DRAFT

POST-REMEDIATION EXCAVATION-FLOOR SAMPLING REPORT AND ENVIRONMENTAL RISK ASSESSMENT

Balaam Brothers Property 1350 Powell Street Emeryville, California Cambria Project No. 502-1795

February 19, 2003

Prepared for:

David Diamond Balaam Brothers Partnership 1115 Hillview Road Berkeley, California 94708

Prepared by:

Cambria Environmental Technology, Inc. 1144 65th Street, Suite B Oakland, California 94608

POST-REMEDIATION EXCAVATION-FLOOR SAMPLING REPORT AND ENVIRONMENTAL RISK ASSESSMENT

Balaam Brothers Property 1350 Powell Street Emeryville, California

INTRODUCTION

DRAFT

Cambria Environmental Technology, Inc. (Cambria) is submitting this Post-Remediation Excavation-Floor Sampling Report and Environmental Risk Assessment for the above-referenced site (the Site) on behalf of the Balaam Brothers Partnership. The site sampling activities were performed in accordance with Cambria's February 11, 2003 workplan, which received verbal approval on February 13, 2003 and written approval on February 14, 2003 from the Alameda County Department of Environmental Health (ACDEH). The risk assessment was requested by the ACDEH letter dated February 14, 2003. This objective of this additional work is to further assess subsurface conditions after remediation described in Cambria's Corrective Action Completion Report dated December 13, 2002, and to facilitate issuance of a No Further Action (NFA) letter. Upon receipt of an NFA letter from the local regulatory agencies, Pulte Homes plans to purchase the Site property and the adjacent property at 1300 Powell Street for redevelopment as high-density housing. This report describes the additional sampling and the environmental risk assessment requested by ACDEH.

SITE BACKGROUND

The Site is located on the northeast corner of the intersection of Powell Street and Hollis Street, in a mixed industrial/commercial area within Emeryville, California (see Figure 1). The Site background is more completely described in Cambria's Corrective Action Completion Report. In summary, the Site has been impacted by petroleum hydrocarbons from two former underground storage tanks (USTs) and four former aboveground storage tanks (ASTs) which were placed in service during the 1930s, and operated until the early 1950s by Cook's Oil Company and Standard Oil Company. The locations of the USTs and ASTs are shown on Figure 2.

Based on both available site history and environmental sampling results, the USTs were the source of a release of both gasoline and diesel fuel which impacted soil and shallow groundwater in the southern portion of the Site, whereas the ASTs were the source of a release of heavier,

Post-Remediation Excavation-Floor Sampling Report
And Environmental Risk Assessment

DRAFT Balaam Brothers Property
Emeryville, California

February 19, 2003

predominantly diesel-range, hydrocarbons which impacted the central and northern portions of the Site. Benzene, toluene, ethylbenzene and xylenes [BTEX] constituents are chemicals of concern (COC) in the southern portion of the Site. Polynuclear aromatic hydrocarbons (PAHs) were analyzed in selected samples and were only detected at concentrations substantially lower than RWQCB RBSLs, and so were not considered COCs for the Site. The ASTs were removed sometime prior to leasing of the property by Balaam Brothers in the late 1950s. The USTs were removed by Balaam Brothers in 1987.

Implementation of the approved corrective action plan was designed to remediate petroleum hydrocarbons to facilitate issuance of a no further action (NFA) letter. The Site cleanup goals were agreed to by the ACDEH and the San Francisco Bay Regional Water Quality Control Board (RWQCB) in a June 21, 2002 letter. Remediation of the site by excavation and disposal of impacted soil was completed in November 2002. The remediation involved excavating most of the Site to 10 feet below grade surface (bgs), and excavating other areas to up to 16 feet bgs to target impacted soil and reduce potential impact to groundwater. A total of 16,338 tons was transported and disposed offsite.

Post-remediation groundwater sampling was conducted in December 2002. Cambria submitted a Corrective Action Completion Report on December 13, 2002. The ACDEH subsequently requested confirmation sampling of native soil at the base of the backfilled excavation, additional sampling of the three remaining temporary groundwater monitoring wells at the Site, and a risk evaluation.

INVESTIGATION PROCEDURES AND RESULTS

Cambria advanced seven soil borings (AB-A through AB-G) to further assess subsurface conditions. The boring locations were approved by the ACDEH and permitted by Alameda County Department of Public Works. Soil boring permits are included in Appendix A. Soil samples were collected from borings AB-B through AB-G where native material was first encountered after drilling through the imported backfill material. For boring AB-A, a soil sample was collected from native soil at approximately 3 feet bgs immediately (within 2 feet) south of sample EX-A-S-3 (9-24-02), where prior benzene concentrations exceeded risk based screening levels (RBSLs) established by the RWQCB. During verbal approval by Eva Chu of the ACDEH on February 13, 2003, Ms. Chu requested additional groundwater sampling of the remaining

DRAFT

Balaam Brothers Property Emeryville, California

February 19, 2003

temporary groundwater wells and analyzing a grab groundwater sample from proposed boring

AB-B. Cambria sampled wells TW-6, TW-7 and TW-8, but was unable to sample well TW-4

due to damage by site grading activities. Ms. Chu also requested relocating boring AB-B

approximately 15 feet south of the location proposed in the workplan.

Soil samples were collected using a hollow-stem auger drill rig. Soil samples were collected a

few inches below the interface between excavation backfill and native soil using a hammer-

driven split-spoon sampler. Temporary wells were purged with a peristaltic pump prior to

sampling. An additional description of the field activities is presented as Appendix B. Cambria's

Standard Field Procedures for Hand-Auger Soil Borings, Standard Field Procedures for Soil

Borings, and Standard Field Procedures for Monitoring Wells are presented as Appendix C.

Field logs are included in Appendix D.

Soil Analytical Results

Soil analytical results are summarized on Table 1a. Laboratory analytical results are included in

Appendix E. TPH and benzene concentrations are shown on Figures 1 and 2, respectively. Soil

samples during this investigation were analyzed for total petroleum hydrocarbons (TPH) as

gasoline (TPHg), TPH as diesel (TPHd), TPH as motor oil (TPHmo), and TPH as bunker oil

(TPHbo) by EPA Method 8015C; and for benzene, toluene, ethylbenzene, and xylenes (BTEX)

and methyl tert-butyl ether (MTBE) by EPA Method 8021B. Silica gel filtration was used for the

TPHd, TPHmo and TPHmo analyses. The cleanup standard for site soil less than 10 feet depth

was 1,000 mg/kg total TPH. To avoid the quantification of overlapping results, the total TPH was

calculated by adding the TPHg results (C6-C9 range) and the TPHbo results (C10 and higher

range).

Petroleum hydrocarbons were detected in soil from five of the seven borings. The maximum

detected concentrations were 20 mg/kg TPHg (AB-A), 400 mg/kg TPHd (AB-D) and 68 mg/kg

TPHmo (AB-D).

During this investigation, no benzene or MTBE was detected in soil and no petroleum

hydrocarbon concentrations in soil exceeded RBSLs. This is a significant result because borings

AB-B, AB-B and AB-C were located near former samples with benzene concentrations

DRAFT

Balaam Brothers Property Emeryville, California February 19, 2003

exceeding Tier 1 RBSLs. These current results suggest that residual hydrocarbons were limited in extent and likely attenuated due to volatilization during the four month excavation activities.

For comparison purposes with site remediation data, prior site data is also included on Table 1a and Figures 1 and 2. Please notice that Table 1a is divided into three subsections: 1) post remediation conditions (sample data from soil remaining after remediation), 2) during remediation (data from samples collected during excavation), and 3) pre-remediation investigative data. Figures 1 and 2 show results from a number of pre-remedial boring samples that were collected prior to excavation from depths approximately coincident with the final excavation base elevation (e.g. borings 9, 12, EB-9 and EB-10). The figures also show confirmation results from samples collected directly from the excavation floor immediately after excavation of contaminated soil (for example, EX-B-B-10 (7-24-02), EX-E-B-7, EX-K-C-6, etc). The figures also show sidewall samples from the boundary of the final remedial excavation.

Soil logging during installation of boring AB-C, which encountered native material at approximately 16 feet depth, indicates that the deeper excavation area at the site extended eastward under the location of boring AB-C and sample location EX-A-B-10 (where benzene was detected above RWQCB RBSLs). This soil logging information and the lack of benzene detected in soil from boring AB-C indicates that the benzene-impacted soil at EX-A-B-10 was overecavated. Therefore, the only benzene and xylenes in excess of RBSLs (if not attenutated) are only present in a limited area along the south wall and floor of the excavation near samples EX-A-S-3 (10/2/02) and EX-A-S-9 (7/24/02). The limited results for residual soil from prior sampling that exceed Tier 1 RBSLs are discussed in the Risk Assessment section below.

Groundwater Analytical Results

Analytical results are summarized on Table 2a and Figure 3. Laboratory analytical reports are included in Appendix E. Groundwater samples were also analyzed for TPHg, TPHd, TPHmo, TPHbo, BTEX and MTBE. Silica gel filtration was also used for the TPHd, TPHmo and TPHmo analyses. The cleanup standard for site groundwater was 10,000 to 20,000 ug/L total TPH. To avoid the quantification of overlapping results, the total TPH was calculated by adding the TPHg results (C6-C9 range) and the TPHbo results (C10 and higher range).

DRAFT

Balaam Brothers Property Emeryville, California

February 19, 2003

During this investigation, petroleum hydrocarbons were detected in groundwater from boring

AB-A and in well TW-6 while no petroleum hydrocarbons were detected in wells TW-7 and TW-

8. The only constituents detected during this investigation were TPHd at 130 ug/L (AB-B),

toluene at 1.3 ug/L (TW-6), ethylbenzene at 0.56 ug/L (AB-B), and xylenes at 2.8 ug/L (TW-6).

During this investigation, no benzene, MTBE, TPHg, TPHmo, or TPHbo was detected in

groundwater soil and no petroleum hydrocarbon concentrations in groundwater exceeded RBSLs.

For comparison purposes with site remediation data, prior site data is also included on Table 2a

and Figure 3. Note that Table 2a is into post-remediation and pre-remediation subsections.

Analytical results from post-remediation groundwater monitoring indicates that site groundwater

has been remediated to well below the cleanup standard of 10,000 to 20,000 ug/L total TPH. The

one sample results from TW-6 on December 4, 2002 that exceeded Tier 1 RBSLs for TPH but did

not exceed site cleanup levels are discussed in the Risk Assessment section below.

Investigation Conclusions

Cambria concludes the following based on the findings of this additional sampling:

No chemicals of concern were detected above cleanup standards or RBSLs during this

additional investigation.

Analytical results from residual native soil indicate that all site soil has been excavated to the

cleanup standard of 1,000 mg/kg total TPH. The two soil sample results that exceeded the TPH cleanup standard are located along the edge of the excavation at the western property

boundary. Benzene and xylenes in excess of RBSLs (if not attenutated) are only present in a

limited area along the south wall and floor of the excavation near samples EX-A-S-3

(10/2/02) and EX-A-S-9 (7/24/02).

Post-remediation analytical results indicate that site groundwater has been remediated to well

below the cleanup standard of 10,000 to 20,000 ug/L total TPH.

DRAFT

Balaam Brothers Property Emeryville, California

February 19, 2003

ENVIRONMENTAL RISK ASSESSMENT

An environmental risk assessment was performed to evaluate the potential risk from residual

hydrocarbons, as requested by the ACDEH. The site-specific environmental risk assessment was

performed based on the residual contaminant concentration data, and involved the following:

• A Tier 1 risk assessment using the Regional Water Quality Control Board - San Francisco

Bay Region (RWQCB) guidance document Application of Risk Based Screening Levels and

Decision Making to Sites With Impacted Soil and Groundwater (RWQCB 2001).

For constituents whose residual concentrations exceed Tier 1 Risk Based Screening Levels

(RBSLs), a Tier 2 risk assessment is presented using guidance derived from both the

RWQCB document, and relevant guidance from the City of Oakland's Oakland Risk-Based

Corrective Action: Technical Background Document (City of Oakland, 1999).

The following sections are presented based on the outline presented in RWQCB 2001.

1. Summary of Site Investigation

Detailed site investigation information is presented in Cambria's Corrective Action Completion

Report, submitted to ACDEH on December 13, 2002, and is supplemented by additional

sampling performed by Cambria in February 2003. Investigation activities have determined the

types of impacted media (soil and groundwater), sources of chemical releases (USTs and ASTs

containing diesel, gasoline and oil at 1350 and 1300 Powell Street and potential fuel or oil spills

on the adjacent Union Pacific Railroad property), and identity of all chemicals of concern (long-

chain petroleum hydrocarbons (primarily diesel-range) in the northern part of the Site; both long-

and short-chain petroleum hydrocarbons and volatile gasoline constituents [BTEX] in the

southern portion of the Site).

A complete tabulation of analytical results showing residual concentrations of chemicals of

concern is presented in Tables 1 and 2. These samples were collected in accordance with the

DRAFT

Balaam Brothers Property Emeryville, California

February 19, 2003

ACDEH-approved workplans for the site, and are considered to be representative of site

conditions. These data are described in more detail in the preceding sections, and are presented

on Figures 1 through 3. Additional figures in Cambria's Corrective Action Completion Report

show additional data from before and during site remediation.

Table 3 lists all residual soil or groundwater sample concentrations that exceed RWQCB surface

soil and groundwater RBSLs for residential land use where groundwater is not a current or

potential source of drinking water, as listed on Table B of RWQCB (2001). Out of more than 50

soil samples representative of residual contamination at the site, only eight samples contained

chemicals of concern at concentrations exceeding the RWQCB RBSLs. As indicated in Table 3,

and on Figures 1, 2 and 3, these samples represent the following areas at the site.

Southern Property Boundary

Three samples located close to the southern property boundary, adjacent to Powell Street,

contained benzene (maximum concentration of 3.5 mg/kg) above the RBSL, and two of the

samples also contained xylenes above the RBSL (maximum concentration of 4.5 mg/kg). The

lateral and vertical extent of benzene and xylenes in these samples is extremely limited based on

the lack of these analytes detected in all adjacent samples of residual soil.

Sample EX-A-S-3 [10/2/02] contained 3.5 mg/kg benzene and 4.5 mg/kg xylenes at a depth of 3

feet at the southern excavation boundary. However, no benzene was detected in any of the

following nearby samples shown on Figure 2: sample AB-A-3.5, located approximately 3 feet

southwest away at a depth of 3 to 3.5 feet, sample EX-A-S-9 [9/24/02] located approximately 10

feet north at a depth of 9 feet, samples SS-8 (fill) and SS-8 (native) located approximately 20 feet

to the east at depths of 0.5 and 7.5 feet, and sample AB-B-15.5 located approximately 30 feet

north at a depth of 15.5 feet. Xylenes in these samples was either non-detectable or at

concentrations several orders of magnitude lower than the RBSL. Given the significant exposure

of the excavation sidewalls, the significant source removal, and the adjacent sample results, it is

likely that the benzene and xylenes in the vicinity of sample EX-A-S-3 have decreased below

RBSLs as a result of natural attenuation processes.

DRAFT

Balaam Brothers Property

Emeryville, California February 19, 2003

Approximately 40 feet east of the above area of concern is sample EX-A-S-9 [7/24/02], which

contained 2.0 mg/kg benzene and 2.1 mg/kg xylenes at the excavation sidewall at a depth of 9

feet. Overlying soil at this location was loose sand that had filled a previously existing

excavation beneath a former propane tank, and which extended approximately 20 feet along the

property boundary and beneath the adjacent sidewalk beyond the property boundary. Since field

observations clearly indicated that this sand had not been impacted by petroleum hydrocarbons,

Ms. Eva Chu (ACDEH) directed that no confirmation samples should be collected from this

material. Nearby samples to the west (SS-8 [fill] and SS-8 [native] collected from depths of 0.5

and 7.5 feet, and east (trench 1-3 and trench 1-9) did not contain detectable benzene or xylenes.

The original excavation base sample (EX-A-B-10 [7/24/02]) collected approximately 20 feet to

the north at a depth of 10 feet contained 0.47 mg/kg benzene. Sample AB-C-17 (2/14/03) was

collected at a depth of 17 feet immediately to the north of the prior excavation base sample, and

did not contain detectable benzene or xylenes. Boring AB-C encountered excavation backfill

until a depth of approximately 16 feet, indicating that the 16 feet deep excavation extended

beneath the locations of boring AB-C and sample EX-A-B-10 (7/24/02). Therefore, benzene and

xylenes in excess of RBSLs (if not attenutated) are only present in a limited area along the south

wall and floor of the excavation.

Southeastern Excavation Wall

One sample EX-A-E-9 (8/17/02) along the eastern wall of the excavation contained TPHd at a

concentration (570 mg/kg) at a concentration slightly exceeding the RBSL (500 mg/kg) at a depth

of 9 feet. The lateral extent of the area impacted above the RBSL is very small, as indicated by

the close proximity of numerous samples with lower concentrations (Figure 1).

Western Property Boundary

Three samples were located at or near the western property boundary adjacent to the Union

Pacific Railroad tracks. These samples are EX-C-NW-3 (9/13/02), EX-C-W-3 (9/13/02) and EX-

L-NW-9 (11/20/02). All three samples contained elevated concentrations of diesel-range

DRAFT

Balaam Brothers Property Emeryville, California

February 19, 2003

hydrocarbons (TPHd). The southern two samples, which had the highest TPH-D concentrations

(over 2,000 mg/kg) also had elevated concentrations of motor-oil-range hydrocarbons (TPH-mo).

Because the two southernmost samples were excavation sidewall samples located on the property

boundary, they are representative of offsite COC concentrations and not onsite COC

concentrations. In addition, all adjacent samples, including shallower or deeper samples at the

same locations, which had TPH levels lower than the RBSL (500 mg/kg).

Northern Excavation Floor

One sample was located in the northernmost portion of the excavation and contained only TPHd

(780 mg/kg) at a concentration exceeding the RBSL (500 mg/kg).

No soil samples containing gasoline-range total petroleum hydrocarbons (TPH-G) exceeded the

RWQCB RBSL of 400 mg/kg. The highest concentration detected in residual soil was 350 mg/kg

in sample EX-A-S-9 (7/24/02), located at the southern excavation boundary in the same sample

that contained the highest level of benzene (2.0 mg/kg) exceeding the RBSL. Due to the sidewall

exposure during excavation activities, hydrocarbons in that area have likely attenuated.

Only one groundwater sample, collected from temporary well TW-6, contained an analyte

(TPHd) at a concentration exceeding the RWQCB RBSL. However, this sample was collected

shortly after well installation. Both subsequent samples collected from the same well contained

TPHd at a substantially lower concentration than the RBSL. Therefore, it is likely that the initial

sample from this well had been cross-contaminated as a result of well drilling procedures, and

that the later samples are more representative of groundwater concentrations.

No known groundwater extraction wells that might be impacted by site contamination are known

to exist. Groundwater in the vicinity of the site is not protected for beneficial use. The nearest

surface water body, which is also the nearest potentially sensitive ecological habitat is the San

Francisco Bay, which is located 1/2 mile west of the site.

Post-Remediation Excavation-Floor Sampling Report
And Environmental Risk Assessment

DRAFT
Balaam Brothers Property
Emeryville, California
February 19, 2003

2. Summarize Past, Current and Anticipated Future Site Activities and Uses

Past site uses are described in detail in the Corrective Action Completion Report (Cambria 2002), and described briefly in the preceding sections. All site buildings have been demolished to facilitate environmental remediation and receipt of a no further action (NFA) letter from the ACDEH. Upon receipt of an NFA letter, it is expected that the site will be developed primarily as a complex of three-story townhomes, interspersed with driveways and limited landscaped areas. Each of the multi-unit townhomes is anticipated to have garages and home offices located on the ground floor, with living areas located on the second and third floors. A commercial space (e.g. a restaurant or coffee shop) is anticipated to be located at the southwestern corner of the property. A map of the proposed development was previously submitted to ACDEH by anticipated buyer of the property (Pulte Homes). Figure 4 shows the site development plan and the proposed ground floor plan.

The adjacent 1300 Powell Street site is anticipated for development as part of the same multi-unit townhome complex as the 1350 Powell Street site. The adjacent Union Pacific Railroad property is anticipated to be developed as a greenway/bikepath after acquisition by the City of Emeryville.

3. Summarize Appropriateness of Tier 1 Lookup Tables and RBSLs

The use of the Tier 1 lookup tables and RBSLs are appropriate for initial risk screening for the site. Tier 1 RBSLs exist for all COCs. The site is a typical small Emeryville redevelopment site that does not have a high public profile. Soil and groundwater conditions do not differ significantly from those assumed in development of the lookup tables, except that the lookup tables generally use more conservative site-specific parameters than those for the site. The area impacted by site COCs is contained within a highly developed urban setting, and therefore impacts do not pose heightened threats to sensitive ecological habitats. The thickness of vadose-zone soils impacted by volatile organic compounds is substantially less than 15 feet. Site COCs are petroleum hydrocarbons and their constituents. The only individual constituents that exceed RBSLs are benzene and xylenes.

Post-Remediation Excavation-Floor Sampling Report
And Environmental Risk Assessment

DRAFT
Balaam Brothers Property
Emeryville, California
February 19, 2003

4. Soil and Groundwater Categorization

The Site lies within the Emeryville Brownfields Groundwater Management Zone, as defined in the East Bay Plain Groundwater Basin Beneficial Use Evaluation Report (RWQCB, 2003). This report states that: "Groundwater is not currently used for any municipal, domestic, industrial, or agricultural purpose in Emeryville. No extractive beneficial uses are planned in the future. Remedial strategies should focus on protecting potential aquatic receptors and potential future irrigation or industrial uses. Achievement of drinking water objectives within a reasonable time period is an appropriate long term goal. Emeryville has developed a sub-regional groundwater monitoring plan that will provide information on both the shallow and deeper aquifer water quality. In addition, Emeryville has developed a detailed GIS system for tracking contaminated properties that will help to prevent inappropriate land uses. Lastly, Emeryville may consider assuming some of the liability for the groundwater pollution as well as overseeing smaller cleanups under an agreement with DTSC and the Regional Board."

Based on the predominant clay soil-type underlying the site and the presence of shallow groundwater only in thin, discontinuous confined zones beneath the Site, groundwater yield is anticipated to be insufficient for sustainable groundwater production for municipal, domestic, industrial, or agricultural purposes. Groundwater yield during sampling of temporary wells was approximately 0.2 gallons per minute, which equates to approximately 290 gallons per day. Groundwater quality and yield parameters may be brackish based on proximity to San Francisco Bay, although this supposition has not been verified.

Native soil throughout the site is predominantly silty clay and clayey silt, with sporadic generally thin discontinuous layers of clayey gravel and sand. The base of the remedial excavation was predominantly clay. The soil used for backfilling the excavation primarily consisted of clay with shallow sandy silt and silty sand. As described in documents in Attachment F, the bottom 3 to 5 feet of the excavation was backfilled with fat clay, which was overlain by onsite fat and lean clays. The final few feet of the backfill consisted of sandy silt and silty sand. The native materials are described in a October 16, 2001 memorandum from Subsurface Consultants (Attachment F). Based on this information, fine-grained soil types having very low permeabilities

DRAFT

Balaam Brothers Property Emeryville, California

February 19, 2003

predominate throughout the site. The excavation is now filled with clean fill to at least five feet

deep, and the remainder of the excavation cavity up to 16 feet deep was backfilled with low

permeability materials.

Figures 2 and 3 show the concentrations of petroleum hydrocarbons underlying the clean fill and

in the excavation sidewalls. Areas that were excavated to depths of 10 feet or more were

backfilled with clean, imported material and some onsite materials. With ACDEH approval,

approximately 250 tons of reused shallow overburden soil and approximately 300 tons of shallow

soil beneath the former dock and shed along the western property were reused in the deeper site

excavation. The reused soil was from stockpiles A2 and SP-1, for which the analytical results are

shown on Table 1a. The maximum TPH concentration in the reused soil was 410 mg/kg. All

analytical results for the reused soil were below the RBSLs. The soil was reused from the

northern portion of the site where BTEX compounds were not a COC.

The areas where soil remains at concentrations exceeding residential RBSLs are described above

in paragraph 1 and are shown on Figures 1 and 2. This soil had no field indications of

hydrocarbon impact. Therefore, a total of approximately 550 tons of soil was reused at the Site.

The reused soil was placed in the deeper excavation areas between 8 and 16 feet bgs. Analytical

results from soil stockpiles are presented in Table 2.

5. Exposure Point Concentrations

Maximum concentrations of chemicals present in impacted media are shown on Tables 1a and 2a.

Concentrations exceeding RBSLs are shown on Table 3. Sampling density was insufficient to

use statistical parameters (e.g. 95% Upper Confidence Limits used to average exposure areas

<1,000 square feet in size) in lieu of maximum concentration values.

There is virtually no possibility that impacted media at the site could pose an elevated threat to

surface water bodies. The measured gradient at the site is 0.04 ft/ft, and the hydraulic

conductivity at the site is extremely low due to the high clay content of site soils. Hydraulic

conductivity values for inspection of the water level elevation contour map indicates that the

DRAFT

Balaam Brothers Property Emeryville, California

February 19, 2003

horizontal component of the hydraulic gradient (dh/dl) is approximately 0.04 ft/ft. Assuming a

hydraulic conductivity (K) of 1 x 10-5 centimeters per second, which is a relatively high

(conservative) value for typical site soils, and an effective porosity (ne) of approximately 0.2,

Darcy's law $(vx = (K/n_e) x dh/dl)$ indicates that the average linear groundwater velocity (vx)

would be approximately 0.6 meters per year (2 feet per year). Velocities would be substantially

lower in the predominant clay units at the site. Therefore, groundwater velocities at the site are

extremely low (probable actual velocities are less than 1 foot/year), as shown by the lack of

significant contamination detected in groundwater underlying the site more than 50 years after the

initial release, despite the pre-remediation presence of free product in shallow groundwater.

No background comparisons were used in the risk assessment.

6. Selection of Tier 1 RBSLs and Comparison to Site Data

Since the site lies within the Emeryville Brownfields Groundwater Management Zone where

groundwater is not considered a drinking source, since the anticipated future site usage is

residential development, and since impacted soil lies at depths of less than 10 feet bgs, the Tier 1

RBSLs used are the surface soil and groundwater RBSLs for residential land use where

groundwater is not a current or potential source of drinking water, as listed on Table B of the

RWQCB document.

As described in paragraph 1 above, and as shown in Tables 1a, 2a and 3, an RBSL comparison

with site data showed that maximum sample concentrations in four general areas exceeded

RBSLs when maximum sample values were used for comparison.

7. Tier 1 Conclusions

The extent of soil impacts above Tier 1 RBSLs is for TPHd and benzene are illustrated on Figures

1 and 2, respectively. Groundwater at the site is not impacted above RBSLs. Based on the

comparison between site data and the Tier 1 RBSLs, four very limited areas of soil contamination

have potential risks to human health or the environment based on potential impacts from TPHd,

DRAFT

Balaam Brothers Property Emeryville, California

February 19, 2003

benzene and xylenes. However, since the assumptions regarding site conditions inherent in the

Tier 1 RBSLs are significantly more conservative than actual site conditions, a Tier 2 risk

assessment, documented in the following section indicates that these risks are significantly

overestimated.

If Tier 1 risk assessment assumptions were used, then land-use restrictions (i.e. use of engineered

vapor barriers beneath buildings) and institutional controls (i.e. deed restriction and risk-

management plan pertaining to digging or excavation at the site) could be implemented to

mitigate potential human health risks and odor issues in four small areas of the site. However, a

decision to require such restrictions and controls should be based on further analysis presented in

the Tier 2 risk assessment presented in the following section.

Tier 2 Risk Assessment

A number of factors combine to cause the Tier 1 RBSLs to be grossly conservative comparators

for the 1350 Powell Street site. These factors are discussed in detail below on an analyte-by-

analyte basis.

<u>Benzene</u>

As shown in Table 1a and Figure 2, a small area containing benzene in soil at a maximum

concentration of 3.5 mg/kg in residual soils was identified at the southern property boundary.

This exceeds the RWQCB RBSL of 0.18 mg/kg. As discussed above, the most recent sampling

results combined with the known susceptibility of benzene to natural attenuation processes

provide a strong qualitative basis for the argument that the benzene concentrations in this area

may have already been significantly reduced below the levels measured in the samples. In

addition, it should be noted that the benzene RBSL is grossly over-conservative for the site for

the reasons presented below.

In the Tier 1 risk assessment, the maximum sample concentration was utilized as the exposure

point concentration (EPC) for benzene. Generally, when sufficient sampling data are available,

Post-Remediation Excavation-Floor Sampling Report
And Environmental Risk Assessment

DRAFT
Balaam Brothers Property
Emeryville, California
February 19, 2003

an upper estimate of the average concentration (i.e. the 95% UCL) of the exposure area (not to exceed 1,000 square feet) is used as the EPC for conducting risk calculations. However, a sufficient number of samples was not collected in this area because, as described in the preceding sections, benzene is only present in a very restricted area along the southern property boundary. All site soil located north of these two samples, and extending to depths of 10 to 16 feet consists of uncontaminated clean fill, and is underlain by native soil that does not contain detectable benzene. Therefore, any EPC used for calculating risk should account for the presence of the large volume of uncontaminated soil that constitutes the majority of any reasonable exposure area located in this area. As a "worst case" scenario, assuming that the center of any size exposure area was located above the wall sample with the maximum detected residual concentration of benzene, then all soil to the north could be assumed to have a concentration value of zero, which would result in an average concentration for the exposure area of 50% of the maximum soil concentration, even if all soil located south of the center contained the maximum detected concentration of benzene. This would result in a "worst case" EPC of 1.75 mg/kg benzene. In actuality, pre-remediation samples collected within the excavation area and samples collected outside the excavation area show that benzene concentrations decreased dramatically with distance southwards away from the former UST area, and therefore likely attenuate to levels below RBSLs a short distance beneath the Powell Street sidewalk. Therefore, more realistic benzene EPCs should be substantially lower than 1.75 mg/kg, probably by at least an order of magnitude.

The RBSL is based on a target cancer-risk of 10⁻⁶ and a target non-cancer hazard index (HI) of 0.2. As noted by RWQCB (2001), this target risk "represents the upper (most stringent) end of the potentially acceptable cancer risk range of 10⁻⁴ of 10⁻⁶ recommended by the U.S. Environmental Protection Agency" and reflects the highly conservative assumption that cumulative effects of five similar chemicals with an HI of 0.2 at a site could exceed the more commonly applied HI threshold of 1. The City of Oakland's Oakland Risk-Based Corrective Action: Technical Background Document (City of Oakland, 1999) which was developed as part of the Urban Land Redevelopment Program for Oakland provides a set of Oakland-specific RBSLs that are based on both the widespread acceptance by Oakland community and government representatives of 10⁻⁵ as a target risk value and 1 as a target HI value for sites in the Oakland

DRAFT

Balaam Brothers Property Emeryville, California February 19, 2003

area, and on Oakland-specific default model parameters used for calculating risks. Since the Site is located less than 1/4 mile (i.e. 3 blocks) from the Oakland border, both the target risk value developed by local community and government representatives, and the default model parameters based on Oakland environmental conditions (i.e. climate, soil type, building characteristics, exposure assumptions) are pertinent to the site. If a 10⁻⁵ target cancer risk value is used in the RWQCB risk calculations, the RWQCB RBSL becomes 1.8 mg/kg, approximately 50% of the maximum detected concentration at the site. If this RBSL is combined with the 1.75 mg/kg "worst case" EPC described in the preceding bullet, then all site benzene EPCs are less than RBSLs, indicating no significant risk to human health.

An important assumption used in computing RBSLs is that for the purposes of calculation, natural attenuation of COCs is assumed not to occur. However, benzene and other petroleum hydrocarbons are highly susceptible to natural attenuation in the subsurface, through a combination of factors, including primarily biodegradation and volatilization. In particular, it was noted by RWQCB (2001) that the "Johnson and Ettinger model over-predicted the soil gas concentration of petroleum-based volatile organic compounds such as benzene in the vadose zone by up to three to five orders of magnitude. This was interpreted to reflect substantial, natural biodegradation of the vapor-phase of these chemicals in the subsurface. This in turn caused the models to over predict impacts to indoor air by several orders of magnitude and makes use of the model for this group of chemicals questionable." This is generally considered to be the reason that computer models used to calculate indoor air EPCs tend to dramatically overestimate EPCs. Natural attenuation at the Site will result in substantial reductions of EPCs, and therefore cumulative risks, over the default exposure periods. This is likely to be the factor resulting in the greatest overstimates of risk at the site, although quantitative estimates of the degree of degradation are not given in any commonly used regulatory agency risk calculation methods.

The RWQCB RBSL is based on direct human exposure to contaminated soil, whereas the principal exposure pathway of concern is inhalation of benzene volatilized into indoor air. The RWQCB does not provide an inhalation-based RBSL for benzene because model calculations used for developing inhalation-based RWQCB RBSLs (the Johnson & Ettinger model) have been determined to greatly overestimate exposures to humans, as described in the RWQCB's

Post-Remediation Excavation-Floor Sampling Report And Environmental Risk Assessment DRAFT **Balaam Brothers Property** Emeryville, California

February 19, 2003

Application of Risk Based Screening Levels and Decision Making to Sites With Impacted Soil and The RWQCB notes that overestimates are apparently a result of natural attenuation of benzene vapor and sorbed benzene in the subsurface, and other characteristics that are not accounted for in the model. The RWQCB RBSL for indoor air inhalation is simply the direct exposure RBSL. RWQCB indicates that this value is used in place of an inhalation-derived value because it is assumed that risks from inhalation at a given concentration are lower than risks from ingestion or dermal contact (RWQCB states "Because of the low confidence in the modelderived screening levels for benzene in particular, an assumption was made that the already conservative soil screening levels for direct-contact (0.18 mg/kg residential, 0.39 mg/kg commercial/industrial) are also adequate for the protection of indoor air quality"). For this reason, the RWQCB RBSLs for indoor air inhalation are usable only as an extremely conservative screening tool, and cannot be adjusted for site-specific conditions. The City of Oakland (1999) Urban Land Redevelopment Program's Risk-Based Corrective Action Program utilizes a spreadsheet model (Oakland Model) for calculating risks based on an the ASTM (1995) indoor air inhalation model to estimate indoor air exposures (the ASTM model employs the Johnson and Ettinger model calculations). Although this model is also considered to be overly conservative based on the lack of consideration for natural attenuation, it provides a means to calculate risks derived from inhalation of indoor air using Oakland-specific environmental parameters and the target 10⁻⁵ risk range. Oakland Model results calculated assuming the default silty clay soil type result in indoor air inhalation Tier 2 screening levels for soil of 1.9 mg/kg, and for direct contact screening levels of 19 mg/kg. To further refine this model, several site-specific parameters were substituted into the model using the interactive spreadsheet published on the program web page (www.oaklandpw.com/ulrprogram/index.htm) as follows:

- Ceiling Height: The proposed residential development is planned to have an 8 foot minimum and 10 foot maximum ceiling height, whereas the Oakland model default is 7.5 feet. An 8foot (244 cm) ceiling height (the most conservative realistic value) was used.
- Foundation Thickness: The proposed development is planned to use an 8" (20 cm) minimum slab thickness which was used in lieu of the default 6" thickness.

DRAFT

Balaam Brothers Property Emeryville, California

February 19, 2003

• Depth to Source: A depth to (contaminant) source of 9.8 feet (300 cm) was used in lieu of the

default 3.3 feet (100 cm). Although one impacted site soil sample is located at a depth of

approximately 3 feet bgs, most of the footprint of any future site development would located

over soil excavated to 10 feet or deeper. Given that detectable benzene does not occur

directly beneath most parts of all townhouse units, this is a highly conservative input

parameter.

• Depth to Groundwater: This parameter was set to 16.4 feet (500 centimeters) in lieu of the

default of 9.8 feet (300 centimeters).

Based on the site-specific parameters given above, the Oakland Model calculates a site-specific

Tier 2 screening level of 3.3 mg/kg benzene, which is close to the maximum detected site

concentration. Considering that this model is known to overestimate risks by several orders of

magnitude, this screening level is considered grossly conservative.

As shown in Figure 4, although the planned future site use is for residential townhomes, the

development plans designate the ground floor for the residential townhomes as garages with

attached home offices. Such uses would tend to substantially reduce the receptor exposure periods

that are used as default parameters in the Oakland Model RBSLs for indoor air inhalation, which

are based on the assumption of ground floor dwelling units. As also shown on Figure 4, the

planned site development will cap the entire site with buildings and pavement, except for a few

small limited landscape areas.

The Tier 2 risk assessment for benzene described above indicates that a wide range of factors

result in overestimation of risks to human health. These factors indicate that EPCs should be

reduced to numbers substantially below 1,75 mg/kg and that Tier 2 RBSLs or screening levels

should be increased to levels of 1.8 mg/kg or higher, even while disregarding the potential for

natural attenuation and retaining very conservative assumptions regarding other exposure

parameters. And the Oakland Model calculates a site-specific Tier 2 screening level of 3.3 mg/kg

for benzene, which is just below our maximum detected benzene concentration of 3.5 mg/kg, For

this reason, the Tier 2 risk assessment indicates that benzene does not constitute a significant

health risk to humans.

DRAFT

Balaam Brothers Property Emeryville, California

February 19, 2003

Xylenes

As shown in Tables 1a and 3, the two samples containing the maximum detected concentrations

of benzene in soil also contain xylenes at concentrations above the RWQCB RBSL of 1.0 mg/kg.

However, a Tier 2 review of the RWQCB RBSL components for xylene indicates that this RBSL

is based on the potential for xylenes to impact groundwater. As stated in the RWQCB RBSL

guidance, when groundwater data are available, and contaminants are in contact with

groundwater, then groundwater sampling data and groundwater RBSLs should be used in lieu of

the soil RBSL, because they provide a more accurate assessment of the potential for COCs to

leach to groundwater. Therefore, the direct contact and inhalation of indoor air RBSLs should be

used in lieu of the leaching-to-groundwater RBSL. The RBSLs for direct contact and inhalation

of indoor air for xylenes are both 210 mg/kg, which far exceed site concentrations. Based on this

Tier 2 risk assessment, xylenes are not considered to be a significant risk to human health.

Total Petroleum Hydrocarbons

As shown in Tables 1a and 3 and on Figure 1, five samples collected from residual soils

contained total petroleum hydrocarbons in the ranges of diesel and/or motor oil at concentrations

exceeding the RWQCB RBSL surface soils for middle distillate TPH (500 mg/kg). A Tier 2

review of the RWQCB RBSL components for this TPH range indicates that the RBSL is based on

three residential categories which have identical RBSL values. These are a ceiling value for

nuisance (odors, etc.), a direct contact substitute of the pyrene RBSL (i.e. the RBSL for pyrene, a

PAH commonly present in petroleum hydrocarbons, is used as a single chemical substitute for a

wide range of petroleum hydrocarbons), and the leaching-to-groundwater RBSL.

As noted above for xylenes, the leaching-to-groundwater RBSL is not applicable to the site due to

the fact that groundwater data are available, and no vadose zone was present beneath the

contaminated unit (i.e. all underlying soils were saturated).

PAHs were analyzed in a number of pre-remediation soil samples, and pyrene was detected at a

maximum concentration of 0.29 mg/kg, several orders of magnitude below RBSLs, and was

generally not detectable. Other PAHs were detected at similar, low or non-detect concentrations.

Post-Remediation Excavation-Floor Sampling Report
And Environmental Risk Assessment

DRAFT
Balaam Brothers Property
Emeryville, California

February 19, 2003

These PAH analyses were in most cases conducted on soil samples containing several hundred to

several thousand mg/kg TPH, indicating that PAHs constitute an insignificant fraction of detected

TPH. Therefore, use of the pyrene surrogate to assess risks derived from direct contact with TPH

may not be valid, and it is probable that generally less toxic aliphatic hydrocarbons may

constitute a large fraction of the TPH. It should also be noted that the direct contact RBSLs for

both surface and subsurface soils are based on target noncancer HI of 0.2. If the target HI value

of 1.0 used in the Oakland Risk Based Corrective Action program is applied in lieu of 0.2, then

direct contact RWQCB RBSLs for surface and subsurface soil would become 2,500 mg/kg and

80,000 mg/kg, respectively. Similarly, if the direct contact RBSL for pyrene is computed using

the Oakland Model, incorporating the site-specific parameters listed above under "Benzene" the

resulting RBSL is 1,200 mg/kg. Using default Tier 1 parameters in the Oakland Model actually

results in a higher RBSL of 1,600 mg/kg. No residual hydrocarbons are present at or above these

concentrations at the site, with the exception of two samples located at the property boundary. As

was described for benzene above, the EPCs for these excavation wall samples should be set at

substantially less than half of the measured concentration to account for the large volumes of non-

detect clean backfill located immediately adjacent to them, which would result in EPCs of less

than 1,500 mg/kg.

The 500 mg/kg ceiling threshold pertaining to odor, etc. is based on odor thresholds and volatility

for typical compositions of TPH. For subsurface soils, interpreted to be soils at depths of greater

than 10 feet, the RBSL components for direct contact and nuisance (i.e. odor, etc) are 16,000

mg/kg and 5,000 mg/kg, respectively, substantially greater than any residual site concentrations,

so TPH concentrations at that depth should be of no concern

DRAFT

Balaam Brothers Property Emeryville, California

February 19, 2003

Based on this Tier 2 risk assessment for TPH, residual TPH in soil is not considered to be a significant risk to human health. Only a few isolated samples of residual soil have TPH concentrations greater than the ceiling threshold value for nuisance concerns (i.e. odor, etc.), and except for two samples collected along the western property boundary, TPH concentrations in these samples do not greatly exceed the ceiling threshold value. Therefore, it appears unlikely that such concerns would create impacts, with the possible exception of the two samples collected along the western property boundary. It should be noted that those samples represent offsite contamination that is considered unlikely to impact onsite buildings, and is likely to be remediated during planned redevelopment by the City of Emeryville, and that adjacent parts of the site contain clean fill.

Tier 2 Risk Assessment Conclusion

Based on the Tier 2 risk assessment described above, the presence of residual COCs present at concentrations exceeding RWQCB Tier 1 RBSLs does not constitute a significant threat to human health. TPH concentrations exceed ceiling levels for nuisance concerns (e.g. odor) in a few isolated samples, but these samples represent relatively small areas that generally do not underlie proposed building footprints, and are thought to be insufficient to constitute a nuisance. As described in the June 21, 2002 letter from ACDEH pertaining to Site cleanup goals, concurrence with the cleanup goals described in the *Corrective Action Completion Report* was predicated on five additional requirements, which are listed and discussed below.

- 1. "Clean imported soil shall comprise the upper 2 feet of all landscaped areas, planting boxes, etc." Except for the small building in the southwest corner of the property, essentially all soil to a depth of 5 feet or more at the property has been replaced with clean imported fill. The building was demolished approximately 1 week prior to completion of this report, and it is anticipated that any landscape areas will be excavated to at least 2 feet depth and replaced with clean imported soil.
- 2. "Vapor barriers (membranes) shall underlie the entirety of all inhabited structures; no utilities shall penetrate vapor barriers." This requirement was predicated on the assumption that the remedial excavation would encompass only approximately 25% of the volume of the actual

DRAFT Balaam Brothers Proper

Balaam Brothers Property Emeryville, California

February 19, 2003

final remedial excavation, and that significant volumes of impacted soil up to 1,000 mg/kg

TPH would be left in place. However, residual COC concentrations are substantially lower

than originally anticipated, and the Tier 2 risk assessment indicates that no significant health

threats are present based on risk modeling that uses standard building construction default

parameters. Screening levels for potential nuisance impacts indicate that such impacts are

unlikely to occur. Therefore, the quantitative data presented herein provide no basis for this

requirement, so it is recommended that it be deleted. In addition, it should be noted that

ground floors of the planned townhomes will primarily be used as garages and offices, so

exposure assumptions used in estimating risks to humans result in overestimates of risks.

3. "Final site development plans must be submitted prior to site development." Site

development plans have been previously submitted to ACDEH by Pulte Homes, the

prospective site developer. A map illustrating the site development plan and the ground floor

is included as Figure 4.

4. "Post-remediation groundwater monitoring program shall be conducted to confirm residual

groundwater contaminants found at the sites." Groundwater monitoring was conducted at the

site in both December 2002 and February 2003. In addition, offsite grab groundwater samples

were collected by the City of Emeryville on the property downgradient/crossgradient from

the Site. Groundwater sampling data showed that groundwater beneath the site has not been

significantly impacted by site contamination, so that continued monitoring is not necessary.

5. "Deed notifications/restrictions shall be filed, the details will be determined at a later date."

As described under paragraph above, since the Tier 2 risk assessment indicates that

significant threats to human health are not present, and nuisance impacts are unlikely to

occur, it is anticipated that deed notifications/restrictions are unnecessary.

Post-Remediation Excavation-Floor Sampling Report
And Environmental Risk Assessment

DRAFT
Balaam Brothers Property
Emeryville, California
February 19, 2003

CONCLUSIONS

Cambria concludes the following based on the findings of this additional sampling and risk assessment:

- No chemicals of concern were detected above cleanup standards or RBSLs during this
 additional investigation.
- Analytical results from residual native soil indicate that all site soil has been excavated to the
 cleanup standard of 1,000 mg/kg total TPH. The two soil sample results that exceeded the
 TPH cleanup standard are located along the edge of the excavation at the western property
 boundary.
- Post-remediation analytical results indicate that site groundwater has been remediated to well below the cleanup standard of 10,000 to 20,000 ug/L total TPH.
- The risk assessment suggests that residual TPH and BTEX do not pose a significant risk to human health or the environment, and that a deed restriction and vapor barriers are not merited. To safeguard human health from potential future exposure to residual hydrocarbons, a risk management plan could prepared and filed with the ACDEH and the City of Emeryville Building and Planning Department and One-Stop Shop.
- Issuance of a NFA letter is merited at this time.

DRAFT

Balaam Brothers Property Emeryville, California February 19, 2003

FIGURES, TABLES, AND APPENDICES

- Figure 1 Post-Remediation Conditions in Soil and Excavation Extent
- Figure 2 Benzene Concentrations in Soil After Remediation
- Figure 3 Post-Remediation Conditions in Groundwater
- Figure 4 Redevelopment Site Plan and Ground Floor
- Table 1a Soil Analytical Data Petroleum Hydrocarbons
- Table 1b Soil Analytical Data Polynuclear Aromatic Hydrocarbons
- Table 1c Soil Analytical Data Metals and Pesticides
- Table 2a Groundwater Analytical Data Hydrocarbon Analyses
- Table 2b Groundwater Analytical Data Volatile Organic Compounds
- Table 2c Construction Details and Water Levels for Temporary Wells
- Table 3 Residual Soil and Groundwater Samples With Constituents Exceeding Tier 1 RWQCB RBSLs
- Appendix A Soil Boring Permits
- Appendix B Field Activity Descriptions
- Appendix C Standard Field Procedures
- Appendix D Field Logs
- Appendix E Laboratory Analytical Reports
- Appendix F Site Geotechnical Reports
- Appendix G Site-Specific RBSLs from Oakland ULR Model

Balaam Property

0.0095 < 0.05

< 0.005

< 0.005

< 0.02

9

151/2

9

31/2

** - Soil sample location was excavated

Balaam Property

1350 Powell Street

EXPLANATION

AB-B @ — Approximate location of excavation floor boring (Cambria 2003)

TW-1 - Temporary well location

BM A - Benchmark in sidewalk, 19.39 feet elevation

Excavation Area

10.28 — Groundwater Elevation as of 12/11/02 (feet above sea level **). Elevation not calculated for sampling on 02/14/03 due to damaged casings.

— Groundwater flow direction and gradient (feet above sea level **)

Groundwater elevation contour line as of 12/11/02 (feet above sea level **)

10.00 Total TPH - Combined Total Petroleum Hydrocarbons (TPH) by EPA Method 8015C Total TPH does not equal cumulative result of TPHg + TPHd + TPHmo. To avoid quantification of overlapping results, Total TPH = TPHg (C6-C9) + TPHbo (C10+)

TPHg — TPH as gasoline by EPA Method 8015C

TPHd — TPH as diesel by EPA Method 8015Cm with silica gel cleanup

TPHmo - TPH as motor oil by EPA Method 8015Cm with silica gel cleanup

TPHbo - TPH as bunker oil by EPA Method 8015Cm with silica gel cleanup

Benzene - Benzene by EPA Method 8021B

PNA's - Polynuclear aromatic hydrocarbons by EPA Method 8270D

NA - Not Analyzed

Concentrations are in parts per billion (ppb, µg/L)

- The reporting limit for phenanthrene was 50 µg/L
- .. Based on 19.39' benchmark in sidewalk

Redevelopment Site Plan and Ground Floor

Balaam Property 1350 Powell Street Emeryville, California

Table 1a.

Soil Analytical Data - Petroleum Hydrocarbons

Balaam Airgas

 			TPHg	TPHd	TPHmo	TPHbo	Total					
		Date	(C6-C9)	(C10-C23)	(C-18+)	(C-10+)	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Sample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	<u></u>	EPA Method:	8015m	8015	8015	8015	8015	8021	8021	8021	8021	8021
	Res	sidential RBSL*:	400	500	500	NE	NE	0.18	8.4	24	1.0	1.0
		Cleanup Goal:					1,000					
											,	
Post Remediation C	onditions (Sample	e Data from So	oil After	Excavation	ı)							
Cambria Excavation Floor	r Borings, 2003											
AB-A-3.5	3-3.5'	2/12/2003	20	240	39	240	260	<0.02	0.053	0.037	0.057	<0.2
AB-B-15.5	15-15.5'	2/14/2003	<1.0	<1.0	<5.0	<5.0	<5,0	<0.005	<0.005	< 0.005	< 0.005	<0.05
AB-C-17	16.5-17'	2/14/2003	<1.0	14	6.3	15	15	<0.005	<0.005	< 0.005	<0.005	<0.05
AB-D-10.5	10-10.5	2/14/2003	14	400	68	430	444	<0.050	< 0.050	< 0.050	0.20	<0.50
AB-E-17	16.5-17'	2/14/2003	<1.0	<1.0	<5.0	<5.0	<5.0	<0.005	< 0.005	< 0.005	<0.005	<0.05
AB-F-11	10.5-11'	2/14/2003	<1.0	91	19	93	93					
AB-G-12.5	12-12.5'	2/14/2003	<1.0	3.2	<5.0	<5,0	<5.0	 	_			
Hicks Borings, 2001								<u> </u>				
Borehole #3**	Composite 0'-6'	8/7/2001	ND	30	36	_		ND	ND	ND	ND	ND
Borehole #3**	Composite 6'-12'	8/7/2001	ND	46	6.3	-		ND	ND	ND	ND	ND
Lowney Associates Boring	<u>zs, 2002</u>											
EB-7**	9'-9.5'	3/4/2002	85	190	<100		i	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62
EB-7**	14'-14.5'	3/4/2002	8.7	78	<50	-	-	<0.005	<0.005	< 0.005	< 0.005	<0.005
EB-8**	6'-6.5'	3/4/2002	36	190	52	**	ļ –	<0.62	< 0.62	< 0.62	< 0.62	< 0.62
EB-8**	12'-12.5'	3/4/2002	<1.0	12	<50	_	-	<0.005	<0.005	<0.005	<0.005	<0.005
Lowney Associates Boring	<u>zs, 2002</u>										.0.00-	-0.007
SS-4 (fill)**	0'-0.5'	3/6/2001	<1.0	41	110			<0.005	< 0.005	<0.005	<0.005	< 0.005
SS-4 (native)**	3.5'-4'	3/6/2001	110	400	88			<0.62	< 0.62	<0.62	< 0.62	< 0.62
SS-6 (fill)**	0'-0.5'	3/6/2001	<1.0	14	55			<0.005	<0.005	<0.005	< 0.005	<0.005
SS-6 (native)**	6.5'-7'	3/6/2001	67	130	<50		-	< 0.62	<0.62	< 0.62	< 0.62	< 0.62
SS-8 (fill)**	0'-0.5'	3/6/2001	<1.0	12	100		1 -	<0.005	<0.005	< 0.005	< 0.005	<0.005
SS-8 (native)**	7.5'-8'	3/6/2001	7.5	<1.0	< 50	_		<0.005	< 0.005	< 0.005	<0.005	<0.005

Table 1a.

Soil Analytical Data - Petroleum Hydrocarbons

Balaam Airgas

4.			TPHg	TPHd	TPHmo	TPHbo	Total		-			
		Date	(C6-C9)	(C10-C23)	(C-18+)	(C-10+)	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Sample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	<u> </u>	EPA Method:	8015m	8015	8015	8015	8015	8021	8021	8021	8021	8021
	Res	idential RBSL*:	400	500	500	NE	NE	0.18	8.4	24	1.0	1.0
		Cleanup Goal:					1,000					
Sidewall Sampling Event I												
North Side of Property												
EX-B-B-10**	10'-10.5'	7/24/2002	<20	200	35	180	180	<0.1	<0.1	<0.1	<0.1	<1
South Side of Property												
EX-A-S-9**	9'-10'	7/24/2002	350	230	18	210	560	2.0	0.30	3.4	2.1	<2.0
Sidewall Sampling Event II												
North Side of Property												
EX-B-NE-9**	9'-10'	8/7/2002	<5.0	340	130	370	370		_	_	**	-
EX-E-BW-6**	6'-6.5'	8/7/2002	<10	330	< 500	550	550		-			-
EX-E-BE-6**	6'-6.5'	8/7/2002	<10	780	<500	730	730	i –	_			-
EX-F-BE-2**	2'-3'	8/7/2002	<1.0	<1.0	< 5.0	<5.0	<5	-		-	-	
EX-F-BW-2**	2'-3'	8/7/2002	<1.0	1.8	8.3	8.1	8.1					
Sidewall Sampling Event IV												
South Side of Property								1			-0.07	
EX-A-E-9**	9'-9.5'	8/17/2002	<20	570	150	520	520	<0.1	<0.2	<0.1	<0.05	<1
EX-A-E-3**	3'-4'	8/17/2002	<20	180	45	160	160	<0.1	<0.2	<0.1	<0.05	<1
North Side of Property]				
EX-D-E-9**	9'-9.5'	8/19/2002	<20	650	160	590	590	<0.1	<0.1	<0.1	<0.05	<1
Sidewall Sampling Event VI]											
North Side of Property												
EX-E-B-7**	7'-7.5'	9/4/2002	<20	160	41	140	140			_		
EX-E-E-3**	3'-3.5'	9/4/2002	<1.0	66	45	70	70			_		
EX-J-W-3**	3'-3.5'	9/4/2002	<2.0	46	18	44	44		-			-
EX-J-W-9**	9'-9.5'	9/4/2002	<20	220	66	230	230] -	_		-	

Table 1a.

Soil Analytical Data - Petroleum Hydrocarbons

Balaam Airgas

			TPHg	TPHd	TPHmo		Total					
		Date	(C6-C9)	(C10-C23)	(C-18+)	(C-10+)	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Sample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		EPA Method:	8015m	8015	8015	8015	8015	8021	8021	8021	8021	8021
	Res	sidential RBSL*:	400	500	500	NE	NE	0.18	8.4	24	1.0	1.0
		Cleanup Goal:					1,000					
Sidewall Sampling Event VII												
North Side of Property												
EX-E-W-3**	3'-3,5'	9/13/2002	<5.0	440	110	470	470					
EX-C-NW-3**	3'-3.5'	9/13/2002	<20	810	110	960	960			_		
EX-C-NW-9**	9'-9.5'	9/13/2002	<20	390	60	410	410	 			-	
EX-C-W-3**	3'-3.5'	9/13/2002	<20	2,400	1,100	2,800	2,800					
EX-C-W-9**	9'-9.5'	9/13/2002	<20	190	44	190	190			_		
Sidewall Sampling Event VIII	[
North Side of Property								ł				
EX-C-N-3**	3'-3.5'	9/24/2002	<1.0	320	190	360	360	<0.005	< 0.005	< 0.005	< 0.005	<0.05
EX-C-N-9**	9'-9.5'	9/24/2002	2.8	410	91	400	403	<0.005	< 0.005	0.016	< 0.005	< 0.05
South Side of Property												
EX-A-SW-3**	3'-3.5'	9/24/2002	<1.0	<1.0	< 5.0	<5.0	<5	0.0095	0.0051	< 0.005	< 0.005	< 0.05
EX-A-SW-9**	9'-9.5'	9/24/2002	<10	240	25	240	240	<0.05	< 0.05	< 0.05	< 0.05	< 0.5
EX-A-S-9**	9'-9.5'	9/24/2002	<1.0	13	13	27	27	<0.005	<0.005	<0.005	< 0.005	< 0.05
Sidewall Sampling Event IX								<u></u>				
South Side of Property												
EX-A-S-3 (10-2-02)**	3'-3.5'	10/2/2002	48	110	14	110	158	3.5	0.16	3.1	4.5	<0.5
TRENCH-1-9 (10-2-02)**	9'•9.5'	10/2/2002	<5.0	470	70	480	480	<0.02	< 0.02	< 0.02	<0.02	< 0.2
TRENCH-1-3 (10-2-02)**	3'-3.5'	10/2/2002	<1.0	<1.0	<5.0	<5.0	<5	<0.005	< 0.005	< 0.005	<0.005	< 0.05
TRENCH-2-3 (10-2-02)**	3'-3.5'	10/2/2002	<1.0	2.1	<5.0	<5.0	<5	<0.005	< 0.005	< 0.005	<0.005	< 0.05
TRENCH-2-9 (10-2-02)**	9'-9.5'	10/2/2002	6.5	130	23	130	137	<0.02	< 0.02	0.030	<0.02	<0.2
Sidewall Sampling Event X								ļ				
North Side of Property								1				
EX-K-S-3**	3'-3.5'	10/5/2002	2.7	240	78	250	253				_	-
North Side of Property		خفسانسان ب					0.5	-	-			
EX-K-S-9**	9'-9.5'	10/7/2002	<1.0	6.3	<5.0	8.5	8.5					
EX-K-C-9**	9'-9.5'	10/7/2002	<1.0	22	5.4	24	24					

Table 1a.

Soil Analytical Data - Petroleum Hydrocarbons

Balaam Airgas

	<u> </u>		TPHg (C6-C9)	TPHd (C10-C23)	TPHmo (C-18+)	TPHbo (C-10+)	Total TPH	Benzene	Toluene	Ethylbenzene	Xylenes	мтве
Sample ID	Depth - feet bgs	Sampled		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	-	EPA Method:	8015m	8015	8015	8015	8015	8021	8021	8021	8021	8021
	Res	idential RBSL*:	400	500	500_	NE	NE	0.18	8.4	24	1.0	1.0
		Cleanup Goal:					1,000					
Pothole Sampling under form		11/20/2002	<1.0	<1.0	<5.0	<5.0	<5	_				_
EX-L-SW-3**	3'-3.5'	11/20/2002	<1.0	<1.0	<5.0	<5.0	~ <5					
EX-L-SW-9**	9'-9.5'		<1.0 <1.0	<1.0	<5.0	<5.0	<5				_	
EX-L-NW-3**	3'-3.5'	11/20/2002			650	2,800	2,867					
EX-L-NW-9**	9'-9.5'	11/20/2002	67	3,000	<5.0	<5.0	2,86 7			_		_
EX-L-S-3**	3'-3.5'	11/20/2002	<1.0	1.0	<5.0	₩.0	>			_		
EX-L-S2-9**	9'-9,5'	11/22/2002	<1.0	41	13	42	42				_	
During Remediation	Data from Sam	nlas Callactad	During	Excavation	n)							
-		pies Conecieu	During	Lacurano	••							
Sidewall Sampling Event I							ŀ					
North Side of Property	C1 (71	7/24/2002	<200	4,600	1,900	5,000	5,000	<1	<1	<1	<1	<10
EX-B-W-6	6'-7'		<200 <200	4,600 9,600	2,800	10,000	10,000	⊲	< <u>1</u>	<1	<1	<10
EX-B-N-7	7'-8'	7/24/2002		,	500	1,700	1,700	<0.5	<0.5	<0.5	<0.5	<5.0
EX-B-E-8	8'-9'	7/24/2002	<100	1,900		11,000	11,000	<1	<1	<1	<1	<10
EX-B-S-9	9'-10'	7/24/2002	<200	12,000	2,300			<0.1	<0.1	<0.1	<0.1	<1
EX-B-B-10**	10'-10.5'	7/24/2002	<20	2 00	35	180	180	<0.1	<0.1	40.1	V.1	~1
South Side of Property										40	120	<10
EX-A-W-3	3'-4'	7/24/2002	900	330	25	300	1,200	19	89	29	130	
EX-A-W-7	7'-8'	7/24/2002	460	3,300	520	3,800	4,260	21	3.6	12	14	<10
EX-A-N-2.5	2.5'-3.5'	7/24/2002	67	200	13	180	247	2.5	0.26	0.39	0.37	<0.5
	0.41.4.01	7/24/2002	2,100	2,700	< 500	2,300	4,400	36	24	85	350	<10
EX-A-N-9.5	9.5'-10'	1/24/2002			10	88	95	0.47	0.027	0.038	0.13	< 0.2
EX-A-N-9.5 EX-A-B-10	9.5'-10' 10'-10.5'	7/24/2002	7.4	99	18		1	1				
EX-A-B-10			7.4 67	99 170	18 28	150	217	1.4	0.34	0.043	0.12	<0.2
EX-A-B-10 EX-A-E-3	10'-10.5'	7/24/2002					217 7,140	6.2	0.34 1.5	0.043 1.4	2.7	<10
EX-A-B-10	10'-10.5' 3'-4'	7/24/2002 7/24/2002	67	170	28	150		1	0.34	0.043		
EX-A-B-10 EX-A-E-3 EX-A-E-8 EX-A-S-9**	10'-10.5' 3'-4' 8'-9' 9'-10'	7/24/2002 7/24/2002 7/24/2002	67 240	170 7,100	28 900	150 6,900	7,140	6.2	0.34 1.5	0.043 1.4	2.7	<10
EX-A-B-10 EX-A-E-3 EX-A-E-8 EX-A-S-9** Sidewall Sampling Event I North Side of Property	10'-10.5' 3'-4' 8'-9' 9'-10'	7/24/2002 7/24/2002 7/24/2002 7/24/2002	67 240 350	170 7 ,100 230	28 900 18	150 6,900 210	7,140 560	6.2	0.34 1.5	0.043 1.4	2.7	<10
EX-A-B-10 EX-A-E-3 EX-A-E-8 EX-A-S-9**	10'-10.5' 3'-4' 8'-9' 9'-10'	7/24/2002 7/24/2002 7/24/2002 7/24/2002 8/7/2002	67 240 350 <5.0	170 7,100 230	28 900 18	150 6,900 210	7,140 560 370	6.2 2.0	0.34 1.5 0.30	0.043 1.4	2.7 2.1	<10
EX-A-B-10 EX-A-E-3 EX-A-E-8 EX-A-S-9** Sidewall Sampling Event I North Side of Property	10'-10.5' 3'-4' 8'-9' 9'-10'	7/24/2002 7/24/2002 7/24/2002 7/24/2002	67 240 350	170 7 ,100 230	28 900 18	150 6,900 210	7,140 560	6.2	0.34 1.5	0.043 1.4	2.7	<10

Table 1a.

Soil Analytical Data - Petroleum Hydrocarbons

Balaam Airgas

1350 Powell Street, Emeryville, California

			TPHg	TPHd	TPHmo	TPHbo	Total					
		Date	(C6-C9)	(C10-C23)	(C-18+)	(C-10+)	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Sample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	<u> </u>	EPA Method:	8015m	8015	8015	8015	8015	8021	8021	8021	8021	8021
	Res	idential RBSL*:	400	500	500	NE	NE	0.18	8.4	24	1.0	1.0
		Cleanup Goal:					1,000	-				
EX-B-N-3	3'-4'	8/7/2002	<1.0	17	16	24	24	_			-	
EX-C-E-9	9'-10'	8/7/2002	<100	3,200	820	3,200	3,200			••		
EX-C-E-3	3'-4'	8/7/2002	19	390	100	360	379	1				_
EX-C-N-9	9'-10'	8/7/2002	16	1,600	<500	1,700	1,716					
EX-C-N-3	3'-4'	8/7/2002	<10	510	140	470	470					
EX-C-W-9	9'-10'	8/7/2002	39	2,600	570	2,800	2,839		_	-		
EX-C-W-3	3'-4'	8/7/2002	<40	920	250	850	850			_		_
EX-D-S-9	9'-10'	8/7/2002	<100	4,200	810	4,200	4,200					-
EX-D-S-3	3'-4'	8/7/2002	<10	340	72	300	300					
EX-D-N-9	9'-10'	8/7/2002	<10	300	95	320	320					_
EX-E-BW-6**	6'-6.5'	8/7/2002	<10	330	<500	550	550	-			-	
EX-E-BE-6**	6'-6.5'	8/7/2002	<10	780	<500	730	730		_		_	
EX-E-S-3	3'-4'	8/7/2002	<100	12,000	2,600	11,000	11,000					_
EX-F-BE-2**	2'-3'	8/7/2002	<1.0	<1.0	<5.0	<5.0	<5			-		
EX-F-BW-2**	2'-3'	8/7/2002	<1.0	1.8	8.3	8.1	8.1					-
Sidewall Sampling Event III	[
South Side of Property	•											
EX-F-N-3	3'-4'	8/10/2002	<20	1,300	220	1,200	1,200	<0.1	< 0.1	<0.1	<0.1	<1
EX-F-N-9	9'-10'	8/10/2002	15	1,000	180	1,100	1,115	<0.05	0.052	0.065	< 0.05	<0.5
EX-F-B-10	10'-10.5'	8/10/2002	11	1,500	400	1,300	1,311	< 0.05	< 0.05	< 0.05	<0.05	<0.5
Note: EX-F is really an extensi	ion of EX-A in this cas	е										
Sidewall Sampling Event IV	7							1				
South Side of Property							ļ					
EX-A-E-9**	9'-9.5'	8/17/2002	<20	570	150	52 0	520	<0.1	<0.2	<0.1	< 0.05	<1
EX-A-E-3**	3'-4'	8/17/2002	<20	180	45	160	160	<0.1	< 0.2	<0.1	<0.05	<1
North Side of Property									.0.4	2.22	~ ^ ~	21
EX-C-W-9	9'-9.5'	8/19/2002	58	1,900	430	2,000	2,058	<0.1	<0.1	0.30	<0.05 <0.05	<l< td=""></l<>
EX-C-W-3	3'-4'	8/19/2002	47	2,600	540	2,300	2,347	<0.1	<0.1	0.21	<0.05	<1
EX-E-S-3	3'-4'	8/19/2002	<20	3,500	640	3,700	3,700	<0.1	<0.2	<0.1	<0.05	<1
EX-D-W-9	9'-9.5'	8/19/2002	<20	420	140	450	450	<0.1	<0.1	<0.1	<0.05	<l< td=""></l<>
EX-D-W-3	3'-4'	8/19/2002	12	270	62	240	252	<0.05	<0.05	0.056	< 0.02	<0.5
EX-B-NW-9	9'-9.5'	8/19/2002	11	1,000	< 500	1,600	1,611	<0.05	<0.1	<0.05	<0.02	<0.5

Page 5 of 11

Table 1a.

Soil Analytical Data - Petroleum Hydrocarbons

Balaam Airgas

1350 Powell Street, Emeryville, California

			TPHg	TPHd	TPHmo	TPHbo	Total	Dancera	Toluono	Ethylbenzene	Vylonos	MTBE
			(C6-C9)	(C10-C23)	(C-18+)	(C-10+)	TPH	Benzene	Toluene	•	Xylenes	
Sample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) 8021	(mg/kg) 8021	(mg/kg) 8021
		EPA Method:	8015m	8015	8015	8015	8015	8021	8021			1.0
	Re	sidential RBSL*:	400	500	500	NE	NE	0.18	8.4	24	1.0	
		Cleanup Goal:					1,000					
EX-B-NW-3	3'-4'	8/19/2002	<20	4,900	970	4,900	4,900	<0.1	< 0.1	<0.1	< 0.05	<1
EX-D-E-9**	9'-9.5'	8/19/2002	<20	650	160	590	590	<0.1	<0.1	< 0.1	< 0.05	<1
EX-D-E-3	3'-4'	8/19/2002	21	3,100	840	3,100	3,121	<0.1	< 0.1	<0.1	<0.05	<1
TRENCHAB	0'-7'	8/17/2002	25	2,500	560	2,900	2,925	<0.1	<0.1	0.21	<0.05	<1
EX-H-8	8'-9'	8/20/2002	61	1,600	550	2,000	2,061		-	w-	-	
Sidewall Sampling Event V												
South Side of Property												
EX-A-E-9	9'-9.5'	8/27/2002	16	570	120	560	576	<0.02	< 0.02	0.16	0.33	<0.2
EX-A-E-3	3'-4'	8/27/2002	53	2,300	650	2,600	2,653	<0.05	<0.05	0.40	0.57	<0.5
Sidewall Sampling Event VI												
North Side of Property] .	\				
EX-E-B-7**	7'-7.5'	9/4/2002	<20	160	41	140	140	-			_	
EX-E-W-3	3'-3.5'	9/4/2002	<50	1,100	410	1,100	1,100	-	-		_	
EX-E-E-3**	3'-3.5'	9/4/2002	<1.0	66	45	70	70	-	**	_		
EX-D-NW-9	9'-9.5'	9/4/2002	< 50	620	120	560	560		-			
EX-D-NW-3	3'-3.5'	9/4/2002	<50	150	30	140	140			_		
EX-J-W-3**	3'-3.5'	9/4/2002	<2.0	46	18	44	44	_			_	
EX-J-W-9**	9'-9.5'	9/4/2002	<20	220	66	230	230		-			
EX-J-S-9	9'-9.5'	9/4/2002	26	1,700	520	1,600	1,626		-			
EX-J-S-3	3'-3.5'	9/4/2002	6.3	290	97	310	316	-			_	
Sidewall Sampling Event VI	,											
North Side of Property		- 4- 4				2.40	256					
EX-J-W-3	3'-3.5'	9/9/2002	16	240	41	240	256	-		_		_
EX-J-W-9	9'-9.5'	9/9/2002	160	4,900	<5,000	6,400	6,560		_			
Sidewall Sampling Event VI	<u>I</u>						ļ	,				
North Side of Property				110		470	470					
EX-E-W-3**	3'-3.5'	9/13/2002	<5.0	440	110	470	470 960				 	
EX-C-NW-3**	3'-3.5'	9/13/2002	<20	810	110	960	1				 	
EX-C-NW-9**	9'-9.5'	9/13/2002	<20	390	60	410	410			-		_
EX-C-W-3**	3'-3.5'	9/13/2002	<20	2,400	1,100	2,800	2,800	-		_		_

Page 6 of 11

Table 1a.

Soil Analytical Data - Petroleum Hydrocarbons

Balaam Airgas

11-1			TPHg	TPHd	TPHmo	TPHbo	Total			-	· · · · ·	
		Date	(C6-C9)	(C10-C23)	(C-18+)	(C-10+)	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Sample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	•	EPA Method:	8015m	8015	8015	8015	8015	8021	8021	8021	8021	8021
	Res	idential RBSL*:	400	500	500	NE	NE	0.18	8.4	24	1.0	1.0
		Cleanup Goal:					1,000					
EX-C-W-9**	9'-9.5'	9/13/2002	<20	190	44	190	190		_		_	
EX-C-N-3	3'-3.5'	9/13/2002	31	3,100	1,100	3,400	3,431					
EX-C-N-9	9'-9.5'	9/13/2002	21	840	190	830	851		_	· <u>-</u>	-	
Sidewall Sampling Event VII	<u>I</u>											
North Side of Property	_											
EX-C-N-3**	3'-3.5'	9/24/2002	<1.0	320	190	360	360	< 0.005	<0.005	< 0.005	<0.005	< 0.05
EX-C-N-9**	9'-9.5'	9/24/2002	2.8	410	91	400	403	<0.005	<0.005	0.016	< 0.005	< 0.05
South Side of Property												
EX-A-SW-3**	3'-3.5'	9/24/2002	<1,0	<1.0	<5.0	<5.0	<5	0.0095	0.0051	< 0.005	< 0.005	< 0.05
EX-A-SW-9**	9'-9.5'	9/24/2002	<10	2 40	25	240	240	<0.05	< 0.05	<0.05	<0.05	< 0.5
EX-A-W-9	9'-9.5'	9/24/2002	12	140	<100	140	152	<0.05	< 0.05	0.061	<0.05	< 0.5
EX-A-W-3	3'-3.5'	9/24/2002	2.4	28	<5.0	27	29	< 0.005	0.0056	0.017	< 0.005	< 0.05
EX-A-S-9**	9'-9.5'	9/24/2002	<1.0	13	13	27	27	<0.005	< 0.005	< 0.005	< 0.005	< 0.05
EX-A-S-3	3'-3.5'	9/24/2002	810	630	54	640	1,450	21	14	33	120	<5.0
Sidewall Sampling Event IX	£											
North Side of Property												
EX-D-E-3 (10-2-02)	3'-3.5'	10/2/2002	<10	3,300	960	3,700	3,700	<0.05	0.074	< 0.05	<0.05	< 0.5
South Side of Property												
EX-A-S-3 (10-2-02)**	3'-3.5'	10/2/2002	48	110	14	110	158	3.5	0.16	3.1	4.5	<0.5
TRENCH-2-3 (10-2-02)**	3'-3.5'	10/2/2002	<1.0	2.1	<5.0	<5.0	<5	<0.005	< 0.005	< 0.005	< 0.005	< 0.05
TRENCH-2-9 (10-2-02)**	9' - 9.5'	10/2/2002	6.5	130	23	130	137	< 0.02	< 0.02	0.030	<0.02	< 0.2
TRENCH-1-9 (10-2-02)**	9'-9.5'	10/2/2002	<5.0	470	70	480	480	< 0.02	< 0.02	< 0.02	< 0.02	< 0.2
TRENCH-1-3 (10-2-02)**	3'-3.5'	10/2/2002	<1.0	<1.0	<5.0	<5.0	<5	<0.005	<0.005	< 0.005	< 0.005	< 0.05
Sidewall Sampling Event X												
North Side of Property												
EX-D2-E-3	3'-3.5'	10/5/2002	<10	2,600	1,500	3,100	3,100	-				
EX-D2-S-3	3'-3.5'	10/5/2002	<20	3,400	730	3,900	3,900	_		_	-	
EX-K-N-3	3'-3.5'	10/5/2002	<50	1,900	<500	2,000	2,000				_	
EX-K-S-3**	3'-3,5'	10/5/2002	2.7	240	78	250	253					_

Table 1a.

Soil Analytical Data - Petroleum Hydrocarbons

Balaam Airgas

1350 Powell Street, Emeryville, California

			TPHg (C6-C9)	TPHd (C10-C23)	TPHmo (C-18+)	TPHbo (C-10+)	Total TPH	Benzene	Toluene	Ethylbenzene	Xylenes	мтве
Sample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		EPA Method:	8015m	8015	8015	8015	8015	8021	8021	8021	8021	8021
	Res	idential RBSL*:	400	500	500	NE	NE	0.18	8.4	24	1.0	1.0
		Cleanup Goal:					1,000					-
North Side of Property												
EX-K-C-9**	9'-9.5'	10/7/2002	<1.0	22	5.4	24	24			_		
EX-K-N-9	9'-9.5'	10/7/2002	<4.0	350	57	360	360				_	
EX-K-S-9**	9'-9.5'	10/7/2002	<1.0	6.3	<5.0	8.5	8.5		-		-	
Pothole Sampling under form	mer building											
PH-1-3	3'-3.5'	11/5/2002	<5.0	67	13	66	66				_	
PH-2-3	3'-3.5'	11/5/2002	2.6	50	13	50	53	-	_			
PH-2-9	9'-9,5'	11/5/2002	19	940	180	920	939			_	-	
PH-1-9	9'-9.5'	11/5/2002	41	620	120	640	681					
PH-3-3	3'-3.5'	11/5/2002	<1.0	10	<5.0	9.6	9.6					
PH-3-9	9'-9.5'	11/5/2002	84	7,300	1,500	6,700	6,784			_		
EX-L-SW-3**	3'-3.5'	11/20/2002	<1.0	<1.0	<5.0	<5.0	<5	_	_			_
EX-L-SW-9**	9'-9.5'	11/20/2002	<1.0	<1.0	<5.0	<5.0	<5	i	_			
EX-L-NW-3**	3'-3.5'	11/20/2002	<1.0	<1.0	<5.0	<5.0	<5				_	
EX-L-NW-9**	9'-9.5'	11/20/2002	67	3,000	650	2,800	2,867					
EX-L-S-3**	3'-3.5'	11/20/2002	<1.0	1.0	<5.0	<5.0	<5					
EX-L-S-9	9'-9.5'	11/20/2002	13	1,100	270	1,100	1,113			_		
EX-L-S2-9**	9'-9.5'	11/22/2002	<1.0	41	13	42	42	-	-			-
Stockpile Samples												
STOCKPILE A		7/24/2002	60	330	-		ļ	<0.2	1.4	1.6	7.8	<2.0
STOCKPILE B		7/24/2002	<1.0	970	350	-		< 0.005	0.0064	0.031	0.079	< 0.05
STOCKPILE B2		8/7/2002	<10	660	160	650	650					
STOCKPILE C		8/7/2002	<10	200	41	210	210	<0.05	< 0.05	<0.05	<0.05	<0.5
STOCKPILE A2***	_	8/27/2002	<1.0	44	40	84	84	<0.005	< 0.005	< 0.005	< 0.005	<0.05
SP-1-1***	••	8/27/2002	<20	400	290	480	480		••			_
SP-1-2***		8/27/2002	<1.0	51	68	110	110	_	-			
SP-1-3***	_	8/27/2002	1.6	250	230	330	332	_	_		-	
SP-1-4***		8/27/2002	<1.0	400	170	470	470			-	-	
SP-1-5***	+-	8/27/2002	<1.0	170	120	190	190				_	

Table 1a.

Soil Analytical Data - Petroleum Hydrocarbons

Balaam Airgas

1350 Powell Street, Emeryville, California

			TPHg	TPHd	TPHmo	TPHbo	Total					
		Date	(C6-C9)	(C10-C23)	(C-18+)	(C-10+)	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Sample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		EPA Method:	8015m	8015	8015	8015	8015	8021	8021	8021	8021	8021
	Res	dential RBSL*:	400	500	500	NE	NE	0.18	8.4	24	1.0	1.0
		Cleanup Goal:					1,000					
SP-1-6***		8/27/2002	1.2	410	220	540	541		_	-		_
SP-2-1		8/27/2002	<1.0	380	300	690	691	-		_		-
SP-2-2		8/27/2002	<100	8,000	2,400	8,400	8,400		_	-		_
SP-2-3		8/27/2002	<100	88,000	19,000	89,000	89,000		_	-		
SP-2-4		8/27/2002	<40	2,000	640	2,100	2,100			_		_
SP-3-1		8/27/2002	<10	360	200	400	400		_			-
SP-3-2	_	8/27/2002	<10	680	320	880	880		-		-	
STOCKPILE A3		9/30/2002	78	160	45	170	248		_			
STOCKPILE A3 (10-3-02)	_	10/3/2002	25	940	180	860	885					
N STOCKPILE 1,2,3,4		10/7/2002	<50	2,700	950	3,100	3,100	_			-	
COMPOSITE (SP-1 through SP	-6)	11/5/2002	11	70	13	66	77			_		
STOCKPILE 1		11/20/2002	<1.0	25	20	36	36		_	-		_
STOCKPILE 2	-	11/20/2002	<3.3	170	59	180	180		-			-
Pre-Remediation Inve	estigation Data											
Hicks Borings, 2001							1					
Borehole #1	Composite 0'-2.5'	8/7/2001	ND	78	99	-	-	ND	ND	ND	ND	ND
Borehole #1	Composite 4'-12'	8/7/2001	750	1400	55	-	-	ND	ND	ND	ND	ND
Borehole #2	Composite 0'-6'	8/7/2001	45	2200	200		-	ND	ND	ND	ND	ND
Borehole #2	Composite 6'-12'	8/7/2001	8.3	500	29			ND	ND	ND	ND	ND
Borehole #3**	Composite 0'-6'	8/7/2001	ND	30	36			ND	ND	ND	ND	ND
Borehole #3**	Composite 6'-12'	8/7/2001	ND	46	6.3		_	ND	ND	ND	ND	ND
Borehole #4	Composite 0'-6'	8/7/2001	230	1600	ND			ND	ND	0.32	0.97	ND
Borehole #4	Composite 6'-12'	8/7/2001	250	1600	ND		ļ	ND	ND	0.14	ND	ND
Borehole #5	Composite 0'-6'	8/7/2001	67	4300	220	_	 	ND	ND	ND	ND	ND
Borehole #5	Composite 6'-12'	8/7/2001	17	2400	110	_		ND	ND	ND	ND	ND
Borehole #6	Composite 11.5'-13'	9/27/2001		ND			_	ND	ND	ND	ND	ND
Borehole #6	Composite 12'-16'	9/27/2001	_	21				ND	ND	ND	ND	ND
Borehole #6	Composite 4'-10'	9/27/2001		970				ND	ND	ND	ND	ND

Table 1a.

Soil Analytical Data - Petroleum Hydrocarbons

Balaam Airgas

1350 Powell Street, Emeryville, California

***************************************	<u>-</u>	Date	TPHg (C6-C9)	TPHd (C10-C23)	TPHmo (C-18+)	TPHbo (C-10+)	Total TPH	Benzene	Toluene	Ethylbenzene	Xylenes	мтве
Sample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		EPA Method:	8015m	8015	8015	8015	8015	8021	8021	8021	8021	8021
	Res	idential RBSL*:	400	500	500	NE	NE	0.18	8.4	24	1.0	1.0
		Cleanup Goal:					1,000					
Borehole #8	Composite 0'-5'	9/27/2001		13				ND	ND	ND	ND	ND
Borehole #8	Composite 5.25'-7'	9/27/2001		2800				ND	ND	ND	ND	ND
Borehole #9	Composite 7'-13'	9/27/2001		210	_			ND	ND	ND	ND	ND
Borehole #10	Composite 0'-10'	9/27/2001		170			_	ND	ND	ND	ND	ND
Borehole #12	Composite 9'-10'	9/27/2001		16			-	ND	ND	ND	ND	ND
Lowney Associates Boring	- 2002											
SS-1 (fill)	<u>8, 2002</u> 0'-0,5'	3/6/2001	<1.0	2,400	3,100		_	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
SS-1 (native)	3.5'-4'	3/6/2001	110	94	<50			<0.62	<0.62	< 0.62	<0.62	< 0.62
SS-2 (fill)	0'-0.5'	3/6/2001	<1.0	100	960			< 0.005	< 0.005	< 0.005	<0.005	< 0.005
SS-2 (native)	5'-5.5'	3/6/2001	26	150	<50			<0.62	<0.62	< 0.62	< 0.62	< 0.62
SS-3 (fill)	0'-0.5'	3/6/2001	<1.0	34	<50			<0.005	< 0.005	<0.005	< 0.005	< 0.005
SS-3 (native)	3.5'-4'	3/6/2001	210	790	<500			<6.2	<6.2	<6.2	<6.2	<6.2
SS-4 (fill)**	0'-0.5'	3/6/2001	<1.0	41	110		_	< 0.005	< 0.005	<0.005	< 0.005	<0.005
SS-4 (native)**	3.5'-4'	3/6/2001	110	400	88			<0.62	< 0.62	< 0.62	< 0.62	<0.62
SS-5 (fill)	0'-0.5'	3/6/2001	<1.0	960	1,900			<0.005	< 0.005	< 0.005	< 0.005	<0.005
SS-5 (mil)	7'-7.5'	3/6/2001	210	700	<250			<0.62	< 0.62	< 0.62	<0.62	< 0.62
SS-6 (fill)**	0'-0.5'	3/6/2001	<1.0	14	55			<0.005	< 0.005	< 0.005	< 0.005	< 0.005
SS-6 (native)**	6.5'-7'	3/6/2001	67	130	<50			<0.62	< 0.62	<0.62	<0.62	< 0.62
SS-7 (fill)	0'-0.5'	3/6/2001	<1.0	4,3	<50]	<0.005	< 0.005	<0.005	< 0.005	< 0.005
SS-7 (IIII)	6'-6.5'	3/6/2001	260	440	< 5 0			<0.62	< 0.62	<0.62	< 0.62	< 0.62
SS-8 (fill)**	0'-0.5'	3/6/2001	<1.0	12	100		ļ <u></u>	<0.005	< 0.005	<0.005	< 0.005	< 0.005
SS-8 (native)**	7.5'-8'	3/6/2001	7.5	<1.0	<50			< 0.005	<0.005	<0.005	< 0.005	<0.005
SS-9 (fill)	0'-0.5'	3/6/2001	<1.0	5.4	83	<u></u>	_	<0.005	<0.005	< 0.005	< 0.005	<0.005
SS-9 (native)	4.5'-5'	3/6/2001	110	120	<500			<0.62	< 0.62	<0.62	<0.62	<0,62
Lowney Associates Boring	··· 2002											
EB-7**	<u>8, 2002</u> 9'-9.5'	3/4/2002	85	190	<100		l <u>-</u>	<0.62	< 0.62	< 0.62	<0.62	< 0.62
EB-7**	9-9.3 14'-14.5'	3/4/2002	8.7	78	<50		_	<0.005	<0.005	< 0.005	<0.005	< 0.005
EB-8**	6'-6.5'	3/4/2002	36	190	52			<0.62	<0.62	< 0.62	<0.62	< 0.62
EB-8**	12'-12.5'	3/4/2002	<1.0	12	< 5 0	_		<0.005	<0.02	<0.005	< 0.005	<0.005
EB-9	7.5'-8'	3/5/2002	260	560	<250	_		<0.62	< 0.62	<0.62	< 0.62	< 0.62
EB-9 EB-9	7.3-6 14' -1 4.5'	3/5/2002	100	140	<100			<0.62	< 0.62	<0.62	< 0.62	<0.62
EB-9 EB-10	6'-6.5'	3/5/2002	380	1,100	<500]	<3.1	<3.1	<3.1	<3.1	<3.1
	9'-9.5'	3/5/2002	380 150	350	<500		<u> </u>	<0.023	<0.023	<0.023	<0.023	< 0.023
EB-10	9-9.3	3/3/2002	150	270	\J00		_	1 ~0.023	~v.v23	~0.023	~0.023	NO.023

Page 10 of 11

Table 1a.

Soil Analytical Data - Petroleum Hydrocarbons

Balaam Airgas

1350 Powell Street, Emeryville, California

***			TPHg	TPHd	TPHmo		Total			70.11	** *) (WDF
		Date	(C6-C9)	(C10-C23)	(C-18+)	(C-10+)	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Sample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		EPA Method:	8015m	8015	8015	8015	8015	8021	8021	8021	8021	8021
	Res	idential RBSL*:	400	500	500	NE	NE	0.18	8.4	24	1.0	1.0
		Cleanup Goal:	-				1,000		-			
EB-11	6'-6.5'	3/5/2002	160	820	<500		-	< 0.62	< 0.62	<0.62	< 0.62	<0.62
EB-11	9'-9.5'	3/5/2002	130	330	<250		-	< 0.62	< 0.62	< 0.62	0.92	< 0.62
EB-12	6'-6.5'	3/5/2002	980	110	<500		-	3.4	15	9.5	43	<2.5
EB-12	8'-8.5'	3/5/2002	760	890	<500		_	12	5.4	7.1	5.7	<3.1
Lowney Associates Test Pits, 2	002											
TP-2B	1.5'	3/8/2002		1,800	<1000			_				

Abbreviations and Notes:

- * = Risk Based Screening Level (RBSL), CRWQCB, December 2001, Table B
- ** = Residual after excavation completion.
- *** = Stockpile soil reused in deeper excavations at site.

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

TPHmo = Total petroleum hydrocarbons as motor oil

TPHbo = Total petroleum hydrocarbons as bunker oil

Total TPH = TPHg + TPHbo.

MTBE = Methyl tert-butyl ether

mg/kg = Milligrams per kilogram

<n = Below detection limit of n mg/kg

- = Not analyzed

Table 1b.

Soil Analytical Data - PAHs

Balaam Airgas

1350 Powell Street, Emeryville, California

	· · · · · · · · · · · · · · · · · · ·			Acenaph-		Phenan-	Anthra-			
ample ID		Date	Naphthalene ¹	thene ¹	Fluorene1	therene1	cene ¹	Pyrene ¹	Chrysene ¹	PCBs
ample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
mipie ID		PA Method:								
		tial RBSL*:	4.9	16	5.1	11	2.9	55	3.8	NE
		<u></u>					·			
owney Associates Borings						0.15	-0.005	-0.025	0.099	< 0.05
SS-1 (fill)	0'-0.5'		< 0.075	< 0.05	< 0.025	0.15	< 0.025	< 0.025		<0.05
SS-1 (native)	3.5'-4'		<0.015	0.13	0.44	< 0.005	<0.005	< 0.005	<0.005	
SS-2 (fill)	0'-0.5'		< 0.15	< 0.1	< 0.05	< 0.05	< 0.05	0.014	<0.05	< 0.05
SS-2 (native)	5'-5.5'		< 0.015	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
SS-3 (fill)	0'-0.5'		< 0.015	< 0.01	<0,005	< 0.005	< 0.005	< 0.005	<0.005	< 0.05
SS-3 (native)	3.5'-4'		< 0.015	< 0.01	0.25	0.075	< 0.005	< 0.005	<0.005	< 0.05
SS-4 (fill)	0'-0.5'		< 0.075	< 0.05	< 0.025	0.11	< 0.025	< 0.025	<0.025	< 0.05
SS-4 (native)	3.5'-4'		< 0.015	< 0.01	0.27	0.027	< 0.005	< 0.005	< 0.005	<0.05
SS-5 (fill)	0'-0.5'		< 0.15	< 0.1	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
SS-5 (native)	7'-7.5'		< 0.015	< 0.01	0.49	0.71	< 0.005	< 0.005	< 0.005	< 0.05
SS-6 (fill)	0'-0.5'		< 0.15	<0.1	< 0.05	< 0.05	< 0.05	0.29	< 0.05	< 0.05
SS-6 (native)	6.5'-7'		< 0.015	< 0.01	0.033	< 0.005	0.016	< 0.005	< 0.005	< 0.05
SS-7 (fill)	0'-0.5'		< 0.015	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
SS-7 (native)	6'-6.5'		0.62	< 0.01	0.33	0.53	< 0.005	< 0.005	< 0.005	< 0.05
SS-8 (fill)	0'-0.5'		< 0.075	< 0.05	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.05
SS-8 (native)	7.5'-8'		< 0.015	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
SS-9 (fill)	0'-0.5'		< 0.075	< 0.05	< 0.025	< 0.025	< 0.025	0.2	< 0.025	<0.05
SS-9 (native)	4.5'-5'		< 0.015	<0.01	0.088	< 0.005	0.067	<0.005	< 0.005	< 0.05
owney Associates Test Pi	ts									
TP-2B	1.5'		0.25	ND	ND	0.88	ND	ND	ND	ND
Cleanup Goal				<u> </u>			1,000			

Table 1b.

Soil Analytical Data - PAHs

Balaam Airgas

1350 Powell Street, Emeryville, California

=				Acenaph-		Phenan-	Anthra-			
Sample ID		Date I	Naphthalene ¹	thene ¹	Fluorene1	therene1	cene ¹	Pyrene ¹	Chrysene ¹	PCBs
Sample ID	Depth - feet bgs	Sampled	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	E	PA Method:								

Abbreviations and Notes:

¹ = Other VOCS were not detected at or above the stated laboratory reporting limit

^{* =} Risk Based Screening Level (RBSL), CRWQCB, December 2001, Table B mg/kg = Milligrams per kilogram

< n =Below detection limit of n mg/kg

^{-- =} Not analyzed

Table 1c.

Soil Analytical Data - Metals and Pesticides

Balaam Airgas

1350 Powell Street, Emeryville, California

Sample ID	Date Depth - feet bgs Sampled	Arsenic (mg/kg)	Cadmium (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Organochlorine Pesticides (mg/kg)
	EPA Residential PRG:	0.39/22	9	400	23	
	Residential RBSL*:	0.39	1.7	200	4.7	NE
	Background Concentration**:	14	1.5	14.7	0.3	NE
Lowney Associates Borir	1 <u>gs</u>					
SS-1 (fill)	0'-0.5'	<1.0	2.6	110	< 0.05	
SS-1 (native)	3.5'-4'			4.3		-
SS-2 (fill)	0'-0.5'	3.7	2.0	32	0.12	ND
SS-2 (native)	5'-5.5'	2.7	1.3	5.6	<0.05	ND
SS-6 ¹ (fill)	0'-0.5'	4.3	2.0	19.0	0.088	ND
SS-6 (native)	6.5'-7'	1.8	2.4	5.6	< 0.05	ND
SS-7 ¹ (fill)	0'-0.5'	30	3.4	22	0.19	ND
SS-7 (native)	6'-6.5'	2.7	1.5	5.0	< 0.05	ND
Lowney Associates Test l	<u>Pits</u>					
TP-2B	1.5'	9.0	2.1	54	0.21	

Abbreviations and Notes:

ND = Not detected

NE = Not established

^{* =} Risk Based Screening Level (RBSL), CRWQCB, December 2001, Table B

^{** =} Lawrence Berkeley National Laboratory Environmental Restoration Program, 1995 mg/kg = Milligrams per kilogram

<n = Below detection limit of n mg/kg

⁻⁻ = Not analyzed

Table 2a.

Groundwater Analytical Data - Hydocarbon Analyses

Balaam Airgas

1350 Powell Street, Emeryville, California

Sample ID	Date Sampled EPA Method: MCL*: RBSL**: Cleanup Goal:	TPHg (C6-C9) (ug/L) 8015m NE	TPHd (C10-C23) (ug/L) 8015 NE 	TPHmo (C-18+) (ug/L) 8015 NE	TPHbo (C-10+) (ug/L) 8015 NE 	Total TPH (ug/L) 8015 NE 20,000	Benzene (ug/L) 8021 1.0 46	Toluene (ug/L) 8021 150 130	Ethylbenzene (ug/L) 8021 700 290	Xylenes (ug/L) 8021 1,750 13	MTBE (ug/L) 8021 13 1,800	Naphthalene (ug/L) 8270D NE 24
Post-Remed	iation											
Cambria Tempo	rary Wells (Installe	d Decemb <u>e</u>	r 4, 2002)									
TW-1	12/4/2002	<50	<50	<250	<250	<250	<0.5	<0.5	<0.5	< 0.5		
TW-2	12/4/2002	56	340	<250	540	596	11	1.3	1.8	1.6		<10
TW-4	12/5/2002	<50	< 50	<250	<250	<250	<0.5	<0.5	<0.5	<0.5	-	<10
TW-5	12/4/2002	<50	220	<250	310	310	<0.5	<0.5	<0.5	<0.5		<10
TW-6	12/4/2002	<50	5,000	580	5,000	5,000	<0.5	0.52	<0.5	<0.5		
TW-6	12/18/2002	<50	75	<250	260	260	<0.5	<0.5	<0.5	< 0.5		
TW-6	2/14/2003	<50	<50	<250	<250	<25 0	<0.5	1.3	<0.5	2.8	<5.0	
TW-7	12/5/2002	<50	79	<250	<250	79	<0.5	<0.5	<0.5	<0.5		_
TW-7	2/14/2003	<50	<50	<250	<250	<250			-		-	
TW-8	12/5/2002	<50	<50	<250	<250	<250	<0.5	<0.5	<0.5	<0.5		<10
TW-8	2/14/2003	<50	<50	<250	<250	<250	<u> </u>			-		
Cambria Grab	Groundwater from	Slotted PV	C in Boring (F	ebruary 14	<u>1, 2003)</u>							
AB-B	2/14/2003	<50	130	<250	<250	<250	<0.5	<0.5	0.56	<0.5	<5.0	-
Pre-Remedia	ation						E					
	(Temp wells / stand							110	ND	MD	MD	27
1	8/01	5400				_	<5.0 <5.0	ND ND	ND ND	ND ND	ND 5.6	27 ND
2 3	8/01 8/01	3700 130		_	-		<5.0 <5.0	ND	ND	ND	ND	ND
3 4	9/01	66,000	4,473	<5.0	_	66,000	200	53	12	29.4	ND	59

Table 2a.

Groundwater Analytical Data - Hydocarbon Analyses

Balaam Airgas

1350 Powell Street, Emeryville, California

		TPHg	TPHd	TPHmo	TPHbo	Total	т.	TT-1	Title - No	Valana	MTDE	Nau bála al au a
Sample ID		(C6-C9)	(C10-C23)	(C-18+)	(C-10+)	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE (ug/L)	Naphthalene (ug/L)
	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L) 8021	(ug/L) 8021	(ug/L) 8021	(ug/L) 8021	8021	8270D
	EPA Method:	8015m	8015	8015	8015	8015					13	NE
	MCL*:	NE_	NE	NE	NE	NE	1.0	150	700	1,750		
	RBSL**:						46	130	290	13	1,800	24
	Cleanup Goal:					20,000			<u></u>			
4B	9/01	_	_			-	350	97	32	170	ND	150
6	9/01			_		-	<5.0	ND	ND	ND	ND	ND
7	9/01		-		-	-	<5.0	ND	ND	ND	ND	ND
9	9/01					-	<5.0	ND	ND	ND	ND	ND
Lowney Sampling	(Grab groundwat				:							
EB-7	3/5/2002	260	7,300	<500		7,560	<0.5	<0.5	<0.5	<1.0	<5.0	
EB-8	3/5/2002	<50	100	<580	-	100	<0.5	<0.5	<0.5	<1.0	< 5.0	
EB-9	3/5/2002	17,000	24,000,000	<2,000,000	-	24,017,000	<5.0	< 5.0	<5.0	<10	<50	
EB-10	3/5/2002	5,900	4,400,000	<400,000		4,405,900	<5.0	<5.0	<5.0	<10	<50	
EB-11	3/5/2002	280	2,100	<580		2,380	< 5.0	< 5.0	<5.0	<10	100	_
EB-12	3/5/2002	170,000	20,000,000	<1,500,000		20,170,000	5,800	77	<50	<100	<500	
	g (Hicks temp well											
4B	7/24/2002	2,700	2,000	340	2,100	4,800	790	14	18	4.5	<10	
7	7/24/2002	280	1,100	420	1,300	1,580	0.65	<0.5	<0.5	<0.5	<5.0	
1/10/1904	7/24/2002	<50	600	780	960	985	<0.5	<0.5	<0.5	<0.5	<5.0	
10	7/24/2002	1,300	30,000	9,500	32,000	33,300	< 5.0	<5.0	<5.0	<5.0	<50	_
11	7/24/2002	280	1,400	900	1,800	2,080	0.51	1.6	<0.5	0.78	<5.0	
12	7/24/2002	1,400	950	1,200	1,600	3,000	360	1.7	10	1.1	<5.0	_
	g (Grab from exca				12 000	25,900	240	49	80	360	<50	_
EX-A-W1	8/2/2002	2,900	23,000	7,900	23,000	45,900	440	47	ου	200	~50	

Table 2a.

Groundwater Analytical Data - Hydocarbon Analyses

Balaam Airgas

1350 Powell Street, Emeryville, California

	100- 211	TPHg	TPHd	TPHmo	TPHbo	Total		-				
Sample ID	Date	(C6-C9)	(C10-C23)	(C-18+)	(C-10+)	TPH	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Naphthalene
	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
-	EPA Method:	8015m	8015	8015	8015	8015	8021	8021	8021	8021	8021	8270D
	MCL*:	NE	NE	NE	NE	NE	1.0	150	700	1,750	13	NE
	RBSL**:			-	_		46	130	290	13	1,800	24
	Cleanup Goal:			-	_	20,000						

Abbreviations and Notes:

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

TPHmo = Total petroleum hydrocarbons as motor oil

TPHbo = Total petroleum hydrocarbons as bunker oil

MTBE = Methyl tert-butyl ether

ug/L= Micrograms per liter

<n = Below detection limit of n mg/kg

NE = Not establisehed

-- = Not analyzed/Not applicable

^{* =} Drinking water Maximum Contaminant Levels - California DHS, January 11, 2001

^{** =} Risk Based Screening Level (RBSL) for benzene, toluene, ethylbenzene, xylenes, and methyl tertiary butyl ether (CRWQCB, December 2001, Table B).

Table 2b. Groundwater Analytical Data - Volatile Organic Compounds

Balaam Airgas

1350 Powell Street, Emeryville, California

Sample ID	Date	Screen	n-	Sec-	Iso-		n-
	Sampled	Interval	Butylbenzene ¹	Butylbenzene ¹	Propylbenzene ¹	Napthalene ¹	Propylbenzene ¹
3117	EPA Method:						
	MCL*:		NE	NE	NE	NE	NE
	RBSL**:		NE	NE	NE	24	NE
EB-7	3/5/2002		<1.0	3.4	<0.5	4.2	<1.0
EB-8	3/5/2002		<1.0	<1.0	<0.5	<1.0	<1.0
EB-9	3/5/2002		42	45	29	22	28
EB-10	3/5/2002		23	21	14	20	13
EB-11	3/5/2002		20	25	14	16	<10
EB-12	3/5/2002		<100	<100	<50	<100	<100

Abbreviations and Notes:

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

TPHmo = Total petroleum hydrocarbons as motor oil

TPHbo = Total petroleum hydrocarbons as bunker oil

MTBE = Methyl tert-butyl ether

ug/L= Micrograms per liter

<n = Below detection limit of n mg/kg

NE = Not establisehed

-- = Not analyzed

¹ = Other VOCS were not detected at or above the stated laboratory reporting limit

^{* =} Drinking water Maximum Contaminant Levels - California DHS, January 11, 2001

^{** =} Risk Based Screening Level (RBSL), CRWQCB, December 2001, Table B

Table 2c. Construction Details and Water Levels for Temporary Wells
Balaam Airgas
1350 Powell Street, Emeryville, California

Well ID	Date Measured	Well Elevations (MSL)	Screen Interval (ft)	First Encountered Water Depth (ft)	Static Water Depth (ft)	Groundwater Elevations (MSL)
TW-1	12/4/2002		20-30	20.0	5.0	not surveyed
TW-2	12/4/2002		10-20	16.0	8.3	not surveyed
TW-4	12/4/2002	19.19	15-25	21.0		
TW-4	12/5/2002	19.19	15-25		9.3	
TW-4	12/11/2002	19.19	15-25		10.41	8.78
TW-5	12/4/2002		15-25	11.0	6.0	not surveyed
TW-6	12/4/2002	20.80	20-30	26.0		
TW-6	12/5/2002	20.80	20-30		5.0	
TW-6	12/11/2002	20.80	20-30		9.14	11.66
TW-6	2/14/2003	*	20-30		5.09 ¹	*
TW-7	12/4/2002	19.10	20-30	26.0		
TW-7	12/5/2002	19.10	20-30		5.0	
TW-7	12/11/2002	19.10	20-30		8.82	10.28
TW-7	2/14/2003	*	20-30		5.56 ¹	*
TW-8	12/4/2002	18.08	20-30	26.0	5.0	
TW-8	12/11/2002	18.08	20-30		6.57	11,51
TW-8	2/14/2003	*	20-30		3.10^{1}	*

Table 2c. Construction Details and Water Levels for Temporary Wells

Balaam Airgas

1350 Powell Street, Emeryville, California

			Screen	First	Static	Groundwater
	Date	Well Elevations	Interval	Encountered	Water Depth	Elevations
Well ID	Measured	(MSL)	(ft)	Water Depth (ft)	(ft)	(MSL)

Abbreviations and Notes:

ft = depth below ground surface in feet.

MSL = elevation surveyed relative to a benchmark on the sidewalk of Powell Street with a noted elevation of 19.39 ft. not surveyed = well was abandoned prior to survey due to grading activities.

-- = not applicable/not measured.

^{* =} Not available due to top of casing damaged during construction activities.

^{1 =} Static water depth is approximate due to top of casing damaged during construction activities.

Residual Soil and Groundwater Samples With Constituents Exceeding Tier 1 RWQCB RBSLs Table 3. Balaam Airgas

1350 Powell Street, Emeryville, California

		Date EPA Method:	TPHg (C6-C9) 8015m	TPHd (C10-C23) 8015	TPHmo (C-18+) 8015	TPHbo (C-10+) 8015	Total TPH 8015	Benzene 8021	Toluene 8021	Ethylbenzene 8021	Xylenes 8021
SOIL			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
,		Residential RBSL*:	400	500	500	500	NE	0.18	8.4	24	1.0
Sample ID	Depth	Cleanup Goal:			_	_	1,000	-		-	
Samples along South	em Property I	Roundary									
EX-A-S-9		7/24/2002	350	230	18	210	560	2.0	0.30	3.4	2.1
EX-A-E-9		8/17/2002	<20	570	150	520	520	<0.1	<0.2	<0.1	< 0.05
EX-A-S-3		10/2/2002	48	110	14	110	158	3.5	0.16	3.1	4.5
Samples in Northern	Part of Excav	ration_									
EX-E-BE-6		8/7/2002	<10	780	<500	730	730		-		
Samples on or Adjac											
EX-C-NW-3		9/13/2002	<20	810	110	960	960		-		
EX-C-W-3		9/13/2002	<20	2,400	1,100	2,800	2,800		-		
EX-L-NW-9	9'-9.5'	11/20/2002	67	3,000	650	2,800	2,867	_	_		
GROUNDWATER	=		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
		RBSL*:	500	640	640	640		46	130	290	13
		Cleanup Goal:					20,000			_	
											
<u>Cambria Temporary</u>	Wells (Installe	ed December 4, 2002)									
TW-6	12/4/2002		<50	5,000	580	5,000	5,000	<0.5	0.52	<0.5	<0.5
TW-6	12/18/2002		<50	7 5	<250	260	260	<0.5	<0.5	<0.5	<0.5
	2/14/2003		<50	<50	<250	<250	<250	<0.5	1.3	<0.5	2.8

Abbreviations and Notes:

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

TPHmo = Total petroleum hydrocarbons as motor oil

TPHbo = Total petroleum hydrocarbons as bunker oil

Total TPH = TPHg + TPHbo.

MTBE = Methyl tert-butyl ether

mg/kg = Milligrams per kilogram

<n = Below detection limit of n mg/kg

-- = Not analyzed

^{* =} Risk Based Screening Level (RBSL), CRWQCB, December 2001, Table B

APPENDIX A Soil Boring Permits

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION 399 ELMHURST ST. HAYWARD CA. 94544-1395

PHONE (518) 670-6633 James You FAX (510) 782-1939 APPLICANTS: PLEASE ATTACH A SITE MAP FOR ALL DRULLING PERMIT APPLICATIONS DESTRUCTION OF WELLS OVER 45 FEET REQUIRES A SEPARATE PERMIT APPLICATION

DRILLING PERMIT APPLICATION

	FOR OFFICE USE
FOR APPLICANT TO COMPLETE	- •
LOCATION OF PROJECT 1350 POWELL St	PERMIT NUMBER W03-0/27
Emecyule	WELL NUMBER
	APN
	PERMIT CONDITIONS
	Cheled Permit Requirements Apply
Namo Balanca Bothers Partnership	CA DENOTEAL
Address 115 4. The Let Phone	1. A permit application should be submitted so us to
City Review Zip 914708	arrive at the ACI'VA office five days prior to
	proposed surving date. 2. Submit to ACPWA within 60 days after completion of
APPLICANT	2. Submit to ACPWA within 60 days after completion of
Campelia Engranded Fax SO-470-1170	permitted original Department of Water Resources- Well Completion Report.
CANADIA ENVIRONMENTAL SIDE 470-1170	3. Pornit is void if project not begun within 90 days of
Address 5900 HILS ST STEL Phone 510-420-3338 City Empreyable Zip 9460x	approval date
Chy Charles and Table	B. WATER SUPPLY WELLS
	 Minimum surface seal thickness is two inches of
type of project	cement grout placed by tranic.
Well Construction Geotechnical lavestigation	2. Minimum seal depth is 50 feet for manicipal and
Cathodic Protection C General	industrial walls or 20 feet for demostic and irrigation wells unless a leaser depth is specially upproved.
Water Supply (.) Contamination Monitoring C Wall Description C	C. GROUNDWATER MONITORING WELLS
Worthwilde & Adultonament &	INCLUDING PIEZOMETERS
Proposed water supply well use	I. Minimum surface seal thickness is two inches of
New Domestic 1. Replacement Demestic G	cement grout placed by comic.
Municipal 🦪 Irrigation J	2.Minimum seal depth for avantaging wells is the
industrial 17 Other	maximum depth practicable or 20 feet. D. GEOTECHNICAL
ማ ውርያ ፓ ያክረብ ይፈመመስ ለነት	D. SEOTECHNICAL Backful bore hole by tremie will vement grout ar coment
DRILLING METHOD, Mid Rotary II Air Rotary I' Augus X	group/gand mixture. Upper two-three feet replaced in kind
Cable J Other C	or with compacted cuttings.
	E. CATHODIC
DRILLER'S NAME Wholewago Orilling Co.	Fill hole anode zone with concrete placed by tremis.
	F. WELL DESTRUCTION
DRILLER'S LICENSE NO. 710679	Send a map of work site. A separate permit is required for wells desper than 45 feet.
Ci Ruina	G. SPECIAL CONDITIONS
Soil Borra	
Doll Hole Digitation In. Maximum	NOTE: One application nated be submitted for each well or well
Guing Diamotor Depth Depth 11.	destruction. Multiple dorings on any application are acceptable
Surface Seed Dapole	for genechnical and contamination investigations.
GEOTECHNICAL PROJECTS	
Number of Rotings Maximum	
Number of Rollings 6 Maximum Hole Dispustor 1n. Depth 17 A.	
STARTING DATE 2/14/03	4
COMPLETION DATE 2/14/03	APPROVED DATE 2-13-7
	APPROVED DATE
ρN	/ W 1 P
I hereby agree to comply with all requires configurated this permit and Alameda County Ordina	and No. 73-68.
Thereby agree to comply with all requirements of this permit and Alameda County Ordina APPLICANT'S SIGNATURE DATE 2	10hz / 11 l
	ا ا) مدنهمتا
PLEASE PRINT NAME JASON OLON Rev.9-	18-02
414 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

APPENDIX B

Field Activity Descriptions

APPENDIX A

FIELD ACTIVITY DESCRIPTIONS

February 2003 Subsurface Investigation

Field activities completed during the installation of soil borings AB-A through AB-G and the sampling of temporary wells TW-6, TW-7, and TW-8 are presented below. The discussion is organized according to the nature of the individual activity.

Field Activities

Field Activity Dates: On February 12, 2003, boring AB-A was installed using a hand

auger. On February 14, 2003, borings AB-B through AB-G were installed using a hollow-stem auger rig. On February 14,

2003, wells T-6, T-7, and T-8 were sampled.

Personnel Present: Cambria Geologists Jason Olson and Matt Meyers conducted the

field activities under the supervision of Bob Clark-Riddell,

Professional Engineer.

Permits: Alameda County Public Works Drilling Permit Number

W03-0127. (Appendix A).

Drilling Company: Woodward Drilling Co of Rio Vista, California (C-57 License

No. 710079).

Drilling Method: Boring AB-A was advanced by hand auger. Borings AB-B

through AB-G were advanced by a hollow-stem auger rig.

Number of Borings: Seven (AB-A through AB-G) (Figure 1).

Boring Depths: Soil borings were advanced to depths of 3.5 to 20 ft below

ground surface (bgs).

Boring Sampling: Soil samples were collected from all of the borings at selected

depths during drilling, and were classified according to the Unified Soil Classification System (USCS). A grab groundwater

sample was collected from boring AB-B.

Soil Lithology: The site subsurface soils generally consisted of approximately

10-16 ft of engineered backfill, underlain by native sandy clays

to a total explored depth of 20 ft bgs.

Depth to Water: Groundwater was first encountered in boring AB-B at 17 ft bgs,

and boring AB-C at 14 ft bgs. Groundwater was not encountered in the remaining borings. Depth to water measurements for wells TW-6, TW-7, and TW-8 are approximate due to top of

casing damage during site construction activities. Depth to water for wells TW-6, TW-7, and TW-8 ranged from approximately 3 to 5.5 ft bgs.

Well Sampling:

On February 14, 2002, Cambria gauged and sampled existing temporary wells TW-6, TW-7, and TW-8. The wells were purged and sampled with a peristaltic pump using dedicated, disposable polyethylene tubing. Well TW-4 was not sampled due to its destruction during site construction activities.

Chemical Analyses:

McCampbell Analytical of Pacheco, California analyzed selected soil and groundwater samples for: BTEX and MTBE by EPA Method 8021B and/or TPH as gasoline by EPA Method 8015, and/or TPH as diesel, motor oil, and bunker oil by EPA Method 8015 with silica gel cleanup.

APPENDIX C Standard Field Procedures

STANDARD FIELD PROCEDURES FOR HAND-AUGER SOIL BORINGS

This document describes Cambria Environmental Technology's standard field methods for drilling and sampling soil borings using a hand-auger. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist or engineer working under the supervision of a California Registered Geologist (RG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- X Principal and secondary grain size category (i.e. sand, silt, clay or gravel)
- X Approximate percentage of each grain size category.
- X Color.
- X Approximate water or product saturation percentage,
- X Observed odor and/or discoloration,
- X Other significant observations (i.e. cementation, presence of marker horizons, mineralogy), and
- X Estimated permeability.

Soil Boring and Sampling

Hand-auger borings are typically drilled using a hand-held bucket auger to remove soil to the desired sampling depth. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the augered hole. The vertical location of each soil sample is determined using a tape measure. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Augering and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Storage, Handling and Transport

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable photoionization detector (PID) measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. PID measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

Water Sampling

Water samples, if they are collected from the boring, are collected from the open borehole using bailers. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

Duplicates and Blanks

Blind duplicate water samples are collected usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

Grouting

The borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite on top of and covered by plastic sheeting. At least four individual soil samples are collected from the stockpiles for later compositing at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Ground water removed during sampling and/or rinsate generated during decontamination procedures are stored onsite in sealed 55-gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Disposal of the water is based on the analytic results for the well samples. The water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

2/19/03

F:\TEMPLATE\SOPs\Hand Auger Borings.doc

STANDARD FIELD PROCEDURES FOR SOIL BORINGS

This document describes Cambria Environmental Technology's standard field methods for drilling and sampling soil borings. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist or engineer working under the supervision of a California Registered Geologist (RG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e. sand, silt, clay or gravel)
- Approximate percentage of each grain size category,
- Color,
- Approximate water or product saturation percentage,
- Observed odor and/or discoloration,
- Other significant observations (i.e. cementation, presence of marker horizons, mineralogy), and
- Estimated permeability.

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or hydraulic push technologies. At least one and one half ft of the soil column is collected for every five ft of drilled depth. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the borehole. The vertical location of each soil sample is determined by measuring the distance from the middle of the soil sample tube to the end of the drive rod used to advance the split barrel sampler. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Storage, Handling and Transport

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable photoionization detector (PID) measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. PID measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

Water Sampling

Water samples, if they are collected from the boring, are either collected using a driven Hydropunch type sampler, collected from the open borehole via pump/bailer, or collected from within screened PVC inserted into the borehole via a pump/bailer. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

Duplicates and Blanks

Blind duplicate water samples are collected usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite on top of and covered by plastic sheeting. At least four individual soil samples are collected from the stockpiles for later compositing at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples. Soil cuttings are transported by licenced waste haulers and disposed in secure, licenced facilities based on the composite analytic results.

Ground water removed during sampling and/or rinsate generated during decontamination procedures are stored onsite in sealed 55 gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Disposal of the water is based on the analytic results for the well samples. The water is either pumped out using a vacuum truck for transport to a licenced waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

F:\TEMPLATE\SOPS\BORINGSLH.WPD

STANDARD FIELD PROCEDURES FOR MONITORING WELLS

This document describes Cambria Environmental Technology's standard field methods for drilling, installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Well Construction and Surveying

Groundwater monitoring wells are installed in soil borings to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two ft above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I,II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security. The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

APPENDIX D

Field Logs

Cambria Environmental Technology, Inc. 1144 65th Street, Suite B Oakland, CA 94608 Tel. (510) 420-0700 Fax (510) 420-9170

Hono Auger

	Boring/Well Name AR-A	page 1 of
	PE/RG BCR	
	Hand Augered to 3,0 Total Depth	<u>3.5'</u>
	Date Started 2/12/03	
	Date Completed 2/12/63	
_	Well Development Date (yield)	
	Ground Surface Elevation	
_	Top of Casing Elevation	
_	Screened Interval	
_	Depth to water (first encountered)	
_	Depth to water (static)	

	Logi	ed by		<u>50</u>			Located	As SI	Sour!	_0^	<u> </u>	<u>n Af</u>	7			
	TặI.				-			T	, je		1	Percer	itages			₽
0 –	Depth/Sample Interval	Time	Sample ID	PID/Odor	CRAPHIC Symbol	USC Class	Soil Type and Commenta	Color	Penetration Resistance/ Blow Counts	Moisture	Clay	Silt	Sand	Gravel	Plasticity	Estimated Permeability
u –						CL	SANDY Clay - Slight HC odbe	DARK			82	_	१इ	_	Med.	Low
	-									· 						
_			·			V	sample collected w/slide Ham	mer.								
5 -							sample collected Wishide Ham to seeve. TERMinated @ 35'									
> -																· ·
	_							<u> </u>								<u> </u>
								-								
ra.								1								-
3 -																
															,	
				 	ļ		,									
								-								
5 -																
				ļ											·	
			•	ļ				-								
				<u> </u>												
) -																
					<u> </u>									<i>-</i>		
						 					 				ļ	
5 -													,		<u>.</u>	
								_			ļ					
							The second secon									
ე -	l		l	<u> </u>	<u> </u>	L			J	·	<u> </u>	L	l	L		

CAMBRIA	Cambria Environmental Technology, Inc. 1144 65th Street, Suite B Oakland, CA 94608 Tel. (510) 420-0700 Fax (510) 420-9170	Boring/Well Name AB - B page 1 of / PE/RG BCC Hand Augered to 3 Total Depth 36.0 Date Started 2/14/03								
Client Name Salaa	m	Date Completed 2/14/03								
Joh/Site Name 41	-9aS	Well Development Date (yield)								
Location 1350 P	OWELL ST.	Ground Surface Elevation 17, 7 5								
Project Number 50	2-1975	Top of Casing Elevation								
Driller WOODWAR	D	Screened Interval								
Drilling Method Ho	icon Stem Auben	Depth to water (first encountered)								
	8"	Depth to water (static) 10.00								
Lorged by MM	ere 15	Located SEE SITE MAP								

	Logg	ged by	MA	leye	15					Located 5	SEE SI	TE M	AP					-	
							st i					٠			Perce	ntages			À:
	Depth/Sample Interval	Time	Sample ID	PID/Odor	Well Construction	USC Class	Soil Type and Comments				Colot	Penetration Resistance/ Blow Counts	Moisture	Clay	Silt	Sand	Gravel	Plasticity	Estimated Permeability
0 -	(12:30		/		SW	FILL S.	AND I	FM GRA	NED	BRN	DENSE	MOIST		ls	90		/	4
	< \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												+						
5 -		12:40	AB-B -60	/	/	CL	CLAY	Brace	SKNC		DK BRN	\$15 5	DAMP	80	to	10		<i>H</i>	L
10 -												, t							
2.1.4	4	೧೯೭೨	AB-B-				A 5 A80				1	3/6/18	-					,	
15 -	22	12:35	AB-B 15.55			BŁ	14. NATI V	VB SAN F-F S	SAND,	TO 10 M	BRN	12/12/16	MISST	70		25	5	<i>1+</i>	4
T		1:10				SC	Visal Co	GANGE SLL RO	50N05 UNOED	sint&g	11		5 K T	30		70			4
20 -							Adu	nnced	to 20	' to get	62	51	a m	عاد					
			\(\frac{1}{4}\)																OASPECIALTY FIGURES/BORING-SHEETA
25							3												TV FIGURES/B
																			Overbecial
30													:						

Cambria Environmental Technology, Inc. 1144 65th Street, Suite B Oaldand, CA 94608 Tel. (510) 420-0700 Fax (510) 420-9170

Client Name B	alaam
Job/Site Name	Airaas
Location	Powell St EMERYVILLE
Project Number	502-1795
Driller Woods	WARD
Drilling Method	8" Hollow Stem Auger
Boring Diameter	8"
Logged by M.	Mayes

Boring/Well Name AB-C	page	1 of /
PE/RG JASON OLSON		
Hand Augered to 3 Total Depth	2.51	
Date Started 2/14/03	_	
Date Completed 2/14/03	_	
Well Development Date (yield) NA		
Ground Surface Elevation ~ 19, 12		
Top of Casing Elevation WA	H-74	
Screened Interval NA		
Depth to water (first encountered) 19.0		
Depth to water (static) 8.0		
Located SEE SITE MAP		

72						ntt		<u>`</u>	,		Percei	ntages			ty.	
, Depth/Sample Interval	Time	Sample ID	PID/Odor	Well Construction	USC Class	Soil Type and Comments	Color	Penetration Resistance/ Blow Counts	Moisture	 	Sand	Gravel	Plasticity	Estimated Permeability		
K	7:25				SW	SAND, F GRAINED : FILL	BRANG BR J	0E~S8	MOIST			100		/	+	
5									•							
5	7:30	•				FILL										
+-							<u> </u>									
-					CL	CLAY' FILL	DK BRN	STIFE	11	84	1	20	/	H	L	
					<u></u>											
			at .		CL	45 400VE		9/9/13								
					-		<u> </u>	- 1 1						,	<u> </u>	1
,			opor		cı	SANDY CLAY F SAND		5/7/13 4/4/5	1	80	2	20	/			
			14.			Some ANGULAN GRAV TO ZONE	BRN		SAT	15	15	15	5	M	_	
		AB-B	SUBOT		CL.	NATIUS : Q 11, SANDY CLAY	LT	3/3/17	 	60	10	20	70	<u></u>	L	9/9
7	රී:0	-17 /	000r.			GRAVEL TO BALL Well so-ted.	3.7.	9,9;	g teles							
													_			
		<u> </u>		120												IA.
												ļ	ļ			SHEE
	ļ	*	3.			· ·										RING
-		<u> </u>								-	-	-	-			ESIBC
						· · · · · · · · · · · · · · · · · · ·						<u> </u>				Q:\SPECIALTY FIGURES\BORING-SHEET.AI
							1									ALTY
1	•					The second secon				ļ						SPECI
			[<u> </u>			<u> </u>		۾ آڇ

	Californa Environmentar recimology, mc.	Boring/Well Name 48-8 page 1 of
3	1144 65th Street, Suite B	PE/RG BCR
_	Oakland, CA 94608	Hand Augered to 3 Total Depth
CAMBRIA	Tel. (510) 420-0700 Fax (510) 420-9170	Date Started 9/14/03
Client Name Bala	Qui	Date Completed 4/14/03
Job/Site Name Air	79a5	Well Development Date (yield) 1/A
Location 1350 /	twell St	Ground Surface Elevation 18-57
Project Number 50	2-1975	Top of Casing Elevation MA
Driller WOODWAR	0	Screened Interval NA
Drilling Method 94	Hollow Stem Auger	Depth to water (first encountered) NA
Boring Diameter 8		Depth to water (static) NA
Logged by U. 1	layare	Located SEE SITE MAP
	/	
		Percentioner

1	Bori	og Dia	neter 2	9 "				Depth to w	ter (static	NA	~						
J	Logs	ged by	neter &	May a	16			Located	58 6 S	ITE V	nav						
0 -	Depth/Sample Interval	₽ 11:45	Sample ID	PID/Odor	Well Construction	V USC Class	Soil Type and Comments		onc Bun	Penetration Resistance/ Blow Counts	Woisture Moisture	Clay	Percei	puzs 90	Gravel	Plasticity	Estimated Permeability
5 -	Φ					36	EANDY CLAY F SONDS, LAA BRIG FRAGES	V64-F8	94 BRN	9/9/12	BAMAP	b 0	10	30	-	М	4
10 -	+		415-0- 92 0 A3-0	23		SC 5 C	NATIVE : CLAYES , SAND : A TO LOMAN Prodom F SA SIMS BLUE STAINING CLAY SAND : (NATIVE) F		<u> </u>	6/6/9 9/12/17	Maist	30 40		60	\$0	V	M 4
15 -																	
20 –																	
25 ~																	
30																	

Cambria Environmental Technology, Inc. 1144 65th Street, Suite B Oakland, CA 94608 Tel. (510) 420-0700 Fay (510) 420-9170

Boring/Well Name AB-E	page of
Client Name Balaga	
Job/Site Name AirgaS	
Perior Number 502-1975	-

				(57		6 Fax (510) 420-7170 Project (4000	1001	(·							
₹						n		c/		1	Percer	itzges		•	뇬
Depth/Sample Interval	Time	Sample ID	PID/Odor	Well Construction	USC Class	Soil Type and Comments	Color	Penetration Resistance/ Blow Counts	Moisnire	Clay	Silt	Sand	Gravel	Plasticity	Estimated Permeability
) >	:10				Sw	SAND FILL FINE MED GARINED	82N		MOIST		10	90		/	4
2		` &													
		1544 de 1644 de													
表 3.	15	AB-E -5.5			50	CLAY SAND MOQUEO MATERIALS	//	50/6"	DAMP	30	30	30	10		Μ
3	:20	AD-5 -9			SC	AS ABOVE	ok Br. N	u/u/n	Milst						
					SC.		8u K	7/-/4	5A+					, -	
_					120	FILL NO STAINING			MOIST.						
_					50	AS prove	or Bn-V	s/5/7		*					
3	:40	A8-E			Sc	CIS NATIVE CLAYEY TAND, 77400 WILL ROUNDED BUANDES TO BOMM M-VC SANOS, SOME SONTHIC	BRN	1/1/12	SAT	%	/	عد	5	سرا	М
			₽					11111							
		1841)	<u> </u>		ļ										
-					<u> </u>	40.50 -	· · · · · · · · · · · · · · · · · · ·		3:			-			<u> </u>
_		¥.													
1													_		
-													-		
+	· · · · · · · · · · · · · · · · · · ·												-		
1					· .						-	-	<u> </u>		
1					-							ļ		<u>}</u>	_
				1	1		1	† **	1	1	1	1		Ĭ	

Cambria Environmental Technology, Inc. 1144 65th Street, Suite B Oakland, CA 94608 Tel. (510) 420-0700 Fax (510) 420-9170

Boring/Well Name AB -F	page t of
Client Name Balaam	
Job/Site Name Airga S	
Paris Number 502-1975	· · · · · · · · · · · · · · · · · · ·

					ıments		nce/			Percer	ntages			ility
Time	Sample ID	торО/ША	. Well Construction	USC Class	Soil Type and Comments	Color	Penetration Resistance/ Blow Counts	Moisture	Clay	Silt	Sand	Gravel	Plasticity	Estimated Permeability
		-		SW	SAND FILL	BAN	DENSE	Molst	10		70	/		H
			•••							<u>.</u>				
4:05 .	+8 - Æ - 5.5			4	SANDS, MOTTLED MATERIALS.	BRN	6/1/12	pamb	80		20		4	Ļ
410	B-F			C4+	AS +BOVE	17	12/15/21	MIST	-					
1:15					CIO WELL ROUNDED AND SONTED M-VC		13/15/	MOIST			30		A:4	2
	. 4				SANDS, SOME LAYERING.	BRN	77	770131	10	-	20		M	-
	···		· · · · · · · · · · · · · · · · · · ·											
										<u> </u>				
	,													
					A *									
														-
				 										
				-			F	<u> </u>		-				-
				-					-			ļ		
											-		ļ	
				-						·				-
						1				1				

Cambria Environmental Technology, Inc. 1144 65th Street, Suite B Oakland, CA 94608 Tel. (510) 420-9700 Fax (510) 420-9170

(310) 125-0700 122 (310) 420-7170
Client Name Bal 96M
Tob/Site Name Airgas
Location 1350 Power St
Project Number So2-1975
Driller WOODWARD
Drilling Method 8" Hollan Stew Auger
Boring Diameter 8 4
Logged by M. MEYENS

Boring/Well Name AB -G page 1 of
PE/RG JO
Hand Augered to 3 Total Depth 12.5
Date Started 2/14/03
Date Completed 2/14603
Well Development Date (yield) NA
Ground Surface Elevation 18.63
Top of Casing Elevation
Screened Interval
Depth to water (first encountered) NA
Depth to water (static) NF
Located SEE SITE MAP

귷						ents			\ \mathred{g}			Perce	ntages			ŢŢ.
Depth/Sample Interval	Time	Sample ID	PID/Odor	Well Construction	USC Class	Soil Type and Comments		Color	Penetration Resistance/ Blow Counts	Moistu rc	Clay	Silt	Sand	Gravel	Plasticity	Estimated Permeability
(11:00				36	SAND	FILL F.M GRAINED	LT DEN	hense	MOUST		10	90		<i>y</i>	14
7																
季士	11:20	48-6 -55			50	eand t	CLAY M-C SANOS	0× BR ~	9/9/12	11	75	10	15		4	<i>L</i> -
1	H:15	AB-5 -85	<u></u>		SC	A-5	ABOV 6		9/12/15							
+			7.0		SC	10 " NA	BLUE STRINING F-MSE BLUE STRINING F-MSE	VOS BAN	12/14/24	"	30		70		L	#
*	11:35	48-6 17.5	7.0			172	1877-0								•	
						٥										
				<u>-</u>												
															-	
									į.							
																<u> </u>

WELL DEPTH MEASUREMENTS

Well ID	Time	Product Depth	Water Depth	Product Thickness	Well Depth	Comments
tw- 4	12:56				1	Toc destroyed Toc destroyed Toc Destroyed
Tw- 8	12:55	_	3.10		23.90	TOC destroyed
TW- 7	姓1:00		5,56		29.77	Toc destroyed
tw G	1:05		5.09		22.75	Joc Destroyed
<u> </u>						
				Ť		
			,			
			er er	- 1		
		1	?			

Project Name: Args	Project Number:	502-1795
Measured By:	Date:	2/14/03

F:\TEMPLATE\FORMS\FIELD\GW-DEPTH.WPD

WELL SAMPLING FORM

Project Name: Airass	Cambria Mgr: BCR	Well ID: Tw-6
Project Number: 502-1795	Date: 2/14/03	Well Yield:
Site Address: 1350 Powell	Sampling Method: Perist.	Well Diameter: "Apvc
Emery ville	pung	Technician(s):
Initial Depth to Water: 5.09	Total Well Depth: 22-75	Water Column Height: 17.66
Volume/ft: 0.08	1 Casing Volume: 1,41	3 Casing Volumes: 4, 23
Purging Device: Perist, Pump	Did Well Dewater?: No	Total Gallons Purged: 24,5
Start Purge Time: 1:52	Stop Purge Time: 7://	Total Time: 19 ming

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp.	рН	Cond. (uS)	Comments
1:59 2:07 2:11	7	17,2	7.26	15/0 1344 1408	
::- ====					

Fe =	m	g/L	ORP =	mV	DO =	mg/L
Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
Tw-4	2/14/03	Z: /\	4 Vo A 1 Amber	HC1 None	See CoC.	

WELL SAMPLING FORM

Project Name: Airaas	Cambria Mgr: BCR	Well ID: 76-7
Project Number: 502-1795	Date: 2/14/03	Well Yield:
Site Address: 1350 Pawell	Sampling Method: Perist.	Well Diameter: 14 Proc
Emeny ville	Pump	Technician(s):
Initial Depth to Water: 5,56	Total Well Depth: 29,77	Water Column Height: 24,21
Volume/ft: 0.08	1 Casing Volume: /, 93	3 Casing Volumes: 5.79
Purging Device: Perist Pump	Did Well Dewater?:	Total Gallons Purged: 😃 6
Start Purge Time: 3:30	Stop Purge Time: 3:55	Total Time: 20 mins

1 Casing Volume = Water column height x Volume/ ft.

Volume/ft (gallons)		
0.16		
0.65		
1.47		

Time	Casing Volume	Temp.	рН	Cond. (uS)	Comments
3:38	1 2	16.0	6.66	1437	
3:50		16,0	6.64	10 20	

Fe =	m	g/L	ORP =	mV	DO =	mg/L
Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
Tw-7	2/14/03	3:50	1 Amber	None Hol	Sec lol_	->

WELL SAMPLING FORM

Project Name: Airaas	Cambria Mgr: BCR	Well ID: Tw-8
Project Number: 502-1795	Date: 2/14/03	Well Yield:
Site Address: 1350 Powell	Sampling Method: Peristotic	Well Diameter: / " [] pvc
Emeryville	Pump	Technician(s):
Initial Depth to Water: 3.16*	Total Well Depth: 23,90	Water Column Height: 20,80
Volume/ft: 0,08	1 Casing Volume: 1,67	3 Casing Volumes: 5.01
Purging Device: Per: Staltic Pump	Did Well Dewater?: No	Total Gallons Purged: % 5.00
Start Purge Time: 2:30	Stop Purge Time: 2:54	Total Time: 24 mins

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp. (°C)	рН	Cond. (uS)	Comments
2:38	l	15.8	7,30	958	
7:46	2	15.9	7.10	948	
2:54	3	15,9	7,08	913	
		,			

Fe =	m	g/L	ORP =	mV	DO =	mg/L
Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
7W-8	2/14/03	3:15	(100A 19mBGR	NOVE Hel	See loc -	-

APPENDIX E Laboratory Analytical Reports

925

McCampbell Analytical Inc.

CHAIN-OF-CUSTODY RECORD

WorkOrder: 0302217

7 110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

Client:

Cambria Env. Technology 5900 Hollis Street, Suite A Emeryville, CA 94608

TEL:

(510) 450-1983

FAX:

(510) 450-8295

ProjectNo:

#502-1975-013; Airgas

Date Received:

2/14/03

Date Printed:

2/19/03

Emery ville, Or	7 74000	PO	:			
Sample ID	ClientSampID	Matrix	Collection Date	Hold		Requested Tests SW8015C N8021B/8015C
10302217-001	AB-B-15.5	Soil	2/14/03 1:10:00 AM		A	A
0302217-002	AB-C-17	Soil Spil	2/14/03 8:10:00 AM 2/14/03 12:10:00 PM		_ <u>!</u>	
0302217-003	A8-D-10.5 AB-E-17	Soil	2/14/03 3:40:00 PM			A A A
0302217-005	A8-F-11	Soil Soil	2/14/03 4:15:00 PM 2/14/03 11:35:00 AM		 	
0302217-006	AB-G-12.5 AB-B	Water	2/14/03 2:30:00 PM			BAA
0302217-007	AB-C	Water	2/14/03 12:00:00 PM			BAA
0302217-009	TW-6	Water Water	2/14/03 3:50:00 PM			A A A
0302217-010	TW-8	Water	2/14/03 3:15:00 PN	<u> </u>		

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analy	tical Inc. 130 2nd A Teleph	venue South, #D7, Pacheco, CA 94553-5560 one : 925-798-1620 Fax : 925-798-1622 occampbell.com E-mail: main@inccampbell.com
	Client Project ID: #502-1975-013; Airgas	Date Sampled: 02/14/03
Cambria Env. Technology	Chem Project 15.	Date Received: 02/14/03
5900 Hollis Street, Suite A	Deb Clark Riddell	Date Extracted: 02/14/03
Emeryville, CA 94608	Client Contact: Bob Clark-Riddell Client P.O.:	Date Analyzed: 02/14/03-02/15/03
	ine Range (C6-C9) Volatile Hydrocarbons as (Gasoline with BTEX and MTBE* Work Ordet: 030221

anium m	ethod: SW5030B		Range (C6-C9	Analytical mx			Ethylbenzens	Xylenes	DF	% SS
b ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Culvibelia			
	AB-B-15.5	S	ND i	ND	ПD	ND	ND	ND	' 1 † ·-	i 105
) A 	AB-C-17		ND ND		ND	ND	ND i	מא		1 101
)2A :	AB-D-10.5	- 1 - 1 - S	14,g	ND<0.5	ND<0.05	ND<0.05	ND<0.05	0.20	+ 10 + -	97.9
03A ! 	AB-E-17	S	ND	ND	ND	ND +	ND	ND	$\frac{1}{1}$	102
04A 05A	AB-F-11	_!	 ND			ļ		ļ	- 	98.8
)06A	AB-G-12.5	s	ND			ļ_ <u></u>				98.8
007A	AB-8	w	ND	ND	ND	ND	0.56	ND 	1	99.6
009A	TW-6	J W	ND	ND		1.3	<u>- ND</u>	T	T	96.0
010 A	TW-7	W	ND +	1		-		T	<u> </u>	. 99.:
0UA	TW-8	w w	ND 	<u> </u>	ļ <u>-</u> -	† †	-	i		1
	ļ	_	i 1				<u> </u>	1	1	!
	1) 	1						
	<u> </u>	- †							!	
			1		_	<u> </u>		`		
	<u> </u>			\		_	1		_ <u>_</u> i	
<u></u>	<u> </u>			5.0	0.5	0.5	0.5	0.5		ug/L
Repo	orting Limit for DF means not detected	=1;	$\frac{50}{1.0}$	$\frac{1}{1} - \frac{3.0}{0.05}$	0.005	-+ -0.00	0.005	0.00	5	mg/Kg

^{*}water and vapor samples are reported in µg/L, soil and sludge samples in mg/kg, wipe samples in µg/wipe, and TCLP extracts in µg/L

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation; a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasuline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

McCamp	bell Analytic	eal Inc.	l i http:	Telepho	enuc South, #D7, Pachero, CA ne: 925-798-1620 Fax: 925-7 ccampbell.com E-mail: main@m	ccampbell com					
			roject ID: #502-1975-013; A	irgas	Date Sampled: 02/1-	4/03					
ambria Env. Tec	hnology	Chemi		1	Date Received: 02/1	4/03 					
900 Hollis Street	r, Suite A		Contact: Bob Clark-Riddell		Date Extracted: 02/1	4/03					
merswille CA 9	4608	\			Date Analyzed: 02/1	02/14/03-02/15/03					
		Client I	P.O.:	3 . 3 In . 4:							
		(C18+) Bui	oker Oil(C10+) Range Extractat Analytical methods: SW8015C	ole Hân	TOCATOONS	Work Or	der: 0302217				
traction method: SW3		Matrix	TPH(d)		TPH(mo)	DF	% SS				
Lab ID		i S	ND		ND	: 	101				
0302217-001A i		_L :	14,a		6.3	1	102				
0302217-002A		s	400,a	<u> </u>	68	į l	89.9				
0302217-003A	AB-D-10.5	<u> </u> <u>s</u>		1	ND	j l	101				
0302217-004	AB-E-17	S	ND	: T		1 1	1 100				
0302217-005A j	AB-F-11	<u> </u>	91,a	<u> </u>	ND	- - - - - - - - - - - -	102				
0302217-006A	AB-G-12.5	¹ S ⊥	3.2.6			 	101				
0302217-007B	AB-B	w	130,2	ļ	ND		85.2				
0302217-009B j	TW-6	W	ND	<u> </u>	ND		87.2				
0302217-010A	TW-7	- w	ND	<u> </u>	ND		- 				
0302217-0114	TW-8	w	ND	, 	ND	-	85.9				
				į		İ	<u> </u>				
				-1			! 				
				†-			- (· - ·				
						: : : 	. 1				
				_ \		!	!				
					عاصفته بيها المقتصات بتستعم مستورا	† ·- "··					
	<u> </u>										
Reporting	Client ID OLA AB-B-15.5 OLA AB-C-17 OLA AB-D-10.5 OLA AB-C-17 OLA	i w	50	<u> </u>	250	- }	μg/L mg/Kg				
ND means	not detected at or	L	1.0	1	5.0						

^{*} water and vapor samples are reported in µg/I, wipe samples in ug/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in above the reporting limit mg/L, and all TCLP / STLC / SPLP extracts in µg/L

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant, b) diesel range compounds are significant, no recognizable pattern; c) agod diesel is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not appear to be derived from diesel (asphalt); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range, l) bunker oil; m) fuel oil; n) stoddard solvent / mineral spirit.

McCAMPBELL ANALYTICAL INC	CHAIN OF CUSTODY DECORD
110 2°d AVENUE SOUTH, #D7	CHAIN OF CUSTODY RECORD URN AROUND TIME:
1 Dan = 1 T	EDF Required? Yes No
Company: Clambria Environmental Technology Inc.	Analysis Request Other Lo
6262 Hollis Street	Outer Comments
Tele: 510-420-3319 E-mail: MMeyers (Cauphine Environ	
Project #: 5/2 - 197(- 01 2	### ### ##############################
Project 4: 502-1975-013 Project Name: Airgas Project Location: 1350 Power STATE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sampler Signature:	
	### ### ### ### ### ### ### ### ### ##
SAMPLING MATRIX METHOD	85 85 85 85 85 85 85 85 85 85 85 85 85 8
SAMPLETO	TOTAL STATES (SOLE) TOTAL PETOLEUM DIL & Diesel (8015) Total Petroleum Dil & Total & GOD PA 608 / 8080 PCB 'S PA 608 PCB 'S PCB 'S PA 608 PCB 'S PCB
SAMPLE (D) (Field Point Name) LOCATION Date Time Volumer's A A A A A A A A A A A A A A A A A A A	TOTA & TO
Date Time \frac{2}{2} C \frac{1}{2}	Mer No Series Se
Date Time Water Other HCI HC	
(Ap - 0 - 1) - [m]	### ### ### ##########################
 	
10 - 1 1 1 1 1 1 1 1 1 1	7
AB-0-10.5 11 12:10	
HB-B 12:3	
	VOAS OSS METALES OFFICE
	DOD CONDITION APPROPRIATE CONTAINERS
	APPROPRIATE CONTAINERS ECHLOSINATED IN LAB PRESERVED IN LAB
	ECHLORINATED IN LAB PRESERVED IN LAB
Retinquister By Date: Time: Received By	
Brillian Joseph Joseph Car 12 James	(cinarks:))
Returnisher By Datey Time Received Day	1.1608W![]
Mica papara 2/11 5 10 The late	5/lica Gel Cleanup
Rel inquished By: // Date: Time: Received By:	No.
	No overlap in CARBON Chains
	Silica Gel Cleanup No overlap in CARBON Chains!

Kush!!!

Telepi	hana: (025) a	PA	BELL A 2 ^{od} aveni Checo, c 10			77							-	ľUF	IN A				11711	-	- /5	*			COR	7)	
ENVENUE (O) / 20/2	THAT IN	0		Bil	l To:	Par	x: (92 1 ap 1	5) 79	8-162	2		E	DF.	Req	uire	d?	Ø.	Yes		N	RU S	SH	24 F	HOUR	48 F	MUR	5 DAY
Company: Camb	Hollis Stree	mental	Technolo	gy Inc			7 <u>()</u> (,)	<u>ط</u>	 -	·		_				A	alysi	s Re	aues	t ''							
Emer	vville CAO	4608										\dashv	{	<u>.</u>		Ţ <u> </u>	\prod	T	T				1	12 T	ther) Co	mments
1 Eie: 310 - 420	-> 2.02		E-m	ail: 10-4	meye	VS	Sign	nby	19-6	701.0	w.	日田	Total Petroleum Oit & Grand Vision	FIB				.	-						1	Π	
1-10/ect#: 502~	ノブフ ぐー こっょう	3	_ :	ot Na	30-82	95						8013)/MTBE		<u> </u>						P.AH's / PINA's by EPA 625 / 8270 / 8310		1		,	3 3	11	
LIUJECLIA CATION:	/3.50 P	weil	5F	OF TAND	me; /	Wg	<u>as</u>					. S.		22.2						6		ļ		5	3 8	H_{-}	
Sampler Signature			- ///	75							~	1 + 1		Total Petroleum Hydrocarbons (418 1)		BTEX ONLY (EPA 602 / 8020)	>	-	1	/ 827	j			2 6	CARREN O	[]	
	0	SA	MPLINO									22.00	لي	2 2		2/8	18	3	1	525		0.0		8	1 €		
SAMPLEID]	_			, [MA:	IRIX	P.	METI RESEI	IOD IVED	30	<u>ह</u> ि है	ž į		3	i i	90	$ \cdot $	¥.	-	2/6	-		1 1	1	
(Field Point Name)	LOCATION	1	1	# Confainers	Type Containers		1			1	T	BTEX & TPH 23 Gas (602/8020	Total Petroleum Oit &	E			EPA 608 / 8080 PCB : ONE -	EPA 624 / 8240 / 8260		A P		Lead (7240/7421/239.2/6010)		- ∔-\	· —	ł	
,		Date	Time	1 '\$	J			اه				E		0 0	801	֡֡֞֞֞֞֞֜֞֞֜֞֞֜֞֜֞֞֜֞֜֞֡֓֓֓֓֡֡֞	S S	8240	2270	× ×	튑	2		4	131	1	
		1	ì] පී	j ĝ	Water	Soil	Studge	Office Ice	وابرا	១ ម	ر ا و		P. P.	8	<u> 5</u>	8 8	24/	2	Z ;	Z Z	13		귀걸	7		
4 B-B		1.7.			-		Soil	12	일당	E HO	Og a	3 8	3	Sea	EPA 601 / 8010		EPA 608 / 8080	8 Y 6	EPA 625 / 8270	<u>:</u> :	LLPT 5 Metals	15	_	\$ W		ĺ	
A13-C		2/14/	3 2 30		A STAN	YX	7		X		┵╍╅	\mathbf{x}^{\dagger}	+-			- 4	4 123	7	<u> </u>	: :	5 3	3		3	3	į .	
W-6		414/0	1200	9	Ver	X		+	1	X	~~~		+-	<u> </u>			<u>.</u>		\top			 	一门	7	4-		
[W-7		2/14/	3 311	8	200	1	-	1-1	10	XI_		X	 		_	_]				_	+-	-	+0	+		, 	
		2/14/	d 2 = 3	2	204	11	_	 -	╌╂╂┼	┨-}		4						7	1	+-	+	- - -	- -	╁	\dashv	HOL	4
Twa		2/14/6	3:5	7		U				 		_ _				T	7-7	7		╁╾	┼╌┼			┤╌┈┼			
		-	1	 - -	_			-	J.				I T	Ī		1	 					 	Ш			· · · · · ·	
			1	 	 	ļ -		- -						1	+	 -	 			-	-		1				
			 		 -							<u> </u>	\ <u></u>	_		 				<u> </u>			L				
			<u> </u>			_					\top	+-		+	 				1_								
			 	 		Ĺ_			\prod	7	_ _	+	·- - -			-					_ [++		
		-	 						1	+	- -	+-+		- 	 	_			L			7	1		 		
								 	 ──┼─	+-+		┿					- 4-	_[┼╌┼╌		
			·	_ [7	1-1	1	 -	+							[- - .	+-			╂╼╾┞╼		
							-		 	╅╾┼					L		T		_	 - -					┦╼╌┟╼		
linguished B]		7	1		 	+		 -	4_						-	1	 	┥.	+	╌┼╌╏			 _ _	·	
	D	ate:	Time: 5-CC	Receip	ed By:	<u> </u>	//	┵			\perp			\prod		1	-	1			- -	· 					
Requisited By:		711	5-60	10	222	Get.	Va.	10	18 2-2	77	Re	mark	s.	V	75	7	11	4-	<u> </u>			1					
•	מ	ate:	Time:	Receive	d Hy	1	1/1	1/	1 ()	مرسد.	۱ ا			Γ_	ر ب	' I'\	•										
inquished By:	· ·			\Box	Mille	ر بر تعر	MA	M			'		\mathcal{O})	C	クし	ea	21	o. I)	, v)		` ^	D.D	C14 .	ince
<u> </u>		ate;	Time:	Reteivo	d By:	K					4			٠,	,		•		- [- • •		3	1-	- P 1-3	V	'
						_					1		(X			۵			<	• •	(. ~	_	1	-1	~ 1	- 1
											ļ					<u> </u>	-	•		4	ス	(C	۲	ر <u>ب</u>		- lea	(mub)

McCAMPBELL AN	NAT SOME	
· · · · · · · · · · · · · · · · · · ·	JESOUTH AND	CHAIN OF CUSTODY RECORD
T'elenhon - (Dag) mae	^ 94553-5560	I I I I I I I I I I I I I I I I I I I
The port 10: Ball (Add)	Fax: (925) 798-1622	FDE Province 22 HOUR 48 HOUR 5 Page
Cantoria Environmental Technolog	Bill To: CAMBRIA	100
OZUZ HOMS Street		Analysis Request Other Comments
Emeryville, CA 94608 E-ma	sil: mmeyers Q Countri Con Com 510-450-8295 ct Name: Balaum Airgas	
Tele: 510 420 - 3319 Fax: 5	510-459-8295	
Project #: 502-1975-013 Project	ct Name: Balatina Aire Ti	\$\frac{1}{8}\left(\frac{1}{8}\right)\right)\right(\frac{1}{8}\right)\right(\frac{1}{8}\right)\right(\frac{1}{8}\right)\right(\frac{1}{8}\right)\right(\frac{1}{8}\right)\right)\right(\frac{1}{8}\right)\right(\frac{1}{8}\right)\right(\frac{1}{8}\right)\right)\rig
Project Location: 1350 Fourth St., Sampler Signature:	141945	
Camplet Signature:		
U SAMPLING	g MATRIX METHOD	
SAMPLE ID	PRESERVED	
(Field Point Name) LOCATION	# Containers Type Containers Water Soil Air Air Air Air Air NO Se CCI NO O O O O O O O O O O O O O O O O O O	TPH as Diesel (8015) Total Petroleum Oil & Total Petrolum Oil
Date Time		1 827 1 80 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	# Contains Type Conta Water Soil Air Sludge Other Ice HC: HC: HC: Gher	22 S N N S S S S S S S S S S S S S S S S
AB-6-5.5 July 2 1105	- -	TOtal Petroleum Oil & Grease (5520 E. Total Petroleum Oil & Grease (5520 E. Total Petroleum Oil & Grease (5520 E. Total Petroleum Hydrocarbous (418.1) EPA 601 / 8010 EPA 602 / 8020 EPA 608 / 8080 PCB's ONLY EPA 625 / 8270 PAH's / PINA's by EPA 625 / 8270 / 831 CAM-17 Metals LUFT 5 Metals LUFT 5 Metals LUFT 5 Metals LUFT 5 Metals CAM-17 Metals LUFT 5 Metals LUFT 5 Metals LUFT 6 Metals LUFT 7 Metals
AB-6-8-5 44/03 11:20	1 TUBG X X	2
4 1125	/ " X X	
AB-D-7.0		}- - - - - - - - - - - - - - - - - - -
	1 " X X	
AB-H-75 2:35		
10:00		
IAL - 12.5		
AB-4-5	/ // X	
AB-F-9 4:05	1 " X X	
AB-F-C5 3:15	1 11 X X	
AR-F-C 4:05	1 " X X	
	1 4 10	
48-H-4.5		
Reliaquistics By Date Time		
() () () () () () () () () ()	Received By:	
Restinguished By 5:00	Essecuto torre Rem	iarks:
Dale: Time:	Received By:	(HOLD SAMPLES-)
Relinquisted By:	<u> </u>	11-11-11-11-11-11-11-11-11-11-11-11-11-
Date: Time: F	Roceived By:	

925

798 4612;

McCampbell Analytical Inc.

CHAIN-OF-CUSTODY RECORD

Page t of 1

110 Second Avenue South, #D7 Pacheco, UA 94552-5560 (935) 798-1620

WorkOrder: 0302158

Client:

Cambria Env. Technology 5900 Hollis Street, Suite A Emeryville, CA 94608 TEL:

(510) 450-1983

FAX:

(510) 450-8295

ProjectNo:

#502-1975 TSK13; Air Gas

PO:

Date Received:

2/12/03

Date Printed:

2/12/03

	<u> </u>						Requested Tests
Sample ID	ClientSampID	Matrix	Collection Date	Hold	SW8015C	8021B/8015	
0302158-001	AB-A-3.5	Soil	2/12/03 3:30:00 PM	_	А	Α	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

ø.	McCampbell	Analyti	cal Inc.		:	Telepho	ne : 9	South, #D7, Pacin 25-798-1620 Fa shell.com E-mail:	x : 925-798-16	22	
Cambria	Env. Technolog	зу	Client Proje	ect ID: #502-	1975 TSK13	Air	Da	te Sampled:	02/12/03		
5900 Hc	ollis Street, Suite	- A	Gas				Da	te Received:	02/12/03		
5,00 210	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Client Cons	act: Bob Clarl	k Riddell		Da	te Extracted:	02/12/03		
Emeryvi	ille, CA 94608		Client P.O.	:			Da	te Analyzed:	02/13/03		
Extraction na	Client Defined	Gasolin	e Range (C6-		Iydrocarbon nethods: SW8021			ine with BT		TBE* Work Orde	r: 0302158
Lab ID	Client ID	Matrix	TPH(g)	мтве	Benzene	Tolue	ne	Ethylbenzene	Xylenes	DF	% SS
001A	AB-A-3.5	s	20,g,m	ND<0.2	ND<0.02	0.05	3	0.037	0.057	5	#
											<u></u>
					i						
<u> </u>		province and a									
					<u>- </u>						İ
										†	
								1			
				<u> </u>						 	 i
						-					İ
											<u>.</u>
	, a management of the second o							ļ		-	
		<u> </u>									-
								-		·	
		! <u> </u>							···-	<u> </u>	
i								make the transfer of the same			
		<u>L</u> j		1	<u> </u>				<u>.</u>		
		<u> </u>		 	<u> </u>	<u> </u>		<u> </u>	!	<u> </u>	
	g Limit for DF = 1; as not detected at or	W	50	5.0	0.5	0.5		0.5	0.5		g/L g/Kg
ND mean	es not detected at or	s i	1.0	0.05	0.005	0.00		0.005	0.005		

^{*}water and vapor samples are reported in µg/L, soil and sludge samples in mg/kg, wipe samples in µg/wipe, and TCLP extracts in µg/L.

Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coclutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); t) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than -2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	McCampbe.	ll Analyt	ical Inc.	Telep!	Avenue South, #D7, Paclieco, CA 945; hone: 925-798-1620 Fax: 925-798-1 necompbett.com E-mail: main@necom	1622
Canıbria	Env. Technol	logy	Client Project ID: #5	02-1975 TSK13; Air	Date Sampled: 02/12/0	13
5900 Ho	ollis Street, Sui	ite A	Gas		Date Received: 02/12/0	3
Emeryvi	ille, CA 94608	:	Client Contact; Bob C	lark Riddell	Date Extracted: 02/12/0	3
			Client P.O.:		Date Analyzed: 02/12/0	3
Extraction me	Diesel(C10-C23 ethod: SW3550C	3)Motor Oi		Range Extractable Hydr methods: SW8015C	rocarbons with Silica Gel Cl	ean-Up* Work Order: 0302158
Lab ID	Client 1D	Matrix	TPH(d)	TPH(mo)	TPH(ba)	DF % SS
001A	AB-A-3.5	s	240,a	39	240	1 87.4
					· [
			The second secon	AMA = 1 AMA		
:						- }
İ				111.00		Mar es compa (e
				•••		
	•				11 marine 1 1 1 1 1	
		:				
			· · · - · · · · · · · · · · · · · · · ·			
İ		· · · · · · · · · · · · · · · · · · ·	NATIONAL AND AND ADMINISTRATION OF MANAGEMENT AND ADMINISTRATION OF THE PARTY OF TH	· · · · · · · · · · · · · · · · · · ·		in the same of the
					A SAME AND A SAME AND ASSAULT AND A SAME AND	
		 				
į.						:
		1				, , , , , , , , , , , , , , , , , , , ,
		<u> </u>				
ND means r	imit for DF =1; not detected at or	W	NA	NA	NA NA	ug/L
above the n	eporting limit	S	1.0	5.0	5.0	mg/Kg

Angela Rydelius, Lab Manager

^{*} water and vapor samples are reported in µg/L, wipe samples in ug/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all TCLP / STLC / SPLP extracts in µg/L

[#] cluttered chromatogram resulting in cocluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation, a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than -2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent / mineral spirit.

12() = H - LY HOUR RUSH	-24 HOUR RUSH 0302108
-------------------------	-----------------------

=		0 <		+	*			<u>_</u>	<u>[-</u>			140	<u>ات</u>	U	[2																		
	Telephoi	McCAN	110 2 [™] A PACHE0		DUTH,	#D7 50		(C. (925)	798	8-16°	22				ED			N A	RO	UN	נ מו	'IM	Œ:]	ST XUS			Ĺ)		RJ 8 H		5 D/
۲	Report To: Provo	C140 E	- Pie	NOVI E	ill To); (°	JA:	m k	<u>~/2</u>	. 14	7			\dashv							is R							T		Othe	ег	TCo	mme
	Company: Cambri						· · · · · · · · · · · · · · · · · · ·		<u> </u>					7					T				1						不	Ī	7		
r	6262 H	Iollis Street														40	3				}		- 1					Æ	-	1			
l	Emery	ville, CA 946	80	E-mail:	70	3 5c	N	(D)	Ca	Mb	200	(-0)	ار ل دوا	ii i		2		. }					- 1	g.	,	Ì		Ш	3	3			
	Tele: 510-420	3338		Fax: 510)-430-	8295								╝	N N		1 6	7						8/0	ľ			Π	8	Jeanny		1	
ı	Project #: 502-	1975 T	SK13	Project I	Vame:	; <u>^</u>	1:12	ز م) پ	15					_	8	1 8			6				1	22				Ш	~	J	1	ŀ	
L	Project Location:	1350	Abwell	<u>(5)</u>	, Ein	16/4	vil	le, (M					_		1 000		3	802		Ž			ž,			9		Z	-			
L	Sampler Signature	10)			, '					,			4	8	ي ا	5 5	3	05/		S,		ŀ	EPA 625 / 8270 / 8310	- {		2		\supset	8		ļ	
			SAM	PLING		92	1	MA	rix	ζ.	PR	METH	IOD RVFI	$_{\rm n}$	Gas (602/8020 +	TPH as Diesel (8015)	The Detroitem Transfer of the County (2.12.)		BTEX ONLY (EPA 602 / 8020)		EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	-	司			Lead (7240/7421/239.2/6010)		+ TPItal Imo	q.	1		
ŀ				Γ	ST.	Type Containers				[1		Ī		a	TPH as Diesel (8015)		5	(E)	8	80	94	[일	PAH's / PNA's by	tals.	श्र	421		亡	4		1	
	SAMPLE ID	LOCATION			# Containers	onta					1				BTEX & TPH	Siese Feet	100	EPA 601 / 8010	Z	EPA 608 / 808U	38/3	28	EPA 625 / 8270	Z	CAM-17 Metals	LUFT 5 Metals	₹	1	+	ᆀ		1	
	(Field Point Name)		Date	Time	og t	O O	Ę		dee	<u> </u>			ပါ	៦	· 경 왕	[3S]	4	9	X	909	309	22	62	1.3	<u>-</u>	1.5	2	$\setminus I$	4	/]/		1	
				Ì	#	3	Water	Soil	Aur. Sludge	Other	3	HCI	HNO,	Other		<u> </u>		E A	E.	EPA	EPA	EPA	EPA	Z	3	3	١٤	회	TO H	٧,	İ		
	AB-A-3.5	2	2/12	330	1	C) LANS		$\overline{\chi}$	 	+-	X		+	-4-	X		+-	+-				_		1	\dashv		+		X	7	+	<u>.</u>	
ľ						Ţ-,								1	7													T		\top	**		
l			<u> </u>				П		+	1	T	\Box	\top	7	+				1				7			1	-†			-	-		
ŀ			<u> </u>	1	1	1		-	+	+		1	_	+	_	+	+-	+	 						-+			7	-	_	+	+	
ŀ			·		 -	 -	╂╾┤	-+-	+	+						-		+				-+	-+	-+									
ŀ			 	 	 	 	╂╌┤	\dashv		+-	╁	} -	-+				-}-	+	\vdash			-+	-+	-	-	\dashv	-					-	
ļ			<u> </u>	.	 	ļ			_	-	↓		1	-#	\dashv	_						_		\rightarrow				_	\rightarrow	+	\rightarrow	-	
L			<u> </u>			<u> </u>				_	<u> </u>	\sqcup	\perp	_		_	\perp		<u> </u>			_	_	_	_			4	\dashv	\dashv	\bot		
l				1	1	<u> </u>				1_																		_[丄			
Γ						1								1	Ī	Ī		-			li							- [
İ	1					1					ļ <u>.</u>						1	1	1									T					
l	• 700-4	/	1 -	RESERVA	TOM	ton I	Q	ין ש	VETA	1	DIE		\Box	7			+	1				_		7			-	<u>_</u> t	+	+	+	_	
ł	1000 CO	NOTTION		PROPRL	TE,	7	†		+	7.				+		+	+	+	1			-			-+		+			+	-+-	1	
ŀ	FIRAD SP	CE ABSENT INATED IN L	NB1	PPROPRIA ONTAINE RESERVE	IIS. V	Ā		-	+	+	1	+-	-+	╌┼		\dashv		-	-	-			\dashv	\dashv	+	+			+	+	+	1-	
1				1				\vdash	+	+	+	1	\dashv	\dashv	+	-	+-					}	\dashv		-+				+	+	4.	-	
ŀ	Relinquished By:	 	Date:	Timer	Rene	riyed B] v:	<u> </u>		ㅗ		1 1		-	Rer	mark	و. (*) - -		7.0		1_	<u>ئەن</u>	16 '	1		10	<u>i</u>		1			i
I	11.1.4.1	1.10	2/10	Timer	1 1		,. 	F	21	2				-	2001	s vent fi	" \	7/G	1	14	Ha	7	14	me.	٨/ ١	Μc	! €.	Š	(h	15	si bi	CAL S	ايه
ŀ	Reprintished By	7	Dafe:	Time	Page	ו			10					\dashv		N	1	12		,,,,		. ^		_ ^						_		301~	_
ŀ	144 PS	J	划2	625		eiyes/8	m /	M	G.					-		1/	J	U	•		V	ZK	سأد	$\Delta 1$.>		I	N	(A	+RI	3000	P
ŀ	Relinquished By:	\$1½-	Date:	Time:	_	cived B	_							┪	l	11	r	20		χi	1	1		. ,,			•	•	`	_	-		
1	-		1	1										- [, n	, 1, 1	V	ノじ	-	++	ì	١ ١											

McCampbell Analytical Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5550 (925) 798-, 620 **CHAIN-OF-CUSTODY RECORD**

Page I us i

WorkOrder: 0212330

Chent:

Cambria Env. Technology

6262 Hollis St.

Emeryville, CA 94608

TEL:

(510) 450-1983

FAX:

(510) 450-8295

ProjectNo:

#502-1795; Balaam Airgas

PO:

Date Received:

12/18/02

Date Printed

12/18/02

Sample ID	ClientSampiD	Matrix	Collection Date	Hotd	SW8015C	6021B/8015	Requested Tests	
0212330-001	TW-6	Water	12/18/02 3:00:00 PM		В	Ä		

Prepared by: Sonia Vailes

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client excense.

المير	McCampbe	ll Analyt	ical Inc.		bts	Telephon	nuc South, #197, Pac c. 925-798-1620 ampbett.com E-mai	Fax : 925-798-1	1622	
Cambi	ría Env. Techno	logy	Client Pro	ject ID: #502-1	795; Balaa	m I	Date Sampled	: 12/18/0	2	
6262 T	Iollis St.		Airgas			1	Date Received	1: 12/18/0	2	
Emen	ville, CA 94608	,	Client Cor	tact: Bob Clark	Riddell	1	Date Extracted	1: 12/19/0	2	
13.11027	7 IIIC, C/1 54000		Client P.O			1	Date Analyzed	1: 12/19/0	2	
Extraction	Client I	Defined G	asoline Rang	ė (C6-C9) Volas Analytical mo	tile Hydroc shods: SW802		s Gasoline w	ith BTEX	* Work Orde	r: 0212330
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Вепленс	Toluene	Ethylbenzene	Xylenes	DF	% \$\$
001A	TW-6	w	ND		ND	שא	מא	מא	1	0≉
İ	•• • •	·						: 		
	. ,]	
i	- v-m- in						•			
ļ							i	ļ		[
		j		Ĭ				; i		
							1 "	· ·		i
i					141-21	1 11 11 11 11 11 11	· · · · · ·			•
							·-			
									``	
:						•		TH GREE	İ	
, ,			· 	· · · · · · · · · · · · · · · · · · ·		dag ,			1	•
 - !		·			4 14 14 14 14 14 14 14 14 14 14 14 14 14	1 1 1 2 2 2 2			· ·	***
						140m111m2 h 444	<u> </u>			
	**		**	; 			1			
-1			······································						1.	
	Limit for DC =1;	w	50	5.0	0.5	0.5	0.5	0.5	ug/	/IJ
	s not detected at or a reporting limit	s	1.0	0.05	0.005	0.005	0.005	0.005	mg/	Kg i

"water and vapor samples are reported in 118/L, soil and sludge samples in 118/Kg, wipe samples in 118/wipe, and TCLP extracts in 118/L.

cluttered chromatogram; sample peak coefutes with sumagate peak.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation; a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile (raction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically aftered gasoline?); e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; t) liquid sample that contains greater than -2 vol. % sediment; j) reporting limit raised due to high MTRE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas), m) no recognizable pattern.

	McCampbe	ll Analy	ical Inc.	Teley	Avenue South, #D7, Pacheco, CA shone: 925-798-1620 Fax: 925-7 mocamphell.com F-rouit maintim	98-1622	
Cambria	Env. Techno	logy	Client Project ID:	#502-1795; Balaam	Date Sampled: 12/1		
6262 Ho	ollis St		Airgas		Date Received: 12/18	8/02	
Emma	ile, CA 94608	•	Client Contact: Bot	Clark-Riddell	Date Extracted: 12/18	 3/02	
ranka yet	116, CX 34608	•	Client P.O.:		Date Analyzed: 12/18	3/02	
Extraction ne	Diesei(C10-23) mod: SW3510C	Motor Oil		+) Range Extractable Hyd	rocarbons with Silica Gel	Clean-Up* Work Order.	8217336
Lab ID	Client ID	Mainx	TPH(d)	TPH(mo)	TPH(bo)	DF	% SS
091B	TW-6	W	75,6	NU	260	1	1()4
+	* * * * * *** · · · ·	ļ i.	المناه المناه			. 1	
•	••				. <u></u>	1	-
······································		·				•	
			. , , , , , , , , , , , , , , , , , , ,				[
į -				t then t			
• ,	च्यास्त्रक स	**************************************	Anter to an order				
	DIF dell			·			ŀ
1	** 1 // 5000 900 100 14		····		• ••• "	-	
							.
		;		V = PROF SPR	*** ******	:	1
<u>i</u>				· · · · · · · · · · · · · · · · · · ·		· i	
ĺ				. contract		1 1	
		· · · · · · · · · · · · · · · · · · ·					
j				• / (**)	1.10011	· · · · · · · · · · · · · · · · · · ·	
rporting Li	mit for DF = ;	W	50	250	250	<u>μ</u> ν/ί	
bove the re	processed at or a	\$	NA	NA NA	NA NA	mg/K	Te 10

^{*} water and vapor samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/shudge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all TCLP / STLC / SPLP extracts in µg/L.

[#] chattered chromatogram resulting in cocluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant; t) gasuline range compounds are significant; e) unknown medium builting point pattern that does not appear to be derived from diesel; f) one to a lew isolated peaks present; g) vil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than -2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent / mineral spirit.

K	.	<u></u>		·		~~~	·				0	31:	23	,3	0	I		7	} {			3	L	1										•	
	Teleph Report To: 626 Company: Camb	one: (925) 79	110 2". PACHI 18-1620 €/X-DE/	LL ANA AVENUE S ECO, CA 9	SOUTH 4553-55	1, 4D) 560	Fax:	: (92); (25) 7! (四)(2	98-1e							ΤŢ	URI	N A	C ARC d?	HA NUN	VD Ye	N O TIE)F ME.	CU : No	L Dis	_i)	וצ	л ——	48 [(2	UR 5	
	6252	Hollis Street	CHIAL 1 CO	Mology	Inc.			 -								Ţ	Te	Ţ	7	7	1	\$15	i Cert	IEST	<u> </u>					<u> </u>	<u>Ou</u>	her		Comi	nents
		yville, CA 94 3 3 3 6 3 -1 375 1 3 5 c 2	Pavol	E-mail: Fax: 51 Project SY.,	Name	1-829:	5 2-ja v://s	ia,	4	بنه	S) S			Gas (602/8020 + 8015)/ MTBE		Total Petroleura ()ii & Grease (\$520) B&F/B.k.P.	xearbons (418.1)		72 / 8020)		ONLY			625 / 8270 / 8310			6010)		Ma 140/60 AT	Cland				
1		1	SAM	PLING	┧	#		MA	TRI	X	P	MET Rese	THOU ERVE) או	<u>ڇَ</u>	(5)	ا ﷺ ا	17g		10		á	1260		E.A.]	1	77.	Ì	DIA di	7.2	ł	1		
4	SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air China	Other			57	Ouher	17H #3	TPH is Dieset (8015)	Total Petraleura (Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8340 / 8260	EPA 625 / 8270	PAH's / PNA's by Elia 625 / 8270 /	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)		PW BTEX	15. her	,			
"	TW-6	ļ	12/18/0	-3ap	5	VΛ	X		1		X	X	1	7	1	-	 	$r \rightarrow +$		\dashv	-	- +	_	-		4	ᆛ.	<u> </u>	Ž,	且	¥.				
1				7		1	4-	/- /-		+-1	H			+	<u> </u>				<u></u>	- - !		-4.	-	_ _	_	_Ļ	<u> </u>	1		X			7		
- }							17		Ť	+-		-	-+	-	-+	— f	}	}		\downarrow	-}-		_	<u> </u>		 _	\perp								
1							 !	+	-	+-1	\vdash_{\dagger}	+	-+	+					+	_	\dashv		<u></u>		_ _		1	Ĺ			1	7	7	-	
}							 		1-	+-1	-			-					!	 +-		_ _	_					7		$\overline{}$		-	1	 -	
-								+	十	+-1				4				-4	—	-4.								7		-1-	\top	-	1		
					 		┞╌┼	+	- -	1-	 ∤.	+	- +			∔		_		4	4	_			1	T	1	7	7			-	+		
1					 		\vdash	+	+	-		-+	<u>-</u>	4		4	- ∔		_[_			_				1	1	\top	7		1	-[-	-		
						-	┢┼	+	 			-+	_	4	<u></u> į	╌╍ ┥ ╴			1	_	_ <u> </u> L_		T	1	丁	1	+-	十~	+		+		+		
Ĺ		1					H	+	+-	 ∤	-	-		_	_		ļ.	_!			\mathbf{I}		T		1	十	+-		十	- -	+	+	-		
	CRU)	- V		¥1", 7"		0	4	<u>.</u>	- \$ AND	727			<u>-</u>	_	_].						-		T	T	+-	7	+-	†	-	+	+	-	╁		
L	74.0	Charles D N	- parmen	\$10.	-					 	<u>-</u> -	— †	1	_			1	\perp			j	1	丁	7	+	1	 	-	+	+	+	-	╂┈		
-			di-		400 65			-	+	\vdash	+	+		+	-	-				-	+	-	-	1		 	<u></u> +	- - - -	1	- - -	-	+-	1		·
·	Reliaquisted By: \/.	<u> </u>						-				十	+	+		-	- }-	-		+			—	-	-	-	} 	<u> </u>			Ц.	_			
	Kan 2		Date: ,2/6/92	Time:	Receiv		- 1	1	<u> </u>					+	Ren	L natk	<u> </u>		<u>i</u>	_	Д.	Ŀ		<u> </u>	 		<u>_</u>	1	L		\perp				
	Land By Jones	TIC	Daty:		Receive	ed By:		,,,,,	<u>سر الح</u>	<u>-</u> _				-	N	D	Di	VE,	ÆL	A	ن	راد ا	, C	ZAI	(B	ÜA	<i>ک</i> ا	RA	(pe	JE.	-				
[Religguished by:	The summe	Date		Receive	ed By	10	al	The					$\frac{1}{2}$																					

APPENDIX F Site Geotechnical Reports

Environmental/Geotechnical/Engineering Services

Mountain View

Oakland

San Ramon

February 19, 2003 1424-9D

Fullerion

Mr. Mike Kim **PULTE HOME CORPORATION**

7031 Koll Center Parkway, Suite 150 Pleasanton, California 94566

RE:

SUMMARY OF SUBSURFACE CONDITIONS 1300/1350 POWELL STREET

EMERYVILLE, CALIFORNIA

Dear Mr. Kim:

As you know, we completed a preliminary geotechnical investigation for the subject project and presented our recommendations in a report tilted "Preliminary Geotechnical Investigation, 1300/1350 Powell Street, Emeryville, California," dated February 21, 2002. Site environmental remediation activities have been performed, and are now complete. Remediation activities included removal of soils down to depths of about 6 to 10 feet below original site grades. We understand that you require a summary of the subsurface materials placed as fill in the excavation for review by Alameda County to obtain final closure of the site.

Soils used for backfill consisted of both imported soils and on-site soils not requiring remediation. In general, the lower 3 to 5 feet of fill soil consists of imported fat clay (CH) that had a Plasticity Index (PI) of 41, indicating that it has high plasticity and relatively low permeability. Materials placed above the fat clay include on-site fat and lean clays (CH, CL), and imported sandy silt (ML) and silty sand (SM) soils. All soils were to be compacted to at least 90 percent relative compaction in accordance with ASTM Designation D1557. Field density tests were performed during backfilling activities to confirm that the required compaction was achieved.

CLOSURE

This letter was prepared for the sole use of Pulte Home Corporation for application to the design of the proposed Elevation 22 residential development in Emeryville in accordance with generally accepted geotechnical engineering practices at this time and location. No warranty is expressed or implied.

We hope this provides the information you need at this time. If you have any questions, please call and we will be glad to discuss them with you.

Very truly yours,

LOWNEY ASSOCIATES

Scott M. Leck, P.E., G.E. Senior Project Engineer

SML:jcm

Copies: Addressee (2)

SR, P:\PROJECTS\1400\1424-9D Elev 22\1424-9D Elev 22 Powell Supplemental 021903 itr.doc

Subsurface Consultants, Inc.

MEMORANDUM

To:

Michael D. Carey

Levin Menzies Kelly & Associates

Date:

October 16, 2001

Project

Number.

1275.004

From:

Steven M. Wu

Subject:

Foundation Alternatives for 1350 Powell Street Project

This memorandum presents Subsurface Consultant Inc.'s (SCI's) preliminary foundation recommendations for the 1350 Powell Street project in Emeryville, California. The proposed project will consist of a group of low-rise, at-grade structures for 72 residential units. From a geotechnical standpoint, there are two foundation alternatives available for support of the new buildings: (1) spread footings supported on recompacted fill, or (2) deep foundations. Based on our understanding of the site's past use, we anticipate that there may be environmental considerations regarding the excavation and recompaction of onsite soils and recommend that the project environmental consultant provide input to the owner and design team during the foundation selection process.

SITE CONDITIONS

SCI drilled three test borings at the site on August 27, 2001. In general, the soils encountered at the site consist of interbedded layers of stiff lean clay, stiff silt, and medium dense clayey sand to the depths explored. The upper 1 to 6 feet of soil was identified as fill in our borings. The approximate locations of the borings are attached to this memorandum. Logs of the three borings are also attached to this memorandum.

We also reviewed a site plan provided by your environmental engineer, Randy Hicks, showing the approximate depth of fill from additional geoprobe borings performed by him. According to this map, the depth of fill ranges from 2.5 to 8 feet.

SEISMIC DESIGN (1997 UBC)

Based on the published geologic information and the results of our field investigation, it is our opinion that a soil profile type S_D, as defined in the 1997 Uniform Building Code, is applicable to the site. Near surface seismic factors for the site are governed by the proximity of the

Hayward Fault. Ir our opinion the following seismic design factors and coefficients are applicable to the site:

Seismic zone factor (Z) = 0.40

Soil profile type = S_b

Seismic coefficient: $C_a - 0.44 N_a = 0.55$

 $C_v = 0.64 \text{ N}_v = 1.07$

Near source factor: $N_a = 1.25$

 $N_v = 1.67$

DISCUSSION OF FOUNDATION ALTERNATIVES

Based on our discussions with you, we understand that an oil company formerly occupied the 1350 Powell Street parcel. Although the underground facilities associated with its past use have been reportedly removed, sites of this nature often contain non-engineered, undocumented fill placed as backfill for the former underground structures. Based on the available subsurface information, the site appears to be underlain by an average of 5 feet of near-surface fill. The fill is generally non-uniform, variable in nature, and not suitable for support of the planned residential development.

Based on our review of the data, we judge that two foundation alternatives are available for support of the new building. The first alternative incorporates shallow spread footings supported on a layer of compacted fill. With this alternative, the upper 5 feet of fill should be excavated and either (1) replaced with compacted import fill, or (2) if environmentally acceptable, recompacted to provide a uniform base for the shallow foundations. From a geotechnical standpoint, the existing near-surface soils can likely be reused as structural fill, provided the criteria for fill and backfill materials provided below are satisfied.

The second alternative incorporates a deep foundation system consisting of either driven piles, cast-in-drilled-hole (CIDH) piers, or screwed-in-place Tubex piles. With deep foundations, removal of the upper 5 feet of fill will not be required. These foundation systems gain support in the soils that underlie the fill. However, the upper foot of soil below the slab-on-grade floor should still be reworked or replaced with import fill to provide a uniform bearing layer beneath the slab. Advantages and disadvantages of each deep foundation type are as follows:

- 1. The main advantages of a driven pile system are that it is a very common, relatively quickly installed, and cost effective foundation system. The disadvantages are that noise and vibration associated with pile driving may disturb neighboring structures and occupants.
- 2. The main advantage of a CIDH pier system is that it can be installed with minimal disturbance to adjacent structures and improvements. The main disadvantage is that soil cuttings and drilling fluids will be generated that will require disposal.

3. The main advantage of a Tubex pile system is that it can be installed with minimal disturbance to adjacent structures and that it does not generate large quantities of soil cuttings. The main disadvantage is the relatively high cost per pile.

If environmental concerns associated with disposal of soil cuttings generated during foundation construction are not a major concern, we recommend CIDH piers for the deep foundation alternative for this project.

PRELIMINARY RECOMMENDATIONS

The following sections present preliminary recommendations for the evaluation and costing of foundation alternatives. Geotechnical recommendations for final design will be presented in our geotechnical investigation report for the project once a preferred foundation type has been selected.

Alternative 1: Shallow Foundations over Engineered Fill

Earthwork

With this alternative, we recommend that the upper 5 feet of soil be excavated and recompacted (provided that reuse of existing fill soils is environmentally acceptable) or replaced with compacted import fill. Fill and backfill materials should contain no environmental contaminants or construction debris and be free of rocks or lumps larger than 4 inches in greatest dimension and contain no more than 15 percent larger than 2.5 inches. Fill should be nonexpansive in nature, with a liquid limit not exceeding 40 percent and a plasticity index not exceeding 15.

On-site fill soils may be segregated to satisfy this requirement. We recommend that your environmental consultant evaluate the feasibility and costs associated with the re-use of onsite fill soils.

Soil subgrades in areas to receive fill should be firm and non-yielding. Fill should be placed in layers not exceeding 8 inches in loose thickness, moisture conditioned to near optimum moisture content and compacted to at least 90 percent relative compaction (based upon ASTM D1557 test procedure).

Shallow Foundations

The following preliminary recommendations are based on the assumption that spread footings will be supported on compacted fill consisting of stiff lean clay or medium dense to dense clayey sand. Shallow foundations that bear on these materials can be preliminarily designed using the allowable average bearing pressures presented in the following table:

Allowable Bearing Pressures (Preliminary)

ı	Allowable Bearing Pressure
Load Condition	(pounds per square foot)
Dead load	1,800
Dead plus sustained live loads	2,200
Total loads, including wind or seismic	2,750

We estimate that the long-term total and differential settlement of new spread footing foundations constructed as recommended in this report should be less than 1 inch and ½-inch, respectively.

Resistance to lateral loads can be developed by passive pressure against the face of the foundations and frictional resistance between the bottoms of the footings and the underlying soil. Passive resistance can be determined using an equivalent fluid pressure of 300 pounds per square foot per foot of depth (pcf). The upper one foot of soil should be ignored, unless it is confined by a pavement or a slab. Frictional resistance can be calculated as 0.35 times the vertical dead load on the base of the spread footing foundation. The passive resistance is based on a factor of safety of 2.0. However, relatively large deflections would be required to mobilize the ultimate passive resistance. Therefore, in order to limit deformations to less than about ½-inch, we recommend that the passive resistance should be considered as an ultimate value. The frictional resistance should be considered as an ultimate value with deformations of less than about ¼-inch.

Alternative 2: CIDH Piers with Limited Earthwork

Earthwork

With this alternative, we recommend that the upper foot of soil be excavated and recompacted (provided that reuse of existing fill soils is environmentally acceptable) or replaced with compacted import fill. Recommendations for fill and backfill materials are provided above in Alternative 1. Your environmental consultant should evaluate whether the on-site fill can be reused.

CIDH Pier Foundations

CIDH piers should be designed to develop support by skin friction in the lean clay and sand that underlie the site. Skin friction from the upper 5 feet of existing fill should be neglected. The piers should be at least 18 inches in diameter with east-in-place concrete pier caps. The piers should have a minimum center-to-center spacing of three times the pier diameter.

The axial capacity of CIDH piers can be calculated using an allowable skin friction of 600 pounds per square foot (psf) for dead plus sustained live load capacity. Up to 80 percent of the downward dead plus live load capacity can be used for uplift. These values may be increased by one-third for total leads, including wind or seismic.

Lateral loads can be resisted by a passive pressure equal to an equivalent fluid weighing 300 pounds per cubic foot (pcf) acting on the embedded portion of the pile caps and on the upper 3 feet of the piers over twice the pier diameter. Additional lateral resistance can be provided by the structural rigidity of the piers. If required, SCI can provide additional lateral capacity (p-y) curves for the drilled piers.

Slab-on-Grade Floors

Soil subgrades beneath concrete slabs-on-grade should be properly prepared and be relatively smooth and non-yielding under equipment loads. A layer of clean, angular crushed rock, at least 4 inches thick, should be placed beneath interior slabs to provide a capillary moisture break. The crushed rock should conform to the following gradation criteria:

Sieve Size	Percent Passing
1 inch	100
3/4 inch	90 - 100
No. 200	0-3

If the migration of water vapor through the slabs is unacceptable, a vapor barrier should be considered. The vapor barrier should consist of an impermeable membrane at least 10 mil thick placed above the crushed rock. The membrane should be covered with 2 inches of sand for protection during construction.

Slab reinforcing should be provided in accordance with the anticipated use and loading of the slab.

CLOSURE

We trust that this memorandum provides you with the preliminary information that you require. Design-level geotechnical recommendations for the selected alternative will be presented in our final report. If you have any questions regarding this memorandum, please contact us.

SMW:WDM foundation alternatives 1350 Powell-doc

1350 POWELL ST.,

		_			r trans-resident					She	et 1	of	1
Proje	ct Na	eme &	Locati	on:	1 350 P	owell Street		Ground Surface E		10 (+			
					Emery\	rille, California		Elevation Datum:		18 feet			
									Project D				
Orilli	ng Co	ordina	ates/Lo	catio	n Desc	ription: not surveyed		Start: Date	Time	Fi	nish: Dal	9	Time
Drillin	ng Co	mpan	y & Dri	llier:				8/27/01	10:05		8/27/	/01	11:00
						ea Exploration, Robert, I	Dave & Jeremy	Orilling Fluid:		Н	ole Diam	eter:	
Rlg T	уре	& Drilli	ing Me	thod:	CME	75 / Hollow Stem Auger		N/A		{	5"		
		A) Ca	alifomia	2 (2.5	o.D.,	2.0" I.D.)		Logged By:	··· ··· ··· ··· ··· ··· ··· ··· ··· ··	g	GWL du	ring dri	ilina
Туре	(s):							AHL.		Ž	GWL aff	er drilli	ng
Sam	pling	A)	140 lb	auto	maticali	y tripped hammer w/30"	drop	Backfill Method:		•		Date:	
Meth	oo(s,) .						Cement Gro	ut		8.	/28/01	·
_	ø	583	hes	Za V				SOIL DESCRIP	TIONS	L	BORA	TORY	DATA
Depth (feet)	Sampler Type	Blows/6 Inches of Pressure	Blows/12 inches	Sample Interval		GROUP NAME (GRO	IID SAMUU J						
ģ	<u>p</u>	3/8/1 1988	1/8/	를	Graphic Log	GROUP NAME (GRO color, consistency/der	nsity,			Sture	Dry Density (pcf)		
	San	o Bo	👸	San	28	moisture condition, of (Local Name or Mater	ner descriptions ial Type)			\$8₹	S 22		Other
0 -					11.	ASPHALT- 2' thick CLAYEY SAND WITH GR	AVEL (SC)						
_	A	3 6			111	CLAYEY SAND WITH GR yellowish brown to reddish LEAN CLAY WITH GRAV	brown, medium dens EL (CL)	e, moist, (fill)				OVA	A = 261 ppm
_		6	12			grey to black, stiff, moist, v	vith hydrocarbon smel	. (6II)					
_	^	8	14							•		OVA	<i>i</i> l = 360 ppm
5 -		3	14		PY 13	SILTY CLAY (CL-ML)						O) to	<i>l</i> l = 153 ppm
_	 ^	5 7	12			SILTY CLAY (CL-ML) grey, stiff, moist							ո – ւսս ինա
_													
-			<u> </u>			LEAN CLAY WITH SAND	AND GRAVEL (CL)						
-	l					light brown with black, redo	fish brown, and grey l	nclusion, stiff, moist	亙				
10 -	A	2											
-		2 5 5	10										
	ĺ				[XX]	÷			. <u>¥</u>				
-	1					LEAN CLAY (CL) motiled yellowish brown an	d South homen stiff to s	en stiff molet	- <u>₹</u> -				
15 -						jeiomen numi 81		and annie section					
- 0,	A	2 5 5											
_		5	10					,					
_	ļ						DRA						
_													
20 -	A	4				grades with sand							
-		4 6 9	15			्र क्रमण्य व्यवस्थाति । -							
-					 								
-						SILTY CLAY (CL-ML)							
						dark grey, stiff, moist							
25 -	A	3											
]		5	. 8		TVA	Notes:							
]						Boring terminated at 26.5°. Groundwater was encounted	ered at 9° during drillin	g and 13' after drilling.		•			
								,					
30 -						•							
							:	1350 Powe		-		T	BORING
W	V	S	nbsu	ırfa	ce Co	nsultants, Inc.	JOB NUMBER	Emeryville, (California		DATE		B-1
						onmental Engineers	אסט אטאוטאו פטנ				DATE	1	

					_						She	et 1	of	1
	Proje	ect Na	me &	Locati	ion:	350 P	owell Street		Ground Surface I					<u> </u>
						Етегуч	ille, Califomla		Elevation Datum:		21 feet			
								**** · · · · · · · · · · · · · · · · ·		Project C		 		
:	Drilli	ng Co	ordina	ites/Lo	catio	n Desc	ription: not surveyed		Start: Date	Time) Fi	inish: Date	•	Time
	Orillin	ng Ço	mpan	y & Dr	iller:		- Sulposton Debug	D 9 t	8/27/01	11:30		8/27/0		12:45
4	Rio T	Tvoe	& Orilli	ing Me			ea Exploration, Robert, I	Dave & Jeremy	Drilling Fluid:		Н	ole Diame	ter:	
•			<u>,</u>			CME 7	75 / Hollow Stern Auger		N/A			9" 		
	Sam Type		A) Ca	aliforni	a (2.5	i'O.D.,	2.0" (.D.)		Logged By:		¥	GWL afte	e drill	loa
	Sam	pling	A) ·	140 lb	auto	maticall	y tripped hammer w/30°	* drop	AHL Backfill Method:				ate:	9
3		od(s)):			1000000	y arphod riding to the con-	Огор	Cement Gro	nit		_	26/01	
			22	80	<u></u>				SOIL DESCRIP	•	L			Y DATA
	(994)	Sampler Type	Blows/6 inches of Pressure	Blows/12 Inches	Sample Interval							П		
	Depth (feet)	pler	78/6 ress	18/12	eld	Graphic Log	GROUP NAME (GRO color, consistency/der	nsitv.		٠	tent tent	≥ .		
		Sa	ello of P	얆	San	200	moisture condition, ot (Local Name or Mater	ther descriptions rial Type)			Moisture Content (%)	Dry Density (pcf)		Other
	0 -					III	SANDY LEAN CLAY WITH brown, stiff, moist, (fill)	H GRAVEL (CL)	, , , , , , , , , , , , , , , , , , , 					
		A	3 4 5	9			SILTY CLAY (CL-ML) thank grey to black, stiff, mo	oist with brown stain			!		OV	M = 10.4 ppm
j	-	A	2				3 • 3 • • • • • • • • • • • • • • • • • • •						OV	M = 25.1 ppm
	-	1	6	10										
	5 -	A	2 4	•									O)	/M = 28 ppm
	-		4	8										
	-						CLAYEY SAND (SC)	. *						
Ŋ	-	ŀ					olive gray, medium dense,	, moist						
Ì	10 -	A	4			77.7			•				ΟV	M = 141 ppm
	_		8 12	20			LEAN CLAY (CL) mottled olive, grey and yell	lowish brown, very stiff	, moist		<u>.</u>			
	-											1		
9	_								·					
	15 -	A	3				grades to with sand and or						OVA	vi = 13,4 ppm
Ì	_		3 4 5	9			grades to war salio and oc	235iOral Brave					-	a . iora blan
ĺ	_	ļ												
	-	1								Ţ				
	20 -					'''				-1 -				
		A	2 5 6	11			grades to without sand and	d gravel					OVI	M = 13.4 ppm
	-	•	١		П									
]									T Silve					
10/5/0						1113		DRAF						
<u>.</u>	25 - -	A	7 14					- · -4						
OENV.GOT BEAN	-		17	31		7777	Notes:				<u> </u>	II		
₩	-						Boring terminated at 26.5'. Groundwater was encounted	ered at 19' after drilling	g.					
01-382.GP	-													
	30 -								4858				 -	500000
RING	17	ì	2	nhon	ırfə	ra fa	nsultants, Inc.		1350 Powe Emeryville, (<u></u>	•		BORING
占	M	ij					MOUNTHW, INC. onmental Engineers	JOB NUMBER				DATE		B-2
§[100	آنو						PW 01.382				9/01		

										She	et 1	of	<u>1</u>
Proje	ect Na	me &	Locati	on:	1350 P	owell Street		Ground Surface		21 feet			
				ļ	Emeryv	ille, California		Elevation Datum					
_ 11									Project D				9-1
Drilli	ng Co	pordina	ites/Lo	catio	n Desc	ription: not surveyed		Start: Date	Time		inish: Date	•	Time
Drilli	ng Co	mpan	y & Dr	liler.	D 4	- F-1- F- D-1-0	Davis	8/27/01	13:05		8/27/0	·	14:30
· Dia 1	Dron .	& Drilli	na Ma			ea Exploration, Robert &	OSAB	Drilling Fluid:		H	ole Dlame	ter:	
ray i	ype i		ig we	a iou.	CME 7	'5 / Hollow Stern Auger		N/A		1	B"		
Sam	pler	A) Ca	llfoml	a (2.5	5" O.D.,	2.0" I.D.)		Logged By:			GWL dur	ing dril	ling
							- -	AHL			GWL afte	_	ng
Sam Meth	pling rod(s)	A) '):	140 lb	autor	naticali	y tripped hammer w/30*	drop	Backfill Method:			_	ate:	
		· · · · ·	(D	1_	·		 	Cement Gr		1		28/01	
Ş	90	thes.	che	erva				SOIL DESCRIP	TIONS	L	ABORA	TORY	DATA
Depth (feet)	Sampler Type	Blows/6 inches of Pressure	Blows/12 Inches	Sample Interval	Graphic Log	GROUP NAME (GRO color, consistency/der moisture condition, of (Local Name or Mater	nsity her descriptions			Moisture Content (%)	Dry Density (pcf)		Other
0 -	0,3	ш о	<u> </u>	10	267	ASPHALT- 2" thick asphale SANDY LEAN CLAY WITH		N 850		202			On les
-	Δ	12 9 8	17			SANDY LEAN CLAY WITH brown, very stiff, domp. (M LEAN CLAY WITH GRAVI motiled grey, black and dai	EL (CL)	•	diameter,(fill)			OVI	<i>4</i> = 70 ppm
-] 🐧	7 9				strong hydrocarbon smell a	ત્ર જ					OVM	≃ 2500 ppr
5 -	1	13	22									OVN	l = 596 ppm
-	1	17 13	30		%								• •
-						CLAYEY SAND (SC) gray, medium dense, mois	t, sand medium to co	xarse grained	7				
10 - - -	A	8 9 0	17			LEAN CLAY (CL) motited light brown and rec with occasional sand	idish brown, with bia	ck Inclusion, very stiff, rr	∑ noist,			OVM	I = 196 ppm
- 15 -	A	4 10 11	21			CLAYEY SAND (SC) brown, medium dense, mo	ist, coarse to medium	n grained sand	Ţ	متابع المساود وسعد وسعد سعد سعارة وسياد وس		OVM	≂ 13.5 ppn
- - - 20 -							DRA						
-	^	5 8 12	20			SILTY LEAN CLAY WITH brown, very stiff, moist, wit occasional gravel up to 1/4	h line grained sand a					OVM	= 10,4 ppm
- 25 -	А	4 8 12	20			SILT (ML) gray, vory stiff, moist							
- - - 30 -						Notes: Boring terminated at 26.5'. Groundwater was encounte	ered at 10' during dril	llng and 14° after drilling	3 .				
į, į		_		•		74 · M		1350 Powe					BORING
N	H					nsultants, Inc.	JOB NUMBER	Emeryville,	Cartomia	<u> </u>	DATE	\dashv	B-3
	IJIJ	. G	eolech	nical	& Envir	onmental Engincers	PW 01.382				9/01		_ •

APPENDIX G Site-Specific RBSLs from Oakland ULR Model

Table ?. Oakland Tier 1 RBSLs

	Exposure			Acenaph-	Acenaph			Marie III	Talenta.			6.00 (1.00 (
- Medium	Pathway	Land Use	Type of Risk	there	thylene	Acetone	Anthra-	Arsenic	Barium	Benz(a): anthracene	Benzene	Benzo(a)- pyrene
		Residential	Carcinogenic					2.6E+00		1.7E+00	1.9E+01	1.7E-01
Surficial Soil	Ingestion/ Dermal/	1 todiacitioi	Hazard	2.3E+03	2.3E+03	3.7E+03	1.2E+04	1.8E+01	5.0E+03		6.3E+01	
[mg/kg]	Inhalation	Commercial/	Carcinogenic		4. jj j j j j j j j			9.5E+00		4.3E+00	4,9E+01	4.3E-01
		Industrial	Hazard	1.1E+04	1,1E+04	1.8E+04	5.6E+04	1.5E+02	7.1E+04		3.0E+02	
	lubatara	Residential	Carcinogenic							SAT	3.3E+00	SAT
	Inhalation of Indoor Air		Hazard	SAT	SAT	9.4E+03	SAT				1.1E+01	
	Vapors	Gommercial/	Carcinogenic	A PER						SAT	5.0E+01	SAL
		Industrial	Hazard	SAT	SAT	2.6E+05	SAT	iga gangara (Ululur	Parti i nedroka		3.0E+02	i and and the order
	Inholetica ef	Residential	Carcinogenic							SAT	4.9E+02	SAT
Subsurface Soil	Inhalation of Outdoor Air		Hazard	SAT	SAT	SAT	SAT				2.0E+03	
[mg/kg]	Vapors Vapors	apors Commercial/ (Industrial	Carcinogenic	alian arang Parist						SAT	1.9E+03	SAT
		Industrial	Hazard	SAT	SAT	SAT	SAT				SAT	
	Ingestion of Groundwater	Residential	Carcinogenic					4.4E+00	1.3E+02	1.4E+01	4.5E-03	1.2E+01
			Hazard	4.0E+02	2.7E+02	1.5E+00	SAT	4.4E+00	1.3E+02		4.5E-03	1.2E+01
	Impacted by Leachate	Commercial/	Carcinogenic	denki për di []	y ki i pomanikisto dip		antingrafkadi	4.4E+00	1.3E+02	5.8E±0.1	4.5E-03	1,2E+01
		Industrial	Hazard	SAT	SAT	9.7E+00	SAT	4.4E+00	-1.3E+02		4.5E-03	1,2E+01
	labeletian af	Residential	Carcinogenic		~~~					>SOL	6.9E+00	>SOL
	Inhalation of Indoor Air		Hazard	>SQL	>SOL	3.1E+04	>SOL				2.3E+01	
	Vapors	Commercial/	Carcinogenic		(i.i.) (ii) (ii) (ii)			Burner (1971)	es Piceum III in Ali	⇒so∟	1.0E+02	≯SOL
		Industrial	Hazard	>80L	SOL	8.5E+05	≫SOL		Alejaseria (13 Lukum		6.2E+02	
_	Inhalation of	Residential	Carcinogenic							>SOL	>SQL	>SOL
Groundwater	Outdoor Air	Mile State of the wind Mile For the	Hazard	>SOL	>SOL	>SOL	>SOL	A	S72		>SOL	
[mg/l]	Vapors	Commercial/	Carcinogenic		- I I mail the			n ne salawan iyi kirir Yan wi		>SOL	>SOL	>SOL
		Industrial	Hazard	≯SOL	>SOL	>506	>8OL		en en en en en en en en en en en en en e		******SOE	
		Residential	Carcinogenic					5.0E-02	1.0E+00	5.6E-04	1.0E-03	2.0E-04
	Ingestion of		Hazard	9.4E-01	9.4E-01	1.6E+00	>SOL	5.0E-02	1.0E+00		1.0E-03	2.0E-04
	Groundwater	Commercial C	Carcinogenic					5:0E-02	1.0E+00	2:4E-03	1.0E-03	2.0E-04
		Industrial	Hazard	>SOL	⇒SOL	1.0E+01	>SOL.	5.0E-02	1.0E+00	insir Çazgalları	1.0E-03	2.05-04
Water Used for	Ingestion/	Residential	Carcinogenic					2.0E-02		1.6E-04	6.3E-02	1.1E-05
Recreation [mg/l] *Italicized concentrati	Dermal		Hazard	1.1E+00	1.7E+00	4.2E+01	>SOL	1.2E-01	2.8E+01		1.8E-01	

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Table ?. Oakland Tier 1 RBSLs

Medium	Exposure Pathway	Cand Use	Type of Risk	Benzo(b) fluotantiene	Benzo(g.n.l) Seperviene	Eenzo(k) fjuoranthene	Beryllum	Bie(2- ethylhexyl)- phthalate	Butyi benzyi phthalate	Cadmium	Carbon Disulfide
Surficial Soil	Ingestion/	Residential	Carcinogenic Hazard	1.7E+00	1.6E+02	1.7E+00	4.5E+04 3.6E+02	2.4E+02 7.8E+02	7.8E+03	2.1E+04 3.6E+01	1.4E+03
[mg/kg]	Dermal/ Inhalation	Commercial/ Industrial	Carcinogenic Hazard	4.3E±00	7.4E±02	14 4 3 E HOO	1.7E+05 5 1E+03	6.2E+02 3.7E+03	3.7E±04	7:9E+04 5:1E+02	6.5⊑+03
	Inhalation of Indoor Air	Residential	Carcinogenic Hazard	SAT	SAT	SAT		SAT SAT			5.2E+00
	Vapors	Commercial/ Industrial	Carcinogenica Hazard	SATELLI Viernie	SAT	SAT		SAT			1.4E+02
Subsurface Soil	Inhalation of Outdoor Air	Residential	Carcinogenic Hazard	SAT	SAT	SAT		SAT SAT			9.4E+02
[mg/kg]	Vapors	Commercial/ Industrial	Carcinogenic Hazard	SAT	SAT	SAT		SAT			SAT
	Ingestion of Groundwater Impacted by Leachate	Residential	Carcinogenic Hazard	SAT	SAT	SAT	9.6E+00 9.6E+00	7.3E+04 SAT	SAT	1.1E+00 1.1E+00	6.0E+00
		Commercial/ Industrial	Carcinogenic Hazard	SAT	SAT	SAT	9.6E+00: 9.6E+00:	SAT	SAT	1.1E+00 1.1E+00	3.9E+01
	Inhalation of	Residential	Carcinogenic Hazard	>SOL	>SOL	>SOL		>SOL >SOL			2.9E+01
	Indoor Air Vapors	Commercial/ Industrial	Carcinogenic Hazard	>SOL	SOL	PSOL III		>80L >80L			8.0E+02
Groundwater	Inhalation of	Residential	Carcinogenic Hazard	>SOL	>SOL	>SOL		>SOL >SOL			>SOL
[mg/l]	Outdoor Air Vapors	Commercial/ Industrial	Carcinogenic Hazard	≻SOL	>SOL	⇒so∟		>SOL >SOL			>SOL
	Ingestion of	Residential	Carcinogenic Hazard	5.6E-04	>SOL	5.6E-04	4.0E-03 4.0E-03	8.0E-02 3.1E-01	>SOL	5.0E-03 5.0E-03	1.6E+00
	Groundwater	Commercial/ Industrial	Carcinogenic Hazard	≥sou		>sou	4.0E-03	>SOL >SOL		5.0E+03	1.0E+01
Water Used for Recreation [mg/i]	Ingestion/ Dermal	Residential	Carcinogenic Hazard	1.1E-04	>SOL	1.2E-04	2.0E+00	>SOL >SOL	>SOL	2.0E-01	9.4E+00

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Table?. Oakland Tier 1 RBSLs

Medium	Exposure : Pathway = >	Land Use	Type of Risk	Carbon Tetrachloride	Chloro- berizene	Chloroform	Chromium (III)	Chromium (VI)	Chrysene	Соррег	Creso((-m)	ce congression cecresol(eo)
	Ingestion/	Residential	Carcinogenic	1.2E+01		6.2E+01		1.2E+01	1.7E+01			
Surficial Soil	Dermal/		Hazard	2.6E+01	6.6E+02	3.7E+02	7.1E+04	3.6E+02		2.6E+03	1.9E+03	1.9E+03
[mg/kg]	Inhalation	Commercial/	Carcinogenic	3.3E+01		1.6E+02		6.6E+01	-4.3E+01			
	***	Industrial	Hazard	1.2E+02	3.1E+03	1.8E+03	1.0E+06	5,1E+03	i i i i i i i i i i i i i i i i i i i	3.8E+04	9.2E+03	9.2E+03
	Iпhalation of	Residential	Carcinogenic	1.2E+00		1.7E+01			SAT	· · · · · · · · · · · · · · · · · · ·		
	Innatation of		Hazard	2.0E+00	3.4E+00	6.2E+01					SAT	SAT
	Vapors	Commercial/	Carcinogenic	1.8E+01		2.5E+02			SAT			
		Industrial	Hazard	5,5E+01	9.3E+01	1.7E+03		di innia - de			SAT	SAT
	Outdoor Air	Residential	Carcinogenic	1.8E+02		2.4E+03			SAT			
Subsurface Soil		T (OSIGOTIA)	Hazard	3.6E+02	SAT	SAT					SAT	ŞAT
[mg/kg]		Commercial/	Carcinogenic	6.9E+02		SAT			SAT	7.9EVERE **********************************		
_		Industrial	Hazard	2.15+03	SAT	SAT					SAT	SAT
	Ingestion of Groundwater	Residential	Carcinogenic	5.9E-03	1.6E-01	3.4E-01		2.9E+00	SAT	1.2E+00		
			Hazard	5.9E-03	1.6E-01	3.4E-01	8.5E+07	2.9E+00		1.2E+00	4.8E+00	5.0E+00
	Impacted by	Commercial/	Carcinogenic	5.9E-03	1.6E-01	3 4E-01		2.9E+00	SAT	1.2E+00		
	Leachate	Industrial	Hazard	5.9E-03	1.6E-01	3,4E-01	5.6E+08	2.9E+00		1.2E+00	3.2E+01	3.3E+01
	••	Residential	Carcinogenic	3.6E+00		3.9E+01	,		>SOL			
	Inhalation of Indoor Air	Kesideritiai	Hazard	6.1E+00	6.0E+01	1.5E+02					>SOL	>SOL
	Vapors	Commercial/	Carcinogenic	5.4E+01	Salesanius se	5.9E+02	Ell Flat metral cercitations		>SOL			
	•	Industrial	Hazard	1.7E+02	≯SOL	4.0€+03				Zuper Sancièuri Spris Mezi III prii	SOL	>SOL
		Residential	Carcinogenic	>SOL		>SOL			>SOL			
Groundwater	Inhalation of Outdoor Air	rtesideribai	Hazard	>SOL	>SOL	>SOL					>SOL	>SOL
[mg/l]	Vapors	Commercial/	Carcinogenic	>SOL		≯SÖL			>SOL			
	' -	Industrial	Hazard		>SOL	>SOL				Mali anal hai at the	>SOL	⇒so∟
		Residential	Carcinogenic	5.0E-04	7.0E-02	1.0E-01		5.0E-02	>SQL	1.3E+00		
	Ingestion of	Residential	Hazard	5.0E-04	7.0E-02	1.0E-01	1.6E+01	5.0E-02		1.3E+00	7.8E-01	7.8E-01
	Groundwater	Commercial/	Carcinogenic	5.0E-04	7.0E-02	1.0E-01		5.0E-02	>SOL	1.3E+00	ya colo lako malekalantaya Baran a Baran da Baran	ANGERS STATE
		Industrial	Hazard	5.0E-04	7.0E-02	1.0E-01	1.0E+02	5.0E-02		1.3E+00	5.1E+00	5.1E+00
Water Used for	Ingestion/	Pasidontial	Carcinogenic	4.1E-02		3.9E-01		6.8E-02	>SOL			
Recreation [mg/l]	Dermal	Residential	Hazard	7.1E-02	1.2E+00	1.9E+00	3,8E+02	1.9E+00		1.5E+01	6.7E+00	6.4E+00

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Table ?. Oakland Tier 1 RBSLs

Medium	Exposure Pathway	Land Use	Type of Risk	Cresol(-p)	Cyanide	Dibenz(a,h) anthracene	Dichlore ethane († 17)	Dichloro Sthane (1,2) (EDC	Dichlorg ethylene (1,1-)	Dictiloro ethylene (cis.1,2,1)	Dichion Setbene E(trans 1:
	Ingestion/	Residential	Carcinogenic			4.9E-01	3.3E+02	2.7E+01	3.3E+00		
Surficial Soil	Dermai/		Hazard	1.9E+02	2.8E+03		3.8E+03	1.1E+02	3.3E+02	3.7E+02	7.4E+02
[mg/kg]	Inhalation	Commercial/ Industrial	Carcinogenic			1,3E+00	8.7E+02	7.1E+01	8.5E+00		
· · · · · · · · · · · · · · · · · · ·			Hazard	9.2E+02	4.1E+04		1.8E+04	5.1E+02	1.6E+03	1.8E+03	3.5E+0
	Inhalation of	Residential	Carcinogenic			SAT	4.3E+01	9.4E+00	4.1E-01		
	Indoor Air	#T-16030ba.i	Hazard	SAT	NAME OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER O		6.8E+02	3.7E+01	1.3E+01	7.2E+01	8.9E+0
	Vapors	Commercial/	Carcinogenic			SAT	6.5E+02	1.4E+02	6.1E+00		
		industriai	Hazard	SAT			SAT	1.0E+03	3,5E+02	2.0E+03	2,4E+0
ubsurface Soil	1-1-1-1-1	Residential	Carcinogenic			SAT	SAT	1.3E+03	6.2E+01		
	Inhalation of Outdoor Air		Hazard	SAT			SAT	SAT	2.3E+03	SAT	SAT
[mg/kg]	Vapors	Commercial/	Carcinogenic	46. Prompto		SAT	SAT	4.7E+03	2.3E+02	liggi de Milegiorii i el	Menter (Pille)
		Industrial	Hazard	SAT			SAT	SAT	SAT	SAT	SAT
	Ingestion of Groundwater Impacted by	Residențiai	Carcinogenic		6.2E+00	3.8E+01	1.4E-02	9.9E-04	2.8E-02	1.9E-02	4.2E-0
			Hazard	4.6E-01	6.2E+00		1.4E-02	9.9E-04	2.8E-02	1.9E-02	4.2E-0
į		Commercial/	Carcinogenic		6.2E+00	1.6E+02	1.4E-02	9.9E-04	2.8E-02	1.9E-02	4.2E-0
_	Leachate	Industrial	Hazard	3:0E+00	6.2E+00		1.4E-02	9.9E-04	2.8E-02	1.9E-02	4.2E-0
	lada alada	Residential	Carcinogenic			>SOL	1.2E+02	2.2E+01	2.6E+00	## U. P. H. J. I.	110,1111,011
	Inhalation of Indoor Air	Residential	Hazard	>SOL			1.9E+03	8.6E+01	8.3E+01	1.5E+02	2.1E+0
	Vapors	Commercial	Carcinogenic			>SOL	1.8E+03	3.2E+02	3.9E+01		in Since
		Industrial	Hazard	>SOL			≯sot	2.3E+03	×sol ×	≯SOL .	5.8E+0
		Residential	Carcinogenic			>SOL	>SOL	4.8E+03	9.7E+02		
Groundwater	Inhalation of Outdoor Air	residential	Hazard	>SOL			>SOL	>SOL	>SOL	>SOL	>SOL
[mg/l]	Vapors	Commercial/	Carcinogenic	72 - BI		asol .	>SOL	SOL	>SOL		Najiri Pirin
	'	Industrial	Hazard	>SOL			>SOL	>SOL	>SOL -	>SØL	>SOL
		Residential	Carcinogenic	John Committee Committee	2.0E-01	1.6E-04	5.0E-03	5.0E-04	6.0E-03	6.0E-03	1.0E-0
	Ingestion of	resideritial	Hazard	7.8E-02	2.0E-01		5.0E-03	5.0E-04	6.0E-03	6.0E-03	1.0E-02
	Groundwater	Commercial/	Carcinogenic		2.0E-01	7.0E-04	5.0E-08	5.0E-04	6.0E-03	6.0E-03	1.0E-02
		Industrial	Hazard	5.1E-01	2.0E-01		5.0E-03	5.0E-04	6.0E-03	6.0E-03	1,0E-02 1,0E-02
Water Used for	Ingestion/	Residential	Carcinogenic	TO O MANAGEMENT INSTITUTES	Maria de la maria della	1.4E-05	2.1E+00	2.4E-01	1.3E-02	JULIUS	
Recreation [mg/l]	Dermai	residential	Hazard	5.9E-01	7.0E+00		1.9E+01	7.2E-01	1.3E-02 1.2E+00	1.8E+00	3.5E+0

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Table ?. Oakland Tier 1 RBSLs

Assemble March 1984	Exposure	54. 中間 新安		Elmethyle Benzalai	Dimethyl	dian-Butyl.	di-n-octyl	- Dinitro	Dioxane	Ethyle	Ethylene	Figuran-
Medium	Pathway	Land Use	Type of Risk	anthracene (7.12)	phenol (2,4)	phthalate	phthalate	toluene (2,4)	(1,4)	benzenes	- Olbromide	thene
		Residential	Carcinogenic					6.3E+00	7.0E+01		5.5E-01	
Surficial Soil	Ingestion/ Dermal/	residential	Hazard	1.2E+03	7.7E+02	3.9E+03	7.8E+02			3.9E+03	2.2E+00	1.6E+03
[mg/kg]	Inhalation	Commercial/	Carcinogenic					1.7E+01	1.8E+02	3	1,4E+00	1) µ n Y 13 = 15 t, 23 t.
		::: Industrial :::	Hazard	5.6E+03	3.7E+03	1.9E+04	3.7E+03		SEPTER LEU LILLER	1,8E+04	1.0E+01	7.4E+03
		Residential	Carcinogenic					SAT	SAT		1.3E+01	
	Inhalation of Indoor Air	Trooldonia	Hazard		SAT	SAT	SAT			SAT	3.5E+00	SAT
	Vapors	Commercial/	Carcinogenic					SAT	SAT		1.9E+02	
		Industrial	Hazard		SAT	SAT	SAT	(Marie Carlotte Carlo		SAT	9.5E+01	SAT
	Inhalation of		Carcinogenic					SAT	SAT		1.4E+03	
Subsurface Soil	Inhalation of Outdoor Air	Residential	Hazard		SAT	SAT	SAT			SAT	4.5E+02	SAT
[mg/kg]	mg/kg] Outdoor Air Vapors	Commercial/	Carcinogenic					SAT	SAT		SAT	
		Industria	Hazard		SAT	SAT	SAT	Maria	M eriodelolo de	SAT	2.6E+03	SAT
	Ingestion of Groundwater	Residential	Carcinogenic					1.5E-02	SAT	1.6E+01	1.8E-04	
			Hazard	SAT	4.3E+00	7.9E+06	SAT			1.6E+01	1.8E-04	SAT
	Impacted by Leachate	Commercial/	Carcinogenic					6.2E-02	SAT	1.6E+01	1.8E-04	
	Codonato	Industrial	Hazard	SAT	2.8E+01	SAT	SAT			1.6E+01	1.8E-04	SAT
	1-1-1-1-1	Residential	Carcinogenic					>SOL	>SOL	_	1.3E+01	
	Inhalation of Indoor Air		Hazard		>SOL	>SOL	>SOL	7.16.70.440.400.500.500.500.50	7	>SOL	3.6E+00	>SOL
	Vapors	Commercial/	Carcinogenic	Pari di Califa		gunsul g e E		≥SOL	>SOL	1.5.0 0 0000 1 1000 0 0 1 1 1 1 1 1 1 1 1 1	1,9E+02	
		Industrial	Hazard		>SOL	>SQL	>SOL	Part of the Sales Septiment of the September of the Septe		SOL	9.8E+01	>SOL
	- - -#:#	Residential	Carcinogenic					>SOL	>SOL		2.1E+03	
Groundwater	Inhalation of Outdoor Air		Hazard		>SOL	>SOL	>SOL			>SOL	6.9E+02	>SOL_
[mg/l]	Vapors	Commercial/	Carcinogenic		date in the composite	Security 1		>5OL	>SOL		>80L	
		Industrial	Hazard		>SOL	>50L	>SOL	ili mesanja iru		>SOL	4,0E+03	>SQL
		Residential	Carcinogenic					2.2E-03	>SOL	7.0E-01	5.0E-05	
	Ingestion of		Hazard	>SOL	3.1E-01	1.6E+00	>SOL			7.0E-01	5.0E-05	>SOL
	Groundwater	Commercial/	Carcinogenic				Party Park the Party is a second of the party	9.2E-03	>SOL	7.0E-01	5.0E-05	
		Industrial	Hazard	>80L	2.0E+00	1.0E+01	>SOL	Property F	Salas nilga	7.0E-01	5:0E-05	≯SOL
Water Used for	Ingestion/	Residential	Carcinogenic					6.4E-02	>SOL		5.9E-03	
Recreation [mg/l] *Italicized concentrati	Dermal		Hazard	>SOL	2.7E+00	7.3E+00	2.1E-03			3.6E+00	1.7E-02	>SOL

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Table ?. Oakland Tier 1 RBSLs

Medium	Exposure Pathway	Land Use	Type of Risk	Fluorene	Indeno-In (1-2.3-CD) pyrene	Mercury	Methanol	Methyli- ethyl ketone	Methylene Chloride	h Methyl- napthalene (2-)	MTBE	Naphthalen
	Ingestion/	Residential	Carcinogenic		1.7E+00				1.4E+02	SF Cont.		
Surficial Soil	Dermal/		Hazard	1.6E+03		3.9E+00	1.9E+04	2.2E+04	2.3E+03	1.6E+03	2.0E+02	1.6E+03
[mg/kg]	Inhalation	Commercial/	Carcinogenic		4,3E+00				3.7E+02	Anad Chies		
		Industrial	Hazard	7.4E+08		1.8E+01	8.9E+04	1.0E+05	1.1E+04	7.4E+03	9.3E+02	7:4E+03
	Inhalation of	Residential	Carcinogenic		SAT				7.4E+01			
	Indoor Air	MFRSS.com	Hazard	SAT		2.7E+01	2.8E+05	3.6E+04	4.4E+03	SAT	2.4E+04	SAT
	Vapors	Commercial/	Carcinogenic		SAT				1.1E+03		AND TO SERVICE	
		Industrial	Hazard	SAT			SAT	SAT	SAT	SAT	SAT	SAT
	Inhalation of	Residential	Carcinogenic		SAT				SAT			The second secon
Subsurface Soil	Outdoor Air	2002072073111111111111111111111111111111	Hazard	SAT		4.8E+03	SAT	SAT	SAT	SAT	SAT	SAT
Ima/kal [Vapors	Commercial/	Carcinogenic		SAT				SAT			
		Industrial	Hazard	SAT		2.8E+04	SAT	SAT	SAT	SAT	SAT	SAT
	Ingestion of Groundwater Impacted by Leachate	Residential	Carcinogenic		SAT	3.2E-01			8.2E-03		2.1E-02	2.4E+00
			Hazard	5.2E+02		3.2E-01	7.1E+00	1.1E+01	8.2E-03	3.2E+02	2.1E-02	2.4E+00
		Commercial/ Industrial	Carcinogenic		SAT	3.2E-01			8.2E-03		2.15-02	2.4E+00
			Hazard	SAT		3,2E-01	4.7E+01	7.3E+01	8.2E-03	2.1E+03	2.1E-02	2.45+00
	hadisədə səri	Residential	Carcinogenic		>SOL				2.5E+02			Carata and Control of the Control of
	Inhalation of Indoor Air	. 100100111101	Hazard	>SOL		1.7E+00	9.2E+05	9.6E+04	>SOL	>SOL	>SOL	>SOL
	Vapors	Commercial/	Carcinogenic		>SQL				3,8≘∔03		Antist d	
		industrial	Hazard	>\$0L		4.7E+01	>SOL	SOL	>SOL	SOL	>SOL	>SOL
		Residential	Carcinogenic		>SOL				>SOL	3000		
Groundwater	Inhalation of Outdoor Air	roomerman	Hazard	>SOL		6.6E+02	>SOL	>SOL	>SOL	>SOL	>SOL	>SOL
[mg/l]	Vapors	Commercial/	Carcinogenic		≯SOL				>80L			
		Industrial	Hazard	>SOL		3.9E+03	-√⊁SOL ∜	SOL	>SOL	>SOL	>SOL	>SOL
		Residential	Carcinogenic		>SOL	2.0E-03			5.0E-03		1.3E-02	2.0E-02
	Ingestion of	coldonida	Hazard	6.3E-01		2.0E-03	7.8E+00	9.4E+00	5.0E-03	6.3E-01	1.3E-02	2.0E-02
	Groundwater	Commercial/	Carcinogenic		≥SOL .	2,0E-03			5.0E-03	eri miğletiğiri.	1.3E-02	2.0E-02
		Industrial	Hazard	>SOL		2.0E-03	5.1E+01	6.1E+01	5.0E-03	4.1E+00	1.3E-02	2.0E-02
Water Used for	Ingestion/	Residential	Carcinogenic		>SOL		5.000		1.3E+00			
Recreation [mg/l] talicized concentration	Dermal		Hazard	3.1E-01		3.6E-02	2.2E+02	1.5E+02	1.6E+01	6.1 E -01	1.5E+00	1.5E+00

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Table ?. Oakland Tier 1 RBSLs

Medium 🕬	Exposure Pathway	Land Use	Type of Risk	Nickel	Nitro benzene	PCBs _{ile}	Phonon- threne	Phenol	Pyrene	Pyridine	-Selenium	Silver	Stryene
Surficial Soil	Ingestion/	Residential	Carcinogenic	3.4E+05	3.7E+03	3.6E-01			4 05 00	2.0E+03			
[mg/kg]	Dermal/ Inhalation	Commercial/ Industrial	Hazard Carcinogenic Hazard	1.4E+03 1.3E+06 2.0E+04	±9.9E±03	9.8E-01 1.1E+00 5.8E≠00	1.2E+04 5.6E+04	2.3E+04	1.2E+03 5.6E+03	5,16+03	3.6E+02 5.1E+03	3.6E+02 5.1E+03	7.7E+03 3.7E+04
	Inhalation of	Residential	Carcinogenic Hazard		SAT	2.6E+03 SAT	SAT	SAT	SAT	9.5E+04		5 (CTUS)	SAT
	Indoor Air Vapors	Commercial/ Industrial	Carcinogenic Hazard		SAT	SAT	SAT	SAT	SAT	SAT		diblock i minden i i gada di nia in managhi Ti i i i i i i i i i i i i i i i i i i	SAT
Subsurface Soil	Inhalation of	Residential	Carcinogenic Hazard	SOLUTARIUM UUUU UUSA	SAT	SAT SAT	SAT	SAT	SAT	1.2E+06			SAT
[mg/kg]	Outdoor Air Vapors	Commercial/ Industrial	Carcinogenic Hazard		SAT	SAT	SAT	SAT	SAT	SAT			SAT
:	Ingestion of Groundwater	Residential	Carcinogenic Hazard	2.0E+01 2.0E+01	6.5E+00	9.4E+00 9.4E+00	SAT	2,5E+01	SAT	2.8E+00	8.0E-01 8.0E-01	2.6E+00 2.6E+00	4.8E+00 4.8E+00
	Impacted by Leachate	Commercial/ Industrial	Carcinogenic Hazard	2 0E+01 2 0E+01	2.85+01	9.4E+00 9.4E+00	SAT	1.6E+02	SAT	1,2E+01	8.0E-01	2.6E+00 2.6E+00	4.8E+00 4.8E+00
	Inhalation of	Residential	Carcinogenic Hazard		>SOL	>SOL >SOL	>SOL	>SOL	>SOL	7.0E+04		(1) 7	>SOL
	Indoor Air Vapors	Commercial/ Industrial	Carcinogenic Hazard		>SOL	>SOL	>SÖL	≻SOL	>SOL	≱so⊾			≯soL
Groundwater	Inhalation of	Residential	Carcinogenic Hazard	tiga pe tritu pagni pagni pag	>SOL	>SOL >SOL	>SOL	>SOL	>SOL	>SOL			>SOL
[mg/l]	Outdoor Air Vapors	Commercial/ Industrial	Carcinogenic Hazard		>SOL	>SOL >SOL	×80L	>SOL	>SOL	>SOL			>SOL
	Ingestion of	Residential	Carcinogenic Hazard	1.0E-01 1.0E-01	1.3E+00	5.0E-04 5.0E-04	>SOL	9.4E+00	>SOL	6.7E-01	5.0E-02 5.0E-02	1.0E-01 1.0E-01	1.0E-01 1.0E-01
	Groundwater	Commercial/ Industrial	Carcinogenic Hazard	1.0E+01 1.0E+01	5.7E+00	5:0E-04 5:0E-04	>SOL	6.1E+01	>SOL	2.9E+00	5.0E-02 5.0E-02	1.0E-01	1.0E-01 1.0E-01
Water Used for Recreation [mg/l]	Ingestion/ Dermal	Residential	Carcinogenic Hazard	7.9E+00	2.8E+01	1.6E-05 4.4E-05	>SOL	1.5E+02	>SOL	2.6E+01	2.0E+00	2.1E+00	9.3E+00

^{&#}x27;Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Table ?. Oakland Tier 1 RBSLs

Medium .	Exposure Pathway	Land Use	Type of Risk	Tetrachloro ethane (1,1,2,2 -)	Tetrachioro- ethylene (PCE)	Tetraethyl Lead	Toluene.	Trichioro ethane (1,1,1-)	Trichlora ethane (1,1,2-)	Trichloro- ethylene (TCE)	Vanadium	Vinyl Chloride
	Ingestion/	Residential	Carcinogenic	7.2E+00	3.8E+01				2.7E+01	1.3E+02		3.5E+00
Surficial Soil	Dermal/		Hazard	1.0E+03	3.7E+02	3.9E-03	7.1E+03	1.4E+03	1.5E+02	2.2E+02	5.0E+02	Managara and a second
[mg/kg]	Inhalation	Commercial/	Carcinogenic	1.9E+01	1.0E+02	erckie i janinisi		ili Barriii S	7:0E+01	3:3E+02		9.1E+00
		Industrial	Hazard	4,7E+03	1.8E+03	1 9E-02	3.4E+04	6.5⊞+03	7.2E+02	1.1E+03	7,2E+03	mid of the literal
	Inhalation of	Residential	Carcinogenic	3.0E+01	1.4E+01				2.6E+01	4.9E+01		5.4E-02
	Indoor Air	and a resident for a territor remains	Hazard	4.2E+03	5,6E+01	i i i nomini la crest la Hulberthili i	1.7E+03	1.2E+03	1.5E+02	5.8E+01		CHICAGO AND DELLA CONTROL
	Vapors	Commercial/	Carcinogenic	4.5E+02	2.0E+02				3.8E+02	7.4E+02		8.0E-01
		Industrial	Hazard	SAT	SAT	PERSONAL PROPERTY OF THE PERSONAL PROPERTY OF	SAT	SAT	-3,9≝+03	1:6E+03		Albertini (1) (2) Vigo Chili
	Inhalation of	Residential	Carcinogenic	3.1E+03	SAT				3.3E+03	SAT		8.2E+00
Subsurface Soil	Outdoor Air		Hazard	SAT	SAT		SAT	SAT	SAT	SAT		
[mg/kg]	g/kg] Vapors	many facilities of collective about 18 of	Carcinogenic	SAT	SAT				SAT	SAT		3.1E+01
		industrial	Hazard	SAT	SAT	entra di Edula.	SAT	SAT	SAT	SAT	on the transfer	
	Ingestion of	Residential	Carcinogenic	6.6E-03	5.2E-02	4.6E+00	1.8E+00	1.5E+00	2.0E-02	5.5 E- 02		1.1E-03
	Groundwater	, toolgoman	Hazard	6.6E-03	5.2 E- 02	4.6E+00	1.8E+00	1.5E+00	2.0E-02	5.5E-02	3.3E+02	1.1E-03
	Impacted by Leachate	Commercial/	Carcinogenic	6,6E-03	5.2E-02	4.6E+00	1.8E+00	1.5E+00	2,0E-02	5.5E-02		1.1E-03
	Leachate	Industrial	Hazard	6.6E-03	5.2E-02	4.6E+00	1.8E+00	1.5E+00	2.0E-02	5.5 E- 02	2.2E+03	1.1E-03
		Residential	Carcinogenic	1.7E+01	3.0E+01				2.8E+01	6.3E+01		7.3E-01
	Inhalation of Indoor Air		Hazard	2.3E+03	1.2E+02		>\$QL	>SOL	1.6E+02	7.4E+01		
	Vapors	Commercial/	Carcinogenic	2.5E+02	/€ >SOL				4.1E+02	9.4E+02		1.1E+01
		Industrial	Hazard	>SOL -	>SOL		>SOL	SOL	4.3E+03	>SOL		yfrifind It It seisig
		Residential	Carcinogenic	2.5E+03	>SOL				>SOL	>SOL		2.7E+02
Groundwater	Inhalation of Outdoor Air	Residential	Hazard	>SOL	>SOL		>SOL	>SOL	>SOL	>SOL		
[mg/l]	Vapors	Commercial/	Carcinogenic	SOL	>SOL .				>SOL	>SOL		1.0E±03
	•	Industrial	Hazard	>SOL	- sol	granda (dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah dalah d	>SOL	>SOL	>S0L	>SOL		iri Prisionali,
		Residential	Carcinogenic	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2.0E-01	5.0E-03	5.0E-03	() () () () () () () () () ()	5.0E-04
	Ingestion of	кезюепца	Hazard	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2.0E-01	5.0E-03	5.0E-03	1.1E-01	5.0E-04
	Groundwater	Commercial/	Carcinogenic	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2:0E-01	5.0E-03	6.0E-03		5.0E-04
		Industrial	Hazard	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2 0E-01	5.0E-03	5.0E-03	7.2E-01	5.0E-04
Water Used for	Ingestion/	B	Carcinogenic	4.5E-02	6.0E-02	Harris and August Well Coll	ALL ALL ACTION OF THE SECTION	मा । जनसङ्ख्यास्त्राची स्थितिहरू पहेर्	1.8E-01	4.6E-02	parameter (1995)	2.6E-02
Recreation [mg/l]	Dermal	Residential	Hazard	4.9E+00	5.3E-01	6.7E-06	1.1E+01	4.3E+00	7.8E-01	7.2E-02	2.8E+00	2.01-02

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Table ?. Oakland Tier 1 RBSLs

Medium	Exposure Pathway	Land Use	Type of Risk	Xylanes	in Liv.
Surficial Soil [mg/kg]	Ingestion/ Dermal/	Residential	Carcinogenic Hazard	5.3E+04	2.1E+04
	Inhalation	Industrial	Carcinogenic Hazard	2.6E+05	3.1E+05
	Inhalation of Indoor Air	Residential	Carcinogenic Hazard	SAT	
	Vapors	Commercial/ Industrial	Carcinogenic Hazard	SAT	
Subsurface Soil	Inhalation of Outdoor Air	Residential	Carcinogenic Hazard	SAT	
[mg/kg]	Vapors	Commercial/ Industrial	Carcinogenic Hazard	SAT	
	Ingestion of Groundwater	Residential	Carcinogenic Hazard	2.7E+01 2.7E+01	8.9E+02
	Impacted by Leachate	Commercial/ Industrial	Carcinogenic Hazard	2.7E+01 2.7E+01	5.8E+03
	Inhalation of Indoor Air	Residential	Carcinogenic Hazard	>SOL	
	Vapors	Commercial/ Industrial	Carcinogenic Hazard	>SOL	en de una creci
Groundwater	inhalation of Outdoor Air	Residential	Carcinogenic Hazard	>SOL	
[mg/l]	Vapors	Commercial/ industrial	Carcinogenic Hazard	>SOL	
	Ingestion of	Residential	Carcinogenic Hazard	1.8E+00 1.8E+00	4.7E+00
	Groundwater	Commercial/ Industrial	Carcinogenic Hazard	1.8E+00 1.8E+00	3,1E+01
Water Used for Recreation [mg/l] *Italicized concentrati	Ingestion/ Dermal	Residential	Carcinogenic Hazard	6.6E+01	1.2E+02

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

DrDSD@aol.com, 01:35 PM 2/20/200, oakland model spreadsheet

Date: Thu, 20 Feb 2003 13:35:30 -0500

From: DrDSD@aol.com

To: briddell@cambria-env.com Subject: oakland model spreadsheet

X-Mailer: Atlas Mailer 2.0

X-Spamscreen: Protected by WatchGuard SpamScreen (TM)

v6.1.B1000 Copyright (C) 1996-2002 WGTI WGTI

X-RCPT-TO: <bri>dell@cambria-env.com>

Bob: Attached is the Oakland model spreadsheet with the parameters set for clayey silt default + the modifications that are discussed in the risk assessment text. You can probably both send this to Eva/Roger and print it out as an appendix.

Alternatively, you can go to: http://www.caklandpw.com/ulrprogram/wksheet2.xls, then do the following:

- 1. press the "clayey silts defaults" button
- 2.change the following:

foundation thickness to 20 depth to subsurface sources to 300 depth to groundwater to 500 building air volume/floor area (ceiling height) to 244

- 3. press enter
- 4. click to the RBSL worksheet to check the calculated RBSLs. Dave ${\sf N}$

oakrisk.xls