Jennifer C. Sedlachek Project Manager

ExxonMobil Refining & Supply Company Global Remediation - US Retail 4096 Piedmont Avenue #194 Oakland, California 94611 510.547.8196 510.547.8706 Fax jennifer.c.sedlachek@exxonmobil.com

December 14, 2007

Mr. Steven Plunkett Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577

RECEIVED

2:08 pm, Dec 27, 2007

Alameda County Environmental Health

Former Exxon RAS #7-0234/3450 35th Avenue, Oakland, California, RE:

Dear Mr. Plunkett:

Attached for your review and comment is a copy of the letter report entitled Soil and Groundwater Investigation Report, dated December 14, 2007, for the above-referenced site. The report was prepared by Environmental Resolutions, Inc. (ERI) of Petaluma, California, and details assessment activities for the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Jennifer C. Sedlachek Project Manager

Attachment:

ERI's Soil and Groundwater Investigation Report, dated December 14, 2007

cc:

w/ attachment

Mr. Chuck Headlee, California Regional Water Quality Control Board, San Francisco Bay Region Mr. Robert C. Ehlers, M.S., P.E., The Valero Companies, Environmental Liability Management

w/o attachment

Ms. Paula Sime, Environmental Resolutions, Inc.

Southern California Northern California Pacific Northwest Southwest Texas Montana

December 14, 2007 ERI 247603.R03

Ms. Jennifer C. Sedlachek ExxonMobil Refining & Supply-Global Remediation 4096 Piedmont Avenue #194 Oakland, California 94611

SUBJECT

Soil and Groundwater Investigation Report Former Exxon Service Station 70234 3450 35th Avenue, Oakland, California

Ms. Sedlachek:

At the request of Exxon Mobil Corporation (Exxon Mobil), Environmental Resolutions, Inc. (ERI) installed eight soil borings (B11 through B18) to evaluate the lateral and vertical extent of petroleum hydrocarbons in soil and groundwater beneath the site. Work was performed as proposed in ERI's Work Plan for Soil and Groundwater Investigation (the Work Plan), dated April 13, 2007 and Project Status and Addendum for Work Plan for Soil and Groundwater Investigation (the Addendum) dated October 27, 2007. Alameda County Health Care Services Agency, Environmental Health Department (the ACEH) approved the Work Plan in a letter dated May 3, 2007, and the Addendum in electronic correspondence dated December 4, 2007. Agency correspondence is provided in Attachment A.

SITE BACKGROUND

The site is located on the northeastern corner of 35th Avenue and Quigley Street in Oakland, California (Plate 1). Land use in the vicinity of the site is mixed-use commercial and residential (Plate 2). The site was owned by Exxon Mobil until July 2000 when the property and facilities were sold to Valero. The ACEH closed Exxon Mobil's environmental case at the site in 2000.

Three 8,000-gallon gasoline underground storage tanks (USTs) were excavated and removed from the site in 1991 and replaced with three 12,000-gallon gasoline USTs (IT, 1992). In 2002, the three 12,000-gallon gasoline USTs and associated product piping were excavated and removed from the site by Dan Brenton Construction Company on behalf of Valero (TRC, 2002). The locations of the former USTs, dispenser islands, destroyed groundwater monitoring wells, and select site features are shown on Plate 3. Groundwater monitoring was conducted at the site from July 1992 until May 1995 and in September 1999.

Previous Investigations

Investigations were conducted at the site between 1986 and 2000. Three groundwater monitoring wells (MW1 through MW3) were installed and 14 soil borings (B1 through B10, EB1, EB2, SB1, and SB2) were advanced at the site between 1986 and 1997 (HLA, 1988; Alton, 1991; IT, 1992; and EA, 1997). In June 2000, the wells were destroyed after the ACEH granted case closure (ERI, 2000).

SOIL AND GROUNDWATER INVESTIGATION

Soil and Groundwater Assessment

ERI began drilling activities as scheduled September 10, 2007; however, the work scope was not completed as proposed because subsurface conditions necessitated the use of more powerful drilling equipment. A representative from the ACEH attended the field activities on September 11, 2007. A detailed summary of the field activities is provided in the Addendum (ERI, 2007b).

Subsurface Clearance

Prior to field work, ERI obtained soil boring permits from the Alameda County Public Works Department (Public Works), contacted Underground Service Alert (USA), and contracted with a private utility-locating company to locate underground utilities at the site. Copies of the permits are provided in Attachment B. Field work was performed in accordance with the Work Plan and the Addendum, ERI's field protocol (Attachment C), and a site-specific health and safety plan.

Between September 4 and 6, 2007, the borings were cleared to 8 feet below ground surface (fbgs) using a hand auger to avoid conflicts with existing underground structures. On November 14, 2007, the borehole at location B16 was enlarged and cleared to 8 fbgs using a hand auger. ERI collected soil samples directly from the hand auger during hole clearance for stratigraphic evaluation, and retained the samples collected from the 5-foot interval for laboratory analysis.

Advancement of Soil Borings

Between September 10 and 12, 2007, ERI observed Woodward Drilling Company (Woodward), of Rio Vista, California, attempt to advance borings B11 and B13 using direct-push equipment and solid stem augers. The direct-push equipment met with refusal at 25 fbgs at boring B11 and at 22 fbgs at boring B13 due to adverse subsurface conditions. Attempts were made to advance the borehole at B13 using 2-inch solid stem augers and at an adjacent hole using 6-inch diameter hollow stem augers, refusal was encountered in both boreholes at 21 fbgs and 16 fbgs, respectively.

Because of the adverse subsurface conditions, it was determined that the direct-push rig would not be able to obtain total depth (35 fbgs) and work was suspended pending a re-evaluation of drilling technology. Details of the September 2007 field effort are presented in the Addendum (ERI, 2007b).

Between November 12 and 15, 2007, ERI observed Gregg Drilling and Testing, Inc, (Gregg), of Martinez, California advance eight soil borings, B11 through B18 using a Rhino M5T Track Rig equipped with hollow stem augers and direct-push rods. The soil borings were completed to depths ranging from 21.5 to 40 fbgs.

Soil Sample Collection

At borings B11 and B13 soil samples were collected continuously for stratigraphic evaluation and were retained at approximately 5-foot intervals for laboratory analysis. At the remaining boring locations, soil samples were collected at 5-foot intervals from the base of the hand augered hole to approximately 30 fbgs and then at 2.5-foot intervals. ERI identified the soil samples using visual and manual methods, classified them according to the Unified Soil Classification System (USCS), and constructed boring logs. The boring logs are provided in Attachment D.

Groundwater Collection

Grab water samples were collected at first-encountered water. Water was encountered at approximately 15 fbgs in borings B12 and B14 (former UST backfill) and between 37 and 40 fbgs at the remaining locations. To facilitate groundwater collection, a temporary PVC casing was installed at borings B13 and B16.

Laboratory Analytical Methods

ERI submitted soil and groundwater samples collected from the borings to a California state-certified analytical laboratory, under Chain-of-Custody protocol. Samples were analyzed for Total Petroleum Hydrocarbons as gasoline (TPHg) using Environmental Protection Agency (EPA) Method 8015B and benzene, toluene, ethylbenzene, and total xylenes (BTEX), oxygenated compounds (methyl tertiary butyl ether [MTBE], tertiary butyl alcohol [TBA], tertiary amyl methyl ether [TAME], ethyl tertiary butyl ether [ETBE], and di-isopropyl ether [DIPE]), and lead scavengers (1,2-dichloroethane [1,2-DCA] and 1,2-dibromoethane [EDB]) using EPA Method 8260B. Select samples were also analyzed for ethanol using EPA Method 8260B. Laboratory analytical reports and Chain-of-Custody records are provided in Attachment E.

Waste Disposal

Soil and rinsate water generated during field work activities was stored in twenty-two 55-gallon metal drums at the site. ERI collected one composite soil sample (four brass sleeves) from the drums for laboratory analysis. Upon receipt of the laboratory analytical results, ERI coordinated with Exxon Mobil for disposal of the waste.

Dillard Environmental Services (Dillard) of Byron, California, under direct contract to Exxon Mobil, removed 5 drums of soil from the site on October 5, 2007, and transported the drums to Republic Services, Inc., Vasco Road Landfill (Vasco Road) in Livermore, California, for disposal. On October 12, 2007, Dillard removed one drum of sludge and transported it to Clean Harbors Environmental Services (Clean Harbors) in Buttonwillow, California, for disposal. On November 27, 2007, Dillard removed 12 drums of soil and four drums of sludge and transported them to Vasco Road and Clean Harbors, respectively, for disposal. Disposal documentation is provided Attachment F.

Site Survey

On November 20, 2007, ERI observed Morrow Surveying (Morrow), of West Sacramento, California, survey the site and the soil boring locations. The resultant map is the basis of the site maps included in this report. A copy of the survey report is provided in Attachment G.

RESULTS OF INVESTIGATION

Site Geology and Hydrogeology

Sediments encountered in borings B11 through B18 consist of fine-grained clay and silt mixtures alternating with dense, hard clayey sands with gravel.

Groundwater was encountered between approximately 37 fbgs and 40 fbgs in the borings advanced outside of the excavation. A perched zone was encountered in the borings advanced in the excavation at approximately 15 fbgs (the presumed depth of the base of the excavation).

Residual Petroleum Hydrocarbon Concentrations in Soil

A total of 50 soil samples were collected from eight boring locations as part of the current investigation and submitted for laboratory analysis. A summary of current and historical soil sample analytical results are summarized in Tables 1A and 1B, and select analytical results are presented on Plates 4, 5, and 6. Laboratory analytical reports and Chain-of-Custody records are presented in Attachment E.

Results of this investigation indicate that the maximum concentrations of residual-phase petroleum hydrocarbon concentrations are present in soil samples collected from boring B15 between 20 and 30.5 fbgs, located along the southeast edge of the former UST cavity.

Vertical and Lateral Delineation of Petroleum Hydrocarbons in Soil

Field observations and laboratory analyses of the soil samples collected from borings B11 through B18 indicate that:

- Residual-phase petroleum hydrocarbons in soil are delineated laterally at the eastern former dispenser island and along the western edge of the UST pit, based on the soil sample analytical results from borings B11, B13, and B16. Petroleum hydrocarbon concentrations were not reported at or above the laboratory reporting limits below 34.5 fbgs.
- Residual-phase petroleum hydrocarbons in soil are not delineated laterally along the eastern and southern edge of the former tank pit, based on the soil sample analytical results from soil borings B15, B17, and B18.
- Residual-phase petroleum hydrocarbons in soil are adequately delineated vertically across the site. Concentrations of TPHg, benzene, and MTBE decrease with depth across the site and were not reported at or above the laboratory reporting limit in the sample collected at 38.5 fbgs (B16), the deepest depth explored. Although residual-phase hydrocarbons were reported above the laboratory reporting limits in select samples collected at 35 fbgs and 35.5 fbgs along the eastern and southern edge of the former tank pit, these samples are suspected to be from the capillary fringe zone since groundwater was encountered at approximately 37 fbgs.

Dissolved Petroleum Hydrocarbon Concentrations in Groundwater

Eight grab groundwater samples were collected during the current assessment activities: one from each boring. Perched water was encountered at the base of the back-filled UST basin excavation in borings B12 and B14. The excavation was backfilled with fill and capped with drain rock. Groundwater was encountered in the remaining borings at approximately 37 fbgs. A summary of current grab groundwater analytical results are summarized in Tables 2A and 2B. Laboratory analytical reports and Chain-of-Custody records are presented in Attachment E. A plan view of select current analytical results of grab groundwater samples is presented on Plate 7.

Lateral and Vertical Delineation of Petroleum Hydrocarbons in Groundwater

Field observations and the results of laboratory analyses of groundwater samples collected from soil borings B11 through B18 indicate:

- The lateral extent of petroleum hydrocarbon concentrations is defined to the north and to the west by grab groundwater samples collected from borings B11, B13, and B16. Concentrations of TPHg and benzene were not reported at or above the laboratory reporting limit and concentrations of MTBE were reported at a maximum 7.7 micrograms per liter (µg/L) (B16).
- The lateral extent of petroleum hydrocarbon concentrations is not defined south and east of the former UST pit. Concentrations of TPHg, MTBE and benzene reported in grab groundwater samples increase towards the east with the highest concentrations reported in boring B15 at 18,000 μg/L, 12,000 μg/L, and 3,400 μg/L, respectively. The highest concentrations of TPHg, MTBE, and benzene reported south of the UST pit were 4,300 μg/L (B18), 2,200 μg/L (B17), and 52 μg/L (B18), respectively.

CONCLUSIONS

Based on the results of assessment activities, ERI concludes that:

 The highest concentrations of residual petroleum hydrocarbons are present in soil samples collected from boring B15, located adjacent to the southeast edge of the UST pit.

- Residual-phase petroleum hydrocarbons in soil are delineated laterally at the eastern former dispenser island and along the western edge of the UST pit.
- Residual-phase petroleum hydrocarbons in soil are not delineated laterally along the eastern and southern edge of the former tank pit.
- Residual-phase petroleum hydrocarbons in soil are adequately delineated vertically across the site.
- Perched water is present at the base of backfilled UST excavation.
- The lateral extent of dissolved-phase petroleum hydrocarbon concentrations is defined to the north at the eastern dispenser island and along the western edge of the UST pit.
- The lateral extent of dissolved-phase petroleum hydrocarbon concentrations is not defined south and east of the former UST pit.

RECOMMENDATIONS

To further assess dissolved-phase petroleum hydrocarbon concentrations in the vicinity of the former UST pit, ERI recommends additional assessment southeast and southwest of the UST pit.

DOCUMENT DISTRIBUTION

ERI recommends that copies of this report be forwarded to the following:

Mr. Steven Plunkett Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Mr. Chuck Headlee California Regional Water Quality Control Board San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

Mr. Robert C. Ehlers, M.S., P.E. The Valero Companies Environmental Liability Management 685 West Third Street Hanford, California 93230

LIMITATIONS

This report was prepared in accordance with generally accepted standards of environmental practice in California at the time this investigation was performed. This report has been prepared for Exxon Mobil, and any reliance on this report by third parties shall be at such party's sole risk.

Please contact Ms. Paula Sime, ERI's project manager for this site, at (707) 766-2000 with any questions regarding this report.

Sincerely,

Environmental Resolutions, Inc.

Rebekah A. Westrup Senior Staff Geologi

Heidi Dieffenbach-Carle

P.G. 6793

Table 1A: Laboratory Analytical Results of Soil Samples

Table 1B: Additional Laboratory Analytical Results of Soil Samples
Table 2A: Laboratory Analytical Results of Grab Groundwater Samples

Table 2B: Additional Laboratory Analytical Results of Grab Groundwater Samples

Plate 1: Site Vicinity Map
Plate 2: Local Area Map
Plate 3: Generalized Site I

Plate 3: Generalized Site Plan

Plate 4: Select Analytical Results - TPHg
Plate 5: Select Analytical Results - Benzene
Plate 6: Select Analytical Results - MTBE

Plate 7: Select Grab Groundwater Analytical Results

Attachment A: Regulatory Correspondence

Attachment B: Permits
Attachment C: Field Protocol

Attachment D: Unified Soil Classification System, Symbol Key, and Boring Logs Attachment E: Laboratory Analytical Reports and Chain-of-Custody Records

Attachment F: Waste Disposal Documentation

Attachment G: Survey Report

REFERENCES

Alton Geoscience (Alton). 1991. Boring logs B1 through B10.

EA Engineering (EA). September 1997. Analytical results for used-oil UST and hydraulic hoist confirmation soil samples.

Environmental Resolutions, Inc. (ERI). October 30, 2000. *Groundwater Monitoring Well Destruction at Former Exxon Service Station 7-0234, 3450 35th Avenue, Oakland, California*. ERI Project No. 247614.R02.

Environmental Resolutions, Inc. (ERI). April 13, 2007a. Work Plan for Soil and Groundwater Investigation Former Exxon Service Station 7-0234, 3450 35th Avenue, Oakland, California. ERI Project No. 247603.W01.

Environmental Resolutions, Inc. (ERI). October 27, 2007b. *Project Status and Addendum for Work Plan for Soil and Groundwater Investigation Former Exxon Service Station 7-0234, 3450 35th Avenue, Oakland, California*. ERI Project No. 247603.W02.

Harding Lawson Associates (HLA). 1988. Plate 2, Site Plan.

International Technology Corporation (IT). September 1992. Site Assessment Report.

TRC. September 24, 2002. Report on Underground Storage Tank and Product Piping Removal, Valero Facility No. 3832, 3450 35th Avenue, Oakland, California. TRC Project No. 41-0412-01.

TABLE 1A LABORATORY ANALYTICAL RESULTS OF SOIL SAMPLES

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 1 of 3)

Sample ID	Sampling Date	Sample Depth	TPHg	MTBE	В	Т	E	X	Lead
		(fbgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
mples from the UST	Cavity Sidewall								
Pit1@12'	06/14/02	12	<1.0	<0.005	< 0.005	<0.005	<0.005	<0.005	
Pit2@11.5'	06/14/02	11.5	<1.0	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	
Pit3@11'	06/14/02	11	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Pit4@10'	06/14/02	10	<1.0	<0.005	<0.005	<0.005	<0.005	<0.005	
mples from Beneath	Product Piping								
A-6.4	06/25/02	6.4	<1.0	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	
B-4.9	06/25/02	4.9	24	0.020	0.057	0.11	0.12	1.2	0500
C-6.5	06/25/02	6.5	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
D-5.2	06/25/02	5.2	<1.0	<0.005	<0.005	<0.005	<0.005	<0.005	
il Borings									
S-5-B11	09/05/07	5	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-10-B11	09/10/07	10	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-13.5-B11	09/10/07	13.5	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-18-B11	09/11/07	18	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-20-B11	09/11/07	20	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	
S-25.5-B11	11/14/07	25.5	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-29.5-B11	11/14/07	29.5	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-34.5-B11	11/14/07	34.5	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-5-B12	09/04/07	5	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-15.5-B12	11/13/07	15.5	43	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	
S-20.5-B12	11/13/07	20.5	3.2	0.15	0.076	<0.0050	0.0053	<0.0050	
S-5-B13	09/05/07	5	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-10-B13	09/10/07	10	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-14.5-B13	09/10/07	14.5	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-20-B13	09/10/07	20	4.3	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-25-B13	11/12/07	25	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-30-B13	11/12/07	30	<0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-35-B13	11/12/07	35	<0.50	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	

TABLE 1A

LABORATORY ANALYTICAL RESULTS OF SOIL SAMPLES

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 2 of 3)

Sample ID	Sampling Date	Sample Depth	TPHg	MTBE	В	Τ	E	×	Lead
		(fbgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-5.0-B14	09/06/07	5	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-16-B14	11/13/07	16	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-20.5-B14	11/13/07	20.5	<0.50	0.031	<0.0050	<0.0050	<0.0050	<0.0050	
S-5-B15	09/04/07	5	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-10.5-B15	11/15/07	10.5	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-15.5-B15	11/15/07	15.5	1.1	0.12	0.32	0.019	0.017	0.074	
S-20-B15	11/15/07	20	300	< 0.25	6.1	36	14	72	
S-25.5-B15	11/15/07	25.5	220	<0.12	3.1	18	6.8	36	
S-30.5-B15	11/15/07	30.5	59	< 0.25	2.9	5.6	1.5	20	
S-35.5-B15	11/15/07	35.5	3.3	0.26	0.28	0.21	0.26	0.79	
S-5-B16	09/04/07	5	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-11-B16	11/14/07	11	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-15.5-B16	11/14/07	15.5	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-21-B16	11/14/07	21	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-26-B16	11/14/07	26	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-30.5-B16	11/14/07	30.5	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-34.5-B16	11/14/07	34.5	< 0.50	0.021	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-38.5-B16	11/14/07	38.5	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-5-B17	09/05/07	5	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-11-B17	11/13/07	11	90	0.036	0.052	<0.0050	0.086	0.020	
S-16-B17	11/13/07	16	< 0.50	0.099	0.0052	< 0.0050	< 0.0050	< 0.0050	
S-21-B17	11/13/07	21	< 0.50	0.011	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-24.5-B17	11/13/07	24.5	< 0.50	0.59	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
S-31-B17	11/13/07	31	<0.50	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	
S-35.5-B17	11/13/07	35.5	0.85	1.7	<0.0050	<0.0050	<0.0050	<0.0050	
S-5-B18	09/04/07	5	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-10-B18	11/12/07	10	<0.50	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	
S-15-B18	11/12/07	15	<0.50	0.0051	<0.0050	< 0.0050	< 0.0050	< 0.0050	
S-20-B18	11/12/07	20	<0.50	0.019	< 0.0050	< 0.0050	< 0.0050	< 0.0050	***

TABLE 1A LABORATORY ANALYTICAL RESULTS OF SOIL SAMPLES

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 3 of 3)

Sample ID	Sampling Date	Sample Depth	TPHg	MTBE	В	Т	Ε	X	Lead		
		(fbgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg		
S-25-B18	11/12/07	25	<0.50	0.18	<0.0050	<0.0050	<0.0050	<0.0050	1000		
S-30-B18	11/12/07	30	< 0.50	0.54	< 0.0050	< 0.0050	< 0.0050	< 0.0050	144		
S-35-B18	11/12/07	35	24	0.53	<0.0050	<0.0050	<0.0050	<0.0050			
Soil Stockpile											
SP-1(S-SP1-S-SP4)	09/12/07	1110 /	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	7.2		
Notes:											
TPHg	=	Total petroleum h	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 8015M.								
MTBE	=	Methyl tertiary bu	Methyl tertiary butyl ether analyzed using EPA Method 8021B/8260B								
BTEX	=	Benzene, toluene	e, ethylbenzene, and	d total xylenes analyze	ed using EPA Meth	nod 8021B/8260	B.				
Lead	=	Lead analyzed us	sing EPA Method 60	010B.							
1,2-DCA	=	1,2-dichloroethar	e analyzed using E	PA Method 8260B.							
EDB	=	1,2-dibromoethar	ne analyzed using E	PA Method 8260B.							
TBA	=	Tertiary butyl alco	ohol analyzed using	EPA Method 8260B.							
DIPE	=	Di-isopropyl ethe	r analyzed using EF	PA Method 8260B.							
ETBE	=	Ethyl tertiary buty	l ether analyzed us	ing EPA Method 8260	OB.						
TAME	=	Tertiary amyl met	hyl ether analyzed i	using EPA Method 82	260B.						
Ethanol	=	Ethanol analyzed	using EPA Method	I 8260B.							
fbgs	=	Feet below groun	d surface.								
mg/kg	=	Milligrams per kil	ogram.								
<	=	Less than the sta	ted laboratory repor	rting limit.							
	=	Not analyzed/Not		-							

TABLE 1B ADDITIONAL LABORATORY ANALYTICAL RESULTS OF SOIL SAMPLES

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 1 of 3)

Sample ID	Sampling Date	Sample Depth	1,2-DCA	EDB	ТВА	DIPE	ETBE	TAME	Ethanol
		(fbgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
amples from the Us	ST Cavity Sidew	<u>rall</u>							
lot analyzed for these	e analytes.								
amples from Benea lot analyzed for these		ng							
oil Borings									
S-5-B11	09/05/07	5	<0.0050	<0.0050	< 0.050	<0.010	<0.010	<0.010	
S-10-B11	09/10/07	10	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-13.5-B11	09/10/07	13.5	<0.0050	< 0.0050	<0.050	<0.010	<0.010	<0.010	
S-18-B11	09/11/07	18	<0.0050	<0.0050	< 0.050	<0.010	<0.010	<0.010	
S-20-B11	09/11/07	20	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-25.5-B11	11/14/07	25.5	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-29.5-B11	11/14/07	29.5	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-34.5-B11	11/14/07	34.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-5-B12	09/04/07	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-15.5-B12	11/13/07	15.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	<0.010	
S-20.5-B12	11/13/07	20.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-5-B13	09/05/07	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	-
S-10-B13	09/10/07	10	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-14.5-B13	09/10/07	14.5	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-20-B13	09/10/07	20	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-25-B13	11/12/07	25	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-30-B13	11/12/07	30	< 0.0050	< 0.0050	< 0.050	<0.010	< 0.010	<0.010	
S-35-B13	11/12/07	35	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-5.0-B14	09/06/07	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-16-B14	11/13/07	16	<0.0050	<0.0050	< 0.050	<0.010	<0.010	< 0.010	
S-20.5-B14	11/13/07	20.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-5-B15	09/04/07	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	922
- 40 40		0.0							

< 0.0050

< 0.0050

< 0.050

< 0.010

< 0.010

< 0.010

< 0.25

S-10.5-B15

11/15/07

10.5

TABLE 1B
ADDITIONAL LABORATORY ANALYTICAL RESULTS OF SOIL SAMPLES

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 2 of 3)

Sample ID	Sampling Date	Sample Depth	1,2-DCA	EDB	ТВА	DIPE	ETBE	TAME	Ethanol
		(fbgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-15.5-B15	11/15/07	15.5	0.011	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25
S-20-B15	11/15/07	20	<0.25	<0.25	<2.5	< 0.50	<0.50	< 0.50	<12
S-25.5-B15	11/15/07	25.5	<0.12	<0.12	<1.2	<0.25	<0.25	< 0.25	<6.2
S-30.5-B15	11/15/07	30.5	<0.25	<0.25	<2.5	<0.50	<0.50	<0.50	<12
S-35.5-B15	11/15/07	35.5	<0.0050	<0.0050	0.25	<0.010	<0.010	<0.010	<0.25
S-5-B16	09/04/07	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-11-B16	11/14/07	11	< 0.0050	<0.0050	< 0.050	<0.010	<0.010	<0.010	
S-15.5-B16	11/14/07	15.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	<0.010	
S-21-B16	11/14/07	21	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	
S-26-B16	11/14/07	26	< 0.0050	< 0.0050	< 0.050	< 0.010	<0.010	< 0.010	
S-30.5-B16	11/14/07	30.5	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	< 0.010	
S-34.5-B16	11/14/07	34.5	< 0.0050	<0.0050	< 0.050	<0.010	< 0.010	< 0.010	
S-38.5-B16	11/14/07	38.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-5-B117	09/05/07	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-11-B17	11/13/07	11	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-16-B17	11/13/07	16	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-21-B17	11/13/07	21	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	< 0.010	
S-24.5-B17	11/13/07	24.5	< 0.0050	< 0.0050	0.20	<0.010	<0.010	<0.010	
S-31-B17	11/13/07	31	<0.0050	< 0.0050	0.15	<0.010	<0.010	<0.010	
S-35.5-B17	11/13/07	35.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-5-B18	09/04/07	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	
S-10-B18	11/12/07	10	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-15-B18	11/12/07	15	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-20-B18	11/12/07	20	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-25-B18	11/12/07	25	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-30-B18	11/12/07	30	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	
S-35-B18	11/12/07	35	<0.0050	<0.0050	0.70	<0.010	<0.010	<0.010	
Soil Stockpile									
SP-1(S-SP1-S-SP4)	09/12/07	SHIP.	<0.0050	<0.0050	<0.020	<0.0050	<0.0050	<0.0050	100000

TABLE 1B ADDITIONAL LABORATORY ANALYTICAL RESULTS OF SOIL SAMPLES

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 3 of 3)

Notes:		
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 8015M.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8021B/8260B
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8021B/8260B.
Lead	=	Lead analyzed using EPA Method 6010B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary armyl methyl ether analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
fbgs	=	Feet below ground surface.
mg/kg	=	Milligrams per kilogram.
<	=	Less than the stated laboratory reporting limit.
	=	Not analyzed/Not applicable.

TABLE 2A LABORATORY ANALYTICAL RESULTS OF GRAB GROUNDWATER SAMPLES

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 1 of 1)

Sample ID	Sampling Date	Sample Depth	TPHg	MTBE	В	T	E	×
		(fbgs)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
UST Cavity Sam	ples							
Pit Water	06/14/02	11.5a	5,600	12,000	140	840	100	530
UST Pit	06/19/02	13.5a	680	640	2.7	36	18	130
Soil Borings								
W-38-B11	11/14/07	38	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
W-15-B12	11/13/07	15	8,400	78	67	<5.0	140	150
W-40-B13	11/12/07	40	<50	0.53	< 0.50	< 0.50	< 0.50	< 0.50
W-15-B14	11/13/07	15	2,500	16	1.7	3.0	26	13
N-38-B15	11/15/07	38	18,000	12,000	3,400	2,500	330	2,000
N-40-B16	11/15/07	40	<50	7.7	< 0.50	< 0.50	< 0.50	< 0.50
N-37-B17	11/13/07	37	630	2,200	1.8	< 0.50	4.1	1.4
N-38-B18	11/12/07	38	4,300	1,400	52	<12	56	96
Notes:								
TPHg	=	Total petroleum hy	drocarbons as ga	soline analyzed us	ing modified EPA	Method 8015M.		
MTBE	=	Methyl tertiary but	yl ether analyzed i	using EPA Method	8021B.			
BTEX	=	Benzene, toluene,	ethylbenzene, an	d total xylenes ana	lyzed using EPA I	Method 8021B.		
1,2-DCA	=	1,2-dichloroethane	analyzed using E	PA Method 8260B	3.			
EDB	=	1,2-dibromoethane	e analyzed using E	EPA Method 8260E	3.			
TBA	=	Tertiary butyl alcol	nol analyzed using	EPA Method 826	0B.			
DIPE	=	Di-isopropyl ether	analyzed using El	PA Method 8260B.				
ETBE	=	Ethyl tertiary butyl	ether analyzed us	ing EPA Method 8	260B.			
TAME	=	Tertiary amyl meth	yl ether analyzed	using EPA Method	8260B.			
Ethanol	=	Ethanol analyzed	using EPA Method	8260B.				
	=	Feet below ground	surface.					
fbgs								
tbgs µg/L	=	Micrograms per lit	er.					
•		Micrograms per lit Less than the state		rting limit.				

TABLE 2B ADDITIONAL LABORATORY ANALYTICAL RESULTS OF GRAB GROUNDWATER SAMPLES

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 1 of 1)

Sample ID	Sampling Date	Sample Depth	1,2-DCA	EDB	TBA	DIPE	ETBE	TAME	Ethanol
		(fbgs)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
UST Cavity Sam	nples								
Not analyzed for	these analytes.								
Soil Borings									
W-38-B11	11/14/07	38	< 0.50	< 0.50	<10	<0.50	< 0.50	< 0.50	<50
<i>N-</i> 15-B12	11/13/07	15	<5.0	<5.0	<100	<5.0	<5.0	<5.0	<500
W-40-B13	11/12/07	40	< 0.50	< 0.50	<10	< 0.50	<0.50	< 0.50	<50
W-15-B14	11/13/07	15	<1.0	<1.0	<20	<1.0	<1.0	<1.0	<100
N-38-B15	11/15/07	38	<25	<25	1,900	<25	<25	<25	<2,500
N-40-B16	11/15/07	40	<0.50	< 0.50	<10	<0.50	<0.50	< 0.50	85
N-37-B17	11/13/07	37	< 0.50	<0.50	58	< 0.50	<0.50	< 0.50	<50
N-38-B18	11/12/07	38	<12	<12	<250	<12	<12	<12	<1,200
Notes:									
TPHg	=	Total netroleum h	ydrocarbons as gasol	ine analyzed using n	nodified EPA Method	8015M			
MTBE	=		tyl ether analyzed usi			00.000			
BTEX	=		, ethylbenzene, and to			3021B			
1,2-DCA	=	·	e analyzed using EPA		doing El 7 (Moulou C	,02 12.			
EDB	=		e analyzed using EP						
TBA	=		hol analyzed using E						
DIPE	=		analyzed using EPA						
ETBE	=		ether analyzed using		3.				
TAME	=		hyl ether analyzed us						
Ethanol	=		using EPA Method 8	•					
fbgs	=	Feet below ground	•						
µg/L	=	Micrograms per lit							
			-						
49/L	=	Less than the stat	ted laboratory reportir	na limit.					

2476TOP0

J:\2476\2476Topo Dwg, mkjones

EXPLANATION

1/2-mile radius circle

SITE VICINITY MAP

FORMER EXXON SERVICE STATION 70234 3450 35th Avenue Oakland, California PROJECT NO.

2476

PLATE

FN 2476 07 R03 AERIAL_SP
J:\2476\SPECIALITY\R03\07 R03 AERIAL_SP.dwg, mkjones

EXPLANATION

NOT TO SCALE

LOCAL AREA MAP

FORMER EXXON SERVICE STATION 70234 3540 35th Avenue Oakland, California PROJECT NO.

2476

PLATE

GENERALIZED SITE PLAN

FORMER EXXON SERVICE STATION 70234 3450 35th Avenue Oakland, California PROJECT NO.

2476

PLATE

FORMER EXXON SERVICE STATION 70234 3450 35th Avenue Oakland, California

Soil Boring

PLATE 7

ATTACHMENT A REGULATORY CORRESPONDENCE

Paula M. Sime

From: Plunkett, Steven, Env. Health [steven.plunkett@acgov.org]

Sent: Tuesday, December 04, 2007 10:52 AM

To: Paula M. Sime

Subject: RO2515

Paula,

ACEH has reviewed the request for a time extension for the site located at 3450 35th. Due to difficulties with the advancement of soil borings and the collection of groundwater samples, ERI concluded that an alternative drilling technique should be implemented. The change in initial scope is reasonable and ACEH requests the results from the field work be presented in a Soil and Groundwater Investigation Report by December 31, 2007.

Thank you for your cooperation.

Steven Plunkett
Hazardous Materials Specialist
Alameda County Environmental Health
1131 Harbor Bay Parkway, Suite 250
Alameda, CA 94502-6577
510-383-1767
510-337-9355 Fax
steven.plunkett@acgov.org

___o __`\<,_ (*) / (*)

ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY

ENVIRONMENTAL HEALTH SERVICES **ENVIRONMENTAL PROTECTION** 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

May 3, 2007

Mr. Robert Ehlers Valero Refining Company PO Box 696000 San Antonio, TX 78269

Mr. R.J. Dold BNY Western Trust Company 3200 SW FRWY #3050 Houston, TX 77027

Ms. Jennifer Sedlachek ExxonMobil 4096 Piedmont Avenue, #194 Oakland, CA 94520-

MHCB (USA) Leasing Corp c/o Ad Valorem Tax Department PO Box 690110 San Antonio, TX 78269-0110

Subject: Fuel Leak Case No. RO0002515, Exxon #7-0234/Valero #3832, 3450 35th Avenue. Oakland, CA

Dear Messrs. Ehlers, Dold and Ms. Sedlachek:

Alameda County Environmental Health (ACEH) staff have reviewed the fuel leak case file and the report entitled, "Work Plan for Soil and Groundwater Investigation," dated April 13, 2007 and prepared by Environmental Resolutions Inc (ERI). The scope of work as proposed in the Work Plan recommends the installation of eight soil boring adjacent to the former USTs and fuel dispenser island. ACEH generally concurs with the scope of work as recommended in the Work Plan provided the technical comments discussed below are implemented prior to the start of field work.

We request that you perform the proposed work, and send us the reports described below. Please provide 72-hour advance written notification to this office (e-mail preferred to steven.plunkett@acgov.org) prior to the start of field activities.

TECHNICAL COMMENTS

Soil Boring Locations and Sampling. Review of Plate 7 (Proposed Soil Boring Locations) from the Work Plan indicates that soil borings B11, B13 and B14 are within the fill material of the former UST tank pit and dispenser island. Soil borings B11 and B13 should be advanced in undisturbed soil adjacent to the excavation sidewalls. ACEH agrees with the soil sample analysis recommended in the Work Plan.

During soil boring installation, any interval where staining, odor, or elevated PID readings occur a soil sample is to be collected and submitted for laboratory analysis. If no staining, odor, or elevated PID readings are observed, soil sample are to be collected from each boring at the capillary fringe, where groundwater is first encountered, at changes in lithology, at 5 feet interval, and at the total depth of the boring. Please present the result from the soil and groundwater investigation in the report requested below.

2. Geotracker EDF Submittals – A review of the case file and the State Water Resources Control Board's (SWRCB) Geotracker website indicate that electronic copies of analytical data have not been submitted for your site. Pursuant to CCR Sections 2729 and 2729.1, beginning September 1, 2001, all analytical data, including monitoring well samples, submitted in a report to a regulatory agency as part of the LUFT program, must be transmitted electronically to the SWRCB Geotracker website via the internet. Additionally, beginning January 1, 2002, all permanent monitoring points utilized to collected groundwater samples (i.e. monitoring wells) and submitted in a report to a regulatory agency, must be surveyed (top of casing) to mean sea level and latitude and longitude accurate to within 1-meter accuracy, using NAD 83, and transmitted electronically to the SWRCB Geotracker website. Beginning July 1, 2005, electronic submittal of a complete copy of all reports is required in Geotracker (in PDF format). In order to remain in regulatory compliance, please upload all analytical data (collected on or after September 1, 2001), to the SWRCB's Geotracker database website in accordance with the above-cited regulation.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Mr. Steven Plunkett), according to the following schedule:

July 1, 2007 - Soil and Groundwater Investigation Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail.

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage lanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

Ms. Jennifer Sedlachek and Mr. Robert Ehlers May 2, 2007 Page 3

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

LANDOWNER NOTIFICATION REQUIREMENTS

Pursuant to California Health & Safety Code Section 25297.15, the active or primary responsible party for a fuel leak case must inform all current property owners of the site of cleanup actions or requests for closure. Furthermore, ACEH may not consider any cleanup proposals or requests for case closure without assurance that this notification requirement has been met. Additionally, the active or primary responsible party is required to forward to ACEH a complete mailing list of all record fee title holders to the site.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please be aware that you may be eligible for reimbursement of the costs of investigation from the California Underground Storage Tank Cleanup Fund (Fund). In some cases, a deductible amount may apply. If you believe you meet the eligibility requirements, we strongly encourage you to call the Fund for an application.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 383-1767.

Ms. Jennifer Sedlachek and Mr. Robert Ehlers May 2, 2007 Page 4

Sincerely,

Steven Plunkett

Hazardous Materials Specialist

cc: Paula Sime

Environmental Resolutions Inc. 301 North McDowell Blvd. Petaluma, CA 94954-2312

Donna Drogos, ACEH Steven Plunkett, ACEH File

ATTACHMENT B PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 08/16/2007 By jamesy

Permit Numbers: W2007-0914

Work Total: \$200.00

Permits Valid from 11/12/2007 to 11/16/2007

Application Id: 1186509688236 City of Project Site: Oakland

Site Location: 3450 35th Avenue, Oakland, CA **Project Start Date:**

09/04/2007 Completion Date: 09/14/2007 Extension Start Date: 11/12/2007 Extension End Date: 11/16/2007 Extension Count: Extended By: vickyh1

Applicant: Environmental Resolutions Inc. - Paula Sime Phone: 707-766-2000

601 M McDowell Blvd., Petaluma, CA 94954

Property Owner: The Valero Companies Phone: --685 W 3rd St., Hanford, CA 93230

** same as Property Owner *

Total Due: \$200.00 Receipt Number: WR2007-0366 Total Amount Paid: \$200.00

Payer Name: Environmental Resolutions Inc. Paid By: CHECK PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Geotechnical Study/CPT's - 16 Boreholes Driller: Woodward, Gregg (485165) - Lic #: 710079 - Method: DP

Specifications

Client:

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2007- 0914	08/16/2007	12/03/2007	16	2,00 in.	35.00 ft

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled. properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or

Alameda County Public Works Agency - Water Resources Well Permit

waterways or be allowed to move off the property where work is being completed.

- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

ATTACHMENT C FIELD PROTOCOL

FIELD PROTOCOL

Site Safety Plan

Field work will be performed by ERI personnel in accordance with a Site Safety Plan developed for the site. This plan describes the basic safety requirements for the subsurface investigation at the site. The Site Safety Plan is applicable to personnel and subcontractors of ERI. Personnel at the site are informed of the contents of the Site Safety Plan before work begins. A copy of the Site Safety Plan is kept at the work site and is available for reference during the work. The ERI geologist will act as the Site Safety Officer.

Drilling of Soil Borings

Prior to the drilling of soil borings, ERI will acquire necessary permits from the appropriate agency(ies). ERI will also contact Underground Service Alert (USA) and a private underground utility locator (per ExxonMobil protocol) before drilling to help locate utility lines at the site. ERI will clear the proposed locations to a depth of approximately 4 or 8 feet (depending on the location), before drilling to reduce the risk of damaging underground structures.

Drilling will be performed under the observation of a field geologist, and the earth materials in the boring will be identified using visual and manual methods, and classified as drilling progresses using the Unified Soil Classification System.

Soil borings will be drilled using a hollow-stem auger drill rig. During drilling, soil samples will be collected continuously for stratigraphic evaluation and retained for laboratory analysis at approximately 5-foot intervals, at the capillary fringe, at areas of discoloration or odor, and areas where photo-ionization detector (PID) readings indicate the possible presence of hydrocarbons. Samples will be collected with a California-modified split-spoon sampler equipped with laboratory-cleaned brass sleeves. Samples will be collected by advancing the auger to a point just above the sampling depth and driving the sampler into the soil. The sampler will be driven 18 inches with a standard 140-pound hammer repeatedly dropped 30 inches. The number of blows required to drive the sampler each successive 6-inch interval will be counted and recorded to give an indication of soil consistency.

Augers and sampling equipment will be steam-cleaned before use and between borings to minimize the possibility of crosshole contamination. Auger rinsate will be containerized and stored on site. ERI will coordinate with ExxonMobil for appropriate disposal of the rinsate.

Soil samples will be monitored with a PID, which measures hydrocarbon concentrations in the ambient air or headspace above the soil sample. Field instruments such as the PID are useful for indicating relative levels of hydrocarbon vapors, but do not detect concentrations of hydrocarbons with the same precision as laboratory analyses. Soil samples selected for possible chemical analysis will be sealed promptly with Teflon® tape and plastic caps. The samples will be labeled and placed in iced storage for transport to the laboratory. Chain-of-Custody records will be initiated by the geologist in the field, updated throughout handling of the samples, and sent with the samples to the laboratory. Copies of these records will be in the final report. Cuttings generated during drilling will be stored in 55-gallon metal drums or placed on plastic sheeting and covered and left at the site. ERI will coordinate with ExxonMobil for the soil to be removed to an appropriate disposal facility.

Groundwater Sample Collection

Water samples are collected with a new, disposable Teflon® or polypropylene bailer. The groundwater is carefully poured into selected sample containers (40-milliliter [ml] glass vials, 1-liter glass amber bottles, etc.), which are filled so as to produce a positive meniscus.

Depending on the required analysis, each sample container is preserved with hydrochloric acid, nitric acid, etc., or it is preservative free. The type of preservative used for each sample is specified on the Chain-of-Custody form.

Grab Groundwater Sample Collection through Hollow-Stem Augers

At first encountered groundwater, a small diameter PVC well casing with 0.010" slotted screen may be inserted through the hollow stem of the augers to facilitate the collection of groundwater samples. The temporary well is lowered through the augers and then the augers are pulled up approximately 0.5 to 2 feet to expose the slotted interval and allow groundwater to flow into the boring. Groundwater samples may then be collected from within the casing with a new disposable bailer or peristaltic pump. The water sample is then promptly transported in iced storage in a thermally-insulated ice chest, accompanied by a Chain of Custody Record, to a California-certified laboratory.

Boring Grouting

After soil and grab groundwater sampling have been completed, the borings will be backfilled with cement grout . The grout will be pumped through a tremie pipe positioned at the bottom of the borings, which are filled from the bottom up to prevent bridging of the fill material. The surface is then finished to match surrounding conditions.

ATTACHMENT D

UNIFIED SOIL CLASSFICATION SYSTEM, SYMBOL KEY, AND BORING LOGS

12-10-2007 J:\2476\BORING LOGS\2476 B13,bor

BORING LOG B13

(Page 1 of 2)

: 09/10/2007, 11/12/2007 Date Drilled: : Woodward / Gregg Drilling Co.: : Direct Push/Hollow-Stem Drilling Method: : Direct Push Sampling Method: : 6" Borehole Diameter:

: N/A

: 2115567.5

: 6069863.8

: 40 fbgs

: 38 fbgs

: Former Exxon Service Station 70234 Project No.: : 3450 35th Avenue, Oakland, California

: Heidi L. Dieffenbach-Carle, P.G. #6793/ Rebekah A. Westrup Logged By:

Sample Condition

No Recovery

Sampled Interval

Reviewed By:

: Heidi L. Dieffenbach-Carle, P.G. #6793 : Heidi Die Signature:

Water Levels

First Encountered Water: 38'

▼ Second Encountered Water: NA

Casing Diameter:

Location N-S

Location E-W

Total Depth:

First GW Depth:

Boring: B13

Concrete

Neat Cement

Depth (ft)	Blow Count	OVM/PID (ppmv)	Sample	Column	nscs	Described Sample Preserved Sample DESCR	IPTION	
0-					FILL	6-inches of Concrete. Cleared to 8.0 GRAVELLY SAND WITH SILT (FILL brown, dry; fine to coarse grained gr concrete chunks present.): fine to coarse grained, gravish	
5-		0.0		<u>/////</u> 	ML	CLAYEY SILT WITH SAND: strong SILTY CLAY WITH SAND: yellowish medium grained sand.	brown, dry; fine-grained sand. brown, damp, hard; fine to	
2						CLAYEY SAND WITH GRAVEL: fing yellowish brown, damp, loose; fine g	e to coarse grained sand, dark rained gravel.	
8		0.0		143.43.4 143.43.4		@ 8 fbgs yellowish brown, very dens	se, well graded, matrix cemented.	
10-		0.0	œ					
8						@ 10 fbgs dark yellowish brown.		
8	-					@ 12 fbgs angular sandstone rocks		
15-	-	0.0	88			@ 13 fbgs yellowish brown: increas	ing clay content.	
	_	0.0			sc			
20-			×			@ 16.5 fbgs patchy orange staining decrease in gravel. @ 17 fbgs increasing gravels. Cont black, and gray.		
	-	0.0						

BORING LOG B17

(Page 1 of 2)

Date Drilled: : 11/13/2007

Drilling Co.: : Gregg Drilling Company

Drilling Method: : Hollow-Stem Auger

Sampling Method: : Direct Push Borehole Diameter: : 6"

_								Borehole Diameter:	: 6"
Project Site: Logged Review Signatu	By: ed By:		: 3450 : Heid : Heid	35th Aver i L. Dieffer i L. Dieffer	nue, C nbach- nbach-	e Station 70234 Pakland, California Carle, P.G. #6793 Carle, P.G. #6793		Casing Diameter: Location N-S Location E-W Total Depth: First GW Depth:	: N/A : 2115538.9 : 6069858.0 : 37 fbgs : 35.1 fbgs
Depth (ft)	Blow Count	OVM/PID (ppmv)	Sample	Column	nscs	Sample Condition No Recovery Sampled Interval Described Sample Preserved Sample	Boring: B17		
0-	<u>m</u>	0 8	Ö	Ö	ב	DEGG	1011		-
		**			FILL	6-inches of Concrete. Cleared to 8 FILL CLAYEY SILT: very dark gray, dar at 2.5 fbgs; trace fine grained sand	mp, color becomes I		Concrete
5-		0.0	***		CL	SILTY CLAY: light olive brown, dar medium grained sand; organic ma gray clay stringers found with wood	terial - rootlets, bark	city; trace fine to	
10-		147	**		CL	SANDY CLAY: light olive brown, d @ 10 fbgs orange staining; sand is			- Neat Cement
15—		2	***		sc	CLAYEY SAND: fine to medium g orange staining, damp; multi-color gravel.	rained sand, yellowi ed volcanic clasts; t	sh brown, race fine grained	
20-		0.0	**		ML	CLAYEY SILT WITH SAND: stron grained sand; volcanic fragments. @ 23 fbgs sand size increases to			
- 25-		0.0					: 		

12-10-2007 J:\2476\BORING LOGS\2476 B17.bor

ATTACHMENT E

LABORATORY ANAYLTICAL REPORTS AND CHAIN-OFCUSTODY RECORDS

Supplemental Report 1

October 03, 2007

The original report has been revised/corrected.

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 07-09-0209

> Client Reference: ExxonMobil 7-0234

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/6/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Pecille L el Soia

Calscience Environmental Laboratories, Inc. Cecile deGuia **Project Manager**

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

CASE NARRATIVE

Calscience Work Order No.: 07-09-0209 Client Reference: ExxonMobil 7-0234

On September 28, 2007, Calscience Environmental Laboratories, Inc. received a request to convert the reporting units for 8260B soil samples to mg/kg for the above project.

The report has been amended to reflect the units change from ug/kg to mg/kg.

The email instruction from Rebekah Westrup is attached.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

09/06/07 07-09-0209 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Page 1 of 2

Project: ExxonMobil 7-0234							P	age 1 of 2
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-5-B16		07-09-0209-1	09/04/07	Solid	GC 22	09/06/07	09/06/07	070 9 06B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	80	42-126						
S-5-B18		07-09-0209-2	09/04/07	Solid	GC 22	09/06/07	09/06/07	070906B01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	74	42-126						
S-5-B15		07-09-0209-3	09/04/07	Solid	GC 22	09/06/07	09/06/07	070906B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	78	42-126						
S-5-B12		07-09-0209-4	09/04/07	Solid	GC 22	09/06/07	09/06/07	070906B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	77	42-126						

RL - Reporting Limit ,

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

09/06/07 07-09-0209 EPA 5030B

Method:

EPA 8015B (M)

Project: ExxonMobil 7-0234

Page 2 of 2

Project. Exxonivious 7-0234							P	age 2 of 2
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-5-B13		07-09-0209-5	09/05/07	Solid	GC 22	09/06/07	09/06/07	070 9 06B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	76	42-126						
S-5-B11		07-09-0209-6	09/05/07	Solid	GC 22	09/06/07	09/06/07	070 9 06B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	73	42-126						
S-5-B17		07-09-0209-7	09/05/07	Solid	GC 22	09/06/07	09/06/07	070906B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	80	42-126						
Method Blank		099-12-279-1,063	N/A	Solid	GC 22	09/06/07	09/06/07	070 9 06B01
Parameter	Result	<u>RL</u>	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	76	42-126						

RL - Reporting Limit ,

DF - Ditution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 09/06/07 07-09-0209 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234

Page 1 of 3

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch
S-5-B16			07-09-0	209-1	09/04/07	Solid	GC/MS JJ	09/06/07	09/06/07	070 9 06L
Parameter	Result	RL	DE	Qual	<u>Parameter</u>			Result	<u>RL</u>	OF Quai
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	É)	ND	0.0050	1
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE))	ND	0.010	1
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1
Xylenes (total)	ND	0.0050	1							
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits	Qual
Dibromofluoromethane	105	73-139			1,2-Dichloroetl	hane-d4		103	73-145	
Toluene-d8	101	90-108			1,4-Bromofluo	robenzene		96	71-113	
S-5-B18			07-09-0	209-2	09/04/07	Solid	GC/MS JJ	09/06/07	09/06/07	070906L
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	DF Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco		•	ND	0.050	1
1.2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1
Xylenes (total)	ND	0.0050	1		-		•			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits	Qual
Dibromofluoromethane	109	73-139			1,2-Dichloroeti	hane-d4		108	73-145	
Toluene-d8	99	90-108			1,4-Bromofluo			96	71-113	
S-5-B15			07-09-0	209-3	09/04/07	Solid	GC/MS JJ	09/06/07	09/06/07	070906L
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco		_,	ND	0.050	1
1,2-Dichloroethane	ND	0.0050	i		Diisopropyl Etl			ND	0.010	1
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E)	ND	0.010	1
Toluene	ND	0.0050	1		Tert-Amyl-Methyl Ether (TAME)		ND	0.010	1	
Xylenes (total)	ND	0.0050	1			,	•			50
Surrogates:	REC (%)	Control Limits	•	Qual	Surrogates:			REC (%)	Control Limits	Qual
Dibromofluoromethane	112	73-139			1,2-Dichloroet	hane-d4		107	73-145	

RL - Reporting Limit ,

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 09/06/07 07-09-0209 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234

Page 2 of 3

Client Sample Number				Sample lumber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	d (QC Batch ID
S-5-B12			07-09-0	209-4	09/04/07	Solid	GC/MS JJ	09/06/07	09/06/0	7 (70906L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE))	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Kylenes (total)	ND	0.0050	1								
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
Dibromofluoromethane	108	73-139			1,2-Dichloroeth	nane-d4		106	73-145		
Toluene-d8	100	90-108			1,4-Bromofluor	robenzene		96	71-113		
S-5-B13			07-09-0	209-5	09/05/07	Solid	GC/MS JJ	09/06/07	09/06/0	7 (070906L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco		_,	ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth				0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl Et)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyi Ether (T	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1		•	•	,			177	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	108	73-139			1,2-Dichloroeth	nane-d4		107	73-145		
Toluene-d8	99	90-108			1,4-Bromofluor	robenzene		99	71-113		
S-5-B11			07-09-0	209-6	09/05/07	Solid	GC/MS JJ	09/06/07	09/06/0	7 (070906L01
Parameter Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco		_,	ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth			ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1				•				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	114	73-139			1,2-Dichloroetl	nane-d4		109	73-145		

RL - Reporting Limit ,

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 09/06/07 07-09-0209 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234

Page 3 of 3

Client Sample Number				Sample umber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	ed (QC Batch ID
S-5-B17			07-09-02	209-7	09/05/07	Solid	GC/MS J.	09/06/07	09/06/0	7 (70 9 06L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco		•	ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		<u>Limits</u>							Limits		
Dibromofluoromethane	109	73-139			1,2-Dichloroet			106	73-145		
Toluene-d8	100	90-108			1,4-Bromofluo	robenzene		95	71-113		
Method Blank			099-10-0	005-14,71	0 N/A	Solid	GC/MS J.	J 09/06/07	09/06/0	7 (70 9 06L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0,0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)	•	ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1			•	•				
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Quai
Dibromofluoromethane	108	73-139			1,2-Dichloroet	hane-d4		101	73-145		
	99				1,4-Bromofluo			95			

Quality Control - Spike/Spike Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

09/06/07 07-09-0209 **EPA 5030B** EPA 8015B (M)

Project ExxonMobil 7-0234

C	Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
	S-5-B12	Solid	GC 22	09/06/07	09/06/07	070906S01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	88	90	48-114	2	0-23	

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 09/06/07 07-09-0209 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
S-5-B16	Solid	GC/MS JJ	09/06/07	09/06/07	070906S01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	93	82	79-115	12	0-13	
Carbon Tetrachloride	105	91	55-139	15	0-15	
Chlorobenzene	92	81	79-115	13	0-17	
1,2-Dibromoethane	96	83	70-130	15	0-30	
1,2-Dichlorobenzene	88	77	63-123	14	0-23	
1,1-Dichloroethene	89	77	69-123	15	0-16	
Ethylbenzene	94	81	70-130	14	0-30	
Toluene	97	84	79-115	14	0-15	
Trichloroethene	93	80	66-144	15	0-14	4
Vinyl Chloride	78	93	60-126	17	0-14	4
Methyl-t-Butyl Ether (MTBE)	98	81	68-128	18	0-14	4
Tert-Butyl Alcohol (TBA)	109	93	44-134	16	0-37	
Diisopropyl Ether (DIPE)	103	87	75-123	17	0-12	4
Ethyl-t-Butyl Ether (ETBE)	109	92	75-117	17	0-12	4
Tert-Amyl-Methyl Ether (TAME)	100	85	79-115	17	0-12	4
Ethanol	102	87	42-138	15	0-28	

Mulhan

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Date Received: Work Order No:

N/A 07-09-0209

Preparation: Method:

EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Petaluma, CA 94954-2312

Quality Control Sample ID	Matrix	Instrume	Date strument Prepare		W 9/17/W 0		LCS/LCSD Batcl Number	1
099-12-279-1,063	Solid	GC 22	09/0	6/07	09/06	i/07	070906B01	
Parameter	LCS	<u> 6REC LO</u>	CSD %REC	%RE	C CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	99		94	70-	-124	5	0–18	

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

N/A 07-09-0209 EPA 5030B

Method:

EPA 8260B

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bate Number	ch .
099-10-005-14,710	Solid	GC/MS JJ	09/06/07	09/0	6/07	070906L01	
<u>Parameter</u>	LCS %RE	C LCSD %	<u> 6REC</u>	%REC CL	RPD	RPD CL	Qualifiers
Benzene	98	99		84-114	1	0-7	
Carbon Tetrachloride	115	110		66-132	4	0-12	
Chlorobenzene	99	98		87-111	1	0-7	
1,2-Dibromoethane	97	100		80-120	4	0-20	
1,2-Dichlorobenzene	96	97		79-115	1	0-8	
1,1-Dichloroethene	95	92		73-121	3	0-12	
Ethylbenzene	102	100		80-120	2	0-20	
Toluene	102	102		78-114	1	0-7	
Trichloroethene	98	98		84-114	0	0-8	
Vinyl Chloride	84	81		63-129	4	0-15	
Methyl-t-Butyl Ether (MTBE)	97	98		77-125	1	0-11	
Tert-Butyl Alcohol (TBA)	103	115		47-137	11	0-27	
Diisopropyl Ether (DIPE)	108	105		76-130	2	0-8	
Ethyl-t-Butyl Ether (ETBE)	112	111		76-124	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	101	105		82-118	4	0-11	
Ethanol	107	114		59-131	7	0-21	

Glossary of Terms and Qualifiers

Work Order Number: 07-09-0209

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
A	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
1	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Cecile de Guia

From: Rebekah Westrup [rwestrup@ERI-US.com]

Sent: Friday, September 28, 2007 2:48 PM

To: Cecile de Guia
Subject: Wrong Units

Cecile:

Paula said that you two have already touched based regarding units for soil samples and how we need everything reported in mg/kg. The following labs were reported in ug/kg for BTEX and 7 oxys

07-09-0533 07-09-0647 07-09-0788 07-09-0209

I think they were generated prior to your conversation with Paula. Please correct the units and re-issue the reports and their corresponding EDf files.

Thanks

Rebekah A. Westrup Senior Staff Geologist Environmental Resolutions, Inc. 601 N. McDowell Blvd Petaluma, CA 94954 rwestrup@eri-us.com www.eri-us.com 707-766-2000-Office 707-338-8555-Direct 707-789-0414-Fax nvironmental aboratories, Inc.

7440 LINCOLN WAY **GARDEN GROVE, CA 92841-1432**

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY

ORD

DATE:

9-5-07 1

		TEL: (714) 895-5494 . FA	X: (714) 894	i-7 5 01										(*)		PAGE:			1	o)F		1	
Exx	PRATORY CLIENT: On Mobil Refining & S RESS:	Supply - Global Rem	ediation				1	CLIENT PROJECT NAME / NOMBER:									P.O. NO.:							
c/o Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, California 94954					PROJECT CONTACT: Paula Sime/ERI									QUOTE NO.:				-						
TEL: (707) 766-2000	766-2000 FAX E-MAIL norcallabs@eri-us.com					SAMPLERIS): (BIGNATURE)								(AB USE ONLY 19-0209					9				
	AROUND TIME SAME DAY X 24 HR IAL REQUIREMENTS (ADDITIONAL	☐ 48HR ☐ 72 HF	R □5 D	AYS [] 10 DA	AY8		1	-0				F	REQU	ESTI	ED AI	VAL	YSK	- Dynamic And	PERGY.		(Streng	2.15.0	M. 18
Send SPEC -Us Se Ox	EDF report / Global tD: IAL INSTRUCTIONS E Silica Gol Cleanup for TBA reporting limit at Tygenates: MTBE, ETB	T06019757161 or all TPHd analyses. t or below 12 ug/L. BE, TAME, DIPE, TBA					1	158	9-8015B	80B	s by \$260B	ngers by 8260B	02608.	by 6010B										
ONLY CALLY	ad Scavengers: 1,2-D	CA, EDB LOCATION/ DESCRIPTION	SAME	PLING	Seat 1	*COAR	TPHO Py	TPHg by 8015B	Methanol by 8015	BTEX by8260B	Oxygenatise by	Lead Scavenge	Ethanol by 8260B	Total Lead by										
1	5-5-BIG		9/4/07	9:00	Soil	bress	广	X	-	X	X	X	H	-	╁	H		\dashv	+	+	+	₩	H	
2	5-5-818		9/4/07		30il	Putt		X		X	K	X			1	Ħ			1	+	+	\vdash	\vdash	\dashv
3	S-5-B15		9/4/07		301) bress		X		X	X	X			T				十	\top	\top	Н	\Box	
4	S-5-B12		9/4/07	15:15	soil	bress		X		K	X	X							T	\top	T	П		П
<u>۾</u>	S-5-B13	V*/	9/5/07		Soil	lovis.		X		X	X	×								T				\neg
le	S-5-BII		9/5/07		Soil	hvu S		X		X	×	X								T	T			
7	5-5-817		9/5/07	1100	Soil	hv25		×	-	×	x	×	-	+	+	\sqcup	4	1	4	I				
							-		1	\dashv		\dashv	+	+	+	H	\dashv	+	+	+	+	\vdash	\dashv	\dashv
								\neg		1	7	\dashv	1	+	T	H	十	十	+	+	+	\vdash	\dashv	\dashv
11.77	Hedu bull	rale				26y. (5	1	_	<u> </u>	\equiv	>	6	E	i				Date:	٠,٥	<u>ー</u> っ	Time	ין יןי	_	ᅱ
	ished by: (Signature)	- TO GSD			Receive	くん	Ω		Y	1	0	m	νc	7	O	7	-	Date:	-	100	Time	103	<u>-</u>	1

WORK ORDER #: 07 - 0 9 - 0 2 0 9

Cooler ____ of ___

SAMPLE RECEIPT FORM

CLIENT: EXXON MOBIL	DATE: 09.06.07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): ° C Temperature blank ° C IR thermometer Ambient temperature. Initial:
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not I	ntact) : Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	Yes No N/A
Sampler's name indicated on COC	
Sample container label(s) consistent with custody papers	
Sample container(s) intact and good condition	
Correct containers and volume for analyses requested	
Proper preservation noted on sample label(s)	
VOA vial(s) free of headspace	
Tedlar bag(s) free of condensation	
	Initial:
COMMENTS:	

Supplemental Report 1

October 03, 2007

The original report has been revised/corrected.

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject:

Calscience Work Order No.: 07-09-0788

Client Reference:

ExxonMobil 7-0234 / 247603X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/13/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & e Soia

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

CASE NARRATIVE

Calscience Work Order No.: 07-09-0788 Client Reference: ExxonMobil 7-0234

On September 28, 2007, Calscience Environmental Laboratories, Inc. received a request to convert the reporting units for 8260B soil samples to mg/kg for the above project.

The report has been amended to reflect the units change from ug/kg to mg/kg.

The email instruction from Rebekah Westrup is attached.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 09/13/07 07-09-0788 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Page 1 of 1

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-5.0-B14		07-09-0788-1	09/06/07	Solid	GC 1	09/13/07	09/13/07	070913B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	47	42-126						
Method Blank	X A HILLS	099-12-279-1,094	N/A	Solid	GC 1	09/13/07	09/13/07	070913B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	107	42-126						

RL - Reporting Limit

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 09/13/07 07-09-0788 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234 / 247603X

Page 1 of 1

Client Sample Number				ib Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze		QC Batch ID
S-5.0-B14			07-09-	0788-1	09/06/07	Solid	GC/MS Q	09/13/07	09/13/0	7. (70913L01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	Ξ)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco		,	ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Ett	ner (DIPE)		ND	0.010	4	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	,		ND	0.010	- 1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	, /	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1		•	,	-/		0,010		
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	111	73-139			1.2-Dichloroeti	nane-d4		112	73-145		
Toluene-d8	98	90-108			1,4-Bromofluor	obenzene		90	71-113		
Method Blank			099-10	-005-14,78	56 N/A	Solid	GC/MS Q	09/13/07		7 (70913L01
Parameter	Result										
	Itosuit	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	<u>RL</u> 0.0050	<u>DF</u> 1	Qual		Ether (MTB	Ξ)		_	DF 1	Qual
			100	Qual	Methyl-t-Butyl		Ξ)	ND	0.0050	<u>DF</u> 1	Qual
1,2-Dibromoethane	ND	0.0050	100	Qual		hol (TBA)	Ξ)	ND ND	0.0050 0.050		Qual
1,2-Dibromoethane 1,2-Dichloroethane	ND ND	0.0050 0.0050	100	<u>Qual</u>	Methyl-t-Butyl Tert-Butyl Alco	hol (TBA) er (DIPE)	Ξ)	ND	0.0050 0.050 0.010		Qual
1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene	ND ND ND	0.0050 0.0050 0.0050	100	Qual	Methyl-t-Butyl Tert-Butyl Alco Diisopropyl Eth	hol (TBA) ner (DIPE) ther (ETBE)	•	ND ND ND	0.0050 0.050 0.010 0.010	1 1 1	Qual
Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total)	ND ND ND ND	0.0050 0.0050 0.0050 0.0050	100	Qual	Methyl-t-Butyl Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Eth	hol (TBA) ner (DIPE) ther (ETBE)	•	ND ND ND	0.0050 0.050 0.010		Qual
1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total)	ND ND ND ND	0.0050 0.0050 0.0050 0.0050 0.0050	100	Qual Qual	Methyl-t-Butyl Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Eth	hol (TBA) ner (DIPE) ther (ETBE)	•	ND ND ND	0.0050 0.050 0.010 0.010 0.010	1 1 1	Qual Qual
1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene	ND ND ND ND ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 Control	100		Methyl-t-Butyl Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Met	hol (TBA) her (DIPE) ther (ETBE) hyl Ether (T	•	ND ND ND ND ND	0.0050 0.050 0.010 0.010 0.010	1 1 1	

Quality Control - Spike/Spike Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

09/13/07 07-09-0788 **EPA 5030B** EPA 8015B (M)

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Matrix Instrument			Date Analyzed	MS/MSD Batch Number	
07-09-0702-23	Solid	GC:1:	Prepared 09/13/07		09/13/07	070913501	
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
TPH as Gasoline	46	43	18_11/	7	0.23	2	

RPD - Relative Percent Difference, CL - Control Limit

Quality Control - Spike/Spike Duplicate

0-28

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 09/13/07 07-09-0788 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	i	Date Analyzed	MS/MSD Batch Number
S-5.0-B14	Solid	GC/MS Q	09/13/07		09/13/07	070913501
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	101	88	7 9- 115	14	0-13	4
Carbon Tetrachloride	104	86	55-139	18	0-15	4
Chlorobenzene	100	89	79-115	12	0-17	
1,2-Dibromoethane	101	103	70-130	1	0-30	
1,2-Dichlorobenzene	98	89	63-123	9	0-23	
1,1-Dichloroethene	104	87	69-123	17	0-16	4
Ethylbenzene	107	95	70-130	12	0-30	
Toluene	106	90	79-115	16	0-15	4
Trichlomethene	1 0 5	90	66-144	16	0-14	4
Vinyl Chloride	89	70	60-126	24	0-14	4
Methyl-t-Butyl Ether (MTBE)	101	94	68-128	7	0-14	
Tert-Butyl Alcohol (TBA)	105	10 5	44-134	1	0-37	
Diisopropyl Ether (DIPE)	1 0 3	95	75-123	8	0-12	
Ethyl-t-Butyl Ether (ETBE)	102	94	75-117	8	0-12	
Tert-Amyl-Methyl Ether (TAME)	107	96	79-115	11	0-12	

92

MMA MA

Ethanol

42-138

Quality Control - LCS/LCS Duplicate

0-18

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

TPH as Gasoline

Date Received: Work Order No: Preparation: Method:

70-124

N/A 07-09-0788 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-12-279-1,094	Solid	GC 1	09/13/07	09/13/07	070913B01	
Parameter	LCS %	REC LCSD	%REC %R	EC CL RPD	RPD CL	Qualifiers

115

115

Mulha.

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-09-0788 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD Bate Number	ch
099-10-005-14,756	Solid	GC/MS Q	09/13/07	09/13/07 09/13/0		070913L01	
Parameter	LCS %R	EC LCSD	6REC 9	%REC CL	RPD	RPD CL	Qualifiers
Benzene	102	102		84-114	0	0-7	
Carbon Tetrachloride	102	100		66-132	2	0-12	
Chlorobenzene	101	101		87-111		0-7	
1,2-Dibromoethane	102	99		80-120	2	0-20	
1,2-Dichlorobenzene	97	97		79-115	0	0-8	
1,1-Dichloroethene	105	100		73-121	5	0-12	
Ethylbenzene	108	107		80-120	1	0-20	
Toluene	105	106		78-114	1	0-7	
Trichloroethene	104	104		84-114	0	0-8	
Vinyl Chloride	94	85		63-129	9	0-15	
Methyl-t-Butyl Ether (MTBE)	104	101		77-125	3	0-11	
Tert-Butyl Alcohol (TBA)	72	71		47-137	1	0-27	
Diisopropyl Ether (DIPE)	103	102		76-130	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	101	100		76-124	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	104	105		82-118	1	0-11	
Ethanol	102	94		59-131	8	0-21	

All Marie Ma

Glossary of Terms and Qualifiers

Work Order Number: 07-09-0788

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
C	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
ı	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Cecile de Guia

From: Rebekah Westrup [rwestrup@ERI-US.com]

Sent: Friday, September 28, 2007 2:48 PM

To: Cecile de Guia
Subject: Wrong Units

Cecile:

Paula said that you two have already touched based regarding units for soil samples and how we need everything reported in mg/kg. The following labs were reported in ug/kg for BTEX and 7 oxys

07-09-0533 07-09-0647 07-09-0788 07-09-0209

I think they were generated prior to your conversation with Paula. Please correct the units and re-issue the reports and their corresponding EDf files.

Thanks

Rebekah A. Westrup Senior Staff Geologist Environmental Resolutions, Inc. 601 N. McDowell Blvd Petaluma, CA 94954 westrup@eri-us.com

www.eri-us.com 707-766-2000-Office 707-338-8555-Direct 707-789-0414-Fax

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY

PAGE: _____1 OF ___

ORD

	RATORY CLIENT:	Supply - Global Reme	elistic p	CAN STREET, ST.	-	-	CUI	ENT P	KOJEC	NAME	7 NUM	BER:	-	- Arrest			-		P.0.	NO.:	-		-		
ADDR	ESS:		diation			-	2	4760	3X /	7-0	234														- 1
	nvironmental Resol							OJECT								7	-		QU	OTE N	O.:				-
	North McDowell Blvd							aula																	
	luma, California 949						SAN	VIPLER	(8): (8)	SNATU	RE)			•			_		LA	USE	Mark March 12	4	ing) :	3.5	1
	766-2000	FAX: (707) 789-0414		E-MAIL horcaliab	s@eri-u	s.com	L	+41	dí	De	1	NS	ba	Op	-Co	VU	2		0	19]-[0	HIS	318	
TURN	AROUND TIME						F	PI	X	JU	11/2	الحرا	عح		FOTE	- D. A	MAI	VOI	C		Name of Street	4000		The same	
		☐ 48HR ☐ 72 HR	5 D	AYS [10 DA	YS					V		17	EUL	E516	:DA	NAI	LYSI	5						
	AL REQUIREMENTS (ADDITIONAL											9	0			Т		Π				\Box		\top	٦
Send	EDF report / Global ID:	T06019757161										8260B		1								1		- 1	- 1
	e Silica Gel Cleanup fe	or all TPHd analyses.						1			909	<u> </u>		6010B		1		1			1				- 1
	TBA reporting limit at							m	MS	_ 1	8	8	88	8						0					- 1
		E, TAME, DIPE, TBA					8015B	8015B	× 8	8	5	\$	826	3		1					- 1			1	- 1
Lea	ad Scavengers: 1,2-D						by 80		등	25	at a	Ř	À	2 E			1						-		- 1
A S		LOCATION	SAME	LING	4	4.	D D	to by	둁	X	- E	2	2	3	1						Ì	1			
18E 18E	8AMPLE ID	DESCRIPTION	DATE	TIME	Walley.	age Contra	TPHO	TPHB	Methanol by 8015B	BTEX by8280B	Oxygenates by 8260B	Lead Scavengers	Ethanol by \$250B	Total	1	1	ĺ	1 1							- 1
1	S-5.0-B14	B14	9-6.07	0845	Soll			х		х	X	x				T				\neg		一	1	\top	٦
								П				\neg	1		1	\vdash				7	7	\dashv	1	\top	٦
														\top	\top	1				\neg	\dashv	\dashv	+	+	٦
				H						\dashv	\dashv	-	-	+	+	\vdash	-		\dashv	+	\dashv	\dashv	+	+	٦
						\vdash	\vdash			\dashv	-	-		+		-	-	H	\dashv	+	-	\dashv	+	+	\dashv
					-		\vdash	Н	-	-	-	\dashv	-	+	+	-	-	Н	-	\dashv	+	\dashv	+	+	\dashv
	· · · · · · · · · · · · · · · · · · ·					-		\vdash	-	-	-	-	-	+	-	-	_	Н	-	-	-	-	+	+	4
4				L		_	_			-	_	4	-	\perp		_	_		_	_	-	_	_	_	_
										_		_													
					\wedge																				7
Relinqu	uished by: (Signature) 2 CL Dad MacCl	02			Receive	d by (S	ignad	ле)		<u>ー</u>	-	C	اريد					Date:				Time:	-		٦
Relinde	rished by (Sinnal fe)				Receive	100	ionatu	lea!	>			4				,		Date:	31	1	+	Time:	7		4
-to 650					- gricatu						11	11	sk	5		91	1131	107		ro	30		1		
Relinqu	ished by: (Signature)		274		Receive	d by: (S	ignatu	re)				1	1/1	1				Date:	1	4		Time:			7
-												-													- 1

WORK ORDER #: 07 - 0 9 - 0 7 8 8

Cooler ____ of _!__

SAMPLE RECEIPT FORM

CLIENT: ERT	DATE	: 9/1	3/07
TEMPERATURE - SAMPLES RECEIVED BY:			
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Otl 3.9 °C Temperal °C IR thermo	ture blank. ometer.	cience Courier):
°C Temperature blank.		Initia	# JP
CUSTODY SEAL INTACT:			
Sample(s): No (Not In	ntact) :	Not Present Initial	
SAMPLE CONDITION:			70
Chain-Of-Custody document(s) received with samples	<u> </u>	··	
COMMENTS:			

Supplemental Report 1

October 03, 2007

The original report has been revised/corrected.

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject:

Calscience Work Order No.: 07-09-0533

Client Reference:

ExxonMobil 7-0234 / 247603X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/11/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & se Soin

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

CASE NARRATIVE

Calscience Work Order No.: 07-09-0533 Client Reference: ExxonMobil 7-0234

On September 28, 2007, Calscience Environmental Laboratories, Inc. received a request to convert the reporting units for 8260B soil samples to mg/kg for the above project.

The report has been amended to reflect the units change from ug/kg to mg/kg.

The email instruction from Rebekah Westrup is attached.

Environmental Resolutions, Inc.

601 North McDowell Blvd.

Petaluma, CA 94954-2312

Analytical Report

Date Received:

Work Order No: Preparation:

Method:

09/11/07

07-09-0533 EPA 5030B

EPA 8015B (M)

Project:	ExxonMobil	7-0234	/ 247	7603X
FIUICCE.		1-0234	/ 44	

Page 1 of 1

								3
Client Sample Number		Lab Sample Number	Date Collected	Matrix	instrument	Date Prepared	Date Analyzed	QC Batch II
S-10-B13		07-09-0533-1	09/10/07	Solid	GC 18	09/11/07	09/12/07	070911B01
Paramete <i>r</i>	Result	RL	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	89	42-126						
S-14,5-B13		07-09-0533-2	09/10/07	Solid	GC 18	09/11/07	09/12/07	070911B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	89	42-126						
S-20-B13		07-09-0533-3	09/10/07	Solid	GC 18	09/11/07	09/12/07	070911B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	4.3	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	93	42-126						
Method Blank		099-12-279-1,083	N/A	Solid	GC 18	09/11/07	09/11/07	070911B01
<u>Parameter</u>	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0,50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	89	42-126						

RL - Reporting Limit

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units; 09/11/07 07-09-0533 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234 / 247603X

Page 1 of 2

Client Sample Number				ib Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	d C	QC Batch ID
S-10-B13			07-09-	0533-1	09/10/07	Solid	GC/MS JJ	09/13/07	09/13/07	? 0	70913L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	ohol (TBA)	•	ND	0.050	1	
,2-Dichloroethane	ND	0.0050	1		Diisopropyl Et	her (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	
l'oluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1		•	,	•			511	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	111	73-139			1,2-Dichloroet	hane-d4		107	73-145		
Toluene-d8	100	90-108			1,4-Bromofluo	robenzene		93	71-113		
S-14,5-B13			07-09-	0633-2	09/10/07	Solid	GC/MS JJ	09/13/07	09/13/07	7 0	70913L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	,	_,	ND	0.050	1	
,2-Dichloroethane	ND	0.0050	1		Diisopropyl Et	, ,		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	, ,)	ND	0.010	1	
Foluene	ND	0.0050	1		Tert-Amyl-Met	,		ND	0.010	1	
Kylenes (total)	ND	0.0050	1		, , , , , , , , , , , , , , , , , , , ,		,		5.575		
Surrogates:	REC (%)	Control Limits	·	Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	113	73-139			1,2-Dichloroet	hane-d4		105	73-145		
Toluene-d8	98	90-108			1,4-Bromofluo			94	71-113		
S-20-B13			07-09-	0533-3	09/10/07	Solid	GC/MS JJ	09/13/07	09/13/0	7. 0	70913L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	•	•	ND	0.050	1	
,2-Dichloroethane	ND	0.0050	1		Diisopropyl Et			ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	, ,)	ND	0.010	1	
Foluene	ND	0.0050	1		Tert-Amyl-Met		·	ND	0.010	1	
(ylenes (total)	ND	0.0050	1		•	-				100	
Surrogates:	REC (%)	Control Limits	-	Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	114	73-139			1,2-Dichloroet	hane-d4		108	73-145		
Foluene-d8	101	90-108			1,4-Bromofluo			94	71-113		

RL - Reporting Limit

DF - Dilution Factor ,

Oual - Oualifier

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received:

09/11/07 07-09-0533

Work Order No: Preparation:

EPA 5030B Method: EPA 8260B

Units: mg/kg

Project: ExxonMobil 7-0234 / 247603X Page 2 of 2

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date i Analyze	d C	QC Batch ID
Method Blank	5.		099-10	-005-14,75	3 N/A	Solid	GC/MS JJ	09/13/0	7 09/13/0	7 0	70913L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Akc	ohol (TBA)		ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Et	her (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		Limits							Limits		
Dibromofluoromethane	111	73-139			1,2-Dichloroet	hane-d4		100	73-145		
Toluene-d8	100	90 -1 0 8			1,4-Bromofluo	robenzene		92	71-113		

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 09/11/07 07-09-0533 EPA 5030B EPA 8015B (M)

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample iD	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-09-0434-9	Solid	GC 18	09/11/07		09/11/07	070911501
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	89	97	48-114	8	0-23	

Mahama

D - Relative Percent Difference CL - Control

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 09/11/07 07-09-0533 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-09-0391-19	Solid	GC/MS JJ	09/13/07	09/13/07	070913501

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	94	98	79-115	4	0 -13	
Carbon Tetrachloride	108	109	55-13 9	2	0-15	
Chlorobenzene	93	96	79 -115	3	0-17	
1,2-Dibromoethane	95	101	70-130	6	0-30	
1,2-Dichlorobenzene	89	93	63-123	5	0-23	
1,1-Dichloroethene	80	84	69-123	4	0-16	
Ethylbenzene	92	96	70-130	4	0-30	
Toluene	97	101	79-115	4	0-15	
Trichloroethene	98	101	66-144	3	0-14	
Vinyl Chloride	96	97	60-126	1	0-14	
Methyl-t-Butyl Ether (MTBE)	94	100	68-128	6	0-14	
Tert-Butyl Alcohol (TBA)	104	118	44-134	13	0-37	
Diisopropyl Ether (DIPE)	102	107	75-123	5	0-12	
Ethyl-t-Butyl Ether (ETBE)	105	112	75-117	6	0-12	
Tert-Amyl-Methyl Ether (TAME)	101	105	79-115	4	0-12	
Ethanol	108	115	42-138	7	0-28	

Muhama_

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No:

N/A 07-09-0533

Preparation:

EPA 5030B

Method:

EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal y		LCS/LCSD Bate Number	h
099-12-279-1,083	Solid	GC 18	09/11/07	09/11	/07	070911B01	
Parameter	LCS	%REC LCSI) %REC 5	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	112	2 1	4	70-124	2	0-18	

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-09-0533 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ite yzed	LCS/LCSD Bate Number	:h
099-10-005-14,753	Solid	GC/MS JJ	09/13/07	09/1	3/07	070913L01	
<u>Parameter</u>	LCS %	REC LCSD	%REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	101	99		84-114	2	0-7	
Carbon Tetrachloride	117	113		66-132	4	0-12	
Chlorobenzene	100	99		87-111	1	0-7	
1,2-Dibromoethane	102	101		80-120	2	0-20	
1,2-Dichlorobenzene	96	95		79-115	2	8-0	
1,1-Dichloroethene	91	86		73-121	6	0-12	
Ethylbenzene	100	100		80-120	1	0-20	
Toluene	10 5	103		78-114	2	0-7	
Trichloroethene	102	100		84-114	3	0-8	
Vinyl Chloride	92	89		63-129	3	0-15	
Methyl-t-Butyl Ether (MTBE)	100	100		77-125	0	0-11	
Tert-Butyl Alcohol (TBA)	127	125		47-137	2	0-27	
Diisopropyl Ether (DIPE)	107	108		76-130	0	0-8	
Ethyl-t-Butyl Ether (ETBE)	111	111		76-124	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	10 5	106	i	82-118	1	0-11	
Ethanol	120	123		59-131	3	0-21	

All Ama

Glossary of Terms and Qualifiers

Work Order Number: 07-09-0533

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
l	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Cecile de Guia

From: Rebekah Westrup@ERI-US.com]

Sent: Friday, September 28, 2007 2:48 PM

To: Cecile de Guia Subject: Wrong Units

Cecile:

Paula said that you two have already touched based regarding units for soil samples and how we need everything reported in mg/kg. The following labs were reported in ug/kg for BTEX and 7 oxys

07-09-0533 07-09-0647 07-09-0788 07-09-0209

I think they were generated prior to your conversation with Paula. Please correct the units and re-issue the reports and their corresponding EDf files.

Thanks

Rebekah A. Westrup Senior Staff Geologist Environmental Resolutions, Inc. 601 N. McDowell Blvd Petaluma, CA 94954 rwestrup@eri-us.com www.eri-us.com 707-766-2000-Office 707-338-8555-Direct

707-789-0414-Fax

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

PAGE:	1	OF	1
PAGE:		Ur	1

	ATORYCLIENT:	Supply - Global Reme	diation			THE PARTY OF		ENT PR				BEK:	- Chicana	W			nere-	are control	P.O.	NO.:		-	-		
ADDR					0 - 10 - 3	-		4760 DJECT			234	-,	-						OU	OTE N	n .			_	_
	North McDowell Blvd							eula			RI	1								0121					
	luma, California 949	54 FAX:		I E-MAIL			8AN	APLER(S) SY	MAYU	RE	7								USE			, Al		1.77
	766-2000	(707) 789-0414		norcallab	s@erl-u	s.com		lute l	III.	14		8							10	12]-K	216	ي ار	31L	3
1	AROUND TIME		-		1								R	REQL	JEST	ED A	NAI	YSI	s						
	SAME DAY 24 HR AL REQUIREMENTS (ADDITIONAL		★ 5 D	AYS L	10 DA	YS	_	_	_		-					_	_	_	_		-			_	_
	EDF report / Global ID:											8260B			1										- 1
SPECI	AL INSTRUCTIONS										99	by 82			1							1	- 1		
	e Silica Gel Cleanup for TBA reporting limit at								8015B		8260B		89	by 6010B								. 1	- 1		- 1
	ygenates: MTBE, ETB					. 1	8015B	80158	88	80B	s by	ebue	826	4			1					- 1		- 1	- 1
Lea	ad Scavengers: 1,2-D						ž	4	Wethanol by	by8260B	Oxygenates by	Lead Scavengers	Ethanol by \$260B	Lead											- 1
LAB USE ONLY	SAMPLE ID	LOCATION/		PLING	Made	#Con.	器	TPHg by	than	втех	ryge	Pa	hanc	Total L					3					-1	- 1
ONLY		DESCRIPTION	DATE	TIME	134	274	E	-	i	_	HOLDER BY	-	111	러		_	_	_			_		-	4	_
1	5-10-B13	B13	9/10/07	8:55	SOIL	1		X		X	X	X													
2	5-14.5 - 1313			9:05	1			X		X	X	X													
200	5- 20 -B13	V	V	10:00	1	1		X		X	\times	X													
																T									
														-									\neg	\top	\neg
														\dashv	1	+						\dashv	\top	7	\neg
										\neg	\neg			\neg		+-	-			\neg	\dashv	7	+	十	\neg
				-	-	-	Н			\dashv		-	-	\dashv		+	-		\neg	\dashv	+	\dashv	+	+	\dashv
						A	I	1		\dashv	\dashv		-	\dashv		╁	-		\dashv	+	-+	十	\dashv	+	\dashv
Relina	visited by: (Signature)				Receive	id by (S	ighat	urle)		لــــا							_	Date			+	Time;			-
//	HE LOS ALNUM					U	1/1	4											0/0	7		13:	10		
Relindi	uished by: (Signature)	-10 GSD			Receive	d	ignati	ire)	-	1		201						Date			7	Time:	1	\sim	
Refinqu	uished by: (Signature)	00 900			Receive	ed by: (S	ignatu	ire)	4		- Age	YY	Y	2				Date		0	4	Time:	11		\dashv
`																									

WORK ORDER #: 07 - 0 9 - 0 5 3 3

Cooler __/_ of _/_

Sample receipt form

CLIENT: EVYOD MOBIL	DATE: 09:11.07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): C Temperature blank. C IR thermometer. Ambient temperature.
°C Temperature blank.	Initial:
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not	Intact): Not Present: Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

Supplemental Report 1

October 03, 2007

The original report has been revised/corrected.

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 07-09-0647

> Client Reference: ExxonMobil 7-0234 / 247603X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/12/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & se Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia **Project Manager**

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

CASE NARRATIVE

Calscience Work Order No.: 07-09-0647 Client Reference: ExxonMobil 7-0234

On September 28, 2007, Calscience Environmental Laboratories, Inc. received a request to convert the reporting units for 8260B soil samples to mg/kg for the above project.

The report has been amended to reflect the units change from ug/kg to mg/kg.

The email instruction from Rebekah Westrup is attached.

Environmental Resolutions, Inc.

Date Received:

09/12/07

601 North McDowell Blvd. Petaluma, CA 94954-2312 Work Order No:

07-09-0647 **EPA 5030B**

Preparation: Method:

EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Page 1 of 2

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-10-B11		07-09-0647-1	09/10/07	Solid	GC 18	09/12/07	09/12/07	070912B01
Parameter	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		rng/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FiD	90	42-126						
S-13,5-B11		07-09-0647-2	09/10/07	Solid	GC 18	09/12/07	09/12/07	070912B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	90	42-126						
S-18-B11		07-09-0647-3	09/11/07	Solid	GC 18	09/12/07	09/12/07	070912B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1:		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	91	42-126						
S-20-B11		07-09-0647-4	09/11/07	Solid	GC 18	09/12/07	09/12/07	070912B01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	91	42-126						

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 09/12/07 07-09-0647 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Page 2 of 2

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Method Blank		099-12-279-1,088	N/A	Solid	GC 18	09/12/07	09/12/07	070912B01
Parameter	Result	RL	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	87	42-126						

01.0.15.44.4

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 09/12/07 07-09-0647 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234 / 247603X

Page 1 of 2

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	C	C Batch ID
S-10-B11			07-09-0	0647-1	09/10/07	Solid	GC/MS W	09/15/07	09/15/07	0	70915L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTBE)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	ohol (TBA)	,	ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Ett	her (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.010	1	
Foluene .	ND	0.0050	1		Tert-Amyl-Met		ME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1		,	,	•			•	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	105	73-139			1,2-Dichloroet	hane-d4		99	73-145		
Toluene-d8	94	90-108			1,4-Bromofluo	robenzene		91	71-113		
S-13,5-B11			07-09-0	0647-2	09/10/07	Solid	GC/MS W	09/15/07	09/15/07	0	70915L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTBE)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	,	,	ND	0.050	4	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Ett	, ,		ND	0.010	1	
Ethyl b enzene	ND	0.0050	1		Ethyl-t-Butyl E			ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hvl Ether (TA	ME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1		•	,	,				
Surrogates:	REC (%)	Control Limits	73.	Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	98	73-139			1,2-Dichloroet	hane-d4		97	73-145		
Toluene-d8	96	90-108			1,4-Bromofluo			92	71-113		
S-18-B11	8		07-09-	0647-3	09/11/07	Solid	GCMS W	09/15/07	09/15/07	0	70915L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTBE)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	•	•	ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Et	,		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	,	ME)	ND	0.010	1	
Kylenes (total)	ND	0.0050	1		•	•	•		23	50	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	102	73-139			1,2-Dichloroet	hane-d4		99	73-145		
Toluene-d8	96	90-108			1,4-Bromofluo	robonzono		89	71-113		

RL - Reporting Limit ,

DF - Dilution Factor

- Quality and Company

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 09/12/07 07-09-0647 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234 / 247603X

Page 2 of 2

Client Sample Number				b Sample Number	Date Collected	Matrix	instrument	Date Prepared	Date Analyzed	QC Batch ID
S-20-B11			07-09-0	647-4	09/11/07	Solid	GC/MS W	09/15/07	09/15/07	070915L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL [OF Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.0050	1
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)	•	ND	0.050	1
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Etl	ner (DIPE)		ND	0.010	1
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE	E)	ND	0.010	1
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (1	ΓΑΜΕ)	ND	0.010	1
Xylenes (total)	ND	0.0050	1							
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits	Qual
Dibromofluoromethane	95	73-139			1,2-Dichloroet	hane-d4		90	73-145	
Toluene-d8	93	90-108			1,4-Bromofluo	robenzene		93	71-113	
Method Blank			099-10	-005-14,7	71 N/A	Solid	GC/MS-W	09/16/07	09/15/07	070915L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL I	OF Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MT	3E)	ND	0.0050	1
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco		•	ND	0.050	1
1,2-Dichloroethane	ND	0.0050	-1		Diisopropyl Etl	ner (DIPE)		ND	0.010	1
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (1	ΓAME)	ND	0.010	1
Xylenes (total)	ND	0.0050	1							
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits	Qual
									70 4 45	
Dibromofluoromethane	100	73-139			1,2-Dichloroet	hane-d4		96	73-145	

RL - Reporting Limit ,

DF - Dilution Factor

Quality Control - Spike/Spike Duplicate

aporatories, inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 09/12/07 07-09-0647 EPA 5030B EPA 8015B (M)

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-09-0623-1	Solid	GC 18	09/12/07	-	09/12/07	070912501
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	95	96	48-114	1	0-23	

RPD - Relative Percent Difference,

CL - Control Limit

Quality Control - Spike/Spike Duplicate

- SpikerSpike Dupilcate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 09/12/07 07-09-0647 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
S-20-B11	Solid	GC/MS W	09/15/07	09/15/07	070915501

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Веплепе	89	85	79-115	4	0-13	
Carbon Tetrachloride	81	75	55-139	8	0-15	
Chlorobenzene	99	93	79-115	6	0-17	
1,2-Dibromoethane	98	94	70-130	5	0-30	
1,2-Dichlorobenzene	97	91	63-123	6	0-23	
1,1-Dichloroethene	89	80	69-123	10	0-16	
Ethylbenzene	104	100	70-130	4	0-30	
Toluene	92	88	7 9 -115	4	0-15	
Trichloroethene	93	87	66-144	6	0-14	
Vinyl Chloride	92	86	60-126	7	0-14	
Methyl-t-Butyl Ether (MTBE)	77	73	68-128	6	0-14	
Tert-Butyl Alcohol (TBA)	101	89	44-134	13	0-37	
Diisopropyl Ether (DIPE)	86	82	75-123	5	0-12	
Ethyl-t-Butyl Ether (ETBE)	90	85	75-117	5	0-12	
Tert-Arnyl-Methyl Ether (TAME)	91	87	7 9 -115	4	0-12	
Ethanol	82	84	42-138	2	0-28	

Mulham

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-09-0647 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		LCS/LCSD Batcl Number	ו
099-12-279-1,088	Solid	GC 18	09/12/07	09/12/	07	070912B01	
Parameter	LCS 9	%REC LCSD	%REC %	REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	115	. 111		70-124	2	0.18	

RPD - Relative Percent Difference , CL - Control Limit

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

07-09-0647 EPA 5030B

N/A

od: EPA 8260B

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matnx	Instrument	Date Analyzed	Lab File	eID LC	CS Batch Number
099-10-005-14,771	Solid	GC/MS W	09/15/07	15SEP00	5;rr	070915L01
Parameter		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Benzene		250	220	88	84-114	
Carbon Tetrachloride		250	200	80	66-132	
Chlorobenzene		250	250	100	87-111	
1,2-Dibromoethane		250	246	98	80-120	
1,2-Dichlorobenzene		250	259	104	79-115	
1,1-Dichloroethene		250	222	89	73-121	
Ethylbenzene		25 0	263	105	80-120	
Toluene		250	232	93	78-114	
Trichloroethene		250	227	91	84-114	
Vinyl Chloride		250	214	86	63-129	
Methyl-t-Butyl Ether (MTBE)		250	201	81	77-125	
Tert-Butyl Alcohol (TBA)		1250	1170	93	47-137	
Diisopropyl Ether (DIPE)		250	222	89	76-130	
Ethyl-t-Butyl Ether (ETBE)		250	229	92	76-124	
Tert-Amyl-Methyl Ether (TAME)		250	236	94	82-118	
Ethanol		2500	2110	85	59-131	

Glossary of Terms and Qualifiers

Work Order Number: 07-09-0647

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
ŀ	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN	OF	CUSTODY	CORE
	_	,,	1

DATE:

		_
PAGE:	OF	1

LAB	DRATORY CLIENT:		-			nanephoni	CLI	ENTP	ROJEC	TNAM	E/NU	MBER:	-	_	-	-	-		7 27	0. NO.:	_				_
Exx	on Mobil Refining & S	Supply - Global Rem	ediation				1				10 (2								1	765-8.II					
	_{RESS:} Environmental Resolu	utions. Inc.							CONT.		234								10	UOTE	NO:		_		
601	North McDowell Blvd	i.					P	aula	Sin	ne/E	RI								1	7012	140.,				
	aluma, California 949						BAN	APLER	(S): (Bi	GNATU	RE)								LA	B US	EIONL	Y			(38)
TEL: (707	7) 766-2000	(707) 789-0414		E-MAIL norcaliat	s@eri-u	s.com	1												17	AT.	題	O	6	4	7
	NAROUND TIME		-	-	-		1	-	-	-	-		-		and the same		-			evinus:	· maket		-45	e Andr	A 1114.5
	SAME DAY 24 HR		₹5 D	AYS [10 DA	YS	1						F	REQ	JES1	ED /	ANA	LY5	IS						7
GPE	CIAL REQUIREMENTS (ADDITIONAL	COSTS MAY APPLY)										6		П	T	T	T	T	T	T	T	1			_
Send	EDF report / Global ID:	T06019757161					١.					8260B	lî :		-	1				1		1			
	ial instructions se Silica Gel Cleanup fo	or all TPHd analyses					1		_ m		Oxygenates by 8260B	by 8		g		1		1	1	1					
	t TBA reporting limit at							m	8015B	_	1 82		BOE	6010B		1	1			1			l i		
Q)	ygenates: MTBE, ETB	E, TAME, DIPE, TBA					8015B	8016B	8	908	\$ b	gua	826	3		1		1				1			
	ad Scavengers: 1,2-D	CA, EDB					, by	2	ethanol by	BTEX by8260B	rate	Lead Scavengers	Ethanol by 8260B	Lead by			1	1						. 1	
USE	SAMPLE ID	LOCATION/	SAM	PLING	4 SUPE	*Con	тРН	TPHO	喜	X	Yge	8	Durie	61			1	1	1					1	
ONL		DESCRIPTION	DATE	TIME	34	977	F	F	1	I B	ő	3	击	TO TO		L		L							
	S-10-B11	BII	9-10-07	15:05	SOIL	1		X		X	Х	X				I		Π							
2	S-13.5-BII	BII	9-10-07	15:20		I		X		X	X	×				T									
34	5-18-BII	BII	9-11-07	9:20				X		X	X	Х				T									
	5-20-BIL	811	9-14-07	9:40		1		X		×	×	×													
																T	1	T				П			
														\neg	_	+	1	1		\vdash		\vdash		-	\neg
			†				Н	_		-		\dashv		+		+	+-	\vdash	-	-	-	\vdash	\dashv	\dashv	\dashv
			<u> </u>		_		\vdash	-	\vdash	-		-	-	+		+-	+-	+-	-	-	-	-	-	-	-
	-				_		\vdash	-	-			-		+		+	-	-		_			\dashv	-	-
							\sqcup	_		\dashv	_	_	_	_		1	-	_						_	
						لـما																			
Kelini	uished by: (Signature)	alle			Receive	d by: (S	signatu	rei										D	lu	12:	7	Time	145	-	
Relind	uished by (Signature)	4. (()			Receive	diby: (S	grietu	rej /	力	7	1000							I 1100				Time	i.		\dashv
Datie		70000				<i>V</i>		\geq	1-4	110	n			$\mathcal{C}_{\mathcal{C}}$	之			-	11:	2/0	77		03	0	
Kelino	juished by: (Signature)				Receive	d by: (S	ignatu	re)										Date	¥.			Time			-
and the last			-							-								1				lane.			- 1

WORK ORDER #:	07	<i>-</i> 0	9-	0	6	4	7
---------------	----	------------	----	---	---	---	---

Cooler ___ of __/

SAMPLE RECEIPT FORM

CLIENT: ERI	DATE: 09/12/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): °C Temperature blank. °C IR thermometer. Ambient temperature.
°C Temperature blank.	Initial: NC
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not I	ntact) : Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

November 14, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject:

Calscience Work Order No.: 07-11-0905

Client Reference:

ExxonMobil 7-0234

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/13/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Soin

Calscience Environmental Laboratories, Inc. Cecile deGuia **Project Manager**

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No:

11/13/07 07-11-0905 EPA 5030B

Preparation: Method:

EPA 8015B (M)

Project: ExxonMobil 7-0234

Page 1 of 3

1 Tojooti Exitorimoon I eze.								
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-25-B13		07-11-0905-1	11/12/07	Solid	GC 18	11/13/07	11/13/07	071113B01
Parameter	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	73	42-126						
S-30-B13		07-11-0905-2	11/12/07	Solid	GC 18	11/13/07	11/13/07	071113B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	60	42-126						
S-35-B13		07-11-0905-3	11/12/07	Solid	GC 18	11/13/07	11/13/07	071113B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	99	42-126						
S-10-B18		07-11-0905-4	11/12/07	Solid	GC 18	11/13/07	11/13/07	071113B01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	102	42-126						

RL - Reporting Limit

DF - Dilution Factor

Date Received:
Work Order No:

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

11/13/07 07-11-0905 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Page 2 of 3

1 TOJECL. EXXOTIVIODII 7-0204								
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-15-B18		07-11-0905-5	11/12/07	Solid	GC 18	11/13/07	11/13/07	071113B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	.1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	92	42-126						
S-20-B18		07-11-0905-6	11/12/07	Solid	GC 18	11/13/07	11/13/07	071113B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	101	42-126						
S-25-B18		07-11-0905-7	11/12/07	Solid	GC 18	11/13/07	11/14/07	071113B01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg	ſ		
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	101	42-126						
S-30-B18		07-11-0905-8	11/12/07	Solid	GC 18	11/13/07	11/14/07	071113B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg	J		
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	93	42-126						

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 11/13/07 07-11-0905 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Page 3 of 3

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-35-B18		07-11-0905-9	11/12/07	Solid	GC 18	11/13/07	11/14/07	071113B01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	24	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	122	42-126						
Method Blank	0-10	099-12-279-1,302	N/A	Solid	GC 18	11/13/07	11/13/07	071113B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TDU Caralina	ND	0.50	1		mg/kg			
TPH as Gasoline	ND	0.50	•		mg/ng			
TPH as Gasoline Surrogates:	REC (%)	Control Limits	·	Qual	mg/kg			

RL - Reporting Limit

DF - Dilution Factor

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/13/07 07-11-0905 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234

Page 1 of 4

Project. Exxonivioui /	-020-									_	7 1 01 4
Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	Q	C Batch ID
S-25-B13			07-11-	0905-1	11/12/07	Solid	GC/MS Z	11/13/07	11/13/07	07	71113L01
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u> [<u>DF</u>	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl E	Ether (MTBE	Ξ)	ND	0.0050	1	
1.2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco		,	ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl Et			ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Meth	, ,	ME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1			,	,				
Surrogates:	REC (%)	Control	3.	Qual	Surrogates:			REC (%)	Control		Qual
<u>Sarrogatos.</u>	1320 (70)	Limits							Limits		
Dibromofluoromethane	110	73-139			1,2-Dichloroeth	nane-d4		121	73-145		
Toluene-d8	97	90-108			1,4-Bromofluor	obenzene		95	71-113		
S-30-B13			07-11-	0905-2	11/12/07	Solid	GC/MS Z	11/13/07	11/13/07	0	71113L01
Deremeter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
<u>Parameter</u>				Quai	Methyl-t-Butyl I	The AMEDI	-\	ND	0.0050	1	-
Benzene	ND	0.0050	- 1		Tert-Butyl Alco		-)	ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1			, ,		ND	0.030	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth					1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl Et	, ,	\ A 4 E \	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Metl	nyi Etner (TA	AIVIE)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1					DEO (0/)	0		Overl
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibramely assessed have	109	<u>Limits</u> 73-139			1,2-Dichloroeth	nane-d/		122	73-145		
Dibromofluoromethane Toluene-d8	97	90-108			1,4-Bromofluor			97	71-113		
Toluerie-do	31	90-100	_								
S-35-B13			07-11-	0905-3	11/12/07	Solid	GC/MS Z	11/13/07	11/13/07	0	71113L01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	DE	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	≣)	ND	0.0050	1	
					Tank Durk A Niga	bol /TRAN	•	ALD	0.050	- 4	
1 2-Dipromoetnane	ND	0.0050	1		l ert-Butyl Aicc	IIIUI (IDA)		ND	0.050	1	
1,2-Dibromoethane 1.2-Dichloroethane	ND ND	0.0050 0.0050	1		Tert-Butyl Alco			ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)					
1,2-Dichloroethane Ethylbenzene	ND ND	0.0050 0.0050	1			ner (DIPE) ther (ETBE)	AME)	ND	0.010	1	
1,2-Dichloroethane Ethylbenzene Toluene	ND ND ND	0.0050 0.0050 0.0050	1 1 1		Diisopropyl Eth Ethyl-t-Butyl Ethyl-t	ner (DIPE) ther (ETBE)	AME)	ND ND	0.010 0.010	1	
1,2-Dichloroethane Ethylbenzene	ND ND	0.0050 0.0050 0.0050 0.0050 <u>Control</u>	1	Qual	Diisopropyl Eth Ethyl-t-Butyl Ethyl-t	ner (DIPE) ther (ETBE)	AME)	ND ND	0.010 0.010 0.010 Control	1	Qual
1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) <u>Surrogates:</u>	ND ND ND ND REC (%)	0.0050 0.0050 0.0050 0.0050 Control Limits	1 1 1	Qual	Diisopropyl Eth Ethyl-t-Butyl E Tert-Amyl-Met Surrogates:	ner (DIPE) ther (ETBE) hyl Ether (T <i>i</i>	AME)	ND ND ND REC (%)	0.010 0.010 0.010 <u>Control</u> <u>Limits</u>	1	Qual
1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total)	ND ND ND ND	0.0050 0.0050 0.0050 0.0050 <u>Control</u>	1 1 1	Qual	Diisopropyl Ett Ethyl-t-Butyl E Tert-Amyl-Met	ner (DIPE) ther (ETBE) hyl Ether (T <i>i</i> nane-d4	AME)	ND ND ND	0.010 0.010 0.010 Control	1	Qual

RL - Reporting Limit

DF - Dilution Factor ,

Date Received:

11/13/07 07-11-0905

601 North McDowell Blvd. Petaluma, CA 94954-2312

Environmental Resolutions, Inc.

Work Order No: Preparation: Method:

EPA 5030B EPA 8260B

Units:

mg/kg

Project: ExxonMobil 7-0234

Page 2 of 4

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-10-B18			07-11-	0905-4	11/12/07	Solid	GC/MS Z	11/13/07	11/13/07	071113L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	OF Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1
Xylenes (total)	ND	0.0050	1							
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control	Qual
<u> </u>		Limits							Limits	
Dibromofluoromethane	109	73-139			1,2-Dichloroeth	nane-d4		119	73-145	
Toluene-d8	98	90-108			1,4-Bromofluo	robenzene		95	71-113	
S-15-B18			07-11-	0905-5	11/12/07	Solid	GC/MS Z	11/13/07	11/13/07	071113L01
December	Desult	DI	DE	Ousl	Parameter			Result	RL	DF Qual
Parameter	Result	RL	-	Qual	Parameter	EU WITD				
Benzene	ND	0.0050	1		Methyl-t-Butyl	•	E)	0.0051	0.0050	1
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	, ,		ND	0.050	1
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	, ,		ND	0.010	1
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	,	,	ND	0.010	1
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1
Xylenes (total)	ND	0.0050	1		_			(0/)		0 1
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits	Qual
Dibromofluoromethane	110	73-139			1.2-Dichloroet	hane-d4		121	73-145	
Toluene-d8	99	90-108			1,4-Bromofluo			94	71-113	
S-20-B18			07-11-	0905-6	11/12/07	Solid	GC/MS W	11/13/07	11/14/07	071113L03
			5.5		D			Decult	DI	DE Qual
Parameter	Result	RL	DF	Qual	Parameter			Result		350
Benzene	ND	0.0050	1		Methyl-t-Butyl		BE)	0.019	0.0050	1
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco			ND	0.050	1
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Et			ND	0.010	1
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	,	,	ND	0.010	1
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1
Xylenes (total)	ND	0.0050	1							
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits	Qual
Dibromofluoromethane	105	73-139			1,2-Dichloroet	hane-d4		105	73-145	
Toluene-d8	99	90-108			1.4-Bromofluo			96	71-113	
i Qidelio do	99	20-100			., 1 2.01101100					

RL - Reporting Limit

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/13/07 07-11-0905 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234

Page	3	of
------	---	----

				Date Collected	Matrix	Instrument	Date Prepared			QC Batch ID
		07-11-	0905-7	11/12/07	Solid	GC/MS Z	11/13/07	11/13/0	7 (71113L01
Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	RL	DF	Qual
ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	0.18	0.0050	1	
ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE)	ND	0.010	1	
ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
ND	0.0050	1								
REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
	Limits							Limits		
111	73-139			1,2-Dichloroeth	nane-d4		124	73-145		
98	90-108			1,4-Bromofluo	robenzene		97	71-113		
		07-11-	0905-8	11/12/07	Solid	GC/MS Z	11/13/07	11/13/0	07 (71113L01
Recult	RΙ	DE	Qual	Parameter			Result	RL	DF	Qual
		100	Quai		Ethor (MTD	E)	-			
						·=)				
		(0)		,	, ,				4	
		- 01				`			1	
				,	•	,			1	
				i eπ-Amyi-iviet	nyı Etner (ı	AIVIE)	ND	0.010	1	
		1	0 1	0			DEC (0/)	Cantani		Ougl
<u>REC (%)</u>			Qual	Surrogates:			REC (%)	<u>Limits</u>		Qual
107	73-139			1,2-Dichloroetl	nane-d4		120	73-145		
98	90-108			1,4-Bromofluo	robenzene		98	71-113		
		07-11-	0905-9	11/12/07	Solid	GC/MS W	11/13/0	7 11/14/	07 (071113L03
Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
					Ether (MTF	(F)				
						,			1	
					, ,				1	
		1/4			,	\			4	
		1		, ,	,	,			4	
				i en-Amyi-iviet	nyı ⊑üner (ı	AWE)	ND	0.010	1	
		7	Our	Curronotos			DEC (0/\	Control		Qual
<u>REC (%)</u>	Limits		<u>uuai</u>	Surrogates:			MEU (70)	<u>Control</u> <u>Limits</u>		Qual
	LIIIIII							<u></u>		
102	73-139			1,2-Dichloroet	hane-d4		105	73-145		
	ND ND ND ND REC (%) 111 98 Result ND	ND	ND	ND	Number Collected	Number Collected Matrix	Number Collected Matrix Instrument	Number Collected Matrix Instrument Prepared	Number Collected Matrix Instrument Prepared Analyze	Number Collected Matrix Instrument Prepared Analyzed Collected

RL - Reporting Limit ,

DF - Dilution Factor

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/13/07 07-11-0905 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234

Page 4 of 4

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date d Analyzed	QC	Batch ID
Method Blank			099-10	-005-15,079	N/A	Solid	GC/MS Z	11/13/07	7 11/13/07	071	1113L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MT	3E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1	i	Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE	≣)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (*	ГАМЕ)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1.								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control	_	<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	109	73-139			1,2-Dichloroetl			115	73-145		
Toluene-d8	97	90-108			1,4-Bromofluo	robenzene		95	71-113		
Method Blank			099-10	-005-15,083	B N/A	Solid	GC/MS W	11/13/0	7 11/14/07	07	1113L03
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MT	3E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)	,	ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Ett	ner (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE	Ξ)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (*	TAME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control	2	Qual
-		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	102	73-139			1,2-Dichloroet			105	73-145		
Toluene-d8	99	90-108			1,4-Bromofluo	robenzene		95	71-113		

Aha

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/13/07 07-11-0905 EPA 5030B EPA 8015B (M)

Project ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-0876-1	Solid	GC 18	11/13/07		11/13/07	071113S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	91	86	48-114	6	0-23	

Mulum_

RPD - Relative Percent Difference , CL - Control Limit

nel

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/13/07 07-11-0905 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-25-B13	Solid	GC/MS Z	11/13/07		11/13/07	071113S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Danner	106	107	79-115	1	0-13	
Benzene				1		
Carbon Tetrachloride	112	115	55-139	2	0-15	
Chlorobenzene	106	108	79-115	1	0-17	
1,2-Dibromoethane	106	106	70-130	0	0-30	
1,2-Dichlorobenzene	98	99	63-123	1	0-23	
1,1-Dichloroethene	113	113	69-123	1	0-16	
Ethylbenzene	112	111	70-130	1	0-30	
Toluene	107	108	79-115	1	0-15	
Trichloroethene	110	108	66-144	1	0-14	

102

98

110

94

95

99

114

94

94

105

93

91

96

110

60-126

68-128

44-134

75-123

75-117

79-115

42-138

8

4

4

2

4

3

0-14

0-14

0-37

0-12

0-12

0-12

0-28

Mhhn_

Vinyl Chloride

Ethanol

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

Tert-Amyl-Methyl Ether (TAME)

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/13/07 07-11-0905 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234

Diisopropyl Ether (DIPE)

Ethanol

Ethyl-t-Butyl Ether (ETBE)

Tert-Amyl-Methyl Ether (TAME)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-0774-29	Solid	GC/MS W	11/13/07		11/14/07	071113S02
					0.16	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	100	96	79-115	4	0-13	
Carbon Tetrachloride	98	100	55-139	2	0-15	
Chlorobenzene	98	98	79-115	1	0-17	
1,2-Dibromoethane	100	99	70-130	1	0-30	
1,2-Dichlorobenzene	94	94	63-123	0	0-23	
1,1-Dichloroethene	99	99	69-123	0	0-16	
Ethylbenzene	98	97	70-130	0	0-30	
Toluene	98	96	79-115	2	0-15	
Trichloroethene	113	106	66-144	7	0-14	
Vinyl Chloride	88	86	60-126	2	0-14	
Methyl-t-Butyl Ether (MTBE)	81	77	68-128	6	0-14	
Tert-Butyl Alcohol (TBA)	91	94	44-134	3	0-37	

93

90

92

99

93

90

96

102

Muhama

75-123

75-117

79-115

42-138

0

0

4

0-12

0-12

0-12

0-28

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

07-11-0905 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-12-279-1,302	Solid	GC 18	11/13/07	11/13/07	071113B01	
<u>Parameter</u>	LCS %	6REC LCSD	%REC %I	REC CL RP	D RPD CL	Qualifiers
TPH as Gasoline	101	101		70-124 1	0-18	

AMMAN_

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Date Received: Work Order No: Preparation: N/A 07-11-0905 EPA 5030B EPA 8260B

Petaluma, CA 94954-2312

Method:

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bat Number	ch
099-10-005-15,079	Solid	GC/MS Z	11/13/07	11/1:	3/07	071113L01	
<u>Parameter</u>	LCS %F	REC LCSD	%REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	104	103		84-114	1	0-7	
Carbon Tetrachloride	113	113		66-132	0	0-12	
Chlorobenzene	106	104		87-111	2	0-7	
1,2-Dibromoethane	106	103		80-120	3	0-20	
1,2-Dichlorobenzene	98	98		79-115	0	0-8	
1,1-Dichloroethene	110	110		73-121	0	0-12	
Ethylbenzene	111	109		80-120	2	0-20	
Toluene	107	105		78-114	2	0-7	
Trichloroethene	109	107		84-114	2	0-8	
Vinyl Chloride	100	96		63-129	4	0-15	
Methyl-t-Butyl Ether (MTBE)	92	89		77-125	3	0-11	
Tert-Butyl Alcohol (TBA)	110	105		47-137	4	0-27	
Diisopropyl Ether (DIPE)	91	90		76-130	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	91	90		76-124	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	94	92		82-118	3	0-11	
Ethanol	109	102		59-131	7	0-21	

RPD - Relative Percent Difference ,
7440 Lincoln

hel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-11-0905 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bat Number	ch
099-10-005-15,083	Solid	GC/MS W	MSW 11/13/07		4/07	071113L03	
Parameter	LCS %	REC LCSD	%REC 2	%REC CL	RPD	RPD CL	Qualifiers
Benzene	98	99		84-114	0	0-7	
Carbon Tetrachloride	100	100		66-132	0	0-12	
Chlorobenzene	101	100		87-111	1	0-7	
1,2-Dibromoethane	105	104		80-120	1	0-20	
1,2-Dichlorobenzene	99	99		79-115	1	0-8	
1,1-Dichloroethene	98	100		73-121	2	0-12	
Ethylbenzene	99	99		80-120	1	0-20	
Toluene	97	100		78-114	3	0-7	
Trichloroethene	98	101		84-114	2	0-8	
Vinyl Chloride	86	89		63-129	3	0-15	
Methyl-t-Butyl Ether (MTBE)	78	75		77-125	5	0-11	X
Tert-Butyl Alcohol (TBA)	105	104		47-137	1	0-27	
Diisopropyl Ether (DIPE)	97	98		76-130	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	92	92		76-124	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	98		82-118	1	0-11	
Ethanol	113	123		59-131	8	0-21	

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

nel o

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

07-11-0905 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File	ID LO	CS Batch Number
099-10-005-15,083	Solid	GC/MS W	11/14/07	13NOV03).rr	071113L03
Parameter		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Benzene		250	246	98	84-114	
Carbon Tetrachloride		250	250	100	66-132	
Chlorobenzene		250	252	101	87-111	
1,2-Dibromoethane		250	261	105	80-120	
1,2-Dichlorobenzene		250	247	99	79-115	
1,1-Dichloroethene		250	245	98	73-121	
Ethylbenzene		250	247	99	80-120	
Toluene		250	243	97	78-114	
Trichloroethene		250	246	98	84-114	
Vinyl Chloride		250	215	86	63-129	
Methyl-t-Butyl Ether (MTBE)		250	195	78	77-125	
Tert-Butyl Alcohol (TBA)		1250	1320	105	47-137	
Diisopropyl Ether (DIPE)		250	243	97	76-130	
Ethyl-t-Butyl Ether (ETBE)		250	231	92	76-124	
Tert-Amyl-Methyl Ether (TAME)		250	246	98	82-118	
Ethanol		2500	2810	113	59-131	

Glossary of Terms and Qualifiers

Work Order Number: 07-11-0905

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODT I LORD	CHAIN	OF	CUSTODY I	CORD
-------------------------	-------	----	-----------	------

DATE:

DACE.	4	ΔE	4
PAGE:	1	OF	1

LABORATORY	ORY CLIENT:							CLIENT PROJECT NAME / NUMBER:							-	P.0	NO.:	-		_	_	_				
Exxon Mo	bil Refining & S	Supply - Global Reme	diation														distribution (
ADDRESS:							24	1760	3X /	7-0	234															
c/o Enviro	nmental Resolu	utions, Inc.					PRO.	JECT (CONTA	CT:										QUOTE NO.:						
	McDowell Blvd						Pa	aula	Sim	re/Ei	RI															
	California 949									SNATU		X			-		-		_	LAE	USE	ONLY	Me of the	100	2.5.25	Section
TEL:		FAX:		E-MAIL			1	11	//	11	11/	/								1000	0.000	2000	THE PARTY IN	ZIL	- 1k	7
(707) 766-2	2000	(707) 789-0414		norcallab	s@eri-u	s.com	1	hele	lu!	De	V4	(ru		27						17	717		0	ZJE	21	الد
TURNAROUND	TIME											-	_			~				_		-	Management			
	DAY 🔀 24 HR		5 D.	AYS [10 DA	YS							F	REQ	UES	TEL	AP C	NAL	YSI	S						
SPECIAL REQU	IREMENTS (ADDITIONAL	COSTS MAY APPLY)										[m												-1		
Send EDF re	eport / Global ID:	T06019757161					1 1					8260B			1	-	- 1							- 1		
SPECIAL INSTR	UCTIONS					_	1 1				8	28				- 1	- 1									
Use Silica	a Gel Cleanup fo	or all TPHd analyses.					1		8015B		8260B	6	. 1	by 6010B		- 1	- 1									
	Set TBA reporting limit at or below 12 ug/L.									_	8	2	8	<u> 5</u>		- 1	- 1	- 1						- 1	ļ	
				15	151	8	8	b	5	826	اھ	- 1	- 1	- 1	- 1						- 1					
Set TBA reporting limit at or below 12 ug/L. Oxygenates: MTBE, ETBE, TAME, DIPE, TBA Lead Scavengers: 1,2-DCA, EDB												8	á	豆	- 1	1		1						- 1		
Leau Scaverigers. 1,2-DCA, EDB																- 1	- 1	- 1								
USE FEE	SAMPLE ID	LOCATION	SAME	LING	Marris .	*	TPHdT	TPHg	ş	втех	Ď	8	ПВП	Total	- 1	- 1	- 1	- 1								
ONLY		DESCRIPTION	DATE	TIME	74	*Con	 	₽	ž	18	õ	2	品	မ				i								
83	S-25-BB	B13	11-12-07	10:19	S	U		х		Х	х	х														
7 6 13	S-30-B13	1313		10:25	S	2		Χ		χ	X	X						- 12								
n 813	S-35-B13	B13		10:34	S	10		χ		Y	X	X				\neg	\neg							\exists		
2 1000				12:50	S		\vdash	7		1	X				$\neg \dagger$	\dashv	\dashv	\neg					\neg	\dashv		\neg
から	10- B18	B18			-	5	\vdash	4	-	1	7	_	-		-+	\dashv	\dashv	-	-	-	-		\rightarrow	\dashv	-	\dashv
D S-1	5- B18			12.50	3	7.	\square	Λ		Λ	Ż.	X			_	_	_	_						_		
	o- 1318			131.00	S	55		X		X	人	X														
7 5- 2	25- B18			13:10	S	A		X		χ	X	χ												1		
8 S- 3				13:15	S	20		X		X	X	χ												\neg		\neg
9 5-3			\forall	13:35	5			X		$\overline{\mathbf{Y}}$	V	X				\dashv		\dashv						7		T
	3 6.0			-		_			1	1		Н			\dashv	1	7	\neg						\dashv	\neg	\exists
Relinquished b	v: (Signetture)	Anx			Receive	ed by /S	/s	(4)	# /	4								-	Date			_	Time:			\dashv
Refinquished by: (Signatu/e) Received by:								14	1			-	-						-,	'1Z'	07			12	7	
Relinquished by: (Signature) Received by: (Signature)								re)				>	-			-	_	\dashv	Date			-	Time			\neg
1/08/ F (to (750)									1	1	2	\sim	~				7	V	11	1. 1	30	วาไ	1	04	0	- 1
Relinquished b	v (Signature)			~~~	Receive	ad by: (S	ionatu	re)	9		1	//	,	A			1		Date		کر	-4	Time		<u> </u>	-
, configuration of b	Time.																									

WORK ORDER #: 07 - 1 1 - 0 9 0 5

Cooler __/_ of __/_

SAMPLE RECEIPT FORM

November 15, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject:

Calscience Work Order No.: 07-11-0993

Client Reference:

ExxonMobil 7-0234 / 247603X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/14/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & en Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia **Project Manager**

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/14/07 07-11-0993 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Page 1 of 4

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-15.5-B12		07-11-0993-1	11/13/07	Solid	GC 1	11/14/07	11/14/07	071114B02
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	43	12	25		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	114	42-126						
S-20.5-B12		07-11-0993-2	11/13/07	Solid	GC 1	11/14/07	11/14/07	071114B01
Parameter	<u>Result</u>	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	3.2	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	112	42-126						
S-16-B14		07-11-0993-3	11/13/07	Solid	GC 1	11/14/07	11/14/07	071114B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	92	42-126						
S-20.5-B14		07-11-0993-4	11/13/07	Solid	GC 1	11/14/07	11/14/07	071114B01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	61	42-126						

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Date Received: Work Order No: Preparation:

11/14/07 07-11-0993 **EPA 5030B** EPA 8015B (M)

Petaluma, CA 94954-2312

Method:

Project: ExxonMobil 7-0234 / 247603X

Page 2 of 4

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-11-B17		07-11-0993-5	11/13/07	Solid	GC 1	11/14/07	11/15/07	071114B02
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	90	12	25		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	116	42-126						
S-16-B17		07-11-0993-6	11/13/07	Solid	GC 1	11/14/07	11/14/07	071114B01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	103	42-126						
S-21-B17		07-11-0993-7	11/13/07	Solid	GC 18	11/14/07	11/14/07	071114B01
Parameter .	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	99	42-126						
S-24.5-B17		07-11-0993-8	11/13/07	Solid	GC 18	11/14/07	11/14/07	071114B01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	99	42-126						

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/14/07 07-11-0993 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Page 3 of 4

Project: Exxoniviodii 7-0234	+ / 24/0037							age o or 4
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-31-B17		07-11-0993-9	11/13/07	Solid	GC 18	11/14/07	11/14/07	071114B01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	99	42-126						
S-35.5-B17		07-11-0993-10	11/13/07	Solid	GC 18	11/14/07	11/14/07	071114B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	0.85	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	100	42-126						
Method Blank		099-12-279-1,304	N/A	Solid	GC 1	11/14/07	11/14/07	071114B01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	105	42-126						
Method Blank		099-12-279-1,305	N/A	Solid	GC 1	11/14/07	11/14/07	071114B02
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	5.0	10		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	103	42-126						

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/14/07 07-11-0993 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Page 4 of 4

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Method Blank		099-12-279-1,306	N/A	Solid	GC 18	11/14/07	11/14/07	071114B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	100	42-126						

Date Received:

11/14/07 07-11-0993

601 North McDowell Blvd. Petaluma, CA 94954-2312

Environmental Resolutions, Inc.

Work Order No: Preparation: Method:

EPA 5030B EPA 8260B

Units:

mg/kg Page 1 of 4

Project: ExxonMobil 7-0234 / 247603X

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date d Analyze	d C	C Batch ID
S-15.5-B12			07-11-	0993-1	11/13/07	Solid	GC/MS Z	11/14/0	7 11/14/0	7 0	71114L01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl I	Ether (MTE	BE)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Metl	hyl Ether (T	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1								
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	108	73-139			1,2-Dichloroeth	nane-d4		115	73-145		
Toluene-d8	102	90-108			1,4-Bromofluor	robenzene		100	71-113		
S-20 5-B12			07-11-	0993-2	11/13/07	Solid	GC/MS Z	11/14/0	7 11/14/0	7 0	71114L01

S-20.5-B12			07-11-0	993-2	11/13/07	Solid	GC/WS Z	11/14/0	1 11/14/07	071114601
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u> [OF Qual
Benzene	0.076	0.0050	1		Methyl-t-Butyl I	Ether (MTBI	Ξ)	0.15	0.0050	1
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1
Ethylbenzene	0.0053	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE)		ND	0.010	1
Toluene	ND	0.0050	1		Tert-Amyl-Meth	hyl Ether (Ta	AME)	ND	0.010	1
Xylenes (total)	ND	0.0050	1							
Surrogates:	<u>REC (%)</u>	<u>Control</u>		Qual	Surrogates:			REC (%)	Control	Qual
		<u>Limits</u>							<u>Limits</u>	
Dibromofluoromethane	102	73-139			1,2-Dichloroeth	nane-d4		109	73-145	
Toluene-d8	98	90-108			1,4-Bromofluor	robenzene		98	71-113	
S-16-B14			07-11-0	993-3	11/13/07	Solid	GC/MS Z	11/14/0	7 11/14/07	071114L01

Parameter	Result	RL	DF	Qual	Parameter	Result	RL	<u>DF</u>	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alcohol (TBA)	ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Ether (DIPE)	ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl Ether (ETBE)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Methyl Ether (TAME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1						
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:	<u>REC (%)</u>	Control Limits		Qual
Dibromofluoromethane	105	73-139			1,2-Dichloroethane-d4	112	73-145		
Toluene-d8	97	90-108			1,4-Bromofluorobenzene	95	71-113		

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/14/07 07-11-0993 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234 / 247603X

Page 2 of 4

			Number	Collected	Matrix	Instrument	Prepared	Analyzed		C Batch ID
		07-11-0	0993-4	11/13/07	Solid	GC/MS Z	11/14/07	11/14/07	0	71114L01
Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	DF.	Qual
ND	0.0050	1		Methyl-t-Butyl E	ther (MTB	E)	0.031	0.0050	1	
				, ,	,	_,	ND	0.050	1	
		-			, ,		ND	0.010	1	
					, ,	ı	ND	0.010	1	
				,	,		ND	0.010	1	
		-				,				
		•	Qual	Surrogates:			REC (%)	Control		Qual
1.2.0 (10)								Limits		
108	73-139			1,2-Dichloroeth	ane-d4		119	73-145		
98	90-108			1,4-Bromofluor	obenzene		97	71-113		
		07-11-	0993-5	11/13/07	Solid	GC/MS Z	11/14/07	11/14/07	0	71114L01
				D			Decult	DI	DE	Ougl
	000000		Qual			_		-		<u>Qual</u>
				, ,	,	E)				
				•	, ,				32	
		1			, ,				1	
0.086		1		, ,	,				1	
ND	0.0050	1		Tert-Amyl-Meth	nyl Ether (T	AME)	ND	0.010	1	
0.020	0.0050	1								
REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
108				1.2-Dichloroeth	ane-d4		120			
	30-100	07.44	0003 6			CC/MC 7				71114L01
		07-11-	0993-6	11/13/07	30Hd	GC/WS Z	11/14/07	11/14/0	- 0	71114LU1
Result	RL	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
0.0052	0.0050	1		Methyl-t-Butyl I	Ether (MTB	E)	0.099	0.0050	1	
ND	0.0050	1		Tert-Butyl Alco	hol (TBA)	,	ND	0.050	1	
		1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
		1)	ND	0.010	1	
		10					ND	0.010	1	
					.,	,			•	
	Control		Qual	Surrogates:			REC (%)	Control		Qual
1.20 1.07								Limits		
107	73-139			1,2-Dichloroeth	nane-d4		115	73-145		
							95	71-113		
	ND ND ND ND ND ND ND REC (%) 108 98 Result 0.052 ND ND 0.086 ND 0.020 REC (%) 108 98 Result 0.0052 ND	ND	Result RL DF	Result ND RL 0DF 0ual Qual ND 0.0050 1 1 ND 0.0050 1 Qual Limits 108 73-139 98 90-108 98 90-108 07-11-0993-5 Result RL DF Qual Qual 0.052 0.0050 1 1 ND 0.0050 1 1 ND 0.0050 1 1 ND 0.0050 1 1 ND 0.0050 1 Qual Limits 108 73-139 98 90-108 90-108 Proposition Qual Limits 100 0.0050 1 1 ND 0.0050 1	Result RL DF Qual Parameter	Result RL DF Qual Parameter ND 0.0050 1 Methyl-t-Butyl Ether (MTB) ND 0.0050 1 Tert-Butyl Alcohol (TBA) ND 0.0050 1 Diisopropyl Ether (DIPE) ND 0.0050 1 Tert-Amyl-Methyl Ether (ETBE) ND 0.0050 1 Tert-Amyl-Methyl Ether (T.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D.D	Result RL DF Qual Parameter	Result RL DF Qual Parameter Methyl-t-Butyl Ether (MTBE) 0.031 ND	Result RL DF Qual Parameter Result RL ND 0.0050 1 Methyl-t-Butyl Ether (MTBE) 0.031 0.0050 ND 0.0050 1 Diisopropyl Ether (DIPE) ND 0.010 ND 0.0050 ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 ND 0.0050 ND	Result RL DF Qual Parameter Result RL DF ND 0.0050 1 Methyl-t-Butyl Ether (MTBE) 0.031 0.0050 1 ND 0.0050 1 Diisopropyl Ether (DIPE) ND 0.010 1 ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 1 ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 1 ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 1 ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 1 ND 0.0050 1 Tert-Amyl-Methyl Ether (MTBE) 97 71-113 ND 0.0050 1 Methyl-t-Butyl Ether (MTBE) 0.036 0.0050 1 ND 0.0050 1 Tert-Butyl Alcohol (TBA) ND 0.050 1 ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Ethyl-t-Butyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Tert-Amyl-Methyl Ether (TAME) ND 0.010 1 REC (%) Control Qual Surrogates: REC (%) Control Limits Limits 108 73-139 1,2-Dichloroethane-d4 120 73-145 108 73-139 1,2-Dichloroethane-d4 120 73-145 108 73-139 1,4-Bromofiluorobenzene 98 71-113 Result RL DF Qual Parameter Result RL DF O.0050 1 Tert-Butyl Ether (MTBE) 0.099 0.0050 1 ND 0.0050 1 Tert-Butyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Tert-Butyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Tert-Butyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Tert-Butyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Tert-Amyl-Methyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Tert-Amyl-Methyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Tert-Amyl-Methyl Ether (ETBE) ND 0.010 1 ND 0.0050 1 Tert-Amyl-Methyl Ether (ETBE) ND 0.010 1 ND 0.

RL - Reporting Limit ,

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/14/07 07-11-0993 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234 / 247603X

Page 3 of 4

		10	ah Sample	Date			Date	Date		
				Collected	Matrix	Instrument			d C	C Batch II
		07-11-	0993-7	11/13/07	Solid	GC/MS Z	11/14/0	7 11/14/0	7 0	71114L01
Result	<u>RL</u>	<u>D</u> F	Qual	Parameter			Result	RL	<u>DF</u>	Qual
ND	0.0050	1		Methyl-t-Butyl	Ether (MTBI	≣)	0.011	0.0050	1	
ND	0.0050	1		Tert-Butyl Alco	ohol (TBA)		ND	0.050	1	
ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.010	1	
ND	0.0050	1		Tert-Amyl-Met	hyl Ether (TA	AME)	ND	0.010	1	
ND	0.0050	1		•	,					
REC (%)	Control		Qual	Surrogates:			REC (%)	Control Limite		Qual
108	73-139			1,2-Dichloroet	hane-d4		117	73-145		
100	90-108			1,4-Bromofluo	robenzene		97	71-113		
		07-11-	0993-8	11/13/07	Solid	GC/MS Z	11/14/0	7 11/14/0	7 0	71114L01
Result	RL	DF	Qual	Parameter			Result	RL	<u>DF</u>	Qual
ND				Methyl-t-Butyl	Ether (MTB	Ξ)	0.59	0.0050	1	
				, ,	,	,	0.20	0.050	1	
				-	, ,		ND		1	
							ND	0.010	1	
							ND		1	
				, , , , , , , , , , , , , , , , , , , ,	,	,			•	
REC (%)	Control	•	Qual	Surrogates:			REC (%)	Control		Qual
100				1.2 Diablaroati	hono d4		117			
				•						
91	90-106									=44441.04
		07-11-	0993-9	11/13/07	Solid	GC/MS Z	11/14/0	7 11/14/0	/ 0	71114L01
Result	RL	DF	<u>Qual</u>	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
ND	0.0050	1		Methyl-t-Butyl	Ether (MTBI	E)	ND	0.0050	1	
ND	0.0050	1		,	, ,		0.15	0.050	1	
ND	0.0050	1					ND	0.010	1	
ND	0.0050	1					ND	0.010	1	
ND	0.0050	1		Tert-Amyl-Met	thyl Ether (T	AME)	ND	0.010	1	
ND	0.0050	1								
REC (%)	Control Limits		Qual	Surrogates:			<u>REC (%)</u>	Control Limits		Qual
108				1.2-Dichloroet	hane-d4		117			
	50 100			., i Diomondo	, 0201120110			110		
	ND ND ND ND ND ND ND ND REC (%) 108 100 Result ND	Result RL ND	Result RL DF ND	Result RL DF Qual	Lab Sample Number	Lab Sample Number Collected Matrix	Lab Sample Number Collected Matrix Instrument	Lab Sample Date Matrix Instrument Date Prepared	Lab Sample Date Number Collected Matrix Instrument Date Prepared Analyze	Lab Sample Number

RL - Reporting Limit

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/14/07 07-11-0993 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234 / 247603X

Page 4 of 4

Client Sample Number				Sample umber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	Q	C Batch ID
S-35.5-B17			07-11-09	93-10	11/13/07	Solid	GC/MS Z	11/14/07	11/14/07	07	71114L01
Parameter Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	<u>Qual</u>
3enzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTE	E)	1.7	0.12	25	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	ohol (TBA)		ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Etl	ner (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Kylenes (total)	ND	0.0050	1								
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	108	73-139			1,2-Dichloroet	hane-d4		119	73-145		
Toluene-d8	99	90-108			1,4-Bromofluo	robenzene		94	71-113		
Method Blank			099-10-0	05-15,08	87 N/A	Solid	GC/MS Z	11/14/07	11/14/07	07	71114L01
Parameter Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.0050	1	
,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	ohol (TBA)	•	ND	0.050	1	
,2-Dichloroethane	ND	0.0050	1		Diisopropyl Etl	her (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Kylenes (total)	ND	0.0050	1								
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
Dibromofluoromethane	108	73-139			1,2-Dichloroet	hane-d4		118	73-145		
Foluene-d8	97	90-108			1,4-Bromofluo			96	71-113		
Method Blank		30-100	099-10-0	05-15,08		Solid	GC/MS Z			07	71114L02
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DE	Qual
Parameter	1.5			Qual		C+b a= /N#TC					Suai
Benzene	ND	0.12	25		Methyl-t-Butyl)=)	ND	0.12	25	
1,2-Dibromoethane	ND	0.12	25		Tert-Butyl Alco			ND	1.2	25	
I,2-Dichloroethane	ND	0.12	25		Diisopropyl Etl			ND	0.25	25	
Ethylbenzene	ND	0.12	25		Ethyl-t-Butyl E	,	,	ND	0.25	25	
Foluene	ND	0.12	25		Tert-Amyl-Met	nyı Etner (I	AIVIE)	ND	0.25	25	
(ylenes (total)	ND	0.12	25	0	0			DEO (0/.)	0		0
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	105	73-139			1,2-Dichloroet			115	73-145		
Foluene-d8	101	90-108			1,4-Bromofluo	robenzene		98	71-113		

lama

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/14/07 07-11-0993 EPA 5030B EPA 8015B (M)

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-16-B14	Solid	GC 1	11/14/07		11/14/07	071114S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	74	70	48-114	5	0-23	

Mulhan_

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/14/07 07-11-0993 EPA 5030B EPA 8015B (M)

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Matrix Instrument			Date Analyzed	MS/MSD Batch Number
07-11-0909-1	Solid	GC 18	11/14/07		11/14/07	071114S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	83	83	48-114	0	0-23	

Allena_

RPD - Relative Percent Difference , CL - Control Limit

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/14/07 07-11-0993 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-35.5-B17	Solid	GC/MS Z	11/14/07		11/14/07	071114801
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	104	109	79-115	4	0-13	
Carbon Tetrachloride	112	120	55-139	7	0-15	
Chlorobenzene	105	108	79-115	3	0-17	
1,2-Dibromoethane	108	106	70-130	2	0-30	
1,2-Dichlorobenzene	97	100	63-123	3	0-23	
1,1-Dichloroethene	108	116	69-123	7	0-16	
Ethylbenzene	110	114	70-130	4	0-30	
Toluene	106	110	79-115	4	0-15	
Trichloroethene	107	113	66-144	5	0-14	
Vinyl Chloride	89	105	60-126	16	0-14	4
Methyl-t-Butyl Ether (MTBE)	0	0	68-128	35	0-14	3,4
Tert-Butyl Alcohol (TBA)	107	108	44-134	0	0-37	
Diisopropyl Ether (DIPE)	89	95	75-123	8	0-12	
Ethyl-t-Butyl Ether (ETBE)	89	98	75-117	9	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	100	79-115	2	0-12	
Ethanol	110	104	42-138	6	0-28	

RPD - Relative Percent Difference ,
7440 Lincolr

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-0993 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
099-12-279-1,305	Solid	GC 1	11/14/07	11/14/07	071114B02	
<u>Parameter</u>	LCS 9	%REC LCSD	%REC <u>%F</u>	REC CL RE	PD RPD CL	Qualifiers
TPH as Gasoline	90	90	7	70-124 0	0-18	

Mulhan_

RPD - Relative Percent Difference , CL - Control Lin

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-0993 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepare		ate lyzed	LCS/LCSD Batcl Number	1
099-12-279-1,304	Solid	GC 1	11/14/0	7 11/1	4/07	071114B01	
<u>Parameter</u>	LCS S	%REC LCSI	0 %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	90	9	0	70-124	0	0-18	

AMM.___

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-0993 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dat Analy		LCS/LCSD Batch Number	1
099-12-279-1,306	Solid	GC 18	11/14/07	11/14/	07	071114B01	
<u>Parameter</u>	LCS '	%REC LCSI	<u>) %REC</u>	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	99	9	9	70-124	0	0-18	

RPD - Relative Percent Difference ,
7440 Lincoln

CL - Control Limit

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-0993 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bat Number	ch
099-10-005-15,087	Solid	GC/MS Z	11/14/07	11/1	4/07	071114L01	
Parameter	LCS %	REC LCSD	%REC 9	%REC CL	RPD	RPD CL	Qualifiers
Benzene	109	107		84-114	2	0-7	
Carbon Tetrachloride	123	120		66-132	2	0-12	
Chlorobenzene	110	109		87-111 1		0-7	
1,2-Dibromoethane	110	112		80-120	2	0-20	
1,2-Dichlorobenzene	102	102		79-115	0	0-8	
1,1-Dichloroethene	119	114		73-121	4	0-12	
Ethylbenzene	117	113		80-120	3	0-20	
Toluene	111	110		78-114	1	0-7	
Trichloroethene	113	110		84-114	3	0-8	
Vinyl Chloride	107	106		63-129	1	0-15	
Methyl-t-Butyl Ether (MTBE)	97	98		77-125	1	0-11	
Tert-Butyl Alcohol (TBA)	112	120		47-137	7	0-27	
Diisopropyl Ether (DIPE)	95	95		76-130	0	0-8	
Ethyl-t-Butyl Ether (ETBE)	96	96		76-124	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	101		82-118	2	0-11	
Ethanol	117	123		59-131	4	0-21	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-0993 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bat Number	ch
099-10-005-15,089	Solid	GC/MS Z	11/14/07	11/14/07 11/14		071114L02	
Parameter	LCS %	REC LCSD	%REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	109	107		84-114	2	0-7	
Carbon Tetrachloride	123	120		66-132	2	0-12	
Chlorobenzene	110	109		87-111	1	0-7	
1,2-Dibromoethane	110	112		80-120	2	0-20	
1,2-Dichlorobenzene	102	102		79-115	0	0-8	
1,1-Dichloroethene	119	114		73-121	4	0-12	
Ethylbenzene	117	113		80-120	3	0-20	
Toluene	111	110		78-114	1	0-7	
Trichloroethene	113	110		84-114	3	0-8	
Vinyl Chloride	107	106		63-129	1	0-15	
Methyl-t-Butyl Ether (MTBE)	97	98		77-125	1	0-11	
Tert-Butyl Alcohol (TBA)	112	120		47-137	7	0-27	
Diisopropyl Ether (DIPE)	95	95		76-130	0	0-8	
Ethyl-t-Butyl Ether (ETBE)	96	96		76-124	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	101		82-118	2	0-11	
Ethanol	117	123		59-131	4	0-21	

MMM_

Glossary of Terms and Qualifiers

Work Order Number: 07-11-0993

<u>Qualifier</u>	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN	OF	CUS	TODY	/ R	ORD
	•	~~~			CITO

DATE:

PAGE:	1	OF	1
I AOL.	1	OI .	

	P.O. NO.:			
·	QUOTE NO.:			
PROJECT CONTACT: Paula Sime/ERI SAMPLER(S): (SIGNATVRE)				
	20.00	The table of the state of the s		
·		01919131		
D ANALYS	IS			
TTT				
1				
		4 8		
Date	1-12-7	Time: /4/5/		
/ Date	2.	Time:		
7 11		0930		
Date	9:	Time:		
	Date Date Date //			

WORK ORDER #: 07	- 1		0	9	9	3
------------------	-----	--	---	---	---	---

Cooler ____ of ___

SAMPLE RECEIPT FORM

CLIENT: ERI	DATE: 11/14/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. ° C Temperature blank.	LABORATORY (Other than Calscience Courier): °C Temperature blank °C IR thermometer Ambient temperature.
CUSTODY SEAL INTACT:	
	ntact) : Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

November 16, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 07-11-1129

Client Reference: ExxonMobil 7-0234 / 247603X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/15/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Cecile deGuia Project Manager

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

FAX: (714) 894-7501

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

nel cu

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/15/07 07-11-1129 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Page 1 of 3

Project: Exxoniviouit 7-023	4/24/0037							age i oi e
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-25.5-B11		07-11-1129-1	11/14/07	Solid	GC 1	11/15/07	11/15/07	071115B01
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	101	42-126						
S-29.5-B11		07-11-1129-2	11/14/07	Solid	GC 1	11/15/07	11/15/07	071115B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	83	42-126						
S-34.5-B11		07-11-1129-3	11/14/07	Solid	GC 1	11/15/07	11/15/07	071115B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	91	42-126						
S-11-B16		07-11-1129-4	11/14/07	Solid	GC 1	11/15/07	11/15/07	071115B01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	103	42-126						

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/15/07 07-11-1129 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Page 2 of 3

1 Tojooti Extratiment 1 TE								
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-15.5-B16		07-11-1129-5	11/14/07	Solid	GC 1	11/15/07	11/15/07	071115B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	92	42-126						
S-21-B16		07-11-1129-6	11/14/07	Solid	GC 1	11/15/07	11/15/07	071115B01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	82	42-126						
S-26-B16		07-11-1129-7	11/14/07	Solid	GC 1	11/15/07	11/15/07	071115B01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	89	42-126						
S-30.5-B16		07-11-1129-8	11/14/07	Solid	GC 1	11/15/07	11/15/07	071115B01
<u>Parameter</u>	<u>Result</u>	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	96	42-126						

DF - Dilution Factor

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/15/07 07-11-1129 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Page 3 of 3

1 Tojooti Extorimiosii i eze	=							
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-34.5-B16		07-11-1129-9	11/14/07	Solid	GC 1	11/15/07	11/15/07	071115B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	78	42-126						
S-38.5-B16		07-11-1129-10	11/14/07	Solid	GC 1	11/15/07	11/15/07	071115B01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	92	42-126						
Method Blank		099-12-279-1,310	N/A	Solid	GC 1	11/15/07	11/15/07	071115B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	105	42-126						

All RE-Repo

Page 1 of 4

Environmental Resolutions, Inc.	Date Received:	11/15/07
601 North McDowell Blvd.	Work Order No:	07-11-1129
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
,	Method:	EPA 8260B
	Units:	mg/kg

Project: ExxonMobil 7-0234 / 247603X

GC/MS JJ	4444 = 10 =		
	11/15/07	11/15/07	071115L01
	Result	<u>RL</u> <u>C</u>	F Qual
TBE)	ND	0.0050	1
	ND	0.050	1
E)	ND	0.010	1
BE)	ND	0.010	1
,	ND	0.010	1
,			
	REC (%)	Control	Qual
		Limits	
	124	73-145	
ne	103	71-113	
GC/MS JJ	11/15/07	11/15/07	071115L01
	Result	RL F	F Qual
TDE)			1
			1
,			1
			1
,			1
r(TAME)	ND	0.010	1
	DEO (0/)	0 1 1	Overl
	REC (%)		Qual
	122		
ne			
GC/MS JJ	11/15/07	11/15/07	071115L01
	Result	RL [OF Qual
ITBE)	ND	0.0050	1
,	ND	0.050	1
	ND	0.010	1
	ND	0.010	1
,	ND	0.010	1
,			
	REC (%)	Control	Qual
		<u>Limits</u>	
	119		
ne	105	71-113	
	TTBE)	TIBE) ND A) ND E) ND BE) ND r (TAME) ND REC (%) 124 ne 103 Result ITBE) ND A) ND E) ND BE) ND A) ND E) ND F (TAME) ND REC (%) 122 103 REC (%) REC (%)	TIBE ND

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/15/07 07-11-1129 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234 / 247603X

Page 2 of 4

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch II
S-11-B16			07-11-1	1129-4	11/14/07	Solid	GC/MS JJ	11/15/07	11/15/07	071115L01
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL I	OF Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl I	Ether (MTBI	E)	ND	0.0050	1
1.2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)	•	ND	0.050	1
1,2-Dichloroethane	ND	0.0050	4		Diisopropyl Eth	er (DIPE)		ND	0.010	1
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl Et			ND	0.010	1
Toluene	ND	0.0050	1		Tert-Amyl-Meth	nyl Ether (T	AME)	ND	0.010	1
Xylenes (total)	ND	0.0050	1		,	,	,			
Surrogates:	REC (%)	Control	***	Qual	Surrogates:			REC (%)	Control	Qual
ourrogates.	1120 (70)	Limits							Limits	
Dibromofluoromethane	108	73-139			1,2-Dichloroeth	nane-d4		126	73-145	
Toluene-d8	101	90-108			1,4-Bromofluor			100	71-113	
S-15.5-B16			07-11-	1129-5	11/14/07	Solid	GC/MS JJ	11/15/07	11/15/07	071115L01
	D #	D.	DE	Ovel	Desembles			Popult	RL [OF Qual
Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	Parameter			Result		
Benzene	ND	0.0050	1		Methyl-t-Butyl I		E)		0.0050	1
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco				0.050	1
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth				0.010	1
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl Et				0.010	1
Toluene	ND	0.0050	1		Tert-Amyi-Meti	hyl Ether (T.	AME)	ND	0.010	1
Xylenes (total)	ND	0.0050	1							
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:		15	REC (%)	Control Limits	Qual
Dibromofluoromethane	103	73-139			1,2-Dichloroeth	nane-d4		120	73-145	
Toluene-d8	103	90-108			1,4-Bromofluor	robenzene		102	71-113	
S-21-B16			07-11-	1129-6	11/14/07	Solid	GC/MS JJ	11/15/07	11/15/07	071115L01
Parameter	Result	RL	DE	Qual	Parameter			Result	RL !	OF Qual
		0.0050		4000	Methyl-t-Butyl	Ethor (MTR	E)	ND	0.0050	1
Benzene	ND	0.0050	1		Tert-Butyl Alco		L)	ND	0.050	1
1,2-Dibromoethane	ND		1		Diisopropyl Eth			ND	0.030	1
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl E		\	ND	0.010	1
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Met			ND	0.010	1
Toluene	ND	0.0050	1		rert-Amyr-Met	nyı ⊏üner (T	MIVIE)	ND	0.010	1
Xylenes (total)	ND	0.0050	1	01	Comments:			DEC /9/\	Control	Qual
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits	Qual
Dibromofluoromethane	105	73-139			1,2-Dichloroeth	hane-d4		125	73-145	
Toluene-d8	103	90-108			1.4-Bromofluo			103	71-113	
i oluene-uo	102	90-100			134-DIOIIIO	2001120110		100	. 1 110	

AL - Reportin

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/15/07 07-11-1129 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234 / 247603X

Page 3 of 4

Client Sample Number				ib Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	Q	C Batch ID
S-26-B16			07-11-	1129-7	11/14/07	Solid	GC/MS JJ	11/15/07	11/15/07	0	71115L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
1.2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1.2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE))	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T.	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1		•	•					
Surrogates:	REC (%)	Control	-	Qual	Surrogates:			REC (%)	Control		Qual
<u>Sarrogatos.</u>		Limits							<u>Limits</u>		
Dibromofluoromethane	110	73-139			1,2-Dichloroeth	nane-d4		125	73-145		
Toluene-d8	99	90-108			1,4-Bromofluor	robenzene		106	71-113		
S-30.5-B16			07-11-	1129-8	11/14/07	Solid	GC/MS JJ	11/15/07	11/15/07	0	71115L01
								D!t	DI	DE	Ougl
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result		DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	,	E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	, ,		ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth			ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E			ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1								
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dilaman	108	<u>Limits</u> 73-139			1.2-Dichloroet	hano d4		125	73-145		
Dibromofluoromethane	108				1,4-Bromofluo			105	71-113		
Toluene-d8	102	90-108	_			robenzene				-	
S-34.5-B16			07-11-	1129-9	11/14/07	Solid	GC/MS JJ	11/16/07	11/16/07	0	71116L01
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DE	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	(F)	0.021	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	,	· - /	ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Etl			ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	, ,)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met			ND	0.010	1	
Xylenes (total)	ND	0.0050	1		. Greating wildt		,	-1-	2.0.0		
, ,	REC (%)	Control	ı	Qual	Surrogates:			REC (%)	Control		Qual
Surrogates:	[NEC (70)	Limits		Qual	ourrogates.			11-0 (10)	Limits		<u> </u>
Dibromofluoromethane	109	73-139			1.2-Dichloroet	hane-d4		129	73-145		
Toluene-d8	103	90-108			1,4-Bromofluo			102	71-113		
i uluene-do	103	90-100			1, 1- DIOIIOIIGO	ODGLIZGLIG		102	1-110		

RL - Reporting Limit

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/15/07 07-11-1129 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234 / 247603X

Page 4 of 4

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	Q	C Batch ID
S-38.5-B16			07-11-1	129-10	11/14/07	Solid	GC/MS JJ	11/15/07	11/15/07	0	71115L01
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl I	Ether (MTB	E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Metl	,		ND	0.010	1	
Xylenes (total)	ND	0.0050	1			,	•				
Surrogates:	REC (%)	Control	- 8	Qual	Surrogates:			REC (%)	Control		Qual
ourrogates.	1120 1707	Limits							Limits		
Dibromofluoromethane	112	73-139			1,2-Dichloroeth	nane-d4		125	73-145		
Toluene-d8	100	90-108			1,4-Bromofluor	robenzene		102	71-113		
Method Blank			099-10	-005-15,09	97 N/A	Solid	GC/MS JJ	11/15/07	11/15/07	0	71115L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result		<u>DF</u>	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	, ,		ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1		-						
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
<u>ourrogateor</u>		Limits							<u>Limits</u>		
Dibromofluoromethane	107	73-139			1,2-Dichloroetl	hane-d4		120	73-145		
Toluene-d8	102	90-108			1,4-Bromofluo	robenzene		103	71-113		
Method Blank			099-10	-005-15,0	99 N/A	Solid	GC/MS JJ	11/16/07	11/16/07	7 0	71116L01
Dt	Popult	RL	DF	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Parameter	Result			Quai		Ethor (NATE	HE)	ND	0.0050	1	CACAGO
Benzene	ND	0.0050	1		Methyl-t-Butyl) 			1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco			ND	0.050	7	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Etl			ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	•	/	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	nyl Ether (T	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1		_						
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	106	73-139			1,2-Dichloroet	hane-d4		126	73-145		

MMMM_

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/15/07 07-11-1129 EPA 5030B EPA 8015B (M)

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-34.5-B11	Solid	GC 1	11/15/07		11/15/07	071115S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	73	62	48-114	16	0-23	

RPD - Relative Percent Difference ,
7440 Lincoln

CL - Control Limit

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/15/07 07-11-1129 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-11-1060-1	Solid	GC/MS JJ	11/15/07	11/15/07	071115S01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	86	87	79-115	1	0-13	
Carbon Tetrachloride	100	100	55-139	0	0-15	
Chlorobenzene	88	90	79-115	2	0-17	
1,2-Dibromoethane	94	92	70-130	2	0-30	
1,2-Dichlorobenzene	92	93	63-123	1	0-23	
1,1-Dichloroethene	92	92	69-123	0	0-16	
Ethylbenzene	90	92	70-130	1	0-30	
Toluene	88	89	79-115	1	0-15	
Trichloroethene	95	100	66-144	5	0-14	
Vinyl Chloride	93	89	60-126	5	0-14	
Methyl-t-Butyl Ether (MTBE)	107	103	68-128	3	0-14	
Tert-Butyl Alcohol (TBA)	94	86	44-134	9	0-37	
Diisopropyl Ether (DIPE)	100	99	75-123	1	0-12	
Ethyl-t-Butyl Ether (ETBE)	106	106	75-117	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	104	106	79-115	2	0-12	
Ethanol	89	90	42-138	1	0-28	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/15/07 07-11-1129 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-34.5-B16	Solid	GC/MS JJ	11/16/07		11/16/07	071116S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	88	90	79-115	1	0-13	
Carbon Tetrachloride	113	115	55-139	2	0-15	
Chlorobenzene	94	93	79-115	1	0-17	
1,2-Dibromoethane	96	94	70-130	2	0-30	
1,2-Dichlorobenzene	94	94	63-123	1	0-23	
1,1-Dichloroethene	100	103	69-123	3	0-16	
Ethylbenzene	98	97	70-130	1	0-30	
•						

92

95

95

104

107

100

107

106

93

93

95

100

107

100

101

109

108

81

79-115

66-144

60-126

68-128

44-134

75-123

75-117

79-115

42-138

2

0

4

3

7

2

2

1

14

0-15

0-14

0-14

0-14

0-37

0-12

0-12

0-12

0-28

Toluene

Ethanol

Trichloroethene

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

Tert-Amyl-Methyl Ether (TAME)

Vinyl Chloride

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-1129 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dat Analy	1000	LCS/LCSD Bate Number	h
099-12-279-1,310	Solid	GC 1	11/15/07	11/15	/07	071115B01	
Parameter	LCS	%REC LCSD	%REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	89	89		70-124	0	0-18	

MMM_

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-1129 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date trument Prepared		Date d Analyzed		h
099-10-005-15,097	Solid	GC/MS JJ	11/15/07	11/15	5/07	071115L01	
Parameter	LCS	%REC LCSD	%REC %	REC CL	RPD	RPD CL	Qualifiers
Benzene	92	90		84-114	2	0-7	
Carbon Tetrachloride	106	100	3	66-132	1	0-12	
Chlorobenzene	95	96		87-111	1	0-7	

Carbon Tetrachloride	106	108	66-132	1	0-12	
Chlorobenzene	95	96	87-111	1	0-7	
1,2-Dibromoethane	94	96	80-120	2	0-20	
1,2-Dichlorobenzene	98	99	79-115	1	0-8	
1,1-Dichloroethene	97	94	73-121	3	0-12	
Ethylbenzene	98	100	80-120	1	0-20	
Toluene	93	90	78 - 114	3	0-7	
Trichloroethene	95	94	84-114	1	0-8	
Vinyl Chloride	93	94	63-129	2	0-15	
Methyl-t-Butyl Ether (MTBE)	103	102	77-125	1	0-11	
Tert-Butyl Alcohol (TBA)	72	85	47-137	16	0-27	
Diisopropyl Ether (DIPE)	104	101	76-130	3	0-8	
Ethyl-t-Butyl Ether (ETBE)	104	103	76-124	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	103	102	82-118	1	0-11	
Ethanol	78	93	59-131	18	0-21	

AMM RPD - Rela

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

07-11-1129 EPA 5030B EPA 8260B

N/A

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Matrix Instrument		- A1 A1	Date nalyzed	LCS/LCSD Bar Number	tch
099-10-005-15,099	Solid	GC/MS JJ	11/16	5/07 11	/16/07	071116L01	
<u>Parameter</u>	LCS %	REC LC	SD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	95		93	84-114	3	0-7	
Carbon Tetrachloride	121		122	66-132	0	0-12	
Chlorobenzene	98		97	87-111	1	0-7	
1,2-Dibromoethane	99		96	80-120	3	0-20	
1,2-Dichlorobenzene	100		101	79-115	1	0-8	
1,1-Dichloroethene	107		104	73-121	3	0-12	
Ethylbenzene	103		103	80-120	1	0-20	
Toluene	98		96	78-114	2	0-7	
Trichloroethene	105		100	84-114	5	0-8	
Vinyl Chloride	101		104	63-129	3	0-15	
Methyl-t-Butyl Ether (MTBE)	108		105	77-125	3	0-11	
Tert-Butyl Alcohol (TBA)	93		98	47-137	5	0-27	
Diisopropyl Ether (DIPE)	103		101	76-130	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	106		107	76-124	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	105		103	82-118	2	0-11	
Ethanol	89		104	59-131	15	0-21	

All Annua

Glossary of Terms and Qualifiers

Work Order Number: 07-11-1129

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY

ORD

DATE:

			2090
PAGE:	1	ΛE	1
PAGE.		UF	

LABORATORY CLIENT: Exxon Mobil Refining & S	Supply - Global Reme	diation						OJECT			BER:							10	P.O.	NO.:					
ADDRESS: c/o Environmental Resolu	itions, Inc.					PRO	JECT (3X /	CT:					-					QU	OTE N	O.;				\dashv
601 North McDowell Blvd Petaluma, California 9499						SAM	PLER	Sim s): (616	O/E	RI RE) /		-	_		-	-	-	-	LAE	USE	ONLY	1.000.45	eval. IS	NAME:	U. See
TEL:	FAX:		E-MAIL	. 0			Phi	1/2/		1/7	1/01	51	0						2004 PG	0.00	4000	ПП	115	5717	71
(707) 766-2000 TURNAROUND TIME	(707) 789-0414		norcallab	s@en-u	s.com	-	run	/ Gu	<i>// -</i>	100	OF	<i>v</i> /			_	_			Saviga	No.	Charles and	Sec. 10.	STORES.	a kelan	12.00
SAME DAY 24 HR SPECIAL REQUIREMENTS (ADDITIONAL	☐ 48HR ☐ 72 HR		AYS [10 DA	YS							F	EQ	UES	TE	A C	NAL	YSI	S						- 1
SPECIAL REQUIREMENTS (ADDITIONAL	COSTS MAY APPLY)						χı				m											T	T	T	\neg
Send EDF report / Global ID: 1	T06019757161										8260B														- 1
SPECIAL INSTRUCTIONS Use Silica Gel Cleanup for	or all TPHd analyses.							<u>a</u>		8260B	2		8										1		- 1
Set TBA reporting limit at	or below 12 ug/L.					و ا	100	8015B		y 82	3013	809	601		-	- 8							- 1		- 1
Oxygenates: MTBE, ETB						by 8015B	8015	16	3260	tes t	Scavengers	y 82	Lead by 6010B		-									-	- [
Lead Scavengers: 1,2-D	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I	7 844	PLING			ğ	by	anol	(by	ena	Sca	100	Lea						1			ı	-		
LAB USE SAMPLE ID ONLY	LOCATION/ DESCRIPTION	DATE	TIME	Matrix.	#CONE	TPHd	TPHg by 8015B	Methanol	BTEX by8260B	Oxygenates by	Lead	Ethanol by 8260B	Total	1							1		1		ı
S-25.5-BII.	- 811	11.14.07	8:30	S	i.		X		Х	X	х														
2 S-29.5-BII 3 S-34.5-BII	BII		8:38	S	į,		X		X	Χ	Х														
3 S- 34.5- BII	Bil	1	8:55	S	1		Х		X	Χ	X														
4 S-11 - B16	BIL	11-14-07	12:30	S			X		X	X	X														
5 S-13-5 B16	126	1	12:34	S	1		X		5	X	X														
6 S-21-BIL	Blb		12:41	S	(X		X	χ	X														
7 S-26-1316	BIL		12:47	5	1		X		×	X	\times														
8 5-30.5-B16	816		125:55	S	1		X		X	X	X														
9 5- 34.5 -BIL	BIL		13:02	S			X		×	X	X													1	
10 S- 38.5-1316	B16	V	13:24	5	X	,	X		X	X	X														
Relinquistred by: (Signature)				Receive	by (S	,,,,	(θ)								741			Date		-07	,	Time:			٦
Relinquished by: (Signature)	TO BS	\bigcirc		Receipt	pd by: (S	Signatu	ire)				,	11	1/1	all	4			Date		a I		Time:			
Relinquished by: (Signature)	_ W 05	<u> </u>		Receive	ed by: (S	Signatu	ire)		_		7	177	7/_	7/		_		Date	:	10	7	Time:			

WORK ORDER #:	07	- []	<u></u>			2	9	
---------------	----	------	---------	--	--	---	---	--

Cooler _____ of ____

SAMPLE RECEIPT FORM

CLIENT:ERD	DATE:	11/15/07
TEMPERATURE - SAMPLES RECEIVED BY:	***	The state of the s
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. ° C Temperature blank.	LABORATORY (Other than 4.3 °C Temperature blar °C IR thermometer. Ambient temperature	nk.
		0/
CUSTODY SEAL INTACT:		
Sample(s): Cooler: No (Not In	Not F	Present:
SAMPLE CONDITION:		
Chain-Of-Custody document(s) received with samples		
COMMENTS:		

November 19, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Calscience Work Order No.: 07-11-1266

Client Reference: ExxonMobil 7-0234

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/16/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & en Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/16/07 07-11-1266 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Page 1 of 2

							_	
Client Sample Number	ent Sample Number		Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-10.5-B15		07-11-1266-1	11/15/07	Solid	GC 4	11/16/07	11/16/07	071116B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0,50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	111	42-126						
S-15.5-B15		07-11-1266-2	11/15/07	Solid	GC 4	11/16/07	11/16/07	071116B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1.1	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	123	42-126						
S-20-B15		07-11-1266-3	11/15/07	Solid	GC 4	11/16/07	11/17/07	071116B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	300	25	50		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	116	42-126						
S-25.5-B15		07-11-1266-4	11/15/07	Solid	GC 4	11/16/07	11/17/07	071116B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	220	25	50		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	119	42-126						

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 11/16/07 07-11-1266 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Page 2 of 2

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-30.5-B15		07-11-1266-5	11/15/07	Solid	GC 4	11/16/07	11/17/07	071116B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	59	12	25		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	113	42-126						
S-35.5-B15		07-11-1266-6	11/15/07	Solid	GC 4	11/16/07	11/17/07	071116B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	3.3	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	121	42-126						
Method Blank		099-12-279-1,313	N/A	Solid	GC 4	11/16/07	11/16/07	071116B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	100	42-126						
Method Blank		099-12-279-1,314	N/A	Solid	GC 4	11/16/07	11/16/07	071116B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	5.0	10		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	107	42-126						

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/16/07 07-11-1266 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234

Page 1 of 3

Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	d C	C Batch ID
S-10.5-B15			07-11-		11/15/07	Solid	GC/MS JJ	11/16/07	11/16/07	7 0	71116L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl I	Ether (MTBI	E)	ND	0.0050	1	
1.2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)	,	ND	0.050	1	
1.2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	, ,		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl Et		ı	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Meth			ND	0.010	1	
Xylenes (total)	ND	0.0050	1		Ethanol	,	•	ND	0.25	1	
Surrogates:	REC (%)	Control	•	Qual	Surrogates:			REC (%)	Control		Qual
<u></u>		Limits							Limits		
Dibromofluoromethane	107	73-139			1,2-Dichloroeth	nane-d4		129	73-145		
Toluene-d8	103	90-108			1,4-Bromofluor	robenzene		100	71-113		
S-15.5-B15			07-11-	1266-2	11/15/07	Solid	GC/MS JJ	11/16/07	11/16/07	7 0	71116L01
Decemeter	Paguit	DI.	DF	Qual	Parameter			Result	RL	DF	Qual
Parameter	Result	RL		Quai		C45 / NATO	_\				Quai
Benzene	0.32	0.0050	1		Methyl-t-Butyl I	,	E)	0.12	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	, ,		ND	0.050	1	
1,2-Dichloroethane	0.011	0.0050	1		Diisopropyl Eth			ND	0.010	1	
Ethylbenzene	0.017	0.0050	1		Ethyl-t-Butyl Et	, ,		ND	0.010	1	
Toluene	0.019	0.0050	1		Tert-Amyl-Metl	nyi Etner (i i	AIVIE)	ND	0.010	1	
Xylenes (total)	0.074	0.0050	1	0 1	Ethanol			ND	0.25	1	Overl
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	109	73-139			1,2-Dichloroeth	nane-d4		128	73-145		
Toluene-d8	102	90-108			1,4-Bromofluor	robenzene		106	71-113		
S-20-B15			07-11-	1266-3	11/15/07	Solid	GC/MS JJ	11/16/07	11/16/07	7 0	71116L02
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
V.T	6.1	0.25	50	addi	Methyl-t-Butyl	Ethor (MTD)	E/	ND	0.25	50	0,000
Benzene			50 50		Tert-Butyl Alco		L)	ND	2.5	50	
1,2-Dibromoethane	ND ND	0.25 0.25	50		Diisopropyl Eth			ND	2.5 0.50	50	
1,2-Dichloroethane								ND			
Ethylbenzene	14	0.25	50		Ethyl-t-Butyl Et			ND	0.50	50	
Toluene	36	0.25	50		Tert-Amyl-Met	nyı Emer (T.	AIVIE)	ND	0.50	50 50	
Xylenes (total)	72	0.25	50	Ouel	Ethanol			REC (%)	12 Control	50	Qual
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			KEU (%)	Control Limits		Qual
Dibromofluoromethane	97	73-139			1,2-Dichloroeth	hane-d4		99	73-145		
Toluene-d8	100	90-108			1,4-Bromofluor			102	71-113		

1. A. A.

DF - Dilution Factor

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/16/07 07-11-1266 EPA 5030B EPA 8260B mg/kg

Project: ExxonMobil 7-0234

Page 2 of 3

Client Sample Number				ib Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch iD
S-25.5-B15			07-11-	1266-4	11/15/07	Solid	GC/MS JJ	11/16/07	11/16/07	071116L02
Parameter	Result	RL	DF	Qual	Parameter			Result	RL I	OF Qual
Benzene	3.1	0.12	25		Methyl-t-Butyl I	Ether (MTE	BE)	ND	0.12	25
1,2-Dibromoethane	ND	0.12	25		Tert-Butyl Alco	•	,	ND		25
1,2-Dichloroethane	ND	0.12	25		Diisopropyl Eth			ND		25
Ethylbenzene	6.8	0.12	25		Ethyl-t-Butyl Et	, ,)	ND		25
Toluene	18	0.12	25		Tert-Amyl-Metl	,	,	ND		25
Xylenes (total)	36	0.12	25		Ethanol	,	,	ND		25
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control	Qual
Differential	00	Limits			4.0 5% 11			400	Limits	
Dibromofluoromethane	96	73-139			1,2-Dichloroeth			100	73-145	
Toluene-d8	100	90-108	_		1,4-Bromofluor	obenzene		102	71-113	
S-30.5-B15			07-11-1	1266-5	11/15/07	Solid	GC/MS JJ	11/16/07	11/16/07	071116L02
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL [OF Qual
Benzene	2.9	0.25	50		Methyl-t-Butyl I	Ether (MTB	E)	ND		50
1.2-Dibromoethane	ND	0.25	50		Tert-Butyl Alco		-/	ND		50
1.2-Dichloroethane	ND	0.25	50		Diisopropyl Eth	, ,		ND		50
Ethylbenzene	1.5	0.25	50		Ethyl-t-Butyl Et)	ND		50
Toluene	5.6	0.25	50		Tert-Amyl-Meth	,	,	ND		50
Xylenes (total)	20	0.25	50		Ethanol	,	,	ND		50
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control	Qual
Dibromofluoromethane	97	<u>Limits</u> 73-139			1,2-Dichloroeth	ane_d4		99	<u>Limits</u> 73-145	
Toluene-d8	98	90-108			1,4-Bromofluor			103	71-113	
S-35.5-B15		50-100	07-11-1	1266-6	11/15/07	Solid	GC/MS JJ	11/16/07		071116L01
3 00.0 210			01 (1	1200-0	11110/01	Jone	00/1110 00	11/10/07	11/10/07	071110201
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL I	<u>OF</u> <u>Qual</u>
Benzene	0.28	0.12	25		Methyl-t-Butyl I		E)	0.26	0.0050	1
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)	•	0.25	0.050	1
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1
Ethylbenzene	0.26	0.0050	1		Ethyl-t-Butyl Et	her (ETBE)	ND	0.010	1
Toluene	0.21	0.0050	1		Tert-Amyl-Meth	nyl Ether (T	AME)	ND	0.010	1
Xylenes (total)	0.79	0.0050	1		Ethanol			ND	0.25	1
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits	Qual
Dibromofluoromethane	99	73-139			1,2-Dichloroeth	ano d4		105	<u>Limits</u> 73-145	
Dibromonuorometnane Toluene-d8	99	90-108			1,2-Dichloroetr			105	73-145 71-113	
i oluerie-uo	55	90-108			1,4-DIUIIIUUI	obelizelie		103	11-113	

MMMM_

mit , DF - Dilution Factor ,

Environmental Resolutions, Inc.

601 North McDowell Blvd.

Petaluma, CA 94954-2312

Analytical Report

 Date Received:
 11/16/07

 Work Order No:
 07-11-1266

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 mg/kg

Project: ExxonMobil 7-0234 Page 3 of 3

Client Sample Number				Sample umber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	d C	C Batch ID
Method Blank			099-10-0	05-15,09	9 N/A	Solid	GC/MS JJ	11/16/07	11/16/07	0	71116L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	<u>Qual</u>
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.0050	1	
1,2-Dibromoethane	ND	0.0050	1		Tert-Butyl Alco	ohol (TBA)		ND	0.050	1	
1,2-Dichloroethane	ND	0.0050	1		Diisopropyl Et	her (DIPE)		ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	
Toluene	ND	0.0050	1		Tert-Amyl-Met	thyl Ether (T	AME)	ND	0.010	1	
Xylenes (total)	ND	0.0050	1		Ethanol			ND	0.25	1	
Surrogates:	REC (%)	Control	9	Qual	Surrogates:			REC (%)	Control		Qual
Dibromofluoromethane	106	<u>Limits</u> 73-139			1,2-Dichloroet	hane-d4		126	<u>Limits</u> 73-145		
Toluene-d8	101	90-108			1,4-Bromofluo			106	71-113		
Method Blank			099-10-0	05-15,10	2 N/A	Solid	GC/MS JJ	11/16/07	11/16/07	0	71116L02
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL	DE	Qual
Benzene	ND	0.12	25		Methyl-t-Butyl	Ether (MTB	E)	ND	0.12	25	
1,2-Dibromoethane	ND	0.12	25		Tert-Butyl Alco	,	,	ND	1.2	25	
1.2-Dichloroethane	ND	0.12	25		Diisopropyl Etl			ND	0.25	25	
Ethylbenzene	ND	0.12	25		Ethyl-t-Butyl E)	ND	0.25	25	
Toluene	ND	0.12	25		Tert-Amyl-Met			ND	0.25	25	
Xylenes (total)	ND	0.12	25		Ethanol	,	,	ND	6.2	25	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	Control		Qual
Dibromofluoromethane	104	<u>Limits</u> 73-139			1.2-Dichloroet	hano d4		117	<u>Limits</u> 73-145		
Toluene-d8	99	90-108			1,4-Bromofluo			104	71-113		
Method Blank		30-100	099-10-0	05-15.10		Solid	GC/MS JJ			, 0	71116L04
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DE	Qual
				Qual	7	E46 (8.4750					Guai
Benzene 4.0 Dibanasathana	ND	0.12	25		Methyl-t-Butyl	,	L)	ND	0.12	25	
1,2-Dibromoethane	ND	0.12	25		Tert-Butyl Alco	, ,		ND	1.2	25	
1,2-Dichloroethane	ND	0.12	25		Diisopropyl Et			ND	0.25	25	
Ethylbenzene	ND	0.12	25		Ethyl-t-Butyl E			ND	0.25	25	
Toluene	ND	0.12	25		Tert-Amyl-Met	ınyı Etner (I	AIVIE)	ND	0.25	25	
Xylenes (total)	ND	0.12	25		Ethanol			ND	6.2	25	0 1
Surrogates:	<u>REC (%)</u>	Control	9	<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control		Qual
Dibas and the same of the same	400	<u>Limits</u>			4.0 Diebleer 1			110	<u>Limits</u>		
Dibromofluoromethane	103	73-139			1,2-Dichloroet			113	73-145		
Toluene-d8	100	90-108			1,4-Bromofluo	ropenzene		104	71-113		

Allen Rep

DF - Dilution Factor ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/16/07 07-11-1266 EPA 5030B EPA 8015B (M)

Project ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
S-10.5-B15	Solid	GC 4	11/16/07		11/16/07	071116S01	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
TPH as Gasoline	82	77	48-114	7	0-23		

RPD - Relative Percent Difference , CL - Control Limit

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/16/07 07-11-1266 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-11-1129-9	Solid	GC/MS JJ	11/16/07	11/16/07	071116S01

Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	88	90	79-115	1	0-13	
Carbon Tetrachloride	113	115	55-139	2	0-15	
Chlorobenzene	94	93	79-115	1	0-17	
1,2-Dibromoethane	96	94	70-130	2	0-30	
1,2-Dichlorobenzene	94	94	63-123	1	0-23	
1,1-Dichloroethene	100	103	69-123	3	0-16	
Ethylbenzene	98	97	70-130	1	0-30	
Toluene	92	93	79-115	2	0-15	
Trichloroethene	95	95	66-144	0	0-14	
Vinyl Chloride	95	100	60-126	4	0-14	
Methyl-t-Butyl Ether (MTBE)	104	107	68-128	3	0-14	
Tert-Butyl Alcohol (TBA)	107	100	44-134	7	0-37	
Diisopropyl Ether (DIPE)	100	101	75-123	2	0-12	
Ethyl-t-Butyl Ether (ETBE)	107	109	75-117	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	106	108	79-115	1	0-12	
Ethanol	93	81	42-138	14	0-28	

RPD - Relative Percent Difference .

7440 Lincoln

e , CL - Control Limit

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/16/07 07-11-1266 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-0974-1	Solid	GC/MS JJ	11/16/07		11/16/07	071116S02
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	90	89	79-115	1	0-13	
Carbon Tetrachloride	103	102	55-139	1	0-15	
Chlorobenzene	90	93	79-115	2	0-17	
1,2-Dibromoethane	94	96	70-130	1	0-30	
1,2-Dichlorobenzene	91	92	63-123	1	0-23	
1,1-Dichloroethene	93	94	69-123	1	0-16	
Ethylbenzene	91	93	70-130	3	0-30	
Toluene	92	90	79-115	2	0-15	
Trichloroethene	92	93	66-144	0	0-14	
Vinyl Chloride	87	89	60-126	2	0-14	
Methyl-t-Butyl Ether (MTBE)	107	105	68-128	2	0-14	
Tert-Butyl Alcohol (TBA)	88	94	44-134	6	0-37	
Diisopropyl Ether (DIPE)	99	100	75-123	1	0-12	
Ethyl-t-Butyl Ether (ETBE)	107	111	75-117	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	109	107	79-115	1	0-12	
Ethanol	86	86	42-138	0	0-28	

All RED - RIGHT

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-1266 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepar		ate lyzed	LCS/LCSD Batc Number	1
099-12-279-1,314	Solid	GC 4	11/16/0	07 11/1	6/07	071116B02	
<u>Parameter</u>	LCS	<u> 6REC LCS</u>	D %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	113	3 1	12	70-124	1	0-18	

RPD - Rela

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-1266 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
099-12-279-1,313	Solid	GC 4	11/16/07	11/16/07	071116B01	
Parameter	LCS %	REC LCSD	%REC %F	REC CL RF	<u>PD RPD CL</u>	Qualifiers
TPH as Gasoline	113	112	? 7	70-124 1	0-18	

MULLAND.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-1266 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared	WV	ate yzed	LCS/LCSD Bate Number	:h
099-10-005-15,099	Solid	GC/MS JJ	11/16/07	11/10	6/07	071116L01	
Parameter	LCS %F	REC LCSD	<u>%REC</u> <u>%</u>	REC CL	RPD	RPD CL	Qualifiers
Benzene	95	93		84-114	3	0-7	
Carbon Tetrachloride	121	122		66-132	0	0-12	
Chlorobenzene	98	97		87-111	1	0-7	
1,2-Dibromoethane	99	96		80-120	3	0-20	
1,2-Dichlorobenzene	100	101		79-115	1	0-8	
1,1-Dichloroethene	107	104		73-121	3	0-12	
Ethylbenzene	103	103		80-120	1	0-20	
Toluene	98	96		78-114	2	0-7	
Trichloroethene	105	100		84-114	5	0-8	
Vinyl Chloride	101	104		63-129	3	0-15	
Methyl-t-Butyl Ether (MTBE)	108	105		77-125	3	0-11	
Tert-Butyl Alcohol (TBA)	93	98		47-137	5	0-27	
Diisopropyl Ether (DIPE)	103	101		76-130	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	106	107		76-124	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	105	103		82-118	2	0-11	

104

89

Ethanol

15

59-131

0-21

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-1266 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bate Number	ch
099-10-005-15,102	Solid	GC/MS JJ	11/16/07	11/1	6/07	071116L02	
Parameter	LCS %F	EC LCSD	%REC %	REC CL	RPD	RPD CL	Qualifiers
Benzene	95	93		84-114	3	0-7	
Carbon Tetrachloride	121	122		66-132	0	0-12	
Chlorobenzene	98	97		87-111	1	0-7	
1,2-Dibromoethane	99	96		80-120	3	0-20	
1,2-Dichlorobenzene	100	101		79-115	1	8-0	
1,1-Dichloroethene	107	104		73-121	3	0-12	
Ethylbenzene	103	103		80-120	1	0-20	
Toluene	98	96		78-114	2	0-7	
Trichloroethene	105	100		84-114	5	0-8	
Vinyl Chloride	101	104		63-129	3	0-15	
Methyl-t-Butyl Ether (MTBE)	108	105		77-125	3	0-11	
Tert-Butyl Alcohol (TBA)	93	98		47-137	5	0-27	
Diisopropyl Ether (DIPE)	103	101		76-130	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	106	107		76-124	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	105	103		82-118	2	0-11	
Ethanol	89	104		59-131	15	0-21	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-1266 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number	
099-10-005-15,104	Solid	GC/MS JJ	11/16/07	11/16/07	071116L04	

Parameter	LCS %REC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	97	100	84-114	2	0-7	
Carbon Tetrachloride	116	113	66-132	3	0-12	
Chlorobenzene	99	97	87-111	2	0-7	
1,2-Dibromoethane	99	102	80-120	3	0-20	
1,2-Dichlorobenzene	95	98	79-115	3	8-0	
1,1-Dichloroethene	105	104	73-121	1	0-12	
Ethylbenzene	101	102	80-120	1	0-20	
Toluene	98	100	78-114	2	0-7	
Trichloroethene	105	103	84-114	2	0-8	
Vinyl Chloride	106	104	63-129	2	0-15	
Methyl-t-Butyl Ether (MTBE)	107	105	77-125	2	0-11	
Tert-Butyl Alcohol (TBA)	102	106	47-137	4	0-27	
Diisopropyl Ether (DIPE)	102	103	76-130	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	108	109	76-124	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	104	108	82-118	4	0-11	
Ethanol	109	93	59-131	15	0-21	

Glossary of Terms and Qualifiers

Work Order Number: 07-11-1266

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY **GARDEN GROVE, CA 92841-1432**

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY

ORD

DATE:

11.15-07 1 OF PAGE:

Exxo		Supply - Global Reme	diatio				l			NAME		BER:							P.0	NO.:	11				
601 N	ess: nvironmental Resolution McDowell Blvd uma, California 949	l					PRC Pa	NECT O	Sin	7-0: ct: le/E	RI.,	1	/							OTE N				E PT	
	766-2000	FAX: (707) 789-0414		E-MAIL norcaliat	s@eri-u	s.com		lide	fu)	4	11	H							Π	\prod]-[112			
□s	ROUND TIME AME DAY 24 HR AL REQUIREMENTS (ADDITIONAL	48HR 72 HR		DAYS []10 DA	YS					-		F	EQU	EST	ED A	NA	LYS	s				السادة		
	EDF report / Global ID:											809			1								- 1		
Use Set Oxy Lea	ALINSTRUCTIONS Silica Gel Cleanup for TBA reporting limit at regenates: MTBE, ETB d Scavengers: 1,2-D	or all TPHd analyses. t or below 12 ug/L. E, TAME, DIPE, TBA					by 8015B	by 8015B	nol by 8015B	by8260B	Oxygenates by 8260B	Lead Scavengers by 8260B	Ethanol by 8260B	Lead by 6010B											
LAB USE ONLY	SAMPLE ID	LOCATION/ DESCRIPTION	DATI	AMPLING TIME	Manth.	#Cong	ТРН	TPHg	Methanol	ВТЕХ	Oxyge	Lead S	Ethan	Total L										1	
1	5-10.5-B15	B15	11-15-0	7 8:05	S	1		Х		X	Х	х													
	5-15.5-815	B15		8:15	S	1		Y		X	У	X													
	S-20-B15	BIS		8.20	S	1		X		X	X	X													
4	S-25.5-B15	B15		8:25	S	1		Κ		X	X	X													
5	5-30.5-BIS	B15		8:35	S	i		X		Y	X	X													
S: INC. (32)	5-35.5-B15	Bi5		8:50	S)		\prec		X	8	Y		_	_	-	_						4	1	
	(4)			-		H	\vdash			\dashv	-	\dashv	-	+	+	╁	+	\vdash		\dashv	\dashv	+	+	+	\dashv
										\dashv		\dashv		\top	+	+	\vdash				1	+	+	+	\dashv
		Y										\exists		\dashv	1	T					7		\top	+	٦
JH8	shed by: (Signature) (Mu) ished by: (Signature)	-eo (55t)			(ed by: (S			So		> u	_	Cs	EC	=			Date	12			Time:	<u>.</u> ک <u>د</u>	.5	
Relinqu	ished by: (Signature)	TO 970			Receive	ed by: (S	ignatu			tu								Date	<u>s-l</u>	C-(١ ١	Time:	0)	7	\dashv

WORK ORDER #: 07	- 1	1 -	1	2	6	6
------------------	-----	-----	---	---	---	---

Cooler _ / _ of _ / _

SAMPLE RECEIPT FORM

CLIENT: ERJ	DATE: 11/16/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): 2.1 °C Temperature blank. °C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
	Intact) : Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

28 September, 2007

Paula Sime Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma, CA 94954

RE: Exxon 7-0234 Work Order: MQI0358

Enclosed are the results of analyses for samples received by the laboratory on 09/13/07 16:40. The samples arrived at a temperature of 5° C. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tim Rhiney Project Manager

CA ELAP Certificate #1210

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project: Exxon 7-0234
Project Number: Exxon 7-0234
Project Manager: Paula Sime

MQI0358 Reported: 09 28 07 15:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP-1(S-SP1S-SP4)	MQI0358-01	Soil	09 12 07 15:45	09 13 07 16:40

Environmental Resolutions (Exxon)

601 North McDowell Blvd. Petaluma CA, 94954 Project: Exxon 7-0234

Project Number: Exxon 7-0234 Project Manager: Paula Sime MQI0358 Reported: 09 28 07 15:26

SP-1(S-SP1--S-SP4) (MQI0358-01) Soil

Sampled: 09/12/07 15:45 Received: 09/13/07 16:40

Purgeable Hydrocarbons by EPA 8015B TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analy zed	Method	Note
Gasoline Range Organics (C4-C12)	ИD	0.10	mg kg	1	7117015	09 17 07	09 17 07	EPA 8015B-VOA	
Surrogate: 4-Bromofluorobenzene		84%	60-	145	"	11	,,	"	

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Morgan Hill, CA

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Lead	7.2	5.0	mg kg	1	7I18026	09 18 07	09 19 07	EPA 6010B	

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Benzene	ND	0.0050	mg kg	1	7117017	09 17 07	09 18 07	EPA 8260B	
Ethylbenzene	ND	0.0050	**	"	11	It	н	11	
Toluene	ND	0.0050	(6)	II	**	11	**	**	
Xylenes (total)	ИD	0.0050	590	11	(10)	ü	œ	**	
Surrogate: Dibromofluoromethane		99 %	70-	120	**	*	.,	и	
Surrogate: 1,2-Dichloroethane-d4		100 %	65-	135	•	<i>ii</i> .	11	11	
Surrogate: Toluene-d8		92%	75-	120	10	**	11	u	
Surrogate: 4-Bromofluorobenzene		80 %	60-	120	11	16	#	и	
tert-Amyl methyl ether	ND	0.0050	11	**	11	(11)	11	19	
tert-Butyl alcohol	ND	0.020	11	**	91	0.	н	77	
Di-isopropyl ether	ND	0.0050	11	11	n	**	#0	H	
1,2-Dibromoethane (EDB)	ND	0.0050	11	ш	11	·		п	
1,2-Dichloroethane	ND	0.0050	11	11	11	0	0.00	н	
Ethyl tert-butyl ether	ИD	0.0050	11	11		(9)	1.00	16	
Methyl tert-butyl ether	ND	0.0050	11	II			n.	11	
Surrogate: 1,2-Dichloroethane-d4		100 %	65-	135	н	н	ır	w	
Surrogate: 4-Bromofluorobenzene		80 %	60-	120	11	н	ır	ïi.	
Surrogate: Dibromofluoromethane		99 %	70-	120	0	11	**	<u>w</u>	
Surrogate: Toluene-d8		92%	75-	120	u	tt	11	*	

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project Number: Exxon 7-0234 Project Manager: Paula Sime

MQ10358 Reported: 09 28 07 15:26

Purgeable Hydrocarbons by EPA 8015B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Evaluation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7117015 - EPA 5030B [P/T]										
Blank (7I17015-BLK1)				Prepared &	& Analyze	ed: 09 17	9 7			
Gasoline Range Organics (C4-C12)	ND	0.05	mg kg	•						
Surrogate: 4-Bromofluorobenzene	0.0732		u	0.0800		92	60-145			
LCS (7I17015-BS1)				Prepared &	& Analyze					
Gasoline Range Organics (C4-C12)	0.220	0.10	mg kg	0.275		80	70-130			
Surrogate: 4-Bromofluorobenzene	0.0730		"	0.0800		91	60-145			
Matrix Spike (7117015-MS1)	Sor	urce: MQI03	58-01	Prepared &	& Analyze	ed: 09 17 (07			
Gasoline Range Organics (C4-C12)	0.196	0.10	mg kg	0.275	ND	71	70-130			
Surrogate: 4-Bromofluorobenzene	0.0682		".	0.0800		85	60-145			
Matrix Spike Dup (7117015-MSD1) Source: MQI			58-01	Prepared &	& Analyze	d: 09 17 (07			
Gasoline Range Organics (C4-C12)	0.214	0.10	mg kg	0.275	ND	78	70-130	9	25	
Surrogate: 4-Bromofluorobenzene	0.0713		"	0.0800		89	60-145			

Environmental Resolutions (Exxon) 601 North McDowell Blvd. Petaluma CA, 94954 Project Exxon 7-0234
Project Number: Exxon 7-0234
Project Manager: Paula Sime

MQ10358 Reported: 09 28 07 15:26

Total Metals by EPA 6000/7000 Series Methods - Quality Control TestAmerica - Morgan Hill, CA

2 T		Evaluation		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7I18026 - EPA 3050B										
Blank (7I18026-BLK1)				Prepared:	09 18 07	Analyzed	l: 09 19 07			
Lead	ND	2.5	mg kg							
LCS (7I18026-BS1)				Prepared:	09 18 07	Analyzed	l: 09 19 07			
Lead	47.7	5.0	mg kg	50.0		95	80-115			
Matrix Spike (7I18026-MS1)	Sour	rce: MQI04	105-01	Prepared:	09 18 07	Analyzed	l: 09 19 07			
Lead	53.3	5.0	mg kg	50.0	8.65	89	80-115			
Matrix Spike Dup (7I18026-MSD1)	Sou	rce: MQI04	105-01	Prepared:	09 18 07	Analyzed	1: 09 19 07			
Lead	51.2	5.0	mg kg	50.0	8.65	85	80-115	4	35	

MQ10358

Environmental Resolutions (Exxon)

601 North McDowell Blvd,

Project: Exxon 7-0234

Project Number: Exxon 7-0234

Reported: 09 28 07 15:26

Petaluma CA, 94954

Project Manager: Paula Sime

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

A. A.		Evaluation		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7117017 - EPA 5030B P/T					-					
Blank (7I17017-BLK1)				Prepared &	& Analyzo	ed: 09 17	07			
tert-Amyl methyl ether	ND	0.0025	mg kg	=						
Benzene	ND	0.0025	n							
tert-Butyl alcohol	ND	0.01	U							
Di-isopropyl ether	ND	0.0025	77							
1,2-Dibromoethane (EDB)	ND	0.0025	11							
1,2-Dichloroethane	ND	0.0025	11							
Ethyl tert-butyl ether	ND	0.0025	**							
Ethylbenzene	ND	0.0025	u							
Methyl tert-butyl ether	ND	0.0025	н							
Toluene	ND	0.0025	11							
Xylenes (total)	ND	0.0025	n							
Surrogate: Dibromofluoromethane	0.00472			0.00500		94	70-120			
Surrogate: 1,2-Dichloroethane-d4	0.00474		*	0.00500		95	65-135			
Surrogate: 1,2-Dichloroethane-d4	0.00474		W	0.00500		95	65-135			
Surrogate: 4-Bromofluorobenzene	0.00422		**	0.00500		84	60-120			
Surrogate: Toluene-d8	0.00468		**	0.00500		94	75-120			
Surrogate: Dibromofluoromethane	0.00472		#	0.00500		94	70-120			
Surrogate: 4-Bromofluorobenzene	0.00422		11.	0.00500		84	60-120			
Surrogate: Toluene-d8	0.00468			0.00500		94	75-120			
LCS (7I17017-BS1)				Prepared &	& Analyze	ed: 09 17 (07			
ert-Amyl methyl ether	0.0178	0.0050	mg kg	0.0200		89	70-130			
Benzene	0.0179	0.0050	u	0.0200		90	70-130			
ert-Butyl alcohol	0.358	0.020	u	0.400		89	70-130			
Di-isopropy1 ether	0.0178	0.0050	11	0.0200		89	70-130			
1,2-Dibromoethane (EDB)	0.0181	0.0050	71	0.0200		91	70-130			
I,2-Dichloroethane	0.0180	0.0050	11	0.0200		90	70-130			
Ethyl tert-butyl ether	0.0182	0.0050	ш	0.0200		91	70-130			
Ethylbenzene	0.0194	0.0050	11	0.0200		97	70-130			
Methyl tert-butyl ether	0.0176	0.0050	u	0.0200		88	70-130			
Foluene	0.0188	0.0050	11	0.0200		94	70-130			

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project Number: Exxon 7-0234 Project Number: Exxon 7-0234 Project Manager: Paula Sime

MQI0358 Reported: 09 28 07 15:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

		Evaluation		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 7I17017 - EPA 5030B P/T							
LCS (7117017-BS1)				Prepared	& Analyzed	1: 09 17	07
Xylenes (total)	0.0592	0.0050	mg kg	0.0600		99	70-130
Surrogate: Dibromofluoromethane	0.00496		11	0.00500		99	70-120
Surrogate: 1,2-Dichloroethane-d4	0.00492		#	0.00500		98	65-135
Surrogate: 1,2-Dichloroethane-d4	0.00492		11	0.00500		98	65-135
Surrogate: Toluene-d8	0.00478		1,5	0.00500		96	75-120
Surrogate: 4-Bromofluorobenzene	0.00470		11	0.00500		94	60-120
Surrogate: 4-Bromofluorobenzene	0.00470		11	0.00500		94	60-120
Surrogate: Dibromofluoromethane	0.00496		11	0.00500		99	70-120
Surrogate: Toluene-d8	0.00478		11	0.00500		96	75-120
Matrix Spike (7I17017-MS1)	Sou	rce: MQI04	06-01	Prepared	& Analyzed	l: 09 17	07
tert-Amyl methyl ether	0.0213	0.0050	mg kg	0.0200	ND	107	70-130
Benzene	0.0188	0.0050	**	0.0200	0.0000800	94	70-130
tert-Butyl alcohol	0.373	0.020	**	0.400	ND	93	70-130
Di-isopropyl ether	0.0201	0.0050	"	0.0200	ND	100	70-130
1,2-Dibromoethane (EDB)	0.0195	0.0050	17	0.0200	ND	98	70-130
1,2-Dichloroethane	0.0197	0.0050	II.	0.0200	ND	99	70-130
Ethyl tert-butyl ether	0.0202	0.0050	u	0.0200	ND	101	70-130
Ethylbenzene	0.0206	0.0050	**	0.0200	ND	103	70-130
Methyl tert-butyl ether	0.0209	0.0050	"	0.0200	0.000420	103	70-130
Toluene	0.0196	0.0050	11	0.0200	ND	98	70-130
Xylenes (total)	0.0633	0.0050	77	0.0600	ND	105	70-130
Surrogate: Dibromofluoromethane	0.00496			0,00500		99	70-120
Surrogate: 1,2-Dichloroethane-d4	0.00498		"	0.00500		100	65-135
Surrogate: 1,2-Dichloroethane-d4	0.00498			0.00500		100	65-135
Surrogate: Tolnene-d8	0.00490		566	0.00500		98	75-120
Surrogate: 4-Bromofluorobenzene	0.00464		300	0.00500		93	60-120
Surrogate: 4-Bromofluorobenzene	0.00464		"	0.00500		93	60-120
Surrogate: Dibromofluoromethane	0.00496		"	0.00500		99	70-120
Surrogate; Toluene-d8	0.00490		n	0.00500		98	75-120

Environmental Resolutions (Exxon) 601 North McDowell Blvd.

Petaluma CA, 94954

Project Number: Exxon 7-0234 Project Manager: Paula Sime

MQ10358 Reported: 09 28 07 15:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

		Evaluation		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7I17017 - EPA 5030B P/T										
Matrix Spike Dup (7I17017-MSD1)	Sour	rce: MQI040	6-01	Prepared &	& Analyz	ed: 09 17 (07			
tert-Amyl methyl ether	0.0202	0.0050	mg kg	0.0200	ND	101	70-130	6	25	

Matrix Spike Dup (7I17017-MSD1)	Sou	rce: MQI04	06-01	Prepared	& Analyzed	1: 09 17	07			
tert-Amyl methyl ether	0.0202	0.0050	mg kg	0.0200	ND	101	70-130	6	25	
Benzene	0.0188	0.0050	17	0.0200	0.0000800	94	70-130	0.2	25	
tert-Butyl alcohol	0.390	0.020	ττ	0.400	ND	98	70-130	4	25	
Di-isopropyl ether	0.0193	0.0050	11	0.0200	ND	96	70-130	4	25	
1,2-Dibromouthane (EDB)	0810.0	0.0050	ш	0.0200	ND	90	70-130	8	25	
1,2-Dichloroethane	0.0186	0.0050	11	0.0200	ND	93	70-130	6	25	
Ethyl tert-butyl ether	0.0194	0.0050	ir	0.0200	ND	97	70-130	4	25	
Ethylbenzene	0.0205	0.0050	н	0.0200	ND	102	70-130	0.7	25	
Methyl tert-butyl ether	0.0189	0.0050	н	0.0200	0.000420	92	70-130	10	25	
Toluene	0.0192	0.0050	u	0.0200	ND	96	70-130	2	25	
Xylenes (total)	0.0626	0.0050	**	0.0600	ND	104	70-130	1	25	
Surrogate: Dibromofluoromethane	0.00376		"	0.00500		75	70-120			
Surrogate: 1,2-Dichloroethane-d4	0.00484			0.00500		97	65-135			
Surrogate: 1,2-Dichloroethane-d4	0.00484			0.00500		97	65-135			
Surrogate: 4-Bromofluorobenzene	0.00452		300	0.00500		90	60-120			
Surrogate: Toluene-d8	0.00484		45	0.00500		97	75-120			
Surrogate: Dibromofluoromethane	0.00376		**	0.00500		75	70-120			
Surrugate: 4-Bromofluorobenzene	0.00452			0.00500		90	60-120			
Surrogate: Toluene-d8	0.00484			0.00500		97	75-120			

Environmental Resolutions (Exxon)
Project: Exxon 7-0234
MQ10358
601 North McDowell Blvd.
Project Number: Exxon 7-0234
Project Manager: Paula Sime

MQ10358
Reported:

Project Manager: Paula Sime

MQ10358

Reported:

09 28 07 15:26

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

MQI0358

Test/America	Coi	sultant Name:	Environme	ntal Resolu	tions, inc.			xxor	Mobil	Eng	ineer	Jen	nifer	C. Se	edlact	nek				_
TOSULATION INCORPORATED		Address:	601 North I	VicDowell B	loulevard		-	Tele	aphon	e Nu	mber	(510) 54	7-819	96					
408-776-9600		City/State/Zip:	Petaluma, 0	California 9	94954				A	lecou	ınt#:	102	28							7
Morgan Hill Division	P	oject Manager	Paulo	Sime			<u>.</u>			F	PO #:			981			-			
885 Jarvis Drive	Telep	hone Number:	707-	-766-Z	0000		-E		Fa	acility	iD#	-	7-0	023	Ч		-		-	
Morgan Hill, CA 95037	ER	l Job Number:	247	603×							I ID#				-					_
ExonMobil .	Sample	r Name: (Print)	Re	bekak	Westry	(b)	7.		Site	a Add	iress	31	450	3	Sth	Ave				_
-		oler Signature:		whele		•			City,	State	e Zip	0	AKI	AN	, מנ	CA				
Shipping Method: Lab Courier	Hand Delive			Othe	e:		-	,				-								
TAT	PROVIDE: EDF Report	Special Instru	STIE			S-SP3 a Sample			Matrix		2015	2978		Level 6010	Anal	yze Foi				
Sample ID / Description	on	DATE	TIME	COMP	GRAB	PRESERV	NUMBER	Water	Soil	Vapor	TPHA	RTEX	70xY	Total Level						
第三 第 3																		П	T	
SP-1 (S-SP1 - S5P4)		9-12-07	15:45			1CE	Ч		X		X	X	X	X						_
																_	_			
							2000		Н	_			_	4	+	-	+		4	
						-	,		\vdash	\dashv	-	-	\dashv	+	\dashv	+	+	H	-	
										\dashv			1	\dashv	+	+	+	H		-
	J									1			7	7	1	+		Н	+	-
8												\exists		1	1	1	1	П	+	-
	o-100.00					1														
	/					_/	اما													Ì
Relinquished by: Maska Calling Relinquished by: Janus M		3 -07 13-07	Time 07		Received by	TestAmerica	2		3/0		12		5	Fempe Sampl	erature e Cont	tainers	Receip Intact? space?	•		

10

TEST AMERICA SAMPLE RECEIPT LOG

[A]	RINT) DV.		DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:	9/14/0			û:	For Regula DRINKING WASTE WA	
CIRCLE THE APPRO	PRIATE RESPONSE	LAB SAMPLE#	CLIENT ID	CONTAINER DESCRIPTION		рН	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)
1. Custody Seal(s)	Present / Absent	-							
	Intact / Broken*								1
2. Chain-of-Custody	Present / Absent*								
Traffic Reports or			(
Packing List:	Present / Absent								
4. Airbill:	Airbill / Sticker			ļ					
	Present / Absent							-/	No.
5. Airbill #:								/	
6. Sample Labels:	Present / Absent							/-	1.39
7. Sample IDs:	Listed / Not Listed				35		-4		1 Park 2011
	on Chain-of-Custody								· 455 (
8. Sample Condition:	Intact / Broken* /			Secon					,45s.
	Leaking*			0/13/01		_			95.70°
9. Does information on				1-04	-A				
traffic reports and s					-				5,000
agree?	(Yes) No*			l	\longrightarrow				
10. Sample received within									7.938
hold time?	· (res)/ No*								n niệv?
11. Adequate sample volu			······································	/					- 12
received?	Yes / No*			<u> </u>					
12. Proper preservatives u		- R							14.60
13. Trip Blank / Temp Blar	nk Received?								- A.T
(circle which, If yes)	Yes (No*)								
14. Read Temp:	4.6°								
Corrected Temp:	<u> </u>								
Is corrected temp 4 +/									
(Acceptance range for eamples rec									
**Exception (if any): MET	ALS / DFF ON ICE	/							
or Problem COC									

SRL Revision 8 Replaces Rev 7 (07/19/05) Effective 09/13/06 Page 1 of 1

November 14, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Calscience Work Order No.: 07-11-0904 Subject:

> Client Reference: ExxonMobil 7-0234

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/13/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Cecile deGuia

Project Manager

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/13/07 07-11-0904 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Page 1 of 1

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
W-38-B18		07-11-0904-1	11/12/07	Aqueous	GC 30	11/13/07	11/13/07	071113B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	4300	1000	20		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	99	38-134						
W-40-B13		07-11-0904-2	11/12/07	Aqueous	GC 30	11/13/07	11/13/07	071113B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	92	38-134						
Method Blank		099-12-436-1,124	N/A	Aqueous	GC 30	11/13/07	11/13/07	071113B02
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	92	38-134						

, DF - Dilution Factor ,

Qual - Qualifiers

Environmental Resolutions, Inc.

Date Received:

Work Order No:

Petaluma, CA 94954-2312

Preparation:

Method:

Units:

Date Received:

11/13/07

07-11-0904

Preparation:

EPA 5030B

Units:

ug/L

Project: ExxonMobil 7-0234 Page 1 of 1

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	l Q	C Batch ID
W-38-B18			07-11-0	904-1	11/12/07	Aqueous	GC/MS L	11/14/07	11/14/07	07	'1114L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	52	12	25		Methyl-t-Butyl	Ether (MTBI	E)	1400	50	100	
1,2-Dibromoethane	ND	12	25		Tert-Butyl Alc	ohol (TBA)		ND	250	25	
1,2-Dichloroethane	ND	12	25		Diisopropyl E	ther (DIPE)		ND	12	25	
Ethylbenzene	56	12	25		Ethyl-t-Butyl E	Ether (ETBE)		ND	12	25	
Toluene	ND	12	25		Tert-Amyl-Me	thyl Ether (T/	AME)	ND	12	25	
Xylenes (total)	96	12	25		Ethanol			ND	1200	25	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
1,2-Dichloroethane-d4	126	73-157			Dibromofluoro	omethane		109	82-142		
Toluene-d8	104	82-112			1,4-Bromofluc	orobenzene		106	75-105		2
W-40-B13			07-11-0	904-2	11/12/07	Aqueous	GC/MS L	11/14/07	11/14/07	07	1114L01
<u>Parameter</u>	Result	RL	DE	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTBI	E)	0.53	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)	,	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	Ether (ETBE)		ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	thyl Ether (Ta	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol			ND	50	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			<u>REC (%)</u>	Control Limits		Qual
1,2-Dichloroethane-d4	123	73-157			Dibromofluoro	methane		111	82-142		
Toluene-d8	104	82-112			1.4-Bromoflu			102	75-105		
Method Blank		02 112	099-10-	-025-414	N/A	Aqueous	GC/MS L	11/14/07		07	71114L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DE	Qual
Benzene	ND	0.50	1	CCGCI	Methyl-t-Buty	Ether (MTRI	E)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	,	L)	ND	10	1	
1.2-Dichloroethane	ND	0.50	1		Diisopropyl E			ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	` '	i	ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me			ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol	Any Euror (1)		ND	50	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
		LIMILS							T IIIIIIS		
1,2-Dichloroethane-d4	120	73-157			Dibromofluoro	methane		110	82-142		

MMMM_

DF - Dilution Factor ,

Qual - Qualifiers

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:

Work Order No:

Preparation:

Method:

11/13/07

07-11-0904

EPA 5030B EPA 8015B (M)

Project ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-0871-1	Aqueous	GC 30	11/13/07		11/13/07	071113S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	95	98	68-122	4	0-18	

Mulhan_

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

11/13/07 07-11-0904 **EPA 5030B EPA 8260B**

Project ExxonMobil 7-0234

W-40-B13	Aqueous	GC/MS L	11/14/07	11/14/07	071114S01
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	108	107	86-122	1	0-8	
Carbon Tetrachloride	110	117	78-138	6	0-9	
Chlorobenzene	105	110	90-120	5	0-9	
1,2-Dibromoethane	116	128	70-130	10	0-30	
1,2-Dichlorobenzene	109	109	89-119	0	0-10	
1,1-Dichloroethene	98	99	52-142	1	0-23	
Ethylbenzene	111	116	70-130	5	0-30	
Toluene	115	117	85-127	2	0-12	
Trichloroethene	107	106	78-126	1	0-10	
Vinyl Chloride	98	105	56-140	7	0-21	
Methyl-t-Butyl Ether (MTBE)	116	112	64-136	4	0-28	
Tert-Butyl Alcohol (TBA)	136	167	27-183	21	0-60	
Diisopropyl Ether (DIPE)	112	108	78-126	3	0-16	
Ethyl-t-Butyl Ether (ETBE)	117	115	67-133	1	0-21	
Tert-Amyl-Methyl Ether (TAME)	122	121	63-141	0	0-21	
Ethanol	13	158	11-167	169	0-64	4

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

07-11-0904 EPA 5030B EPA 8015B (M)

N/A

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number
099-12-436-1,124	Aqueous	GC 30	11/13/07	11/13/07	071113B02

 Parameter
 LCS %REC
 LCSD %REC
 %REC CL
 RPD
 RPD CL
 Qualifiers

 TPH as Gasoline
 96
 98
 78-120
 1
 0-10

Allena_

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

07-11-0904 EPA 5030B EPA 8260B

N/A

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Bate Number	ch
099-10-025-414	Aqueous	GC/MS L	11/14/07	11/14	4/07	071114L01	
Parameter	LCS %F	EC LCSD	<u>%REC %</u>	REC CL	RPD	RPD CL	Qualifiers
Benzene	101	102		87-117	1	0-7	
Carbon Tetrachloride	115	119		78-132	3	0-8	
Chlorobenzene	106	106		88-118	0	0-8	
1,2-Dibromoethane	114	120		80-120	5	0-20	
1,2-Dichlorobenzene	108	110		88-118	2	0-8	
1,1-Dichloroethene	102	105		71-131	3	0-14	
Ethylbenzene	110	109		80-120	0	0-20	
Toluene	109	108		85-127	1	0-7	
Trichloroethene	106	105		85-121	1	0-11	
Vinyl Chloride	90	96		64-136	7	0-10	
Methyl-t-Butyl Ether (MTBE)	110	123		67-133	11	0-16	
Tert-Butyl Alcohol (TBA)	123	133		34-154	7	0-19	
Diisopropyl Ether (DIPE)	98	103		80-122	5	0-8	
Ethyl-t-Butyl Ether (ETBE)	112	114		73-127	2	0-11	
Tert-Amyl-Methyl Ether (TAME)	119	127		69-135	7	0-12	
Ethanol	91	97		34-124	6	0-44	

RPD - Relative Percent Difference .

7440 Lincoln

Glossary of Terms and Qualifiers

Work Order Number: 07-11-0904

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

	CH	łΑ	IN	OF	CUS'	TODY		CC
--	----	----	----	----	------	------	--	----

CORD

DATE:

PAGE:	1 OF	1
I NOL.	1	2000

LABORA	TORY CLIENT:			-	-	-	CLIE	NTP	OJEC	NAME	7 NUM	BER:	-	_	-	-		_	TP	O. NO.	-		_		
		upply - Global Rem	ediation																1	= 12			i.		
ADDRES	S:								3X /		<u> 234</u>														
	vironmental Resolu								CONTA										Q	UOTE	NO.:				
	orth McDowell Blvd								Sim			-	_	/											
	ıma, California 949			I E MAD			SAM	PLER(S): (SI	PNATU	7/	7	1	/					1,2154	Contract to the	E ONL	\$1,000 Person	190		1202
TEL: (707)		FAX: (707) 789-0414		E-MAIL norcallab	s@eri-u	s.com		11	Wa	he !	X	W	ull	·					L	ЦL	Ц	0	21	وا	4
62	OUND TIME AME DAY 24 HR	☐ 40UD ☐ 70U		4)(0	lao Da	V0							F	REQI	UES	TED	AN	ALY	SIS						
SPECIAL	REQUIREMENTS (ADDITIONAL	48HR 72 HF	5 D	AIS L	10 DA	173	<u> </u>	_		_		_	_		-			_	-	_	_				
	·								્			8				1	1		1	1					
	DF report / Global ID:	106019757161									_	326			- 1		1		1	1		1			
	Silica Gel Cleanup fo	or all TPHd analyses					1		m 1		8260B	by 8260B		9	- 1	- 1		1		1	1				
	TBA reporting limit at							_	8015B		82		8	6010B	- 1		- 1			1	1				
		E, TAME, DIPE, TBA						158	8	8	ğ	<u>@</u>	326	2		- 1	- 1				1	i			
	Scavengers: 1,2-D						by 8015B	8	3	by8260B	tes	Ž	5	필	- 1	- 1				1		1			1 .
	Scavengers. 1,2-Di	All the same of th	1 244	PLING		_	<u>ā</u>	TPHg by 8015B	Methanol by	ğ	Oxygenates	Scavengers	Ethanol by 8260B	Total Lead by	- 1	- 1		1				1			
USE	SAMPLE ID	LOCATION/ DESCRIPTION			Matrix.	*Conp	ТРНА	£	\$	втех	8	Lead	草	豆		- [-			1	1	1			
ONLY		DESCRIPTION	DATE	TIME	4	-	-	E	ž	Ē	ô	ت	ŭ	F		┸					1_		2		
	W-38-B18	B18	11-12:07	13:40	w	610		X		X	X	х													
2	w-40-Bi3	813	11.12.07	14:00	W	642		X		X	X	X													
																			T						
		,															\top	T	T	T	Т				
		W. S.						2							\exists	T	\top	T	T	T	T				
							П							T	7	十	1	\top	\top	T	T				
															\neg	1	\top	1	T	T					
				Ø.												\top		T							
		/										\neg			T	\top	\top	T	T	T				\exists	
Relinqui	shed by: (Signatuse)	4.6	***		Receiv	ed by (S	grav	re)	-		-							1 -	ite:			Time			コ
Relinqui	shed by: (Signature)	we .			Receive	ed by (S	idhatu	ire)		_	-		-		_				177 ate:	.07		Time	135		_
	l/d	4 (to G15	5)		7	15	/ ~	Ź		0	7	~			(1	7	2	1		2.6	>)	1). _)4	10	
Relinqui	shed by: (Signature)		9.0		Receive	ed by: (S	ignatu	re)				-//						Ďź	ite:	_	-/-	Time	-		\neg
_									_	_	-		_	_				_		_		_			

WORK ORDER #: 07 - 7 7 - 9 9 9

Cooler ___/_ of __/__

SAMPLE RECEIPT FORM

CLIENT: ERI	DATE: 1/-13-07
TEMPERATURE SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. "C Temperature blank.	LABORATORY (Other than Calscience Courier): 3.
CUSTODY SEAL INTACT:	
	Intact) : Not Present:
SAMPLE CONDITION: Chain-Of-Custody document(s) received with samples	
COMMENTS:	

alscience nvironmental aboratories, Inc.

November 15, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject:

Calscience Work Order No.: 07-11-0994

Client Reference:

ExxonMobil 7-0234

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/14/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Soin

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830 FAX: (714) 894-7501

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/14/07 07-11-0994 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Page 1 of 1

Project. Exxonivionii 7-0234								age i oi i
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
W-15-B12		07-11-0994-1	11/13/07	Aqueous	GC 4	11/14/07	11/14/07	071113B02
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	8400	250	5		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	122	38-134						
W-15-B14		07-11-0994-2	11/13/07	Aqueous	GC 4	11/14/07	11/14/07	071113B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	2500	50	1-		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	131	38-134						
W-37-B17		07-11-0994-3	11/13/07	Aqueous	GC 4	11/14/07	11/14/07	071113B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	630	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	115	38-134						
Method Blank		099-12-436-1,128	N/A	Aqueous	GC 4	11/13/07	11/14/07	071113B02
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	85	38-134						

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Environmental Resolutions, Inc.

Date Received:

Work Order No:

Petaluma, CA 94954-2312

Preparation:

Method:

Units:

Date Received:

11/14/07

07-11-0994

Preparation:

EPA 5030B

Units:

ug/L

Project: ExxonMobil 7-0234 Page 1 of 2

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Ba	atch ID
W-15-B12			07-11-0	0994-1	11/13/07	Aqueous	GC/MS L	11/15/07	11/15/07	07111	5L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	RL	DF Qu	ual
Benzene	67	5.0	10		Methyl-t-Butyl	Ether (MTBI	E)	78	5.0	10	
1,2-Dibromoethane	ND	5.0	10		Tert-Butyl Alc			ND	100	10	
1,2-Dichloroethane	ND	5.0	10		Diisopropyl E			ND	5.0	10	
Ethylbenzene	140	5.0	10		Ethyl-t-Butyl E			ND	5.0	10	
Toluene	ND	5.0	10		Tert-Amyl-Me	thyl Ether (Ta	AME)	ND	5.0	10	
Xylenes (total)	150	5.0	10		Ethanol			ND	500	10	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits	<u>Qua</u>	<u>ll</u>
1,2-Dichloroethane-d4	120	73-157			Dibromofluoro	omethane		104	82-142		
Toluene-d8	106	82-112			1,4-Bromofluo	orobenzene		105	75-105		
W-15-B14			07-11-0	0994-2	11/13/07	Aqueous	GC/MS L	11/14/07	11/14/07	07111	4L01
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF Qu	<u>ual</u>
Benzene	1.7	1.0	2		Methyl-t-Buty	Ether (MTB	E)	16	1.0	2	
1,2-Dibromoethane	ND	1.0	2		Tert-Butyl Alc	cohol (TBA)	,	ND	20	2	
1,2-Dichloroethane	ND	1.0	2		Diisopropyl E	ther (DIPE)		ND	1.0	2	
Ethylbenzene	26	1.0	2		Ethyl-t-Butyl I	Ether (ETBE))	ND	1.0	2	
Toluene	3.0	1.0	2		Tert-Amyl-Me	thyl Ether (T.	AME)	ND	1.0	2	
Xylenes (total)	13	1.0	2		Ethanol	•		ND	100	2	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits	Qua	1
1,2-Dichloroethane-d4	116	73-157			Dibromofluoro	omethane		108	82-142		
Toluene-d8	111	82-112			1,4-Bromoflu			103	75-105		
W-37-B17		OL TIL	07-11-	0994-3	11/13/07	Aqueous	GC/MS L			07111	4L01
Parameter	Popult	DI	DF	Qual	Parameter			Result	RL	DF Q	ual
<u>Parameter</u>	Result	RL		Qual		I Estan (NATE	Ε\	7			aai
Benzene	1.8	0.50	1		Methyl-t-Buty		∟)	2200		100	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc			58 ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E Ethyl-t-Butyl (ND	0.50 0.50	1	
Ethylbenzene	4.1 ND	0.50	1		Tert-Amyl-Me	, ,		ND ND	0.50	1	
Toluene		0.50	1			emyr cmer (1.	AIVIE)	ND	50	2	
Xylenes (total)	1.4	0.50	1	Ougl	Ethanol			REC (%)	Control	Qua	al .
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			VEC (30)	Limits	Qua	31
1,2-Dichloroethane-d4	121	73-157			Dibromofluor	omethane		107	82-142		
Toluene-d8	106	82-112			1,4-Bromoflu			102	75-105		
i oluene-do	100	02-112			1,4-D101110110	OI ODGI IZGI IG		102	70-100		

Ahn

, DF - Dilution Factor ,

Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 11/14/07 07-11-0994 EPA 5030B EPA 8260B ug/L

Project: ExxonMobil 7-0234

Page 2 of 2

Client Sample Number				Sample lumber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	Q	C Batch ID
Method Blank			099-10-	025-414	N/A	Aqueous	GC/MS L	11/14/07	11/14/07	07	71114L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	DE	<u>Qual</u>
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTBI	Ξ)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	her (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	thyl Ether (Ta	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol			ND	50	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
-	A17	Limits						•	Limits		
1,2-Dichloroethane-d4	120	73-157			Dibromofluoro	methane		110	82-142		
Toluene-d8	103	82-112			1,4-Bromofluo	robenzene		94	75-105		
Method Blank			099-10-	025-415	N/A	Aqueous	GC/MS L	11/15/07	11/14/07	0	71115L01
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTBI	E)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	,	,	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	her (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	thyl Ether (Ta	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol			ND	50	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
1,2-Dichloroethane-d4	120	73-157			Dibromofluoro	methane		110	82-142		
Toluene-d8	103	82-112			1,4-Bromofluo	robenzene		94	75-105		

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/14/07 07-11-0994 EPA 5030B EPA 8015B (M)

Project ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-0927-16	Aqueous	GC 4	11/13/07		11/14/07	071113802
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	106	110	68-122	4	0-18	

MMM_

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/14/07 07-11-0994 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethanol

Ethyl-t-Butyl Ether (ETBE)

Tert-Amyl-Methyl Ether (TAME)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-0904-2	Aqueous	GC/MS L	11/14/07		11/14/07	071114S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	108	107	86-122	1	0-8	
Carbon Tetrachloride	110	117	78-138	6	0-9	
Chlorobenzene	105	110	90-120	5	0-9	
1,2-Dibromoethane	116	128	70-130	10	0-30	
1,2-Dichlorobenzene	109	109	89-119	0	0-10	
1,1-Dichloroethene	98	99	52-142	1	0-23	
Ethylbenzene	111	116	70-130	5	0-30	
Toluene	115	117	85-127	2	0-12	
Trichloroethene	107	106	78-126	1	0-10	
Vinyl Chloride	98	105	56-140	7	0-21	

112

167

108

115

121

158

64-136

27-183

78-126

67-133

63-141

11-167

4

21

3

1

0

169

0-28

0-60

0-16

0-21

0-21 0-64

4

116

136

112

117

122

13

Muma_

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

11/14/07

07-11-0994 EPA 5030B

EPA 8260B

0-10

0-21

0-28

0-60

0-16

0-21

0-21

0-64

3

3

Project ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
07-11-1124-4	Aqueous	GC/MS L	11/15/07		11/15/07	071115801	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	104	108	86-122	3	0-8		
Carbon Tetrachloride	111	115	78-138	3	0-9		
Chlorobenzene	105	106	90-120	1	0-9		
1,2-Dibromoethane	124	126	70-130	2	0-30		
1,2-Dichlorobenzene	108	110	89-119	2	0-10		
1,1-Dichloroethene	96	99	52-142	4	0-23		
Ethylbenzene	111	111	70-130	0	0-30		
Toluene	110	115	85-127	4	0-12		

110

103

139

155

117

134

135

112

78-126

56-140

64-136

27-183

78-126

67-133

63-141

11-167

7

10

2

3

1

17

105

99

130

140

115

129

134

94

RPD - Relative Percent Difference ,

Trichloroethene

Vinyl Chloride

Ethanol

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

Tert-Amyl-Methyl Ether (TAME)

nel

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

07-11-0994 EPA 5030B EPA 8015B (M)

N/A

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepare		ate yzed	LCS/LCSD Bato Number	ch
099-12-436-1,128	Aqueous	GC 4	11/13/07	7 11/1/	4/07	071113B02	
Parameter	LCS %	6REC LCSE	%REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	107	10	6	78-120	1	0-10	

MMM_

Date Received:

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

07-11-0994 EPA 5030B EPA 8260B

N/A

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bat Number	ch
099-10-025-414	Aqueous	GC/MS L	11/14/07	11/1	4/07	071114L01	
Parameter	LCS %	REC LCSD	%REC 9	6REC CL	RPD	RPD CL	Qualifiers
Benzene	101	102		87-117	1	0-7	
Carbon Tetrachloride	115	119		78-132	3	8-0	
Chlorobenzene	106	106		88-118	0	8-0	
1,2-Dibromoethane	114	120		80-120	5	0-20	
1,2-Dichlorobenzene	108	110		88-118	2	8-0	
1,1-Dichloroethene	102	105		71-131	3	0-14	
Ethylbenzene	110	109		80-120	0	0-20	
Toluene	109	108		85-127	1	0-7	
Trichloroethene	106	105		85-121	1	0-11	
Vinyl Chloride	90	96		64-136	7	0-10	
Methyl-t-Butyl Ether (MTBE)	110	123		67-133	11	0-16	
Tert-Butyl Alcohol (TBA)	123	133		34-154	7	0-19	
Diisopropyl Ether (DIPE)	98	103		80-122	5	8-0	
Ethyl-t-Butyl Ether (ETBE)	112	114		73-127	2	0-11	
Tert-Amyl-Methyl Ether (TAME)	119	127		69-135	7	0-12	
Ethanol	91	97		34-124	6	0-44	

Allen Marie Rei

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-0994 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Bat Number	ch
099-10-025-415	Aqueous	GC/MS L	11/15/07	11/1:	5/07	071115L01	
<u>Parameter</u>	LCS %	REC LCSD	%REC S	%REC CL	RPD	RPD CL	Qualifiers
Benzene	109	107		87-117	2	0-7	
Carbon Tetrachloride	120	116		78-132	3	0-8	
Chlorobenzene	109	106		88-118	2	0-8	
1,2-Dibromoethane	118	111		80-120	6	0-20	
1,2-Dichlorobenzene	114	108		88-118	6	0-8	
1,1-Dichloroethene	108	105		71-131	3	0-14	
Ethylbenzene	113	111		80-120	1	0-20	
Toluene	115	114		85-127	1	0-7	
Trichloroethene	110	107		85-121	3	0-11	
Vinyl Chloride	99	95		64-136	4	0-10	
Methyl-t-Butyl Ether (MTBE)	127	110		67-133	15	0-16	
Tert-Butyl Alcohol (TBA)	138	117		34-154	16	0-19	
Diisopropyl Ether (DIPE)	114	105		80-122	8	8-0	
Ethyl-t-Butyl Ether (ETBE)	125	111		73-127	11	0-11	
Tert-Amyl-Methyl Ether (TAME)	128	115		69-135	10	0-12	
Ethanol	84	102		34-124	20	0-44	

MM _____

Glossary of Terms and Qualifiers

Work Order Number: 07-11-0994

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Ī	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Calscient Environmental Laboratories, Inc.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY R ORD

DATE:

PAGE:	4	OF	4
PAGE:		UF	

Exxor		Supply - Global Reme	diation						OJECT			BER:								P.O.	NO.:					
601 N	s: ivironmental Resol orth McDowell Blvo ima, California 949	1.					PRO.	JECT C	Sim	ст: е/Е І	RI.		_	- 10-41							USE.	O.:	i ne No	S131	* [40]	TANK
TEL: (707)	766-2000	FAX: (707) 789-0414		E-MAIL norcallab	s@eri-u	s.com	1	Who.	that.	1	11/4	No									\prod	H	01	118		4
	ROUND TIME				1								R	EQI	JES.	TED	AN	IAL'	YSI	S						٦
	AME DAY 24 HR REQUIREMENTS (ADDITIONAL		5 D.	AYS _	10 DA	YS	Н	-	_	-			-		-	-	-		_	_	-	_			_	ᅴ
Send E	DF report / Global ID:	T06019757161										809Z			- 1	- 1	- 1	İ	- 1	1				1		-
	INSTRUCTIONS Silica Gel Cleanup f	or all TPHd analyses.	-,								80B	by 8		9										-		- 1
Set	TBA reporting limit at	t or below 12 ug/L.					اي	2	8015	<u>_</u>	oy 82	gers	809Z	601	-		1		- 1							- 1
	genates: MTBE, ETB I Scavengers: 1,2-D	BE, TAME, DIPE, TBA ICA, FDB		(4)			8015B	8015B	Methanol by 8015B	BTEX by8260B	Oxygenates by 8260B	Lead Scavengers by 8260B	Ethanol by 8260B	Total Lead by 6010B	-							-	- 1	- 1		- [
LAB	SAMPLE ID	LOCATION/	SAME	PLING	Marris	* C	тРНd by	TPHg by	than	EX by	/gen	og pu	anol	무			- 1		İ							
ONLY	CAMP EL ID	DESCRIPTION	DATE	TIME	18/4		E		3	<u>F</u>	-	i i	훕	٤	_	_	_	_		_	_				_	_
	W-15-B12	BIZ	11-13-07	8:30	w	6 VOA		X		X	X	Х														
2	W-15-B14	814	11.13.07	10:20	w	GUOM		х		X	×	X														
3	W-37-B17	817	11-13-07	13:45	W	50A		×		X	×	X														
																T										
	4														\neg	\neg	\neg	\neg								٦
																1	\neg				\neg					\neg
	1	/		7.5											7		1			\neg						٦
Relinqui	thed by: Significate)	W			Receive	ed by (S	igratu d	7								_			Date:	15/) 27		Time:	14		
Relinqui	shed by: (Signature)	1 4 (45)	\		Receive	ed by: (S	ignetu	re)					1	1/0	200	4			Date,				Time:	730	2	
Relinqui	shed by: (Signature)	, , , , , , , , , , , , , , , , , , ,	•		Receive	ed by: (S	ignatu	гө)				1				_			Date				Time:			٦

WORK ORDER #: 07	_	1		_	0	9	9	4
------------------	---	---	--	---	---	---	---	---

Cooler ____ of ____

SAMPLE RECEIPT FORM

CLIENT: ERT	DATE: 11/14/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): 3. & °C Temperature blank. C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
	ntact) : Not Present:
SAMPLE CONDITION:	V
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

November 16, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Calscience Work Order No.: 07-11-1130 Subject:

> ExxonMobil 7-0234 Client Reference:

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/15/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Cecile deGuia

Project Manager

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/15/07 07-11-1130 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Page 1 of 1

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
W-38-B11		07-11-1130-1	11/14/07	Aqueous	GC 30	11/15/07	11/15/07	071115B03
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	82	38-134						
Method Blank		099-12-436-1,134	N/A	Aqueous	GC 30	11/15/07	11/15/07	071115B03
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	96	38-134						

Environmental Resolutions, Inc.

Date Received:

Work Order No:

Petaluma, CA 94954-2312

Preparation:

Method:

Units:

Date Received:

11/15/07

07-11-1130

Preparation:

EPA 5030B

Units:

ug/L

Project: ExxonMobil 7-0234

Page	1	of
------	---	----

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	ed C	C Batch ID
W-38-B11			07-11-1	1130-1	11/14/07	Aqueous	GC/MS L	11/16/07	7 11/16/0	7 0	71116L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTBI	≣)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	her (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol			ND	50	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		Limits							<u>Limits</u>		
1,2-Dichloroethane-d4	129	73-157			Dibromofluoro			109	82-142		
Toluene-d8	105	82-112			1,4-Bromofluc	robenzene		100	75-105		
Method Blank				-025-417			000101	44/40/05			74440104
Wethod Blank			099-10	-025-417	N/A	Aqueous	GC/MS L	11/16/07	7 11/16/0	7 0	71116L01
Parameter	Result	RL		Qual	N/A Parameter	Aqueous	GC/MS L	Result	7 11/16/0 RL	7 0 DF	Qual
	Result ND	<u>RL</u> 0.50	099-10 DF 1								
<u>Parameter</u>	-	75			Parameter	Ether (MTBI		Result	RL		
Parameter Benzene	ND	0.50			Parameter Methyl-t-Butyl	Ether (MTBI		Result ND	<u>RL</u> 0.50		
Parameter Benzene 1,2-Dibromoethane	ND ND	0.50 0.50			Parameter Methyl-t-Butyl Tert-Butyl Alc	Ether (MTBI ohol (TBA) her (DIPE)	≣)	Result ND ND	<u>RL</u> 0.50 10		
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane	ND ND ND	0.50 0.50 0.50			Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et	Ether (MTBI ohol (TBA) her (DIPE) Ether (ETBE)	≣)	Result ND ND ND	RL 0.50 10 0.50		
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene	ND ND ND ND	0.50 0.50 0.50 0.50			Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E	Ether (MTBI ohol (TBA) her (DIPE) Ether (ETBE)	≣)	Result ND ND ND ND	RL 0.50 10 0.50 0.50		
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene	ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50 Control			Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me	Ether (MTBI ohol (TBA) her (DIPE) Ether (ETBE)	≣)	Result ND ND ND ND ND	RL 0.50 10 0.50 0.50 0.50		
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total)	ND ND ND ND ND	0.50 0.50 0.50 0.50 0.50 0.50		Qual	Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol	Ether (MTBI ohol (TBA) her (DIPE) Ether (ETBE) thyl Ether (T	≣)	Result ND ND ND ND ND ND	RL 0.50 10 0.50 0.50 0.50 50 Control		Qual

The

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

07-11-1130 EPA 5030B

11/15/07

Method:

EPA 8015B (M)

Project ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
07-11-1093-2	Aqueous	GC 30	11/15/07		11/15/07	071115802	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
TPH as Gasoline	97	97	68-122	0	0-18		

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 11/15/07 07-11-1130 EPA 5030B EPA 8260B

Project ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
W-38-B11	Aqueous	GC/MS L	11/16/07	11/16/07	071116S01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	95	95	86-122	1	0-8	
Carbon Tetrachloride	123	120	78-138	3	0-9	
Chlorobenzene	99	98	90-120	1	0-9	
1,2-Dibromoethane	102	115	70-130	12	0-30	
1,2-Dichlorobenzene	97	101	89-119	4	0-10	
1,1-Dichloroethene	102	97	52-142	5	0-23	
Ethylbenzene	108	103	70-130	5	0-30	
Toluene	104	103	85-127	2	0-12	
Trichloroethene	101	100	78-126	1	0-10	
Vinyl Chloride	90	92	56-140	2	0-21	
Methyl-t-Butyl Ether (MTBE)	97	116	64-136	18	0-28	
Tert-Butyl Alcohol (TBA)	94	124	27-183	27	0-60	
Diisopropyl Ether (DIPE)	86	94	78-126	10	0-16	
Ethyl-t-Butyl Ether (ETBE)	94	109	67-133	15	0-21	
Tert-Amyl-Methyl Ether (TAME)	98	110	63-141	12	0-21	
Ethanol	66	64	11-167	4	0-64	

RPD - Relative Percent Difference ,

CL - Control Limit

inel o

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-1130 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrume	Da nt Prep	211	Da Analy		LCS/LCSD Batcl Number	1
099-12-436-1,134	Aqueous	GC 30	11/1	5/07	11/15	/07	071115B03	
Parameter	LCS %	6REC LO	LCSD %REC		REC CL F		RPD CL	Qualifiers
TPH as Gasoline	98		97	78	-120	0	0-10	

RPD - Relative Percent Difference .

7440 Lincoln

CL - Control Limit

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-1130 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0234

Quality Control Sample ID	Matrix	Instrument	Date Prepare		ate lyzed	LCS/LCSD Bat Number	tch
099-10-025-417	Aqueous	GC/MS L	11/16/0)7 11/1	6/07	071116L01	
<u>Parameter</u>	LCS %	REC LCSD	%REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	92	96		87-117	4	0-7	
Carbon Tetrachloride	117	117	7	78-132	0	0-8	
Chlorobenzene	101	10°	1	88-118	1	0-8	
1,2-Dibromoethane	106	116	3	80-120	9	0-20	
1,2-Dichlorobenzene	104	104	1	88-118	0	0-8	
1,1-Dichloroethene	99	99	ı	71-131	0	0-14	
Ethylbenzene	105	10 ⁻	7	80-120	2	0-20	
Toluene	102	103	3	85-127	1	0-7	
Trichloroethene	99	100)	85-121	1	0-11	
Vinyl Chloride	91	93		64-136	2	0-10	
Methyl-t-Butyl Ether (MTBE)	101	10	7	67-133	6	0-16	
Tert-Butyl Alcohol (TBA)	106	11	7	34-154	10	0-19	
Diisopropyl Ether (DIPE)	91	92		80-122	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	96	100	3	73-127	10	0-11	
Tert-Amyl-Methyl Ether (TAME)	103	11	1	69-135	7	0-12	
Ethanol	75	80	1	34-124	6	0-44	

Glossary of Terms and Qualifiers

Work Order Number: 07-11-1130

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

3	H	1/	A	ı	1	0	F	C	U	S	Ť	O	D	Y	

ORD

DATE:

PAGE:	1	OF	1
PAGE:	1	Ur	I.

LABORATORY CLIENT: EXXON Mobil Refining &	Supply - Global Reme	diation					NT PR 1760				BER;								P.O.	NO.:					
ADDRESS: c/o Environmental Reso	lutione Inc									234		0.00		-	-	_			00	OTEN	10				_
601 North McDowell Blv						PROJECT CONTACT: Paula Sime/ERI								QUOTE NO.:											
Petaluma, California 94						SAMPLERIS (JISIGNATARE) CABUSE ONLY									11111111										
TEL:	FAX:		E-MAIL			-								Care Parks	٦٠.		2 11	, ir	-32/5/						
(707) 766-2000	(707) 789-0414		norcallab	s@eri-u	s.com		MUL	hus.		UNI	1								1	11		Щ	Щ	3	21
TURNAROUND TIME SAME DAY (24 HR	☐ 48HR ☐ 72 HR	5 D₄	AYS []10 DA	YS							F	EQ	UES	TEC	1A (VAL	YSI	S						
SPECIAL REQUIREMENTS (ADDITIONA	L COSTS MAY APPLY)										8				\neg										
Send EDF report / Global ID: SPECIAL INSTRUCTIONS	T06019757161									_	8260B			-		- 1	1							- 1	
Use Silica Gel Cleanup	for all TPHd analyses						8	m		8260B	à l		g	- 1											
Set TBA reporting limit a						_	_	8015B	8	82		8	by 6010B	1	- 1	- 1						- 1			
Oxygenates: MTBE, ET					1	15	15	8	8	y J	ğ	826	5	- 1	- 1	- 1							- 1	- 1	
Lead Scavengers: 1,2-I					1	by 8015B	8	=	by8260B	8	N N	à	Lead		- 1	- 1							- 1	- 1	
LAB	LOCATION/	SAME	LING		L.	호	ğ	ᆵ	ğ	Jen 3	80	2	1 5	1	- 1	- 1	-				20	1			
USE SAMPLE ID	DESCRIPTION	DATE	TIME	Matry	*Cons	TPHd	TPHg by 8015B	Methanol by	ВТЕХ	Oxygenates by	Lead Scavengers	Ethanol by 8260B	Total												
W-38-BII	BII	11-14-07	9:15	W	6 VOAS		х		х	х	Х			\Box											
															T										
													\neg	\exists	\dashv	7									
											7		\neg	\neg	\dashv	1									コ
	 												_	$\neg \dagger$	寸	1	\neg					-	\dashv	\neg	\neg
									\neg				\neg	\neg	7	7						7	\dashv	\dashv	
						\neg									\dashv		\exists		\neg			_	\dashv		\neg
			-					\neg			7	\neg	寸	\neg	7	7	\dashv						\dashv		\neg
													\neg	\neg	寸		\neg						7		
Relinquisher by (Silipaulre)	y	1		Receive	ed by: (S	ignatu		1	,									Date	-			Time			\dashv
Relinquished by: (Signature)	V	_		Bossin	ed by: (S	\mathcal{J}	03	1		-	_	-		7	1		_		(-1-	1-0	7		5 32	>	_
Venidalistist pr. (Salitable)	P-10 6	50		Receive	su by: (S	Jeru	114)				l.	R	Un	Za)	1			Date //	110	10	ス	Time	91	5	
Relinquished by: (Signature)				Receive	ed by: (S	ignatu	re)					1	The second second				\neg	Date				Time			٦
							-	-		-	-	-	-	-	-	11110		_	-	-		-		_	_

WORK ORDER #: 07 -		<u> </u>			3	0
--------------------	--	----------	--	--	---	---

Cooler _____ of ____

SAMPLE RECEIPT FORM

CLIENT: ERT	DATE: 11/15/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): 4. \
CUSTODY SEAL INTACT: Sample(s): Cooler: No (Not	Intact) : Not Present:
	Initial:
SAMPLE CONDITION: Chain-Of-Custody document(s) received with samples	Y
COMMENTS:	

November 19, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 07-11-1267

ExxonMobil 7-0234 / 247603X Client Reference:

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/16/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & e Saia

Calscience Environmental Laboratories, Inc. Cecile deGuia **Project Manager**

Environmental Resolutions, Inc.

601 North McDowell Blvd.

Petaluma, CA 94954-2312

Analytical Report

Date Received: Work Order No: Preparation: Method: 11/16/07 07-11-1267 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Page 1 of 1

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
W-40-B16		07-11-1267-1	11/15/07	Aqueous	GC 1	11/16/07	11/16/07	071116B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	105	38-134						
W-38-B15		07-11-1267-2	11/15/07	Aqueous	GC 1	11/16/07	11/16/07	071116B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	18000	500	10		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	109	38-134						
Method Blank		099-12-436-1,138	N/A	Aqueous	GC 1	11/16/07	11/16/07	071116B01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	103	38-134						

All REL-Repo

Analytical Report

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: 11/16/07 07-11-1267 EPA 5030B

Method: Units: EPA 8260B ug/L

Project: ExxonMobil 7-0234 / 247603X

Page 1 of 1

DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Qual Qual Qual 1267-2 Qual	Parameter Methyl-t-Butyl Alc Dilsopropyl E Ethyl-t-Butyl I Tert-Amyl-Me Ethanol Surrogates: Dibromofluor 1,4-Bromofluor 1,4-Bromofluor Tert-Butyl Alc Dilsopropyl E	cohol (TBA) ther (DIPE) Ether (ETBE) ethyl Ether (TA comethane corobenzene Aqueous I Ether (MTBB cohol (TBA)	AME) GC/MS L	Result 7.7 ND ND ND ND 85 REC (%) 117 102 11/16/00 Result 12000 1900 ND	RL 0.50 10 0.50 0.50 0.50 50 Control Limits 82-142 75-105	DF 1 1 1 1 1	Qual Qual Qual 71116L01 Qual
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Qual 1267-2	Methyl-t-Butyl Alc Diisopropyl E Ethyl-t-Butyl II Tert-Amyl-Me Ethanol Surrogates: Dibromofluor 1,4-Bromoflu 11/15/07 Parameter Methyl-t-Butyl Alc Diisopropyl E	cohol (TBA) ther (DIPE) Ether (ETBE) ethyl Ether (TA comethane corobenzene Aqueous I Ether (MTBB cohol (TBA)	AME) GC/MS L	7.7 ND ND ND 85 REC (%) 117 102 11/16/01 Result 12000 1900	0.50 10 0.50 0.50 0.50 50 Control Limits 82-142 75-105 7 11/16/ RL 250 500	1 1 1 1 1 1 1 1 07 0	Qual 71116L01 Qual
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1267-2	Tert-Butyl Alc Diisopropyl E Ethyl-t-Butyl I Tert-Amyl-Me Ethanol Surrogates: Dibromofluor 1,4-Bromofluor 11/15/07 Parameter Methyl-t-Butyl Alc Diisopropyl E	cohol (TBA) ther (DIPE) Ether (ETBE) ethyl Ether (TA comethane corobenzene Aqueous I Ether (MTBB cohol (TBA)	AME) GC/MS L	ND ND ND 85 REC (%) 117 102 11/16/03 Result 12000 1900	10 0.50 0.50 0.50 50 Control Limits 82-142 75-105 7 11/16/ RL 250 500	07 0 DF 500	71116L01
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1267-2	Diisopropyl E Ethyl-t-Butyl I Tert-Amyl-Me Ethanol Surrogates: Dibromofluor 1,4-Bromofluor 11/15/07 Parameter Methyl-t-Butyl Alc Diisopropyl E	ther (DIPE) Ether (ETBE) Ether (ETBE) Ethyl Ether (TA Demotracy Ether (ATBE) I Ether (MTBE Ethol (TBA)	GC/MS L	ND ND 85 REC (%) 117 102 11/16/01 Result 12000 1900	0,50 0,50 0,50 50 Control Limits 82-142 75-105 7 11/16/ RL 250 500	07 0 DF 500 50	71116L01 Qual
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1267-2	Ethyl-t-Butyl I Tert-Amyl-Me Ethanol Surrogates: Dibromofluore 1,4-Bromofluore 11/15/07 Parameter Methyl-t-Butyl Alc Diisopropyl E	ether (ETBE) ethyl Ether (TA comethane corobenzene Aqueous I Ether (MTBB cohol (TBA)	GC/MS L	ND ND 85 REC (%) 117 102 11/16/07 Result 12000 1900	0.50 0.50 50 Control Limits 82-142 75-105 7 11/16/ RL 250 500	07 0 DF 500 50	71116L01
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1267-2	Tert-Amyl-Me Ethanol Surrogates: Dibromofluore 1,4-Bromofluore 11/15/07 Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl E	omethane orobenzene Aqueous I Ether (MTBB ohol (TBA)	GC/MS L	ND 85 REC (%) 117 102 11/16/07 Result 12000 1900	0.50 50 Control Limits 82-142 75-105 7 11/16/ RL 250 500	07 0 DF 500 50	71116L01
0 1 1 0 1 5 5 5 0 5 5 0 5 0 1 1 1 1 1 1	1267-2	Ethanol Surrogates: Dibromofluor 1,4-Bromofluor 11/15/07 Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl E	Aqueous I Ether (MTBI cohol (TBA)	GC/MS L	85 REC (%) 117 102 11/16/07 Result 12000 1900	50 <u>Control</u> <u>Limits</u> 82-142 75-105 7 11/16/ <u>RL</u> 250 500	07 0 DF 500 50	71116L01
ol s i7 2 07-11- DF 500 50 50	1267-2	Surrogates: Dibromofluoro 1,4-Bromofluoro 11/15/07 Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl E	Aqueous I Ether (MTBB cohol (TBA)		REC (%) 117 102 11/16/07 Result 12000 1900	Control Limits 82-142 75-105 7 11/16/ RL 250 500	07 0 DF 500 50	71116L01
97-11- DF 500 50 50	1267-2	Dibromofluore 1,4-Bromofluore 11/15/07 Parameter Methyl-t-Buty Tert-Butyl Alc Diisopropyl E	Aqueous I Ether (MTBB cohol (TBA)		117 102 11/16/07 Result 12000 1900	Limits 82-142 75-105 7 11/16/ RL 250 500	DF 500 50	71116L01
07-11- DF 500 50		1,4-Bromofluc 11/15/07 Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl E	Aqueous I Ether (MTBB cohol (TBA)		102 11/16/03 Result 12000 1900	82-142 75-105 7 11/16/ RL 250 500	DF 500 50	Qual
2 07-11- DF 500 50 50		11/15/07 Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl E	Aqueous I Ether (MTBI cohol (TBA)		11/16/07 Result 12000 1900	7 11/16/ RL 250 500	DF 500 50	Qual
<u>DF</u> 500 50 50		Parameter Methyl-t-Butyl Tert-Butyl Alc Diisopropyl E	I Ether (MTBI		Result 12000 1900	<u>RL</u> 250 500	DF 500 50	Qual
500 50 50	Qual	Methyl-t-Buty Tert-Butyl Ald Diisopropyl E	ohol (TBA)	Ε)	12000 1900	250 500	500 50	-
500 50 50	Qual	Methyl-t-Buty Tert-Butyl Ald Diisopropyl E	ohol (TBA)	Ε)	12000 1900	250 500	500 50	
50 50		Tert-Butyl Ald Diisopropyl E	ohol (TBA)	=)	1900	500	50	
50		Diisopropyl E	, ,					
			mer (DIFE)					
ລບ		Ethyl t Dutyl I	Ether (ETBE)		ND	25	50	
500		Tert-Amyl-Me	, ,		ND	25	50	
500 50		Ethanol	any Euler (17	HIVIE)	ND	2500	50 50	
ol o	Qual	Surrogates:			REC (%)	Control	50	Qual
S.	Qual	Surrogates.			INEC (70)	Limits		Quai
		Dibromofluor	omethane		108			
	025 417			CC/MS I			07 0	71116L01
099-10	J-U25 -4 17	N/A	Aqueous	GC/N/3 L	11/10/0	11/10/	07 0	71110LU1
DF	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
1		Methyl-t-Buty	Ether (MTB	E)	ND	0.50	1	
1			•	,	ND	10	1	
			, ,		ND	0.50	1	
			, ,		ND	0.50	1	
					ND		1	
		Ethanol	J = (,	ND		1	
<u>ol</u>	Qual	Surrogates:			REC (%)	Control	•	Qual
		Dibromofluor	omethane		107			
	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	099-10-025-417 DF Qual 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,4-Bromoflut 099-10-025-417 N/A DF Qual Parameter	1,4-Bromofluorobenzene	1,4-Bromofluorobenzene	105	1,4-Bromofluorobenzene 105 75-105 1099-10-025-417 N/A Aqueous GC/MS L 11/16/07	105 75-105 1099-10-025-417 N/A Aqueous GC/MS L 11/16/07 11/16/07 0 0 0 0 0 0 0 0 0

RL - Reporting

DF - Dilution Factor ,

Qual - Qualifiers

Quality Control - Spike/Spike Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

TPH as Gasoline

Date Received:

07

Work Order No:

11/16/07 07-11-1267

Preparation: Method:

EPA 5030B

85

EPA 8015B (M)

0-18

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate alyzed	MS/MSD Batch Number
07-11-1265-1	Aqueous	GC 1	11/16/07	11/	16/07	071116S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers

84

68-122

Mulma

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

11/16/07 07-11-1267 **EPA 5030B** EPA 8260B

Project ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-11-1130-1	Aqueous	GC/MS L	11/16/07	11/16/07	071116S01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	95	95	86-122	1	0-8	
Carbon Tetrachloride	123	120	78-138	3	0-9	
Chlorobenzene	99	98	90-120	1	0-9	
1,2-Dibromoethane	102	115	70-130	12	0-30	
1,2-Dichlorobenzene	97	101	89-119	4	0-10	
1,1-Dichloroethene	102	97	52-142	5	0-23	
Ethylbenzene	108	103	70-130	5	0-30	
Toluene	104	103	85-127	2	0-12	
Trichloroethene	101	100	78-126	1	0-10	
Vinyl Chloride	90	92	56-140	2	0-21	
Methyl-t-Butyl Ether (MTBE)	97	116	64-136	18	0-28	
Tert-Butyl Alcohol (TBA)	94	124	27-183	27	0-60	
Diisopropyl Ether (DIPE)	86	94	78-126	10	0-16	
Ethyl-t-Butyl Ether (ETBE)	94	109	67-133	15	0-21	
Tert-Amyl-Methyl Ether (TAME)	98	110	63-141	12	0-21	
Ethanol	66	64	11-167	4	0-64	

RPD - Relative Percent Difference,

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 07-11-1267 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	LCS/LCSD Batch Number	1
099-12-436-1,138	Aqueous	GC 1	11/16/07	11/16/0	7	071116B01	
<u>Parameter</u>	LCS 9	%REC LCSD	%REC %	REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	86	85		78-120	2	0-10	

AMALANA_

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc.

Date Received: Work Order No:

N/A 07-11-1267

601 North McDowell Blvd. Petaluma, CA 94954-2312

Preparation:
Method:

EPA 5030B EPA 8260B

0-44

Project: ExxonMobil 7-0234 / 247603X

Quality Control Sample ID	Matrix	Instrument	Date Prepar	Synan cardina	ate lyzed	LCS/LCSD Bate Number	ch
099-10-025-417	Aqueous	GC/MS L	11/16/	07 11/1	6/07	071116L01	
Parameter	LCS %	REC LCSI	%REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	92	9	6	87-117	4	0-7	
Carbon Tetrachloride	117	1	17	78-132	0	0-8	
Chlorobenzene	101	10)1	88-118	1	0-8	
1,2-Dibromoethane	106	1	16	80-120	9	0-20	
1,2-Dichlorobenzene	104	10)4	88-118	0	0-8	
1,1-Dichloroethene	99	9	9	71-131	0	0-14	
Ethylbenzene	105	10)7	80-120	2	0-20	
Toluene	102	10)3	85-127	1	0-7	
Trichloroethene	99	10	00	85-121	1	0-11	
Vinyl Chloride	91	9	3	64-136	2	0-10	
Methyl-t-Butyl Ether (MTBE)	101	10)7	67-133	6	0-16	
Tert-Butyl Alcohol (TBA)	106	1	17	34-154	10	0-19	
Diisopropyl Ether (DIPE)	Diisopropyl Ether (DIPE) 91		2	80-122	1	0-8	
Ethyl-t-Butyl Ether (ETBE) 96		10	06	73-127	10	0-11	
Tert-Amyl-Methyl Ether (TAME)	103	1	11	69-135	7	0-12	

80

75

Ethanol

34-124

Glossary of Terms and Qualifiers

Work Order Number: 07-11-1267

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
1	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Calscience Environmental Laboratories, Inc.

SoCal Laboratory 7440 Lincoln Way Garden Grove, CA 92841-1427

(714) 895-5494

NorCal Service Center 5063 Commercial Circle, Suite H Concord, CA 94520-8577 (925) 689-9022

CHAIN	OF	CUS ₁	TODY	REC	ORD
-------	----	------------------	-------------	------------	-----

Date	11-15-07							
Page	of							

	DRY CLIENT:						CLIE	NT PF	ROJEC	T NAI	ME / N	UMBE	R:					P.O. I	:.01					i
EXXO	in Mobil Refining e Si	upply - Global R	emediati	an			2	476	03X	17	1023	, vi												ı
ADDRESS:									CONT		000				_		\dashv		_			ч	18.5	\neg
CITY	I 601 N McDo	STA.	TE		ZI	P					·= (牙足	7	1				TÎ.	Ti	آ ــــــــــــــــــــــــــــــــــــ	71	2		71
	aluma		CA	9	1495					KINA)		1			100	CODE			10.00	ECEIF			-	=4
TEL:	E-M		C11		110		SAIV	7	7.7	1	11)		15				¬ ()	100	O.O.	EGE			7.	
707-7	66-2000 no	rcallabs@eri-u	s-com				1h	wil	ul	1/1	Lin	7						TEM	P=				°(С
TURNARO		HR □72 HR	5 DAYS	☐ 10 E	AVC						F	REC	UE	ST	ED	A	NAL	YS	ES	j				- [
SPECIAL B	REQUIREMENTS (ADDITIONAL CO	STS MAY APPLY)	LI3 DATS		IATO		\vdash	_		- Т	\neg		_	Т	-	\neg						8	-	\dashv
	B REPORTING FORMS	COELT EDF	T06019	1757161				ا ۾	γ	γ		- 1									- 11	87608		
	NSTRUCTIONS:	A		THE PARTY OF THE P				\$	- 11									- 1	18.6			82		- 1
	A RL < 12 uglL							TPH (d) or (C7-C36) or (C7-C44)	- 11	P)		- 1	- 1				6	8	Cr(VI) [7196A or 7199 or 218.6]	VOCs (TO-14A) or (TO-15)			.]	
	YS= MTBE, ETBE, T	AME, TRA, DIP	Ę					(G)	- 11	8		@					73	37.4	199	티		3	7	- 1
			_					ၓၟ႞	- 11	[8		28	503		81 84		<u>چ</u>	8	0.7	흵	<u></u>	ğ		- 1
ما	ead scavengers = 1,2	DCA, EDB						5	- 11	BTEX / MTBE (8260B) or	VOCs (8260B)	Oxygenates (8260B)	Encore Prep (5035)	SVOCs (8270C)	Pesticides (8081A)	8	PNAs (8310) or (8270C)	T22 Metals (6010B/747X)	96A	4	TPH (9) [TO-3]+	Scavencers		- 1
					_	T	6	8		≥	(8)	euat	<u>e</u>	8	- ğ	PCBs (8082)	8	/leta	틸	Ĕ	<u>(6)</u>	5		
USE	SAMPLE ID	FIELD POINT NAME (FOR COELT EDF)	SAMF		MATRIX	NO. OF	TPH (g)	표	F	阊	ğ	\$	릴	Š	esti	8	\$	22 1	آخ	ğ	표	po		
ONL		(FOR COELT EDF)	DATE	TIME		CONT.			-	-	_			0)		-	_			_		7	-	\dashv
1 W	-40-B16	B16	11-15-07	7:40	W	6 VOA	Х			X		X										X		_
2 W	-38-B15	B15	11-15-07	9:05	W	GOA	X			X		X										χ		\Box
77.0%																					ſ			
									-	-+		_	\dashv		-							\dashv	十	ヿ
									\rightarrow	_		-	_	4	_			_		-	\rightarrow	\rightarrow	_	_
	3 300																							
1 1							\vdash	-		-	\dashv	-	\dashv	-	-		-		-18	\rightarrow	-	\rightarrow	-	\dashv
																					_	_		_
							\Box			\dashv			\dashv		\neg									\neg
							$\vdash \vdash$	\dashv		\dashv	_		-	-	_			_	_	\mathbf{H}	\rightarrow	\rightarrow	-	\dashv
					\	2																		
Relinguis	ged by: Signature)			Recei	ved by:	(Signati	ıre/Af	iliatio	n)	$\overline{}$	_	$\overline{\wedge}$	- (Date				Time): -	_	\neg
llauh	Chul Allaha			\	0			X	_	_	(<u>}</u>		_			11.	12	D		1	:: <u>0</u> 2	<u>></u>	
Relinquist	ped by: (Signature)	CCX		Recei	vod by:	(Signati	re/A	filiatio	n)				/								Time) :		
10	V 700	GSD			\rightarrow	11-6	11	14			A.		<u></u>	OL			11	-16	-0		_/_	bir	5	
Relinquisi	ned by: (Signature)			Recei	ved by:	(Signati	ıre/Af	miatio	n)								Date	e:			lime).		- 1

10/01/07 Revision

WORK ORDER #: 07 - 1 1 2 6 7

Cooler _ / _ of _ / _

SAMPLE RECEIPT FORM

CLIENT: ERI	DATE: 11/16/07							
TEMPERATURE - SAMPLES RECEIVED BY: CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): 2.4°C Temperature blank. °C IR thermometer. Ambient temperature.							
CUSTODY SEAL INTACT: Sample(s): Cooler: No (Not In	ntact) : Not Present:							
Chain-Of-Custody document(s) received with samples								
COMMENTS:								

ATTACHMENT F WASTE DISPOSAL DOCUMENTATION

NO. 118900

CLEANHARBORS BUTTONWILLOW, LLC WEIGHMASTER CERTIFICATE

THIS IS TO CERTIFY that the following described commodity was weighed, measured, or counted by a weighmaster witness whose signature is on this certificate, who is a recognized authority of accuracy, as prescribed in Chapter 7 (commencing with Section 12700) of Division 5 of the California Business and Professions Code, administered by the Division of Measurement Standards of the California Department of Food and Agiculture.

WEIGHMASTER CLEANHARBORS BUTTONWILLOW, LLC

	•					PROFII	LE NO.	()	4. Fg.	456		GROSS WT. B	Y: DE	EPUTY 11 770			
	V.					DISPO	SAL LOC	CATION	5)	Tid		TARE WT. BY:	C Di DE	EPUTY DATE			
						DRIVE!	R'S NAM ED	IE Ø	Para A	e C	115	WEIGHING LOCATION:	2500 W. LOKER BUTTONWILLO	N ROAD W, CA 93206			
41.	4.3					DRIVE SIGNA	R'S NAM TURE	F Bry	1 1/2			GENERATOR	2470	9 1/21			
	1	181	1 1 1 1 1 1 1	TH		TRACT	OR NO.	Y 54	(1)			TRANSPORTE	R ON	Time			
	ber	and and	3 %	4 4 4 4	. 1	TRACT		Į, k	17:	HS		MANIFEST NO	n. 11376	7.4			
□ END D	UMP 🗌	TRANSF	ER 🗆 VA	CUUM (] VAN												
ROLL	OFF	5	PLAT B	ED 🗆		TRAILER LIC, NO.						SERVICE ORDER NO. 1207652149					
						BIN NUMBERS:						BIN TRACKIN	a .				
VIS	рН	SUL	CYA	FL	FLASH	20%	19	With	4 10		DRUM NUM	BER:					
+							- 101	NA PRI			COMMENTS	: [18.335				
OTHE	R:									4	1	ĮS.	The second secon				
IG.	CR	PR	LAB 1	SOLID	B.W. W.B	LAND TRACK	B- SGAN	W.T. SCAN	MAN- SCAN	RE- SCAN							
	7								A - W 1 1 1 1 1 1 1 1 1		BIN DROP F	ULL					
3 -					11						MOVE BIN TO:		DATE	BY:			
														REVISED (9/			

CLEANHARBORS BUTTONWILLOW, LLC WEIGHMASTER CERTIFICATE

THIS IS TO CERTIFY that the following described commonly was weighted, measured, or counted by a weighmaster witness whose signature is on this certificate, who is a recognized authority of accuracy, as prescribed in Chanter 7 commencing with Section 12700) of Division 5 of the California Business and Professions Code, administered by the Division of Measurement Standards of the California Department of Food and Agiculture.

WEIGHMASTER CLEANHARBORS BUTTONWILLOW, LLC DATE DEPUTY GROSS WT. BY PROFILE NO DATE TARE WT. BY: DEPUTY DISPOSAL LOCATION WEIGHING- ~ 2500 W. LOKERN ROAD DRIVER'S NAME BUTTONWILLOW, CA 93206 LOCATION: PRINTED DRIVER'S NAME GENERATOR SIGNATURE TRANSPORTER TRACTOR NO. TRACTOR LIC. NO MANIFEST NO FIND DUMP TRANSFER WACUUM WAN SERVICE ORDER NO. TRAILER LIG. NO □ ROLL OFF - □ FLAT BED □ BIN TRACKING BIN NUMBERS DRUM NUMBER VIS pH CYA FL FLASH 20% SUL COMMENTS:n OTHER: LAND MAN-SOLID B.W. RE LAB 1 BULK W.B. TRACK SCAN SCAN SCAN SCAN BIN DROP FULL MOVE BINTO DATE

EPUBLIC SERVICES VASCO ROAD, LLC

4003 N. Vasco Road, Livermore, California 94551 • (925) 447-0491

A 623375

1, 47 1, 4 INDEED ATTENDED United allows

30 00010 01:11 to the sign 21,0

CUSTOMER

Small In It.

labs conteminados ni materiales profundos

CUSTOMER

RAY YULO - VASCO

eceptable wastes comilled

ATTACHMENT G SURVEY REPORT

