10/20/97 Can reduce TAH +BTEX to ZX/yr cont. VOCs on 4X; will send letter when # commes in July 31, 1997

QUARTERLY GROUNDWATER MONITORING REPORT 5710 269 JULY 8, 1997 SAMPLING

for

Custom Alloy Scrap Sales 2711 Union Street Oakland, California

Prepared by: AQUA SCIENCE ENGINEERS, INC. 2411 Old Crow Canyon Road,

> San Ramon, CA 94583 (510) 820-9391

1.0 INTRODUCTION

This report details the quarterly groundwater sampling for the subject site as required by the Alameda County Health Care Services Agency (ACHCSA) and the Regional Water Quality Control Board (RWQCB). Aqua Science Engineers, Inc. (ASE) has prepared this report on behalf of Mr. Eugene Teasley of Gardiner Manufacturing, owner of the property.

2.0 SITE BACKGROUND

The site was previously occupied by Gardiner Manufacturing as a machining and press operation. Beginning in 1985, Custom Alloy Scrap Sales occupied the property as a metal scrap recycling operation. Custom Alloy Scrap Sales is currently the tenant on the property.

In August 1990, MacKinnon Environmental Consulting of Walnut Creek, California conducted a limited soil assessment at the site. Up to 4,000 parts per million (ppm) oil and grease (O&G) and 2,600 ppm total petroleum hydrocarbons as diesel (TPH-D) were detected in the soil samples collected during the assessment.

In March 1996, ASE drilled ten soil borings at the site. Up to 4,300 ppm TPH-D, 4,500 ppm O&G, 0.01 ppm toluene, 0.0092 ppm ethylbenzene, 0.011 ppm total xylenes, 0.055 ppm cis-1,2-dichloroethene (cis-1,2-DCE), 0.018 ppm trans-1,2-dichloroethene (trans-1,2-DCE) and 0.052 ppm trichloroethene (TCE) were detected in the soil samples collected during this assessment. None of these volatile organic compound (VOC) concentrations, nor any of the metal concentrations detected, exceeded US EPA Region IX Preliminary Remediation Goals (PRGs) for Industrial Soil. Up to 7,100 parts per billion (ppb) O&G, 43 ppb vinyl chloride, 2.1 ppb 1,1-dichloroethene, 22 ppb 1,1-dichloroethane, 78 ppb cis-1,2-DCE, 15 ppb trans-1,2-DCE, 100 ppb TCE, 1 ppb tetrachloroethene (PCE), 21 ppb chlorobenzene, and 39 ppb 1,2-dichlorobenzene were detected in groundwater samples collected from the site. Several of these VOC concentrations exceeded California Department of Toxic Substances Control (DTSC) maximum contaminant levels (MCLs) for drinking water.

In September 1996, ASE drilled four soil borings at the site and installed groundwater monitoring wells MW-1 through MW-4 in the borings. Up to 350 ppm TPH-D were detected in the soil samples collected from borings MW-2 and MW-4, although the chromatogram pattern on these samples did not resemble the diesel standard. Motor

oil range hydrocarbons were detected in the soil samples collected from boring MW-4. 0.048 ppm flourene was detected in the soil sample collected from 6.0-feet bgs in boring MW-4. Relatively high VOC concentrations were detected in groundwater samples collected from all four site monitoring wells. Up to 2,200 ppb TCE was detected in groundwater samples collected at the site. In addition, PCE, benzene, vinyl chloride, cis-1,2-DCE, trans-1,2-DCE and chlorobenzene were detected in groundwater samples collected at the site at concentrations exceeding DTSC MCLs, especially in groundwater samples collected from monitoring well MW-2.

3.0 GROUNDWATER GRADIENT AND DIRECTION

ASE surveyed the top of casing elevation of each well relative to a site datum on October 3, 1996. An assumed site datum elevation of 15-feet above mean sea level (msl) was interpolated from the USGS Oakland West, California 7.5 Minute Quadrangle (1980). The top of casing elevation of monitoring well MW-1 was set at 15-feet, and the top of casing elevations of monitoring wells MW-2, MW-3 and MW-4 were surveyed relative to monitoring well MW-1. The depth to groundwater was measured in each well prior to sampling on July 8, 1997 with an electric water level sounder. Depth to groundwater measurements are presented in Table One, and groundwater elevation contours are plotted on Figure 2. Groundwater elevations in the sites wells have dropped approximately 0.5-feet since last quarter. Groundwater appears to flow to the west beneath the site at a gradient of 0.017-feet/foot.

4.0 GROUND WATER SAMPLE COLLECTION AND CHEMICAL ANALYSIS

On July 8, 1997, ASE environmental specialist Scott Ferriman arrived on-site. After measuring and recording the depths to groundwater in monitoring wells MW-1, MW-2, MW-3, and MW-4, ASE purged four well casing volumes of groundwater from each well using pre-cleaned, dedicated polyethylene bailers. No free-floating hydrocarbons or sheen was encountered in any of the wells. The pH, temperature and conductivity of the purge water were monitored during evacuation, and samples were not collected until these parameters stabilized. Groundwater samples were collected from the wells using dedicated polyethylene bailers. Groundwater samples were decanted from the bailers into 40-ml volatile organic analysis (VOA) vials and 1-liter amber glass bottles. All samples were preserved with hydrochloric acid

as appropriate, labeled, placed in protective foam sleeves and placed on ice for transport to Chromalab of Pleasanton, California (ELAP# 1094) under chain-of-custody. The analytical report and chain-of-custody are included in Appendix A. Well Sampling Field Logs are attached in Appendix B. Well purge water was placed in a 55-gallon steel DOT 17H drum and stored on-site pending analytical results.

The groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) by EPA Method 5030/8015M, TPH-D by EPA Method 3510/8015M, benzene, toluene, ethylbenzene and total xylenes (BTEX) and MTBE by EPA Method 8020, VOCs by EPA Method 8010 and polynuclear aromatic hydrocarbons (PNAs) by EPA Method 8310. The results are tabulated below in Tables Two and Three. No PNAs were detected in any of the groundwater samples analyzed; therefore, PNAs were not included in the tables.

5.0 CONCLUSIONS

Relatively high VOC concentrations, above California Department of Toxic Substances Control (DTSC) maximum contaminant levels (MCLs) for drinking water, continue to be detected in groundwater samples collected from all four monitoring wells. The highest concentration of PCE at the site, 1,800 ppb, was detected in groundwater samples collected from upgradient monitoring well MW-3, and may indicate an off-site source. TCE concentrations ranged from 24 ppb to 2,600 ppb. Vinyl chloride, trans-1,2-DCE, cis-1,2-DCE, 1,1-DCA, TCE, PCE and chlorobenzene were detected in groundwater samples collected at the site at concentrations exceeding DTSC MCLs. Although relativity consistant with previous results, many of the VOC concentrations detected this quarter are at a historic high.

6.0 RECOMMENDATIONS

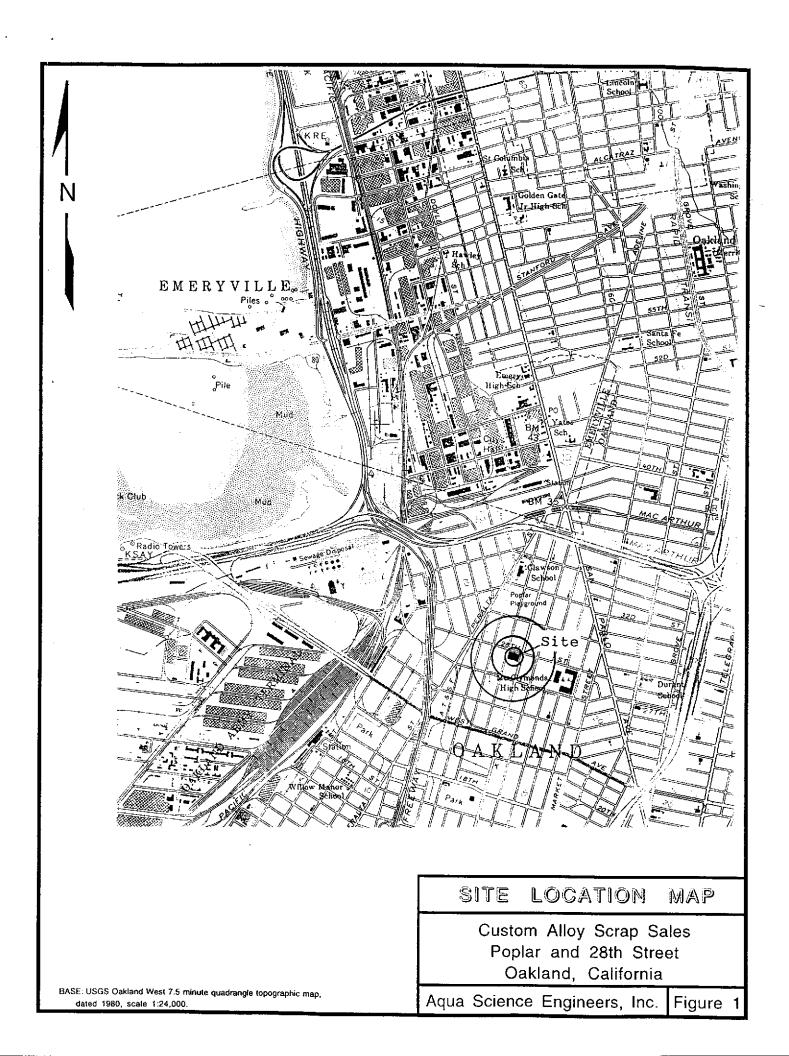
ASE recommends that a risk assessment be performed to determine whether the site is suitable for closure.

7.0 REPORT LIMITATIONS

The results of this assessment represent conditions at the time of the groundwater sampling for the specific parameters analyzed by the laboratory. It does not fully characterize the site for parameters not analyzed by the laboratory. All of the laboratory work cited in this

report was prepared under the direction of independent CAL-EPA certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity to continue providing environmental services for this project. Should you have any questions or comments, please feel free to call us at (510) 820-9391.


Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Scott Ferriman

Environmental Specialist

Satt .

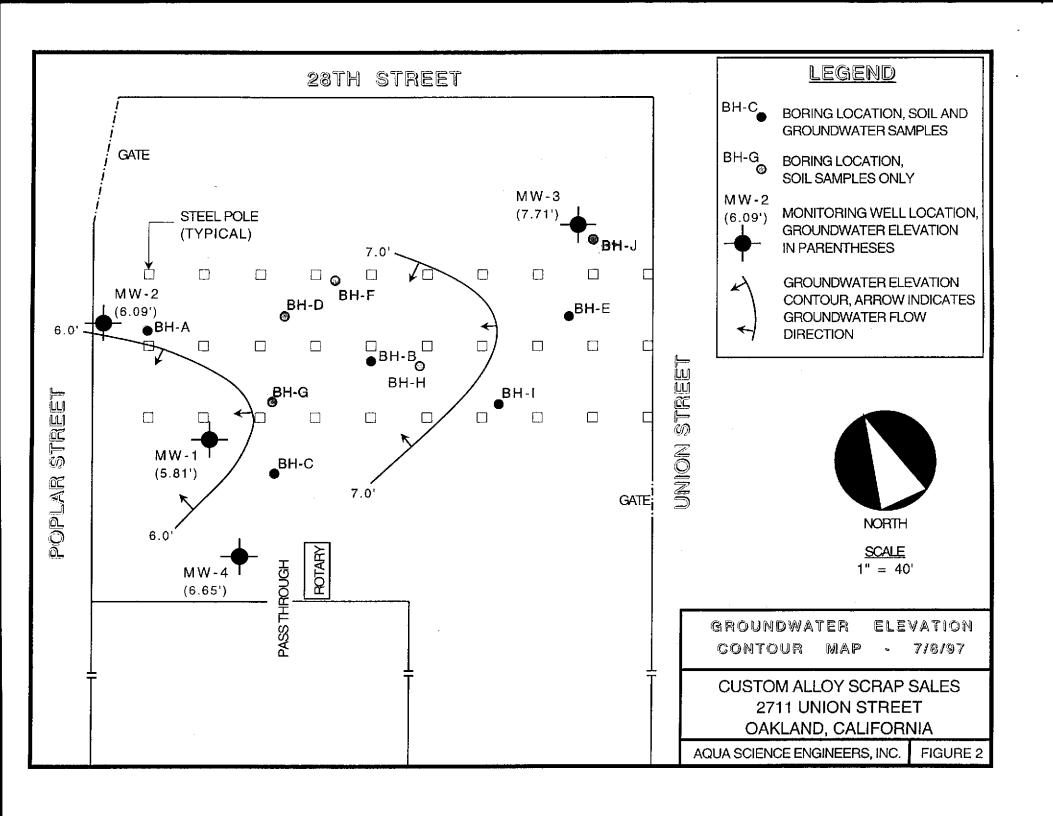


TABLE ONE
Summary of Groundwater Well Survey Data

Well I.D.	Date of Measurement	Top of Casing Elevation (relative to project datum)	Depth to Water (feet)	Elevation
MW-1	10-03-96	15.00	9.52	5.48
	01-07-97		6.74	8.26
	04-01-97		8.73	6.27
	07-08-97		9.19	5.81
MW-2	10-03-96	15.44	9.75	5.69
	01-07-97		6.90	8.54
	04-01-97		8.96	6.48
	07-08-97		9.35	6.09
MW-3	10-03-96	14.92	7,75	7.17
	01-07-97	- , , , ,	4.27	10.65
	04-01-97		6.65	8.27
	07-08-97		7.21	7.71
MW-4	10-03-96	14.98	8.73	6.25
TAT 41 -4	01-07-97	* 1,20	5.28	9.70
	04-01-97		7.64	7,34
	07-08-97		8.33	6.65

TABLE TWO
Summary of Chemical Analysis of WATER Samples
TPH-G, TPH-D, BTEX and MTBE
(All Results are in parts per billion)

Sample I.D.	TPH-G	TPH-D	Benzene	Toluene	Ethyl Benzene	Total Xylenes	мтве
MW-1				-			
10/03/96	83	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
01/07/97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
04/01/97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
07/08/97	< 500	< 50	<5	<5	<5	< 5	< 50
MW-2							
10/03/96	210	2,000*	1.1	< 0.5	< 0.5	< 0.5	130
01/07/97		3,200*	2.0	0.86	< 0,5	< 0.5	< 50
04/01/97		850 *	1.1	< 0.5	< 0.5	0.52	< 5
07/08/97		740*	< 25	< 25	< 25	< 25	< 25
MW-3							
10/03/96	200	53	< 0.5	1.4	< 0.5	< 0.5	<5
01/07/97		< 50	< 0.5	0.68	< 0.5	< 0.5	< 5
04/01/97	< 50	< 50	< 0.5	0.61	< 0.5	< 0.5	<5
07/08/97	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5
MW-4							
10/03/96	120	1,400*	< 0.5	3.8	< 0.5	< 0.5	< 5
01/07/97	< 50	2,100*	< 0.5	0.91	< 0.5	< 0.5	< 5
04/01/97	< 50	750*	< 0.5	< 0.5	< 0.5	< 0.5	< 5
07/08/97	< 1,000	590*	< 10	< 10	< 10	< 10	< 100
DISC							
MCLs	NE	NE	1	100*	680	1,750	NE
EPA	5030/	3510/					2022
METHOD	8015M	8015M	8020	8020	8020	8020	8020

Notes:

DTSC MCL = California Department of Toxic Substance Control maximum contaminant level for drinking water.

NE = DTSC MCLs and RALs not established

^{* =} Chromatogram pattern does not resemble diesel fuel; hydrocarbons in motor oil range detected.

^{** =} DTSC recommended action level (RAL); MCL not established

TABLE THREE

Summary of Chemical Analysis of WATER Samples Volatile Organic Compounds (VOC's) EPA Method 8240 or 8010

(All Results are in parts per billion)

Sample I.D.	VC	1,1- DŒ	trans- 1,2-DCE	cis- 1,2-DCE	1,1- DCA	1,1,1- TCA	TŒ	PCE	СВ	1,3- DCB	1,4- DCB	1,2- DCB
<u>MW-1</u>												•
10/03/96	< 20	< 20	< 20	61	< 20	< 20	2,200	< 20	< 20	< 20	< 20	< 20
01/07/97	2.0	0.70	2.7	73	< 0.5	1.8	1,500	18	< 0.5	< 0.5	< 0.5	< 0.5
04/01/97	< 10	< 10	< 10	71	< 10	< 10	1,500	18	< 10	< 10	< 10	< 10
07/08/97	< 40	< 40	< 40	43	< 40	< 40	2,600	< 40	< 40	< 40	< 40	< 40
MW-2												
10/03/96	160	< 20	47	200	< 20	< 20	220	< 20	32	< 20	< 20	< 20
01/07/97	95	4.5	42	290	4.7	< 0.5	270	18	74	0.90	4.8	35
04/01/97	120	5.3	53	240	4.7	< 0.5	200	16	97	1.4	7.4	64
07/08/97	170	< 5.0	53	440	5.8	< 5.0	440	26	75	< 5.0	< 5.0	33
MW-3												
10/03/96	< 20	< 20	< 20	< 20	< 20	< 20	120	520	< 20	< 20	< 20	< 20
01/07/97	< 20	< 20	< 20	< 20	< 20	< 20	300	1,700	< 20	< 20	< 20	< 20
04/01/97	< 20	< 20	< 20	< 20	< 20	< 20	190	910	< 20	< 20	< 20	< 20
07/08/97	< 20	< 20	< 20	< 20	< 20	< 20	330	1,800	< 20	< 20	< 20	< 20
MW-4												
10/03/96	< 20	< 20	< 20	28	< 20	< 20	270	< 20	< 20	< 20	< 20	< 20
01/07/97	1.7	< 0.5	< 0.5	58	< 0.5	< 0.5	18	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
04/01/97	25	1.5	6.2	100	1.1	< 0.5	18	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
07/08/97	34	< 2.0	7.2	160	< 2.0	< 2.0	24	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
DTSC												
MCL	0.5	6	10	6	5	200	5	5	30	NE	5	NE

Notes:

NE = DTSC MCL not established

VC = vinyl chloride

1,1-DCE = 1,1-dichloroethene

trans 1,2-DCE = trans-1,2-dichloroethene

cis 1,2-DCE = cis-1,2-dichloroethene

1,1-DCA = 1,1-dichloroethane 1,1,1-TCA = 1,1,1-trichlororethane

TCE = trichloroethene

PCE = tetrachloroethene

CB = chlorobenzene

1,3-DCB = 1,3-dichlorobenzene

1,4-DCB = 1,4-dichlorobenzene

1,2-DCB = 1,2-dichlorobenzene

APPENDIX A

California EPA Certified Laboratory
Report of Groundwater Samples
and
Chain of Custody Record

Environmental Services (SDB)

July 15, 1997

Submission #: 9707124

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: 4 samples for TPH - Diesel analysis.

Method: EPA 8015M

Matrix: WATER

Extracted: July 10, 1997

Sampled: July 8, 1997

Run#: 7706

Analyzed: July 10, 1997

Spl# CLIENT SPL ID	DIESEL (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK SPIKE (%)	DILUTION FACTOR
139042 MW-1	N.D.	50	N.D.	93.5	1
139043 MW-2	740	50	N.D.	93.5	1
Note: Hydrocarbon	reported does not	match the patte	ern of our	Diesel	standard.
139044 MW-3	N.D.	50	N.D.	93.5	1
139045 MW-4	590	50	N.D.	93.5	1
Note: Hydrocarbon	reported does not	match the patte	ern of our	Diesel	standard.

Bruce Havlik

Chemist

Alex Tam

Semivolatiles Supervisor

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-1

Spl#: 139042

Matrix: WATER

Sampled: July 8, 1997

Run#: 7773

Analyzed: July 15, 1997

	RESULT	REPORTING LIMIT	BLANK RESULT	BLANK SPIKE	DILUTION FACTOR
ANALYTE	(uq/L)	(ug/L)	(ug/L)	(%)	
GASOLINE	N.D.	500	N.D.	77	10
MTBE	N.D.	50	N.D.	111	10
BENZENE	N.D.	5.0	N.D.	101	10
TOLUENE	N.D.	5.0	N.D.	96	10
ETHYL BENZENE	N.D.	5.0	N.D.	97	10
XYLENES	N.D.	5.0	N.D.	95	10

Note: Hydrocarbon found in Gasoline Range is uncharacteristic of Gasoline

Profile. If quantified using Gasoline's response factor,

concentration would equal 940ug/L.

Kayvan Kimyai

Chemist

La Marianne Alexander Gas/BTEX Supervisor

510-837-4853

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-2

Sampled: July 8, 1997

Spl#: 139043

Matrix: WATER Run#: 7773

Analyzed: July 15, 1997

		REPORTING	BLANK	BLANK DILUTION
	RESULT	LIMIT	RESULT	SPIKE FACTOR
ANALYTE	(ug/L)	(ug/L)	(ug/L)	(왕)
GASOLINE	N.D.	2500	N.D.	77 50
MTBE	N.D.	250	N.D.	111 50
BENZENE	N.D.	25	N.D.	101 50
TOLUENE	N.D.	25	N.D.	96 50
ETHYL BENZENE	N.D.	25	N.D.	97 50
XYLENES	N.D.	25	N.D.	95 50

Kayvan Kimyai

Chemist

Gas/BTEX Supervisor

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AOUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-3

Spl#: 139044

Matrix: WATER

Analyzed: July 14, 1997

Sampled: July 8, 1997

Run#: 7773

BLANK DILUTION BLANK REPORTING

ANALYTE	RESULT (ug/L)	LIMIT (ug/L)	RESULT (ug/L)	SPIKE (%)	FACTOR
GASOLINE MTBE BENZENE TOLUENE ETHYL BENZENE XYLENES	N.D. N.D. N.D. N.D. N.D. N.D.	50 5.0 0.50 0.50 0.50 0.50	N.D. N.D. N.D. N.D. N.D.	77 111 101 96 97 95	1 1 1 1 1

Kayvan Kimyai

Chemist

Marianne Alexander Gas/BTEX Supervisor

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AOUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-4

Sampled: July 8, 1997

Spl#: 139045

Matrix: WATER Run#: 7773

왕

Analyzed: July 14, 1997

95

20

REPORTING BLANK BLANK DILUTION RESULT SPIKE FACTOR RESULT LIMIT (ug/L)(uq/L) (왕) (uq/L) ANALYTE 20 1000 N.D. N.D. GASOLINE 100 111 N.D. N.D. 20 MTBE 20 N.D. 10 N.D. 101 BENZENE 96 20 N.D. TOLUENE N.D. 10 97 N.D. 20 10 ETHYL BENZENE N.D.

10

XYLENES Note: Reporting Limits Increased Due To Sample Interference.

N.D.

Kayvan Kimyai

Chemist

Gas/BTEX Supervisor

All Kharig

N.D.

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Volatile Halogenated Organics analysis.

Method: SW846 Method 8010A July 1992

Client Sample ID: MW-1

Spl#: 139042

Matrix: WATER

Sampled: July 8, 1997 Run#: 7795

Analyzed: July 14, 1997

ANALYTE		RESUL T	REPORTING LIMIT	BLANK RESULT	BLANK SPIKE	DILUTION FACTOR
CHLOROETHANE			(uq/L)		(%)	
TRICHLOROFILUOROMETHANE						
1.1-DICHLOROETHENE						
METHYLENE CHLORIDE N.D. 400 N.D. 80 TRANS-1,2-DICHLOROETHENE N.D. 40 N.D. 80 CIS-1,2-DICHLOROETHENE 43 40 N.D. 80 1,1-DICHLOROETHANE N.D. 40 N.D. 80 CHLOROFORM N.D. 40 N.D. 80 CHLOROFORM N.D. 40 N.D. 80 1,1-TRICHLOROETHANE N.D. 40 N.D. 80 1,2-DICHLOROETHANE N.D. 40 N.D. 80 TRICHLOROETHENE 2600 40 N.D. 91.0 80 1,2-DICHLOROPROPANE N.D. 40 N.D. 80 BROMODICHLOROMETHANE N.D. 40 N.D. 80 2-CHLOROETHYL VINYL ETHER N.D. 40 N.D. 80 TRANS-1,3-DICHLOROPROPENE N.D. 40 N.D. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
TRANS-1,2-DICHLOROETHENE N.D. 40 N.D. 80 CIS-1,2-DICHLOROETHENE 43 40 N.D. 80 1,1-DICHLOROETHANE N.D. 40 N.D. 80 CHLOROFORM N.D. 240 N.D. 80 1,1,1-TRICHLOROETHANE N.D. 40 N.D. 80 1,2-DICHLOROETHANE N.D. 40 N.D. 80 TRICHLOROETHANE N.D. 40 N.D. 80 TRICHLOROETHANE N.D. 40 N.D. 80 TRICHLOROPROPANE N.D. 40 N.D. 80 1,2-DICHLOROPROPANE N.D. 40 N.D. 80 EROMODICHLOROMETHANE N.D. 40 N.D. 80 TRANS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 TETRACHLOROETHANE N.D. 40 N.D.					97.0	
CIS-1,2-DICHLOROETHENE						
1-DICHLOROETHANE	TRANS-1,2-DICHLOROETHENE					
CHLOROFORM N.D. 240 N.D. 80 1,1,1-TRICHLOROETHANE N.D. 40 N.D. 80 CARBON TETRACHLORIDE N.D. 40 N.D. 80 1,2-DICHLOROETHANE N.D. 40 N.D. 80 TRICHLOROPROPANE N.D. 40 N.D. 91.0 80 1,2-DICHLOROPROPANE N.D. 40 N.D. 80 BROMODICHLOROMETHANE N.D. 40 N.D. 80 2-CHLOROETHYL VINYL ETHER N.D. 40 N.D. 80 TRANS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 CIS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 TETRACHLOROETHANE N.D. 40 N.D. 80 CHLOROBENZENE N.D. 40 N.D. 80 BROMOFORM N.D. 40 N.D. </td <td>CIS-1,2-DICHLOROETHENE</td> <td></td> <td></td> <td></td> <td></td> <td></td>	CIS-1,2-DICHLOROETHENE					
1,1,1-TRICHLOROETHANE N.D. 40 N.D. 80 CARBON TETRACHLORIDE N.D. 40 N.D. 80 1,2-DICHLOROETHANE N.D. 40 N.D. 80 TRICHLOROETHANE 2600 40 N.D. 91.0 80 TRICHLOROPROPANE N.D. 40 N.D. 80 BROMODICHLOROMETHANE N.D. 40 N.D. 80 2-CHLOROETHYL VINYL ETHER N.D. 40 N.D. 80 TRANS-1, 3-DICHLOROPROPENE N.D. 40 N.D. 80 CIS-1, 3-DICHLOROPROPENE N.D. 40 N.D. 80 1,1, 2-TRICHLOROETHANE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 DIBROMOCHLOROMETHANE N.D. 40 N.D. 80 CHLOROBENZENE N.D. 40 N.D. 80 BROMOFORM N.D. 40 N.D.	1,1-D1CHLOROETHANE					
CARBON TETRACHLORIDE N.D. 40 N.D. 80 1,2-DICHLOROETHANE N.D. 40 N.D. 80 TRICHLOROETHANE 2600 40 N.D. 91.0 80 1,2-DICHLOROPROPANE N.D. 40 N.D. 80 BROMODICHLOROPROPANE N.D. 40 N.D. 80 2-CHLOROETHYL VINYL ETHER N.D. 40 N.D. 80 TRANS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 CIS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 CHLOROBENZENE N.D. 40 N.D. 80 TAILOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D.						
1,2-DICHLOROETHANE N.D. 40 N.D. 80 TRICHLOROETHENE 2600 40 N.D. 91.0 80 1,2-DICHLOROPROPANE N.D. 40 N.D. 80 BROMODICHLOROMETHANE N.D. 40 N.D. 80 2-CHLOROETHYL VINYL ETHER N.D. 40 N.D. 80 TRANS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 CIS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 DIBROMOCHLOROMETHANE N.D. 40 N.D. 80 CHLOROBENZENE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D.<	1,1,1-TRICHLOROETHANE		40			
TRICHLOROETHENE 2600 40 N.D. 91.0 80 1,2-DICHLOROPROPANE N.D. 40 N.D. 80 BROMODICHLOROMETHANE N.D. 40 N.D. 80 2-CHLOROETHYL VINYL ETHER N.D. 40 N.D. 80 TRANS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 CIS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 TETRACHLOROETHANE N.D. 40 N.D. 80 CHLOROBENZENE N.D. 40 N.D. 80 CHLOROBENZENE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D.						
1,2-DICHLOROPROPANE N.D. 40 N.D. 80 BROMODICHLOROMETHANE N.D. 40 N.D. 80 2-CHLOROETHYL VINYL ETHER N.D. 40 N.D. 80 TRANS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 CIS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 TETRACHLOROETHANE N.D. 40 N.D. 80 DIBROMOCHLOROMETHANE N.D. 40 N.D. 95.0 80 BROMOFORM N.D. 40 N.D. 80 1,1,2,2-TETRACHLOROETHANE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 <				N.D.		
BROMODICHLOROMETHANE N.D. 40 N.D. 80 2-CHLOROETHYL VINYL ETHER N.D. 40 N.D. 80 TRANS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 CIS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 TETRACHLOROETHANE N.D. 40 N.D. 80 DIBROMOCHLOROMETHANE N.D. 40 N.D. 95.0 80 BROMOFORM N.D. 40 N.D. 80 1,1,2,2-TETRACHLOROETHANE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80					91.0	
2-CHLOROETHYL VINYL ETHER N.D. 40 N.D. 80 TRANS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 CIS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 TETRACHLOROETHANE N.D. 40 N.D. 80 DIBROMOCHLOROMETHANE N.D. 40 N.D. 95.0 80 BROMOFORM N.D. 40 N.D. 95.0 80 BROMOFORM N.D. 160 N.D. 80 1,1,2,2-TETRACHLOROETHANE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80	1,2-DICHLOROPROPANE					
TRANS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 CIS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 TETRACHLOROETHENE N.D. 40 N.D. 80 DIBROMOCHLOROMETHANE N.D. 40 N.D. 80 CHLOROBENZENE N.D. 40 N.D. 95.0 80 BROMOFORM N.D. 160 N.D. 80 1,1,2,2-TETRACHLOROETHANE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80			40	N.D.		
CIS-1,3-DICHLOROPROPENE N.D. 40 N.D. 80 1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 TETRACHLOROETHENE N.D. 40 N.D. 80 DIBROMOCHLOROMETHANE N.D. 40 N.D. 80 CHLOROBENZENE N.D. 40 N.D. 95.0 80 BROMOFORM N.D. 160 N.D. 80 1,1,2,2-TETRACHLOROETHANE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80						
1,1,2-TRICHLOROETHANE N.D. 40 N.D. 80 TETRACHLOROETHENE N.D. 40 N.D. 80 DIBROMOCHLOROMETHANE N.D. 40 N.D. 80 CHLOROBENZENE N.D. 40 N.D. 95.0 80 BROMOFORM N.D. 160 N.D. 80 1,1,2,2-TETRACHLOROETHANE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80			40			
TETRACHLOROETHENE N.D. 40 N.D. 80 DIBROMOCHLOROMETHANE N.D. 40 N.D. 80 CHLOROBENZENE N.D. 40 N.D. 95.0 80 BROMOFORM N.D. 160 N.D. 80 1,1,2,2-TETRACHLOROETHANE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80	CIS-1,3-DICHLOROPROPENE					
DIBROMOCHLOROMETHANE N.D. 40 N.D. 80 CHLOROBENZENE N.D. 40 N.D. 95.0 80 BROMOFORM N.D. 160 N.D. 80 1,1,2,2-TETRACHLOROETHANE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80						
CHLOROBENZENE N.D. 40 N.D. 95.0 80 BROMOFORM N.D. 160 N.D. 80 1,1,2,2-TETRACHLOROETHANE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80			40	N.D.		
BROMOFORM N.D. 160 N.D. 80 1,1,2,2-TETRACHLOROETHANE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80			40		~ +-	
1,1,2,2-TETRACHLOROETHANE N.D. 40 N.D. 80 1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80			40		95.0	
1,3-DICHLOROBENZENE N.D. 40 N.D. 80 1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80			160		- ~	
1,4-DICHLOROBENZENE N.D. 40 N.D. 80 1,2-DICHLOROBENZENE N.D. 40 N.D. 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D. 80	1,1,2,2-TETRACHLOROETHANE		40	N.D.		80
1,2-DICHLOROBENZENE N.D. 40 N.D 80 TRICHLOROTRIFLUOROETHANE N.D. 40 N.D 80	1,3-DICHLOROBENZENE		40	N.D.		
TRICHLOROTRIFLUOROETHANE N.D. 40 N.D 80	1,4-DICHLOROBENZENE	N.D.	40	N.D.		80
	1,2-DICHLOROBENZENE		40	N.D.		80
CHI OROMETHANE N.D. OO N.D. OO	TRICHLOROTRIFLUOROETHANE		40	N.D.		80
1,,2,	CHLOROMETHANE	N.D.	80	N.D.		80
BROMOMETHANE N.D. 80 N.D 80		N.D.	80	N.D.		80

Note: SAMPLE WAS ANALYZED USING EPA METHOD 8240

Oleg Nemtsov

Chemist

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Volatile Halogenated Organics analysis.

Method: SW846 Method 8010A July 1992

Client Sample ID: MW-2

Spl#: 139043 Sampled: July 8, 1997 Matrix: WATER

Run#: 7795

Analyzed: July 14, 1997

ANALYTE	RESULT	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK SPIKE (%)	DILUTION FACTOR
VINYL CHLORIDE	170	5.0	N.D.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10
CHLOROETHANE	N.D.	5.0	N.D.		10
TRICHLOROFLUOROMETHANE	N.D.	5.0	N.D.		10
1,1-DICHLOROETHENE	N.D.	5.0	N.D.	97.0	10
METHYLENE CHLORIDE	N.D.	50	N.D.	57.0	10
TRANS-1, 2-DICHLOROETHENE	53	5.0	N.D.		10
CIS-1,2-DICHLOROETHENE	440	5.0	N.D.		10
1,1-DICHLOROETHANE	5.8	5.0	N.D.		ĩŏ
CHLOROFORM	Ñ.D.	30	N.D.		10
1,1,1-TRICHLOROETHANE	N.D.	5.0	N.D.		10
CARBON TETRACHLORIDE	N.D.	5.0	N.D.		10
1,2-DICHLOROETHANE	N.D.	5.0	N.D.		10
TRICHLOROETHENE	440	5.0	N.D.	91.0	ĩŏ
1,2-DICHLOROPROPANE	N.D.	5.0	N.D.		10
BROMODICHLOROMETHANE	N.D.	5.0	N.D.		10
2-CHLOROETHYL VINYL ETHER	N.D.	5.0	N.D.		10
TRANS-1,3-DICHLOROPROPENE	N.D.	5.0	N.D.		10
CIS-1,3-DICHLOROPROPENE	N.D.	5.0	N.D.		10
1,1,2-TRICHLOROETHANE	N.D.	5.0	N.D.		10
TETRACHLOROETHENE	26	5.0	N.D.		10
DIBROMOCHLOROMETHANE	N.D.	5.0	N.D.		10
CHLOROBENZENE	75	5.0	N.D.	95.0	10
BROMOFORM	N.D.	20	N.D.		10
1,1,2,2-TETRACHLOROETHANE	N.D.	5.0	N.D.		10
1,3-DICHLOROBENZENE	N.D.	5.0	N.D.		10
1,4-DICHLOROBENZENE	N.D.	5.0	N.D.		10
1,2-DICHLOROBENZENE	33	5.0	N.D.		10
TRICHLOROTRIFLUOROETHANE	N.D.	5.0	N.D.		10
CHLOROMETHANE	N.D.	10	N.D.		10
BROMOMETHANE	N.D.	10	N.D.		10

Note: SAMPLE WAS ANALYZED USING EPA METHOD 8240

Oleg Nemtsov

Chemist

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Volatile Halogenated Organics analysis.

Method: SW846 Method 8010A July 1992

Client Sample ID: MW-3

Spl#: 139044

Matrix: WATER

Sampled: July 8, 1997

Run#: 7795 Analyzed: July 14, 1997

		REPORTING	BLANK	BLANK	DILUTION
	RESULT	LIMIT	RESULT	SPIKE	FACTOR
ANALYTE	(uq/L)	(ug/L)	(uq/L)	_ (%)	<u></u>
VINYL CHLORIDE	N.D.	20	N.D.		40
CHLOROETHANE	N.D.	20	N.D.		40
TRICHLOROFLUOROMETHANE	N.D.	20	N.D.		40
1,1-DICHLOROETHENE	N.D.	20	N.D.	97.0	40
METHYLENE CHLORIDE	N.D.	200	N.D.		40
TRANS-1,2-DICHLOROETHENE	N.D.	20	N.D.		40
CIS-1,2-DICHLOROETHENE	N.D.	20	N.D.		40
1,1-DICHLOROETHANE	N.D.	20	N.D.		40
CHLOROFORM	N.D.	120	N.D.		40
1,1,1-TRICHLOROETHANE	N.D.	20	N.D.		40
CARBON TETRACHLORIDE	N.D.	20	N.D.		40
1,2-DICHLOROETHANE	N.D.	20	N.D.		40
TRICHLOROETHENE	330	20	N.D.	91.0	40
1,2-DICHLOROPROPANE	N.D.	20	N.D.		40
BROMODICHLOROMETHANE	N.D.	20	N.D.		40
2-CHLOROETHYL VINYL ETHER	N.D.	20	N.D.		40
TRANS-1,3-DICHLOROPROPENE	N.D.	20	N.D.		40
CIS-1,3-DICHLOROPROPENE	N.D.	20	N.D.		40
1,1,2-TRICHLOROETHANE	N.D.	20	N.D.		. 40
TETRACHLOROETHENE	1800	20	N.D.		40
DIBROMOCHLOROMETHANE	N.D.	20	N.D.		40
CHLOROBENZENE	N.D.	20	N.D.	95.0	40
BROMOFORM	N.D.	80	N.D.		40
1,1,2,2-TETRACHLOROETHANE	N.D.	20	N.D.		40
1,3-DICHLOROBENZENE	N.D.	20	N.D.	- -	40
1,4-DICHLOROBENZENE	N.D.	20	N.D.		40
1,2-DICHLOROBENZENE	N.D.	20	N.D.		40
TRICHLOROTRIFLUOROETHANE	N.D.	20	N.D.		40
CHLOROMETHANE	N.D.	40	N.D.		40
BROMOMETHANE	N.D.	40	N.D.		40
DIOTOPICITEME		ADDITION 9240			

Note: SAMPLE WAS ANALYZED USING EPA METHOD 8240

Oleg Nemtsov

Chemist

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Volatile Halogenated Organics analysis.

Method: SW846 Method 8010A July 1992

Client Sample ID: MW-4

Spl#: 139045 Sampled: July 8, 1997 Matrix: WATER

Run#: 7795

Analyzed: July 14, 1997

	RESULT	REPORTING LIMIT	BLANK RESULT	SPIKE	DILUTION FACTOR
ANALYTE	(ug/L)	(ug/L)	(ug/L)	(왕)	
VINYL CHLORIDE	34_	2.0	N.D.		4 4 4
CHLOROETHANE	N.D.	2.0	N.D.		4
TRICHLOROFLUOROMETHANE	N.D.	2.0	N.D.		
1,1-DICHLOROETHENE	N.D.	2.0	N.D.	97.0	4
METHYLENE CHLORIDE	N.D.	20	N.D.		4
TRANS-1,2-DICHLOROETHENE	7.2	2.0	N.D.		4
CIS-1,2-DICHLOROETHENE	160	2.0	N.D.	·	4
1,1-DICHLOROETHANE	N.D.	2.0	$\mathbf{N} \cdot \mathbf{D}$.		4
CHLOROFORM	N.D.	12	N.D.		4
1,1,1-TRICHLOROETHANE	N.D.	2.0	N.D.		4
CARBON TETRACHLORIDE	N.D.	2.0	N.D.		4
1,2-DICHLOROETHANE	N.D.	2.0	N.D.		4
TRICHLOROETHENE	24	2.0	N.D.	91.0	4
1,2-DICHLOROPROPANE	N.D.	2.0	N.D.		4
BROMODICHLOROMETHANE	N.D.	2.0	N.D.		4
2-CHLOROETHYL VINYL ETHER	N.D.	2.0	N.D.		4
TRANS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.		4
CIS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.		4
1,1,2-TRICHLOROETHANE	N.D.	2.0	N.D.		4
TETRACHLOROETHENE	N.D.	2.0	N.D.		4
DIBROMOCHLOROMETHANE	N.D.	2.0	N.D.	- -	4
CHLOROBENZENE	N.D.	2.0	N.D.	95.0	4
BROMOFORM	N.D.	8.0	N.D.		4
1,1,2,2-TETRACHLOROETHANE	N.D.	2.0	N.D.		4
1,3-DICHLOROBENZENE	N.D.	2.0	N.D.		4
1,4-DICHLOROBENZENE	N.D.	2.0	N.D.		4
1,2-DICHLOROBENZENE	N.D.	2.0	N.D.		4
TRICHLOROTRIFLUOROETHANE	N.D.	2.0	N.D.	- -	4
CHLOROMETHANE	N.D.	$\frac{-}{4}.0$	N.D.		4
BROMOMETHANE	N.D.	4.0	N.D.		4

Note: SAMPLE WAS ANALYZED USING EPA METHOD 8240

Oleg Nemtsov

Chemist

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Polynuclear Aromatics (PNAs) analysis.

Method: SW846 Method 8310 Sept 1986

Client Sample ID: MW-1

Spl#: 139042

Sampled: July 8, 1997

Matrix: WATER *Run#:* 7768 Extracted: July 15, 1997

Analyzed: July 16, 1997

•		REPORTING	BLANK	BLANK I	DILUTION
	RESULT	LIMIT	RESULT	SPIKE	FACTOR
ANALYTE	(ug/L)	(ug/L)	(ug/L)	(%)	
NAPHTHALENE	N.D.	2.1	N.D.	58.2	1
ACENAPHTHENE	N.D.	3.7	N.D.	 -	ī
ACENAPHTHYLENE	N.D.	1.8	N.D.		ī
FLUORENE	N.D.	0.32	N.D.		1
PHENANTHRENE	N.D.	0.16	N.D.	93.2	1
ANTHRACENE	N.D.	0.074	N.D.		1
FLUORANTHENE	N.D.	0.16	N.D.		1
PYRENE	N.D.	0.34	N.D.	108	1
BENZO (A) ANTHRACENE	N.D.	0.16	N.D.		1
CHRYSENE	N.D.	0.37	N.D.	116	ī
BENZO (B) FLUORANTHENE	N.D.	0.053	N.D.		ī
BENZO (K) FLUORANTHENE	N.D.	0.053	N.D.		$\bar{1}$
BENZO (A) PYRENE	N.D.	0.16	N.D.	107	1
INDENO(1,2,3-CD)PYRENE	N.D.	0.17	N.D.		1
DIBENZO(A, H) ANTHRACENE	N.D.	4.8	N.D.		1
BENZÔ (G, H, I) PERYLENE	N.D.	0.70	N.D.		1
(tichaether			·/	10	

Michael Lee Chemist Ćhip Poalinelli

Operations Manager

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Polynuclear Aromatics (PNAs) analysis.

Method: SW846 Method 8310 Sept 1986

Client Sample ID: MW-2

Spl#: 139043

Matrix: WATER

Extracted: July 15, 1997

Sampled: July 8, 1997 Run#: 7768

Analyzed: July 16, 1997

•		REPORTING	BLANK	BLANK :	DILUTION
	RESULT	LIMIT	RESULT	SPIKE	FACTOR
ANALYTE	(uq/L)	(uq/L)	(ug/L)	(%)	
NAPHTHALENE	N.D.	2.0	N.D.	58.2	1
ACENAPHTHENE	N.D.	3.6	N.D.		1
ACENAPHTHYLENE	N.D.	1.7	N.D.		1
FLUORENE	N.D.	0.31	N.D.		1
PHENANTHRENE	N.D.	0.15	N.D.	93.2	1
ANTHRACENE	N.D.	0.072	N.D.		1
FLUORANTHENE	N.D.	0.15	N.D.		1
PYRENE	N.D.	0.33	N.D.	108	1
BENZO (A) ANTHRACENE	N.D.	0.15	N.D.		1
CHRYSENE	N.D.	0.36	N.D.	116	1
BENZO (B) FLUORANTHENE	N.D.	0.051	N.D.		1
BENZO (K) FLUORANTHENE	N.D.	0.051	N.D.		1
BENZO (A) PYRENE	N.D.	0.15	N.D.	107	1
INDENO(1,2,3-CD)PYRENE	N.D.	0.16	N.D.		1
DIBENZO (A, H) ANTHRACENE	N.D.	4.7	N.D.		1
BENZO (G, H, 1) PERYLENE	N.D.	0.69	N.D.		1

Michael Lee Chemist Chip Poalinelli

Operations Manager

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Polynuclear Aromatics (PNAs) analysis.

Method: SW846 Method 8310 Sept 1986

Client Sample ID: MW-3

Spl#: 139044

Matrix: WATER

Extracted: July 15, 1997

Sampled: July 8, 1997 Run#: 7768 Analyzed: July 16, 1997

•		REPORTING	BLANK	BLANK	DILUTION
	RESULT	LIMIT	RESULT	SPIKE	FACTOR
ANALYTE	(ug/L)	(ug/L)	(ug/L)	(%)	
NAPHTHALENE	N.D.	2.0	N.D.	58.2	1
ACENAPHTHENE	N.D.	3.5	N.D.		1
ACENAPHTHYLENE	N.D.	1.7	N.D.		1
FLUORENE	N.D.	0.30	N.D.		1
PHENANTHRENE	N.D.	0.15	N.D.	93.2	1
ANTHRACENE	N.D.	0.070	N.D.		1
FLUORANTHENE	N.D.	0.15	N.D.		1
PYRENE	N.D.	0.32	N.D.	108	1
BENZO (A) ANTHRACENE	N.D.	0.15	N.D.		1
CHRYSENE	N.D.	0.35	N.D.	116	1
BENZO (B) FLUORANTHENE	N.D.	0.050	N.D.		1
BENZO(K) FLUORANTHENE	N.D.	0.050	N.D.		1
BENZO (A) PYRENE	N.D.	0.15	N.D.	107	1.
INDENO(1,2,3-CD)PYRENE	N.D.	0.16	N.D.		1
DIBENZO (A) H) ANTHRACENE	N.D.	4.6	N.D.		1
BENZÓ (G, H, I) PERYLENE	N.D.	0.67	N.D.		1

Michael Lee Chemist

Environmental Services (SDB)

July 16, 1997

Submission #: 9707124

AQUA SCIENCE ENGINEERS INC

Atten: Scott Ferriman.

Project: CUSTOM ALLEY SCRAP SALES

Project#: 2971

Received: July 9, 1997

re: One sample for Polynuclear Aromatics (PNAs) analysis.

Method: SW846 Method 8310 Sept 1986

Client Sample ID: MW-4

Spl#: 139045

Matrix: WATER

Extracted: July 15, 1997

Sampled: July 8, 1997

Run#: 7768

Analyzed: July 16, 1997

·	D-0	REPORTING	BLANK		DILUTION
	RESULT	LIMIT	RESULT	SPIKE	FACTOR
ANALYTE	(ug/L)	(ug/L)	(ug/L)	(%)	
NAPHTHALENE	N.D.	2.0	N.D.	58.2	1
ACENAPHTHENE	N.D.	3.6	N.D.		1
ACENAPHTHYLENE	N.D.	1.7	N.D.		$\bar{1}$
FLUORENE	N.D.	0.31	N.D.		ī
PHENANTHRENE	N.D.	0.15	N.D.	93.2	ī
ANTHRACENE	N.D.	0.072	N.D.		า
FLUORANTHENE	N.D.	0.15	N.D.		1
PYRENE	N.D.	0.33	N.D.	108	1
BENZO (A) ANTHRACENE	N.D.	0.15	N.D.		ī
CHRYSENE	N.D.	0.36	N.D.	116	ī
BENZO (B) FLUORANTHENE	N.D.	0.051	N.D.		1
BENZO (K) FLUORANTHENE	N.D.	0.051	N.D.		ī
BENZO (A) PYRENE	N.D.	0.15	N.D.	107	ī
INDENO(1,2,3-CD)PYRENE	N.D.	0.16	N.D.		ī
DIBENZO (A, H) ANTHRACENE	N.D.	4.7	N.D.		ī
BENZO(G, H, I) PERYLENE	N.D.	0.69	N.D.		ī
(Lichardhen			CT-		-

Michael Lee Chemist

124/120042-120045

34564

Aqua Science Engineers, Inc. 2411 Old Crow Canyon Road, #4, San Ramon, CA 94583 (510) 820-9391 - FAX (510) 837-4853

Chain of Custody

										-				DAT	ΓΕ <u></u>	/-0		PAGE		_OF _		
SAMPLERS (S	IGNAT	URE)	_	(PI	HONE	NO.)	PRO	ECT N	IAME		us for	n A	11 ov	Scrap	o Sa	lis	1	۱O. ،	297	٠ /		
Samplers (s					820-9	191	ADD	RESS		2	711	Un	100	Shu	/ , ()akl	ind U				-	
ANA	LYS	IS R	EQUE	EST		777EG			92		8	B&F)										
SPECIAL INST	TRUCTI	ONS:				TEX/ B02	_	1 ES	ARBO	55	ACTIDS	•		5								ı I
			5 Day		TPH- GASOLINE (EPA 5030/8015)	TPH-GASOLINE/BTEX/17 ₁₂ (EPA 5030/8015-8020)	TPH- DIESEL (EPA 3510/8015	PURGABLE AROMATICS (EPA 602/8020)	PURGABLE HALOCARBONS (EPA 601/8010)	VOLATILE ORGANICS (EPA 624/8240)	BASE/NUETRALS, (EPA 625/8270)	OIL & GREASE (EPA 5520 E&F or	LUFT METALS (5) (EPA 6010+7000)	TITLE 22 (CAM 17) (EPA 6010+7000)	TCLP (EPA 1311/1310)	CAM WET 311/1310)	REACTI VI TY CORROSI VI TY I GNI TABI LI TY	8310				
SAMPLE ID.				NO. OF SAMPLES	три- д (ера	трн- с (ера	трн- D (ера	PURGA:	PURGA (EPA	VOLAT	BASE/I	OIL &	LUET (EPA 6	TITLE (EPA 6	TCLP (EPA 1	STLC- (EPA 1	REACTI CORROS I GNI TA					
	7-8-97	1):15	MAN	6		Χ	X		X									X				
Mw-2		1155				X	Ý		Χ					ļ				X				
MW-3		1235					X		\langle									X		L		
MW-4	Υ	13,40	V	V		4	\prec		X									\prec				
											JEPT 特 IEPT 特 E: E: 特:	# AS	3E 7/16/	26 RE 197	i}g γ	IV .						
			1																			
· · · · · · · · · · · · · · · · · · ·									:													
RELINQUISHE		-Till	RECEI	VED BY:			REL	INQUI	SHED I	3Y:		REC	EIVED	BYLA	BORA			MENTS	:			
(signature)		1.79 F (tim	c) (signat	ure)	<u>- ''</u>	(time)	(sign	nature)	<u> </u>	~ /_	5/ <u>//</u> (time)	(5197	nature)		<u> </u>	1579 (time						
$S_{co}H$ 7. Fer (printed name)	ciman	7957	1/2	12500	v 7		1	1		on T	7.90		Miles	1 7/2 V?	intan i	7-9-9	カ					
(printed name)		(date) (přinte	d name)		(date)	(prin	ited nai	ne)		(date)	(prin	ited nai	ne)	MIN	(date	<u>-</u>			•		
Company-	Ise,	Inc	Comp	any-		£	Com	ıpany-	M	tay g	1	!	npany-									

APPENDIX B

Well Sampling Field Logs

Project Name and Address: Custom Alloy Soap Sales Oakland, C	4
Job #:	7
Well Name: Mul-1 Sampled by: SF	
Total depth of well (feet): 29.73 Well diameter (inches):	2 4
Depth to water before sampling (feet):	<u></u>
Thickness of floating product if any:	
Depth of well casing in water (feet):	
Number of gallons per well casing volume (gallons): 2.6	·
Number of well casing volumes to be removed: 4	
Req'd volume of groundwater to be purged before sampling (gallons):	10
Equipment used to purge the well: Och and Paly Bally	
Time Evacuation Began: 10:40 Time Evacuation Finished: 1	:10
Approximate volume of groundwater purged:	
Did the well go dry?: After how many gallons:	
Time samples were collected: 4215	
Depth to water at time of sampling: 9.39	
Percent recovery at time of sampling: 98%	
Samples collected with: Dedicated Poly Bailer	
Sample color: Cloudy Odor: Now	
Description of sediment in sample: Small amount of Tan Silt	
CHEMICAL DATA	
Walana Basada marana ma	
Volume Purged Temp pH Conductivity	
$\frac{1}{63.7} \frac{\cancel{4.5}}{\cancel{8.1}} \frac{\cancel{9.5}}{\cancel{79.1}}$	
13.6	
<u> </u>	
SAMPLES COLLECTED	
Sample # of containers Volume & type container Pres Iced? Analysis	
	1 TOE
2 40 ml VO 45 1 8010	
1 PAME TPHO	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 Le America no 8310	

Project Name and Ad	dress: Cushm	Hloy Seap Saler,	Oaxland, CA	
Job #: 2971	$\frac{D}{2}$: <u>7-8-97</u>	
Well Name:Mw -	L_{\perp} Sa	impled by:	5/	·,
Total depth of well (for Depth to water before	et): (4.	$\frac{7.3}{9}$ well a	iameter (inches): _2	
Depth to water before	sampling (feet);) F	
Thickness of floating	product if any:		non_	
Depth of well casing	in water (feet):	7.2	08	
Number of gallons pe	r well casing v	olume (gallons)	:	
Number of well casin	g volumes to b	e removed:	9	
Req'd volume of grou	ndwater to be p	ourged before s	ampling (gallons): _	
Equipment used to pu	irge the well:_	Rdiradel Poly	Baler	
Time Evacuation Bega	in: 11:20	Time Evać	uation Finished: 11:5	20
Approximate volume	of groundwater	purged:	7	
Did the well go dry?:				
Time samples were c		11:55	· · · · · · · · · · · · · · · · · · ·	
Depth to water at tim		9.5	1	
Percent recovery at the		g: 98	አ	
Samples collected wit		and Pely Ba		
Sample color:	Condi	Odor:	NONL	
Description of sedime			it of Tan Silt	
	+F	7 7 4.3 S.		
CHEMICAL DATA				
Volume Purged	Temp pl	H Condu	ctivity	
	65,2	.41	0 44	
2	64.4 8	,22 1	057	
3	63.6	1.19	061	
4	63.3	5.21	n 58	
	~~ <u>~</u>		U-2-0-	
				
SAMPLES COLLECT	ED			
Sample # of containers	Volume & type co	ntainer Pres Iced	? Analysis	
MW-2 Z	40 ml VOA	Hel V	منالم ما الما	TAE
2	40 ml VOAs		8010	
	1 e Amb	- レゴ	TPHO	
	12 Amh -		8310	
<u> </u>				
·				

Project Name and Addre	ss: Custom Alloy Scap Sals Oakland CA Date of sampling: 7-8-97
Well Name: MW-3	Sampled by:
Total depth of well (feet)	: 24.78 Well diameter (inches): 2
Depth to water before sa	mpling (feet): 7, 2/
Thickness of floating pro	duct if any:
Depth of well casing in	water (feet): 17.57
Number of gallons per w	vell casing volume (gallons): 3
Number of well casing v	olumes to be removed: 4
	vater to be purged before sampling (gallons): 12
	the well: Reducated Poly Balle
	12:00 Time Evacuation Finished: 12:30
	groundwater purged: 12
	After how many gallons:
	ected: 12:35
Depth to water at time of	of sampling: 7.36
Percent recovery at time	
Samples collected with	Dechard Poly Bactiv
Sample color:	Odor: none
	in sample: none
Description of sediment	in sample. <u>Hear</u>
CHEMICAL DATA	
Volume Purged T	emp pH Conductivity
	0.1 9.16 1011
	5.4 9.62 988
	2.7 4.51 990
<u> </u>	01.5 8,56 996
·····	
	
SAMPLES COLLECTED	
	ume & type container Pres Iced? Analysis
MW-3 2 1	10 ml VOAs HOLYS TOHY OFFEX MIDE
	40 ml VOA; 1 70/0
	18 And V J TPH-D
<u> </u>	18 Amb NU 8310

Project Name and Address: Job #: 2971	Custon Allay Srap Sala, Oakland (A)
Well Name: Mw-4	Date of sampling: 7-8-57 Sampled by: 5
Total depth of well (feet):	21.26 Well diameter (inches): 2"
Depth to water before camp	ling (feet): 8,33
Thickness of floating produc	t if any: None
Double of well ensing in wet	or (fast): 12 9 3
Number of calleng per well	er (feet): 12,93 casing volume (gallons): 2,2
Number of ganons per went	man to be removed:
Number of well casing volu	
	r to be purged before sampling (gallons):
	e well: Dedicate Poly Baker
	Time Evacuation Finished: 13:20
Approximate volume of gro	
	After how many gallons:
	d:13140
	sampling: 8.51
	sampling: 98%
Samples collected with:	Red carel Fely grade
Sample color:	Odor: None
Description of sediment in	
CHEMICAL DATA	
Volume Purged Temp	pH Conductivity
69.5	
63.5	3 9.18 1618
3 63	2 4.09 1622
43:	
	1061
	-
SAMPLES COLLECTED	
Sample # of containers Volume MU-4 Z 10.0	I voto de Ver THELEX/MIDE
7 40	
	C Ambr V TOHO
	Anh 10 810

Project Name and Add	ress: <u>(ustor</u>	Alloy.	Scrap Sales	Oakland, CA	
Job #: 2971 Well Name: $M\omega$ -	I	Date of s	ampling:	<u> 4-1-97 </u>	
Well Name:Mw-	<u>4</u>	Sampled	by:	<u>s</u> ~	
Total depth of well (fee	et): <u>4</u>	,26_	Well diamet	ter (inches): _	2"
Depth to water before	sampling (fee	et):	1,04		·
Thickness of floating p	roduct if any	•	17072		
Depth of well casing in	ı water (feet)	•	13,66		
Number of gallons per	well casing	volume ((gallons):	6,5	
Number of well casing	volumes to	pe temo.	vea: <i>9</i>	,	
Rea'd volume of groun	dwater to be	purged]	before sampl	ing (gallons):	9
Equipment used to put	ge the well:	Dedica	rd foly R	cular	
Time Evacuation Began	1: 121,50	Tin	ne Evaćuatio	n Finished:	2:20
Approximate volume of	f groundwate	er purged	l:	<u> 1 </u>	
Did the well go dry?:_	70	Āft	er how man	y gallons:	
Time samples were co					-
Depth to water at time					
Percent recovery at tir			97%		
Samples collected with	ı: Ded	رره کمیا	Polv Bailer	- · ·	
Sample color:	ear	Od	or: Me	one	•
Description of sedimer	t in sample:		none	, , , , , , , , , , , , , , , , , , , 	,
CHEMICAL DATA					
Volume Purged	Temp 1	<u>p H</u>	Conductivit	v	
		8 19	1629		
2	62.0	× 29	11.30	,	
<u> </u>		9.36	1641		
<u>-</u>	· · · · · · · · · · · · · · · · · · ·	8.38	164	4	
				-1	
			· ·		
SAMPLES COLLECTE					
Sample # of containers MW-Y Z 1	Volume & type of 40 m/ Volume & type of 10 m/ Volume of 10 Amba	45	Pres Iced? A	nalysis TPH9/157EX 8010 7P40 8310	/MTBE
					-