ExxonMobil Environmental Services Company

4096 Piedmont Avenue #194 Oakland, California 94611 510 547 8196 Telephone 510 547 8706 Facsimile Jennifer C. Sedlachek Project Manager

June 20, 2012

Ms. Barbara Jakub Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577 **RECEIVED**

9:45 am, Jul 12, 2012

Alameda County
Environmental Health

RE: Former Exxon RAS #70234/3450 35th Avenue, Oakland, California.

Dear Ms. Jakub:

Attached for your review and comment is a copy of the letter report entitled *Feasibility Test Report*, dated June 20, 2012, for the above-referenced site. The report was prepared by Cardno ERI of Petaluma, California, and details activities at the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Jennifer C. Sedlachek Project Manager

Attachment:

Cardno ERI's Feasibility Test Report, dated June 20, 2012

cc:

w/ attachment

Mr. Shay Wideman, The Valero Companies, Environmental Liability Management

w/o attachment

Ms. Janice A. Jacobson, Cardno ERI

Cardno ERI License A/C10-611383

601 N McDowell Boulevard Petaluma, CA 94954 USA

Phone 707 766 2000 Toll-free 800 382 9105 Fax 707 789 0414 www.cardno.com

www.cardnoeri.com

June 20, 2012 Cardno ERI 247603.R06

Ms. Jennifer C. Sedlachek ExxonMobil Environmental Services 4096 Piedmont Avenue #194 Oakland, California 94611

SUBJECT Feasibility Test Report

Former Exxon Service Station 70234 3450 25th Avenue, Oakland, California

Alameda Case RO#2515

Ms. Sedlachek:

At the request of ExxonMobil Environmental Services (EMES), on behalf of Exxon Mobil Corporation, Cardno ERI conducted feasibility testing at the subject site (Plate 1). The purpose of the work was to observe aquifer characteristics and to assess the feasibility of groundwater pump and treat as a remediation strategy for dissolved-phase petroleum hydrocarbon concentrations in groundwater underlying the site. The work was conducted in accordance with Cardno ERI's Work Plan for Well Installation and Feasibility Testing (Work Plan), dated December 5, 2011 (Cardno ERI, 2011).

SITE DESCRIPTION

Former Exxon Service Station 70234 is located at 3450 35th Avenue, on the eastern corner of the intersection of 35th Avenue and Quigley Street, in Oakland, California (Plate 1). The surrounding areas consist of residential and commercial properties. An active ConocoPhillips 76 Service Station (ConocoPhillips) is located southwest of the site directly across Quigley Street (Plate 2).

The subject site is a former Exxon-branded service station, which was sold to Valero Energy Corporation (Valero) in 2000 and decommissioned with the removal of the underground fueling facilities in 2002 (TRC, 2002). The station building and canopy remain on site; however, the property is vacant and fenced, and the property redevelopment plans are not known at this time. The former UST cavity is filled with gravel and its surface is finished with cement.

GEOLOGY AND HYDROGEOLOGY

The site lies at an approximate elevation of 195 feet above msl, and the local topography slopes toward the southwest. The site is located along the eastern margin of the San Francisco Bay within the East Bay Plain (Hickenbottom and Muir, 1988). The surficial deposits in the site vicinity are mapped as Holocene and Pleistocene alluvial fan and fluvial deposits (Graymer, 2000). The site is located approximately 650 feet southeast of Peralta Creek. The active northwest trending Hayward fault is located approximately ½ mile northeast of the site.

The East Bay Plain is regionally divided into two major groundwater basins: the San Pablo and the San Francisco Basin. These basins are tectonic depressions that are filled primarily with a sequence of coalescing alluvial fans. The San Francisco Basin is further divided into seven sub-areas. The site is located in the Oakland Sub-Area, which is filled primarily by alluvial deposits that range from 300 to 700 feet thick without well-defined aquitards (CRWQCB, 1999). Under natural conditions, the direction of groundwater flow in the East Bay Plain is east to west.

The site is located approximately 2 miles northeast of the Oakland Estuary tidal canal, which connects to San Leandro Bay to the south and the Oakland Inner Harbor to the west, which connects to the San Francisco Bay. Groundwater flow direction is predominantly to the southwest towards the bay, consistent with site data. Groundwater recharge in the shallow aquifer occurs by infiltration from precipitation, irrigation, and stream flow.

Past assessment activities indicate that the soil beneath the site consists of clayey sand and sandy clay with varying amounts of silt and gravel to 45 feet bgs, the maximum depth investigated (ERI, 2009). Free groundwater occurs in a sandy gravel layer from approximately 29 to 40 feet bgs. During the November 23, 2011 groundwater monitoring and sampling event, the DTW in the wells ranged from 29.25 to 33.49 feet, and the groundwater flow direction was to the southwest with a horizontal gradient of 0.013 to 0.016 (Plate 3) (Cardno ERI, 2012a).

PREVIOUS WORK

Cumulative groundwater monitoring analytical results are summarized on Tables 1A and 1B. Cumulative soil analytical results are summarized in Tables 2A and 2B. Well construction details are presented on Table 3.

Fueling System Activities

In 1991, three 8,000-gallon gasoline USTs were excavated and removed from the site and replaced with three 12,000-gallon USTs (IT, 1992). In 2002, the service station was abandoned and the three 12,000-gallon USTs and associated product piping were excavated and removed from the site. The former UST cavity and product line trenches were backfilled with gravel (TRC, 2002).

Site Assessment Activities

Multiple phases of assessment were conducted from 1986 to 2000 (prior to the initial closure of the environmental case at the site), including the drilling of soil borings B1 through B10, EB1, EB2, SB1, and SB2 and the installation of groundwater monitoring wells MW1 through MW3 (HLA, 1988; Alton, 1991; IT, 1992; EA, 1997). Assessment results indicated maximum dissolved-phase TPHg, benzene, and MTBE concentrations of 75.0 μ g/L, and 1.87 μ g/L, respectively. The groundwater monitoring wells were destroyed in 2000 when the Alameda County Health Care Services Agency, Environmental Health Services (ACEH) closed the environmental case for the site (ERI, 2000).

The ACEH re-opened the environmental case for the site in March 2007 based on the discovery of dissolved-phase MTBE in groundwater samples collected from the UST cavity during its excavation and removal in 2002 (TRC, 2002). In September and November 2007, Environmental Resolutions, Inc. (ERI) observed the drilling of borings B11 through B18 (ERI, 2007).

In March 2009, ERI observed the drilling of borings B19 through B21 and the installation of monitoring wells MW4 through MW9 (ERI, 2009). Maximum dissolved-phase TPHg and MTBE concentrations of 4,400 μ g/L and 7,100 μ g/L, respectively, were reported in grab groundwater samples collected at 35 feet bgs from boring B19, located on the southwestern edge of the former UST cavity. Concentrations of TPHg, BTEX, and MTBE were reported in soil samples collected from boring B19, MW5, and MW6.

In December 2011, Cardno ERI observed the installation of recovery well RW1 to a depth of 40 feet bgs (Cardno ERI, 2012b). Groundwater was first encountered at 29 feet bgs. Concentrations of TPHg, toluene, ethylbenzene, total xylenes, TBA, and MTBE were reported in soil samples collected from boring RW1.

Remediation Activities

In 1991, International Technology Corporation (IT) excavated approximately 1,200 cubic yards of fill material and native soil when the gasoline USTs, dispensers, and product lines were removed and the UST pit was enlarged to accommodate larger new USTs (IT, 1992). Concentrations of TPHg and benzene were reported at up to 5 mg/kg and 0.36 mg/kg, respectively, in soil samples collected from the limits of the overexcavation.

In 2002, approximately 170 cubic yards of pea gravel and native soil were excavated and removed during the removal of the 12,000-gallon USTs (TRC, 2002). Petroleum hydrocarbons were not reported in the four soil samples collected from the sidewalls of the excavation. Residual TPHg (24 mg/kg), benzene (0.057 mg/kg), toluene (0.11 mg/kg), ethylbenzene (0.12 mg/kg), total xylenes (1.2 mg/kg), and MTBE (0.020 mg/kg) were reported at 4.9 feet bgs in soil sample B, collected from beneath the northeastern dispenser island.

Groundwater Monitoring Activities

Groundwater monitoring was conducted quarterly at the site from 1992 to 1995, and once in 1999. NAPL was not encountered. Dissolved-phase TPHg, benzene, and MTBE were reported in groundwater samples from well MW1, located west of the northern corner of the UST cavity, and well MW3, located upgradient of the fueling system. Groundwater monitoring wells MW1 through MW3 were destroyed in 2000 when the ACEH closed the environmental case for the site (ERI, 2000).

Groundwater monitoring wells MW4 through MW9 have been monitored since installation in March 2009. Maximum dissolved-phase TPHg, benzene, and MTBE concentrations have been reported in well MW5, located southeast of the former UST pit, and well MW6, located southwest of the former UST pit.

PUMP TEST

In accordance with the Work Plan, Cardno ERI proposed feasibility testing at the subject site to observe aquifer characteristics and to assess the feasibility of groundwater pump and treat as a remediation strategy for dissolved-phase petroleum hydrocarbon concentrations in groundwater underlying the site.

Pre-Field Activities

Cardno ERI performed the fieldwork in accordance with the Work Plan, Cardno ERI's standard field protocol (Appendix A), a site-specific health and safety plan, and applicable regulatory guidelines under the advisement of a professional geologist.

Prior to field activities, Cardno ERI installed recovery well RW1, to be used for extraction and observation during the pump draw down test. Details of the well installation are provided in Cardno ERI's *Well Installation Report*, dated March 9, 2012 (Cardno ERI, 2012b).

Field Work and Methods

On February 10, 2012, Cardno ERI installed pressure transducers in wells MW4, MW5, MW6, MW9, and RW1 and connected the transducers to a data logging device. The wells were allowed to equilibrate for two days to obtain the static head level variations in each well.

On February 13, 2012, Cardno ERI performed a step-drawdown test on well RW1. Wells MW4, MW5, MW6, MW7, MW8, and MW9 were used as observation wells during the step-drawdown test.

Between February 14 and 17, 2012, Cardno ERI performed constant-rate tests on well RW1. Wells MW4, MW5, MW6, MW7, MW8, and MW9 were used as observation wells.

The pumping tests were performed with a 3-inch diameter Grundfos® submersible pump connected to a variable speed controller. InSitu® MiniTroll Pro pressure transducer/data loggers were installed in the extraction and select observation wells to record water level measurements. Data was recorded by the submerged pressure transducers continuously during the testing.

Step-Drawdown Test on well RW1

Water was pumped from well RW1 at increasing rates to assess the optimum pumping rate. The well was pumped at 0.14, 0.20, 0.31, 0.37, and 0.44 gpm. Each pumping rate was sustained for 20 to 80 minutes until a linear trend in the drawdown became evident. The step test was continued for approximately six hours, at which time the well dewatered at a pumping rate of 0.44 gpm (Graph 1). Approximately 57 gallons of water were pumped from well RW1 during the step-drawdown test. Recharge in the wells was monitored for one hour following the step-drawdown test.

First Constant-Rate Test on well RW1

Following the recharge period, a constant-rate pumping test was initiated at a rate of approximately 0.33 gpm from well RW1. The rate was chosen based on the data from the step-drawdown test. The test was continued for approximately 51 hours, during which time the well dewatered to the depth of the pump intake several times and could not sustain the selected pump rate. The recharge rate of the well was below the

optimal operating range of the pump, causing the pump to overheat and cease pumping at times. An average drawdown of 0.50 foot was observed in observation wells MW4, MW5, MW6, and MW9 while pumping at 0.33 gpm. Well RW1 showed a maximum drawdown of 6.27 feet, and 1.1 feet of drawdown was observed in well MW7 while pumping at 0.33 gpm (Table 4). Approximately 503 gallons of water were pumped from well RW1 during the first constant-rate test. Recharge was monitored for approximately two hours after the first constant rate test.

Second Constant-Rate Test on well RW1

Following the recharge period, a second constant-rate test was performed. Water was pumped from well RW1 at a rate of approximately 0.21 gpm. The constant-rate test continued for 40 hours, during which time the well dewatered to the depth of the pump intake several times. Drawdown of approximately 6.11 feet was observed in well RW1. An average drawdown of 0.60 foot was observed in observation wells MW4, MW5, MW6, and MW9 (Graph 2). Approximately 540 gallons of water were pumped from well RW1 during the second constant-rate tests.

Groundwater Sampling

Cardno ERI collected groundwater samples from a sample port before the water reached the holding tank. The water samples were collected in laboratory-supplied containers, stored on ice, and transported under COC protocol to a state-certified analytical laboratory. Samples were collected at the beginning and end of the step-drawdown test and during the constant-rate test approximately every 12 hours, and at the end of the test. Results of the samples are presented in Table 5.

Laboratory Analyses

Cardno ERI submitted groundwater samples for analysis to a state-certified laboratory. Laboratory analytical reports and COC records are provided in Appendix C. Groundwater sample analytical data and testing methods are summarized in Table 5.

Waste Management

The water was temporarily stored on site in a 6,000-gallon storage tank. On February 17, 2012, 1,100 gallons of water was transported to InStrat, Inc., of Rio Vista, California, for recycling. An additional 100 gallons was also transported from the site from previous investigations, for a total of 1,200 gallons removed. Copies of the non-hazardous waste manifests for disposal of groundwater are included in Appendix D.

RESULTS OF INVESTIGATION

Cardno ERI analyzed the hydraulic data collected during the tests from the observation wells using the computer program Aqtesolv™ (Hydro Solve, Inc., 1999). Aqtesolv™ combines statistical parameter estimation methods with graphical curve-matching techniques to analyze the aquifer test data. Transmissivity and storativity estimates were obtained using the Neuman equation for an unconfined aquifer. The Aqtesolv™ output files are included in Appendix E.

The interval after initiating pumping at 0.2 gpm following the recharge period were used for the aquifer testing analysis. The data between the initiation of pumping and the initial dewatering were analyzed using Aqtesolv™.

The results of the constant-rate pump test performed on well RW1 yielded a transmissivity of 197.1 gallons per day per foot and a storativity of 0.016 using the Neuman method and a corresponding hydraulic conductivity of 5.8x10⁻⁴ centimeter per second (cm/s). The hydraulic conductivity values fall within the range of values representative of sandy silts and clayey sands (Fetter, 1994)

Groundwater Capture Zone

Cardno ERI estimates the downgradient (minimum) steady-state extent of the capture zone (r) using the following equation:

 $r = Q/2 \pi Ti$, where:

r = Capture zone extent (downgradient direction)
Q = Sustainable pumping rate (gallons per day)

T = Transmissivity

i = Averaged interpreted hydraulic gradient

 π = Ratio of the circumference of a circle to its diameter

Assuming a sustainable pumping rate of 0.2 gpm based on flow rates obtained during the pump tests, an average transmissivity of 197.1 gallons per day per foot, and an averaged hydraulic gradient of 0.016, the calculation yields a downgradient groundwater capture zone of approximately 14.5 feet and a crossgradient capture zone of approximately 45 feet (Plate 5).

Hydrocarbons in Groundwater

TPHg, MTBE, and BTEX concentrations were reported in groundwater samples collected during the feasibility test (Table 5). TPHg was reported at a maximum concentration of 3,800 μ g/L in the samples collected from well

RW1 during the middle of the testing period. MTBE and benzene were reported at maximum concentrations of 3,900 µg/L and 1,900 µg/L, respectively, during the middle of the testing period (Table 5). Concentrations of TBA were also reported in groundwater samples collected during this investigation (Table 5).

Concentrations of TPHg, MTBE, and benzene remained stable during the constant-rate pump test on well RW1 (Table 5).

Concentrations of dissolved-phase benzene reported from well RW1 are higher than the concentrations reported from other wells at the site (Plate 4). Concentrations of TBA are consistent with concentrations reported in wells MW5 and MW6.

Approximately 0.02 pound of TPHg, 0.02 pound of MTBE, and 0.01 pound of benzene were removed from well RW1 during the constant-rate test (Table 6).

CONCLUSIONS

Well RW1 had more fine-grained sediments than some of the previous wells and borings at the site, which resulted in a lower hydraulic conductivity than anticipated. The relatively low pumping rate observed (less than 0.3 gpm) and low mass removal (0.02 pound or less) indicate that groundwater pump and treat is not an effective remedial alternative at the subject site.

RECOMMENDATIONS

In response to previous and current dissolved-phase concentrations, Cardno ERI recommends evaluating alternative remedial technologies.

CONTACT INFORMATION

The responsible party contact is Ms. Jennifer C. Sedlachek, ExxonMobil Environmental Services, 4096 Piedmont Avenue #194, Oakland, California, 94611. The consultant contact is Ms. Janice A. Jacobson, Cardno ERI, 601 North McDowell Boulevard, Petaluma, California, 94954. The agency contact is Ms. Barbara Jakub, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577.

LIMITATIONS

For any documents cited that were not generated by ERI, the data taken from those documents is used "as is" and is assumed to be accurate. ERI does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document was prepared in accordance with generally accepted standards of environmental, geological, and engineering practices in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

Please contact Mr. Vincent T. Battaglia, Cardno ERI's project manager for this site, at vincent.battaglia@cardno.com or at (707) 766-2000 with any questions regarding this report.

Nadya M. Vicente Staff Scientist for Cardno ERI 707 766 2000

Email: nadya.vicente@cardno.com

Heidi Dieffenbach-Carle P.G. 6793

for Cardno ERI 707 766 2000

Email: heidi.dieffenbach-carle@cardno.com

Ms. Barbara Jakub, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577

Mr. Shay Wideman, The Valero Companies, Environmental Liability Management, P.O. Box 696000, San Antonio, Texas, 78269

June 20, 2012 Cardno ERI 247603.R06 Former Exxon Service Station 70234, Oakland, California

Enclosures:

References

Acronym List

Appendix E

Aqtesolv™ Output Files

Actiony III List	
Plate 1	Site Vicinity Map
Plate 2	Generalized Site Plan
Plate 3	Groundwater Elevation Map – November 23, 2011
Plate 4	Select Analytical Results
Plate 5	Groundwater Capture Zone
Table 1A	Cumulative Groundwater Monitoring and Sampling Data
Table 1B	Additional Cumulative Groundwater Monitoring and Sampling Data
Table 2A	Cumulative Soil Sample Analytical Results
Table 2B	Additional Cumulative Soil Sample Analytical Results
Table 3	Well Construction Details
Table 4	Groundwater Pumping Test – Operational Data
Table 5	Groundwater Pumping Test – Groundwater Analytical Results
Table 6	Groundwater Pumping Test – Dissolved-Phase Hydrocarbon Removal
Graph 1	Step Test – Well RW1
Graph 2	Constant Rate Test - Well RW1, MW4, MW5, MW6, MW9
Appendix A	Field Protocols
Appendix B	Boring Logs
Appendix C	Laboratory Analytical Reports
Appendix D	Waste Documentation

REFERENCES

Alton Geoscience (Alton). 1991. Boring logs B1 through B10.

California Regional Water Quality Control Board, San Francisco Bay Region, Groundwater Committee (CRWQCB). June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.

Cardno ERI. December 5, 2011. Work Plan for Well Installation and Feasibility Testing, Former Exxon Service Station 70234, 3450 35th Avenue, Oakland, California.

Cardno ERI. January 16, 2012a. Semi-Annual Groundwater Monitoring Report, Fourth Quarter 2011, Former Exxon Service Station 70234, 3450 35th Avenue, Oakland, California.

Cardno ERI. March 9, 2012b. Well Installation Report, Former Exxon Service Station 70234, 3450 35th Avenue, Oakland, California.

EA Engineering (EA). September 1997. Analytical results for used-oil UST and hydraulic hoist confirmation soil samples.

Environmental Resolutions, Inc. (ERI). October 30, 2000. *Groundwater Monitoring Well Destruction at Former Exxon Service Station 7-0234, 3450 35th Avenue, Oakland, California.*

Environmental Resolutions, Inc. (ERI). December 14, 2007. *Soil and Groundwater Investigation Report Former Exxon Service Station 7-0234*, 3450 35th Avenue, Oakland, California.

Environmental Resolutions, Inc. (ERI). April 28, 2009. *Site Assessment Report, Former ExxonMobil Station* 70234, 3450 35th Avenue, Oakland, California 94601.

Fetter, C.W. 1994. Applied Hydrogeology. MacMillan College Publishing Company.

Graymer, R.W. 2000. Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California. USGS, Miscellaneous Field Studies MF-2342.

Geraghty and Miller. 1996 through 2006. Aqtesolv™ *for Windows*. Computer Software. Hydro Solve, Inc.

June 20, 2012 Cardno ERI 247603.R06 Former Exxon Service Station 70234, Oakland, California

Harding Lawson Associates (HLA). 1988. Plate 2, Site Plan.

Hickenbottom, Kelvin and Muir, Kenneth S. June 1988. *Geohydrogeology and Groundwater Quality Overview of the East Bay Plain Area, Alameda County, CA*. Alameda County Flood Control and Water Conservation District. 83p.

International Technology Corporation (IT). September 1992. Site Assessment Report.

TRC. September 24, 2002. Report on Underground Storage Tank and Product Piping Removal, Valero Facility No. 3832, 3450 35th Avenue, Oakland, California. TRC Project No. 41-0412-01.

ACRONYM LIST

ua/l	Micrograms per liter	NEPA	National Environmental Policy Act
μg/L μs	Microsiemens	NEPA NGVD	National Geodetic Vertical Datum
μs 1,2-DCA	1.2-dichloroethane	NPDES	National Pollutant Discharge Elimination System
acfm	Actual cubic feet per minute	O&M	Operations and Maintenance
AS	•	ORP	
	Air sparge Below ground surface	OSHA	Oxidation-reduction potential
bgs BTEX		OSHA	Occupational Safety and Health Administration
	Benzene, toluene, ethylbenzene, and total xylenes		Organic vapor analyzer
CEQA	California Environmental Quality Act	P&ID	Process & Instrumentation Diagram
cfm COC	Cubic feet per minute	PAH PCB	Polycyclic aromatic hydrocarbon
CPT	Chain of Custody	PCE	Polychlorinated biphenyl
	Cone Penetration (Penetrometer) Test		Tetrachloroethene or perchloroethylene
DIPE	Di-isopropyl ether	PID	Photo-ionization detector
DO	Dissolved oxygen	PLC	Programmable logic control
DOT	Department of Transportation	POTW	Publicly owned treatment works
DPE	Dual-phase extraction	ppmv	Parts per million by volume
DTW	Depth to water	PQL	Practical quantitation limit
EDB	1,2-dibromoethane	psi	Pounds per square inch
EPA	Environmental Protection Agency	PVC	Polyvinyl chloride
ESL	Environmental screening level	QA/QC	Quality assurance/quality control
ETBE	Ethyl tertiary butyl ether	RBSL	Risk-based screening levels
FID	Flame-ionization detector	RCRA	Resource Conservation and Recovery Act
fpm	Feet per minute	RL	Reporting limit
GAC	Granular activated carbon	scfm	Standard cubic feet per minute
gpd	Gallons per day	SSTL	Site-specific target level
gpm	Gallons per minute	STLC	Soluble threshold limit concentration
GWPTS	Groundwater pump and treat system	SVE	Soil vapor extraction
HVOC	Halogenated volatile organic compound	SVOC	Semivolatile organic compound
J	Estimated value between MDL and PQL (RL)	TAME	Tertiary amyl methyl ether
LEL	Lower explosive limit	TBA	Tertiary butyl alcohol
LPC	Liquid-phase carbon	TCE	Trichloroethene
LRP	Liquid-ring pump	TOC	Top of well casing elevation; datum is msl
LUFT	Leaking underground fuel tank	TOG	Total oil and grease
LUST	Leaking underground storage tank	TPHd	Total petroleum hydrocarbons as diesel
MCL	Maximum contaminant level	TPHg	Total petroleum hydrocarbons as gasoline
MDL	Method detection limit	TPHmo	Total petroleum hydrocarbons as motor oil
mg/kg	Milligrams per kilogram	TPHs	Total petroleum hydrocarbons as stoddard solvent
mg/L ₃	Milligrams per liter	TRPH	Total recoverable petroleum hydrocarbons
mg/m ³	Milligrams per cubic meter	UCL	Upper confidence level
MPE	Multi-phase extraction	USCS	Unified Soil Classification System
MRL	Method reporting limit	USGS	United States Geologic Survey
msl	Mean sea level	UST	Underground storage tank
MTBE	Methyl tertiary butyl ether	VCP	Voluntary Cleanup Program
MTCA	Model Toxics Control Act	VOC	Volatile organic compound
NAI	Natural attenuation indicators	VPC	Vapor-phase carbon
NAPL	Non-aqueous phase liquid		

2476TOPO

EXPLANATION

1/2-mile radius circle

SITE VICINITY MAP

FORMER EXXON SERVICE STATION 70234 3450 35th Avenue Oakland, California PROJECT NO.

2476

PLATE

1

FN 2476 12 R06 GSP_SP

GENERALIZED SITE PLAN

FORMER EXXON SERVICE STATION 70234 3450 35th Avenue Oakland, California

1	EXP	LANATION	SI
	MW9 MW1	Groundwater Monitoring Well Destroyed Groundwater Monitoring Well	E
	B21	Soil Boring (ERI)	B1

Soil Boring (GTI, 1986) Soil Boring (HLA, 1988) Soil Boring (Alton, 1991)

PROJECT NO. + Soil Sample Location (TRC, 2002)

Excavated Area

S15 + Soil Sample Location (Alton, 1991) RW1
Recovery Groundwater Monitoring
Well

PLATE

2476

SOURCE: Modified from maps provided by MORROW SURVERING

Cardno[®]
ERI
Shaping the Future

GROUNDWATER ELEVATION MAP November 23, 2011

FORMER
EXXON SERVICE STATION 70234
3450 35th Avenue
Oakland, California

FN 2476 12 R06 GW CAPTURE ZONE_SP

GROUNDWATER CAPTURE ZONE

FORMER EXXON SERVICE STATION 70234 3450 35th Avenue Oakland, California

			L
EXP	LANATION	SB2	
MW9			Soil Boring (GTI, 1986)
•	Groundwater Monitoring Well		
MW1		EB2	Soil Boring (HLA, 1988)
**	Destroyed Groundwater Monitoring Well		Soil Boiling (TILA, 1900)
B21		B10	
	Soil Boring (ERI)		Soil Boring (Alton, 1991)

Excavated Area

SOURCE: Modified

GRAPH 1

STEP-DRAWDOWN TEST Former Exxon Service Station 70234 3450 35th Avenue Oakland, California

GRAPH 2 CONSTANT-RATE TEST

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California

Elapsed Time (seconds, shown in increments of 10 hours)

Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHg (µg/L)	MTBE (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (μg/L)	Total Pb (µg/L)	Organic Pb (mg/L)
Monitorin	g Well Samples													
MW1	07/15/92			Well ins	talled.									
MW1	07/17/92		192.00	33.02	158.98	No	67		6.6	6.9	2.0	4.5	17	
MW1	10/22/92		192.00	34.07	157.93	No	<50		2.9	<0.5	<0.5	<0.5	16	
MW1	02/04/93		192.00	29.43	162.57	No	<50		8.0	<0.5	<0.5	<0.5	4	
MW1	05/03/93		192.00	29.72	162.28	No	71		2.8	7.2	2.2	22	40	
MW1	07/30/93		192.00	32.95	159.05	No	<50		<0.5	<0.5	<0.5	<0.5	5	
MW1	10/19/93		192.00	34.34	157.66	No	<50		<0.5	<0.5	<0.5	<0.5	12	
MW1	02/23/94		192.00	31.72	160.28	No	<50		<0.5	<0.5	<0.5	<0.5	4	
MW1	06/06/94		192.00	31.77	160.23	No	<50		<0.5	<0.5	<0.5	<0.5	<3	
MW1	08/18/94		192.00	33.76	158.24	No	<50		< 0.5	< 0.5	< 0.5	< 0.5	130	
MW1	11/15/94		192.00	34.08	157.92	No	<50		< 0.5	< 0.5	< 0.5	< 0.5	<3.0	<100
MW1	02/06/95		192.00	28.50	163.50	No	<50		< 0.5	< 0.5	< 0.5	< 0.5		
MW1	05/10/95		192.00	29.30	162.70	No	<50		< 0.5	< 0.5	< 0.5	< 0.5		
MW1	09/20/99		192.00	33.30	158.70	No	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<75	<50
MW1	Well destroyed	in June 2000).											
MW2	07/15/92			Well ins	talled.									
MW2	07/17/92		194.85	34.65	160.20	No	<50		<0.5	<0.5	<0.5	<0.5	<3	
MW2	10/22/92		194.85	35.64	159.21	No	<50		<0.5	<0.5	<0.5	<0.5		
MW2	02/04/93		194.85	31.13	163.72	No	<50		<0.5	<0.5	<0.5	<0.5	<3	
MW2	05/03/93		194.85	31.08	163.77	No	<50		<0.5	<0.5	<0.5	<0.5	3	
MW2	07/30/93		194.85	34.34	160.51	No	<50		< 0.5	< 0.5	< 0.5	< 0.5	14	
MW2	10/19/93		194.85	36.00	158.85	No	<50		< 0.5	< 0.5	< 0.5	< 0.5	<3	
MW2	02/23/94		194.85	33.92	160.93	No	<50		< 0.5	< 0.5	< 0.5	< 0.5	<3	
MW2	06/06/94		194.85	33.50	161.35	No	<50		<0.5	<0.5	<0.5	<0.5	<3	
MW2	08/18/94		194.85	35.38	159.47	No	<50		<0.5	<0.5	<0.5	<0.5	<3.0	
MW2	11/15/94		194.85	35.93	158.92	No	<50		<0.5	<0.5	<0.5	<0.5	<3.0	<100
MW2	02/06/95		194.85	30.38	164.47	No	<50		<0.5	<0.5	<0.5	<0.5		
MW2	05/10/95		194.85	30.77	164.08	No	<50		<0.5	<0.5	<0.5	<0.5		
MW2	09/20/99		194.85	35.15	159.70	No	<50	< 0.5	<0.5	<0.5	<0.5	<0.5	<75	<0.5
MW2	Well destroyed	l in June 2000).											
MW3	07/15/92			Well ins	talled.									
MW3	07/17/92		196.90	37.24	159.66	No	<50		< 0.5	<0.5	<0.5	<0.5	50	
MW3	10/22/92		196.90	35.95	160.95	No	<50		<0.5	<0.5	<0.5	<0.5	9	
MW3	02/04/93		196.90	29.85	167.05	No	<50		<0.5	<0.5	<0.5	<0.5	<3	

Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	Χ (μg/L)	Total Pb (µg/L)	Organic Pb (mg/L)
MW3	05/03/93		196.90	29.87	167.03	No	<50		<0.5	<0.5	<0.5	<0.5	3	
MW3	07/30/93		196.90	33.85	163.05	No	<50		< 0.5	< 0.5	<0.5	<0.5	22	
MW3	10/19/93		196.90	35.89	161.01	No	<50		< 0.5	< 0.5	<0.5	<0.5	12	
MW3	02/23/94		196.90	32.88	164.02	No	<50		< 0.5	< 0.5	<0.5	<0.5	25	
MW3	06/06/94		196.90	32.40	164.50	No	<50		< 0.5	< 0.5	<0.5	<0.5	<3	
MW3	08/18/94		196.90	35.07	161.83	No	<50		< 0.5	< 0.5	<0.5	<0.5	<3.0	
MW3	11/15/94		196.90	35.97	160.93	No	<50		< 0.5	< 0.5	<0.5	<0.5	<3.0	<100
MW3	02/06/95		196.90	28.39	168.51	No	<50		< 0.5	< 0.5	< 0.5	<0.5		
MW3	05/10/95		196.90	28.90	168.00	No	<50		<0.5	< 0.5	< 0.5	<0.5		
MW3	09/20/99		196.90	34.68	162.22	No	75.0	1.87	<0.5	11.5	1.8	18.0	<75	<0.5
WW3	Well destroyed	l in June 2000												
/IW4	03/02/09			Well ins	talled.									
MW4	03/30/09		197.62	30.94	166.68	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
MW4	04/02/09		197.62	Well sur	veyed.									
ЛW4	05/28/09		197.62	32.00	165.62	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
MW4	08/31/09		197.62	35.43	162.19	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
MW4	12/11/09		197.62	35.01	162.61	No	<50	< 0.50	< 0.50	0.83	< 0.50	1.1		
MW4	05/07/10		197.62	29.11	168.51	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0		
MW4	11/01/10		197.62	34.95	162.67	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0		
MW4	05/27/11 d		197.62	30.65	166.97	No								
MW4	11/23/11		197.62	33.49	164.13	No	<50	<0.50	<0.50	<0.50	<0.50	<1.0		-
лW5	03/06/09			Well ins	talled.									
MW5	03/30/09		196.35	30.05	166.30	No	4,200	1,900	540	140	<12	310		
MW5	04/02/09		196.35	Well sur	veyed.									
MW5	05/28/09		196.35	31.45	164.90	No	5,300	3,600	890	150	<25	140		
MW5	08/31/09		196.35	34.70	161.65	No	5,800	3,500	550	<100	<100	<100		
MW5	12/11/09		196.35	34.52	161.83	No	4,000b	3,800	230	<100	<100	<100		
MW5	05/07/10		196.35	30.84	165.51	No	2,700b	1,700	73	5.3	3.6	6.5		
MW5	11/01/10		196.35	33.93	162.42	No	2,400b	3,400	320	71	21	40		
MW5	05/27/11 d		196.35	31.65	164.70	No								
MW5	11/23/11		196.35	32.58	163.77	No	1,900b	3,200	72	2.7	3.1	8.1		
MW6	03/09/09			Well ins	talled.									
MW6	03/30/09		192.41	26.94	165.47	No	2,800	4,800	0.91	< 0.50	< 0.50	< 0.50		
MW6	04/02/09		192.41	Well sur	veyed.									
	05/28/09		192.41	28.04	164.37	No	2,800	6,000	<100	<100	<100	<100		

Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	Total Pb (µg/L)	Organic Pb (mg/L)
MW6	08/31/09		192.41	30.57	161.84	No	4,900	6,600	<100	<100	<100	<100		
MW6	12/11/09		192.41	30.78	161.63	No	4,900b	6,200	<100	<100	<100	<100		
MW6	05/07/10		192.41	25.42	166.99	No	2,900b	3,700	2.7	< 0.50	0.74c	<1.0		
MW6	11/01/10		192.41	30.68	161.73	No	850b	6,100	2.1	< 0.50	< 0.50	<1.0		
MW6	05/27/11 d		192.41	27.07	165.34	No								
MW6	11/23/11		192.41	29.25	163.16	No	1,600b	6,400	<0.50	<0.50	<0.50	<1.0		
MW7	03/09/09			Well inst	alled.									
MW7	03/30/09		194.34	29.15	165.19	No	55	66	< 0.50	< 0.50	< 0.50	< 0.50		
MW7	04/02/09		194.34	Well sur	veyed.									
MW7	05/28/09		194.34	30.16	164.18	No	50	67	<1.0	<1.0	<1.0	<1.0		
MW7	08/31/09		194.34	33.31	161.03	No	<50	12	< 0.50	0.60	< 0.50	<0.50		
MW7	12/11/09		194.34	32.71	161.63	No	<50	31	0.78	1.7	0.62	2.4		
MW7	05/07/10		194.34	27.54	166.80	No	510b	700	< 0.50	< 0.50	< 0.50	<1.0		
MW7	11/01/10		194.34	32.82	161.52	No	68b	140	< 0.50	< 0.50	< 0.50	<1.0		
MW7	05/27/11 d		194.34	28.85	165.49	No								
MW7	11/23/11		194.34	31.39	162.95	No	190b	300	<0.50	<0.50	<0.50	<1.0		
MW8	03/04/09			Well inst	alled.									
MW8	03/30/09		192.96	27.35	165.61	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
MW8	04/02/09		192.96	Well sur	veyed.									
8WM	05/28/09		192.96	28.72	164.24	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
8WM	08/31/09		192.96	31.93	161.03	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
8WM	12/11/09		192.96	31.24	161.72	No	<50	< 0.50	0.74	1.6	0.59	2.3		
8WM	05/07/10		192.96	25.68	167.28	No	<50	<0.50	< 0.50	<0.50	<0.50	<1.0		
8WM	11/01/10		192.96	31.18	161.78	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0		
MW8	05/27/11		192.96	27.55	165.41	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0		
8WM	11/23/11		192.96	29.74	163.22	No	<50	<0.50	<0.50	<0.50	<0.50	<1.0		
MW9	03/05/09			Well inst	alled.									
MW9	03/30/09		195.16	28.31	166.85	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50		
MW9	04/02/09		195.16	Well sur	veyed.									
MW9	05/28/09		195.16	29.69	165.47	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
MW9	08/31/09		195.16	33.20	161.96	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50		
MW9	12/11/09		195.16	32.62	162.54	No	<50	< 0.50	0.73	1.7	0.54	2.2		
MW9	05/07/10		195.16	26.59	168.57	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0		
MW9	11/01/10		195.16	32.45	162.71	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0		
MW9	05/27/11		195.16	29.62	165.54	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0		

Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHg (µg/L)	MTBE (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	Χ (μg/L)	Total Pb (µg/L)	Organic Pb (mg/L)
MW9	11/23/11		195.16	30.56	164.60	No	<50	<0.50	<0.50	<0.50	<0.50	<1.0		
Grab Grou	ndwater Sample	es												
Pit Water	06/14/02	11.5a					5,600	12,000	140	840	100	530		
UST Pit	06/19/02	13.5a					680	640	2.7	36	18	130		
W-38-B11	11/14/07	38					<50	<0.50	<0.50	<0.50	<0.50	<0.50		
W-15-B12	11/13/07	15					8,400	78	67	<5.0	140	150		
W-40-B13	11/12/07	40					<50	0.53	< 0.50	< 0.50	< 0.50	< 0.50		
W-15-B14	11/13/07	15					2,500	16	1.7	3.0	26	13		
W-38-B15	11/15/07	38					18,000	12,000	3,400	2,500	330	2,000		
W-40-B16	11/15/07	40					<50	7.7	< 0.50	< 0.50	< 0.50	< 0.50		
W-37-B17	11/13/07	37					630	2,200	1.8	< 0.50	4.1	1.4		
W-38-B18	11/12/07	38					4,300	1,400	52	<12	56	96		
W-35-B19	03/03/09	35					4,400	7,100	<0.50	<0.50	<0.50	<1.0		
W-35-B20	03/03/09	35					640	440	< 0.50	< 0.50	< 0.50	<1.0		
W-35-B21	03/03/09	35					<50	1.4	< 0.50	< 0.50	< 0.50	<1.0		

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California

Data prior to 1999 provided by EA Environmental Science and Engineering in previously submitted reports.

TOC Elev.	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level.
NAPL	=	Non-aqueous phase liquid.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B8020/8021B; during March 2009, analyzed using EPA Method 8020/8021B.
Total Pb	=	Total lead analyzed using EPA Method 6010.
Organic Pb	=	Organic lead analyzed using CA DHS LUFT method.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.

1,2-DCA=1,2-dicloroethane analyzed using EPA Method 8260B.TAME=Tertiary amyl methyl ether analyzed using EPA Method 8260B.TBA=Tertiary butyl alcohol analyzed using EPA Method 8260B.ETBE=Ethyl tertiary butyl ether analyzed using EPA Method 8260B.DIPE=Di-isopropyl ether analyzed using EPA Method 8260B.

Ethanol = Ethanol analyzed using EPA Method 8260B.

 μ g/L = Micrograms per liter. mg/L = Milligrams per liter.

Notes:

= Less than the stated laboratory reporting limit.

= Not sampled/Not analyzed/Not measured/Not applicable.
 a = Approximate depth to groundwater surface at time of sampling.

b = Hydrocarbon pattern does not match the requested fuel.

c = Analyte presence was not confirmed by second column or GC/MS analysis.

d = Well inaccessible for sampling.

Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (μg/L)	TAME (µg/L)	TBA (μg/L)	ETBE (µg/L)	DIPE (μg/L)	Ethanol (μg/L)
Monitoring '	Well Samples								
MW1	07/17/92 - 09/20/99		Not analyzed for	or these analytes.					
MW1	Well destroyed in Jur	ne 2000	•						
MW2	07/17/92 - 09/20/99		Not analyzed for	or these analytes.					
MW2	Well destroyed in Jur	ne 2000							
MW3	07/17/92 - 09/20/99		Not analyzed for	or these analytes.					
MW3	Well destroyed in Jur	ne 2000							
MW4	03/30/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW4	05/28/09		<0.50	<0.50	< 0.50	<5.0	<0.50	<0.50	
MW4	08/31/09		< 0.50	<0.50	< 0.50	<5.0	<0.50	< 0.50	
MW4	12/11/09		< 0.50	<0.50	< 0.50	<5.0	<0.50	< 0.50	
MW4	05/07/10		<0.50	<0.50	< 0.50	<5.0	<0.50	< 0.50	
MW4	11/01/10		<0.50	<0.50	< 0.50	<5.0	<0.50	<0.50	
MW4	05/27/11 d								
MW4	11/23/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW5	03/30/09		<12	17	<12	450	<12	<12	
MW5	05/28/09		<25	<25	<25	530	<25	<25	
MW5	08/31/09		<100	<100	<100	<1,000	<100	<100	
MW5	12/11/09		<100	<100	<100	2,000	<100	<100	
MW5	05/07/10		<25	<25	<25	400	<25	<25	
MW5	11/01/10		<50	<50	<50	1,500	<50	<50	
MW5	05/27/11 d								
MW5	11/23/11		<50	<50	<50	<500	<50	<50	
MW6	03/30/09		<0.50	<0.50	1.3	410	<0.50	0.82	
MW6	05/28/09		<100	<100	<100	<1,000	<100	<100	
MW6	08/31/09		<100	<100	<100	1,100	<100	<100	
MW6	12/11/09		<100	<100	<100	2,600	<100	<100	
MW6	05/07/10		<100	<100	<100	<1,000	<100	<100	
MW6	11/01/10		<50	<50	<50	2,400	<50	<50	
MW6	05/27/11 d								
MW6	11/23/11		<100	<100	<100	<1,000	<100	<100	

Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (μg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (μg/L)	Ethanol (µg/L)
MW7	03/30/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW7	05/28/09		<1.0	<1.0	<1.0	<10	<1.0	<1.0	
MW7	08/31/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW7	12/11/09		<0.50	<0.50	<0.50	12	<0.50	<0.50	
MW7	05/07/10		<0.50	<0.50	<0.50	130	<0.50	<0.50	
MW7	11/01/10		<2.5	<2.5	<2.5	27	<2.5	<2.5	
MW7	05/27/11 d								
MW7	11/23/11		<5.0	<5.0	<5.0	<50	<5.0	<5.0	
MW8	03/30/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW8	05/28/09		<0.50	<0.50	< 0.50	<5.0	<0.50	< 0.50	
MW8	08/31/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW8	12/11/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW8	05/07/10		<0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	
MW8	11/01/10		<0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50	
MW8	05/27/11		< 0.50	<0.50	< 0.50	<5.0	<0.50	< 0.50	
MW8	11/23/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW9	03/30/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW9	05/28/09		<0.50	< 0.50	<0.50	<5.0	<0.50	<0.50	
MW9	08/31/09		<0.50	< 0.50	<0.50	<5.0	<0.50	<0.50	
MW9	12/11/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW9	05/07/10		<0.50	< 0.50	<0.50	<5.0	<0.50	<0.50	
MW9	11/01/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW9	05/27/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW9	11/23/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
Grab Ground	dwater Samples								
Pit Water	06/14/02	11.5a							
UST Pit	06/19/02	13.5a							
W-38-B11	11/14/07	38	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<50
W-15-B12	11/13/07	15	<5.0	<5.0	<5.0	<100	<5.0	<5.0	<500
W-40-B13	11/12/07	40	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<50
W-15-B14	11/13/07	15	<1.0	<1.0	<1.0	<20	<1.0	<1.0	<100
W-38-B15	11/15/07	38	<25	<25	<25	1,900	<25	<25	<2,500
W-40-B16	11/15/07	40	<0.50	<0.50	<0.50	<10	<0.50	<0.50	85

Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (μg/L)	TAME (µg/L)	TBA (μg/L)	ETBE (µg/L)	DIPE (μg/L)	Ethanol (μg/L)
W-37-B17	11/13/07	37	<0.50	<0.50	<0.50	58	<0.50	<0.50	<50
W-38-B18	11/12/07	38	<12	<12	<12	<250	<12	<12	<1,200
W-35-B19	03/03/09	35	<50	<50	<50	<500	<50	<50	<5,000
W-35-B20	03/03/09	35	< 0.50	<0.50	< 0.50	12	< 0.50	< 0.50	<50
W-35-B21	03/03/09	35	< 0.50	< 0.50	< 0.50	<5.0	< 0.50	<0.50	<50

Notes:		Data prior to 1999 provided by EA Environmental Science and Engineering in previously submitted reports.
TOC Elev.	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level.
NAPL	=	Non-aqueous phase liquid.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B8020/8021B; during March 2009, analyzed using EPA Method 8020/8021B.
Total Pb	=	Total lead analyzed using EPA Method 6010.
Organic Pb	=	Organic lead analyzed using CA DHS LUFT method.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dicloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
μg/L	=	Micrograms per liter.
mg/L	=	Milligrams per liter.
<	=	Less than the stated laboratory reporting limit.
	=	Not sampled/Not analyzed/Not measured/Not applicable.
а	=	Approximate depth to groundwater surface at time of sampling.
b	=	Hydrocarbon pattern does not match the requested fuel.
С	=	Analyte presence was not confirmed by second column or GC/MS analysis.
d	=	Well inaccessible for sampling.

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 1 of 6)

Sample	Sampling	Depth	Kerosene	TPHd	TPHg	TPHmo	EHC-HO	MTBE	В	T	E	X	Lead	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Used-Oil UST Confirm	nation Soil San	nple												
T1-12	06/18/97			200b	8.6a	680c			ND	0.038	0.016	0.046		
Hydraulic Hoist Confi	rmation Sampl	es												
H1-8	06/18/97					777	99d	00.00	-	-	-			
H2-8	06/18/97					****	2,100d			***	***		***	7.55
Samples from the US	T Cavity Sidew	all												
Pit1@12'	06/14/02	12			<1.0	***		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
Pit2@11.5'	06/14/02	11.5			<1.0	-	***	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
Pit3@11'	06/14/02	11			<1.0	***		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
Pit4@10'	06/14/02	10	444		<1.0	***	6.775	<0.005	<0.005	<0.005	<0.005	< 0.005		
Samples from Beneat	h Product Pipi	ng												
A-6.4	06/25/02	6.4	***		<1.0		-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
B-4.9	06/25/02	4.9	***		24	-	-400	0.020	0.057	0.11	0.12	1.2		
C-6.5	06/25/02	6.5	***		<1.0		-	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
D-5.2	06/25/02	5.2	ETP.		<1.0			<0.005	<0.005	<0.005	<0.005	<0.005		
Soil Borings														
S-1	08/28/91	10	***		<1.0	***			< 0.005	< 0.005	< 0.005	< 0.005	<5	-
S-2	08/28/91	10	444	***	<1.0			***	< 0.005	< 0.005	< 0.005	< 0.005	<5	***
S-3	08/28/91	10	Name of Street	***	<1.0	****			< 0.005	< 0.005	< 0.005	< 0.005	<5	***
S-4	08/28/91	10			290				2.8	6.5	2	27	<5	
S-5	08/28/91	10			3.5				0.27	0.096	0.064	0.32	<5	***
S-6	08/28/91	11	***	-	4.1				0.19	0.13	0.056	0.23	<5	
S-7	08/28/91	3		1,	4.0				0.66	0.040	0.11	0.13	<5	
S-8	08/28/91	3			<1.0			5.000	< 0.005	< 0.005	< 0.005	< 0.005	<5	***
S-9	08/28/91	3			210	***			1.4	7.2	3.0	18	<5	
S-10	08/28/91	3	***		<1.0			-	< 0.005	0.031	0.031	0.067	<5	
S-11	08/28/91	1.5	-		<1.0				< 0.005	< 0.005	< 0.005	< 0.005	<5	***
S-12	08/28/91	15			3.1	***	444		0.36	0.048	0.048	0.16		***
S-13	08/28/91	15			1.8		week.		0.26	0.008	0.008	0.041		
S-14	08/28/91	4		3444	5.0	***		-	0.047	0.063	0.063	0.041		***
S-15	08/28/91	15	OFFICE.	****	<1.0		222		<0.005	<0.005	<0.005	<0.005		242
B-1	3/20/91	15.5			<1.0				0.011	0.007	0.011	0.04		
B-1	3/20/91	20.5			<1.0	***			0.012	0.007	0.01	0.04		
B-2	3/20/91	15.5			<1.0	7 577	***		0.036	0.026	0.012	0.055		
B-2	3/20/91	20.5			<1.0	***	222		0.0073	0.0063	0.0098	0.038		
B-3	3/20/91	10.5	922		1			***	0.006	0.006	0.008	0.036		

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California

(Page 2 of 6)

Sample	Sampling	Depth	Kerosene	TPHd	TPHg	TPHmo	EHC-HO	MTBE	В	Т	E	X	Lead	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B-3	3/20/91	15.5	***		440		777	755	0.7	5.4	4.7	24		
B-4	3/20/91	10.5	***		5		***		0.013	0.019	0.014	0.082	<5	
B-4	3/20/91	15.5		-	6.6		***	***	0.039	0.043	0.027	0.12		****
B-4	3/20/91	20.5			<1.0				0.0076	0.0073	0.011	0.054		444
B-5	3/20/91	10.5			26			-	0.055	0.061	0.17	0.67		
B-6	3/20/91	10.5	777 0		240				0.28	2.2	2.8	13		
B-6	3/20/91	15.5	ULL		1.4			***	0.0055	0.0054	0.009	0.034		***
B-7	3/20/91	10.5	255	***	<1.0	***			0.006	0.006	0.008	0.033	***	***
B-8	3/20/91	10.5		-	<1.0			555)	0.006	0.005	0.008	0.035		***
B-9	3/20/91	10.5					. 555.5	***			-	***		<50
B-10	3/20/91	10.5	***	F	-			224	>107	444				<50
S-5-B11	09/05/07	5		***	<0.50			< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	***	
S-10-B11	09/10/07	10		***	< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-13.5-B11	09/10/07	13.5			< 0.50		-	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-18-B11	09/11/07	18			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		***
S-20-B11	09/11/07	20			< 0.50		-	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		***
S-25.5-B11	11/14/07	25.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		***
S-29.5-B11	11/14/07	29.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-34.5-B11	11/14/07	34.5			<0.50		***	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050		***
S-5-B12	09/04/07	5			<0.50			<0.0050	<0.0050	<0.0050	<0.0050	<0.0050		
S-15.5-B12	11/13/07	15.5			43			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		***
S-20.5-B12	11/13/07	20.5	***		3.2		***	0.15	0.076	<0.0050	0.0053	<0.0050		
S-5-B13	09/05/07	5	•••	***	<0.50			<0.0050	<0.0050	<0.0050	<0.0050	<0.0050		
S-10-B13	09/10/07	10			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		***
S-14.5-B13	09/10/07	14.5	-		< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-20-B13	09/10/07	20			4.3			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		***
S-25-B13	11/12/07	25			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		***
S-30-B13	11/12/07	30			<0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	***	***
S-35-B13	11/12/07	35			<0.50			<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050		***
S-5.0-B14	09/06/07	5	***		<0.50			<0.0050	<0.0050	<0.0050	<0.0050	<0.0050		
S-16-B14	11/13/07	16			< 0.50	***	07.	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		***
S-20.5-B14	11/13/07	20.5	***		< 0.50	344	***	0.031	< 0.0050	< 0.0050	< 0.0050	< 0.0050		***

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 3 of 6)

Sample	Sampling	Depth	Kerosene	TPHd	TPHg	TPHmo	EHC-HO	MTBE	В	Т	E	X	Lead	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-5-B15	09/04/07	5	1000	-	< 0.50	1000	127	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-10.5-B15	11/15/07	10.5		***	< 0.50		222	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050		***
S-15.5-B15	11/15/07	15.5	***	775	1.1	0000		0.12	0.32	0.019	0.017	0.074	-	
S-20-B15	11/15/07	20			300			< 0.25	6.1	36	14	72	777	-
S-25.5-B15	11/15/07	25.5			220			< 0.12	3.1	18	6.8	36		777
S-30.5-B15	11/15/07	30.5			59	111		< 0.25	2.9	5.6	1.5	20	***	557
S-35.5-B15	11/15/07	35.5			3.3			0.26	0.28	0.21	0.26	0.79	***	***
S-5-B16	09/04/07	5			<0.50			<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-	
S-11-B16	11/14/07	11			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-15.5-B16	11/14/07	15.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-21-B16	11/14/07	21			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-26-B16	11/14/07	26			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-30.5-B16	11/14/07	30.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-34.5-B16	11/14/07	34.5			< 0.50			0.021	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-38.5-B16	11/14/07	38.5			<0.50			<0.0050	<0.0050	<0.0050	<0.0050	<0.0050		
S-5-B17	09/05/07	5		~~~	<0.50			<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050		
S-11-B17	11/13/07	11			90			0.036	0.052	< 0.0050	0.086	0.020		
S-16-B17	11/13/07	16		ula	< 0.50			0.099	0.0052	< 0.0050	< 0.0050	< 0.0050		
S-21-B17	11/13/07	21		- Jakon	< 0.50			0.011	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-24.5-B17	11/13/07	24.5		-	< 0.50			0.59	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-31-B17	11/13/07	31		***	< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-35.5-B17	11/13/07	35.5			0.85			1.7	<0.0050	<0.0050	<0.0050	<0.0050		
S-5-B18	09/04/07	5			<0.50	***		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050		
S-10-B18	11/12/07	10			< 0.50	***		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-15-B18	11/12/07	15			< 0.50			0.0051	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-20-B18	11/12/07	20			< 0.50			0.019	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-25-B18	11/12/07	25			< 0.50			0.18	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-30-B18	11/12/07	30			< 0.50			0.54	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
S-35-B18	11/12/07	35			24	÷		0.53	<0.0050	<0.0050	<0.0050	<0.0050		
S-5-B19	02/25/09	5			<0.50			<0.0050	<0.0050	<0.0050	<0.0050	<0.010		
S-10-B19	03/02/09	10			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-15.5-B19	03/03/09	15.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-20.5-B19	03/03/09	20.5			< 0.50		***	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-25.5-B19	03/03/09	25.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-30.5-B19	03/03/09	30.5		1	< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-35.5-B19	03/03/09	35.5			< 0.50			0.51	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-39.5-B19	03/03/09	39.5			< 0.50			0.048	<0.0050	<0.0050	< 0.0050	< 0.010		

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 4 of 6)

Sample	Sampling	Depth	Kerosene	TPHd	TPHg	TPHmo	EHC-HO	MTBE	В	Т	E	X	Lead	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-10.5-B20	03/03/09	10.5	***	444	< 0.50		***	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	244	
S-15.0-B20	03/03/09	15.0			< 0.50	***	***	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		***
S-20.5-B20	03/03/09	20.5	SHE	S 5115 .	< 0.50	***	222	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	***	***
S-25.5-B20	03/03/09	25.5		***	< 0.50	***		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-30.5-B20	03/03/09	30.5		-	< 0.50	****		<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.010	-577	1777
S-35.5-B20	03/03/09	35.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.010		***
S-39.5-B20	03/03/09	39.5	****	-	< 0.50			<0.0050	<0.0050	<0.0050	<0.0050	<0.010	***	
S-5-B21	02/25/09	5			< 0.50		1.222	<0.0050	<0.0050	<0.0050	<0.0050	<0.010		
S-10.5-B21	03/04/09	10.5		***	< 0.50	***	***	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-15-B21	03/04/09	15	***		< 0.50	***	***	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		***
S-20.5-B21	03/04/09	20.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-25.5-B21	03/04/09	25.5	×	-	< 0.50		***	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		***
S-30.5-B21	03/04/09	30.5	***	***	< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	-	
S-35.5-B21	03/04/09	35.5		***	< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	***	
S-39.5-B21	03/04/09	39.5	770	110	< 0.50	-		<0.0050	<0.0050	<0.0050	<0.0050	<0.010	***	***
nitoring and Recov	ery Wells													
MW1	07/14/92	8	-		<1.0	***		***	< 0.0050	< 0.0050	< 0.0050	0.0064	<10	
MW2	07/14/92	29.5	1000	222	<1.0				< 0.0050	< 0.0050	< 0.0050	< 0.0050	<10	
MW3	07/14/92	28	- 2444		<1.0			nno.	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<10	
MW4	07/14/92	29.5	***	***	<1.0				<0.0050	<0.0050	<0.0050	<0.0050	<10	
S-5-MW4	02/25/09	5		***	<0.50			<0.0050	<0.0050	<0.0050	<0.0050	<0.010		
S-10.5-MW4	03/02/09	10.5		***	< 0.50		1000	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-15.5-MW4	03/02/09	15.5		-	< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-20.5-MW4	03/02/09	20.5	***		< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		***
S-25.5-MW4	03/02/09	25.5			< 0.50	242	444	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
S-30.5-MW4	03/02/09	30.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		***
S-35.5-MW4	03/02/09	35.5	707		< 0.50		***	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		***
S-40-MW4	03/02/09	40			< 0.50		****	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.010		***
S-44.5-MW4	03/02/09	44.5			< 0.50		***	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	***	***
S-5-MW5	02/27/09	5			<0.50			<0.0050	<0.0050	<0.0050	<0.0050	<0.010		***
S-10-MW5	03/05/09	10	-		<0.50			<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.010		
S-15-MW5	03/05/09	15			0.70		11.22	0.036	0.22	0.022	0.071	0.31		-1-
S-20-MW5	03/05/09	20		***	260			<5.0	5.4	19	11	63		
S-25-MW5	03/06/09	25	-		41	***		<0.50	<0.0050	0.069	0.15	0.75		
S-30-MW5	03/06/09	30			0.91	***		<0.50	0.14	0.0061	0.011	0.036		
S-35-MW5	03/06/09	35		***	5.4	-		<0.50	<0.050	3.9	1.5	15		***
S-39.5-MW5	03/06/09	39.5			< 0.50			<0.0050	<0.0050	<0.0050	< 0.0050	<0.010	242	
S-5-MW6	02/27/09	5			<0.50	-		<0.0050	<0.0050	<0.0050	<0.0050	<0.010	****	

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 5 of 6)

-															
	Sample	Sampling	Depth	Kerosene	TPHd	TPHg	TPHmo	EHC-HO	MTBE	В	Т	E	×	Lead	TOG
-	ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	S-10-MW6	03/09/09	10			< 0.50	***	<u> </u>	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-15.5-MW6	03/09/09	15.5	***	***	< 0.50	***	***	0.011	< 0.0050	< 0.0050	< 0.0050	<0.010	***	
	S-20.5-MW6	03/09/09	20.5		1,777	< 0.50			0.015	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-25.5-MW6	03/09/09	25.5	-		< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-30.5-MW6	03/09/09	30.5			< 0.50			0.063	< 0.0050	< 0.0050	< 0.0050	< 0.010	***	
	S-35.5-MW6	03/09/09	35.5	***		< 0.50	-		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-39.5-MW6	03/09/09	39.5		Lexes	< 0.50	444	2225	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	+++	
	S-5-MW7	02/27/09	5	7-1-		< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.010		~==
	S-10.5-MW7	03/09/09	10.5	***		< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-15.5-MW7	03/09/09	15.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-20.5-MW7	03/09/09	20.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-25.5-MW7	03/09/09	25.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-30.5-MW7	03/09/09	30			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	`<0.010		
	S-35.5-MW7	03/09/09	35.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-39.5-MW7	03/09/09	39.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-5-MW8	02/25/09	5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-10.5-MW8	03/04/09	10.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-15.5-MW8	03/04/09	15.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-20.5-MW8	03/04/09	20.5			<0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.010		
	S-25.5-MW8	03/04/09	25.5		***	<0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-30.5-MW8	03/04/09	30.5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-35.5-MW8	03/04/09	35.5			<0.50			< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.010		
	S-39.5-MW8	03/04/09	39.5		-	< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
			55.5			0.00			0.0000	0.0000	0.0000	-0.0000	-0.010		
	S-5-MW9	02/25/09	5			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-10-MW9	03/05/09	10		****	< 0.50	-		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	-	
	S-15-MW9	03/05/09	15		***	< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	***	
	S-20-MW9	03/05/09	20			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-25-MW9	03/05/09	25			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	***	
	S-30-MW9	03/05/09	30			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010		
	S-35-MW9	03/05/09	35			< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.010	-116	
	S-40-MW9	03/05/09	40		***	<0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	200	
											0.000	0.000	0.010		
	S-5.0-RW1	12/22/11	5.0	***		< 0.50			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	M	
	S-15.0-RW1	12/22/11	15.0			1.3e		-	0.0053	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
	S-25.0-RW1	12/22/11	25.0			6.5e		See C	0.0066g	< 0.0050	< 0.0050	< 0.0050	0.029		
	S-28.0-RW1	12/22/11	28.0			27e			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		
	S-31.0-RW1	12/22/11	31.0	***	1444	1.7			0.50	<0.0050	0.0072	< 0.0050	0.096		
	S-32.5-RW1	12/22/11	32.5		****	0.95			0.72	< 0.0050	< 0.0050	< 0.0050	0.0087		
	S-34.0-RW1	12/22/11	34.0			2.3e		***	0.94	< 0.0050	< 0.0050	< 0.0050	0.0053		
	S-37.0-RW1	12/22/11	37.0		***	420		****	<0.50	< 0.50	<0.50	0.88	10		
			•						.0.00	.0.00	-0.00	0.00	10	7,1	7777-C

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 6 of 6)

Sample	Sampling	Depth	Kerosene	TPHd	TPHg	TPHmo	EHC-HO	MTBE	В	T	E	×	Lead	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg
S-38.5-RW1	12/22/11	38.5			<0.50			0.0071	<0.0050	<0.0050	<0.0050	<0.0050		
S-40.0-RW1	12/22/11	40.0		***	440		***	<1.0	<1.0	<1.0	2.1	29		***
Soil Stockpile Samples														
SP-1(S-SP1-S-SP4)	09/12/07				< 0.10			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	7.2	***
SP(1-4)	06/18/97			47b	ND	150c			ND	ND	ND	ND	8.7	
SP-2	03/09/09				< 0.50	***		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.010	5.83	***
S-SP1 (1,2,3,4)	12/22/11		8.0	<5.0	40	<25		<0.50	0.0068	0.012	0.048	0.46	4.50	1111 :
Notes:														
Kerosene	=	Kerosene an	alyzed using E	PA Method 8	3015B.									
TPHg	=	Total petrole	um hydrocarbo	ns as gasolii	ne analyzed	using modi	fied EPA Me	thod 8015M						
MTBE	=	Methyl tertiar	y butyl ether a	nalyzed usin	g EPA Meth	od 8021B/8	260B							
BTEX	=	Benzene, tolu	uene, ethylben:	zene, and to	tal xylenes a	analyzed us	ing EPA Met	hod 8021B/8	3260B.					
Lead	=	Lead analyze	ed using EPA N	lethod 6010	3.									
TOG	=	Total oil and												
1,2-DCA	=	1,2-dichloroe	thane analyzed	d using EPA	Method 826	60B.								
EDB	=	1,2-dibromoe	thane analyze	d using EPA	Method 826	80B.								
TBA	=	Tertiary butyl	alcohol analyz	ed using EP	A Method 8	260B.								
DIPE	=	Di-isopropyl e	ether analyzed	using EPA	Method 8260)B.								
ETBE	=	Ethyl tertiary	butyl ether and	alyzed using	EPA Metho	d 8260B.								
TAME	=	Tertiary amyl	methyl ether a	analyzed usir	ng EPA Met	hod 8260B.								
Ethanol	=	Ethanol analy	yzed using EP/	A Method 82	60B.									
Add'l SVOCs	=	Additional se	mi-volatile orga	anic compou	nds.									
HVOCs	=		volatile organi			using EPA N	Nethod 8260	В.						
feet bgs	=		round surface.	• *************************************										
mg/kg	=	Milligrams pe												
ND	=		at or above the	e laboratory	reportina lim	nit.								
<	=		stated labora											
**************************************	=		/Not applicable											
а	=	Unidentified (
b	=	Unidentified (
C	=	Unidentified (
d	=	Unidentified (
e	=		pattern does r	ot match tha	it of the spe	cified stand	ard							
f	=		2,4-trimethylbe					2 ma/ka ison	ropyltoluene	: 0.078 ma/k	g naphthaler	ne: 0.059 mo	/ka	
			ne; 0.091 mg/l								aapiididioi	, o.ooo mg	,a	
g	=		id not meet me				5 (5)				IS characteri	etice		

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 1 of 5)

Sample	Sampling	Depth	1,2-DCA	EDB	TBA	DIPE	ETBE	TAME	Ethanol	VOCs	SVOCs	HVOCs	Cadmium	Chromium	Nickel	Zinc
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)									
- 101110T0 - 1																
Used-Oil UST Confi	rmation Soil Sa 06/18/97	mple									ND	ND	ND		56	84

Hydraulic Hoist Confirmation Samples

Not analyzed for these analytes.

Samples from the UST Cavity Sidewall

Not analyzed for these analytes.

Samples from Beneath Product Piping Not analyzed for these analytes.

Soil Borings

Soil borings sampled prior to 2007 not analyzed for these analytes.

	S-5-B11	09/05/07	5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
	S-10-B11	09/10/07	10	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
S	-13.5-B11	09/10/07	13.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
,	S-18-B11	09/11/07	18	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
,	S-20-B11	09/11/07	20	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
S	-25.5-B11	11/14/07	25.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
S	-29.5-B11	11/14/07	29.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
S	-34.5-B11	11/14/07	34.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
	S-5-B12	09/04/07	5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010		***	 	 ***	***	
S	-15.5-B12	11/13/07	15.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 	****	
S	-20.5-B12	11/13/07	20.5	<0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 	***	
	S-5-B13	09/05/07	5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
,	S-10-B13	09/10/07	10	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
S	-14.5-B13	09/10/07	14.5	< 0.0050	< 0.0050	< 0.050	<0.010	< 0.010	< 0.010			 	 		
	S-20-B13	09/10/07	20	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
,	S-25-B13	11/12/07	25	< 0.0050	< 0.0050	< 0.050	< 0.010	<0,010	< 0.010			 	 		
,	S-30-B13	11/12/07	30	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
5	S-35-B13	11/12/07	35	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		
5	S-5.0-B14	09/06/07	5	<0.0050	< 0.0050	< 0.050	< 0.010	<0.010	<0.010			 	 277	****	
5	S-16-B14	11/13/07	16	<0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			 	 		***
S	-20.5-B14	11/13/07	20.5	< 0.0050	< 0.0050	< 0.050	<0.010	< 0.010	< 0.010			 	 -		
	S-5-B15	09/04/07	5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	<0.010			 ~	 		
S	-10.5-B15	11/15/07	10.5	< 0.0050	< 0.0050	< 0.050	<0.010	< 0.010	<0.010	<0.25		 	 		
S	-15.5-B15	11/15/07	15.5	0.011	<0.0050	< 0.050	< 0.010	<0.010	<0.010	< 0.25		 	 		

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 2 of 5)

Sample	Sampling	Depth	1,2-DCA	EDB	TBA	DIPE	ETBE	TAME	Ethanol	VOCs	SVOCs	HVOCs	Cadmium	Chromium	Nickel	Zinc
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-20-B15	11/15/07	20	< 0.25	<0.25	<2.5	<0.50	<0.50	< 0.50	<12		***	****	(575)			
S-25.5-B15	11/15/07	25.5	< 0.12	< 0.12	<1.2	< 0.25	< 0.25	<0.25	<6.2		***	***				
S-30.5-B15	11/15/07	30.5	< 0.25	<0.25	<2.5	<0.50	<0.50	< 0.50	<12	***						
S-35.5-B15	11/15/07	35.5	<0.0050	<0.0050	0.25	<0.010	<0.010	<0.010	<0.25							
S-5-B16	09/04/07	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010								
S-11-B16	11/14/07	11	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010								
S-15.5-B16	11/14/07	15.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010								
S-21-B16	11/14/07	21	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010								
S-26-B16	11/14/07	26	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010								
S-30.5-B16	11/14/07	30.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010								
S-34.5-B16	11/14/07	34.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010								
S-38.5-B16	11/14/07	38.5	<0.0050	<0.0050	<0.050	<0.010	< 0.010	<0.010								
S-5-B117	09/05/07	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010								
S-11-B17	11/13/07	11	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010								
S-16-B17	11/13/07	16	<0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	<0.010								
S-21-B17	11/13/07	21	< 0.0050	<0.0050	< 0.050	< 0.010	< 0.010	< 0.010								
S-24.5-B17	11/13/07	24.5	<0.0050	<0.0050	0.20	< 0.010	<0.010	<0.010								
S-31-B17	11/13/07	31	< 0.0050	< 0.0050	0.15	< 0.010	<0.010	<0.010								
S-35.5-B17	11/13/07	35.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010								
S-5-B18	09/04/07	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010								
S-10-B18	11/12/07	10	<0.0050	< 0.0050	< 0.050	< 0.010	<0.010	<0.010					***			
S-15-B18	11/12/07	15	< 0.0050	< 0.0050	< 0.050	< 0.010	<0.010	<0.010								
S-20-B18	11/12/07	20	< 0.0050	<0.0050	< 0.050	<0.010	< 0.010	<0.010								
S-25-B18	11/12/07	25	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010								
S-30-B18	11/12/07	30	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010						=		
S-35-B18	11/12/07	35	<0.0050	<0.0050	0.70	<0.010	<0.010	<0.010								
S-5-B19	02/25/09	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-10-B19	03/02/09	10	< 0.0050	< 0.0050	< 0.050	< 0.010	<0.010	<0.010	<0.25							
S-15.5-B19	03/03/09	15.5	< 0.0050	< 0.0050	< 0.050	<0.010	< 0.010	<0.010	<0.25							
S-20.5-B19	03/03/09	20.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	<0.25							
S-25.5-B19	03/03/09	25.5	< 0.0050	< 0.0050	< 0.050	<0.010	< 0.010	<0.010	<0.25							
S-30.5-B19	03/03/09	30.5	<0.0050	< 0.0050	< 0.050	<0.010	< 0.010	<0.010	<0.25							
S-35.5-B19	03/03/09	35.5	< 0.0050	< 0.0050	< 0.050	<0.010	< 0.010	< 0.010	<0.25							
S-39.5-B19	03/03/09	39.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-5-B20	02/25/09	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-10.5-B20	03/03/09	10.5	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							
S-15.0-B20	03/03/09	15.0	<0.0050	< 0.0050	< 0.050	<0.010	< 0.010	< 0.010	<0.25							
- 10.0 020	03/03/09	20.5	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							77.0

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 3 of 5)

Sample	Sampling	Depth	1,2-DCA	EDB	TBA	DIPE	ETBE	TAME	Ethanol	VOCs	SVOCs	HVOCs	Cadmium	Chromium	Nickel	Zinc
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-25.5-B20	03/03/09	25.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-30.5-B20	03/03/09	30.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25	***		***	***	***	-	
S-35.5-B20	03/03/09	35.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25				***			***
S-39.5-B20	03/03/09	39.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25		***				***	
S-5-B21	02/25/09	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-10.5-B21	03/04/09	10.5	< 0.0050	< 0.0050	< 0.050	<0.010	< 0.010	<0.010	<0.25							
S-15-B21	03/04/09	15	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							***
S-20.5-B21	03/04/09	20.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-25.5-B21	03/04/09	25.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-30.5-B21	03/04/09	30.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-35.5-B21	03/04/09	35.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-39.5-B21	03/04/09	39.5	<0.0050	<0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							
Monitoring and Reco	very Wells															
MW1	07/14/92	8														
MW2	07/14/92	29.5														
MW3	07/14/92	28														
MW4	07/14/92	29.5														
S-5-MW4	02/25/09	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-10.5-MW4	03/02/09	10.5	< 0.0050	<0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-15.5-MW4	03/02/09	15.5	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-20.5-MW4	03/02/09	20.5	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	< 0.010	<0.25							
S-25.5-MW4	03/02/09	25.5	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							
S-30.5-MW4	03/02/09	30.5	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	< 0.010	<0.25							
S-35.5-MW4	03/02/09	35.5	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							
S-40-MW4	03/02/09	40	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							
S-44.5-MW4	03/02/09	44.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-5-MW5	02/27/09	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25		***					
S-10-MW5	03/05/09	10	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-15-MW5	03/05/09	15	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-20-MW5	03/05/09	20	< 5.0	<5.0	<50	<10	<10	<10	<250							
S-25-MW5	03/06/09	25	< 0.50	< 0.50	<5.0	<1.0	<1.0	<1.0	<25							
S-30-MW5	03/06/09	30	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0	<25							
S-35-MW5	03/06/09	35	<0.50	< 0.50	<5.0	<1.0	<1.0	<1.0	<25							
S-39.5-MW5	03/06/09	39.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-5-MW6	02/27/09	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-10-MW6	03/09/09	10	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	< 0.010	<0.25							
S-15.5-MW6	03/09/09	15.5	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							
S-20.5-MW6	03/09/09	20.5	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	< 0.010	<0.25							

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 4 of 5)

Sample	Sampling	Depth	1,2-DCA	EDB	TBA	DIPE	ETBE	TAME	Ethanol	VOCs	SVOCs	HVOCs	Cadmium	Chromium	Nickel	Zinc
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-25.5-MW6	03/09/09	25.5	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	< 0.25	-	***					***
S-30.5-MW6	03/09/09	30.5	<0.0050	<0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25	****	***	***	***			
S-35.5-MW6	03/09/09	35.5	<0.0050	<0.0050	0.054	< 0.010	<0.010	< 0.010	<0.25	444		(a-maile)		***		
S-39.5-MW6	03/09/09	39.5	<0.0050	<0.0050	< 0.050	<0.010	< 0.010	<0.010	<0.25	***	***		***	***		***
C E MAA/7	00/07/00	_	<0.00E0	<0.00E0	<0.050	-0.010	<0.010	-0.010	<0.25							
S-5-MW7	02/27/09	5	<0.0050 <0.0050	<0.0050 <0.0050	<0.050	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.25							
S-10.5-MW7	03/09/09	10.5			< 0.050											
S-15.5-MW7	03/09/09	15.5	<0.0050	<0.0050	< 0.050	<0.010	<0.010	<0.010	< 0.25							
S-20.5-MW7	03/09/09	20.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-25.5-MW7	03/09/09	25.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-30.5-MW7	03/09/09	30	<0.0050	<0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							
S-35.5-MW7	03/09/09	35.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-39.5-MW7	03/09/09	39.5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-5-MW8	02/25/09	5	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-10.5-MW8	03/04/09	10.5	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	< 0.010	<0.25							
S-15.5-MW8	03/04/09	15.5	<0.0050	<0.0050	< 0.050	<0.010	< 0.010	<0.010	<0.25							
S-20.5-MW8	03/04/09	20.5	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							
S-25.5-MW8	03/04/09	25.5	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							
S-30.5-MW8	03/04/09	30.5	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							
S-35.5-MW8	03/04/09	35.5	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25							
S-39.5-MW8	03/04/09	39.5	<0.0050	< 0.0050	< 0.050	<0.010	<0.010	<0.010	<0.25					70.0		
0-00.0 WW	00/04/03	00.0	-0.0000	-0.0000	-0.000	-0.010	40.010	0.010	-0.20							
S-5-MW9	02/25/09	5	< 0.0050	<0.0050	< 0.050	< 0.010	<0.010	< 0.010	<0.25							
S-10-MW9	03/05/09	10	< 0.0050	< 0.0050	< 0.050	<0.010	< 0.010	< 0.010	< 0.25							
S-15-MW9	03/05/09	15	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-20-MW9	03/05/09	20	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-25-MW9	03/05/09	25	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-30-MW9	03/05/09	30	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-35-MW9	03/05/09	35	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010	< 0.25							
S-40-MW9	03/05/09	40	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.25							
S-5.0-RW1	12/22/11	5.0	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010								
S-15.0-RW1	12/22/11	15.0	< 0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010								
S-25.0-RW1	12/22/11	25.0	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010								
S-28.0-RW1	12/22/11	28.0	< 0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010								
S-31.0-RW1	12/22/11	31.0	<0.0050	< 0.0050	<0.050	<0.010	<0.010	<0.010			***					
S-32.5-RW1	12/22/11	32.5	<0.0050	< 0.0050	0.17	< 0.010	<0.010	<0.010	***							
S-34.0-RW1	12/22/11	34.0	<0.0050	<0.0050	0.42	<0.010	<0.010	<0.010								

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 5 of 5)

Sample ID	Sampling Date	Depth (feet bgs)	1,2-DCA (mg/kg)	EDB (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	Ethanol (mg/kg)	VOCs (mg/kg)	SVOCs (mg/kg)	HVOCs (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)
S-37.0-RW1	12/22/11	37.0	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0	(9.1.9)	(1119/119)	(1119119)	(119119)	(,,,g,,,g)	(119/19)	(119/19/	(9.1.9)
S-38.5-RW1	12/22/11	38.5	< 0.0050	< 0.0050	< 0.050	<0.010	<0.010	< 0.010	V-223				-		***	
S-40.0-RW1	12/22/11	40.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0			***	444	•••	7=0	-	
Soil Stockpile Samples																
SP-1(S-SP1-S-SP4)	09/12/07	***	< 0.0050	<0.0050	<0.020	<0.0050	<0.0050	< 0.0050			***					
SP(1-4)	06/18/97							***		ND	ND		ND	55	53	43
SP-2	03/09/09		< 0.0050	<0.0050	<0.050	<0.010	< 0.010	<0.010	< 0.25			ND				
S-SP1 (1,2,3,4)	12/22/11	982	<0.0050	<0.0050	0.076	<0.010	<0.010	<0.010	-577	f	***					
Notes:		V.		50444	1.0045	-										
Kerosene	=	Kerosene ar					116		100454							
TPHg	=	Total petrole							a 8015M.							
MTBE	=	Methyl tertia														
BTEX	=	Benzene, to		- 5		lenes anal	yzed using	EPA Method	8021B/826	60B.						
Lead	=	Lead analyz	•	PA Method	6010B.											
TOG	=	Total oil and														
1,2-DCA	=	1,2-dichloro														
EDB	=	1,2-dibromo														
TBA DIPE	=	Tertiary buty					В.									
ETBE	=	Di-isopropyl Ethyl tertiary		-			EOR									
TAME	=	Tertiary amy		•												
Ethanol	=	Ethanol ana		Annual Section 1977		AWICTIO	0200D.									
Add'l SVOCs	=	Additional se		•	•											
HVOCs	=	Halogenated			ounds ana	alyzed usin	g EPA Meti	nod 8260B.								
feet bgs	=	Feet below														
mg/kg	=	Milligrams p	er kilogram													
ND	=	Not detected	d at or abov	e the labora	atory repor	rting limit.										
<	=	Less than th	e stated lab	oratory rep	orting limi	t.										
**************************************	=	Not analyze	d/Not applic	able.												
а	=	Unidentified	C8-C12.													
b	=	Unidentified	C9-C24.													
С	=	Unidentified	C16-C36.													
d	=	Unidentified														
e	=	Hydrocarbo		es not mat	ch that of t	he specifie	d standard									
f	=	1.1 mg/kg 1,	5						a/ka isonro:	nyltoluona	0.079 ~~	/ka nasheh	alene. O ne	n ma/kc		
,						•	•				U.U.O ING	ny naphtn	alene, 0.00	a mg/kg		
-	62	n-Butylbenz	The second second			CHOOL COMMUNICATION		O MARKO DE LA COLLEGIO				12.40	- h J - N			
9	=	Compound	aid not mee	t method-d	escribed id	tentification	n guidelines	s. Identificat	ion was bas	ed on add	itional GM	MS chara	cteristics.			

TABLE 3

WELL CONSTRUCTION DETAILS
Former Exxon Service Station 70234 3450 35th Avenue Oakland, California

Well ID	Well Installation Date	Well Destruction Date	TOC Elevation (feet)	Borehole Diameter (inches)	Total Depth of Boring (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Casing Material	Screened Interval (feet bgs)	Slot Size (inches)	Filter Pack Interval (feet bgs)	Filter Pack Material
MW1	07/15/92	Jun-00	192.00	11	45	45	4	Schedule 40 PVC	25-45	0.010	23-45	2/12 Lonestar Sand
MW2	07/15/92	Jun-00	194.85	11	45	45	4	Schedule 40 PVC	25-45	0.010	23-45	2/12 Lonestar Sand
MW3	07/15/92	Jun-00	196.90	11	45	45	4	Schedule 40 PVC	25-45	0.010	23-45	2/12 Lonestar Sand
MW4	03/02/09		197.62	8	45	45	2	PVC	35-45	0.2	33-45	#3 Sand
MW5	03/06/09		196.35	8	40	40	2	PVC	30-40	0.2	28-40	#3 Sand
MW6	03/09/09		192.41	8	40	39	2	PVC	29-39	0.2	27-39	#3 Sand
MW7	03/09/09		194.34	8	40	40	2	PVC	30-40	0.2	28-40	#3 Sand
MW8	03/04/09		192.96	8	40	40	2	PVC	30-40	0.2	28-40	#3 Sand
MW9	03/05/09		195.16	8	40	40	2	PVC	30-40	0.2	28-40	#3 Sand
RW1	12/22/11		195.15	10	40	40	4	Stainless Steel	25-39.5	0.020	23-40	#2/12 Sand

Notes:

TOC Top of well casing elevation; datum is mean sea level.

PVC Polyvinyl chloride.

feet bgs = feet below ground surface.

TABLE 4 GROUNDWATER PUMPING TEST- OPERATIONAL DATA

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 1 of 3)

Date	Time	Water Flow from Well (gpm)	RW1 DTW (feet bgs)	MW4 DTW (feet bgs)	MW5 DTW (feet bgs)	MW6 DTW (feet bgs)	MW7 DTW (feet bgs)	MW8 DTW (feet bgs)	MW9 DTW (feet bgs)	Totalizer Reading (gallons)	Cumulative Gallons	Adjusted Cumulative Gallons	Calculated Water Flow (gpm)
Well RW1 Ste	n Drawd												
02/10/12	17:00		31.02	33.18	32.99	29.03	29.98	29.53	30.62				0.0
02/13/12	11:45	-	30.89	32.70	14.90	25.60	32.84	29.32	30.36	9,561		_	0.0
						25.00	52.04				_		
02/13/12	12:45	0.14	***	22.07	22.20			20.44	20.50	0.505	_	-	0.05
02/13/12	13:45	0.20		32.97	32.30	28.98	29.97	29.41	30.50	9,565	4	6	0.05
02/13/12	14:30	0.31	_	-	Sec.				-			_	
02/13/12	14:50	0.31	-	33.01	32.60	30.99	30.90	29.39	30.55	9,587	26	36	0.19
02/13/12	15:35	0.37					-			9,587	26	36	0.16
02/13/12	16:20	0.44						-		9,618	57	78	0.29
02/13/12	17:00	0.44	-	***		-			-	9,618	57	78	0.25
02/13/12	17:30	-		33.13	32.84	29.50	31.11	39.61	30.73	9,618	57	78	0.23
									Avera	ne Groundw	T ater Flow Rate	otal Gallons	57 0.17
									Avere	ge Groundw	ater 1 low Rate	(Agnitimate)	0.17
Well RW1 Co										0.010	F.7	70	0.00
02/13/12	18:14	0.33		157	-	_	_	_		9,618	57	78	0.20
02/13/12	19:30	0.33	_	22.00	22.04	- 20,42	24.00			9,649	88	121	0.26
02/13/12	20:00	0.33		33.09	32.81	29.43	31.08		_	9,649	88	121	0.24
02/13/12	21:15	0.27	-		***	April 1		_		9,671	110	151	0.27
02/13/12	21:30	0.20		-						9,671	110	151	0.26
02/13/12	22:20	0.30		-	***	_	_	_		9,671	110	151	0.24
02/13/12	22:55	0.29	-	33.25	32.84	29.46	32.27		_	9,679	118	162	0.24
02/13/12	23:30	0.30	_							9,679	118	162	0.23
02/14/12	0:00	0.30			1-		***			9,695	134	185	0.25
02/14/12	0:25	0.27								9,695	134	185	0.24
02/14/12	0:50	0.29								9,703	142	196	0.25
02/14/12	1:15	0.29		33.34	33.10	29.81	31.25		_	9,711	150	207	0.26
02/14/12	1:35	0.30			_		-	_		9,711	150	207	0.25
02/14/12	2:00	0.29								9,728	167	230	0.27
02/14/12	2:25	0.23							_	9,732	171	235	0.27
02/14/12	2:50	0.26											
			_		00.07		04.00			9,736	175	241	0.27
02/14/12	3:55	0.30	_	33.35	32.97	29.67	31.32	_		9,736	175	241	0.25
02/14/12	4:20	0.30								9,736	175	241	0.24
02/14/12	4:45	0.30			_		_		_	9,742	181	249	0.24
02/14/12	5:15	0.31			***					9,749	188	259	0.25
02/14/12	5:40	0.31	_	33.49	33.21	29.66	31.68	29.82	31.02	9,751	190	262	0.24
02/14/12	6:40	0.32						-		9,777	216	297	0.26
02/14/12	7:30	0.32		33.44	33.12	29.80	31.46	29.92	31.05	9,780	219	302	0.25
02/14/12	8:35	0.33	_		_					9,806	245	337	0.27
02/14/12	9:00	0.32	_	33.42	33.21	29.78	31.45	29.98	31.11	9,810	249	343	0.27
02/14/12	10:00	0.32	_			_	-			9,812	251	346	0.26
02/14/12	10:45	0.31		33.55	33.22	29.86	31.49	29.98	31.15	9,827	266	366	0.27
02/14/12	11:45	0.32				25.50				9,834	273	376	0.26
02/14/12	12:15	0.33		_		_	_	***		9,835	274	377	
02/14/12	12:30												0.26
02/14/12		0.33		33.54	33.23	29.87	31.48	29.95	31.12	9,843	282	388	0.26
02/14/12	13:15	0.33	_	-	***		-			9,851	290	399	0.26
	13:45	0.34	_	22.50	22.40		24.40	00.04	24.40	9,857	296	408	0.26
02/14/12	14:32	0.32		33.52	33.18	29.81	31.46	29.91	31.10	9,859	298	410	0.26
02/14/12	15:48	0.20	-	-	-			(177)		9,882	321	442	0.26
02/14/12	16:03	0.32	_		-	_			***	***		_	_
02/14/12	17:15	0.31	-	33.55	33.19	29.81	31.49	29.93	31.12	9,897	336	463	0.26
02/14/12	19:00	0.19	_	33.57	33.24	29.84	31.49	***		9,930	369	508	0.27
02/14/12	20:00	0.19			***		_			9,930	369	508	0.26
02/14/12	21:00	0.25	-	33.60	33.23	29.87	31.51			9,935	374	515	0.26
02/14/12	22:00	0.29		_	-				_	9,943	382	526	0.26
02/14/12	22:35	0.27		_				_		9,950	389	536	0.26
02/14/12	23:55	0.29		33.59	33.06	29.65	31.53	_		9,950	389	536	0.25
02/15/12	0:20	0.28			_	-	-			9,968	407	560	0.26
02/15/12	0:55	0.30		_		_	_			9,976			
02/15/12	1:20	0.29		_	_						415	571 571	0.26
02/15/12						20.75	21.50			9,976	415	571	0.25
	1:45	0.30		33.51	33.05	29.75	31.50			9,976	415	571	0.25
02/15/12	3:00	0.30				200	****			9,982	421	580	0.25
02/15/12	3:25	0.30		_	-	***		_	_	9,982	421	580	0.24
02/15/12	3:55	0.28	-				-	_		9,988	427	588	0.24
02/15/12	4:20	0.29		33.58	33.09	29.73	31.49		_	9,988	427	588	0.24
02/15/12	4:50	0.30				_			_	9,996	435	599	0.24
02/15/12	5:15	0.29			***	222				10,004	443	610	0.24
a-1 1 71 1 1 1 1	3•	3.20								10,004	443	010	0.24

TABLE 4 GROUNDWATER PUMPING TEST- OPERATIONAL DATA

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 2 of 3)

		Water Flow	DIAM	100/4	MAKE	NAME.	M/\0/7	8WM	MW9	Totalizer		Adjusted	Colculated
		from Well	RW1 DTW	MW4 DTW	MW5 DTW	MW6 DTW	MW7 DTW	DTW	DTW	Reading	Cumulative	Cumulative	Calculated Water Flow
Date	Time		(feet bgs)	(feet bgs)	(feet bgs)	(gallons)	Gallons	Gallons	(gpm)				
		(gpm)									110 20 112 110 110	1.379.00.00.00.00.00.00.00	
02/15/12	5:40	0.30		33.58	33.12	29.81	31.51		***	10,004	443	610	0.24
02/15/12	8:30	0.33		33.62	33.01	29.74	31.55	29.92	31.10	10,019	458	631	0.23
02/15/12	9:00	0.30			_	_	_		_	10,028	467	643	0.24
02/15/12	10:00	0.31			_		-	_		10,036	475	654	0.24
02/15/12	10:15	0.29	_	33.61	33.12	29.77	31.56	29.95	31.11	10,042	481	662	0.24
02/15/12	11:00	0.31	_	-	_	_	_	_	_	10,043	482	664	0.23
02/15/12	11:15	0.31	_	-			_			10,044	483	665	0.23
02/15/12	11:25	0.29	_	33.62	33.16	29.79	31.58	29.92	31.18	10,051	490	675	0.24
02/15/12	12:00	0.33		_					_	10,051	490	675	0.23
												686	0.23
02/15/12	12:30	0.31							***	10,059	498		
02/15/12	12:45	0.33			_	_	_	***		10,065	504	694	0.24
02/15/12	13:45	0.32		33.60	33.17	29.71	31.56			10,067	506	697	0.23
02/15/12	15:30	0.33	-	-		_	_		_	10,082	521	717	0.23
02/15/12	16:15	_		33.57	33.11	29.76	31.56	29.91	31.10	2	_		
02/15/12	17:30	0.33		-				_		10,098	537	739	0.23
02/15/12	18:00	_		33.61	31.12	29.78	31.54	29.93	31.11	10,106	545	750	0.23
02/15/12	19:15	0.32	_	_		_	_			-	_		
02/15/12	20:00			33.65	33.15	29.80	31.58			_	_	_	
02/15/12	21:00	0.20		33.48	33.01	29.64	31.57			10,121	560	771	0.22
02/15/12	22:00	0.20	_	_		_				10,121	560	771	0.22
02/15/12	22:30	0.20		_	_	_	Name and Address of the Address of t	_		10,139	578	796	0.23
02/15/12	22:55	0.19			_	_			_	10,139	578	796	0.22
02/15/12	23:20	0.20		1-		_				10,139	578	796	0.22
02/15/12	23:45	0.20				_	_		_	10,144	583	803	0.22
02/16/12	0:10	0.20			_	_				10,152	591	814	0.22
02/16/12	0:30	0.19		33.66	33.14	29.83	29.57		_	10,152	591	814	0.22
02/16/12	1:35	0.20					_			10,152	591	814	0.22
02/16/12	2:00	0.20								10,152	591	814	0.22
				_			_		_				
02/16/12	2:20	0.19			_	_				10,160	599	825	0.22
02/16/12	2:45	0.19		33.71	33.05	29.77	31.58	-		10,160	599	825	0.22
02/16/12	3:10	0.18				_				10,168	607	836	0.22
02/16/12	3:35	0.20				_				10,175	614	845	0.22
02/16/12	3:55	0.19		_	-	-	_			10,175	614	845	0.22
02/16/12	4:20	0.20		33.62	33.14	29.81	31.60			10,182	621	855	0.22
02/16/12	5:40	0.20			_		_			10,182	621	855	0.21
02/16/12	6:15	0.20		33.75	33.15	29.72	31.65		-	10,185	624	859	0.21
02/16/12	6:40	0.20					_			10,191	630	868	0.21
02/16/12	7:00	0.19		_			_	-		10,198	637	877	0.21
02/16/12	7:25	0.20		33.75	33.19	29.82	31.68			10,198	637	877	0.21
02/16/12	8:30	0.21			_					10,198	637	877	0.21
02/16/12	9:15	0.20					-			10,214	653	899	0.21
02/16/12	10:15	_		33,77	33.19	29.81	31.70	30.05	31.25	10,214	653	899	0.21
02/16/12	12:00			33.70	32.92	29.82	31.62	29.91	31.12	10,214	653	899	0.21
02/16/12	15:40	0.20		33.60	32.74	29.42	31.53	29.83	31.01	10,214	653	899	0.20
02/16/12	16:20	0.20	_	_	_	-	_			10,214	653	899	0.19
02/16/12	17:45	0.20	_	33.60	32.96	29.62	31.54	29.89	31.05	10,237	676	931	0.20
02/16/12	19:45	0.20		33.61	33.58	29.75				10,252			
							31.56		_		691	952	0.20
02/16/12	21:45	0.20		33.61	33.07	29.72	31.55			10,260	699	963	0.19
02/16/12	22:10	0.20	_			-	_		_	10,260	699	963	0.19
02/16/12	22:35	0.19					_	_		10,268	707	974	0.19
02/16/12	22:55	0.20		-	-	_	_			10,268	707	974	0.19
02/16/12	23:20	0.20	_			_	-	_		10,275	714	983	0.19
02/16/12	23:45	0.20					_			10,283	722	994	0.20
02/17/12	0:05	0.20		33.64	33.13	29.75	31.58			10,283	722	994	0.20
02/17/12	1:20	0.20	_			_	_			10,283	722	994	0.19
02/17/12	1:45	0.20								10,291	730	1,005	0.19
					_	_							
02/17/12	2:05	0.18		- 22.64	22.04	- 20.70	24.50		_	10,291	730	1,005	0.19
02/17/12	2:25	0.20		33.64	33.01	29.70	31.59		_	10,298	737	1,015	0.19
02/17/12	2:45	0.20	_	_		_	_		_	10,298	737	1,015	0.19
02/17/12	3:10	0.20	_		-	_	_	_	_	10,298	737	1,015	0.19
02/17/12	3:35	0.18	-		_	_		_		10,306	745	1,026	0.19
02/17/12	3:55	0.20				_	_			10,306	745	1,026	0.19
02/17/12	4:20	0.20	_	33.67	33.10	29.77	31.57	_	_	10,313	752	1,036	0.19
02/17/12	5:25	0.20	_		_	_				10,313	752	1,036	0.19
02/17/12	6:00	0.20		_	_	-	_				752		
								_	-	10,313		1,036	0.19
02/17/12	6:30	0.20	_	33.71	32.96	29.68	31.55		-	10,321	760	1,047	0.19
02/17/12	7:00	0.20			_		_			10,329	768	1,058	0.19
02/17/12	8:00	0.21	-	33.70	33.05	29.75	31.64	30.01	31.20	10,329	768	1,058	0.19
02/17/12	8:30	0.20			_	_		_		10,337	776	1,069	0.19

TABLE 4 GROUNDWATER PUMPING TEST- OPERATIONAL DATA

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 3 of 3)

Date	Time	Water Flow from Well (gpm)	RW1 DTW (feet bgs)	MW4 DTW (feet bgs)	MW5 DTW (feet bgs)	MW6 DTW (feet bgs)	MW7 DTW (feet bgs)	MW8 DTW (feet bgs)	MW9 DTW (feet bgs)	Totalizer Reading (gallons)	Cumulative Gallons	Adjusted Cumulative Gallons	Calculated Water Flow (gpm)
02/17/12	8:55	0.20					_	_		10,344	783	1,078	0.19
02/17/12	9:00	0.20	_	_		_	_	_	_	10,344	783	1,078	0.19
02/17/12	9:15	_	_	33.70	33,10	29.75	31.62	29.99	31.16	10,344	783	1,078	0.19
02/17/12	10:00	0.20	_	_	_	_				10,344	783	1,078	0.19
02/17/12	10:20	0.20	-	_		_	_		·	10,352	791	1,089	0.19
02/17/12	10:35	0.20	_	33.70	33.12	29.76	31.63	29.99	31.16	10,352	791	1,089	0.19
02/17/12	11:30	0.20	_	_	_	_	_	_	_	10,360	799	1,100	0.19
02/17/12	11:50	0.20	33.84					_		10,360	799	1,100	0.19
02/17/12	13:15	_	_	33.71	33.08	29.65	31.60	29.90	31.11				-
											1	otal Gallons	1,022
									Avera	ge Groundwa	ater Flow Rate	(gal/minute)	0.18
											7	otal Gallons	1,100
									Avera	ge Groundwa	ater Flow Rate	(gal/minute)	0.19

Notes:

Time = Time on a 24-hour clock. feet bgs = Feet below ground surface.

Totalizer = Meter reading in gallons of water.

Adjusted Cumulative Gallons = Totalizer adjusted to reflect actual gallons processed.

gpm = Gallons per minute.
-- = Reading not taken.

TABLE 5 GROUNDWATER PUMPING TEST - GROUNDWATER ANALYTICAL RESULTS

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 1 of 1)

Sample ID	Sampling Date	Time	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	EDB (µg/L)	1,2-DCA (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	TAME (µg/L)
			11-3-7	11-0-7	11-0-7	11-3/	11-0-1	11-0-1	11-2-7	11-3-1	11-0-7	11-3-7	11-5-7	11-0-1
W-31-RW1-1	02/13/12	12:45	2,100b	2,400	910	4.5a	7.9	39	<10	<10	460	<10	<10	<10
W-37-RW1-2	02/13/12	17:00	2,300b	2,300	1,400	6.2	58	38	<10	<10	450	<10	<10	<10
W-30-RW1-3	02/13/12	18:30	2,400b	2,600	1,400	6.5	59	37	<10	<10	480	<10	<10	<10
W-30-RW1-4	02/14/12	6:10	2,500b	2,700	1,400	7.2	44	42	<10	<10	480	<10	<10	<10
W-30-RW1-1	02/14/12	18:00	2,200	2,200	820	5.8	20	31	<40	<40	1,100	<40	<40	<40
W-30-RW1-2	02/15/12	6:00	2,200	2,500	900	7.1	23	36	<40	<40	1,100	<40	<40	<40
W-30-RW1-3	02/15/12	19:30	3,300	3,900	1,900	18	56	99	<40	<40	1,700	<40	<40	<40
W-30-RW1-4	02/16/12	6:00	1,900	2,400	790	6.8	15	30	<40	<40	1,100	<40	<40	<40
W-30-RW1-1	02/16/12	18:00	3,800	2,100	1,100	10	35	53	<40	<40	1,500	<40	<40	<40
W-30-RW1-2	02/17/12	6:00	2,500	1,700	680	5.8	12	26	<40	<40	1,100	<40	<40	<40
W-30-RW1-3	02/17/12	11:30	2,600	1,800	750	7.4	20	41	<25	<25	1,100	<25	<25	<25

Notes:		
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl ether analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
µg/L	=	Micrograms per liter.
а	=	Analyte presence was not confirmed by second column or GC/MS analysis.
b	=	The chromatographic pattern does not match that of the specified standard.

TABLE 6 GROUNDWATER PUMPING TEST - DISSOLVED-PHASE HYDROCARBON REMOVAL

Former Exxon Service Station 70234 3450 35th Avenue Oakland, California (Page 1 of 1)

			Hours of	Totalizer		Average	Α	nalytical Resu	lts	TPHg F	Removal	Benzene Removal		MTBE F	Removal
Pumping Well	Date	Time	Operation	Reading	Adjusted	Flow Rate	TPHg	Benzene	MTBE	Per Period	Cumulative	Per Period	Cumulative	Per Period	Cumulativ
			(hours)	(gallons)	Gallons	(gpm)	(µg/L)	(µg/L)	(µg/L)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
W-31-RW1-1	02/13/12	12:45	1.00	9,565	6	·	2,100b	910	2,400	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
W-37-RW1-2	02/13/12	17:00	5.25	9,618	73	0.01	2,300b	1,400	2,300	0.0013	0.0013	0.0007	0.0007	0.0014	0.0014
W-30-RW1-3	02/13/12	18:30	6.75	9,618	0	0.00	2,400b	1,400	2,600	0.0000	0.0013	0.0000	0.0007	0.0000	0.0014
W-30-RW1-4	02/14/12	6:10	18.42	9,777	219	0.01	2,500b	1,400	2,700	0.0045	0.0058	0.0026	0.0033	0.0048	0.0063
W-30-RW1-1	02/14/12	18:00	30.25	9,930	211	0.01	2,200	820	2,200	0.0041	0.0099	0.0020	0.0052	0.0043	0.0106
W-30-RW1-2	02/15/12	6:00	42.25	10,004	102	0.01	2,200	900	2,500	0.0019	0.0118	0.0007	0.0059	0.0020	0.0126
W-30-RW1-3	02/15/12	19:30	55.75	10,106	140	0.01	3,300	1,900	3,900	0.0032	0.0150	0.0016	0.0076	0.0037	0.0163
W-30-RW1-4	02/16/12	6:00	66.83	10,182	105	0.01	1,900	790	2,400	0.0023	0.0173	0.0012	0.0088	0.0028	0.0191
W-30-RW1-1	02/16/12	18:00	78.83	10,237	76	0.00	3,800	1,100	2,100	0.0018	0.0191	0.0006	0.0094	0.0014	0.0205
W-30-RW1-2	02/17/12	6:00	90,83	10,313	105	0.01	2,500	680	1,700	0.0028	0.0219	0.0008	0.0101	0.0017	0.0222
W-30-RW1-3	02/17/12	11:30	96.33	10,360	65	0.01	2,600	750	1,800	0.0014	0.0232	0.0004	0.0105	0.0009	0.0231
				Totals:	1,100						0.0232		0.0105		0.0231

		Totals: 1,100
Notes:		
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B.
Benzene	=	Benzene analyzed using EPA Method 8260B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
Adjusted Gallons	=	Totalizer adjusted to reflect actual gallons processed.
gpm	=	Gallons per minute.
μg/L	=	Micrograms per liter.
lbs	=	Pounds.
	=	Not sampled/not measured.
а	=	Analyte presence was not confirmed by second column or GC/MS analysis.
b	=	The chromatographic pattern does not match that of the specified standard.

APPENDIX A

FIELD PROTOCOLS

Cardno ERI Field Protocol - Groundwater Pump Test

A groundwater pump test is performed to determine various aquifer parameters such as the optimal pumping rate, capture zone, storativity and hydraulic conductivity for use in evaluating dissolved phase transport and potential remediation system design. The pump test is performed by reviewing the lithology and selecting an extraction well central to the source area. The pump is placed in the well so that its intake is approximately 2 feet above the bottom of the well. Observation wells are chosen at various radial distances and flow directions from the extraction well. One observation well is chosen outside the anticipated cone of depression to monitor barometric pressure changes that occur during the test. Transducers with data loggers are placed in the observation wells one day in advance to allow the suspension cables to stretch and/or unwind. Transducers with a sensitivity range spanning the anticipated drawdowns are placed at a depth below the anticipated drawdowns for each observation well. The data logging program is initiated to ensure that all transducers are functioning and recording properly. A pump that can extract water at approximately twice the anticipated flow rate with a variable speed controller is placed in the extraction well. Prior to starting the test, water levels in the extraction and observation wells are measured to an accuracy of 0.01 foot using a water level meter.

Step-Drawdown Test

The pump, transducers, water level meter and sampling equipment are decontaminated or obtained new prior to starting the test. The water level meter is decontaminated using a three-bucket soap and water rinse each time before being inserted into a new well.

A step-drawdown test is performed initially to determine the optimum pumping rate for the extraction well. The optimum pumping rate is defined as the rate that produces a drawdown of approximately 75% of the available water column (pump intake depth minus water table depth). The test is performed by pumping at 3 to 5 flow rates at successively higher rates. Pumping rates are measured using an accurate flow meter or a bucket and stopwatch. The speed of the pump is controlled to maintain a constant flow rate during each step of the test. Generally, the pumping rates are selected at a minimum of 33%, 67% and 100% of the anticipated optimal pumping rate. However, each subsequent pumping rate depends on the drawdown in the pumping well at the current pumping rate. Water levels in the extraction well are monitored closely and the pumping rate is adjusted accordingly. Larger steps between pumping rates are used if the change in stabilized water levels is minimal or if greater drawdown in the extraction well is desired. The pumping rate is maintained until the water level in the pumping well begins to stabilize (difference between three successive readings is less than 10% of total drawdown) or for a minimum of 15 minutes at each rate. Water levels in the observations wells are recorded during each step of the test using the transducers and data logger, and are periodically checked with a water level indicator. The results of the step-drawdown test are used to determine the optimum sustainable rate for the constantrate pump test.

Constant-Rate Pumping Test

Water levels are allowed to recover from the step-drawdown test prior to starting the constant-rate pumping test. The constant-rate pump test is performed by pumping from the extraction well at the optimal pumping rate determined from the step-drawdown test and measuring the drawdown in the surrounding observation wells. Data loggers are programmed to record information more frequently (every few seconds) during the initial phase of this test progressing to less frequently (every 15 minutes) during later phases. The test continues until the water depths (unconfined aquifers) or piezometric heads (confined aquifers) in the observations wells have stabilized (difference between three successive readings is less than 10% of total drawdown). The speed of the pump is controlled to maintain the selected constant flow rate. Tighter soils (silt and clay) have longer tests than coarser soils (sand and gravel) due to delayed drainage, slower pump rates, etc. Upon completion of the test, the pump is shut off, and the water levels in the observation wells and pumping well are monitored and recorded until they recover to near initial static levels. Equipment is decontaminated before leaving the site

FN: Cardno ERI Field Protocol - Pump Test - v1

Groundwater Disposal

Extracted groundwater is stored on site in a tank and subsequently treated at a client- and regulatory-approved facility, treated with a permitted mobile carbon treatment system, or transported off site in a truck or trailer-mounted tank and disposed of in accordance with regulatory requirements. Water samples are collected and analyzed as appropriate under chain-of-custody protocol.

APPENDIX B

BORING LOGS

				Car ERI	dı	no	BORING L			Date Drilled: Drilling Co.: Drilling Method: Sampling Metho	: Cas : Holl	22/2011 icade Drilling ow Stem Auger t Spoon
Site Log Rev	ject N e: ged E viewed nature	By: d By:	:	Former Ex 3450 35th A Vincent T. B	on Sen Avenue, Battaglia	vice Station Oakland, a 2.6.8737	CA		(Page 2 of 2)	Borehole Diame Casing Diameter Location N-S Location E-W Total Depth: First GW Depth:	ter: :10" :: :4" :211	5521.4 9882.6 ogs
S Depth (ft)	Blow Cours	OVMIPID	(ymdd)	Column	USCS		le Condition No Recovery Interval Not Sampled Described Sample Preserved Sample	Well: RW1 TOC Elev.: 195.15				
25-	111 12	48 5 187 >999 231			CL CL	CLAY wit moist, lo subangu CLAY wit low plasticarbonate (65,0,25, CLAY with fine-to co	ith Sand: brown with graular sand (80,0,20,0) th Sand and Gravel: brown plasticity, stiff, trace callar sand, subangular gravity, fine-to coarse-graine precipitates, fine-grain 10) h Sand: reddish brown, arse-grained sand, subangular sand (90,0,10,0), angular sand (90,0,10,0).	wn wisted grands	ith greenish gray non carbonate precipists,0,25,10) th gray mottling, drand, subangular savel, subangular gray low to medium plar sand (80,0,20,0)	nottling, itates, amp to moist, and, calcium ravel asticity,	.V.	Hydrated Bentonite Chips 4" diameter stainless steel blank riser - Sand Pack #2/12 - 4-inch dia. stainless steel continuous screen 0.020"
	11 9 9 7 9 10 10 11 9 11	343 806			CL fi	irm, fine-i iravel (65 otal Depl	n Sand and Gravel: redd to coarse-grained sand, ,0,25,10) th of Boring at 40 fbgs, 1 ndwater Encountered at	suba:	ngular sand, fine-g 11. 1410.	w plasticity, irained		—4" diameter stainless steel end cap

Project No Site: Logged B	te: : 3450 35th Avenue, Oakla gged By: : Heidi L. Dieffenbach-Carl eviewed By: : Heidi L. Dieffenbach-Carl			Oakland, n-Carle, F	akland, California Locat Carle, P.G. #6793 Locat				: Hollo	g Drilling w-Stem t Push 577.4	g Company Auger	
Signature (tt) (tt)		:_1=	Column	NSCS	Samp	ple Condition No Recovery Sampled Interval Described Sample Preserved Sample	_	ncount	First GW Depth: ered Water: 37' untered Water: NA	: 37 fbg	gs	
25	0.0	x x		sc	vellow	y SAND with Gravel (conting ish brown (10YR 4/6) dampers sand grain colors - black,	o, fine, angular t	o suba	ingular gravel,			— Neat Ce
30-	0.0	**		GC	(10YR (30,15,	Clayey GRAVEL with Sand: fine- to coarse-grained, yellowish brown 10YR 4/4), damp, subangular to angular, coarse-grained sand 30,15,25,30)						— 2-inch Scheduld PVC Cas
35-	0.0	88		sw	(10YR (20,15,	lly SAND: medium- to coars 4/4), moist, subangular, gr ,40,25) om 37 feet bgs.	se-grained, dark avel angular to s	yellow subanç	vish brown gular	_		−#3 Sand
40-	0.0	∞ ×		CL	Sandy fine- to	CLAY: dark yellowish brow medium-grained sand, trac	n (10YR 4/6), da ce coarse-graine	amp, loed san	ow plasticity, d			-2-inch Schedule 0.020-inc Slotted P
45		88			feet bg:	d with a hand auger, air kni s on 02/25/2009. Depth = 45 feet bgs, 13:00, (nd vac	cuum to 6.3			
50-												

Project						ce Station 70234	BORING LOG	6 MW9 (Page 2 of 2)	Date Drilled: Drilling Co.: Drilling Method: Sampling Method: Borehole Diameter: Casing Diameter:	: 2"		
Site: Logged Review Signatu	ved By	<i>r</i> :	: Heid	li L. Dieffe	nbach	Dakland, Californi -Carle, P.G. #679 -Carle, P.G. #679	3 / Paula Sime		Location N-S Location E-W Total Depth: First GW Depth:	: 211551 : 606993 : 40 fbgs : 35 fbgs	33.1	
Depth (ft)	Blow Count	OVM/PID (pmv)	Sample	Column	USCS	Sample Descrit	No Recovery First Encountered Water: 35'					
25-	ă	6.6	ß	ŏ	ž							
25-					sc	Clayey SAND well graded, to	: fine- to medium-grair race gravel and silt, ve	ed, dark yellowish l ry dense (25,5,65,5	brown, damp,		- Neat Cemer	
30-			****		CL	Sandy CLAY: fine- to mediu	dark yellowish brown, m-grained, well graded	damp to moist, med sand (75,0,25,0)	dium plasticity,		2-inch Schedule 40 PVC Casing	
						moist to wet (a	ay: fine- to coarse-grai along clasts boundarie: m loose (10,0,85,5)	ned, dark yellowish s), well graded, sub	brown, very angular, trace		-#3 Sand	
35-			****		sw	@35 feet bgs:	wet			•	2-inch Schedule 40 0.020-inch Slotted PVC	
40					CL	coarse-graine	dark yellowish brown, d, poorly graded sand,	trace gravel (70,0,2	27,3)			
-						Boring widene	eet bgs with hand auge od to 10-inches and de oum truck on 2/25/2009	epened to 8 fbgs us	ing air/water			
							40 fbgs, 10:45 03/05/2					
45-												
77												
50-												

APPENDIX C LABORATORY ANALYTICAL REPORTS

CALSCIENCE

WORK ORDER NUMBER: 12-02-0940

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Cardno ERI

Client Project Name: ExxonMobil 70234 / 022476

Attention: Janice Jacobson

601 North McDowell Blvd. Petaluma, CA 94954-2312

Cecile & ex Saia

Approved for release on 02/27/2012 by: Cecile deGuia

Project Manager

ResultLink >

Email your PM >

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety. Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

Contents

Client Project Name: ExxonMobil 70234 / 022476

Work Order Number: 12-02-0940

1	Client Sample Data	3
	1.1 EPA 8015B (M) TPH Gasoline (Aqueous)	3
	1.2 EPA 8021B BTEX (Aqueous)	5
	1.3 EPA 8260B Volatile Organics (Aqueous)	6
2	Quality Control Sample Data	8
	2.1 MS/MSD and/or Duplicate	8
	2.2 LCS/LCSD	12
3	Glossary of Terms and Qualifiers	16
4	Chain of Custody/Sample Receipt Form	17

Cardno ERI 601 North McDowell Blv

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method:

02/15/12

12-02-0940

EPA 5030C EPA 8015B (M)

Page 1 of 2

		–		
Proiect:	Exxon//	lohil 702:	34/	122476

Toject. Exxoniviodii 702	2347022470						F	age 1 01 Z
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-31-RW1-1		12-02-0940-1-D	02/13/12 12:45	Aqueous	GC 56	02/16/12	02/16/12 21:34	120216B01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Units			
TPH as Gasoline	2100	50	1	HD	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	100	38-134						
W-37-RW1-2		12-02-0940-2-D	02/13/12 17:00	Aqueous	GC 56	02/16/12	02/16/12 22:06	120216B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Units			
TPH as Gasoline	2300	50	1	HD	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	102	38-134						
W-30-RW1-3		12-02-0940-3-D	02/13/12 18:30	Aqueous	GC 56	02/16/12	02/16/12 22:37	120216B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	2400	50	1	HD	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	102	38-134						
W-30-RW1-4		12-02-0940-4-F	02/14/12 06:10	Aqueous	GC 56	02/16/12	02/16/12 23:09	120216B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	2500	50	1	HD	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	102	38-134						

DF - Dilution Factor

Qual - Qualifiers

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method:

02/15/12

12-02-0940 EPA 5030C

EPA 8015B (M)

Project: ExxonMobil 70234 / 022476

Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Method Blank		099-12-436-7,146	N/A	Aqueous	GC 56	02/16/12	02/16/12 11:32	120216B01
Parameter TPH as Gasoline	Result ND	<u>RL</u> 50	<u>DF</u> 1	<u>Qual</u> U	<u>Units</u> ug/L			
Surrogates: 1,4-Bromofluorobenzene	<u>REC (%)</u> 92	Control Limits 38-134		Qual				

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

02/15/12

Work Order No:

12-02-0940

Preparation: Method:

EPA 5030C EPA 8021B

Units:

ug/L

Project: ExxonMobil 70234 / 022476

Page 1 of 1

Troject: Exxemition 70											ge i oi i
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared		te/Time alyzed	QC Batch ID
W-31-RW1-1			12-02-	0940-1-D	02/13/12 12:45	Aqueous	GC 21	02/16/12		/17/12 1:07	120216B03
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	910	2.5	5		Ethylbenzene			7.9	2.5	5	
Toluene	4.5	2.5	5	LD	Xylenes (total)			39	5.0	5	
Surrogates:	REC (%)	Control Limits	Qua	<u>al</u>	, , ,						
1,4-Bromofluorobenzene	97	70-130									
W-37-RW1-2			12-02-	0940-2-F	02/13/12 17:00	Aqueous	GC 21	02/16/12		/17/12 2:53	120216B03
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	1400	2.5	5		Ethylbenzene			58	2.5	5	44,0001
Toluene	6.2	2.5	5		Xylenes (total)			38	5.0	5	
Surrogates;	REC (%)		Qua	<u>al</u>	, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				5.0	3	
1,4-Bromofluorobenzene	99	70-130									
W-30-RW1-3			12-02-0	0940-3-F	02/13/12 18:30	Aqueous	GC 21	02/16/12		17/12 3:28	120216B03
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	1400	2.5	5		Ethylbenzene			59	2.5	5	4,001
Toluene	6.5	2.5	5		Xylenes (total)			37	5.0	5	
Surrogates:	REC (%)	Control Limits	Qua	1	,			•	0.0	J	
1,4-Bromofluorobenzene	96	70-130									
W-30-RW1-4			12-02-0	940-4-D	02/14/12 06:10	Aqueous	GC 21	02/16/12		17/12 I:03	120216B03
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL	DE	Qual
Benzene	1400	2.5	5		Ethylbenzene			44	2.5	5	383351
Toluene	7.2	2.5	5		Xylenes (total)			42	5.0	5	
Surrogates:	REC (%)	Control Limits	Qua	<u>l</u>	, , , , , , , , , , , , , , , , , , , ,			,_	0.0	J	
1,4-Bromofluorobenzene	99	70-130									
Method Blank			099-12-	667-1,379	N/A	Aqueous	GC 21	02/16/12		16/12 3:20	120216B03
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1	U	Ethylbenzene			ND	0.50		
oluene	ND	0.50	1	Ü	Xylenes (total)			ND	1.0	1	U
Surrogates:		<u>Control</u>	Qual		A TOTOS (LOTAL)			140	1.0	,	2
,4-Bromofluorobenzene	83	<u>Limits</u> 70-130									

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

02/15/12

Work Order No:

12-02-0940 EPA 5030C

Preparation: Method:

EPA 8260B

Units:

ug/L

Project: ExxonMobil 70234 / 022476

Page 1 of 2

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
W-31-RW1-1			12-02-0	0940-1 <i>-</i> A	02/13/12 12:45	Aqueous	GC/MS FFF	02/16/12	02/17 18:		120217L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Methyl-t-Butyl Ether (MTBE)	2400	50	100		Tert-Amyl-Me	ethyl Ether (1	ΓAME)	ND	10	20	U
Tert-Butyl Alcohol (TBA)	460	100	20		1,2-Dibromoe	ethane		ND	10	20	U
Diisopropyl Ether (DIPE)	ND	10	20	U	1,2-Dichloroe	ethane		ND	10	20	U
Ethyl-t-Butyl Ether (ETBE)	ND	10	20	U							
Surrogates:	REC (%)	Control Limits	Qua	<u>l</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
1,4-Bromofluorobenzene	99	68-120			Dibromofluor	omethane		113	80-127		
1.2-Dichloroethane-d4	108	80-128			Toluene-d8	Offictions		104	80-120		
W-37-RW1-2		00 120	12-02-0	940-2-A	02/13/12	Aqueous	GC/MS FFF	V-SCm	02/17		120217L01
					17:00				18:4	48	
Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Methyl-t-Butyl Ether (MTBE)	2300	50	100		Tert-Amyl-Me	ethyl Ether (1	TAME)	ND	10	20	U
Tert-Butyl Alcohol (TBA)	450	100	20		1,2-Dibromoe		,	ND	10	20	U
Diisopropyl Ether (DIPE)	ND	10	20	U	1,2-Dichloroe	thane		ND	10	20	U
Ethyl-t-Butyl Ether (ETBE)	ND	10	20	U							
Surrogates:	REC (%)	Control Limits	Qua	<u>l</u>	Surrogates:			REC_(%)	Control Limits	C	tual
1,4-Bromofluorobenzene	97	68-120			Dibromofluor	omethane		115	80-127		
1,2-Dichloroethane-d4	109	80-128			Toluene-d8			103	80-120		
W-30-RW1-3			12-02-0	940-3-A	02/13/12 18:30	Aqueous	GC/MS FFF	02/16/12	02/17 19:		120217L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Methyl-t-Butyl Ether (MTBE)	2600	50	100		Tert-Amyl-Me	thyl Ether /T	ΔME)	ND	10	20	U
Tert-Butyl Alcohol (TBA)	480	100	20		1,2-Dibromoe	•	CML	ND	10	20	U
Diisopropyl Ether (DIPE)	ND	100	20	U	1,2-Dichloroe			ND	10	20	Ü
Ethyl-t-Butyl Ether (ETBE)	ND	10	20	Ü	.,2 2 10 11 10 10 10 10 10 10 10 10 10 10 10				.0	20	Ü
Surrogates:	REC (%)	Control Limits	Qua	-	Surrogates:			REC (%)	Control Limits	<u>Q</u>	ual
1.4-Bromofluorobenzene	99	68-120			Dibromofluoro	nmethane		119	80-127		
1.2-Dichloroethane-d4	113	80-128			Toluene-d8	JI I GUI AN I C		103	80-120		
1,2-DICHIOLOGUIANE-04	110	00-120			i oluene-ud			100	00-120		

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method:

Units:

02/15/12

12-02-0940

EPA 5030C

EPA 8260B

ug/L

Project: ExxonMobil 70234 / 022476 Page 2 of 2

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/		QC Batch ID			
W-30-RW1-4				0940-4-A	- Contractor - Con		GC/MS FFF		02/17 19:	7/12	120217L01			
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual			
Methyl-t-Butyl Ether (MTBE)	2700	50	100			ethyl Ether (1	(AME)	ND	10	20	U			
Tert-Butyl Alcohol (TBA)	480	100	20		1,2-Dibromo	,	,	ND	10	20	Ü			
Diisopropyl Ether (DIPE)	ND	10	20	U	1,2-Dichloro	ethane		ND	10	20	U			
Ethyl-t-Butyl Ether (ETBE)	ND	10	20	U										
Surrogates:	REC (%)	Control Limits			Surrogates:			REC (%)	Control Limits	2	<u>Qual</u>			
1.4-Bromofluorobenzene	99	68-120			Dibromofluoi	romethane		116	80-127					
1,2-Dichloroethane-d4	109	80-128			Toluene-d8			104	80-120					
Method Blank			099-12	-884-796	N/A	Aqueous	GC/MS FFF	02/16/12	02/16		120216L01			
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual			
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U		ethyl Ether (T	AME)	ND	0.50	1	U			
Tert-Butvl Alcohol (TBA)	ND	5.0	1	Ü	1.2-Dibromo	ND	0.50	1	Ü					
Diisopropyl Ether (DIPE)	ND	0.50	1	Ü	1,2-Dichloro			ND	0.50	1	Ŭ			
Ethyl-t-Butyl Ether (ETBE)	ND	0.50	1	Ü	TIE BIOTHOTO	otriario		110	0.00	'	Ü			
Surrogates:	REC (%)		Qua	_	Surrogates:			REC (%)	Control Limits	<u>C</u>	Qual			
1,4-Bromofluorobenzene	98	68-120			Dibromofluor	romethane		101	80-127					
1,2-Dichloroethane-d4	99	80-128			Toluene-d8	orriotrio.		101	80-120					
Method Blank			099-12	-884-797	N/A	Aqueous	GC/MS L	02/17/12	02/17 14:		120217L01			
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	<u>DF</u>	Qual			
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	-	ethyl Ether (T	AME)	ND	0.50	1	U			
Tert-Butyl Alcohol (TBA)	ND	5.0	1	Ü	, , ,		ND	0.50	1	Ü				
Diisopropyl Ether (DIPE)	ND	0.50	1	Ŭ	1,2-Dichloro			ND	0.50	i	Ü			
Ethyl-t-Butyl Ether (ETBE)	ND	0.50	1	Ū	,— · - ·					•				
Surrogates:	REC (%)	Control Limits	Qua	<u>tl</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>			
1,4-Bromofluorobenzene	91	68-120			Dibromofluoromethane			87	80-127					
1,2-Dichloroethane-d4	97	80-128			Toluene-d8			93	80-120					
_ Didinglocation of					. 3140110 40									

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 02/15/12 12-02-0940 EPA 5030C EPA 8015B (M)

Project ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrumen		ate pared	Date Analyzed		ISD Batch umber
12-02-0935-2	Aqueous	GC 56	02/1	6/12	02/16/12	120	216801
Parameter	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	2000	99	97	68-122	1	0-18	

MANA_

RPD - Relative Percent Difference, CL - Control Limit

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 02/15/12 12-02-0940 EPA 5030C EPA 8021B

Project ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrumen		ate pared	Date Analyzed	MS/MSD Batch Number				
W-31-RW1-1	Aqueous	GC 21	02/1	6/12	02/17/12	120216B01				
<u>Parameter</u>	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers			
Benzene	500.0	83	100	57-129	6	0-23				
Toluene	500.0	91	93	50-134	2	0-26				
Ethylbenzene	500.0	90	92	58-130	2	0-26				
Xylenes (total)	1500	90	93	58-130	3	0-28				

AMAMA.

RPD - Relative Percent Difference , CL - Control Limit

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 02/15/12 12-02-0940 EPA 5030C EPA 8260B

Project ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrumen		ate pared	Date Analyzed		ISD Batch umber
12-02-0989-1	Aqueous	GC/MS FF	F 02/1	6/12	02/16/12	120	216S01
Parameter	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	10.00	98	97	76-124	1	0-20	
Toluene	10.00	98	97	80-120	1	0-20	
Ethylbenzene	10.00	91	89	78-126	2	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	96	95	67-121	1	0-49	
Tert-Butyl Alcohol (TBA)	50.00	132	138	36-162	3	0-30	
Diisopropyl Ether (DIPE)	10.00	105	105	60-138	0	0-45	
Ethyl-t-Butyl Ether (ETBE)	10.00	97	96	69-123	0	0-30	
Tert-Amyl-Methyl Ether (TAME)	10.00	89	88	65-120	1	0-20	
Ethanol	100.0	95	88	30-180	8	0-72	
1,2-Dibromoethane	10.00	90	89 80-120		1	0-20	
1,2-Dichloroethane	10.00	90	89	80-120	1	0-20	

RPD - Relative Percent Difference , CL - Control Limit

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 02/15/12 12-02-0940 EPA 5030C EPA 8260B

Project ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrumen		ate pared	Date Analyzed		/ISD Batch lumber
12-02-1006-1	Aqueous	GC/MS L	02/1	7/12	02/17/12	120	217801
Parameter	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	10.00	91	93	76-124	2	0-20	
Toluene	10.00	96	97	80-120	1	0-20	
Ethylbenzene	10.00	103	101	78-126	2	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	84	87	67-121	4	0-49	
Tert-Butyl Alcohol (TBA)	50.00	122	185	36-162	26	0-30	HX
Diisopropyl Ether (DIPE)	10.00	88	88	60-138	1	0-45	
Ethyl-t-Butyl Ether (ETBE)	10.00	85	87	69-123	2	0-30	
Tert-Amyl-Methyl Ether (TAME)	10.00	90	94	65-120	4	0-20	
Ethanol	100.0	109	117	30-180	7	0-72	
1,2-Dibromoethane	10.00	95	89	80-120	6	0-20	
1,2-Dichloroethane	10.00	98	98	80-120	0	0-20	

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 12-02-0940 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 70234 / 022476

099-12-436-7,146	Aqueous	GC 56	02/16/12	02/16/12	120216B01
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number

Parameter	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	2000	93	95	78-120	2	0-10	

RPD - Relative Percent Difference ,
7440 Lincoln

CL - Control Limit

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-02-0940 EPA 5030C EPA 8021B

Project: ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	f	LCS/LCSD Batch Number	
099-12-667-1,379	Aqueous	GC 21	02/16/12	02/16/12		120216B03	
<u>Parameter</u>	SPIKE ADI	DED_LCS %REC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	100.0	97	99	70-118	2	0-9	
Toluene	100.0	91	93	66-114	1	0-9	
Ethylbenzene	100.0	91	93	72-114	2	0-9	
Xylenes (total)	300.0	91	93	74-116	2	0-9	

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: N/A 12-02-0940 EPA 5030C EPA 8260B

Project: ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate alyzed	LCS	1	
099-12-884-796	Aqueous	Aqueous GC/MS FFF		2 02/1	6/12	1	120216L01	
Parameter	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	10.00	90	91	80-120	73-127	1	0-20	
Toluene	10.00	87	89	80-120	73-127	2	0-20	
Ethylbenzene	10.00	80	81	80-120	73-127	2	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	86	87	69-123	60-132	1	0-20	
Tert-Butyl Alcohol (TBA)	50.00	78	82	63-123	53-133	5	0-20	
Diisopropyl Ether (DIPE)	10.00	93	95	59-137	46-150	1	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	87	88	69-123	60-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	82	82	70-120	62-128	0	0-20	
Ethanol	100.0	89	90	28-160	6-182	2	0-57	
1,2-Dibromoethane	10.00	84	85	79-121	72-128	1	0-20	
1,2-Dichloroethane	10.00	84	85	80-120	73-127	2	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

RPD - Relative Percent Difference, CL - Control Limit

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

N/A 12-02-0940 EPA 5030C EPA 8260B

Project: ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date alyzed	LCS	า	
099-12-884-797	Aqueous	ueous GC/MS L		2 02/1	7/12	1	20217L01	
Parameter	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	10.00	95	91	80-120	73-127	4	0-20	
Toluene	10.00	98	95	80-120	73-127	2	0-20	
Ethylbenzene	10.00	100	98	80~120	73-127	2	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	88	86	69-123	60-132	2	0-20	
Tert-Butyl Alcohol (TBA)	50.00	99	101	63-123	53-133	2	0-20	
Diisopropyl Ether (DIPE)	10.00	89	88	59-137	46-150	1	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	87	86	69-123	60-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	96	94	70-120	62-128	3	0-20	
Ethanol	100.0	107	107	28-160	6-182	0	0-57	
1,2-Dibromoethane	10.00	101	103	79-121	72-128	2	0-20	
1,2-Dichloroethane	10.00	103	100	80-120	73-127	3	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

RPD - Relative Percent Difference , CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 12-02-0940

Qualifier	Definition
AZ	Surrogate compound recovery was out of control due to matrix interference. The
¥	associated method blank surrogate spike compound was in control and, therefore, the
	sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BA	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD
	was in control and, therefore, the sample data was reported without further clarification.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter
	concentration in the sample exceeding the spike concentration by a factor of four or
B	greater.
BU	Sample analyzed after holding time expired.
DF _	Reporting limits elevated due to matrix interferences.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control
	due to a matrix interference effect. The associated batch LCS/LCSD was in control and,
HD	hence, the associated sample data was reported without further clarification.
HO	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
HT	High concentration matrix spike recovery out of limits
HX	Analytical value calculated using results from associated tests.
ПХ	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control
	and, therefore, the sample data was reported without further clarification.
IL	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the
·	laboratory method detection limit. Reported value is estimated.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The
	associated sample was non-detected. Therefore, the sample data was reported without
	further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was
	based on additional GC/MS characteristics.
RU	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit
22	range.
SG SN	A silica gel cleanup procedure was performed.
	See applicable analysis comment.
U	Undetected at detection limit.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not
	corrected for % moisture. All QC results are reported on a wet weight basis.
	MPN - Most Probable Number

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

Phone: 714-895-5494

Fax: 714-894-7501

12-02-0940

Consultant Nar	ne: Cardno	ERI														_ A	\cco	unt	#:	NA					P	O#:			4	514	6951	88		
Consultant Addre	ss: <u>601 N.</u>	McDowe	ll Boulev	rard												_ lr	iovr	ce 1	Го:	Jen	nifer S	edlac	hek											
Consultant City/State/2	ip: Petalui	na, Califo	ornia, 94	954												_ F	Repo	ort 1	Го:	Jan	ce Jac	obsc	n											
ExxonMobil Project M	gr: <u>Jennif</u>	er Sedlad	chek												F	2гој	ect l	Nan	ne:	02 2	476 1	зх												
Consultant Project M	gr: <u>Janice</u>	Jacobso	on											Ex	cxon	Mol	bil S	ite	#:	702	234						M	ajor Pr	oject (#	AFE	#):			
Consultant Telephone Numb	er: <u>707-76</u>	6-2000				Fa	x No	.: 7	07-7	89-0)414	1				Site	Ad	dres	ss:	345	0 35th	Aver	iue											
Sampler Name (Pri	11) Ano	lock	H	ZZ.	en									Si	te Ci	ity, S	Stat	e, Z	ip:	Oak	land, (Califo	rnia											
Sampler Signatu	re:	wd	- Lie	20	n	1							_												nme	enta	l He	alth Der	artmen	t				
	4								Pre	eser	vativ	/e	_	T		Mat		_		7	() II		-	_		_	For:		-	7				
Samble ID	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	ethenol	Sodium Bisuffale	HOE	SO, Plestic	SO, Gass		Der	one	Groundwater	rinking Water	ndpe	75		ther (specify): Distilled Water	TPHg 8015B	EX 8021B	OXYGENATES RORDE	_							RUSH TAT (Pro-Schedule	ay TAT	Standard 10-day TAT	b Date of Report
			_	10	0	1	H	あす	Z	Н	- -	- 0		Ž	छ ३	10	23	å	[4	δ	上	12	10	4	1	╀	1			_	킬	3	8	ă
W-31-RW1-1 RW1	2-13	1245	6V				Н	1	4	Ц	4	1	Н	4	X	1	Ц		Ц	Ц	х	1×	1	L	L	L	┸						X	
W- 37 -RW1-2 RW1	2-13		6V	\vdash		<u> </u>	Ц	1	4	Ц	1	1	Ц	4	x	L	Ц		Ц		х	_ ×	1	L	L								x	
W- 30 -RW1-3 RW1	2-13		6V				Ц	J.	Ĺ	Ц		1	Ц		x		П		Ш		х	×	b										x	
W- 30-RW1-4 RW1	2-14	0610	6V				Ш	b	4	Ц			П		x						x	×	,			T				П	П		x	
							Ш					T				Γ	П		П			T	Τ	Τ	Τ	Т	T			T	\neg		\neg	
					i		П	Т	Т	П	T	T	П	1	T	T	П		П			T	T	Τ	T	T	Т			┪	\neg	\neg	\neg	
							П	T	T	П		T	П	1	1	T	П		П			\top	T	T	t	T	\top			7	┪	7	7	
Comments/Special Instructions: PLEASE E-MAIL ALL PDF FILES norcallabs@eri-us.com; ERI-EIMLABS@ GLOBAL ID # T06019757161		<u>m</u>				Oxys										,2-0	DCA	, DII	PE.		orator Tempe Sampl VOCs	ratur e Co	e U	pon ners	Rec	ct?				,	Y Y		7 7	
Relinguished by	2/1	Pate 14/12	/23,	5		20	m		/		EZ			2/	Date /4/	1/2	10	Time 23			Deliver													
Relinguished py: In Mally TO GO	2/14)ale	773		Rece	ived b	y (La		eréor A -			~			Date	€		Time	7	Leve Site Proj	Specifi	c - if	yes, or a	plea	ise a	ittaci ecific	h pre c inst	-schedu ructions	le w/ Te	stAm	neric	a		

〈WebShip〉〉〉〉〉 COCCUSE STATE OF STREET 800-322-5555 www.gso.com

Ship From: ALÁN KEMP CAL SCIENCE- CONCORD

5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL

7440 LINCOLN WAY **GARDEN GROVE, CA 92841**

COD: \$0.00

Reference:

STANTEC, CARDNO ERI

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED

518456903 Tracking #:

GARDEN GROVE

D92841A

Print Date: 02/14/12 15:37 PM Package 1 of 1

NPS

Send Label To Printer

☑ Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

WORK ORDER #: 12-02- 4 4 0

SAMPLE RECEIPT FORM

Cooler <u>/</u> of <u>/</u>

CLIENT: CAIRUNO ERP	DATE:	02/15/1	12
TEMPERATURE: Thermometer ID: SC3 (Criteria: 0.0 °C - 6.0 °C, not Temperature/	Blank Blank Blank Blank Blank Blank Blank Blank Blank	□ Sample ng. Initial:	br.
CUSTODY SEALS INTACT: Cooler		Initial:	ps PT
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples	* /	No N/A	
COC document(s) received complete			I
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sample container label(a) consistent with COC			
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition			
Proper containers and sufficient volume for analyses requested Analyses received within holding time	. /		
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 ho			/ :
Proper preservation noted on COC or sample container		_	
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	П		
Tedlar bag(s) free of condensation CONTAINER TYPE:			/
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () En	Cores [®] □TerraC	cores® □	
Water: □VOA 🗹 VOAh □VOAna₂ □125AGB □125AGBh □125A	GBp □1AGB □	l1AGB na₂ □1AG	 3Bs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250C			
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂			
Air: ☐Tedlar® ☐Summa® Other: ☐ Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Ba Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: Z	g E: Envelope Re	eviewed by:?S	

WORK ORDER #: 12-02- 9 9 9 0

SAMPLE ANOMALY FORM

SAMPL	ES - CO	NTAIN	ERS & L	ABELS:	,		Comm	ents:	F:	
Sam Hold Insu Impr No p Sam Sam Sam Sam One	ing time fficient of fficient fficient of	eceived e expire quantition ntainer(eservati tive not els illegil el(s) do r elD elforma ntainer(is tainer(s) container w in vol g (Not tr g (transf	but NOT d - list sa es for ana es for ana es) used - ve used - ed on CO ble - note not match me Collect ation s) comproi in sample not labe er(s) com ume ansferred ferred int	- list test C or label - test/contain COC - Note cted mised - Note container	coc nd test est list test of the type e in common test Note in common test e bag sul e Tedlar edlar edlar Ba	ments ments comments bmitted) Bag*) ag*)				
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont.		Analysis
ı	C,F	6								
	(t									
Comment	ts:	te -		112-12-12-12-12-12-12-12-12-12-12-12-12-					TW00100	
*Transferr	ed at Clie	ent's requ	est.				In	itial / Da	te: <u>P7</u>	02/15/12
									sc	OP T100_090 (08/31/11)

CALSCIENCE

WORK ORDER NUMBER: 12-02-1105

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Cardno ERI

Client Project Name: ExxonMobil 70234 / 022476

Attention: Janice Jacobson

601 North McDowell Blvd. Petaluma, CA 94954-2312

Cecile & ex Saia

Approved for release on 02/29/2012 by: Cecile deGuia

Project Manager

ResultLink >

Email your PM >

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

Contents

Client Project Name: ExxonMobil 70234 / 022476

Work Order Number: 12-02-1105

1	Client Sample Data	3
	1.1 EPA 8015B (M) TPH Gasoline (Aqueous)	
	1.2 EPA 8021B BTEX (Aqueous)	
	1.3 EPA 8260B Volatile Organics (Aqueous)	6
2	Quality Control Sample Data	8
	2.1 MS/MSD and/or Duplicate	8
	2.2 LCS/LCSD	11
3	Glossary of Terms and Qualifiers	14
4	Chain of Custody/Sample Receipt Form	15

Cardno ERI 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received:

Work Order No: Preparation:

Method:

02/17/12 12-02-1105 **EPA 5030C**

EPA 8015B (M)

Project: ExxonMobil 70234 / 022476

Page 1 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-30-RW1-1		12-02-1105-1-F	02/14/12 18:00	Aqueous	GC 22	02/20/12	02/20/12 15:26	120220B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	2200	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	95	38-134						
W-30-RW1-2		12-02-1105-2-F	02/15/12 06:00	Aqueous	GC 22	02/20/12	02/20/12 17:03	120220B01
Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	2200	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	90	38-134						
W-30-RW1-3		12-02-1105-3-F	02/15/12 19:30	Aqueous	GC 22	02/20/12	02/20/12 18:08	120220B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	3300	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	97	38-134						
W-30-RW1-4		12-02-1105-4-F	02/16/12 06:00	Aqueous	GC 22	02/20/12	02/20/12 17:35	120220B01
Parameter	Result	<u>RL</u>	DF	Qual	Units			
TPH as Gasoline	1900	50	1	<u>squal</u>	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	88	38-134						

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method:

02/17/12

12-02-1105 EPA 5030C

EPA 8015B (M)

Project: ExxonMobil 70234 / 022476

Page 2 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-436-7,154	N/A	Aqueous	GC 22	02/20/12	02/20/12 12:42	120220B01
Parameter TPH as Gasoline	Result ND	<u>RL</u> 50	<u>DF</u>	<u>Qual</u> U	<u>Units</u> ug/L			
Surrogates: 1,4-Bromofluorobenzene	REC (%) 83	Control Limits 38-134		Qual				

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation: Method:

Units:

02/17/12

12-02-1105

EPA 5030C

EPA 8021B

ug/L

Project: ExxonMobil 70234 / 022476

Page 1 of 1

Project: Exxoniviobil 702	OTT OLL I	7.0								1 4	ge 1 of 1
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared		e/Time alyzed	QC Batch ID
W-30-RW1-1			12-02-	1105-1-E	02/14/12 18:00	Aqueous	GC 8	02/18/12		18/12 6:36	120218B01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Benzene	820	2.5	5		Ethylbenzene			20	2.5	5	
Toluene	5.8	2.5	5		Xylenes (total))		31	5.0	5	
Surrogates:	REC (%)	Control Limits	Qua	<u>J</u>							
1,4-Bromofluorobenzene	97	70-130									
W-30-RW1-2			12-02-1	1105-2-D	02/15/12 06:00	Aqueous	GC 8	02/18/12		18/12 3:23	120218B01
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	900	2.5	5		Ethylbenzene			23	2.5	5	
Toluene	7.1	2.5	5		Xylenes (total)			36	5.0	5	
Surrogates:	REC (%)	Control Limits	Qua	<u>l</u>	, , ,						
1,4-Bromofluorobenzene	93	70-130									
W-30-RW1-3			12-02-1	105-3-D	02/15/12 19:30	Aqueous	GC 8	02/18/12		18/12 3:59	120218B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	1900	2.5	5		Ethylbenzene			56	2.5	5	<u> </u>
Toluene	18	2.5	5		Xylenes (total)			99	5.0	5	
Surrogates:	REC (%)	<u>Control</u>	Qua	<u>l</u>	,				0.0		
1,4-Bromofluorobenzene	94	<u>Limits</u> 70-130									
W-30-RW1-4			12-02-1	105-4-D	02/16/12 06:00	Aqueous	GC 8	02/18/12		18/12):35	120218B01
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	790	2.5	5		Ethylbenzene			15	2.5	5	3
Toluene	6.8	2.5	5		Xylenes (total)			30	5.0	5	
Surrogates:	REC (%)	Control Limits	Qua	L	, , , , , , , , , , , , , , , , , , , ,						
1,4-Bromofluorobenzene	95	70-130									
Method Blank			099-12-	667-1,380	N/A	Aqueous	GC 8	02/18/12		18/12 ::07	120218B01
Paramete <u>r</u>	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1	U	Ethylbenzene			ND	0.50	1	U Gassi
Toluene	ND	0.50	i	Ü	Xylenes (total)			ND	1.0	i	Ü
Surrogates:	REC (%)	Control Limits	Qual		, ()					•	_
1,4-Bromofluorobenzene	97	70-130									

DF - Dilution Factor

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation: Method:

Units:

02/17/12

12-02-1105 EPA 5030C

EPA 8260B

ug/L

Project: ExxonMobil 70234 / 022476

Page 1 of 2

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
W-30-RW1-1			12-02-	1105-1-B	02/14/12 18:00	Aqueous	GC/MS BB	02/22/12	02/22 18:		120222L01
Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	Parameter			Result	RL	DF	<u>Qual</u>
Methyl-t-Butyl Ether (MTBE)	2200	40	80		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	40	80	U
Tert-Butyl Alcohol (TBA)	1100	400	80		1,2-Dibromoe	ethane		ND	40	80	U
Diisopropyl Ether (DIPE)	ND	40	80	U	1,2-Dichloroe	ethane		ND	40	80	U
Ethyl-t-Butyl Ether (ETBE)	ND	40	80	U							
Surrogates:	REC (%)		Qua	<u>al</u>	Surrogates:			REC (%)		<u>C</u>	<u>Qual</u>
		Limits							Limits		
1,4-Bromofluorobenzene	93	68-120			Dibromofluor	omethane		103	80-127		
1,2-Dichloroethane-d4	108	80-128			Toluene-d8			98	80-120		
W-30-RW1-2			12-02-	1105-2-B	02/15/12 06:00	Aqueous	GC/MS BB	02/22/12	02/22 18:0		120222L01
										_	
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Methyl-t-Butyl Ether (MTBE)	2500	40	80		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	40	80	U
Tert-Butyl Alcohol (TBA)	1100	400	80		1,2-Dibromoe	ethane	•	ND	40	80	U
Diisopropyl Ether (DIPE)	ND	40	80	U	1,2-Dichloroe	ethane		ND	40	80	U
Ethyl-t-Butyl Ether (ETBE)	ND	40	80	U							
Surrogates:	REC (%)	Control Limits	Qua	<u>al</u>	Surrogates:			REC (%)	Control Limits	2	<u>tual</u>
1,4-Bromofluorobenzene	90	68-120			Dibromofluor	omethane		101	80-127		
1,2-Dichloroethane-d4	104	80-128			Toluene-d8			99	80-120		
W-30-RW1-3			12-02-	1105-3-B	02/15/12 19:30	Aqueous	GC/MS BB	02/22/12	02/22 19:0		120222L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF.	Qual
Methyl-t-Butyl Ether (MTBE)	3900	100	200	ALM MI	Tert-Amyl-Me	othyl Ethor /T	AME)	ND	40	80	U
Tert-Butyl Alcohol (TBA)	1700	400	200 80		1.2-Dibromoe		CIVIL)	ND	40	80	U
Diisopropyl Ether (DIPE)	ND	400	80	U	1,2-Dibromoe			ND	40	80	Ü
Ethyl-t-Butyl Ether (ETBE)	ND	40	80	Ü	.,_ 5,01110100			.,,,,	TU	90	5
Surrogates:	REC (%)		Qua	_	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>tual</u>
1.4-Bromofluorobenzene	95	68-120			Dibromofluore	nmethane		100	80-127		
1,2-Dichloroethane-d4	104	80-128			Toluene-d8	ometrane		100	80-120		
1,2-DIGHIOI OEU Idhe-u4	107	00-120			i oluene-do			100	50-120		

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation: Method:

Units:

02/17/12

12-02-1105

EPA 5030C EPA 8260B

ug/L

Page 2 of 2

Designate	France - NA - In the	70004	000470
Project.	ExxonMobil	/UZ34/	UZZ4/0

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
W-30-RW1-4			12-02-	1105-4-A	02/16/12 06:00	Aqueous	GC/MS BB	02/22/12	02/22 17:		120222L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Methyl-t-Butyl Ether (MTBE)	2400	40	80		Tert-Amyl-Me	thyl Ether (T	AME)	ND	40	80	U
Tert-Butyl Alcohol (TBA)	1100	400	80		1,2-Dibromoe	thane	,	ND	40	80	U
Diisopropyl Ether (DIPE)	ND	40	80	U	1,2-Dichloroe	thane		ND	40	80	U
Ethyl-t-Butyl Ether (ETBE)	ND	40	80	U							
Surrogates:	REC (%)	Control Limits	Qua	<u>ll</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
1,4-Bromofluorobenzene	92	68-120			Dibromofluoro	methane		102	80-127		
1,2-Dichloroethane-d4	103	80-128			Toluene-d8			102	80-120		
Method Blank			099-12	-884-800	N/A	Aqueous	GC/MS BB	02/22/12	02/22 14:		120222L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	Tert-Amyl-Me	thyl Ether (T	AME)	ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U	1,2-Dibromoe		•	ND	0.50	1	U
Diisopropyl Ether (DIPE)	ND	0.50	1	U	1,2-Dichloroet	thane		ND	0.50	1	U
Ethyl-t-Butyl Ether (ETBE)	ND	0.50	1	U							
Surrogates:	REC (%)	Control Limits	Qua	<u>l</u>	Surrogates:			REC (%)	Control Limits	C	tual
1,4-Bromofluorobenzene	90	68-120			Dibromofluoro	methane		102	80-127		
1,2-Dichloroethane-d4	99	80-128			Toluene-d8			100	80-120		

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 02/17/12 12-02-1105 EPA 5030C EPA 8015B (M)

Project ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument	_	ate pared	Date Analyzed		ISD Batch umber
W-30-RW1-1	Aqueous	GC 22	02/2	0/12	02/20/12	120	220801
<u>Parameter</u>	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	2000	101	108	68-122	4	0-18	

RPD - Relative Percent Difference , CL - Control Limit

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 02/17/12 12-02-1105 EPA 5030C EPA 8021B

Project ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrumen	. –	Date Prepared		MS/MSD Batch Number	
W-30-RW1-1	Aqueous	GC 8	02/18/12		02/18/12	120	218801
Parameter	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	500.0	79	88	57-129	3	0-23	
Toluene	500.0	90	88	50-134	3	0-26	
Ethylbenzene	500.0	87	87	58-130	0	0-26	
Xylenes (total)	1500	88	88	58-130	0	0-28	

RPD - Relative Percent Difference,

CL - Control Limit

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 02/17/12 12-02-1105 EPA 5030C EPA 8260B

Project ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument		ate pared	Date Analyzed		ISD Batch umber
12-02-1106-1	Aqueous	GC/MS BE	02/2	02/22/12		120222801	
Parameter	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	10.00	109	108	76-124	1	0-20	
Toluene	10.00	110	111	80-120	1	0-20	
Ethylbenzene	10.00	107	105	78-126	2	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	122	129	67-121	5	0-49	HX
Tert-Butyl Alcohol (TBA)	50.00	156	135	36-162	15	0-30	
Diisopropyl Ether (DIPE)	10.00	107	106	60-138	1	0-45	
Ethyl-t-Butyl Ether (ETBE)	10.00	117	117	69-123	0	0-30	
Tert-Amyl-Methyl Ether (TAME)	10.00	127	127	65-120	0	0-20	HX
Ethanol	100.0	93	90	30-180	4	0-72	
1,2-Dibromoethane	10.00	117	120	80-120	2	0-20	
1,2-Dichloroethane	10.00	112	112	80-120	0	0-20	

RPD - Relative Percent Difference ,
7440 Lincoln

CL - Control Limit

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

12-02-1105 **EPA 5030C** EPA 8015B (M)

Project: ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number
099-12-436-7,154	Aqueous	GC 22	02/20/12	02/20/12	120220B01

Parameter	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	2000	91	90	78-120	1	0-10	

RPD - Relative Percent Difference,

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-02-1105 EPA 5030C EPA 8021B

Project: ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Batch Number	
099-12-667-1,380	Aqueous	GC 8	02/18/12	02/18/12		120218B01	
Parameter	SPIKE ADD	ED LCS %REC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	100.0	92	91	70-118	1	0-9	
Toluene	100.0	93	91	66-114	2	0-9	
Ethylbenzene	100.0	89	89	72-114	1	0-9	
Xylenes (total)	300.0	89	88	74-116	1	0-9	

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-02-1105 EPA 5030C EPA 8260B

Project: ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument	Date Prepared	_	ate alyzed	LCS	LCSD Batch Number	1
099-12-884-800	Aqueous	GC/MS BB	02/22/1	2 02/2	2/12	1		
Parameter	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	10.00	106	108	80-120	73-127	2	0-20	
Toluene	10.00	107	109	80-120	73-127	2	0-20	
Ethylbenzene	10.00	105	107	80-120	73-127	2	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	112	113	69-123	60-132	1	0-20	
Tert-Butyl Alcohol (TBA)	50.00	97	94	63-123	53-133	3	0-20	
Diisopropyl Ether (DIPE)	10.00	102	101	59-137	46-150	1	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	107	108	69-123	60-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	117	112	70-120	62-128	5	0-20	
Ethanol	100.0	92	95	28-160	6-182	3	0-57	
1,2-Dibromoethane	10.00	110	107	79-121	72-128	2	0-20	
1,2-Dichloroethane	10.00	100	102	80-120	73-127	2	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 12-02-1105

Qualifier	Definition
AZ	Surrogate compound recovery was out of control due to matrix interference. The
	associated method blank surrogate spike compound was in control and, therefore, the
	sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BA	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD
	was in control and, therefore, the sample data was reported without further clarification.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter
	concentration in the sample exceeding the spike concentration by a factor of four or greater.
BU	Sample analyzed after holding time expired.
DF	Reporting limits elevated due to matrix interferences.
E	Concentration exceeds the calibration range.
ĒΤ	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control
OL	due to a matrix interference effect. The associated batch LCS/LCSD was in control and,
	hence, the associated sample data was reported without further clarification.
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
НО	High concentration matrix spike recovery out of limits
HT	Analytical value calculated using results from associated tests.
HX	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out
	of control due to matrix interference. The associated LCS and/or LCSD was in control
	and, therefore, the sample data was reported without further clarification.
IL.	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The
Li	associated sample was non-detected. Therefore, the sample data was reported without
	further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was
	based on additional GC/MS characteristics.
RU	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit
SG	range.
SN	A silica gel cleanup procedure was performed.
U	See applicable analysis comment. Undetected at detection limit.
U	Undetected at detection little.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not
	corrected for % moisture. All QC results are reported on a wet weight basis.
	MPN - Most Probable Number

Sandy Tat

From:

Jake Prowse [jake.prowse@cardno.com]

Sent:

Friday, February 17, 2012 5:08 PM

To:

Sandy Tat

Subject:

Re: ExxonMobil 70234 / 022476 (12-02-1105)

Please follow the COC

Jake Prowse Cardno ERI 707-766-2000

On Feb 17, 2012, at 3:50 PM, "Sandy Tat" <stat@calscience.com> wrote:

Hi Jake / Judy,

Please verify the sample ID for sample (W-30-RW1-3), because it was labeled as (W-30-RW1) on the label. Therefore, which sample ID should we follow? Please advise. Thanks!

Best Regards,

Sandy Tat
Project Manager Assistant
Calscience Environmental Laboratories, Inc.
7440 Lincoln Way
Garden Grove, CA 92841-1427
Phone: 714-895-5494 x220

Fax: 714-894-7501 stat@calscience.com

<image001.jpg>

PRIVACY NOTICE:

This email (and/or the documents attached to it) is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential, or exempt from disclosure under applicable Federal or State law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone or else to arrange for the return of the documents.

REPORT SECURITY NOTICE:

The client or recipient of any attached analytical report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience Environmental Laboratories, Inc. is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience Environmental Laboratories, Inc. for any defense to any litigation which arises.

<12-02-1105.PDF>

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

Phone: 714-895-5494

Fax: 714-894-7501

ExonMobil 12-02-1105

Cons	sultant Name:	Cardno	ERI														_ /	Acco	ount	#:_!	NA					PO#:		4	514	6951	88		
Consult	tant Address:	601 N.	McDowe	II Bouley	ard												_ 1:	nvoi	ce T	Го:_	Jenr	ifer Se	dlaci	nek									
Consultant C	ity/State/Zip:	Petalur	ma, Califo	rnia, 94	954												_ F	Зер е	ort T	Го: _з	Jani	ce Jaco	bsor	1									
ExxonMobil	Project Mgr:	Jennife	er Sedlad	hek													— Proj	ect	Nam	ne: (02 2	476 13	X										
Consultant	Project Mgr:	Janice	Jacobso	on											E	xxor	Mo	bil S	ite i	#:	702	34					٨	Major Project (A	FF	#1.			
Consultant Teleph	one Number:	707-76	6-2000	-			Fa	x No	.: 7	07-	789-	0414	4							100	. 111	35th A	veni	ie					-		-		
Sampler	Name (Print):	AINC	work.	Haz	ein	2			_						Si							land, Ca	1000						_				
Sampi	er Signature:	LA	und	Ine	m									_											ironn	nents	al He	ealth Department				_	
	4		C	- "				_		Pr	ese	vativ	/e	=		_	Mai				7		, , , ,			iyze			=	_		_	
				8				П	T	T		П	T	П	7	T	T	T		П	Ħ		T	問	T	T	T	·	╅	क्रा	Т	Т	
				Shipped	1			П	1	1	П		1	Н	ı				i I	Н	욃			8260E		1			- 1	륗	- 1	Ļ١	
	g g	l "						Н			П			11	1		1			П	1		1	S	-	1			1	(Pre-Schedu	- 1	1	Ę
	Point Name	Date Sampled	Time Sampled	No. of Containers	ı		2	П			.	2		H	١		12			П		5B	12						- 1	اع	- 1	8	of Report
	ş.	E	l Eg	Š		Sign 1	ige			1	18	2	I	П	1	1				П	ğ	8	18		- 1							위	ğ
	<u>a.</u>	2	e e	8	Grab	Composite	Field Filtered	Methanol		ᅝ	0	H ₂ SO ₄ Glass	5	1		Ground		8		Н	Other (specify):	TPHg 8015B	X	힐	-	1	1	1	- 1		M	8	8
Sample iD	, i.	8	F	ž	Ö	8	표	氢	8 3	2 2	E	¥ 3	8	Offici	None	8	ă	훓	Soil	₹	8	4	BTEX 8021B	OXYGENATES					- [RUSH TAT	Sesy	Standard 10-day TAT	3
W- 30 -RW1-1	RW1	2-14	1500	6V				П	ŀ	ď	П		1	П	٦	x	T			П	7	х	x			T	T		1	7	_	X	
W-30-RW1-2	RW1	2.15	0600	6V				П	Ţ,	T	П	П	T	П	1	x	T	Т	П	П	7	х	×	П		\top	+		†	7	-	$\frac{\hat{x}}{x}$	
W- 3> -RW1-3	RW1	2-15	1930	6V				П	Ţ,	T	П		T	П	1	x	T		П	П	1	×	x	x	\forall	T	+		┪	+	\neg	ît	
w-30 -RW1-4	RW1	2-16	0600	6V				П	1,	đ	П		1	П	1	x	T	Т	П	H	1	×	x	x	+	+	+		+	\dashv	_	î	
		26.	1.5					П	T	T	П		T	П	T	1	T	П	П	H	7		Ť	H	+	+	+		+	\dashv	\dashv	갂	_
								П	1	1	П	1	t	Н	7	+	t	T	Н	H	+	_	1	Н	+	+	+		+	+	+	+	
								H	+	+	H	+	t	Н	1	+	t	Н	Н	H	+		\vdash	Н	+	+	+		+	+	+	+	
Comments/Special Instructions:					_			Ц		_	ш	-	_		_1		1	Ш		4	Labo	oratory	Con	nmei	nts:	_	1		_	-		+	
PLEASE E-MAIL ALL P norcallabs@eri-us.com; ERI-EII		-116 001	m			7 CA	Oxys	= M	TBE	, E1	ΓBE,	TAP	ME,	TBA	, EC	OB, 1	,2-0	CA	, DIF	PE.		emper											
GLOBAL ID # T06019757161	VILADO(COOI)	-us.co	111			Set T	BA Q	etec	tion	limi	t at c	or be	low	12 u	g/L					-		Sample)	Y		4	
Relinquished by:		9	ate	Tim	e	Rece	ived b	y:			14	_		1	2	Date		T	Time	\dashv		/OCs F Deliveration							,	Y	1	۱ ا	
MIN Som		2/1	6/12	1050)	10	m. (V	n	1/I	h	Œ	3 7	ŀ	4	16/		10	S	Į.	eve	2	//									-	
Relinquished by:			ate	Tim		Rece	_	v (1 s	h p	ersel	nnel		1	\dashv	_	Date	스	1	Time	_	eve eve											-	
ion Omalley TO a	0	2%	. 1.	1730		0.0000000		, (0				1		-		1	inne				- if ye	es, pi	ease	attac	h ore	e-schedule w/ Tes	tAm	erica	£ .		
100 July 100	1	1/16	1/2	1236			24	W	47	į.	_,	1	-0	12	2	17	12	i	0:3	D F	roje	ct Mana	ger o	or atta	ich s	pecific	c inst	tructions	- 411				

Page 16 of 19

Package 1 of 1

Send Label To Printer

Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

SAMPLE RECEIPT FORM

Cooler <u>/</u> of <u>/</u>

CLIENT: CARDNO EPI	DATE:	02/17/12
TEMPERATURE: Thermometer ID: SC3 (Criteria: 0.0 °C – 6.0 °C, not frozen)		
Temperature/°C - 0.3°C (CF) =/°C \rightarrow	Blank	☐ Sample
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).		
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day	of samplin	ng.
☐ Received at ambient temperature, placed on ice for transport by Cou		
Ambient Temperature: ☐ Air ☐ Filter		Initial:
		WARRIE WARREN
CUSTODY SEALS INTACT:		*
☑ Cooler □ □ No (Not Intact) □ Not Present	□ N/A	Initial:
□ Sample □ □ No (Not Intact) ☑ Not Present		Initial: <u>しし</u>
SAMPLE CONDITION:	36	No N/A
Chain-Of-Custody (COC) document(s) received with samples	,	
COC document(s) received complete		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		
Sampler's name indicated on COC) 	
Sample container label(s) consistent with COC	- 5	
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses requested		
Analyses received within holding time		
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours		
Proper preservation noted on COC or sample container		
☐ Unpreserved vials received for Volatiles analysis	*	
Volatile analysis container(s) free of headspace	8	
Tedlar bag(s) free of condensation		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores®	□TerraC	ores® □
Water: □VOA ØVOAh □VOAna₂ □125AGB □125AGBh □125AGBp □	I1AGB □	1AGBna₂ □1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs		
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □		
Air: DTedlar® DSumma® Other: D Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Env Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ u: Ultra-pure znna: ZnAc ₂ +NaO	relope R e	eviewed by: ///

SAMPLE ANOMALY FORM

SAMPL	ES - CO	NIATNO	IERS & L	ABELS:			Comm	ents:	
□ Sam □ Hold □ Insu □ Impo □ No p □ Sam □ Sam □ Sam □ Hold □ No p	ding time ding time officient roper co roper pr oreserva ple labe ple labe ple labe Analys ple cont Water p Broken ple cont sample Leaking Leaking	eceived e expire quantiti intainer eservati itive not els illegi el(s) do i elD ind/or Til intainer is tainer(s) container w in vol g (Not tr g (transi	but NOT d - list sa es for ana (s) used - ive used ed on CC ble - note not match me Collect ation (s) comprod in sample not labe er(s) com ume ransferred ferred int	- list test PC or label - test/contain COC - Note cted mised - Note container	coc nd test est list test er type e in com Note in com e bag su e Tedlar	ments ments comments bmitted) Bag*)	(-3)	Label	ed as W-30-RW/ @ 19:30
☐ Othe									
HEADS	PACE -	Contai	iners wit	h Bubble >	6mm c	or ¼ inch:			
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received	Analysis
					4,				
Comment	s:					· · · · · · · · · · · · · · · · · · ·			
*Transferr	ed at Clie	nt's requ	est.				In	itial / Da	te: D.L 02/17/12
									SOP T100 090 (08/31/11)

CALSCIENCE

WORK ORDER NUMBER: 12-02-1303

The difference is service

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Cardno ERI

Client Project Name: ExxonMobil 70234 / 022476

Attention: Janice Jacobson

601 North McDowell Blvd. Petaluma, CA 94954-2312

Cecile & ex Saia

Approved for release on 03/5/2012 by:

Cecile deGuia **Project Manager**

ResultLink >

Email your PM)

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety. Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

Contents

Client Project Name: ExxonMobil 70234 / 022476

Work Order Number: 12-02-1303

1	Client Sample Data	3 3 4 5
2	Quality Control Sample Data	7 7 11
3	Glossary of Terms and Qualifiers	15
4	Chain of Custody/Sample Receipt Form	16

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method:

02/22/12

12-02-1303

EPA 5030C EPA 8015B (M)

Project: ExxonMobil 70234 / 022476

Page 1 of 1

r reject: Exiterimobil rez	OTT GEETT G						1 6	age i oi i
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-30-RW1-1		12-02-1303-1-D	02/16/12 18:00	Aqueous	GC 11	02/23/12	02/23/12 16:05	120223B01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	3800	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	95	38-134						
W-30-RW1-2		12-02-1303-2-D	02/17/12 06:00	Aqueous	GC 11	02/23/12	02/23/12 18:23	120223B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
ΓPH as Gasoline	2500	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	90	38-134						
W-30-RW1-3		12-02-1303-3-D	02/17/12 11:30	Aqueous	GC 11	02/23/12	02/23/12 18:57	120223B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
FPH as Gasoline	2600	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
,4-Bromofluorobenzene	90	38-134						
Method Blank		099-12-436-7,167	N/A	Aqueous	GC 11	02/23/12	02/23/12 13:47	120223B01
Parameter_	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
PH as Gasoline	ND	50	1	U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	84	38-134						

Analytical Report

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method: Units:

02/22/12

12-02-1303 **EPA 5030C**

EPA 8021B

ug/L

Project: ExxonMobil 70234 / 022476

Page 1 of 1

										ı u	90 1 01 1
Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared		e/Time alyzed	QC Batch ID
W-30-RW1-1			12-02	2-1303-1-E	02/16/12 18:00	Aqueous	GC 21	02/23/12		/24/12 2:06	120223B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	1100	2.5	5		Ethylbenzene			35	2.5	5	
Toluene	10	2.5	5		Xylenes (total)		53	5.0	5	
Surrogates;	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	Q	<u>ual</u>							
1,4-Bromofluorobenzene	89	70-130									
W-30-RW1-2			12-02	?-1303-2-E	02/17/12 06:00	Aqueous	GC 21	02/23/12		24/12 2:41	120223B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	680	2.5	5		Ethylbenzene			12	2.5	5	
Toluene	5.8	2.5	5		Xylenes (total))		26	5.0	5	
Surrogates:	REC (%)	Control Limits	<u>Qı</u>	ual	,						
1,4-Bromofluorobenzene	88	70-130									
W-30-RW1-3			12-02	-1303-3-E	02/17/12 11:30	Aqueous	GC 21	02/23/12		24/12 3:17	120223B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	750	2.5	5		Ethylbenzene			20	2.5	5	
Toluene	7.4	2.5	5		Xylenes (total)			41	5.0	5	
Surrogates:	REC (%)	Control Limits	<u>Q</u> L	<u>ıal</u>						ŭ	
1,4-Bromofluorobenzene	88	70-130									
Method Blank			099-1	2-667-1,385	N/A	Aqueous	GC 21	02/23/12		23/12 5:06	120223B01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1	U	Ethylbenzene				0.50	1	U
Foluene	ND	0.50	1	Ü	Xylenes (total)			ND	1.0	1	U
Surrogates:	REC (%)	Control Limits	Qu	_	- 1, 01100 (total)			110	1.0	ı	U
1,4-Bromofluorobenzene	93	70-130									

Analytical Report

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation: Method:

Units:

02/22/12

12-02-1303

EPA 5030C

EPA 8260B

ug/L

Project: ExxonMobil 70234 / 022476

Page 1 of 2

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
W-30-RW1-1			12-02-1	1303-1-A	02/16/12 18:00	Aqueous	GC/MS BB	02/29/12	03/0 ² 04:		120229L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Methyl-t-Butyl Ether (MTBE)	2100	40	80		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	40	80	U
Tert-Butyl Alcohol (TBA)	1500	400	80		1,2-Dibromoe			ND	40	80	U
Diisopropyl Ether (DIPE)	ND	40	80	U	1,2-Dichloroe	thane		ND	40	80	U
Ethyl-t-Butyl Ether (ETBE)	ND	40	80	U							
Surrogates:	<u>REC (%)</u>	Control Limits	<u>Qua</u>	<u>l</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
1,4-Bromofluorobenzene	99	68-120			Dibromofluore	omethane		97	80-127		
1,2-Dichloroethane-d4	93	80-128			Toluene-d8			96	80-120		
W-30-RW1-2			12-02-1	303-2-A	02/17/12 06:00	Aqueous	GC/MS BB	02/29/12	03/01 05:		120229L01
Deservator	Daguit	DI	DE	Ougl	Dannardan			Decult	DI	DE	Ovel
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Methyl-t-Butyl Ether (MTBE)	1700	40	80		Tert-Amyl-Me		AME)	ND	40	80	U
Tert-Butyl Alcohol (TBA)	1100	400	80		1,2-Dibromoe			ND	40	80	Ü
Diisopropyl Ether (DIPE)	ND ND	40	80	U	1,2-Dichloroe	tnane		ND	40	80	U
Ethyl-t-Butyl Ether (ETBE)		40 Control	80 Qual		Currogotoo			REC (%)	Control	_	tual
Surrogates:	REC (%)	Limits	Qua	<u>l</u>	Surrogates:			KEC (70)	Limits	<u>C</u>	<u>tuai</u>
1,4-Bromofluorobenzene	99	68-120			Dibromofluoro	omethane		97	80-127		
1,2-Dichloroethane-d4	94	80-128			Toluene-d8			96	80-120		
W-30-RW1-3			12-02-1	303-3-B	02/17/12 11:30	Aqueous	GC/MS BB	03/01/12	03/01 17:4		120301L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Methyl-t-Butyl Ether (MTBE)	1800	25	50		Tert-Amyl-Me	thyl Ether /T	'AMF)	ND	25	50	U Sasteri
Tert-Butyl Alcohol (TBA)	1100	250	50		1,2-Dibromoe	•	,)	ND	25	50	Ü
Diisopropyl Ether (DIPE)	ND	25	50	U	1,2-Dichloroe			ND	25	50	Ü
Ethyl-t-Butyl Ether (ETBE)	ND	25	50	U					-		
Surrogates:	REC (%)	Control Limits	Qual		Surrogates:			REC (%)	Control Limits	<u>Q</u>	<u>ual</u>
1.4-Bromofluorobenzene	97	68-120			Dibromofluoro	methane		96	80-127		
1.2-Dichloroethane-d4	92	80-128			Toluene-d8			93	80-120		
I DIOMOIOGNATIO AT					. 5.00110 00				50 120		

Analytical Report

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation: Method:

Units:

02/22/12

12-02-1303

EPA 5030C

EPA 8260B ug/L

Page 2 of 2

95

80-120

Project: ExxonMobil 70234 / 022476

Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank			099-1	2-884-803	N/A	Aqueous	GC/MS BB	02/29/12	02/29 22:		120229L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	Tert-Amyl-Me	thyl Ether (T	AME)	ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U	1,2-Dibromoe	thane	•	ND	0.50	1	U
Diisopropyl Ether (DIPE)	ND	0.50	1	U	1,2-Dichloroe	thane		ND	0.50	1	U
Ethyl-t-Butyl Ether (ETBE)	ND	0.50	1	U							
Surrogates:	REC (%)	Control Limits	Qu	<u>ıal</u>	Surrogates:			REC (%)	Control Limits	9	<u>Qual</u>
1,4-Bromofluorobenzene	100	68-120			Dibromofluoro	omethane		99	80-127		
1,2-Dichloroethane-d4	96	80-128			Toluene-d8			98	80-120		
Method Blank			099-1	2-884-805	N/A	Aqueous	GC/MS BB	03/01/12	03/01 14:		120301L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	Tert-Amyl-Me	thyl Ether (T	AME)	ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U	1,2-Dibromoe	thane	•	ND	0.50	1	U
Diisopropyl Ether (DIPE)	ND	0.50	1	U	1,2-Dichloroet	thane		ND	0.50	1	U
Ethyl-t-Butyl Ether (ETBE)	ND	0.50	1	U							
Surrogates;	REC (%)	Control Limits	Qu	<u>al</u>	Surrogates:			REC (%)	Control Limits	Ω	<u>Qual</u>
1,4-Bromofluorobenzene	98	68-120			Dibromofluoro	methane		97	80-127		

Toluene-d8

1,2-Dichloroethane-d4

92

80-128

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 02/22/12 12-02-1303 EPA 5030C EPA 8015B (M)

Project ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrumen		Date Prepared			ISD Batch umber
W-30-RW1-1	Aqueous GC 11 02/23/12		02/23/12	120	223801		
Parameter	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	2000	100	91	68-122	3	0-18	

RPD - Relative Percent Difference , CL - Control Limit

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

02/22/12 12-02-1303 EPA 5030C EPA 8021B

Project ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument		Date Prepared		MS/MSD Batch Number	
12-02-1348-1	Aqueous	GC 21	02/2	3/12	02/23/12	120223801	
Parameter	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	100.0	103	96	57-129	7	0-23	
Toluene	100.0	98	97	50-134	1	0-26	
Ethylbenzene	100.0	98	98	58-130	0	0-26	
Xylenes (total)	300.0	98	98	58-130	1	0-28	

RPD - Relative Percent Difference ,
7440 Lincoln

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 02/22/12 12-02-1303 EPA 5030C EPA 8260B

Project ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrumen		ate pared	Date Analyzed	MS/MSD Batch Number		
12-02-1472-2	Aqueous	GC/MS BI	3 02/2	02/29/12		120	120229801	
Parameter	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	10.00	99	100	76-124	1	0-20		
Toluene	10.00	98	97	80-120	0	0-20		
Ethylbenzene	10.00	102	104	78-126	2	0-20		
Methyl-t-Butyl Ether (MTBE)	10.00	93	97	67-121	4	0-49		
Tert-Butyl Alcohol (TBA)	50.00	185	116	36-162	45	0-30	HX,BA	
Diisopropyl Ether (DIPE)	10.00	94	97	60-138	3	0-45		
Ethyl-t-Butyl Ether (ETBE)	10.00	92	95	69-123	2	0-30		
Tert-Amyl-Methyl Ether (TAME)	10.00	94	95	65-120	1	0-20		
Ethanol	100.0	103	109	30-180	6	0-72		
1,2-Dibromoethane	10.00	101	106	80-120	4	0-20		
1,2-Dichloroethane	10.00	100	102	80-120	1	0-20		

RPD - Relative Percent Difference , 7440 Lincoln

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 02/22/12 12-02-1303 EPA 5030C EPA 8260B

Project ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrumen		Date Prepared		MS/MSD Batch Number	
12-02-1535-1	Aqueous	Aqueous GC/MS BB		03/01/12		120301801	
Parameter	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	10.00	97	98	76-124	1	0-20	
Toluene	10.00	94	95	80-120	1	0-20	
Ethylbenzene	10.00	101	102	78-126	1	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	87	86	67-121	2	0-49	
Tert-Butyl Alcohol (TBA)	50.00	100	130	36-162	26	0-30	
Diisopropyl Ether (DIPE)	10.00	86	86	60-138	0	0-45	
Ethyl-t-Butyl Ether (ETBE)	10.00	86	85	69-123	2	0-30	
Tert-Amyl-Methyl Ether (TAME)	10.00	91	89	65-120	2	0-20	
Ethanol	100.0	105	108	30-180	3	0-72	
1,2-Dibromoethane	10.00	96	97	80-120	0	0-20	
1,2-Dichloroethane	10.00	96	95	80-120	1	0-20	

RPD - Relative Percent Difference,

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-02-1303 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 70234 / 022476

099-12-436-7,167	Aqueous	GC 11	02/23/12	02/23/12	120223B01
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number

 Parameter
 SPIKE ADDED
 LCS %REC
 LCSD %REC
 %REC CL
 RPD
 RPD CL
 Qualifiers

 TPH as Gasoline
 2000
 94
 94
 78-120
 0
 0-10

RPD - Relative Percent Difference ,

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-02-1303 EPA 5030C EPA 8021B

Project: ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	i	LCS/LCSD Batch Number	
099-12-667-1,385	Aqueous	GC 21	GC 21 02/23/12			120223B01	
<u>Parameter</u>	SPIKE ADDE	LCS %REC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	100.0	103	103	70-118	0	0-9	
Toluene	100.0	97	97	66-114	1	0-9	
Ethylbenzene	100.0	98	98	72-114	0	0-9	
Xylenes (total)	300.0	98	98	74-116	0	0-9	

RPD - Relative Percent Difference,

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-02-1303 EPA 5030C EPA 8260B

Project: ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument	Date Prepared	_	ate alyzed	LCS	LCSD Batch Number	1
099-12-884-803	Aqueous	GC/MS BB	02/29/1	2 02/2	9/12	1	20229L01	
Parameter	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	10.00	101	102	80-120	73-127	1	0-20	
Toluene	10.00	100	101	80-120	73-127	1	0-20	
Ethylbenzene	10.00	104	104	80-120	73-127	1	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	96	98	69-123	60-132	3	0-20	
Tert-Butyl Alcohol (TBA)	50.00	101	100	63-123	53-133	2	0-20	
Diisopropyl Ether (DIPE)	10.00	99	99	59-137	46-150	0	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	98	99	69-123	60-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	98	100	70-120	62-128	2	0-20	
Ethanol	100.0	114	106	28-160	6-182	8	0-57	
1,2-Dibromoethane	10.00	102	104	79-121	72-128	1	0-20	
1,2-Dichloroethane	10.00	99	103	80-120	73-127	4	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 12-02-1303 EPA 5030C EPA 8260B

Project: ExxonMobil 70234 / 022476

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate alyzed	LCS	S/LCSD Batch Number	1
099-12-884-805	Aqueous	GC/MS BB	03/01/1:	2 03/0	1/12	- 1	120301L01	
Parameter	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	10.00	99	98	80-120	73-127	2	0-20	
Toluene	10.00	97	95	80-120	73-127	2	0-20	
Ethylbenzene	10.00	103	100	80-120	73-127	3	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	87	88	69-123	60-132	1	0-20	
Tert-Butyl Alcohol (TBA)	50.00	97	91	63-123	53-133	6	0-20	
Diisopropyl Ether (DIPE)	10.00	87	87	59-137	46-150	1	0-37	
Ethyl-t-Butyl Ether (ETBE)	10.00	86	87	69-123	60-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	10.00	89	91	70-120	62-128	2	0-20	
Ethanol	100.0	110	102	28-160	6-182	8	0-57	
1,2-Dibromoethane	10.00	98	96	79-121	72-128	2	0-20	
1,2-Dichloroethane	10.00	96	95	80-120	73-127	1	0-20	

Total number of LCS compounds: 11

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 12-02-1303

Qualifier	<u>Definition</u>
AZ	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BA	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
BU	Sample analyzed after holding time expired.
DF	Reporting limits elevated due to matrix interferences.
Ē	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
НО	High concentration matrix spike recovery out of limits
HT	Analytical value calculated using results from associated tests.
НХ	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
IL	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The associated sample was non-detected. Therefore, the sample data was reported without further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
RU	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit range.
SG	A silica gel cleanup procedure was performed.
SN	See applicable analysis comment.
U	Undetected at detection limit.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

MPN - Most Probable Number

Sandy Tat

From: Jake Prowse [jake.prowse@cardno.com]
Sent: Thursday, February 23, 2012 10:43 AM

To: Sandy Tat

Subject: RE: ExxonMobil 70234 / 022476 (12-02-1303)

Attachments: 70234_20120223134714.pdf

Here you go

Jake Prowse

Staff Geologist | QM Supervisor

Cardno ERI

601 North McDowell Blvd., Petaluma, CA 94954

Phone: 707 766 2000 Direct: 707 766 2000 Fax: 707 789 0414

From: Sandy Tat [mailto:stat@calscience.com]
Sent: Thursday, February 23, 2012 10:39 AM

To: Jake Prowse; Judy Hutton

Subject: ExxonMobil 70234 / 022476 (12-02-1303)

Importance: High

Hi Jake / Judy,

Please cross out sample (W-RW1-4) from this COC, because sample was not received. Thanks!

Best Regards,

Sandy Tat Project Manager Assistant Calscience Environmental Laboratories, Inc. 7440 Lincoln Way Garden Grove, CA 92841-1427

Phone: 714-895-5494 x220

Fax: 714-894-7501 stat@calscience.com

PRIVACY NOTICE:

This email (and/or the documents attached to it) is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential, or exempt from disclosure under applicable Federal or State law. If the reader

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

Phone: 714-895-5494

Fax: 714-894-7501

Cor	sultant Name	a: Cardno	ERI															Acc	ount	#- 1	N A					~"	17	Z-U				_	
	iltant Address			II Boules	vard												_			-		fer Se	dlack	nak	P	O#:	_	2.4	45	51469	5188		
Consultant	City/State/Zip	: Petalun	na, Califo	ornia, 94	954															_		e Jaco			-	-	_				-	_	_
ExxonMob	il Project Mg	r: Jennife	er Sedla	chek													_			-		76 13		_			_						
Consultar	nt Project Mg	r: Janice	Jacobso	on											Ε				Site #	-						_	A/	nior Dro	10.00 / 6				
Consultant Telep	hone Number	r: 707-76	6-2000				Fa	x No	.: 70	7-7	89-0	414	4	35						_		35th A		10		-	- IVI	lajor Pro	ject (Al	一上 計):		_	_
Sample	r Name (Print	1: A10	× S	ande					-						s	ite C						and, C								-	_		
Samp	oler Signature	2		70/	7																					onto	LUA	aith Depa	7440,000.0	_	-	-	
		-	_@	5					_	Pre	serv	rativ	ve					atrix	guno	, <u>, , , , , , , , , , , , , , , , , , </u>	T C	eua C	Julity	CHV	_	yze		aith Depa	rtment	_	_		
				ped				П	Т	П	П	T	T	T	П		T	T		T	ğ		1	IWI	1	T T	T			2	Т	T	
Sample ID	Field Point Name	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	Methenol	HCI	NaOH	H,SO, Plestic	HAO.	loe loe	Other	None	Groundwater	Wastewater	Unnking Water Sludge	Soil	Air	Other (specify): Distilled Water	TPHg 8015B	BTEX 8021B	OXYGENATES 8260E						RUSH TAT (Pre-Schedule	5-day TAT	Standard 10-day TAT	Due Date of Report
W-30 -RW1-1	RW1	7/4/2	1800	6V				П	×		П	T	T	T	П	x	1	\top	П	7	+	×	×	×	+	+	+		-	18	10	X	
W-3() -RW1-2	RW1	2-17-12	0600	6V				П	x	П	П	1	1	1	П	x	\top	\top	П	7	+	v .	x	x	+	+	+		-+	╁	+	x	
W-30-RW1-3	RW1	2-17-12	1130	6V				П	T _x	П	T	T	T	T	П	x	7	\top	П	7	+	· ·	x	x	+	+	+		\dashv	+	+	x	
WRW1-4	RW1	+	F	-6∀-				П	1×			1	1	T	П	Ì	士	\pm		\pm	1				+	\pm	\pm		_	\pm	\vdash	_	_
								П	1	П		T	T	T			+	+	Н	+	+	Α	 *	*	+	F	+		\rightarrow	+	-	×	
								\vdash	†	П	\vdash	+	+	1	Н	+	+	+	H	+	+		+	Н	+	╁	╁		-+	╀	\vdash	H	
								H	+	Н	\forall	+	+	+	Н	+	+	+	Н	+	+		╁	Н	+	┾	┿		\rightarrow	+	-	⊢	
Comments/Special Instructions: PLEASE E-MAIL ALL norcallabs@eri-us.com; ERI-E GLOBAL ID # T06019757161 Relinquished by:	PDF FILES TO	ri-us.cor	n ate Ta	103	13. Ta	7 CA Set 1	BA d	etect	ion I	imit	BE, at or	r be	wol	12 ι	ıg/L	Dat	e		, DIP	PE.	S	ratory emper ample OCs F oliveral	Con ree :	Upo tainer of Hea	Red s inta	act? ace?				Y		Z Z	
Relinquished by: Var Amplly TO 6	so	2/2/	ate /2	73 173	e	Rece	ived b									Da:	e J		Time 40	L	evel evel iite S	3 4 pecific	- if y	es, ple or atta	ase a	attach	h pre	-schedule	: w/ Tes	tAmer	lca		

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

Garden Grove, CA 92841

Phone: 714-895-5494

Fax: 714-894-7501

12-02-1303

Cons	ultant Name:	Cardno	ERI											12			A	\ccc	unt	#: N	A				PO#	#:		UL		4695			
Consult	ant Address:	601 N. I	McDowel	l Boulev	ard												_			_	ennifer Se	edlac	hek		-							_	
Consultant C	ity/State/Zip:	Petalum	na, Califo	rnia, 94	954									17			_			-	anice Jac	_	_						_				
ExxonMobil	Project Mgr:	Jennife	er Sedlac	hek												F	_			_	2 2476 13					_							
	Project Mgr:						-						_		F	_					0234			_			Maio	r Projec	+ /AEE				
Consultant Teleph							Fa	x No	7	07-7	789.	0414									450 35th	Avon					wajo	rrojec	I (MIL	· #/).			
	Name (Print):			مام	,_	1			-	<u> </u>	-	<u> </u>			Si						akland, C			-		_					_	_	
	er Signature:			10	7							_								_	lameda C					4-111	- 146-	D					
		9	0	5					=	Pri	esei	rvativ	/A	_	_	701	Mat	_	Jenc	y . <u>~</u>	lanieua C	Journe	y En			e Fo		Departn	nent	1			
			-	8	Т			П	T	Ť		T	T	П	┪	Т	T	T		13		Т	TB	T	laiyz	1	11			9		Т	
				No. of Containers Shipped				П	1						ı					1			OXYGENATES 82606							(Pre-Schedule		-	1
	e e	-	0	ers				H		1			1	11	1					1		_	ES							-Sc.		5	pod
	Z C	할	aldu.	ntain			8	ı	ligge		35	,	1			<u>.</u>	riter			1	158	21E	F		l l							3	Re
	F F	Sa	rime Sampled	ပို့		posit	File	8	88		Plast	8			ı	dwet	N DO		Ш		3 8015	18	黑							Z	TAT	5	Date of Report
Sample ID	Field Point Name	Date Sampled	L E	9	Grab	Composite	Field Filtered	Metha	Sodium Bisura	NeOH	4°SO,	H2SO4	2 8	Other	og e	Groundwate	hinkir	gpn	75 150	A S	TPHg 8015B	BTEX 8021B	X							RUSH TAT	5-day	Standard 10-day TAT	Oue D
W-30 -RW1-1	RW1	7/6/2	1900			H	-	H	+	+	F	H	+	H	-	7	Ŧ	1	w	+		_		Н	Н	+	_		+	E.	ις	_	ő
W-3() -RW1-2	RW1	2-17-12		6V		\vdash		H	ť	+	Н	H	+	Н	\dashv	쒸	╁	╁	Н	+	X	X		\vdash	Н	-	-		+	Н	Н	X	
W-30-RW1-3	RW1				\vdash	\vdash		Н	+	+	Н	H	+	Н	┥	×	╁	╀	Н	+	×	+×		Н	Н	+			+	Н	Н	X	
		12-11-12	1130	6V		┝	\vdash	Н	+	뛰	Н	Н	+	Н	4	쒸	╀	╀	Н	+	X	×	∤×		Н	-			+-	\vdash	\vdash	X	
WRW1-4	RW1		\vdash	6V		-	\vdash	Н	+	4	Н	Н	+	\vdash	4	×	╀	╀	Н	+	X	- ×	Ļ×		Ш				+	\perp	Ш	X	
		-	-		_	_	-	Н	+	+	Н	Н	+	H	4	+	\perp	╀	Щ	4	╀—	+	Ļ	_	Ш				_		Ш	_	
		_	\vdash		-	_		Н	+	+	Н	Н	1	Н	4	4	╀	L	Щ	1	_	_	L		Ш								
Comments/Special Instructions:					_			Ш	\perp	\perp	L	Ц		Ш		\perp	L	L	Ш	1		Ţ	L	L									
PLEASE E-MAJL ALL F						7 CA	Оху	s= M	TBE	Ξ, ΕΊ	гве	, TAI	ΜĖ,	ТВА	, El	DB, 1	,2-[OCA	, DIF	E.	aborator Tempe					iot:							
norcallabs@eri-us.com; ERI-EI GLOBAL ID # T06019757161	MLABS@er	i-us.cor	<u>m</u>				ΓBA d													1	Sample	e Co	ntain	ers I	ntaci	t?				Υ		N	
Relinquished by:	F	,D	ate. 7	. Tim	10 Ta	Rece	lived I	ov:	_		-	-		_		Date	9	1	Time	\dashv	VOCs C Deliver									Υ		N	
N 1 1 1 1116		2/2	1/12/	100	5	17	-6	m	n	าใโ	la.,	1	انع	-	3,	2/	/	1	05	, L	evel 2	abics	Upica	25C C	icie	one							
Relinquished by:		217	ate	Tim		Reco	ived I	w/1:	ah c	orec	7	١.	<u> </u>	-	•	Date	1/2	+		—l-	evel 3											- 1	
Tomall	101	b/3,	/	173	.8	, vece	NYOU I	/	1/	1	e lei	1				1	1.	١.	Time	s	evel 4 ite Specifi	c - if	/es. ı	oleas	e att	ach n	re-sch	nedule w	/ TestA	meric	ca		
varcinipley 100	po c	1/0//	1/2	110	U			1/	4	24	A	<u>Y</u>	_		2/	125	12	111	40	P	roject Mar	nager	or a	tach	spec	ific in	struct	ions					
. //								111	1																								

Package 3 of 3

Send Label To Printer

☑ Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500, items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with Intrinsic value.

WORK ORDER #: 12-02-11 3 0 2

Laboratories, inc.		- 1
	Cooler	_ of _/
CLIENT: Cardno ERI DATE:	02/23	2/12
TEMPERATURE: Thermometer ID: SC3 (Criteria: 0.0 °C – 6.0 °C, not frozen)		
Temperature 3.4°C-0.3°C (CF) = 3.1°C Blank	☐ Sample	50 · 1
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).		
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling	na.	
☐ Received at ambient temperature, placed on ice for transport by Courier.	Ū	
Ambient Temperature: ☐ Air ☐ Filter	Initial:	30
		0
CUSTODY SEALS INTACT:		A
□ Cooler □ □ No (Not Intact) ☑ Not Present □ N/A	Initial:	20
□ Sample □ □ No (Not Intact) Not Present	Initialy	31
SAMPLE CONDITION: Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples		
COC document(s) received complete		
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		
Sampler's name indicated on COC		
Sample container label(s) consistent with COC	<u>M</u>	
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses requested		
Analyses received within holding time		
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours		
Proper preservation noted on COC or sample container		
☐ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace		_/
Tedlar bag(s) free of condensation		Ø
Solid: U4ozCGJ U8ozCGJ U16ozCGJ USleeve () UEnCores® UTerraC	ores® □	
Water: □VOA 🗹 VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □	l1AGB na₂ □	1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □	1PBna □5	00PB
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □ □		
Air: ☐Tedlar® ☐Summa® Other: ☐ Trip Blank Lot#: Labeled/C Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Re	hecked by:	70

Preservative: h: HCL n: HNO3 na2:Na2S2O3 na: NaOH p: H3PO4 s: H2SO4 u: Ultra-pure znna: ZnAc2+NaOH f: Filtered Scanned by:

WORK ORDER #: 12-02- [] 3 0 3

SAMPLE ANOMALY FORM

SAMPL	ES - C	ONTAI	NERS &	LABELS:		3	Comm	ents:	
☐ San ☐ San ☐ Hold ☐ Inst ☐ Imp ☐ Imp ☐ No p ☐ Sam ☐ Sam	nple(s) langle(s) in the ding time of th	NOT RECEIVED TO EXECUTE THE PROPERTY OF THE PR	but NOT d - list saties for an (s) used ive used ted on Co ble - note not matc	LISTED on ample ID(s) a alysis – list to list test – list test OC or label – e test/contain h COC – Not	COC and test test - list test her type		<u>C-</u>		receive
	# of Co	ontainer	(s)		10 27				
	Analys			mised – Not					
Sam Air	Water Broker ple consample Flat Very lo Leaking Leaking Free Pressore Press	present tainer(s contain w in vol g (Not ti g (trans	in sampl) not labe er(s) com ume ransferre ferred int	e container	Note in o bag sul e Tedlar edlar® B	comments bmitted) Bag*) ag*)			
Sample #	Container (D(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont, received	Analysis
								12	
						Y			
Comment	7	mple				*)	1	sitial / D	40: 2£ 02 /20 /42
*Transferr	eu at Gile	nit's requ	est.				ır	iiliai / Da	te: N 02 /27/12

APPENDIX D WASTE DOCUMENTATION

NON-HAZARDOUS Waste Hauler Document Daily Field Ticket No. 72379 GENERATOR DESIGNATED TSD FACILITY **ALTERNATE TDS FACILITY** Name: EPA# EPA# Address: Order Placed: Order Date: - DRILLING MUD D'- OTHER AMEST AND ☐ - GASWELL WATER Weight/Volume // > ? Container: - Dump Truck Tank Truck This material is nonhazardous because: 1) it is a drilling mud containing only the additives listed by the Department in its exemption letter and contains no significant concentrations of toxic materials from natural sources, or 2) is a sulfur-dioxide scrubber solution from a sodium hydroxise or sodium carbonate oil field boiler scrubber system, and possesses no characteristics that would require its SIGNATURE OF AUTHORIZED AGENT DATE handling as a hazardous waste. THANSPORTER Job No. a Colored - 1 6 1 Warren E. Gomes Exc., Inc. Pick-Up Date P. O. Box 369 Rio Vista, CA 94571 SIGNATURE OF BUYER (707) 374-2881 EPA # CAD076557370 TSO FACILITY Method of Disposal: □ - Injection Well INSTRATE INC 1200 GALLONS QTY Measured □ - Landfill □ - Land Treatment □ - BBL □ - TONS Œ - OTHER □ - Surface Impoundment M-Other GAC 2-17-12 SIGNATURE OF AUTHORIZED AGENT TSDF TO GENERATOR

in the standard

APPENDIX E

Aqtesolv™ OUTPUT FILES

PUMP TEST

Data Set: L:\...\2476 CR2 Neuman.aqt

Date: 03/09/12 Time: 07:25:28

PROJECT INFORMATION

Company: Cardno ERI
Client: Exxon Mobil
Project: 022476
Location: 70234

Test Well: RW1

Test Date: February 2012

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: <u>Neuman</u>

 $T = 0.2833 \text{ cm}^2/\text{sec}$

S = 0.001001Sy = 0.001859

Kz/Kr = 2.723

AQUIFER DATA

Saturated Thickness: 16. ft

WELL DATA

	Pumping Wells	
Well Name	X (ft)	Y (ft)
RW1	36	51

0	bs	erv	ati	on	W	ells	

Well Name	X (ft)	Y (ft)
□ MW5	54	54
□ MW6	13	49
□ MW4	56	106
□ MW9	86	44

PUMP TEST

Data Set: L:\...\2476 CR2 Neuman.aqt

Date: 03/09/12

Time: 07:25:53

PROJECT INFORMATION

Company: Cardno ERI
Client: Exxon Mobil
Project: 022476
Location: 70234

Test Well: RW1

Test Date: February 2012

SOLUTION

Aquifer Model: <u>Unconfined</u> Solution Method: Neuman

T = 197.1 gal/day/ft

 $S = \frac{0.001001}{0.001859}$

Kz/Kr = 2.723

AQUIFER DATA

Saturated Thickness: 16. ft

WELL DATA

	Pumping wells	
Well Name	X (ft)	Y (ft)
RW1	36	51

Observation Wells

Well Name	X (ft)	Y (ft)
□ MW5	54	54
□ MW6	13	49
□ MW4	56	106
□ MW9	86	44