.

Subsequent to collection, the samples were immediately stored on ice in an appropriate ice chest. Samples were transported under Chain-of-Custody procedures to North State Environmental Laboratory in South San Francisco, CA. Excess water resulting from the sampling and cleaning procedures was collected and contained in pre-labeled 55-gallon drums on-site pending receipt of laboratory analyses.

Laboratory Analyses

All samples analyzed were accompanied by properly executed Chain of Custody documentation. The samples were analyzed for volatile organic compounds by EPA Method 8260, and for TPH as gasoline by EPA method 8015- Modified, and benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA method 8020. The analytical results of the groundwater samples collected on February 11, 2005 are tabulated in Tables 2A and 2B. Copies of the laboratory analyses and the Chain of Custody documentation are attached to this report.

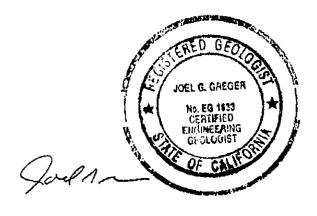
Hydrology

On February 11, 2005, the measured depth to groundwater in the three monitoring wells and piezometer B-11 varied between 10.56 and 11.94 feet below the tops of the well casings. The elevation of groundwater in the wells increased between 1.73 and 2.3 feet since the last monitoring event on November 15, 2004. The monitoring data is summarized in Table 1 and on Figure 2. On this event, the direction of groundwater flow at the Property and vicinity was to the west, consistent with the previous events, at a hydraulic gradient of 0.03 feet per foot.

Discussion

The primary Contaminant of Concern at the Property in groundwater is TCE. The concentration of TCE in MW-1, at the source area, is increased from the last event, presumably due to the 2.3-foot rise in water level contacting residual contamination. The concentration of TCE in downgradient well MW-2 is slightly less than the last event (12.5 vs. 15 parts per million). The concentration of TCE in well MW-3 was somewhat elevated from the last event (20.6 vs. 11.6 parts per billion). The laboratory continued to report that the concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline detected in the monitoring wells was partly due to a single peak of TCE.

The next quarterly monitoring event will take place in May 2005.


Limitations

The observations and conclusions presented in this report are professional opinions based on the scope of work outlined herein. This report was prepared in accordance with generally accepted standards of environmental geological practice in California at the time this investigation was performed. The opinions presented apply to site conditions existing at the time of our study and cannot apply to site conditions or changes of which we are not aware or have not had the opportunity to evaluate. This investigation was conducted solely to evaluate environmental conditions beneath the property at specific locations. Subsurface conditions may vary away from the data points available. Additional work, including subsurface investigation, can reduce the inherent uncertainties associated with this type of investigation. It must be recognized that any conclusions drawn from these data rely on the integrity of the information available at the time of investigation and that a full and complete determination of environmental contamination and risks cannot be made.

If you have any questions regarding this report, please do not hesitate to contact our office.

Sincerely,

PIERS Environmental Services, Inc.

Joel G. Greger Senior Project Manager CEG # EG1633, REA # 07079

Attachments
Tables 1, 2A and 2B
Figures 1-3
Laboratory Analytical Data
Well Purging/Sampling Data

No. 20236

Expires 57.55 vice

Kay Pannell Chief Operations Officer REP #5800, REA-II #20236

ATTACHMENTS

TABLE 1 GROUNDWATER MONITORING DATA 2942 San Pablo Avenue, Oakland

Well No.	Date	Groundwater Elevation	Top of casing Elevation	Depth to Water	Well Depth	Product Thickness	Sheen	Water purged (gallons)
MW1	727/2004	13.17	26.32	13.15				0
	7/30/2004	13.12		13.20	36.55	0	No	5
	11/15/2004	13.46		12.86	36.60	0	No	1.5
	2/11/2005	15.76		10.56	36.60	0	No	1.6
MW2	727/2004	9.93	24.60	14.67				0
	7/30/2004	10.30		14.30	33.10	0	No	4
	11/15/2004	10.85		13.75	33.11	0	No	1.2
	2/11/2005	12.66		11.94	33.11	0	No	1.3
	T		25.60					
MW3	727/2004	11.36	25.69	14.33				0
	7/30/2004	11.50		14.40	36.00	0	No	5
	11/15/2004	12.06		13.63	36.05	0	No	1.5
	2/11/2005	13.79		11.9	36.05	. 0	No	1.4

TABLE 2A GROUNDWATER ANALYTICAL RESULTS - MONITORING WELLS 2942 San Pablo Avenue, Oakland

7/30/2004 1/15/2004 2/11/2005	5,670 5,610 7,130	2 6 5	<10 <10 <10	2.1
1/15/2004	5,610	6	<10	2.1
		· · · · · · · · · · · · · · · · · · ·		
2/11/2005	7,130	5	<10	2.6
j			1	2.6
7/30/2004	219	<1	51	3
1/15/2004	15	<1	<10	< 0.5
2/11/2005	12.5	<1	<10	<0.5
7/30/2004	6,6	<1	<10	<0.5
1/15/2004	11.6	<1	<10	< 0.5
2/11/2005	20.6	<1	<10	<0.5
	5.0/360	6.0/590	700/1500	5.0/350
	1/15/2004 2/11/2005 7/30/2004 1/15/2004	1/15/2004 15 2/11/2005 12.5 7/30/2004 6.6 1/15/2004 11.6 2/11/2005 20.6	1/15/2004 15 <1	1/15/2004 15 <1

EXPLANATION:

DCE = Dichloroethene

ppb = parts per billion

TCE = Trichloroethene

ESL = Environmental Screening Level, groundwater is/is not a resource (Tables A + C/B + D).

- * Vinyl Chloride and trans-1,2-DCE were also detected at concentrations of 1.7 and 1 ppb, respectively.
- ** Vinyl Chloride was detected at a concentration of 0.7 ppb.

ANALYTICAL METHODS:

EPA Method 8260.

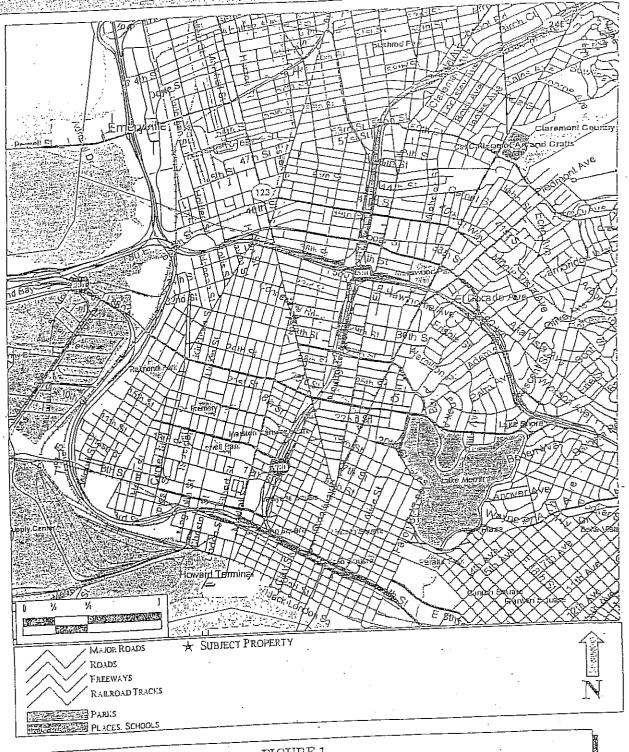
TABLE 2B GROUNDWATER ANALYTICAL RESULTS - HYDROCARBONS -MONITORING WELLS 2942 San Pablo Avenue, Oakland

Sample/ Depth (feet)	Date Sampled	TPH-g (ppb)	Benzene (ppb)	Ethylbenzene (ppb)	Toluene (ppb)	Xylenes (ppb)	MTBE (ppb)
MW1	7/30/2004	2,280	< 0.5	< 0.5	< 0.5	<1	<0.5
	11/15/2004	2,200	3.7/2.9	<0.5	<0.5	<1	< 0.5
	2/11/2005	5,270	0.7/0.8	<0.5	<0.5	1.4	<0.5
MW2	7/30/2004	144	<0.5	<0.5	<0.5	<1	<0.5
	11/15/2004	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
	2/11/2005	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW3	7/30/2004	63	<0.5	<0.5	<0.5	<1	<0.5*
	11/15/2004	<50	<0.5	<0.5	<0.5	<1	<0.5
	2/11/2005	<50	<0.5	<0,5	<0.5	<1	<0,5
ESL		100/500	1.0/46	30/290	40/130	13/13	5.0/1,800

EXPLANATION:

* Di - isopropyl ether (DIPE) was detected at a concentration of 1.6 ppb.

ppb = parts per billion


Analytical results are by EPA Methods 8015 and/or 8260.

TPHg =Total Petroleum Hydrocarbons as gasoline.

ESL = Environmental Screening Level, groundwater is/is not a resource (Tables A + C/B + D).

IDENTIFIED HAZARDOUS MATERIALS SITES RADIUS REPORT

Site Vicinity Map

FIGURE 1 PROPERTY VICINITY MAP

2926-2942 SAN PABLO AVENUE OAKLAND, CALIFORNIA NOT TO SCALE SEPTEMBER 2003

PIERS ENVIRONMENTAL SERVICES, INC. 1330 S. BASCOM AVE., SUITE F, SAN JOSE, CA 95128 PHONE: 408-559-1248 FAX: 408-559-1224 WWW.PIERSES.COM

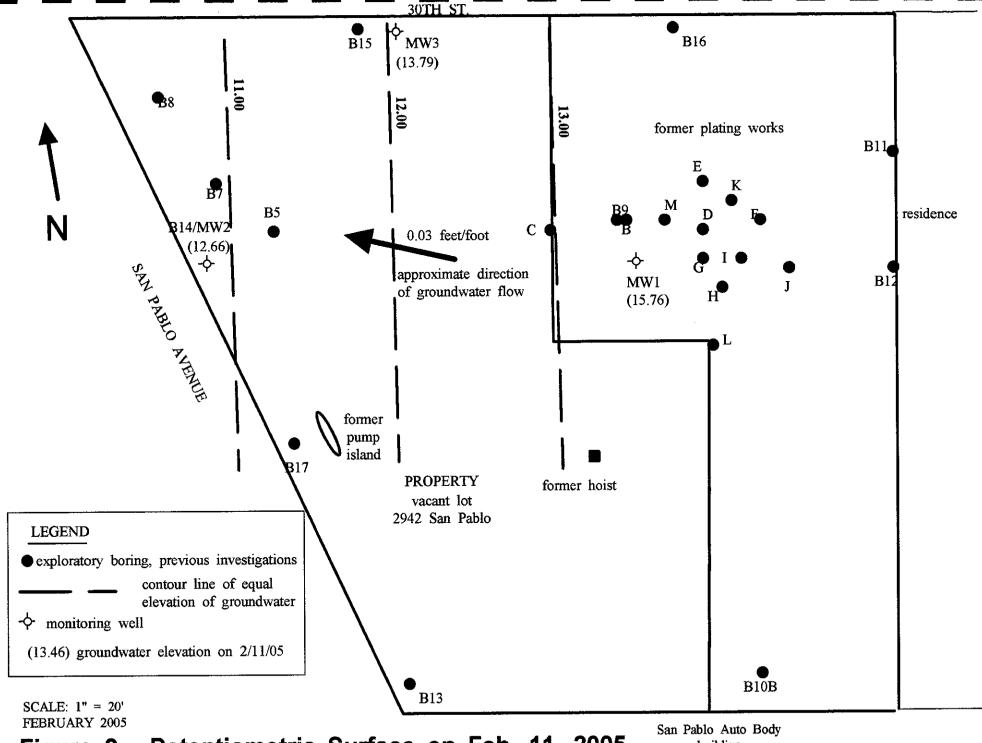
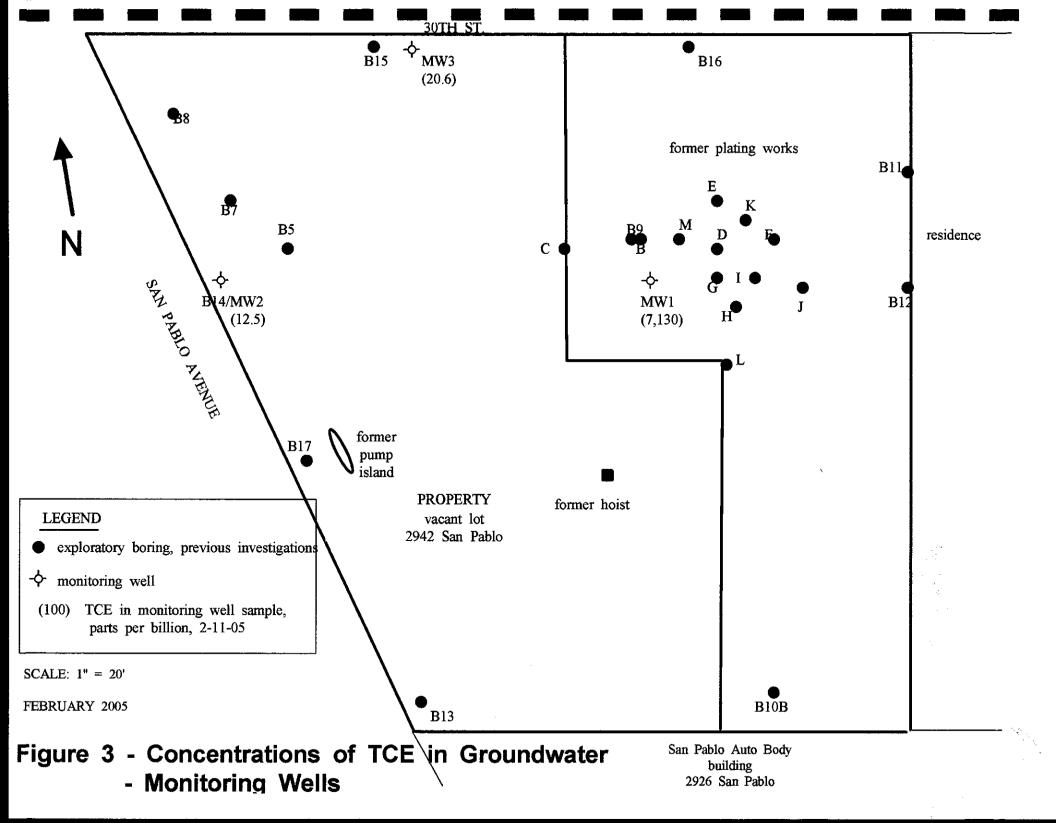



Figure 2 - Potentiometric Surface on Feb. 11, 2005

San Pablo Auto Body building 2926 San Pablo

90 South Spruce Avenue, Suite W, South San Francisco, CA 94080 Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custody / Request for Analysis
Lab Job No.: Page 1 of [

05-0209

Client PIERS ENVIRONDUTALS	ERUCES Report to: KAY/	SOEL	Phone (510) 787 - 6867	Turnaround Time
Mailing Address: PIERS ELVIROMENTAL S	Billing to:		Fax (50) 559, 1224	STO TAT
1330 S. Bascom Ave	5#F	4 75	email:	Date: 2-11-05
SAN JOSE, CA 951	28		PO#	Sampler: Se_
Project / Site Address / Global ID: \$ 29 0 8	AN PARO ANTO BODY 142 SAN PARO AVE. ROI KLAND CA	Analysis duested sing sime		EDF C
	ontainer Pres. Sampl . / Type Date / T	ing FE By		Fleld Point ID
MW-1 GW S	1004 HCL 2-11-05/	1420 XX		
		1415 🗶 🗶		
3 MW-3	VVV	1450 × X		
,				
	· ·			
Relinquished by: Real Casto	0	Time: 1700 Receiv		Lab Comments/ Hazards
Relinquished by:	Date:	Time: Receiv		
Relinquished by:	Date:	Time: Receiv	red by:	

TERMS: NET 30 OAC

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

Case Narrative

Client: PIERS Environmental

Project: SAN PABLO AUTO BODY/2942 SAN PABLO AVE

Lab No:

05-0209

Date Received:

02/11/2005

Date reported: 02/22/2005

Three water samples were received under chain of custody control for the analysis of gasoline range organics by method 8015B, BTEX/MTBE by method 8021B and VOCs and fuel oxygenates by GC/MS method 8260B. The MS/MSD did not meet QC requirements for BTEX/MTBE by method 8021B and gasoline by method 8015B due to matrix effects (spiked sample 05-0209-02). The LCS/LCSD results met QC criteria and were reported instead for 8015B / 8021B. QA/QC results met acceptance criteria for all other analyses and no errors occurred.

John A. Murphy

Laboratory Director

650 266-4560

Nov 26 2000 1:50PM

CA ELAP#1753

815 Dubuque Avenue • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

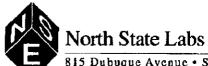
CERTIFICATE OF ANALYSIS

Lab Number:

05-0209

Client:

PIERS Environmental


Project:

SAN PABLO AUTO BODY/2942 SAN PABLO AVE

Date Reported: 02/22/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Analyte	Method Re	esult Uni	t Date Sampled	 Date Analyzed
Sample: 05-0209-01 Client	ID: MW-1		02/11/2005	W
Benzene	SW8020F	0.7	UG/L	02/15/2005
Ethylbenzene	SW8020F	ND<0.5	UG/L	02/15/2005
Gasoline Range Organics	SW8020F	**5270	UG/L	02/15/2005
Methyl-tert-butyl ether	SW8020F	*ND<0.5	UG/L	02/15/2005
Toluene	SW8020F	ND<0.5	UG/L	02/15/2005
Xylenes	SW8020F	1.4	UG/L	02/15/2005
Sample: 05-0209-02 Client	ID: MW-2		02/11/2005	W
Benzene	SW8020F	ND<0.5	UG/L	02/15/2005
Ethylbenzene	SW8020F	ND<0.5	UG/L	02/15/2005
Gasoline Range Organics	SW8020F	ND<50	UG/L	02/15/2005
Methyl-tert-butyl ether	SW8020F	*ND<0.5	UG/L	02/15/2005
Toluene	SW8020F	ND<0.5	UG/L	02/15/2005
Xylenes	SW8020F	ND<1.0	UG/L	02/15/2005
Sample: 05-0209-03 Client	ID: MW-3		02/11/2005	M
Benzene	SW8020F	ND<0.5	UG/L	02/15/2005
Ethylbenzene	SW8020F	ND<0.5	UG/L	02/15/2005
Gasoline Range Organics	SW8020F	ND<50	UG/L	02/15/2005
Methyl-tert-butyl ether	SW8020F	*ND<0.5	UG/L	02/15/2005
Toluene	SW8020F	ND<0.5	UG/L	02/15/2005
Xylenes	SW8020F	ND<1.0	UG/L	02/15/2005

815 Dubuque Avenue • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OFANALYSIS

Quality Control/Quality Assurance

Lab Number:

05-0209

Client:

PIERS Environmental

Project:

SAN PABLO AUTO BODY/2942 SAN PABLO AVE

Date Reported: 02/22/2005

Gasoline, BTEX and MTBE by Methods 8015B/8021B

Analyte	Method	Reporting Unit Limit		Blank	Avg MS/MSD RPI Recovery	
Gasoline Range Organics	SW8020F	50	UG/L	ND	104/106	2
Benzene	SW8020F	0.5	UG/L	ND	74/72	3
Toluene	SW8020F	0.5	UG/L	ND	108/108	0
Ethylbenzene	SW8020F	0.5	UG/L	ND	112/112	0
Xylenes	SW8020F	1.0	UG/L	ND	110/110	O
Methyl-tert-butyl ether	SW8020F	0.5	UG/L	ND	91/94	3

ELAP Certificate NO:1753 Reviewed and Approved

Page 2 of 2

815 Dubuque Avenue • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Job Number: 05-0209

: PIERS Environmental

Client

Project : SAN PABLO AUTO BODY/2942 SAN PABLO AVE

Date Sampled : 02/11/2005

Date Analyzed: 02/17/2005

Date Reported: 02/22/2005

Fuel Oxygenates by Method 8260B

Laboratory Number	05-0209-01	05-0209-02	05-0209-03
Client ID	MW-1	MW-2	MW-3
Matrix	W	W	W
Analyte	UG/L	UG/L	UG/L
Methyl-tert-butyl ether	ND<0.5	ND<0.5	ND<0.5
Ethyl tert-butyl ether	ND<1	ND<1	ND<1
tert-Amyl methyl ether	ND<1	ND<1	ND<1
Di-isopropyl ether (DIPE)	ND<0.5	ND<0.5	ND<0.5
tert-Butyl alcohol	ND<10	ND<10	ND<10
1,2-Dichloroethane	ND<1	ND<1	ND<1
1,2-Dibromcethane	ND<0.5	ND<0.5	ND<0.5
Ethanol	ND<50	ND<5C	ND<50
SUR-Dibromcfluoromethane	93	93	99
SUR-Toluene-d8	97	101	99
SUR-4-Bromofluorobenzene	93	96	95
SOR-1,2-Dichloroethane-d4	92	101	100

815 Dubuque Avenue • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE O F ANALYSIS

Job Number: 05-0209

Client

: PIERS Environmental

: SAN PABLO AUTO BODY/2942 SAN PABLO

Date Sampled : 02/11/2005

Date Analyzed: 02/17/2005

Date Reported: 02/22/2005

Fuel Oxygenates by Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number	05~0209	MS/MSD	RPD	Recovery	RPD
Client ID	Blank	Recovery		Limit	Limit
Matrix	W	W			
Analyte	Results UG/L	*Recoveries			
Ethanol	ND<50				
Methyl-tert-butyl ether	ND<0.5				
Di-isopropyl ether (DIPE)	ND<0.5				
tert-butyl Alcohol	NC<10				
Ethyl tert-butyl other	ND<1				
tert-Amyl methyl ether	ND<1				
1,1-Dichloroethene	ND<0.5	96/106	10	70-130	30
Benzene	ND<0.5	111/102	В	70-130	30
Trichloroethene	ND<0.5	79/71	11	70-130	30
Toluene	ND<0,5	109/98	11	70-130	30
Chlorobenzene	ND<1	90/90	0	70-130	30
SUR-Dibromofluoromethane	85	93/92	1	85-115	30
SUR-Toluene-d8	92	110/103	7	85-115	30
SUR-4-Bromofluorobenzene	91	96/96	0	85-115	30
SUR-1,2-Dichloroothane-d4	87	97/98	1	85-115	30

Reviewed and Approved

John A. Murphy Laboratory Director

815 Dubuque Avenue • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Job Number: 05-0209

Client : PIERS Environmental

Project : SAN PABLO AUTO BODY/2942 SAN PABLO AVE

Date Sampled : 02/11/2005

Date Analyzed: 02/17/2005 Date Reported: 02/22/2005

Volatile Organics by GC/MS Method 8260B

Laboratory Number	05-0209-01	05-0209-02	05-0209-03
Client ID	MW-1	MW-2	MW-3
Matrix	M	W	W
Analyte	UG/L	UG/L	UG/L
Bromochloromethane	ND<1	ND<1	ND<1
Dichlorodifluoromethane	ND<1	ND<1	ND<1
Chloromethane	ND<1	ND<1	ND<1
Vinyl chloride	0.7	ND<0.5	ND<0.5
Bromomethane	ND<1	ND<1	ND<1
Chlorosthane	ND<1	ND<1	ND<1
Trichlorofluoromethane	ND<1	ND<1	ND<1
1,1-Dichloroethene	ND <c.5< td=""><td>ND<0.5</td><td>ND<0.5</td></c.5<>	ND<0.5	ND<0.5
Acetone	ND<10	ND<10	ND<10
Methylene chloride	ND<25	ND<25	NE<25
trans-1, 2-Dichloroethene	ND<1	ND<1	ND<1
Methyl-tert-butyl other	ND<0.5	ND<0.5	NE<0.5
1,1-Dichloroethane	ND<0.5	ND<0.5	NC<0.5
2,2-Dichloropropane	ND<1	ND<1	ND<1
cis-1,2-Dichloroethene	5	ND<1	ND<1
2-Butanone	ND<5	ND<5	ND<5
Chloroform	2.6	ND<0.5	ND<3.5
Carbon tetrachloride	ND<0.5	ND<0.5	NO<0.5
1,1-Dichloropropene	ND≺1	ND<1	ND<1
Benzene	0.8	ND<0.5	ND<0.5
1,2-Dichloroethane	ND<1	ND<1	ND<1
Trichloroethene	7130	12.5	20.6
1,2-Dichloropropane	ND<1	ND<1	ND<1
Dibromomethane	ND<1	ND<1	ND<1
Bromodichloromethane	ND<1	ND<1	ND<1
trans-1,3-Dichloropropene	ND<1	ND<1	ND<1
4-Methyl-2-pentanone	ND<1	ND<1	ND<1
Toluene	ND<0.5	ND<0.5	ND<0.5
cis-1,3-Dichloropropene	ND< 1	ND<1	ND<1
1,1,2-Trichloroethane	ND<1	ND<1	ND<1
Tetrachloroethene	ND<0.5	ND<0.5	ND<0.5
1,3-Dichloropropane	ND<1	ND<1	ND<1
2-Hexanone	ND<1	ND<1	ND<1
Dibromochloromethane	ND<1	ND<1	ND<1
1,2-Dibromoethane	ND<0.5	ND<0.5	ND<0.5
			-

Comments:

815 Dubuque Avenue • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

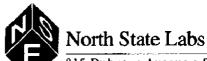
CFRTIFICATE OF ANALYSIS

Job Number: 05-0209

: PIERS Environmental

Client Project

Project : SAN PABLO AUTO BODY/2942 SAN PABLO AVE


Date Sampled : 02/11/2005

Date Analyzed: 02/17/2005 Date Reported: 02/22/2005

Volatile Organics by GC/MS Method 8260B

	05 0000 01	25 2222 22	
Laboratory Number	05-0209-01	05-0209-02	05-0209-03
Client ID	MW-1	MW-2	MW-3
Matrix	W	W	TAT
Analyte	UG/L	UG/L	UG/L
Chlorobenzene	ND<1	ND<1	ND<1
1,1,1,2-Tetrachloroethane	ND<1	ND<1	ND<1
Ethylbenzene	ND<0.5	ND<0.5	ND<0.5
Xylene, Iscmers m & p	ND<1	ND<1	ND<1
o-Xylene	ND <c.5< td=""><td>ND<0.5</td><td>ND<0.5</td></c.5<>	ND<0.5	ND<0.5
Styrene	ND<1	ND<1	ND<1
Bromaform	ND<1	ND<1	ND<1
Isopropylbenzene	ND<1	ND<1	ND<1
Bremobenzene	ND<1	ND<1	ND<1
I, 1, 2, 2-Tetrachloroethane	ND<1	ND<1	ND<1
n-Propylbenzene	ND<1	ND<1	NC<1
2-Chlorotoluene	ND<1	ND<1	NC<1
4-Chlorotoluene	ND<1	ND<1	ND<1
1,3,5-Trimethylbenzene	ND<1	ND<1	ND<1
tert-Butylbenzene	אם<1	ND<1	ND<1
1,2,4-Trimethylbenzene	ND<1	ND<1	ND<1
1,3-Dichlorobenzene	ND<1	ND<1	ND<1
1,4-Dichlorobenzene	ND<1	ND<1	ND<1
sec-Butylbenzene	ND<1	ND<1	ND<1
1,2-Dichlorobenzene	ND<1	ND<1	ND<1
n-Butylbenz≥ne	ND<1	ND<1	ND<1
Naphthalene	ND<1	ND<1	ND<1
1,2,4-Trichlorobenzene	ND<1	ND<1	ND<1
Hexachlorobutadiene	ND<1	ND<1	ND<1
1,2,3-Trichlorobenzene	ND<1	ND<1	ND<1
1,2,3-Trichloropropane	ND<1	ND<1	ND<1
Acetonitrile	ND<5	ND<5	ND<5
Acrylonitrile	ND<1	ND<1	ND<1
Isobutanol	ND<5	N⊅<5	ND<5
1, 1, 1-Trichloroethane	ND<1	ND<1	ND<2
SUR-Dibromofluoromethane	93	93	99
SUR-Toluene-d8	97	101	99
SUR-4-Bromotluorobenzene	93	96	95
SUR-1,2-Dichloroethane-d4	92	101	100

Comments:

815 Dubuque Avenue • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE O F ANALYSIS

North State Labs

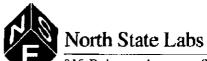
Job Number: 05-0209

Client

Project

: PIERS Environmental

: SAN PABLO AUTO BODY/2942 SAN PABLO


Date Sampled: 02/11/2005

Date Analyzed: 02/17/2005

Date Reported: 02/22/2005

Volatile Organics by GC/MS Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number Client ID	05-0209 Blank	MS/MSD Recovery	RPD	Recovery Limit	RPD Limit
Matrix	W	W			
Analyte	Results UG/L	%Recoveries			
Bromochloromathane	ND<1				
Dichlorodifluoromethane	ND<1				
Chloromethane	ND<1				
Vinyl chloride	ND<0.5				
Bromomethane Chloroethane	ND<1 ND<1				
Trichlorofluoromethane	ND<1				
1,1-Dichloroethene	ND<0.5	96/106	10	70-130	30
Acetone	ND<10	30/100	10	70-130	30
Methylene chloride	ND<25				
trans-1,2-Dichloroethene	ND<1				
Methyl-tert-butyl ether	ND<0.5				
1,1-Dichloroethane	ND<0.5				
2,2-Dichloropropane	ND<1				
cis-1,2-Dichloroethene	NC<1				
2-Butanone	ND<5				
Chloroform	ND<0.5				
Carbon tetrachloride	ND<0.5				
1,1-Dichloropropene	ND< 1				
Benzene	ND<0.5	111/102	8	70-130	30
1,2-Dichloroethane	ND<1				
Trichloroethene	KD<0.5	79/71	11	70-130	30
1,2-Dichloropropane	ND<1				
Dibromomethane	ND< 1				
Bromodichloromethane	ND<1				
trans-1,3-Dichloropropene	ND<1				
4-Methyl-2-pentanone	ND<1				
Toluene	ND<0.5	109/98	11	70-130	30
cis-1,3-Dichloropropene 1,1,2-Trichloroethane	ND<1 ND<1				
Tetrachloroethene	ND<0.5				
1,3-Dichloropropane	ND<1				
2-Hexanone	ND<1				
Dibromochloromethane	ND<1				
1,2-Dibromoethane	ND<0.5				
Chlorobenzene	ND<1	90/90	0	70-130	30
1,1,1,2-Tetrachlorocthane	ND<1		•		00
Ethylbonzene	ND<0.5				
Xylene, Isomers m & p	ND<1				
o-Xylene	ND<0.5				
Styrene	ND<1				

815 Dubuque Avenue • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

North State Labs

Job Number: 05-0209

Client

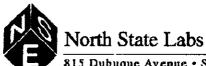
: PIERS Environmental

: SAN PABLO AUTO BODY/2942 SAN PABLO

Date Sampled: 02/11/2005

Date Analyzed: 02/17/2005

Date Reported: 02/22/2005


Volatile Organics by GC/MS Method 8260B Quality Control/Quality Assurance Summary

Laboratory Number	05-0209	MS/MSD	RPD	Recovery	RPD
Client ID	3iank	Recovery		Limit	Limit
Matrix	W	и			
Analyte	Results UG/L	%Recoveries			
Bromoform	ND<1				
Isopropylbenzene	ND<1				
Bromobenzene	ND<1				
1,1,2,2-Tetrachloroethane	ND<1				
n-Propylbenzene	ND<1				
2-Chlorotoluene	ND<1				
4-Chlorotoluene	ND<1				
1,3,5-Trimethylbenzene	ND<1				
tert-Butylbenzene	ND<1				
1,2,4-Trimethylbenzene	ND<1				
1,3-Dichlorobenzene	ND<1				
1,4-Dichlorobenzene	ND<1				
sec-Butylbenzene	ND<1				
1,2-Dichlorobenzene	ND<1				
n-Butylbenzane	ND<1				
Naphthalene	ND<1				
1,2,4-Trichlorobenzene	ND<1				
Kexachlorobutadiene	ND<1				
1,2,3-Trichlorobenzene	ND<1				
1,2,3-Trichloropropane	ND<1				
Acetonitrile	ND<5				
Acrylonitrile	ND<1				
Isobutanol	ND<5				
1,1,1-Trichloroethane	ND<1				
SUR-Dibromofluoromethane:	85	93/92	1	85~115	30
SUR-Toluene-d8	92	110/103	7	85-115	30
SUR-4-Bromofluorobenzene	91	96/96	0	85-115	30
SUR-1, 2-Dichloroethane-d4	87	97/98	1	B3-115	30

Reviewed and Approved

John A. Murphy Laboratory Director

Page 4 Of 4

. CA ELAP# 1753

815 Dubuque Avenue • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

SAMPLE RECEIPT CHECKLIST

Client Name: Tie/ > Charlonand	Date: 2/11/05		
Checked By: EK			
Matrix: Soil:Water	Other:	 -	
If Received via Shipment (If droppe	d off in person this sect	ion does not apply	r):
Carrier Name:			
Shipping Container/Cooler In Good	Condition?	Yes: No	o;
Custody Seals Intact on Shipping Co	ontainer?	Yes:No	D:
Custody Seals intact on sample cont	tainers?	Yes: No	: Not Present: <
Chain of Custody present?		Yes: <u>≭</u> No	:
Chain of Custody Signatures & Date	/Time correct?	Yes: <u> </u>	: <u> </u>
Chain of custody agrees with sample	e labels?	Yes: K	i:
Samples in proper containers?		Yes: ⊀ No	
Sample containers Intact?		Yes: X No	×
Sufficient sample volume for indicate	ed tests?	Yes: <u>≭</u> No	r
All Samples received within holding t	imes?	Yes: X No	:
Temperature Blank present? Record	Temp if present.	Yes: No	: <u> </u>
For water samples- VOAS have zero	headspace?	Yes: <u> +</u> No	NA:
For water samples- pH acceptable or	receipt?	Yes: _ / No	: NA:
pH adjusted - Preservative used:	HNO ₃ :HCi: Lot:	H₂SO₄:Na	OH: ZnOAc:
Corrective Action Record:	LOC.		
ient Contacted: Date Contacted:		Per	rson Contacted:
Contacted by:	Regarding:		
Comments:			
Corrective Action:			-

NORTH STATE LABS

FLUID-LEVEL MONITORING DATA

Project No	·:	·		Dat	e: <u>2-11-05</u>
Project/Sit	e Location:	2926-42	SAN PA	BLO AVE,	DAKLAND , CA
Technician	_				ELECTRONIC
	Pepth to	Depth to	Product	Total Well	Comments
Well	Water (feet)	Product (fext)	Tinckness (feet)	Depth (feet)	and the second s
WM-1	10.56			36.60	1110
MW-2	11.94			33.11	1100
MW-3	11.90			36.05	1050
-					
			-	·	
				·	
	-				
	·				
				-	

Measurements referenced to top of well casing. NORTH

Page of

NORTH STATE LABS

WELL PURGING/SAMPLING DATA

Project Number:

Project / Site Location:

Saw Pario Auto Body

Sampler/Technician:

Casing Diameter (inches)

Date: 2-11-05

Pario Auto Body

Sampler/Technician:

Sampler/Technician:		···		
Casing Diameter (inches) Casing Volumes (gallons/foot)	0.75	2	4	6
One of the state o	0.07	0.2	0.7	1.52

Gals.

A. Total Well Depth	36.60
B. Depth To Water	10.56
C. Water Height (A-B)	26.04
D. Well Casing Diameter	0.75
E. Casing Volume	0.62
F. Single Case Volume (CxE)	.53
G. Case Volume(s)(CxEx)	1.59
H. 80% Recharge Level	11.09

A. Total Well Depth	33.11
B. Depth To Water	11.94
C. Water Height (A-B)	21.17
D. Well Casing Diameter	0.75
E. Casing Volume	0.02
F. Single Case Volume (CxE)	. 42
G. Case Volume(s)(CxEx)	1.26
H. 80% Recharge Level	12:26

Purze Event	
Start Time: 1325	
Finish Time: 1350	
Purge Volume: 1.59	
Recharge	
Depth to Water: 10.96	
Time Measured: 1410	

Purze Event	
Start Time: 1245	
Finish Time: 1310	
Purge Volume: 1.26	
Recharge	·
Depth to Water: 11,977	
Time Measured: 140%	
	· · · · · · · · · · · · · · · · · · ·

Well Fluid Parameters:

.40

.80

1.26

				_				
	Well F	luid Para	meters:					
Gais.	0	.50	1.00	1.60				
Hq	7.10	7.31	7.35	7.32				
T (°C)	18.7	. 18.1	18.3	18.6				
Cond.	737	721	719	724				
DO mg/L		,						
DO %								
Turbidity								
ORP								
Summar	Summary Data:							
Total Gal	loas Purge	ed: 1.5°	1	*				
		SP. BAI						
Sampling	Device:	DISP. Z	AILER					
		lime: [식						
Sample A	ppearance	Odor: Cu	EAR /N/	4				

pH	6.14	693	6.98	6.92			
T (°C)	19.0	19.1	18.8	19.5			
Cond.	678	643	669	640			
DO mg/L							
DO %							
Turbidity							
ORP							
Summar	y Data:		<u> </u>				
Total Ga	llons Purge	dt 26	·				
Purge de	Purge device: DISP. BAILER						
Sampling	Sampling Device: DISP. BAILER						
Sample C	ollection 7	Time: 14	15				
	Sample Appearance/Odor: CLEAR / N/A						

				_			7.1	: <u>-=</u>		
		The second	, <u>, </u>	<u>.</u>				7X		
	_ 23	342 5	DAN PAG	<u>ئايات</u>	rws.	Úħ∜⊤-	every .			
								# 1 # -1		
Sampler/Technician.				1	0.75	7		4	6	
Casing Diameter (inches) Casing Volumes (gallons				-	0.73	0		0.7	1.52	
Casing Volumes (gamons	(1001)		·····	<u> </u>	(B.02)				1 1.72	
Well No. MW-3				T TO	/ell No.			····		
West No. 1-144 3	-			1	744					
A. Total Well Depth			ن. <i>0</i> 5		A. Total					
B. Depth To Water			.90		B. Depth					
C. Water Height (A-B)			4.15		C. Water D. Well C					
D. Well Casing Diamete	er		75		E. Casing		micići			
E. Casing Volume F. Single Case Volume	(CVE)		<u>07.</u> 48		F. Single	Case Vol	me (Cx)	E)	· · · · · · · · · · · · · · · · · · ·	
G. Case Volume(s)(C			.44		G. Case					
H. 80% Recharge Level			2.38		H. 80% R					
			<u></u>	-		· · · · · · · · · · · · · · · · · · ·				
			·							
Pures Event					Purze Ev					
Start Time: 1210		<u> </u>		Start Time: Finish Time:						
Finish Time: 1235					Purge Volume:					
Purge Volume: [-44]	****				Recharge		··			
Depth to Water: 2.32_					Depth to		 ,			
Time Measured: 42					Time Me	sured:				
Well Fluid	Para	neters:	 1	15		Well F	luid Par	rameters:		
Gals.	50	1.00	1-44	11	Gals.		Ì			
	.17		7.16	11	Ηα		 			
		18.6] }	T (°C)		 	_		
			743	11	Cond		-	_	 	
	53	731	177	11	DO ·					
DO mg/L				$\parallel \parallel$	mg/L	- -				
DO %					DO %					
Turbidity					Turbidity					
ORP					ORP					
Summary Data:				11	Summar	y Data:	.4			
Total Gallons Purged:	1.40	{		Total Gallons Purged:						
Purge device:	<u> </u>			15	Purge de	vice:				
Sampling Device: 7)	15P.	BAILER		Sampling Device:						
Sample Collection Tim				Sample Collection Time:						
Sample Appearance/O	NA	Sample Appearance/Odor:								